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Preface

Expanding industrial production along with the world’s growing population, which
increases by more than 200,000 individuals per day, puts enormous pressure on
the environment. Residues of manmade chemical compounds are everywhere; for
example, recent reports indicate that hundreds of organohalogenide contaminants
have been found in polar bear blood serum.

There is an urgent need for continuous monitoring of numerous macro and 
micropollutants and their metabolites in order to cope with the potential threats of
extensive exploitation of natural resources and the increasing number of synthetic
compounds around. This monitoring is necessary for improving quality of life and 
for dealing with rising living standards. Currently the contaminants of greatest
concern are various micropollutants, such as heavy metals and pesticides used in
agricultural production as well as residues of all kinds of pharmaceuticals. A major
global threat to public health is “microbiological contamination,” that is, antibiotic-
resistant bacteria and fungi resulting from uncontrolled use of antibiotics.

Despite the growing need for quick and robust analytical information, we still lack
methods for online, onsite automatic detection of contaminants allowing timely
and effective management of abnormalities. Traditional analytical methods require
sample collection and complex lab studies, taking several hours or even days to
provide results. The development of new technologies, in particular various bio-
sensing methods, potentially may allow for real-time, automated analyses in natural 
conditions with no prior treatment of samples. Although biosensor-based technolo-
gies require further efforts to become a serious alternative to standard methods, the
number of solutions for the detection of minute residual concentrations of known
and potential pollutants along with their metabolites is growing.

This book provides an overview of some of the latest trends in the development of
biosensors for their application in environmental monitoring. It discusses different
biosensor construction and signal-detection principles along with various sens-
ing platforms and bio-recognition elements. In addition, it proposes algorithms to
cope with the variability of analytical conditions and instability of environmental 
processes. Along with information on artificially constructed sensing systems, the
book includes chapters dealing with natural “biosensor” organisms used for the
assessment of detrimental effects of pollutants.

In addition, this book pays special attention to the analytical performance of
biosensors, including their selectivity, sensitivity, and analysis time as well as their
potential application for automated online analyses.

Toonika Rinken and Kairi Kivirand
University of Tartu, Estonia
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Chapter 1

Introductory Chapter: The
Prospective of Biosensing in
Environmental Monitoring
Kairi Kivirand and Toonika Rinken

1. Introduction

In recent years, an increasing number of actions for environmental monitoring 
have become more and more topical. Environmental monitoring is necessary to
protect the environment from pollutants and minimize the impact of unfavorable
components and processes. As the world’s population continues to increase, so does
the amount of pollutants that are released into the environment.

Environmental pollution is defined as “the contamination of the physical and 
biological components of the earth/atmosphere system to such an extent that nor-
mal environmental processes are adversely affected” [1]. The substances that cause
pollution are categorized as pollutants, which are commonly classified according 
to their chemical structure (organic and inorganic compounds), their mode of
action (endocrine effect or toxicity), their source (natural or manmade) or by
their amount (micro and macro pollutants) [2]. A pollutant can be any chemical or
geochemical substance, biological organism or physical substance, which has been
released into the environment by man and has harmful, unpleasant or inconvenient
effect [3]. Depending on the nature of a pollutant, pollution is classified as air, 
water, soil or land, noise, radioactive and thermal pollution [3].

The release of pollutants (e.g., heavy metals, pesticides, drugs and pharma-
ceuticals) to the environment is a worldwide problem and there is a growing need 
to combat with uncontrolled pollution. For example, the global environmental 
monitoring plan (GEMP) for persistent organic pollutants (POPs), prefiguring a
major concern, has become an important component of the evaluation of effective-
ness of Stockholm Convention [4]. It provides an organizational framework for the
collection of comparable monitoring data on the presence of POPs in order to detect
changes in their concentrations [5]. Most pollutants released to the environment are
undetectable, until their effects make it impossible to ignore them and we have to
deal already with the consequences. Therefore, it is necessary to detect pollution as
soon as possible.

2. Traditional methods for environmental analysis

Different types of methods and techniques are used for environmental analysis. 
Traditional methods used for the detection of molecular pollutants are mostly based 
on chromatographic techniques (gas chromatography or ultra-high performance
liquid chromatography coupled with mass spectrometry, thin-layer chromatog-
raphy) and spectrophotometry. Chromatographic tools are sensitive and reliable
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but also time-consuming because they usually need sample pretreatment; the 
equipment is expensive and requires qualified personnel to perform the analysis. 
The biggest drawback of the abovementioned methods is the fact that due to long 
analytical procedures, their application for operative in situ measurements in cases 
when timely information is crucial is not possible. For example, pollutant concen-
trations in watercourses are dynamic and change in water flows. With weekly or 
even monthly sampling and analyzing, it is extremely unlikely that the maximum 
or the real concentration levels for a certain period can be determined. As a result, 
we see elevated levels of pesticides or nitrates in areas of intensive farming, even in 
groundwater, or increased lead levels in areas where it has been used in plumbing. 
In addition, thin-layer chromatography (TLC) has been often used for testing soils 
and groundwater for pollutants like pesticides, herbicides or fungicides. It is an 
effective and low-cost method and many samples can be analyzed simultaneously. 
However, TLC is applicable only for nonvolatile compounds; there are limitations in 
resolution capability and the absence of fully automated system [6].

The gold standard for the detection of microbiological pollutants is cultivation; 
however, DNA-based molecular diagnostics nowadays is becoming more and more 
popular. Microbiological cultivation is simple and inexpensive. However, there are 
some disadvantages: these methods rely on the growth of the target microorgan-
isms in one or more nutrient media, the detection of growth is carried out by visual 
assessment and the confirmation of the presence of a particular pathogen usually 
involves a combination of biochemical and serological tests [7, 8]. In addition, the 
interpretation of the results can be subjective, and for some bacteria, the total test 
time can be as long as several days [8, 9]. For example, there is a drastic increase in 
pathogen concentrations, and the infection risks due to late results of potentially 
contaminated drinking water are very high [10]. With DNA-based molecular 
diagnostic methods like polymerase chain reaction (PCR), it is possible to identify 
specific bacterial strains, but this method still require several hours to obtain results 
and sometimes it fails to discriminate between related species and intragenomic 
heterogeneity [11].

3. Biosensing in environmental monitoring

Therefore, development of rapid real-time and reliable detection methods is 
essential. Biosensors are an alternative to traditional methods. Biosensors can act 
as pressure sensors, microphones, optical sensors, microfluidics, temperature and 
gas sensors [12]. In recent years, biosensors have also been developed to detect and 
recognize genetically modified microorganisms (GMOs) [13], which have gener-
ated heated debates, especially in the European countries (EU), about the safety 
of food and the potential impact to the environment [14]. Furthermore, biosen-
sors can offer a strong potential for better understanding and investigating of the 
environment, including the fate and transport of contaminants. The number of 
opportunities to join science and new technology into biosensing systems is almost 
overwhelming. One of the first environmental biosensors was initially developed 
for nerve gas detection for the military in the late 1970s and modified for the detec-
tion of pesticides (organophosphorus and carbamate) in the environment and was 
based on the inhibition of the enzyme acetylcholinesterase [15]. Over the years, 
new biosensors have been developed for environmental monitoring. For example, 
biosensors for the detection of heavy metals like zinc, cobalt, cadmium, lead, etc. 
[16–22] have been developed. In addition, biosensors for the detection of phenolic 
compounds [23–26], pesticides [27–30], pathogens [9, 31–35] and drug residues  
[36, 37] have been developed.

3
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provided the original work is properly cited. 
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Sensitivity, specificity, reliability, cost-efficiency and the possibility of on-line 
use are crucial factors for the design and construction of a biosensor for environ-
mental monitoring. Functional bio-recognition elements are the key components, 
which define the affinity (low detection limit), specificity (low interference), 
dynamic range, response time and lifetime of the biosensing system.

Although most of the developed biosensor-based methods are not able to com-
pete with traditional methods in terms of precision or reproducibility, they allow 
continuous on-site and real-time monitoring of a contaminated area and provide 
timely information about potential pollution.

Currently, only a few commercial biosensors are available for environmental 
monitoring [38]. Up to date, the biochemical oxygen demand (BOD) sensor, which 
was invented in Japan in the late 1970s, has commercially been the most successful 
biosensor for environmental applications.
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Chapter 2

Normal Boundary Intersection
Applied to Controllers in
Environmental Controls
Fabiano Luiz Naves

Abstract

Generally, the controllers currently used and implemented in the environmental
field have certain set point values, which are pre-calibrated according to a specific
process characteristic. However, instability in environmental processes is a
difficult variable to fix. Thus, the use of numerous set points for specific process
conditions may be a way of controlling instability. One way to obtain numerous
setups within a working region is to use optimization algorithms for the construc-
tion of the Pareto frontier, each point of the boundary being represented by a
different and at the same time optimum setup of operation. In this context, the
construction of a Pareto frontier for a multiobjective and multivariate problem,
established from an environmental problem, can be a way of getting around the
problem of process instability. This chapter has a main objective to demonstrate
the possibility of using the algorithm Normal Boundary Intersection (NBI), origi-
nally enunciated by Karna, as a precursor for the construction of the Pareto frontier,
as well as the possibility of implementing the generated function for implementa-
tion in programmable logic systems.

Keywords: NBI, controllers, multivariate optimization, environmental, biosensors

1. Introduction

Comprehensively, much of the real industrial processes make use of several
input variables (factors) at levels often unpredictable due to the instability
displayed during operation in transient regime. The actual processes are very diffi-
cult to control, especially when it comes to numerous responses to be controlled.

Figure 1 shows in an illustrative way a real process where other factors that
could directly influence the responses and interactions, called noise, were not con-
sidered. These noises can be related from the events of the environment where the
process occurs, such as variations in the temperature of the medium, or events
related to errors occurred by the operators. The use of complete second-order
models to model processes should be restricted to only a certain interval specified
by the levels presented for each of the factors analyzed. In the context of environ-
mental processes, such as effluent decontamination in a treatment plant, the waste
disposal parameters are defined according to country-specific standards and must
be strictly followed. By using the effluent treatment plant as an example, it is
practically impossible to maintain the constant input parameters such as the
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incoming organic load, heavy metals, and turbidity, among others. In order to
keep the process running at steady state, with possible variations of input, it is
necessary that the levels of the controllable factors be adequate in order to keep the
responses at the exit within the pre-established parameters. This adjustment of
levels can be achieved through sensors connected to programmable logic
controllers, which usually operate through a set point.

These types of equipment are microprocessor computers that perform the func-
tion of control through specific software. One of the major problems encountered in
using this device can be attributed to numerous, generally correlated, input condi-
tions that may occur throughout the operation. Even with controller performance
due to the set point, it no longer considers the possibility of interactions between
these input parameters, which may compromise the permanence of the steady state.
When the noise source is not discovered for later quantification, instability in the
process can lead to desired responses outside of the predefined standards, leading to
losses, associated cost, and environmental damage. Therefore, the controllers cur-
rently applicable cannot consider this instability generated by the noise industrially.

In the environmental area, due to the large number of parameters that must be
monitored and pre-established as waste disposal control standards in receiving
bodies, it is very common to maintain a certain operation for numerous responses.
Thus, it is fundamental that the process can be previously known, modeled, and
later optimized through algorithms already fomented by the literature, allowing the
implementation of robust multiobjective optimization from the polynomial that
describes all the responses, factors, and levels of the process in detail.

The concept of multiobjective robust optimization can be described as the set of
nonlinear constrained programming (NLP) methods and algorithms that are
intended to simultaneously optimize the mean and variance of multiple process
characteristics that are in a way correlated output quantities that are reasonably well
modeled by complete quadratic models. However, in effluent treatment processes
that have multiple output characteristics are generally correlated.

Any process can be defined through a quadratic polynomial, if it is properly
constrained within certain predefined intervals. The original concept of “robust”
process was introduced by Genichi Taguchi in 1980 [1]. To this concept we can
associate the original idea of RPD (robust parameter design), applied to generic
processes. The more “robust” the details of the process are known, the more accu-
rately it can be modeled and optimized. Therefore, there are several situations in
which the multiple means of responses must be optimized and the multiple vari-
ances associated with each of the responses individually, minimized. This routine
can be performed in order to reduce the interference attributed to the noise and
to maintain a more stable process. As already mentioned, independently of the
innumerable responses to be analyzed to a process, they are easily analyzed

Figure 1.
General process diagram.
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individually, even knowing the existence of a high associated positive correlation.
Thus, when the responses have a very high correlation, mainly positive, very com-
mon in processes that involve chemical reactions, it becomes impracticable to
perform the modeling of the multiple objective functions in an independent way,
leading to the wrong responses.

In multiobjective optimization problems, the assignment of convex combina-
tions of weights to the multiple responses leads to the agglutination of the objective
functions that represent each response through weighted sums, thus generating a
Pareto border or surface. Pareto border or surface is therefore a set of optimal
values for multiple features obtained from a list of viable optimal points, obviously
within a region of viable space. This agglutination of functions can be performed
according to some methods: weighted sum and global criterion method (GCM).
Both allow the construction of the Pareto border with some constraints attributed to
the convexity of the objective function presented in the region of the viable space
where the boundary is constructed. When there is a non-convex region in a certain
objective function to be analyzed, the Pareto boundary cannot detect optimal points
in this region.

Analyzing Figure 2, it is possible to verify a Pareto frontier for two responses,
where each of the points represents different operating conditions. However, there
is a discontinuity indicating no convex region of both functions representing the
responses. One way to solve this problem is to use the algorithm Normal Boundary
Intersection (NBI) to construct the Pareto frontier. This algorithm is able to deter-
mine points along the boundary, even in non-convex regions of space. The NBI
algorithm considers two fixed points of the frontier (“best of the best and worst
of the worst”) known as utopia and nadir respectively. Between these fixed points,
all others that make up the border are distributed.

One of the great possibilities in using this algorithm as a transfer function in
control processes is precisely the possibility of choosing a number of different
process setups, which consequently lead to optimized responses between the utopia
and nadir points, which may be the limits of specification of the particular disposal

Figure 2.
Pareto frontier showing discontinuity.
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functions that represent each response through weighted sums, thus generating a
Pareto border or surface. Pareto border or surface is therefore a set of optimal
values for multiple features obtained from a list of viable optimal points, obviously
within a region of viable space. This agglutination of functions can be performed
according to some methods: weighted sum and global criterion method (GCM).
Both allow the construction of the Pareto border with some constraints attributed to
the convexity of the objective function presented in the region of the viable space
where the boundary is constructed. When there is a non-convex region in a certain
objective function to be analyzed, the Pareto boundary cannot detect optimal points
in this region.

Analyzing Figure 2, it is possible to verify a Pareto frontier for two responses,
where each of the points represents different operating conditions. However, there
is a discontinuity indicating no convex region of both functions representing the
responses. One way to solve this problem is to use the algorithm Normal Boundary
Intersection (NBI) to construct the Pareto frontier. This algorithm is able to deter-
mine points along the boundary, even in non-convex regions of space. The NBI
algorithm considers two fixed points of the frontier (“best of the best and worst
of the worst”) known as utopia and nadir respectively. Between these fixed points,
all others that make up the border are distributed.

One of the great possibilities in using this algorithm as a transfer function in
control processes is precisely the possibility of choosing a number of different
process setups, which consequently lead to optimized responses between the utopia
and nadir points, which may be the limits of specification of the particular disposal

Figure 2.
Pareto frontier showing discontinuity.
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parameter in an effluent treatment plant, for example. The polynomial (Figure 3),
which represents the Pareto frontier, can be used as a transfer function in scaling of
a possible dynamic process controller for multiobjectives.

2. Description of the process NBI control

In order to facilitate the understanding of the possibility of implementing
the NBI algorithm in controllers, let us take, for example, an industrial effluent
treatment plant, which operates with a certain constant flow, due to the
residence time necessary for part of the organic load to be degraded via bacteria and
protozoa in an aerobic process. As a base of the input variables, we will work with
initial organic load in terms of biochemical oxygen demand (BOD) and pH. As
controllable factors, we will use the air or oxygen flow (aeration) and residence
time. As desired responses, we will use as an illustration the removal of the
organic load in terms of biochemical oxygen demand (BOD) and chemical
oxygen demand (COD).

Modeling a typical problem processes, we could write that both responses have a
direct relationship with the two factors presented as X1 and X2. However, keeping
the process steady relative to the inputs becomes virtually impossible. By
establishing, the two responses used, as an illustration of the application of the
method, is it feasible to predict the aeration rate and residence time required.
Certainly, the answer would be positive, if the entries were kept constant. However,
if this standardization is not possible, how can we keep the responses within desir-
able patterns? Imagine in a situation of actual biological treatment process, where
some changes can lead to periodic changes in the conditions of entry. For example,
an increase in the rainfall rate may lead to the dilution of the organic matter present
in the tributary and consequently the decrease of the initial BOD. The decrease of
the initial BOD requires a lower concentration of dissolved oxygen so that bacteria
and protozoa can decompose the organic matter in order to meet the exit standards,
which would lead to the conclusion of shorter residence times required. There is a
relationship as presented that can be considered a certainty. However, what is the
relationship between them? What would be the best condition, to decrease aeration
or increase residence time? These responses can only be met if we have this problem
modeled. When working with models, we can easily predict the relationship of each
of the factors to the expected response. This fact helps us reduce process costs and
increase effectiveness in the targeted response. Through the use of models created
from response surfaces, which have quadratic models, it is easily possible to deter-
mine local or global minimum or maximum points.

Figure 3.
Pareto border for bi-objective problem.
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2.1 Stochastic response surface models

The response surface methodology (MSR) is a collection of mathematical
and statistical techniques that allows modeling, analyzing, and optimizing problems
whose response variables are influenced by many variables [2]. As mentioned
earlier, there is great difficulty in knowing the behavior of independent and
dependent variables in a process. Thus, the response surface allows the real
approximation of the process from a quadratic model. The development through
a Taylor polynomial, truncated in the quadratic term, takes what we call
a second-order response surface:

Y xð Þ ¼ β0 þ ∑
k

i¼1
βixi þ ∑

k

i¼1
βiix

2
i þ ∑

i < j
∑ βijxixj þ ε (1)

where β represents the coefficients of the model, k is the number of independent
variables considered in the study, and ε is the error term.

The fact of using the response surface in a region close to high curvature of the
model, presented according to local or global maxima or minima, according to
convexity, does not effectively determine the best points or operation setups. How-
ever, what can be verified is a region of space that, depending on the levels of each
of the independent variables, leads to better responses.

From the color gradient shown in Figure 4, it is possible to verify regions,
delimited through the Cartesian axes representing the levels of each of the factors
studied, leading to better responses. Thus, the construction of models through the
surface response method becomes paramount for the application of later optimiza-
tion algorithms. Among several optimization algorithms, the Normal Boundary
Intersection (NBI) [3] has been used in several researches, in several different
fields.

2.2 NBI algorithm

The NBI algorithm is developed in terms of an array that we call the payoff
matrix Φ , which represents the optimal values of the multiple objective functions

Figure 4.
Counter graphic.
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minimized individually. The solution vector that minimizes the i-th objective func-
tion individually f i xð Þ is represented by x ∗

i so that the minimum value of f i xð Þ at
this point is f ∗

i x ∗
i

� �
. When replacing the individual optimum point x ∗

i obtained in
the optimization of objective function in the other functions, we have f i x

∗
i

� �
which

is therefore a nonoptimal value of this function. By repeating this algorithm for all
functions, we can represent the payoff matrix as

Φ ¼

f ∗
1 x ∗

1

� �
⋯ f 1 x ∗

i

� �
⋯ f 1 x ∗

m

� �

⋮ ⋱ ⋮
f i x

∗
1

� �
⋯ f ∗

i x ∗
i

� �
⋯ f ∗

i x ∗
m

� �

⋮ ⋱ ⋮
f m x ∗

1

� �
⋯ f m x ∗

i

� �
⋯ f ∗

m x ∗
m

� �

2
6666664

3
7777775

(2)

Each line of Φ is composed of minimum and maximum values of f i xð Þ. In the
NBI method, these values can be used to normalize the objective functions, espe-
cially when they are represented by different scales or units. In a similar way,
writing the set of individual optimums in a vector, we have

f U ¼ f ∗
1 x ∗

1

� �
…; f ∗

i x ∗
i

� �
…; f ∗

m x ∗
m

� �� �T (3)

This vector is called utopia point. In the same way, by grouping the maximum
(nonoptimal) values of each objective function, we have

f N ¼ f N1 …, f Ni …, f Nm
� �T

(4)

This vector is called nadir points.
Using these two sets of extreme points, the normalization of the objective func-

tions can be obtained as

f xð Þ ¼ f i xð Þ � f Ui
f Ni � f Ui

, i ¼ 1,…, m (5)

This normalization therefore leads to the normalization of the payoff matrix, Φ.
The convex combinations of each line of the payoff matrix, Φ, form the “convex
hull of individual minima” (CHIM) or the utopia line.

Figure 5 illustrates the main elements associated with multiobjective optimiza-
tion. The anchor points represent the individual solutions of two functions. Points a
and b are calculated from the stepped payoff matrix, Φ wi. Considering a set of
convex values for the weights, w, one has to Φ wi represent a point on the utopia
line, making n̂ denote a unit vector normal to the line at point’s utopia Φ wi in the
direction of origin; at the time, Φ wþD n̂ with D∈R will represent the set of
points in that normal.

The point of intersection of this normal with the boundary of the viable region
that is closest to the origin will correspond to the maximization of the distance
between the utopia line and the Pareto border. Thus, the NBI method can be written
as a constrained nonlinear programming problem such that

Max
x;tð Þ

D

subject to : ΦwþDn̂ ¼ F xð Þ
x∈Ω

(6)
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2.3 Implementation of the NBI control system

For the process described as an example, there are two controllable factors
represented by the aeration rate (x1) and residence time (x2). However, according
to Figure 6, there are also two input variables that cannot be measured, mainly
due to the instability of a biological treatment plant, according to initial organic
charge z1 and pH z2. The first artifice presented will be the transformation of
each of these variables into known values, from experiments carried out on a
smaller scale.

Thus, we will have the following factors: aeration rate (x1), residence time (x2),
initial organic load (x3), and pH (x4). From a surface of response called central
composite design (CCD), it is possible to construct a quadratic model, executing 31
experiments in laboratory scale:

Figure 6.
General scheme of the process.

Figure 5.
Normal to intersect method (NBI).
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Y1x ¼ β0 þ β1x1 þ β2x2 þ β3x3 þ β4x4 þ β11x1
2 þ β22x2

2 þ β33x3
2

þ β44x4
2 þ β12x1x2 þ β13x1x3 þ β14x1x4 þ β23x2x3

þ β24x2x4 þ β34x3x4 þ ε

(7)

Y2x ¼ β0 þ β1x1 þ β2x2 þ β3x3 þ β4x4 þ β11x1
2 þ β22x2

2 þ β33x3
2

þ β44x4
2 þ β12x1x2 þ β13x1x3 þ β14x1x4 þ β23x2x3

þ β24x2x4 þ β34x3x4 þ ε

(8)

Each of the coefficients presented in the two equations, represented by βi, βii,
and βij, is determined by the ordinary least square (OLS) regression algorithm
where x1, x2, x3, and x4 are the factors already stated. With the models presented, it
is possible to propose an optimization of both responses from the NBI algorithm for
the four factors (Figure 7).

The Pareto frontier constructed from the optimum of both responses can now,
from each of the setups assigned to each point, serve as the basis for implementation
in controllers.

For each point referring to the specific response condition, a different setup
is considered. For the chosen point 1 according to Figure 8, there is a BOD of
33.2 and a COD of 67, and under these conditions, we have the levels of each of
the factors:

Figure 7.
Modeling and optimization flowchart.

Figure 8.
Pareto frontier with sample choice point.
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Aeration rate ¼ x1

Residence time ¼ x2

Initial organic load ¼ x3

pH ¼ x4

8>>>>><
>>>>>:

(9)

In the conditions of this chosen point, replacing in (Eqs. (6) and (7))
the response surface, we have two quadratic equations, one referring to Y1 (x)
and Y2 (x).

The implementation of the transfer function in the control will be done
according to Figure 9.

The two responses provided in the example, enter into a multiprocessor system
according to pre-established parameters. The multiprocessing system introduces

Figure 9.
Proposed arrangement for implementation.

Figure 10.
Flow sheet of implementation algorithm.
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polynomials referring to each different setup that consisted of the Pareto frontier,
and for each setup, there are specific values of COD and BOD in mgO2L

�1. From
these inputs, the factors can be determined in optimized terms, X1 *, X2 *, and X3 *.

An example of implementation for pH 5–9 and BOD values between 200 and
1000 mgL�1 follows the flow sheet (Figure 10).

As already mentioned, one of the advantages of the method is the correction of
the input parameters belonging to the Pareto frontier, consisting of innumerable set
points within an optimal solution space.

3. Conclusions

Although it has not yet been implemented in controllers, the use of algorithms
such as NBI can facilitate the operation of this equipment, as well as lower costs of
implementation and operation of environmental systems.
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Chapter 3

The Modeling, Design,
Fabrication, and Application of
Biosensor Based on Electric
Cell-Substrate Impedance Sensing
(ECIS) Technique in
Environmental Monitoring
Xudong Zhang, William Wang and Sunghoon Jang

Abstract

In this research, the modeling, design, fabrication, and application of ECIS
sensors in environmental monitoring are studied. The ECIS sensors are able to
qualify the water toxicity through measuring the cell impedance. A novel mathe-
matical model is proposed to analyze the distribution of electric potential and
current of ECIS. This mathematical model is validated by experimental data and can
be used to optimize the dimension of ECIS electrodes in order to satisfy environ-
mental monitors. The detection sensitivity of ECIS sensors is analyzed by the
mathematical model and experimental data. The simulated and experimental results
show that ECIS sensors with smaller radius of working electrodes yield higher
impedance values, which improves signal-to-noise ratio, which is more suitable in
measuring the cell morphology change influenced by environments. Several ECIS
sensors are used to detect the toxicant including, phenol, ammonia, nicotine, and
aldicarb, and the decreasing cell impedance indicates the toxic effect. The gradient
of measured impedance qualitatively indicates the concentration of toxicants in
water.

Keywords: ECIS, biosensor, sensitivity, model, electrodes, design, fabrication

1. Introduction

A large number of the world’s population live in areas with high risks of envi-
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necessary. ECIS sensing is one of the techniques among them. The ECIS is becoming
an increasingly popular technique, which is able to analyze cell behaviors by mea-
suring the impedance profile spectroscopy [1, 2]. The measured cell impedance
provides information about cell morphology and electric properties, including
intercellular junction conditions, numbers and densities, attachment, migration,
proliferation, invasion, barrier function, membrane capacitance, and cytoplasm
conductivity [1–6]. A common ECIS sensor is composed of a working electrode and
a counter electrode. Some types of ECIS sensors have a third electrode, the refer-
ence electrode, which is used to provide the reference voltage for electrochemical
measurements. The traditional ECIS sensors are fabricated on rigid substrate that
limits the application in some of dynamically moving environments. Zhang et al.
[7, 8] have fabricated the ECIS sensors on stretchable polymer. Such sensors are
able to simulate in vitro the dynamic environment of organisms, such as pulsation,
bending, and stretching, which enables investigations on cell behavior that
undergoes mechanical stimuli in biological tissue [9–12].

The cells, attaching and spreading on the ECIS sensors, behave like an insulating
medium after seeding. The insulating medium restricts the ion movement between
the electrodes [13, 14]. As a result, the measured impedance increases gradually as
more cells attach onto the surface. When the cells form a monolayer on the elec-
trodes, the impedance becomes stabilized. The impedance may fluctuate slightly
due to cell attachment migration, deformation, and detachment [9, 15–18]. Some
chemical, biological, or physical stimuli on measured cells will influence the
impedance response due to the changes in cell monolayer caused by cell-cell inter-
actions, cell-substrate interactions, or changing cell electrical properties [2, 9].
Recently, the application of ECIS sensors has been extended to cell-based assays and
toxicity study [18].

The ECIS sensors have different configurations including working electrode
dimensions, counter electrode dimensions, and distance between electrodes. How-
ever, the relationship between the electrode configuration and detection sensitivity
has not been further studied. A study on detection sensitivity of ECIS sensors is
meaningful for sensor design, fabrication, and applications.

Detection sensitivity is critical in the applications of ECIS sensors, which
depends on sensor configuration, such as electrode dimension and the distance
between the electrodes [19]. Wang et al. studied the detection sensitivity of ECIS
sensors only with interdigital electrodes [20]. Several mathematical models have
been introduced to analyze the relationship between measured cell impedance and
cell morphology and behaviors [1, 2, 10, 21–28]. In those models, cell membrane
and cell cytoplasm were assumed to be capacitors and resistors, respectively, and
cell impedance was calculated as a combination of the capacitors and resistors
[24–28]. However, the current may switch from one path to another or creating a
hybrid path in reality, which was considered by some models [1, 2, 10, 14]. Never-
theless, these models assumed that the current flows radially between the substra-
tum and the ventral surface of the cell, and the electric potential is constant inside
the cell. However, the electric potential cannot be assumed to be constant inside the
cell if the current flows through the entirety of the cell. This assumption is
invalidated by Ohm’s law.

In this study, the influence of ECIS sensor configuration on detection sensitivity
and the analysis of paths of current flow of ECIS have been carried out for improv-
ing the detection sensitivity, design, and application of ECIS sensors. The ECIS
sensors are optimized for water toxicity testing. Several ECIS sensors are used to
perform the toxicity testing in detecting the toxic effects from phenol, ammonia,
nicotine, and aldicarb, and the impedance response successfully indicate the toxic
effect. The gradient of measured impedance qualitatively is related to the concen-
tration of toxicants.
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2. The mathematical model of electric cell-substrate impedance sensing
(ECIS)

In order to monitor the environments effectively, systematically analyzing the
relationship between the electric properties of measured subjects and output of
ECIS sensors are needed. In this section, a model related to electric field distribution
of ECIS sensing, which can be used in quantifying the ECIS sensor measurements, is
created with a partial differential equation. The model of ECIS is established in
cylindrical coordinates (r, θ, z) as shown in Figure 1 and simplified into polar
coordinates (r, z) due to its axisymmetric property.

Figure 1.
Illustration of cell impedance sensing on a working electrode. The electric potential at the coordinate (r, z) is V
(r, z). ρ and ρ1 are the resistivity of the cell culture medium and cytoplasm respectively. Zm1, Zm2 and Zn are
the specific impedance of the basal, apical cell membrane, and electrode-electrolyte interface respectively (in
Ωm). h1 is the average distance between the ventral surface of cell and electrode-electrolyte interface. h2 is the
average thickness of the cell. d is the average horizontal distance between adhesive cells. Vc is the electrical
potential on the working electrode.
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The governing equation of electric field distribution of ECIS sensing (as shown
in Eq. (1)) can be obtained from the differential form of Ohm’s law between electric
potential and current (as shown in Eq. (2)), Kirchhoff’s circuit law at a point of
interest (r, z) (as shown in Eq. (3)), and the gradient of electric potential (as shown
in Eq. (4)). The solution of the governing equation is shown in Eq. (5), which is the
same as the solution in Giaever et al. ECIS model when the variable z is held as
constant [1, 2, 23, 29]. The detailed information about the mode can be referred to
in [19]. These three coefficients A, D, and c are calculated as A = �2.3, D = 3.3, and
c = 4749.83 by using the parameters listed in [19, 30–36].
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where ρ is the resistivity of the cell culture medium (electrolyte); I1 and I2 are
the current flowing through the point (r,z) in r and z directions, respectively; er and
ez are the unit vectors of the r and z directions; E is the electric field at any point
(r,z); V is the electric potential at the point (r, z); and dI1 and dI2 are the
infinitesimally small currents of I1 and I2. dI1 and dI2 have the same sign; I0 2crð Þ
is the modified Bessel function of the first kind; A, D, and c are the coefficients
of solution V r; zð Þ.

2.1 The calculated impedance of a single cell

In this model, the impedance of a single cell (Zsingle cell) is able to be calculated by
dividing the electric potential difference between the apical V(rc, h1) and ventral
surfaces of a single cell V(rc, h1 + h2)0 by the total current flowing through and
around the cell, as shown in Eq. (6).
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where I2 is the current flowing through a single cell, Ij is the current flowing
through the intercellular junction gap; h1 is the average distance between the
ventral surface of cell and electrode-electrolyte interface; h2 is the average thickness
of the cell layer; rc is the average radius of a single cell; f is the measurement
frequency; ρ1 is the resistivity of cell cytoplasm; ε is the relative permittivity of the
cell membrane; ε0 is the vacuum permittivity, which is 8.85 � 10�12 F/m; and t and
σ are the thickness and conductivity of the cell membrane, respectively.

22

Biosensors for Environmental Monitoring

2.2 The calculated impedance of a cell monolayer

The impedance of a cell monolayer (Z) is calculated as the sum of the impedance
on current path, including the impedance from working electrode Zworking, counter
electrode Zcounter, and cell culture medium Rs, as shown in Eq. (7).

Z ¼ Zworking þ Zcounter þ Rs ¼ 1
S1

þ 1
S2

� �
Zn þ

S Zsingle cell þ Zcell_sub
� �

n

� �
þ Rs (7)

where Zn is the specific impedance of the electrode-medium interface (unit
Ωm2), which can be calculated according to the parameters referred to [19, 37–41];
S1 and S2 are the surface areas of the working and counter electrodes, respectively;
S is the total surface area of the ECIS sensor, which contains the working electrode,
counter electrode, and nonelectrode area; n is the number of cells seeded on the
ECIS sensor; Rs is the impedance of the culture medium, which can be calculated
according to the parameters referred to [19, 42–47]; Zcell-sub is the impedance of the
culture medium between the electrode-electrolyte interface and ventral surface of
cell, which can be calculated by dividing the electric potential difference between
the edge and center of a single cell by the total current flowing through and around
the cell [19].

3. The design of ECIS sensors for environmental monitoring

The design of ECIS sensors includes the dimensions of working electrodes and
counter electrodes, and the distance between them is critical in environmental
monitoring because those designing parameters will influence the detection sensi-
tivity of ECIS sensors.

3.1 The design guideline of electrode dimensions of ECIS sensors

The radius of working electrode (Ri) and the distance between the edges of the
sensing electrodes (dio) can be optimized by using the mathematical model with the
parameters related to cell morphology and electric properties and surrounding
culture medium.

3.1.1 The relationship between the radius of working electrode (Ri) and cell impedance

During impedance measurements, ions move through the cell monolayer
between the working and counter electrodes which follow many paths. The counter
electrodes must have adequate sensing area in order to provide adequate circuit
connection. The larger Ri working electrode provides more current paths, which
decreases the corresponding impedance. Higher impedance values can improve the
data quality of the measured impedance by increasing signal-to-noise ratio, which is
useful particularly for sensing small changes in cell behavior. However, the working
electrode should not be too small in order to measure adequate number of cells and
to guarantee sufficient cell-to-cell contact area.

In this study, the ECIS sensors with Ri from 100 to 400 μm were fabricated to
analyze the relationship between Ri and measured cell impedance. Figure 2 illus-
trates the cell morphology on those sensors. The simulated cell impedance by using
Ri within the same range was also obtained from the mathematical model. The
experimental and simulated impedance of cell were shown in Figure 3. The
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where I2 is the current flowing through a single cell, Ij is the current flowing
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The radius of working electrode (Ri) and the distance between the edges of the
sensing electrodes (dio) can be optimized by using the mathematical model with the
parameters related to cell morphology and electric properties and surrounding
culture medium.

3.1.1 The relationship between the radius of working electrode (Ri) and cell impedance

During impedance measurements, ions move through the cell monolayer
between the working and counter electrodes which follow many paths. The counter
electrodes must have adequate sensing area in order to provide adequate circuit
connection. The larger Ri working electrode provides more current paths, which
decreases the corresponding impedance. Higher impedance values can improve the
data quality of the measured impedance by increasing signal-to-noise ratio, which is
useful particularly for sensing small changes in cell behavior. However, the working
electrode should not be too small in order to measure adequate number of cells and
to guarantee sufficient cell-to-cell contact area.

In this study, the ECIS sensors with Ri from 100 to 400 μm were fabricated to
analyze the relationship between Ri and measured cell impedance. Figure 2 illus-
trates the cell morphology on those sensors. The simulated cell impedance by using
Ri within the same range was also obtained from the mathematical model. The
experimental and simulated impedance of cell were shown in Figure 3. The
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simulated impedance curve matches the experimental data closely with maximum
difference 13.29%, which is acceptable when considering the fluctuation of mea-
sured impedance. The consistency of the simulated impedance with the experi-
mental impedance validates this model’s ability to optimize the Ri according to the
range of measured cell number and expected output impedance level during sensor
designing.

3.1.2 The relationship between the distance between the edges of the sensing electrodes
(dio) and cell impedance

The distance between the edges of the sensing electrodes (dio) is another factor
that should be considered in designing ECIS sensors. Figure 4 shows the experi-
mental impedance and the simulated impedance with different dio. The average
experimental impedance slightly changed from 12.50 to 12.52 KΩ, when dio changed
from 1000 to 3500 μm. The simulated impedance was calculated by using Eq. (7).

Figure 2.
BAEC monolayer on ECIS sensors with different Ri (dio = 3.5 mm).

Figure 3.
Relationships between Ri and experimental impedance, and between Ri and simulated impedance at 8000 Hz
(n = 4 � 6, dio = 3.5 mm).
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dio only slightly influences the simulated impedance because the natural logarithm
of the quotient of Ri þ dioð Þ and Ri makes the influence of dio on simulated
impedance more slightly in Eq. (7). The simulated impedance is consistent with the
experimental data with maximum difference 0.63%, which validates the model.
The experimental and simulated impedance indicates that dio in the range of
1000–3500 μm has only a little influence on the impedance because dio influenced
the impedance of medium, which is only a small portion of measured impedance.
Thus, dio cannot dramatically influence the measured impedance. However, dio
should be large enough to avoid the current bypassing the cell monolayer between
sensing electrodes.

3.2 The influence of electrode dimensions on the detection sensitivity of ECIS

Detection sensitivity reflects the fineness of impedance response to the changes
of cell behavior in cell-based assay environmental monitoring. The detection sensi-
tivity of ECIS sensors is influenced by Ri. According to the previous experimental
results, ECIS sensors with Ri larger than 200 μm do not respond sensitively and
quickly on cell morphology changes. So, ECIS sensors with Ri of 100 and 150 μm
were fabricated to study the influence of Ri on the detection sensitivity. Cell densi-
ties, 90,000, 100,000, and 110,000 cells/cm2, were used to study the relationship
between cell density and impedance. Figure 5 shows the impedance shifts versus
the cell density changes with Ri of 100 and 150 μm. Figure 6 shows the
corresponding cell morphology on different ECIS sensors. When the cell density
changes are 10,000 cells/cm2 (from 90,000 to 100,000 cells/cm2), the impedance
increased 597 and 350 Ω for the sensors with Ri of 100 and 150 μm, respectively.
When the cell density changes are 20,000 cells/cm2 (from 90,000 to
110,000 cells/cm2), the impedance increased 1336 and 880 Ω for the sensors with
Ri of 100 and 150 μm, respectively. The experimental results indicate that the
sensors with larger Ri illustrate less impedance changes with the same amount of
cell density changes. Therefore, the sensors with smaller Ri are able to detect more

Figure 4.
Relationships between dio and experimental impedance, and between dio and simulated impedance, measured
at 8000 Hz (n = 6 � 7, Ri = 100 μm). The three images show the cell morphology of BAECs on the ECIS sensors
with dio of 1 mm, 2 mm, and 3.5 mm, respectively.
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dio only slightly influences the simulated impedance because the natural logarithm
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experimental data with maximum difference 0.63%, which validates the model.
The experimental and simulated impedance indicates that dio in the range of
1000–3500 μm has only a little influence on the impedance because dio influenced
the impedance of medium, which is only a small portion of measured impedance.
Thus, dio cannot dramatically influence the measured impedance. However, dio
should be large enough to avoid the current bypassing the cell monolayer between
sensing electrodes.
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results, ECIS sensors with Ri larger than 200 μm do not respond sensitively and
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the cell density changes with Ri of 100 and 150 μm. Figure 6 shows the
corresponding cell morphology on different ECIS sensors. When the cell density
changes are 10,000 cells/cm2 (from 90,000 to 100,000 cells/cm2), the impedance
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Figure 4.
Relationships between dio and experimental impedance, and between dio and simulated impedance, measured
at 8000 Hz (n = 6 � 7, Ri = 100 μm). The three images show the cell morphology of BAECs on the ECIS sensors
with dio of 1 mm, 2 mm, and 3.5 mm, respectively.
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sensitive changes in cell density. Therefore, ECIS sensors with smaller dimension
working electrodes illustrate better detection sensitivity on changes in cell density.
Another benefit is that smaller Ri requires fewer cells in cell-based assays.

Based on the analysis above, the ECIS sensors with Ri of 100–125 μm and dio of
3.5 mm are preferred in environmental monitoring because Ri of 100–125 μm will
allow the ECIS sensors to be sensitive to sense the cell morphology changes due to
environment influence and own good anti-interference ability. The area of counter
electrodes should be as large as possible to guarantee sufficient contact area
between electrode and cells. dio of 3.5 mm is enough to avoid the current bypassing
the cell layer in ECIS measurements.

Figure 5.
Impedance shifts to cell density changes with sensors’ Ri of 100 μm and 150 μm (n = 3). The cell density change
from 90,000 cells/cm2 to 100,000 or 110,000 cells/cm2.

Figure 6.
Cell morphology with 90,000, 100,000, and 110,000 cells/cm2 cell densities on ECIS sensors (Ri = 100 μm and
Ri = 150 μm).
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4. Fabrication of ECIS sensor arrays

The fabrication of ECIS sensors can follow different photolithography tech-
niques. The substrates are usually nonconductive materials, includes glass, printed
circuit board (PCB) [1–4, 19, 23], and polymer including polydimethylsiloxane
(PDMS) [9] and polycarbonate [1–3, 18, 19]. The ECIS arrays were fabricated on
glass by thin film deposition and lift-off photolithography technique, as shown in
Figure 7. Initially, the photoresist AZ5214E (MicroChemicals, Somerville, NJ) was
coated on glass slides with spinning coater at 2000 rpm. After baking on hotplate at
110°C for 50 seconds, the coated photoresist was exposure to ultraviolet (UV) light.
Then, a reversal bake is carried out at 120°C for 2 minutes. Finally, UV light with
intensity larger than 200 mJ/cm2 was exposure on the photoresist pattern. The
electrode pattern was created after immersing the slides with photoresist in the AZ
100 Remover (MicroChemicals, Somerville, NJ). The remover is able to dissolve the
photoresist without the first exposure (image reverse). A 20-nm-thick chromium
(Cr) followed by a 150-nm-thick gold (Au) was coated on the substrate to form the
sensor’s electrodes by thermal evaporation. The sensing electrodes were formed
after the lift-off process. Then, the photoresist SU-8 (MicroChem, Westborough,
MA) was used to cover the substrate except the sensing areas. The sensor arrays
were treated with 95% sulfuric acid at 60°C for 15 seconds [48] followed by washing
with deionized water (DI) and then treated with 8% (3-aminopropyl)
triethoxysilane (APTES) at 50°C for 2 hours to improve the surface
biofunctionality. Finally, cell culture wells (Lab-Tek 8-well culture wares) were
glued onto the sensor array. Figure 8 shows the fabricated ECIS sensor array and its
configuration. Ri is the radius of the working electrode, Rco is the outer radius of the

Figure 7.
Illustration of ECIS sensor fabrication.
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Figure 8.
The array of eight ECIS sensors.

Figure 9.
Distribution of equipotential lines in the space between the ventral cell surface and electrode-electrolyte interface
layer. The axisymmetric axis of the cell locates at x = 0 (red dashed line).
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counter electrode, dio is the distance between the edges of the electrodes, and S1 and
S2 are the areas of the working and counter electrodes, respectively.

The inherent impedance of the Au/Cr electrodes of fabricated ECIS sensors is
measured by microwave probe station (Cascade Microtech Inc., Beaverton, OR)
and impedance analyzer (Agilent 4294) as shown in Figure 9. The maximum
inherent impedance was 19 Ω at 8000 Hz, which is much lower than the measured
cellular impedance of thousands of ohms. Thus, the inherent impedance of the
sensor can be neglected.

5. The application of ECIS sensors in environmental monitoring

5.1 Cell culture and preparation

Bovine aortic endothelial cells (BAECs, VEC Technologies, Rensselaer, NY)
were used in this study. The BAECs were cultured in minimum essential medium
(MEM, GIBCO, Grand Island, NY) with 10% fetal bovine serum (FBS, GIBCO,
Grand Island NY) under standard mammalian cell culturing conditions (37°C and
5% CO2). Confluent BAEC were trypsinized to detach the cells from the cell culture
flasks to prepare the cell suspension. Then, the cell suspension was centrifuged on
the bottom of centrifuge tube followed by aspirating off the upper supernatant.
Finally, certain amount of cell culture medium was added into centrifuge tube to
prepare specific concentration of the cell suspension.

5.2 Toxicant preparation

This study investigated the toxicant detection by using the ECIS sensors. The
toxicants used in this study are phenol (RICCA, Arlington, TX), ammonia (Acros
Organics, Fair Lawn, NJ), nicotine (Fisher Scientific, Hanover Park, IL), and aldi-
carb (SPEX CertiPrep, Metuchen, NJ). All the toxicants were diluted with
Dulbecco’s phosphate-buffered saline (DPBS, Mediatech, Inc., Manassas, VA). The
osmolarity of diluted toxicant solution was considered to be in the suitable range for
cell culture because the small volume of toxicants added into DPBS will not change
the concentration of essential ingredients of DPBS dramatically.

5.3 Experimental system setup

Impedance analyzer Agilent 4294 and ECIS measurement system (Applied Bio-
physics, Troy, NY) was used to measure the cell impedance. The AC signal applied
to the cells was monitored by using Tektronix oscilloscope DPO2014B. Two
MAXIM DG408 Multiplexers, controlled by an NI USB-6008 multifunction data
acquisition card, were used as a 16-channel multiplexer between the impedance
analyzer and the sensor arrays. The NI USB-6008 and Agilent 4294 were controlled
by LabVIEW programs to perform the data acquisition shown as Figure 10. The
ECIS sensor arrays, covered with BAECs on the sensing electrodes, were kept in an
incubator with 37°C and 5% CO2 during the impedance measurement.

5.4 Optimization of cell seeding density and measurement frequency

The cell seeding density and measurement frequency are need to be optimized to
obtain reasonable measurement results. BAECs were seeded with different cell
densities of 150,000, 125,000, and 100,000 cells/cm2 on ECIS sensor. The imped-
ance values were recorded and normalized in the initial 46 hours after seeding onto
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osmolarity of diluted toxicant solution was considered to be in the suitable range for
cell culture because the small volume of toxicants added into DPBS will not change
the concentration of essential ingredients of DPBS dramatically.

5.3 Experimental system setup

Impedance analyzer Agilent 4294 and ECIS measurement system (Applied Bio-
physics, Troy, NY) was used to measure the cell impedance. The AC signal applied
to the cells was monitored by using Tektronix oscilloscope DPO2014B. Two
MAXIM DG408 Multiplexers, controlled by an NI USB-6008 multifunction data
acquisition card, were used as a 16-channel multiplexer between the impedance
analyzer and the sensor arrays. The NI USB-6008 and Agilent 4294 were controlled
by LabVIEW programs to perform the data acquisition shown as Figure 10. The
ECIS sensor arrays, covered with BAECs on the sensing electrodes, were kept in an
incubator with 37°C and 5% CO2 during the impedance measurement.
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the ECIS sensor array, as shown in Figure 11. The morphology of cells with seeding
density 125,000 cells/cm2 at different time points was also shown in Figure 11. The
cells gradually spread on the surface of ECIS sensors after seeding and eventually
form a monolayer with stable impedance. The cell impedance gradually increased in
the initial 8–20 hours, which indicates the initial formation of a loose monolayer and
stable up to the end of the impedance measurements. The cell morphology was

Figure 10.
Experimental setup of cell impedance measurement.

Figure 11.
Impedance response of BAECs measured by an ECIS sensor array at 8000 Hz and the image of cell morphology.
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checked under microscope frequently. The corresponding impedance readings were
used to represent the impedance of the cell monolayer for cell-based assays. In
Figure 11, the impedance of cell monolayer with higher seeding densities increases
more rapidly than cells with lower seeding densities because higher seeding densi-
ties allow the cells to have tighter and stronger intercellular junctions and the
corresponding ion insulating abilities are better. The impedance of cells with the
highest seeding density, 150,000 cells/cm2, decreased after initial formation
(around 8 hours) of cell monolayer due to the cell movement on the surface of ECIS
sensors. Also, the impedance of cells with 150,000 cells/cm2 seeding density is not
stable as those with 125,000 and 100,000 cells/cm2 seeding densities. The cells
with a seeding density of 100,000 cells/cm2 need 20 hours to be confluent and have
low impedance compared with those with higher seeding densities. Hence, the
cell seeding density, 125,000 cells/cm2, was chosen as the preferred seeding density
in the toxicity testing.

