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Preface

This book aims to provide a concise account of the essential elements of quality control. It is
designed to be used as a text for courses on quality control for students of industrial engi-
neering at the advanced undergraduate, or as a reference for researchers in related fields
seeking a concise treatment of the key concepts of quality control. It is intended to give a
contemporary account of procedures used to design quality models.

The book focuses on a clear presentation of the main concepts and results of different mod-
els of quality control, with particular emphasis on statistical models and quality manage-
ment. It provides a description of basic material on these main approaches to quality con-
trol, as well as more advanced material on recent developments in statistical models, includ-

ing Bayesian inference, Markov methods and cost models.

It places particular emphasis on contemporary computational ideas, such as applications in
Markov chain and Bayesian inference. The text concentrates on concepts, rather than mathe-
matical detail, but every effort has been made to present the key theoretical results in as pre-
cise and rigorous a manner as possible, consistent with the overall level of the book.

Prerequisites for the book are statistics, and some knowledge of basic probability. Some pre-
vious familiarity with the objectives of quality models and main approaches to statistical
quality control is helpful. Key mathematical and probabilistic ideas have been reviewed in
the text where appropriate.

The book arose from material contributed by scholars in the field of quality control. We

thank all who have contributed to that material.

Mohammad Saber Fallah Nezhad
College of Engineering,

Yazd University,

Yazd, Iran
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Statistical Quality Control







Chapter 1

Toward a Better Quality Control of Weather Data

Kenneth Hubbard, Jinsheng You and
Martha Shulski

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/51632

1. Introduction

Previous studies have documented various QC tools for use with weather data (26; 4; 6; 25;9; 3;
10; 16; 18). As a result, there has been good progress in the automated QC ofweather indices,
especially the daily maximum/ minimum air temperature. The QC of precipitation is more dif-
ficult than for temperature; this is due to the fact that the spatial and temporal variability of a
variable (2) is related to the confidence in identifying outliers. Another approach to maintain-
ing quality of data is to conduct intercomparisons of redundant measurements taken at a site.
For example, the designers of the United States Climate Reference Network (USCRN) made it
possible to compare between redundant measurements by specifying a rain gauge with multi-
ple vibrating wires in order to avoid a single point of failure in the measurement process. In
this case the three vibrating wires can be compared to determine whether or not the outputs are
comparable and any outlying values can result in a site visit. CRN also includes three tempera-
ture sensors at each site for the purpose of comparison.

Generally identifying outliers involves tests designed to work on data from a single site (9) or
tests designed to compare a station’s data against the data from neighboring stations (16). Stat-
istical decisions play a large role in quality control efforts but, increasingly there are rules intro-
duced which depend upon the physical system involved. Examples of these are the testing of
hourly solar radiation against the clear sky envelope (Allen, 1996; Geiger, et al., 2002) and the
use of soil heat diffusion theory to determine soil temperature validity (Hu, et al., 2002). It is
now realized that quality assurance (QA) is best suited when made a seamless process be-
tween staff operating the quality control software at a centralized location where data is ingest-
ed and technicians responsible for maintenance of sensors in the field (16; 10).

Quality assurance software consists of procedures or rules against which data are tested.
Each procedure will either accept the data as being true or reject the data and label it as an

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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4 Practical Concepts of Quality Control

outlier. This hypothesis (Ho) testing of the data and the statistical decision to accept the data
or to note it as an outlier can have the outcomes shown in Table 1:

Statistical Decision True Situation

Ho True Ho False
Accept Ho No error Type Il error
Reject Ho Type | error No Error

Table 1. The classification of possible outcomes in testing of a quality assurance hypothesis.

