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Preface

The rapid growth of microelectronics and digital computing has stimulated a significant
growth in the area of digital signal processing (DSP). The concepts of DSP proliferated in
many areas such as telecommunications, digital television, biomedical engineering, digital
audio, and power conversion. DSP now seems to be a core for many new emerging digital
applications and for the information society. Today’s information revolution paves the way
for the engineers in the areas of electronics, computer and communication engineering to
think about DSP concepts.

Just a decade ago, digital signal processing was more of theory than practice. The only sys‐
tems capable of doing signal processing were massive mainframes and supercomputers and,
even then, much of the processing was not done in real time but off-line in batches. For ex‐
ample, seismic data were collected in the field, stored on magnetic tapes and then taken to a
computing centre, where a mainframe might take hours or days to digest the information.
The first practical real-time DSP systems emerged in the late 1970s and used bipolar ‘bit-
slice’ components. The economics began to change in the early 1980s with the advent of sin‐
gle-chip metal-–xide semiconductor (MOS) DSPs.

Digital signal processors were invented to handle digital signal processing tasks and were
available in a variety of applications like audio signal processing, audio and video compres‐
sion, speech processing and recognition, digital image processing, digital communications,
biomedicine, seismology and radar applications. Specific uses include speech transmission
in mobile phones, seismic data processing, analysis of industrial processes, medical imaging
such as computerized axial tomography (CAT) scans, MP3 compression and computer
graphics.

Scope of the Book

Many books are available for understanding digital signal processing concepts. This book is an
outcome of research done by various researchers and professors who have highly contributed
to the field. This book would suit researchers in the field of digital signal processing.

Structure of the Book

The book contains six chapters divided into three sections. The reader is expected to know the
fundamentals of digital signal processing, which are available in all the standard DSP books.

Section 1, consisting of three chapters, deals with applications of digital signal processing in
communication engineering. Section 2 contains two chapters and describes the application
of digital signal processing concepts in image processing. Section 3, consisting of a single
chapter, focuses on the role of DSP in power conversion systems.
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Chapter 1

Optical Signal Processing for
High-Order Quadrature-Amplitude
Modulation Formats

Guo-Wei Lu

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/61681

Abstract

In this book chapter, optical signal processing technology, including optical wavelength
conversion, wavelength exchange and wavelength multicasting, for phase-noise-sensitive
high-order quadrature-amplitude modulation (QAM) signals will be discussed. Due to
the susceptibility of high-order QAM signals against phase noise, it is imperative to avoid
the phase noise in the optical signal processing subsystems. To design high-performance
optical signal processing subsystems, both linear and nonlinear phase noise and distor‐
tions are the main concerns in the system design. We will first investigate the effective
monitoring approach to optimize the performance of wavelength conversion for avoiding
undesired nonlinear phase noise and distortions, and then propose coherent pumping
scheme to eliminate the linear phase noise from local pumps in order to realize pump-
phase-noise-free wavelength conversion, wavelength exchange and multicasting for
high-order QAM signals. All of the discussions are based on experimental investigation.

Keywords: Optical Signal Processing, Nonlinear Optics, Advanced Optical Modulation
Formats, Quadrature Amplitude Modulation

1. Introduction

Recently, digital signal processing (DSP) is playing an increasingly important role in coherent
detection for reconstructing the complex field of signal and compensating for the transmission
impairments. It dramatically simplifies the reception of multi-level and multi-dimensional
modulation formats such as high-order quadrature amplitude modulation (QAM), thus
making high-order QAM become a promising and practical approach for achieving higher bit
rate and higher spectral efficiency. However, optical signal processing is still highly desirable

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



and appreciable in order to overcome the electronics bottlenecks, support the transparency
and ultra-fast processing in future optical networks. As basic optical network functionalities,
all-optical wavelength conversion, wavelength data exchange, and wavelength multicasting
play important roles in the all-optical networks to enhance the re-configurability and non-
blocking capacity, and facilitate the wavelength management in future transparent optical
networks.

On the other hand, recently, lots of advanced modulation formats like single-carrier high-order
QAM like 64QAM [1–5] or multi-carrier optical orthogonal frequency-division multiplexing
(OFDM) have been introduced and realized in optical communications for enabling spectrally-
efficient and ultra-fast optical transmissions. It is desirable to exploit optical signal processing
schemes suitable for these advanced optical modulation formats. However, for these high-
order QAM signals, the increasing number of states in the constellation makes the signal more
sensitive to the intensity and phase noise. It is imperative to suppress phase noise in optical
signal processing subsystems to allow compatibility phase-noise sensitive high-order QAM
formats.

As one of the basic optical signal processing techniques, several all-optical wavelength
conversion (AOWC) schemes have been demonstrated to realize AOWC functions of OFDM,
8ary phase-shift keying (8PSK), 16QAM, and 64QAM by using the second-order nonlinear
effect in periodically-poled Lithium Niobate (PPLN) waveguide [6, 7], four-wave mixing
(FWM) in highly-nonlinear fibers (HNLF) [8, 9], semiconductor optical amplifier (SOA) [10–
12], or silicon waveguide. However, the implementation penalty of such subsystems varies
from 2dB to 4dB at bit-error rate of 10−3 [9, 12], which is non-negligible for optical networks,
especially when multiple wavelength conversion nodes are included in the networks. The
distortions introduced in the AOWC mainly originate from: i) the phase noise from the pumps
due to the finite laser linewidth, referred to as linear phase noise; and ii) other undesired
nonlinear distortions or crosstalk co-existed in the nonlinear process, called as nonlinear phase
noise or distortion. To suppress the linear phase noise from pumps, the straightforward way
is to use narrow-linewidth lasers, such as external-cavity laser (ECL) or fiber laser (FL), as
pump sources. However, it increases the implementation cost. On the other hand, since the
nonlinear media in the sub-system is operated in the nonlinear operation region, expect the
dominant nonlinear effect utilized for implementing optical signal processing functionalities,
it is highly possible that other undesired nonlinear effects co-occur in this process, thus
deteriorating the quality of the converted signal. For example, for the wavelength conversion
based on the FWM in SOA, additional distortion from cross-gain modulation, cross-phase
modulation (XPM), and self-phase modulation (SPM) may deteriorate the converted signal,
while in the wavelength conversion based on FWM in HNLF, additional undesirable distor‐
tions are mainly from stimulated Brillouin scattering (SBS), SPM or XPM. High-order QAMs,
especially going up to 32QAM, 64QAM or beyond, exhibit more sensitive to nonlinear phase
noise like SPM or XPM [13]. Therefore, in order to realize a high-quality all-optical wavelength
conversion (AOWC) sub-system for high-order QAMs, it is essential to optimize the system
performance of AOWC through effective monitoring approach to suppress the distortion
introduced by extra undesired nonlinear distortions. In this chapter, it is categorized into two
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parts. In the first part, the effective monitoring approach is discussed to avoid the undesired
nonlinear phase noise and distortions in the optical signal processing subsystem to enable
superior performance [14]. Then, a coherent pumping scheme is proposed and discussed in
the second part to implement the pump-phase-noise-free wavelength conversion, wavelength
exchange, and wavelength multicasting for high-order QAM signals. Figure 1 summarizes the
main topics which will be discussed in this book chapter.

Distortion and Phase Noise in Optical 
Signal Processing System

· Nonlinear Phase Noise and Distortions 

· Linear Phase Noise from Local Pumps

Pump Power Management J Optimized perform 

To Use Narrow-linewidth 
Laser as Local Pumps

L Increase cost & complexity 
of the system 

To Deploy Coherent 
Pumps with DFB as Pump 

Laser 

Compensation Algorithm 
in DSP 

L Not suitable for system with 
multi-hop processing units   

J Superior performance and 
low cost and complexity

Figure 1. Topics to be discussed in this book chapter.

2. Performance optimization of wavelength conversion of high-order QAM
signals

It is well-known that for high-order QAM signals, the increasing number of states in the
constellation makes them more sensitive to the intensity and phase noise. Previously, power
penalties of around 4 dB at 5Gbaud [12], and 2 dB at 21Gbaud [9] were experimentally
demonstrated for the converted 64QAM at bit-error rate (BER) of 10−3. As shown in Fig. 3, to
implement the AOWC for high-order QAMs, a simple degenerate FWM in HNLF is deployed.
Input QAM signal serves as probe, while a CW pump works as pump in AOWC. The phase
of the converted signal follows the phase relationship: θidler=2θpump−θprobe, where θidler, θpump,

and θprobe are the phase of the idler, pump and probe, respectively. In order to implement an
AOWC for QAM signals with minimal power penalty, the phase and intensity noise from both
pump and probe should be suppressed. Since high-order QAM signals are sensitive to the

Optical Signal Processing for High-Order Quadrature-Amplitude Modulation Formats
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phase noise in the system, to avoid the introduced linear phase noise from pump, it is preferred
to deploy narrow linewidth light sources for the pump source. In the following experimental
demonstration, a tunable external cavity laser (ECL) with the linewidth of around 100 kHz is
employed as the light source of the input QAM signal (probe). On the other hand, two fiber
lasers (FLs) with a linewidth of around 10 kHz are used as light sources for pump and local
oscillator (LO) at the coherent receiver. Since a narrow-linewidth FL was deployed as pump
source, the linear phase noise from pump was negligible.

wpumpwprobewidler
w

Probe

Pump

Idler
qidler=2qpump-qprobe

Phase Transparency
High-order 
QAM signal

Figure 2. Operation principle of wavelength conversion using FWM in HNLF.

In the AOWC subsystem based on FWM in HNLF for high-order QAM signals, the main
nonlinear distortions in the converted signal are mainly from the following sources:

1. SPM from the probe signal: Since the input QAM signal, i.e. the probe, exhibits multilevel
in amplitude, in the nonlinear operation condition, the probe may experience SPM. The
nonlinear phase noise will then be transferred to the converted signal through FWM and
finally deteriorate the converted signal. Therefore, it is critical to manage the launched
power of probe to avoid the degradation in the converted QAM signal caused by the
probe-introduced SPM. However, it will sacrifice the conversion efficiency. There is a
tradeoff between conversion efficiency and the quality of the converted signal in the
performance optimization.

2. XPM from the pump signal: As discussed in [15,16], with limited optical signal-to-noise
ratio (OSNR) in pump, the amplitude noise in pump may distort the converted signal by
introducing nonlinear phase noise through XPM effect. In our experiment, a FL is used as
the pump source. Thanks to the low relative intensity noise (RIN) of the FL, the OSNR of
pump source is measured as around 57 dB, which avoids the pump-induced nonlinear
phase noise.

3. SBS from the pump signal: In AOWC subsystems based on FWM in HNLF, SBS limits
the conversion efficiency unless the pumps’ linewidth is broadened to increase the SBS
threshold.  In  an  AOWC  based  on  degenerate  single-pump  FWM,  if  intentionally
applying phase dithering on the pump, it will deteriorate the converted QAM signals.
Although it has been shown that the phase dithering could be compensated for at the
coherent digital receiver by DSP [17], the applied phase dithering will be accumulat‐
ed in the converted signal as distortions and be further transferred to the next node,
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which is not suitable for multi-hop optical networks. In our experiment, thanks to the
short  length  (150  m)  and  high  nonlinearity  (nonlinear  coefficient:  18/W/km)  of  the
deployed HNLF, the measured SBS threshold is around 24 dBm, which allows a high
launching  power  even  without  applying  additional  phase  dithering.  However,  the
optimization of the pump power is required in order to avoid the SBS distortion in the
pump.

As discussed above, the main undesired nonlinear components in the AOWC based on
degenerate FWM in HNLF are from SPM of the input QAM (probe) and SBS of the CW pump.
In order to eliminate these deleterious components in the converted signal, the launched pump
and probe power should be well managed.

2.1. Experimental investigation

Figure 3 depicts the experimental setup used to achieve the AOWC of 36QAM and 64QAM
through FWM in HNLF. Since high-order QAM signals are sensitive to the phase noise in the
system, it is preferred to employ narrow-linewidth light sources in the experiment, especially
for the pump source. Owing to the lack of instruments in the lab, in the experiment, a tunable
ECL with a linewidth of around 100 kHz was deployed as a light source of the input QAM
signal in the experiment, whereas two FLs with a linewidth of around 10 kHz worked as light
sources for the pump and LO at the coherent receiver. To synthesize optical QAM signals, the
light from the ECL, operating at 1551.38 nm, was modulated by a single in-phase/quadrature
(IQ) modulator, which had a 3 dB bandwidth of around 25 GHz, and a 3.5 V half-wave voltage.
Two de-correlated 6- or 8-level driving signals originating from pseudorandom binary
sequence (PRBS) streams with a length of 215−1 from an arbitrary waveform generator (AWG)
were used to drive the IQ modulator for generating optical 36QAM or 64QAM, respectively.
After power amplification, the QAM signal was combined with amplified CW light at 1551.95
nm, and was then fed into a 150 m length of HNLF having an attenuation coefficient of 0.9 dB/
km, a nonlinear coefficient of 18/W/km, a zero-dispersion wavelength of 1548 nm, and a
dispersion slope of around 0.02 ps/nm2/km. Note that, due to the inability to tune the wave‐
length of the FLs used in the experiment, wavelengths of the probe signal and pump could not
be set for the optimum FWM efficiency. Nevertheless, owing to the high nonlinear effects and
flat-dispersion-profile of the employed HNLF, the experimental results showed high conver‐
sion efficiency, which can ensure the superior performance of the converted signal. The
produced idle signal at the wavelength of 1552.52 nm was filtered out and then led to the phase-
diversity intradyne coherent receiver for the coherent detection and for BER measurement.
The coherent receiver included an LO, a 90 degree optical hybrid device, and two balanced
photo-detectors (PDs). After detection by the balanced PDs, the data was digitized at 50GSam‐
ples/s by employing a digital storage oscilloscope (Tektronix DP071254) which has the analog
bandwidth of 12.5 GHz. The captured data was processed offline through the DSP that
included compensation of skew, IQ imbalance, power, data resampling, linear equalization
using the finite impulse response (FIR) filtering, carrier phase recovery, and the final hard-
decision circuits. 89,285 symbols were used for the BER measurement.
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In order to eliminate possible deleterious components in the converted signal, the launched
pump and probe power should be well managed. Figure 4(a) shows the measured EVMs and
BERs at the received OSNR of around 25 dB when the probe power was tuned from 7 to 15
dBm and the pump power was fixed at around 20dBm. An improvement in both the EVMs
and BERs of the converted 36QAM was observed with an increase in the probe power up to
around 11 dBm. After the inflection point (around 11 dBm), both EVMs and BERs increased
with the increase of the probe power, which was attributed to the SPM of probe in the nonlinear
process. Therefore, we considered setting the probe power to around 11 dBm to avoid the SPM
introduced in the probe. As previously mentioned, another main source of distortion is the
SBS of the pump in AOWC. To optimize the pump power, we also measured the corresponding
EVMs and BERs when the probe power was fixed at 11 dBm and the pump power was tuned
from 15 dBm to 23 dBm (Fig. 4(b)). As the launched pump power increased, EVMs and BERs
showed similar behavior. We found that it was better to operate the pump power in the range
of 17.5–22 dBm. At the pump power of 15.4 dBm, the constellations were relatively noisy due
to the low conversion efficiency. However, once the pump power was increased to 22.9 dBm,
distortion from SBS started to appear in the measured constellation, acting mainly as intensity
noise. To obtain the optimal performance, we set the pump power at 20 dBm in the AOWC of
36QAM. While monitoring the converted 36QAM, EVMs and BERs showed consistent
behavior when tuning the probe and pump powers.

As we discussed previously, the optimal pump and probe power were 20 dBm and 11 dBm
for the AOWC of 36QAM. The corresponding optical spectrum under the optimal condition
is shown in Fig. 5(i), where a conversion efficiency of about −15 dB was obtained compared
with the input probe power. Under the optimal operating condition, the BER performance was
measured as the function of OSNR at 0.1 nm for both input and converted signals, and shown
in Fig. 5(ii). For the input QAM signals, the power penalty of around 2 dB was obtained
compared with theoretical BER measurement at the BER of 10−3, which is better than the
previously-reported QAM transmitters [2]. The power penalty is mainly owing to the imper‐
fectness of the transmitter. With respect to the input QAM, a negligible power penalty (<0.3
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in Fig. 5(ii). For the input QAM signals, the power penalty of around 2 dB was obtained
compared with theoretical BER measurement at the BER of 10−3, which is better than the
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fectness of the transmitter. With respect to the input QAM, a negligible power penalty (<0.3
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dB) was observed at a BER of 10−3. The measured constellations of the input and converted
36QAM are shown in the insets of Fig. 5(ii), where the received OSNR was around 35 dB.

2.1.2. AWOC of 64QAM

To optimize the performance of AOWC for 64QAM, measurements similar to those described
above were performed. Figure 6 (a) depicts the measured EVMs and BERs at the received 25
dB OSNR when the probe power was tuned from 7 to 15 dBm and the pump power was fixed
at around 20 dBm. The increase in the launched probe power decreased the BER of the
converted signal to around 12.2 dBm owing to the improved OSNR of the converted signals.
When the probe power was increased further, the BER started to increase, attributed to the
introduced SPM in the probe signal. The BER results with different probe powers suggested
to operate the probe power in the range of 9 to 14 dBm. Furthermore, the measured constel‐
lations offered a more perceptive and precise approach for optimizing the performance. The
EVMs with the various probe powers were calculated and are plotted in Fig. 6(a). With the

Figure 4. Measured EVM (triangles) and BER (squares) results of the converted 36QAM signals (a) when tuning probe
power from 7 to 15 dBm, (b) when tuning pump power from 14 to 23 dBm.

Figure 5. (i) Measured optical spectrum in the optimal condition, (ii) measured BER as function of the received OSNR
(0.1 nm). Insets: (a) input and (b) converted 36QAM signals.
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increase of the probe power, both BER and EVM results show similar trends. However,
according to the EVM and BER results, different optimum probe powers of around 9.2 dBm
and 12.4 dBm were obtained, respectively. When the launched probe power was increased to
around 12.4 dBm, SPM-induced distortion became visible in the constellation, causing the
increase of EVM. However, the SPM-induced spiral rotation in the constellation happens to
enlarge the symbol distance between symbols, thus decreasing the BER. Therefore, these
results suggested that, to optimize the performance of AOWC, it would be effective to monitor
the constellation or EVM, which gives a more intuitive and proper means to optimize the
AOWC performance, in order to eliminate the extra undesired nonlinear phase noise intro‐
duced in the process.

Figure 6. Measured EVM (triangles) and BER (squares) results of the converted 64QAM signals (a) when tuning probe
power from 7 to 15 dBm, (b) when tuning pump power from 17 to 21 dBm.

For pump power optimization, the EVM and BER results were measured when the launched
pump power was increased from 17 to 22 dBm, whereas the pump power was set at around 9
dBm. The measurement was done for optimizing the pump power and is shown in Fig. 6(b).
Similar behavior was obtained for the measured EVM and BER values when the pump power
was increased. In order to avoid the distortion owing to the SBS, we considered to set the pump
power in the range of 17.5–20.5 dBm. It is clear that a high pump power was helpful for
obtaining high conversion efficiency, therefore, resulted in a sufficient OSNR for the converted
signal. Thus, in this experiment, the pump power was optimized to 20 dBm, which resulted
in a conversion efficiency of about -15 dB and also ensured that there was no SBS distortion
introduced for the converted signal. The distortion from SBS acted mainly as amplitude noise
in the constellations, and became severe once the pump power was increased to more than
20.5 dBm.

To achieve the optimal performance of AOWC for 64QAM signal, the pump and probe power
were set at 20 dBm and 9 dBm, respectively. A conversion efficiency of around −15 dB is
obtained, as shown in Fig. 7(i). Under the optimized conditions, the BER performance as a
function of OSNR was shown in Fig. 7(ii). The implementation penalty compared with the
theoretical BER curve was around 2.8 dB for 64QAM, at a BER of 10−3, which is much better
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than those of the previously-reported 64QAM transmitters in [3–4]. Similar to that performance
of 36QAM AOWC, a negligible power penalty of <0.3 dB was observed with the respect to the
input signal at a BER of 10−3 after the conversion. The obtained constellations of the input and
converted high-order QAMs at around 35 dB received OSNR and are shown in the insets of
Fig. 7(ii).

2.2. Summary

We have experimentally demonstrated the AOWC of optical 10-Gbaud (50 Gbps) 36QAM and
(60 Gbps) 64QAM through a degenerate FWM effect in HNLF with a power penalty of less
than 0.3 dB at a BER of 10−3. In order to optimize the AOWC performance, the converted high-
order QAM signals were evaluated by measuring the BER and constellations, i.e., EVM. Since
EVM showed higher sensitivity in the presence of nonlinear phase noise, the results suggested
the effectiveness of optimizing the AOWC performance by monitoring EVM, rather than BER,
especially for high-order QAM signals.

3. Pump-phase-noise-free optical signal processing

The previous session mainly focuses on how to avoid or suppress the nonlinear noise or
distortion in optical signal processing. In this session, the focus is to exploit the approach to
eliminate the linear phase noise from the local pumps deployed in optical signal processing
subsystems. In optical signal processing subsystems, such as wavelength conversion, wave‐
length exchange or wavelength multicasting, it is inevitable to deploy local pump sources to
realize the optical signal processing functionalities. As we discuss before, the linear phase noise
from local pumps may introduce phase noise or distortion to the converted signal in optical
signal processing subsystem. The most straightforward way is to deploy narrow-linewidth
lasers as pump sources. However, it increases the implementation cost of the systems. We will
present our proposed coherent pumping scheme. Thanks to the phase noise cancelling effect
using this coherent pumping, it allows the use of low-cost distributed feedback (DFB) lasers

Figure 7. (i) Measured optical spectrum in the optimal condition, (ii) measured BER as function of the received OSNR
(0.1 nm). Insets: (a) input and (b) converted 64QAM signals.
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as pump sources, and at the same time, ensures the superior performance since it is free of the
phase noise from pumps. Here we will demonstrate several pump-phase-noise-free optical
signal processing subsystems for high-order QAM signals, including: (a) pump-phase-noise-
free wavelength conversion and wavelength exchange for high-order QAMs signals using
cascaded second-order nonlinearities in PPLN [18, 19]; and (b) pump-phase-noise-free
wavelength multicasting of QAM signals using FWM in HNLF [20].

3.1. Pump-phase-noise-free wavelength conversion and wavelength exchange in PPLN

Figure 8 depicts the operation principle of the pump-linewidth-free AOWC. It is based on
cascaded second-order nonlinearity in PPLN. Two pumps at ωp1 and ωp2 are allocated at one
side of quasi-phase-matching (QPM) wavelength of PPLN, whereas input signal at ω1 is placed
symmetrically with pump at ωp1 with respect to QPM wavelength. After AOWC, the input
signal at ω1 is shifted to the frequency ω2, with ω2=ωp1-ωp2+ω1, where ωp1, ωp2 and ω1 are the
frequencies of pump1, pump2, and the input signal, respectively. It is typically employed for
performing the data exchange between the two input wavelengths [13], i.e. wavelength
exchange. The frequencies ωp1 and ω1 have to be arranged symmetrically with the respect to
the PPLN’s quasi-phase-matching (QPM) wavelength in order to satisfy the phase matching
condition and for increasing the conversion efficiency. With the non-depletion assumption,
linear mapping between the input and output relationship in complex amplitudes and phase
are given by equations (1) and (2), respectively.
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where θoutput, θinput, ∆θp1, ∆θp2, and C are the phase of the converted and input signals, the phase
noise from pump1 and pump2, and a constant term, respectively, and ∆θpump =∆θp1 -∆θp2. Note
that the phase information in each pump is transparently transferred to the converted signal
as a subtraction term between them. In order to avoid additional phase noise introduced in
the process, the phase noise term from pumps, Δθpump, should be minimized. If the pumps are
synthesized by a two-tone generator (TTG) from a single laser source, the phase noise from
pumps is eliminated in the converted signal, i.e. Δθpump=0. Hence, the wavelength conversion
becomes free of the phase noise from pumps, allowing the use of lower cost lasers and at the
same time ensuring a superior performance in terms of noise performance. The TTG may be
constructed using either Mach-Zehnder modulators driven by a RF clock, or an optical
frequency comb followed by an optical spectrum shaper. The two-tone spacing could vary
from a fraction of nanometer to several nanometers, making it possible to cover a relative wide
conversion range in the OWC. The TTG generated from a filtered optical frequency comb is
more suitable and practical for the OWC based on HNLF.

3.1.1. Pump-phase-noise-free AOWC in PPLN

The experimental set-up is depicted in Fig. 6, showing OWC scheme of 16 and 64 QAM signals.
A 5kHz linewidth FL at the wavelength of 1552.52 nm was deployed as the light source to
minimize the phase noise from the input signal. And then the light was modulated by an in-
phase/quadrature (IQ) modulator for generating QAM signals. The two de-correlated 4- or 8-
level driving electronics derived from 10-Gbaud PRBS streams with the length of 215−1 were
generated from an arbitrary waveform generator (AWG) to drive the IQ modulator, which has
a Vπ of 3.5 V and an optical bandwidth of around 25 GHz. Two different pump configurations
were adopted for comparison. The two pumps were generated from a single laser source at
the wavelength of 1548.08 nm using a TTG in the coherent pump configuration, which
consisted of a high extinction-ratio (ER) optical modulator driven by a 25-GHz RF clock. The
high-ER modulator was made up on the x-cut LiNbO3 substrate with two embedded active
trimmers in each arm and it has the extinction ratio of up to 60 dB. The two phase-correlated
coherent pumps were obtained with the 50-GHz frequency separation with a >40-dB spurious
suppression ratio. For the case of free-running pumping, two independent free-running lasers
at the wavelengths of 1547.88 and 1548.28 nms were used as pumps with 50-GHz spacing. For
each of the configurations, we tried either the 500-kHz linewidth ECLs or the 3.5-MHz
linewidth DFBs as the laser sources for the pumps.

The optical spectra with and without pumps for wavelength conversion of 64QAM signals
after the PPLN are shown in Fig. 10. Similar conversion efficiency (CE) and signal depletion
(SD) were obtained for the both free-running pumps (ECL/DFB) and coherent two-tone pumps
(ECL/DFB). Here, the CE is defined as the power ratio between the converted signal to the
input signal after the PPLN. On the other hand, the SD is the power ratio of the input signal
after the PPLN when the both pumps were switched OFF and ON, respectively. The total pump
power launched into the PPLN was set to the maximum value of about 28.8 dBm (25.8 dBm
for each pump) to maximize both CE and SD, where CE of -6.5 dB and SD of 25 dB were
obtained with input signal power of 6 dBm.
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Figure 11. Measured QAM constellations using ECL and DFB pump lasers in coherent two-tone and free-running con‐
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Figure 10. Optical spectra measured after PPLN when performing OWC of 64QAM with DFB pump lasers in both
free-running and coherent configurations.
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Figure 10. Optical spectra measured after PPLN when performing OWC of 64QAM with DFB pump lasers in both
free-running and coherent configurations.
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The constellations of the converted 16/64QAMs signals were re-constructed and observed with
different pump lasers and pump configurations. As shown in Fig. 11, for either ECL or DFB
pump laser, clear constellations are observed with coherent two-tone pumps. On the other
ways, with the ECL pump lasers in free-running configuration, symbol rotation in phase starts
to turn into obvious in the 64QAM constellation owing to the additional phase noise from the
free-running ECL pumps. Furthermore, the presence of even larger pump phase noise causes
clear spreading of the symbols around the unit circle for both formats with DFB free-running
pumps, which is more severe for the higher amplitude symbols. From the measured BER
curves, the results can also be confirmed as a function of optical signal-to-noise ratio (OSNR)
at 0.1 nm for both input and converted 16/64QAM signals, as seen in Fig. 12. For both ECL and
DFB pump lasers with coherent pump configuration, negligible power penalties of <0.1 dB for
16QAM and <0.3 dB for 64QAM at BER of 10−3 are observed with the respect of the input signal
at 10Gbaud. Although we can get insignificant power penalty of <0.3 dB at BER of 10−3 for
16QAM with ECL as the pump laser, by increasing the modulation level to 64QAM, a 0.5 dB
penalty at BER of 10−3 and an error floor at around 3×10−5 are observed in the case of free-
running pumps. Owing to the strong phase noise with the free-running DFB pumps, even at
>30 dB OSNR, a BER of around 10−2 is observed for 16QAM. The effectiveness of the pump-
phase-noise removal in the OWC for high-order QAM with coherent two-tone pumps is
verified by the BER and constellation results.

Figure 12. Measured BER vs. OSNR curves for 16/64QAM. Squares: back-to-back (BtB), stars: coherent pumps (ECL),
crosses: free-running pumps (ECL), diamonds: coherent pumps (DFB).

3.1.2. Pump-phase-noise-free wavelength exchange in PPLN

Wavelength exchange is a kind of optical signal processing technique to realize bidirectional
information swapping between different wavelengths. It consists of simultaneous signal
depletion and wavelength conversion processes of two participated channel signals. Each of
input signals is power consumed and its corresponding power is shifted to the other wave‐
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length, finally realizing data exchange between two wavelengths in single device. So far,
several works have been demonstrated through non-degenerate FWM in highly-nonlinear
fiber [21–24] or cascaded second-order nonlinearities in PPLN waveguide [25–26].
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Figure 13. Measured constellations of input and converted signals after wavelength exchange (16QAM and QPSK).

Here,  we apply  the  coherent  pumping concept  to  wavelength  exchange  to  demonstrate
pump-phase-noise free wavelength exchange in PPLN. For experimental demonstration, an
experimental  setup similar to the one shown in Fig.  9 was deployed by adding another
input  signal.  Two  input  signals  modulated  in  16QAM  and  QPSK,  respectively  were
launched to PPLN as input signals for performing wavelength exchange. To evaluate the
performance  of  wavelength  exchange,  BER  and  constellations  were  measured.  The
constellations of the swapped signals with different pump configurations are depicted in
Fig. 13. With coherent pumps, clear constellations are observed for both QPSK and 16QAM.
However, with DFB free-running pumps, the presence of pump phase noise causes clear
spreading of the symbols around the unit circle with which is more severe for the higher
amplitude symbols in 16QAM. It implies that with incoherent DFB pumps, the phase noise
from pump severely deteriorates the swapped QAM signals. It can also be confirmed from
the measured BER curves as a function of  OSNR (0.1 nm) for both input and swapped
signals. With coherent DFB pump, around 0.6 dB and 3 dB power penalties at BER of 10−3
were  obtained  for  QPSK  and  16QAM,  respectively.  As  discussed  above,  this  is  mainly
attributed  to  the  crosstalk  introduced  by  finite  ER  (20dB).  However,  in  case  of  free-
running pumps, although it was still possible to obtain BER curve for swapped QPSK, ~3.4-
dB  penalty  and  visible  error-floor  at  BER  of  5×10−4  were  clearly  observed.  Due  to  the
susceptibility of 16QAM against phase noise and crosstalk, it becomes impossible to obtain
BER plot for the swapped 16QAM. This verifies the effectiveness of the elimination of the
pump phase noise in the OWE for high-order QAM with coherent pumps.
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Figure 14. Measured BER vs. OSNR of the input and swapped QAM signals.

3.2. Pump-phase-noise-free wavelength multicasting of high-order QAM by FWM in HNLF

With the emergence of high-bandwidth point-to-multipoint applications such as high-
definition Internet TV, big-data sharing, and data center migration, the need for wavelength
multicasting has arisen recently to improve the network throughput and decrease the blocking
probability in optical networks. Through multicasting, the network wavelength resources
could be efficiently and flexibly managed in wavelength division multiplexing networks.
Recently, it has also shown the application of wavelength multicasting in the all-optical
spectrum defragmentation in elastic optical networks (EON) [27]. All-optical multicast
through the nonlinearities in HNLF [28–30], SOA [31] and silicon nanowire waveguide [32]
has been reported.
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Figure 15. Operation principle of wavelength multicasting based on FWM in HNLF.

With the proposed coherent pumping, it is possible to achieve pump-phase-noise-free
wavelength multicasting as well. Figure 15 illustrates the operation principle of the proposed
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pump-phase-noise-free wavelength multicasting scheme based on FWM with coherent multi-
carrier pump. With the input three pumps at ω1, ω2, ω3, and input signal at ωs, seven multi‐
casted channels, including the original input signal, are uniformly generated with a spacing
of ∆ω. The frequency spacing settings of ∆ω and 2∆ω between ω1 and ω2, ω2 and ω3 could
efficiently avoid the overlapping of spectrum among multicasted channels. It finally leads to
a uniform frequency allocation of the multicasted signals alongside of the input signal with a
spacing of ∆ω, which is important to realizing all-optical spectrum defragmentation [27]. The
generated six components next to input signal are the non-degenerate FWM components with
the frequencies of ωsij*, where i,j ∈[1, 2, 3], i≠j, and * symbolizes the conjugate operation. The
following equation shows the resultant phase in the multicasted signal at ωsij*:

( )output input pi pj input pump C Cq q q q q q= ± D - D + = ± D + (3)

where ∆θpump =∆θpi-∆θpj, and θoutput, θinput, ∆θpi, ∆θpj, and C are the phase of the output and input
signals, the phase noise from pump i, j where i, j∈[1, 2, 3], and a constant term, respectively.
When the pumps are coherent in phase, it is obvious that the phase noise from pumps are
eliminated in the multicasted signals, i.e. ∆θpump=0. Therefore, the wavelength multicasting
becomes tolerant against the phase noise from the pumps. Hence, lower-cost DFB lasers can
be used as pump source. In practice, an optical comb with a spacing of ∆ω could be employed
to generate the coherent multi-carrier pump followed by an optical processor. The optical
processor could ether be a liquid crystal on silicon (LCoS) device or cascaded band-pass and
notch filters to select coherent carriers with desired spacing. The multicasting scale and the
channel spacing of multicasted signals could be simply re-configured by programming the
optical processor. The coherent pumping concept has been applied to wavelength conversion
to remove the phase noise from the local pumps [18]. It is more beneficial and cost-effective
when coherent pumping scheme is extended to multicasting with the flexible coherent multi-
carrier pumping.

 

 

 

Figure  16.  Experimental  setup  of  pump‐phase‐noise‐free  1  to  7  wavelength 
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and16QAM signals with different pumping configurations are shown in Fig. 17. Even 
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pumping. However, in the case of free‐running DFB pumping, for the newly‐produced 
components,  clear  symbol  spreading  around  the  unit  circle  occurred  due  to  the 
phase noise from DFB pumps. It happens especially for the outer symbols with higher 
amplitude  in  16QAM.  The  measured  BER  curves  as  function  of  OSNR  (0.1  nm)  is 
depicted in Fig. 18. For both QPSK and 16QAM, less than 0.8 dB power penalty was 
obtained at BER=10−3 for all of the seven multicasted signals with respect to the input 
signal with coherent pumping. On the other hand, owing to the strong phase noise 
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To verify the proposed pump-phase-noise-free wavelength multicasting, a 1-to-7 multicasting
experiment for QPSK and 16QAM signals was conducted with the setup shown in Fig. 16.
Different from the setup shown in Fig. 9, a coherent multi-carrier pump is used as pump source,
and a piece of highly-nonlinear fiber (HNLF) with length of 150 m is deployed as nonlinear
media. The deployed HNLF has an attenuation coefficient of 0.9dB/km, a nonlinear coefficient
of 18/W/km, a zero-dispersion wavelength of 1548 nm, a dispersion slope of around
0.02ps/nm2/km and low β4 (2×10−56s4/m). Thanks to its high nonlinearity, a short length of
HNLF (150 m) is sufficient to achieve the FWM-based wavelength multicasting. To retain the
coherence of pumps, the short lengths, low and flat dispersion profile of the deployed HNLF
are helpful to maintain the coherence of the pumps when propagating in HNLF. The constel‐
lations of the input and multicasted QPSK and16QAM signals with different pumping
configurations are shown in Fig. 17. Even using DFB as pump laser, clear constellations are
observed with coherent 3-carrier pumping. However, in the case of free-running DFB pump‐
ing, for the newly-produced components, clear symbol spreading around the unit circle
occurred due to the phase noise from DFB pumps. It happens especially for the outer symbols
with higher amplitude in 16QAM. The measured BER curves as function of OSNR (0.1 nm) is
depicted in Fig. 18. For both QPSK and 16QAM, less than 0.8 dB power penalty was obtained
at BER=10−3 for all of the seven multicasted signals with respect to the input signal with
coherent pumping. On the other hand, owing to the strong phase noise transferred from the
noisy pumps with free-running DFB pumping, error-floor at BER of 1×10−3 and 4×10−3 was
observed for QPSK and 16QAM, respectively. The effectiveness of the elimination of the pump
phase noise is verified in the multicasting for QAM signals with coherent multi-carrier
pumping.

Figure 17. Measured constellations of input and converted signals with coherent pumping and free-running pumping
schemes. QPSK: (a)~(c); 16QAM: (d)~(f).
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Figure 18. Measured BER vs. OSNR curves for (a) QPSK and (b) 16QAM multicasting systems.

3.3. Summary

In this section, in order to avoid the phase noise introduced from local pumps, coherent
pumping concept has been proposed. Through experimental demonstration based on either
cascaded second-order nonlinearities in PPLN or third-order nonlinearity in HNLF, we have
successfully demonstrated that, even using low-cost noisy DFB lasers as pump source, the
phase noise from local pumps could be effectively avoided in optical signal processing for
high-order QAM signals, including wavelength conversion, wavelength exchange, and
wavelength multicasting. However, in cases of free-running DFB pumps, it is impossible to
obtain clear constellations for QAM signals, especially for 16QAM and 64QAM signals, which
was significantly deteriorated by the large phase noise from DFB pumps.

4. Future works

To properly conduct optical signal processing for advanced high-order QAM signals, several
issues have been addressed in this chapter. We also discussed proposed coherent pumping
schemes for realizing the phase-noise-free optical signal processing for high-order QAM
signals. For further study and investigation, the following aspects could be considered.

1. Phase-noise-free processing for multi-carrier high-order signals

Here, the study and investigation of phase-noise-free optical signal processing are mainly
focusing on the single-carrier high-order modulation formats like high-order QAMs. It is also
applicable to the multi-carrier high-order signals, such as coherent optical OFDM (CO-OFDM)
with subcarriers modulated in high-order QAMs. Such QAM-CO-OFDM also suffers from the
susceptibility against phase noise, especially for CO-OFDM with high-order QAM subcarrier
modulations [33]. Therefore, it is highly desirable to further apply the coherent pumping
concept to demonstrate the phase-noise-free processing for multi-carrier high-order signals in
the near future.
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2. Reconfigurable coherent optical multi-carrier

As we point out in the above sections, coherent optical multi-carrier could be produced by an
optical comb followed by optical signal processing, which is usually an LCoS-based compo‐
nent. It is cost effective to share multi-carrier for multi-channel signal processing. However, it
is still costly to include LCoS-based optical processor in optical signal processing subsystems.
Thus, it is interesting to further develop cost-effective coherent multi-carrier with reconfigur‐
able tone number and spacing. It will be one of key components for realizing reconfigurable
optical signal processing in the future.

3. Other nonlinear media to realize optical signal processing

The experimental demonstration reported here is mainly focusing on HNLF and PPLN
devices. Obviously, it could also be implemented in other nonlinear media like SOA especially
quantum-dot SOA [34], and silicon waveguides [35].

5. Conclusion

Local pump lasers are indispensable for conducting optical signal processing for optical
signals. For phase-noise-sensitive advanced modulation formats, the phase noise from local
pumps are critical to be considered in order to realize superior optical signal processing. In
this chapter, optical signal processing technology for high-order QAM signals has been
discussed, with focus on wavelength conversion, wavelength exchange and wavelength
multicasting for high-order QAM signals. To design high-performance optical signal process‐
ing subsystems, both linear and nonlinear phase noise and distortions are the main concerns
in the system design. We first investigated the effective monitoring approach to optimize the
performance of wavelength conversion for avoiding undesired nonlinear phase noise and
distortions. Then, in the following sections, we discussed our proposed coherent pumping
scheme to eliminate the linear phase noise from local pumps in order to realize pump-phase-
noise-free wavelength conversion, wavelength exchange and multicasting for high-order
QAM signals. Experimental demonstrations were present to verify the feasibility of the
proposed coherent pumping schemes.
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Abstract

Optical signal processing is a promising technique to enable fast data information proc‐
essing in the optical domain. Traditional optical signal processing functions pay more at‐
tention to binary modulation formats (i.e., binary numbers) with single-bit information
contained in one symbol. The ever-growing data traffic has propelled great success in
high-speed optical signal transmission by using advanced multilevel modulation formats
(i.e., high-base numbers), which encode multiple-bit information in one symbol with re‐
sultant enhanced transmission capacity and efficient spectrum usage. A valuable chal‐
lenge would be to perform various optical signal processing functions for multilevel
modulation formats, i.e., high-base optical signal processing. In this chapter, we review
recent research works on high-base optical signal processing for multilevel modulation
formats by exploiting degenerate and nondegenerate four-wave mixing in highly nonlin‐
ear fibers or silicon photonic devices. Grooming high-base optical signal processing func‐
tions including high-base wavelength conversion, high-base data exchange, high-base
optical computing, and high-base optical coding/decoding are demonstrated. High-base
optical signal processing may facilitate advanced data management and superior net‐
work performance.

Keywords: High-base optical signal processing, multilevel modulation format, four-wave
mixing, wavelength conversion, data exchange, optical computing, coding/decoding

1. Introduction

The arrival of the era of big data has fuelled the increasing demand on both high-speed signal
transmission and fast signal processing, which are known as two themes of great importance
for optical communications. The advances in fiber-optic technologies have resulted in great
success in delivering high-speed data signals in optical fiber transmission links [1-5]. The rapid
development of photonics technologies has also promoted increasing interest for optical signal
processing, which is regarded as a promising solution to facilitate high-speed signal processing

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



in the optical domain and to eliminate complicated, inefficient, low-latency, and power-
consuming optical-to-electrical-to-optical (O-E-O) conversions [6]. At network nodes of
advanced photonic networks, different optical signal processing functions might be required
to enable increased network flexibility and efficiency. Remarkably, nonlinear optics has offered
great potential to develop optical signal processing in high-speed photonic networks using
various optical nonlinearities [6-20]. Miscellaneous optical signal processing functions have
been demonstrated, such as wavelength conversion, wavelength (de)multiplexing, wave‐
length multicasting, data exchange, add/drop, optical addressing, optical switching, optical
logic gate, optical computing, optical format conversion, optical correlation, optical equaliza‐
tion, optical regeneration, tunable optical delay, optical coding/decoding, etc. [21-53]. These
optical signal processing operations are enabled by exploiting different nonlinear effects in
different nonlinear optical devices. The typical nonlinear effects include cross-gain modulation
(XGM), self-phase modulation (SPM), cross-phase modulation (XPM), two-photon absorption
(TPA), degenerate and nondegenerate four-wave mixing (FWM), second-harmonic generation
(SHG), sum-frequency generation (SFG), difference-frequency generation (DFG), cascaded
second-harmonic generation and difference-frequency generation (cSHG/DFG), and cascaded
sum- and difference-frequency generation (cSFG/DFG). Typical nonlinear optical devices
based on different platforms include semiconductor optical amplifiers (SOAs), highly nonlin‐
ear fibers (HNLFs), periodically poled lithium niobate (PPLN) waveguides, chalcogenide
(As2S3) waveguides, silicon waveguides, and photonic crystal waveguides. It is noted that most
of previous research efforts are dedicated to optical signal processing for binary modulation
formats such as on–off keying (OOK), differential phase-shift keying (DPSK), and binary
phase-shift keying (BPSK). Despite favorable operation performance achieved for binary
optical signal processing, it suffers limited bitrate and low spectral efficiency since only single-
bit information is carried by each symbol for binary modulation formats.