The optimal measurement frequency allows the sensors to obtain the largest
difference in measured impedance between a sample with and without cells [19]. In
this study, the impedance of cell monolayer was measured with different frequen-
cies from 500 Hz to 64 kHz. The optimal measurement frequency was optimized to
be 8000 Hz in experimental measurements.

5.5 Toxicity testing

The ECIS sensors need to be prepared before the toxicity testing. ECIS sensors
were cleaned by oxygen plasma to provide a sterilized surface for cell seeding. Then
phosphate-buffered saline (PBS, GIBCO, Grand Island, NY) was used to clean the
sensor surface again. Before cell seeding, 30 μg/ml fibronectin (GIBCO, Grand
Island, NY) was coated on the surface of the sensors to improve cell attachment.
BAECs were seeded onto each sensor with a seeding density of 125,000 cells/cm2.
The cell morphology was checked under microscope. The selected toxicants were
introduced to each well to perform toxicity testing after monolayer formation.
Figure 12 shows normalized impedance response after introducing 0.1 and 0.2 mM
aldicarb and the cell morphology after introducing 0.2 mM aldicarb. Some of the
cells detached from the substrate. The normalized impedance decreases to 0.84 and

Figure 12.
The normalized impedance of BAEC exposed to aldicarb.
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0.76 times its original impedance value within 3 hours when treated with 0.1 and
0.2 mM aldicarb, respectively. The cell morphology changed and even detached
from the sensors. Figure 13 shows the normalized impedance response after intro-
ducing 0.1 and 0.2 mM phenol as toxicant. The BAEC detached from substrate after
introducing 0.2 mM phenol. The decreasing impedance curves indicate the toxic
effect on BAECs. The normalized impedance values rapidly decreased to 0.80 and
0.74 times its original impedance value within 2 hours when treated with 0.1 and
0.2 mM phenol, respectively. The image shows the cells obviously detached from
the sensor. Figure 14 shows the normalized impedance response after introducing
2 and 5 mM ammonia as toxicant. Those lines shows that the normalized impedance
values rapidly decreased to 0.78 and 0.68 times its original impedance value within
1 hour when treated with 2 and 5 mM ammonia, respectively. The image shows the
cell morphology after 1 hour after introducing ammonia. The cells morphology
changed and very easily detached from the sensor substrate. Figure 15 shows the

Figure 13.
The normalized impedance of BAEC exposed to phenol.

Figure 14.
The normalized impedance of BAEC exposed to 2 mM and 5 mM ammonia, and the image shows the BAEC
morphology after exposure to 5 mM of ammonia.
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normalized impedance of BAEC after exposing to 0.8 and 1.3 mM nicotine as
toxicant. The normalized impedance rapidly decreased to 0.92 and 0.75 times its
original value within 2 hours when treated with 1.3 and 0.8 mM nicotine, respec-
tively. The image shows the BAEC morphology after exposed to 1.3 mM nicotine.
Most of the cell detached from the sensor due to the toxic effect of nicotine.

The cell morphology and decreasing impedance curves indicate the toxic effect
and the effectiveness of ECIS sensing on environmental monitoring within short
period of time. Different concentrations of toxicants are qualified according to the
gradients of normalized impedance. ECIS sensing technique is able to perform
environmental monitoring effectively and efficiently compared with other
approaches.

6. Conclusions

In this study, the biosensors based on ECIS sensing technique were used to
monitor and measure the environmental toxicants, including the phenol, ammonia,
nicotine, and aldicarb. A model, validated by experimental results, was created to
analyze the electric potential distribution of ECIS sensing and guide the designing,
especially the sensing area of sensor electrodes. The detection sensitivity of ECIS
sensors was optimized. The experimental results show that ECIS sensors are capable
to detect and qualify the environmental toxicants rapidly. The concentration of
toxicants can be indicated from the gradients of normalized cell impedance.
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Figure 15.
The normalized impedance of BAEC exposed to 0.8 mM and 1.3 mM nicotine. The image shows the cell
morphology after exposure to 1.3 mM nicotine.
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Electrochemical Biosensors 
Containing Pure Enzymes or 
Crude Extracts as Enzyme Sources 
for Pesticides and Phenolic 
Compounds with Pharmacological 
Property Detection and 
Quantification
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Abstract

Biosensors are chemical sensors in which the recognition system is based on 
a biochemical mechanism. They perform the specific component detection in a 
sample through an appropriate analytical signal. Enzyme-based biosensors are the 
most prominent biosensors because of their high specificity and selectivity; besides 
being an alternative to the common immunosensors, they are more expensive and 
present a limited binding capacity with the antigen depending on assay conditions. 
This chapter approaches the use of enzymes modified electrodes in amperometric 
biosensing application to detect and quantify pesticides and phenolic compounds 
with pharmacological properties, as they have been a promising analytical tool in 
environmental monitoring. These biosensors may be prepared from pure enzymes 
or their crude extracts. Pure enzyme-based biosensors present advantages as higher 
substrate specificity and selectivity when compared to crude extract enzymatic 
biosensors; nevertheless, the enzyme high costs are their drawbacks. Enzymatic 
crude extract biosensors show lower specificity due to the fact that they may contain 
more than one type of enzyme, but they may be obtained from low-cost fabrication 
methods. In addition, they can contain enzyme cofactors besides using the enzyme 
in its natural conformation.

Keywords: polyphenol oxidase, peroxidase, acetylcholinesterase,  
crude extracts, biosensors, pesticides, phenolic compounds, environmental 
enzymatic biosensors



39

Chapter 4

Electrochemical Biosensors 
Containing Pure Enzymes or 
Crude Extracts as Enzyme Sources 
for Pesticides and Phenolic 
Compounds with Pharmacological 
Property Detection and 
Quantification
Flavio Colmati, Lívia Flório Sgobbi,  
Guilhermina Ferreira Teixeira, Ramon Silva Vilela,  
Tatiana Duque Martins and Giovanna Oliveira Figueiredo

Abstract

Biosensors are chemical sensors in which the recognition system is based on 
a biochemical mechanism. They perform the specific component detection in a 
sample through an appropriate analytical signal. Enzyme-based biosensors are the 
most prominent biosensors because of their high specificity and selectivity; besides 
being an alternative to the common immunosensors, they are more expensive and 
present a limited binding capacity with the antigen depending on assay conditions. 
This chapter approaches the use of enzymes modified electrodes in amperometric 
biosensing application to detect and quantify pesticides and phenolic compounds 
with pharmacological properties, as they have been a promising analytical tool in 
environmental monitoring. These biosensors may be prepared from pure enzymes 
or their crude extracts. Pure enzyme-based biosensors present advantages as higher 
substrate specificity and selectivity when compared to crude extract enzymatic 
biosensors; nevertheless, the enzyme high costs are their drawbacks. Enzymatic 
crude extract biosensors show lower specificity due to the fact that they may contain 
more than one type of enzyme, but they may be obtained from low-cost fabrication 
methods. In addition, they can contain enzyme cofactors besides using the enzyme 
in its natural conformation.

Keywords: polyphenol oxidase, peroxidase, acetylcholinesterase,  
crude extracts, biosensors, pesticides, phenolic compounds, environmental 
enzymatic biosensors



Biosensors for Environmental Monitoring

40

1. Introduction

Chemical sensors and biosensors are devices used in detection and quanti-
fication of an analyte by converting its concentration into an analytical signal. 
Advances in sensor technology have been important for the enrollment of sensing 
methods in several applications. Chemical sensor operates based on chemical 
principles, where the analytical signal emerges as a result of a chemical reaction 
between the analyte and a specific sensitive layer. Electrochemical sensors are 
able to detect H2, consisting of Pt, Pd, Au, Ag, and metal oxides, as reported by 
Korotcenkov et al. [1]. These capabilities are expected to be performed by biosen-
sors as well, which are sensors that present a biological recognition element inte-
grated with the transducer. The most popular biosensors are the enzymatic-based 
ones, successfully represented by the glucose biosensors. Biosensors have become 
an attractive analytical instrument for environmental monitoring because there still 
severe barriers through an effective, fast, and low-cost monitoring of harmful pol-
lutants. Among the hazardous contaminants, phenolic compounds and pesticides 
represent potential human health and environmental risks. Regarding this, there 
are several studies reporting the use of horseradish peroxidase (HRP) for phenolic 
compounds and hydrogen peroxide detection [2]. Enzyme-based biosensors operate 
by indirectly detecting analytes, through detection of consumption or production 
of specific compounds in the biochemical reaction progress [3]. Phenolic pollutants 
are important due to their extensive use in several industrial products and their 
resulting negative environmental impacts. Also, enzymatic biosensors are applied to 
detect pesticides, particularly organophosphorus and carbamates. The operation of 
these devices, primarily designed to quantify those pesticides, is based on the inhi-
bition of enzyme activity by these toxic compounds. Distinctly, the use of enzymes 
in biosensors for environmental monitoring brings considerable advantages, such as 
high selectivity and specificity, enhanced sensitivity, catalytic activity, and fast per-
formance [4]. Nevertheless, they present some drawbacks associated with the high 
costs of obtainment and manipulation processes (extraction, isolation, and purifi-
cation), denaturation during immobilization on transducer, and activity loss after a 
period (short shelf life) [4]. However, when enzymatic biosensors are compared to 
other sensing devices, such as immunosensors, they show superior characteristics 
because antibodies are more expensive, they do not present catalytic activity, and 
their binding ability depends on conditions of the assay, such as temperature and 
pH. Due to their advantages, the use of enzymatic biosensors to monitor environ-
mental pollutants, as well as their applications in pharmacology and in pesticides 
monitoring will be discussed in this chapter.

2. Phenolic pollutants

Phenolic compounds are present in daily activities, since they are frequently 
found in vegetables, materials, waste, and water, not mentioning their relevance 
to several applications, due to their pharmacological and antioxidant properties 
[4]. Beyond the natural phenolic compounds, the synthetic ones are used in many 
daily products, such as fragrances, moisturizers, makeup, drugs, processed foods, 
and plastics, among others [5]. The manufacture and use of these products result in 
their accumulation in the environment, mostly in water.

Several phenolic compounds have been appointed as endocrine disrupting 
chemicals (EDCs), defined as “chemical substances or mixtures that interfere in 
any aspect of the hormonal action of living organisms” [6]. EDCs comprise many 
chemicals used in industrial activities, such as natural and synthetic hormones, 
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pharmaceuticals, pesticides, and surfactants. Some examples of phenolic com-
pounds appointed as EDCs and related products are shown in Table 1.

Phenolic pollutants are worldwide dispersed; they can be transported at long distances 
by water flows and show high persistence and penetrability [7]. Exposure of aquatic ani-
mal species, including fishes and amphibians, to EDCs has been related to be responsible 
for the observed feminization of many species, which in contrast, diminishes the popula-
tion of these species. Studies of the exposure effects of humans to EDCs suggest a relation 
between the development of chronic diseases, such diabetes mellitus type II, obesity, 
thyroid dysfunction, poor quality sperm in males, and fertility issues [8]. Although, until 
now, there is no effective confirmation of the effect of EDC exposure to these metabolic 
anomalies, monitoring the environmental concentration of such substances had been the 
actual concern of the scientific community. Due to their low cost, selectivity, sensitivity, 
and fast response, biosensors have been considered a promising alternative to classic 
analytical methods, such chromatography and nuclear magnetic resonance.

2.1 Enzymatic biosensors

Due their complex structures, enzymes exhibit high selectivity to substrates, 
being able to detect one substance in multicomponent matrices. This behavior is 
exploited in analytical devices that present high reproducibility, sensibility, and 
selectivity, making use of low time-consuming analysis, low-cost equipment, and 
few or any sample preparation steps [9]. These advantages combined with elec-
trochemical transducers result in cheaper portable and miniaturized biosensors, 
when compared to other types of transducers, such as optical and piezoelectric [10], 
which is a great feature for environmental applications.

The electrochemical enzymatic biosensors operate based on the electron transfer 
between the enzyme active site and the substrate, which is, then, transduced to gener-
ate an analytical signal. The electrochemical signal can be of three distinct types: (i) 
amperometric, in which the electrical current generated in the electron transfer process 
is measured [11], (ii) conductimetric, in which the change in the electrical conductivity 
of the environment is measured [12], and (iii) potentiometric, in which the electro-
chemical potential in the absence of measurable current is measured [13]. The ampero-
metric biosensors are the most used ones, due to their high sensibility. These biosensors 
require the enzyme immobilization on the electrode surface. The most frequently used 
methods for enzyme immobilization are noncovalent adsorption, covalent bonding, 
entrapment, cross-linking, and affinity, and they are discussed below [14].

2.2 Enzyme immobilization on the electrode surface

The noncovalent adsorption immobilization consists of enzyme adsorption 
on the electrode surface by physical interactions, such as van der Waals forces, 

Product class EDC examples

Drugs (human and animal uses) Acetaminophen, tetracyclines, salbutamol, morphine

Antimicrobials (food and 
cosmetics)

Chlorophenols, parabens, triclosan, propyl gallate, 
tert-butylhydroquinone

Plastics Bisphenol A (BPA), bisphenol F (BPF)

Steroids Estradiol, estrone, estriol

Surfactants Alkylphenols

Table 1. 
Phenolic compounds appointed as EDCs and their related products.
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pharmaceuticals, pesticides, and surfactants. Some examples of phenolic com-
pounds appointed as EDCs and related products are shown in Table 1.
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mal species, including fishes and amphibians, to EDCs has been related to be responsible 
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amperometric, in which the electrical current generated in the electron transfer process 
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of the environment is measured [12], and (iii) potentiometric, in which the electro-
chemical potential in the absence of measurable current is measured [13]. The ampero-
metric biosensors are the most used ones, due to their high sensibility. These biosensors 
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methods for enzyme immobilization are noncovalent adsorption, covalent bonding, 
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2.2 Enzyme immobilization on the electrode surface
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on the electrode surface by physical interactions, such as van der Waals forces, 

Product class EDC examples

Drugs (human and animal uses) Acetaminophen, tetracyclines, salbutamol, morphine

Antimicrobials (food and 
cosmetics)

Chlorophenols, parabens, triclosan, propyl gallate, 
tert-butylhydroquinone

Plastics Bisphenol A (BPA), bisphenol F (BPF)

Steroids Estradiol, estrone, estriol

Surfactants Alkylphenols

Table 1. 
Phenolic compounds appointed as EDCs and their related products.
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hydrogen bonds, and electrostatic interactions [14]. In contrast, in the covalent 
bonding immobilization, the enzyme is anchored on the electrode surface by mul-
tiple covalent bonds between support functional groups and enzymes. The entrap-
ment immobilization on the electrode is the enzyme inclusion in a framework, such 
as a polymer network, which can be organic or inorganic polymeric matrices. An 
additional method for enzyme immobilization that provides high stability is the 
application of a metal-organic framework (MOF) [15]; nevertheless, small cavities 
of MOFs usually result in decreased substrate affinity. Therefore, the enzymatic 
activity of the immobilized enzyme is decreased, when compared to native enzyme 
activity [15]. Cross-linking immobilization is an alternative, which requires the 
reaction between cross-linking protein molecules and a chemical cross-linker, 
usually glutaraldehyde [14]. The diversity of immobilization techniques allows the 
immobilization of enzymes in distinct materials, such as carbon nanostructures, 
(carbon black, nanotubes, and graphene and derivatives, among others), ceramic 
or polymeric matrices, and nanoparticles [16, 17]. It is noteworthy that the per-
formance of an enzymatic biosensor is strongly dependent of the enzyme immo-
bilization, which affects important parameters such as response time, stability, 
reproducibility, and sensitivity [18].

Another element that interferes in enzymatic biosensor response is active site 
location. Since proteins are molecules with a giant structure, the active center often 
can be closed in the molecule’s center, making it a very inaccessible site and less 
susceptible for electron transfer processes. In these cases, a mediator can be used to 
facilitate the electron transfer between the active site of the enzyme and the modi-
fied active electrode. There are several mediators for that, but some are specific 
for only one enzyme. Regarding Barsan et al. [19], several electrodes modified by 
functionalized carbon nanotubes act as an alternative to promote the increase of 
interaction between enzymes and modified electrodes. In addition, they improve 
the electron transfer rate, besides the fact that phenolic molecules can be used as 
mediators in these processes. On the other hand, it is also common to use organic 
dyes such as methylene blue, safranine O, and neutral red [20] and metal com-
plexes, for example, ferrocene [21], as mediators.

2.3 Crude extracts as enzyme sources for biosensing applications

Some enzymes that can be used in phenolic biosensing are peroxidases and 
polyphenol oxidases. Peroxidases (E.C. 1.11.1) comprise a large family of heme-
containing enzymes that react with their substrates using peroxide of hydrogen 
(H2O2) as a proton acceptor, generating water (H2O) and the oxidized substrate. 
These enzyme families have been widely used in clinical diagnostics, biosensing, 
and degradation of pollutants in water [22]. Polyphenol oxidase (E.C. 1.10.3.1) 
is another enzyme family that includes laccases and tyrosinases, also known as 
blue-copper oxidases. Laccase enzymes catalyze the oxidation of many phenolic 
substrates (most commonly ortho- and para-diphenols) with the concomitant 
reduction of molecular oxygen to water [23], while tyrosinases are enzymes that 
catalyze two distinct oxygen-dependent subsequent reactions: the hydroxylation of 
monophenols to ortho-diphenols and the subsequent oxidation of ortho-diphenols 
to ortho-quinones [24]. These enzymes are very much used in biosensor construc-
tion, being often purchased at their active lyophilized form. In the cited cases, 
the common commercial peroxidases are extracted from Horseradish (Armoracia 
rusticana) roots, while laccases and tyrosinases are extracted from fungi [24].

Oxidoreductases are widely distributed in the plant kingdom, being found 
in many vegetables. The vegetable crude extracts represent a good alternative to 
replace manufactured enzymes in biotechnological applications. Commercial 
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enzymes have the advantage of exhibiting high purity levels, which is responsible 
for a significant increase in selectivity of the analytical device; however, they are 
very expensive. The crude extracts as enzymatic sources show some advantages 
such as abundant and easy enzyme obtainment, low cost, and bioavailability of 
cofactors when necessary to enzymatic activity [25].

Usually, the crude extracts are prepared by processing vegetal tissues in a buffer 
solution, close to physiological pH, followed by separation of solids by centrifuga-
tion. Peroxidases and polyphenol oxidases are found in cell membranes of many 
vegetables and detergent solutions, such as sodium dodecyl sulfate (SDS), which 
are dissolved by phenolic compounds to perform the extraction and at the same 
time that activates the enzyme latent forms [26]. Phenolic compounds are com-
mon in vegetables and they react with peroxidases or polyphenol oxidases in the 
crude extract preparation. In order to preserve enzyme reactivity, phenol scavenger 
polymers, such as polyvinylpyrrolidones (PVPs) and their derivatives, are added to 
the extract. These polymers work as phenol adsorbents, interacting with phenolic 
compounds via hydrogen bonds, preventing these reactions [27].

Several examples of biosensors prepared with crude extracts as enzyme sources 
were reported [28–30]. Many studies aim to obtain less expensive biosensors 
with higher durability, since crude extracts mimic the natural enzyme environ-
ment. In addition, cofactors and coenzymes can be present in the crude extract. 
Martins et al. [28] reported the preparation of a biosensor using the crude extract 
of the pumpkin Cucubita pepo for paracetamol detection in aqueous solution, and 
Benjamin et al. [29] reported a biosensor prepared with a crude extract, which was 
a source of the polyphenol oxidase, anchored with cerium nanoparticles for rutin 
detection in solution, showing a limit of detection of the 0.16 μmol L−1.

The biosensor for phenolic compounds from drugs and industrial wastewater 
was proposed by Antunes et al. [30]. They used the crude extract from vegetal issue 
sources of polyphenol oxidase, which was anchored on the electrode surface, and 
the analysis was carried out in an electrochemical cell. The biosensor was evaluated 
for the quantitative determination of acetaminophen, acetylsalicylic acid, methyl-
dopa, ascorbic acid, and phenolic compounds in a real sample. The limit of detec-
tion achieved was 7 μmol of phenol, which is compared to the limit of detection of 8 
μmol for polyphenol oxidase for pharmacological samples.

There are several electrochemical biosensors to determine the pharmacological 
properties of phenolic compounds. Tyrosinase-based biosensor is widely used for 
detection of phenolic compounds [31, 32]. Its construction is based on the same 
approaches, such as electropolymerization and sol-gel and polymer entrapment 
[33]. Aranganathan et al. [33] reported the use of tyrosinase for detection of 
3,4-dihydroxy-l-phenylalanine (l-DOPA), which is a preferred drug for the treat-
ment of Parkinson’s disease. Florescu and David [34] developed a tyrosinase-based 
biosensor for selective dopamine detection, in which its selectivity was increased by 
employing cobalt (II)-porphyrin (CoP) film-modified gold electrodes. It operates 
by enabling the direct immobilization of the enzyme layer in more available sites, 
acting as an electrochemical mediator during enzyme-catalyzed reaction, leading 
to a complete recovery of the electrode, with no effect on the detection limit [34]. 
Tyrosinase can be used as a pesticide detector as well. In this respect, Liu et al. 
[35] developed a biosensor consisting of a glassy carbon electrode modified with 
graphene and containing tyrosinase immobilized on platinum nanoparticles. It 
was for organophosphorus pesticide detection and they found that the presence of 
Pt nanoparticles and graphene improved the biosensor sensitivity by enhancing 
the efficiency of the electrochemical reduction of o-quinone. Also, in the study 
conducted by Everett and Rechnitz [36], the tyrosinase-based biosensor was very 
sensitive to pesticide in aqueous solution.
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the extract. These polymers work as phenol adsorbents, interacting with phenolic 
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were reported [28–30]. Many studies aim to obtain less expensive biosensors 
with higher durability, since crude extracts mimic the natural enzyme environ-
ment. In addition, cofactors and coenzymes can be present in the crude extract. 
Martins et al. [28] reported the preparation of a biosensor using the crude extract 
of the pumpkin Cucubita pepo for paracetamol detection in aqueous solution, and 
Benjamin et al. [29] reported a biosensor prepared with a crude extract, which was 
a source of the polyphenol oxidase, anchored with cerium nanoparticles for rutin 
detection in solution, showing a limit of detection of the 0.16 μmol L−1.

The biosensor for phenolic compounds from drugs and industrial wastewater 
was proposed by Antunes et al. [30]. They used the crude extract from vegetal issue 
sources of polyphenol oxidase, which was anchored on the electrode surface, and 
the analysis was carried out in an electrochemical cell. The biosensor was evaluated 
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tion achieved was 7 μmol of phenol, which is compared to the limit of detection of 8 
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detection of phenolic compounds [31, 32]. Its construction is based on the same 
approaches, such as electropolymerization and sol-gel and polymer entrapment 
[33]. Aranganathan et al. [33] reported the use of tyrosinase for detection of 
3,4-dihydroxy-l-phenylalanine (l-DOPA), which is a preferred drug for the treat-
ment of Parkinson’s disease. Florescu and David [34] developed a tyrosinase-based 
biosensor for selective dopamine detection, in which its selectivity was increased by 
employing cobalt (II)-porphyrin (CoP) film-modified gold electrodes. It operates 
by enabling the direct immobilization of the enzyme layer in more available sites, 
acting as an electrochemical mediator during enzyme-catalyzed reaction, leading 
to a complete recovery of the electrode, with no effect on the detection limit [34]. 
Tyrosinase can be used as a pesticide detector as well. In this respect, Liu et al. 
[35] developed a biosensor consisting of a glassy carbon electrode modified with 
graphene and containing tyrosinase immobilized on platinum nanoparticles. It 
was for organophosphorus pesticide detection and they found that the presence of 
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the efficiency of the electrochemical reduction of o-quinone. Also, in the study 
conducted by Everett and Rechnitz [36], the tyrosinase-based biosensor was very 
sensitive to pesticide in aqueous solution.
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Peroxidase-based biosensors are alternatives to determine phenol and phenolic 
compounds. The need for a peroxidase-based material that would be more stable 
in aqueous media, with lower costs, leads to the use of hemoglobin in the biosensor 
processing [31]. Highly sensitive hemoglobin-based biosensor was obtained by the 
modification of a carbon-paste electrode with hemoglobin and multiwalled carbon 
nanotubes. It was tested in the detection of methylparaben, present in real samples 
of urine and human serum. It reached a detection limit of 25 nM [37]. In their work, 
Haijan et al. [37] also showed that the immobilization of hemoglobin onto cuprous 
sulfide nanorods/Nafion® nanocomposite film is an effective way to construct a 
biosensor for polyphenol detection. In addition to the hemoglobin immobilization, 
the polyphenol detection was also enhanced.

Rodríguez-Delgado et al. [23] developed laccase-based biosensors that presented 
high sensitivity and reproducibility for phenolic compounds in situ and environ-
mental monitoring. Several others pollutants, that can be easily dissolved in water 
and, therefore, are considered environmental pollutants, must be monitored. It is 
the case of several compounds used by the food and textile industries. With this 
regard, tartrazine, a synthetic organic food azo dye, has its use controlled due to its 
potential harmfulness to human health. The first work on the use of laccase-based 
biosensor for the determination of tartrazine dye was recently developed by Mazlan 
et al. [38], which is a biosensor consisting of laccase enzyme immobilized on 
methacrylate-acrylate microspheres and composites with gold nanoparticles [38].

The adverse use of drugs based on morphine and narcotics causes several ill-
nesses around the world. The development of efficient methods to detect illicit drugs 
in biological samples, such as urine and blood plasma, is, therefore, much required. 
Gandhi et al. [39] reported the advances in the field of biosensors for narcotic drug 
detection. Among them, they showed that the double-stranded DNA (ds-DNA) 
immobilized onto mercaptobenzaldehyde-modified Au electrode is an advantageous 
and promising biosensor to morphine detection, since it presents the advantage of 
no need of additional steps of extraction, cleansing, and derivatization [40].

Regarding drug detections, yet Alvau et al. [41] proposed a biosensor for thera-
peutic drug monitoring based on acetylcholinesterase (AChE) and choline oxidase. 
These are promising biosensors because they also present the possibility of distinct 
application, for instance, AChE-based biosensors can find application in environ-
mental monitoring, since they can be used for the electrochemical detection of 
organophosphate and carbamate pesticides. The global concern over pesticide level 
increase rose the last decade due to the high toxicity and bioaccumulation effects of 
such compounds, and the significant risks that they represent to the environment 
and human health. Therefore, monitoring pesticide residues by sensitive analytical 
techniques is indispensable. In view of the harmful effects associated with pesticides, 
a legislative framework has been established worldwide which defines rules for the 
approval of active chemicals and maximum residue levels (MRLs) allowed in food 
and water. The legal limits for the amount of pesticides allowed in food and drink-
ing water are set by the Environmental Protection Agency (EPA) in USA and for 
the European Environment Agency in European Union (EEA). These government 
agencies establish the appropriate pesticides levels, according to the type of crops 
and substance. For instance, the pesticide methomyl has the maximum tolerance 
established at 2.0 ppm (parts per million) in lemon in USA, whereas EEA established 
a MRL lower than 0.01 ppm for the same pesticide in lemon. However, in the case 
of the pesticide chlorpyrifos in apples, both agencies authorize the same MRL in 
0.01 ppm for apples. Commonly, the MRLs are in the range of ppm to ppb (parts per 
billion); nevertheless, there are some pesticides that are forbidden and are illegally 
used. In contrast, in Brazil, the legislation regarding the use of pesticides in crops as 
well as the detection limit in food and water is much more permissive. For instance, 
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it allows a level of glyphosate in water up to 5000 times greater than that allowed 
in the European Union. Over the years, several biomolecules have been used as a 
biorecognition element in biosensors for pesticide detection, such as cells, antibod-
ies, aptamers, and enzymes. In this section, we will focus on enzymatic biosensors 
for organophosphate (OP) and carbamate quantification based on electrochemical 
transducer. These devices use acetylcholinesterase (AChE) and butyrylcholinesterase 
(BChE), in addition to alkaline phosphatase (ALP) and organophosphorus hydrolase 
(OPH) for OP detection, specifically. AChE-based biosensors are among the most 
popular electrochemical sensing platforms for the aforementioned types of pesti-
cides [42]. AChE is susceptible to be inhibited by OPs as well as carbamate pesticides. 
The working mechanism of an electrochemical AChE-based biosensor is based on 
inhibitory effects. In the absence of OPs and carbamates (analytes), the substrate 
acetylthiocholine is converted into thiocholine and acetate. Afterwards, thiocholine 
is oxidized by the applied potential. When the analyte is present in the solution, 
AChE has its activity decreased by the pesticide inhibition. Consequently, the 
conversion of acetylthiocholine is partial or totally reduced, and the pesticides are 
indirectly detected [43]. Figure 1 shows the working principle of AChE biosensor.

Selectivity is the most significant hallmark of enzymatic biosensors. In the case 
of AChE-based biosensors, it is only possible to detect an assortment of pesticides 
in a complex matrix, and no qualitative or quantitative information is obtained for a 
single inhibitor. Besides, AChE can be inhibited by heavy metals, drugs, and nerve 
agents. Therefore, the inhibition strategy to detect pesticides towards AChE implies 
in poor selectivity [44]. An important consideration is that AChE inhibition by pes-
ticides may diverge according to the source of enzyme. Studies have demonstrated 
that AChE extracted from electric eel exhibited greater sensitivity in comparison 
to those from bovine and human erythrocytes [45]. On the other hand, genetically 
modified AChE from Drosophila melanogaster revealed superior results [45]. In order 
to address these limitations, numerous approaches have been developed, involving 
nanomaterial technologies to improve the transducer performance in addition to 
genetic engineering [46].

The design of novel AChE-based biosensors for pesticide detection concerns 
the application of nanomaterials offering transducing platforms with outstanding 
electrochemical behavior. The advantages provided by nanomaterials in electro-
chemical sensing are associated with large surface-to-volume ratio, controlled 
morphology, electrocatalytic properties, immobilization of biomolecules, and 
possibilities of system miniaturization [47].

Figure 1. 
Scheme of the general reaction mechanism of an electrochemical biosensor based on AchE.
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acetylthiocholine is converted into thiocholine and acetate. Afterwards, thiocholine 
is oxidized by the applied potential. When the analyte is present in the solution, 
AChE has its activity decreased by the pesticide inhibition. Consequently, the 
conversion of acetylthiocholine is partial or totally reduced, and the pesticides are 
indirectly detected [43]. Figure 1 shows the working principle of AChE biosensor.

Selectivity is the most significant hallmark of enzymatic biosensors. In the case 
of AChE-based biosensors, it is only possible to detect an assortment of pesticides 
in a complex matrix, and no qualitative or quantitative information is obtained for a 
single inhibitor. Besides, AChE can be inhibited by heavy metals, drugs, and nerve 
agents. Therefore, the inhibition strategy to detect pesticides towards AChE implies 
in poor selectivity [44]. An important consideration is that AChE inhibition by pes-
ticides may diverge according to the source of enzyme. Studies have demonstrated 
that AChE extracted from electric eel exhibited greater sensitivity in comparison 
to those from bovine and human erythrocytes [45]. On the other hand, genetically 
modified AChE from Drosophila melanogaster revealed superior results [45]. In order 
to address these limitations, numerous approaches have been developed, involving 
nanomaterial technologies to improve the transducer performance in addition to 
genetic engineering [46].

The design of novel AChE-based biosensors for pesticide detection concerns 
the application of nanomaterials offering transducing platforms with outstanding 
electrochemical behavior. The advantages provided by nanomaterials in electro-
chemical sensing are associated with large surface-to-volume ratio, controlled 
morphology, electrocatalytic properties, immobilization of biomolecules, and 
possibilities of system miniaturization [47].

Figure 1. 
Scheme of the general reaction mechanism of an electrochemical biosensor based on AchE.
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Currently, the employment of screen printed electrodes (SPEs) has boosted 
the scenario of AChE-based biosensors. Those electrodes promote the system 
miniaturization addressing the sample volume issues, combining cost effective-
ness and simple manipulation. Therefore, several strategies of modification 
have been applied to achieve high sensitivity and low limit of detection. A smart 
AChE biosensor approach used homemade SPE modified with single-walled 
carbon nanotubes (SWCNT) derivatized with cobalt phthalocyanine to detect 
thiocholine at a lower overpotential in comparison to bare SPE and SPE modi-
fied with nonfunctionalized SWCNT in only 80 μL of sample [48]. Remarkably, 
the performance of an AChE-based biosensor was improved due to electrode 
modification with N-carbamoylmaleimide-functionalized carbon dots (N-MAL-
CDs) as a nanostabilizer [49]. The initial electrochemical signals of thiocholine 
were obtained without signal loss, as a result of the Michael addition reaction 
functionalizing CDs with N-MAL. Then, N-MAL-CDs can react with thiol group 
from thiocholine, forming a thiol containing compound. The aforementioned 
compound cannot be easily oxidized during the detection process, avoiding the 
signal loss. For the fabrication of AChE/N-MAL-CDs/SPE biosensor, they used 
a commercial SPE in which all electrochemical measurements were performed 
in a droplet of 50 μL. One significant breakthrough offered by SPE is the simul-
taneous analysis performed by an array of electrodes [50]. The multiplexed 
analysis integrated into an automated system enables the rapid detection of OP 
pesticides being convenient for commercial and routine applications. Hence, an 
array with 12 SPEs deposited in sequence side by side on a ceramic substrate in 
which the working electrode was printed with a carbon ink containing cobalt 
phthalocyanine and Ag/AgCl/KClsat was used as reference/counter electrode. 
By means of using six types of recombinant AChE, it was possible to acquire 
qualitative and quantitative information through inhibition assay since the 
enzyme becomes selective among the OP pesticides, such as dichlorvos, mala-
oxon, chlorpyrifos-oxon, chlorpyrifos-methyl-oxon, chlorfenvinphos, and 
pirimiphos-methyl-oxon.

Despite all exceptional SPE properties, they present certain drawbacks, such as 
the dissolution of conductive and insulating inks due to use of organic solvents, lack 
of reproducibility, and need of pretreatment procedure.

The continuous progress in biosensing area leads to the development of 
paper-based analytical devices (PADs) with electrochemical detection. The PADs 
have emerged as a powerful analytical tool integrating the convenience of SPEs, 
i.e., portability, simplicity with easy manufacturing of paper, availability, and 
reduced cost. Furthermore, the PADs provide singular advantages since they can 
be scalable manufactured from renewable sources, biocompatibility, biodegrad-
able, and low cost. A pioneering research involving a paper-based amperometric 
sensor for AChE determination was based on screen printed graphene electrodes 
fabricated by a wax printing method to obtain the detection area. The approach 
was applied for blood sample analysis, but it has potential to be used for pesticide 
detection.

Numerous immobilization strategies and fabrication methods have brought new 
perspectives to AChE-based biosensors. The investigations have focused on enzyme 
stability, reproducibility, miniaturization, and mass production [51]. The usage of 
smartphones in biosensing has played new horizons in environmental monitoring; 
however, it remains a challenge [52]. The electrochemical biosensors on smartphone 
use portable electrical detectors for amperometric, potentiometric, and impedi-
metric measurements, but environmental analyses are still scarce. Although great 
progress has been made with wireless biosensors, there is a lack of applications in 
pesticide detection.
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3. Conclusions

In this chapter, we presented the state of the art of biosensors to detect phenolic 
compounds, with environmental and pharmacological applications. Monitoring 
the negative environmental impacts of phenolic compounds uses has attracted 
researchers’ attention since these compounds are widely applied in several indus-
trial sectors. Among the biosensors developed for environmental monitoring, 
enzymatic ones are the most prominent used for phenolic compound detection. 
By combining enzymes with electrochemical transducers, cheaper devices had 
been developed, which is a great advantage to environmental analytical methods. 
The immobilization of enzymes on the electrode surface consists in physical and 
chemicals interactions. The location of actives sites is important to biosensor 
response; nevertheless, mediators can be used to transpose this barrier and facilitate 
the electronic transfer needed for the detection process. Tyrosinase-based biosen-
sor is the most common biosensor for phenolic compound detection, which is a 
precursor for drugs for the treatment of Parkinson’s disease, as morphine-based 
drugs. Also, acetylcholinesterase-based biosensors are widely employed because 
they present high efficiency to detect organophosphate and carbamate compounds, 
which are used as pesticides. The design of novel AChE-based biosensors for 
pesticide detection concerns the application of nanomaterials offering transducing 
platforms with outstanding electrochemical behavior. The employment of screen 
printed electrodes promotes the system miniaturization, which is a new perspective 
to electrochemical biosensor application.
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be scalable manufactured from renewable sources, biocompatibility, biodegrad-
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fabricated by a wax printing method to obtain the detection area. The approach 
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Numerous immobilization strategies and fabrication methods have brought new 
perspectives to AChE-based biosensors. The investigations have focused on enzyme 
stability, reproducibility, miniaturization, and mass production [51]. The usage of 
smartphones in biosensing has played new horizons in environmental monitoring; 
however, it remains a challenge [52]. The electrochemical biosensors on smartphone 
use portable electrical detectors for amperometric, potentiometric, and impedi-
metric measurements, but environmental analyses are still scarce. Although great 
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been developed, which is a great advantage to environmental analytical methods. 
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chemicals interactions. The location of actives sites is important to biosensor 
response; nevertheless, mediators can be used to transpose this barrier and facilitate 
the electronic transfer needed for the detection process. Tyrosinase-based biosen-
sor is the most common biosensor for phenolic compound detection, which is a 
precursor for drugs for the treatment of Parkinson’s disease, as morphine-based 
drugs. Also, acetylcholinesterase-based biosensors are widely employed because 
they present high efficiency to detect organophosphate and carbamate compounds, 
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Chapter 5

Challenges and Applications of 
Impedance-Based Biosensors in 
Water Analysis
Kairi Kivirand, Mart Min and Toonika Rinken

Abstract

Monitoring of the environment is a global priority due to the close connection 
between the environmental pollution and human health. Many analytical techniques 
using various methods have been developed to detect and monitor the levels of 
pollutants (pesticides, toxins, bacteria, drug residues, etc.) in natural water bodies. 
The latest trend in modern analysis is to measure pollutants in real-time in the field. 
For this purpose, biosensors have been employed as cost-effective and fast analyti-
cal techniques. Among biosensors, impedance biosensors have significant potential 
for use as simple and portable devices. These sensors involve application of a small 
amplitude AC voltage to the sensor electrode and measurement of the in-/out-of-
phase current response as a function of frequency integrated with some biorecogni-
tion element on the sensing electrodes that can bind to the target, modifying the 
sensor electrical parameters. However, there are some drawbacks concerning their 
selectivity, stability, and reproducibility. The aim of this paper is to give a critical 
overview of literature published during the last decade based on the development 
issues of impedimetric biosensors and their applicability in water analysis.

Keywords: electrochemical impedance spectroscopy, biosensor, challenges, 
application, water analysis

1. Introduction

Pollution of water by different chemicals disturbs ecosystems. Pollutants can 
also accumulate in the environment and can be found for many years after they 
have been banned. In addition, pollutants may accumulate into our food chain 
(seafood, drinking water, agricultural products, etc.) and thereby affect all living 
organisms including humans [1]. Some pollutants can be found years after having 
been banned. For example, despite being banned for agricultural use in EU in 2003 
because of ubiquitous and unpreventable water contamination [2], atrazine was 
even after 5 years still found in spring and groundwaters at quantities between 0.9 
and 2.8% of the annually applied amount before the ban [3]. Therefore, monitoring 
of natural water has become an essential requirement worldwide. Currently, the 
most common option to detect pollution is the use of fixed monitoring stations, 
which need trained people to analyze the collected data and are usually quite 
expensive. To decrease costs and make monitoring more effective, there has been an 
increasing interest in the development of portable and user-friendly systems, which 
could give us fast, precise, and reliable information.
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Biosensors can be a useful tool for the detection of pollutants in the water. In 
comparison with traditional monitoring techniques, biosensors are portable, need 
minimal sample preparation, and are also rapid and reliable [4]. According to the 
International Union of Pure and Applied Chemistry (IUPAC) definition, a biosen-
sor is a self-contained, integrated receptor transducer device, which is capable of 
providing selective quantitative or semiquantitative analytical information and 
which uses a biological recognition element (bio-receptor) and a transducer in 
direct special contact [5]. Biosensors can be used for continuous monitoring with 
high selectivity and sensitivity.

Biosensors are classified according to their biorecognition element or signal 
transducer into various categories. Electrochemical biosensors based on impedance 
are among the most promising ones due to their portability, rapidity, and label-free 
operation. Label-free sensors register changes in the electrical properties due to 
interactions between biological molecule attached to the sensor and an analyte pres-
ent in the sample, and as these sensors generate rapid response, they can be used 
to track molecular events in a real-time manner [6]. The main advantage of label-
free detection is that it is possible to acquire direct information of the interactions 
between native proteins and ligands [6, 7]. In environmental analysis most of the 
biosensors used are enzyme-based biosensors [8–12] or antibody-based immuno-
sensors [13–16]. In recent years also the development of aptasensors has increased 
[17–19]. The present chapter gives a critical overview of the development issues and 
applicability of different impedimetric biosensors used for water analysis.

2. Electrochemical impedance spectroscopy

Electrochemical impedance spectroscopy (EIS) is an analytical tool, which 
has been used for studying electrochemical systems including corrosion [20–22], 
battery development [23], electrodeposition [24], fuel cells [25, 26], and charge 
transport through membranes [27]. For impedance measurements, the alternating 
current (AC) voltage applied is typically small (up to 10 mV) so that the voltage-
current response is linear, allowing simple equivalent circuit analysis [28]. Different 
waveforms of the AC voltage  V (t)   varying in time can be used [29]. The simplest 
but best-known waveform among them is a pure sine wave  V (t)   =   V  0   sin  (𝜔𝜔t) ,  which 
varies periodically (oscillates) with angular frequency ω = 2π f, rad/s, where f, 
(1/s ≡ Hz), is the repetition frequency of oscillation periods. The current response  
 I (t)   to the applied voltage  V (t)   is also the sine wave at exactly the same frequency 
ω = 2π f. In addition, the current response  I (t)   is shifted over the time interval 
(Δ t) against the applied voltage  V (t)   because of containing inert energy saving 
components (capacitance C and/or inductance L) of impedance Z. In practice, it 
is reasonable to use the phase shift  φ = 2𝜋𝜋f (Δ t) , rad,  instead of the time interval 
(Δt). Predominantly, the impedance handling assumes that there are no changes in 
impedance value during the observation time interval. Therefore, we can exclude 
time dependence from the mathematical expression of impedance and use the 
frequency dependent impedance  Z (ω)   instead of  Z (t, ω) .  Mathematical equation 
for the impedance  Z (ω)   is the ratio between the voltage-time function  V (t)   and the 
resulting current-time function  I (t)   (Eq. (1)):

  Z (t)  =   V (t)  _ I (t)    =    V  0   sin  (2𝜋𝜋 ft)  ____________  
 I  0   sin  (2𝜋𝜋 ft + φ) 

   =    V  0   sin  (𝜔𝜔t)  ___________  I  0   sin  (𝜔𝜔t + φ)     (1)

More complicated voltage signal waveforms are required for the fast perfor-
mance of EIS by generating the signal components at several frequencies simultane-
ously [29]. As EIS measures the response of an electrochemical cell to a voltage at 
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different frequencies, the data obtained allows characterizing the complex electrode 
systems on layers, surfaces, or membranes where electrical charge transfer and ion 
diffusion processes take place [7]. To evaluate and interpret the results, the EIS data 
are usually analyzed using Bode or Nyquist plots [30, 31].

Based on the methodologies of signal collection, impedimetric detection can 
be categorized in two ways: capacitive faradaic or non-faradaic. It is important to 
distinguish between those approaches. In electrochemical terminology, a faradaic 
process is the one where charge is transferred across an interface. In the case of non-
faradaic, the transient currents can flow without charge transfer (e.g., charging a 
capacitor). In faradaic EIS, a redox probe is alternately oxidized and reduced by the 
transfer of an electron to and from the metal electrode. Thus, faradaic EIS requires 
the addition of a redox probe and direct current (DC) bias conditions such that it is 
not depleted. In contrast, no additional reagent is required for non-faradaic imped-
ance spectroscopy, rendering non-faradaic schemes somewhat more amenable to 
point-of-care applications [32, 33].

In the case of faradaic impedimetry, the electrode surface is partially or fully 
covered with a non-isolating layer or with an isolating layer able to catalyze a 
redox probe [34]. Non-faradaic approach is also known as the direct measurement 
manner (without chemical reactions). In the case the redox probe is missing, the 
impedance depends on the conductivity of the supporting electrolyte and electrode 
interfacial properties. Capacitive approach means that the surface of the electrode is 
completely covered with a dielectric layer. In this type of sensors, no redox probe is 
present in the system; and the current is measured under a small amplitude sinusoi-
dal voltage signal, at low frequencies [34]. Capacitive biosensors are mainly based 
on a non-faradaic approach, because the transient current flows without charge 
transfer and no additional reagent is required.

Briefly in faradaic approach, the charge is transferred across the electrified 
interface as a result of an electrochemical reaction, and in non-faradaic approach, 
the charge is associated with movement of electrolyte ions, reorientation of solvent 
dipoles, adsorption/desorption, etc. at the electrode-electrolyte interface. Detailed 
overviews about faradic and non-faradaic systems are given in Refs. [31, 34, 35].

In order to present information about surfaces, layers, or membranes after the 
immobilization of biomolecules, EIS experimental data is often analyzed using an 
equivalent circuit of electrochemical cell [30]. The Randle’s circuit (Figure 1) is a 
frequently used equivalent for modeling the impedance [32]. The non-faradaic sen-
sor comprises the uncompensated resistance of the electrolyte (Rs) and the constant 

Figure 1. 
Simplified circuit models for (A) non-faradaic and (B) faradaic systems. Abbreviations: Rs, resistance of the 
electrolyte; CPE, constant phase element; Rct, charge-transfer resistance; W, the Warburg impedance.
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Biosensors can be a useful tool for the detection of pollutants in the water. In 
comparison with traditional monitoring techniques, biosensors are portable, need 
minimal sample preparation, and are also rapid and reliable [4]. According to the 
International Union of Pure and Applied Chemistry (IUPAC) definition, a biosen-
sor is a self-contained, integrated receptor transducer device, which is capable of 
providing selective quantitative or semiquantitative analytical information and 
which uses a biological recognition element (bio-receptor) and a transducer in 
direct special contact [5]. Biosensors can be used for continuous monitoring with 
high selectivity and sensitivity.

Biosensors are classified according to their biorecognition element or signal 
transducer into various categories. Electrochemical biosensors based on impedance 
are among the most promising ones due to their portability, rapidity, and label-free 
operation. Label-free sensors register changes in the electrical properties due to 
interactions between biological molecule attached to the sensor and an analyte pres-
ent in the sample, and as these sensors generate rapid response, they can be used 
to track molecular events in a real-time manner [6]. The main advantage of label-
free detection is that it is possible to acquire direct information of the interactions 
between native proteins and ligands [6, 7]. In environmental analysis most of the 
biosensors used are enzyme-based biosensors [8–12] or antibody-based immuno-
sensors [13–16]. In recent years also the development of aptasensors has increased 
[17–19]. The present chapter gives a critical overview of the development issues and 
applicability of different impedimetric biosensors used for water analysis.

2. Electrochemical impedance spectroscopy

Electrochemical impedance spectroscopy (EIS) is an analytical tool, which 
has been used for studying electrochemical systems including corrosion [20–22], 
battery development [23], electrodeposition [24], fuel cells [25, 26], and charge 
transport through membranes [27]. For impedance measurements, the alternating 
current (AC) voltage applied is typically small (up to 10 mV) so that the voltage-
current response is linear, allowing simple equivalent circuit analysis [28]. Different 
waveforms of the AC voltage  V (t)   varying in time can be used [29]. The simplest 
but best-known waveform among them is a pure sine wave  V (t)   =   V  0   sin  (𝜔𝜔t) ,  which 
varies periodically (oscillates) with angular frequency ω = 2π f, rad/s, where f, 
(1/s ≡ Hz), is the repetition frequency of oscillation periods. The current response  
 I (t)   to the applied voltage  V (t)   is also the sine wave at exactly the same frequency 
ω = 2π f. In addition, the current response  I (t)   is shifted over the time interval 
(Δ t) against the applied voltage  V (t)   because of containing inert energy saving 
components (capacitance C and/or inductance L) of impedance Z. In practice, it 
is reasonable to use the phase shift  φ = 2𝜋𝜋f (Δ t) , rad,  instead of the time interval 
(Δt). Predominantly, the impedance handling assumes that there are no changes in 
impedance value during the observation time interval. Therefore, we can exclude 
time dependence from the mathematical expression of impedance and use the 
frequency dependent impedance  Z (ω)   instead of  Z (t, ω) .  Mathematical equation 
for the impedance  Z (ω)   is the ratio between the voltage-time function  V (t)   and the 
resulting current-time function  I (t)   (Eq. (1)):

  Z (t)  =   V (t)  _ I (t)    =    V  0   sin  (2𝜋𝜋 ft)  ____________  
 I  0   sin  (2𝜋𝜋 ft + φ) 

   =    V  0   sin  (𝜔𝜔t)  ___________  I  0   sin  (𝜔𝜔t + φ)     (1)

More complicated voltage signal waveforms are required for the fast perfor-
mance of EIS by generating the signal components at several frequencies simultane-
ously [29]. As EIS measures the response of an electrochemical cell to a voltage at 
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different frequencies, the data obtained allows characterizing the complex electrode 
systems on layers, surfaces, or membranes where electrical charge transfer and ion 
diffusion processes take place [7]. To evaluate and interpret the results, the EIS data 
are usually analyzed using Bode or Nyquist plots [30, 31].