Take the simple case of testing a variable against limits. If we take as our hypothesis that the
data for a measured variable is valid only if it lies within +30 of the mean (X), then assuming
a normal distribution we expect to accept Ho 99.73% of the time in the abscense of errors.
The values that lie beyond X+30 will be rejected and we will make a Type I error when we
encounter valid values beyond these limits. In these cases, we are rejecting Ho when the val-
ue is actually valid and we therefore expect to make a Type I error 0.27% of the time assum-
ing for this discussion that the data has no errant values. If we encounter a bad value inside
the limits X+30 we will accept it when it is actually false (the value is not valid) and this
would lead to a Type II error. In this simple example, reducing the limits against which the
data values are tested will produce more Type I errors and fewer Type II errors while in-
creasing the limits leads to fewer Type I errors and more Type II errors. For quality assur-
ance software, study is necessary to achieve a balance wherein one reduces the Type II
errors (mark more “errant” data as having failed the test) while not increasing Type I errors
to the point where valid extremes are brought into question. Because Type I errors cannot be
avoided, it is prudent for data managers to always keep the original measured values re-
gardless of the quality testing results and offer users an input into specifying the limits * fo
beyond which the data will be marked as potential outliers.

In this chapter we point to three major contributions. The first is the explicit treatment of
Type I and Type II errors in the evaluation of the performance of quality control proce-
dures to provide a basis for comparison of procedures. The second is to illustrate how the
selection of parameters in the quality control process can be tailored to individual needs
in regions or sub-regions of a wide-spread network. Finally, we introduce a new spatial
regression test (SRT) which uses a subset of the neighboring stations to provide the “best
fit” to the target station. This spatial regression weighted procedure produces non-biased
estimates with characteristics which make it possible to specify statistical confidence inter-
vals for testing data at the target station.

2. A Dataset with seeded errors

A dataset consisting of original data and seeded errors (18) is used to evaluate the perform-
ance of the different QC approaches for temperature and precipitation. The QC procedures
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can be tracked to determine the number of seeded errors that are identified. The ratio of er-
rors identified by a QC procedure to the total number of errors seeded is a metric that can be
compared across the range of error magnitudes introduced. The data used to create the
seeded error dataset was from the U.S. Cooperative Observer Network as archived in the
National Climatic Data Center (NCDC).We used the Applied Climate Information (ACIS)
system to access stations with daily data available for all months from 1971~2000(see 24).
The data have been assessed using NCDC procedures and are referred to as “clean” data.
Note, however, that “clean” does not necessarily infer that the data are true values but,
means instead that the largest outliers have been removed.

About 2% of all observations were selected on a random basis to be seeded with an error. The
magnitude of the error was also determined in a random manner. A random number, r, was se-
lected using a random number generator operating on a uniform distribution with a mean of
zero and range of +3.5. This number was then multiplied by the standard deviation (o,) of the
variable in question to obtain the error magnitude E for the randomly selected observation x:

E=or M)

x

The variabler is not used when the error would produce negative precipitation, (E ,+x)<0.,
Thus the seeded error value is skewed distributed when r<0 but roughly uniformly distrib-
uted when r> 0. The selection of 3.5 for the range is arbitrary but does serve to produce a
large range of errors (+3.50,).This approach to producing a seeded data set is used below in
some of the comparisons.

3. The spatial regression test (estimates)and Inverse Distance Weighted
Estimates (IDW)

When checking data from a site, missing values are sometimes present. For modeling and oth-
er purposes where continuous data are required, an estimate is needed for the missing value.
We will refer to the station which is missing the data as the target station. The IDW method has
been used to make estimates (x) at the target stations from surrounding observations (x;).

X'=Z(x,~/f(d,)) /Zl/f(d,-) @)

Where d; is the distance from the target station to each of the nearby stations, f(di) is a func-
tion relying on d;(in our case we took f(d;)=1/d;). This approach assumes that the nearest sta-
tions will be most representative of the target site.