With the rapid growth of global broadband and mobile data traffic, high transmission capacity
and high spectral efficiency are highly desirable. Fortunately, recent advances in multilevel
modulation formats, coherent detection, and digital signal processing have led to tremendous
increase in transmission capacity and spectral efficiency [54-63]. Beyond great progress in high-
speed signal transmission, processing multilevel modulation formats in the optical domain
could be another interesting topic compatible with superior network performance and
advanced data management. Typically, multilevel modulation formats contain multiple bits
in one symbol, e.g., 2, 3, and 4 bits in one symbol for quadrature phase-shift keying (QPSK),
8-ary phase-shift keying (8PSK), star 8-ary quadrature amplitude modulation (Star-8QAM),
16-ary phase-shift keying (16PSK), star 16-ary quadrature amplitude modulation
(Star-16QAM), and square 16-ary quadrature amplitude modulation (Square-16QAM) (Fig.
1). Moreover, multiple points in the constellation plane can be used to represent high-base
numbers, e.g., quaternary number for QPSK, octal numbers for 8PSK and Star-8QAM, and
hexadecimal numbers for 16PSK, Star-16QAM and Square-16QAM (Fig. 1). Despite great
success in transmission links using multilevel modulation formats [64-69], there have been
relatively limited research efforts dedicated to their manipulation in the optical domain (i.e.,
high-base optical signal processing). In this scenario, a laudable goal would be to develop
miscellaneous high-base optical signal processing functions for multilevel modulation formats
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[70-86]. The aforementioned optical nonlinearities in various nonlinear optical devices would
be promising candidates to facilitate grooming high-base optical signal processing operations.

In this chapter, we provide a comprehensive report of our recent research works on high-base
optical signal processing for multilevel modulation formats by exploiting optical nonlinearities
[71, 73-75, 77, 79, 80, 83, 85, 86]. The demonstrated high-base optical signal processing functions
include wavelength conversion using degenerate FWM in a silicon waveguide [83], data
exchange using degenerate/nondegenerate FWM in HNLFs or silicon-organic hybrid slot
waveguides [71, 73, 74, 86], optical computing using degenerate/nondegenerate FWM in
HNLFs or silicon–organic hybrid slot waveguides [75, 77, 80, 85], and optical coding/decoding
using degenerate FWM in HNLFs [79].
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Figure 1. Schematic constellations of advanced multilevel modulation formats representing high-base (quaternary, oc‐
tal, hexadecimal) numbers (QPSK, Star-8QAM/8PSK, 16PSK/Star-16QAM/Square-16QAM).

2. High-base wavelength conversion [83]

We demonstrate high-base all-optical wavelength conversions of multicarrier, multilevel
modulation signals based on degenerate FWM in a silicon waveguide. Coherent multicarrier,
multilevel modulations, i.e., orthogonal frequency-division multiplexing (OFDM) combined
with advanced multilevel quadrature amplitude modulation (mQAM), are employed in the
experiment.

Shown in Fig. 2(a) is the schematic cross section of a typical silicon waveguide. The calculated
mode distribution using finite element method (FEM) is depicted in Fig. 2(b), from which one
can see the tight light confinement in the top silicon region due to the high contrast index of
the silicon waveguide. The measured scanning electron microscope (SEM) images of the
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fabricated silicon waveguide and grating coupling region are shown in Fig. 2(c) and (d). We
fabricate the silicon waveguide on a silicon-on-insulator (SOI) wafer, on the top of which the
silicon thickness is 340 nm with a 2-μm-thick buried oxide (BOX) layer. Using electron-beam
lithography (EBL), followed by induced coupled plasma (ICP) etching, the desired silicon
waveguide is formed for on-chip, high-base wavelength conversion.

Figure 2. (a) Cross section and (b) calculated mode distribution of a typical silicon waveguide. (c)(d) Measured scan‐
ning electron microscope (SEM) images of the fabricated silicon waveguide and grating coupling region.

Figure 3 illustrates the wavelength conversion process based on degenerate FWM in a silicon
waveguide. One OFDM m-QAM carrying data signal and one continuous-wave (CW) pump
are launched into the silicon waveguide. When propagating along the silicon waveguide,
pump photons are annihilated to create signal photons and newly converted idler photons
through degenerate FWM process. At the output of the silicon waveguide, the converted idler
takes the OFDM m-QAM data information carried by the input signal and the wavelength
conversion from input signal to output idler is achieved. It is noted that the performance
degradation of high-base wavelength conversion by degenerate FWM process can be ascribed
to the accumulated phase noise transferred from the input pump and signal. Since the
constellations of higher-order modulations (e.g., 16/32/64/128-QAM) inherently have a smaller
phase noise tolerance due to the smaller spacing between adjacent constellation points, it is
challengeable to realize high-base wavelength conversion of OFDM m-QAM signals, espe‐
cially for higher-order modulations such as OFDM 16/32/64/128-QAM.

Shown in Fig. 4 is the experimental setup for high-base wavelength conversion of OFDM
16/32/64/128-QAM signals using a silicon waveguide. At the transmitter, an external cavity
laser (ECL1) at 1563.849 nm is modulated by a single-polarization optical I/Q modulator. An
arbitrary waveform generator (AWG) running at 10 GS/s sampling rate is used to produce the
electrical OFDM m-QAM signal (m=16, 32, 64, 128). The transmitted OFDM signal is generated
off-line from a data sequence of 231-1 pseudo random binary sequences (PRBS) and then
mapped onto m-QAM constellation. The OFDM m-QAM signal is constructed by 82 subcar‐
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riers, in which 78 subcarriers are used to carry the payloads with m-QAM signal, while 4
subcarriers are selected as the pilots with 4-QAM loading to estimate the phase noise. Another
inverse fast Fourier transform (IFFT) with a size of 256 is used to convert the signal to time
domain. No cyclic prefix (CP) is used as the signal passes through a system without dispersion-
dominated devices. For the channel estimation, 10 training symbols are used for every 468
payload symbols in a manner of [A 0], where “A” denotes one OFDM m-QAM symbol.
Another ECL (ECL2) employed as the pump is set at 1560.61 nm with a 6-dBm output power.
Two polarization controllers (PC1, PC2) are used to adjust the polarization states of signal and
pump, respectively. After the signal amplification by an erbium-doped fiber amplifier
(EDFA1) with a maximum output power of 27 dBm and pump amplification by a second EDFA
(EDFA2) with a maximum output power of 30 dBm, the signal and pump are combined with
a wavelength selective switch (WSS) and then vertically coupled into the silicon waveguide,
in which degenerate FWM process takes place to enable the wavelength conversion from the
signal to the converted idler. In the experiment, the signal is amplified to 25.5 dBm by EDFA1
and the pump is amplified to 27 dBm by EDFA2. The WSS not only combines the amplified
signal and pump together but also suppresses the amplified spontaneous emission (ASE) noise
from two EDFAs. After the wavelength conversion, the signal, pump, and newly converted
idler are vertically coupled out from the silicon waveguide. After the amplification by a third
EDFA (EDFA3), the converted idler is filtered using a tunable optical filter (TOF) with a
bandwidth of 0.4 nm. A variable optical attenuator (VOA) and one more EDFA (EDFA4) are
employed to adjust the received optical signal-to-noise ratio (OSNR) for proper detection by
the coherent receiver. At the receiver, the optical signal is first mixed with a local oscillator
(LO) by an optical hybrid and detected by a typical balanced coherent receiver. The line width
of the employed laser sources including ECL1, ECL2, and LO in the experiment is around 100
kHz. The obtained two radio frequency (RF) signals for the IQ components are sent into a
Tektronix real-time digital oscilloscope acquired at 50 GS/s and processed off-line with a

Figure 3. Illustration of high-base wavelength conversion of OFDM m-QAM signals based on degenerate FWM in a
silicon waveguide.
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MATLAB program. The offline digital processing of the received signal includes: 1) carrier
frequency offset estimation and OFDM window synchronization; 2) fast Fourier transform
(FFT); 3) channel estimation; 4) phase noise estimation (crucial to m-QAM signal); 5) constel‐
lation decision and bit-error rate (BER) calculation.

Figure 4. Experimental setup for high-base wavelength conversion of OFDM m-QAM signals using a silicon wave‐
guide. ECL: external cavity laser; AWG: arbitrary waveform generator; PC: polarization controller; TOF: tunable opti‐
cal filter; VOA: variable optical attenuator; LO: local oscillator; EDFA: erbium-doped fiber amplifier.

In order to characterize the performance of high-base wavelength conversion of OFDM m-
QAM signals, we measure the BER curves as a function of received OSNR for back-to-back (B-
to-B) and converted idler. Shown in Fig. 5(a)-(d) are measured BER performance for high-base
wavelength conversions of OFDM 16-QAM, OFDM 32-QAM, OFDM 64-QAM, and OFDM
128-QAM, respectively. As shown in Fig. 5(a), for OFDM 16-QAM wavelength conversion the
required OSNR at the 7% forward error correction (FEC) threshold (BER=1x10-3) is 7.8 and 10.8
dB for the B-to-B signal and converted idler, respectively. The observed OSNR penalty is
around 3 dB for OFDM 16-QAM wavelength conversion. Similarly, the received OSNR
penalties of ~4 dB at 7% FEC threshold in Fig. 5(b), ~3.5 dB in Fig. 5(c) at 20% FEC threshold
and ~4.5 dB in Fig. 5(d) at 20% FEC threshold are observed for high-base wavelength conver‐
sions of OFDM 32-QAM, OFDM 64-QAM, and OFDM 128-QAM, respectively. The right insets
of Fig. 5(a)-(d) depict corresponding constellations of the B-to-B signals and converted idlers
at the given OSNR values. One can see clear constellations of converted idlers, indicating
favorable operation performance achieved for on-chip, high-base, all-optical wavelength
conversions of multicarrier, multilevel modulation (OFDM 16/32/64/128-QAM) signals using
a silicon waveguide.

3. High-base optical data exchange [71, 73, 74, 86]

We propose and demonstrate high-base all-optical data exchange of advanced multilevel
modulation signals based on degenerate/nondegenerate FWM in HNLFs or silicon–organic
hybrid slot waveguides.
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We first demonstrate high-base optical data exchange of 100-Gbit/s return-to-zero differential
QPSK (RZ-DQPSK) signals. The concept and principle for high-base optical data exchange of
DQPSK modulation signals between two different wavelengths (S1:λS 1, S2:λS 2) are depicted
in Fig. 6. The four-level phase information carried by two DQPSK signals at different wave‐
lengths is swapped after the data exchange, as shown in Fig. 6(a). To perform high-base optical
data exchange of DQPSK signals carrying phase information, the optical data exchange
operation is expected to be phase transparent. Using the parametric depletion effect in a single
HNLF, one may realize phase-transparent optical data exchange. Figure 6(b) depicts the
principle of operation of parametric depletion. Two CW pumps (P1:λP1, P2:λP2) and signal 1
(S1:λS 1) are fed into the HNLF. P1 and S1 are symmetrical about the zero-dispersion wave‐
length (ZDM) of HNLF. When propagating along the HNLF, the photons of P1 and S1 are
annihilated to create the photons of P2 and S2 (1 /λS 2 + 1 /λP2 =1 /λS 1 + 1 /λP1) by the nonde‐
generate FWM process. Thus, the parametric depletion of S1 is expected with its data infor‐
mation copied onto a newly generated S2. Similarly, the depletion of S2 accompanied by the
creation of S1 is realized during the nondegenerate FWM process when sending two pumps
and S2 into the HNLF. Figure 6(c) shows the principle of operation of optical data exchange.
Two pumps and two signals are simultaneously launched into the HNLF. When P1(P2) and
S1(S2) are almost symmetrical about the ZDW of HNLF, S1(S2) can be consumed to produce
S2(S1) by appropriately adjusting the power of two pumps. As a consequence, one can
implement optical data exchange between two signals (S1, S2).

Remarkably, under the nondepletion approximation and proper control of pump powers, one
can easily derive linear relationships (AS 1

' ∝ AS 2 ⋅ AP2 ⋅ AP1
* , AS 2

' ∝ AS 1 ⋅ AP1 ⋅ AP2
* ) of complex

Figure 5. Measured BER versus received OSNR for high-base wavelength conversions of multicarrier, multilevel mod‐
ulation signals. (a) OFDM 16-QAM. (b) OFDM 32-QAM. (c) OFDM 64-QAM. (d) OFDM 128-QAM.
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amplitudes between the output signals (AS 1
' , AS 2

' ) and input signals and pumps (AS 1, AS 2, AP1,
AP2). The linear complex amplitude relationships imply that nondegenerate FWM-based high-
base data exchange has the characteristic of transparency to the modulation format including
the phase transparency. We can further obtain the phase relationships of φS 1' =φS 2 + φ P2 −φ P1

and φS 2' =φS 1 + φ P1 −φ P2. It is worth noting that phase modulation is always applied to the
pumps (φ P1, φ P2) to effectively suppress the stimulated Brillouin scattering (SBS) effect in
HNLF. As a result, the pump power is efficiently utilized in the nondegenerate FWM process,
which benefits the effective parametric depletion and data exchange. Remarkably, the pump
phase transfer to the exchanged signals might cause serious trouble for the DQPSK data
exchange. Fortunately, according to the deduced phase relationships, it is possible to cancel
the pump phase transfer by applying the precisely identical phase modulation to the two
pumps (i.e., φ P1=φ P2), which makes it possible to implement the high-base data exchange of
DQPSK or other multilevel modulation signals containing phase information.

3 
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Figure 6. (a) Concept of high-base optical data exchange of DQPSK modulation signals. (b)(c) Principle of 
nondegenerate FWM-based parametric depletion and high-base optical data exchange. 

 
Figure 7. Measured temporal waveforms of demodulated channel I (Ch. I) and channel Q (Ch. Q) for high-base 
optical data exchange of 100-Gbit/s DQPSK signals. (a1)(a2) S1 is ON, P1 is OFF, and P2 is OFF. (b1)(b2) S2 is ON, 
P1 is OFF, and P2 is OFF. (c1)(c2) S2 to S1 wavelength conversion. S1 is OFF, S2 is ON, P1 is ON, and P2 is ON. 
(d1)(d2) S2 to S1 data exchange. S1 is ON, S2 is ON, P1 is ON, and P2 is ON. (e1)(e2) S1 to S2 wavelength 
conversion. S1 is ON, S2 is OFF, P1 is ON, and P2 is ON. (f1)(f2) S1 to S2 data exchange. S1 is ON, S2 is ON, P1 is 
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Figure 11. Concept and principle of simultaneous multichannel, high-base data exchange of DQPSK signals. 

Data     
Exchange 

π/2 π 3π/2 π/2

1S

2S

0   π 3π/2π π/2 π 3π/2 π/2

1S

2S
0 π 3π/2π

S1  

S2  S2
(a)

S1&S2 Data Exchange

S1: ON, S2: ON   

1S 2S 2P 1P

DQPSK   Pumps  

ZDW

(c)

DQPSK  DQPSK 

1P

DQPSK   Pumps  

ZDW

Parametric Depletion  

S1: ON, S2: OFF  

(b)

1S 2S 2P

S1

Input Output 

S1 (before data exchange)  

S2 (before data exchange)

Ch. I   

Ch. I   

Ch. Q

Ch. Q

S1 (after wavelength conversion: S2 to S1) Ch. Q Ch. I   

Ch. I   

S2 (after wavelength conversion: S1 to S2) Ch. Q Ch. I   

Ch. I   S2 (after data exchange: S1 to S2) Ch. Q 

S1 (after data exchange: S2 to S1) Ch. Q 

(a1)   

(b1)   

(c1)   

(d1)   

(e1)   

(f1)   

(a2)   

(b2)   

(c2)   

(d2)   

(e2)   

(f2)   

HNLF

Multi-channel

4S

S1  Pump

1S 2S 3S

S2  S3  S4  

Data Exchange 

FWM

DQPSK  

Ch. I  

Ch. Q

1 1 1 

1 1 1

11

0 0 0

0

Ch. I  

Ch. Q

1 1 

111

1

00 0 

0 0 0 

Ch. I  

Ch. Q

1 1 1 

1 1 1 1

0 0 

0 0 

0

Ch. I  

Ch. Q

1

1

1 1 

1 0 0 0

0

0

0 0

DQPSK  

DQPSK  

DQPSK  
Ch. I 

Ch. Q 
1 1 1 0 0 0

DQPSK 

Ch. I 

Ch. Q 

1 1 10 0 0DQPSK 

Ch. I 

Ch. Q 

1 1 1 1 0 0 DQPSK 

1 1 1 11 0 

1 1 1 0 0 0

Ch. I 

Ch. Q

111 00 0 DQPSK 

1 1 1 0 0 0 

1 1 0 0 00

t
t

t
t

t
t

t
t

t
t

t
t

t
t

t
tP

S1 S1 

S2 S2 

S3 S3 

S4 S4 

S1 
S2 

Pump  

S3 
S4 

S1 
S2 

S3 
S4 

Pump  

IN OUT

Figure 6. (a) Concept of high-base optical data exchange of DQPSK modulation signals. (b)(c) Principle of nondegener‐
ate FWM-based parametric depletion and high-base optical data exchange.

In the experiment, two CW pumps (P1: 1564.4 nm, P2: 1558.6 nm) together with two 100-Gbit/
s RZ-DQPSK signals (S1: 1539.4 nm, S2: 1545.4 nm) are coupled into a 1-km piece of HNLF
with a nonlinear coefficient of 9.1 W-1·km-1, a ZDW of ~1552 nm, and a fiber loss of 0.45 dB/km.
The DQPSK optical data exchange is realized in the HNLF based on the parametric depletion
effect of the nondegenerate FWM process. For the 100-Gbit/s DQPSK optical data exchange,
shown in Fig. 7 are the measured temporal waveforms of demodulated channel I (Ch. I) and
channel Q (Ch. Q). One can clearly see from Fig. 7 that after the nondegenerate FWM-based
optical data exchange, the data information swapping between two 100-Gbit/s RZ-DQPSK
signals is successfully implemented. Additionally, when looking at the temporal waveforms
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amplitudes between the output signals (AS 1
' , AS 2

' ) and input signals and pumps (AS 1, AS 2, AP1,
AP2). The linear complex amplitude relationships imply that nondegenerate FWM-based high-
base data exchange has the characteristic of transparency to the modulation format including
the phase transparency. We can further obtain the phase relationships of φS 1' =φS 2 + φ P2 −φ P1

and φS 2' =φS 1 + φ P1 −φ P2. It is worth noting that phase modulation is always applied to the
pumps (φ P1, φ P2) to effectively suppress the stimulated Brillouin scattering (SBS) effect in
HNLF. As a result, the pump power is efficiently utilized in the nondegenerate FWM process,
which benefits the effective parametric depletion and data exchange. Remarkably, the pump
phase transfer to the exchanged signals might cause serious trouble for the DQPSK data
exchange. Fortunately, according to the deduced phase relationships, it is possible to cancel
the pump phase transfer by applying the precisely identical phase modulation to the two
pumps (i.e., φ P1=φ P2), which makes it possible to implement the high-base data exchange of
DQPSK or other multilevel modulation signals containing phase information.

3 

Updated Figures 

 
Figure 6. (a) Concept of high-base optical data exchange of DQPSK modulation signals. (b)(c) Principle of 
nondegenerate FWM-based parametric depletion and high-base optical data exchange. 

 
Figure 7. Measured temporal waveforms of demodulated channel I (Ch. I) and channel Q (Ch. Q) for high-base 
optical data exchange of 100-Gbit/s DQPSK signals. (a1)(a2) S1 is ON, P1 is OFF, and P2 is OFF. (b1)(b2) S2 is ON, 
P1 is OFF, and P2 is OFF. (c1)(c2) S2 to S1 wavelength conversion. S1 is OFF, S2 is ON, P1 is ON, and P2 is ON. 
(d1)(d2) S2 to S1 data exchange. S1 is ON, S2 is ON, P1 is ON, and P2 is ON. (e1)(e2) S1 to S2 wavelength 
conversion. S1 is ON, S2 is OFF, P1 is ON, and P2 is ON. (f1)(f2) S1 to S2 data exchange. S1 is ON, S2 is ON, P1 is 
ON, and P2 is ON. 

 
Figure 11. Concept and principle of simultaneous multichannel, high-base data exchange of DQPSK signals. 

Data     
Exchange 

π/2 π 3π/2 π/2

1S

2S

0   π 3π/2π π/2 π 3π/2 π/2

1S

2S
0 π 3π/2π

S1  

S2  S2
(a)

S1&S2 Data Exchange

S1: ON, S2: ON   

1S 2S 2P 1P

DQPSK   Pumps  

ZDW

(c)

DQPSK  DQPSK 

1P

DQPSK   Pumps  

ZDW

Parametric Depletion  

S1: ON, S2: OFF  

(b)

1S 2S 2P

S1

Input Output 

S1 (before data exchange)  

S2 (before data exchange)

Ch. I   

Ch. I   

Ch. Q

Ch. Q

S1 (after wavelength conversion: S2 to S1) Ch. Q Ch. I   

Ch. I   

S2 (after wavelength conversion: S1 to S2) Ch. Q Ch. I   

Ch. I   S2 (after data exchange: S1 to S2) Ch. Q 

S1 (after data exchange: S2 to S1) Ch. Q 

(a1)   

(b1)   

(c1)   

(d1)   

(e1)   

(f1)   

(a2)   

(b2)   

(c2)   

(d2)   

(e2)   

(f2)   

HNLF

Multi-channel

4S

S1  Pump

1S 2S 3S

S2  S3  S4  

Data Exchange 

FWM

DQPSK  

Ch. I  

Ch. Q

1 1 1 

1 1 1

11

0 0 0

0

Ch. I  

Ch. Q

1 1 

111

1

00 0 

0 0 0 

Ch. I  

Ch. Q

1 1 1 

1 1 1 1

0 0 

0 0 

0

Ch. I  

Ch. Q

1

1

1 1 

1 0 0 0

0

0

0 0

DQPSK  

DQPSK  

DQPSK  
Ch. I 

Ch. Q 
1 1 1 0 0 0

DQPSK 

Ch. I 

Ch. Q 

1 1 10 0 0DQPSK 

Ch. I 

Ch. Q 

1 1 1 1 0 0 DQPSK 

1 1 1 11 0 

1 1 1 0 0 0

Ch. I 

Ch. Q

111 00 0 DQPSK 

1 1 1 0 0 0 

1 1 0 0 00

t
t

t
t

t
t

t
t

t
t

t
t

t
t

t
tP

S1 S1 

S2 S2 

S3 S3 

S4 S4 

S1 
S2 

Pump  

S3 
S4 

S1 
S2 

S3 
S4 

Pump  

IN OUT
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In the experiment, two CW pumps (P1: 1564.4 nm, P2: 1558.6 nm) together with two 100-Gbit/
s RZ-DQPSK signals (S1: 1539.4 nm, S2: 1545.4 nm) are coupled into a 1-km piece of HNLF
with a nonlinear coefficient of 9.1 W-1·km-1, a ZDW of ~1552 nm, and a fiber loss of 0.45 dB/km.
The DQPSK optical data exchange is realized in the HNLF based on the parametric depletion
effect of the nondegenerate FWM process. For the 100-Gbit/s DQPSK optical data exchange,
shown in Fig. 7 are the measured temporal waveforms of demodulated channel I (Ch. I) and
channel Q (Ch. Q). One can clearly see from Fig. 7 that after the nondegenerate FWM-based
optical data exchange, the data information swapping between two 100-Gbit/s RZ-DQPSK
signals is successfully implemented. Additionally, when looking at the temporal waveforms
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after wavelength conversion with only S1 or S2 present and the temporal waveforms after data
exchange with both S1 and S2 present, the performance degradation of temporal waveforms
after data exchange is observed with increased noise. Such phenomenon can be explained with
the fact that the beating effect between the newly converted signal and original residual signal
induces added noise.

3 

Updated Figures 

 
Figure 6. (a) Concept of high-base optical data exchange of DQPSK modulation signals. (b)(c) Principle of 
nondegenerate FWM-based parametric depletion and high-base optical data exchange. 

 
Figure 7. Measured temporal waveforms of demodulated channel I (Ch. I) and channel Q (Ch. Q) for high-base 
optical data exchange of 100-Gbit/s DQPSK signals. (a1)(a2) S1 is ON, P1 is OFF, and P2 is OFF. (b1)(b2) S2 is ON, 
P1 is OFF, and P2 is OFF. (c1)(c2) S2 to S1 wavelength conversion. S1 is OFF, S2 is ON, P1 is ON, and P2 is ON. 
(d1)(d2) S2 to S1 data exchange. S1 is ON, S2 is ON, P1 is ON, and P2 is ON. (e1)(e2) S1 to S2 wavelength 
conversion. S1 is ON, S2 is OFF, P1 is ON, and P2 is ON. (f1)(f2) S1 to S2 data exchange. S1 is ON, S2 is ON, P1 is 
ON, and P2 is ON. 

 
Figure 11. Concept and principle of simultaneous multichannel, high-base data exchange of DQPSK signals. 

Data     
Exchange 

π/2 π 3π/2 π/2

1S

2S

0   π 3π/2π π/2 π 3π/2 π/2

1S

2S
0 π 3π/2π

S1  

S2  S2
(a)

S1&S2 Data Exchange

S1: ON, S2: ON   

1S 2S 2P 1P

DQPSK   Pumps  

ZDW

(c)

DQPSK  DQPSK 

1P

DQPSK   Pumps  

ZDW

Parametric Depletion  

S1: ON, S2: OFF  

(b)

1S 2S 2P

S1

Input Output 

S1 (before data exchange)  

S2 (before data exchange)

Ch. I   

Ch. I   

Ch. Q

Ch. Q

S1 (after wavelength conversion: S2 to S1) Ch. Q Ch. I   

Ch. I   

S2 (after wavelength conversion: S1 to S2) Ch. Q Ch. I   

Ch. I   S2 (after data exchange: S1 to S2) Ch. Q 

S1 (after data exchange: S2 to S1) Ch. Q 

(a1)   

(b1)   

(c1)   

(d1)   

(e1)   

(f1)   

(a2)   

(b2)   

(c2)   

(d2)   

(e2)   

(f2)   

HNLF

Multi-channel

4S

S1  Pump

1S 2S 3S

S2  S3  S4  

Data Exchange 

FWM

DQPSK  

Ch. I  

Ch. Q

1 1 1 

1 1 1

11

0 0 0

0

Ch. I  

Ch. Q

1 1 

111

1

00 0 

0 0 0 

Ch. I  

Ch. Q

1 1 1 

1 1 1 1

0 0 

0 0 

0

Ch. I  

Ch. Q

1

1

1 1 

1 0 0 0

0

0

0 0

DQPSK  

DQPSK  

DQPSK  
Ch. I 

Ch. Q 
1 1 1 0 0 0

DQPSK 

Ch. I 

Ch. Q 

1 1 10 0 0DQPSK 

Ch. I 

Ch. Q 

1 1 1 1 0 0 DQPSK 

1 1 1 11 0 

1 1 1 0 0 0

Ch. I 

Ch. Q

111 00 0 DQPSK 

1 1 1 0 0 0 

1 1 0 0 00

t
t

t
t

t
t

t
t

t
t

t
t

t
t

t
tP

S1 S1 

S2 S2 

S3 S3 

S4 S4 

S1 
S2 

Pump  

S3 
S4 

S1 
S2 

S3 
S4 

Pump  

IN OUT

Figure 7. Measured temporal waveforms of demodulated channel I (Ch. I) and channel Q (Ch. Q) for high-base optical
data exchange of 100-Gbit/s DQPSK signals. (a1)(a2) S1 is ON, P1 is OFF, and P2 is OFF. (b1)(b2) S2 is ON, P1 is OFF,
and P2 is OFF. (c1)(c2) S2 to S1 wavelength conversion. S1 is OFF, S2 is ON, P1 is ON, and P2 is ON. (d1)(d2) S2 to S1
data exchange. S1 is ON, S2 is ON, P1 is ON, and P2 is ON. (e1)(e2) S1 to S2 wavelength conversion. S1 is ON, S2 is
OFF, P1 is ON, and P2 is ON. (f1)(f2) S1 to S2 data exchange. S1 is ON, S2 is ON, P1 is ON, and P2 is ON

Shown in Fig. 8 is the measured BER performance and balanced eyes for high-base optical data
exchange of 100-Gbit/s DQPSK signals. One can see from Fig. 8 that for wavelength conversion
with only S1 or S2 and two pumps present, the power penalty is assessed to be less than 1.2
dB at a BER of 10-9. In contrast, for data exchange with both two signals and two pumps present,
the power penalty is measured to be less than 5 dB at a BER of 10-9. It is expected that the extra
power penalty of the high-base data exchange compared to the wavelength conversion could
be due to the beating effect between the newly converted signal and the original residual signal.

We further investigate the tolerance of pump misalignment and the dynamic range of input
signal power for the 100-Gbit/s RZ-DQPSK data exchange. Shown in Fig. 9 is the measured
relative power penalty as a function of the pump misalignment. One can clearly see that the
performance degradation of wavelength conversion and data exchange becomes severe when
the pump misalignment is larger than +/-2 ps. Actually, under relatively large pump phase
misalignment, the residual phase due to incomplete pump phase cancellation is transferred to
the phase noise added to the wavelength converted signal and data exchanged signal, resulting
in the degradation of operation performance. Under different pump phase misalignments, the
measured typical balanced eyes of demodulated signals after data exchange are also shown in

High-Base Optical Signal Proccessing
http://dx.doi.org/10.5772/61504

35



the insets of Fig. 9. By comparing the balanced eyes shown in Fig. 8 with perfectly aligned two
pumps, one can observe the performance degradation with added noise under pump phase
misalignment of 3 ps and 4 ps. Especially, one can observe almost completely closed eyes of
demodulated signals after data exchange under an even larger time misalignment of 10 ps
between the two pumps. Consequently, precise time alignment between two pumps and
resultant perfect pump phase cancellation is important and highly desired to obtain favorable
operation performance for phase-transparent optical data exchange.

The measured received power versus the input signal power at a BER of 10-9 is shown in Fig.
10. Less than 3.5-dB fluctuation of the received power is observed at a BER of 10-9 when varying
the input signal power from -12.0 to 8.1 dBm. Thus, the dynamic range of the input signal
power is estimated to be around 20 dB for high-base optical data exchange of 100-Gbit/s RZ-
DQPSK signals based on nondegenerated FWM process.

We then propose and demonstrate a simple alternative method to perform high-base data
exchange between multichannel DQPSK signals using bidirectional degenerate FWM in a
single HNLF accompanied by optical filtering. The concept and operation principle of
multichannel, high-base optical data exchange is illustrated in Fig. 11. Four-channel DQPSK
signals (S1-S4) and a single CW pump are used. Degenerate FWM process is employed. Note
that four-channel DQPSK signals (S1-S4) are symmetrical about the CW pump. For multi‐
channel data exchange, one would expect to see simultaneous data information swapping
between S1 and S4, S2 and S3. Generally speaking, for data exchange operation with two
signals present, it is impossible to separate the newly converted signals from the original
signals by unidirectional degenerate FWM process, so it is difficult to realize optical data

performance  degradation  of  temporal  waveforms  after  data  exchange  is  observed  with 
increased  noise.  Such  phenomenon  can  be  explained with  the  fact  that  the  beating  effect 
between the newly converted signal and original residual signal induces added noise. 
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ON, and P2 is ON. 
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assessed to be less than 1.2 dB at a BER of 10‐9. In contrast, for data exchange with both two 
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the insets of Fig. 9. By comparing the balanced eyes shown in Fig. 8 with perfectly aligned two
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exchange function based on unidirectional degenerate FWM in a single HNLF. We propose a
possible solution by exploiting bidirectional degenerate FWM process in a single HNLF
together with optical filtering. As illustrated in Fig. 11, taking four-channel optical data
exchange as an example, there are four-channel DQPSK signals (S1-S4) at the input. 1) With
optical filtering, S1 and S2 are selected and fed into the HNLF together with the CW pump
from the left side. When propagating along the HNLF, S4 and S3 are generated by the
degenerate FWM wavelength conversion process. After the generation of S4 and S3, the
original S1, S2, and CW pump are suppressed, while the newly converted S4 and S3 are selected

under  an  even  larger  time misalignment of  10 ps between  the  two pumps. Consequently, 
precise time alignment between two pumps and resultant perfect pump phase cancellation 
is  important  and  highly  desired  to  obtain  favorable  operation  performance  for  phase‐
transparent optical data exchange. 

The measured received power versus the input signal power at a BER of 10‐9 is shown 
in Fig.  10. Less  than 3.5‐dB  fluctuation of  the  received power  is  observed at  a BER of 10‐9 
when varying the input signal power from ‐12.0 to 8.1 dBm.  Thus, the dynamic range of the 
input signal power is estimated to be around 20 dB for high‐base optical data exchange of 
100‐Gbit/s RZ‐DQPSK signals based on nondegenerated FWM process. 

Fig. 9. Impact of pump phase misalignment on the performance of high‐base data exchange 
of 100‐Gbit/s DQPSK signals. (a) Ch. I. (b) Ch. Q. 

 Fig.  10.  Dynamic  range  of  input  signal  power  for  high‐base  data  exchange  of  100‐Gbit/s 
DQPSK signals. (a) Ch. I. (b) Ch. Q. 
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Figure 9. Impact of pump phase misalignment on the performance of high-base data exchange of 100-Gbit/s DQPSK
signals. (a) Ch. I. (b) Ch. Q.
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in Fig.  10. Less  than 3.5‐dB  fluctuation of  the  received power  is  observed at  a BER of 10‐9 
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We  then propose  and demonstrate  a  simple  alternative method  to perform high‐base 
data exchange between multichannel DQPSK signals using bidirectional degenerate FWM 
in a single HNLF accompanied by optical  filtering. The concept and operation principle of 
multichannel, high‐base optical data exchange is illustrated in Fig. 11. Four‐channel DQPSK 
signals  (S1‐S4)  and  a  single  CW  pump  are  used.  Degenerate  FWM  process  is  employed. 
Note  that  four‐channel DQPSK  signals  (S1‐S4)  are  symmetrical  about  the  CW pump.  For 
multichannel  data  exchange,  one  would  expect  to  see  simultaneous  data  information 
swapping between S1 and S4, S2 and S3. Generally speaking,  for data exchange operation 
with two signals present,  it is  impossible to separate the newly converted signals from the 
original signals by unidirectional degenerate FWM process, so it is difficult to realize optical 
data  exchange  function  based  on  unidirectional  degenerate  FWM  in  a  single  HNLF. We 
propose a possible solution by exploiting bidirectional degenerate FWM process in a single 
HNLF  together with  optical  filtering. As  illustrated  in  Fig.  11,  taking  four‐channel  optical 
data exchange as an example, there are four‐channel DQPSK signals (S1‐S4) at the input. 1) 

Figure 10. Dynamic range of input signal power for high-base data exchange of 100-Gbit/s DQPSK signals. (a) Ch. I. (b)
Ch. Q.
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by optical filtering at the right side of HNLF. 2) At the same time, with optical filtering at the
input, S3 and S4 are selected and sent into the HNLF together with CW pump from the right
side. During the propagation through the HNLF, S2 and S1 are created by the degenerate FWM
wavelength conversion process. After producing S2 and S1, the original S3, S4 and CW pump
are removed, while the newly generated S2 and S1 are selected via optical filtering at the left
side of HNLF. For the selected S4 and S3 (carrying data information of original S1 and S2) from
the left side and selected S2 and S1 (carrying data information of original S3 and S4) from the
right side of the HNLF, it is noted that data information carried by S1 and S4, S2 and S3 are
swapped. As a result, by employing a single HNLF, exploiting bidirectional degenerate FWM
process, and using optical filtering, simultaneous four-channel optical data exchange between
S1 and S4 as well as S2 and S3 can be implemented. The combined S1-S4 from the left and right
sides of the HNLF correspond to the output four-channel signals after optical data exchange.
Remarkably, since the degenerate FWM process has distinct phase-conjugation property, for
DQPSK signals the in-phase (Ch. I) and quadrature (Ch. Q) components are also swapped after
the optical data exchange operation.

3 
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Figure 11. Concept and principle of simultaneous multichannel, high-base data exchange of DQPSK signals.

In the experiment, the bidirectional degenerate FWM in a single HNLF is enabled by a fiber
loop mirror configuration, which consists of an HNLF with a length of 460 m, two optical band-
pass filters, and optical fiber couplers. The typical parameters of the HNLF are as follows:
ZDW: ~1556 nm; nonlinear coefficient: 20 W-1·km-1; dispersion slope (S): ~0.026 ps/nm2/km.
Compared to the nondegenerate FWM-based data exchange with two pumps, single pump
with its wavelength (1554.94 nm) close to the ZDW of HNLF is employed in the bidirectional
degenerate FWM-based multichannel, high-base data exchange. ITU-grid-compatible four-
channel 100-Gbit/s RZ-DQPSK signals (S1: 1546.12 nm, S2: 1547.72 nm, S3: 1562.23 nm, S4:
1563.86 nm) are employed for multichannel, high-base data exchange.

Shown in Fig. 12(a) is the measured spectrum of input four-channel, 100-Gbit/s RZ-DQPSK
signals. S1(S2) and S4(S3) are symmetrical about the CW pump. The measured spectrum after
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by optical filtering at the right side of HNLF. 2) At the same time, with optical filtering at the
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side. During the propagation through the HNLF, S2 and S1 are created by the degenerate FWM
wavelength conversion process. After producing S2 and S1, the original S3, S4 and CW pump
are removed, while the newly generated S2 and S1 are selected via optical filtering at the left
side of HNLF. For the selected S4 and S3 (carrying data information of original S1 and S2) from
the left side and selected S2 and S1 (carrying data information of original S3 and S4) from the
right side of the HNLF, it is noted that data information carried by S1 and S4, S2 and S3 are
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process, and using optical filtering, simultaneous four-channel optical data exchange between
S1 and S4 as well as S2 and S3 can be implemented. The combined S1-S4 from the left and right
sides of the HNLF correspond to the output four-channel signals after optical data exchange.
Remarkably, since the degenerate FWM process has distinct phase-conjugation property, for
DQPSK signals the in-phase (Ch. I) and quadrature (Ch. Q) components are also swapped after
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Figure 11. Concept and principle of simultaneous multichannel, high-base data exchange of DQPSK signals.

In the experiment, the bidirectional degenerate FWM in a single HNLF is enabled by a fiber
loop mirror configuration, which consists of an HNLF with a length of 460 m, two optical band-
pass filters, and optical fiber couplers. The typical parameters of the HNLF are as follows:
ZDW: ~1556 nm; nonlinear coefficient: 20 W-1·km-1; dispersion slope (S): ~0.026 ps/nm2/km.
Compared to the nondegenerate FWM-based data exchange with two pumps, single pump
with its wavelength (1554.94 nm) close to the ZDW of HNLF is employed in the bidirectional
degenerate FWM-based multichannel, high-base data exchange. ITU-grid-compatible four-
channel 100-Gbit/s RZ-DQPSK signals (S1: 1546.12 nm, S2: 1547.72 nm, S3: 1562.23 nm, S4:
1563.86 nm) are employed for multichannel, high-base data exchange.

Shown in Fig. 12(a) is the measured spectrum of input four-channel, 100-Gbit/s RZ-DQPSK
signals. S1(S2) and S4(S3) are symmetrical about the CW pump. The measured spectrum after
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four-channel optical data exchange with the CW pump ON is shown in Fig. 12(b) (solid blue
line). For reference, the measured spectrum of residual signals with the CW pump OFF is also
shown in Fig. 12(b) (dashed red line). It is expected that the residual signals are caused by the
Rayleigh scattering in the HNLF. From Fig. 12(b), one can measure the extinction ratio of the
newly exchanged signals to the residual signals to be 18.4 dB for S1, 19.5 dB for S2, 17 dB for
S3, and 17 dB for S4, respectively.
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Figure 12. Spectra for four-channel, high-base data exchange of DQPSK signals. (a) Input four-channel, 100-Gbit/s 
RZ-DQPSK signals. (b) Spectra measured in the absence (dashed curve: Rayleigh scattering)/presence (solid 
curve: after data exchange) of CW pump. 
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Figure 15. Concept and principle of LCoS+HNLF-based multifunctional, high-base grooming switch (add/drop, 
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Figure 12. Spectra for four-channel, high-base data exchange of DQPSK signals. (a) Input four-channel, 100-Gbit/s RZ-
DQPSK signals. (b) Spectra measured in the absence (dashed curve: Rayleigh scattering)/presence (solid curve: after
data exchange) of CW pump.

Figure 13 further displays temporal waveforms and balanced eyes of demodulated in-phase
(Ch. I) and quadrature (Ch. Q) components of 100-Gbit/s RZ-DQPSK signals before and after
four-channel high-base optical data exchange. One can clearly confirm the successful imple‐
mentation of simultaneous four-channel, 100-Gbit/s RZ-DQPSK optical data exchange
between S1 and S4 as well as S2 and S3. Meanwhile, one can also see that for DQPSK signals,
the Ch. I and Ch. Q components are swapped after optical data exchange, which is due to the
optical phase-conjugation property of the degenerate FWM process.

Figure 14 plots the BER curves for four-channel, high-base data exchange of 100-Gbit/s RZ-
DQPSK signals. Less than 4.7-dB power penalty is observed at a BER of 10-9, which could be
caused by the beating effect between the newly exchanged signals and the original residual
signals.

By exploiting bidirectional degenerate FWM progress with a single pump in a single HNLF
and employing liquid crystal on silicon (LCoS) technology in a double-pass configuration, we
further propose a terabit-scale network grooming switch element, which can simultaneously
perform multiple optical signal processing functions, e.g., high-base add/drop, high-base
optical data exchange, and high-base power equalization. Using 23-channel, 100-Gbit/s RZ-
DQPSK signals, we demonstrate reconfigurable 2.3-Tbit/s network grooming switch operation
in the experiment. Remarkably, simultaneous implementation of all these high-base optical
signal processing functions can potentially enhance the efficiency and flexibility of network
management.

Shown in Fig. 15 is the concept and operation principle of the proposed high-base, multifunc‐
tional grooming switch element that could be used at the network nodes. When multiple
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wavelength-division multiplexed (WDM) channels with unequalized power levels arrive at
the network nodes, one would expect to flexibly manipulate these signals in the optical
domain, in order to reduce the network latency and enhance the network efficiency. The typical
favorable grooming optical signal processing functions are as follows: 1) optical data exchange
between two or multiple channels of interest; 2) dropping of one or multiple channels of
interest and adding of corresponding one or multiple channels with new data information; 3)
power equalization for all the WDM channels. Moreover, it is also expected that these optical
signal processing functions (optical data exchange, add/drop, power equalization) could be
switchable, selective, and reconfigurable. For simplicity, shown in Fig. 15 is an example with
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Figure 13. Waveforms and balanced eyes of demodulated in-phase (Ch. I) and quadrature (Ch. Q) components for
four-channel, high-base data exchange of 100-Gbit/s DQPSK signals.

Fig. 12. Spectra for four‐channel, high‐base data exchange of DQPSK signals. (a) Input four‐
channel, 100‐Gbit/s RZ‐DQPSK signals. (b) Spectra measured in the absence (dashed curve: 
Rayleigh scattering)/presence (solid curve: after data exchange) of CW pump. 
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Figure 14 plots the BER curves for four‐channel, high‐base data exchange of 100‐Gbit/s 
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Fig.  14. Measured BER  curves  for  simultaneous  four‐channel,  high‐base  data  exchange  of 
100‐Gbit/s DQPSK signals. 

By  exploiting bidirectional  degenerate  FWM progress with  a  single  pump  in  a  single 
HNLF  and  employing  liquid  crystal  on  silicon  (LCoS)  technology  in  a  double‐pass 
configuration, we further propose a terabit‐scale network grooming switch element, which 
can  simultaneously  perform  multiple  optical  signal  processing  functions,  e.g.,  high‐base 
add/drop,  high‐base  optical  data  exchange,  and  high‐base  power  equalization.  Using  23‐
channel,  100‐Gbit/s  RZ‐DQPSK  signals, we demonstrate  reconfigurable  2.3‐Tbit/s  network 
grooming switch operation in the experiment. Remarkably, simultaneous implementation of 
all these high‐base optical signal processing functions can potentially enhance the efficiency 
and flexibility of network management. 