Based on the methodologies of signal collection, impedimetric detection can 
be categorized in two ways: capacitive faradaic or non-faradaic. It is important to 
distinguish between those approaches. In electrochemical terminology, a faradaic 
process is the one where charge is transferred across an interface. In the case of non-
faradaic, the transient currents can flow without charge transfer (e.g., charging a 
capacitor). In faradaic EIS, a redox probe is alternately oxidized and reduced by the 
transfer of an electron to and from the metal electrode. Thus, faradaic EIS requires 
the addition of a redox probe and direct current (DC) bias conditions such that it is 
not depleted. In contrast, no additional reagent is required for non-faradaic imped-
ance spectroscopy, rendering non-faradaic schemes somewhat more amenable to 
point-of-care applications [32, 33].

In the case of faradaic impedimetry, the electrode surface is partially or fully 
covered with a non-isolating layer or with an isolating layer able to catalyze a 
redox probe [34]. Non-faradaic approach is also known as the direct measurement 
manner (without chemical reactions). In the case the redox probe is missing, the 
impedance depends on the conductivity of the supporting electrolyte and electrode 
interfacial properties. Capacitive approach means that the surface of the electrode is 
completely covered with a dielectric layer. In this type of sensors, no redox probe is 
present in the system; and the current is measured under a small amplitude sinusoi-
dal voltage signal, at low frequencies [34]. Capacitive biosensors are mainly based 
on a non-faradaic approach, because the transient current flows without charge 
transfer and no additional reagent is required.

Briefly in faradaic approach, the charge is transferred across the electrified 
interface as a result of an electrochemical reaction, and in non-faradaic approach, 
the charge is associated with movement of electrolyte ions, reorientation of solvent 
dipoles, adsorption/desorption, etc. at the electrode-electrolyte interface. Detailed 
overviews about faradic and non-faradaic systems are given in Refs. [31, 34, 35].

In order to present information about surfaces, layers, or membranes after the 
immobilization of biomolecules, EIS experimental data is often analyzed using an 
equivalent circuit of electrochemical cell [30]. The Randle’s circuit (Figure 1) is a 
frequently used equivalent for modeling the impedance [32]. The non-faradaic sen-
sor comprises the uncompensated resistance of the electrolyte (Rs) and the constant 

Figure 1. 
Simplified circuit models for (A) non-faradaic and (B) faradaic systems. Abbreviations: Rs, resistance of the 
electrolyte; CPE, constant phase element; Rct, charge-transfer resistance; W, the Warburg impedance.
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phase element (CPE) having capacitive-like properties in parallel with the charge-
transfer resistance (Rct).

Sometimes simplifications are introduced, and the CPE is replaced by a double-
layer capacitance (C dl), which introduces the constant phase shift of -π/2 rad 
(−90°) at all the frequencies. In reality, the CPE introduces the phase shift  φ  less 
than π/2 [29, 36].

The faradaic sensor model includes the Warburg impedance (W), which 
describes diffusion phenomenon taking place due to chemical redox processes. The 
ideal Warburg impedance introduces the phase shift of π/4. Values of the charge 
transfer Rct and W depend on physicochemical parameters of a system. In real sys-
tems, impedance spectra are usually more complicated, and, therefore, the Randle’s 
circuit with a corresponding plot may not give proper results [31].

3. Challenges of EIS-based biosensors

The detection of contaminates in water is very important since high pollution 
(heavy metals, pesticide and antibiotic residues, etc.) or the presence of pathogens 
(infectious microorganisms like viruses, bacteria, and fungi) can seriously endan-
ger human health.

Several technical challenges hinder the development and construction of EIS-
based biosensors: limitations to detect small molecules, reusability, and sufficient 
stability for repetitive measurements [37, 38]. However, the most crucial problem is 
whether the impedance biosensors have sufficient selectivity for their application in 
real samples, which typically contain an unknown amount of nontarget molecules.

There are two main types of impedimetric biosensors—with or without a spe-
cific biorecognition element [30]. The most common biorecognition elements used 
are specific antibodies [39, 40]. The key to the successful performance of EIS-based 
biosensors is how to decrease the non-specific bindings and increase the selectivity. 
Selectivity is particularly important in real samples where the analyte concentration 
can be much smaller than the concentration of nontarget molecules. Non-specific 
binding is typically ascribed to proteins contained in a sample matrix attaching to 
the sensor interface through an unwanted process not involving the bimolecular 
recognition [41]. One option to decrease non-specific binding is to use blocking 
agents like bovine serum albumin (BSA), cysteine, or ethanolamine [42–44]. 
The choice of a blocking agent depends on the particular system. For example, 
Puttharugsa and Kamolpach used BSA for prevention of non-specific binding on 
gold electrodes, and the selectivity of the constructed biosensors was testes toward 
Escherichia coli K12 (E. coli K12) as a model with EIS [45]. When BSA is adsorbed 
physically onto the surface, the penetration of redox probe was reduced result-
ing in the increase of the semicircle Nyquist curve proving that BSA prevents the 
adsorption of bacteria onto the blocked surface by delaying the interfacial electron-
transfer kinetics and increasing the electron-transfer resistance. Riquelme et al. 
studied several blocking agents (mercaptoundecanol, polyethylene glycol, BSA, 
and chicken serum albumin) to study the effect of biomolecule size and hydrophilic 
properties on blocking capacity on gold electrodes [43]. Higher impedance change 
was observed with lower molecular weight blocking agents, due to higher molecular 
packing on gold electrode. In addition lower blocking agent concentrations may be 
required if the electrode surface has already been bio-functionalized.

In addition to blocking agents, antifouling agents can be used to prevent target 
depletion via non-specific bindings [46]. Blocking agent reduces the non-specific 
binding by blocking the active functional groups on the surface and can stabilize 
the biomolecule bound to the surface [47]. Antifouling (or non-fouling) agent is 
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a compound that has the capability to ensure the resistivity to the non-specific 
adsorption of proteins, cells, or other biological species [48]. Ortiz-Aguayo and 
Valle tried to decrease the non-specific adsorption to the graphite-epoxy composite 
electrode surface of an EIS-based wine aptasensor using polyethylene glycol [46]. 
Even though the aptasensor showed good sensitivity, the blocking did not work so 
efficiently; and the recovery was approximately 77%.

One of the main challenges is the sensitivity, which depends on the thickness 
of the sensing layer [49–53]. If the sensing layer is too thin, the electrode surface 
may be exposed, which would decrease the signal to noise ratio and decrease the 
sensitivity. If the sensing layer is too thick, the detected AC impedance current 
reduces meaning that the electron transfer between layers is hindered and the 
sensitivity is decreased. For example, Groß et al. studied the effect of the thick-
ness on the base resistance in the range 30 to 150 μm and found that the sensitivity 
decreased along with the sensitive layer getting thicker [49]. They also found that 
there is a trade-off between wide linear range and high sensitivity. In addition, 
the sensor signal became slower as the thickness of the sensitive layer increased 
[49]. Functionalization of the electrodes with high-affinity biomolecules enhances 
besides selectivity and also the sensitivity of the system. Therefore, EIS is very often 
combined with different nanostructured interfaces in order to increase the amount 
of biorecognition material on the surface and therefore to improve the sensor sen-
sitivity and extend its linear working [54–59]. This improvement is associated with 
the dimensions of nanomaterials, which endows them with a large surface/volume 
ratio and high specific area enabling to immobilize bigger amount of biomolecules 
onto biosensor surface [60].

Reusability of the antibody-based biosensors can be problematic because of 
the strength and irreversibility of antibody-antigen binding, and the regeneration 
of these surfaces without damaging the antibody layer can be complicated due to 
harsh conditions [61]. For impedance biosensors, extreme pH values of strong 
acids or bases may not be compatible with the chemistries employed for the protein 
immobilization, meaning that the reusability of a biosensor can be problematic. 
Radhakrishnan et al. studied the regeneration of antibody-based Si electrodes [62]. 
Even though they could regenerate the surfaces for 15 days, the impedance spec-
trum gradually degraded during these multiday regeneration trials.

Finally, it can be challenging to detect small molecules like heavy metals, 
pesticides, or antibiotic residues with EIS due to the exponential increase of the 
charge-transfer resistance through the polymer-protein layer to the underlying 
electrode surface [41, 63]. Small molecules (less than kDa) alone usually induce 
very small detectable response, which can be very difficult to measure especially in 
real samples where the concentration of the target molecule can be very low [41]. 
One possibility to improve the detection of small molecules is to conjugate these via 
a functional group to a larger carrier molecule (i.e., a protein) or with electrochemi-
cally bright metal and semiconductor nanomaterials, as changes due to binding of 
large molecules can be detected more easily detected. For example, Radhakrishnan 
et al. used impedance-based biosensor to detect two endocrine-disrupting chemi-
cals (EDC) [41], which are small compounds found in various materials such as 
pesticides, additives, or contaminants in food [64]. It was found that for detecting 
small molecules, impedance biosensors can be operated at only one or a few fre-
quencies that are most sensitive to analyte binding, and the sensitivity improved 
when attained with analyte conjugation. Gold nanoparticles (Au-NPs) have been 
used due to their electrochemically active surface; in particular, Au-NPs bound to 
the electrode digits disrupt the formation of the double layer around the electrodes, 
thus changing the double-layer capacitance [65–67]. For example, de Macedo 
et al. used Au-NPs for signal amplification, and comparing the results of free and 
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phase element (CPE) having capacitive-like properties in parallel with the charge-
transfer resistance (Rct).

Sometimes simplifications are introduced, and the CPE is replaced by a double-
layer capacitance (C dl), which introduces the constant phase shift of -π/2 rad 
(−90°) at all the frequencies. In reality, the CPE introduces the phase shift  φ  less 
than π/2 [29, 36].

The faradaic sensor model includes the Warburg impedance (W), which 
describes diffusion phenomenon taking place due to chemical redox processes. The 
ideal Warburg impedance introduces the phase shift of π/4. Values of the charge 
transfer Rct and W depend on physicochemical parameters of a system. In real sys-
tems, impedance spectra are usually more complicated, and, therefore, the Randle’s 
circuit with a corresponding plot may not give proper results [31].

3. Challenges of EIS-based biosensors

The detection of contaminates in water is very important since high pollution 
(heavy metals, pesticide and antibiotic residues, etc.) or the presence of pathogens 
(infectious microorganisms like viruses, bacteria, and fungi) can seriously endan-
ger human health.

Several technical challenges hinder the development and construction of EIS-
based biosensors: limitations to detect small molecules, reusability, and sufficient 
stability for repetitive measurements [37, 38]. However, the most crucial problem is 
whether the impedance biosensors have sufficient selectivity for their application in 
real samples, which typically contain an unknown amount of nontarget molecules.

There are two main types of impedimetric biosensors—with or without a spe-
cific biorecognition element [30]. The most common biorecognition elements used 
are specific antibodies [39, 40]. The key to the successful performance of EIS-based 
biosensors is how to decrease the non-specific bindings and increase the selectivity. 
Selectivity is particularly important in real samples where the analyte concentration 
can be much smaller than the concentration of nontarget molecules. Non-specific 
binding is typically ascribed to proteins contained in a sample matrix attaching to 
the sensor interface through an unwanted process not involving the bimolecular 
recognition [41]. One option to decrease non-specific binding is to use blocking 
agents like bovine serum albumin (BSA), cysteine, or ethanolamine [42–44]. 
The choice of a blocking agent depends on the particular system. For example, 
Puttharugsa and Kamolpach used BSA for prevention of non-specific binding on 
gold electrodes, and the selectivity of the constructed biosensors was testes toward 
Escherichia coli K12 (E. coli K12) as a model with EIS [45]. When BSA is adsorbed 
physically onto the surface, the penetration of redox probe was reduced result-
ing in the increase of the semicircle Nyquist curve proving that BSA prevents the 
adsorption of bacteria onto the blocked surface by delaying the interfacial electron-
transfer kinetics and increasing the electron-transfer resistance. Riquelme et al. 
studied several blocking agents (mercaptoundecanol, polyethylene glycol, BSA, 
and chicken serum albumin) to study the effect of biomolecule size and hydrophilic 
properties on blocking capacity on gold electrodes [43]. Higher impedance change 
was observed with lower molecular weight blocking agents, due to higher molecular 
packing on gold electrode. In addition lower blocking agent concentrations may be 
required if the electrode surface has already been bio-functionalized.

In addition to blocking agents, antifouling agents can be used to prevent target 
depletion via non-specific bindings [46]. Blocking agent reduces the non-specific 
binding by blocking the active functional groups on the surface and can stabilize 
the biomolecule bound to the surface [47]. Antifouling (or non-fouling) agent is 
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a compound that has the capability to ensure the resistivity to the non-specific 
adsorption of proteins, cells, or other biological species [48]. Ortiz-Aguayo and 
Valle tried to decrease the non-specific adsorption to the graphite-epoxy composite 
electrode surface of an EIS-based wine aptasensor using polyethylene glycol [46]. 
Even though the aptasensor showed good sensitivity, the blocking did not work so 
efficiently; and the recovery was approximately 77%.

One of the main challenges is the sensitivity, which depends on the thickness 
of the sensing layer [49–53]. If the sensing layer is too thin, the electrode surface 
may be exposed, which would decrease the signal to noise ratio and decrease the 
sensitivity. If the sensing layer is too thick, the detected AC impedance current 
reduces meaning that the electron transfer between layers is hindered and the 
sensitivity is decreased. For example, Groß et al. studied the effect of the thick-
ness on the base resistance in the range 30 to 150 μm and found that the sensitivity 
decreased along with the sensitive layer getting thicker [49]. They also found that 
there is a trade-off between wide linear range and high sensitivity. In addition, 
the sensor signal became slower as the thickness of the sensitive layer increased 
[49]. Functionalization of the electrodes with high-affinity biomolecules enhances 
besides selectivity and also the sensitivity of the system. Therefore, EIS is very often 
combined with different nanostructured interfaces in order to increase the amount 
of biorecognition material on the surface and therefore to improve the sensor sen-
sitivity and extend its linear working [54–59]. This improvement is associated with 
the dimensions of nanomaterials, which endows them with a large surface/volume 
ratio and high specific area enabling to immobilize bigger amount of biomolecules 
onto biosensor surface [60].

Reusability of the antibody-based biosensors can be problematic because of 
the strength and irreversibility of antibody-antigen binding, and the regeneration 
of these surfaces without damaging the antibody layer can be complicated due to 
harsh conditions [61]. For impedance biosensors, extreme pH values of strong 
acids or bases may not be compatible with the chemistries employed for the protein 
immobilization, meaning that the reusability of a biosensor can be problematic. 
Radhakrishnan et al. studied the regeneration of antibody-based Si electrodes [62]. 
Even though they could regenerate the surfaces for 15 days, the impedance spec-
trum gradually degraded during these multiday regeneration trials.

Finally, it can be challenging to detect small molecules like heavy metals, 
pesticides, or antibiotic residues with EIS due to the exponential increase of the 
charge-transfer resistance through the polymer-protein layer to the underlying 
electrode surface [41, 63]. Small molecules (less than kDa) alone usually induce 
very small detectable response, which can be very difficult to measure especially in 
real samples where the concentration of the target molecule can be very low [41]. 
One possibility to improve the detection of small molecules is to conjugate these via 
a functional group to a larger carrier molecule (i.e., a protein) or with electrochemi-
cally bright metal and semiconductor nanomaterials, as changes due to binding of 
large molecules can be detected more easily detected. For example, Radhakrishnan 
et al. used impedance-based biosensor to detect two endocrine-disrupting chemi-
cals (EDC) [41], which are small compounds found in various materials such as 
pesticides, additives, or contaminants in food [64]. It was found that for detecting 
small molecules, impedance biosensors can be operated at only one or a few fre-
quencies that are most sensitive to analyte binding, and the sensitivity improved 
when attained with analyte conjugation. Gold nanoparticles (Au-NPs) have been 
used due to their electrochemically active surface; in particular, Au-NPs bound to 
the electrode digits disrupt the formation of the double layer around the electrodes, 
thus changing the double-layer capacitance [65–67]. For example, de Macedo 
et al. used Au-NPs for signal amplification, and comparing the results of free and 
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conjugated protein, the latter generated a measured signal 40–50 times higher and 
the limit of detection 64 times lower [68]. MacKay et al. also used Au-NPs to evalu-
ate the sensing ability of biosensor chips using impedance measurements and found 
that the adsorption of Au-NPs to the surface binding sites increased the impedance 
through double-layer capacitance and higher sensitivity is gained using single 
frequent measurement [65].

4. Applications of EIS-based biosensors in water analysis

A range of different EIS-based biosensing technologies for the detection of 
pollutants like pesticides and pathogens in water samples have been developed. A 
condensed overview of these biosensors including a brief description of the biosen-
sor working principles, limit of detection, working range, and reproducibility is 
given in Table 1. Although not all these devices have been commercialized, they 
have been successfully tested in the laboratories.

4.1 Biosensors for pesticides and toxin analysis

Jiang et al. proposed an aptamer-based biosensor for the detection of acet-
amiprid [59]. To increase the sensitivity of the system silver nanoparticles, deco-
rated nitrogen-doped graphene (NG) nanocomposites were used. This aptasensor 
exhibited a linear response in the range of 0.1 pM–1.0 nM and a detection limit of 
0.01 pM. Zehani et al. developed two impedimetric biosensors for the detection of 
diazinon in aqueous medium using two different types of lipase, conjugated with 
BSA, immobilized onto functionalized gold electrodes [69]. Diazinon is one of the 
most commonly used organophosphate pesticides in the world, and lipase is used 
to specifically catalyze the hydrolysis of diazinon into diethyl phosphorothioic 
acid and 2-isopropyl-4-methyl-6-hydroxypyrimidine. The developed biosensors 
both presented linearity up to 50 μM with detection limit of 10 nM for Candida 
rugosa-based biosensor and 0.1 μM for porcine pancreas-based biosensor. They also 
studied the reproducibility and stability. Pichetsurnthorn et al. used nanoporous 
impedance-based biosensor for the detection of pesticide atrazine from river water 
[70]. To enhance the sensitivity of the system, nanoporous alumina was overlaid on 
the base surface of the metal electrode. The limit of detection for the detection of 
atrazine in river water and in drinking water was 10 fg/ml.

Zhang et al. constructed a three-dimensional (3D) graphene-based biosensor 
for microcystin-LR (MC-LR) detection and quantification in drinking water [54]. 
Microcystin-LR is a toxin produced by cyanobacteria. EIS was used for the electro-
chemical characterization of the biochemical action on the electrode-specific anti-
MC-LR monoclonal antibodies for the selective detection of MC-LR. A detection 
limit of 0.05 mg/l was achieved, which is lower than that allowed limit proposed by 
the World Health Organization (WHO) (1 mg/l).

4.2 Biosensors for bacterial analysis

Mutreja et al. used impedimetric immunosensor for the detection of bacteria 
Salmonella typhimurium in water with detection limit 101 CFU/ml [71]. Graphene-
graphene oxide screen-printed electrodes were functionalized with anti-OmpD 
antibodies to capture Salmonella typhimurium through its outer membrane protein 
OmpD. Barreiros dos Santos et al. presented an EIS-based biosensor for the detec-
tion of pathogen Escherichia coli O157:H7 in water [72]. The immunosensor detec-
tion limit was 2.0 CFU/ml, and linear working range was 10–104 CFU/ml. Rengaraj 
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conjugated protein, the latter generated a measured signal 40–50 times higher and 
the limit of detection 64 times lower [68]. MacKay et al. also used Au-NPs to evalu-
ate the sensing ability of biosensor chips using impedance measurements and found 
that the adsorption of Au-NPs to the surface binding sites increased the impedance 
through double-layer capacitance and higher sensitivity is gained using single 
frequent measurement [65].

4. Applications of EIS-based biosensors in water analysis

A range of different EIS-based biosensing technologies for the detection of 
pollutants like pesticides and pathogens in water samples have been developed. A 
condensed overview of these biosensors including a brief description of the biosen-
sor working principles, limit of detection, working range, and reproducibility is 
given in Table 1. Although not all these devices have been commercialized, they 
have been successfully tested in the laboratories.

4.1 Biosensors for pesticides and toxin analysis

Jiang et al. proposed an aptamer-based biosensor for the detection of acet-
amiprid [59]. To increase the sensitivity of the system silver nanoparticles, deco-
rated nitrogen-doped graphene (NG) nanocomposites were used. This aptasensor 
exhibited a linear response in the range of 0.1 pM–1.0 nM and a detection limit of 
0.01 pM. Zehani et al. developed two impedimetric biosensors for the detection of 
diazinon in aqueous medium using two different types of lipase, conjugated with 
BSA, immobilized onto functionalized gold electrodes [69]. Diazinon is one of the 
most commonly used organophosphate pesticides in the world, and lipase is used 
to specifically catalyze the hydrolysis of diazinon into diethyl phosphorothioic 
acid and 2-isopropyl-4-methyl-6-hydroxypyrimidine. The developed biosensors 
both presented linearity up to 50 μM with detection limit of 10 nM for Candida 
rugosa-based biosensor and 0.1 μM for porcine pancreas-based biosensor. They also 
studied the reproducibility and stability. Pichetsurnthorn et al. used nanoporous 
impedance-based biosensor for the detection of pesticide atrazine from river water 
[70]. To enhance the sensitivity of the system, nanoporous alumina was overlaid on 
the base surface of the metal electrode. The limit of detection for the detection of 
atrazine in river water and in drinking water was 10 fg/ml.

Zhang et al. constructed a three-dimensional (3D) graphene-based biosensor 
for microcystin-LR (MC-LR) detection and quantification in drinking water [54]. 
Microcystin-LR is a toxin produced by cyanobacteria. EIS was used for the electro-
chemical characterization of the biochemical action on the electrode-specific anti-
MC-LR monoclonal antibodies for the selective detection of MC-LR. A detection 
limit of 0.05 mg/l was achieved, which is lower than that allowed limit proposed by 
the World Health Organization (WHO) (1 mg/l).

4.2 Biosensors for bacterial analysis

Mutreja et al. used impedimetric immunosensor for the detection of bacteria 
Salmonella typhimurium in water with detection limit 101 CFU/ml [71]. Graphene-
graphene oxide screen-printed electrodes were functionalized with anti-OmpD 
antibodies to capture Salmonella typhimurium through its outer membrane protein 
OmpD. Barreiros dos Santos et al. presented an EIS-based biosensor for the detec-
tion of pathogen Escherichia coli O157:H7 in water [72]. The immunosensor detec-
tion limit was 2.0 CFU/ml, and linear working range was 10–104 CFU/ml. Rengaraj 

59

Challenges and Applications of Impedance-Based Biosensors in Water Analysis
DOI: http://dx.doi.org/10.5772/intechopen.89334

A
na

ly
te

Sa
m

pl
e

Re
co

gn
iti

on
 el

em
en

t
El

ec
tr

od
e

LO
D

Re
pr

od
uc

ib
ili

ty
Re

sp
on

se
 

ra
ng

e
Re

fe
re

nc
es

A
ce

ta
m

ip
rid

W
as

te
w

at
er

A
pt

am
er

 w
ith

 th
e f

ol
lo

w
in

g 
se

qu
en

ce
s: 

5′
-(

SH
)-

(C
H

2)
6-

TG
TA

AT
TT

G
TC

TG
CA

G
CG

G
T

TC
TT

G
AT

CG
C

TG
AC

AC
CA

TA
T

TA
TG

A
AG

A-
3′

Si
lv

er
 n

an
op

ar
tic

le
s (

N
Ps

) 
de

co
ra

te
d 

w
ith

 n
itr

og
en

-
do

pe
d 

gr
ap

he
ne

 (N
G

) 
na

no
co

m
po

sit
es

33
 p

M
(R

SD
) 6

.9
%

 (n
 =

 5)
10

 p
M

–5
 n

M
[5

9]

D
ia

zi
no

n
Ri

ve
r w

at
er

Li
pa

se
 fr

om
 C

an
di

da
 ru

go
sa

 
(C

RL
);

 li
pa

se
 fr

om
 p

or
ci

ne
 

pa
nc

re
as

 (P
PL

)

Fu
nc

tio
na

liz
ed

 g
ol

d 
el

ec
tr

od
e

10
 n

M
 

(C
RL

);
0.

1 μ
M

 
(P

PL
)

(R
SD

) 2
–5

%
2–

50
 μ

M
[6

9]

At
ra

zi
ne

Ri
ve

r a
nd

 
bo

tt
le

d 
dr

in
ki

ng
 w

at
er

A
nt

i-a
tr

az
in

e a
nt

ib
od

ie
s

N
an

op
or

ou
s a

lu
m

in
a 

m
em

br
an

e i
nt

eg
ra

te
d 

w
ith

 p
rin

te
d 

ci
rc

ui
t b

oa
rd

 
pl

at
fo

rm

10
 fg

/m
l

—
10

 fg
/m

l–
1 n

g/
m

l
[7

0]

M
ic

ro
cy

st
in

-L
R 

(t
ox

in
 p

ro
du

ce
d 

by
 

cy
an

ob
ac

te
ria

)

Lo
ca

l t
ap

 
w

at
er

M
on

oc
lo

na
l m

ic
ro

cy
st

in
 

an
tib

od
ie

s (
ag

ai
ns

t A
D

DA
, 

A
D

4G
2,

 m
ou

se
 Ig

G
1)

3D
-g

ra
ph

en
e-

ba
se

d 
bi

os
en

so
r (

N
i/g

ra
ph

en
e 

co
m

po
sit

es
 co

at
ed

 w
ith

 a 
PM

M
A

 so
lu

tio
n)

0.
05

 μ
g/

l
6.

9%
 in

te
r-

 an
d 

3.6
%

 
in

tr
a-

as
sa

y 
co

ef
fic

ie
nt

s 
of

 v
ar

ia
bi

lit
y

0.
05

–2
0 

m
g/

l 
(R

2 
0.

93
9)

[5
4]

Sa
lm

on
ell

a 
ty

ph
im

ur
iu

m
 sp

ec
ie

s
W

at
er

A
nt

i-O
m

pD
 an

tib
od

ie
s

G
ra

ph
en

e-
gr

ap
he

ne
 o

xi
de

-
m

od
ifi

ed
 sc

re
en

-p
rin

te
d 

ca
rb

on
 el

ec
tr

od
es

10
1 C

FU
/

m
l

—
—

[7
1]

Pa
th

og
en

 E
sch

er
ich

ia
 

co
li 

O
15

7:H
7

W
at

er
A

nt
i-E

. c
ol

i a
nt

ib
od

ie
s

Fu
nc

tio
na

liz
ed

 g
ol

d 
el

ec
tr

od
e

2 
CF

U
/m

l
(R

SD
) 2

%
 (n

 =
 3

)
10

–1
04

 C
FU

/
m

l
[7

2]

Ba
ct

er
ia

W
at

er
Le

ct
in

 co
nc

an
av

al
in

 A
Fu

nc
tio

na
liz

ed
 sc

re
en

-
pr

in
te

d 
el

ec
tr

od
e

10
3 

CF
U

/
m

l
10

3–
10

7 C
FU

/
m

l
[7

3]

Ta
bl

e 
1.

 
Th

e a
pp

lic
at

io
n,

 ch
ar

ac
te

ri
sti

cs,
 a

nd
 co

ns
tr

uc
tio

n 
of

 im
pe

da
nc

e b
io

se
ns

or
s u

se
d 

in
 w

at
er

 a
na

ly
sis

.



Biosensors for Environmental Monitoring

60

et al. fabricated an impedimetric paper-based biosensor for the detection of bacte-
rial contamination in water [73]. They used lectin concanavalin A as a bioselective 
element due to its stability to interact with mono- and oligosaccharides on bacterial 
cells. The detection limit was approximately 1000 CFU/ml.

4.3 Biosensors for drug residue detection

A good overview about aptamer-based EIS biosensors to determine different 
groups of antibiotics in water samples is presented in Ref. [74].

Jacobs et al. use an EIS-based microdevice, coupled with a nanoporous mem-
brane and functionalized antibodies, to detect erythromycin in different water 
sources—drinking water and river water [75]. The limit of detection in drinking 
water was found to be around 0.1 ppt. In milk the allowed maximum residue level 
for erythromycin is 40 ppb. In the river water, the sensitivity is usually lower 
because of the organic matter in it that can interfere with binding of erythromycin. 
The limit of detection in the river water samples was around 1 ppt. The overall 
impedance change was still large enough to show if the concentrations of erythro-
mycin are in a range of suitable or unsuitable for drinking.

5. Conclusion

In this overview main challenges and limitations of impedance biosensors, 
including the complexity of impedance detection, susceptibility to non-specific 
binding, challenges with the sensitivity, limitations to small molecule, and reusabil-
ity of the electrodes are analyzed.

Abbreviations

EIS electrochemical impedance spectroscopy
IUPAC International Union of Pure and Applied Chemistry
 I (t)   current response
 V (t)   applied voltage
(Δt) time interval
 φ  phase shift
 Z (ω)   impedance
 V (t)   voltage-time function
 I (t)   current-time function
DC direct current
Rs resistance of the electrolyte
CPE constant phase element
Rct charge-transfer resistance
W the Warburg impedance
Cdl double-layer capacitance
BSA bovine serum albumin
Au-NPs gold nanoparticles
MC-LR microcystin-LR
WHO World Health Organization
NG nitrogen-doped graphene
CFU colony-forming unit
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Abstract

This chapter summarizes the fundamentals of biosensing techniques based on 
fluorescence spectroscopy and the protagonism of state-of-the-art luminescent 
biosensors in a wide range of scientific areas, from environmental monitoring to 
diagnostics and decease treatment, focusing on the paramount contribution of 
biosensors based on the Förster Resonance Energy Transfer (FRET) transduc-
ing mechanism. State-of-the-art FRET biosensors are specially characterized by 
outstanding sensitivity toward a number of environmental pollutants and dissolved 
oxygen in aquatic ecosystems, capable of detecting concentrations in the nano and 
picomolar scales. These biosensors have also been showing impressive performance 
over other methods in the study of real-time biological processes in vivo relevant to 
help understanding decease progression like cancer.

Keywords: fluorescent biosensors, ROS detection, sensitivity, FRET biosensors,  
new materials

1. Introduction

Fluorescence spectroscopy has been revolutionizing the field of life sciences and 
clinical routines such as diagnostics and biosensing, due to its impressive sensitivity 
and the biocompatibility of many fluorescent organic compounds, which allows 
one to probe biological processes in vivo in noninvasive bioimaging procedures. The 
improvement of instrumentation has granted optical-based sensing routines a new 
level of sensitivity, accuracy, and reliability. Very subtle changes in fluorescence 
intensity, or even extremely low levels of light that might result from an interaction 
between the fluorescent probe or sensor with the environment under study, are 
easily detectable nowadays thanks to modern instrumentation such as photomulti-
plier tubes, in which electronic impulses are created by just a single photon. In the 
time-resolved fluorescence approach, in which the fluorescence lifetime of the fluo-
rophore is monitored, with current femtosecond pulsed lasers, even more sensitive 
and reliable measurements are possible, since the intensity decay is not affected by 
a number of possible undesired factors that interferes in the steady-state intensity. 
These advantages make the fluorescence spectroscopy a powerful technique, paving 
the way to the most wished rapid and low-cost sensing in a wide range of biologi-
cal and environmental applications and point-of-care diagnostics for real-time 
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monitoring of physiological conditions. Sensing methods of remarkable sensitivity, 
reliability, and selectivity based on fluorescence spectroscopy dominates the field of 
sensing and biosensing. DNA sequencing and fragment analysis, fluorescence stain-
ing for bioimaging and fluorescence immunoassays are all based on fluorescence 
techniques.

The countless possibilities of combinations of biorecognition element, support 
matrix, and the transducing method in biosensors constituted of nanomaterials 
make it possible to design versatile and selective biosensors. In this review, particu-
lar attention is centered on luminescent biosensors based on the Förster resonance 
energy transfer, or FRET, biosensing transducing method, which encompasses 
a huge variety of biosensors, due to their unique sensitivity, selectivity, and fast 
response. For this reason, FRET-based sensors have enabled, for example, intracel-
lular monitoring of ROS kinetics and oxygen sensing, which is vital for elucidat-
ing how tumor cells respond to treatment, in order to develop better therapeutic 
strategies. Before FRET sensors were introduced, these practices were hampered by 
difficulties and unreliability in real-time monitoring intracellular ROS. In fluores-
cence bioimaging, thanks to its high spatial and temporal resolution, it is becoming 
possible to probe in real time biological elements and processes, such as enzymatic 
reactions, protein/protein, protein/nucleic acid, protein/substrate, and biomem-
brane interactions.

In the context of environmental monitoring, with the possibility of miniaturiza-
tion of biosensors based on nanomaterials, it is becoming possible to perform fast 
and accurate field analysis and real-time surveillance of analytes relevant in the 
assessment of water quality. A variety of FRET-based biosensors for water pollut-
ants, such as heavy metal ions, pesticides, antibiotics, and halogenated compounds, 
is reported, some of them capable of detecting concentrations in the pico and 
nanomolar scales. Such sensitivity levels are far from reach with conventional 
analytical methods.

2. Principles and evolution of biosensing techniques

Biosensors are devices that can perform the measurement of a physiological 
activity in living organisms or that are constructed upon biological components. 
They determine chemical or biological analytes in systems where the minimum 
human intervention is present. They generate optical and/or electrochemical signals 
that are transduced by a variety of transducers, and depending on their operation, 
biosensors are classified.

To fulfill an application, biosensors can be constructed by using a wide variety 
of bioreceptors, that can deliver distinct types of signals and the choice of trans-
ducers and interfaces will respond for their selectivity and sensibility, as well as 
their configuration versatility and possibility of miniaturization. Techniques such 
as voltammetry, amperometry, potentiometry, among others, are exploited to 
transduce electrochemical signals, whereas fluorescence, light absorption or light 
reflectance in the ultraviolet (UV), visible, or near-infrared (NIR) spectral regions 
can have their intensity or lifetime changes determined to efficiently detect opti-
cal responses in optical biosensors. Also, there is a variety of biosensors that can 
explore dual or multiple transducers to deliver electrical and luminous signals that 
can be interpreted together or separately, giving rise for more versatile and usable 
biosensors.

Independent of their usage and characteristics, the basic configuration of the 
biosensors is similar. They must be composed of a sample holder, which is adapted 
to the sample physical characteristics; a biological recognition element, which must 
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be highly selective; and a physical transducer to generate a measurable signal, a sig-
nal processor, and an interface that is able to communicate the data to the operator. 
The types of biosensor that can be constructed are based on the recognition ele-
ments employed, which can be any biological system, from antibodies to microbes 
and cells. It is selected considering the information to be obtained and the physical 
characteristics of the biosensor, which in its turn, determines the durability and the 
more applicable processes to construct the biosensor.

The specificity and the sensitivity of biosensors have been the concern of several 
scientists due to the variety of biochemical processes that need to be evaluated 
and followed, the increase of accuracy and reproducibility of measurements that 
is fundamental for the spread of usage of such devices, and due to the need for 
miniaturizing and automatizing devices, in order to turn them more applicable to 
distinct regions of a living organism.

In special, optical biosensors can be widely applied if they accompanied the 
development of the spectroscopic and microscopic technique development to 
improve their transducing methods, signal processing, and interface. If these 
components are well developed, optical biosensors and, in special, fluorescent 
biosensors can present high sensitivity, perform real-time measurements with high 
frequency of detection, which enable them to find application in diagnostics and 
therapeutics, with the right transducers, it is possible to image disease progression 
and to monitor the organism response to therapeutics, and also, they can be thought 
for drug discovery programs development, as well as for clinical evaluation of 
new drugs [1]. In recent years, recognition elements based on graphene had been 
widely used due to their excellent electrical and optical properties. In biosensing, 
materials based on graphene had promoted efficient detection of biomarkers and 
have proportioned an important technological advance, due to the perspective of 
developing new and interesting materials, such as graphene-like 2D materials and 
the impressive single-atom-thick layers of van der Waals materials [2].

Most of the fluorescent biosensors are small molecules that are arranged on 
a receptor that identifies a specific target, and its fluorescent response is readily 
transduced. In this case, the signal recognition is based on the distinct fluorescence 
emitted by the biosensor in the presence of the analyte, which can be metabo-
lites, proteins, ions, or antibodies. These biosensors are based on the steady-state 
fluorescence that the device can produce. They find effective application for early 
biomarker detection, for instance, in clinical diagnostics and ordinary biochemical 
processes, as well as for tissue imaging and, as an extrapolation, in image guided 
surgery.

Biosensors based on time-resolved fluorescence are promising because they are 
able to promote improvements on selectivity, specificity, and sensibility, becom-
ing ultrasensitives, capable of determining minimal local variations of the analyte 
concentration, and can be combined to several other analytical techniques. In this 
context, there are the nanopores, which are highly sensitive biosensors, able to 
detect the analyte at the range of nanomolar of concentration, due to their charac-
teristic structure of a nanometer scale pore that is similar to the size of the target 
molecule, enabling a single-molecule analysis [3].

Any of the fluorescence properties of the recognition element, namely, the 
intensity, wavelength, anisotropy or lifetime, can be exploited in optical sensing. 
One straightforward mechanism to consider is collisional quenching, in which a 
fluorophore has its fluorescence quenched upon collision with the analyte mol-
ecule. Nevertheless, the most encountered and relevant mechanism in sensing 
is the Förster Resonance Energy Transfer (FRET), which occurs via long range 
dipole-dipole interaction when an energy donor, in an excited state, and an accep-
tor are brought into close proximity, but not necessarily into contact. In FRET, the 
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more applicable processes to construct the biosensor.
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scientists due to the variety of biochemical processes that need to be evaluated 
and followed, the increase of accuracy and reproducibility of measurements that 
is fundamental for the spread of usage of such devices, and due to the need for 
miniaturizing and automatizing devices, in order to turn them more applicable to 
distinct regions of a living organism.

In special, optical biosensors can be widely applied if they accompanied the 
development of the spectroscopic and microscopic technique development to 
improve their transducing methods, signal processing, and interface. If these 
components are well developed, optical biosensors and, in special, fluorescent 
biosensors can present high sensitivity, perform real-time measurements with high 
frequency of detection, which enable them to find application in diagnostics and 
therapeutics, with the right transducers, it is possible to image disease progression 
and to monitor the organism response to therapeutics, and also, they can be thought 
for drug discovery programs development, as well as for clinical evaluation of 
new drugs [1]. In recent years, recognition elements based on graphene had been 
widely used due to their excellent electrical and optical properties. In biosensing, 
materials based on graphene had promoted efficient detection of biomarkers and 
have proportioned an important technological advance, due to the perspective of 
developing new and interesting materials, such as graphene-like 2D materials and 
the impressive single-atom-thick layers of van der Waals materials [2].

Most of the fluorescent biosensors are small molecules that are arranged on 
a receptor that identifies a specific target, and its fluorescent response is readily 
transduced. In this case, the signal recognition is based on the distinct fluorescence 
emitted by the biosensor in the presence of the analyte, which can be metabo-
lites, proteins, ions, or antibodies. These biosensors are based on the steady-state 
fluorescence that the device can produce. They find effective application for early 
biomarker detection, for instance, in clinical diagnostics and ordinary biochemical 
processes, as well as for tissue imaging and, as an extrapolation, in image guided 
surgery.

Biosensors based on time-resolved fluorescence are promising because they are 
able to promote improvements on selectivity, specificity, and sensibility, becom-
ing ultrasensitives, capable of determining minimal local variations of the analyte 
concentration, and can be combined to several other analytical techniques. In this 
context, there are the nanopores, which are highly sensitive biosensors, able to 
detect the analyte at the range of nanomolar of concentration, due to their charac-
teristic structure of a nanometer scale pore that is similar to the size of the target 
molecule, enabling a single-molecule analysis [3].

Any of the fluorescence properties of the recognition element, namely, the 
intensity, wavelength, anisotropy or lifetime, can be exploited in optical sensing. 
One straightforward mechanism to consider is collisional quenching, in which a 
fluorophore has its fluorescence quenched upon collision with the analyte mol-
ecule. Nevertheless, the most encountered and relevant mechanism in sensing 
is the Förster Resonance Energy Transfer (FRET), which occurs via long range 
dipole-dipole interaction when an energy donor, in an excited state, and an accep-
tor are brought into close proximity, but not necessarily into contact. In FRET, the 
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fluorescence intensity and decay time of the donor are decreased, as depicted in the 
Jablonski diagram and spectrum models in Figure 1. The energy transfer efficiency 
in FRET depends on the distance between donor and acceptor: when the donor-
acceptor pair is in between 20 and 60 angstroms apart, which is called the Förster 
radius, the efficiency of energy transfer is around 50%. The efficiency also depends 
on the spectral overlap between the absorption spectrum of the acceptor and the 
emission spectrum of the donor: the greater the overlap, the more efficient the 
process.

Since FRET does not require contact between the electronic clouds of donor and 
acceptor, it can occur over macromolecular distances. This is one of the reasons, 
along with energy transfer efficiency, responsible for the high sensitivity of FRET-
based sensors. Low concentrations of analyte that would result in great distances 
from the donor-acceptor pair would most likely involve FRET rather than colli-
sional quenching, which requires physical contact, in order to bring about a change 
in the FRET process necessary for sensing. Besides, since the donor and acceptor 
in a FRET sensor do not need to be bound molecules, it simplifies the design of the 
fluorophore because the donor is not required to be intrinsically sensitive to the 
analyte and can be chosen according to the desired light source [4].

A great variety of FRET sensors and biosensors can be found in the litera-
ture. The major advantages that make them special are high sensitivity and fast 
response. Besides, due to the biocompatibility of FRET-based biosensors, allied 
to the inherent sensitivity of optical sensing techniques, they are becoming ubiq-
uitous in clinical applications and in the field of biomedical research. A recent 
example is a fluorescent peptide/GO sensor containing a fluorophore-labeled 
peptide sequence that proved versatile for measuring the activity of different 
protein kinases. Kinases are group of proteins that regulates intracellular phos-
phorylation pathways. Several deceases such as cancer, diabetes, Alzheimer’s, 
etc. are related to anomalous activity of kinase proteins. In their sensor, the 
fluorophore-labeled peptide sequence is cleaved by the carboxypeptidase, in the 
absence of phosphorylation, and is separated from the GO, resulting in recovery 
of fluorescence [5].

Figure 1. 
Illustration of the components and function of biosensors based on fluorescence spectroscopy transducing.
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Quantum dots (QDs) comprise another class of intensively researched materials 
for biosensing application due to their advantages such as high photostability and 
large extinction coefficient. Additionally, their broad absorption spectra and the 
possibility of tuning emission wavelength make them suitable as sensors based on 
FRET energy transfer, in which the spectral overlap is important for efficiency of 
the process, and, ultimately, the sensitivity of the biosensor. Their broad absorp-
tion spectrum also enables selective excitation of QD donors without exciting the 
acceptors and allows excitation of different donors at once, making them useful for 
multiplexing applications. Their high luminescence and nanoscale dimensions also 
make them ideal for bioimaging applications as fluorescent probes [6].

Despite their versatility and large scope of possibilities for biosensing, one major 
disadvantage of QDs fabricated with inorganic materials is their toxicity, which 
limits their clinical applications. Graphene and other carbon-based QDs, unlike 
the conventional heavy-metals DQs, are biocompatible, environment friendly, and 
easier to prepare [7, 8], and for that reason, they have gained considerable attention. 
Among the most recent examples of CQD-based is a fluorescent CQD biosensor for 
hydrogen peroxide detection and simultaneous monitoring of the acetylcholinester-
ase reaction system [7]. A great number of QD-based biosensors for environmental 
monitoring are found in the literature. A few recent contributions are described in 
Section 4.

Similarly to graphene QDs, the high efficiency of energy transfer from dyes to 
graphene oxide, GO, along with GO’s intrinsic properties, opened up a new avenue 
for designing a lot of FRET-based biosensors. Thanks to pi stacking and hydrogen 
bonding interactions, GO is capable of strong binding with biomolecules, such as 
fluorescent dyes, which are quenched by GO via the FRET process. In the past few 
years, a number of GO-based biosensors using DNA as a probe are reported [9, 10].

As a special case of FRET-based biosensors, there is the bioluminescence 
resonance energy transfer (BRET) principle, which has been used to produce new 
and ultrasensitive biosensors. In these biosensors, a bioluminescent enzyme is the 
energy donor and a specific fluorescent molecule, chosen by spectral overlapping, 
acts as an acceptor. This process is extensively used to monitor and study molecular 
interactions between proteins and other metabolites, in vitro and in living cells [11].

3. ROS and oxygen sensing

One very important class of compounds that play a major role in regulating 
biological processes, which also have a close relationship with the differentiated 
metabolism profile of tumor cells, is the reactive oxygen species, ROS, and for that 
reason, they receive significant attention in sensing/biosensing research. ROS are 
very reactive free radicals that act as electron acceptors, thus being strong oxidiz-
ing agents, which react with any neighboring molecule in order to attain a stable 
configuration. Hydrogen peroxide, the superoxide anion, and the singlet excited 
states of oxygen are examples of ROS. These molecules are produced physiologically 
mainly as a by-product of oxygen metabolism during electron transfer events in 
respiratory chain processes. Since they are highly reactive, ROS are harmful for the 
cells, and antioxidant enzymes located in the cytosol and mitochondria are respon-
sible for a delicate regulation process that control the oxidative stress generated by 
ROS. Despite their toxic effects, moderate levels of ROS play a role in vital biological 
processes, such as biological signaling, chemical defense, biosynthetic reactions, 
etc. [12]. For instance, in biological signaling, the ROS act as secondary messengers 
in cellular adhesion, spreading, and migration, thus governing the proliferation 
and, ultimately, the survival of cells [13].
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Multicellular organisms also maintain a homeostasis of O2 levels by regulating 
the distribution of O2 according to the demands of each organ. In this context, the 
cells also respond to hypoxia condition, a state of insufficient levels of O2 necessary 
for maintaining nominal cellular function, in an effort to adapt to such condition 
and ensure its survival. This condition is always present in tumor cells, and under-
standing the cell mechanisms of coping with hypoxia is crucial for understanding 
tumor growth and survival. For that to work, the cells have a sensing mechanism for 
O2. The hypoxia-inducible factors HIF-1 and HIF-2 are oxygen sensitive transcrip-
tional complexes that mediate the response of cells to O2 levels [14].

It has been reported that the level of ROS in the cells is related to the activity of 
HIF-α factor. However, elucidation of cell metabolism related to or governed by 
ROS, as well as the cellular oxygen sensing mechanisms, has been hampered by the 
difficulties in tracking intracellular ROS kinetics with reliability using fluorescent 
dyes. FRET-based sensors have demonstrated to overcome these obstacles [14–16]. 
Guzy et al. suggested that mitochondria functions as an O2 sensor and signal 
hypoxia-induced HIF stabilization by releasing ROS to the cytosol. To confirm this 
debated hypothesis, they fabricated a reliable and accurate redox-sensitive FRET 
protein sensor for intracellular ROS determination that consists of a cyan and 
yellow fluorescent protein as the donor-acceptor pair linked by a redox-regulated 
HPS33 protein domain. Oxidation of the protein domain by ROS causes a con-
formational change, which alters the donor-acceptor distance required for FRET 
efficiency, thus leading to fluorescence recovery [14]. More recently, Bernardini 
et al. also used this same sensor configuration for monitoring the kinetics of ROS 
in cultured cells of mouse carotid body, seeking to elucidate the role of a NADPH 
oxidase subunit on cell response to O2 levels [15].

Overall, cyan and yellow fluorescent protein FRET sensors containing an inter-
nal metabolite-binding protein are successfully used for monitoring biomolecules in 
real time, metabolite dynamics, protein interaction, and signal transduction, due to 
the fast response ability of these sensors. Just like in aptamer sensors, the choice of 
the right metabolite-binding protein is the key for obtaining a highly selective FRET 
sensor for the desired target [16].

Apart from reactive oxygen species, the O2 itself is also an important indicator 
of biological processes, including the monitoring of decease progression. A variety 
of optical biosensors for oxygen determination are found in the literature, given the 
importance of this molecule in the study of biological systems.

Recently, fluorescence biosensors based on QDs are proving their potential for 
monitoring tumor activity, thanks to advantages such as the ability to penetrate 
solid tumor cells, high photoluminescence quantum yields, photostability, and the 
other photophysical properties already mentioned. Oxygen-sensitive phospho-
rescent molecules are particularly interesting for detecting oxygen in biological 
systems, because it is noninvasive and has high spatiotemporal resolution [17].