Spatial Regression (SRT) is a new method that provides an estimate for the target station and
can be used to check that the observation (when not missing) falls inside the confidence in-
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terval formed from N estimates based on N “best fits” between the target station and neigh-
boring stations during a time period of length n. The surrounding stations are selected be
specifying a radius around the station and finding those stations with the closest statistical
agreement to the target station. Additional requirements for station selection are that the
variable to be tested is one of the variables measured at the target site and the data for that
variable spans the data period to be tested. A station that otherwise qualifies could also be
eliminated from consideration if more than half of the data is missing for the time span (e.g.

more than 12 missing dayswhere n=24) First non-biased, preliminary estimates X, are de-
rived by use ofthe coefficients derived from linear regression, so for any time ¢, and for each

surrounding station (1/;) an estimate is formed.
X, =a,+by, 3)

The approach obtains an un-biased estimate (x) by utilizing the standard error of estimate
(s) for each of the linear regressions in the weighting process.

M=

x'=

N
(x,/s})/ .1/ 4)
i=1

i

N
N/s?=>1/s] (5)
i=1

The surrounding stations are ranked according to the magnitude of the standard error of es-
timate and the N stations with the lowest s values are used in the weighting process:

This approach provides more weight to the stations that are the best estimators of the target
station. Because the stations used in (4) are a subset of the neighboring stations the estimate
is not an areal average but a spatial regression weighted estimate

The approach differs from inverse distance weighting in that the standard error of esti-
mate has a statistical distribution, therefore confidence intervals can be calculated on the
basis of s” and the station value (x) can be tested to determine whether or not it falls with-
in the confidence intervals.

X'—f5'<x<x'+ f5 (6)

If the above relationship holds, then the datum passes the spatial test. This relationship indi-
cates that with successively larger values of f, the number of potential Type I errors decreas-
es. Unlike distance weighting techniques, this approach does not assume that the best
station to compare against is the closest station but, instead looks to the relationships be-
tween the actual station data to settle which stations should be used to make the estimates
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and what weighting these stations should receive. An example of the estimates obtained
from the SRT is given in Table 2.