Figure 14. Measured BER curves for simultaneous four-channel, high-base data exchange of 100-Gbit/s DQPSK signals.
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wavelength-division multiplexed (WDM) channels with unequalized power levels arrive at
the network nodes, one would expect to flexibly manipulate these signals in the optical
domain, in order to reduce the network latency and enhance the network efficiency. The typical
favorable grooming optical signal processing functions are as follows: 1) optical data exchange
between two or multiple channels of interest; 2) dropping of one or multiple channels of
interest and adding of corresponding one or multiple channels with new data information; 3)
power equalization for all the WDM channels. Moreover, it is also expected that these optical
signal processing functions (optical data exchange, add/drop, power equalization) could be
switchable, selective, and reconfigurable. For simplicity, shown in Fig. 15 is an example with
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Figure 12. Spectra for four-channel, high-base data exchange of DQPSK signals. (a) Input four-channel, 100-Gbit/s 
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curve: after data exchange) of CW pump. 
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Figure 13. Waveforms and balanced eyes of demodulated in-phase (Ch. I) and quadrature (Ch. Q) components for
four-channel, high-base data exchange of 100-Gbit/s DQPSK signals.

Fig. 12. Spectra for four‐channel, high‐base data exchange of DQPSK signals. (a) Input four‐
channel, 100‐Gbit/s RZ‐DQPSK signals. (b) Spectra measured in the absence (dashed curve: 
Rayleigh scattering)/presence (solid curve: after data exchange) of CW pump. 
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and  after  four‐channel  high‐base  optical  data  exchange.  One  can  clearly  confirm  the 
successful implementation of simultaneous four‐channel, 100‐Gbit/s RZ‐DQPSK optical data 
exchange  between  S1  and  S4  as well  as  S2  and  S3. Meanwhile,  one  can  also  see  that  for 
DQPSK signals, the Ch. I and Ch. Q components are swapped after optical data exchange, 
which is due to the optical phase‐conjugation property of the degenerate FWM process. 
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Figure 14 plots the BER curves for four‐channel, high‐base data exchange of 100‐Gbit/s 
RZ‐DQPSK signals. Less than 4.7‐dB power penalty is observed at a BER of 10‐9, which could 
be  caused  by  the  beating  effect  between  the  newly  exchanged  signals  and  the  original 
residual signals. 

 

Fig.  14. Measured BER  curves  for  simultaneous  four‐channel,  high‐base  data  exchange  of 
100‐Gbit/s DQPSK signals. 

By  exploiting bidirectional  degenerate  FWM progress with  a  single  pump  in  a  single 
HNLF  and  employing  liquid  crystal  on  silicon  (LCoS)  technology  in  a  double‐pass 
configuration, we further propose a terabit‐scale network grooming switch element, which 
can  simultaneously  perform  multiple  optical  signal  processing  functions,  e.g.,  high‐base 
add/drop,  high‐base  optical  data  exchange,  and  high‐base  power  equalization.  Using  23‐
channel,  100‐Gbit/s  RZ‐DQPSK  signals, we demonstrate  reconfigurable  2.3‐Tbit/s  network 
grooming switch operation in the experiment. Remarkably, simultaneous implementation of 
all these high‐base optical signal processing functions can potentially enhance the efficiency 
and flexibility of network management. 

Figure 14. Measured BER curves for simultaneous four-channel, high-base data exchange of 100-Gbit/s DQPSK signals.
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7-channel WDM signals. A wavelength selective switch (WSS) using a two-dimensional (2D)
array of LCoS pixels is employed in the setup. The operation principle of the LCoS-based WSS
is as follows. By changing the voltages loaded to the LCoS, one can adjust the phase retardance
of each pixel of LCoS. The 2D LCoS array includes two axes with one horizontal wavelength
axis and the other vertical displacement axis. The input 7-channel 100-Gbit/s DQPSK signals
with unequalized power levels are sent to the port A of the input/output fiber array through
a circulator. A diffraction grating collecting the input signals from port A then disperses
different wavelength channels to different horizontal positions of the LCoS. Along the vertical
direction, many pixels (~400 pixels) are covered due to the divergence of the light. The
manipulation mechanism relies on the control of the LCoS. Since the phase shift of each pixel
of LCoS can be adjusted by varying its applied voltage, it is possible to flexibly manipulate the
phase front of the light through the control of the 2D array of LCoS pixels. By appropriately
adjusting the independent pixel voltage, the propagation direction of different wavelength
channels can be flexibly controlled, i.e., different wavelength channels can be delivered to
different spatial positions at the output ports (e.g., S1 sent to port B, S4 and S5 sent to port C,
S2 and S3 sent to port D, S6 and S7 sent to port E). Meanwhile, the power levels of different
wavelength channels delivered to the desired fiber array ports (port B, port C, port D, port E)
can be also adjusted. After separating and delivering different wavelength channels to
different output fiber array ports together with flexible power control, various grooming
optical signal processing functions can be carried out on these output fiber array ports: 1) high-
base optical data exchange between port D and port E; 2) high-base wavelength add and drop
at port B; 3) high-base power equalization of all wavelength channels. For the high-base optical
data exchange between port D and port E, simultaneous multichannel, high-base optical data
exchange between S2 and S7 and between S3 and S6 can be implemented by exploiting
bidirectional degenerate FWM through a single HNLF. When compared to the similar optical
data exchange scheme using degenerate FWM and employing optical band-pass filters to select
desired wavelength channels, here the channel separation and selection are accomplished by
LCoS. When compared to the optical data exchange approach using parametric depletion effect
of nondegenerate FWM process with two pumps, here only single pump is employed in the
setup. In particular, the simultaneous multichannel optical data exchange operation is
switchable when employing the programmable LCoS. For the high-base wavelength add and
drop, the S1 DQPSK signal is dropped at port B and a new S1 with updated data information
is also added to port B through a circulator. For the high-base power equalization, the flexible
attenuation control for all WDM channels is available by programming LCoS. Besides optical
data exchange (S2 and S7, S3 and S6) and add/drop (S1) operations on the channels of interest,
other channels (S4 and S5) without undergoing these operations should be kept and delivered
back. A fiber loop structure could be employed at the port C. Remarkably, after multiple
grooming optical signal processing operations, it is preferred that all the signals are sent back
to the same input/output fiber array port A, which not only imports unequalized multiple
WDM signals but also exports all the signals after the grooming switching. Such function can
be implemented simply by running the LCoS device in a double-pass configuration assisted
by use of some optical circulators. As shown in Fig. 15, if we consider the dashed boxes as a
grooming switch unit based on HNLF and LCoS, it is actually a multifunctional, high-base
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grooming optical signal processing element with great reconfigurability. Simultaneous
reconfigurable high-base add/drop, high-base optical data exchange, and high-base power
equalization are implemented by exploiting bidirectional degenerate FWM in a single HNLF
and double-pass programmable LCoS technology.
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Figure 15. Concept and principle of LCoS+HNLF-based multifunctional, high-base grooming switch (add/drop, data
exchange, power equalization).

Similar operation principle is adopted for reconfigurable 2.3-Tbit/s network grooming switch
with 23x100-Gbit/s RZ-DQPSK channels. In the experiment, ITU-grid-compatible 23 wave‐
length channels (from S1: 1531.12 nm to S23: 1566.31 nm) each carrying 100-Gbit/s RZ-DQPSK
modulation signal with a channel spacing of 200 GHz are utilized. A 520-m piece of HNLF
with a ZDW of ~1555 nm and a nonlinear coefficient (γ) of 20 W-1·km-1 is employed. The single
pump wavelength is set to be 1555.75 nm for bidirectional degenerate FWM.

Figure 16 shows the measured optical spectrum and balanced eyes for input unequalized 23
wavelength channels each carrying a 100-Gbit/s RZ-DQPSK signal. The observed power
fluctuation of all 23 wavelength channels is assessed to be around 9.1 dB. The insets of Fig.
16 depict measured typical balanced eyes for the demodulated in-phase (Ch. I) and quadrature
(Ch. Q) components of 100-Gbit/s RZ-DQPSK signals.

We first perform 2.3-Tbit/s grooming switch with single-channel, high-base add/drop and two-
channel high-base optical data exchange. The measured optical spectrum together with typical
balanced eyes for 100-Gbit/s RZ-DQPSK signals after the multifunctional, high-base grooming
switch is shown in Fig. 17. Three high-base grooming optical signal processing functions are
implemented as follows: 1) high-base optical data exchange between S12 and S21; 2) high-base
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Figure 15. Concept and principle of LCoS+HNLF-based multifunctional, high-base grooming switch (add/drop, data
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Similar operation principle is adopted for reconfigurable 2.3-Tbit/s network grooming switch
with 23x100-Gbit/s RZ-DQPSK channels. In the experiment, ITU-grid-compatible 23 wave‐
length channels (from S1: 1531.12 nm to S23: 1566.31 nm) each carrying 100-Gbit/s RZ-DQPSK
modulation signal with a channel spacing of 200 GHz are utilized. A 520-m piece of HNLF
with a ZDW of ~1555 nm and a nonlinear coefficient (γ) of 20 W-1·km-1 is employed. The single
pump wavelength is set to be 1555.75 nm for bidirectional degenerate FWM.

Figure 16 shows the measured optical spectrum and balanced eyes for input unequalized 23
wavelength channels each carrying a 100-Gbit/s RZ-DQPSK signal. The observed power
fluctuation of all 23 wavelength channels is assessed to be around 9.1 dB. The insets of Fig.
16 depict measured typical balanced eyes for the demodulated in-phase (Ch. I) and quadrature
(Ch. Q) components of 100-Gbit/s RZ-DQPSK signals.

We first perform 2.3-Tbit/s grooming switch with single-channel, high-base add/drop and two-
channel high-base optical data exchange. The measured optical spectrum together with typical
balanced eyes for 100-Gbit/s RZ-DQPSK signals after the multifunctional, high-base grooming
switch is shown in Fig. 17. Three high-base grooming optical signal processing functions are
implemented as follows: 1) high-base optical data exchange between S12 and S21; 2) high-base

Applications of Digital Signal Processing through Practical Approach42

dropping of the original S18 and high-base adding of new S18 with updated data information;
3) high-base power equalization for all 23-channel 100-Gbit/s RZ-DQPSK signals (power
fluctuation: <1 dB). We also measure power penalties at a BER of 10-9 as shown in Fig. 18 for
the multichannel, multifunctional grooming switch.
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Figure 17. Measured optical spectrum and balanced eyes for 100-Gbit/s RZ-DQPSK signals after multifunctional, high-
base grooming switch (high-base optical data exchange between S12 and S21; high-base add/drop for S18; high-base
power equalization for all 23 wavelength channels S1-S23).

Due to the programmable LCoS employed in the configuration, the proposed multichannel,
multifunctional grooming switch is reconfigurable. For instance, one can perform switchable
simultaneous multichannel optical data exchange simply by changing the wavelength
channels of interest sent to the fiber array port D and port E.
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Figure 16. Measured optical spectrum and balanced eyes for input unequalized 23-channel 100-Gbit/s RZ-DQPSK signals.
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We also demonstrate 2.3-Tbit/s grooming switch with two-channel add/drop and six-channel
optical data exchange. Shown in Fig. 19 is the measured optical spectrum and typical balanced
eyes for 100-Gbit/s RZ-DQPSK signals after the multifunctional, high-base grooming switch:
1) simultaneous six-channel, high-base optical data exchange between S10 and S23, S11 and
S22, S12 and S21; 2) simultaneous two-channel, high-base dropping of the original S6 and S7
and high-base adding of new S6 and S7 with updated data information; 3) high-base power
equalization with power fluctuation less than 1 dB for all 23 wavelength channels. Shown in
the inset of Fig. 19 is the measured optical spectrum of dropped two wavelength channels of
S6 and S7. Figure 20 plots the measured BER performance for simultaneous multichannel,
high-base optical data exchange and high-base add/drop. The observed power penalties are
assessed to be less than 1.2 dB for two-channel high-base add, 0.5 dB for two-channel high-
base drop, and 5 dB for six-channel high-base optical data exchange at a BER of 10-9.

In addition to high-base data exchange based on degenerate/nondegenerate FWM in HNLFs,
we also propose and simulate ultrahigh-speed high-base data exchange using nondegenerate
FWM in a silicon–organic hybrid slot waveguide. The working principle is also based on the
parametric depletion effect of nondegenerate FWM as in an HNLF. The designed silicon–
organic hybrid slot waveguide offers tight light confinement, enhanced nonlinearity, and
negligible TPA and free-carrier absorption (FCA). Using nonlinear coupled-mode equations
under the slowly varying envelope approximation and taking full consideration of group-
velocity mismatching (GVM), group-velocity dispersion (GVD), TPA, FCA, and free-carrier
dispersion (FCD), the proposed silicon–organic hybrid slot waveguide based high-base data
exchange is simulated. In the following simulations, two 640 Gbaud 213-1 pseudorandom
binary sequence (PRBS) 16-QAM/64-QAM signals (λSA: 1542 nm, λSB: 1544 nm) and two pumps
(λP1: 1548 nm, λP2: 1550 nm) are sent into a 17-mm-long silicon–organic hybrid slot waveguide,
in which 16-QAM/64-QAM data exchange is realized based on the nondegenerate FWM
process. Note that the high-speed 640 Gbaud 16-QAM/64-QAM signal could be optical time-
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Figure 18. Measured power penalties at a BER of 10-9 for the multichannel, multifunctional high-base grooming switch
(high-base optical data exchange between S12 and S21; high-base add/drop for S18; high-base power equalization for
all 23 wavelength channels S1-S23).
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Figure 18. Measured power penalties at a BER of 10-9 for the multichannel, multifunctional high-base grooming switch
(high-base optical data exchange between S12 and S21; high-base add/drop for S18; high-base power equalization for
all 23 wavelength channels S1-S23).
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division multiplexed (OTDM) signal from 64 low-speed 10 Gbaud tributaries in practical
applications.

The obtained results (symbol sequences) for high-base optical data exchange of 640 Gbaud
(2.56 Tbit/s) 16-QAM signals are shown in Fig. 21. One can easily confirm the successful
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Figure 17. Measured optical spectrum and balanced eyes for 100-Gbit/s RZ-DQPSK signals after multifunctional, 
high-base grooming switch (high-base optical data exchange between S12 and S21; high-base add/drop for S18; 
high-base power equalization for all 23 wavelength channels S1-S23). 

 
Figure 18. Measured power penalties at a BER of 10-9  for the multichannel, multifunctional high-base grooming 
switch (high-base optical data exchange between S12 and S21; high-base add/drop for S18; high-base power 
equalization for all 23 wavelength channels S1-S23). 
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Figure 19. Measured optical spectrum and balanced eyes for 100-Gbit/s RZ-DQPSK signals after multichannel, multi‐
functional high-base grooming switch (simultaneous six-channel, high-base optical data exchange between S10 and
S23, S11 and S22, S12 and S21; simultaneous two-channel, high-base add/drop for S6 and S7; high-base power equali‐
zation for all 23 wavelength channels S1-S23).

Fig.  19. Measured  optical  spectrum  and  balanced  eyes  for  100‐Gbit/s  RZ‐DQPSK  signals 
after multichannel, multifunctional high‐base grooming  switch  (simultaneous  six‐channel, 
high‐base  optical  data  exchange  between  S10  and  S23,  S11  and  S22,  S12  and  S21; 
simultaneous two‐channel, high‐base add/drop for S6 and S7; high‐base power equalization 
for all 23 wavelength channels S1‐S23). 

 

Fig.  20.  Measured  BER  performance  for  (a)(b)  simultaneous  two‐channel,  high‐base 
add/drop (S6 and S7) and (c)(d) simultaneous six‐channel, high‐base optical data exchange 
between S10 and S23, S11 and S22, S12 and S21. 

In  addition  to high‐base data  exchange  based  on degenerate/nondegenerate  FWM  in 
HNLFs,  we  also  propose  and  simulate  ultrahigh‐speed  high‐base  data  exchange  using 
nondegenerate FWM  in a silicon–organic hybrid slot waveguide. The working principle  is 
also based on  the parametric depletion effect of nondegenerate FWM as  in an HNLF. The 
designed  silicon–organic  hybrid  slot waveguide  offers  tight  light  confinement,  enhanced 
nonlinearity,  and  negligible  TPA  and  free‐carrier  absorption  (FCA).  Using  nonlinear 
coupled‐mode equations under the slowly varying envelope approximation and taking full 
consideration of group‐velocity mismatching (GVM), group‐velocity dispersion (GVD), TPA, 
FCA, and free‐carrier dispersion (FCD), the proposed silicon–organic hybrid slot waveguide 
based high‐base data exchange  is simulated.  In  the  following simulations,  two 640 Gbaud 
213‐1 pseudorandom binary  sequence  (PRBS) 16‐QAM/64‐QAM  signals  (λSA: 1542 nm,  λSB: 
1544 nm) and two pumps  (λP1: 1548 nm, λP2: 1550 nm) are sent  into a 17‐mm‐long silicon–
organic hybrid slot waveguide, in which 16‐QAM/64‐QAM data exchange is realized based 
on the nondegenerate FWM process. Note that the high‐speed 640 Gbaud 16‐QAM/64‐QAM 
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Figure 20. Measured BER performance for (a)(b) simultaneous two-channel, high-base add/drop (S6 and S7) and (c)(d)
simultaneous six-channel, high-base optical data exchange between S10 and S23, S11 and S22, S12 and S21.
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realization of the proposed high-base optical data exchange of 16-QAM signals by comparing
the 10 symbol sequences for two signals (SA, SB) before optical data exchange (Bef. Ex.) and
after optical data exchange (Aft. Ex.). Figure 22 shows simulated constellations for high-base
optical data exchange of 16-QAM signals. For a signal-to-noise ratio (SNR) of 10 dB the error
vector magnitude (EVM) is also assessed in Fig. 22. The simulated EVM and BER performance
versus SNR for high-base optical data exchange of 640 Gbaud (2.56 Tbit/s) 16-QAM signals is
shown in Fig. 23(a) and (b). For reference we also plot in Fig. 23(b) the theoretical 16-QAM BER
curve. By comparing the simulated BER curves of two signals before and after optical data
exchange, one can see negligible SNR penalty induced by the high-base optical data exchange
operation at a BER of 2x10-3, which is the enhanced forward error correction (EFEC) threshold.

 Fig. 21. Simulated symbol sequences for high‐base optical data exchange of 640 Gbaud (2.56 
Tbit/s) 16‐QAM signals. 

 Fig.  22.  Simulated  constellations  of  (a)(b)  input  and  (c)(d)  output  signals  for  high‐base 
optical data exchange of 640 Gbaud (2.56 Tbit/s) 16‐QAM signals. 
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Figure 21. Simulated symbol sequences for high-base optical data exchange of 640 Gbaud (2.56 Tbit/s) 16-QAM signals.

We further simulate high-base optical data exchange of 640 Gbaud (3.84 Tbit/s) 64-QAM
signals. The obtained results (symbol sequences) for high-base optical data exchange of 640
Gbaud (3.84 Tbit/s) 64-QAM signals are shown in Fig. 24. One can also confirm the successful
implementation of the proposed high-base optical data exchange of 64-QAM signals by
comparing the 10 symbol sequences for two signals (SA, SB) before optical data exchange (Bef.
Ex.) and after optical data exchange (Aft. Ex.).
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realization of the proposed high-base optical data exchange of 16-QAM signals by comparing
the 10 symbol sequences for two signals (SA, SB) before optical data exchange (Bef. Ex.) and
after optical data exchange (Aft. Ex.). Figure 22 shows simulated constellations for high-base
optical data exchange of 16-QAM signals. For a signal-to-noise ratio (SNR) of 10 dB the error
vector magnitude (EVM) is also assessed in Fig. 22. The simulated EVM and BER performance
versus SNR for high-base optical data exchange of 640 Gbaud (2.56 Tbit/s) 16-QAM signals is
shown in Fig. 23(a) and (b). For reference we also plot in Fig. 23(b) the theoretical 16-QAM BER
curve. By comparing the simulated BER curves of two signals before and after optical data
exchange, one can see negligible SNR penalty induced by the high-base optical data exchange
operation at a BER of 2x10-3, which is the enhanced forward error correction (EFEC) threshold.

 Fig. 21. Simulated symbol sequences for high‐base optical data exchange of 640 Gbaud (2.56 
Tbit/s) 16‐QAM signals. 

 Fig.  22.  Simulated  constellations  of  (a)(b)  input  and  (c)(d)  output  signals  for  high‐base 
optical data exchange of 640 Gbaud (2.56 Tbit/s) 16‐QAM signals. 
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Figure 21. Simulated symbol sequences for high-base optical data exchange of 640 Gbaud (2.56 Tbit/s) 16-QAM signals.

We further simulate high-base optical data exchange of 640 Gbaud (3.84 Tbit/s) 64-QAM
signals. The obtained results (symbol sequences) for high-base optical data exchange of 640
Gbaud (3.84 Tbit/s) 64-QAM signals are shown in Fig. 24. One can also confirm the successful
implementation of the proposed high-base optical data exchange of 64-QAM signals by
comparing the 10 symbol sequences for two signals (SA, SB) before optical data exchange (Bef.
Ex.) and after optical data exchange (Aft. Ex.).
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 Fig. 24. Simulated symbol sequences for high‐base optical data exchange of 640 Gbaud (3.84 
Tbit/s) 64‐QAM signals. 

Figure  25  shows  simulated  constellations  for  high‐base  optical  data  exchange  of  64‐
QAM signals. For an SNR of 14 dB the EVM  is also evaluated  in Figure 25. The simulated 
EVM and BER performance versus SNR for high‐base optical data exchange of 640 Gbaud 
(2.56 Tbit/s) 64‐QAM signals is shown in Fig. 26(a) and (b). For reference we also plot in Fig. 
26(b)  the  theoretical 64‐QAM BER  curve. By  comparing  the  simulated BER  curves of  two 
signals before and after optical data exchange, one can see that the SNR penalty induced by 
the high‐base optical data exchange operation  is assessed  to be  less  than 2 dB at a BER of 
2x10‐3 which is the EFEC threshold. 

 Fig.  25.  Simulated  constellations  of  (a)(b)  input  and  (c)(d)  output  signals  for  high‐base 
optical data exchange of 640 Gbaud (3.84 Tbit/s) 64‐QAM signals. 
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Figure 24. Simulated symbol sequences for high-base optical data exchange of 640 Gbaud (3.84 Tbit/s) 64-QAM signals.
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Figure 19. Measured optical spectrum and balanced eyes for 100-Gbit/s RZ-DQPSK signals after multichannel, 
multifunctional high-base grooming switch (simultaneous six-channel, high-base optical data exchange between 
S10 and S23, S11 and S22, S12 and S21; simultaneous two-channel, high-base add/drop for S6 and S7; high-base 
power equalization for all 23 wavelength channels S1-S23). 

Figure 22. Simulated constellations of (a)(b) input and (c)(d) output signals for high-base optical data exchange of 
640 Gbaud (2.56 Tbit/s) 16-QAM signals. 

Figure 25. Simulated constellations of (a)(b) input and (c)(d) output signals for high-base optical data exchange of 
640 Gbaud (3.84 Tbit/s) 64-QAM signals. 

Figure 26. Simulated (a) EVM and (b) BER versus SNR for high-base optical data exchange of 640 Gbaud (3.84 
Tbit/s) 64-QAM signals. 
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Figure 22. Simulated constellations of (a)(b) input and (c)(d) output signals for high-base optical data exchange of 640
Gbaud (2.56 Tbit/s) 16-QAM signals.

 Fig. 21. Simulated symbol sequences for high‐base optical data exchange of 640 Gbaud (2.56 
Tbit/s) 16‐QAM signals. 

 Fig.  22.  Simulated  constellations  of  (a)(b)  input  and  (c)(d)  output  signals  for  high‐base 
optical data exchange of 640 Gbaud (2.56 Tbit/s) 16‐QAM signals. 

 

 Fig. 23. Simulated (a) EVM and (b) BER versus SNR for high‐base optical data exchange of 
640 Gbaud (2.56 Tbit/s) 16‐QAM signals. 

We  further  simulate  high‐base  optical  data  exchange  of  640 Gbaud  (3.84  Tbit/s)  64‐
QAM signals. The obtained results (symbol sequences) for high‐base optical data exchange 
of 640 Gbaud  (3.84 Tbit/s) 64‐QAM signals are shown  in Fig. 24. One can also confirm  the 
successful  implementation  of  the  proposed  high‐base  optical  data  exchange  of  64‐QAM 
signals by comparing the 10 symbol sequences for two signals (SA, SB) before optical data 
exchange (Bef. Ex.) and after optical data exchange (Aft. Ex.). 
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Figure 23. Simulated (a) EVM and (b) BER versus SNR for high-base optical data exchange of 640 Gbaud (2.56 Tbit/s)
16-QAM signals.
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Figure 25 shows simulated constellations for high-base optical data exchange of 64-QAM
signals. For an SNR of 14 dB the EVM is also evaluated in Fig. 25. The simulated EVM and BER
performance versus SNR for high-base optical data exchange of 640 Gbaud (2.56 Tbit/s) 64-
QAM signals is shown in Fig. 26(a) and (b). For reference we also plot in Fig. 26(b) the
theoretical 64-QAM BER curve. By comparing the simulated BER curves of two signals before
and after optical data exchange, one can see that the SNR penalty induced by the high-base
optical data exchange operation is assessed to be less than 2 dB at a BER of 2x10-3 which is the
EFEC threshold.
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Figure 19. Measured optical spectrum and balanced eyes for 100-Gbit/s RZ-DQPSK signals after multichannel, 
multifunctional high-base grooming switch (simultaneous six-channel, high-base optical data exchange between 
S10 and S23, S11 and S22, S12 and S21; simultaneous two-channel, high-base add/drop for S6 and S7; high-base 
power equalization for all 23 wavelength channels S1-S23). 

Figure 22. Simulated constellations of (a)(b) input and (c)(d) output signals for high-base optical data exchange of 
640 Gbaud (2.56 Tbit/s) 16-QAM signals. 

Figure 25. Simulated constellations of (a)(b) input and (c)(d) output signals for high-base optical data exchange of 
640 Gbaud (3.84 Tbit/s) 64-QAM signals. 

Figure 26. Simulated (a) EVM and (b) BER versus SNR for high-base optical data exchange of 640 Gbaud (3.84 
Tbit/s) 64-QAM signals. 
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Figure 25. Simulated constellations of (a)(b) input and (c)(d) output signals for high-base optical data exchange of 640
Gbaud (3.84 Tbit/s) 64-QAM signals.
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Figure 19. Measured optical spectrum and balanced eyes for 100-Gbit/s RZ-DQPSK signals after multichannel, 
multifunctional high-base grooming switch (simultaneous six-channel, high-base optical data exchange between 
S10 and S23, S11 and S22, S12 and S21; simultaneous two-channel, high-base add/drop for S6 and S7; high-base 
power equalization for all 23 wavelength channels S1-S23). 

Figure 22. Simulated constellations of (a)(b) input and (c)(d) output signals for high-base optical data exchange of 
640 Gbaud (2.56 Tbit/s) 16-QAM signals. 

Figure 25. Simulated constellations of (a)(b) input and (c)(d) output signals for high-base optical data exchange of 
640 Gbaud (3.84 Tbit/s) 64-QAM signals. 

Figure 26. Simulated (a) EVM and (b) BER versus SNR for high-base optical data exchange of 640 Gbaud (3.84 
Tbit/s) 64-QAM signals. 
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Figure 26. Simulated (a) EVM and (b) BER versus SNR for high-base optical data exchange of 640 Gbaud (3.84 Tbit/s)
64-QAM signals.

4. High-base optical computing [75, 77, 80, 85]

We propose and demonstrate high-base optical computing of advanced multilevel modulation
signals based on degenerate/nondegenerate FWM in HNLFs or silicon–organic hybrid slot
waveguides.
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Figure 25 shows simulated constellations for high-base optical data exchange of 64-QAM
signals. For an SNR of 14 dB the EVM is also evaluated in Fig. 25. The simulated EVM and BER
performance versus SNR for high-base optical data exchange of 640 Gbaud (2.56 Tbit/s) 64-
QAM signals is shown in Fig. 26(a) and (b). For reference we also plot in Fig. 26(b) the
theoretical 64-QAM BER curve. By comparing the simulated BER curves of two signals before
and after optical data exchange, one can see that the SNR penalty induced by the high-base
optical data exchange operation is assessed to be less than 2 dB at a BER of 2x10-3 which is the
EFEC threshold.
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Figure 19. Measured optical spectrum and balanced eyes for 100-Gbit/s RZ-DQPSK signals after multichannel, 
multifunctional high-base grooming switch (simultaneous six-channel, high-base optical data exchange between 
S10 and S23, S11 and S22, S12 and S21; simultaneous two-channel, high-base add/drop for S6 and S7; high-base 
power equalization for all 23 wavelength channels S1-S23). 

Figure 22. Simulated constellations of (a)(b) input and (c)(d) output signals for high-base optical data exchange of 
640 Gbaud (2.56 Tbit/s) 16-QAM signals. 

Figure 25. Simulated constellations of (a)(b) input and (c)(d) output signals for high-base optical data exchange of 
640 Gbaud (3.84 Tbit/s) 64-QAM signals. 

Figure 26. Simulated (a) EVM and (b) BER versus SNR for high-base optical data exchange of 640 Gbaud (3.84 
Tbit/s) 64-QAM signals. 
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Figure 25. Simulated constellations of (a)(b) input and (c)(d) output signals for high-base optical data exchange of 640
Gbaud (3.84 Tbit/s) 64-QAM signals.
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Figure 19. Measured optical spectrum and balanced eyes for 100-Gbit/s RZ-DQPSK signals after multichannel, 
multifunctional high-base grooming switch (simultaneous six-channel, high-base optical data exchange between 
S10 and S23, S11 and S22, S12 and S21; simultaneous two-channel, high-base add/drop for S6 and S7; high-base 
power equalization for all 23 wavelength channels S1-S23). 

Figure 22. Simulated constellations of (a)(b) input and (c)(d) output signals for high-base optical data exchange of 
640 Gbaud (2.56 Tbit/s) 16-QAM signals. 

Figure 25. Simulated constellations of (a)(b) input and (c)(d) output signals for high-base optical data exchange of 
640 Gbaud (3.84 Tbit/s) 64-QAM signals. 

Figure 26. Simulated (a) EVM and (b) BER versus SNR for high-base optical data exchange of 640 Gbaud (3.84 
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Figure 26. Simulated (a) EVM and (b) BER versus SNR for high-base optical data exchange of 640 Gbaud (3.84 Tbit/s)
64-QAM signals.

4. High-base optical computing [75, 77, 80, 85]

We propose and demonstrate high-base optical computing of advanced multilevel modulation
signals based on degenerate/nondegenerate FWM in HNLFs or silicon–organic hybrid slot
waveguides.
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We first demonstrate high-speed two-input high-base optical computing (addition/subtrac‐
tion/complement/doubling) of quaternary numbers using optical nonlinearities and DQPSK
signals.

The concept and principle of operation of quaternary optical computing are shown in Fig. 27.
As depicted in Fig. 27(a), DQPSK modulation signals have four-phase levels, i.e., 0, π/2, π,
3π/2, which can be used to represent quaternary numbers, i.e., 0, 1, 2, 3. For two input signals
A and B carrying quaternary numbers, it is expected that multiple outputs carrying different
quaternary optical computing results could be achieved by employing a single nonlinear
device. As depicted in Fig. 27(b), one can exploit three nondegenerate FWM processes and
three degenerate FWM processes in a single HNLF with low and flat dispersion to implement
simultaneous multiple quaternary optical computing functions. When launching signal A,
signal B, and one CW pump into the HNLF, six converted idlers can be obtained with three
idlers (idler 1-3) produced by three nondegenerate FWM processes and the other three idlers
(idler 4-6) created by three degenerate FWM processes. For the six idlers generated by six FWM
processes, one can derive the electrical field (E) and optical phase (Φ) relationships under the
nondepletion approximation expressed as Ei1∝EA EB ECW

*, Φi1=ΦA+ΦB-ΦCW (1), Ei2∝EA EB
* ECW,

Φi2=ΦA-ΦB+ΦCW (2), Ei3∝EA
* EB ECW, Φi3=ΦB-ΦA+ΦCW (3), Ei4∝ECW ECW EA

*, Φi3=2ΦCW-ΦA (4),
Ei5∝ECW ECW EB

*, Φi5=2ΦCW-ΦB (5), Ei6∝EB EB ECW
*, Φi6=2ΦB-ΦCW (6). Remarkably, since optical

phase has a periodicity of 2π due to its phase wrap characteristic, one can clearly see from Eqs.
(1)-(6) that the six converted idlers actually take modulo 4 functions of quaternary optical
computing, i.e., idler 1 for quaternary addition (A+B), idler 2 for quaternary subtraction (A-B),
idler 3 for quaternary subtraction (B-A), idler 4 for quaternary complement (-A), idler 5 for
quaternary complement (-B), and idler 6 for quaternary doubling (2B).

6 

Figure 19. Measured optical spectrum and balanced eyes for 100-Gbit/s RZ-DQPSK signals after multichannel, 
multifunctional high-base grooming switch (simultaneous six-channel, high-base optical data exchange between 
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power equalization for all 23 wavelength channels S1-S23). 

Figure 22. Simulated constellations of (a)(b) input and (c)(d) output signals for high-base optical data exchange of 
640 Gbaud (2.56 Tbit/s) 16-QAM signals. 

Figure 25. Simulated constellations of (a)(b) input and (c)(d) output signals for high-base optical data exchange of 
640 Gbaud (3.84 Tbit/s) 64-QAM signals. 
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Tbit/s) 64-QAM signals. 
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Figure 27. (a) Concept and (b) principle of two-input high-base optical computing (quaternary addition/subtraction/
complement/doubling) using a single nonlinear device and DQPSK signals.
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Shown in Fig. 28 are measured spectra. One CW pump (1553.2 nm) and two 100-Gbit/s 27-1
RZ-DQPSK signals (A: 1546.6 nm, B: 1555.5 nm) are fed into a 460-m-long HNLF. The ZDW,
dispersion slope (S) and nonlinear coefficient (γ) of the HNLF are ~1556 nm, ~0.026 ps/nm2/km,
and 20 W-1 km-1, respectively. The employed HNLF has low and flat dispersion, which benefits
simultaneous multiple FWM processes. As a consequence, it is possible to simultaneously
generate six idlers (idler 1: 1544.3 nm, idler 2: 1548.9 nm, idler 3: 1562.2 nm, idler 4: 1559.9 nm,
idler 5: 1550.9 nm, idler 6: 1557.7 nm) corresponding to simultaneous addition (A+B), subtrac‐
tion (A-B, B-A), complement (-A, -B), and doubling (2B) of quaternary numbers (A, B).
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Figure 28. Measured spectra (a) before HNLF and (b) after HNLF for 50-Gbaud two-input quaternary optical comput‐
ing (addition, subtraction, complement, doubling).

In order to confirm the quaternary optical computing (addition, subtraction, complement,
doubling), the waveforms and balanced eyes of the demodulated in-phase (Ch. I) and quad‐
rature (Ch. Q) components of two-input 100-Gbit/s RZ-DQPSK signals and six converted idlers
by multiple FWM processes are recorded. A 50-GHz delay-line interferometer (DLI) is used
to demodulate 100-Gbit/s RZ-DQPSK. A relative delay of 20 ps is introduced between the two
arms of the 50-GHz DLI. Remarkably, quaternary numbers can be represented by the combi‐
nation of Ch. I and Ch. Q (i.e., 00: ‘0’, 01: ‘1’, 11: ‘2’, 10: ‘3’). By exploiting multiple degenerate
and nondegenerate FWM processes, one can clearly see from Figs. 29 and 30 that simultaneous
50-Gbaud quaternary optical computing of addition (A+B), dual-directional subtraction (A-B,
B-A), complement (-A, -B), and doubling (2B) are successfully implemented with 100-Gbit/s
DQPSK signals.

The BER performance of the quaternary optical computing is characterized as shown in Fig.
31. The measured power penalty at a BER of 10-9 is less than 4 dB for addition (A+B), 3 dB for
subtraction (A-B, B-A), 2 dB for complement (-A, -B), and 3.1 dB for doubling (2B), respectively.
Remarkably, one can see that the quaternary addition, subtraction, and doubling show
relatively large power penalties compared to the quaternary complement. Such interesting
phenomenon can be briefly explained as follows. According to the relationships of electrical
fields, the distortions of input signals are transferred into converted idlers (i.e., computing
results). Actually, the degradations of quaternary addition/subtraction, complement, and
doubling are respectively induced by the accumulated distortions from signal A and signal B,
distortion from single signal B, and twice distortions from signal B. Additionally, the BER
curves of two-output signals from the HNLF are also plotted in Fig. 31(c) and (d) for reference.
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Shown in Fig. 28 are measured spectra. One CW pump (1553.2 nm) and two 100-Gbit/s 27-1
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and 20 W-1 km-1, respectively. The employed HNLF has low and flat dispersion, which benefits
simultaneous multiple FWM processes. As a consequence, it is possible to simultaneously
generate six idlers (idler 1: 1544.3 nm, idler 2: 1548.9 nm, idler 3: 1562.2 nm, idler 4: 1559.9 nm,
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In order to confirm the quaternary optical computing (addition, subtraction, complement,
doubling), the waveforms and balanced eyes of the demodulated in-phase (Ch. I) and quad‐
rature (Ch. Q) components of two-input 100-Gbit/s RZ-DQPSK signals and six converted idlers
by multiple FWM processes are recorded. A 50-GHz delay-line interferometer (DLI) is used
to demodulate 100-Gbit/s RZ-DQPSK. A relative delay of 20 ps is introduced between the two
arms of the 50-GHz DLI. Remarkably, quaternary numbers can be represented by the combi‐
nation of Ch. I and Ch. Q (i.e., 00: ‘0’, 01: ‘1’, 11: ‘2’, 10: ‘3’). By exploiting multiple degenerate
and nondegenerate FWM processes, one can clearly see from Figs. 29 and 30 that simultaneous
50-Gbaud quaternary optical computing of addition (A+B), dual-directional subtraction (A-B,
B-A), complement (-A, -B), and doubling (2B) are successfully implemented with 100-Gbit/s
DQPSK signals.

The BER performance of the quaternary optical computing is characterized as shown in Fig.
31. The measured power penalty at a BER of 10-9 is less than 4 dB for addition (A+B), 3 dB for
subtraction (A-B, B-A), 2 dB for complement (-A, -B), and 3.1 dB for doubling (2B), respectively.
Remarkably, one can see that the quaternary addition, subtraction, and doubling show
relatively large power penalties compared to the quaternary complement. Such interesting
phenomenon can be briefly explained as follows. According to the relationships of electrical
fields, the distortions of input signals are transferred into converted idlers (i.e., computing
results). Actually, the degradations of quaternary addition/subtraction, complement, and
doubling are respectively induced by the accumulated distortions from signal A and signal B,
distortion from single signal B, and twice distortions from signal B. Additionally, the BER
curves of two-output signals from the HNLF are also plotted in Fig. 31(c) and (d) for reference.
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One can clearly see that the two signals suffer negligible performance degradations during
high-base arithmetical operations.

 

Fig.  29.  Demodulated  waveforms  and  balanced  eyes  for  50‐Gbaud  two‐input  quaternary 
addition and dual‐directional subtraction using 100‐Gbit/s DQPSK signals. 
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Figure 29. Demodulated waveforms and balanced eyes for 50-Gbaud two-input quaternary addition and dual-direc‐
tional subtraction using 100-Gbit/s DQPSK signals.

High-Base Optical Signal Proccessing
http://dx.doi.org/10.5772/61504

51



Shown in Fig. 32 are measured constellations for input/output signals and output computing
results. An optical complex spectrum analyzer (APEX AP2440A) is employed in the experi‐
ment. One can clearly see from Fig. 32 that the quaternary addition (A+B), quaternary sub‐
traction (A-B, B-A), and quaternary complement (-A, -B) have four-phase levels (0, π/2, π,
3π/2) while the quaternary doubling (2B) has two-phase levels (0, π).

converted  idlers  (i.e.,  computing  results).  Actually,  the  degradations  of  quaternary 
addition/subtraction,  complement,  and  doubling  are  respectively  induced  by  the 
accumulated distortions  from  signal A  and  signal B, distortion  from  single  signal B,  and 
twice distortions from signal B. Additionally, the BER curves of two‐output signals from the 
HNLF are also plotted  in Fig. 31(c) and  (d)  for reference. One can clearly see  that  the  two 
signals suffer negligible performance degradations during high‐base arithmetical operations. 

Shown  in  Fig.  32  are  measured  constellations  for  input/output  signals  and  output 
computing results. An optical complex spectrum analyzer (APEX AP2440A) is employed in 
the  experiment.  One  can  clearly  see  from  Fig.  32  that  the  quaternary  addition  (A+B), 
quaternary  subtraction  (A‐B,  B‐A),  and  quaternary  complement  (‐A,  ‐B)  have  four‐phase 
levels (0, π/2, π, 3π/2) while the quaternary doubling (2B) has two‐phase levels (0, π). 

 

Fig.  29. Demodulated waveforms  and  balanced  eyes  for  50‐Gbaud  two‐input  quaternary 
addition and dual‐directional subtraction using 100‐Gbit/s DQPSK signals. 

 

Fig. 30. Demodulated waveforms and balanced eyes for 50‐Gbaud quaternary complement 
and doubling using 100‐Gbit/s DQPSK signals. 
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Figure 30. Demodulated waveforms and balanced eyes for 50-Gbaud quaternary complement and doubling using 100-
Gbit/s DQPSK signals.

We then demonstrate high-speed three-input high-base optical computing (addition and
subtraction) of quaternary numbers using multiple nondegenerate FWM processes in a single
HNLF and DQPSK signals. Figure 33 illustrates the concept and operation principle.

Shown in Fig. 34 are measured spectra for 50-Gbaud three-input quaternary optical computing
(addition, subtraction). Figure 34(a) depicts the spectrum for degenerate FWM, which enables
the conversion from C to –C (i.e., quaternary complement). In the experiment, the wavelengths
of CW pump, input signal C (Sig. C) and converted signal (–Sig. C) are 1552.0, 1548.7, and
1555.5 nm, respectively. Figure 34(b) shows the typical spectrum for three-input quaternary
optical computing, i.e., quaternary hybrid addition and subtraction (A+B-C, A+C-B, B+C-A).
In the experiment, the wavelengths of three input 100-Gbit/s RZ-DQPSK signals (A, B, C) are
1546.6 (Sig. A), 1553.2 (Sig. B), and 1555.5 nm (Sig. C), respectively. It is clearly shown that
three converted idlers, i.e., idler 1 at 1544.3 nm, idler 2 at 1548.9 nm, and idler 3 at 1562.2 nm,
are generated by three nondegenerate FWM processes. Actually, idler 1, idler 2, and idler 3
correspond to A+B-C, A+C-B, and B+C-A, respectively. Figure 34(c) displays the spectrum for
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Shown in Fig. 32 are measured constellations for input/output signals and output computing
results. An optical complex spectrum analyzer (APEX AP2440A) is employed in the experi‐
ment. One can clearly see from Fig. 32 that the quaternary addition (A+B), quaternary sub‐
traction (A-B, B-A), and quaternary complement (-A, -B) have four-phase levels (0, π/2, π,
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Figure 30. Demodulated waveforms and balanced eyes for 50-Gbaud quaternary complement and doubling using 100-
Gbit/s DQPSK signals.

We then demonstrate high-speed three-input high-base optical computing (addition and
subtraction) of quaternary numbers using multiple nondegenerate FWM processes in a single
HNLF and DQPSK signals. Figure 33 illustrates the concept and operation principle.