The underlying energy transfer mechanism involved in oxygen sensing is mostly 
a triplet-triplet annihilation process. After absorption of light, the sensing molecule 
is excited to a singlet excited state, S1. Subsequently, it can return to the ground 
state, S0, through fluorescence or undergo intersystem crossing to a triplet excited 
state, T1, and then return to the S0 state by phosphorescence. Alternatively, in a 
competing process, the molecule in the T1 state can interact with molecular oxygen 
in the ground triplet state via collisional quenching. When this happens, a triplet-
triplet annihilation process occurs, which is characterized by generation of excited-
state singlet oxygen, as illustrated in the Jablonsky diagram in Figure 2. This process 
involving the O2 is also called a photosensitization effect.

Consequently, a quenching of fluorescence or phosphorescence (depend-
ing on what radiative process is being monitored) is observed. The lifetime is 
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also decreased. The oxygen concentration can be determined in a steady-state or 
time-resolved manner, in which the intensity or lifetime decrease of the quenched 
molecule is related to the concentration of oxygen by the Stern-Volmer kinetics of 
collisional quenching, as shown below.

     I  0   __ I   or    τ  0   __ τ   = 1 + kq  τ  0   [Q]  (1) (1)

In this expression, I0 and I are the fluorescence intensities in the absence and 
presence of O2, respectively, τ0 is the natural fluorescence lifetime of the molecule 
in the absence of O2, τ is the lifetime at a given oxygen concentration, [Q ], and kq is 
the bimolecular quenching rate constant [4].

However, intersystem crossing to T1 state is generally a slow process, and in 
order to achieve an oxygen sensor of high sensitivity, the population of the triplet 
state must be maximized. The addition of heavy metal atoms can circumvent this 
limitation by increasing spin-orbit coupling, which favors the forbidden transition 
between electronic states of different spin multiplicities. Still, once in the T1 state, 
the phosphorescence competes with energy transfer to O2, which further limits the 
sensitivity of the sensor. The coupling of an oxygen-responsive phosphorescent 
molecule with a QD results in a sensor with enhanced sensitivity toward oxygen. 
FRET readily occurs between the molecule and QD, which form the donor-acceptor 
pair, and emission becomes oxygen-dependent due to the analyte interference in the 
FRET process.

In addition to FRET, QD sensors can also function through Dexter exchange 
interactions, another mechanism of nonradiative energy transfer between an 
acceptor-donor pair, which involves the donation of an electron from the LUMO 
orbital of the donor followed by the transfer of an electron from the acceptor 
HOMO orbital to the HOMO of the donor. Unlike the FRET, Dexter interactions 
require physical contact between donor and acceptor. Both mechanisms can com-
pete depending on the degree of spectral overlap. It has been found that the size of 
QD determines the predominant energy transfer mechanism in QD-based sensors: 
smaller QD, which exhibit low spectral overlap and high orbital overlap with the 
donor, favors Dexter energy transfer, whereas in larger QDs, FRET dominates [17].

Belonging to the realm of QD-based sensors for oxygen, self-assembled sensors 
have interesting advantages including ease of preparation and allow easy fine-
tuning of donor-acceptor ratio. In general, these sensors are comprised of a metal 
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its sensitivity at physiological O2 pressure by pairing Pd(II) porphyrins, which emits 
at 690 nm, with the CdSe core-shell QDs that emit at 519 nm. The QD was chosen 
to maximize spectral overlap with Pd(II) porphyrin absorption, thereby increasing 
FRET efficiency to 94%, greatly improving sensitivity [18]. Later on, other authors 
have used Au(III) corroles to shift the emission even further to the NIR [19]. Red 
emitting sensors are interesting for biomedical applications due to the greater 
penetration of red light into organic tissues and less scattering. These contribu-
tions reveal the versatility of QD-based sensors, which can be easily designed and 
adjusted to fulfill the desired purpose.

Fluorescence microscopy is another common technique in biological and clinical 
fields for visualizing intracellular structures, both in vitro and in vivo, which is 
based on the staining of a cell with a fluorescent probe. It is also possible to deter-
mine intracellular concentration of analytes of interest and monitor reactions. 
However, one major problem of microscopy based on steady-state intensity is the 
intensity dependence on the probe concentration. The difficulty in knowing the 
probe concentration within the different regions of the cell impedes quantitative 
measurements with reliability. Fluorescence lifetime imaging, on the other hand, 
circumvents this problem because the lifetime of the fluorophore probe is indepen-
dent on its concentration. Therefore, variations in lifetime due to interactions of 
the probe with biomolecules can be correlated to analyte concentration regardless 
of the probe concentration. For this reason, high fidelity images with improved 
contrasts can be achieved. Lifetime imaging is employed, for example, in intracel-
lular oxygen sensing, which is not possible via any microscopic method based on 
intensity measurements [4].

4. FRET applied to environmental biosensing

Due to the outstanding selectivity and sensitivity of optical biosensors, espe-
cially those based on FRET transducing, they meet the requirement of trace and 
even ultratrace detection of a great variety of environment pollutants, such as pes-
ticides, antibiotics, halogenated contaminants [20], etc., which represent a major 
concern of the modern era due to the threat they pose to ecosystems and human 
health. In addition to this, the portability offered by the possibility of miniaturiza-
tion of biosensor platforms enables the fast and low-cost field analysis, which is not 
possible through expensive conventional analytical methods like chromatography, 
mass spectrometry, and others.

Aptamer FRET sensors, or aptasensors, for instance, comprise a class of 
versatile and very sensitive biosensors, capable of detecting concentrations in 
nano and picoscales. Ultrasensitive FRET aptasensors for trace detection of metal 
ions [21, 22] and antibiotics [23] are reported. In a multiplexed detection system 
for Pb(II), Hg(2), and Ag(II) ions, the binding of an ion or multiple ions to DNA 
sequences triggers the DNA self-assembly. Subsequently, a cascade FRET event 
results in a fluorescent spectrum that can be interpreted as a fingerprint of the 
presence of a single or multiple metal ions [21]. In the sensor for the kanamycin 
antibiotic, an aptamer sensor, upconversion nanoparticles bound to an aptamer 
for kanamycin act as energy donor and the graphene as acceptor, in which the 
FRET is blocked in the presence of kanamycin, resulting in fluorescence. An 
impressive lower detection limit of 9.0 picomolar concentration is reported in 
aqueous buffer solution [23]. Indeed, by designing the suitable aptamer, versatile 
and selective FRET sensors for countless targets can be constructed.

Quantum dot and nanoparticle biosensors of equally impressive sensitivity for 
molecules of a wide range of sizes, from ions to large proteins, temperature, pH, 
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and oxygen, also have potential application in environmental monitoring [24–26]. 
Most recent examples include a sensor for edifenphos fungicide, comprised of 
a ZnS QD conjugated to a single-stranded DNA aptamer immobilized on a gra-
phene oxide sheet. In this sensor, FRET occurs between the QD and graphene 
sheet, and the fluorescence quenching is proportional to analyte concentration. 
Interestingly, their sensor showed remarkable selectivity, even when comparing 
to other pesticides of similar molecular structure [27]. In a chlorophyll-containing 
carbon QD of tunable fluorescence for organophosphate pesticide determination, 
the fluorescence of the QD is quenched via a FRET process by gold nanoparticles 
when the analyte is not present [28]. In another recent contribution, Luo et al. 
constructed a highly sensitive fluorescent sensor of Au/Ag nanoparticles containing 
rhodamine B for the detection of organophosphorus pesticides, which showed a 
detection limit of 1.8-pg ml−1 in fruit and water samples [25]. A similar biosensor 
of Au/Ag core-shell nanoparticles for the detection of arsenic has a lower detection 
limit of 0.1 ppb (parts per billion) [29]. Another FRET sensor constituted of Au 
upconversion nanoparticles for fluoroquinolones detection showed a sensitivity 
of 0.19–0.32 ng ml−1. Fluoroquinolones are a class of antibiotics that have become 
serious water contaminants [30].

Other prominent biosensors for environmental surveillance are the nano-
photonic biosensors, which are devices constituted of biological receptor layers 
immobilized onto the core surface of a waveguide, to detect evanescent waves [31]. 
Their functioning mechanism is based on the exposure of the waveguide surface 
to the analyte, resulting in a biochemical interaction that promotes a local change 
in the optical properties of the waveguide transducer, which can be detected, and 
its amplitude is modulated by the concentration of the analyte. An advantage of 
photonic biosensors is that they can be integrated to lab-on-a-chip platforms, 
enhancing their application possibilities.

Oxygen sensing is not limited to the biomedical field. It is also a valuable analyte 
in environmental monitoring. Determination of O2 levels in aqueous ecosystems, 
such as rivers and lakes, is a common routine for evaluating the habitability condi-
tions of these waters. Biochemical oxygen demand (BOD) and chemical oxygen 
demand (COD) analyses are the standard quantitative analytical methods applied 
for that purpose. BOD is the amount of dissolved oxygen demanded by aerobic 
microorganisms to decompose organic matter in a given water sample during an 
incubation time, usually 5 days. BOD expresses the concentration of consumed 
oxygen during this time period. In rivers polluted with high levels of organic waste, 
aerobic bacteria consume the dissolved O2 during decomposition of organic mat-
ter, which results in a drastic reduction of available O2 that aquatic animals need 
to survive. Analogous to BOD, the COD is a more general method, which gives the 
amount of oxygen needed for oxidation of any chemically oxidizable material, apart 
from organic matter [32].

Biosensors for oxygen and organic pollutants sensing for environmental 
surveillance are evolving rapidly due to many advantages they offer over the tradi-
tional methods of BOD and COD analyses, such as faster and more accurate results 
and the possibility of online and real-time monitoring of water quality [32–34]. 
One recent contribution in this field includes a microbial fuel cell biosensor for 
real-time BOD analysis that was tested for urine sensing. The device emits a sound 
alarm whenever the concentration of the analyte exceeds a given concentration 
threshold and is self-powered by the electroactive microorganisms of the microbial 
fuel cell [34].

Regarding oxygen sensing, both electrochemical and optical biosensors of 
noticeable sensitivity are found in the literature. In a recent electrochemical biosen-
sor, peptide micro/nanostructures are self-assembled with a complex of copper 
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that acts as the oxygen reduction catalyst, immobilized onto a glassy carbon. This 
biosensor showed a lower detection limit of 0.1 mg l−1 [35]. Most recent optical 
biosensors based on FRET transducing include a BOD biosensor chip and a ratio-
metric FRET sensor. In the biosensor chip for BOD analysis, an oxygen sensitive 
ruthenium complex coated with a polyethylene-polypropylene film permeable only 
by oxygen avoids the interference of pollutants from the sample. In this biosensor, 
the fluorescence intensity is correlated with oxygen concentration [36]. Another 
ratiometric FRET oxygen sensor consists of a Pt(II)-5,10,15,20-tetrakis-(2,3,4,5,6-
pentafluorophenyl)-porphyrin oxygen probe entrapped in a copolymer matrix 
that is capable of real-time monitoring of extra-cellular O2 consumption by E. coli 
bacteria and Hela cells. This biosensor showed a sensitivity of 0.08 mg l−1 [37]. The 
coating of the sensing unit or its immobilization in a matrix selective to oxygen 
permeability is a commonly adopted strategy in the design of optical sensors for 
oxygen in order to ensure its selectivity. Additionally, transition metal complexes, 
especially those of ruthenium and platinum, have a long phosphorescence lifetime, 
a requirement for efficient energy transfer from the sensing unit to molecular 
oxygen through collisional quenching, as described in Section 3, necessary for 
achieving high levels of sensitivity [4, 38, 39].

Our group has also developed a colorimetric sensor for dissolved O2. Our sensor, 
comprised of a self-assembled peptide containing a fluorescent dye, is based on 
a FRET energy transfer between the constituents of the system that arises from 
the formation of a charge transfer complex. It showed remarkable sensitivity and 
selectivity toward dissolved O2, both in steady-state and time-resolved fluorescence 
measurements. This self-assembled sensing platform, which was tested in fish 
breeding environment and showed good reproducibility, might be useful in analyti-
cal methods for determination of O2 levels in polluted water samples.

Additionally, our material, when allied with an antioxidant drug used in cancer 
treatment, showed antioxidant activity by sensing singlet oxygen, as well as pro-
oxidant behavior by generating that same reactive oxygen species when irradiated 
with light, which makes it promising for photodynamic therapy as well [40]. The 
singlet excited state of O2 is perhaps the most important of the ROS molecules. Due 
to its considerable lethal effect for cells, it is exploited in photodynamic therapy, an 
alternative approach for a number of cancers that has proven to be efficient and far 
less invasive and harmful than the side effects of conventional treatment protocols. 
It is based on the same photosensitization process as described earlier.

5. Conclusions

The state-of-the-art contributions summarized in this chapter reveal the 
undoubtful vanguard of luminescent biosensors in the race toward new low-cost, 
biocompatible, and smart materials to help solving some of the most relevant prob-
lems the modern civilizations face, such as environmental pollution and diseases 
like cancer.

Biosensors based on optical techniques, allied with biological molecules and 
nanomaterials, such as quantum dots, are constantly bringing a new family of 
versatile sensors and biosensors that are providing unprecedented levels of accu-
racy, sensitivity, and control in the study of biological processes relevant in disease 
treatments and point-of-care devices for environmental monitoring. Regarding 
versatility, the design of aptamer sensors and quantum dot conjugate systems, 
for instance, allows countless modifications and combinations that can be easily 
carried out in order to fulfill the specificity of the desired purpose. The current pace 
in the development of this new generation of versatile, adaptive biosensors based 
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on nanoscale and biological materials certainly promises to solve the main issues 
in biosensing development, which is the specificity, sensitivity, and portability 
requirements for the spread use of biosensing devices.
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Abstract

The presence of contaminants in water generates a great concern worldwide. As 
contaminants, we can refer different classes of chemicals, such as pharmaceuticals, 
personal care products, heavy metals, and also microorganisms, such as waterborne 
pathogens. Some of the chemical compounds have the potential to bioaccumulate in 
the aquatic biota. Hence, the development of simple and portable methods for the 
detection of contaminants in the aquatic environment can improve their monitor-
ing and, consequently, the study of their environmental impact. In this context, the 
development of paper-based analytical tools and also of biosensor devices has been 
exploited for quantitative and semiquantitative analysis of several contaminants 
in different water matrices. The association of these two analytical strategies can 
provide the implementation of low-cost, portable, and easily handled methods 
for detecting chemical and biological contaminations in water. In this chapter, we 
provide a review of the developed paper-based analytical biosensors, highlighting 
the features of the paper-based (paper substrate and fabrication procedures) and 
biosensor devices (transducers and biorecognition elements). Moreover, the appli-
cation of the referred paper-based biosensors for the detection of different water 
contaminants (pathogens, pharmaceuticals, and heavy metals) in environmental 
and wastewater samples is discussed.

Keywords: microfluidic, paper-based devices, water analysis, water contaminants, 
biosensing

1. Introduction

The contamination of the different water compartments with several chemicals 
and by-products has become a major concern for human health and aquatic biota 
[1–3]. The environmental contaminants of major concern are pharmaceuticals, 
personal care products, pesticides and herbicides, heavy metals, and waterborne 
pathogens. Some of the chemical compounds are persistent to degradation and, 
therefore, can accumulate in aquatic organisms and sediments. Thus, the monitor-
ing of contaminants in the aquatic environment is crucial to study their impact [4].

Currently, there is no regulation about the allowed levels of pharmaceutical com-
pounds, including ethinylestradiol and antibiotics, in water. Concerning the maxi-
mum contaminant levels (MCL) in drinking water for the target metals presented in 
this work, their MCL are between 2 and 30 μg L−1, according to the chemical species 
[5, 6]. Arsenic presents an MCL value of 10 μg L−1 [5, 6], while the MCL value 
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pounds, including ethinylestradiol and antibiotics, in water. Concerning the maxi-
mum contaminant levels (MCL) in drinking water for the target metals presented in 
this work, their MCL are between 2 and 30 μg L−1, according to the chemical species 
[5, 6]. Arsenic presents an MCL value of 10 μg L−1 [5, 6], while the MCL value 
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for mercury is 2 or 6 μg L−1 according to United States Environmental Protection 
Agency (EPA) and World Health Organization (WHO), respectively. Moreover, the 
MCL for lead is 15 [5] and 10 μg L−1 [6]. Uranium presents the higher MCL, which 
is 30 μg L−1 [5, 6]. Cadmium’s maximum contaminant level corresponds to 3 and 
5 μg L−1 according to WHO and EPA, respectively. With respect to the pathogens 
targeted in the paper-based biosensors, the EPA [7] recommends that Escherichia coli 
cannot exceed 126 CFU per 100 mL in fresh recreational water, while Enterococcus 
should present a maximum of 35 CFU per 100 mL in marine and freshwater.

In this context, paper-based biosensor devices combine the main features of 
paper substrates (cost-effectiveness, easy manipulation, and compatibility with 
proteins and biomolecules), with the high specificity and selectivity of the biorecog-
nition systems of biosensors [1, 8, 9]. Furthermore, paper-based assays can be a 
solution in resource-limited contexts, as both sample and reagents can be introduced 
without any flow device, through imbibition and filtration via capillary action [10].

The first types of paper-based devices were related to semiquantitative analysis 
of glucose in urine and immunoassays on chromatographic paper test strips (or lat-
eral flow) [11]. In the last decade, a new fabrication method based on wax pattern-
ing was introduced, allowing the design of well-defined channels on paper surface, 
which provided microfluidic features to the paper-based devices [12].

Reviews concerning the application of paper-based devices in different fields 
such as food, water analysis, environmental monitoring, and health diagnostics are 
available [8, 11, 13]. Furthermore, the application of biosensors has been exten-
sively discussed regarding both their usefulness on assessing environmental and 
urban pollutants [1], and also their role as part of portable biochemical detection 
systems [14]. However, gathering information about the implementation of paper-
based techniques coupled with biosensor devices to water analysis is still lacking. 
Hence, the aim of this work is to provide a description of the state of the art about 
the development and application of paper-based analytical biosensors to detect 
contaminants in water, focusing on work developed in the last 3 years.

2. Paper-based analytical devices

2.1 Substrate material

Paper is a complex material and a promising support for the development of 
biosensor analytical devices. Its main features, such as versatility, low-cost, and bio-
compatibility, generate simple and disposable bioanalytical tools using low reagent 
consumption (in the order of microliters) [8, 11, 12]. Paper is mainly constituted of 
cellulose fibers. The cellulose is a hydrophilic polymer, which makes paper substrate 
permeable to aqueous liquids [15].

There are different types of paper that are used for fabrication of paper-based 
devices (Table 1). Filter papers have been widely used as substrate material to 
paper-based devices for biosensor application [16–19]. There are a vast range of 
commercially available high-quality filter papers, mainly constituted of alpha cellu-
lose, a highly stable form of cellulose. The filter papers can be classified according to 
different properties, such as particle retention, pore size, thickness, and flow rate.

The filter paper grade 1, considered as a medium retention and flow filter paper, 
has been functionalized to obtain paper-based immunosensors [16, 17]. Irvine 
et al. adsorbed metallothioneins in grade 1 filter paper for the detection of heavy 
metals [18]. In the same way, other filter paper grades have been used, such as the 
slow filter paper grade 42 (pore size of 2.5 μm) for the incorporation of an in vitro 
transcription/translation system [19].
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Cellulose chromatography paper is also an alternative as high-quality substrate 
in paper-based biosensors. These papers can be differentiated by their flow rate 
and thickness. Vijitvarasan et al. [20] developed a paper-based device taking 
in advantage of the separative properties of chromatographic paper in order to 
enhance the concentration of gold nanoparticles (AuNPs) on the surface of the 
paper. Thus, a lower level of reduced silver particles was detected on the surface 
of AuNPs. Chromatography papers have also been applied in the development of 
microfluidic devices based on capillary flow measurement [21, 22]. McCraken et al. 
[22] tested two different chromatography papers (grade 1 Chr and grade 2 Chr) to 
optimize the separation of immunoagglutinated particles. The chromatography 
paper providing the lower flow rate (grade 2, 115 mm/30 min) was selected for the 
immunoagglutination assay.

Derivatives of cellulose, such as nitrocellulose membranes, have been applied 
as substrates of paper-based devices. These membranes are naturally hydrophobic 
and demonstrate to be adequate for the immobilization of enzymes and proteins 
by electrostatic interactions [11]. For instance, Lopez-Marzo et al. [23] developed a 
lateral flow immunodevice with nitrocellulose membrane for the detection of Cd2+ 
in water, taking advantage of the immobilization of antibodies (2A81G5 mouse 
antibody and antibovine serum albumin (BSA) mouse antibody), to create zones 
where the probe conjugate and the positive control containing BSA would interact. 
A similar approach was reported for immobilization of BSA conjugate and control 
goat antimouse immunoglobulin for the detection of U(VI) [24].

Concerning electrochemical paper-based devices, printing paper can be applied 
in the development of screen-printed electrodes. Hence, carbon-based conduc-
tive ink is printed onto paper surface [25, 26]. In this context, Rengaraj et al. [27] 
fabricated a paper-based electrode with the high-quality printing paper using only 
three layers of printing.

In addition, both chromatographic paper and multiuse recycled copy paper were 
used for printing wax wells in paper-based devices as a confinement strategy [20], 
or as a low-cost alternative to microplates [28].

2.2 Fabrication procedures

There are different techniques that can be applied in order to obtain paper-based 
biosensor devices with variable properties, such as functionalized platforms with 

Type of paper Examples Features

Cellulose filter paper Whatman® filter paper grades 
1 and 2

Hydrophilic polymer, permeable to 
aqueous liquids; available with different 
pore sizes and thickness

Cellulose 
chromatography paper

Whatman® chromatographic 
paper grades 1, and 2

Allows the concentration of 
nanostructures in its surface and 
the separation of nanoparticles in 
agglutination-based assays

Nitrocellulose 
membrane

Millipore Hi-Flow Plus HF240 Hydrophobic polymer; adequate for 
immobilization of complex biological 
structures by electrostatic interactions

Printing paper Fabriano 5 HP paper, 
Boise®Aspen® 30 multiuse 
recycled copy paper

3D structures can be easily printed in 
its surface, providing microchannels or 
screen-printed electrodes

Table 1. 
Types and features of papers used in biosensors described recently.
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sively discussed regarding both their usefulness on assessing environmental and 
urban pollutants [1], and also their role as part of portable biochemical detection 
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Hence, the aim of this work is to provide a description of the state of the art about 
the development and application of paper-based analytical biosensors to detect 
contaminants in water, focusing on work developed in the last 3 years.

2. Paper-based analytical devices

2.1 Substrate material

Paper is a complex material and a promising support for the development of 
biosensor analytical devices. Its main features, such as versatility, low-cost, and bio-
compatibility, generate simple and disposable bioanalytical tools using low reagent 
consumption (in the order of microliters) [8, 11, 12]. Paper is mainly constituted of 
cellulose fibers. The cellulose is a hydrophilic polymer, which makes paper substrate 
permeable to aqueous liquids [15].

There are different types of paper that are used for fabrication of paper-based 
devices (Table 1). Filter papers have been widely used as substrate material to 
paper-based devices for biosensor application [16–19]. There are a vast range of 
commercially available high-quality filter papers, mainly constituted of alpha cellu-
lose, a highly stable form of cellulose. The filter papers can be classified according to 
different properties, such as particle retention, pore size, thickness, and flow rate.

The filter paper grade 1, considered as a medium retention and flow filter paper, 
has been functionalized to obtain paper-based immunosensors [16, 17]. Irvine 
et al. adsorbed metallothioneins in grade 1 filter paper for the detection of heavy 
metals [18]. In the same way, other filter paper grades have been used, such as the 
slow filter paper grade 42 (pore size of 2.5 μm) for the incorporation of an in vitro 
transcription/translation system [19].
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in advantage of the separative properties of chromatographic paper in order to 
enhance the concentration of gold nanoparticles (AuNPs) on the surface of the 
paper. Thus, a lower level of reduced silver particles was detected on the surface 
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optimize the separation of immunoagglutinated particles. The chromatography 
paper providing the lower flow rate (grade 2, 115 mm/30 min) was selected for the 
immunoagglutination assay.

Derivatives of cellulose, such as nitrocellulose membranes, have been applied 
as substrates of paper-based devices. These membranes are naturally hydrophobic 
and demonstrate to be adequate for the immobilization of enzymes and proteins 
by electrostatic interactions [11]. For instance, Lopez-Marzo et al. [23] developed a 
lateral flow immunodevice with nitrocellulose membrane for the detection of Cd2+ 
in water, taking advantage of the immobilization of antibodies (2A81G5 mouse 
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A similar approach was reported for immobilization of BSA conjugate and control 
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Concerning electrochemical paper-based devices, printing paper can be applied 
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tive ink is printed onto paper surface [25, 26]. In this context, Rengaraj et al. [27] 
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three layers of printing.
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biomolecules or cell suspensions, conductive characteristics for electrochemical 
analysis, and create barriers to define the reaction zones.

Wax printing is a process used to create hydrophobic barriers that define reac-
tion microzones or fluid reservoirs [29], as exemplified in Figure 1. Different works 
[16, 17, 20, 22, 28] applied this technique using graphic design software [16, 17, 22] 
or stencils [28] to define the microchannel areas. The incorporation of the wax onto 
the microfluidic channel is performed by printing the wax onto the paper surface 
with subsequent heating to allow wax penetration in the paper.

Screen printing is another technique used to fabricate paper-based devices, 
particularly for electrochemical analysis (Figure 1B). For example, Rengaraj et al. 
[27] fabricated a paper-based electrode by printing three layers of a carbon-based 
conductive ink onto hydrophobic printer paper. Other fabrication techniques 
include a simple procedure of cutting by punching [18, 19], obtaining discs with 
millimetric dimensions that can be functionalized and/or introduced into devices, 
such as commercial screen-printed electrodes [18].

Furthermore, lateral flow immune-based devices can be fabricated by assembling 
different layers, which include the conjugation of pad strip (signal producer), the 
nitrocellulose membrane, as well as the sample and absorption pad [23, 24]. Stocker 
et al. [30] applied a simple technique based on premarking the spots with a pencil, with 
subsequent physical deposition of a cell suspension and drying of the paper strips.

3. Integrated biosensors methods

3.1 Transducers

Biosensors can be defined as analytical devices, which integrate or associate 
a biorecognition element and a transducer. The bioelement recognizes the target 
analyte and the transducer converts the biochemical interaction to a measur-
able signal [1]. The most frequently applied transducers are based on optical, 
electrochemical, thermal, and piezoelectric properties. This work focused on the 

Figure 1. 
Examples of fabrication schemes for production of (A) wax printed paper-based well devices and (B) 
stencil-printed transparency film-based carbon electrodes. Adapted and reprinted with permission from [28]. 
Copyright 2017 American Chemical Society.
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transducer types most used in the paper-based biosensors for analysis of water 
(electrochemical, optical, and piezoelectric).

The electrochemical paper-based biosensors are based on the modification of paper-
based platforms placed in commercial screen-printed electrodes [17, 18], or rely on the 
fabrication of lab-made functionalized paper-based screen-printed electrodes [27].

Concerning the optical approaches used in the paper-based devices, the most 
applied strategies were based on colorimetric measurement [19, 20, 28] using 
image processing algorithms as an analytical system. In this context, a colorimetric 
based approach for the detection of Pb2+ and for U(VI) resorted to the acquisition 
of images of the paper spots with a digital camera, and images processed using the 
ImageJ software [20, 24]. On the other hand, Adkins et al. [28] developed a paper-
based colorimetric method for the detection of Escherichia coli, which was based on 
a smartphone for image acquisition and ImageJ software for image processing.

Other example of mobile-based strategy involves the quantification of different 
pathogens (E. coli and Zika virus) as a function of capillary flow rate using a smart-
phone as a photometric detector [21]. This photometric approach was based on video 
recording of an immunoassay followed by comparison of the capillary flows between 
different analyte concentrations. Other colorimetric method was based on the detec-
tion of Cd2+ [23] in drinking water with a lateral flow immunosensor device. The 
measurement of color intensity was performed with COZART™ RapidScan color 
intensity portable reader. Colorimetry in paper-based biosensor devices was devel-
oped as a semiquantitative approach for the detection of arsenite [30]. This method 
was based on a bacterial biosensor deposited onto a paper strip. The developed color 
measurement was performed by comparison with spots containing known arsenite 
concentrations. Furthermore, a method based on fluorescence was applied as 
transducer for the detection of ethinylestradiol in a paper-based immunoassay [16]. 
For this, a LED-based system was constructed and used as excitation source. The 
fluorescence emission was measured with a scientific-grade spectrometer.

A piezoelectric strategy was also implemented for measurement of immunoag-
glutinated samples for the detection of E. coli and Zika virus [22]. This approach 
was based on particle rheology of the immunoagglutinated samples. In order to 
monitor the movement of the suspension of particles in a microfluidic paper-based 
platform, videos were taken with a smartphone and flow distance was measured 
every five frames.

3.2 Biorecognition elements

The biorecognition element has a strong and selective affinity to the target. 
There are several types of biorecognition elements, such as natural biomolecules 
(nucleic acids, antibodies, enzymes, and other proteins), synthetic bioelements 
(molecularly imprinted polymers, aptamers), or whole cells (Figure 2) [1].

Different types of biorecognition elements have been applied for the develop-
ment of paper-based biosensors for the detection of target analytes in water. An 
in vitro transcription/translation system reconstituted from purified recombi-
nant components necessary for E. coli translation of β-galactosidase enzyme was 
immobilized on paper as a turn on/turn off switcher for the presence of antibiotics 
inhibiting bacterial protein synthesis [19].

Concerning the application of antibodies as biorecognition elements, specific 
antibodies (polyclonal rabbit anti-EE2) have been applied for the detection of the 
estrogen ethinylestradiol in river water samples [16, 17]. In addition, suspensions of 
antibody-conjugated particles were used for the detection of two target pathogens 
(E. coli K12 and Zika virus) [21]. For the detection of U(VI), immobilized U(VI)-
2,9-dicarboxyl-1,10-phenanthroline-BSA conjugate worked as a competitive probe 
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biomolecules or cell suspensions, conductive characteristics for electrochemical 
analysis, and create barriers to define the reaction zones.
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with subsequent heating to allow wax penetration in the paper.

Screen printing is another technique used to fabricate paper-based devices, 
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[27] fabricated a paper-based electrode by printing three layers of a carbon-based 
conductive ink onto hydrophobic printer paper. Other fabrication techniques 
include a simple procedure of cutting by punching [18, 19], obtaining discs with 
millimetric dimensions that can be functionalized and/or introduced into devices, 
such as commercial screen-printed electrodes [18].

Furthermore, lateral flow immune-based devices can be fabricated by assembling 
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transducer types most used in the paper-based biosensors for analysis of water 
(electrochemical, optical, and piezoelectric).

The electrochemical paper-based biosensors are based on the modification of paper-
based platforms placed in commercial screen-printed electrodes [17, 18], or rely on the 
fabrication of lab-made functionalized paper-based screen-printed electrodes [27].

Concerning the optical approaches used in the paper-based devices, the most 
applied strategies were based on colorimetric measurement [19, 20, 28] using 
image processing algorithms as an analytical system. In this context, a colorimetric 
based approach for the detection of Pb2+ and for U(VI) resorted to the acquisition 
of images of the paper spots with a digital camera, and images processed using the 
ImageJ software [20, 24]. On the other hand, Adkins et al. [28] developed a paper-
based colorimetric method for the detection of Escherichia coli, which was based on 
a smartphone for image acquisition and ImageJ software for image processing.

Other example of mobile-based strategy involves the quantification of different 
pathogens (E. coli and Zika virus) as a function of capillary flow rate using a smart-
phone as a photometric detector [21]. This photometric approach was based on video 
recording of an immunoassay followed by comparison of the capillary flows between 
different analyte concentrations. Other colorimetric method was based on the detec-
tion of Cd2+ [23] in drinking water with a lateral flow immunosensor device. The 
measurement of color intensity was performed with COZART™ RapidScan color 
intensity portable reader. Colorimetry in paper-based biosensor devices was devel-
oped as a semiquantitative approach for the detection of arsenite [30]. This method 
was based on a bacterial biosensor deposited onto a paper strip. The developed color 
measurement was performed by comparison with spots containing known arsenite 
concentrations. Furthermore, a method based on fluorescence was applied as 
transducer for the detection of ethinylestradiol in a paper-based immunoassay [16]. 
For this, a LED-based system was constructed and used as excitation source. The 
fluorescence emission was measured with a scientific-grade spectrometer.

A piezoelectric strategy was also implemented for measurement of immunoag-
glutinated samples for the detection of E. coli and Zika virus [22]. This approach 
was based on particle rheology of the immunoagglutinated samples. In order to 
monitor the movement of the suspension of particles in a microfluidic paper-based 
platform, videos were taken with a smartphone and flow distance was measured 
every five frames.

3.2 Biorecognition elements

The biorecognition element has a strong and selective affinity to the target. 
There are several types of biorecognition elements, such as natural biomolecules 
(nucleic acids, antibodies, enzymes, and other proteins), synthetic bioelements 
(molecularly imprinted polymers, aptamers), or whole cells (Figure 2) [1].

Different types of biorecognition elements have been applied for the develop-
ment of paper-based biosensors for the detection of target analytes in water. An 
in vitro transcription/translation system reconstituted from purified recombi-
nant components necessary for E. coli translation of β-galactosidase enzyme was 
immobilized on paper as a turn on/turn off switcher for the presence of antibiotics 
inhibiting bacterial protein synthesis [19].

Concerning the application of antibodies as biorecognition elements, specific 
antibodies (polyclonal rabbit anti-EE2) have been applied for the detection of the 
estrogen ethinylestradiol in river water samples [16, 17]. In addition, suspensions of 
antibody-conjugated particles were used for the detection of two target pathogens 
(E. coli K12 and Zika virus) [21]. For the detection of U(VI), immobilized U(VI)-
2,9-dicarboxyl-1,10-phenanthroline-BSA conjugate worked as a competitive probe 
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for the antibody 12F6-AuNP conjugate, as the antibody 12F6 has an increased affin-
ity to U(VI)-2,9-dicarboxyl-1,10-phenanthroline complex [24].

Biomolecules aiming the detection of toxic metals can also be referred. A com-
plex comprising magnetic beads, gold nanoparticles (AuNPs), and the functional 
nucleotide GR5-DNAzyme was applied as a biorecognition element of lead ion 
[20]. In another work, the recombinant human metallothionein 1a, a metal-binding 
protein [18], was used for the recognition of As3+ and Hg2+ in water. The tetrameric 
protein lectin concanavalin A (obtained from Canavalia ensiformis), selective to car-
bohydrates on bacterial cells, was selected as a biorecognition element of bacterial 
cultures from sewage sludge [27].

Finally, whole-cell living bacterial biosensors for arsenite detection were based on 
genetically engineered E. coli, where the ars operon (set of structural and regulatory 
genes whose expression is controlled through arsenite binding) was modified with 
a sequence for expression of β-galactosidase as a reporter protein in the presence of 
the target analyte [30]. Whole cells (biofilm formed from anaerobic sludge) were 
also employed in the biosensor proposed by Chouler et al. [25] for the assessment 

Figure 2. 
Examples of biorecognition elements found in paper-based biosensors.
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of toxic compounds in water in a microbial fuel cell device. The detection principle 
was based on the conversion of the chemical energy contained in organic matter into 
electricity via the metabolic processes of microorganisms. Hence, a microbial biofilm 
is placed on the anode surface, where the electroactive bacteria mediate the transfer-
ence of electrons to the electrode upon their metabolic activity. Any factor disrupting 
this (water pollution for instance) will disrupt this signal. A similar approach was 
proposed by Xu et al. [26] using a wastewater bacteria consortium.

4. Applications

In this section, the application of paper-based biosensors for the detection of 
different types of target analytes in water samples is discussed. In Table 2, the main 
features of the target analyte, the sample type, the paper substrate, and the fabrica-
tion method of the paper-based device, the method of detection, and the biorecog-
nition element are summarized.

Pharmaceuticals are among the targets. Indeed, they are considered emerg-
ing environmental contaminants, as they can be harmful to human health and to 
aquatic life. In this context, the synthetic hormone—ethinylestradiol, one of the 
main compounds of oral contraceptives, is considered an emerging pollutant due to 
its potential high estrogenic effect on the biota. Scala-Benuzzi et al. developed two 
different methods for the detection of ethinylestradiol in river water samples using 
an antiethinylestradiol specific antibody [16, 17]. In both approaches, the water 
samples were filtered, and pH was adjusted to 7.0 with phosphate buffer before the 
analysis. In one work, a fluorescent paper-based biosensor was implemented [16]. 
This methodology presented a limit of detection (LOD) of 0.05 ng L−1, which is 
mainly related to the high sensitivity of fluorescence methods. In another work, 
ethinylestradiol was detected in river water with a paper-based immunosensor 
based on electrochemical analysis [17], which also reached a low LOD value of 
0.1 ng L−1, suitable for environmental analysis.

Antibiotics are another group of pollutants of great concern due to the global 
threat of antimicrobial resistance and the excessive, and sometimes abusive, use 
of these compounds. A colorimetric biosensor for screening of several antibiot-
ics (paromomycin, tetracycline, chloramphenicol, and erythromycin) inhibiting 
bacterial protein synthesis was applied for the detection of antibiotics in surface 
water [19]. The method was based on the ability of these antimicrobials to inhibit 
β-galactosidase synthesis. When a water sample without the target antibiotics was 
placed in the paper-based device, the enzyme β-galactosidase was synthetized and 
its activity induced a color change on the paper disc surface. However, when antibi-
otics were present, the inhibition of β-galactosidase synthesis prevented the change 
of color. Despite the limit of detection was on the microgram per milliliter level 
(0.5, 2.1, 0.8, and 6.1 μg mL−1 for paromomycin, tetracycline, chloramphenicol, and 
erythromycin, respectively), this biosensor can be applied as a simple and portable 
screening methodology.

Heavy metals are naturally present in the environment. However, these elements 
can be toxic to human and aquatic organisms even at low concentrations. Moreover, 
their presence can be increased by industrial and agriculture activities. Vijitvarasan 
et al. implemented a paper-based scanometric biosensor for the detection of lead in 
water [20]. The biosensor was applied to river water samples. These samples were 
filtered, diluted 10 times with 10 mM tris-acetate buffer and spiked with different 
Pb2+ concentrations before analysis. An LOD value of 0.9 nM was determined. 
Furthermore, a method using a sensitive gold nanoparticle-based lateral flow 
immunodevice [23] was applied for the quantification of cadmium. Drinking water 
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for the antibody 12F6-AuNP conjugate, as the antibody 12F6 has an increased affin-
ity to U(VI)-2,9-dicarboxyl-1,10-phenanthroline complex [24].
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nucleotide GR5-DNAzyme was applied as a biorecognition element of lead ion 
[20]. In another work, the recombinant human metallothionein 1a, a metal-binding 
protein [18], was used for the recognition of As3+ and Hg2+ in water. The tetrameric 
protein lectin concanavalin A (obtained from Canavalia ensiformis), selective to car-
bohydrates on bacterial cells, was selected as a biorecognition element of bacterial 
cultures from sewage sludge [27].

Finally, whole-cell living bacterial biosensors for arsenite detection were based on 
genetically engineered E. coli, where the ars operon (set of structural and regulatory 
genes whose expression is controlled through arsenite binding) was modified with 
a sequence for expression of β-galactosidase as a reporter protein in the presence of 
the target analyte [30]. Whole cells (biofilm formed from anaerobic sludge) were 
also employed in the biosensor proposed by Chouler et al. [25] for the assessment 

Figure 2. 
Examples of biorecognition elements found in paper-based biosensors.
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of toxic compounds in water in a microbial fuel cell device. The detection principle 
was based on the conversion of the chemical energy contained in organic matter into 
electricity via the metabolic processes of microorganisms. Hence, a microbial biofilm 
is placed on the anode surface, where the electroactive bacteria mediate the transfer-
ence of electrons to the electrode upon their metabolic activity. Any factor disrupting 
this (water pollution for instance) will disrupt this signal. A similar approach was 
proposed by Xu et al. [26] using a wastewater bacteria consortium.

4. Applications

In this section, the application of paper-based biosensors for the detection of 
different types of target analytes in water samples is discussed. In Table 2, the main 
features of the target analyte, the sample type, the paper substrate, and the fabrica-
tion method of the paper-based device, the method of detection, and the biorecog-
nition element are summarized.

Pharmaceuticals are among the targets. Indeed, they are considered emerg-
ing environmental contaminants, as they can be harmful to human health and to 
aquatic life. In this context, the synthetic hormone—ethinylestradiol, one of the 
main compounds of oral contraceptives, is considered an emerging pollutant due to 
its potential high estrogenic effect on the biota. Scala-Benuzzi et al. developed two 
different methods for the detection of ethinylestradiol in river water samples using 
an antiethinylestradiol specific antibody [16, 17]. In both approaches, the water 
samples were filtered, and pH was adjusted to 7.0 with phosphate buffer before the 
analysis. In one work, a fluorescent paper-based biosensor was implemented [16]. 
This methodology presented a limit of detection (LOD) of 0.05 ng L−1, which is 
mainly related to the high sensitivity of fluorescence methods. In another work, 
ethinylestradiol was detected in river water with a paper-based immunosensor 
based on electrochemical analysis [17], which also reached a low LOD value of 
0.1 ng L−1, suitable for environmental analysis.

Antibiotics are another group of pollutants of great concern due to the global 
threat of antimicrobial resistance and the excessive, and sometimes abusive, use 
of these compounds. A colorimetric biosensor for screening of several antibiot-
ics (paromomycin, tetracycline, chloramphenicol, and erythromycin) inhibiting 
bacterial protein synthesis was applied for the detection of antibiotics in surface 
water [19]. The method was based on the ability of these antimicrobials to inhibit 
β-galactosidase synthesis. When a water sample without the target antibiotics was 
placed in the paper-based device, the enzyme β-galactosidase was synthetized and 
its activity induced a color change on the paper disc surface. However, when antibi-
otics were present, the inhibition of β-galactosidase synthesis prevented the change 
of color. Despite the limit of detection was on the microgram per milliliter level 
(0.5, 2.1, 0.8, and 6.1 μg mL−1 for paromomycin, tetracycline, chloramphenicol, and 
erythromycin, respectively), this biosensor can be applied as a simple and portable 
screening methodology.

Heavy metals are naturally present in the environment. However, these elements 
can be toxic to human and aquatic organisms even at low concentrations. Moreover, 
their presence can be increased by industrial and agriculture activities. Vijitvarasan 
et al. implemented a paper-based scanometric biosensor for the detection of lead in 
water [20]. The biosensor was applied to river water samples. These samples were 
filtered, diluted 10 times with 10 mM tris-acetate buffer and spiked with different 
Pb2+ concentrations before analysis. An LOD value of 0.9 nM was determined. 
Furthermore, a method using a sensitive gold nanoparticle-based lateral flow 
immunodevice [23] was applied for the quantification of cadmium. Drinking water 
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samples were spiked with 10 and 100 ppb of Cd2+, and other 11 metals commonly 
found in such type of water, containing also EDTA and ovoalbumin (masking 
agent). An LOD of 0.1 ppb was achieved.

A semiquantitative approach based on a paper-based bacterial biosensor was 
applied [30] for the detection of arsenite in groundwater samples. It was observed 
that arsenite produced a visible blue color from substrate of β-galactosidase 
(reporter protein) at arsenite concentration above 8 μg L−1. Finally, a paper-based 
lateral flow device was developed for uranium (VI) determination with an LOD 
(36 nM) below the action level established by the World Health Organization 
(126 nM) using an immunological competitive approach [24]. These sensors are a 
suitable tool for field analysis, in opposition to conventional time-consuming and 
expensive techniques performed under lab environment.

Sensors based on microbial metabolism were developed for application in waste-
waters. Pollution peaks, meaning the abrupt change in concentration of organic 
and metal pollutant in wastewater treatment plants, can compromise the biological 
treatment phases by killing or inhibiting microorganisms present in sludge. Hence, 
untargeted sensors were developed using either biofilms [25] or bacteria consor-
tium [26] to report spiking pollution in wastewater influents.

Waterborne pathogens are a major public health as they can lead to several diseases 
such as cholera, typhoid fever, and dysentery. Hence, accessible, cheap, and dispos-
able analytical tools for monitoring the presence of these pathogens are mandatory, 
especially in areas with low resources. In this context, an electrochemical paper-based 
biosensor [28] was developed for the detection of E. coli in water, as an indicator of 
fecal contamination and an indirect indicator of the presumptive presence of other 
gastrointestinal bacteria. Different E. coli strains (both pathogenic and nonpatho-
genic) were detected in uninoculated and inoculated lagoon water. The method was 
able to detect as low as 10 CFU mL−1 of pathogenic and nonpathogenic E. coli.

5. Conclusions

The paper-based biosensors developed for quantification of the synthetic 
hormone EE2 presented higher sensitivity when compared to the more complex and 

Figure 3. 
Schematic representation of the elements that compose paper-based biosensors.
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expensive LC-MS/MS methods [31, 32]. With respect to the developed biosensors 
for quantification of different metals (uranium [24], arsenite [30], and cadmium 
[23]), the LOD was lower than their respective MCLs, thus complying with regula-
tory requirements. Furthermore, E. coli was detected [21, 22] at concentration level 
similar or lower than the maximum CFU/mL allowed in fresh recreational water. 
Hence, the use of paper-based platforms in biosensors has allowed the development 
of simple, specific, sensitive, and portable devices for the detection of several types 
of target analytes in water, with possible features summarized in Figure 3. Most of 
the reported methods were applied to surface water and drinking water samples 
only, which are samples containing a reduced amount of organic matter when 
compared to wastewater. Hence, efforts to develop sensors that can deal with more 
complex matrices should be pursued, encompassing strategies that accommodate 
sample pretreatment.

The most frequently used transducers comprised electrochemical and optical 
methods, with analytical strategies based on colorimetric reactions, associated 
with image processing analysis. Besides the recent advances in the development 
of paper-based analytical tools and biosensor devices, their association to the 
analysis of contaminants in water is still an open research field with a high poten-
tial for the implementation of new portable and low-cost analytical methods for 
in situ analysis.
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Abstract

The use of biosensors for biomonitoring environmental health has gained much
attention in the last decades. The environment is continuously loaded with xenobi-
otics released by anthropogenic activities that pollute ecosystems, putting their
integrity at risk. Therefore, there is an urgent need to study the negative effects of
xenobiotics, specifically chemical agents. Biosensors or organisms that integrate
exposure to pollutants in their environment and which respond in some measurable
and predictable way are useful tools to study the extent of chemical pollution and its
consequences across levels of biological organization. Among chemical pollutants,
heavy metals are among the most toxic elements to nearly all living organisms.
Wildlife is chronically exposed to complex metal mixtures in which effects on
ecosystem health are difficult to assess. Therefore, different organisms may serve as
biosensors to estimate detrimental effects of metal pollution. In this chapter, we will
analyze bacteria, small mammals, some plant species, and lichens as biosensors for
environmental metal pollution. Also, we will assess the importance of using differ-
ent biomarkers on biosensors.

Keywords: heavy metals, environmental health, bacteria, small mammals, plants,
lichens

1. Introduction

Human activity generates increasing amounts of new compounds that are
released into the environment without prior knowledge of their potential toxicity or
impact in living organisms. Heavy metals (HM) and metalloid such as arsenic (As),
cadmium (Cd), mercury (Hg), lead (Pb), and aluminum (Al) are major environ-
mental pollutants, particularly in industrial areas. Heavy metals are generated as a
result of anthropogenic activities such as metal-working industries, cement facto-
ries, mining industry, smelting plants, refineries, and traffic and heating systems
[1]. HM and their ions are ubiquitous and by definition are metals having atomic
weights between 63.5 and 200.6 g mol�1 and specific gravity greater than 5 g cm�3

[2]. Living organisms require small doses of some essential HM, including cobalt
(Co), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), vanadium (V),
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strontium (Sr), and zinc (Zn). However, in the case of essential metals and very
toxic metals, excessive levels and, respectively, even small doses influence both the
ecosystem and human health [3]. Nonessential HM which affect the surface water
systems are Cd, chromium (Cr), Hg, Pb, As, and antimony (Sb).

Some metals have been classified as toxic, persistent, and accumulative ele-
ments. According to the Agency for Toxic Substances and Disease Registry [4],
among the 10 most hazardous substances to human health, four are toxic metals:
Pb, Hg, As, and Cd. Interestingly, Pb and Hg rank first among the most harmful
metals to plants, followed by Cu, Cd/As, Co/Ni, and Mn [5]. Pb and Hg have been
reported as mutagenic agents in plants [6]. Due to its chemical similarity to phos-
phorous, arsenic may interfere with several physiological and biochemical processes
[6]. Cd does not appear to have any physiological function, with the exception of
the marine diatom Thalassiosira weissflogii that possesses a carbonic anhydrase with
Cd as its metal center [7]. Cu, Ni, Co, Zn, and Mn are all plant micronutrients. They
participate in prosthetic groups and as cofactors of many proteins and are therefore
essential for growth and development and, however, at high concentrations cause
oxidative stress [8]. Al is another toxic element with significant implications for
agriculture, because 30% of the world’s land areas consist of acid soils [9].