ating yi based on x 20E 35S Hawelock 82E 20S 12W 55N 51E 13S
A254739 |A254749 days X \al y2 y3 y4 x"1 X2 x'3 x'4 x'1/s1"2 x2/s2"2 x'3/s3"2
83.696 85.586 6/1/2011 85.1 85.5 83.4 83.7 85.6 8551 84.30 84.82 84.62 47.016 92.680 170.315
85.604 87.584 6/2/2011 86.2 86.2 85.3 85.6 87.6 86.28 86.33 86.78 86.62 47.438 94.906 174.255
89.942 92.282 6/3/2011 91.9 89.5 90.0 89.9 92.3 89.73 91.33 91.24 91.30 49.338 100.408 183.214
85.478 85.1 6/4/2011 84.1 85.9 83.5 85.5 85.1 8591 84.42 86.65 84.14 47.238 92.806 173.995
94.46 97.286 6/5/2011 96.3 94.9 94.1 94.5 97.3 9549 9567 95.89 96.29 52.504 105.175 192.545
97.574  100.994 6/6/2011 99.8 98.0 97.7 97.6 101.0 98.83 99.51 99.09 99.99 54.341 109.395 198.977
95.918 98.726 6/7/2011 97.2 96.3 96.4 95.9 98.7 97.03 98.10 97.39 97.73 53.349 107.841 195.557
83.066 86.288 6/8/2011 83.5 86.4 84.8 83.1 86.3 86.41 8581 84.17 85.32 47.512 94.339 169.014
69.674 72.878 6/9/2011 71.0 71.8 71.9 69.7 729 70.92 7218 70.40 71.95 38.994 79.345 141.355
66.2 67.766 6/10/2011 66.2 69.8 67.6 66.2 67.8 68.77 67.59 66.82 66.86 37.812 74.306 134.181
75.758 76.694 6/11/2011 76.2 76.2 74.8 75.8 76.7 7553 7519 76.65 75.76 41.527 82.663 153.921
77.324 78.98 6/12/2011 78.8 77.9 77.7 77.3 79.0 77.43 7829 78.26 78.04 42572 86.065 157.155
69.314 70.97 6/13/2011 69.2 70.3 69.9 69.3 71.0 69.23 69.98 70.03 70.05 38.066 76.930 140.612
76.028 78.728 6/14/2011 78.1 79.5 78.1 76.0 78.7 79.12 78.67 76.93 77.79 43.501 86.485 154.478
84.632 86.396 6/15/2011 86.4 85.0 85.3 84.6 86.4 84.97 86.35 85.78 8543 46.720 94.927 172.248
85.118 86.27 6/16/2011 86.8 85.3 84.0 85.1 86.3 8524 84.94 86.28 8531 46.868 93.373 173.252
90.266 92.732 6/17/2011 91.3 92.5 90.9 90.3 927 9292 9233 9158 91.75 51.090 101.500 183.884
80.312 82.904 6/18/2011 81.5 82.9 81.4 80.3 829 8271 8222 81.34 81.95 45475 90.391 163.326
85.118 87.458 6/19/2011 85.6 86.6 85.5 85.1 87.5 86.66 86.60 86.28 86.49 47.649 95200 173.252
86.81 88.448 6/20/2011 87.9 88.2 86.7 86.8 88.4 88.35 87.88 88.02 87.48 48.578 96.607 176.746
71.258 72.788 6/21/2011 72.0 72.9 71.9 71.3 72.8 72.07 7216 72.03 71.87 39.628 79.324 144.627
74.948 76.586 6/22/2011 76.7 75.0 74.4 74.9 76.6 7426 74.83 75.82 75.65 40.831 82264 152.248
76.604 78.62 6/23/2011 771 78.9 76.4 76.6 78.6 7845 76.87 7752 77.68 43.132 84.511 155.668
78.17 80.168 6/24/2011 79.4 79.4 78.3 78.2 80.2 78.96 7892 79.13 79.22 43.417 86.758 158.902
80.564 82.544 6/25/2011 82.0 80.8 80.6 80.6 825 80.52 81.33 81.60 81.59 44.272 89.404 163.846
81.302 82.814 6/26/2011 82.1 82.3 82.1 81.3 82.8 82.09 8291 8236 81.86 45.137 91.147 165.370
78.044 80.06 6/27/2011 79.1 79.8 779 78.0 80.1 79.37 7854 79.00 79.12 43.638 86.338 158.642
79.61 81.716 6/28/2011 81.1 80.2 791 79.6 81.7 79.87 79.80 80.62 80.77 43.913 87.724 161.876
89.78 91.76 6/29/2011 91.3 89.7 89.3 89.8 91.8 89.96 90.55 91.08 90.78 49.465 99.547 182.880
98.78 101.48 6/30/2011 100.0 100.3 98.4 98.8 101.5 101.25 100.29 100.33 100.47 55.671 110.256 201.467

Linear regression Slope 1.066 1.061 1.029 0.997

parameters Intercept  -5.687  -4.170 -1.265  -0.705 sum(1/si®2) s'

Si(x,yi) 1.349 0.954 0.706 0.694 5.73249 0.83533

0.069812 0.208934
0.382169 0.206952

0.48731 0.408523
6.273045 3.18E-05

One example for day 30 (i=1 to 4 for four reference stations) :
yi 1.1 0.4 -0.7 -0.6) 1.43312 0.83533

Table 2 An example of QC using Spatial Regression Test (SRT) method for daily maximum temperature estimation
(unit: F). Stations are from the Automated Weather Data Network and locations are on an East-West by North South
street naming convention. The original station (Lincoln 20E 355S) is labeled x while the four neighboring stations are

y1,y2, y3, and y4. Equation 3 is used to derive the unbiased estimates x,, x, etc. for n=30. The final estimate x(est) is
determined from the unbiased estimates using equations 4 and 5.

Using the above methodology, the rate of error detection can be pre-selected. The reader
should note that the results are presented in terms of the fraction of data flagged against
the range of f values (defined above) rather than selecting one f value on an arbitrary ba-
sis. This type of analysis makes it possible to select the specific f values for stations in dif-
fering climate regimes that would keep the Type I error rate uniform across the country.
For example for sake of illustration, suppose the goal is to select f values which keep the
potential Type I errors to about two percent. A representative set of stations and years
can be pre-analyzed prior to QC to determine the f values appropriate to achieve this
goal.The SRT method implicitly resolves the bias between variables at different stations
induced by elevation difference or other attributes.