Shown in Fig. 34 are measured spectra for 50-Gbaud three-input quaternary optical computing
(addition, subtraction). Figure 34(a) depicts the spectrum for degenerate FWM, which enables
the conversion from C to –C (i.e., quaternary complement). In the experiment, the wavelengths
of CW pump, input signal C (Sig. C) and converted signal (–Sig. C) are 1552.0, 1548.7, and
1555.5 nm, respectively. Figure 34(b) shows the typical spectrum for three-input quaternary
optical computing, i.e., quaternary hybrid addition and subtraction (A+B-C, A+C-B, B+C-A).
In the experiment, the wavelengths of three input 100-Gbit/s RZ-DQPSK signals (A, B, C) are
1546.6 (Sig. A), 1553.2 (Sig. B), and 1555.5 nm (Sig. C), respectively. It is clearly shown that
three converted idlers, i.e., idler 1 at 1544.3 nm, idler 2 at 1548.9 nm, and idler 3 at 1562.2 nm,
are generated by three nondegenerate FWM processes. Actually, idler 1, idler 2, and idler 3
correspond to A+B-C, A+C-B, and B+C-A, respectively. Figure 34(c) displays the spectrum for
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three-input quaternary addition of A+B+C. In the experiment, the converted signal (-Sig. C) by
degenerate FWM shown in Fig. 34(a) is selected and used as the input signal shown in Fig.
34(b), i.e., -Sig. C is employed instead of Sig. C as shown in Fig. 34(c). After the nondegenerate
FWM process, the converted idler 1 carrying quaternary addition result of A+B+C is obtained.

To verify the successful realization of three-input quaternary optical computing (addition,
subtraction), the waveforms and balanced eye diagrams of the demodulated in-phase (Ch. I)

converted  idlers  (i.e.,  computing  results).  Actually,  the  degradations  of  quaternary 
addition/subtraction,  complement,  and  doubling  are  respectively  induced  by  the 
accumulated distortions  from  signal A  and  signal B, distortion  from  single  signal B,  and 
twice distortions from signal B. Additionally, the BER curves of two‐output signals from the 
HNLF are also plotted  in Fig. 31(c) and  (d)  for reference. One can clearly see  that  the  two 
signals suffer negligible performance degradations during high‐base arithmetical operations. 
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and quadrature (Ch. Q) components of three-input 100-Gbit/s RZ-DQPSK signals and three-
output converted idlers by nondegenerate FWM processes are recorded. Figure 35 depicts the
measured sequences of input signals and converted idlers. It is clearly shown that the degen‐
erate FWM process enables 50-Gbaud conversion from C to –C (i.e., quaternary complement)
and three nondegenerate FWM processes perform three-input quaternary optical computing,
i.e., hybrid quaternary addition and subtraction (A+B-C, A+C-B, B+C-A, A+B+C).

We measure the BER curves as shown in Fig. 36 for 50-Gbaud three-input quaternary optical
computing (A+B-C, A+C-B, B+C-A). It is shown from Figs. 36(a) and (b) that the power penalties
at a BER of 10-9 of three-input quaternary optical computing (A+B-C, A+C-B, B+C-A) are
measured to be less than 6 dB. Shown in Fig. 37 are the measured BER curves for 50-Gbaud
conversion from C to –C (i.e., quaternary complement) and 50-Gbaud three-input quaternary
addition (A+B+C). The observed power penalty is negligible for the conversion from C to –C.
For the quaternary addition of A+B+C, the power penalty at a BER of 10-9 is assessed to be less
than 6 dB. Similar to two-input quaternary optical computing, it is believed that the perform‐
ance degradations of three-input quaternary optical computing (i.e., quaternary hybrid
addition and subtraction of A+B-C, A+C-B, B+C-A, and A+B+C) are mainly caused by accu‐
mulated distortions originated from three-input signals (A, B, C or –C). Such phenomenon can
be explained according to the electrical field and linear optical phase relationships of nonde‐
generate FWM processes. Shown in Fig. 36(c)(d) and Fig. 37(a)(b) are measured BER curves
for three output signals (A, B, C or –C) from HNLF after three-input quaternary optical 7 

Figure 27. (a) Concept and (b) principle of two-input high-base optical computing (quaternary 
addition/subtraction/complement/doubling) using a single nonlinear device and DQPSK signals. 

 
Figure 28. Measured spectra (a) before HNLF and (b) after HNLF for 50-Gbaud two-input quaternary optical 
computing (addition, subtraction, complement, doubling). 
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computing. For the three signals during the three-input quaternary optical computing
operations, no significant performance degradations are observed in the experiment.

We also measure the constellation diagrams for three-input/output 100-Gbit/s RZ-DQPSK
signals (A, B, C/-C) and six converted idlers corresponding to quaternary hybrid addition and
subtraction of A+B-C, A+C-B, B+C-A, and A+B+C. An optical complex spectrum analyzer
(APEX AP2440A) is employed in the experiment. From Fig. 38 one can clearly observe four-

8 

Figure 34. Measured spectra for 50-Gbaud three-input quaternary optical computing (addition, subtraction). (a) 
Degenerate FWM process (C to –C conversion); (b) three-input quaternary hybrid addition and subtraction (idler 
1: A+B-C, idler 2: A+C-B, idler 3: B+C-A) by degenerate FWM process; (c) three-input quaternary addition (idler: 
A+B+C) by degenerate FWM process.
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Figure 34. Measured spectra for 50-Gbaud three-input quaternary optical computing (addition, subtraction). (a) De‐
generate FWM process (C to –C conversion); (b) three-input quaternary hybrid addition and subtraction (idler 1: A+B-
C, idler 2: A+C-B, idler 3: B+C-A) by degenerate FWM process; (c) three-input quaternary addition (idler: A+B+C) by
degenerate FWM process.
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phase levels (i.e., 0, π/2, π, 3π/2) of all input/output signal and output idlers. These four-phase
levels can represent quaternary base numbers.

9 

 
Figure 35. Demodulated temporal waveforms and balanced eye diagrams for 50-Gbaud three-input (A, B, C) 
quaternary addition and subtraction (A+B-C, A+C-B, B+C-A, A+B+C). 

Input : Signal A   

Ch. Q  

Quaternary number (A) 

Ch. I  

Ch. Q 

Quaternary number (A+B-C)  

Ch. I   Ch. Q Ch. I  Ch. Q 

Output : A+B-C    

Input : Signal B    Ch. I   

Ch. Q  

Quaternary number (B) 

Ch. I  

Output: A+C-B     Ch. I  

Ch. Q 

Quaternary number (A+C-B)  

Ch. I  Ch. Q 

Ch. I   

Quaternary number (C) 

Input : Signal C    

Ch. I Ch. Q

Output : B+C-A    

Ch. Q  

Quaternary number (B+C-A)

Ch. I  

Ch. I   Ch. Q 

Ch. I   

Ch. Q  

Quaternary number (-C)  

Ch. Q 

Input : - Signal C   Ch. I  

Quaternary number (A+B+C)  

Ch. I   Ch. Q 

Output : A+B+C    

Ch. Q  

Ch. Q  

Ch. Q 

Ch. I  

Ch. I   

Figure 35. Demodulated temporal waveforms and balanced eye diagrams for 50-Gbaud three-input (A, B, C) quaterna‐
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Fig. 36. Measured BER curves for 50‐Gbaud three‐input quaternary optical computing. (a)(b) 
Hybrid addition and subtraction of A+B‐C, A+C‐B, and B+C‐A. (c)(d) Output signals (Sig. A, 
Sig. B, Sig. C) from HNLF. (a)(c) Ch. I. (b)(d) Ch. Q. B‐to‐B: back‐to‐back. 

Fig.  37. Measured  BER  curves  for  50‐Gbaud  conversion  from  C  to  –C  and  three‐input 
quaternary addition of A+B+C.  (a)(b) Conversion  from C  to –C.  (c)(d) A+B+C.  (a)(c) Ch.  I. 
(b)(d) Ch. Q. B‐to‐B: back‐to‐back. 
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Figure 36. Measured BER curves for 50-Gbaud three-input quaternary optical computing. (a)(b) Hybrid addition and
subtraction of A+B-C, A+C-B, and B+C-A. (c)(d) Output signals (Sig. A, Sig. B, Sig. C) from HNLF. (a)(c) Ch. I. (b)(d)
Ch. Q. B-to-B: back-to-back.

Fig.  37. Measured  BER  curves  for  50‐Gbaud  conversion  from  C  to  –C  and  three‐input 
quaternary addition of A+B+C.  (a)(b) Conversion  from C  to –C.  (c)(d) A+B+C.  (a)(c) Ch.  I. 
(b)(d) Ch. Q. B‐to‐B: back‐to‐back. 
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Figure 38. Measured constellation diagrams for 50-Gbaud three-input quaternary addition and subtraction. 
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Figure 38. Measured constellation diagrams for 50-Gbaud three-input quaternary addition and subtraction.

In addition to two-/three-input high-base optical computing based on degenerate/nondegen‐
erate FWM in HNLFs, we also propose and simulate three-input high-base optical computing
(hexadecimal addition and subtraction) in a single silicon–organic hybrid slot waveguide
based on nondegenerate FWM processes.

Shown in Fig. 39(a) is the schematic 3D structure of the proposed silicon–organic hybrid slot
waveguide. It has a sandwich structure formed by a low-refractive-index PTS [polymer poly
(bis para-toluene sulfonate) of 2, 4-hexadiyne-1,6 diol] layer inserted between two high-
refractive-index silicon layers. The cladding of the structure is air. The substrate is silicon
dioxide. In the designed silicon–organic hybrid slot waveguide, the waveguide width is W=250
nm, the upper silicon height is Hu=180 nm, the lower silicon height is Hl=180 nm, and the slot
height is Hs=25 nm. We plot in Fig. 39(b)-(d) the quasi-TM mode distribution together with its
normalized power density along x and y directions. It is clearly shown that the mode is highly
confined in the nanoscale nonlinear organic slot region (i.e., tight light confinement). As a
consequence, high nonlinearity and instantaneous Kerr response are achievable without
impairments by TPA and FCA. Using finite-element method, we assess the effective mode area
and nonlinearity to be 7.7x10-14 m2 and 5500 w-1m-1, which can potentially facilitate efficient
high-base optical signal processing (e.g., hexadecimal addition/subtraction). Figure 40
illustrates the operation principle which is similar to that in HNLFs. Instead of using DQPSK
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(hexadecimal addition and subtraction) in a single silicon–organic hybrid slot waveguide
based on nondegenerate FWM processes.
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waveguide. It has a sandwich structure formed by a low-refractive-index PTS [polymer poly
(bis para-toluene sulfonate) of 2, 4-hexadiyne-1,6 diol] layer inserted between two high-
refractive-index silicon layers. The cladding of the structure is air. The substrate is silicon
dioxide. In the designed silicon–organic hybrid slot waveguide, the waveguide width is W=250
nm, the upper silicon height is Hu=180 nm, the lower silicon height is Hl=180 nm, and the slot
height is Hs=25 nm. We plot in Fig. 39(b)-(d) the quasi-TM mode distribution together with its
normalized power density along x and y directions. It is clearly shown that the mode is highly
confined in the nanoscale nonlinear organic slot region (i.e., tight light confinement). As a
consequence, high nonlinearity and instantaneous Kerr response are achievable without
impairments by TPA and FCA. Using finite-element method, we assess the effective mode area
and nonlinearity to be 7.7x10-14 m2 and 5500 w-1m-1, which can potentially facilitate efficient
high-base optical signal processing (e.g., hexadecimal addition/subtraction). Figure 40
illustrates the operation principle which is similar to that in HNLFs. Instead of using DQPSK
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for quaternary optical computing, here 16PSK signals are used to achieve hexadecimal optical
computing.

Figure 39. (a) 3D structure, (b) mode distribution, (c)(d) normalized power density along x and y directions of a sili‐
con–organic hybrid slot waveguide.

In the following simulations, three 40-Gbaud 213-1 PRBS 16-PSK signals (λA: 1546 nm, λB: 1552
nm, λC: 1550 nm) are adopted. A 1-mm-long silicon–organic hybrid slot waveguide is em‐
ployed. Figure 41 shows simulation results for three-input 40-Gbaud (160-Gbit/s) hexadecimal
addition/subtraction. Twenty-symbol sequences are plotted in Fig. 41, which confirms the
successful implementation of three-input hexadecimal addition/subtraction (A+B-C, A+C-B, B
+C-A, A+B+C, A-B-C, B-A-C). The constellations are also shown in Fig. 42 with assessed EVM
under an OSNR of 28 dB for input signals. The observed degradation of EVM for hexadecimal
addition/subtraction can be ascribed to the accumulated noise from input 16-PSK signals and
impairments from nonlinear interactions inside the silicon–organic hybrid slot waveguide. We
further investigate the EVM of input signals and output idlers against the OSNR of input
signals as shown in Fig. 43(a) and (b). The EVM penalties are assessed to be less than 4.5 for
hexadecimal addition/subtraction under an OSNR of 28 dB.
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Figure 41. Simulated symbol sequence for three-input 40-Gbaud (160-Gbit/s) hexadecimal addition/subtraction using
silicon–organic hybrid slot waveguide.

Figure 40. (a) Concept and (b)(c)(d) operation principle of three-input hexadecimal addition/subtraction.
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Figure 41. Simulated symbol sequence for three-input 40-Gbaud (160-Gbit/s) hexadecimal addition/subtraction using
silicon–organic hybrid slot waveguide.

Figure 40. (a) Concept and (b)(c)(d) operation principle of three-input hexadecimal addition/subtraction.
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Figure 42. Simulated constellations for three-input 40-Gbaud (160-Gbit/s) hexadecimal addition/subtraction using sili‐
con–organic hybrid slot waveguide.

Figure 43. Simulated EVM vs. OSNR for 40-Gbaud (160-Gbit/s) hexadecimal addition/subtraction using silicon–organic
hybrid slot waveguide.

5. High-base coding/decoding [79]

We propose and demonstrate high-base optical coding/decoding of advanced multilevel
modulation signals based on degenerate FWM in HNLFs.

Figure 44 illustrates the concept and principle of the proposed symbol-wise hexadecimal
coding/decoding using degenerate FWM and 16-QAM signals. Symbol-wise hexadecimal
coding/decoding can be regarded as the constellation manipulation in the I/Q plane. The
pump, original signal, coded signal and decoded signal are denoted by Ki, Pi, Ci, and Di,
respectively. In the symbol-wise hexadecimal coding/decoding the pump can be CW or phase
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modulated. Illustrated in Fig. 44(a1) and (b1) are the symbol-wise hexadecimal coding, in
which a CW or phase-modulated pump (Ki) and a 16-QAM signal (Pi) are launched into a
nonlinear device such as HNLF to take part in the nonlinear interaction such as degenerate
FWM process. 16-QAM signal can represent a hexadecimal number. When propagating along
the HNLF, the degenerate FWM process generates a coded signal (Ci). Note that the electrical
field (EC i) of the coded signal (Ci) satisfies the relationship of EC i ∝ EK i

2 ⋅ EP i
* . From the

electrical fields a linear phase relationship of ΦC i =2ΦK i −ΦP i is achieved, i.e., twice the pump
phase modulation (2ΦK i) and the conjugated phase of the original signal (−ΦP i) contribute
together to the phase of the coded signal. Consequently, the coding algorithm simultaneously
relies on the pump phase modulation and degenerate-FWM-induced phase conjugation. For
the CW pump-assisted symbol-wise hexadecimal coding as shown in Fig. 44(a1), all constel‐
lation points in the I/Q plane are moved to their symmetrical positions with respect to the I-
axis because of the phase conjugation property of degenerate FWM. Actually, hexadecimal
code conversion from one number to another is achieved simply by conjugated degenerate
FWM process. For the symbol-wise hexadecimal coding exploiting a phase-modulated pump,
i.e. (0, π/4) phase modulation, as illustrated in Fig. 44(b1), all constellation points are mapped
symmetrically with respect to the I-axis. Meanwhile, the pump phase modulation also
introduces additional symbol-varying coding. When the constellation point of 16-QAM in one
symbol meets the π/4 pump phase modulation, it will rotate in a counter-clockwise direction
by π/2. As a result, the coding algorithm becomes ΦC i =2ΦK i −ΦP i which determines the rule
of hexadecimal coding.
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Figure 44. Concept and operation principle of variable symbol-wise hexadecimal coding/decoding by use of optical
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modulated. Illustrated in Fig. 44(a1) and (b1) are the symbol-wise hexadecimal coding, in
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code conversion from one number to another is achieved simply by conjugated degenerate
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symmetrically with respect to the I-axis. Meanwhile, the pump phase modulation also
introduces additional symbol-varying coding. When the constellation point of 16-QAM in one
symbol meets the π/4 pump phase modulation, it will rotate in a counter-clockwise direction
by π/2. As a result, the coding algorithm becomes ΦC i =2ΦK i −ΦP i which determines the rule
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Figure 44. Concept and operation principle of variable symbol-wise hexadecimal coding/decoding by use of optical
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Figure 44(a2) and (b2) illustrate the symbol-wise hexadecimal decoding. The pump (Ki) and
the coded signal (Ci) are fed into another nonlinear device such as HNLF to participate in the
nonlinear interaction such as degenerate FWM process which generates the decoded signal
(Di). It is noted that the electrical field of the decoded signal (Di) satisfies the relationship of
ED i ∝ EK i

2 ⋅ EC i
* ∝ EK i

2 ⋅ EK i
* 2 ⋅ EP i = | EK i | 4 ⋅ EP i ∝ EP i. Thus, the phase of the decoded signal

(Di) meets the relationship of ΦD i =2ΦK i −ΦC i =2ΦK i − (2ΦK i −ΦP i)=ΦP i. As a consequence, the
decoded signal (Di) recovers the original signal (Pi) after the decoding process. The decoding
algorithm is determined by ΦD i =2ΦK i −ΦC i =2ΦK i − (2ΦK i −ΦP i)=ΦP i. Remarkably, the
decoding algorithm corresponds to the constellation manipulation in the complex plane. The
concept and principle shown in Fig. 44 indicate that the constellation of a 16-QAM signal can
be manipulated by employing optical nonlinearity, which enables the symbol-wise hexadec‐
imal coding/decoding. Moreover, exploiting a CW or (0, π/4) phase-modulated pump can
facilitate optical variable symbol-wise hexadecimal coding/decoding assisted by optical
nonlinearity.

Shown in Fig. 45 is the experimental setup for the proposed optical symbol-wise hexadecimal
coding/decoding. A 10-Gbaud (40-Gbit/s) 16-QAM signal is prepared via the vector addition
of two copies of QPSK signal using an I/Q QPSK modulator, polarization controllers (PCs), a
tunable differential group delay (DGD) element, and a polarizer (Pol.). A 10-Gbit/s phase-
modulated pump with (0, π/4) binary phase modulation, which is synchronized with the 10-
Gbaud 16-QAM signal, is provided by employing a phase modulator (PM) driven by PRBS
patterns. Note that the PM is not utilized for the CW pump-assisted hexadecimal coding/
decoding. For the hexadecimal coding process, the 16-QAM signal (Pi) and the CW/phase-
modulated pump (Ki) are launched into a 460-m piece of HNLF. The ZDW, dispersion slope
(S) and nonlinear coefficient (γ) of the HNLF employed in the experiment are ~1556 nm, ~0.026
ps/nm2/km, and 20 W-1·km-1, respectively. When the 16-QAM signal (Pi) and the CW/phase-
modulated pump (Ki) propagate along the HNLF, a coded signal (Ci) is generated by degen‐
erate FWM process. The coded signal (Ci) takes the result of hexadecimal coding. For the
hexadecimal decoding process, the coded signal (Ci) and the CW/phase-modulated pump (Ki)
are fed into another 520-m piece of HNLF which has a ZDW of ~1555 nm, S of ~0.026 ps/nm2/
km, and γ of 20 W-1·km-1. When the coded signal (Ci) and the CW/phase-modulated pump
transmit through the HNLF, a decoded signal (Di) is obtained by degenerate FWM process.
The decoded signal (Di) recovers the original signal corresponding to hexadecimal decoding.
In the experimental setup, BPFs at the output of HNLFs are employed to suppress unwanted
frequency components and pick up coded/decoded signals. For coherent detection of 16-QAM
signals, an optical modulation analyzer (Agilent N4391A) and a digital phosphor oscilloscope
(Tektronix DPO72004) with a 50-Gs/s sample rate and a 20-GHz electrical bandwidth are
employed in the experiment.

The measured spectra for optical variable symbol-wise hexadecimal coding/decoding are
shown in Fig. 46. Both, CW pump and (0, π/4) phase-modulated pump are employed in the
experiment. The original signal (Pi), pump (Ki), coded signal (Ci), and decoded signal (Di)
have wavelengths of 1557.0, 1555.6, 1554.2, and 1557.0 nm, respectively. We set the power of
the original signal for coding and the coded signal for decoding to be around 10.8 dBm. For
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the symbol-wise hexadecimal coding/decoding using a CW pump, the power of CW pump is
~12.8 dBm. The conversion efficiency is assessed to be about -15.4 dB for the symbol-wise
hexadecimal coding while -14.9 dB for the symbol-wise hexadecimal decoding. For the symbol-
wise hexadecimal coding/decoding using a (0, π/4) phase-modulated pump, the power of the
(0, π/4) phase-modulated pump is ~9.8 dBm. The symbol-wise hexadecimal coding has a
conversion efficiency of about -20.9 dB, while the symbol-wise hexadecimal decoding shows
a conversion efficiency of around -19.1 dB.

Figure 47 depicts observed constellation diagrams and in-phase (I) and quadrature (Q)
components for optical variable symbol-wise hexadecimal coding/decoding. Figure 47(a)
shows the 10-Gbaud 16-QAM signal corresponding to the back-to-back (B-B) case. The EVM
is measured to be 5.5%rms. The 16 constellation points can be clearly seen in the complex I/Q
plane. Note that hexadecimal numbers can be represented by these 16 constellation points. For
the symbol-wise hexadecimal coding/decoding using a CW pump, the phase-conjugated
degenerate FWM process determines the coding and decoding algorithms to be (ΦC i = −ΦP i)
and (− (−ΦP i)=ΦP i), respectively. The constellations in the complex I/Q plane are manipulated
following the coding and decoding algorithms. Figure 47(b) and (c) show the constellation
diagrams of coded signal with an EVM of 6.3%rms and decoded signal with an EVM of
6.4%rms, respectively. For the symbol-wise hexadecimal coding/decoding using a phase-
modulated pump, a (0, π/4) pump phase modulation with an EVM of 5.0%rms is employed in
the experiment, as shown in Fig. 47(d). The constellation diagrams of the coded signal with an
EVM of 7.8%rms and decoded signal with an EVM of 6.4%rms are shown in Fig. 47(e) and (f).
The constellation manipulation in the complex I/Q plane follows the coding algorithm
(ΦC i =2ΦK i −ΦP i) for the symbol-wise hexadecimal coding process and decoding algorithm
(2ΦK i −ΦC i =2ΦK i − (2ΦK i −ΦP i)=ΦP i) for the symbol-wise hexadecimal decoding process.
Remarkably, for phase-modulated pump-assisted symbol-wise hexadecimal coding/decod‐
ing, the pump phase modulation and phase conjugation of degenerate FWM contribute
together to the coding and decoding algorithms.
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6.4%rms, respectively. For the symbol-wise hexadecimal coding/decoding using a phase-
modulated pump, a (0, π/4) pump phase modulation with an EVM of 5.0%rms is employed in
the experiment, as shown in Fig. 47(d). The constellation diagrams of the coded signal with an
EVM of 7.8%rms and decoded signal with an EVM of 6.4%rms are shown in Fig. 47(e) and (f).
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Figure 45. Experimental setup for high-base coding/decoding. Degenerate FWM in HNLF, 16-QAM signal and CW/
phase-modulated pumps are employed to enable symbol-wise hexadecimal coding/decoding. QPSK: quadrature
phase-shift keying; QAM: quadrature amplitude modulation; HNLF: highly nonlinear fiber; CW: continuous-wave;
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To confirm the implementation of optical variable symbol-wise hexadecimal coding/decoding,
the complex amplitudes (i.e., in-phase and quadrature components) of symbol sequence for
different signals are recorded in the experiment. As shown in Fig. 48, for symbol-wise
hexadecimal coding/decoding using a CW pump, by comparing the symbol sequence of coded
signal and original signal, one can clearly see that all the constellation points in the complex
I/Q plane are mapped to their symmetrical positions with respect to the I-axis. This constella‐
tion manipulation is determined by the coding algorithm of CW pump-assisted hexadecimal
coding. Additionally, by comparing the symbol sequence of decoded signal and original signal
one can confirm that the decoded signal recovers the original signal.

As shown in Fig. 49, for symbol-wise hexadecimal coding/decoding using a (0, π/4) phase-
modulated pump, the corresponding coding algorithm manipulates the constellation points
in the complex I/Q plane as follows. All the constellation points in the complex I/Q plane are
first flipped to their symmetrical points with respect to the I-axis. Then, a counter-clockwise
rotation of π/2 is introduced to the constellation points, which meet the pump phase modu‐
lation of π/4. One can expect enhanced security for the symbol-wise hexadecimal coding using
a phase-modulated pump owing to the added coding algorithm contribution from the pump.
When compared to the symbol-wise hexadecimal coding using a CW pump, the phase-
modulated pump-assisted symbol-wise hexadecimal coding is not so straightforward.

 

(a1) (a2) 

(b1) (b2) 

Figure 46. Measured spectra for high-base coding/decoding. Degenerate FWM in HNLF, 16-QAM signal and CW/
phase-modulated pumps are employed to enable symbol-wise hexadecimal coding/decoding. (a1)(a2) Symbol-wise
hexadecimal coding/decoding using a CW pump; (b1)(b2) symbol-wise hexadecimal coding/decoding using a (0, π/4)
phase-modulated pump; (a1)(b1) symbol-wise hexadecimal coding; (a2)(b2) symbol-wise hexadecimal decoding.
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Nevertheless, the hexadecimal coding process is still verified from Fig. 49, i.e., the symbol
sequence relationship of coded signal and original signal follows the coding algorithm of (0,
π/4) phase-modulated pump-assisted symbol-wise hexadecimal coding. In addition, for the
symbol-wise hexadecimal decoding process, the decoded signal recovers the information
carried by the original signal. From the obtained results as shown in Figs. 48 and 49, one can
clearly confirm the successful realization of 10-Gbaud optical variable symbol-wise hexadec‐
imal coding/decoding by exploiting degenerate FWM in HNLF, 16-QAM signal, and CW/
phase-modulated pumps.
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Figure 47. Measured constellation diagrams and in-phase (I) and quadrature (Q) components for high-base coding/
decoding. Degenerate FWM in HNLF, 16-QAM signal, and CW/phase-modulated pumps are employed to enable sym‐
bol-wise hexadecimal coding/decoding. (a) Back-to-back (B-B) 16-QAM signal; (b) coded signal using a CW pump; (c)
decoded signal using CW pump; (d) (0, π/4) phase-modulated pump; (e) coded signal using a (0, π/4) phase-modulat‐
ed pump; (f) decoded signal using a (0, π/4) phase-modulated pump.
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Nevertheless, the hexadecimal coding process is still verified from Fig. 49, i.e., the symbol
sequence relationship of coded signal and original signal follows the coding algorithm of (0,
π/4) phase-modulated pump-assisted symbol-wise hexadecimal coding. In addition, for the
symbol-wise hexadecimal decoding process, the decoded signal recovers the information
carried by the original signal. From the obtained results as shown in Figs. 48 and 49, one can
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Figure 47. Measured constellation diagrams and in-phase (I) and quadrature (Q) components for high-base coding/
decoding. Degenerate FWM in HNLF, 16-QAM signal, and CW/phase-modulated pumps are employed to enable sym‐
bol-wise hexadecimal coding/decoding. (a) Back-to-back (B-B) 16-QAM signal; (b) coded signal using a CW pump; (c)
decoded signal using CW pump; (d) (0, π/4) phase-modulated pump; (e) coded signal using a (0, π/4) phase-modulat‐
ed pump; (f) decoded signal using a (0, π/4) phase-modulated pump.
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The BER performance is characterized for CW/phase-modulated pump-assisted optical
variable symbol-wise hexadecimal coding/decoding. Shown in Fig. 50(a) are measured BER
curves for the symbol-wise hexadecimal coding/decoding using a CW pump. OSNR penalty
is used for performance evaluation defined by the ratio of the received OSNR of the coded
signal to that of the back-to-back (B-B) signal. The measured OSNR penalty at a BER of 2e-3 is
~0.6 dB for CW pump-assisted symbol-wise hexadecimal coding. The measured OSNR penalty
at a BER of 2e-3 for CW pump-assisted symbol-wise hexadecimal decoding, i.e., the ratio of
the received OSNR of the decoded signal to that of the B-B signal, is around 1.1 dB. Shown in
Fig. 50(b) are measured BER curves for the symbol-wise hexadecimal coding/decoding using
a (0, π/4) phase-modulated pump. From Fig. 50(b) one can see that the OSNR penalty at a BER
of 2e-3 is measured to be ~1.2 dB for symbol-wise hexadecimal coding process and ~0.9 dB for
symbol-wise hexadecimal decoding process, respectively.

We study the BER performance of symbol-wise hexadecimal coding/decoding as a function of
the pump phase modulation depth. Figure 51(a) and (b) show measured results for symbol-
wise hexadecimal coding and decoding, respectively. The OSNR is fixed around 20 dB. For
the symbol-wise hexadecimal coding process as shown in Fig. 51(a), the coding operation
performance is sensitive to the pump phase modulation depth. In contrast, for the symbol-
wise hexadecimal decoding process as shown in Fig. 51(b), the decoding operation perform‐
ance changes slightly. Such interesting phenomenon can be briefly explained as follows. For
the symbol-wise hexadecimal coding process with the coding algorithm ofΦC i =2ΦK i −ΦP i,
twice phase modulation of the pump is added to the coded signal. As a result, any change of
the pump phase modulation depth and resultant offset from π/4 pump phase modulation can
cause the deviation of the constellation points of 16-QAM from their standard positions. Thus,
the coding performance is degraded for symbol-wise hexadecimal coding process. To maintain

Figure 48. Measured complex amplitudes (i.e., in-phase and quadrature components) of symbol sequence for optical
symbol-wise hexadecimal coding/decoding using a CW pump.
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the BER below 2e-3 (EFEC threshold), the tolerance of the pump phase modulation offset is
assessed to be about 0.023π, as shown in Fig. 51(a). For the symbol-wise hexadecimal decoding
process with the decoding algorithm of 2ΦK i −ΦC i =2ΦK i − (2ΦK i −ΦP i)=ΦP i algorithms, it is
easy to understand that the BER performance of the decoded signal is independent on the
pump phase modulation, i.e., insensitive to the modulation depth of the pump as shown in
Fig. 51(b).

Figure 49. Measured complex amplitudes of symbol sequence for optical symbol-wise hexadecimal coding/decoding
using a phase-modulated pump. A binary phase modulation of (0, π/4) is applied to the pump.

 

(a) (b) 

Figure 50. Measured BER curves for optical variable symbol-wise hexadecimal coding/decoding. (a) CW pump; (b) (0,
π/4) phase-modulated pump.
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Figure 49. Measured complex amplitudes of symbol sequence for optical symbol-wise hexadecimal coding/decoding
using a phase-modulated pump. A binary phase modulation of (0, π/4) is applied to the pump.
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Figure 50. Measured BER curves for optical variable symbol-wise hexadecimal coding/decoding. (a) CW pump; (b) (0,
π/4) phase-modulated pump.
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Figure 51. Measured dependence of BER performance on the phase modulation depth of pump. (a) symbol-wise hexa‐
decimal coding; (b) symbol-wise hexadecimal decoding.
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about 20%. 
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time domain  between  the  signal  and  the pump  for decoding. The pump  for decoding  is 
aligned to the pump for coding; (c) Measured BER of decoding as a function of the offset in 
the time domain between the pump for decoding and the pump for coding. The pump for 
coding is aligned to the signal. 
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between  two  100‐Gbit/s  DQPSK  signals  has  been  demonstrated  using  the  parametric 
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exchange has been proposed  and demonstrated using bidirectional degenerate FWM  in  a 
single HNLF. Moreover, a  reconfigurable Tbit/s network switching element using double‐
pass LCoS technology accompanied by bidirectional degenerate FWM in a single HNLF has 
been proposed.  2.3‐Tbit/s multifunctional grooming  switch has been demonstrated  in  the 
experiment,  performing  simultaneous  selective  high‐base  add/drop,  high‐base  switchable 
data exchange, and high‐base power equalization, for ITU‐grid‐compatible 23‐channel 100‐

Figure 52. Measured BER performance of symbol-wise hexadecimal coding/decoding versus signal/pump offset in the
time domain. (a) Measured BER of coding as a function of the offset in the time domain between the signal and the
pump for coding. The pump for decoding is not involved; (b) Measured BER of decoding as a function of the offset in
the time domain between the signal and the pump for decoding. The pump for decoding is aligned to the pump for
coding; (c) Measured BER of decoding as a function of the offset in the time domain between the pump for decoding
and the pump for coding. The pump for coding is aligned to the signal.

We further evaluate the BER performance of symbol-wise hexadecimal coding/decoding
versus the signal offset and pump offset in the time domain, as shown in Fig. 52. In the
experiment, the OSNR is fixed around 20 dB. Figure 52(a) depicts the measured BER of symbol-
wise hexadecimal coding as a function of the offset in the time domain between the signal and
the pump for coding. Note that the pump for decoding is not involved. It is shown that the
coding is sensitive to the signal offset from the pump. This is predictable according to the
coding algorithm of ΦC i =2ΦK i −ΦP i. To keep the BER below 2e-3 (EFEC threshold), the
tolerance of the relative signal offset to the symbol period is measured to be about 10%. Figure
52(b) plots the measured BER of symbol-wise hexadecimal decoding as a function of the offset
in the time domain between the signal and the pump for decoding. The pump for decoding is
aligned to the pump for coding. One can clearly see that the BER performance is insensitive to
the signal offset in the time domain. This is easy to understand based on the decoding algorithm
of 2ΦK i −ΦC i =2ΦK i − (2ΦK i −ΦP i)=ΦP i. Figure 52(c) shows measured BER of symbol-wise
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hexadecimal decoding as a function of the offset in the time domain between the pump for
decoding and that for coding. The pump for coding is aligned to the signal. It can be clearly
seen that the performance of decoding process is dependent on the offset in the time domain
between the pump for decoding and that for coding. To maintain the BER below 2e-3 (EFEC
threshold), the tolerance of the relative pump offset to the symbol period is assessed to be about
20%.

6. Conclusion

In this chapter, we have reviewed recent research efforts toward high-base optical signal
processing by adopting multilevel modulation signals and exploiting optical nonlinearities.

1. High-Base Wavelength Conversion: On-chip, high-base, all-optical wavelength conver‐
sion of multicarrier, multilevel modulation signals has been demonstrated using degen‐
erate FWM in a silicon waveguide and OFDM m-QAM signals. Impressive operation
performance of on-chip 3.2 Gbaud/s OFDM 16/32/64/128-QAM wavelength conversion
has been achieved in the experiment.

2. High-Base Optical Data Exchange: Phase-transparent, high-base optical data exchange
between two 100-Gbit/s DQPSK signals has been demonstrated using the parametric
depletion effect of nondegenerate FWM in an HNLF. Simultaneous multichannel data
exchange has been proposed and demonstrated using bidirectional degenerate FWM in
a single HNLF. Moreover, a reconfigurable Tbit/s network switching element using
double-pass LCoS technology accompanied by bidirectional degenerate FWM in a single
HNLF has been proposed. 2.3-Tbit/s multifunctional grooming switch has been demon‐
strated in the experiment, performing simultaneous selective high-base add/drop, high-
base switchable data exchange, and high-base power equalization, for ITU-grid-
compatible 23-channel 100-Gbit/s RZ-DQPSK signals. Additionally, ultrahigh-speed
high-base optical data exchange of 640 Gbaud (2.56 Tbit/s) 16-QAM and 640 Gbaud (3.84
Tbit/s) 64-QAM signals has been proposed and simulated by exploiting non-degenerate
FWM in a silicon-organic hybrid slot waveguide.

3. High-Base Optical Computing: By adopting 100-Gbit/s two-input RZ-DQPSK signals (A,
B) and exploiting three degenerate FWM processes and three nondegenerate FWM
processes in an HNLF, simultaneous 50-Gbaud two-input quaternary addition (A+B),
dual-directional subtraction (A-B, B-A), complement (-A, -B), and doubling (2B) have been
demonstrated in the experiment. By employing 100-Gbit/s three-input RZ-DQPSK signals
(A, B, C/-C) and three nondegenerate FWM processes in an HNLF, 50-Gbaud three-input
quaternary hybrid addition and subtraction (A+B-C, A+C-B, B+C-A, A+B+C) have been
demonstrated in the experiment. Furthermore, three-input (A, B, C) 40-Gbaud (160-Gbit/
s) optical hexadecimal addition/subtraction (A+B-C, A+C-B, B+C-A, A+B+C, A-B-C, B-A-
C) has also been proposed and simulated based on nondegenerate FWM in a silicon–
organic hybrid slot waveguide.

4. High-Base Optical Coding/Decoding: By exploiting degenerate FWM in an HNLF and
adopting 16-QAM signal, 10-Gbaud optical variable symbol-wise hexadecimal coding/
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(A, B, C/-C) and three nondegenerate FWM processes in an HNLF, 50-Gbaud three-input
quaternary hybrid addition and subtraction (A+B-C, A+C-B, B+C-A, A+B+C) have been
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adopting 16-QAM signal, 10-Gbaud optical variable symbol-wise hexadecimal coding/
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decoding assisted by a CW pump or a phase-modulated pump has been demonstrated in
the experiment. The former takes the coding through the phase conjugation of degenerate
FWM, and the latter offers enhanced coding via the combined contributions from the
phase modulation of the pump and the phase-conjugated FWM.

Beyond high-base wavelength conversion, data exchange, optical computing, and optical
coding/decoding based on degenerate/nondegenerate FWM in HNLFs or silicon waveguides,
with future improvements, other different optical nonlinearities on various nonlinear optical
device platforms would also be employed to flexibly manipulate the amplitude and phase
information of advanced multilevel modulation signals, which might open diverse interesting
applications in robust high-base optical signal processing.
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Abstract

This chapter proposes and tests an approach for an unbiased study of radar wave‐
forms’ performances. Through an empirical performance analysis, the performances
of Chirp and Multitones are compared with both simulations and measurements. An
ultra wideband software defined radar prototype was designed and the prototype has
performances comparable to the state of the art in software defined radar. The study
looks at peak-to-mean-envelope power ratio, spectrum efficiency, and pulse com‐
pression as independent waveform criteria. The experimental results are consistent
with the simulations. The study shows that a minimum of 10 bits resolution for the
AD/DA converters is required to obtain near-optimum performances.

Keywords: Software Defined Radar, OFDM, Empirical Modelling, Chirp

1. Introduction

In the past few decades, analogue circuits have been replaced by digital circuits. This evolution
has permitted the use of purely digital waveforms (such as Multitones which have numerous
commercial applications in the wireless communication industry – such as wireless LAN [1])
which present numerous advantages (i.e., increased data throughput, robustness against
fading). To date, Multitones have seldom been implemented in operational radar.

Operational radar predominantly uses the linear frequency modulated pulse (also known as
Chirp) and has been routinely used since the late 1940s [2]. The relatively slow adoption of
Multitones in radar applications can be explained by a variety of factors. For example, it is

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
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unlikely that a technology will advance to marketable applications unless there is demand for
them. Lately, the use of a Unmanned Airborne Vehicles for military operations over urban
areas are required to simultaneously perform radar sensing and remotely communicate data
to a base station. This cannot be achieved with traditional Chirp. Consequently, there have
been increased research efforts in integrating telecommunication waveforms such as Multi‐
tones into radar applications.

The constant developments in ADC/DAC, digital signal processors, signal synthesis/digitiza‐
tion, and component’s instantaneous bandwidth allow digital platforms to process ultra
wideband (UWB) signals. In radar applications, UWB signals enable finer slant range resolu‐
tion for target identification and the implementation of waveform/spectrum diversity. Those
recent technological developments constitute the foundation of software-defined radar, which
can dynamically reconfigure its digital signal processing and adapt the frequency of converter.
Such radar is inherently multifunction switching from operating mode to another (surveil‐
lance, tracking, imaging, and telecommunications).

Multitones will only be widely adopted when its capabilities match the specific task’s require‐
ments. The successful integration and subsequent widespread use in operational systems
depends solely on that condition. In other words, without a viable commercial application, the
development of a technology is unlikely to succeed.

Considering the capabilities of Multitones and/or OFDM signals with respect to classical radar
waveforms, the second half of the introduction provides an overview of the literature on the
subject.

Refs. [3-5] concern the communication aspect of multi-carriers in radar, leaving radar per‐
formances with multicarrier signals aside. A comparison of performances is found in terms of
detection in Ref. [6]. The authors compared single carrier and multicarrier radar systems in
simulations. They found that for target detection in radar based on multicarrier modulation,
the required constant false alarm rate detection threshold is lower than for a single carrier radar
system with polyphase codes.

In Ref. [2], it is shown that trains of diverse Multitone pulses coded in phase and amplitude
yielded near thumbtack ambiguity functions. These ambiguity functions do not suffer from
range-Doppler coupling as Chirp does. In Ref. [7], a near thumbtack ambiguity function is
obtained using random spread tone agility. In both cases, this ambiguity function comes at the
cost of a higher pedestal level.

Finally, new processing capabilities are emerging using the Multitones’ structure such as
Doppler resolution while using agility [7]. This particular feature cannot be performed with
classic radar waveforms while using agility. In Ref. [8], the Doppler ambiguity is resolved over
one pulse train.

For those reasons, Multitones are foreseen as a viable prospect for the future digital software
defined radar. In order to improve power amplifier efficiency, Peak-to-Mean Envelope Power
Ratio (PMEPR) reduction schemes (phase/amplitude modulation) are overlaid on Multitones.
This signal can be a composite of independent bands for separate processing in multimode
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scenarios [9]. Also in the presence of frequency selective fading, Multitones can still ensure
successful detection of the target [10]. The waveform/spectrum agility is essential for stealthy
operations to evade jamming and spectrum reuse with radar networks [11].

Based on these studies of the performances of Multitones compared to classic radar waveforms,
Multitones show a great potential for new radar advances. However, it is important to note
that most of these results come from simulations. For a real evaluation of the potential
performances of Multitones for radar systems, experimental validations are required. Hence
the simulations presented in section 4 will be compared to experimental results in section 5
based on an experimental setup that is described in part 3.5. Also Multitones need to be
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For this chapter, the focus will be on the performances of both Multitones and Chirp with
respect to quantization. The underlying issue of implementation is the effect of the radio
frequencies (RF) equipment on radar performances. The DAC and ADC converters determine
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there is no evaluation of radar performance. Note that to the best of the authors’ knowledge,
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closely related to the ADC resolution: In Ref. [14], the rationale behind investigating various
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only, using unbiased tools in simulation and experimentation. Multitones will also be com‐
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that most recent designs benefit from scaled device geometries and higher bandwidth, but
suffer in dynamic range and sampling linearity due to reduced supply voltages and available
swing. The available swing is most likely the cause for ADC saturation noise floor around -160
dB observed in the survey. It also shows that for a given ENOB, the sampling rates are entering
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or already are in a saturation phase and it is speculated that the improvement of state of the
art sampling rates will be lower than 5 times by 2020. Now looking at the evolution of ENOB
with respect to sampling frequencies, the projections show that ADCs with over 1 GS/s have
not entered the saturation phase yet. The survey also shows that the main efforts in ADC
research now focused more on power efficiency rather than SNDR/SNR to reduce the ADC
Figure-of-Merit.

Practical use of ADCs are plagued by many physical limitations such as quantization in time
and amplitude, aliasing, clock jitter aperture jitter, thermal noise, non-linear distortions (INL,
DNL), etc. Some of the physical limitations can be partially compensated using oversampling.
However with the high-end of wideband ADCs (e.g., Tekmicro announced a 2-channel
digitizer with 5 GS/s and 10 bits resolution with 3 GHz of instantaneous bandwidth on the
Proteus V6 [15] equipped with the EV10AQ190 [16] from E2V) oversampling is not an option
and even if possible would be prohibitively expensive. Jitter (clock and jitter) is well known
to severely reduce the achievable signal-to-noise ratio (SNR) [17].