Exposure to toxic metals can result in inhibition of seed germination, photosyn-
thesis, and plant growth and consequently causes yield losses. These symptoms are
normally related with overproduction or reactive oxygen species (ROS), changes in
the permeability and structure of cell membranes, imbalance of mineral nutrients,
incorporation of the metal into S-containing molecules, and cell cycle disruption
[10]. Also, environmental metal exposure can affect all levels of biological organi-
zation. HM bioaccumulation in plants, lichens, small mammals, and bacteria might
respond to this chemical stress on the molecular, cellular, or morphological scale
and, at population, community and even ecosystem levels [11]. These different
types of responses to toxic stress induced by HM (biomarkers) offer a powerful tool
for documenting the extent of exposure and the effects of environmental metal
contamination [12], revealing the potential use of plant, lichens, small mammals,
and bacterial species as biosensors.

2. The use of plants as biosensors of heavy metal pollution

The use of plants as biosensors has a long history. For decades, they were used as
a part of ecological risk assessment of agricultural and industrial chemicals, solid
wastes, food additives, and chemically and radioactively polluted soil and water.
However, the use of plants as environmental biomonitors has some drawbacks.
Despite being higher eukaryotes, plants have completely different mechanisms of
uptake, distribution, storage, compartmentalization, and metabolism of various
pollutants [13].

2.1 Plants as biosensors

Vegetal species have the ability to absorb metals, particularly those essential for
their development and growth through their root system from the soil, water, and
overground vegetative organs from the atmosphere [14]. Also, these chemicals may
be transported, transformed, stored, and accumulated in different cells and plant
tissues. Genotoxicity or DNA damage is an early effect biomarker at the molecular
level that has been used in several plant species exposed to HM. Metal binding to the
cell nucleus causes damage including DNA base modifications, inter- and intramo-
lecular cross-linkage of DNA and proteins, DNA strand breaks, rearrangements,
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and de-purination [15]. The use of DNA strand breaks as biomarker of genotoxicity
is common in plants, for example, Bacopa monnieri (Plantaginaceae) exposed to Cd
[16]; Nicotiana tabacum and Solanum tuberosum (Asteraceae) exposed to Cd, Cu,
Pb, and Zn [17]; Pisum sativum (Fabaceae) exposed to Cr (VI) [18]; Lycopersicum
esculentum (Solanaceae) and Cucumis sativus (Cucurbitaceae) exposed to Cu [19];
and Prosopis laevigata (Fabaceae [20]), Vachellia farnesiana (Fabaceae [21]),
Pithecellobium dulce [22], andWigandia urens exposed to Pb, Cu, and Zn [23]. These
alterations at the DNA level can trigger changes at the biochemical level that lead to
diverse effects at the cellular, physiological, or morphological level, as early effects
of exposure to HM in plants [18, 24].

Among the responses at the cellular level that occur in plants as a result of
exposure to HM, we can mention oxidative damage, the production of chelating
agents, and alterations in cell division [25]. In the case of oxidative damage, reactive
oxygen species (ROS) production indirectly influences the production of antioxi-
dant enzymes [26]. For example, the hydrogen peroxide (H2O2) acts as a signaling
molecule in response to HM and other stresses [27]. Under a pollution scenario by
HM, H2O2 levels increase in response to Cu and Cd treatment as it has been reported
in Arabidopsis thaliana [28], in Hg exposure in tomato (Lycopersicon esculentum
[29]), and in response to Mn toxicity in barley (Hordeum vulgare [29]). As a conse-
quence of oxidative stress, the plants experience cellular damage and accumulate
metal ions that disturb cellular ionic homeostasis [30]. To minimize these detri-
mental effects, plants have evolved detoxification mechanisms based on chelation
and subcellular compartmentalization. Chelation of HM is a detoxification strategy
and the best characterized classes of HM chelator in plants are phytochelatins
(PCs) and metallothioneins (MTs) [25, 30, 31].

PCs are capable of chelating HM, thereby reducing the concentration of cyto-
toxic free metal ions [32]. In particular, the synthesis of this type of chelant proteins
is quickly active with the presence of Cd, Cu, Zn, Ag, Au, Hg, and Pb [33]. For
example, Cd is not essential for plant growth, but it is readily taken up by many
plant species. Higher plants react to excess Cd by stimulating sulfate absorption
[34] and production of PCs involved in Cd chelation and transport into vacuoles
[35, 36]. Increased availability of Cd for root uptake may cause considerable alter-
ations in mineral nutrition [37, 38], lipid biosynthesis [39], photosynthetic rate
[40], and nitrogen metabolism [41] in plants. Consequently, this led to a severe
growth inhibition [42, 43] and finally death [44]. PC induction has been reported in
copper-tolerant plants of Mimulus guttatus (Phrymaceae [45]), Brassica juncea
(Brassicaceae) following the intracellular accumulation of Cd [46], Rauwolfia
serpentina (Apocynaceae), Arabidopsis thaliana (Brassicaceae), and Silene vulgaris
(Caryophyllaceae) exposed to As [47] and Lotus japonicus (Fabaceae) exposed to
Cd [48].

Metallothioneins (MTs) are proteins that play a key role in the binding and
transport of various metals [49]. The structure of these highly conserved proteins is
linked to their role in the homeostasis of essential metals such as Zn and Cu and
detoxification of toxic elements such as Cd and Hg [50]. In wheat (Triticum) and in
rice (Oryza sativa), MTs are induced by metal ions, such as Cu and Cd; in A.
thaliana MT gene expression is activated in response to Cu and Cd [51]. MTs bind
metal ions in Cicer arietinum (Fabaceae), Quercus suber (Fagaceae), and Triticum
aestivum (Poaceae) exposed to Zn and Cd [52, 53].

Also, HM mixtures affect cell division [54]. In general, Pb, Cd, Fe, and Zn
reduce the synthesis of the cell wall components, causing damage to the Golgi
apparatus and other cell organelles. The inhibition of mitosis is also limited by links
between HM and cell wall pectin, which becomes more rigid and limits both the
expansion and size of the intracellular space [55]. For example, Lerda found that Pb
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reduces the frequency of mitotic cells and increases the frequency of aberrant cells
in onion (Allium cepa) [56]. Also, in corn plants (Zea mays), Eun and colleagues
found that HM intervene in cellular division affecting the microtubules, which
produces weakness in the cellular structure and the formation of binucleate cells in
metaphase [57]. The aforementioned effects have been related mainly with the Pb
and their synergies with other metals such as Al and Cu.

Likewise, HM interfere with ionic homeostasis and enzyme activity, resulting in
physiological alterations which involve single organs (such as nutrient uptake by
the roots) followed by more general processes such as germination, growth, photo-
synthesis, plant water balance, primary metabolism, and reproduction [30, 58].
Indeed, visible symptoms of heavy metal toxicity include chlorosis, leaf rolling and
necrosis, senescence, wilting and stunted growth, low biomass production, limited
numbers of seeds, and eventually death [58]. For example, reduction in morpho-
logical attributes of height, coverage, or biomass derived from exposure to HM has
been reported in Arundo donax (Poaceae), exposed to As, Cd, and Pb [59]; Zea mays
(Graminaceae) exposed to Cd, Fe, Ni, and Zn [60]; Prosopis laevigata (Fabaceae
[61]), Pithecellobium dulce (Fabaceae [22]), Vachellia farnesiana (Fabaceae [21]),
and Wigandia urens [23] exposed to Cu, Pb, and Zn.

Although the immediate effects of exposure to metals occur at the molecular and
cellular levels, they can be extended to higher levels of biological organization:
populations, communities, and ecosystems.

In the last decade, one of the emergent effects at the population level that has
been evaluated in environmentally exposed populations to HM is shifts in their
genetic pool, which were defined by Mussali-Galante and collaborators as perma-
nent biomarkers [12]. Particularly, populations can undergo changes in their diver-
sity and genetic structure [62] in two ways: (1) increased genetic variation as a
result of mutations induced by genotoxic agents or (2) decreased genetic variability
as a result of bottlenecks or selection [12]. In fact, these changes in the genetic
reservoir of populations exposed to HM have been proposed as an indicator of
ecosystem health [12]. In general, plant species in which alterations on its genetic
diversity have been reported as a consequence of HM exposure include Taraxacum
officinale (Asteraceae [63]), Silene paradoxa (Caryophyllaceae [64]),Thlaspi
caerulescens (Brassicaceae [65]), Pinus sylvestris (Pinaceae [66]),Thlaspi caerulescens
(Brassicaceae [67]), Cistus ladanifer (Cistaceae [68]), Arabidopsis halleri
(Brassicaceae [69]), and Prosopis laevigata (Fabaceae [70]).

HM exposure may have consequences in higher levels of biological organization
such as plant communities; however, few studies have examined these effects [71–73].
Shifts in diversity and species richness, changes in dominant species, changes in
species composition, and biodiversity loss may be some of the emergent effects. For
example, in a study carried out by Martínez-Becerril, it was documented that the
vegetal community (trees, shrubs, and herbaceous) associated to mine tailings dif-
fered in its species composition compared to reference sites. Likewise, a significant
reduction in species richness and diversity was documented [74]. Similarly, a reduc-
tion in plant species diversity in grassland contaminated by Cu and Cd [75] and a
reduction in vegetal abundance with the increase of HM soil concentration in a
metallophyte plant community [76] has been reported using plant communities as the
point of interest.

Additionally, HM bioaccumulation in plants may also affect its interactions with
other species. It has been suggested that metal accumulation by plants may be a
defense strategy to discourage consumption by herbivores [77]. This defensive role
of HM has been reported, for example, in the hyperaccumulator Stanleya pinnata
(Brassicaceae) against black-tailed prairie dog herbivory in seleniferous habitats
[78, 79]. Similarly, some species of herbivores have evolved to use metals
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bioaccumulated in the ingested plant biomass as a defense against subsequent
predation [80]. Even, metals can also affect plant-pollinator interactions as reported
in Impatiens capensis (Balsaminaceae) in sites contaminated with Al and Ni [81].

At the ecosystem level, bioaccumulation within successive trophic levels
(biomagnification) has been well documented for some metals. Under this scenario,
the plants (primary producers) represent an important step in metal transfer since
they constitute the base of the food chain. Therefore, certain metals can be
transported from plants to higher levels of the food chain, representing a threat to
biodiversity and to ecosystem integrity [82]. For example, HM transfer along the
trophic chain has been reported for the Ni hyperaccumulator plant Alyssum
pintodalsilvae (Brassicaceae) that transfers Ni to grasshoppers (herbivore) and spi-
ders (carnivorous insect), the spiders having higher Ni concentrations [71]. Boyd
and Wall found similar results suggesting that Ni could be passed from herbivorous
to carnivorous insects [83]. Even, it has been documented that the transfer of HM
reaches animals such as small mammals, reporting higher HM levels in carnivorous
or omnivorous mammals in comparison to those that feed only by plants [84–86].
This process has also been reported in plants not considered hyperaccumulators. For
example, Notten and collaborators report that Urtica dioica (Urticaceae) that is
distributed in areas with elevated metal concentrations contained only very low
metal concentrations [87]. However, the snail Cepaea nemoralis, which is the main
herbivore feeding on these plants, did contain metal concentrations that were much
higher than background values [87, 88]. These studies demonstrate that HM can be
transferred among invertebrate species, mobilizing metals from one trophic level to
another [84–86]. Finally, these studies evidenced the importance of vegetal species
for the evaluation of HM impact on the trophic chain levels, as well as their incor-
poration and biomagnification patterns.

2.2 Lichens as biosensors

Lichens may be considered as one of the most commonly applied organisms as
biosensors [89]. They are symbiotic organisms of fungi and algae and have been
widely used in biomonitoring of air pollution [90]. Some of the most commonly
used lichen species for toxic metals biomonitoring are Parmelia sulcata, P. caperata,
Hypogymnia physodes, and Xanthoria parietina [89, 91]. Lacking a protective cuticle
and roots, lichens absorb and retain nutrients and trace elements, including HM
from dry and wet atmospheric deposition that exceed their physiological require-
ments. They tolerate these high concentrations by sequestering elements extracel-
lularly as oxalate crystals or lichen acid complexes [92, 93].

A plethora of metal toxicity symptoms, including loss of cell membrane integ-
rity, potassium leakage, disruption of ultrastructure, chlorophyll degradation, and
oxidative stress, have been reported in lichens [94–96]. However, their expression
depends on the metal and lichen species involved [97, 98]. For example, it is widely
known that Cu causes cell membrane damage and adversely influences the photo-
synthetic apparatus of lichens [99] and also affects fungal and algal ultrastructure
[100]. Also GSH (reduced glutathione), the precursor of PCs, is the principal low-
molecular thiol and nonenzymatic antioxidant in lichens [101]. It plays a critical
role in cellular defense against oxidative damage caused also by HM. For example,
in a laboratory study, Pawlik-Skowronska and collaborators found that Cd, Pb, and
Zn induced biosynthesis of PCs in the widespread epiphytic lichens Xanthoria
parietina, Physconia grisea, and Physcia adscendens [102].

Toxic metal effects reported on lichens include discolored or pinkish necrotic
patches and an absence of growth [103]. However, there are tolerant species, some
normally associated with HM. For example, Stereocaulon species colonized polluted
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example, in a study carried out by Martínez-Becerril, it was documented that the
vegetal community (trees, shrubs, and herbaceous) associated to mine tailings dif-
fered in its species composition compared to reference sites. Likewise, a significant
reduction in species richness and diversity was documented [74]. Similarly, a reduc-
tion in plant species diversity in grassland contaminated by Cu and Cd [75] and a
reduction in vegetal abundance with the increase of HM soil concentration in a
metallophyte plant community [76] has been reported using plant communities as the
point of interest.

Additionally, HM bioaccumulation in plants may also affect its interactions with
other species. It has been suggested that metal accumulation by plants may be a
defense strategy to discourage consumption by herbivores [77]. This defensive role
of HM has been reported, for example, in the hyperaccumulator Stanleya pinnata
(Brassicaceae) against black-tailed prairie dog herbivory in seleniferous habitats
[78, 79]. Similarly, some species of herbivores have evolved to use metals
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bioaccumulated in the ingested plant biomass as a defense against subsequent
predation [80]. Even, metals can also affect plant-pollinator interactions as reported
in Impatiens capensis (Balsaminaceae) in sites contaminated with Al and Ni [81].

At the ecosystem level, bioaccumulation within successive trophic levels
(biomagnification) has been well documented for some metals. Under this scenario,
the plants (primary producers) represent an important step in metal transfer since
they constitute the base of the food chain. Therefore, certain metals can be
transported from plants to higher levels of the food chain, representing a threat to
biodiversity and to ecosystem integrity [82]. For example, HM transfer along the
trophic chain has been reported for the Ni hyperaccumulator plant Alyssum
pintodalsilvae (Brassicaceae) that transfers Ni to grasshoppers (herbivore) and spi-
ders (carnivorous insect), the spiders having higher Ni concentrations [71]. Boyd
and Wall found similar results suggesting that Ni could be passed from herbivorous
to carnivorous insects [83]. Even, it has been documented that the transfer of HM
reaches animals such as small mammals, reporting higher HM levels in carnivorous
or omnivorous mammals in comparison to those that feed only by plants [84–86].
This process has also been reported in plants not considered hyperaccumulators. For
example, Notten and collaborators report that Urtica dioica (Urticaceae) that is
distributed in areas with elevated metal concentrations contained only very low
metal concentrations [87]. However, the snail Cepaea nemoralis, which is the main
herbivore feeding on these plants, did contain metal concentrations that were much
higher than background values [87, 88]. These studies demonstrate that HM can be
transferred among invertebrate species, mobilizing metals from one trophic level to
another [84–86]. Finally, these studies evidenced the importance of vegetal species
for the evaluation of HM impact on the trophic chain levels, as well as their incor-
poration and biomagnification patterns.

2.2 Lichens as biosensors

Lichens may be considered as one of the most commonly applied organisms as
biosensors [89]. They are symbiotic organisms of fungi and algae and have been
widely used in biomonitoring of air pollution [90]. Some of the most commonly
used lichen species for toxic metals biomonitoring are Parmelia sulcata, P. caperata,
Hypogymnia physodes, and Xanthoria parietina [89, 91]. Lacking a protective cuticle
and roots, lichens absorb and retain nutrients and trace elements, including HM
from dry and wet atmospheric deposition that exceed their physiological require-
ments. They tolerate these high concentrations by sequestering elements extracel-
lularly as oxalate crystals or lichen acid complexes [92, 93].

A plethora of metal toxicity symptoms, including loss of cell membrane integ-
rity, potassium leakage, disruption of ultrastructure, chlorophyll degradation, and
oxidative stress, have been reported in lichens [94–96]. However, their expression
depends on the metal and lichen species involved [97, 98]. For example, it is widely
known that Cu causes cell membrane damage and adversely influences the photo-
synthetic apparatus of lichens [99] and also affects fungal and algal ultrastructure
[100]. Also GSH (reduced glutathione), the precursor of PCs, is the principal low-
molecular thiol and nonenzymatic antioxidant in lichens [101]. It plays a critical
role in cellular defense against oxidative damage caused also by HM. For example,
in a laboratory study, Pawlik-Skowronska and collaborators found that Cd, Pb, and
Zn induced biosynthesis of PCs in the widespread epiphytic lichens Xanthoria
parietina, Physconia grisea, and Physcia adscendens [102].

Toxic metal effects reported on lichens include discolored or pinkish necrotic
patches and an absence of growth [103]. However, there are tolerant species, some
normally associated with HM. For example, Stereocaulon species colonized polluted
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road-site during the period of high Pb emissions [104], and Vezdaea leprosa occurs
alongside motorway crash barriers in Germany and the UK [105]. So, characteristic
lichen assemblages occur on metalliferous soils polluted by industrial emissions and
on abandoned mine wastes [105–107] or lichen communities growing on trees
[108]. Hence, bark and soil HM contents play a major influence in determining the
composition of epiphytic lichen floras [108–110]. Several studies have evidenced
the metal influences on epiphytic lichen abundance, cover, richness, and species
diversity. For example, in some studies in coniferous forests, correlations between
epiphytic lichen abundance and Mn supply were detected [98, 111]. Specifically, a
decreasing cover value of the foliose lichenHypogymnia physodeswith increasing Mn
concentrations in bark or stemflow were repeatedly found in stands of Picea abies.
In another example, the lichen community associated to Vachellia farnesiana,
Prosopis laevigata, and Pithecellobium dulce in exposed sites to HM (Pb, Cu, and Zn)
showed higher richness and species diversity values as compared with a reference
site [108]. In conclusion, lichens have proved to be very effective organisms as
biosensors to detect HM in the environment.

2.3 Transgenic plants as biosensors

The alternative use of transgenic plants in horticulture, forestry, and construc-
tion seems to be more appealing for the public. In this respect, design and produc-
tion of transgenic plants for environmental biomonitoring and cleaning up polluted
areas can be action for more favorable public perception of genetically modified
organisms [13].

Recently, substantial progress in generation and exploitation of transgenic plants
as biomonitors has been made [112, 113]. One of the important advantages of
transgenic biosensors is the ability to customize the assay in accordance with mon-
itoring needs. This not only makes transgenic biosensors more sensitive to a partic-
ular pollutant but also allows for easy scoring.

Classically, a major approach to addressing these issues has been based on
selective breeding or genetic engineering of plants in order to increase their baseline
hardiness and/or ability to efficiently utilize resources [114]. Concurrent with these
approaches have been efforts to develop and apply technologies toward monitoring
and understanding the physiological responses of plants to stress [115–117]. This
second, more recent approach is based on leveraging the finely tuned and highly
sensitive mechanism plants which have developed to sense, to respond, and to
adapt to changes in the environment [118].

Appreciation of this internal decision-making process in plants has led to the
development of methods to monitor relevant natural physical phenomena, such as
changes in the chlorophyll fluorescence spectra [115, 116]. Another route has been
the direct engineering of plants to act as “vital reporters” both of their own health
and of internal decision-making processes (so-called biosensors). By coupling
knowledge of the genetic cascade stress responses with reporter proteins [e.g., beta-
glucuronidase (GUS), luciferase (LUC), or fluorescent proteins (FP)], it is possible
to visualize genetic events linked to/associated with stress responses [115, 119].
Indeed, prior research has demonstrated that both endogenous and synthetic pro-
moters can be used as “biomarkers” for a variety of stress conditions, with the
appropriate choice of promoter depending on a number of factors, including ease of
interpretation, signal-to-noise ratio, and the timeliness of data acquisition
[115, 120]. Thus, biomarkers have the potential of informing the researcher, in real
time, of the magnitude of a wide variety of physiological events. In particular, the
use of FPs has distinct advantages; namely, FP outputs are observable using widely
available equipment (e.g., a fluorescent microscope) and require no exogenous
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additives [118]. With the increasing availability of portable meters for measuring
fluoresce [121], it is now feasible to transit this technology from the lab to the
greenhouses and the fields.

3. The use of small mammals as biosensors of heavy metal pollution

3.1 Small mammals as biosensors

Small mammals (SM) are frequently used to monitor environmental contami-
nation with HM such as Pb, Cd, Cr, Zn, Al, silver (Ag), As, Co, Cu, Fe, Mn,
magnesium (Mg), nickel (Ni), Hg, selenium (Se), strontium (Sr), and Mo. These
animals have been used mainly because they are found in the intermediate positions
of trophic chains and they are small, have diverse diets, are relatively easy to
capture, and have wide geographic distribution (which allows to compare between
populations of contaminated and non-contaminated sites). The liver, kidneys, bone,
muscle, brain, testicles, teeth, and blood are the main target organs for HM.
Conducting studies with SM is important because they allow to make inferences
about the bioavailability and bioaccumulation of HM, the biotransformation mech-
anisms of HM among different species, and the sources of exposure associated with
the diet; they also allow to determine which species are susceptible to HM, which is
an important step for the evaluation of the biomagnification of HM. Most of the
monitoring studies of HM use SM belonging to two orders: Soricomorpha (shrews
and moles) and Rodentia (squirrels, rats, mice, voles). The present chapter will
focus on two species of the order Rodentia that belong to the families Muridae and
Cricetidae. The life history characteristics of both species are described below.

Family Muridae: Apodemus sylvaticus; common names include long-tailed field
mouse, small wood mouse, and wood mouse. Its conservation status is a minor
concern [122]. It has 32 subspecies. Its geographical distribution includes Europe
(with the exception of Finland and northern Russia) and some regions of North
Africa. It is found at altitudes up to 3300 m.a.s.l. and has been recorded in a variety
of seminatural habitats that include forests, moors, steppes, arid Mediterranean
scrub, and sand dunes. It is also found in artificial habitats such as suburban and
urban parks, gardens, vacant lots, pastures, crops, fields, and forest plantations. It is
an omnivorous species that feeds at ground level; its diet includes plants/seeds
(70–80%) and invertebrates (20%). It eats tree seeds, fleshy fruits, mushrooms,
flowers, and aerial parts of plants. It also consumes fern leaves (Culcita macrocarpa)
and oak acorns (Quercus) [123]. It has also been reported to eat worms, which could
be an important source of HM for this species [124]. It is predated by snakes
(Hemorrhois hippocrepis), eagle-owls (Bubo bubo), barn owls (Tyto alba), and foxes
(Vulpes vulpes), among others. It is nocturnal and lives in galleries dug at shallow
depths, in crevices, or tree holes. The home range of males is larger than that of
females, and it becomes larger for males during the reproductive period. The home
range of males can be up to 1.44 ha and 0.49 ha for females [123]. However, some
studies estimate that the home range of the males of this species can be up to 2500 m2

and that its activity range is 56.4 m [125]. The males are polygamous, and, during the
breeding season, they travel long distances in search of reproductive partners. There
are reports of attacks against intruders and subordinate males, which are thus
expelled from the territory and which are displaced from the territories. Unlike
males, females have exclusive territories. Their fertility rate is 1–7 l/year, each with an
average of 5 pups. The maximum recorded life span in the wild is 12 months [123].

Family Cricetidae: taxonomic name, Myodes glareolus; its synonym is
Clethrionomys glareolus. The common name is bank vole. Its conservation status is a
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road-site during the period of high Pb emissions [104], and Vezdaea leprosa occurs
alongside motorway crash barriers in Germany and the UK [105]. So, characteristic
lichen assemblages occur on metalliferous soils polluted by industrial emissions and
on abandoned mine wastes [105–107] or lichen communities growing on trees
[108]. Hence, bark and soil HM contents play a major influence in determining the
composition of epiphytic lichen floras [108–110]. Several studies have evidenced
the metal influences on epiphytic lichen abundance, cover, richness, and species
diversity. For example, in some studies in coniferous forests, correlations between
epiphytic lichen abundance and Mn supply were detected [98, 111]. Specifically, a
decreasing cover value of the foliose lichenHypogymnia physodeswith increasing Mn
concentrations in bark or stemflow were repeatedly found in stands of Picea abies.
In another example, the lichen community associated to Vachellia farnesiana,
Prosopis laevigata, and Pithecellobium dulce in exposed sites to HM (Pb, Cu, and Zn)
showed higher richness and species diversity values as compared with a reference
site [108]. In conclusion, lichens have proved to be very effective organisms as
biosensors to detect HM in the environment.

2.3 Transgenic plants as biosensors

The alternative use of transgenic plants in horticulture, forestry, and construc-
tion seems to be more appealing for the public. In this respect, design and produc-
tion of transgenic plants for environmental biomonitoring and cleaning up polluted
areas can be action for more favorable public perception of genetically modified
organisms [13].

Recently, substantial progress in generation and exploitation of transgenic plants
as biomonitors has been made [112, 113]. One of the important advantages of
transgenic biosensors is the ability to customize the assay in accordance with mon-
itoring needs. This not only makes transgenic biosensors more sensitive to a partic-
ular pollutant but also allows for easy scoring.

Classically, a major approach to addressing these issues has been based on
selective breeding or genetic engineering of plants in order to increase their baseline
hardiness and/or ability to efficiently utilize resources [114]. Concurrent with these
approaches have been efforts to develop and apply technologies toward monitoring
and understanding the physiological responses of plants to stress [115–117]. This
second, more recent approach is based on leveraging the finely tuned and highly
sensitive mechanism plants which have developed to sense, to respond, and to
adapt to changes in the environment [118].

Appreciation of this internal decision-making process in plants has led to the
development of methods to monitor relevant natural physical phenomena, such as
changes in the chlorophyll fluorescence spectra [115, 116]. Another route has been
the direct engineering of plants to act as “vital reporters” both of their own health
and of internal decision-making processes (so-called biosensors). By coupling
knowledge of the genetic cascade stress responses with reporter proteins [e.g., beta-
glucuronidase (GUS), luciferase (LUC), or fluorescent proteins (FP)], it is possible
to visualize genetic events linked to/associated with stress responses [115, 119].
Indeed, prior research has demonstrated that both endogenous and synthetic pro-
moters can be used as “biomarkers” for a variety of stress conditions, with the
appropriate choice of promoter depending on a number of factors, including ease of
interpretation, signal-to-noise ratio, and the timeliness of data acquisition
[115, 120]. Thus, biomarkers have the potential of informing the researcher, in real
time, of the magnitude of a wide variety of physiological events. In particular, the
use of FPs has distinct advantages; namely, FP outputs are observable using widely
available equipment (e.g., a fluorescent microscope) and require no exogenous
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additives [118]. With the increasing availability of portable meters for measuring
fluoresce [121], it is now feasible to transit this technology from the lab to the
greenhouses and the fields.

3. The use of small mammals as biosensors of heavy metal pollution

3.1 Small mammals as biosensors

Small mammals (SM) are frequently used to monitor environmental contami-
nation with HM such as Pb, Cd, Cr, Zn, Al, silver (Ag), As, Co, Cu, Fe, Mn,
magnesium (Mg), nickel (Ni), Hg, selenium (Se), strontium (Sr), and Mo. These
animals have been used mainly because they are found in the intermediate positions
of trophic chains and they are small, have diverse diets, are relatively easy to
capture, and have wide geographic distribution (which allows to compare between
populations of contaminated and non-contaminated sites). The liver, kidneys, bone,
muscle, brain, testicles, teeth, and blood are the main target organs for HM.
Conducting studies with SM is important because they allow to make inferences
about the bioavailability and bioaccumulation of HM, the biotransformation mech-
anisms of HM among different species, and the sources of exposure associated with
the diet; they also allow to determine which species are susceptible to HM, which is
an important step for the evaluation of the biomagnification of HM. Most of the
monitoring studies of HM use SM belonging to two orders: Soricomorpha (shrews
and moles) and Rodentia (squirrels, rats, mice, voles). The present chapter will
focus on two species of the order Rodentia that belong to the families Muridae and
Cricetidae. The life history characteristics of both species are described below.

Family Muridae: Apodemus sylvaticus; common names include long-tailed field
mouse, small wood mouse, and wood mouse. Its conservation status is a minor
concern [122]. It has 32 subspecies. Its geographical distribution includes Europe
(with the exception of Finland and northern Russia) and some regions of North
Africa. It is found at altitudes up to 3300 m.a.s.l. and has been recorded in a variety
of seminatural habitats that include forests, moors, steppes, arid Mediterranean
scrub, and sand dunes. It is also found in artificial habitats such as suburban and
urban parks, gardens, vacant lots, pastures, crops, fields, and forest plantations. It is
an omnivorous species that feeds at ground level; its diet includes plants/seeds
(70–80%) and invertebrates (20%). It eats tree seeds, fleshy fruits, mushrooms,
flowers, and aerial parts of plants. It also consumes fern leaves (Culcita macrocarpa)
and oak acorns (Quercus) [123]. It has also been reported to eat worms, which could
be an important source of HM for this species [124]. It is predated by snakes
(Hemorrhois hippocrepis), eagle-owls (Bubo bubo), barn owls (Tyto alba), and foxes
(Vulpes vulpes), among others. It is nocturnal and lives in galleries dug at shallow
depths, in crevices, or tree holes. The home range of males is larger than that of
females, and it becomes larger for males during the reproductive period. The home
range of males can be up to 1.44 ha and 0.49 ha for females [123]. However, some
studies estimate that the home range of the males of this species can be up to 2500 m2

and that its activity range is 56.4 m [125]. The males are polygamous, and, during the
breeding season, they travel long distances in search of reproductive partners. There
are reports of attacks against intruders and subordinate males, which are thus
expelled from the territory and which are displaced from the territories. Unlike
males, females have exclusive territories. Their fertility rate is 1–7 l/year, each with an
average of 5 pups. The maximum recorded life span in the wild is 12 months [123].

Family Cricetidae: taxonomic name, Myodes glareolus; its synonym is
Clethrionomys glareolus. The common name is bank vole. Its conservation status is a
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minor concern [126]. A total of 30 subspecies have been reported. It has a wide
geographical distribution that includes the British islands, Europe, and Russia. To
the north, it can be found beyond the Arctic Circle; to the south, they are found in
northern Turkey and Kazakhstan. This species is not found in southern Iberia and
the Mediterranean islands. It inhabits altitudes of 2400 m, including open forests,
bushes, and hedges [126]. Bank voles are mainly herbivorous, consuming fleshy
fruits, seeds, tender leaves, mushrooms, moss, flowers, and roots. They gnaw the
bark of young trees and feed on the cambium, but they can also consume earth-
worms. It is predated by raptors such as the tawny owl (Strix aluco), the barn owl
(Tyto alba), as well as small and medium carnivores [127]. Its home range is esti-
mated to be up to 1000 m2, and its activity ranges up to 35.7 m [125]. During
breeding seasons, the males cover large areas that include the territories of several
females. The females have exclusive territories. The mating system is polygynous.
The females have 3 or 4 l/reproductive period, with an average of 4 or 5 pups/l.
Gestation lasts between 18 and 22 days; the lactation period lasts approximately
18 days. The average life span is between 12 and 13 months, but under extreme
conditions they can live for 3 months [127].

3.2 Apodemus sylvaticus as a biosensor

There are studies that show that Apodemus sylvaticus populations inhabiting
contaminated areas bioaccumulate metalloids and HM. For example, Erry and col-
laborators quantified the concentration of As in A. sylvaticus and C. glareolus in five
sites contaminated with As. These authors found that the organisms of both species
accumulate similar concentrations of As in contaminated sites. The concentration of
As in the liver and kidneys of the animals inhabiting the contaminated sites was
higher than those of animals inhabiting the control site. The concentration of As in
those organs was associated with the concentration of As in the stomach contents.
Thus, the authors suggest that the animals were exposed to As through the diet and
that the two species of mice bioaccumulate As in various organs [128]. Sánchez-
Chardi and collaborators compared a population A. sylvaticus population inhabiting
a control (non-contaminated) site with a population inhabiting a site contaminated
by leachates containing potentially toxic elements. They found that the mice
inhabiting the leachate site bioaccumulated Cd, Fe, Zn, Cu, Mn, Mo, and Cr,
compared with the animals inhabiting the control site. The mice in the leachate site
also showed low weight index and a high relative weight of the kidney, as well as
high plasma values of glutamic pyruvic transaminase (GPT), an indicator of liver
damage. They also showed greater genotoxicity than the animals of the control site.
The authors suggest that the morphological and physiological changes observed in
the population of A. sylvaticus inhabiting the leachate site indicate that this species is
more sensitive than Crocidura russula, the other studied species inhabiting the site,
and that the leachates affected the health of A. sylvaticus [129].

The comparison between A. sylvaticus and species of the order Soricomorpha,
particularly shrews, showed that A. sylvaticus is more sensitive to renal toxicity
caused by exposure to HM than C. russula. Nevertheless, shrews can bioaccumulate
more HM. Sánchez-Chardi and collaborators compared populations of A. sylvaticus
and C. russula inhabiting a non-contaminated site (control) with populations of the
same species inhabiting a site contaminated by leachates containing potentially
toxic elements. In both species inhabiting the contaminated the site, the histological
analysis of the liver showed signs of necrosis and apoptosis, inflammation of
preneoplastic nodules, and vacuolization. The kidneys were altered mainly in A.
sylvaticus (necrosis and tubular inflammation), which suggested that this species is
more sensitive to renal toxicity than C. russula [130]. However, some authors
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mention that shrews can bioaccumulate more metals and metalloids than
A. sylvaticus. Mertens and collaborators found that, in contaminated sites (a dredged
material deposit), the shrew Sorex araneus bioaccumulates more Cd than
A. sylvaticus and C. glareolus. This could be explained by the dietary habits of
the studied species, since the diet of Sorex araneus consists of invertebrates,
including insects and molluscs, while A. sylvaticus and C. glareolus are mainly
herbivorous [131].

Studies by Wijnhoven and collaborators on floodplain species (A. sylvaticus,
C. glareolus, C. russula,M. agrestis,M. arvalis,M. minutus, S. araneus) found that two
species of shrew had higher concentrations of HM compared to the other species;
the highest concentrations were found in the shrew S. araneus, which has insectiv-
orous and carnivorous habits. Only Cu concentrations were higher in C. glareolus
than in A. sylvaticus and M. agrestis. The differences in the concentrations of HM
may be due to variations in exposure time (age of the individual), the heterogeneity
of the concentrations of HM in soil, the movement of the animals to the other sites,
and their feeding patterns. The accumulation of HM in the studied species could
also be a risk factor for their predators, potentially altering the structure of their
communities and the dynamics of the ecosystem [86].

Cooke and collaborators studied three mammalian species, A. sylvaticus, M.
agrestis, and S. araneus, associated with a site contaminated with Pb, Cd, and F. The
total accumulation levels of these three compounds in the studied species had the
following order: S. araneus > M. agrestis > A. sylvaticus. The stomach contents of S.
araneus showed that it had the highest intake of Pb, F, and Cd [132]. The differences
in bioaccumulation are due to differences in daily intake, in the efficiency of
digestion and assimilation, and to other physiological, biochemical, and behavioral
factors. Similarly, Drouhot and collaborators found that Crocidura russula accumu-
lated more As than A. sylvaticus, Mus spretus, and Microtus arvalis. They also men-
tion that the differences in the accumulation of As between species and within the
same species are due to variations in diet, foraging behavior, differences in metab-
olism, amount of ingested soil, and mobility of the organisms [133].

Some authors have used A. sylvaticus in distance gradient studies of contami-
nated areas. Scheirs and collaborators studied the concentration of metals (Cd, Co,
Cr, Cu, Fe, Mn, Pb, and Zn) in soil and the genotoxicity found in A. sylvaticus along
a distance gradient. The authors reported that the concentration of HM and the
genetic damage found in A. sylvaticus was higher near the most contaminated areas
[134]. Rogival and collaborators studied the accumulation of As, Cd, Cu, and Pb and
Zn in A. sylvaticus mice inhabiting five sites along a distance gradient, in the soil of
the sites, and in the mice’s diet (acorns and two species of earthworms: Dendrodrilus
rubidus and Lumbricus rubellus). They observed a gradient in the exposure to
metals, beginning on the foundry (most contaminated site), in all the studied
elements (soil, diet, and rodent), but not for the essential metals analyzed
(Cu and Zn). The concentrations of As, Cd, and Pb in acorns were higher in the
sites closest to the foundry. In earthworms, the concentrations of the five metals
were higher near the foundry. The transfer of metals occurred mainly from the
diet to the mice in the case of Pb and Cd [124]. Another study conducted by Tête
and collaborators found that the concentrations of Pb in the liver and kidneys of
A. sylvaticus followed a distance gradient from the contamination source (foundry).
In contrast, the concentrations of Cd in the liver and kidneys of mice varied
along the contamination gradient, forming a bell curve. Unlike the results of
bioaccumulation, renal alterations (necrosis, lymphocyte infiltration) did not show
an increase associated with a distance gradient. The results showed that A. sylvaticus
is chronically exposed to Pb and Cd and that there is kidney damage present in the
species [135].
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minor concern [126]. A total of 30 subspecies have been reported. It has a wide
geographical distribution that includes the British islands, Europe, and Russia. To
the north, it can be found beyond the Arctic Circle; to the south, they are found in
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(Tyto alba), as well as small and medium carnivores [127]. Its home range is esti-
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breeding seasons, the males cover large areas that include the territories of several
females. The females have exclusive territories. The mating system is polygynous.
The females have 3 or 4 l/reproductive period, with an average of 4 or 5 pups/l.
Gestation lasts between 18 and 22 days; the lactation period lasts approximately
18 days. The average life span is between 12 and 13 months, but under extreme
conditions they can live for 3 months [127].
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accumulate similar concentrations of As in contaminated sites. The concentration of
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higher than those of animals inhabiting the control site. The concentration of As in
those organs was associated with the concentration of As in the stomach contents.
Thus, the authors suggest that the animals were exposed to As through the diet and
that the two species of mice bioaccumulate As in various organs [128]. Sánchez-
Chardi and collaborators compared a population A. sylvaticus population inhabiting
a control (non-contaminated) site with a population inhabiting a site contaminated
by leachates containing potentially toxic elements. They found that the mice
inhabiting the leachate site bioaccumulated Cd, Fe, Zn, Cu, Mn, Mo, and Cr,
compared with the animals inhabiting the control site. The mice in the leachate site
also showed low weight index and a high relative weight of the kidney, as well as
high plasma values of glutamic pyruvic transaminase (GPT), an indicator of liver
damage. They also showed greater genotoxicity than the animals of the control site.
The authors suggest that the morphological and physiological changes observed in
the population of A. sylvaticus inhabiting the leachate site indicate that this species is
more sensitive than Crocidura russula, the other studied species inhabiting the site,
and that the leachates affected the health of A. sylvaticus [129].

The comparison between A. sylvaticus and species of the order Soricomorpha,
particularly shrews, showed that A. sylvaticus is more sensitive to renal toxicity
caused by exposure to HM than C. russula. Nevertheless, shrews can bioaccumulate
more HM. Sánchez-Chardi and collaborators compared populations of A. sylvaticus
and C. russula inhabiting a non-contaminated site (control) with populations of the
same species inhabiting a site contaminated by leachates containing potentially
toxic elements. In both species inhabiting the contaminated the site, the histological
analysis of the liver showed signs of necrosis and apoptosis, inflammation of
preneoplastic nodules, and vacuolization. The kidneys were altered mainly in A.
sylvaticus (necrosis and tubular inflammation), which suggested that this species is
more sensitive to renal toxicity than C. russula [130]. However, some authors
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mention that shrews can bioaccumulate more metals and metalloids than
A. sylvaticus. Mertens and collaborators found that, in contaminated sites (a dredged
material deposit), the shrew Sorex araneus bioaccumulates more Cd than
A. sylvaticus and C. glareolus. This could be explained by the dietary habits of
the studied species, since the diet of Sorex araneus consists of invertebrates,
including insects and molluscs, while A. sylvaticus and C. glareolus are mainly
herbivorous [131].

Studies by Wijnhoven and collaborators on floodplain species (A. sylvaticus,
C. glareolus, C. russula,M. agrestis,M. arvalis,M. minutus, S. araneus) found that two
species of shrew had higher concentrations of HM compared to the other species;
the highest concentrations were found in the shrew S. araneus, which has insectiv-
orous and carnivorous habits. Only Cu concentrations were higher in C. glareolus
than in A. sylvaticus and M. agrestis. The differences in the concentrations of HM
may be due to variations in exposure time (age of the individual), the heterogeneity
of the concentrations of HM in soil, the movement of the animals to the other sites,
and their feeding patterns. The accumulation of HM in the studied species could
also be a risk factor for their predators, potentially altering the structure of their
communities and the dynamics of the ecosystem [86].

Cooke and collaborators studied three mammalian species, A. sylvaticus, M.
agrestis, and S. araneus, associated with a site contaminated with Pb, Cd, and F. The
total accumulation levels of these three compounds in the studied species had the
following order: S. araneus > M. agrestis > A. sylvaticus. The stomach contents of S.
araneus showed that it had the highest intake of Pb, F, and Cd [132]. The differences
in bioaccumulation are due to differences in daily intake, in the efficiency of
digestion and assimilation, and to other physiological, biochemical, and behavioral
factors. Similarly, Drouhot and collaborators found that Crocidura russula accumu-
lated more As than A. sylvaticus, Mus spretus, and Microtus arvalis. They also men-
tion that the differences in the accumulation of As between species and within the
same species are due to variations in diet, foraging behavior, differences in metab-
olism, amount of ingested soil, and mobility of the organisms [133].

Some authors have used A. sylvaticus in distance gradient studies of contami-
nated areas. Scheirs and collaborators studied the concentration of metals (Cd, Co,
Cr, Cu, Fe, Mn, Pb, and Zn) in soil and the genotoxicity found in A. sylvaticus along
a distance gradient. The authors reported that the concentration of HM and the
genetic damage found in A. sylvaticus was higher near the most contaminated areas
[134]. Rogival and collaborators studied the accumulation of As, Cd, Cu, and Pb and
Zn in A. sylvaticus mice inhabiting five sites along a distance gradient, in the soil of
the sites, and in the mice’s diet (acorns and two species of earthworms: Dendrodrilus
rubidus and Lumbricus rubellus). They observed a gradient in the exposure to
metals, beginning on the foundry (most contaminated site), in all the studied
elements (soil, diet, and rodent), but not for the essential metals analyzed
(Cu and Zn). The concentrations of As, Cd, and Pb in acorns were higher in the
sites closest to the foundry. In earthworms, the concentrations of the five metals
were higher near the foundry. The transfer of metals occurred mainly from the
diet to the mice in the case of Pb and Cd [124]. Another study conducted by Tête
and collaborators found that the concentrations of Pb in the liver and kidneys of
A. sylvaticus followed a distance gradient from the contamination source (foundry).
In contrast, the concentrations of Cd in the liver and kidneys of mice varied
along the contamination gradient, forming a bell curve. Unlike the results of
bioaccumulation, renal alterations (necrosis, lymphocyte infiltration) did not show
an increase associated with a distance gradient. The results showed that A. sylvaticus
is chronically exposed to Pb and Cd and that there is kidney damage present in the
species [135].
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3.3 Myodes glareolus as biosensor

Myodes glareolus, or Clethrionomys glareolus, has been used mainly in studies of
bioaccumulation of metals and metalloids. Wijnhoven and collaborators analyzed
several species of small mammals living in a contaminated floodplain. They found
that, in almost 40% of the population of C. glareolus, the concentration of Cd
exceeded the lowest level at which adverse effects are produced. The other two
species, Microtus agrestis and M. arvalis, showed less ecotoxicological effects [136].
Topashka-Ancheva and collaborators evaluated other small mammals: A. flavicollis,
M. macedonicus, C. glareolus, P. subterraneus, M. arvalis, M. rossiaemeridionales, and
C. nivalis. They found that C. glareolus had a higher concentration of Cu and Cd in
the body compared to the other species. The concentrations of Cu, Zn, Pb, and Cd
in C. glareolus were significantly higher than in A. flavicollis in both the whole body
and in the liver (except for Pb in the liver, which was higher in A. flavicollis). The
authors suggest that the differences between species are due to the position of each
species in the trophic chain, their diet, and lifestyle [137]. Damek-Poprawa and
Sawicka-Kapusta compared the populations of a control site and two contaminated
sites close to a steel and zinc foundry. No damage was found in C. glareolus
inhabiting the control site, but there were histopathological changes in the kidneys
and liver of the rodents inhabiting the contaminated sites. The concentration of Pb
and Cd in liver, kidney, and femur tissues was higher in the rodents living in
contaminated areas [138]. Erry and collaborators studied populations of A. sylvaticus
and C. glareolus in a site contaminated with As and in a control site. Many species of
rodents living in the contaminated site accumulated more As in the spleen, lung,
muscle, and femur than those living in the control site. The concentrations of As in
the liver, femur, and hair were higher in A. sylvaticus than in C. glareolus in both the
contaminated and the control sites. The authors mention that these results could be
due to the high water exchange and urinary excretion of C. glareolus compared to A.
sylvaticus, which could make C. glareolus susceptible to renal toxicity [139].

As shown in the studies on A. sylvaticus and C. glareolus, the differences between
both species are a function of diet, metabolism, mobility, and lifestyle; thus, the
monitoring of environmental contamination with metals and metalloids should use
small mammals belonging to different taxa in order to determine the real impact of
HM on organisms and on trophic chains.

4. The use of bacteria as biosensors of heavy metal pollution

4.1 Bacteria as biosensors

Microorganisms are primary producers in many environmental ecosystems and
play an essential role in the nutrient cycle, and they are very abundant and ubiqui-
tous. The microbes proliferate rapidly, are easily detectable and easy to sample, and
respond quickly to environmental changes, like temperature, pH, or the presence of
contaminants including heavy metals. These characteristics make microorganisms
good candidates as pollution biosensors [140]. In this sense, bioluminescent bacte-
ria such as Aliivibrio fischeri and Photobacterium phosphoreum have been used to
monitor water and soil contaminated with HM [141, 142]. This bioassay is carried
out using the natural bioluminescence emitted by these bacteria and is based on the
decrease of this fluorescence when the bacteria grow in samples of water or soil
contaminated with different heavy metals such as Zn, Cu, Cd, Hg, and Cr, among
others [141–144]. In the case of A. fischeri, the test has been developed commer-
cially and is distributed under the name of Microtox®. However, this method is
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sensitive to different pollutants such as antibiotics, pesticides, toxins, and organic
compounds, which makes it a non-specific method for the detection of heavy
metals [145]. Another bacterium proposed as a bioindicator is Vogesella indigofera;
under normal conditions this bacterium develops a blue color due to the indigoidine
production; when it grows in the presence of Cr6, the bacteria decreases the pig-
ment production, and this decrease is dependent on the concentration of Cr6; at
150 μg/ml the bacteria are entirely white and rough [146]. Serratia marcescens is a
Gram-negative bacterium that produces a red pigment known as prodigiosin; when
the bacterium grows in sub-inhibitory concentrations of Cd, Cr, and Pb, the pig-
ment production decreases drastically, so the authors propose it as a bioindicator of
heavy metal contamination [147].

The presence of heavy metals in the environment exerts an intense selection
pressure on the organisms that live there; an increase in its concentration and the
high rate of horizontal gene transfer can select heavy metal-resistant microorgan-
isms. Therefore, the resistance and detoxification genes have been used as bio-
markers for the study of contaminated environments using molecular techniques
such as quantitative PCR and real-time quantitative reverse transcription PCR.
Within these genes are those involved in the resistance to As, ACR3(1) (arsenite
efflux pump), aioA (arsenite oxidase), arsB (arsenical efflux pump), arsC (arsenate
reductase), and arsM (arsenic methyltransferase) [148–151]; those that confer
resistance to Cu, copA (Copper-exporting P-type ATPase), and cusA (copper export
system) [152, 153]; for Cd, Zn, and Co resistance, czcA (Cd/Zn/Co efflux pump)
[154]; for Hg, hgcA (mercury methylating protein) and merA (mercuric reductase)
[155]; themr [140] that encodes to metallothionein a cysteine-rich and heavy metal-
binding protein [156]; and sodA [140] which codes for a superoxide dismutase,
involved in the protection of toxicity against heavy metals [157]. Another technique
to measure the presence and abundance of genes involved in resistance to heavy
metals is through the use of genetic microarrays such as the GeoChip, commercially
available [158]. With the use of this microarray, it was possible to correlate the
presence of arsC, copA, cueO (multicopper oxidase), merB (alkylmercury lyase),
metC (cystathionine beta-lyase), tehB (tellurite methyltransferase), and terC (tellu-
rium resistance protein) genes in sediments and waters contaminated with Cd, Cr,
Cu, Hg, and S [158, 159].