Tables 2 and 3 show the use of SRT (equations 3, 4 and 5 above). The data in the example are re-
trieved from the AWDN stations for the month of June 2011. Only one month was used in this
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example. The stations are located in the city of Lincoln, NE, USA. The station being tested is
Lincoln 20E 35S and is labeled x while the neighboring stations are labeled y1, y2, y3, and y4.
The slope (ai), interception (bi), and standard errors of the linear regression between the x and
yi are computed. The non-biased estimation of x from data at neighboring stations (yi) are
shown as x'1, x'2, x’3, and x’4. The values normalized s by the standard errors ( x’i/si*) are used
in equation 4 to create the estimation x(est). The last column shows the bias between the true X
value and the estimated value (x(est)) from the four stations. We see that the sum of bias of the
30 days has a value of 0.00, which is expected because the estimates using the SRT method are
un-biased. The standard error of this regression estimation is 0.83 F. Here, for instance, where f
was chosen as 3, any value that is smaller than -2.5 F or larger than 2.5 F will be treated as an
outlier. In this example no value of x-x(est) was marked as an outlier.

|Origina| data at Stations, Lincoln NE, USA [ estimated x from y | Normalized by s' |
20E 35S Hawelock 82E 20S 12W 55N 51E 13S
days X y1 y2 y3 y4  x1 X2 X3 X4 X'1/s1"2 x'2/s2'2 x'3/s3"2 x'4/s4"2 X(est)  x-x(est)

6/1/2011 85.1 85.5 83.4 83.7 85.6 85.64 84.39 84.84 84.66 54.055 98.238 164.200 171.671 848 -0.31
6/2/2011 86.2 86.2 85.3 85.6 87.6 86.39 86.39 86.80 86.64 54.533 100.577 167.980 175.693 86.6 0.46
6/3/2011 91.9 89.5 90.0 89.9 923 89.80 91.36 91.24 91.31 56.686 106.360 176.575 185.152 91.1 -0.81
6/4/2011 84.1 85.9 83.5 85.5 85.1 86.03 84.50 86.67 84.18 54.306 98.370 167.731 170.692 85.3 1.14
6/5/2011 96.3 94.9 94.1 94.5 97.3 9549 9567 95.86 96.28 60.274 111.370 185.527 195.227 959 -0.35
6/6/2011 99.8 98.0 97.7 97.6 101.0 98.79 99.48 99.05 99.96 62.356 115.806 191.697 202.692 99.4 -0.32
6/7/2011 97.2 96.3 96.4 95.9 98.7 97.00 98.07 97.36 97.71 61.231 114.173 188.416 198.126 97.6 0.35
6/8/2011 83.5 86.4 84.8 83.1 86.3 86.53 85.88 84.20 85.36 54.617 99.981 162.951 173.084 85.2 1.69
6/9/2011 71.0 71.8 71.9 69.7 729 7123 7235 70.49 72.04 44.964 84.223 136.417 146.085 71.5 0.47
6/10/2011 69.8 67.6 66.2 67.8 69.11 67.80 66.93 66.97 43.624 78.926 129.534 135.792 67.4

6/11/2011 76.2 76.2 74.8 75.8 76.7 7578 75.34 76.72 75.83 47.835 87.710 148.472 153.768 76.0 -0.15
6/12/2011 78.8 77.9 77.7 77.3 79.0 77.66 7841 7832 7810 49.019 91.285 151.575 158.370 78.2  -0.65
6/13/2011 69.2 70.3 69.9 69.3 71.0 69.57 70.17 70.12 70.15 43.911 81.685 135.704 142.243 70.1 0.85
6/14/2011 78.1 79.5 78.1 76.0 78.7 79.32 7879 76.99 77.85 50.071 91.727 149.007 157.863 779 -0.20
6/15/2011 86.4 85.0 85.3 84.6 86.4 85.10 86.41 8580 85.46 53.720 100.599 166.054 173.301 85.7 -0.67
6/16/2011 86.8 85.3 84.0 85.1 86.3 85.37 85.01 86.30 85.34 53.887 98.966 167.017 173.048 856 -1.18
6/17/2011 92.5 90.9 90.3 927 9295 9235 9157 91.75 58.672 107.508 177.217 186.058 )il @)