Regarding the use of Multitones in telecommunications, common measures of spurious free
dynamic range, total harmonic distortion, signal to noise and distortion and effective number
of bits are defined for one tone or two tones only and the definitions used for some of the
metrics are not unified. In the literature, clip correction post-processing allows the relaxation
of ADC resolution constraints to improve packet error rate at the cost of an increased com‐
plexity in processing [3]. The second allows bit error rate improvements in the presence of
narrowband interference [13]. In Ref. [18], the ADC resolution of multi-band and pulsed-
OFDM ultra wideband systems (IEEE 802.15.3a) is derived using simulation results. They show
that 4-bit resolution is enough to obtain a bit error rate with respect to SNR performances quasi-
identical to the ideal case with infinite resolution.

Working on relaxing ADC requirements with digital post-processing, to compensate for the
impairments of hardware (“Dirty RF”) and to increase the performance of telecommunication,
is a very active research field. Given the projections in Ref. [12], the ADCs’ non-linearities are
increasing with the reduction of voltage swing, maximum SNR capabilities for wideband
digitizers are not improving or maybe will worsen, digital enhancements are going to be
required especially in radar to maintain current levels of sensitivity and detection.

To the best of the authors’ knowledge, the literature is mostly investigating performances for
telecommunications and not for radar performances, also very few experimental results were
found. Before trying to improve performances, these performances for radar have to be
established and in this chapter the quantization process is investigated.

3. Empirical approach for the evaluation of the radar performances

In order to compare different waveforms on equal grounds, they have to be compared on
waveform-independent criteria. Also to further this concept, the simulated processes and the
experimental test bench should be identical to evaluate the performances without bias.
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3.1. Waveform independent criteria

Several characteristics were chosen to determine the optimum operating point: power
efficiency, peak to mean envelope power ratio (PMEPR), and pulse compression characteris‐
tics. The combination of both PMEPR and power efficiency gives information on the effective
average power in the signal useful bandwidth. These criteria allow the evaluation of detection
range at the radar system level. Besides, a high PMEPR may reduce the average transmitted
power [6] thus reducing the detection range. At the ADC level, the maximum input power
determines the maximum SNR after digitization. In Ref. [19], it was shown SNR decreases as
the PMEPR increases, so the PMEPR will set to the maximum achievable SNR without clipping.
In radar, the pulse compression is used to evaluate the radar detection capabilities [20]. The
detection is realized using a matched filter. The characteristics of interest for this study are the
spatial resolution and the contrast; these are measured with the characteristics of the main lobe
and the side lobes.

These parameters will allow determining the respective performances of any waveforms.
PMEPR, power efficiency, and pulse compression will allow determining the detection
capabilities for each waveform. Others could be used to get a more accurate picture of the
performances. Nonetheless, these criteria are sufficient for a first performance evaluation.

3.2. Simulated processes

For the study the data will be filtered to simulate a 1 GHz bandwidth to match the ADC’s
Nyquist band used for the experiment. The quantization process and the Nyquist band chosen
for simulations are the same as the equipment employed for the experiment the Neptune VXS
II digitizer [15]. The encoded value on n bits, n ∈  [2, 24], is floored to the nearest signed integer.
Thus the quantized values range from −2n−1; 2n−1 −1 . The model adopted is perfect quantiza‐
tion.

The minimum number of useful bits required to reach near nominal theoretical values with
respect to PMEPR, power efficiency, and pulse compression performances will be assessed in
order to evaluate the ADC characteristics required to maximize the radar system detection
capabilities.

The simulation process also matches the quantization schemes adopted for the experimental
radar system which is presented in the following section.

3.3. Design approach for an unbiased experimental study

In order to unbiasedly compare different waveforms, it is essential that waveform-independ‐
ent criteria are used. Further, to evaluate the performances without bias, the simulated
processes and the experimental test bench should be identical. The maximum detection range
and pulse compression in range profile can be used as a first step to evaluate radar waveform
performances.

To compare the different waveforms, it is not sufficient to simply examine simulation results;
and thus this comparison should be experimentally validated. It is therefore necessary to
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develop a software defined radar prototype that can test the waveforms under study without
any bias. The novel approach is to compare the studied waveforms on the same platform to
remove any bias. In this paper, simulations and measurements are designed to provide the
basis for an unbiased study of the radar waveforms.

It should be noted that the radar prototype should be designed prior to the simulations, this
way the characteristics of the prototype can then be fed to the simulator for a subsequent and
direct comparison between simulated and experimental results.

3.4. Experimental design

3.4.1. Design of RF system

A few constraints were established for the test bench design. The first step was to optimize the
instantaneous bandwidth to maximize the radar spatial resolution. To perform as well as state
of the art radar prototypes [4, 19, 21], the bandwidth should be greater than 500 MHz. The
radar should support any type of waveform with no changes to the RF frontend. These two
requirements ensure an unbiased study of various waveforms on the same prototype. Also a
reference channel is implemented to compensate for some of the circuit transfer function. This
constraint is a special feature that is not normally implemented in operational radar systems
but does allow refreshing the matched filter dynamically to compensate for any fluctuations
in transfer function especially with power amplifiers.

Due to spatial constraints on the experimental grounds, a maximum of 50 m in slant range is
achievable. Consequently, the architecture must be bi-static and emit in continuous wave to
allow for pulse compression gain greater than 20 dB.

Two architectures are proposed as candidates for the implementation: frequency-interleaved
and parallel. The frequency-interleaved architecture is inspired from the prototype in Ref. [19].
It is investigated because it reduces the number of components and the number of ADC
channels. The parallel architecture is derived from the frequency interleaved architecture.
Although more components are required, it has a potential for more versatile usage.

3.5. Parallel architecture

A synoptic of the parallel architecture is shown in Figures 1.a, 1.b, and 1.c. The signal is directly
synthesized in intermediate frequencies (IF) ranging from 1 to 2 GHz and a low pass filter
removes the mirror image. The IF signal is up-converted in radio frequencies (RF) ranging
from 9.9 to 10.9 GHz by FLO1 = 8.9 GHz, and a band pass filter removes the mirror image. For
short-range applications, the signal can be amplified by a low noise amplifier; and for longer
ranges, a power amplifier can be used. At the output of the amplifier stage, a 20dB directional
coupler splits the signal: the coupled output feeds the signal to the reference channel and the
direct path is connected to the transmitter antenna feed. The backscattered signal is received
by the second antenna which is connected to the test channel. The received signal travels
through a low noise amplifier and a band pass filter removes the mirror image before down-
conversion by FLO1 = 8.9 GHz. The signal in the reference channel is attenuated and down-
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converted by FLO2 = FLO1 = 8.9 GHz. In both the reference and the test channels, the signals
are band pass filtered to avoid aliasing and are then amplified prior to digitization.

 

(a) 
 

(b) 

 
(c)  (d) 

 

Figure 1. (a): Schematic of parallel architecture. (b): Experimental test bench system overview. (c): Lab experimental
test bench set-up. (d): Pulse compression algorithm radix-2 FFT for parallel architecture

A generic algorithm (Figure 1.d) was devised according to the architectures’ characteris‐
tics, and with the objective to compare waveforms. The algorithm is implemented to process
any kind of waveforms. This allows comparing two distinct signals on waveform-independ‐
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ent criteria. Radar systems use pulse compression in order to “see” the targets within the
antenna beam. Matched filtering was chosen to process the data and the algorithm was
modified to reduce the processing power required using radix-2 FFT.

This section presented the performance criteria, the simulation processes, and the radar system
for an unbiased comparison of different waveforms. The next section will present the simula‐
tion results.

4. Waveform simulations

The radar emits in continuous wave and the waveforms will cover the bandwidths of 1 MHz,
10 MHz, 150 MHz, and 800 MHz, and pulse repetition period (PRP) of 500 ns, 5 μs, 50 μs, 500
μs, and 1 ms. Each bandwidth value will be tested with every PRP values. It cannot be done
in one case as 500 ns pulse already produces 2 MHz instantaneous bandwidth, thus the
combination 1 MHz with 500 ns is not possible. The IF sampling frequency is 2 GS/s and the
IF frequency range is centred on 1.5 GHz, the signal instantaneous bandwidth varies from 1
MHz to 800 MHz.

The studied signals are the Newman Phase Coded [22] Multitones and the linear Chirp. The
latter is a reference in the radar community and will be used as reference to evaluate the
performances of Multitones.

A multitude of phase codes exist to reduce PMEPR for Multitones such as Reed–Muller with
complementary Golay codes, bi-phase codes, Newman phase codes, etc. For radar application,
Doppler tolerance is important to detect moving targets and avoid the multiplication of filters
to process the data, Newman phase-codes [22] were chosen because they are easy to imple‐
ment, the PMEPR reduction is sufficient and it is Doppler tolerant. Furthermore this code is
compatible with any vector size. Other codes – an overview of coding techniques can be found
in [23] – may be more efficient but Newman phase-codes were chosen because they fit the
requirements for radar applications; the aim is to evaluate the contribution of Multitones for
radar, not to optimize the waveform phase code. Also note that Multitones need to respect
constraints at the generation and digitization to avoid intermodulation interference.

4.1. Simulated results of the performance criteria

In this section, the simulated results for the PMEPR, the power efficiency, and the pulse
compression will be presented. Note that the errors or differences express the variations
between quantized with respect to perfect performance criteria.

4.1.1. PMEPR

The effects of quantization on the nominal value of PMEPR are now evaluated through
simulations for all bandwidth-time configurations of Chirps and Multitones under test. The
Chirp’s PMEPR increases along with bandwidth, starting at 3.01dB @ 1MHz and going up to
4.22dB @ 800MHz. The increase in PMEPR for wideband Chirp (800 MHz) is explained by the
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filter used to ensure a 1 GHz receiver bandwidth, cutting off the edges of the infinite Chirp
spectrum. This effectively increases the Chirp’s PMEPR by creating peaks in time domain. The
PMEPR for Multitones is in the range 5.44 dB to 5.65 dB which matches the expected PMEPR
reduction for Newman phase codes. Comparing both Chirp and Multitones, their difference
in PMEPR reduces as bandwidth increases. The difference ranges from 1.5 dB @800 MHz to
2.5 dB @1 MHz. As the signal bandwidth reaches the order of the receiver bandwidth, the
difference between PMEPR reduces. Using the radar equation, the maximum detection range
for Chirp with respect to Multitones will be up to 15% greater in narrowband and up to 9%
greater in wideband. The simulation results show that from 4 bits, the PMEPRs are at most 0.1
dB away from their nominal values which is negligible. Thus with respect to PMEPR, the
minimum resolution required is 4 bits.

4.1.2. Power efficiency

The effects of the quantization process on the nominal value of power efficiency are now
evaluated through simulations for all bandwidth-time configurations of Chirps and Multi‐
tones under test. The power efficiencies of both waveforms increase as the bandwidth-time
product increases. The relative error on power efficiencies between both Chirp and Multitones
decreases as the bandwidth-time product increases. Multitones have higher power efficiency
than Chirp but the error is lower than 2% which is negligible. Thus both waveforms are
equivalent regarding power efficiencies.

A minimum of 10 bits is necessary to get within 5% of the nominal power efficiencies for every
signal configuration. With lower bit resolution, Chirp is more power efficient than Multitones.
So in case of low bandwidth-time product and low bit-resolution, Chirp has a higher efficiency
by up to 12%.

4.1.3. Pulse compression

If the bit resolution is not sufficient, the pedestal level of the pulse compression increases,
although the characteristics of the main lobe and second side lobes are not affected. In order
to dimension the digital radar DA/AD converters in single target scenarios, the highest
bandwidth-time product should be set, in order to determine the required number of bits to
obtain a pulse compression close to the nominal value. Considering a relative mean error of
-40 dB and relative max error of -27.5 dB acceptable, the results showed that Chirp requires 14
bits resolution and Multitones 15 bits resolution to meet the acceptable error level for all signal
configurations. Since the test bench only has up to 10 bits resolution, the quantization noise
for any waveforms increases by 6 dB for every missing bit. The extra bit required for Multitones
is related to PMEPR: The Multitones are hindered compared to constant envelope signals such
as Chirp, explaining the need for an extra bit to reach the same relative mean error. Increasing
the number of bits further than the minimum requirements reduces the noise on the curve; the
distance compression pedestal remains unchanged. When using a measured reference, the
noise floor will be raised by 6 dB if the minimum number of bits is not respected. However,
the transfer function is corrected since the signal comes from the radar system.
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4.2. Simulated system level performances

The average power in the useful bandwidth is determined by combining the results of PMEPR
and power efficiency from the simulations at 10 bits for quantization. The difference in average
power between Chirp and Multitones is in the range 1.18 dB to 2.55 dB. The difference in
average power shows that Chirp will have 7% to 16% higher detection range compared to
Multitones. In terms of consumption, the Chirp should be more efficient than Multitone signals
at the amplifier and ADC level. Especially if the system has a low bit-resolution and is
narrowband, Chirp should be favoured over Multitones. On the difference in average power
between both waveforms, the result showed that as the signal bandwidth reached the order
of the receiver bandwidth, the gap in power was reduced. Note that the simulations were
realized with a constant receiver bandwidth of 1 GHz for all bandwidth configurations. On
operational radar systems, the receiver bandwidth should be matched with the signal band‐
width to reduce noise power and avoid interferers to maximize the SNR. Extrapolating from
the results at 800 MHz, with a receiver bandwidth matched to the signal bandwidth, the
difference in average power would be around 1 dB between Chirp and Multitones, resulting
in detection range difference around 7%.

Concerning pulse compression with respect to quantization and saturation, Multitones and
Chirp have the same characteristics for main lobe and side lobes. Chirp displays a better
contrast than Multitones, but the difference is of the order of a couple of dBs.

The analysis revealed that given 10 bit resolution, any waveform reached their nominal values
in terms of PMEPR and power efficiencies. Manufacturers of state of the art converters
announce DAC AWG7122C [24] at 12GS/s with 10 bit resolution and ADC Proteus V6 [15] at
5GS/s with 10 bit resolution or Calypso V6 [15] at 3.6 GS/s with 12 bit resolution. This means
that direct synthesis of signals up to X band and digitization of signals up to S band and part
of C band is possible with nominal values of PMEPR and power efficiencies.

The error on pulse compression depends on the bandwidth-time product. For a set error on
compression, Multitones need an extra bit in resolution to reach the set value. Depending on
the chosen emission band, requiring an extra bit resolution on state of the art AD/DA converters
will either result in increased AD/DA converter consumption or in a reduced sampling
frequency.

The simulations were indeed basic using perfect quantization process. The simulations were
performed without any noise, jitter, or any complex models. This allowed determining a base
for the experimental tests. If the experimental results are not satisfactory, then the simulations
will go through more complex modelling to approach realistic conditions. However, simple
simulations were chosen to reduce time to experiment and get a feel of the processes at work.

5. Experimental results

In this section, the experimental results extracted from the measurements on the radar system
will be analysed and compared to the simulated results. The measurements were done on a
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trihedral corner reflector located 27 m away from the radar test bench. The results will be
presented as for simulations starting with PMEPR, then power efficiency, and finally pulse
compression.

5.1. PMEPR

From Figure 2, the measured PMEPR for Multitones and Chirp are consistent with simulations
on the closed-loop DAC-filter-ADC experiment, with a difference between measured and
simulated values ranging from -0.19 dB to 0.8 dB. The PMEPR for Multitones is in the range
[5dB; 6dB]. As for Chirp, PMEPR increases as the signal bandwidth grows closer to the receiver
instantaneous bandwidth. The differences in PMEPR between both waveforms are within the
range [1.5dB; 2.5dB].

From simulation results, it was determined that 4 bits were sufficient to reach the nominal
value of PMEPR. On this experiment, upgrading the resolution from 8 to 10 bits only affected
the result on PMEPR by 0.15 dB, which is negligible. This confirms the hypothesis on bit
resolution for PMEPR.

In this experiment, the anti-aliasing filter was wider than the first Nyquist band and some of
the frequency contents from the first and third Nyquist band leak into the second Nyquist
band, thus the recorded signals can be distorted. Also, the gain is not flat over the full band‐
width. This might have contributed to the PMEPR degradation. However, the simulated and
measured results on PMEPR match, and this was not predictable a priori.

5.2. Power efficiency

The measured power efficiency is within 10% of the expected value and its general behaviour
is consistent with simulations. Also, the difference between 8 and 10 bits resolutions is at most
0.62%, against 10% in simulation. So, this indicates that changing the DAC resolution from 8
to 10 bits for this experiment has little impact on this feature. This confirms the idea that 8 to
10 bit resolution is sufficient to get near nominal values for power efficiency.

Figure 3 displays the measured spectrum of Chirp and Multitones for 1 MHz and 800 MHz. It
illustrates in the frequency domain the unevenness of the gain response of the closed loop
DAC-filter-ADC experiment. Some unwanted signals are visible in the narrowband case,
which reduces the power efficiency of the narrowband signals, explaining the error. However,
these are also present in WB case, but since they are buried in the useful bandwidth, they do
not affect power efficiency.

Since we are in closed loop, the unwanted signals come from the test bench. This means that
with a radar platform with a receiver bandwidth adapted and a fine tuning to have a clean
spectrum, the power efficiencies in narrowband would match the simulated values. Thus,
extrapolating from the wideband case on this performance criterion, the measurement results
are coherent with expected values, and this was not foreseeable before experimental testing.
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Figure 2. Top: PMEPR @ 10 bits for Chirp and Multitones; middle: difference between Multitones and Chirp @ 8 and 10
bits; bottom: difference between measurement and simulation @ 10 bits for Chirp and Multitones
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5.3. Pulse compression DAC-ADC measurements

The pulse compression was performed with a digital replica of the tested signals. The digital
replica is a band-pass sampled version of the generated waveform. This generated waveform
is sampled @ 10 GHz and the digital replica @ 2 GHz. The right hand side of the pulse
compression presents reflections that are buried when the data is raw, but appear clearer when
Hamming windowing is applied. The higher the bandwidth is, the more visible the circuit
imperfections are, as shown in the figure. Indeed, problems with standing wave ratios cause
uneven second side lobes @ 800 MHz, thus the second side lobes’ characteristics will be
exploited only for signal bandwidth, from 1 MHz to 150 MHz.

Tables 1 and 2 and Figure 4 show the measured impulse responses: main characteristics and
differences/errors between measurements and simulations.

Bandwidth 1 MHz 10 MHz 150 MHz 800 MHz

Main lobe 3 dB width 133m 13.3m 0.9m 0.15/0.225m

Side lobe amplitudes -13.3dB -13.2dB -13.3dB -19.9dB/-10dB

Side lobe positions ±215m ±21.5m ±1.425m ±0.3m

Table 1. Main characteristics of the pulse compression with respect to bandwidth

In Table 2, the large errors for 3 dB main lobe width and side lobes positions at 800 MHz are
caused by sample speck and perturbations induced by standing wave ratios in the circuit.

Figure 3. Measured spectrum of Chirp and Multitones at 1 MHz and 800 MHz
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Otherwise, the other signals from 1 MHz to 150 MHz are within 3.1% of expected values, for
3 dB main lobe width and side lobe positions, and the difference in side lobes amplitudes are
lower than 0.3 dB. Also both waveforms are equivalent on pulse compression. These results
are really close to the expected values and the matching performances indicate good quality
regarding the test bench.

Bandwidth 1 MHz 10 MHz 150 MHz 800 MHz

Main lobe 3 dB width error <1.9% <1.8% <2.3% <37%

Side lobe amplitudes difference <0.3dB <0.3dB <0.3dB -7dB / 3dB

Side lobe positions <0.7% <1.7% <3.1% <67%

Table 2. Relative error on main lobe width and side lobes’ characteristics between measurements and simulations

Figure 4. Compression in distance of Chirp and Multitones with (B 1 MHz, PRP 500 us) and (B 800 MHz, PRP 5 us)
with Hamming window

Applications of Digital Signal Processing through Practical Approach92



Otherwise, the other signals from 1 MHz to 150 MHz are within 3.1% of expected values, for
3 dB main lobe width and side lobe positions, and the difference in side lobes amplitudes are
lower than 0.3 dB. Also both waveforms are equivalent on pulse compression. These results
are really close to the expected values and the matching performances indicate good quality
regarding the test bench.

Bandwidth 1 MHz 10 MHz 150 MHz 800 MHz

Main lobe 3 dB width error <1.9% <1.8% <2.3% <37%

Side lobe amplitudes difference <0.3dB <0.3dB <0.3dB -7dB / 3dB

Side lobe positions <0.7% <1.7% <3.1% <67%

Table 2. Relative error on main lobe width and side lobes’ characteristics between measurements and simulations

Figure 4. Compression in distance of Chirp and Multitones with (B 1 MHz, PRP 500 us) and (B 800 MHz, PRP 5 us)
with Hamming window

Applications of Digital Signal Processing through Practical Approach92

The pulse compression displays large errors at 800 MHz caused by reflections in the circuit.
From the results obtained for the other signals, reducing the standing wave ratios in the circuit
would result in a good match between expected and measured performances at 800 MHz. In
other words, imperfections in the circuit can be overlooked for narrowband systems as it only
affects the pulse compression by fractions of dBs. As the bandwidth increases, the imperfec‐
tions cause impairments and are visible in the distance compression. For radar systems, these
reflection levels need to be reduced below target detection thresholds to avoid causing false
alarms. Also, in the presence of two targets close from one another, one big target and one
small, the reflection level may mask the smaller target, thus they should be kept below the
desired contrast.

Furthermore, increasing the bandwidth allows locating smaller targets; however, a greater
care has to be put to system reflections, as the sources of those reflections appear in the pulse
compression. The upside is that with a high bandwidth, the sources of reflections can be more
accurately located in the circuit.

Concerning Figure 4, the reflections in the circuit create secondary peaks that change the results
on the error. Thus, this formula will not be experimentally validated.

5.4. Synthesis

The closed-loop DAC-filter-ADC measurements were remarkably close to the performance
criteria’s expected values. This allowed confirming the stability of PMEPR and power effi‐
ciency with bit resolution of 8 to 10 bits. This proves that the equipment used to perform the
closed-loop experiment closely matches the simulation results obtained using perfect quanti‐
zation process. These experiments showed that the digitizer technology was mature and that
jitter is negligible. Thus simulation for high performance digitizers need not model the jitter.
With state of the art digitizers, the expected performances in simulations will be the obtained
performances in measurement.

5.4.1. Experiment on static targets: Stability measurements

This experiment used the whole radar system on a trihedral corner reflector located 27 m from
the antennas and allowed determining the stability on the peak response of the compression
in amplitude and phase over one pulse. The worst-case results are displayed in Table 3 and
the evolution of stability over 16 ms. The measurements on stability were obtained using a
digital replica and a measured replica. The difference in stability between the two methods is
lower than 0.7 dB on the mean and minimum stability with respect to relative error, thus both
methods are equivalent. Overall, the relative error in amplitude and phase is about -40dB in
mean value and -30dB in minimum value. Both waveforms perform with equivalent perform‐
ances with respect to stability. Thus, stability depends mostly on hardware rather than
waveform.

This measurement of -40dB in stability shows the robustness of the system to clock drift. Note
that stability measurements usually remain stable for a set period of time and then degrade
with clock drift. Here two hypotheses can be considered: either the set time has not been
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reached, or the clock is stable. The latter is actually the most plausible, as the sampling clock
for the ADC was generated using the DAC, thus when the clock drifts in the DAC, it drifts
accordingly in the ADC. Moreover the aperture jitters of the converters are lower than 200 fs,
compared to a 500 ns sampling period which is excellent. Finally the mean value found in
measurement is of the order of the predicted -42.3dB in RMS quantization noise floor,
established for the Neptune VXS2 [15], with a sine wave @ 0 dBFS based on ENOB + losses.

Relative error 1 MHz 10 MHz 150 MHz 800 MHz

Raw Mean
Max

-41.6dB
-32.11dB

-40.1dB
-27dB

-38.6
-28.8

-39
-27.9

Table 3. Worst case relative error on stability with respect to bandwidth with digital replica

5.4.2. Synthesis

The experiments proved that the measurements matched the results obtained using perfect
quantization. This indicates the degree of accuracy of the AD/DA converters (AWG7102 (86)
and Neptune VXS 2 (74)) used in this experiment, which had aperture jitters lower than 200
fs. This accuracy is confirmed from the stability measurements, with a mean relative error on
peak response subtraction of -40dB. With state of the art converters from 2006, the simple
simulation results allowed accurate predictions of the PMEPR, power and efficiency, and
compression performances. Future converters will have improved performances compared to
that. This means that more complex modelling of jitter effect is unnecessary in that case. The
requirements on bit resolution for radar systems could be dimensioned using this simple
simulation process, rather than complex modelling.

In radar systems, the receiver bandwidth is matched to the signal bandwidth. This cuts off
some of the Chirp spectrum, thus raising its PMEPR, and effectively reduces the gap in average
power between both waveforms. Given unbound spectrum and linear properties, the average
power difference between Chirp and Multitones is about 2.5 dB. When considering the receiver
bandwidth matched to the signal bandwidth, this difference drops to about 1 dB. It is common
in a radar system using Chirp to widen the receiver bandwidth to keep good signal properties
and avoid spectrum clipping. Multitones could actually allow slightly reducing receiver
bandwidth to slightly improve the SNR level, or use the full receiver bandwidth to slightly
improve the spatial resolution. In any case, the conclusion of these measurements is that Chirp
and Multitones have equivalent performances. The Chirp’s maximum detection range is
extended by 7% with respect to Multitones’ maximum detection range. Also the maximum
achievable SNR using the full ADC dynamic range would be about 1 dB higher for Chirp than
for Multitones, thus improving a little detection performances and consumption at the ADC.

The outcome of the experiments is that Multitones are neck and neck with Chirp when the
receiver bandwidth was equal to the signal bandwidth. The experiment on quantization
allowed determining that the converter technology is reliable and accurate. This was demon‐
strated by the good agreement between measured and simulated results as well as the platform
mean stability of -40dB.
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6. Conclusions

In order to answer the issue on the contributions of Multitones to UWB software defined radar,
an operational reconfigurable ultra wideband radar platform was developed. It supports any
kind of waveforms and has 800 MHz instantaneous bandwidth on each ADC channel and 1.6
GHz tuning range. The mean stability is -40dB. The contribution of Multitones to UWB
software defined radar is on performances, indeed Multitones displayed equivalent perform‐
ances compared to Chirp. The detection range is at most 7% higher for Chirp than for Multi‐
tones. However Multitones allow more flexibility and thus enable the software defined radar
development. Indeed with Multitones, it opens the path toward multifunction, spectrum
insertion, sub-band independence, and signal diversity. On the effects of RF components on
radar performances, it was demonstrated that simple simulations are sufficient to predict
system performances. The AD/DA converters technology is now mature enough for radar
applications. And for the performances criteria that were set a minimum of 10 bits resolution
are necessary to get nominal performances. Higher resolution improves pedestal error on the
impulse response.

7. Perspectives

The use of Multitones is mainly dealing with linearization [14] and performances for radio
applications [4-5, 9-10, 12-13, 17-18, 23]. The results mostly come from simulations and were
not experimentally validated. When looking into the impact of RF equipment on multicarrier
signals, another key component stands out: the transmitter amplifier [5, 14]. The saturation
effect will need to be studied to determine the best operating point to maximize radar detection
capabilities. Concerning the spectrum insertion, the effect of notched spectrum on perform‐
ances should be studied.

In the long term, a few technological limitations should be overcome before the implementa‐
tion of a UWB software defined radar. Research must be pursued in digital architectures, truly
adaptive RF components, and antenna arrays and digital beam forming.
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Abstract

Blood-flow measurements using Doppler ultrasound system are popular in ultrasonic di‐
agnoses. But the blood-flow measurement inside the heart is difficult. There are many
reasons behind it. The deep range and fast blood-flow are difficult to measure because of
limitation of acoustic velocity. Moreover, strong heart valve signals mix into the blood-
flow signal. Against such difficulties, the statistics mathematical model was applied to
analyze many clinical data sets. The system identification method based on the mathe‐
matical model could realize a new blood-flow measurement system that has ultrasound
Doppler information as input and electrocardiogram as output.

Keywords: ARX model, system identification, blood-flow measurement, gap-filling,
STFT, Doppler ultrasound system

1. Introduction

It has been more than 70 years since Doppler ultrasound technology was born [1]. In the
meantime, in the field of medical blood-flow measurement, various diagnostic methods and
diagnostic indices were proposed and had been standardized. By re-focusing on the empirical
data from these diagnoses, the relationship between biosignals that many medical doctors had
accumulated was revealed. In this chapter, new applications of statistical diagnosis methods
and imaging technology are proposed.

Medical Doppler ultrasound systems are commonly used for various diagnostic applications,
including examination of cardiac and abdomen. Figure 1 is the example of diagnostic image
of a left ventricle inflow. The upper part of Fig. 1 (B-mode image) shows the tomogram of echo,
and the lower part of Fig. 1 (D-mode image) shows the spectrum Doppler image. The D-mode
image shows the blood-flow velocity at the mitral valve on the B-mode image. In the D-mode

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



image, the horizontal axis is time and the vertical axis is the blood-flow velocity which
corresponds to Doppler-shift frequency. The waveform displayed in the lower part of D-mode
image is an electrocardiogram (ECG). The amplitude of echo reflected from tissue constructs
B-mode image, and the Doppler-shift signal from blood-flow constructs D-mode image.

Figure 1. Diagnostic image of Doppler ultrasound system.

2. A new approach to the Doppler diagnostic: ARX model and biosignals

2.1. Accumulated medical database

Currently, time-sharing blood-flow measurement in Doppler ultrasound system appeared.
But the time-sharing systems have many problems caused by acoustic velocity range limita‐
tion. To address these problems, the mathematical models based on system identification
methods were proposed in this chapter. One of the system identification models has ECG as
input and has short time Fourier transform (STFT) image parameters as outputs. Based on this
model, a new gap-filling system introduced in Section 3 was developed. It can fill the 100 ms
gap.

Doppler ultrasound diagnoses of the left ventricle inflow and outflow are very helpful. The
diagnostic techniques using the peak velocity waveform (the envelope trace of the Doppler
spectra) are the standards of blood-flow measurement. Synchronizing with the systolic phase
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and diastolic phase that ECG shows, the mimetic diagrams of the outflow from an aortic valve
and the inflow from a mitral valve are shown in Fig. 2. The features of these waveforms are
measured and evaluated, and they are used as the standards of cardiac disease diagnoses [2].
New diagnostic technology that applies causal relationship between biosignals (here, they are
an ECG and a Doppler trace waveform) introduced in Section 4 was developed. Furthermore,
many medical doctors make standards of causal relationship between these biosignals over
the time of 30 years or more. They are suitable to be applied to the statistical models.

Figure 2. Heartbeat indices and their measurement guidance.

2.2. Mathematical models used in system identification

In order to express the causal relationship between biosignals, the mathematical model that
consists of an input, an output, and a black-box is suitable. The black-box model is shown in
Fig. 3. Since the input x and the output y assume multi-inputs and multi-outputs (MIMO), they
are expressed as vectors. Moreover, in order to take a time response into consideration, two
linear partial differentiation equations (1) and (2) express the model using the state variable u.

Figure 3. Black-box model and linear dynamic system.
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ECG, the Doppler waveform and the spectrum Doppler image were used for the causal
relationship analyses. In Section 3, the mathematical model based on ECG and Doppler
imaging parameters was used. In Section 4, the mathematical model based on ECG and
Doppler trace waveform was used. Figure 4 shows the expression of ARX model frequently
used in these investigations.

Figure 4. Numerical formula of ARX model.

2.3. System identification based on ECG and Doppler waveform

When ECG and the Doppler waveform are applied to ARX model, the system is expressed as
the model of Fig. 5. Two coefficient sequences ai and bj which determine the system response
are calculated using a statistical method. This is the system identification using ARX model.

Figure 5. ARX model based on ECG and the Doppler waveform.

The physical meaning of ARX model can be explained with IIR type digital filter. Figure 6 is
a digital filter with two inputs: noise(n) and ECG. Since noise(n) is random, there is no time
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causal relationship, but ECG has FIR ingredients. Vp (Doppler waveform) has IIR ingredients
of its feedbacks.

By using system identification, the causal relationship between ECG and Vp was summarized
in two coefficient sequences. These coefficient sequences are equivalent to the feedback
coefficient sequence and feed-forward coefficient sequence of the digital filter. The waveform
of ECG resulting from the pulsation of a heart can be explained by how it is related to the flow
velocity expressed by the Doppler waveform. It is also the same expression as IIR digital filter.

Thus the response of black-box model can be presumed by system identification using
statistical data. Noise rejection technology of the Doppler waveform and gap-filling technol‐
ogy of Doppler image based on system identification are introduced. Moreover, possibilities
such as technology that complements the lack part of ECG and automatic diagnostic technol‐
ogy (computer aided diagnosis [CAD]) using statistical data will be introduced to another
opportunity.

Figure 6. ARX model denoted by digital filter expression.

3. Application of system identification to a new gap-filling algorithm

3.1. Limitation of ultrasound scans by acoustic velocity

Doppler velocity range limitation caused by transmit pulse repetition frequency (PRF) is a
serious matter with blood-flow measurement. There exists a trade-off between depth range
and velocity range.
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In order to display the B-mode image and the D-mode image simultaneously in real time, a
time-sharing scanning is needed. Normally, PRF of approximately 4 kHz is employed, taking
the propagation time of acoustic wave and the attenuation in the living body into account. Use
of higher PRF has many advantages. For example, the scanning line density is increased, and
as a result B-mode images with higher azimuth resolution can be obtained. In addition, the
velocity range of D-mode is expanded. On the other hand, the higher PRF reduces the imaging
depth range. Therefore, information concerning deeper regions cannot be obtained. So PRF
control is complicated, especially with time-sharing of B-mode scanning and D-mode scan‐
ning.

In current Doppler ultrasound systems, it is difficult to optimize both the D-mode image
quality and the B-mode image quality simultaneously. A new Doppler gap-filling algorithm
based on ARX model was developed, which had ECG as an external input, for detecting the
high-speed blood-flow in heart, carotid arteries, etc., and for generating high-quality D-mode
images. The conventional gap-filling algorithm of D-mode image suffers from various
problems such as presence of noise or artifacts and poor reproducibility in the rapid velocity
change.

(a) Ultrasound beam locations in simultaneous scanning, (b) interleave scanning: PRF of B-mode is 6 kHz and PRF of
D-mode is 6 kHz, (c) segment scanning: PRF of B-mode is 6 kHz and PRF of D-mode is 12 kHz.

Figure 7. Examples of the interleave scanning and the segment scanning.

Examples of time-sharing transmission/reception of the interleave scanning and the segment
scanning are shown in Fig. 7. The B-mode images (100 beams, 6 kHz PRF, approximately 7 cm
depth) with a frame rate of 30 Hz are obtained in both Fig. 7(b) and (c). However, the velocity
ranges obtained simultaneously in D-mode differ. The velocity range of D-mode is set to 6 kHz
in the interleave scanning shown in Fig. 7(b). But the velocity range of D-mode is set to 12 kHz
in the segment scanning shown in Fig. 7(c). Since both B-mode and D-mode become discon‐
tinuous in the case of segment scanning, the gap-filling algorithm is needed in D-mode signal

Applications of Digital Signal Processing through Practical Approach106



In order to display the B-mode image and the D-mode image simultaneously in real time, a
time-sharing scanning is needed. Normally, PRF of approximately 4 kHz is employed, taking
the propagation time of acoustic wave and the attenuation in the living body into account. Use
of higher PRF has many advantages. For example, the scanning line density is increased, and
as a result B-mode images with higher azimuth resolution can be obtained. In addition, the
velocity range of D-mode is expanded. On the other hand, the higher PRF reduces the imaging
depth range. Therefore, information concerning deeper regions cannot be obtained. So PRF
control is complicated, especially with time-sharing of B-mode scanning and D-mode scan‐
ning.

In current Doppler ultrasound systems, it is difficult to optimize both the D-mode image
quality and the B-mode image quality simultaneously. A new Doppler gap-filling algorithm
based on ARX model was developed, which had ECG as an external input, for detecting the
high-speed blood-flow in heart, carotid arteries, etc., and for generating high-quality D-mode
images. The conventional gap-filling algorithm of D-mode image suffers from various
problems such as presence of noise or artifacts and poor reproducibility in the rapid velocity
change.

(a) Ultrasound beam locations in simultaneous scanning, (b) interleave scanning: PRF of B-mode is 6 kHz and PRF of
D-mode is 6 kHz, (c) segment scanning: PRF of B-mode is 6 kHz and PRF of D-mode is 12 kHz.

Figure 7. Examples of the interleave scanning and the segment scanning.

Examples of time-sharing transmission/reception of the interleave scanning and the segment
scanning are shown in Fig. 7. The B-mode images (100 beams, 6 kHz PRF, approximately 7 cm
depth) with a frame rate of 30 Hz are obtained in both Fig. 7(b) and (c). However, the velocity
ranges obtained simultaneously in D-mode differ. The velocity range of D-mode is set to 6 kHz
in the interleave scanning shown in Fig. 7(b). But the velocity range of D-mode is set to 12 kHz
in the segment scanning shown in Fig. 7(c). Since both B-mode and D-mode become discon‐
tinuous in the case of segment scanning, the gap-filling algorithm is needed in D-mode signal

Applications of Digital Signal Processing through Practical Approach106

processing and interpolation processing is needed in D-mode image processing. Moreover,
when the gap-filling algorithm is applied, both quality of the image and the audio are
degraded. On the other hand, since the PRFs can be set to B-mode and D-mode independently,
the Doppler velocity range can be expanded.

3.2. Conventional gap-filling algorithm

Simultaneous real-time display of B-mode and D-mode by the segment scanning has been used
for many years. The gap-filling algorithm fills in the gaps of IQ signal (shown in Fig. 8). The
gap is filled with the predicted waveform that is generated based on an autoregressive (AR)
model. Recently, many improved gap-filling algorithms have been reported [3]. For example,
in one method, the gaps are filled in from both time directions; in another method, narrow-
band noise is used as a source of signal; and in another method, an autoregressive moving
average (ARMA) model is used.

Figure.8 shows a Doppler ultrasound system with the conventional gap-filling algorithm. The
received beam is generated in digital beam former (DBF). The output of DBF is sent to the
envelope detection processing in which echo intensity is detected. Then the echo intensity
signal is sent to the B-mode image processing, and then displayed as the B-mode image. In the
spectrum Doppler processing section, the Doppler-shift signal is detected by quadrature
detection. Since the detected signal contains low-velocity and high-power components called
clutter from tissues (vessel walls etc.), the wall filter rejects the clutters except for blood-flow
components. The gap-filling algorithm interpolates the gaps of the D-mode image and the
Doppler audio caused by the segment scanning.

Figure 8. Doppler ultrasound system with conventional gap-filling algorithm.
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Figure 9 shows the details of gap-filling algorithm. It shows system identification and linear
prediction based on AR model. Figure 10 shows the timing chart of its signal-processing shown
in Fig. 9. To estimate the output for Gap(B), band limiting is applied to a white noise source.
Prediction is performed in both forward and reverse directions, and blending is performed
with W1(t) and W2(t) in order to improve continuity. W1(t) and W2(t) are weighing functions
used for blending actual waveform and predicted waveform. Predicted waveforms of two
directions fill in the Gap(B). Because the rapid audio response is important, generally only
forward prediction is used. A part of the time sequential data before the gap is used to calculate
forward prediction coefficient series Af(p) and bandwidth (BW) of the residual noise. Using
Af(p) and BW obtained from the data immediately before Gap(B), the IQ signals are estimated
and outputted.

Figure 9. System identification and prediction based on AR model.

Figure 10. Timing chart of gap-filling algorithm.
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3.3. Problems of conventional system

There are two problems specific to Doppler ultrasound systems employing the conventional
gap-filling algorithm. The first problem is that artifacts are newly generated in the predicted
output although the low-frequency components already have been removed in the wall filter.
For these artifacts, not only D-mode image quality but also audio quality is degraded. The
second problem is that discontinuity of D-mode images becomes greater when there are
sudden changes in the spectrum (rapid changes in blood-flow velocity). In many cases, the
predicted D-mode image has horizontal lines and spikelike noises that are observed near the
gaps. Figure 11 shows the D-mode images of a portal vein with moderate changes in velocity.
Figure 11(a) is the D-mode image obtained by interleave scanning and Fig. 11(b) is the D-mode
image obtained by segment scanning with the conventional gap-filling algorithm. Fig. 11(a) is
smooth and free of artifacts, while periodic spikelike noise and low-frequency components are
observed in Fig. 11(b).

(a) Interleave scanning image and (b) segment scanning image with gap-filling.

Figure 11. Artifacts in D-mode image caused by the conventional gap-filling algorithm.

The conventional gap-filling algorithm based on AR model (or ARMA model) uses the noise
and the predicted output itself as feedback inputs. So it tends to generate the waveforms
consisting of multiple changeless frequency components. When noise is x(n), output is y(n),
and coefficient series obtained in system identification is ak, the predicted output is expressed
by equation (3). In the gap-filling algorithm based on AR model, the noise with Gaussian
distribution or the noise with narrow bandwidth is used for n(n). Assuming that σ2 is distri‐
bution width of noise n(n), the estimated spectrum output P(f) is expressed by equation (4) [4].
T is the sampling time. Equation (4) suggests that AR model can only generate multiple spectral
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peaks in steady states. This is not suitable for estimating rapid changes in velocity. It has been
reported that the time to be considered as steady states in D-mode is approximately 10 ms.
Accordingly, conventional systems have been designed to limit the Gap(B) to 10 ms or less. It
is also known that if the Gap(B) is longer, number of beams and continuity in B-mode image
increase and image quality is improved.
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To improve image quality of B-mode, a longer gap than D-mode is required. But D-mode image
quality is markedly degraded when the gap of B-mode becomes long. It is also important to
track blood-flow changes due to pulsation for D-mode image quality. But the gap-filling
algorithm based on AR model is insufficient. Diagnostic performance will be substantially
improved if long gaps are not filled with changeless spectra but filled with changeful spectra.

3.4. A new gap-filling algorithm based on ARX model

A new algorithm that can reduce spectrum artifacts and stabilize rapid changes in velocity in
order to overcome problems shown in Section 3.3 was developed. This algorithm uses not IQ
signals but Doppler spectrum parameters as input, and is based on ARX model [5]. The outline
of a new D-mode image processing is shown in Fig. 12. After quadrature detection IQ signals
are generated. IQ signals are processed by the wall filter and STFT sequentially, and D-mode
image is generated. The waveforms with 600 ms time lack (left time-domain IQ signals) show
the output of the wall filter, which removes low-frequency clutter. The output of STFT shows
the momentary spectra (right frequency-domain periodgram). STFT conducts frequency
analysis and carries out the time shift image of spectra [6, 7].

A new gap-filling algorithm in Fig. 12, which is based on ARX model, is shown in Figs. 13
and  14.  Figure  13  is  a  block  diagram  of  system  identification  for  the  new  gap-filling
algorithm.  Figure  14  shows ECG and the  D-mode image of  left  ventricular  inflow.  The
spectrum shown in the lower side of Fig. 14 shows mean velocity (Vm) and distribution (σ)
and the model spectrum near the time of 1.5 s in D-mode image. In system identification
based on ARX model,  time sequence data (coefficient  series)  during the cardiac cycle is
calculated. First the power spectrum SP(f,t) is calculated, and then Vm, σ, and spectrum total
power (TP) is calculated. The Vm,  σ,  and TP  are the characteristic parameters of a single-
peak spectrum model this time.
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Figure 13. System identification of a new algorithm.

3.5. System design and its confirmation

The formulas of spectrum parameters are shown in equations (5)-(7). For example, the power
spectrum is expressed as P(f) and number of FFT points is set to 128. Here, f is frequency, and
FFT sampling frequency fs(=1/T) is 128. The value of f therefore ranges from 0 to 127*fs/128. Left
ventricular inflow shown in Fig. 14 is used as the input. Only positive side components are
used in calculation, so value of k ranges from 0 to 95.
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Figure 12. New D-mode image processing.
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The system that has Vm(n), σ(n), and TP(n) waveforms as outputs and ECG waveform as an
input was applied to ARX model. These parameters can be obtained by system identification
shown in Fig. 13. At the same time these parameters are used for the new gap-filling algorithm.
Figure 15 shows the block diagram of the spectra prediction processing based on ARX model.
This time ECG was newly added as an external input, and only forward prediction was used
in the mathematical model.