High concentrations of heavy metals affect microbial populations and therefore
their processes. Thus, the evaluation of microbial processes represents good bio-
markers of exposure in different environments. Within the parameters most used
are the monitoring of enzymatic activities of the carbon and nitrogen cycle, soil
respiration, microbial mass, and the ecosystem biodiversity [160, 161]. Microbial
biodiversity is drastically affected by contamination with heavy metals. In general,
it is observed that a higher concentration of heavy metals decreases bacterial spe-
cies. However, with the massive sequencing of DNA, some bacterial groups that
could serve as biosensors of contamination were identified, for example, the study
carried out by Schneider and collaborators finds that the bacterial groups γ-
Proteobacteria, Verrucomicrobia, and Chlamydiae showed a consistent response to
Pb content across contrasting ecosystems. The phyla Chlamydiae and γ-
Proteobacteria were more abundant, while Verrucomicrobia were less abundant at
high contamination level. So, they conclude that such groups and ratios thereof can
be considered as relevant bioindicators of Pb contamination [162]. In soils contam-
inated with Cu, it was observed that at increased concentrations, bacterial richness
was negatively impacted and enhanced relative abundance of Nitrospira and
Acidobacteria members and a lower representation of Verrucomicrobia,
Proteobacteria, and Actinobacteria, suggesting a promising role as bioindicators of
copper contamination in soils [163].
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Abstract

Electrochemical biosensors for measuring ethanol were developed in this study. 
Silver nanoparticles were incorporated to increase sensibility. Firstly, the transducer 
element was prepared with silver nanoparticles/polyaniline/graphite/epoxy compos-
ite (AgNPs/PANI/GEC) where the enzymes alcohol oxidase (AOD) and horseradish 
peroxidase (HRP) were immobilized by adsorption. The composition of the immo-
bilized solution was indicated by an experimental design (85% of the bi-enzymatic 
solution, 10% of albumin and 5% of glutaraldehyde). The immobilization method 
adopted in this study showed to be highly reproducible. The values of variance and 
standard deviation were low (0.003 and 0.053, respectively—means of three elec-
trodes). The linear range was 0–30 g/L (R2 = 0.983) and the sensitivity 0.004 mA L/g. 
A second biosensor was made with a transducer prepared with AgNPs/PANI/GEC. A 
chitosan film was applied over the adsorbed enzymatic solution to avoid desorption 
of the immobilized enzymes. The AgNPs/PANI/GEC electrodes were characterized 
using cycle voltammetry and the composite surface by scanning electron microscopy. 
The calibration for ethanol samples with this second composite fitted in a range of 
0.0–0.35 g/L (R2 = 0.984). Square rate voltammetry was the electrochemical analyti-
cal method used to obtain the amperometric calibration curves.

Keywords: alcohol oxidase, horseradish peroxidase, polyaniline, silver nanoparticles, 
electrochemical biosensor

1. Introduction

Biosensors with electrochemical transducers are attractive from a commercial point 
of view due to its low expense and simplicity of construction and because it is easy to 
employ in a broad range of applications and portable [1, 2]. The voltammetric and 
amperometric technique analyses are a full implementation to measure low levels of 
concentration. Additionally, as an electrochemical surface method, it has the 
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1. Introduction

Biosensors with electrochemical transducers are attractive from a commercial point 
of view due to its low expense and simplicity of construction and because it is easy to 
employ in a broad range of applications and portable [1, 2]. The voltammetric and 
amperometric technique analyses are a full implementation to measure low levels of 
concentration. Additionally, as an electrochemical surface method, it has the 
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advantage of generating a response signal working with small sample volumes, in real 
time. The working electrode can be prepared by surface immobilization of one or more 
enzymes, which are involved in recognition of the analyte. The enzymes could be 
regarded as the critical component of the electrode since they are related to the 
selectivity of the sensor to catalyze the formation of the electroactive detection 
product [3]. Additionally, the enzymes are ideal biological recognition elements in the 
construction of biosensors, because of their high specificity, which enables the 
development of analytical methods with high accuracy [1]. Biosensor technologies are 
recognized as an emerging science to produce analytical devices that can help to detect 
specific compounds in complex mixtures such as liquid waste residues and blood 
serum [4, 5]. Nowadays, ethanol analysis is fundamental for criminal justice systems, 
in clinical and toxicological diagnostic analyses such as blood, serum and urine 
analysis, monitoring medical conditions of HIV patients, as well as public safety issues 
regarding the pilots and drivers. In the food and beverage industries, the determination 
of alcohol content is critical for the control of the fermentation process and product 
quality. Besides these applications, determination of ethanol is also important in 
agricultural, biofuel and environmental analyses [6–8]. Alcohol oxidase (AOD) allows 
the qualitative and quantitative determination of ethanol or methanol, removal of 
alcohol or aldehyde and hydrogen peroxide production and removal of oxygen [9]. 
Horseradish peroxidase (HRP) uses the haem group and hydrogen peroxide substrate to 
oxidize a variety of organic and inorganic compounds [10]. The enzymatic mecha-
nisms of these enzymes together facilitate the detection of AOD substrates by electro-
chemical and spectroscopic methods such as ethanol. The co-immobilization of the 
enzymes holds the potential to increase the selectivity and amplify the sensitivity of 
the biosensor improving the potential for quantitative ethanol detection [11, 12]. 
Polyaniline (PANI) has attracted the attention of the scientific community in the last 
two decades. PANI, a family of conductive semi-flexible polymers in a green proton-
ated emeraldine form had high electrical conductivity and low production cost. PANI 
has been explored for various applications, including those in biosensors due to some 
useful features such as redox conductivity and polyelectrolyte characteristics, high 
surface area, chemical characteristics, long-term environmental stability and tunable 
properties enhancing the electron transfer flux ability and also the reversibility of the 
electrochemical response signal [12–14]. In the previous work, the electroconductivity 
of PANI-GEC was reported and verified that PANI is an attractive polymer compound 
to be applied in sensor interface transducer biosensors. A conductivity of 28 μS/cm for 
30 w/w% PANI-GEC was measured and cyclic voltammograms for 10 mM potassium 
ferricyanide obtained working with a scan rate of 100 mV s−1. The composite can act as 
an effective mediator in the transference of electrons in redox or enzymatic reactions 
[14]. With the use of nanomaterials, greater sensitivity and attachment of enzymes are 
achieved due to their high surface area as well as the physical, chemical and electronic 
properties. The literature reported that nanomaterial application had attracted much 
attention regarding the development of high-performance electrochemical biosensors 
[13]. The preparation of chemically modified electrodes with silver nanoparticles 
(AgNPs) has been applied to amplify the electrochemical response signal. Since silver 
is four times cheaper than gold and shows excellent catalytic activity and good electri-
cal/heat conductivity, its application is very favorable in electroanalysis acting as a 
pre-concentrator of species of interest and/or mediating redox reactions [15]. The 
literature also reported an increase of 9.71% in the anodic peak current and 32.35% for 
the cathode peak current in the presence of AgNPs. The authors observed an increase 
in the reversibility of the voltammetric response signal in the composite based on 
AgNPs/PANI/GEC and the ratio of the anodic (Ipa) and cathodic (Ipc) peak currents | 
Ipa/Ipc | = 1.07 at 40 mV s−1. Nevertheless, the ratio was of the order of 1.28 for 
composite without AgNPs [16]. From a point of view of analytical instruments, 
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biosensors are used also for quality control, because they have important technical 
characteristics, such as low response time, high selectivity, stability under the condi-
tions of the analysis, and reproducibility of the measurements. So, ethanol as a 
hydrous biofuel (Brazil, 5.3 volume % of water) or in the anhydrous form mixed in 
blends with gasoline (USA—10%, 15% and 85% of anhydrous ethanol, western 
Europe—5% of anhydrous ethanol and Brazil—27% of anhydrous ethanol) have being 
used in regular cars and flex fuel vehicles. Methods for monitoring the percentage of 
ethanol in the mixtures (product quality control) or in case of spilling of gasohol 
blends need to be develop. Many efforts for different potentiometric, amperometric, 
and spectrophotometric biosensors have been developed for ethanol analyses, with 
microorganisms like Gluconobacter oxydans, Saccharomyces ellipsoideus, or enzymes as 
alcohol dehydrogenase or alcohol oxidase were just reported in the literature [17]. In 
Brazil, there is a rigorous program for a strict control of the physicochemical character-
istics of the gasohol blend and hydrated fuel alcohol to prevent adulteration or envi-
ronmental contamination. Nowadays, the 4.0 industry claims for more robust and 
sensitive instruments for long-distance transmission and data transfer systems to an 
analytical central station in monitoring and process control program. Only a few 
biosensors are commercially available at present for analysis control and the integra-
tion of nanomaterials composites within these enzymatic biosensors brings new 
strategies for enhancing their analytical performances [16, 17]. The high ethanol 
solubility turns the assessment and analytical methods limited.  Many road or pipeline 
accidents can spill fuel blends into the environment. Significant environmental 
impacts related to ethanol spills have been to surface water and fishes were killed 
several days after as a result of oxygen depletion. Spilled ethanol from the surface 
through soil to groundwater contamination is also of concern, and anaerobic biodegra-
dation of ethanol in groundwater results in the production of methane [18]. The 
development of more selective and integrated systems for application in fast and high 
accuracy analysis needs further innovation and research investments. The enzyme 
immobilization methods represent an important step for the new technologies applied 
in bioinstrumentation techniques. The incorporation of silver nanoparticles in two 
different composites and the electrochemical response signals generated from each 
biosensor were investigated. An experimental design was used and statistic analysis to 
define the best condition for low cost enzymatic immobilization method. The AgNPs/
PANI/GEC biosensor with AOD and HRP immobilized enzymes was firstly prepared 
to detect ethanol. A second composite with only AgNPs/GEC was prepared and the 
immobilized AOD and HRP adsorbed enzymes covered with a chitosan film. 
Voltammetry/amperometric techniques were applied to characterize the electrochemi-
cal transduction systems. Calibration curves were obtained for each composite 
electrode biosensor in order to evaluate the ethanol analytical ranges and 
detection levels.

2. Electrode construction and characterization

The composite used in the manufacture of the electrode for the biosensor 
comprised 40% of PANI, 35% epoxy and 25% enriched with graphite AgNPs as 
described in [16]. The mixture was inserted into the empty end of the Teflon support 
(rod of 50 mm length × 7 mm in outer diameter, recessed 3 mm diameter × 3 mm 
deep). The electrodes containing the composites were maintained in an incubator at 
30°C for 24 h, and then, the end polished with 1200 mesh sandpaper. In this work 
two strategies of enzyme immobilization were studied, one by adsorption on the 
surface composite and a second way covering the bi-enzymatic solution with a film 
of chitosan polymer. Figure 1 shows an illustration of the composite surface with 
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enzymes immobilized by adsorption without the chitosan film addition, with the 
two sequential enzymatic reactions occurring. The ethanol is firstly oxidized to acet-
aldehyde, and hydrogen peroxide is also produced by the action of the immobilized 
AOD. After that, the hydrogen peroxide is decomposed in oxygen and water by the 
immobilized HRP. The oxi-reduction reaction generates electrons by the hydrogen 
peroxide hydrolysis, and the mechanism could be expressed as follows [19]:

  HRP  (reduced form)  +  H  2    O  2   → HRP  (oxidized form)  +  H  2   O  (1)

  HRP  (oxidized form)  +  2e   −  +  2H   +  → HRP  (reduced form)  +  H  2   O  (2)

  Net reaction :  H  2    O  2   +  2e   −  +  2H   +  →  2H  2   O  (3)

The chitosan film was prepared by dripping a chitosan solution onto the immo-
bilized enzymes adsorbed on the composite surface. In order to prepare the chitosan 
solution, 2.0 g was dissolved with 100 ml of acetic acid 0.5% (v/v) and the result-
ing solution rested without mixing for 2 hours and, in sequence, mixed for 6 h at 
1000 rpm. A vacuum filtration pump was used to remove the chitosan particles that 
did not dissolved completely, and pH was adjusted to 4.9 with acetic acid [20]. The 
prepared electrodes with chitosan film were stored at room temperature for 6 h and 
after at 8°C. The reagents used in this research were polyaniline (emeraldine salt), 
epoxy resin DER 332, glutaraldehyde and enzyme alcohol oxidase EC 1.1.3.13 (obtained 
from Pichia pastoris) purchased from Sigma-Aldrich; sodium citrate, 4-aminoantipy-
rine, hydrogen peroxide, phenol and ethanol 95% P.A. (analytical grade) from Vetec; 
silver nitrate (Synth); and enzyme horseradish peroxidase (EC 1.11.1.7) from Toyobo, 
Brazil. The lyophilized enzyme was suspended in phosphate buffer pH 7.0, filtered on 

Figure 1. 
Schematic diagram of the surface composite with the immobilized AOD and HRP enzymes and the reaction 
electrode sequence.
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qualitative-grade filter paper (INLAB) and placed on Spectrum® dialysis membrane 
(12,000–14,000 kDa) at 8°C immersed in deionized water that was exchanged every 
12 hours for 24 h. The purified enzyme was kept in a freezer. Graphite powder (Fluka) 
was used in the preparation of composites. Sodium phosphate reagent and albumin 
used in immobilization experiments purchased from Sigma-Aldrich. The composite 
based in graphite was enriched with a colloidal dispersion of AgNPs synthesized by 
the Turkevich method [21]. The distribution of AgNPs was characterized by UV–vis-
ible spectrophotometer (Shimadzu, model UV—1800 120 V) reading the absorbance 
at a scanning wavelength between 250 and 700 nm [22, 23]. Atomic force microscopy 
(AFM) images were taken to identify the AgNPs in the freshly prepared colloidal 
suspension using an atomic force microscopic Solver NEXT, NT-MDT Integration 
Solutions for Nanotechnology, SPM Controller (P9 XPM Systems Digital Control 
Platform), model BL900 [23]. Tyndall effect or the scattering of light by colloidal 
particles in suspension was observed for recently obtained silver nanoparticles in 
water using a laser pointer [21]. Scanning electron microscopy (SEM) images were 
also taken with a scanning electron microscopy—EDS: BAL-TEC SCD 005. Square 
wave voltammetry was the electrochemical analysis method applied to the gener-
ated response signal characterization for different ethanol solution concentrations. 
The parameters used during the tests with square wave voltammetry were 10 mL 
of the electrolyte solution, frequency 25 Hz scan rate of 40 mV/s potential between 
0.2 and 0.75 V. A potentiostat (Autolab, PGSTAT12 model), reference electrode Ag/
AgCl (ALS model RE-012167 1B) and counter electrode platinum wire were used. 
D-optimal mixture design was used to evaluate the influence of variables on the 
parameters of the immobilization method based on optimal composition proposed in 
the literature [24, 25]. The experimental design of the mixture was prepared with the 
following restrictions: glutaraldehyde volume ranging from 1 to 10%, albumin volume 
of 0.5–10% and volume of enzyme solution ranging from 80 to 98.5%. The resulting 
peak current (mA), generated by the formulations tested, was the response signal 
adopted to evaluate the performance of electrochemical bi-enzymatic biosensors. 
The mixture response surfaces and principal component analysis calculations were 
performed using the Statistica 8.0 software. The components used in the manufac-
ture of the lock solution were 2.5% (v/v) glutaraldehyde, albumin 1% (w/v) and an 
enzymatic solution composed of AOD (286 U) and HRP (2640 U). Table 1 shows the 
proposed compositions generated by the mixture experimental design software.

From the proportions suggested by the statistical analysis, 10 μL of immobiliza-
tion solution was deposited on the electrode surface which remained stored at 4°C 
for 12 h. Peak currents obtained by square wave voltammetry using parameters were 
described in Section 2.4. An electrolytic cell containing 10 mL of sodium phosphate 
buffer (pH 7.0) with the addition of 0.5 mL of 95% ethanol solution was used. 
Calibration of the AgNPs/PANI/GEC biosensor was performed under optimized 
conditions at 0.4 V versus AgCl in 0.1 M sodium phosphate buffer solution (pH 7.0). 
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4 89.50 10.0 0.50
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Figure 1. 
Schematic diagram of the surface composite with the immobilized AOD and HRP enzymes and the reaction 
electrode sequence.
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10 μL of an immobilization solution, whose experimental design estimates provide 
the greatest resulting peak current within the planned boundaries, was deposited on 
the composite electrode surface, which remained stored at 4°C for 12 h. For the con-
struction of the standard curve, aliquots of 95% ethanol PA (concentration: 789 g/L) 
were added to obtain different concentrations of ethanol. The resulting peak currents 
were obtained by square wave voltammetry carried out in triplicate. The investigation 
of repeatability of the biosensor was performed using 9.85 μL of sodium phosphate 
buffer solution (pH 7.0) with the addition of 0.15 μL of 95% ethanol PA (concentra-
tion: 789 g/L) making a concentration of 12.8 g/L of ethanol.

2.1 AgNPs colloidal dispersion characterization

The absorption spectrum of AgNPs colloidal dispersion is shown in Figure 2(A), 
which exhibits an absorption band at approximately 400 nm, consistent with the 
results reported in the literature [21, 22]; typical absorption band is in the region of 
350–450 nm, confirming that their synthesis was successful. Such bands are unique 
physical properties of these nanoparticles. When an external magnetic field, such 
as light, is applied to metal, the conduction electrons move in tandem to provide a 
distributed load disturbance known as plasma, located close to the metal surface [21]. 
A relationship between the color of the colloidal silver nanoparticles with the diameter 
(6–28 nm for yellow color) and the shape was just demonstrated in other researches 
[23, 24]. Figure 2(B) shows the atomic force microscopy measurements of the colloi-
dal AgNPs solution, to show the surface topography of the as-formed silver nanopar-
ticles is homogeneous and uniformly modified on the colloidal solution to obtain a 
surface-based nanocomposite system like published in previous studies [23–28].

The surface of the graphite/AgNPs composite was prepared by mixing 150 mg of 
graphite powder with 50 mL of the nanosilver colloidal suspension. A dry com-
posite was obtained after 12 h at 100°C for complete water evaporation [16]. The 
enriched graphite with the silver nanoparticles, after homogenization, was charac-
terized by MEV images. Figure 3 shows the rugged surface of the composite used to 
immobilize the bi-enzymatic solution.

The characterization of the graphite/AgNPs composite surface by SEM generated 
an irregular and rough surface (image magnification of 2500 times Figure 3(A)) 
that was better seen when amplified at 6.500 times as shown in Figure 3(B). The cor-
responding selected area energy dispersive spectrometer (EDS) analysis was defined 
by the yellow circle in Figure 3(B). Table 2 shows the percentage values (wt/wt%) 
of the elements in the AgNPs/GEC sample characterized by EDS.

The method used in this work generated a very low level of silver nanoparticles 
in the composite mixture, but even a few quantities of dispersed silver nanoparti-
cles on graphite power had an important effect on the voltammetric response signal 
as reported previously in the literature [16] for a AgNPs/PANI/GEC. The authors 
observed that the AgNPs insertion resulted in an increase of both generated current 
peaks, anodic and cathodic, for the electrodes prepared with 25% graphite/AgNPs, 
40% of PANI and 35% of epoxy resin. The system showed reversibility character, 
demonstrating that the graphite mixture, PANI, epoxy resin and AgNPs increase 
the electroconductivity of the electrode.

2.2 Enzyme solution composition statistical analysis

Table 3 shows the averages of the resultant peak currents according to each 
enzyme immobilization solution.

Figure 4 shows the three-dimensional response surface and the corresponding 
contour plot obtained by the statistical experimental design. The high, intermediate 
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and low bands of the resulting peak current are produced in the region from green to 
red depending on the intensity of the generated peak current. For the range of the three 
pseudo-components in the mixture (enzyme solution, glutaraldehyde, and albumin) 
investigated in this work, a two-dimensional triangle plot can represent the contours 
as shown in Figure 4(A). The generated contour lines are based on the constraints of 
the experimental planning 80–98.5% for the bi-enzymatic solution, 1–10% for glutar-
aldehyde (2.5%) and 0.5–10% for albumin solution (1% w/v). Figure 4(B) shows a 

Figure 2. 
(A) Absorption spectrum of the AgNPs colloidal dispersion with a maximum at 400 nm. (B) AFM 2D image 
of silver nanoparticle colloid on the surface composite sensor (scan scale: 30 μm × 30 μm; height scale: 5.0 nm). 
Top window in (B): Tyndall effect for colloidal AgNPs suspension.

Figure 3. 
Surface scanning microscopy photograph of the graphite/AgNPs composite: (A) 2.500× and (B) 6.500×.

Element Weight (%)

Carbon 83.96

Oxygen 15.62

Silver 0.42

Total 100

Table 2. 
Composite composition by EDS analysis.
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ternary constraint diagram used to define the best percent composition of the pseudo-
component mixture suitable to achieve the highest peak current.

Figure 4(B) shows the planning area is surrounded by a diamond, and the two 
regions that provide the largest resulting peak currents appear in darker orange. 
The correct reading of the percentage of each pseudo-component for the mixture 
is highlighted with arrows, which indicate the direction side of each percent-
age in the ternary constraint diagram. Two dark orange areas were found in the 
investigated planning region. The first region indicates a resultant high-peak 
current supplied by an electrode with immobilized enzymes containing a solution 
composed of 85% enzyme solution, 10% albumin and 5% glutaraldehyde. The 
second region indicates a resultant high-peak current delivered by an electrode 
with immobilized enzyme and volume solution containing 94.5% of the bi-enzy-
matic solution, 0.5% albumin and 5% glutaraldehyde. The composition of the 
immobilization solution selected for this study was that of the first region (85% 
enzyme solution), a lower enzyme content and high-peak current. Table 4 shows 
the regression coefficients of pseudo-components used to identify the relevant 
components and their interactions.

These results indicate that the enzyme solution factor is statistically significant 
for a confidence interval (CI) of 95% since their level p-value is less than 0.05. 
Glutaraldehyde, albumin and the interaction of second-order AB (enzyme solution 
interacting with glutaraldehyde) are marginally significant for the same confi-
dence interval, for 0.05 < p level < 0.10. The second-order interaction AC (enzyme 

Figure 4. 
(A) Level curves for the resulting peak current produced by the electrode with immobilized enzymes according 
to the pseudo-components of the mixture. (B) Ternary diagram restriction for the resulting peak current 
produced by the electrode with immobilized enzymes depending on the components, the enzyme solution, 
albumin and glutaraldehyde.

Experiment Ipc (mA) Variance SDa

1 0.015 9.33 × 10−06 3.06 × 10−03

2 0.155 3.10 × 10−05 5.57 × 10−03

3 0.143 6.16 × 10−04 2.48 × 10−02

4 0.181 2.86 × 10−04 1.69 × 10−02

5 0.134 4.93 × 10−05 7.02 × 10−03

aStandard deviation.

Table 3. 
Amperometric peaks current means.
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solution interacting with albumin) is not statistically significant at the same 
confidence interval level and p > 0.10.

2.3 Calibration curve for the AgNPs/PANI/graphite biosensor

The construction of the calibration curve plotted in Figure 5(B) was obtained 
from the data shown in Table 5. These results show the values of peak currents (mA) 
obtained with the ethanol concentrations utilized in this study (0–30 g/L) are shown 
in Figure 5(A). An increase of the response signal, proportional to the level of the 
ethanol concentration in the sample, was observed. The linearity was fitted by Eq. (4):

  I (mA)  = 0.004Ethanol (g / L)  + 0.118   (4)

with a coefficient correlation R2 of 0.983. The sensitivity expressed by the angular 
coefficient of the linear adjustment is equal to 0.004 (mA L/g). In Table 5 the vari-
ance and standard deviation values are shown for a mean of three new biosensors 
recently prepared for the measurements of each ethanol concentration solution.

The standard curve shows a positive linearity confirming the oxidation of etha-
nol by AOD. Ethanol oxidation occurs on the biosensor surface resulting in a stream 
of electrons at this location. Within the established ethanol concentration range 
applied in this study, an increase in the ethanol concentration into the electrolytic 
cell will generate a greater flow of electrons confirming the results reported previ-
ously for bi-enzymatic biosensors [29–32].

The limit of detection (LOD) was calculated by Eq. (5) and the limit of quantifi-
cation (LOD) by Eq. (6) [33]:

   LOD =   3  S  b   _ a     (5)

   LOQ =   10  S  b   _ a     (6)

in which Sb is the standard deviation of the measurements in white and a the 
sensitivity of technique. For the AgNPs/PANI/GEC biosensor, the LOD and LOQ 
calculated values were 3.54 g/L and 11.8 g/L, respectively.

The repeatability was determined by repetitive measures (five) by square wave 
voltammograms and refers to the agreement between successive measurements of 
the same sample for each working electrode [33]. The reproducibility was described 
as the agreement between results (signals) obtained with the same method with 
three recently prepared biosensors (B1, B2 and B3) [34]. For five sequential analyses, 
the relative square deviation values (RSD) were 1.54 (B1), 1.01 (B2) and 2.11% (B3) 

Factor Coefficient p (CI: 95%)a

(A) Enzymatic solution 0.0001873 0.0000315

(B) Glutaraldehyde 2.5% (%) −0.0044553 0.0982712

(C) Albumin 1 (%, w/v) 0.0042506 0.0962228

AB 0.0091370 0.0862246

AC −0.0083963 0.1053623
aCI: confidence interval.

Table 4. 
Regression coefficients of pseudo-components and statistical significance.
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confidence interval level and p > 0.10.

2.3 Calibration curve for the AgNPs/PANI/graphite biosensor

The construction of the calibration curve plotted in Figure 5(B) was obtained 
from the data shown in Table 5. These results show the values of peak currents (mA) 
obtained with the ethanol concentrations utilized in this study (0–30 g/L) are shown 
in Figure 5(A). An increase of the response signal, proportional to the level of the 
ethanol concentration in the sample, was observed. The linearity was fitted by Eq. (4):

  I (mA)  = 0.004Ethanol (g / L)  + 0.118   (4)

with a coefficient correlation R2 of 0.983. The sensitivity expressed by the angular 
coefficient of the linear adjustment is equal to 0.004 (mA L/g). In Table 5 the vari-
ance and standard deviation values are shown for a mean of three new biosensors 
recently prepared for the measurements of each ethanol concentration solution.

The standard curve shows a positive linearity confirming the oxidation of etha-
nol by AOD. Ethanol oxidation occurs on the biosensor surface resulting in a stream 
of electrons at this location. Within the established ethanol concentration range 
applied in this study, an increase in the ethanol concentration into the electrolytic 
cell will generate a greater flow of electrons confirming the results reported previ-
ously for bi-enzymatic biosensors [29–32].

The limit of detection (LOD) was calculated by Eq. (5) and the limit of quantifi-
cation (LOD) by Eq. (6) [33]:

   LOD =   3  S  b   _ a     (5)

   LOQ =   10  S  b   _ a     (6)

in which Sb is the standard deviation of the measurements in white and a the 
sensitivity of technique. For the AgNPs/PANI/GEC biosensor, the LOD and LOQ 
calculated values were 3.54 g/L and 11.8 g/L, respectively.

The repeatability was determined by repetitive measures (five) by square wave 
voltammograms and refers to the agreement between successive measurements of 
the same sample for each working electrode [33]. The reproducibility was described 
as the agreement between results (signals) obtained with the same method with 
three recently prepared biosensors (B1, B2 and B3) [34]. For five sequential analyses, 
the relative square deviation values (RSD) were 1.54 (B1), 1.01 (B2) and 2.11% (B3) 
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for each tested biosensor. The reproducibility values are shown in Table 6 as the 
media value from measurements determined with three different biosensors recently 
built. The variance, standard deviation and RSD values are also shown in Table 6.

The results were considered satisfactory as variance and standard deviation 
values were around 10−3 and 10−2, respectively, for the analytical determinations 
carried out with standard ethanol solution and three freshly prepared working bio-
electrodes. To investigate a biosensor with higher sensitivity and accuracy and lower 
cost production, a composite prepared only with graphite and silver nanoparticles 
was also studied. The new working electrodes received a film of chitosan covering 
the immobilized enzymes that were adsorbed on the recently prepared composite. 
The response time for the square wave analysis was 37 s.

2.4 Biosensor prepared with graphite/AgNPs

2.4.1 Composite electrochemical characterization

Firstly, cyclic voltammetry was run in order to evaluate the reversibility of the 
electrochemical response signal for the AgNPs/GEC used to build the working 
electrode. The generated voltammetry curves were investigated for different voltage 
velocity (10–100 mV/s), and the profiles were shown in Figure 6(A) for electrodes 

Ethanola (g/L) Currentb (mA) Variance SDc

0.0 0.120 2.23 × 10−05 4.73 × 10−03

4.3 0.139 6.33 × 10−06 2.52 × 10−03

8.5 0.157 4.00 × 10−06 2.00 × 10−03

12.8 0.165 4.33 × 10−06 2.08 × 10−03

17.0 0.179 7.00 × 10−06 2.65 × 10−03

21.3 0.201 3.90 × 10−05 6.24 × 10−03

25.6 0.217 6.33 × 10−06 2.52 × 10−03

29.8 0.247 2.03 × 10−05 4.51 × 10−03

aDiluted ethanol concentration with sodium phosphate buffer pH 7.0.
bMean of three measurements.
cStandard deviation.

Table 5. 
Ethanol biosensor amperometric responses.

Figure 5. 
(A) Peak current generated by square wave voltammetry (mean values of triplicate biosensors measurements). 
(B) Calibration curve for the bi-enzymatic ethanol biosensor.
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built with freshly prepared composite. Electrodes prepared 70 days before were also 
tested and the cyclic response signals plotted in Figure 6(B).

According to the Randles-Sevcik equation (Eq. (7)) for cycle voltammetry 
analysis, a linear correlation can exist between cathode or anode peak current, 
and the velocities square root can be applied during the scanning experiments 
(Figure 7) [35]:

   I  P   = 0.4463nF  √ 
_

   nFD _ RT     AC  √ 
_

 v    (7)

where Ip is the peak current, n is the number of electrons, F is the Faraday 
constant, T is the temperature in Kelvin, R is the gas constant, A is the surface area 
of the working electrode, D is the diffusion coefficient of the electroactive species, 
C is the bulk concentration of the electroactive species and υ is the scan rate of 
voltammograms. Thus, the diffusion coefficients for ferrocene and ferricenium at 
298 K are calculated from the slope of the plot of Ip versus √υ.

The linear correlations are shown in Table 7 for the electrodes prepared with 
graphite/epoxy composite (A), with AgNPs/GEC stored for 70 days (B) and with 
AgNPs/GEC recently prepared (C). The linearity (R2) for both types of current Ipc 
and Ipa is close to 1.00 (R2 = 0.997–0.998) suggesting that the system features a 
diffusion mass transfer.

The |Ipc/Ipa| ratio values are shown in Table 8, where (Ipc) is the reverse current 
and (Ipa) the input current for the three electrode conditions studied and calculated 
for each velocity rate applied during the scanning experiments.

Analyses Ethanola (g/L) Varianceb SDc RSDd (%)

1 15.32 0.003 0.053 0.35

2 15.24 0.006 0.076 0.50

3 15.11 0.003 0.059 0.39

4 14.86 0.015 0.121 0.81

5 14.79 0.017 0.130 0.88
aMedia value from measures determined with three different biosensors recently built.
bVariance values.
cStandard deviation.
dRelative standard deviation.

Table 6. 
Variation of ethanol concentration for the reproducibility.

Figure 6. 
Cyclic voltammetry for sensors electrodes in K3[Fe(CN)6],/KCl pH 7.0 solution. Scanning run of the applied 
voltage velocity (10, 20, 50, 70, 100 mV/s). (A) Freshly prepared composite electrodes and (B) after 70 days.
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Table 5. 
Ethanol biosensor amperometric responses.

Figure 5. 
(A) Peak current generated by square wave voltammetry (mean values of triplicate biosensors measurements). 
(B) Calibration curve for the bi-enzymatic ethanol biosensor.
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The reversibility characteristic of a voltammetric cycle is verified when the |Ipc/
Ipa| ratio is equal to 1.0. For the three different composites investigated in this study, 
the reversibility was observed when low voltammetric rates (mV/s) were applied to 
the voltammetric cycle analysis. The graphite-epoxy composite electrodes recently 
built showed a reversible performance (|Ipa/Ipc| = 1.041) for a scanning rate of 
10 mV/s. For the AgNPs/GEC electrodes stored during 70 days at 8°C, working with 
50 mV/s, a quasi-reversible system was observed (|Ipa/Ipc| = 1.131). The biosensor 

Anode R2 Cathode R2

A I = 0.294(υ)1/2 + 0.003 0.999 I = −0.200(υ)1/2–0.001 0.998

B I = 0.325(υ)1/2 + 0.001 0.999 I = −0.243(υ)1/2–0.004 0.998

C I = 0.235(υ)1/2 + 0.008 0.997 I = −0.291(υ)1/2–0.007 0.998

Table 7. 
Linear correlations for current and scanning velocity square rate.

ν (mV/s) Ipc/Ipa

A B C

10 1.041 1.148 1.155

20 1.141 1.207 1.145

50 1.165 1.131 1.215

70 1.239 1.147 1.152

100 1.234 1.145 1.217

Table 8. 
Average values of cathode and anode peak current ratios obtained for three electrodes of the same characteristics 
and method of preparation showed in item 2.4.1.

Figure 7. 
Linear correlations for cathode and anode peaks current with the velocity square roots (K3[Fe(CN)6]/KCl 
10 ml solution, pH 7.0).
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built with AgNPs/GEC recently prepared also showed a quasi-reversible (|Ipa/
Ipc| = 1.145) behaviour for 20 mV/s. These results are similar to those obtained by 
other authors [1, 3, 9], but with biosensor complex designs, compared to ours.

2.4.2 Calibration curve for the graphite/AgNPs biosensor

Square wave voltammetry was applied to generate the resulting peaks for 
standard ethanol solutions tested for the new calibration curve. The square wave 
analyses were conducted with 20 Hz, amplitude of 20 mV and step potential of 1 mV 
from 250 to 750 mV. The response time chitosan ethanol bi-enzymatic AgNPs/GEC 
biosensor to 0.35 g/L was 208 s. The working electrodes were prepared (triplicates) 
and used to analyze ethanol in a range of 0.0–0.35 g/L in phosphate buffer pH 7.0. 
The intensity of peak current (I) generated for each measurement was determined 
and media of the resulting values correlated with respective ethanol concentra-
tions. The obtained data were well fitted (R2 = 0.984) as an exponential function: 
I(μA) = 0.007e6.899[Ethanol, g/L] shown in Figure 8(A). A curve for an electrochemical 
analysis sample obtained with the software General Purpose Electrochemical System 
(GPES) 4.9.005 version, Metrohm, Utrecht, Holland, is showed in Figure 8(B).

The LOD for the AgNPs/GEC biosensor was 3.48 × 10−3 and 0.0116 g/L the value 
for LOQ. The smaller square wave electrochemical response signals obtained were 
due to the chitosan applied over the bi-enzymatic solution adsorbed by the compos-
ite. Mass transfer restriction effects could reduce the intensity of the amperometric 
signal. Comparing the amperometric response signals generated by the different 
composites proposed in this work, the range of analysis measure and the nature of 
the sample may be considered before the choice of the biosensor working electrode. 
A dilution is frequently necessary to fit the analyte sample concentration into the 
linear range sensibility of the developed biosensor. The reduction of waste discarded 
after each analysis contributed to the reduction of waste disposal in the environment 
since low sample volumes are used for the electrochemical analysis. This advantage 
encourages researchers in maintaining their efforts in developing continuously new 
composites and devices to improve the analytical proceedings [36].

3. Conclusions

Ethanol was estimated by electrochemical methods based on AOD- and HRP-
modified electrodes with simple assembly and operation since it does not require the 
addition of a cofactor other than O2. The mixture experimental design was efficient in 

Figure 8. 
Ethanol electrochemical calibration (A). Screen printed data for the electrochemical analysis of a square wave 
voltammetry curve for a sample prepared with 0.35 mL of ethanol and 9.65 mL of phosphate buffer (B).
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built with AgNPs/GEC recently prepared also showed a quasi-reversible (|Ipa/
Ipc| = 1.145) behaviour for 20 mV/s. These results are similar to those obtained by 
other authors [1, 3, 9], but with biosensor complex designs, compared to ours.

2.4.2 Calibration curve for the graphite/AgNPs biosensor

Square wave voltammetry was applied to generate the resulting peaks for 
standard ethanol solutions tested for the new calibration curve. The square wave 
analyses were conducted with 20 Hz, amplitude of 20 mV and step potential of 1 mV 
from 250 to 750 mV. The response time chitosan ethanol bi-enzymatic AgNPs/GEC 
biosensor to 0.35 g/L was 208 s. The working electrodes were prepared (triplicates) 
and used to analyze ethanol in a range of 0.0–0.35 g/L in phosphate buffer pH 7.0. 
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and media of the resulting values correlated with respective ethanol concentra-
tions. The obtained data were well fitted (R2 = 0.984) as an exponential function: 
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analysis sample obtained with the software General Purpose Electrochemical System 
(GPES) 4.9.005 version, Metrohm, Utrecht, Holland, is showed in Figure 8(B).

The LOD for the AgNPs/GEC biosensor was 3.48 × 10−3 and 0.0116 g/L the value 
for LOQ. The smaller square wave electrochemical response signals obtained were 
due to the chitosan applied over the bi-enzymatic solution adsorbed by the compos-
ite. Mass transfer restriction effects could reduce the intensity of the amperometric 
signal. Comparing the amperometric response signals generated by the different 
composites proposed in this work, the range of analysis measure and the nature of 
the sample may be considered before the choice of the biosensor working electrode. 
A dilution is frequently necessary to fit the analyte sample concentration into the 
linear range sensibility of the developed biosensor. The reduction of waste discarded 
after each analysis contributed to the reduction of waste disposal in the environment 
since low sample volumes are used for the electrochemical analysis. This advantage 
encourages researchers in maintaining their efforts in developing continuously new 
composites and devices to improve the analytical proceedings [36].
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modified electrodes with simple assembly and operation since it does not require the 
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determining the quantities of each component of the enzyme immobilization solu-
tion, avoiding spending time and the use of many expensive reagents to obtain the 
desired results. The graphite powder-silver nanoparticle-polyaniline was used as con-
ducting composite for the working electrode, and the composite surface roughness 
was adequate to immobilize the enzymes AOD and HRP (solution composed of 85% 
bi-enzymatic solution, 10% albumin and 5% glutaraldehyde). The biosensor showed 
response signal linearity in the concentration range from 0 to 30 g/L (R2 = 0.983) and 
sensitivity of 0.004 mA L/g, and LOD and LOQ were 3.54 and 11.8 g/L, respectively. 
These results indicate a robust bioelectrode suitable for analyses of contents up to 
30 g/L of ethanol in samples. The repeatability and reproducibility of the biosen-
sor were considered satisfactory since the variance and standard deviation showed 
low values. Relative standard deviation values were also low, below 2.2 and 0.9% 
for repeatability and reproducibility, respectively. The biosensor prepared with the 
AgNPs/GEC, working with the better bi-enzymatic solution composition, detected 
very low ethanol concentrations in a range of 0–0.35 g/L (R2 = 0.984), a higher sen-
sitivity of 6.899 μA.L/g, LOD of 3.48 × 10−3 g/L and LOQ of 0.0116 g/L. Two AgNPs 
composites are investigated in this work and characterized to develop bi-enzymatic 
biosensor for ethanol analysis. The ranges of ethanol solutions and the analytical 
performances were also investigated. Low levels of ethanol in standard samples could 
be detected with the AgNPs/GEC bi-enzymatic biosensor. The AgNPs/PANI/GEC 
biosensor was well fitted for high ethanol content in standard samples.
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Chapter 10

Biosensors for Determination of 
Heavy Metals in Waters
Amra Odobašić, Indira Šestan and Sabina Begić

Abstract

Biosensors are nowadays a powerful alternative to conventional analytical 
techniques for controlling the quality of not only natural water but also process 
water used by the food industry during the production process, as well as waste-
water prior to release into natural watercourses. The goal is to provide the required 
quality and safety of water from the standpoint of heavy metal contamination. The 
basic and most important characteristics of biosensors are high sensitivity, short 
response time, specificity, and relatively low production cost. Biosensors can detect 
the presence and measure the content of various toxic substances (pesticides, heavy 
metals, etc.) not only in water but also in food. Detection of contaminants, primar-
ily heavy metals in water used in food production processes, is a potential area of 
biosensor application in the food industry. Biosensors can be adapted for direct and 
continuous (online) monitoring by measuring certain analytes that can affect the 
quality and safety of water. This chapter will give an overview of the development 
and application of biosensors in order to control the quality and safety of water 
from the standpoint of the presence of heavy metals.

Keywords: biosensors, heavy metals, natural water, waste water

1. Introduction

Monitoring of water pollution is very important for the preservation of the 
environment and prevention of negative impacts that it can have on human health. 
Therefore, great attention is paid to simplifying procedures for detection and 
monitoring of pollutants. Heavy metals are particularly dangerous due to their 
ability to accumulate over time in both plants and animals, as well as in water. For 
these reasons, there are already developed different methods that determine their 
concentrations generally in the environment.

Biosensors represent a simple, reliable, and fast solution for monitoring water 
pollution caused by various heavy metals. The small size of biosensor devices has 
enabled their in situ application, thus avoiding long-term and sometimes expensive 
measurements in laboratories.

According to IUPAC, biosensor represents a “self-contained integrated device, 
which is capable of providing specific quantitative or semi-quantitative analytical 
information using a biological recognition element (biochemical receptor) which is 
retained in a direct spatial contact with an electrochemical transduction element” 
[1, 2]. Biosensors allow not only determining the presence and overall biologically 
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available concentrations of heavy metals in water but also assessing their biological 
effects, such as toxicity or cytotoxicity, which are sometimes more important than 
chemical composition information.

2. General characteristics of heavy metals

The term “heavy metals” refers to all metals except Al, Na, Ca, Mg, and K, i.e., 
to all metals that have a density higher than 5 g/cm3. It includes a number of physi-
ologically important elements such as Fe, Cu, Zn and Mn, then highly toxic Pb, As, 
Hg, Cd, Sb, Cr(VI) and less toxic Au, Ag, Mo, Cr(III) and Co [3]. The physiological 
and toxicological effects of these elements represent a collection of very different 
mechanisms.

Even at very low concentrations, they pose a threat to the environment and 
human health, because they are not biodegradable, so heavy metals are the cause of 
one of the most serious pollution problems. The most important nonessential heavy 
metals which affect the surface water systems are cadmium, chromium, mercury, 
lead, arsenic, and antimony [4].

Heavy metals present in pesticides and therapeutic agents are additional pollu-
tion sources. Burning of fossil fuels containing heavy metals and increasing indus-
trial applications of metals such as metal galvanizing, paint and varnish industry, 
and mining and chemical industries are the main source of pollution of water 
systems by heavy metals.

Heavy metals are transported with waste water at the place of discharge and 
contaminate water sources downstream from an industrial site. In water, heavy 
metals have the ability to bind to the surface of microorganisms, from where they 
are transported inside the cell where they can be involved in chemical reactions and 
change chemically.

The majority of known techniques can determine the total amount of heavy 
metal ions. In addition, laboratory techniques that are routinely used for the 
analysis of metal ions, such as atomic absorption spectrometry, inductively coupled 
plasma mass spectrometry, anodic stripping voltammetry, and X-ray fluorescence 
spectrometry, require sophisticated equipment, pretreatment of samples, or quali-
fied operators.

However, today it is known that only certain oxidation states of biologically 
available metal ions pose the greatest risk to human health and the environ-
ment. For example, “Cr(III) is an essential nutrient required in insulin action 
and sugar and fat metabolism, while Cr(VI) is believed to be highly toxic and 
carcinogenic” [5].

2.1 Mechanism of heavy metal toxicity

Metals and metalloid ions can be divided into three groups according to their 
toxicity. The first group includes metals (metalloids) that are toxic at extremely low 
concentration, such as lead, cadmium, and mercury. “Metals of the second group 
(arsenic, bismuth, indium, antimony and thallium) are less toxic, i.e., they are 
toxic only in higher concentrations. The third group includes metals (metalloids) 
of essential importance, such as copper, zinc, cobalt, selenium and iron, which are 
necessary for different chemical and biochemical processes in the body, and are 
toxic only above a certain concentration.” Concentration window “of these heavy 
metals is somewhere between toxic and maximum permissible limits” [6].

Table 1 gives critical concentrations of some heavy metals in natural waters 
according to EPA [7].
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The toxic effects of heavy metals can be the result of changes in numerous 
physiological processes at the cellular or molecular level caused by the inactivation 
of the enzyme. It can also occur as a result of the blocking of functional groups 
of metabolically important molecules or by replacing the essential elements and 
disturbing the integrity of the membrane. A rather frequent consequence of 
heavy metal poisoning is the production of reactive oxygen species (ROS) due to 
interference with the transport activities of electrons, especially the chloroplast 
membrane [8]. This increase in ROS exposes cells to oxidative stress that leads to 
peroxidation of lipids, biological damage of macromolecules, membrane decay, 
and DNA splitting [9].

They can penetrate into the organism in elemental form, in salt form, or as 
organometallic compounds, wherein the process of absorption, distribution, depo-
sition, and elimination depends on the form in which the metal is present. Metals 
are very toxic because they are either in ionic form or within the compound, soluble 
in water, and easily absorbed by living organisms [3].

The mobility of heavy metals in water is particularly affected by the pH of water, 
the presence of hydrated forms of Mn and Fe, the concentration of carbonates and 
phosphates, as well as the content of organic matter. In addition, if the medium is 
very acidic and increased redox potential, the mobilization of Cu and Pb occurs, 
and under the reduction conditions, the hydroxides Mn and Fe are mobilized.

Heavy metals which are mostly the subject of research and monitoring in water 
and also generally in the environment due to their pronounced toxicity are arsenic, 
chromium, lead, mercury, and cadmium, while zinc, cobalt, copper, iron, and 
manganese are also interesting because they belong to the group of essential ele-
ments. The level of toxicity for some of these heavy metals is at or slightly above the 
concentration in which they are naturally found in nature [10]. Heavy metals occur 
in the environment naturally or as a result of human activities. Natural sources 
include volcanic eruptions, weathering (acid rock drainage), and discharge into 
rivers, lakes, and oceans.

Anthropogenic sources of heavy metals have emerged with the development of 
society. For example, the release of metal from the dishes causes contamination of 
food and water with metals.

2.1.1 Essential metals

2.1.1.1 Iron

Iron belongs to a group of essential metals and is crucial for a number of 
synthetic and enzyme processes in the human body. Most of the iron in our body 
exists as part of the hemoglobin molecule or myoglobin molecule. In addition to the 

Metal Max. allowable concentration (μg/ml)

Mercury 0.002

Arsenic 0.5

Lead 0.5

Copper 0.6

Cadmium 0.04

Zinc 5

Table 1. 
Critical concentrations of some heavy metals in natural waters according to EPA
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Metal Max. allowable concentration (μg/ml)

Mercury 0.002

Arsenic 0.5

Lead 0.5

Copper 0.6

Cadmium 0.04

Zinc 5

Table 1. 
Critical concentrations of some heavy metals in natural waters according to EPA
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vital importance it has for most living organisms, iron is potentially toxic at high 
concentrations. The effect of iron on aquatic organisms and their habitats is mostly 
indirect. Combined direct and indirect effects of contamination of the aquatic 
environment cause a decrease in biodiversity and number of fish. In aqueous solu-
tions, the Fe3+ ion is in the form of the aqua complex, Fe(H2O)6

3+, which is quite 
hydrolyzed (hydrolysis starts at pH 1). Hydrolysis of Fe(III) ions depends on the 
type of ionic environment, temperature, and the presence of other substances. The 
results of the researches show that the most important chemical types are found in 
hydrolyzed solution.

2.1.1.2 Copper

Copper is a microelement of outstanding biological importance and is part of 
essential metabolic pathways. Copper ions play a key role in active centers of oxido-
reductases, such as superoxide dismutase (Cu, Zn-SOD), [5], an enzyme important 
for maintaining a low level of free radicals in the cell, thus protecting biomolecules 
such as proteins and lipids from the pathological conditions.