6/18/2011 81.5 82.9 81.4 80.3 829 8287 8232 81.38 8200 52308 95832 157.495 166.271 81.9 0.47
6/19/2011 85.6 86.6 85.5 85.1 87.5 86.77 86.66 86.30 86.52 54.772 100.886 167.017 175.440 86.5 0.93
6/20/2011 87.9 88.2 86.7 86.8 88.4 88.44 87.93 8803 87.50 55825 102.365 170.370 177.433 87.9 0.01
6/21/2011 72.0 72.9 71.9 71.3 728 7237 7233 7211 7195 45682 84.201 139.556 145.904 721 0.13
6/22/2011 76.7 75.0 74.4 74.9 76.6 7453 74.98 7589 7572 47.045 87.291 146.867 153.550 755 -1.18
6/23/2011 771 78.9 76.4 76.6 78.6 78.66 77.01 77.58 77.74 49.653 89.652 150.148 157.645 77.6 0.50
6/24/2011 79.4 79.4 78.3 78.2 80.2 79.17 79.04 79.19 79.28 49.976 92.014 153.251 160.762 79.2 -0.24
6/25/2011 82.0 80.8 80.6 80.6 825 80.71 81.43 81.64 81.64 50.945 94.795 157.994 165.546 81.5 -0.46
6/26/2011 82.1 82.3 82.1 81.3 82.8 8226 83.00 8239 8191 51.925 96.627 159.456 166.089 82.3 0.24
6/27/2011 791 79.8 77.9 78.0 80.1 79.57 78.66 79.06 79.17 50.227 91.572 153.001 160.545 79.1 0.00
6/28/2011 81.1 80.2 79.1 79.6 81.7 80.06 79.91 80.66 80.82 50.538 93.029 156.104 163.879 80.5 -0.61
6/29/2011 91.3 89.7 89.3 89.8 91.8 90.03 90.58 91.07 90.79 56.830 105.455 176.254 184.101 90.8 -0.57
6/30/2011 100.0 100.3 98.4 98.8 101.5 101.17 100.25 100.29 100.44 63.863 116.711 194.087 203.671 100.4 0.45

|Slope 1.053  1.053  1.024  0.993| 0.00

Table 3 An example of estimating missing data Spatial Regression Test (SRT) method for daily maximum temperature
estimation (unit: F). In this example, two days were assumed missing: 6/10 and 6/17 and were estimated using equa-
tions 3, 4, and 5 (see highlighted values in the x(est) column. Stations are from the Automated Weather Data Network
and locations are on an East-West by North South naming convention. The original station (Lincoln 20E 35S) is labeled

x while the four neighboring stations are y1,y2, y3, and y4. Equation 3 is used to derive the unbiased estimates x,, x,
etc. for n=28. The final estimate x(est) is determined from the unbiased estimates using equations 4 and 5.

If one value or several values at the station x is missing, the x(est) will provide an esti-
mate for the missing data entry (see Table 3). The example in Table 3 shows that the val-
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ue of x is missing in June 10 and June 17, 2011, through the SRT method we can obtain
the estimates as 67.4 F and 91.9 F for the two days independent of the true values of 66.2
F and 91.3 F with a bias of 1.2 F and 0.6 F, respectively. Here we note that the estimated
values of the two days are slightly different than those estimated in Table 2 because there
are 2 less values to include in the regression.