Figure 14. Single-peak spectrum parameter model.

Applications of Digital Signal Processing through Practical Approach112



95

0

2

96

m
k

k

Vf
c

s =

æ ö×
-ç ÷

è ø=
å (6)

( )
95

0
k

k
TP P f

=

=å (7)

The system that has Vm(n), σ(n), and TP(n) waveforms as outputs and ECG waveform as an
input was applied to ARX model. These parameters can be obtained by system identification
shown in Fig. 13. At the same time these parameters are used for the new gap-filling algorithm.
Figure 15 shows the block diagram of the spectra prediction processing based on ARX model.
This time ECG was newly added as an external input, and only forward prediction was used
in the mathematical model.

Figure 14. Single-peak spectrum parameter model.

Applications of Digital Signal Processing through Practical Approach112

Figure 15. New gap-filling algorithm based on ARX model.

The predicted output of ARX model y→ (n) is shown in equation (8). Here, ak and bk are ARX
model coefficients. u(n) is the normalized (both time and amplitude) ECG waveform.
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y→ (n) is a vector and is expressed by equation (9) as follows:

( )
( )
( )

( )
mV n

y n n
TP n
s

é ù
ê ú

= ê ú
ê ú
ë û

r
(9)

The first term and third terms of equation (8) are similar as equation (3). However, the second
term of equation (8) means a time-variant system and can generate changeful spectra.

Simulations were applied to confirm ARX model processing and its performance. The data
used for simulation was left ventricular inflow, which exhibits rapid changes in velocity. The
gap of segment scan was set to 100 ms, which is one order of magnitude larger than the
conventional system. The simulation result is shown in Fig. 16. Time 0 to 1 s is a continuous
D-mode image (without segment scanning), and time 1 to 2 s is a discontinuous D-mode image
(segment scanning). Domains indicated by (a) are actual spectra, and domains indicated by
(b) in the figure are spectra estimated by ARX model. Condition of the simulation is as follows:
ARX prediction order is 9 to 12, the segment gap is 100 ms, and the blending time is 16.7 ms.
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Figure 16. Simulation of predicted spectra based on ARX model.

This result shows that spikelike noises and low-frequency artifacts are reduced compared with
the conventional algorithm. Moreover, it is possible to obtain a changeful D-mode image under
conditions of rapid changes in velocity and larger segment gaps.

4. Application of system identification to automatic cardiac valve-rejection
algorithm

4.1. Problem of blood-flow measurements

The blood-flow diagnoses by Doppler ultrasound system have become popular recently. Peak
velocity of blood-flow (STFT envelope waveform) is traced automatically in this system. But
valve signals are mixed with the blood-flow signals in the heart. So automatic blood-flow
measurements are not correctly recorded. To solve this problem, the mathematical model that
has ECG as an input and has Doppler waveform as an output was applied. Using system
identification method, a new valve-rejection algorithm was developed [8, 9].

Figure 17 is a Doppler ultrasound diagnostic image for left ventricular outflow. Doppler
ultrasound system traces Vp (peak velocity of Doppler waveform) automatically. Vp is super‐
imposed as a bright yellow line. In cardiac blood-flow measurements, cardiac wall noises with
strong and low-velocity ingredient generate low-velocity artifacts. The valve noises with
strong and high-velocity ingredient generate spikelike trace errors. Although cardiac wall
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noises seldom influence Vp waveform, valve noises have unneglective influence on automatic
tracing. Valve noises usually mixed in left ventricular outflow in Fig. 17. Thus, users must
compensate Vp waveform manually based on the Doppler spectrum image.

In Fig. 17, ECG (green line) is displayed with Vp waveform simultaneously. Also the R-triggers
(sharp peaks of ECG) are at 1.48 s and 0.65 s. The systolic phase from the R-trigger of ECG is
about 300 ms. Conventional manual trace (cyan line) is displayed between 1.5 s and 1.1 s.
Medical doctors estimate left ventricular outflow based on manual traces.

Figure 17. Example of left ventricular outflow.

4.2. Blood-flow measurement

Figure 18 shows a Doppler ultrasound system and automatic blood-flow measurement system.
DBF generates echo beams from transmitted and received ultrasound signals. Vp waveform is
the spectra envelope of D-mode image, and it is automatically traced and superimposed. B-
mode image and D-mode image, and Vp and ECG are simultaneously displayed in the same
screen. Various blood-flow measurements that combine Vp and ECG are known in clinical
applications.

4.3. System identification of left ventricle outflow

Many clinical data sets (Vp, ECG, diagnostic indices and image) were acquired from numerous
volunteers. Using these data sets, system identification shown in Fig. 19 was investigated. Vp

has both valve and blood-flow information, so valve components were removed from Vp

manually and the ideal blood-flow waveform (Vi) was generated. There were variations in
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these data sets, such as heartbeat cycles and flow velocity ranges. They were normalized for
each data set. Amplitude of Vi was normalized by maximum flow velocity of the systolic phase.
Amplitude of ECG was normalized by its R-trigger voltage. Heart-beat cycles were normalized
and divided by 60. So sampling periods were fixed to 60 (approximately 60 Hz). A low-pass
filter with a one-third cutoff (approximately 20 Hz) was applied after normalization, and
unnecessary frequency components were rejected. A normalized Vi (NVi) and a normalized
ECG (NECG) were obtained after filtering process. The system identification block has NECG
as an input and has NVi as an output. The coefficient sequences of mathematical model were
generated by system identification. A diagnostic image of left ventricular outflow is shown in
Fig. 20. Vp and Vi (the aortic valve signal was rejected manually) are shown in Fig. 20(d).

4.4. System design of Vp waveform prediction

Figure 21 shows the valve-rejection algorithm using the coefficient sequences of Fig. 19
obtained by system identification. Vp and ECG (new data sets) were normalized and filtered.
Ve (the prediction waveform of Vp) was generated by system prediction block. Based on
differences between NVP and Ve, blending times of Vp and Ve were calculated. Based on
blending times, the blending weights were changed. Blending weight generator was controlled
so that NVp becomes predominant in systolic phase. After blending process, Vm (the ideal
waveform of Vp) was predicted.

Figure 22 shows the waveforms of Fig. 21. Vp and ECG are shown in Fig. 22(a) and (b),
respectively. A complex heartbeat cycle waveform based on ECG is shown in Fig. 22(c). This
indicates R-trigger timing, the systolic phase, and the diastolic phase by their amplitude level.
Vp and Ve are shown in Fig. 22(d). Diff (absolute differences between Vp and Ve) waveform is
shown in Fig. 22(e). Weighing functions (Vp-weight and Ve-weight) were generated based on

Figure 18. Automatic blood-flow measurement system.
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Fig. 20. Vp and Vi (the aortic valve signal was rejected manually) are shown in Fig. 20(d).

4.4. System design of Vp waveform prediction

Figure 21 shows the valve-rejection algorithm using the coefficient sequences of Fig. 19
obtained by system identification. Vp and ECG (new data sets) were normalized and filtered.
Ve (the prediction waveform of Vp) was generated by system prediction block. Based on
differences between NVP and Ve, blending times of Vp and Ve were calculated. Based on
blending times, the blending weights were changed. Blending weight generator was controlled
so that NVp becomes predominant in systolic phase. After blending process, Vm (the ideal
waveform of Vp) was predicted.

Figure 22 shows the waveforms of Fig. 21. Vp and ECG are shown in Fig. 22(a) and (b),
respectively. A complex heartbeat cycle waveform based on ECG is shown in Fig. 22(c). This
indicates R-trigger timing, the systolic phase, and the diastolic phase by their amplitude level.
Vp and Ve are shown in Fig. 22(d). Diff (absolute differences between Vp and Ve) waveform is
shown in Fig. 22(e). Weighing functions (Vp-weight and Ve-weight) were generated based on

Figure 18. Automatic blood-flow measurement system.
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Figure 19. System identification model of Doppler waveform.

(a) D-mode image, (b) ECG, (c) Vp, and (d) Vi.

Figure 20. Example of data sets for system identification.
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Diff and the complex heartbeat cycle waveform. Vp-weight and Ve-weight, and Vm are shown
in Fig. 22(f).

Figure 21. Ideal Vm waveform prediction block diagram.

4.5. Mathematical models

Parametric models such as ARMAX were used as mathematical models [10]. A parametric
model is shown in formula (10).

( ) ( ) ( )
( ) ( ) ( )

( ) ( )Q z S z
P z y z u z w z

R z T z
× = × + × (10)

Here, y(z) is an output, and u(z) and w(z) are an input and white noise, respectively. P(z), Q(z),
R(z), S(z), and T(z) are the coefficient sequences. In Fig. 19, Vp and ECG correspond to y(z) and
u(z), respectively. Several models that had different structures and orders were investigated.

4.6. Input data and mathematical model evaluation

Many clinical data sets of left ventricular outflow using a Doppler ultrasound system were
acquired. Because outflow varies with individual differences, combined data from numerous
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volunteers was used for evaluation. Combined data has different waveforms, heartbeat cycles,
and blood-flow sensitivities. Figure 23 shows combined Vp and ECG. Both Vp and ECG were
sampled at 120 Hz sampling rate. The combined 16 heartbeat waveforms were used for
simulations. Left ventricular outflows of volunteers A, B, and C are shown in Fig. 24(a)-(c) ,
respectively.

(a) Vp, (b) ECG, (c) complex heartbeat cycle, (d) Vp and Ve, (e) Diff, and (f) Vp-Weight, Ve-weight, and Vm.

Figure 22. Signal-processing waveforms of system prediction in Fig. 21.

Application of DSP Concept for Ultrasound Doppler Image Processing System
http://dx.doi.org/10.5772/61164

119



Several mathematical models were applied and evaluated. Orders of several models such as
ARX model, ARMAX model, output error model (OE model), etc., were optimized, respec‐
tively. Next, the model fitnesses were evaluated by root-mean-square (RMS) errors. OE model
was chosen for the valve-rejection algorithm because of the smallest RMS error.

Figure 23. Combined data sets for system identification.

(a) Volunteer A, (b) Volunteer B, and (c) Volunteer C.

Figure 24. Volunteers’ blood-flow data.
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4.7. Verification

Finally, OE model was chosen as the optimal one for left ventricular outflow. In order to verify
its performance of valve-rejection algorithm, the additional data other than volunteer A, B and
C was needed. A different volunteer's data (data D) is shown in Fig. 25. Simulation results of
the valve-rejection algorithm are shown in Fig. 25(b) using data D. During the first, second,
third, and fifth heartbeat cycles, Vm traced ideal outflow. The valve signals were automatically
rejected. But the valve signal was not sufficiently rejected during the fourth heartbeat cycle.
Although there remains improvement of robustness, high performance of valve rejection was
confirmed.

(a) Data sets of volunteer D and (b) Vm waveform.

Figure 25. Verification of valve rejection algorithm.

5. Conclusion

Based on the mathematical model that combined an ECG and biosignals (ultrasound Doppler
image parameters, etc.), the system identification method to heart's blood flows was applied.
With combination of the image parameter and the ECG, the effectiveness of a new gap-filling
algorithm was confirmed. Moreover, with combination of the Doppler blood-flow waveform
and the ECG, noises in heart's blood-flow measurement, such as valve regurgitation, were
removed, and reliable automatic measurement of left ventricle outflow was realized. System
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identification using such a statistical method will be an important component for automatic
measurement and diagnosis.
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Abstract

The use of medical imaging has increased in the last years, especially with magnetic
resonance imaging (MRI) and computed tomography (CT). Microarray imaging and
images that can be extracted from RNA interference (RNAi) experiments also play an
important role for large-scale gene sequence and gene expression analysis, allowing
the study of gene function, regulation, and interaction across a large number of genes
and even across an entire genome. These types of medical image modalities produce
huge amounts of data that, for several reasons, need to be stored or transmitted at the
highest possible fidelity between various hospitals, medical organizations, or research
units.

In this chapter, we study the performance of several compression methods developed
by the authors, as well as of image coding standards, when used to compress medical
images (computed radiography, computed tomography, magnetic resonance, and ul‐
trasound), RNAi images, and microarray images. The compression algorithms ad‐
dressed are based on image decomposition, finite-context modeling, and arithmetic
coding. In one of the methods, the input image is split into several bitplanes, and each
bitplane is encoded using finite-context models and arithmetic coding. In another ap‐
proach, the intensity levels of a given image are organized in a binary-tree structure,
where each leaf node is associated with an image intensity.

The experimental results presented in this chapter are state of the art regarding the
compression of some of these types of images. Moreover, several approaches and pre‐
processing techniques are presented, giving a good hint about new developments that
can be studied further. Also, this chapter intends to be used as a reference for compar‐
ison with new compression algorithms that may be developed in the future.

Keywords: Image coding, Lossless coding, Progressive decoding, Biomedical images,
Image coding standards, Image decomposition, Arithmetic coding, Finite-context
modeling

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



1. Introduction

Image compression is a very important research field. It is fundamental in many different areas,
such as biomedical imaging, consumer electronics, and Internet, among others. The goal of an
image compression method is to represent an arbitrary image using the smallest possible
number of bits.

The use of medical imaging has increased in the last years, especially with magnetic resonance
imaging (MRI) and computed tomography (CT) [1]. These types of medical image modalities
produce huge amounts of data that, for several reasons, need to be stored or transmitted with
the highest possible fidelity between various hospitals and medical organizations.

Also related to biomedical imaging, microarray images play an important role for large-scale
gene sequence and gene expression analysis, allowing the study of gene function, regulation,
and interaction across a large number of genes and even across an entire genome [2, 3]. The
output of a microarray experiment is a pair of 16-bits-per-pixel images, usually with a very
high resolution, sometimes exceeding 13,000×4,000 pixels. Consequently, over 200 MB can be
required to store a single microarray image. Due to the development of these digital imaging
technologies, some concerns appeared regarding efficient ways of storing and transmitting the
images. In order to overcome these problems, sophisticated compression methods are
required.

Another type of images that are addressed in this chapter are those that can be extracted from
RNA interference (RNAi) experiments. Those experiments involve marking cells with various
fluorescent dyes to capture three components of interest, namely, DNA, actin, and PH3
channels [4].

Typically, lossless compression algorithms are recommended for dealing with these types of
images. In fact, lossless methods are generally required in applications where cost, legal issues,
and value play a decisive role, such as in medical imaging or in image archiving [5]. On one
hand, the use of lossless algorithms avoids problems of losing diagnostic information vital to
identify life-threatening illnesses in the early stages. On the other hand, if a given image is
lossless compressed, it is possible to recompress it in the future, using a more efficient
algorithm and without losing any information.

Usually, the performance of image coding standards, such as JPEG, JBIG, JPEG-LS, and
JPEG2000, falls short when they are applied to certain types of biomedical images. In order to
overcome this lower-performance issue, specific compression algorithms are essential. In the
class of lossless compression algorithms, there is a specific type that has progressive decoding
capabilities. This type of compression is usually designated as "lossy-to-lossless compression."
These algorithms are very flexible, because they allow stopping decoding at a certain point,
according to the available resources or user requirements. However, the original image can
also be obtained, without any loss, if the decoding process goes until the end.

In this chapter, we study the performance of several specific compression methods developed
by the authors, as well as of image coding standards, when applied to medical images
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(computed radiography, computed tomography, magnetic resonance, and ultrasound), RNAi
images, and microarray images. The addressed compression algorithms are based on image
decomposition, finite-context models, and arithmetic coding. We can divide these algorithms
into two categories. In the first one, the input image is split into several bitplanes and each
bitplane is encoded individually. This approach is combined with several preprocessing
techniques in order to improve the compression efficiency. In the second approach, the
intensity levels of a given image are organized in a binary-tree structure, where each leaf node
is associated with an image intensity.

We start by presenting the compression algorithms, namely, bitplane decomposition and
binary-tree decomposition. We include a brief explanation about finite-context models and
arithmetic coding, the entropy coding block used in both approaches. Then, we present a set
of experiments that have been performed using the compression algorithms described in Sect.
4, as well as experimental results using the most important image coding standards (e.g., PNG,
JBIG, JPEG-LS, and JPEG2000). At the end, we draw some conclusions.

This chapter intends to be a reference for comparison of new compression algorithms that may
be developed in the future, for two main reasons. On one hand, the experimental results
presented in Sect. 5.2 are state of the art regarding the compression of some of these types of
images. On the other hand, several approaches and preprocessing techniques are presented,
giving hints about new developments that can be done.

2. Compression methods

The compression algorithms that we address here can be classified into two different catego‐
ries. One based on bitplane decomposition and the other one based on binary-tree decompo‐
sition. For the first category, we use a sophisticated bitplane decomposition approach that was
successfully developed for the compression of microarray images [6]. Furthermore, we include
some preprocessing techniques, such as segmentation and histogram reduction, in order to
improve the compression results. An alternative bitplane decomposition approach based on
bit modeling by pixel value estimates is also considered.

The other approach, based on binary-tree decomposition, was developed with success for the
compression of medical images [7] and microarray images [8]. In this decomposition approach,
the intensity levels of a given image are organized in a binary-tree structure, where each leaf
node is associated with an image intensity.

In the following subsections, we address these two decomposition approaches and give a brief
explanation regarding finite-context models and arithmetic coding. The implementation of the
compression algorithms can be found in [9].

2.1. Finite-context models

Markov modeling is widely used in several fields, including image [7, 8, 10, 11, 12] and DNA
[13, 14, 15] compression. Finite-context models rely on the Markov property, since an order- k
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finite-context model gives a probability distribution for the next symbol, in a sequence of
symbols from an alphabet A, taking into account a recent past of depth k . Hence, the finite-
context model assigns probability estimates for each symbol, regarding the next outcome,
according to a conditioning context, ck ,n, computed over a finite and fixed number k >0 of past
outcomes ck ,n = xn−k +1…n = xn−k +1 … xn (order- k  finite-context model [16, 17, 18] with |A|k  states).
In the example illustrated in Fig. 1, where A0,1 and then | A| =2, an order- k  model implies
having 2k  conditioning states. In this case, k =5, so the number of conditioning states is 25 =32.
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Figure 1: Finite-context model: the probability of the next outcome xn+1 is conditioned by the k last outcomes.
In this example, k = 5

The probability estimates P (xn+1|xn−k+1...n) are calculated using symbol counts that are accumulated while
processing each pixel of the input image, making them dependent not only on the past k symbols but also on
n. The estimator used is

P (s|xn−k+1...n) =
C(s|xn−k+1...n) + α

C(xn−k+1...n) + |A|α, (1)

where C(s|xn−k+1...n) represents the number of times that, in the past, symbol s was found having ck,n =
xn−k+1...n as the conditioning context and where

C(xn−k+1...n) =
∑
a∈A

C(a|xn−k+1...n) (2)

is the total number of events that has occurred so far in association with context ck,n. Parameter α allows
balancing between the maximum likelihood estimator and a uniform distribution (when the total number of
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having ck ,n = xn−k +1…n as the conditioning context and where
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is the total number of events that has occurred so far in association with context ck ,n. Parameter
α allows balancing between the maximum likelihood estimator and a uniform distribution
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(when the total number of events, n, is large, it behaves as a maximum likelihood estimator).
For α =1, (1) is the well-known Laplace estimator.

Initially, all counters are set to zero, i.e., the symbols are assumed to be equally probable. The
counters are updated each time a symbol is encoded. However, it is possible to update the
counters according to a specific rule. Since the context templates are causal, the decoder is able
to reproduce the same probability estimates without needing additional side information.

Table 1 presents a simple example of how a finite context is typically implemented. In this
example, we are dealing with an order-5 finite-context model, which means that the context
uses the last five encoded symbols to assign the symbol probabilities. Each row of Table 1
represents a probability model that is used to encode the current symbol, using the last five
encoded ones. For example, if the last symbols were "11000," i.e., c5,n =11000, then the model
sends the following probabilities to the arithmetic encoder (denoted as "Encoder" in Fig. 1): P0
and P1.

Context, c5,n C(0∣c5,n) C(0∣c5,n) C(c5,n)

00000 23 41 64

∶ ∶ ∶ ∶

00110 14 34 48

∶ ∶ ∶ ∶

01100 25 12 37

∶ ∶ ∶ ∶

11000 28 41 69

∶ ∶ ∶ ∶

11111 8 2 10

Table 1. A simple example illustrating how finite-context models are implemented. The rows of the table correspond
to probability models at a given instant n. In this example, the particular model that is chosen for encoding a symbol
depends on the last five encoded symbols (order-5 context)

One important aspect that must be considered is the size of the context. For an order- k  model
and |A2 (binary alphabet), the table has 2k  entries and, therefore, its size grows exponentially
with k . Using a deeper context, we might achieve higher performance, but this requires also
more memory.

2.1.1. Mixtures of finite-context models

In order to attain better compression results, the previous approach can be used in a more
robust scheme. The goal here is to use a model mixture with more than one finite-context
model. In our case, we decided to use only two different models: the one used by [6] and
another one based on bit modeling by pixel value estimate. This approach could be extended to
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use more models, but at a cost of some computation time. In what follows, we will describe
how this mixture scheme works.

The per symbol information content average provided by the finite-context model of order-
k , after having processed n symbols, is given by

( )
1

, 1 12
=0

1= |log
-

+ - +- å K

n

k n i i k i
i

H P x x
n

(3)

bits per symbol (or bits per pixel, bpp, in the case of images). Hence, the Hk ,n can be viewed
as a measure of the performance of the model until that instant. When using several models
simultaneously, the probability estimate can be given by a weighted average of the probabil‐
ities provided by each model, according to

( ) ( )1 1 1 ,= | ,+ + - +å Kn n n k n k n
k

P x P x x w (4)

where wk ,n denotes the weight assigned to model k  and

, = 1.å k n
k

w (5)

In order to compute the probability estimate for a certain symbol, it is necessary to combine
the probability estimates given by (1) using (4). The weight assigned to model k  can be
computed according to

( ), 1= | ,Kk n nw P k x (6)

i.e., by considering the probability that model k  generated the sequence until that point. In that
case, we would get

( ) ( ) ( ), 1 1= | | ,µK Kk n n nw P k x P x k P k (7)

where P(x1…n |k ) denotes the likelihood of sequence x1…n being generated by model k  and P(k )
denotes the prior probability of model k . Assuming

( ) 1= ,P k
K

(8)
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where K  denotes the number of models, we also obtain

( ), 1 | .µ Kk n nw P x k (9)

Calculating the logarithm, we get
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which is related to the code length that would be required by model k  for representing the
sequence x1…n. It is, therefore, the accumulated measure of the performance of model k  until
instant n. In order to improve the global performance, we decided to use a mechanism that
progressively forgets past performances of the models. This mechanism allows each model to
progressively forget the past and, consequently, to give more importance to the most recent
past. Therefore, we rewrite (11) as
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where γ∈0,1 dictates the forgetting factor to be used. Defining
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and removing the logarithms, we can rewrite () as
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and, finally, set the weights to
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Usually, a compression algorithm can be divided into two parts, modeling and coding. The
Markov models are responsible for providing a statistical model as reliable as possible to be
used later in the coding stage. The coding stage is where the statistical model is used to
compress the data. Arithmetic coding is usually the technique that is used. In the following
section, we give a brief explanation on how arithmetic coding works.

2.1.2. Arithmetic coding

Arithmetic coding is a compression technique developed by Rissanen [19] in the late 1970s.
This method is a good alternative to Huffman coding [20], because it usually generates better
compression results. In order to obtain better results, an appropriate probability estimator
must be used in the arithmetic encoder (e.g., based on finite-context models, as described
above).

This method represents a set of symbols using a single number in the interval [0,1). As the
number of symbols of the message grows, the initial interval [0,1) will shrink and the number
of bits necessary to represent the interval will increase. When we are processing the pixels of
an image in a raster scan order, the probabilities of the intensities of the pixels are conditioned
by the context determined by a combination of the already encoded neighboring pixels. The
encoder and the decoder estimate this context model dynamically adapting it to the input data,
during the encoding/decoding process. According to [16, 17, 18], this arithmetic encoding
method generates output bitstreams with average bitrates almost identical to the entropy of
the source model.

2.2. Bitplane decomposition

The technique to separate an image into different planes (bitplanes), known as bitplane
decomposition, plays an important role in image compression. Usually, each pixel of a
grayscale image is represented by 8 bits, or 16 bits as the case of some biomedical images used
in the experimental results presented in this chapter. Suppose that the image has N ×M  pixels
and each one is composed of eight bitplanes, ranging from bitplane 0 for the least significant
bitplane (LSBP) to bitplane 7 for the most significant bitplane (MSBP). In fact, plane 0 contains
all the lowest-order bits in the bytes comprising the pixels in the image as well as plane 7 holds
the most significant bits [21]. Figure 2 illustrates these ideas and Fig. 3 shows the various
bitplanes for the image presented on the left. As we can see, the MSBPs (especially 7-4) contain
the majority of the visually significant data. On the other hand, the lower planes (namely,
planes 0-3) contribute to more subtle details in the image.

The bitplane decomposition technique is very useful on image compression. On one hand, it
allows some bi-level compression methods, such as JBIG, to be applied to typical grayscale
images. The compression method is applied to each bitplane after the decomposition. On the
other hand, it is possible to create sophisticated models that take advantage of this decompo‐
sition. For instance, it is possible to use information of the previous bitplanes (usually the
MSBPs) to improve the compression performance of the LSBPs.

Applications of Digital Signal Processing through Practical Approach132



Usually, a compression algorithm can be divided into two parts, modeling and coding. The
Markov models are responsible for providing a statistical model as reliable as possible to be
used later in the coding stage. The coding stage is where the statistical model is used to
compress the data. Arithmetic coding is usually the technique that is used. In the following
section, we give a brief explanation on how arithmetic coding works.

2.1.2. Arithmetic coding

Arithmetic coding is a compression technique developed by Rissanen [19] in the late 1970s.
This method is a good alternative to Huffman coding [20], because it usually generates better
compression results. In order to obtain better results, an appropriate probability estimator
must be used in the arithmetic encoder (e.g., based on finite-context models, as described
above).

This method represents a set of symbols using a single number in the interval [0,1). As the
number of symbols of the message grows, the initial interval [0,1) will shrink and the number
of bits necessary to represent the interval will increase. When we are processing the pixels of
an image in a raster scan order, the probabilities of the intensities of the pixels are conditioned
by the context determined by a combination of the already encoded neighboring pixels. The
encoder and the decoder estimate this context model dynamically adapting it to the input data,
during the encoding/decoding process. According to [16, 17, 18], this arithmetic encoding
method generates output bitstreams with average bitrates almost identical to the entropy of
the source model.

2.2. Bitplane decomposition

The technique to separate an image into different planes (bitplanes), known as bitplane
decomposition, plays an important role in image compression. Usually, each pixel of a
grayscale image is represented by 8 bits, or 16 bits as the case of some biomedical images used
in the experimental results presented in this chapter. Suppose that the image has N ×M  pixels
and each one is composed of eight bitplanes, ranging from bitplane 0 for the least significant
bitplane (LSBP) to bitplane 7 for the most significant bitplane (MSBP). In fact, plane 0 contains
all the lowest-order bits in the bytes comprising the pixels in the image as well as plane 7 holds
the most significant bits [21]. Figure 2 illustrates these ideas and Fig. 3 shows the various
bitplanes for the image presented on the left. As we can see, the MSBPs (especially 7-4) contain
the majority of the visually significant data. On the other hand, the lower planes (namely,
planes 0-3) contribute to more subtle details in the image.

The bitplane decomposition technique is very useful on image compression. On one hand, it
allows some bi-level compression methods, such as JBIG, to be applied to typical grayscale
images. The compression method is applied to each bitplane after the decomposition. On the
other hand, it is possible to create sophisticated models that take advantage of this decompo‐
sition. For instance, it is possible to use information of the previous bitplanes (usually the
MSBPs) to improve the compression performance of the LSBPs.

Applications of Digital Signal Processing through Practical Approach132

6 Digital Signal Processing

and, finally, set the weights to

wk,n =
pk,n∑
k

pk,n
. (14)

Usually, a compression algorithm can be divided into two parts, modeling and coding. The Markov models
are responsible for providing a statistical model as reliable as possible to be used later in the coding stage.
The coding stage is where the statistical model is used to compress the data. Arithmetic coding is usually the
technique that is used. In the following section, we give a brief explanation on how arithmetic coding works.

4.1.1 Arithmetic Coding

Arithmetic coding is a compression technique developed by Rissanen [19] in the late 1970s. This method is a
good alternative to Huffman coding [20], because it usually generates better compression results. In order to
obtain better results, an appropriate probability estimator must be used in the arithmetic encoder (e.g., based
on finite-context models, as described above).

This method represents a set of symbols using a single number in the interval [0, 1). As the number of
symbols of the message grows, the initial interval [0, 1) will shrink and the number of bits necessary to represent
the interval will increase. When we are processing the pixels of an image in a raster scan order, the probabilities
of the intensities of the pixels are conditioned by the context determined by a combination of the already
encoded neighboring pixels. The encoder and the decoder estimate this context model dynamically adapting it
to the input data, during the encoding/decoding process. According to [16, 17, 18], this arithmetic encoding
method generates output bitstreams with average bitrates almost identical to the entropy of the source model.

4.2 Bitplane Decomposition

The technique to separate an image into different planes (bitplanes), known as bitplane decomposition, plays an
important role in image compression. Usually, each pixel of a grayscale image is represented by 8 bits, or 16 bits
as the case of some biomedical images used in the experimental results presented in this chapter. Suppose that
the image has N ×M pixels and each one is composed of eight bitplanes, ranging from bitplane 0 for the least
significant bitplane (LSBP) to bitplane 7 for the most significant bitplane (MSBP). In fact, plane 0 contains all
the lowest-order bits in the bytes comprising the pixels in the image as well as plane 7 holds the most significant
bits [21]. Figure 2 illustrates these ideas and Fig. 3 shows the various bitplanes for the image presented on the
left. As we can see, the MSBPs (especially 7-4) contain the majority of the visually significant data. On the
other hand, the lower planes (namely, planes 0-3) contribute to more subtle details in the image.

Figure 2: Bitplane representation of an eight-bit image [21]

The bitplane decomposition technique is very useful on image compression. On one hand, it allows some
bi-level compression methods, such as JBIG, to be applied to typical grayscale images. The compression method
is applied to each bitplane after the decomposition. On the other hand, it is possible to create sophisticated
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Figure 3: An 8-bit grayscale image and its eight bitplanes. The numbers at the bottom of each image identify
the bitplane, where 0 denotes the less-significant plane and 7 the most significant plane (adapted from [22])

models that take advantage of this decomposition. For instance, it is possible to use information of the previous
bitplanes (usually the MSBPs) to improve the compression performance of the LSBPs.

In [23], an embedded image-domain adaptive compression (EIDAC) scheme used with success on simple
images (with a reduced number of active intensity values) is presented. EIDAC uses a context-adaptive bitplane
coder, where each bitplane is encoded using a binary arithmetic coder. Later, in [24], a compression method
inspired from EIDAC for microarrays image is proposed. The same authors improved their method using a
more robust 3D context modeling [24]. We used this last approach in our experiments and also other alternative
versions using some preprocessing techniques, namely, segmentation and bitplane reduction.

4.2.1 Segmentation

In the literature, we can find several algorithms for image segmentation. In our approach, we decided to use
a threshold-based method inspired from the work presented in [25]. The segmentation is attained by means
of a dynamic thresholding scheme. By applying a threshold value, the pixels of the image can be split in
two sets (background and foreground). For each threshold value, it is possible to obtain the number of pixels
and the standard deviation of the intensities of these pixels in each set. The desired threshold is calculated
according to (15). Using (15), it is always guaranteed that the weighted sum of the standard deviation of both
the background and foreground is minimal,

T = argmin{f(T )}, T = {t ∈ N | 0 ≤ t ≤ 216 − 1}, (15)

where
f(T ) = stdev(BT )× size(BT ) + stdev(FT )× size(FT ), (16)

BT = {p ∈ Image | p < T} represents the set of pixels in the background section, FT = {p ∈ Image | p ≥ T}
represents the set of pixels in the foreground section, stdev(x) is the standard deviation of x, and size(y) is the
number of pixels of set y. Instead of testing all possible threshold values to find the minimum value of f(T ),
a recursive search algorithm is used to accelerate the search routine. It is possible to use this recursive search

Figure 3. An 8-bit grayscale image and its eight bitplanes. The numbers at the bottom of each image identify the bit‐
plane, where 0 denotes the less-significant plane and 7 the most significant plane (adapted from [22])

In [23], an embedded image-domain adaptive compression (EIDAC) scheme used with success
on simple images (with a reduced number of active intensity values) is presented. EIDAC uses
a context-adaptive bitplane coder, where each bitplane is encoded using a binary arithmetic
coder. Later, in [24], a compression method inspired from EIDAC for microarrays image is
proposed. The same authors improved their method using a more robust 3D context modeling
[24]. We used this last approach in our experiments and also other alternative versions using
some preprocessing techniques, namely, segmentation and bitplane reduction.

2.2.1. Segmentation

In the literature, we can find several algorithms for image segmentation. In our approach, we
decided to use a threshold-based method inspired from the work presented in [25]. The
segmentation is attained by means of a dynamic thresholding scheme. By applying a threshold
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value, the pixels of the image can be split in two sets (background and foreground). For each
threshold value, it is possible to obtain the number of pixels and the standard deviation of the
intensities of these pixels in each set. The desired threshold is calculated according to (17).
Using (17), it is always guaranteed that the weighted sum of the standard deviation of both
the background and foreground is minimal,

( ){ } { }16= argmin , =  | 0 2 1 ,Î £ £ -f T T t tT N (15)

where

( ) ( ) ( ) ( ) ( )= stdev size stdev size ,´ + ´T T T Tf T B B F F (16)

BT p∈ Imagep <T } represents the set of pixels in the background section, FT p∈ Imagep ≥T }
represents the set of pixels in the foreground section, stdev(x) is the standard deviation of x,
and size(y) is the number of pixels of set y. Instead of testing all possible threshold values to
find the minimum value of f (T ), a recursive search algorithm is used to accelerate the search
routine. It is possible to use this recursive search algorithm because f (T ) plunges down at a
certain threshold value, which is chosen as the final threshold value. After the threshold search
is completed, a binary map is created where the foreground pixels will be set to "1" and the
background pixels to "0."

2.2.2. Bitplane reduction

Bitplane reduction is an interesting method that can further improve compression efficiency
by eliminating redundancy in the pixel precision for simple images. Simple images are images
where the number of different intensities that occur is very small, compared to the total number
of possible intensities. For example, if we have only 24 different intensities out of 256 for an 8-
bit image, we only need 5 bits to represent each pixel intensity. This means that, when we are
encoding the image, we only need to encode five bitplanes instead of the original eight
bitplanes.

Yoo et al. [26] have shown that it is possible to obtain compression gains using the simplest
form of bitplane reduction, known as histogram compaction (HC). Later, [23] presented a more
robust bitplane reduction method called scalable bitplane reduction (SBR). This approach finds
the reduced bitplane codeword by growing a binary tree. The method splits each node of the
binary tree into two nodes using a simple MINMAX metric to measure the distortion.

In order to better understand the SBR algorithm, we present a small example in Fig. 4. Initially,
we associate all the active pixel values to the root node. In this small example, the image only
has four active pixel values. Starting in the root node, the algorithm splits all the children sub-
nodes using a MINMAX criterion. The split process in the root node starts by computing the
value 32,767 from (0 + 65,535. The computed value is then used to split the node. All the
intensities that are lower or equal to 32,767 are inserted in the left sub-node. On the other hand,
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the remaining intensities (>32,767) are associated with the right sub-node. After splitting the
root node, the SBR algorithm adds a zero to the left node codeword and a one to the right node
codeword. This splitting process is repeated until all sub-nodes have only one intensity
associated with them. In this specific example, "0" is a complete codeword for the original pixel
value zero, due to the fact that the first left node or partition does not have more sub-nodes.
As a result of the variable-length codewords, the average codeword length can be less than 3
bits. This is useful because during the encoding process, it is possible to skip some bitplanes
of the pixel codewords with a lower length.Lossy-to-Lossless Compression of Biomedical Images 9

{0, 32760, 65530, 65535}

{0} {32760, 65530, 65535}

{32760} {65530, 65535}

{65530} {65535}

10

0 1

0 1

0 1
0

1
1
0

1
1
1

Figure 4: Binary tree to obtain the codewords to represent the active pixel values {0, 32,760, 65,530, 65,535}
in the reduced bitplane space after applying the SBR algorithm. Each of the tree nodes is associated with
a symbol (an intensity) set to be partitioned, except the end nodes. Each branch defines the bit value of
specific symbols at the corresponding bitplane in the reduced bitplane domain. For the intermediate nodes,
{32,760, 65,530, 65,535} and {65,530, 65,535}, the split process is done using the MINMAX criterion

Table 2: A small example showing the differences between the two bitplane reduction methods HC and SBR.
The codeword in each column represents the new value that will be assigned to the pixel values of the first
column. In HC, the codeword size is constant. In SBR, the codeword size is variable

Intensity HC SBR
Value Codeword Codeword size Codeword Codeword size

0 00 2 0 1
32,760 01 2 10 2
65,530 10 2 110 3
65,535 11 2 111 3

the target pixel approaches the true pixel value x = (x16 x15 . . . x1) where xn denotes the nth bit of x in the
case of a 16-bit grayscale image.

Contrarily to Kikuchi’s method, our approach uses only one type of context, denoted as neighborhood context
in Kikuchi’s work. The contexts are built by the estimates of partially decoded pixels based on the template
depicted in Fig. 5. The pixel location of x is labeled by “X” on the 15-pixel template in Fig. 5, and

ck =

{
1, for y(k) > y
0, otherwise

, (18)

where k ∈ {1, 2, . . . , 15} denotes the spatial location on the template illustrated in Fig. 5. y(i) and y represent
the most recent estimates of the neighboring pixels and the target pixel, respectively.

In Kikuchi’s method, the inter-bit correlation on a bitplane is not used. Instead, for modeling a target
bit, the authors used the pixel value estimates of which more significant bits have been already available at
the decoder. Their method is referred to as bit modeling by pixel values, where the pixel value estimates are

Figure 4. Binary tree to obtain the codewords to represent the active pixel values 0,32,760,65,530,65,535 in the re‐
duced bitplane space after applying the SBR algorithm. Each of the tree nodes is associated with a symbol (an intensi‐
ty) set to be partitioned, except the end nodes. Each branch defines the bit value of specific symbols at the
corresponding bitplane in the reduced bitplane domain. For the intermediate nodes, 32,760,65,530,65,535 and
65,530,65,535, the split process is done using the MINMAX criterion

Taking as example the intensities 0,32,760,65,530,65,535 presented in Fig. 4, we present in Table
2 the codewords for the two histogram reduction methods. As can be seen, the codewords
obtained using the HC algorithm are dependent on the number of active intensities. The
codeword size can be computed according to

2= ( ) ,logé ùê úS N (17)

where N  denotes the number of active intensities. In the example presented in Fig. 4, we have
four different intensities, so the codeword size is log24=2. The codeword size is constant for
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all intensities for the HC method. On the contrary, the resulting codewords obtained using the
SBR algorithm have different sizes (see Table 2).

Intensity
Value

HC SBR

Codeword Codeword size Codeword Codeword size

0 00 2 0 1

32,760 01 2 10 2

65,530 10 2 110 3

65,535 11 2 111 3

Table 2. A small example showing the differences between the two bitplane reduction methods HC and SBR. The
codeword in each column represents the new value that will be assigned to the pixel values of the first column. In HC,
the codeword size is constant. In SBR, the codeword size is variable

2.2.3. Simple bitplane coding

In [27], Kikuchi et al. introduced the concept of bit modeling by the pixel value estimates. In
their approach, instead of using the true bit values of each bitplane, they used the expectation
values of the pixels to build up the contexts. This approach is known as bit modeling by pixel
value estimate. They extended their work more recently to be applied to various types of images
(color, grayscale, color-quantized, bi-level, and halftone) [28] and for HDR (high-dynamic-
range) images [29].

Let us consider that a given pixel value at location (i, j) in a given image to be encoded is
denoted as x(i, j). Its decoded value is denoted by y(i, j). In order to facilitate the explanation,
the location indexes (i, j) are omitted from now on. A typical raster scan order is used to process
each pixel of a given image. Similar to Kikuchi's method, as the process of the bitplane coding
proceeds to lower bitplanes, the decoded value, y, of the target pixel approaches the true pixel
value x =(x16 x15 … x1) where xn denotes the n th bit of x in the case of a 16-bit grayscale image.

Contrarily to Kikuchi's method, our approach uses only one type of context, denoted as
neighborhood context in Kikuchi's work. The contexts are built by the estimates of partially
decoded pixels based on the template depicted in Fig. 5. The pixel location of x is labeled by
"X" on the 15-pixel template in Fig. 5, and
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where k ∈ {1,2,…,15 denotes the spatial location on the template illustrated in Fig. 5. y(i) and
y represent the most recent estimates of the neighboring pixels and the target pixel, respec‐
tively.
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Figure 5: Fifteen-pixel template for building up the context. The target pixel to be encoded is labeled by an
“X”

used rather than of the unknown true values at the decoder. Contrarily to Kikuchi’s method that uses a nine-
pixel template, our approach uses a variable-size 15-pixel template (see Fig. 5). In our case, a greedy search
routine is performed in each bitplane in order to obtain the context size that attains the best compression
performance (lower bits per pixel as possible). According to Kikuchi’s method, the decoded pixel values are
spatially correlated to each other as significantly high as the true pixel values which will make sense to use a
larger template. Furthermore, since the alphabet size is only two, the probability of having context dilution is
low. Similar to Kikuchi’s method, we are considering some noncausal locations with respect to the scanning
order of the pixels (locations y(3), y(4), y(10), andy(11) in Fig. 5). The usage of noncausal pixels is only possible
because the context bits are defined by using the estimates of pixel values, which are available in the decoder.

Let us consider that we are coding an N -bit depth image, where N ≤ 16. Suppose that the nth bitplane is
being encoded at present, where n ∈ {1 . . . N}. For every pixel, the higher bits from the (n + 1)th until N th

bitplane are known at the decoder. The other lower n bits are unknown. The value of the unknown part can
be distributed over the interval of [0, 2n − 1]. Similar to Kikuchi’s method, the values zero and one occur with
equal probability in the unknown less significant n bits. Under this assumption, the pixel value estimate of the
target pixel is expressed by

y(n) =

⌊
y

2n

⌋
+ 2n−1 − 1 (19)

at the nth bitplane encoding/decoding, where y is the latest decoded value and �.� denotes truncation. In Fig. 6,
we illustrate an example of a binary representation of the pixel value estimate in the case n = 8.

Initially, all the pixel estimate values are set to y = 2N−1 − 1. The encoding procedure starts at the MSBP
and stops at the LSBP. Assuming a target pixel xn of bitplane n is the one being encoded, under the context
of {ck}, the pixel estimate y of the target pixel is immediately updated by a simple bit operation as

y ← y + xn2
n−1 − �2n−2�. (20)

The pixel value estimate is used in a coming chance of reference and will be the decoded pixel value, when
the decoding is stopped (after all the bitplanes are processed). The most recent estimate of a given pixel is
always made up of two parts: its significant bits are those already encoded/decoded true bits and the other
less significant bits are 0 (zero) followed by a successive 1s (ones). The value of the less significant bits is equal
to the expectation value of the unknown lower bits, if binary symbols of zero and one are assumed to occur in
those bits with equal probability.

y(8) = x16 x15 x14 x13 x12 x11 x10 x9 0 1 1 1 1 1 1 1

Figure 6: Binary representation of a pixel value estimate in the case of n = 8

4.3 Binary-Tree Decomposition

Binary trees are also an important data structure that can be used in several algorithms. In the case of image
compression, we can associate each leaf node of the binary tree to an image intensity. The binary tree can be

Figure 5. Fifteen-pixel template for building up the context. The target pixel to be encoded is labeled by an "X"

In Kikuchi's method, the inter-bit correlation on a bitplane is not used. Instead, for modeling
a target bit, the authors used the pixel value estimates of which more significant bits have been
already available at the decoder. Their method is referred to as bit modeling by pixel values,
where the pixel value estimates are used rather than of the unknown true values at the decoder.
Contrarily to Kikuchi's method that uses a nine-pixel template, our approach uses a variable-
size 15-pixel template (see Fig. 5). In our case, a greedy search routine is performed in each
bitplane in order to obtain the context size that attains the best compression performance
(lower bits per pixel as possible). According to Kikuchi's method, the decoded pixel values are
spatially correlated to each other as significantly high as the true pixel values which will make
sense to use a larger template. Furthermore, since the alphabet size is only two, the probability
of having context dilution is low. Similar to Kikuchi's method, we are considering some
noncausal locations with respect to the scanning order of the pixels (locations y3y4y10 and y11
in Fig. 5). The usage of noncausal pixels is only possible because the context bits are defined
by using the estimates of pixel values, which are available in the decoder.