Copper deficiency can cause anemia, because insufficient amount of copper 
causes poor absorption of iron, reducing the number of red blood cells. The lack of 
copper also reduces the amount of white blood cells and therefore the resistance of 
the organism to diseases. In general, copper is not considered to be a major ecotoxi-
cological problem, but its widespread distribution and exposure to exhaust gases 
are certainly the reasons why copper is involved in the structuring of ecosystems. 
Copper is found in three oxidation states, Cu+, Cu2+, and Cu3+, with the Cu2+ form 
being the most common. The most mobile forms of copper are Cu2+ and CuOH+. 
In the aqueous environment, copper is found in three basic forms, as suspended, 
colloidal, and dissolved. The accumulation of copper in the aquatic environment 
results in the primary exposure of aquatic organisms. Aquatic organisms can 
accumulate dissolved copper by direct absorption through the body surface, while 
colloidal forms of this metal are introduced into the body by ingesting contami-
nated food.

2.1.1.3 Zinc

Zinc participates in the structure of many enzymes and is an essential element. 
It is attached to insulin and plays a significant role in the metabolism of nucleic 
acids and amino acids, DNA replication, and gene expression. However, like all 
other essential metals, zinc in higher concentrations is toxic to living organisms. 
Zinc can bioaccumulate in fish, and the degree of bioaccumulation usually depends 
on the exposure mode, as well as the conditions prevailing in the observed aquatic 
environment. Conditions that may affect the toxicity of zinc (but also other heavy 
metals) in the aquatic environment are the content of Ca and Mg, the pH of water, 
the content of the hydroxide (alkalinity), and the content of dissolved natural 
organic matter, i.e., humic substances.

2.1.1.4 Cobalt

The required amount of cobalt in the body is about 5 mg for vitamin B12 to 
avoid anemia. In general, cobalt has low toxicity. Gastrointestinal (digestive tract) 
absorption of soluble cobalt compounds is estimated to be 25%. However, cobalt is 
toxic to humans. When cobalt has been used as an additive in beer (for foam stabili-
zation), severe biventricular heart failure and a high mortality rate were observed in 
heavy beer drinkers [11].
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Long-term inhalation of cobalt dust irritates the respiratory tract and can cause 
chronic bronchitis, and cobalt salts can cause benign dermatosis. Cobalt occurs in 
oxidation states 0, +1, +2, +3, and +4, and most of its compounds have an oxida-
tion number +2 and +3, of which the cobalt(II) compounds are more stable. Most 
cobalt(II) compounds have an ionic character (halides and numerous Co(III) 
complexes). Cobalt is relatively a nonreactive metal. It does not oxidize under dry 
and humid conditions at normal temperatures. It binds to halogen elements by 
heating. Cobalt is used in the production of artificial fertilizers and so can be found 
in higher concentrations in soil and water. It is also used in medicine, in the treat-
ment of anemia that cannot be treated with iron.

2.1.2 Toxic metals

2.1.2.1 Lead

Lead in the environment mainly comes from anthropogenic sources such as 
combustion of fossil fuels, landfills and fires at landfills, waste industrial sludges, 
phosphate-based fertilizers, pesticides, and exhaust gases from vehicles.

It is found in the form of sulphates, sulphides, and carbonates. It is considered 
the leading environmental pollutant and is increasingly endangering the living 
world, especially the surrounding areas of large industrial plants, frequent roads, 
and large cities.

The intensity of the adoption of lead depends on its concentrations in soil, soil 
pH, organic matter content, ratio of cations and anions, and other environmental 
factors. Human is exposed to toxic effects of lead by consuming food and water that 
are contaminated with this heavy metal but also by inhaling particulate matter with 
lead content. Absorption over the skin is only possible for tetraethyl and tetra-
methyl lead. Lead is rapidly absorbed into the bloodstream and binds to red blood 
cells in the form of Pb2+, and via blood about 90% is deposited in the bones in the 
form of Pb3(PO4)2. In the case of acidosis (increased acidity), the mobility of lead 
from the bones in the form of Pb2+ which has a toxic effect on the central nervous, 
circulatory, and immunological systems and kidneys can occur. [10]

2.1.2.2 Mercury

Mercury vapors and organic compounds of mercury are very strong poisons. 
Harmful substances are released by combustion of fossil fuels, and the risk of pollu-
tion threatens also due to increased use of mercury in industry and agriculture [12].

2.1.2.3 Chromium

In its compounds, chromium exists in several oxidation states: from bivalent to 
hexavalent. In solutions, chromium can occur in trivalent and hexavalent forms. 
Hexavalent chromium is usually present in the compounds as chromate (CrO4)2− or 
dichromate (Cr2O7)2− ion. Cr(VI) is toxic due to its high degree of oxidation and 
easily enters the biological membranes. Therefore, this form of chromium is con-
sidered carcinogenic. Because chromium(VI) is toxic, carcinogenic, and mutagenic 
to living organisms, damages the liver, and causes lung congestion, skin irritation, 
and the formation of ulcer, it needs to be removed from the wastewater before their 
release into natural recipients. On the other hand, trivalent chromium, Cr(III), is 
300 times less toxic than chromium(VI). Chromium is a vital nutrient for many 
animal and plant species, but it can also cause allergic reactions on the skin and can 
be carcinogenic [13].
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3. Biosensors

A biosensor is an analytical device consisting of immobilized biological material 
in direct contact with a compatible transducer that will convert the biochemical 
signal into a measurable electrical signal. Biomolecules are responsible for specific 
recognition of the analyte, while the physicochemical converter provides electri-
cal output signal that is amplified by electronic component [14]. Biosensors find 
application in various areas, from agriculture, food quality control, medicine, 
army, and control of various processes in the environment. Biosensors can provide 
quick information about the site of pollution, which is necessary for environmental 
control and monitoring. In addition, the advantage of biosensors over other analyti-
cal methods is their mobility that allows researchers to measure the in situ pollutant 
concentration and the ability to measure the concentration of pollutants in situ 
without additional sample preparation. Also, in addition to the determination of 
specific compounds, they can provide information on their biological effect (e.g., 
toxicity of a compound).

Due to exceptional performances, including high specificity and sensitivity, 
rapid response, low cost, relatively small size, and simple operation, biosensors 
have become an important tool for detecting chemical and biological components 
and their monitoring for clinical, nutritional, and ecological needs [15].

3.1 General characteristics of biosensors

Biosensors are analytical sensory devices that combine physical and chemical 
sensing techniques [16, 17]. Their performance is based on direct contact of two 
elements: biological and physicochemical, whose tight bond is achieved by physi-
cal or chemical methods of immobilization. Biological element serves as a receptor 
(bioreceptor), i.e., for the recognition of particular analyte from the medium of 
interest, based on the interaction of analyte and bioreceptor. Physicochemical 
transducer converts the response that occurs as a result of analyte-bioreceptor 
interaction on their interface into a measurable signal which can be processed 
and displayed in the form of readable values. For proper biosensor operation, the 
biological compound has to be immobilized in the vicinity of the transducer, and 
immobilization can be done either by physical entrapment or chemical attach-
ment. Only small amounts of bioreceptor molecules are required, and they will be 
repeatedly used for measurements [18].

The displayed values are in correlation with the detected analyte-bioreceptor 
interactions, i.e., the concentration of a specific analyte or group of analytes in the 
analyzed sample [4, 16, 17]. General working principle of biosensors is illustrated in 
Figure 1.

Although widely used, conventional analytical techniques require sophisticated 
instruments and highly trained personnel to conduct operational procedures and 

Figure 1. 
Schematic illustration of a biosensor general working principle.
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sample preparation, which makes them expensive and time-consuming [19, 20], 
thus not enabling determination of a large number of samples in a short time [21].

The main advantages of biosensors in relation to conventional analytical 
techniques are possibility of miniaturization and portability of device, reduced 
requirements for laboratory skills, reduced sample volume and pretreatment [1, 22], 
assessment of all possible types of analytes, inorganic or organic [23, 24], and possibil-
ity of performing single measurements or continuous real-time monitoring of analytes 
[1, 25]. Biosensors allow estimation of biological effects, e.g., toxicity of specific 
chemicals, because they can be used to detect their bioavailable concentrations [26].

3.2 Classification and types of biosensors

Biosensors can be divided into classes according to different approaches, among 
which the two are commonly used—type of biorecognition element (biocompo-
nent, bioreceptor) and type of transduction system in biosensor. Each class of 
biosensors can be further classified into subclasses (Figure 2).

3.2.1 Classification by type of transducer

Based on the principle used in transduction systems, electrochemical, optical, 
piezoelectric, and thermal biosensors may be distinguished.

3.2.1.1 Electrochemical biosensors

The first proposed and commercialized biosensors were electrochemical biosen-
sors, which is why they are most commonly reported. The basic principle of this 
class of biosensors is that the interaction between the biomolecule (bioreceptor) 
and the target analyte results in a chemical reaction that produces or consumes 
ions or electrons and in turn changes the electrical properties of the analyte solu-
tion, such as electrical current or potential. Transducer detects these changes by 
producing an electrochemical signal which is correlated with the amount of analyte 
present in the sample solution.

Advantages of electrochemical biosensors include minimal requirements for 
sample preparation and sensitivity at small sample volumes. It is also possible to 
perform sample analysis directly, which enables automation. Drawbacks of detec-
tions are poor reproducibility and stability [27].

Figure 2. 
Schematic illustration of the common classification of biosensors.
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Electrochemical biosensors are classified according to the type of measured 
signal into subclasses: potentiometric, amperometric, conductometric, and biosen-
sors based on ion-selective field-effect transistors (ISFETs). Different measurement 
principles always require a specific design of an electrochemical cell [21].

Potentiometric biosensors are based on the use of ion-selective electrode (ISEs) 
at the top of which an ion-selective membrane is placed which is responsible for 
selectivity to target ions in the presence of interfering ions in the sample. These 
devices measure the difference between the potential of the working and reference 
electrodes at essentially zero current, and this difference corresponds to the concen-
tration of the analyte.

Amperometric biosensors are the most widespread class of electrochemical bio-
sensors. Amperometric biosensors are more sensitive and faster than potentiomet-
ric but have poor selectivity and are susceptible to the interference of electroactive 
species that are not of interest [22, 28].

Conductometric biosensors are based on measurement of electrical conductivity 
in sample solution between two electrodes, as a consequence of the biochemical 
reaction. Conductometric biosensors operate at sufficiently low driving voltage, 
are not sensitive to light, do not require the use of a reference electrode, and can be 
produced using inexpensive technology [23, 24].

Biosensors based on the ion-selective field-effect transistors (ISFET) are the fourth 
class of electrochemical biosensors, suitable for the direct detection of ions. Change 
of activity of ions of a sample causes a change in the potential of the gate electrode 
that is brought into contact with the analyte solution. The change of the electric 
potential is then measured.

3.2.1.2 Optical biosensors

Optical biosensors are a biosensor class in which the transducer detects optical 
changes in the input light resulting from the interaction of the bioreceptor and 
the target analyte, and the amplitude of these changes is in correlation with the 
concentration of the present analyte in the analyzed sample. Among the significant 
advantages of these optical devices are insensitivity to electromagnetic interference, 
small instrumentation, simplicity, and noninvasiveness of measurement, as well 
as the possibility of application in vivo, since they are non-electrical biosensors. 
According to the optical configuration, biosensors can be intrinsic or extrinsic. In 
intrinsic biosensors, the incident light wave is closed in a wave guide or an optical 
fiber, along which it propagates, but the design of the structure in which the wave is 
closed is such that it allows the interaction of the wave with the analyte. In extrinsic 
biosensors, the light wave passes directly through the sample phase and reacts with 
it, and the optical fiber serves as a means of transmitting the signal.

Absorption-based biosensors are simple and inexpensive devices that allow the 
determination of concentrations of different analytes, based on the fact that each 
type of analyte absorbs a certain wavelength of light emitted into the sample. 
Guiding the light from the light source to the sample and from the sample to the 
detector can be performed using the same optical fiber or different fibers [29].

Surface plasmon resonance (SPR) biosensors use an optical detection technique 
where on the interface of metal and dielectrics, the amplified incident light hits the 
metal surface and excites the electrons, thereby generating electromagnetic waves 
(plasmons). Plasmon propagation is very sensitive to the changes in the refractive 
index of the material near the metal surface, which are caused by biomolecular 
interaction, such as, for example, specific binding of the analyte [30, 31].

Fluorescence-based optical biosensors can directly detect target atoms or molecules 
by measuring the change in the frequency of electromagnetic radiation emitted by 
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them. The frequency change is stimulated by the absorption of radiation and the 
consequent appearance of the excited state of the target species. Detection can also 
be carried out indirectly, using fluorescence labels or fluorescence energy transfer 
(FRET).

Luminescence-based biosensors can be classified into chemiluminescent and 
bioluminescent optical biosensors. Unlike biosensors based on fluorescence, in 
these sensor devices, the triggered state of the target atoms or molecules is obtained 
as a result of their exothermic chemical reaction, and while returning to the ground 
state, the excited species emit light without or with minimal heat. When such a 
chemical reaction occurs within a biological organism, then it is a bioluminescence.

3.2.1.3 Piezoelectric biosensors

Piezoelectric biosensors are devices in which the biorecognition element is 
integrated with a piezoelectric material used as a transducer. Among many types of 
natural and synthetic materials that exhibit a piezoelectric effect, quartz crystals 
are most commonly used [28, 32] because of their availability, as well as high tem-
perature resistance and chemical stability in aqueous solution. The basic principle 
of measurement for this type of biosensor is based on the ability of a piezoelectric 
material to generate electrical potential when deformed under the applied mechani-
cal stress, and vice versa, to elastically deform when exposed to an electric field.

3.2.1.4 Thermal biosensors

Thermal biosensors, also called calorimetric or thermometric, are a biosensor 
class in which the transducer detects interactions between bioreceptors and analyte 
resulting in a change of temperature, which is in correlation with the concentration 
of the analyte. As thermal transducers in these devices, thermistors or thermopiles 
are used [21, 33]. Some of the advantages of thermal biosensors are detection 
without the need for labeling of reactants, not requiring frequent recalibration, and 
no disturbances by electrochemical and optical properties of the sample [21, 34]. 
In most research papers published about this type of sensor, described experiments 
were carried out using enzyme-based thermal biosensors, due to the exothermic 
nature of the reactions catalyzed by enzymes.

3.2.2 Classification by type of biocomponent/bioreceptor

Biocomponent/bioreceptor is responsible for the detection and interaction with 
the analyte and therefore is a very important part of any type of biosensor. The 
receptor is responsible for the selective and sensitive recognitions of the analyte, 
and the energy liberated during the interaction of the analyte and the receptor 
is converted into an electrical signal that is suitable for measurement. The most 
commonly used biological elements are enzymes and antibodies. Biosensors can 
be divided into two main categories: biocatalytic and affinity sensors based on the 
interaction between biological material and analyte.

Biocatalytic biosensors, also known as metabolism sensors, comprise a biologi-
cal component that catalyzes the chemical conversion of the analyte with which 
it interacts and detect the magnitude of the resulting changes such as product 
formation, reactant disappearance, or inhibition of the reaction, which are cor-
related with the concentration of the analyte [35]. Affinity biosensors are based on 
selective interaction between the analyte and the biological component through 
their irreversible binding, resulting in a physicochemical change detected by the 
converter.
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Electrochemical biosensors are classified according to the type of measured 
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selectivity to target ions in the presence of interfering ions in the sample. These 
devices measure the difference between the potential of the working and reference 
electrodes at essentially zero current, and this difference corresponds to the concen-
tration of the analyte.

Amperometric biosensors are the most widespread class of electrochemical bio-
sensors. Amperometric biosensors are more sensitive and faster than potentiomet-
ric but have poor selectivity and are susceptible to the interference of electroactive 
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that is brought into contact with the analyte solution. The change of the electric 
potential is then measured.

3.2.1.2 Optical biosensors

Optical biosensors are a biosensor class in which the transducer detects optical 
changes in the input light resulting from the interaction of the bioreceptor and 
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them. The frequency change is stimulated by the absorption of radiation and the 
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state, the excited species emit light without or with minimal heat. When such a 
chemical reaction occurs within a biological organism, then it is a bioluminescence.

3.2.1.3 Piezoelectric biosensors

Piezoelectric biosensors are devices in which the biorecognition element is 
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be divided into two main categories: biocatalytic and affinity sensors based on the 
interaction between biological material and analyte.

Biocatalytic biosensors, also known as metabolism sensors, comprise a biologi-
cal component that catalyzes the chemical conversion of the analyte with which 
it interacts and detect the magnitude of the resulting changes such as product 
formation, reactant disappearance, or inhibition of the reaction, which are cor-
related with the concentration of the analyte [35]. Affinity biosensors are based on 
selective interaction between the analyte and the biological component through 
their irreversible binding, resulting in a physicochemical change detected by the 
converter.
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3.2.2.1 Antibody-based biosensors

Antibodies are proteins produced by the immune system in response to a foreign 
substance in the body. Also known as immunoglobulins (Ig), they are Y-shaped pro-
teins generated by a type of white blood cells called B lymphocytes (B cells). Their 
ability to recognize specific molecules makes them suitable for use as biorecognition 
component in biosensors. During the process of biological recognition, the antibod-
ies bind tightly to antigens forming complexes. There are five classes of antibod-
ies, based on their structure and function: IgA, IgD, IgE, IgG, and IgM. Among 
them, IgG is the class most frequently used for heavy metal detection, because of 
their higher affinity and specificity compared to other classes. Antibodies such as 
monoclonal, polyclonal, or recombinant can be utilized in biosensors. Monoclonal 
antibodies are homogeneous antibodies, derived from single B cell; thus they all 
have the same specificity, i.e., to bind to one unique epitope (binding site) on a 
specific antigen. Unlike monoclonal antibodies, polyclonal antibodies are produced 
from different B cells against the same antigen and therefore have affinity for 
various binding sites of that antigen. This feature of polyclonal antibodies results in 
their stronger binding to the target species, but due to the recognition of multiple 
epitopes, they have higher potential for cross-reactivity, i.e., specificity for nontar-
geted antigens with similar structural regions as the targeted one. The production 
of recombinant antibodies is enabled by genetic engineering. Important properties 
of antibodies for providing accurate results for detection and measurement using 
biosensors are high sensitivity and specificity, with minimal cross-reactivity [36].

Different types of approaches have been developed and used for immobilization 
of Abs onto a sensor surface, such as covalent binding, non-covalent immobiliza-
tion, and coupling by affinity interactions, because the immobilization is the crucial 
step which can affect the optimal performance of an antibody-based biosensor [37]. 
Reaction conditions, such as temperature, pH, and ionic strength, can also affect 
the activity of the antibodies [38].

3.2.2.2 Enzyme-based biosensors

Enzymes are biocatalysts that catalyze chemical reactions. Their task is to 
translate the characteristic substance (substrate) into a product. Enzymes are highly 
selective for the particular substrate which makes them suitable sensor material. 
Detection mechanism of enzyme-based biosensors is based on activation or inhibi-
tion of their activities as a response caused by heavy metals. Usually the metal ion 
reacts with the thiol groups present in enzymatic structures that result in confor-
mational changes and thus affect the catalytic activity. Different enzymes have been 
used for the structure of biosensors based on inhibition. Enzymes such as glucose 
oxidase, urease, glutathione S-transferase, alkaline phosphatase, lactate dehydro-
genase, acid phosphatase, and invertase have been utilized to detect metals such as 
cadmium, lead, copper, mercury, zinc, etc. However, inhibition-based biosensors 
have an important disadvantage, which is insufficient selectivity because some of 
the enzymes simultaneously inhibit several metals.

Biosensors based on immobilized enzymes are also used, and they show several 
advantages compared to free enzymes:

• A thousand times lower consumption of immobilized enzymes.

• Reduced interferences in differential mode.

• No preincubation is required.
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• Faster analysis, less than 5 min.

• In the case of reversible inhibition, sometimes reactivation of the enzyme 
activity is not necessary.

The problem with biosensors based on enzymatic inhibition is that only a few 
enzymes are sensitive to heavy metals.

3.2.2.3 Protein-based biosensors

Proteins, such as phytochelatins or metallothioneins, can be used as biologi-
cal components in biosensors when immobilized on the surface of the transducer 
[39]. The interaction of proteins and metals in the biosensor is realized through 
the formation of complexes, and the detection technique does not require labeling. 
The resulting changes in the protein layer are detected by measuring the electri-
cal capacity or impedance by the relevant transducer. Using the protein biosensor 
enabled the assessment of bioavailable concentrations of heavy metals. In addition, 
using capacitive sensors, which belong to the class of electrochemical biosensors, it 
is possible to achieve much higher sensitivity to low concentrations of heavy metals, 
compared to cell-based devices.

3.2.2.4 Whole cell-based biosensors

Whole cell-based biosensors are based on using biosensing cells, such as 
microorganisms, plant cells, algae, fungi, protozoa, etc., which can be natural or 
recombinant [40]. The use of whole cells as biological elements of recognition has 
many advantages. Whole cell-based biosensors are usually cheaper than biosensors 
based on enzymes, because the whole cells can be easily cultivated and are easier 
to isolate and purify compared with enzymes. Whole cells are more tolerant to 
a significant change in pH, temperature, or ionic strength. A multistep reaction 
is possible because one cell can contain all the enzymes and cofactors needed to 
detect the analyte. Biosensors of this type can easily be regenerated or maintained 
by allowing cells to regrow while working in situ. Preparation of samples is usually 
not necessary. Compared to enzyme-based biosensors, the disadvantages of these 
devices are that they are susceptible to interference of contaminants that are not tar-
geted analytes. They also have a relatively slow response, compared to other types of 
biosensors.

3.3 Application of biosensors in detection and monitoring of heavy metals

The unique biosensor features make them widely applicable in the field of water 
quality control, from the point of view of detecting and determining the concentra-
tion of heavy metals. The use of biosensors for individual or continuous measure-
ments is dependent on the type of biologically active element. Since biological 
compounds such as cholesterol, glucose, urea, etc. are generally not electroactive, 
the combination of reactions is needed for obtaining an electroactive element, 
which leads to a change of current intensity [41]. Table 2 shows the classification of 
biosensors based on the recognition component that was utilized for the detection 
of heavy metals.

A proper immobilization of the biosensing element onto the transducer surface 
maintains biomaterial functionality while ensuring accessibility of the receptor cells 
toward analytes and proximity of the bioreceptor and transducer. The factors which 
determine the choice of a suitable physical or chemical immobilization method 
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• Faster analysis, less than 5 min.

• In the case of reversible inhibition, sometimes reactivation of the enzyme 
activity is not necessary.

The problem with biosensors based on enzymatic inhibition is that only a few 
enzymes are sensitive to heavy metals.

3.2.2.3 Protein-based biosensors

Proteins, such as phytochelatins or metallothioneins, can be used as biologi-
cal components in biosensors when immobilized on the surface of the transducer 
[39]. The interaction of proteins and metals in the biosensor is realized through 
the formation of complexes, and the detection technique does not require labeling. 
The resulting changes in the protein layer are detected by measuring the electri-
cal capacity or impedance by the relevant transducer. Using the protein biosensor 
enabled the assessment of bioavailable concentrations of heavy metals. In addition, 
using capacitive sensors, which belong to the class of electrochemical biosensors, it 
is possible to achieve much higher sensitivity to low concentrations of heavy metals, 
compared to cell-based devices.

3.2.2.4 Whole cell-based biosensors

Whole cell-based biosensors are based on using biosensing cells, such as 
microorganisms, plant cells, algae, fungi, protozoa, etc., which can be natural or 
recombinant [40]. The use of whole cells as biological elements of recognition has 
many advantages. Whole cell-based biosensors are usually cheaper than biosensors 
based on enzymes, because the whole cells can be easily cultivated and are easier 
to isolate and purify compared with enzymes. Whole cells are more tolerant to 
a significant change in pH, temperature, or ionic strength. A multistep reaction 
is possible because one cell can contain all the enzymes and cofactors needed to 
detect the analyte. Biosensors of this type can easily be regenerated or maintained 
by allowing cells to regrow while working in situ. Preparation of samples is usually 
not necessary. Compared to enzyme-based biosensors, the disadvantages of these 
devices are that they are susceptible to interference of contaminants that are not tar-
geted analytes. They also have a relatively slow response, compared to other types of 
biosensors.

3.3 Application of biosensors in detection and monitoring of heavy metals

The unique biosensor features make them widely applicable in the field of water 
quality control, from the point of view of detecting and determining the concentra-
tion of heavy metals. The use of biosensors for individual or continuous measure-
ments is dependent on the type of biologically active element. Since biological 
compounds such as cholesterol, glucose, urea, etc. are generally not electroactive, 
the combination of reactions is needed for obtaining an electroactive element, 
which leads to a change of current intensity [41]. Table 2 shows the classification of 
biosensors based on the recognition component that was utilized for the detection 
of heavy metals.

A proper immobilization of the biosensing element onto the transducer surface 
maintains biomaterial functionality while ensuring accessibility of the receptor cells 
toward analytes and proximity of the bioreceptor and transducer. The factors which 
determine the choice of a suitable physical or chemical immobilization method 



Biosensors for Environmental Monitoring

150

are physicochemical properties of the analyte, nature of the chosen biosensing 
element, the type of used transducer, and the operating conditions of biosensor. 
Antibody-based biosensors can be used as an alternative approach for the detection 
of metal ions, due to antibody features such as high specificity and binding affin-
ity for antigens harmful for the organism. Detection mechanism of these devices 
is based on antibody-metal ion complex formation. The resulted response of their 
immunochemical interaction is converted by a transducer to measurable values and 
processed to readable values. Antibodies are capable for antigen detection in very 
low concentrations [38], but if their cross-reactivity is high, they can yield false-
positive results of an assay of heavy metals in water [55].

A monoclonal antibody that recognizes 16 different metal-EDTA complexes has 
been produced and evaluated in terms of its binding affinity. The obtained results 
showed that the antibody has a maximum binding affinity for cadmium and mercury-
EDTA complexes. [56]. In the inhibition immunoassay where the measurement of Cd2+ 
in water samples was carried out using monoclonal antibodies firmly bound to the 
cadmium-EDTA complex, but not to EDTA without metal [42], the biosensor showed 
satisfactory insensitivity to cations Ca2+, Na2+, and K1+ it encountered and achieved a 
reliable measurement in the presence of 1 mM of excess Fe3+, Mg2+, and Pb2+.

Monoclonal antibodies were used to detect Pb2+ without labeling, in a local-
ized surface plasmon resonance-based optical biosensor [57]. The results of the 
experiment showed that at optimal monoclonal antibody immobilizing conditions, 
absorbability increased to 12.2% for detecting 10–100 ppb Pb(II)-EDTA complex 
with a limit of detection of 0.27 ppb.

Kulkarni et al. were the first to develop acid phosphatase-based fluorescence 
biosensor for the analysis of heavy metal ions Hg2+, Cr2+, and Cu2+. Increased 
concentration of metal ions resulted in increased enzyme inhibition and therefore 
decreased fluorescence. The enzyme was stable for more than 2 months at 4°C [58]. 
They also observed that mixture of heavy metal ions exhibit positive effect on the 
performance of biosensor.

The urease enzyme has been widely investigated as a possible biocomponent in 
heavy metal detection biosensors. Urease has been tested single and in combination 
with other enzymes. Electrochemical biosensor based on urease and glutamic dehy-
drogenase (GLDH) was developed for detecting heavy metals in water samples [59]. 
Also, a disposable potentiometric biosensor based on pure urease was developed, with 
the ability to detect copper and silver at sub-ppm level. For the detection of Pb and 

Type of bioreceptor Analyzed heavy metal Reference

2A81G5
Antibody ISB4
12F6

Cd
Cd
U

[42]
[43]
[44]

Alkaline
Phosphatase
Pyruvate enzymes
Oxidase
Urease

Zn
Hg
Cd
Hg
Hg, Ag

[45]
[46]
[47]
[48]

Glutathione S-transferase
Mer R proteins
Metallothionein

Cd, Zn
Hg, Cu, Cd, Zn, Pb
Cd, Zn, Ni

[49, 50]
[51, 52]
[53]

Whole cells and cardiac cells Hg, Pb, Cd, Fe, Cu, Zn [54]

Table 2. 
Classification of biosensors based on the recognition component that was utilized for the detection 
of heavy metals
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Cd in liquid samples, biosensors based on the combination of urease and acetylcho-
linesterase (Ache) were developed as a biocomponent with a detection limit of 1 ppb 
in water samples. It is known that ions of heavy metals inhibit alkaline phosphatase 
which was used for forming the biosensor with alkaline phosphatase as a biocompo-
nent. It was found that the sensitivity of the developed biosensor to Cd2+ and Zn2+ was 
10 ppb, whereas, with regard to ion Pb2+, there was no significant inhibition.

Two protein-based biosensors were developed on the basis of GST-SmtA and 
MerR [60] proteins, and their sensitivity and selectivity for heavy metal ions (Cd2+, 
Cu2+, Hg2+, and Zn2+) were measured using a capacitance transducer. Both types 
of biosensors have shown high sensitivity, enabling detection of metal ions up to 
femtomolar concentration.

Capacitance protein-based biosensor using synthetic phytochelatins (ECs) 
was developed for the detection of heavy metal ions (Cd2+, Cu2+, Hg2+, Pb2+, 
and Zn2+), and the results of the experiments showed a lower sensitivity for all 
metal ions except for Zn2+ compared to systems based on SmtA and MerR, which 
can be explained by conformational changes in the protein, taking into account 
that the change in capacitance is function of the resulting change in protein 
conformation [51].

In cell-based biosensors, bioelement is fused with reporter gene. The detection 
mechanism is based on the activation of the reporter gene upon the contact between 
bioreceptor and target analyte, yielding an output measurable signal that is a cor-
relation with bioavailable concentration of heavy metal.

Various cell-based biosensors have been used for the detection of heavy metals 
in water due to their ease of production and field testing, the ability to perform fast 
single measurement, as well as continuous measurements, and the ease of identify-
ing bioavailable concentrations of toxicants that allows estimation of effects that 
heavy metals have on living organisms.

The advantage of bacterial cells is resistance to environmental conditions that 
could destroy the sensory element if exposed to them, supplying it with a relatively 
stable environment. Due to specific metabolic pathways used in microorganisms, 
compared to isolated enzymes, microbial sensors have the potential for more selective 
analysis of heavy metals which cannot be measured by simple enzyme reactions [61].

In order to be available for any sensing mechanism that is based inside the cell, 
there is a need for analytes to be able to enter the cell via diffusion, nonspecific 
uptake, or active transport. Alternative approaches are implemented in the cases 
when membrane permeability for an analyte is not sufficient. These approaches 
include allocation of the recognition element to the outside of the cell or the intro-
duction of an appropriate transport mechanism for importing the analyte [61].

A large number of studies in which performances of whole cell-based biosensors 
were tested have utilized electrochemical and optical transducers. For detection of 
heavy metal ions (Cd2+, Cu2+, Fe3+, Hg2+, Pb2+,and Zn2+)  at concentrations of 10μM, a 
mammalian heart cells-based biosensor was developed [54], with excellent performance 
in terms of frequency selection, amplitude and duration of detection within 15 min.

Biosensor, based on immobilized engineered bacteria Alcaligenes eutrophus 
(AE1239) and optical transducer, was utilized for monitoring the bioavailable copper 
ions in synthetic water samples, wherein the lowest limit of detection was 1 μM [62].

4. Conclusions

Biosensors have a very wide range of applications, from environmental monitor-
ing, food safety, detection of various diseases, use in artificial implantable devices 
such as pacemakers to the detection of drugs.
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linesterase (Ache) were developed as a biocomponent with a detection limit of 1 ppb 
in water samples. It is known that ions of heavy metals inhibit alkaline phosphatase 
which was used for forming the biosensor with alkaline phosphatase as a biocompo-
nent. It was found that the sensitivity of the developed biosensor to Cd2+ and Zn2+ was 
10 ppb, whereas, with regard to ion Pb2+, there was no significant inhibition.

Two protein-based biosensors were developed on the basis of GST-SmtA and 
MerR [60] proteins, and their sensitivity and selectivity for heavy metal ions (Cd2+, 
Cu2+, Hg2+, and Zn2+) were measured using a capacitance transducer. Both types 
of biosensors have shown high sensitivity, enabling detection of metal ions up to 
femtomolar concentration.

Capacitance protein-based biosensor using synthetic phytochelatins (ECs) 
was developed for the detection of heavy metal ions (Cd2+, Cu2+, Hg2+, Pb2+, 
and Zn2+), and the results of the experiments showed a lower sensitivity for all 
metal ions except for Zn2+ compared to systems based on SmtA and MerR, which 
can be explained by conformational changes in the protein, taking into account 
that the change in capacitance is function of the resulting change in protein 
conformation [51].

In cell-based biosensors, bioelement is fused with reporter gene. The detection 
mechanism is based on the activation of the reporter gene upon the contact between 
bioreceptor and target analyte, yielding an output measurable signal that is a cor-
relation with bioavailable concentration of heavy metal.

Various cell-based biosensors have been used for the detection of heavy metals 
in water due to their ease of production and field testing, the ability to perform fast 
single measurement, as well as continuous measurements, and the ease of identify-
ing bioavailable concentrations of toxicants that allows estimation of effects that 
heavy metals have on living organisms.

The advantage of bacterial cells is resistance to environmental conditions that 
could destroy the sensory element if exposed to them, supplying it with a relatively 
stable environment. Due to specific metabolic pathways used in microorganisms, 
compared to isolated enzymes, microbial sensors have the potential for more selective 
analysis of heavy metals which cannot be measured by simple enzyme reactions [61].

In order to be available for any sensing mechanism that is based inside the cell, 
there is a need for analytes to be able to enter the cell via diffusion, nonspecific 
uptake, or active transport. Alternative approaches are implemented in the cases 
when membrane permeability for an analyte is not sufficient. These approaches 
include allocation of the recognition element to the outside of the cell or the intro-
duction of an appropriate transport mechanism for importing the analyte [61].

A large number of studies in which performances of whole cell-based biosensors 
were tested have utilized electrochemical and optical transducers. For detection of 
heavy metal ions (Cd2+, Cu2+, Fe3+, Hg2+, Pb2+,and Zn2+)  at concentrations of 10μM, a 
mammalian heart cells-based biosensor was developed [54], with excellent performance 
in terms of frequency selection, amplitude and duration of detection within 15 min.

Biosensor, based on immobilized engineered bacteria Alcaligenes eutrophus 
(AE1239) and optical transducer, was utilized for monitoring the bioavailable copper 
ions in synthetic water samples, wherein the lowest limit of detection was 1 μM [62].

4. Conclusions

Biosensors have a very wide range of applications, from environmental monitor-
ing, food safety, detection of various diseases, use in artificial implantable devices 
such as pacemakers to the detection of drugs.
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Application for pollution monitoring requires the biosensor to work from 
several hours to several days. Such biosensors are a tool for “long-term monitoring.” 
Whether it is a long-term follow-up or analysis of individual shots, biosensors are 
used as technologically advanced devices both in settings with limited resources and 
in sophisticated medical settings.

Considering the complex and critical situation in the field of environmental 
protection, and the state of natural waters from the aspect of pollution with heavy 
metals, and taking into account the toxicity of heavy metal ions, it is necessary 
to continuously work on finding new efficient techniques for their detection. 
Conventional analytical techniques can no longer satisfy the needs of constant 
monitoring and frequent field analysis of water because they are expensive, often 
with bulky equipment and a long analysis time, and require well-trained analysts. 
Biosensors can be used to overcome the limitations of conventional methods. In the 
future, designing a biosensor with the appropriate material will surely help in the 
selective identification of metal ions not only from water but also from any other 
matrix.
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Abstract

Detection and identification of pathogenic bacteria is important in the field 
of public health, medicine, food safety, environmental monitoring and security. 
Worldwide, the common cause of mortality and morbidity is bacterial infection 
often due to misdiagnosis or delay in diagnosis. Existing bacterial detection meth-
ods rely on conventional culture or microscopic techniques and molecular methods 
that often time consuming, laborious and expensive, or need trained users. In 
recent years, biosensor remained an interesting topic for bacterial detection and 
many biosensors involving different bio-probes have been reported. Compared to 
antibodies, nucleic acids and enzymes etc., based biosensors, bacteriophages can be 
cheaply produced and are relatively much stable to elevated temperature, extreme 
pH, and diverse ionic strength. Therefore, there is an urgent need for phage-based 
biosensor for bacterial pathogen detection. Furthermore, bearing high affinity 
and specificity, bacteriophages are perfect bio-recognition probes in biosensor 
development for bacterial detection. In this regard, active and oriented phages 
immobilization is the key step toward phage-based biosensor development. This 
chapter compares different bacterial detection techniques, and introduces the basic 
of biosensor and different bio-probes involved in biosensor development. Further 
we highlight the involvement and importance of phages in biosensor and finally we 
briefed different phage immobilization approaches used in development of phage-
based biosensors.
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phage-probe, phage immobilization

1. Introduction

The risks due to bacterial contamination and infection to healthcare system and 
socio-economic stability as well as to environment and food contamination have 
become global issues [1]. The current approaches are usually not performing well 
in complex mixtures of opposing microorganisms and environmental conditions 
devoid of enrichment step. These approaches comprise old-fashioned plating and 
antibodies-based assays. Therefore, in the skipping of enrichment step, almost all 
present experiments are not satisfactorily sensitive to sense a distinct or a very small 
quantity of target bacteria [2]. In contrast, the approaches like hybridization-based 
assays (ELISA) and polymerase chain reaction (PCR) are sensitive; however, these 
cannot differentiate the live cells from the dead ones, thus require an augmentation 
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step for specificity and are laborious and expensive. These restrictions can be 
potentially overwhelmed by developing a biosensor. Biosensor development needs a 
specific and sensitive bio-probe that can withstand elevated temperature, extreme 
pH and remain active in diverse and complicated environment. Bacteriophages 
being sensitive and specific to host bacterium, and showing activity in diverse 
ionic concentrations are potent agents in biosensor development for detection of 
bacteria. Phages naturally deliver specificity in recognition of particular bacterial 
strain to attach, and specifically sense preferred bacterial spectra. Swift recogni-
tion offered by phage-based detection can improve the tracing and remediation of 
bacterial contamination [3]. The main issue that comes with development of phage 
based biosensor is active and oriented phages immobilization on substrate surface. 
The benefit of phage immobilization during biosensor development is that phages 
remain active for long time period, retain physiological activities with high densi-
ties, and having high bacterial cells capture efficiencies. Thus, showing improved 
detection limits that leads to possible development of phage-based biosensor for 
rapid and accurate bacterial detection [4]. Bacteriophage based biosensor develop-
ment involve the following phage related approaches: (i) Observing the released 
phage particles during lytic cycle in the presence of host bacterium, (ii) monitoring 
released intracellular lysed cell component in the course of phage-mediated bacte-
rial lysis, (iii) detection of inhibited bacterial growth in the presence of specific 
phages, (iv) use of stained phages for bacterial capture, and (v) observing the 
expression of cloned reporter gene in genetically modified phages that is expressed 
after bacterial infection [5].

2. Bacterial detection approaches

The conventional bacterial detection techniques such as colony count, bio-
chemical and immunological procedures (ELISA) [6], and the modern (PCR) 
[7] approaches are currently widely in use; however, these approaches are time 
consuming as these need enrichment step. Consequently, there is a need to develop 
rapid and sensitive detecting methods. To this end, the use of biosensor, which can 
sense bacteria at diverse concentrations, are considered well applicable platform 
owing to their low cost, simplicity, and sensitivity [5]. Figure 1 shows different bac-
terial detection approaches and Table 1 summarizes comparative study of different 
bacterial detection methods.

Figure 1. 
Representation of various bacterial detection approaches.

159

Principle and Development of Phage-Based Biosensors
DOI: http://dx.doi.org/10.5772/intechopen.86419

2.1 Traditional culturing methods

In such methods, bacteria existing in a sample are cultured on different types 
of media so that to confirm their existence and isolate them. Two main culturing 
approaches are used, quantitative and qualitative. By qualitative culturing tech-
nique, the target bacterial colonies are produced on selective or differential media. 
In quantitative culturing technique, the specific bacteria are propagated to form 
specific colonies which can be calculated to evaluate the sum of microorganisms. 
Finally, different biochemical tests are performed [8].

2.2 Immunological methods

Immunological approaches, such as ELISA, depend upon the reaction of an 
antigen with a particular specific antibody. This method is unable to differentiate 
among living and dead cells and also antibodies production is very expensive [6].

2.3 Molecular techniques

Molecular procedures involve the use of DNA for the detection of target bacte-
ria. For example, PCR, first pronounced in 1980s, is nowadays frequently used for 
detection of bacteria [7]. Molecular approaches are popular for their high sensitivity 
and rapidity. Dedicated apparatuses, skilled operators and expensive nature mark 
their rejection.

2.4 Biosensor

According to the proposed definition of biosensor by IUPAC, “Biosensor is 
a self-controlled imitated device, that is comprise a bio-recognition constituent 
(bio-prob/bio-receptor), connected to a transducer to translate the biological signal 

Bacterial 
detection 
method

Personals Cost and 
detection 
time

Tools Live and 
dead cells 
detection

On spot 
detection

Ref.

Culture & 
colony count

Trained 
users, 
laborious

Cheap, 
5–7 days

Simple Yes No [2, 13, 14]

PCR Trained 
users, 
laborious,

Costly, 1–4 h Specialized No No

ELISA Trained 
users, 
laborious,

Costly, 
approx.: 4 h

High-tech No No

Nucleic 
acids-based-
biosensor

Simple, 
automatic

Expensive, 
0.5–2 h

Simple No Yes [2, 15, 16]

Antibodies-
based-biosensor

Simple, 
automatic

Very expensive, 
0.5–2 h

Simple No Yes

Phage-based-
biosensor

Simple, 
Automatic

Cheap, 0.5–2 h Simple Yes Yes

Table 1. 
A comparison between culture and colony count, advanced molecular, and novel biosensors-based bacterial 
screening approaches, adapted and modified from [5].
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into a computer readable signal and is then presented on computer and analyzed 
[9] (Figure 2). The bio-probes used in general are bacteriophage, enzyme, whole 
cell, nucleic acid and antibody. The transducer is electrochemical, optical, or mass 
based, or combination of these. Typical features of biosensors include; selectivity, 
reproducibility, detection limit, stability, biocompatibility, sensitivity and linearity 
[10]. Biosensors are commonly used in medical, diagnostic, quality control, veteri-
nary, food and dairy industry, viral and bacterial diagnostic, agriculture industry, 
drug production, mining, industrial waste water control, defense and military [11]. 
Classification of biosensor is based on the recognition element, that is, bio-probe 
(bacteriophage, enzyme, whole cell, nucleic acid and antibody) used or the type of 
transducer (electrical, optical, or thermal signals etc.) involved. A representative 
biosensor is comprised of analyte (target to be sensed), bio-receptor (bio-molecule 
that identifies the analyte), transducer (responsible for signal transduction) and 
electronics (display the transduced signal) [5].

3. Bio-probes

As mentioned earlier, biosensor involves some biological recognition elements 
like bacteriophages [17], enzyme [18], whole cell [19], nucleic acid [20], and anti-
body [21], etc. These common bio-probe are briefed in the following sections:

3.1 Antibodies

To accomplish the requisite for up-to-date and fast bio-sensing schemes, anti-
bodies (Abs) have become important affinity ligands to detect pathogens in clinical 
and food samples. Definitely, Abs when immobilized on a surface, these interact 
with specific antigens present on microbial surfaces, thus inducing a computable 
signal by an output detector. Abs popularity ascends from numerous benefits, for 
example, adaptability, ease of incorporation into diverse systems and are highly 
specific to their target antigens [21].

Figure 2. 
Schematics representation of a generalized biosensors, reframed from [12].
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3.2 Enzymes

From the time of first biosensor (glucose sensor by Clark and Lyons in 1962), 
enzyme-based biosensors have shown immense progress in many applications. 
Enzymes are precise competent bioanalytical agents, having the ability to pre-
cisely mark out their substrates. This distinctive property mark enzymes potent 
implements in the development of analytical devices [18]. These biosensors 
company closely a biocatalyst-comprising a detecting coating with a transducer. 
Its operational principal is based on the catalysis and binding abilities for specific 
detection.

3.3 DNA/nucleic acid

The sequence of nucleic acids for a precise detection was established in 1953 
and is still developing widely [20]. These biosensors involve nucleic acids as a 
bio-recognition-prob. The high specific binding between the two single strands 
of DNA (ssDNA) sequences to make double stranded DNA (dsDNA) sequence 
is used to develop nucleic acids-based biosensor. This technique validated to 
develop DNA-built-biosensor from the old-style technique like pairing of radio 
iso-tropic and electrophoretic separations that are costly, dangerous, and time 
consuming.

3.4 Cells

These biosensors involve living cells as a bio-probe and detecting component. 
They are constructed on the basis of living cell ability to sense the physiological 
parameters, and the extracellular and intracellular micro-environmental condi-
tions, and as a result a response is produced by the reaction between cell and 
stimulus [19]. Microbial cells, for example fungi and bacteria are commonly used 
to develop whole cell based biosensors to sense particular molecules or the inclusive 
“condition” of the nearby environs.

3.5 Bacteriophages

Phages are virus particles, infecting and reproducing only within bacterial cells. 
Because of their associated evolution along with bacteria, phages have extremely 
specific machineries to identify and then infect their host bacteria for propagation. 
Phages generally have two distinctive chunks, the head comprising genetic material 
while the tail accountable to recognize and attach to bacterial cell [22]. Phages have 
several biomedical applications, and owing to their specificity they are extensively 
used for specific and sensitive detection of bacteria [23]. Most significant feature of 
phages is that they can only identify, and attack living bacterial cells. This exciting 
feature was well demonstrated by Fernandes et al., to detect viable, viable but not 
culture-able, or totally dead Salmonella cells on a biochip that was bio-functional-
ized with either phage or antibody as a bio-recognition element [24]. Interestingly 
dead cells were still capable to interact with the antibody, phage probes enabled 
a superior difference among viable and dead Salmonella. Additionally, some of 
phages are very specific and infecting only one bacterial specie [25]. This property 
will permit the recognition of target pathogenic bacterial species in a complex flora. 
Comprehensive explanation of bacteriophage based recognition elements employed 
as bio-probes in development of a biosensor to detect pathogenic bacteria, is 
outlined in the following section.
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4. Bacteriophages in biosensor

A phage as a bio-recognition probe offers numerous benefits in rapid bacte-
rial sensing [17] as they are: (•) extremely specific to their host [26], (•) ability 
of producing extraordinary titers of descendant phages, (•) tolerant to extreme 
environmental conditions like ultrahigh temperatures, organic solvents and 
wide-ranging pH compared to Abs, [27], (•) safe handling, (•) discriminating 
among dead and live bacteria as they proliferate only in live bacterial cells [28], 
(•) production in bulk are artless and economical. These compensations make 
phages as leading bio-recognition probes to develop biosensors for bacterial 
screening [15]. Frequently designed phage-based biosensor schemes comprise 
the association of whole phage or phage-constituents, infecting/capturing target 
bacterial cells and ultimately resulting in the production of electrical, colorimet-
ric, fluorescent, or luminescent etc. signals, based on the available biosensing 
system. Hence, phages are demonstrating themselves as novel troupes for cheap, 
fast, sensitive and specific bacterial detection in comparison to other available 
platforms [29].

4.1 Reporter phage-probes

Reporter bacteriophages are genetically edited phages used to import and 
insert a specific gene into the genome of target bacteria. The foreign gene 
inserted to host bacteria is expressed, bacteria are marked based on avail-
able platforms as a colorimetric, optical, or as a fluorescent marker and thus 
bacterial screening is permitted [30]. Irrespective of, whether reporter bac-
teriophages are lysogenic or lytic, both can detect potentially the particular 
pathogenic bacteria. A number of genes, such as insertion of firefly luc or 
bacterial lux gene account for bioluminescence, β-galactosidase-lacZ gene, ice 
nucleation-inaW gene, and also green fluorescent protein (GFP) gene reported 
by researchers as reporter phages and detected many of Gram negative and 
Gram positive bacteria [31, 32].

4.2 Stained phages

Phages stained with different fluorescent dyes have been used for target bacterial 
detection involving various fluorescence sensing tools. Stained phage-probes can 
discriminate a target bacterium when they infect and attack host cells [33]. Like, 
phages were tagged with fluorescent quantum dots (QDs) and E. coli was detected 
at 20 colony forming units per mL in water samples within 1 h [34].

4.3 Lytic phages

Lytic phages infection results in cell burst and consequently intracellular 
organelles, descendant phages, and cell-lysis materials are released. Both the 
release of intracellular elements and released progeny phages provide a base to 
recognize the target bacterium [30]. For example, as a released cell component, 
adenosine-triphosphate can be detected through bioluminescence just after target 
bacterial cell lysis [35]. Also the amount of released progeny phages released after 
cell lysis by a particular phage is directly proportional to the amount of lysed 
cells and can be used for bacterial sensing [36]. The released progeny phages 
enumerated by various detection mechanisms such as plaque- or immuno assays, 
molecular methods like quantitative PCR (qPCR) and, or by isothermal nucleic 
acid amplification (ITNAA) [37].
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4.4 Capturing phages

Phages that are immobilized on solid matrix can be utilized for capturing spe-
cific bacterial cell from contained samples. Bacteriophages have a many function-
ally active groups like hydroxyl group (—OH), aldehyde group(—CHO), carboxyl 
group(—COOH), etc., on their exteriors, giving them inimitable characteristics 
permitting their interaction with other materials and to interact with bacterial sur-
face receptor molecules [38]. Consequently phages have been successfully used to 
capture particular bacterial cells from different samples [39, 40]. Like streptavidin 
actuated gold nano-particles were used to immobilize GM T4 bacteriophage par-
ticles. Delay in impedance was observed due to bacterial cells binding that marked 
as a sign for the existence of bacterial cells [41].