4. Providing estimates: robustness of SRT method and weakness of IDW
method

The SRT method was tested against the Inverse Distance Weighted (IDW) method to deter-
mine the representativeness of estimates obtained (29). The SRT method outperformed the
IDW method in complex terrain and complex microclimates. To illustrate this we have taken
the data from a national cooperative observer site at Silver Lake Brighton, UT.The elevation
at Silver Lake Brighton is 8740 ft. The nearest neighboring station is located at Soldier Sum-
mit at an elevation of 7486 ft. This data is for the year 2002. Daily estimates for maximum
and minimum temperature were obtained for each day by temporarily removing the obser-
vation from that day and applying both the IDW (eq. 1) and the SRT (eq.2) methodsagainst
15 neighboring stations. The estimations for the SRT method were derived by applying the
method (deriving the un-biased estimates) every 24 data.

100 - ®  SHT y=12152x "
o idw - A
90 4 Linear (SAT) R =0.9232
— — — - Linear (idw i
20 4 Linear (idw &

70 |v = 1.0884x + 82771
— R*=0.9439 =l
= ; ’ ™y =09922x

427846 SILVER LAKE BRIGHTON, UT

I} T

0 10 20 30 40 50 &0 70 &80 90
Observed (F)

Figure 1. The results of estimating maximum temperature at Silver Lake Brighton, UT for both the IDW and the
SRT methods.
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Fig. 1 shows the result for maximum temperature at Silver Lake Brighton, Utah. The IDW
approach results in a large bias. The best fit line for IDW indicates the estimates are system-
atically high by over 8 F (8.27); the slope is also greater than one (1.0684). When the best fit
line for IDW estimates was forced through zero, the slope was 1.2152. On the other hand the
estimates from the SRT indicate almost no bias as evidenced by the best-fit slope (0.9922).

For the minimum temperature estimates a similar result was found (Fig. 2). The slope of the
best-fit line for the SRT indicates an unbiased (0.9931) while the slope for the IDW estimates
indicates a large bias on the order of 20% (slope = 1.1933). The reader should note the SRT
unbiased estimators are derived every 24 days (see ) and that applying the SRT only once
for the entire period will degrade the results shown (7).

80, * SRT v =1.1933x

o idw R = 0.8524

70 Linear (SRT) .
———-Lli i n 6

&0 Linear {idw) TRt

e
S 9931x
® 0.9343
E
&
L
20w G 4 40 50 60
i
7, | 427846 SLVERLAKE BRIGHTON, UT
-30 - Observed (F)

Figure 2. The results of estimating minimum temperature at Silver Lake Brighton, UT for both the IDW and the
SRT methods.

5. Techniques used to improve the quality control procedures during the
extreme events.

Quality of data during the extreme events such as strong cold fronts and hurricanes may de-
crease resulting in a higher number of "true" outliers than that during the normal climate
conditions. (28) carefully analyzed the sample examples of these extreme weather conditions
to quantitatively demonstrate the causes of the outliers and then developed tools to reset the
Type Il error flags. The following discussion will elaborate on this technique.
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5.1. Relationship between interval of measurement and QA failures

Analyses were conducted to prepare artificial max and min temperature records (not the
measurements, but the values identified as the max and min from the hourly time series) for
different times-of-observation from available hourly time series of measurements. The ob-
servation time for coop weather stations varies from site-to-site. Here we define the AM sta-
tion, PM station, and nighttime station according to the time of observation (i.e. morning,
afternoon-evening, and midnight respectively). The cooperative network has a higher num-
ber of PM stations but AM measurements are also common; the Automated Weather Data
Network uses a midnight to midnight observation period.

The daily precipitation accumulates the precipitation for the past 24 hours ending at the
time of observation. The precipitation during the time interval may not match the precipi-
tation from nearby neighboring stations due to event slicing, i.e. precipitation may occur
both before and after a station’s time of observation. Thus, a single storm can be sliced in-
to two observation periods.

P M statien

Mighttirme station

anp 3tabl-e -,

tdaczh © 1 | wlares | R Ll

Figure 3. Example time intervals for observations at Mitchell, NE (after 28).