Let us consider that we are coding an N  -bit depth image, where N ≤16. Suppose that the n th

bitplane is being encoded at present, where n∈ {1… N }. For every pixel, the higher bits from
the (n + 1)th until N th bitplane are known at the decoder. The other lower n bits are unknown.
The value of the unknown part can be distributed over the interval of 0,2n −1 . Similar to
Kikuchi's method, the values zero and one occur with equal probability in the unknown less
significant n bits. Under this assumption, the pixel value estimate of the target pixel is
expressed by
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at the n th bitplane encoding/decoding, where y is the latest decoded value and . denotes
truncation. In Fig. 6, we illustrate an example of a binary representation of the pixel value
estimate in the case n =8.

Initially, all the pixel estimate values are set to y =2N −1−1. The encoding procedure starts at the
MSBP and stops at the LSBP. Assuming a target pixel xn of bitplane n is the one being encoded,
under the context of {ck }, the pixel estimate y of the target pixel is immediately updated by a
simple bit operation as

Lossy-to-Lossless Compression of Biomedical Images Based on Image Decomposition
http://dx.doi.org/10.5772/60650

137



1 22 2 .- -ê ú¬ + - ë û
n n

ny y x (20)

The pixel value estimate is used in a coming chance of reference and will be the decoded pixel
value, when the decoding is stopped (after all the bitplanes are processed). The most recent
estimate of a given pixel is always made up of two parts: its significant bits are those already
encoded/decoded true bits and the other less significant bits are 0 (zero) followed by a
successive 1s (ones). The value of the less significant bits is equal to the expectation value of
the unknown lower bits, if binary symbols of zero and one are assumed to occur in those bits
with equal probability.

10 Digital Signal Processing

13 9 12
14 5 2 6 8

15 7 1 X 3
10 4 11

Figure 5: Fifteen-pixel template for building up the context. The target pixel to be encoded is labeled by an
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used rather than of the unknown true values at the decoder. Contrarily to Kikuchi’s method that uses a nine-
pixel template, our approach uses a variable-size 15-pixel template (see Fig. 5). In our case, a greedy search
routine is performed in each bitplane in order to obtain the context size that attains the best compression
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4.3 Binary-Tree Decomposition

Binary trees are also an important data structure that can be used in several algorithms. In the case of image
compression, we can associate each leaf node of the binary tree to an image intensity. The binary tree can be
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2.3. Binary-tree decomposition

Binary trees are also an important data structure that can be used in several algorithms. In the
case of image compression, we can associate each leaf node of the binary tree to an image
intensity. The binary tree can be viewed as a simple nonlinear generalization of lists; instead
of having one way to continue to another element, there are two alternatives that lead to two
different elements [30]. Every node (or vertex) in an arbitrary tree has at least two children (see
Fig. 7). Each child is designated as left child or right child, according to the position in relation
to the tree root.
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viewed as a simple nonlinear generalization of lists; instead of having one way to continue to another element,
there are two alternatives that lead to two different elements [30]. Every node (or vertex) in an arbitrary tree
has at least two children (see Fig. 7). Each child is designated as left child or right child, according to the
position in relation to the tree root.

One of the first methods where binary trees were used for image compression was proposed by Chen et al. [31]
regarding the compression of color-quantized images. Chen’s method uses a binary-tree structure of color indexes
instead of a linear list structure. Using this binary-tree structure, Chen’s method can progressively recover an
image from two colors to all of the colors contained in the original image. Inspired by the work done by [31], a few
years later, the authors of [7, 11, 12] developed a lossy-to-lossless method based on binary-tree decomposition
and context-based arithmetic coding. In the last approach, the authors studied the performance of their method
in several kinds of grayscale images, including medical images. As can been seen, this decomposition approach
is very versatile because it can be applied in color-quantized images and also in grayscale images.

Figure 7: An example of a binary tree with eight intensities or gray levels. Each internal node contains an
intensity representative that is computed according to the set of intensities that are associated to the node. The
leaf nodes represent the number of different intensities that actually occur; in this case, we have a total of eight
intensities

This binary-tree decomposition approach was intended to be used in images with a small number of in-
tensities, usually with eight or less bits per pixel, due to a tight relation between the processing time and
the number of different intensities of the image. In this work, we intend to study the performance of this
approach to compress biomedical images, such as microarray images, RNAi, etc. Another interesting feature of
this approach is its capability of progressive decoding, which means that the decoding process can be stopped
at any moment according to a specific distortion metric, obtaining an image with some loss. Moreover, it is
possible to obtain the original image without any loss if the full decoding process is performed. In the next two
sections, we describe in more detail the compression algorithm that is based on a binary-tree decomposition
and context-based arithmetic coding.

4.3.1 Hierarchical Organization of the Intensity Levels

This method is based on a hierarchical organization of the intensity levels of the image. This organization
of the intensity levels is attained by means of a binary tree. Each node of the binary tree, n, represents a
certain subset, Sn, of the intensities of the image. The root node contains all active pixel values of the image
I = {I1, I2, . . . , IN}, where N represents the number of different intensities that occur in the image. Therefore,
Sn ⊂ I and S1 ≡ I. Each node possesses a representative intensity, In, given by

In =

⌊
Inm + InM

2

⌋
, (21)

where Inm and InM are, respectively, the smallest and largest pixel value in Sn and where �x� denotes the largest
integer less than or equal to x. Computing the value of In according to (21) leads to the smallest possible L∞

Figure 7. An example of a binary tree with eight intensities or gray levels. Each internal node contains an intensity
representative that is computed according to the set of intensities that are associated to the node. The leaf nodes repre‐
sent the number of different intensities that actually occur; in this case, we have a total of eight intensities

One of the first methods where binary trees were used for image compression was proposed
by Chen et al. [31] regarding the compression of color-quantized images. Chen's method uses
a binary-tree structure of color indexes instead of a linear list structure. Using this binary-tree
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The pixel value estimate is used in a coming chance of reference and will be the decoded pixel
value, when the decoding is stopped (after all the bitplanes are processed). The most recent
estimate of a given pixel is always made up of two parts: its significant bits are those already
encoded/decoded true bits and the other less significant bits are 0 (zero) followed by a
successive 1s (ones). The value of the less significant bits is equal to the expectation value of
the unknown lower bits, if binary symbols of zero and one are assumed to occur in those bits
with equal probability.
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used rather than of the unknown true values at the decoder. Contrarily to Kikuchi’s method that uses a nine-
pixel template, our approach uses a variable-size 15-pixel template (see Fig. 5). In our case, a greedy search
routine is performed in each bitplane in order to obtain the context size that attains the best compression
performance (lower bits per pixel as possible). According to Kikuchi’s method, the decoded pixel values are
spatially correlated to each other as significantly high as the true pixel values which will make sense to use a
larger template. Furthermore, since the alphabet size is only two, the probability of having context dilution is
low. Similar to Kikuchi’s method, we are considering some noncausal locations with respect to the scanning
order of the pixels (locations y(3), y(4), y(10), andy(11) in Fig. 5). The usage of noncausal pixels is only possible
because the context bits are defined by using the estimates of pixel values, which are available in the decoder.
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Initially, all the pixel estimate values are set to y = 2N−1 − 1. The encoding procedure starts at the MSBP
and stops at the LSBP. Assuming a target pixel xn of bitplane n is the one being encoded, under the context
of {ck}, the pixel estimate y of the target pixel is immediately updated by a simple bit operation as
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the decoding is stopped (after all the bitplanes are processed). The most recent estimate of a given pixel is
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compression, we can associate each leaf node of the binary tree to an image intensity. The binary tree can be
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2.3. Binary-tree decomposition

Binary trees are also an important data structure that can be used in several algorithms. In the
case of image compression, we can associate each leaf node of the binary tree to an image
intensity. The binary tree can be viewed as a simple nonlinear generalization of lists; instead
of having one way to continue to another element, there are two alternatives that lead to two
different elements [30]. Every node (or vertex) in an arbitrary tree has at least two children (see
Fig. 7). Each child is designated as left child or right child, according to the position in relation
to the tree root.
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instead of a linear list structure. Using this binary-tree structure, Chen’s method can progressively recover an
image from two colors to all of the colors contained in the original image. Inspired by the work done by [31], a few
years later, the authors of [7, 11, 12] developed a lossy-to-lossless method based on binary-tree decomposition
and context-based arithmetic coding. In the last approach, the authors studied the performance of their method
in several kinds of grayscale images, including medical images. As can been seen, this decomposition approach
is very versatile because it can be applied in color-quantized images and also in grayscale images.
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intensity representative that is computed according to the set of intensities that are associated to the node. The
leaf nodes represent the number of different intensities that actually occur; in this case, we have a total of eight
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This binary-tree decomposition approach was intended to be used in images with a small number of in-
tensities, usually with eight or less bits per pixel, due to a tight relation between the processing time and
the number of different intensities of the image. In this work, we intend to study the performance of this
approach to compress biomedical images, such as microarray images, RNAi, etc. Another interesting feature of
this approach is its capability of progressive decoding, which means that the decoding process can be stopped
at any moment according to a specific distortion metric, obtaining an image with some loss. Moreover, it is
possible to obtain the original image without any loss if the full decoding process is performed. In the next two
sections, we describe in more detail the compression algorithm that is based on a binary-tree decomposition
and context-based arithmetic coding.

4.3.1 Hierarchical Organization of the Intensity Levels

This method is based on a hierarchical organization of the intensity levels of the image. This organization
of the intensity levels is attained by means of a binary tree. Each node of the binary tree, n, represents a
certain subset, Sn, of the intensities of the image. The root node contains all active pixel values of the image
I = {I1, I2, . . . , IN}, where N represents the number of different intensities that occur in the image. Therefore,
Sn ⊂ I and S1 ≡ I. Each node possesses a representative intensity, In, given by
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where Inm and InM are, respectively, the smallest and largest pixel value in Sn and where �x� denotes the largest
integer less than or equal to x. Computing the value of In according to (21) leads to the smallest possible L∞

Figure 7. An example of a binary tree with eight intensities or gray levels. Each internal node contains an intensity
representative that is computed according to the set of intensities that are associated to the node. The leaf nodes repre‐
sent the number of different intensities that actually occur; in this case, we have a total of eight intensities

One of the first methods where binary trees were used for image compression was proposed
by Chen et al. [31] regarding the compression of color-quantized images. Chen's method uses
a binary-tree structure of color indexes instead of a linear list structure. Using this binary-tree
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structure, Chen's method can progressively recover an image from two colors to all of the
colors contained in the original image. Inspired by the work done by [31], a few years later,
the authors of [7, 11, 12] developed a lossy-to-lossless method based on binary-tree decompo‐
sition and context-based arithmetic coding. In the last approach, the authors studied the
performance of their method in several kinds of grayscale images, including medical images.
As can been seen, this decomposition approach is very versatile because it can be applied in
color-quantized images and also in grayscale images.

This binary-tree decomposition approach was intended to be used in images with a small
number of intensities, usually with eight or less bits per pixel, due to a tight relation between
the processing time and the number of different intensities of the image. In this work, we intend
to study the performance of this approach to compress biomedical images, such as microarray
images, RNAi, etc. Another interesting feature of this approach is its capability of progressive
decoding, which means that the decoding process can be stopped at any moment according
to a specific distortion metric, obtaining an image with some loss. Moreover, it is possible to
obtain the original image without any loss if the full decoding process is performed. In the
next two sections, we describe in more detail the compression algorithm that is based on a
binary-tree decomposition and context-based arithmetic coding.

2.3.1. Hierarchical organization of the intensity levels

This method is based on a hierarchical organization of the intensity levels of the image. This
organization of the intensity levels is attained by means of a binary tree. Each node of the binary
tree, n, represents a certain subset, Sn, of the intensities of the image. The root node contains
all active pixel values of the image ℐI1,I2,…,IN }, where N  represents the number of different

intensities that occur in the image. Therefore, Sn ⊂ℐ and S1 ≡ℐ. Each node possesses a repre‐
sentative intensity, I n, given by

= ,
2

ê ú+
ê ú
ê úë û
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where Im
n and IM

n are, respectively, the smallest and largest pixel value in Sn and where x

denotes the largest integer less than or equal to x. Computing the value of I n according to (23)
leads to the smallest possible L ∞ reconstruction error when the intensities associated to node

n (those in Sn) are all substituted by I n. The error is given by

= .e¥ -n n n
MI I (22)

In order to better understand the construction of the binary tree, we present in Fig. 7 a small
example for an image with only five active pixel values 32,50,250,33,768,65,530. The construction
of this tree begins with the association to the root node of the set of intensities that occur in the
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original image. After this association, it is necessary to compute I 1 according to (23). In the
example depicted in Fig. 8, I 1 = (32 + 65,530) / 2 =32,781 and ε∞1 =65,530−32,781, for the root node.

The next step consists of splitting the root node into two sub-nodes and, therefore, splitting S1

into two subsets. In order to split S1, we need only to compare the intensity I ∈S1 with I 1. The
intensities lower than I 1 are associated with the left node and the other ones with the right
one. This procedure is repeated until all nodes are expanded, i.e., until having a tree with N
leaves (N  is the number of active intensities presented in the original image). The next node
to expand is chosen, taking into consideration the smallest possible L ∞ reconstruction error.
In case of a tie, one is arbitrarily chosen, although it is necessary that the decoder picks the
same one.

12 Digital Signal Processing

reconstruction error when the intensities associated to node n (those in Sn) are all substituted by In. The error
is given by

εn∞ = InM − In. (22)

In order to better understand the construction of the binary tree, we present in Fig. 8 a small example for an
image with only five active pixel values {32, 50, 250, 33,768, 65,530}. The construction of this tree begins with
the association to the root node of the set of intensities that occur in the original image. After this association, it
is necessary to compute I1 according to (21). In the example depicted in Fig. 8, I1 = �(32+65,530)/2� = 32,781
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decoder has access to the pixels associated to the parent node that was expanded, it is enough to encode a binary
mask, where zero indicates that the pixel needs to change its intensity to Inl and one indicates a change to Inr .
This binary mask is encoded using arithmetic coding based on variable-size finite-context models [16, 17, 18].
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to expand is chosen, taking into consideration the smallest possible L ∞ reconstruction error.
In case of a tie, one is arbitrarily chosen, although it is necessary that the decoder picks the
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necessary to communicate to the decoder the zeros and ones that correspond to the pixels that
after the expand procedure will be associated to the left and right nodes, respectively. Since
the decoder has access to the pixels associated to the parent node that was expanded, it is
enough to encode a binary mask, where zero indicates that the pixel needs to change its
intensity to Il

n and one indicates a change to Ir
n. This binary mask is encoded using arithmetic

coding based on variable-size finite-context models [16, 17, 18].

The performance of the compression method is directly dependent on the encoding of these
binary masks. The encoding efficiency of these binary masks can be controlled by a carefully
chosen context modeling that will then drive the binary arithmetic encoder. The context is
constructed based on the template depicted in Fig. 9. The number of context pixels can go up
to 16 at most, and they are numbered according to their distance to the encoding pixel
(represented in gray in Fig. 9). A particular context is represented using a sequence of bits,

1 2K kb b b (23)
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and where I (i) denotes the intensity of the pixel in the current reconstructed image corre‐
sponding to position i of the context template.
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The performance of the compression method is directly dependent on the encoding of these binary masks.
The encoding efficiency of these binary masks can be controlled by a carefully chosen context modeling that will
then drive the binary arithmetic encoder. The context is constructed based on the template depicted in Fig. 9.
The number of context pixels can go up to 16 at most, and they are numbered according to their distance to
the encoding pixel (represented in gray in Fig. 9). A particular context is represented using a sequence of bits,

b1b2 . . . bk (23)

where

bi =

{
0, if |I(i)− Inl | ≤ |I(i)− Inr |
1, otherwise

,

and where I(i) denotes the intensity of the pixel in the current reconstructed image corresponding to position
i of the context template.

The value k defines the model order used. In this case, the k value varies as the encoding proceeds. This
variation is necessary in order to improve the compression performance. Furthermore, it is expected to have
larger mask regions initially in the first nodes that are expanded and smaller regions when n ≈ N . This variation
is also useful to avoid the problem of context dilution. In this research work, we present two modes of context
creation. One is denoted as “greedy” where the context size is first chosen using a k value according to [32].
After that, the method tests incrementally several context sizes bigger and smaller than k and stops when it
reaches one context that produces worse results than the previous best. In the end, the algorithm has two
context sizes. One attained when applying an increment to k and the other one when applying a decrement
to k. The best context size is then chosen to encode the binary mask. The other mode is slower because it
tests all possible context sizes. This second mode, denoted as “best,” always attains the best context size that
minimizes the bitrate. For both cases, the context size needs to be sent to the decoder, for each node that is
expanded.

There is also an alternative way to encode the binary mask. If the number of bits required to encode the
mask and the context size is bigger than the total number of pixels associated with the node to be expanded, the
encoder sent the binary mask as a binary string, without compression. In order for the decoder to differentiate
between these two modes, a binary stream is needed to be encoded for each node that is expanded.
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Figure 9: Context template used in this work. The use of noncausal pixels is possible, because context infor-
mation can be obtained from the previous version of the reconstructed image

5 Evaluation of the Compression Methods

In this section, we present compression results obtained by the compression methods presented earlier in Sect. 4.
We decided to present only the results of the best version of each method in order to avoid extending this section.
We start with the description of the data sets used in this work. Then, we provide the obtained compression
results. At the end of this section, we present a study of the rate distortion, comparing the two compression
approaches described in Sect. 4 and two image coding standards, JBIG and JPEG2000.

Figure 9. Context template used in this work. The use of noncausal pixels is possible, because context information can
be obtained from the previous version of the reconstructed image

The value k  defines the model order used. In this case, the k  value varies as the encoding
proceeds. This variation is necessary in order to improve the compression performance.
Furthermore, it is expected to have larger mask regions initially in the first nodes that are
expanded and smaller regions when n ≈ N . This variation is also useful to avoid the problem
of context dilution. In this research work, we present two modes of context creation. One is
denoted as "greedy" where the context size is first chosen using a k  value according to [32].
After that, the method tests incrementally several context sizes bigger and smaller than k  and
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stops when it reaches one context that produces worse results than the previous best. In the
end, the algorithm has two context sizes. One attained when applying an increment to k  and
the other one when applying a decrement to k . The best context size is then chosen to encode
the binary mask. The other mode is slower because it tests all possible context sizes. This second
mode, denoted as "best," always attains the best context size that minimizes the bitrate. For
both cases, the context size needs to be sent to the decoder, for each node that is expanded.

There is also an alternative way to encode the binary mask. If the number of bits required to
encode the mask and the context size is bigger than the total number of pixels associated with
the node to be expanded, the encoder sent the binary mask as a binary string, without
compression. In order for the decoder to differentiate between these two modes, a binary
stream is needed to be encoded for each node that is expanded.

3. Evaluation of the compression methods

In this section, we present compression results obtained by the compression methods pre‐
sented earlier in Sect. 4. We decided to present only the results of the best version of each
method in order to avoid extending this section. We start with the description of the data sets
used in this work. Then, we provide the obtained compression results. At the end of this
section, we present a study of the rate distortion, comparing the two compression approaches
described in Sect. 4 and two image coding standards, JBIG and JPEG2000.

3.1. Data sets

To evaluate the compression methods presented in this chapter, we used three types of images:
microarray, medical, and RNAi. The output data obtained in a microarray experiment is a pair
of 16-bits-per-pixel grayscale images, one from the so-called red channel and the other from
the green channel (see Fig. 10). We use a total of 298 microarray images of nine different data
sets as described in Table 3.Lossy-to-Lossless Compression of Biomedical Images 15
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Figure 10: Example of a microarray experiment from the ISREC data set. (a) and (b) correspond to the pair
of microarray images. (c) a color version created from (a) as the red channel and (b) as the green channel

(a) “cr 4503” (b) “ct 17” (c) “mr 2321” (d) “us 3393” (e) “mdb001”

Figure 11: Example of medical images from different modalities

(a) DNA (b) PH3 (c) Actin (d) Merged

Figure 12: Examples of RNAi image, (a) DNA channel, (b) action channel, (c) PH3 channel, and (d) all the
previous channels merged in an RBG image

standard were obtained using version 2.2 of the SPMG JPEG-LS codec2. JPEG2000 lossless compression was
obtained using version 5.1 of JJ2000 codec with default parameters for lossless compression3. For additional ref-

2The original website of this codec, http://spmg.ece.ubc.ca, is currently unavailable. However, it can be obtained from
http://sweet.ua.pt/luismatos/codecs/jpeg_ls_v2.2.tar.gz

3The original website of this codec, http://jj2000.epfl.ch, is currently unavailable. Nevertheless, this codec can be obtained
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ray images. (c) a color version created from (a) as the red channel and (b) as the green channel
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Regarding the medical images, we used images of four modalities: computed radiography
(CR), computed tomography (CT), magnetic resonance (MR), and ultrasound (US). In Fig. 11,
we can find five examples of medical images used in this work. The data set used in [33] was
also considered as a medical reference data set. All the medical image data sets are depicted
in Table 4, a total of 370 images.
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Finally, we also used a recent and popular image type that can be extracted from RNA
interference (RNAi) experiments. Those experiments involve marking of cells with various
fluorescent dyes to capture three components of interest, namely, DNA, actin, and PH3
channels [4]. In Table 5, we can find the RNAi image data sets used in this work, a total of
34,560 images. The images were retrieved from the RNAi experiments without any kind of
transformation (no normalization was applied). For us, it does not make sense to perform a
normalization operation in order to reduce the image depth from 10 to 8 bits per pixel. The
normalization is a lossy process, and hence, applying a lossless compression method to images
that suffered some loss is not appropriate. In Fig. 12 we present some examples of RNAi
images.

Lossy-to-Lossless Compression of Biomedical Images 15

(a) “Deff661Cy5” (b) “Deff661Cy3” (c) Color version

Figure 10: Example of a microarray experiment from the ISREC data set. (a) and (b) correspond to the pair
of microarray images. (c) a color version created from (a) as the red channel and (b) as the green channel

(a) “cr 4503” (b) “ct 17” (c) “mr 2321” (d) “us 3393” (e) “mdb001”

Figure 11: Example of medical images from different modalities

(a) DNA (b) PH3 (c) Actin (d) Merged

Figure 12: Examples of RNAi image, (a) DNA channel, (b) action channel, (c) PH3 channel, and (d) all the
previous channels merged in an RBG image

standard were obtained using version 2.2 of the SPMG JPEG-LS codec2. JPEG2000 lossless compression was
obtained using version 5.1 of JJ2000 codec with default parameters for lossless compression3. For additional ref-
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Figure 12. Examples of RNAi image, (a) DNA channel, (b) action channel, (c) PH3 channel, and (d) all the previous
channels merged in an RBG image

In Tables 3-5, we can see several important measures: image size, depth, entropy, intensity
usage, and a sparsity measure called Gini index or GI [34]. The GI is a normalized measure
that assumes values between zero and one. Values close to zero means that image has a lower
sparsity histogram. On the other hand, values close to one represent an image that has a very
sparse histogram.
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Data sets Year Images Approximate size (cols
×  rows)

Depth Average
entropy

(bpp)

Average
intensity usage

(percentage)

Gini Index
[0-1]

ApoA1 [35] 2001 32 > 1,044×1,041 16 11.038 39.507% 0.494

Arizona [36] 2011 6 =13,800×4,400 16 9.306 82.821% 0.774

IBB [37] 2013 44 = 2,019×6,235 16 8.503 54.072% 0.806

ISREC [38] 2001 14 = 1,000×1,000 16 10.435 33.345% 0.710

Omnibus-LM
[39]

2006 25 =12,200×4,320 16 5.713 50.130% 0.726

Omnibus-HM
[40]

2006 25 =12,200×4,320 16 7.906 98.076% 0.892

Stanford [41] 2001 40 > 1,900×2,000 16 8.306 27.515% 0.615

Yeast [42] 1998 109 = 1,024×1,024 16 6.614 5.391% 0.518

YuLou [43] 2004 3 > 1,800×1,900 16 9.422 36.906% 0.556

Overall 298 16 7.415 67.003% 0.782

Table 3. Microarray image data sets used in this work. The number of images represents the total number of images
that each data set contains (each image corresponds to one channel)

Data sets Year Images Approximate size (cols
× rows)

Depth Average
entropy (bpp)

Average intensity
usage

(percentage)

Gini Index
[0-1]

CR 2003 12 > 612× 746 10-16 9.905 11.487% 0.240

CT 2003 12 > 340× 340 12-16 8.032 2.879% 0.389

MR 2003 12 > 256× 256 16 6.837 1.636% 0.624

US 2003 12 > 584× 476 8 4.561 0.358% 0.714

MIAS [33] 1995 322 =1,024×1,024 8 4.544 0.357% 0.681

Overall 370 8-16 5.169 1.596% 0.631

Table 4. Medical image data sets used. The computed radiography (CR), computed tomography (CT), magnetic
resonance (MR), and ultrasound (US) data sets can be found in [44]. The last data set, mini-MIAS, contains 322
mammography images

Taking into consideration Table 3, we can see that the image sizes of the microarray data sets
are very large (ranging from 1,000×1,000 to 13,800×4,400) and the bit depth is 16 for all the data
sets. The average entropy goes from 5.7 bpp to 11 bpp, and the percentage of active intensities
varies from 5.4% to 98.1%. The GI measures are all higher than 0.49 for all data sets reaching
values close to 0.89 (very sparse) for the Omnibus-HM data set.
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Table 4. Medical image data sets used. The computed radiography (CR), computed tomography (CT), magnetic
resonance (MR), and ultrasound (US) data sets can be found in [44]. The last data set, mini-MIAS, contains 322
mammography images

Taking into consideration Table 3, we can see that the image sizes of the microarray data sets
are very large (ranging from 1,000×1,000 to 13,800×4,400) and the bit depth is 16 for all the data
sets. The average entropy goes from 5.7 bpp to 11 bpp, and the percentage of active intensities
varies from 5.4% to 98.1%. The GI measures are all higher than 0.49 for all data sets reaching
values close to 0.89 (very sparse) for the Omnibus-HM data set.
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Regarding the medical image data sets (see Table 4), we can see that the image sizes are lower
when compared to the microarray images (except for the mini-MIAS data set). The bit depth
varies from 8 to 16 bits and the average entropy from 4.5 bpp to 9.9 bpp. The average intensity
usage is very low for these medical images. For the CR data set, only 11.5% of the total available
intensities are actually used. For the other data sets, this measure is even lower (3). For the GI
measure, we can see that the MR, US, and mini-MIAS data sets have a GI higher than 0.6. On
the other hand, for the CR and CT data sets, the GI values are lower (0.24 and 0.39, respectively).

Data sets Year Images Approximate size
(cols × rows)

Depth Average
entropy

(bpp)

Average
intensity usage

(percentage)

Gini Index
[0-1]

RNAi D1

∣ (DNA) 2,304 7.408 4.140% 0.274

∣ (PH3) 2006 2,304 =512×512 12 5.631 1.019% 0.056

∣ (Actin) 2,304 7.583 2.287% 0.192

RNAi D2

∣ (DNA) 2,304 6.617 2.925% 0.172

∣ (PH3) 2006 2,304 =512×512 12 5.572 0.661% 0.050

∣ (Actin) 2,304 6.565 1.334% 0.099

RNAi D3

∣ (DNA) 2,304 7.210 4.195% 0.257

∣ (PH3) 2006 2,304 =512×512 12 5.659 0.981% 0.054

∣ (Actin) 2,304 7.653 3.215% 0.242

RNAi D4

∣ (DNA) 2,304 7.530 4.249% 0.286

∣ (PH3) 2006 2,304 =512×512 12 5.662 1.080% 0.057

∣ (Actin) 2,304 7.907 3.070% 0.244

RNAi D5

∣ (DNA) 2,304 7.281 4.046% 0.256

∣ (PH3) 2006 2,304 =512×512 12 5.622 0.904% 0.052

∣ (Actin) 2,304 7.649 2.772% 0.221

RNAi all

∣ (DNA) 11,520 7.209 3.911% 0.249

∣ (PH3) 2006 11,520 =512×512 12 5.629 0.929% 0.054

∣ (Actin) 11,520 7.471 2.536% 0.199

Overall 2006 34,560 =512×512 12 6.770 2.458% 0.167

Table 5. Five RNAi image data sets extracted from the first five plates that can be found in [45]. Contrary to other
authors, the images were extracted from the RNAi files without any loss. The exact image intensity values were used
to create the images. No normalization was performed
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Figure 13: Encoding speed in kilobytes per second for the methods evaluated in this work. BPD (bitplane
decomposition), BFS (background-foreground separation), HC (histogram compaction), SBR (scalable bitplane
reduction), SBC-Mix (simple bitplane coding-mixture), and BTD (binary-tree decomposition)
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Figure 14: Decoding speed in kilobytes per second for the methods evaluated in this work. BPD (bitplane
decomposition), BFS (background-foreground separation), HC (histogram compaction), SBR (scalable bitplane
reduction), SBC-Mix (simple bitplane coding-mixture), and BTD (binary-tree decomposition)
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Finally, we provide 5 RNAi image data sets in Table 5. We split each data set into three channels
(DNA, PH3, and actin). All the images have size 512×512 and depth of 12 bits. Globally, the
average entropy is about 6.77 bpp and the average intensity usage is around 2.5%. Regarding
the GI, the values are very low (<0.17), which means that these images are not very sparse.

3.2. Experimental results

In this subsection, we present the results obtained using several general purpose compression
tools (e.g., gzip, bzip2, PPMd, and LZMA), image coding standards (e.g., PNG, JBIG, JPEG-
LS, and JPEG2000), and the methods described in Sect. 4. In Tables 6-8, we can find the
compression results for all data set described earlier in Sect. 5.1, using several general com‐
pression tools and image coding standards. Default parameters were used in all compression
tools. Hence, we did not try to adjust some parameters in order to improve the compression
results. Only the lossless mode was imposed.

JBIG results were obtained using version 2.0 of the JBIG-Kit package1. The results for the JPEG-
LS standard were obtained using version 2.2 of the SPMG JPEG-LS codec2. JPEG2000 lossless
compression was obtained using version 5.1 of JJ2000 codec with default parameters for
lossless compression3. For additional reference, we also provided compression results using
the gzip, bzip2, ppmd, and lzma general-purpose compression tools.

Compression methods

Data sets Gzip Bzip2 PPMd LZMA PNG JBIG JPEG-LS JPEG2000

ApoA1 12.711 11.068 10.984 11.374 12.568 10.851 10.608 11.063

Arizona 11.263 9.040 8.980 9.402 11.017 8.896 8.676 9.107

IBB 10.453 9.081 8.495 8.985 10.090 9.344 9.904 10.516

ISREC 12.464 10.922 10.730 11.126 12.476 10.925 11.145 11.366

Omnibus
(LM)

7.124 5.346 4.977 5.527 6.781 5.130 4.936 5.340

Omnibus
(HM)

9.558 7.523 7.219 7.787 9.160 7.198 6.952 7.587

Stanford 9.972 7.961 7.809 8.273 9.776 7.906 7.684 8.060

Yeast 7.672 6.075 5.794 6.389 8.303 6.888 8.580 9.079

YuLou 11.434 9.394 9.285 9.708 11.428 9.298 8.974 9.515

Average 9.044 7.189 6.859 7.388 8.729 7.051 6.996 7.511

Table 6. Lossless compression results, in bits per pixel (bpp), using gzip, bzip2, PPMd, LZMA, PNG, JBIG, JPEG-LS,
and JPEG2000 for the microarray image data sets. Default compression parameters have been used for all algorithms.
The best results are highlighted in bold

1 http://www.cl.cam.ac.uk/ mgk25/jbigkit
2 The original website of this codec, http://spmg.ece.ubc.ca, is currently unavailable. However, it can be obtained from
http://sweet.ua.pt/luismatos/codecs/jpeg_ls_v2.2.tar.gz
3 The original website of this codec, http://jj2000.epfl.ch, is currently unavailable. Nevertheless, this codec can be obtained
from http://sweet.ua.pt/luismatos/codecs/jj2000_5.1-src.zip

Lossy-to-Lossless Compression of Biomedical Images Based on Image Decomposition
http://dx.doi.org/10.5772/60650

147



Compression methods

Data sets Gzip Bzip2 PPMd LZMA PNG JBIG JPEG-LS JPEG2000

CR 9.284 6.140 6.230 7.197 7.991 6.152 5.784 5.845

CT 8.790 5.604 5.847 6.996 9.411 8.822 8.089 8.334

MR 8.342 5.313 5.514 6.663 9.795 9.940 9.321 9.389

US 3.496 2.742 2.642 2.820 3.061 2.908 2.750 3.138

mini-MIAS 2.637 1.696 1.590 2.022 1.672 1.562 1.416 1.443

Average 3.452 2.242 2.163 2.660 2.484 2.183 2.005 2.040

Table 7. Lossless compression results, in bits per pixel (bpp), using gzip, bzip2, PPMd, LZMA, PNG, JBIG, JPEG-LS,
and JPEG2000 for the medical image data sets. Default compression parameters have been used for all algorithms. The
best results are highlighted in bold

Compression methods

Data sets Gzip Bzip2 PPMd LZMA PNG JBIG JPEG-LS JPEG2000

RNAi D1

∣ (DNA) 9.120 6.846 6.832 7.314 9.857 6.802 6.311 6.533

∣ (PH3) 7.461 5.933 5.804 6.008 11.552 5.994 5.806 5.830

∣ (Actin) 9.274 6.807 6.839 7.353 11.801 6.790 6.304 6.452

RNAi D2

∣ (DNA) 8.358 6.469 6.389 6.714 9.421 6.469 6.094 6.233

∣ (PH3) 7.396 5.884 5.760 5.963 12.420 5.964 5.793 5.804

∣ (Actin) 8.309 6.378 6.315 6.638 12.449 6.422 6.032 6.122

RNAi D3

∣ (DNA) 8.948 6.735 6.637 7.153 9.665 6.704 6.238 6.436

∣ (PH3) 7.490 5.952 5.819 6.030 11.756 6.042 5.812 5.842

∣ (Actin) 9.362 6.874 7.387 7.431 10.582 6.838 6.353 6.509

RNAi D4

∣ (DNA) 6.243 6.925 6.915 7.415 10.014 6.878 6.372 6.612

∣ (PH3) 7.491 5.950 5.824 6.028 11.548 6.028 5.813 5.845

∣ (Actin) 9.586 7.014 7.070 7.629 10.955 6.977 6.460 6.630

RNAi D5

∣ (DNA) 9.007 6.765 6.745 7.198 9.775 6.729 6.259 6.459

∣ (PH3) 7.450 5.928 5.798 6.001 11.745 5.994 5.804 5.825

∣ (Actin) 9.346 6.857 6.893 7.414 11.185 6.828 6.342 6.493

RNAi all

∣ (DNA) 8.935 6.748 6.703 7.159 9.746 6.716 6.255 6.455

∣ (PH3) 7.458 5.929 5.801 6.006 11.804 6.004 5.806 5.829

∣ (Actin) 9.176 6.786 6.900 7.293 11.394 6.771 6.298 6.441

Average 8.523 6.488 6.468 6.819 10.982 6.497 6.120 6.242

Table 8. Lossless compression results, in bits per pixel (bpp), using gzip, bzip2, PPMd, LZMA, PNG, JBIG, JPEG-LS,
and JPEG2000 for the RNAi image data sets. Default compression parameters have been used for all algorithms. The
best results are highlighted in bold
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Data sets Gzip Bzip2 PPMd LZMA PNG JBIG JPEG-LS JPEG2000
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and JPEG2000 for the medical image data sets. Default compression parameters have been used for all algorithms. The
best results are highlighted in bold

Compression methods

Data sets Gzip Bzip2 PPMd LZMA PNG JBIG JPEG-LS JPEG2000

RNAi D1

∣ (DNA) 9.120 6.846 6.832 7.314 9.857 6.802 6.311 6.533

∣ (PH3) 7.461 5.933 5.804 6.008 11.552 5.994 5.806 5.830

∣ (Actin) 9.274 6.807 6.839 7.353 11.801 6.790 6.304 6.452

RNAi D2

∣ (DNA) 8.358 6.469 6.389 6.714 9.421 6.469 6.094 6.233

∣ (PH3) 7.396 5.884 5.760 5.963 12.420 5.964 5.793 5.804

∣ (Actin) 8.309 6.378 6.315 6.638 12.449 6.422 6.032 6.122

RNAi D3

∣ (DNA) 8.948 6.735 6.637 7.153 9.665 6.704 6.238 6.436

∣ (PH3) 7.490 5.952 5.819 6.030 11.756 6.042 5.812 5.842

∣ (Actin) 9.362 6.874 7.387 7.431 10.582 6.838 6.353 6.509

RNAi D4

∣ (DNA) 6.243 6.925 6.915 7.415 10.014 6.878 6.372 6.612

∣ (PH3) 7.491 5.950 5.824 6.028 11.548 6.028 5.813 5.845

∣ (Actin) 9.586 7.014 7.070 7.629 10.955 6.977 6.460 6.630

RNAi D5

∣ (DNA) 9.007 6.765 6.745 7.198 9.775 6.729 6.259 6.459

∣ (PH3) 7.450 5.928 5.798 6.001 11.745 5.994 5.804 5.825

∣ (Actin) 9.346 6.857 6.893 7.414 11.185 6.828 6.342 6.493

RNAi all

∣ (DNA) 8.935 6.748 6.703 7.159 9.746 6.716 6.255 6.455

∣ (PH3) 7.458 5.929 5.801 6.006 11.804 6.004 5.806 5.829

∣ (Actin) 9.176 6.786 6.900 7.293 11.394 6.771 6.298 6.441

Average 8.523 6.488 6.468 6.819 10.982 6.497 6.120 6.242

Table 8. Lossless compression results, in bits per pixel (bpp), using gzip, bzip2, PPMd, LZMA, PNG, JBIG, JPEG-LS,
and JPEG2000 for the RNAi image data sets. Default compression parameters have been used for all algorithms. The
best results are highlighted in bold
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According to the results depicted in Tables 6-8, it seems that, globally, JPEG-LS is the best
image coding standard. Among the general compression methods used, PPMd is the one that
attained the best compression results.

Tables 9-11 provide lossless compression results using the methods described in Sect. 4. BPD
(bitplane decomposition) corresponds to the results using method [6]; BFS (background-
foreground separation) corresponds to using the previous approach with segmentation. The
columns HC (histogram compaction) and SBR (scalable bitplane reduction) correspond to the
approaches that use bitplane reduction in method [6]. The SBC-Mix (simple bitplane coding-
mixture) corresponds to the approach described in Sect. 4.2.3 using a mixture of finite-context
models. The last column, denoted as BTD (binary-tree decomposition), corresponds to the
results obtained using the method described in Sect. 4.3.

If we look closely to Table 9, we can see that the method based on binary-tree decomposition
is the one that attained the best compression results among all the others, for the case of
microarray images. The best method is about 11% better than JPEG-LS. However, the method
SBC-Mix is the best for three data sets: ApoA1, ISREC, and Yulou.

Regarding the experiments performed on medical images and taking into consideration the
results presented in Table 10, we can conclude once again that the method based on binary-
tree decomposition outperforms all the others and is about 9% better than JPEG-LS.

Compression methods

Data sets BPD BFS HC SBR SBC SBC-Mix BTD

ApoA1 10.194 10.234 10.231 10.232 10.205 10.142 10.194

Arizona 8.242 8.245 8.244 8.243 10.308 8.219 8.186

IBB 7.974 7.982 7.978 7.978 8.537 7.966 7.943

ISREC 10.159 10.193 10.195 10.199 10.260 10.148 10.198

Omnibus
(LM)

4.567 4.570 4.561 4.565 4.645 4.545 4.539

Omnibus
(HM)

6.471 6.479 6.473 6.472 6.581 6.443 6.400

Stanford 7.379 7.349 7.350 7.349 7.403 7.305 7.303

Yeast 5.453 5.395 5.527 5.466 5.492 5.326 5.318

YuLou 8.619 8.641 8.626 8.626 8.669 8.591 8.592

Average 6.284 6.288 6.286 6.285 6.437 6.257 6.235

Table 9. Average compression results, in bits per pixel using the methods described in Sect. 4, BPD (bitplane
decomposition), BFS (background-foreground separation), HC (histogram compaction), SBR (scalable bitplane
reduction), SBC-Mix (simple bitplane coding-mixture), and BTD (binary-tree decomposition), for the microarray image
data sets
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Compression methods

Data sets BPD BFS HC SBR SBC SBC-Mix BTD

CR 5.338 5.207 5.291 5.214 5.764 5.137 5.136

CT 4.836 4.840 4.857 4.875 8.302 4.762 4.809

MR 4.654 4.702 4.835 4.833 9.382 4.594 4.783

US 2.472 2.564 2.478 2.471 2.722 2.439 2.462

mini-MIAS 1.390 1.378 1.391 1.391 1.430 1.358 1.352

Average 1.877 1.853 1.874 1.865 2.016 1.826 1.822

Table 10. Average compression results, in bits per pixel using the methods described in Sect. 4, BPD (bitplane
decomposition), BFS (background-foreground separation), HC (histogram compaction), SBR (scalable bitplane
reduction), SBC-Mix (simple bitplane coding-mixture), and BTD (binary-tree decomposition), for the medical image
data sets

Compression methods

Data sets BPD BFS HC SBR SBC SBC-Mix BTD

RNAi D1

∣ (DNA) 6.250 6.293 6.250 6.255 6.225 6.179 6.186

∣ (PH3) 5.559 5.570 5.570 5.569 5.571 5.545 5.555

∣ (Actin) 6.255 6.311 6.244 6.258 6.220 6.185 6.205

RNAi D2

∣ (DNA) 5.959 5.986 5.968 5.968 5.960 5.918 5.930

∣ (PH3) 5.537 5.547 5.539 5.540 5.545 5.518 5.525

∣ (Actin) 5.919 5.948 5.904 5.928 5.904 5.876 5.892

RNAi D3

∣ (DNA) 6.175 6.213 6.169 6.164 6.145 6.106 6.111

∣ (PH3) 5.580 5.598 5.584 5.585 5.590 5.564 5.572

∣ (Actin) 6.313 6.366 6.299 6.306 6.277 6.236 6.247

RNAi D4

∣ (DNA) 6.309 6.355 6.312 6.317 6.289 6.239 6.244

∣ (PH3) 5.577 5.593 5.582 5.584 5.587 5.561 5.570

∣ (Actin) 6.423 6.484 6.412 6.419 6.395 6.348 6.363

RNAi D5

∣ (DNA) 6.195 6.233 6.194 6.198 6.166 6.126 6.133

∣ (PH3) 5.558 5.568 5.564 5.567 5.569 5.543 5.552

∣ (Actin) 6.299 6.355 6.286 6.298 6.263 6.224 6.240

RNAi all

∣ (DNA) 6.178 6.216 6.179 6.182 6.157 6.113 6.121

∣ (PH3) 5.562 5.575 5.568 5.569 5.573 5.546 5.555

∣ (Actin) 6.242 6.293 6.229 6.242 6.212 6.174 6.189

Average 5.994 6.028 5.992 5.998 5.980 5.945 5.955

Table 11. Average compression results, in bits per pixel using the methods described in Sect. 4, BPD (bitplane
decomposition), BFS (background-foreground separation), HC (histogram compaction), SBR (scalable bitplane
reduction), SBC-Mix (simple bitplane coding-mixture), and BTD (binary-tree decomposition), for the RNAi image data
sets
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Average 1.877 1.853 1.874 1.865 2.016 1.826 1.822

Table 10. Average compression results, in bits per pixel using the methods described in Sect. 4, BPD (bitplane
decomposition), BFS (background-foreground separation), HC (histogram compaction), SBR (scalable bitplane
reduction), SBC-Mix (simple bitplane coding-mixture), and BTD (binary-tree decomposition), for the medical image
data sets

Compression methods

Data sets BPD BFS HC SBR SBC SBC-Mix BTD

RNAi D1

∣ (DNA) 6.250 6.293 6.250 6.255 6.225 6.179 6.186

∣ (PH3) 5.559 5.570 5.570 5.569 5.571 5.545 5.555

∣ (Actin) 6.255 6.311 6.244 6.258 6.220 6.185 6.205

RNAi D2

∣ (DNA) 5.959 5.986 5.968 5.968 5.960 5.918 5.930

∣ (PH3) 5.537 5.547 5.539 5.540 5.545 5.518 5.525

∣ (Actin) 5.919 5.948 5.904 5.928 5.904 5.876 5.892

RNAi D3

∣ (DNA) 6.175 6.213 6.169 6.164 6.145 6.106 6.111

∣ (PH3) 5.580 5.598 5.584 5.585 5.590 5.564 5.572

∣ (Actin) 6.313 6.366 6.299 6.306 6.277 6.236 6.247

RNAi D4

∣ (DNA) 6.309 6.355 6.312 6.317 6.289 6.239 6.244

∣ (PH3) 5.577 5.593 5.582 5.584 5.587 5.561 5.570

∣ (Actin) 6.423 6.484 6.412 6.419 6.395 6.348 6.363

RNAi D5

∣ (DNA) 6.195 6.233 6.194 6.198 6.166 6.126 6.133

∣ (PH3) 5.558 5.568 5.564 5.567 5.569 5.543 5.552

∣ (Actin) 6.299 6.355 6.286 6.298 6.263 6.224 6.240

RNAi all

∣ (DNA) 6.178 6.216 6.179 6.182 6.157 6.113 6.121

∣ (PH3) 5.562 5.575 5.568 5.569 5.573 5.546 5.555

∣ (Actin) 6.242 6.293 6.229 6.242 6.212 6.174 6.189

Average 5.994 6.028 5.992 5.998 5.980 5.945 5.955

Table 11. Average compression results, in bits per pixel using the methods described in Sect. 4, BPD (bitplane
decomposition), BFS (background-foreground separation), HC (histogram compaction), SBR (scalable bitplane
reduction), SBC-Mix (simple bitplane coding-mixture), and BTD (binary-tree decomposition), for the RNAi image data
sets
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Finally, in Table 11, we present the results for the RNAi images, and in this case, method SBC-
Mix is the one that attained the best compression results, almost 3% better than JPEG-LS. The
difference between the SBC-Mix and BTD is very low (close to 0.01 bpp). In our opinion, it
seems that the methods described in Sect. 4 attain better compression results when compared
to JPEG-LS for images with higher GI values (sparse images). This is the reason why the binary-
tree decomposition approach attains between 9% to 11% better results than JPEG-LS for the
microarray and medical images. On the other hand, the RNAi images have a lower GI (around
0.17), therefore the lower performance of our methods when compared to JPEG-LS.