4.5 Phage receptor-binding-proteins

Some phage components display natural magnetism to host cell for example 
receptor-binding proteins (RBPs), but they are highly subtle to variations in envi-
ronmental conditions. Phage tail bears RBPs and helps in binding to host bacterium, 
proceeding to insert its genetic material within the cell and cell infection is estab-
lished [42]. RPBs bind to cell surface with help of specific polypeptide or polysac-
charide sequences that are present on the cell surface. Poshtiban and colleagues 
activated magnetic beads by immobilization of RBP protein Gp047 (from phage 
NCTC12673). These functionally active beads were then utilized for Campylobacter 
cells withdrawal from samples of milk and broth of chicken [43].

5. Phages immobilization strategies

It’s obvious from the literature that different approaches have been developed 
for immobilization of phages on surface of electrodes Figure 3. The common 
phage immobilization strategies on solid surfaces include physical adsorption [44], 
covalent bonding [45], entrapment of phages in solid matrix [46], etc.

The quantity of randomly oriented phages on solid surfaces is the most 
straightforward way for enhancing signal in bio-sensing scheme [47]. Deposition 

Figure 3. 
Different ways to potentially orient phages on solid surfaces. Green highlighted-bacterial binding proteins, 
(a) tailed phages-side-ways, head-down, or tail-down, (b) asymmetric icosahedral phages, (c) filamentous 
phages-through either side-ways or, pole, (d) filamentous phages are likely to be bundled or aggregated (left). 
Oriented typically parallel on the substrate (right), adapted from [5].
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of high number of phage particles creates a steric interruption between phage par-
ticles [39]. Thus number of phage particles immobilized on solid surface should 
not surpass a specific threshold per surface area [48]. For T4 phage, estimated 
optical density was 19 phages/ mm2 area beyond that clogging was happened, 
resulting in reduced signal [49]. Phage particles can be simply oriented on the 
surface of electrode as they bear positive and negative potential on their tail fibers 
and head respectively. Phage immobilization strategies are briefly highlighted in 
the following context.

5.1  Immobilization by physisorption, electrostatic bindings and covalent 
bonding

Most common approach used for immobilization of phages is physisorption 
[50, 51]. This approach is very artless, but then again the adsorbed phage may 
possibly detach as of substrate surface because of shear, changes in pH, or tem-
perature, or ionic concentrations caused in the medium that reduces principally 
their biosensing applications. Subsequently most phage particles having net nega-
tive charge at pH 7 [52], a number of investigators successfully used electrostatic 
binding for phages immobilization Figure 4, [52]. Also this methodology suffers 
due to variability and bacteriophage detachment in turn to the physico-chemical 
fluctuations in the analyte medium. Covalent bonding of phages offered a more 
stronger attachment and is not at risk to easy detachment of phages [53, 54]. 
Proper chemical studies can make easy selection of suitable substrate and then 
potential application. Covalent attachment resulted in a sophisticated bacterio-
phage surface mass that is principally necessary for phage application in biosensor 
development [55, 56]. To design bioactive surfaces with phages, phage infectivity 
is important or at least phage should be able to interact with host bacteria or 
analyte; therefore, optimization is needed to reduce the effect on bacteriophage 
integrity during immobilization.

Figure 4. 
Graphical representation of bacteriophage random immobilization and electrostatic, charge-directed 
orientated immobilization of T2 phage onto CNT electrode surface functionalized with polyethyleneimine 
(PEI) [57].
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5.2 Phage display technologies

Bacteriophage-display tools can enable scientist to display peptides of 
choice present on the phage exterior, that is, phage envelope. Phages expressed 
peptide can consequently be adsorbed on material surfaces that are coated 
with peptides specific ligands Figure 5. Phage-display-libraries are produced 
by introducing DNA segments into specific phages to facilitate each phage 
to display a specific peptide expressed by the DNA segment inserted [58]. 
Technology of phage display developed as a combined influence of two central 
thoughts, fusion phage and combinatorial peptide libraries [59]. The first 
theory allows display of external peptides on bacteriophage surface [59]; while 
the second idea hires libraries of numerous peptides achieved in correspond-
ing production as contrasting to production of single specific peptides [60]. 
Merging these two theories stemmed progress in phage-display-tools, multi-
billion clone alignments of self-assembled and self-amplified bio-components 
[54]. It is significant to keep in mind that genetic alteration may alter the 
characteristics properties of bacteriophages. For example, biotin-carboxyl-
carrier-protein (BCCP) gene or the cellulose-binding-module (CBM) gene to 
the small-outer-capsid-protein (SOCP) gene of T4 bacteriophage was attached, 
affecting bacteriophage infectivity, and result was decline in burst size, as well 
as extended latent period [61].

Figure 5. 
Current applications of phage display technologies as imaging agents. Icosahedral phages are mostly used as, 
aiming on moieties for bacterial detection, and substrates for signal amplification. While filamentous phages 
are mostly used as multifunctional probes, and a variety of sensors [67].
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5.3 Phage entrapment in porous matrix

Bacteriophages immobilization in micro-porous matrices permits them function-
ally and also structurally stable, keeping them active for long time period. Phages 
immobilization by entrapment in a porous hydrogel, (bio)polymeric agar and alginate 
matrices, is a tool for selection of applications where protection of phage particles 
essential against severe environmental conditions [62]. Additionally, entrapment might 
aid to maintain moisture, which is important for many phages infectivity, or keep phage 
particles in lyophilized condition [63]. A fruitful marketable case in point of entrapped 
bacteriophage in matrix is PhagoBioDerm [64] that is 0.2 mm thick, porous-polymeric-
wound-dressing saturated with a mixture of biocides and lytic phages [65]. The 
matrices used for bacteriophage entrapment, that might possibly delay interaction of 
entrapped bacteriophage particles with host bacterial cells or analytes that are present in 
the vicinity of medium [66], marking inefficiency of phage bioactive surface.

5.4 Phage layer by layer organization

Many investigators discovered to possibly immobilize phages by alternative 
layering with polyelectrolytes having oppositely charges, and claimed observation 
of enhanced phage particle surface coverage [68, 69]. For instance, a layer by layer 
methodology for M13 bacteriophage was reported, and phage was sandwiched 
between oppositely charged layers of weak poly-electrolytes, that was capable to 
diffuse freely form a nearby packed phage monolayer [69].

5.5 Efficiency of immobilized phages in biosensing platforms

The effectiveness of bio-sensing approaches is mostly measured in terms of 
minimum limit of detection (LOD) of bacterial or other analyte. Thus researchers 
attempted and focused to improve the bacteriophage surface coverage for pushing 
detection limits. Significantly keep in mind that the LOD has not been improved 
biosensors where phages are immobilized by covalent binding, in comparison to 
the approaches where phage is immobilized by physisorption [22]. Thus, bacterio-
phage surface coverage is not only the factor to necessarily increase and improve 
the sensitivity and LOD of bacteriophage-based biosensor. Limit of detection of 
biosensors, based on various transduction approaches can be different depending 
on the working principle of selected transduction platform.

6. Conclusions and prospects

Without any doubt, environmental monitoring and food safety are the main uni-
versal worries that we humans have to oppose and are constantly struggling to take 
them over. In this chapter, we evidently demonstrated the principle and develop-
ment phage-based biosensor. We compared the conventional phage based detection 
methods and briefed an introduction to different bio-probes involved in biosensors 
development. Further, we reviewed demonstrative phage/phage-components used 
in sensors development for pathogenic bacterial detection. Finally, we briefed 
different techniques to immobilize phages on appropriate substrate that is the major 
step toward phage-based biosensor development. We intend at thought-provoking 
and comprehensive explanations in mounting phage-based sensors and enlighten-
ing their uses for bacterial detection. By collaboration of engineers and scientists 
from multidisciplinary area to design a field applicable sensor and make advance-
ments in phage-based sensors for bacterial pathogens diagnosis, we expect that this 
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chapter might bring together the technologies related to phage-based sensors. In 
short, phage based biosensors in the fields of food safety, environmental monitor-
ing and infectious disease diagnostics is vital as they are;

• Cheap (based on easy phages production)

• Highly specific

• Very sensitive

• Versatile (based on phage components)
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Abstract

Environmental pollution and food safety are becoming serious concerns to 
human health in developing countries. To combat such issues, researchers have 
developed different approaches for on-spot detection and screening of infectious 
disease, caused by pathogens and toxins in food and water samples. One such 
approach is the development of phage- and phage-component-based sensors that 
are highly specific, sensitive, rapid, efficient, cheap, and portable analyte screen-
ing platforms. Such sensors overcome the limitations of conventional screening 
approaches. This chapter highlights different food and environmental contamina-
tions and represents the potential of phage-based biosensor for bacterial detec-
tion. It summarizes different applications of phage-based sensors in the fields of 
food safety and environmental monitoring and highlights current challenges and 
perspective. In general, this chapter brings together the technologies related to 
phage-based sensors and food and environmental safety, by compiling the efforts of 
engineers and scientists from multidisciplinary areas.

Keywords: bacteriophage, biosensor, infectious diseases, food safety,  
environmental monitoring

1. Introduction

Many pathogenic bacteria like Streptococcus, Mycobacterium, Pseudomonas, 
Salmonella, Shigella, etc. are causing different diseases in humans, resulting in several 
outbreaks and epidemics of diseases worldwide. Every year, millions of individuals get 
infected by these bacteria, while the common sources of infections are clinical, food-
borne, airborne, and/or waterborne [1]. Clinical, food, and environmental contamina-
tions are the eternal challenges worldwide in the healthcare systems and food safety and 
environmental monitoring. Irrespective of comprehensive struggles to fight such patho-
genic bacteria, the numbers of clinical, food, and environment-related diseases are 
increasing every year [2]. As a solution to the problem, the development of biosensors 
especially phage-based biosensors for bacterial detection in clinical, food, and environ-
mental samples has remained a hot topic since the last few decades. Phages in biosensor 
proved themselves as unique bio-probes, owing to their selectivity, specificity, and 
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withstanding harsh environmental conditions. Establishing phage-based biosensors for 
application in food safety and environmental monitoring is a motivating and interesting 
research topic and is the urgent need of this modern era. The key point is to enhance 
phage-based cheap recognition tools with maximum levels of selectivity, consistency, 
and sensitivity with minimum times of assay. Significant struggles have been dedicated 
on enhancing the transducer surface of biosensor for improved detection and sensitiv-
ity. Phage-based bio-probes have been used in transducer development for several 
analytical approaches to offer specific and selective detection. Bacteriophages as a bio-
probe have been successfully applied for bacterial detection in clinical samples (urine) 
[3], food samples (milk, tomatoes) [4], and environmental samples (river water) [5]. 
Furthermore, different analytical approaches relying on phage-based bio-probes have 
been reported like electrochemical [6], bioluminescence [7], fluorescence [8], mass 
spectrometry [9], magnetoelastic [4], surface plasmon resonance [10], lateral flow assay 
[11], etc. In the following context, we will review biosensor transduction platforms 
involving phage-based probes for transducer development to detect infectious bacteria 
in the field of food and environmental safety monitoring [12]. In this chapter we will 
highlight applications of different phage-based analytical approaches for bacterial 
detection in clinical, food, and environmental samples.

2. Phage-based biosensors for infectious pathogen detection

Bacteriophage as a bio-probe has been used in different transduction platforms 
for detection of pathogenic bacteria, which are briefed as follows:

2.1 Phage optical biosensors

Optical phage-based sensors owing from their reasonably rapid screening, 
sensitivity, and flexibility to a broad-ranging assay situations have been extensively 
explored for bacterial detection. Optical methods are classified into two core sub-
classes on the basis of their working principles, label-free and labeled. The best fre-
quently used optical methods for bacterial screening are fluorescence spectrometry 
[8], surface plasmon resonance (SPR) [10], and bio- or chemiluminescence [13]. In 
the subsequent subsection, our focus is on phage bio-probe-based optical biosensors 
for detection of pathogens with special emphasis on food safety and environmental 
monitoring. Figure 1 represents a reporter phage-based optical sensing scheme.

2.1.1 Phage-SPR-based sensors

Surface plasmon resonance (SPR) works on the principle of oscillation phenom-
enon that happens between the interfaces of any two materials. The change in the 
refractive index close to the sensor surface caused by contact of target analyte in the 
medium with the bio-probe (phage) present on transducer surface is measured by 
SPR biosensors. Phages have been widely immobilized as bio-probes on the surfaces 
of SPR transducers to offer facility of specific recognition of bacterial detection. 
The immobilized phage on SPR transducer successfully detected E. coli K12 [15], S. 
aureus [16], methicillin-resistant Staphylococcus aureus (MRSA), and E. coli O157:H7 
[17]. Typically, the LOD was ranging from 102 to 103 CFU/mL. Phage RBPs have 
been utilized as bio-probes in SPR approaches for specific bacterial screening, such 
as Singh et al.’s activated gold-coated plates, by immobilizing genetically engineered 
tailspike proteins from P22 phage to demonstrate selective, specific, and real-time 
Salmonella detection with 103 CFU/mL sensitivity [18].
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2.1.2 Phage-bioluminescence sensors

For bacterial quantitative detection in samples, bioluminescence analyses that 
are rapid, sensitive, and simple are used by assessing the emitted light from intra-
cellular components. Bacterial lysis is the first step of this type assays, to discharge 
intracellular cell components followed by reaction with luciferase and are screened 
by bioluminescent. A lytic bacteriophage is involved as a bio-recognition probe 
for target bacterial detection following lysis. Infectious bacteria like E. coli and 
Salmonella Newport were detected by an adenosine triphosphate bioluminescence 
assay using lytic bacteriophage as bio-probe lysis of target bacterial cell [19]. The 
sensitivity was enhanced 10–100-folds by addition of adenylate kinase as an alter-
nate cell marker, while less than 104 CFU/mL of E. coli was reported in ˂1 h [19]. 
Later it was demonstrated that the quantity of discharged adenylate kinase from 
lysed cells is dependent on the growth stage, bacterial type, the infection time, and 
the phage type [20].

2.1.3 Phage-SERS-based sensors

An innovative Raman method, i.e., surface-enhanced Raman spectroscopy 
(SERS), is enhancing the intensity by vibrational absorbance of definite elements 
when they are near the surface of nano-organized noble metals by the influence of 
numerous orders of magnitude. The improved intensity of SERS method is depen-
dent on the molecules’ capability to release a Raman signal and the contained fields 
of plasmon in their neighborhood [21]. For instance, a report stated a phage-SERS 
biosensor for E. coli detection using phage immobilization on nano-figured thin 
sheet of silver over substrates of silica (Figure 2) [22] established by exploitation 
of metallic nanosculptured thin silver film. The silver film exterior is activated by 
self-assembled monolayer of 4-aminothiophenol and glutaraldehyde for T4 immo-
bilization to screen E. coli. As a reporter molecule, 4-aminothiophenol monitored 
the Raman band enhancement. Other reports of phage-SERS-based biosensors have 
been reported and are briefed in Table 1.

Figure 1. 
A graphical representation of target pathogen detections based on reporter phage, adapted from [14].
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Transducer Phage-based 
bio-probe

Target bacteria/
analyte

Sample Detection limit Ref.

SPR T4 phage E. coli K12 PBS 7 × 102 CFU/mL [15]

T4 phage E. coli O157:H7 PBS 103 CFU/mL [17]

BP14 phage MRSA PBS 103 CFU/mL [17]

scFv phages L. monocytogenes — 2.106 CFU/mL [53]

12,600 phage S. aureus — 104 CFU/mL [16]

Luminescence lacZ T4 phage E. coli B Water 10 CFU/mL [7]

SJ2 phage S. enteritidis — 103 CFU/mL [20]

Pap1 phage P. aeruginosa Milk, urine 56 CFU/mL [3]

Lytic phage Listeria innocua — >104 CFU/mL [54]

Shfl25875 S. flexneri Stool 103 CFU/g [55]

LFA B4 phage B. cereus Buffer 1 × 104 CFU/mL [11]

Gamma phage B. anthracis — 2.5 × 104 CFU/mL [56]

T7 phage E. coli Broth 103 CFU/mL [47]

Fluorescent P22 phage S. typhimurium Milk 1 CFU/24 mL [57]

P-S. aureus-9 S. aureus PBS 2.47 × 103 CFU/L [58]

Wβ phage B. anthracis Soil 104 CFU/g [50]

O157-IOV 4 E. coli O157:H7 Milk 4.9 × 104 CFU/mL [59]

PP01 phage E. coli O157:H7 Apple juice 1 CFU/mL [60]

PDPs TNT — 10 μg/mL [61]

T7 phage E. coli LB broth 10 CFU/mL [62]

QCM Filamentous 
phage

S. typhimurium — 102 CFU/mL [35]

Wild-type E. coli K12 — 103 CFU/mL [6]

T4 phage E. coli Milk Few CFU/mL [9]

Figure 2. 
Schematic representation of phage-SERS-based sensor. Adapted from [22].
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2.1.4 Phage-fluorescent sensor

In fluorescent-phage-based sensor techniques, fluorescently stained phages 
are utilized as marking agents for the detection of bacterial cells. Fluorescently 
labeled phages are identified followed by binding to specific host bacterial cell. The 
composite of bacteriophage-bacteria is then sensed by means of flow cytometry 
or epi-fluorescent filter approach. A combination of immunomagnetic separation 
with fluorescent method is detected between 10 and 102 CFU/mL of pathogenic 
bacteria E. coli O157:H7 after 10 h augmentation in artificially contaminated milk 
[23] and 104 CFU/mL in sample of broth medium [24]. Additional improvement 
in the sensitivity of this method was reported by using fluorescent quantum dots 
(QDs) for phage labeling [25]. Also fluorescent-based sensors have been used for 
bacterial toxin recognition. Phage display was applied to choose a peptide (12-mer) 
that was able to attach to staphylococcal enterotoxin B (SEB) that is responsible for 
food poisoning [26]. This approach permitted toxin sensing and detected 1.4 ng of 
SEB/sample well with the help of fluorescence immunoassay and involved a fluo-
rescently stained SEB binding bacteriophage. Also array-based sensors have been 
established following the same principle for simultaneous detection of  

Transducer Phage-based 
bio-probe

Target bacteria/
analyte

Sample Detection limit Ref.

SERS T4 phage E. coli B Buffer 150 CFU/mL [22]

Phage 12,600 MRSA — — [63]

P9b phage P. aeruginosa Clinical 
samples

103 CFU/mL [64]

A511 phage L. monocytogenes — 6.1 × 107pfu/mL [65]

Magnetoelastic E2 phage S. typhimurium — 5 × 102 CFU/mL [66]

JRB7 phage B. anthracis — Spores [67]

E2 phage S. typhimurium Romaine 
lettuce

5 × 102 CFU/mL [68]

Phage S. typhimurium — 1.5 × 103 CFU/mm2 [69]

Amperometric B1-7064 phage B. cereus — 10 CFU/mL [70]

M13 phage E. coli TG1 — 1 CFU/mL [71]

Impedimetric T4 phage E. coli — 104 CFU/mL [72]

T2 phage E. coli B Broth 103 CFU/mL [73]

Lytic phage S. Newport — 103 CFU/mL [74]

Gamma phage B. anthracis Str Water 103 CFU/mL [75]

T4 phage E. coli B Water, milk 800 CFU/mL
100 CFU/mL

[76]

Endolysin 
Ply500

L. monocytogenes Milk 105 CFU/mL [77]

SPR, surface plasmon resonance; scFv, single-chain variable fragment; MRSA, methicillin-resistant Staphylococcus 
aureus; PBS, phosphate-buffered saline; TNB, trinitrobenzene; TNT, trinitrotoluene; QCM, quartz crystal 
microbalance; QD, quantum dot; SERS, surface-enhanced Raman spectroscopy; LFA, lateral flow assay; HRP, 
horseradish peroxidase; CFU, colony-forming unit; PFU, plaque-forming unit; E. coli, Escherichia coli; S. arlettae, 
Staphylococcus arlettae; B. anthracis, Bacillus anthracis; P. aeruginosa, Pseudomonas aeruginosa; S. flexneri, Shigella 
flexneri; S. Newport, Salmonella Newport; S. typhimurium, Salmonella typhimurium; S. aureus, Staphylococcus 
aureus; LB, Luria-Bertani broth.

Table 1. 
Applications of phage/phage components in detection of infectious pathogen and other deadly analytes related 
to food safety and environmental monitoring, where transduction platform used, target analyte/bacteria, 
sample processed, and limit of detection are briefed with reported literature.
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Transducer Phage-based 
bio-probe

Target bacteria/
analyte

Sample Detection limit Ref.

SPR T4 phage E. coli K12 PBS 7 × 102 CFU/mL [15]

T4 phage E. coli O157:H7 PBS 103 CFU/mL [17]

BP14 phage MRSA PBS 103 CFU/mL [17]

scFv phages L. monocytogenes — 2.106 CFU/mL [53]

12,600 phage S. aureus — 104 CFU/mL [16]

Luminescence lacZ T4 phage E. coli B Water 10 CFU/mL [7]

SJ2 phage S. enteritidis — 103 CFU/mL [20]

Pap1 phage P. aeruginosa Milk, urine 56 CFU/mL [3]

Lytic phage Listeria innocua — >104 CFU/mL [54]

Shfl25875 S. flexneri Stool 103 CFU/g [55]

LFA B4 phage B. cereus Buffer 1 × 104 CFU/mL [11]

Gamma phage B. anthracis — 2.5 × 104 CFU/mL [56]

T7 phage E. coli Broth 103 CFU/mL [47]

Fluorescent P22 phage S. typhimurium Milk 1 CFU/24 mL [57]

P-S. aureus-9 S. aureus PBS 2.47 × 103 CFU/L [58]

Wβ phage B. anthracis Soil 104 CFU/g [50]

O157-IOV 4 E. coli O157:H7 Milk 4.9 × 104 CFU/mL [59]

PP01 phage E. coli O157:H7 Apple juice 1 CFU/mL [60]

PDPs TNT — 10 μg/mL [61]

T7 phage E. coli LB broth 10 CFU/mL [62]

QCM Filamentous 
phage

S. typhimurium — 102 CFU/mL [35]

Wild-type E. coli K12 — 103 CFU/mL [6]

T4 phage E. coli Milk Few CFU/mL [9]

Figure 2. 
Schematic representation of phage-SERS-based sensor. Adapted from [22].
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2.1.4 Phage-fluorescent sensor
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[23] and 104 CFU/mL in sample of broth medium [24]. Additional improvement 
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(QDs) for phage labeling [25]. Also fluorescent-based sensors have been used for 
bacterial toxin recognition. Phage display was applied to choose a peptide (12-mer) 
that was able to attach to staphylococcal enterotoxin B (SEB) that is responsible for 
food poisoning [26]. This approach permitted toxin sensing and detected 1.4 ng of 
SEB/sample well with the help of fluorescence immunoassay and involved a fluo-
rescently stained SEB binding bacteriophage. Also array-based sensors have been 
established following the same principle for simultaneous detection of  
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JRB7 phage B. anthracis — Spores [67]

E2 phage S. typhimurium Romaine 
lettuce
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M13 phage E. coli TG1 — 1 CFU/mL [71]

Impedimetric T4 phage E. coli — 104 CFU/mL [72]

T2 phage E. coli B Broth 103 CFU/mL [73]

Lytic phage S. Newport — 103 CFU/mL [74]

Gamma phage B. anthracis Str Water 103 CFU/mL [75]

T4 phage E. coli B Water, milk 800 CFU/mL
100 CFU/mL

[76]

Endolysin 
Ply500

L. monocytogenes Milk 105 CFU/mL [77]

SPR, surface plasmon resonance; scFv, single-chain variable fragment; MRSA, methicillin-resistant Staphylococcus 
aureus; PBS, phosphate-buffered saline; TNB, trinitrobenzene; TNT, trinitrotoluene; QCM, quartz crystal 
microbalance; QD, quantum dot; SERS, surface-enhanced Raman spectroscopy; LFA, lateral flow assay; HRP, 
horseradish peroxidase; CFU, colony-forming unit; PFU, plaque-forming unit; E. coli, Escherichia coli; S. arlettae, 
Staphylococcus arlettae; B. anthracis, Bacillus anthracis; P. aeruginosa, Pseudomonas aeruginosa; S. flexneri, Shigella 
flexneri; S. Newport, Salmonella Newport; S. typhimurium, Salmonella typhimurium; S. aureus, Staphylococcus 
aureus; LB, Luria-Bertani broth.

Table 1. 
Applications of phage/phage components in detection of infectious pathogen and other deadly analytes related 
to food safety and environmental monitoring, where transduction platform used, target analyte/bacteria, 
sample processed, and limit of detection are briefed with reported literature.
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Figure 3. 
Schematic representation of S. typhimurium detection on tomato and spinach leaves on magnetoelastic-E2 
phage-based biosensor system, adapted from [34].

Bacillus globigii, MS2 bacteriophage, and also SEB [27]. The typically reported 
sensitivity until now is about 20 CFU/mL by epi-fluorescent microscopic platform 
[25] and is 1 CFU/mL by flow cytometric recognition approach [28].

2.1.5 Phage-colorimetric sensors

Sensing based on changes in color allows the use of simple diagnostic systems 
like spectrophotometers, or even involving smartphones, and both of them are 
comparatively common and feasible. Designed colorimetric phage-based biosensors 
are mostly based and integrated on the utilization of reporter bacteriophages that 
carry genes coding for reporter enzymes. The foremost colorimetric sensor based 
on phage was to detect Salmonella ice nucleation sensor using reporter gene inaW 
[29]. Expression of ice nucleation protein was induced upon infection, interrupting 
the cell, and was consequently observed by the addition of an indicator dye (orange 
colored) [30]. Other serviceable reporter genes that have been successfully used with 
various colorimetric substrates are celB and lacZ segments encoding β-galactosidase 
and β-glycosidase [31]. More recently enhanced phage-based colorimetric technique 
has been reported to be integrating and coupling with novel technologies like surface 
plasmon [32], macroscope and smartphone [33], and lateral flow assay [11]. Other 
colorimetric phage-based biosensors established in recent years are briefed in Table 1.

2.2 Phage-based micromechanical sensors

Representative micromechanical biosensor (magnetoelastic) is expressed in Figure 3, 
involving E2 phage for detection of S. typhimurium on tomato and spinach leaves. 
Further micromechanical-phage-based biosensors are briefed in the following context.

2.2.1 Phage-QCM-based sensors

Quartz crystal microbalance (QCM) sensors are mass-based sensors that are 
highly sensitive with the ability of detecting nanogram variations in mass. QCM 
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biosensors are functionalized by a very thin piezoelectric film having both sides 
coated with two conductive electrodes. Mechanical resonance is stimulated by 
electrical field application through the quartz crystal.

Consequently, QCM-based biosensors could be established to quantify the mass 
of many target analytes by immobilization of individual bio-probes on the surface 
of sensor. Phages as bio-probes can be conjugated with QCM biosensors for selective 
screening of bacterial cells. For instance, physically adsorbed bacteriophages around 
3 × 1010 PFU/cm−2 on the surface of piezoelectric transducer provided a very rapid 
and sensitive platform for Salmonella typhimurium detection. This immobilized 
bacteriophage on QCM biosensor had a LOD of 102 CFU/mL having a broad linear 
range of 100–107 CFU/mL and a quick reaction and detection time of less than 3 min 
[35]. Other reports of phage-based QCM sensor applications in detection of infec-
tious bacteria in food safety and environmental monitoring are briefed in Table 1.

2.2.2 Phage magnetoelastic sensors

Magnetoelastic sensors are prepared from materials having magnetoelastic 
property, i.e., magnetism and elasticity, and they contract/extend on excitation 
by alternative-current-magnetic field. The resonance frequency depends on the 
viscosity/mass adjacent to the surface of the resonating material. Magnetoelastic 
devices are used for detection of biological and chemical analytes by integration of 
bio-probes like phages on the biosensor surface and might be functional in gaseous, 
static, liquid, or flowing condition [21]. Likewise, E2 bacteriophage was geneti-
cally modified for specific detection of S. typhimurium in samples of food [36], on 
spinach leaves [37], and in apple juice, tomato, or milk [38], and all these magne-
toelastic biosensors displayed outstanding selectivity and specificity. In addition, 
E2 bacteriophage-based magnetoelastic biosensors expressed tremendous stability 
when exposed to severe environmental conditions [39]. ME-lytic phage-based 
biosensor was reported to detect MRSA bacteria. In the evaluation based on varied 
immobilization times (10, 30, 90, 270, 810, and 2430 min) and bacteriophage con-
centrations (108–1012 PFU/mL), lytic phage binding to ME sensor surface was estab-
lished for optimal conditions. The optimal immobilization time and concentration 
in PFU/mL for effective binding of phage to ME sensor surface was calculated as 
30 min and 1011 PFU/mL, respectively. This ME-based biosensor approach was used 
successfully for detection of MRSA bacteria with LOD of 103 CFU/mL [40].

2.3 Phage-based electrochemical biosensors

A schematic representation of electrochemical biosensor of nanoflowers—
AuNPs and Thi-phage composite—for E. coli detection is illustrated in Figure 4.

2.3.1 Phage-amperometric biosensors

Among the electrochemical detection methods, amperometry has been most 
commonly used for detection of pathogenic bacteria and offered an improved 
sensitivity platform related to other electrochemical approaches. Electrochemical 
amperometric biosensor involves a working electrode (having bio-probe) and a 
reference electrode. For current production in the analyte sample, a bias potential 
is passed on these electrodes. The produced current is directly dependent on the 
degree of electron transfer that fluctuates with changes in analyte’s ionic concentra-
tion. Simply, amperometric sensors detect ionic changes in the solution by deter-
mining the variations in electric current. Several approaches have been established 
for detection of foodborne pathogenic bacteria based on phage-amperometric 
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Figure 3. 
Schematic representation of S. typhimurium detection on tomato and spinach leaves on magnetoelastic-E2 
phage-based biosensor system, adapted from [34].

Bacillus globigii, MS2 bacteriophage, and also SEB [27]. The typically reported 
sensitivity until now is about 20 CFU/mL by epi-fluorescent microscopic platform 
[25] and is 1 CFU/mL by flow cytometric recognition approach [28].

2.1.5 Phage-colorimetric sensors

Sensing based on changes in color allows the use of simple diagnostic systems 
like spectrophotometers, or even involving smartphones, and both of them are 
comparatively common and feasible. Designed colorimetric phage-based biosensors 
are mostly based and integrated on the utilization of reporter bacteriophages that 
carry genes coding for reporter enzymes. The foremost colorimetric sensor based 
on phage was to detect Salmonella ice nucleation sensor using reporter gene inaW 
[29]. Expression of ice nucleation protein was induced upon infection, interrupting 
the cell, and was consequently observed by the addition of an indicator dye (orange 
colored) [30]. Other serviceable reporter genes that have been successfully used with 
various colorimetric substrates are celB and lacZ segments encoding β-galactosidase 
and β-glycosidase [31]. More recently enhanced phage-based colorimetric technique 
has been reported to be integrating and coupling with novel technologies like surface 
plasmon [32], macroscope and smartphone [33], and lateral flow assay [11]. Other 
colorimetric phage-based biosensors established in recent years are briefed in Table 1.

2.2 Phage-based micromechanical sensors

Representative micromechanical biosensor (magnetoelastic) is expressed in Figure 3, 
involving E2 phage for detection of S. typhimurium on tomato and spinach leaves. 
Further micromechanical-phage-based biosensors are briefed in the following context.

2.2.1 Phage-QCM-based sensors

Quartz crystal microbalance (QCM) sensors are mass-based sensors that are 
highly sensitive with the ability of detecting nanogram variations in mass. QCM 
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biosensors are functionalized by a very thin piezoelectric film having both sides 
coated with two conductive electrodes. Mechanical resonance is stimulated by 
electrical field application through the quartz crystal.

Consequently, QCM-based biosensors could be established to quantify the mass 
of many target analytes by immobilization of individual bio-probes on the surface 
of sensor. Phages as bio-probes can be conjugated with QCM biosensors for selective 
screening of bacterial cells. For instance, physically adsorbed bacteriophages around 
3 × 1010 PFU/cm−2 on the surface of piezoelectric transducer provided a very rapid 
and sensitive platform for Salmonella typhimurium detection. This immobilized 
bacteriophage on QCM biosensor had a LOD of 102 CFU/mL having a broad linear 
range of 100–107 CFU/mL and a quick reaction and detection time of less than 3 min 
[35]. Other reports of phage-based QCM sensor applications in detection of infec-
tious bacteria in food safety and environmental monitoring are briefed in Table 1.

2.2.2 Phage magnetoelastic sensors

Magnetoelastic sensors are prepared from materials having magnetoelastic 
property, i.e., magnetism and elasticity, and they contract/extend on excitation 
by alternative-current-magnetic field. The resonance frequency depends on the 
viscosity/mass adjacent to the surface of the resonating material. Magnetoelastic 
devices are used for detection of biological and chemical analytes by integration of 
bio-probes like phages on the biosensor surface and might be functional in gaseous, 
static, liquid, or flowing condition [21]. Likewise, E2 bacteriophage was geneti-
cally modified for specific detection of S. typhimurium in samples of food [36], on 
spinach leaves [37], and in apple juice, tomato, or milk [38], and all these magne-
toelastic biosensors displayed outstanding selectivity and specificity. In addition, 
E2 bacteriophage-based magnetoelastic biosensors expressed tremendous stability 
when exposed to severe environmental conditions [39]. ME-lytic phage-based 
biosensor was reported to detect MRSA bacteria. In the evaluation based on varied 
immobilization times (10, 30, 90, 270, 810, and 2430 min) and bacteriophage con-
centrations (108–1012 PFU/mL), lytic phage binding to ME sensor surface was estab-
lished for optimal conditions. The optimal immobilization time and concentration 
in PFU/mL for effective binding of phage to ME sensor surface was calculated as 
30 min and 1011 PFU/mL, respectively. This ME-based biosensor approach was used 
successfully for detection of MRSA bacteria with LOD of 103 CFU/mL [40].

2.3 Phage-based electrochemical biosensors

A schematic representation of electrochemical biosensor of nanoflowers—
AuNPs and Thi-phage composite—for E. coli detection is illustrated in Figure 4.

2.3.1 Phage-amperometric biosensors

Among the electrochemical detection methods, amperometry has been most 
commonly used for detection of pathogenic bacteria and offered an improved 
sensitivity platform related to other electrochemical approaches. Electrochemical 
amperometric biosensor involves a working electrode (having bio-probe) and a 
reference electrode. For current production in the analyte sample, a bias potential 
is passed on these electrodes. The produced current is directly dependent on the 
degree of electron transfer that fluctuates with changes in analyte’s ionic concentra-
tion. Simply, amperometric sensors detect ionic changes in the solution by deter-
mining the variations in electric current. Several approaches have been established 
for detection of foodborne pathogenic bacteria based on phage-amperometric 
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biosensors. Amperometric method integrated with bacteriophage typing was 
reported to specifically detect bacteria like E. coli K12, Bacillus cereus, and 
Mycobacterium smegmatis [42]. The working principle of this biosensor was phage 
infection that resulted in bacterial cell lysis, subsequently releasing bacterial cell 
contents, like enzymes and other cell debris, into the test sample. This enzymatic 
release can be sensed and measured involving particular substrate. The reaction 
product is oxidized or reduced at working and reference electrodes, resulting in 
current generation [43].

2.3.2 Phage impedimetric sensors

Electrochemical impedance spectroscopy (EIS)-based sensors determine 
the fluctuations in impedance as a result of interactions between bio-probe 
and the analyte. EIS-based sensors have been utilized for bacterial detection 
by observing the variations on interface of solution-electrode because of the 
microbial capture on the biosensor surface. The target analyte binding on the 
sensor surface typically raises the impedance because of the insulating behavior. 
Phages have been utilized as a sandwiched cross-linker between bacterial cell 
and the electrode surface. An effective phage-EIS-based platform was reported 
for recognition of E. coli bacterial cells by T4 bacteriophage immobilization 
on the surface of activated carbon screen-printed electrode with LOD of ~104 
CFU/mL [44]. By increasing bacterial concentration, a decrease in impedance 
was observed, which was differing from ordinary binding of intact bacterial 
cells on EIS biosensor. The motive behind this type of observations was because 
of the lytic activity of bacteriophages that directed cell lysis and the release of 
ionic cellular contents and alternatively a rise in conductivity. The detection was 
specific, and they confirmed the specificity by using Salmonella as a negative 
control. Other reports of impedimetric phage-based detections are summarized 
in Table 1.

Figure 4. 
Illustration of the establishment of composites (nanoflowers—AuNPs and Thi-phage) and E. coli 
electrochemical screening, adapted from [41].
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3. Phage-based biosensors in food safety and environmental monitoring

Bacteriophage-based biosensors have been established for broad range of 
applications in food and environmental contaminant detection, for example, 
pathogens, toxins, and other environmental pollutants. Pathogens causing food 
contaminations are the supreme common objects of bacteriophage-based biosen-
sors. One more field wherever bacteriophages are utilized as bio-recognition probes 
is clinical diagnostics of infectious diseases as explained in Section 2. Table 1 sums 
up various whole phage/phage component-based biosensor applications in food 
safety, environmental monitoring, and infectious disease diagnosis. As this chapter 
does not cover all the reported methodical explanations and applications, therefore 
interested bibliophiles are referred to the latest literature. For potential future 
on-site applications, few of the most recent phage-based biosensors for pathogen 
detection in food and water are briefed as follow.

3.1 Food safety

Magnetoelastic (ME) phage-based biosensor was compared with TaqMan-based 
qPCR for Salmonella typhimurium detection on cantaloupe surface. LOD of both 
approaches was calculated by successive inoculation of cantaloupe surfaces with S. 
typhimurium suspensions. LOD of S. typhimurium was 2.47 ± 0.50 log CFU/2 mm2 
and 1.35 ± 0.07 log CFU/2 mm2 area of cantaloupe surface and 6.28 and 2.41% by 
ME phage-based biosensor and qPCR, respectively. This comparison revealed that 
phage-based ME biosensor is more encouraging and an on-site applicable method 
to detect S. typhimurium on fresh fruit and vegetable surfaces [4]. In another report 
that was based on fluorescence imaging, Salmonella detection was reported involv-
ing bacteriophage-derived peptides that bind to Salmonella enterica (serotype 
Typhimurium) cells. In this report, ME biosensor coated with C4–22 phage was 
used to evaluate and detect Salmonella in/on chicken meat. In the case of on-surface 
detection approach, phage C4–22-based biosensor confirmed Salmonella binding 
capacity 12 times higher than control with no-phage-based sensor, while Salmonella 
cells at concentration of 7.86 × 105 CFU spiked per mm2 area. In the case of in-
chicken meat approach, phage C4–22 biosensors were inserted at varied depths 
below the surface of chicken meat (0.1, 0.5, 1.0 cm) after inoculation of Salmonella 
on the surface. The latter approach presented 23.27–33% of Salmonella cell absorp-
tion up to 0.1-cm deep under the surface [45].

P. aeruginosa was detected by lytic phage PaP1 displaying high specificity. For 
label-free P. aeruginosa detection, ECL biosensor involving PaP1 was developed. 
Biosensor was fabricated on glass carbon electrode surface through deposition of 
PaP1-conjugated carboxyl-graphene. Adsorption of PaP1 tail fibers and baseplate 
to bacterial cell wall resulted in a decrease of ECL signal, since the accumulation of 
non-conductive bio-complex on electrode surface disrupted the electron transfer. 
ECL signal dropped linearly with 1.4 × 102–1.4 × 106 CFU/mL concentration of P. 
aeruginosa, with biosensing time of 30 min and very low LOD of 56 colony-forming 
units per mL. With the help of this biosensor, P. aeruginosa was quantified in milk 
with varying values of recovery from 78.6 to 114.3% [3]. Similarly, phage P100 and 
magnetic particle composite were established to separate L. monocytogenes from 
food samples. Varied sized magnetic particles (150, 500, and 1000 nm) were used 
for phage P100 immobilization either physically or chemically. The coupling ratio 
of composites was investigated, and the capturing efficiency of L. monocytogenes 
was evaluated for each composite. The authors reported that composites developed 
by physical immobilization of P100 attained a greater efficiency of capture and 
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biosensors. Amperometric method integrated with bacteriophage typing was 
reported to specifically detect bacteria like E. coli K12, Bacillus cereus, and 
Mycobacterium smegmatis [42]. The working principle of this biosensor was phage 
infection that resulted in bacterial cell lysis, subsequently releasing bacterial cell 
contents, like enzymes and other cell debris, into the test sample. This enzymatic 
release can be sensed and measured involving particular substrate. The reaction 
product is oxidized or reduced at working and reference electrodes, resulting in 
current generation [43].

2.3.2 Phage impedimetric sensors

Electrochemical impedance spectroscopy (EIS)-based sensors determine 
the fluctuations in impedance as a result of interactions between bio-probe 
and the analyte. EIS-based sensors have been utilized for bacterial detection 
by observing the variations on interface of solution-electrode because of the 
microbial capture on the biosensor surface. The target analyte binding on the 
sensor surface typically raises the impedance because of the insulating behavior. 
Phages have been utilized as a sandwiched cross-linker between bacterial cell 
and the electrode surface. An effective phage-EIS-based platform was reported 
for recognition of E. coli bacterial cells by T4 bacteriophage immobilization 
on the surface of activated carbon screen-printed electrode with LOD of ~104 
CFU/mL [44]. By increasing bacterial concentration, a decrease in impedance 
was observed, which was differing from ordinary binding of intact bacterial 
cells on EIS biosensor. The motive behind this type of observations was because 
of the lytic activity of bacteriophages that directed cell lysis and the release of 
ionic cellular contents and alternatively a rise in conductivity. The detection was 
specific, and they confirmed the specificity by using Salmonella as a negative 
control. Other reports of impedimetric phage-based detections are summarized 
in Table 1.

Figure 4. 
Illustration of the establishment of composites (nanoflowers—AuNPs and Thi-phage) and E. coli 
electrochemical screening, adapted from [41].

183

Applications of Phage-Based Biosensors in the Diagnosis of Infectious Diseases, Food Safety…
DOI: http://dx.doi.org/10.5772/intechopen.88644

3. Phage-based biosensors in food safety and environmental monitoring

Bacteriophage-based biosensors have been established for broad range of 
applications in food and environmental contaminant detection, for example, 
pathogens, toxins, and other environmental pollutants. Pathogens causing food 
contaminations are the supreme common objects of bacteriophage-based biosen-
sors. One more field wherever bacteriophages are utilized as bio-recognition probes 
is clinical diagnostics of infectious diseases as explained in Section 2. Table 1 sums 
up various whole phage/phage component-based biosensor applications in food 
safety, environmental monitoring, and infectious disease diagnosis. As this chapter 
does not cover all the reported methodical explanations and applications, therefore 
interested bibliophiles are referred to the latest literature. For potential future 
on-site applications, few of the most recent phage-based biosensors for pathogen 
detection in food and water are briefed as follow.

3.1 Food safety

Magnetoelastic (ME) phage-based biosensor was compared with TaqMan-based 
qPCR for Salmonella typhimurium detection on cantaloupe surface. LOD of both 
approaches was calculated by successive inoculation of cantaloupe surfaces with S. 
typhimurium suspensions. LOD of S. typhimurium was 2.47 ± 0.50 log CFU/2 mm2 
and 1.35 ± 0.07 log CFU/2 mm2 area of cantaloupe surface and 6.28 and 2.41% by 
ME phage-based biosensor and qPCR, respectively. This comparison revealed that 
phage-based ME biosensor is more encouraging and an on-site applicable method 
to detect S. typhimurium on fresh fruit and vegetable surfaces [4]. In another report 
that was based on fluorescence imaging, Salmonella detection was reported involv-
ing bacteriophage-derived peptides that bind to Salmonella enterica (serotype 
Typhimurium) cells. In this report, ME biosensor coated with C4–22 phage was 
used to evaluate and detect Salmonella in/on chicken meat. In the case of on-surface 
detection approach, phage C4–22-based biosensor confirmed Salmonella binding 
capacity 12 times higher than control with no-phage-based sensor, while Salmonella 
cells at concentration of 7.86 × 105 CFU spiked per mm2 area. In the case of in-
chicken meat approach, phage C4–22 biosensors were inserted at varied depths 
below the surface of chicken meat (0.1, 0.5, 1.0 cm) after inoculation of Salmonella 
on the surface. The latter approach presented 23.27–33% of Salmonella cell absorp-
tion up to 0.1-cm deep under the surface [45].

P. aeruginosa was detected by lytic phage PaP1 displaying high specificity. For 
label-free P. aeruginosa detection, ECL biosensor involving PaP1 was developed. 
Biosensor was fabricated on glass carbon electrode surface through deposition of 
PaP1-conjugated carboxyl-graphene. Adsorption of PaP1 tail fibers and baseplate 
to bacterial cell wall resulted in a decrease of ECL signal, since the accumulation of 
non-conductive bio-complex on electrode surface disrupted the electron transfer. 
ECL signal dropped linearly with 1.4 × 102–1.4 × 106 CFU/mL concentration of P. 
aeruginosa, with biosensing time of 30 min and very low LOD of 56 colony-forming 
units per mL. With the help of this biosensor, P. aeruginosa was quantified in milk 
with varying values of recovery from 78.6 to 114.3% [3]. Similarly, phage P100 and 
magnetic particle composite were established to separate L. monocytogenes from 
food samples. Varied sized magnetic particles (150, 500, and 1000 nm) were used 
for phage P100 immobilization either physically or chemically. The coupling ratio 
of composites was investigated, and the capturing efficiency of L. monocytogenes 
was evaluated for each composite. The authors reported that composites developed 
by physical immobilization of P100 attained a greater efficiency of capture and 
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selectivity toward L. monocytogenes. These composites of phage and magnetic 
particles were further used to selectively isolate L. monocytogenes from real sample 
of food like whole milk and ground beef [46].

3.2 Environmental monitoring

For E. coli detection in water, a group of authors established and reported a 
rise in sensitivity of lateral flow assay based on T7 phage amplification. The assay 
was founded on phage-based reporter proteins: maltose-binding protein and 
alkaline phosphatase with 10-folds and 100-folds increased sensitivities, respec-
tively. The increased sensitivity enabled E. coli detection of 103 CFU/mL in broth 
while 100 CFU/100 mL of E. coli in inoculated river water. Such combination of 
phage-based diagnosis on paper fluidics offer new platforms to establish innova-
tive detection techniques owing to sensitivity, robustness, and specificity and are 
personal friendly [47]. Additional improvement in the sensitivity of this method 
was reported by using fluorescent quantum dots (QDs) for phage labeling. QDs 
increased the stability and intensity of luminous signal and also enhanced the 
sensitivity of epifluorescence microscopy and flow cytometry-based detection 
platforms. The phage head was modified with biotin tagging peptide. The QDs 
coated with streptavidin were permitted to become bounded to biotinylated 
bacteriophages. By this approach, detection limit of for E. coli was only 20 CFU/
mL in water with detection time of 60 min [5].

Similarly, on the basis of phage fluorescent-based detection assays, Salmonella 
in sea water was detected with the help of genetically modified bacteriophages P22 
with assay time of 1 h and LOD of 10 CFU/mL [48], while TNT and TNB 1 ng/mL 
were detected in water with the help of phage display-selected scFv [49]. Likewise, 
104 CFU/g of B. anthracis in soil was detected with the help of Wβ phage involv-
ing fluorescence assay [50]. A magnetoelastic biosensor involving JRB7 phage as a 
bio-recognition element detected 104 spores/mL of B. anthracis in water [51], while 
impedimetric biosensor based on S. arlettae specific phage detected 200 CFU/mL of 
S. arlettae in river water [52].

4. Other representative applications

Despite the abovementioned applications of phage-based biosensors, Table 1 
highlights some other representative applications of phage-based biosensors in 
detection of pathogenic bacteria, food safety, and environmental monitoring.

5. Conclusions and prospects

Without any doubt, environmental monitoring and food safety are the main 
universal worries that we humans have to oppose and are constantly struggling 
to take them over. In this chapter, we evidently demonstrated the applications of 
reported promising platforms of phage-based sensors in the screening of food- and 
environment-related contaminants. We reviewed demonstrative phage/phage com-
ponents applied in sensors’ development for diagnosis of food pollutants specifically 
comprising pathogens and toxins. By collaboration with engineers and scientists 
from multidisciplinary area to design a field applicable sensor and make advance-
ments in phage-based sensors for food safety and environmental monitoring, we 
expect that this chapter might bring together the technologies related to application 
of phage-based sensors, in food and environmental safety, and infectious disease 
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diagnostics. In short, applications of phage-based biosensors in the fields of food 
safety, environmental monitoring, and infectious disease diagnostics are vital.
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