In Figs. 15 and 16, we can see the encoding and decoding speed in kilobytes per second for the
compression methods described in Sect. 4. In the encoding phase, it seems that the method
based on binary-tree decomposition is the fastest one among all the others for all data sets. In
the decoding phase, the fastest method is different from data set to data set. For the microarray
and medical image data sets, the methods based on bitplane decomposition are faster than the
method based on binary-tree decomposition. On the other hand, for the RNAi images, the
method based on binary-tree decomposition is faster than all the others. The SBC-Mix method
is the slowest one in all data sets. The lower decoding speed for the SBC-Mix is due to the
mixture procedure. For each symbol that is processed, the model weights need to be updated,
which is a very time-consuming task.

3.3. Rate distortion study

The two decomposition approaches described in Sect. 4 have progressive decoding capabilities
(also known as lossy to lossless). Due to that, it is important to understand what is the error
induced in the image during the decoding phase when only part of the data is decoded. This
characteristic allows also to obtain the original image without any loss.

In Figs. 15 and 16, we present the rate distortion curves of two images, "array1" from the YouLou
data set and "cr_17218" from the medical CR data set, according to two metrics: L 2 -norm (root-
mean-square error or RMSE) and L ∞ -norm (maximum absolute error or MAE). We used JBIG,
JPEG2000, the approach based on bitplane decomposition [6], and the other based on binary-
tree decomposition [8].

Regarding Fig. 15, we can notice that the method based on binary-tree decomposition outper‐
forms all the other methods in terms of L 2 -norm and L ∞ -norm. JBIG and method [6] have a
similar performance in terms of rate distortion. The JPEG2000 standard attains globally worse
results in terms of L 2. Furthermore, we can notice a sudden degradation of the rate distortion,
for higher bitrates L ∞. We believe that this phenomenon is probably related to the default
parameters used by the encoder, which might not be well suited for microarray images.

In Fig. 16, we can see in the first plot, related to the L 2 -norm, that method [6] attains the worse
distortion results. JBIG is slightly better but worse than JPEG2000 and the method [8]. We can
also see that JPEG2000 outperforms all the other methods in terms of L 2 -norm for lower
bitrates. For bitrates higher than 2 bpp, the best method is the one based on binary-tree
decomposition. For the L ∞ -norm, JPEG2000 and method [6] are the ones that attained the
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Figure 15: Rate distortion curves showing the performance of the bitplane decomposition (BPD), the binary-tree
decomposition (BTD), and the JPEG2000, and JBIG standards, in lossy-to-lossless mode for the microarray
image “array1” from the YuLou data set. Results are given both for the L2 (root-mean-square error or RMSE)
and L∞ (maximum absolute error or MAE) norms
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Figure 16: Rate distortion curves showing the performance of the bitplane decomposition (BPD), the binary-
tree decomposition (BTD), and the JPEG2000 and JBIG standards, in lossy-to-lossless mode for the medical
image “cr 17218” from the CR data set. Results are given both for the L2 (root-mean-square error or RMSE)
and L∞ (maximum absolute error or MAE) norms
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Figure 16. Rate distortion curves showing the performance of the bitplane decomposition (BPD), the binary-tree de‐
composition (BTD), and the JPEG2000 and JBIG standards, in lossy-to-lossless mode for the medical image "cr_17218"
from the CR data set. Results are given both for the L ∞ (root-mean-square error or RMSE) and (>8 bpp) (maximum
absolute error or MAE) norms
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worse results. On the other hand, method [8] outperforms all the others, regardless of the
bitrate. We did not include results for other images to avoid extending this chapter, but the
results obtained with the medical images are very similar with the results obtained using RNAi
images. On the other hand, we can conclude that the rate distortion results for the microarray
images are not similar to the other data set types (medical and RNAi).

4. Conclusions

The use of biomedical imaging has increased in the last years. These biomedical images include
microarray, medical, and RNAi images. In this chapter, we have studied two image decom‐
position approaches to be applied to this type of images in order to compress them efficiently.

We presented a set of comprehensive results regarding the lossless compression of biomedical
images using general coding methods (e.g., gzip), image coding standards (e.g., JPEG2000),
and the two image decomposition approaches that rely on finite-context models and arithmetic
coding.

From the obtained experimental results, we conclude that JPEG-LS gives the best compression
results, among the image coding standards, but lacks lossy-to-lossless capability, which may
be a decisive functionality if remote transmission over possibly slow links is a requirement.

We developed compression algorithms based on two decomposition approaches: bitplane
decomposition and binary-tree decomposition. In the bitplane decomposition, we also used
segmentation, bitplane Reduction, and an approach based on bit modeling by the pixel value
estimates. All the developed methods allow lossy-to-lossless compression and are based on
finite-context models and arithmetic coding. According to the obtained results, the approach
based on binary-tree decomposition seems to be the one that attains the best compression
results. The only exceptions are the RNAi images, for which the best method is the one based
on a mixture of finite-context models.

In terms of coding speed, the compression algorithm based on a binary-tree decomposition
seems to be the fastest one among all the others in the encoding phase. In the decoding stage,
the approaches based on bitplane decomposition seem to be faster for the microarray and
medical image data sets. For the RNAi images, the method based on binary-tree decomposition
seems to be the fastest one.

A rate distortion study was also performed and, according to the obtained results, it seems
that the method based on binary-tree decomposition attains the best results for the majority
of the cases. The results obtained by the developed compression algorithms have been
compared with general-purpose compression methods and also with image coding standards.
According to the results, we can conclude that these compression methods have better
compression performance in all the image test sets used.
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Abstract

Digital Signal Processing is not a recent research field, but has become a powerful
technology to solve engineering problems in the last few decades due to the intro‐
duction by Texas Instruments in 1982 of the Digital Signal Processor. Fast digital signal
processors have quickly become a cornerstone of high-performance electrical drives,
where power electronic conversion systems have heavy online computation burdens
and must be controlled using complex control algorithms. In this sense, multiphase
drives represent a particularly interesting case of study, where the computational cost
highly increases with each extra phase. This technology has been recognized in recent
times as an attractive electrical drive due to its usefulness in traction, more-electric
aircraft applications and wind power generation systems. However, the complexity
of the required control algorithms and signal processing techniques notably increases
in relation with conventional three-phase drives. This chapter makes a revision of the
necessities of a high-performance multiphase drive from the digital signal processing
perspective. One of the most powerful Texas Instruments’ digital signal processor
(TMS320F28335) is used, and specific control algorithms, electronic circuits and
acquisition processing methods are designed, implemented and analyzed to show its
interest in the development of a high-performance multiphase drive.
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1. Introduction

Digital Signal Processing in Power Electronics is an important research area which mainly
covers problems concerning the design and realization of algorithms using Digital Signal
Processors (DSPs). A wide variety of solutions can be found at industry and in research fields
involving DSP applications, mostly in accordance to conventional three-phase systems. This
chapter will analyze the interest and utility of Digital Signal Processing in the specific field of
multiphase electric drives. This area has significantly accelerated in the last decade due to their
intrinsic features like higher fault tolerance, reduced torque ripple or better power splitting.
With the number of conventional electrical drives continuously growing, the interest in
multiphase ones is also rising, although they are not yet so common due to their complexity.
The development of modern power electronic switches and the ability of modern DSPs to
implement complex algorithms are allowing the control of multiphase drives in applications
such as aerospace actuators, wind energy conversion systems, oil pumping or ultrahigh-speed
elevators.

Power conversion systems are composed of different electrical and electronic components that
need to be managed following specific constraints depending on the final application.
Moreover, such systems are designed to work under different conditions and states; thus,
several control algorithms can be found in a single DSP, and the designed control unit (based
on the DSP) must be able to change between these different states, considering measured
components and actuating on the overall equipment to work as desired. For this purpose,
Digital Signal Processing based on DSPs must be done considering not only the inner control
algorithm implementation, but also the proper signal adaptation going in or out the DSP.

The major benefit to readers of this chapter is the acquisition of specific knowledge concerning
the processing of signals from current and/or speed sensors using a digital signal processor
and the subsequent generation of the signals needed to control the power switches in a
multiphase power converter, following the implemented controller commands. Hardware and
software design for the specific application are included as illustrative examples for the
considered systems.

The chapter is organized as follows:

First of all, the overall system features and constraints are presented, demonstrating the
necessity for digital signal processing and the implementation of DSPs for such application.
The specific characteristics needed for the multiphase drive application are also presented and
the selected DSP (TMS320F28335) is described. Subsequently, the electrical and electronic
hardware is explained and the acquisition/adaptation PCBs, developed in order to communi‐
cate the DSP with the overall system, are presented. The next section explains the software
designed to control the power converters and electrical equipment, the current and speed
sensors measurement and treatment, the implemented controller algorithm and the semicon‐
ductor switching signals. Finally, some results are depicted and conclusions are presented.
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2. Power conversion systems using multiphase induction machines

Although the deadline for a complete replacement of petroleum-based fuels is uncertain, it is
clear that the human being is in a race against time to replace conventional energy sources. In
the last decade, the technology evolution in areas such as renewable energies or electric
propulsion has been intense to achieve this goal [1]. Government policies are promoting the
use of renewable energy sources (wind, photovoltaic) and new transportation systems (hybrid
and electrical vehicles) aiming to fulfill environmental, economical and social needs [2]. From
the technological point of view, the present time is a moment of challenge and the success of
a technological approach will depend on the degree in which the society demands are satisfied.
As far as the electrical vehicles (EVs) are concerned, where digital signal processing and power
electronic fields are finding an important niche of application, some of the desirable features
of an automotive drive include:

• High overall efficiency over wide speed and torque range.

• Fast torque response for vehicle acceleration.

• High reliability in different operation conditions.

• Safety and fault tolerance.

• Low maintenance and improved robustness.

• Reasonable cost.

These general characteristics are advantageous regardless of the wide range of EVs available
in the market, which includes battery-powered electric vehicles (BEV) and plug-in electric
vehicles (PHEV), hybrid electric vehicles (HEV) or fuel-cell electric vehicles (FCEV) [3]. Hybrid
topologies combining internal combustion engine (ICE) and electrical motors (EM) can be
classified into series, parallel and series-parallel types. Each vehicle topology has its own
specific features and the general control of the vehicle can follow different approaches [4].
Nevertheless, the structure of the electric propulsion system is similar in all topologies and
essentially consists of a battery, an electronic converter, an electric motor, and a speed and/or
torque sensor [1]. Figure 1 presents a general schematic of an electric propulsion drive.

Electronic 
Converter

Control System

ECU
DSP

Sensor
Electric Motor

Battery

++++

++++

Vdc

Figure 1. Example of an electric vehicle propulsion system.
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The propulsion system is completed with the mechanical part, including transmission and
wheels. The energy conversion process is controlled by the electric drive, which is the core of
the electric propulsion system. In motor mode, the energy comes from the batteries to the
wheels in a controlled manner by means of drive control, while in regenerative braking the
energy is reversed back to the batteries. Failure of one of the drive phases may result in a
complete breakdown of the propulsion system unless a proper post-fault control is applied to
improve the vehicle reliability.

The electric propulsion has been traditionally obtained from conventional DC machines but
nowadays three-phase AC machines are more appropriate solutions due to their lower cost
and higher reliability [5]. Consequently, the standard option for the drive in the propulsion
system is the use of three-phase induction or permanent magnet synchronous motors (PMSM),
two-level voltage source inverters (VSI’s), field-oriented control (FOC) and pulse width
modulation (PWM). However, many other options can be explored for optimal drive design:

• Motor type: PMSM provide higher torque density, small size and weight, and good
efficiency [6], but squirrel cage induction motors possess interesting features for electric
propulsion of EVs including low cost, low maintenance and ruggedness [5].

• Number of phases: Three-phase motors are available off-the-shelf and can benefit from the
economy of scales. However, multiphase motors can provide higher robustness due to its
inherent fault-tolerant characteristic, lower noise and vibrations [7], higher torque density
by current harmonic injection [8], lower per phase current rating [9] or ripple-free post-fault
drive operation [10].

• Converter type: Although matrix [11] or multilevel [12] converters have been proposed for
EV applications, the standard option is the use of a two-level VSI. This option becomes
natural for EVs with multiphase motors due to the Amps per phase current reduction. DC
buck/boost converters can also be included into the drive topology [1], but the motor and
inverter control are not affected.

• Control strategy: The electric drive control can be implemented using any of the extensive
options available in literature, from the simple scalar control to artificial-intelligence-based
controls [5]. Control schemes based on model reference adaptive control (MRAC) or sliding
mode control (SMC) can be found in [13], and popular control strategies like the field-
oriented control (FOC) or the direct torque control (DTC) have been addressed in [12].
Nevertheless, the finite-control set model based predictive control (FCS-MPC) has been
introduced in the last decade and it is a promising candidate to replace standard schemes (or
to become a part of other existing methods like FOC) due to its simplicity and good perform‐
ance [14-16]. The increment in the available computing power of modern microprocessors
makes this strategy now plausible for controlling conventional and multiphase drives, and
a wide variety of predictive current controllers have been recently presented [17-21].

The final decision on a particular topology is always a trade-off between different desirable
features. The topology explored in this work uses a five-phase induction motor supplied from
a two-level inverter and controlled with a predictive control strategy, to promote the reliability,
efficiency and performance characteristics of the propulsion drive (Fig. 2).
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Figure 2. Schematic diagram of a five-phase two-level induction motor drive.

The key features of the proposed propulsion system and drive control include:

• Improved efficiency with lower inverter losses and motor losses (predictive controller and
multiphase motor drive).

• High robustness and low maintenance (induction motor).

• Fast torque response (predictive control).

• Fault-tolerant operation (multiphase motor).

3. Hardware description: Power converter and electronic control unit

An experimental test rig has been implemented to emulate the aforementioned multiphase
propulsion drive. This test-bench is shown in Fig. 3. The system is composed of a symmetrical
five-phase induction motor (IM) with distributed windings that has been constructed rewind‐
ing a conventional three-phase IM. The electrical drive is mechanically coupled to a DC motor,
which can provide a programmable mechanical load torque to the system. Notice that each
motor (DC motor and 5-phase IM) is controlled independently using two different power
converters. An incremental encoder is also coupled to the shaft to measure the rotational speed.

The five-phase motor is driven by two conventional three-phase two-level voltage source
inverters (VSIs), with an independent external DC power supply as the DC-Link. A DSP-based
Electronic Control Unit (ECU) is used in order to control the power converters switching
sequence, depending on the demanded control action. Switching signals are sent from the ECU
to the power converter drivers, being 0 V for OFF state and 15 V for ON state. For control
purposes, four phase currents are measured with hall-effect sensors included on the power
converters and the remaining fifth current is estimated considering that the IM is arranged
with only one isolated neutral point. The hall-effect current sensors allow measurements in a
range of ±25 A. Each semiconductor driver provides an error signal that triggers ON (0 V)
under low- or high-voltage condition and overcurrent operation. The aforementioned signals
are classified as input or output signals of the ECU. Switching signals are regarded as output
signals while error signals and current/speed measurements are considered as input signals.
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The ECU is connected to a host PC using a standard RS232 cable. Then, the user of the system
can manage the entire system using a developed host PC software that governs the ECU. The
software that runs in the DSP, configures its internal peripherals, the communication protocol,
the data acquisition system, and the control algorithm is programmed using the DSP’s
manufacturer proprietary software.

The measured speed and current signals as well as the digital errors obtained from the power
converter (i.e., errors generated in the semiconductors’ drivers) are received and processed in
the DSP. If no error is detected, the processor executes the control algorithm and provides the
switching signals to the power converters semiconductors (the implemented algorithm will
be described in the next section).
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Figure 3. Multiphase drive experimental test-bench.

A summary of the described input and output (I/O) signals is provided in Table 1, where their
electrical characteristics are also detailed.

In order to properly select a DSP among those commercially available, it is necessary to identify
the number and type of input/output signals that the system will handle. A more detailed
scheme of the DSP, including the managed I/O signals, is presented in Fig. 4. As schematically
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shown, error and measured signals (currents and speed) correspond to DSP’s inputs, while
communication, semiconductor switching and auxiliary general purpose signals are consid‐
ered as outputs. In what follows, a short summary of I/O signals of the ECU is presented.

A/D
Converter

MICROCONTROLLER

General Purpose 
Output Signals

Speed

Error_DRV

Error Signal

Switching Signal

Reset

Contactor1

Current

Contactor2

Contactor3

RS232
Communications

DSP

Figure 4. Signal requirements for the ECU.

The semiconductors’ drivers possess an error signal that is automatically triggered in case of
an excessive temperature, overcurrent or overvoltage condition on the power converter. In
case that an abnormal working condition is detected, the ECU should interrupt the power
converter switching process, avoiding further damage in the electric and electronic system.

Due to the analog nature of the measured signals (remember that currents and speed sensors
are required), an Analog-to-Digital Converter (ADC) stage is necessary before providing
measured values to the processor. Such stage is commonly found on commercially available
DSPs, being only necessary to select its working conditions and enabling signals.

Name Quantity Characteristics Type

Phase Current 4 ±25 A Input

DC-Link Voltage 1 300 V –

Rotational Speed 1 ±1000 rpm Input

Driver Error 5 0/15 V Input

General Purpose Output 5- – Output

Semiconductor switching signals 5 0/15 V Output

Table 1. Electronic Control Unit I/O signals and their electrical characteristics.
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The semiconductor switching signals are provided from the DSP to the drivers by means of
the enhanced Pulse Width Modulator (ePWM) modules. Therefore, for the designed experi‐
mental test-rig, the DSP must include at least five ePWM modules in order to control the power
converter connected to the five-phase electrical drive.

Different auxiliary signals, found on the General Purpose Input Output (GPIO) module, are
considered for reset, system configuration and initialization purposes. For instance, the reset
signal is used to restart the system in the presence of a system error or if it is demanded by the
test-rig operator. Regarding the system configuration, three general purpose (GPIO) signals
are used to manage and control the power converter through electric contactors. Remaining
GPIOs are used to turn ON/OFF warnings and error light indicators and to trigger external
measurement equipment such as an oscilloscope.

The chosen DSP must also manage the communication protocol RS232 in order to allow an
external operator to control the system using an implemented Human Machine Interface
(HMI) software that runs in a personal computer. Consequently, a Serial Communication (SCI)
module must be integrated in the ECU.

Taking into account the previous requirements, the TMS320F28335 Texas Instruments DSP has
been selected among other devices. The characteristics of the TMS320F28335 are summarized
in Table 2.

Name Characteristics

Power supply 5 V

Output voltage range -0.3 to 4.6 V

Input voltage range -0.3 to 4.6 V

High-level input/output voltage 3.3 V

Low-level input/output voltage 0 V

Floating-point Unit Yes

PWM outputs 6

32-Bit Capture inputs of auxiliary PWM outputs 6

12-Bit Analog-to-Digital Converter (ADC) 16

Serial Peripheral Interface (SPI) 1

Serial Communications Interface (SCI) 3

General purpose I/O pins 88

Table 2. Texas Instruments TMS320F28335 DSP characteristics.

Notice that the DSP I/O signal voltage threshold is between 0/3.3 V, while the rest of the signals
of the system work at higher voltage levels. Consequently, it is necessary to implement some
voltage adaptation stages between the different system signals and the DSP. In what follows,
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an explanation of the different adaptation stages for current, speed, error and switching signals
is presented.

a. Measured current adaptation stage

As mentioned above, the measuring range of hall-effect sensors is ±25 A, being the maximum/
minimum possible current to be measured on a power converter phase. Moreover, the hall-
effect sensor has a transformation ratio of 1/1000, which means that the output current of the
sensor is ±25 mA. The aim of the current adaptation circuit is to transform the current meas‐
urement into an equivalent voltage signal within the allowed DSP I/O threshold. The electrical
circuit schematic of the adaptation stage is presented in Fig. 5, where the hall-effect sensor is
represented by an ideal current source. In general, the designed circuit contains the following
stages:

• Transformation of the measured current into an equivalent voltage by means of the
measurement resistance (RM).

• Voltage divider and low-pass active filter, reducing measurement noise.

• Signal voltage adaptation stage (0/3.3 V).

• Safety diodes that prevent the output signal from exceeding the voltage limits.
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Figure 5. Schematic of the measured current adaptation circuit.

b. Measured speed adaptation stage

The test-rig speed is measured by means of an incremental encoder from the manufacturer
Hohner with reference 10-11657-2500. This device measures speeds between ±1000 rpm and
gives two types of squared waves that are 90 electrical degrees out of phase, which are usually
called channel A and channel B. The reading of one channel provides information about the
speed of rotation, while the acquisition of the second channel allows obtaining the rotational
direction. Another signal called channel I (or index) is also available, which gives the position
of absolute zero on the encoder shaft. This signal is a squared impulse with the phase and
width centered on channel A. The set of three signals (Fig. 6) has an equivalent output voltage
of ±5 V and must be adapted to the DSP’s voltage threshold (0/3.3 V).
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Figure 6. Graphic representation of the A, B and I incremental signals obtained from the Hohner’s encoder with refer‐
ence 10-11657-2500.

The speed measurement adaptation circuit shown in Fig. 7 consists of the following stages:

• Optocoupler circuit that allows the electrical isolation of the speed sensor and the electronic
control unit.

• Voltage divider.

• Unity gain buffer amplifier for circuit stage isolation.

• Safety diodes that prevent the output signal from exceeding the voltage limits.
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Figure 7. Schematic of the measured speed adaptation circuit.

The three adapted signals are then received by the eQEP peripheral module in the DSP, which
is in charge of calculating the rotational speed. This module offers two different first-order
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The three adapted signals are then received by the eQEP peripheral module in the DSP, which
is in charge of calculating the rotational speed. This module offers two different first-order

Applications of Digital Signal Processing through Practical Approach170

approximations for speed estimation, which should be implemented for either high- (1) or low-
speed operation (2) [22]:

( ) ( ) ( )1
 

x k x k Xv k
T T

- - D
@ = (1)

( ) ( ) ( )
 

1
X Xv k

Tt k t k
@ =

D- - (2)

where

v(k ): Velocity at the time instant k

x(k ): Position at the time instant k

x(k −1): Position at the time instant k-1

T : Fixed unit time or inverse of velocity calculation rate

Δx: Incremental position movement in unit time

t(k ): Time instant k

t(k −1): Time instant k-1

X : Fixed unit position

ΔT : Incremental time elapsed for unit position movement

(1) is the conventional approach for speed estimation in electrical drives working at high speed.
This method is based on counting the number of encoder pulses x(k )− x(k −1)  in an established
period of time (T) which can be defined as the inverse of the DSP calculation rate (150 MHz in
our case) [22]. The encoder count (position) is read at the beginning of each speed control loop.
Then, the speed estimate is computed by multiplying the number of pulses by the known
constant 1/T (Fig. 8).

0 t

A

T

x(k-1) x(k)

Figure 8. Electrical drive speed estimation under high-speed operation.

However, the speed estimation method based on (1) has an inherent accuracy limit directly
related to the resolution of the electrical drive encoder and the sampling period T, making
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difficult to obtain an accurate speed estimation at low-speed working conditions [22]. Conse‐
quently, at low-speed operation the calculation method is changed to (2), in order to obtain a
more precise measurement. In this case, the motor speed is calculated by measuring the elapsed
time between successive pulses (Fig. 9). The width of each pulse is defined by the motor speed
for a given encoder resolution (2500 pulses per revolution in our case).

A

X

0 tt(k-1) t(k)

Figure 9. Electrical drive speed estimation under low-speed operation.

The DSP eQEP peripheral module is mainly formed by the units shown in the right side of
Fig. 10 [23] and its functioning can be summarized as follows [22]. The encoder adapted signals
A, B, I in Fig. 6, now labeled as EQEPA, EQEPB and EQEPI, are received by the Quadrature
Decoder Unit (QDU), which calculates the speed direction and generates the clock for the
pulses counter. The working characteristics of this pulses counter are set in the Position
Counter and Control Unit (PCCU) [22]. The eQEP peripheral includes an integrated Quadra‐
ture Capture Unit (QCAP) to measure the elapsed time between consecutive pulses as shown
in Fig. 9. This feature is typically implemented for low-speed measurement using equation
(2). In addition, the eQEP peripheral contains a 16-bit watchdog timer (QWDOG) used to
ensure the proper module operation. Finally, a 32-bit Unit Time Base (UTIME) is included to
generate periodic interrupts, based on the internal clock (SYSCLKOUT), for the encoder signals
measurement and speed/direction estimation.
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Figure 10. Electrical drive speed estimation process.

c. Power converter signal adaptation stage

In the power converter it is necessary to carry out the signal adaptation of both the semicon‐
ductor’s switching and driver error signals.
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c. Power converter signal adaptation stage

In the power converter it is necessary to carry out the signal adaptation of both the semicon‐
ductor’s switching and driver error signals.
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The semiconductors drivers operate with a voltage threshold between 0/15 V, switching ON
when triggered with 15 V and OFF with 0 V. The semiconductors’ switching signals come from
the DSP of the ECU. Then their voltage level is given between 0/3.3 V and must be adapted to
meet the 0/15 V driver threshold. Each phase of the power converter consists of two semicon‐
ductors, which, for safety reasons, cannot be active at the same time to avoid short circuits.
This implies that the switching signal of one semiconductor will be the complementary of the
other one. The switching signal adaptation circuit (Fig. 11) contains the following stages:

• Optocoupler circuit that allows the electrical isolation between the power converter and the
adaptation circuit.

• Inverter circuit to obtain the complementary switching signal, setting in this way the signals
of the two semiconductors of each converter leg.

• Darlington transistor in order to raise the voltage from 0/3.3 V (DSP) to 0/15 V (semicon‐
ductor driver).

R2

VoutVin

0/3.3V

0/15V
VCC

R1

15/0V

Vout

Figure 11. Schematic of the semiconductor switching signal adaptation circuit.

Correspondingly, the semiconductors driver error signals are given in a voltage level of 0/15
V. As in previous cases, such voltage level exceeds the DSP’s allowed voltage threshold (0/3.3
V), and consequently must be adapted. The adaptation circuit (Fig. 12) consists of an opto‐
coupler, which provides an electrical isolation between the power converter and the electronic
control unit, and the required voltage level adaptation. Moreover, a LED is placed in series
with the optocoupler resistance in order to generate a light signal in case of an error.

R2

Vout

Vin

0/15 V

0/3.3 V

VCC

R1

3.3 V

D1

Figure 12. Error signal adaptation circuit schematic.
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The aforementioned designed circuits along with the selected DSP are finally mounted on a
set of Printed Circuit Boards (PCB), constituting the Modular Electronic Control Unit (MECU,
patent pending) shown in Fig. 13 and placed within the power converter module, allowing to
measure four phase currents, the electrical machine speed, handle the power converter error
signals and control the semiconductors’ switching sequence.

Figure 13. Modular electronic control unit printed circuit boards.

4. Software design: Data acquisition, signal processing and control
algorithm implementation

In this section the control algorithm is detailed. Before describing the algorithm, it is necessary
to understand how the hardware and the software meet. The electrical drive power converters
include some current sensors to measure the stator currents in the multiphase machine. Voltage
levels are obtained, corresponding to the measured stator currents, and these values are
adapted to the available DSP’s voltage levels and then converted into digital values using the
analog-to-digital converter module of the DSP. The implemented algorithm uses these digital
values to control the multiphase machine. The complete system operation flowchart is
presented in Fig. 14.
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When the operation of the system starts, the control algorithm guarantees that error signals
are not activated before switching the power converter. Notice that if an error in a driver is
detected while the system is on, the DSP stops the switching process, shutting down the system
to avoid any damage. In any case, the control algorithm includes a stop signal to allow the test-
rig operator to halt the entire system anytime. The control algorithm operates during normal
operation of the multiphase drive, reading stator currents and forcing these values to follow
the reference ones.

ON Adaptation
PCB’s

Control
Algorithm

ERROR

Measurement
Stage

A/D
Converter

Electrical
Drive

OFF

S1… S5

STOP
ERROR_DRVERROR_DRV

ERROR_DRV ERROR_DRV

Figure 14. System operation flowchart.

The most common control strategy in the multiphase drive case is the well-known Rotor-Flux
Oriented Control (RFOC) method, based on multiple inner current control loops (linear stator
current PI controllers and PWM modulators) commanded by outer controllers (speed/torque
and flux PI controllers). A modified RFOC controller is implemented in our case. While the
external control loops of a conventional high-performance RFOC drives is maintained, an
alternative to the inner current controller based on the model predictive control (MPC) is
applied. The inner control method is also known as finite-control set model-based predictive
control method (FCS-MPC) because the number of switching states in a power converter is
finite and only one switching state is applied during the whole sampling period. Notice that
the FCS-MPC method is used as a case example in this work due to its recent interest in the
development of high-performance three-phase and multiphase drives [15, 16, 24, 25] and
power converters [26, 27].

The basic scheme of FCS-MPC is presented in Fig. 15, and runs in the processor unit as follows.
The control action is obtained solving an optimization problem at each sampling period, where
a model of the real system is used to predict its output. This prediction is carried out for each
possible input, or switching vector, of the power converter to determine which one minimizes
a defined cost function (the basis of the optimization problem). Notice that the model of the
real system, also called predictive model, must be used considering all possible voltage vectors
of the power converter, which suggests a high-computational cost for the digital signal
processing technique.
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Different cost functions can be used to express different control criteria. In our case, an absolute
current error is used to define the cost function. The reference stator currents, is*¯ (k ), and the
stator phase currents of the machine, is¯(k ), are measured and processed by the DSP every
sampling period. The machine state-space model is then used to predict the current evolution,
î s¯(k + 1), depending on the different possible switching states Si

j(k + 1) and considering the VSI
DC-Link voltage and measured phase currents is¯(k ). Subsequently, the cost function J  is
evaluated considering predicted and reference stator phase currents, and the switching vector
that provides the lowest value of the cost function, Si

optimum(k + 1), is applied to the power
converter during the next sampling period. This process is depicted in the flow diagram shown
in Fig. 16.

Notations
is(k): measured stator currents.
îs(k+1): predicted stator currents.
is*(k): reference stator currents.
Si

j(k+1): One of the possible switching voltage vector.
Si

optimum(k+1): Switching voltage vector that minimices J.
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Figure 15. Finite-Control Set Model-Based Predictive Control scheme.

It is important to note that different cost functions (3) can be defined depending on the specific
application in order to include different control constraints (Ci). In our case, the cost function
only depends on the reference and predicted currents in the stationary reference frame.
However, different control criteria aimed to optimize the multiphase drive performance such
as DC-Link voltage balancing, switching stress minimization, common-mode voltage reduc‐
tion or stator current harmonic minimization can be included, increasing also the complexity
of the control strategy and the digital signal processing capacity of the entire system. Every
considered constraint can have a different degree of importance in the cost function using
weighting factors (Wi). This is one of the advantages of the FCS-MPC technique, a flexible
control method where different constraints can be easily introduced without increasing the
complexity of the algorithm.

1 1 2 2 ...  i iJ W C W C W C= + + + (3)
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Figure 16. FCS-MPC flow diagram.

FCS-MPC can be classified in two categories depending on the prediction horizon Np they
implement. Prediction horizon can be defined as the number of future states in time that the
controller predicts in order to select the most suitable control action [25]. The shortest predic‐
tion horizon can be defined as Np =1, where measured variables are determined in the instant
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k , then the optimum switching state is calculated for k + 1 and applied at k + 1. Larger prediction
horizons (Np ≥2) predict the behavior of the electrical drive for future instants k + 2,  k + 3, ...
and select the optimum VSI switching state to be applied on k + 1 (Fig. 17). It has been dem‐
onstrated that larger prediction horizon results in better performance [27]. However, the
increase in the prediction horizon results in higher computational cost and is not suitable for
real-time implementation in low and medium power drive applications [28]. One disadvant‐
age of the FCS-MPC technique is that, unlike other aforementioned techniques (such as PI-
PWM methods), it provides a variable switching frequency in the power converter.
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Figure 17. FCS-MPC prediction horizon principle.

In order to apply the FCS-MPC to a real high-performance multiphase drive, a Digital Signal
Processor (DSP) is required due to the heavy computational cost involved. All on-line digital
signal processing algorithms are implemented in the DSP. This is the case of the predictive
model based on the machine modeling equations, which must be discretized to be program‐
med in the DSP [29, 30]. In our case, the stator phase currents and rotor flux in the stationary
reference frame are assumed as state variables [29], and the obtained equations can be
summarized as follows:
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 s s s r rL i kab ab abl s l= +
uuuur uuur uuuur

(8)

where kr , τr , σ, τs and τls are obtained from the electrical parameters (stator, rotor and mutual
inductances, L s, L r  and L m, and stator and rotor resistances, Rs and Rr) of the machine, as it
is defined in (9), (10), (11), (12) and (13), respectively.
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Rewriting equations (4)-(8) in terms of their real and imaginary components in matrix form:

 d x A x B u
dt

= +é ù é ù é ù é ù é ùë û ë û ë û ë û ë û (14)

 y C x=é ù é ù é ùë û ë û ë û (15)

where
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Next, the machine state-space equations (14)-(15) are discretized using a sample period Ts and
assuming constant inputs and constant electrical parameters during the whole sampling
period [30]. Notice that the matrix A  includes constant and variable components that depend
on the instantaneous value of the electrical speed (ωr). The matrix A  has been divided into a
constant matrix Ac  and a speed-dependent one Aω , to simplify the discretization process as
follows:
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The obtained [Φ] matrix is based on a constant term e Ac T s, which is calculated off-line, and a

time-varying term e Aω T s, which can be defined as stated in [30] applying the Cayley-Hamilton
theorem:
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To summarize, the implemented predictive current control (PCC) technique is based on a fast
inner current FCS-MPC controller with an outer speed PI RFOC-based regulator, offering
better system performance (higher control bandwidth) than using conventional RFOC
methods with cascaded PI controllers [25]. The inner PCC controller has been described before,
where the predicted stator currents in the stationary reference frame are used in order to
control the multiphase drive. The outer speed controller generates current references in a
rotating reference frame from an outer PI-based speed control loop. Constant flux operation
(reference speed under its nominal value) is supposed, and a constant d  -current reference is
imposed. These stator current references are then mapped in the α - β - x - y stationary reference
frame in order to be used in the cost function (28) as it is shown in Fig. 18. The same method‐
ology has also been applied in recent scientific studies [16, 20, 24].
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The reference stator current vector in the x - y plane can be null or non-null depending on the
type of multiphase machine. The α - β stator current components contribute to torque pro‐
duction, while x - y stator current components do not in distributed windings multiphase
machines. This is our case with the five-phase induction machine with distributed windings
used for experimentation. Then, zero reference is set in our controller for the x - y current
components to avoid harmonic generation and reduce the copper losses in the drive. The
weighting factors in the cost function (28) are adjusted in order to favor those switching states
(32 for the five-phase two-level VSI used), which maximize α - β currents and at the same time
provide minimum x - y currents. The overall control aim is to generate the desired electric
torque to the drive, which implies the generation of sinusoidal stator current references in a -
b - c - d  - e phase coordinates in steady state. In the stationary α - β - x - y   reference frame and
steady state, the control aim is equivalent to generate a reference stator current vector in the
α - β plane, which is constant in magnitude but changing in its electrical angle following a
circular trajectory.

 s s sx syJ A i B i C i D ia b= + + + (28)

Each  α - β - x - y current term in the cost function is defined as:

( ) ( ) ( ) ( )* *1 1 ,  1 1ˆ  ˆ
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Figure 18. General scheme of the implemented PCC controller.
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5. Application results

In this section, experimental results are provided to validate the interest in the design of high-
performance and complex power drives of real-time digital signal processing implemented
using DSPs.

A DC-Link voltage of 300 V is used and the switching frequency is fixed to 10 kHz. A constant
d-current component of 0.52 A is also imposed, and a maximum phase current of 2.1 A is
selected for safety reasons. The five-phase induction machine specifications are detailed in
Table 3, while the estimated electrical parameters of the machine, used in the discretized
predictive model implemented in the DSP, are summarized in Table 4.

Parameter Value

Original Machine

Rated current 7.13 A

Rated power 4 kW

Rated speed 2880 rpm

Five-Phase Machine

Conductor Copper

Diameter 0.7 mm

Number of pole pairs 3

Number of slots 30

Number of turns 165

Slots per-phase per-pole 1

Type of winding Single layer

Winding pitch 5

Rated power 1 kW

Rated current 2.5 A

Rated voltage (peak value) 127 V

Table 3. Five-phase induction machine specifications.

Parameter Value Parameter Value

Rs (Ω) 12.85 Lr (mH) 768.80

σLs (mH) 151.65 M (mH) 688.92

Ls (mH) 768.80 τr (ms) 179.49

Table 4. Electrical parameters of the five-phase induction machine.
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The developed PCC is tested under various working conditions, including steady state
operation and different torque and speed references to show that PCC provides fast reference
tracking and accurate steady-state behavior at different operating points. A speed and torque
response test is conducted first. Obtained results are shown in Fig. 19, where the speed
response is depicted in the upper plot and the q-current in the lower plot. Under no load
condition (TL =0), a reference speed step change from 0 to 500 rpm (Fig. 19, upper plot, red
line) is demanded on (t =0.1  s). Steady state operation and correct speed reference tracking is
obtained at approximately (t =1.5  s). Notice that a small q-current component is observed at
steady state with no load condition, due to the fact that the IM is mechanically coupled to the
DC-Machine in the experimental test-rig (Fig. 3), requiring a small current in order to maintain
the reference speed (Fig. 19, lower plot). Next, a load torque of approximately 28% of the
nominal torque (Tn) is demanded at (t =1.8  s). Due to the load torque change, the speed
reference tracking is instantaneously affected, being necessary for the system to provide an
extra q-current until the reference speed is achieved. As observed in the q-current component
plot, the implemented predictive current controller provides proper current tracking under
the different working conditions, providing almost instantaneous response to reference
current changes.

TL = 0.28*TnTL = 0

Figure 19. Speed and torque response test. The speed response is shown in the upper plot while the q-current under
the different working conditions is shown in the lower plot. First, the electrical drive speed performance is evaluated
with a reference speed step change from 0 to 500 rpm, under no load condition, at t =0.1  s. Then, at t =1.8  s a load
torque of 28% of the nominal torque (TL) is demanded.
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TL = 0

Figure 20. Reversal test. The speed reference is changed from 500 rpm to -500 rpm, under no load condition. The speed
response is shown in the upper figure while a zoom-in of the obtained current waveforms in the α - β plane during the
zero-crossing speed operating point are shown in the lower plot.

A speed reversal test changing from 500 rpm to -500 rpm is also applied under no load
condition (although the IM and DC machines are mechanically coupled, no extra load torque
is demanded). The speed is depicted in the upper plot of Fig. 20, while a zoom-in of the obtained
α - β currents during the zero-speed crossing point are shown in the lower plot. Notice that
once again the implemented controller provides an adequate performance, effectively
achieving the speed reference. Finally, the machine currents under steady state operation are
shown in Fig. 21. Phase currents are shown in the upper plot, while the α - β and x -y plots are
shown in the lower plot. Notice that phase currents are symmetrical, equally displaced and
do not exceed the maximum current limit of 2.1 A.

One of the main concerns in applications where digital signal processing is involved is the
computational cost of the implemented algorithm. This can even be considered as the most
critical issue in real-time applications, based on DSPs or microprocessors. Then, determining
if the control unit is able to implement demanded operations in certain programmed sampling
periods is fundamental. This computational burden is associated with the required mathe‐
matical task and DSP’s modules (mainly eQEP and A/D for the data acquisition, SCI for
external communication operations, and ePWM for the power converter control actions). The
real-time implemented algorithm is analyzed in detail in Fig. 22. This figure shows the relative
time-consuming load of every implemented task in a sampling period. It can be appreciated
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that the most time-demanding task corresponds to the PCC control, followed by the analog-
to-digital conversion process, while other implemented processes (such as data logging and
PC-DSP communication) and the speed PI control loop are not heavy from a computational
load perspective.
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6. Conclusion

Digital signal processing constitutes the cornerstone of numerous applications. Power
electronics and the development of high-performance drives is one of them. In general, the
development of a high-performance drive is a complex field where data acquisition, data
adaptation and discretization, data processing, control systems and finally physical interaction
using actuators with the real system are required. This complexity exponentially increases if
multiphase drives are involved, as it is the case analyzed in this chapter, where a high-
performance multiphase drive based on a symmetrical five-phase induction machine with
sinusoidally distributed windings is analyzed from the perspective of the digital signal
processing field. The specific requirements for data acquisition, processing and control in the
studied electrical drive are detailed, starting with the required signals for its safety operation.
Insights of the electrical adaptation stages, needed to process the data in the DSP, are then
provided. The electronic adaptation circuits are also shown like a fundamental part in the
processing task. Finally, the control system is summarized (the PCC method is used as a case
example due to its recent interest in the field) and experimental results are provided to show
the system operation.
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