The measurements of the maximum and the minimum temperature are the result of making
discrete intervals on a continuous variable. The maximum or minimum temperature takes
the maximum value or the minimum value of temperature during the specific time interval.
Thus the maximum temperature or the minimum temperature is not necessarily the maxi-
mum or minimum value of a diurnal cycle. Examples of the differences were obtained from
three time intervals (see Fig 3) after28)). The hourly measurements of air temperature were
retrieved from 1:00 March 11 to 17:00 March 13, 2002 at Mitchell, NE. The times of observa-
tion are marked. Point A shows the minimum air temperature obtained for March 11 for AM
stations, and B is the maximum temperature obtained for March 13 at the PM stations. The
minimum temperature may carry over to the following interval for AM stations and the
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maximum temperature may carry over to the following interval for PM stations. We have
therefore marked these as problematic in Table 4to note that the thermodynamic state of the
atmosphere will be represented differently for AM and PM stations. Through analysis of the
time series of AM, PM and midnight calculated from the high quality hourly data we find
that measurements obtained at the PM station have a higher risk of QA failure when com-
pared to neighboring AM stations. The difference in temperature at different observation
times may reach 20 °F for temperature and several inches for precipitation. Therefore the QA
failures may not be due to sensor problems but, to comparing data from stations where the
sensors are employed differently. To avoid this problem AM stations can be compared to
AM stations, PM stations to PM stations, etc. Note this problem will be solved if moderniza-
tion of network provides hourly or sub-hourly data at most station sites.

Nighttime station

AM station PM station (AWDN)
Time intervals (e.g.) ~7:00 ~17:00 ~midnight
Maximum temperature Problematic
Minimum temperature Problematic
Precipitation Good Good Good

Table 4. Time interval and possible performance of three intervals of measurements.

5.2.1993 floods

Quality control procedures were applied to the data for the 1993 Midwest floods over the
Missouri River Basin and part of the upper Mississippi River Basin, where heavy rainfall
and floods occurred (28). The spatial regression test performs well and flags 5~7 % of the
data for most of the area at /=3. The spatial patterns of the fraction of the flagged records do
not coincide with the spatial pattern of return period. For example, the southeast part of Ne-
braska does not show a high fraction of flagged records although most stations have return
periods of more than 1000 years. While, upper Wisconsin has a higher fraction of flagged
records although the precipitation for this case has a lower return period in that area.

The analysis shows a significantly higher fraction of flagged records using AWDN stations
in North Dakota than in other states. This demonstrates that the differences in daily precipi-
tation obtained from stations with different times of observation contributed to the high
fraction of QA failures. A high risk of failure would occur in such cases when the measure-
ments of the current station and the reference station are obtained from PM stations and AM
stations respectively. The situation worsens if the measurements at weather stations were
obtained from different time intervals and the distribution of stations with different time-of-
observation is unfavorable. This would be the case for an isolated AM or PM station.

Among the 13 flags at Grand Forks, 9 flags may be due to the different times of observation
or perhaps the size and spacing of clouds (28). Four other flags occurred during localized
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precipitation events, in which only a single station received significant precipitation. Higher
precipitation entries occurring in isolation are more likely to be identified as potential outli-
ers. These problems were expected to be avoided by examining the precipitation over larger
intervals, e.g. summing consecutive days into event totals.

5.3. 2002 drought events

No significant relationship is found between the topography and the fraction of flagged re-
cords. Some clusters of stations with high flag frequency are located along the mountains;
however, other mountainous stations do not show this pattern. Moreover, some locations
with similar topography have different patterns. For the State of Colorado, a high fraction of
flags occurs along the foothills of the Rocky Mountains where the mountains meet the high
plains. A high fraction was also found along interstate highways 25 and 70 in east Colorado.
These situations may come about because the weather stations were managed by different
organizations or different sensors were employed at these stations. These differences lead to
possible higher fraction of flagged records in some areas.

(a)

120
100 ) .
- I: "':
L P -
] A A . @«A
2 T T >
: S\ M‘ / \_‘W \ﬁ%’v‘
£ &0 Lo K ! W
5 7 < e
= I
= [
g
£ - = = - 058008 STRATTON
2 pnl ———a0%u019 STRATTON (mid.night),
e (158008 STRATTOM Shified
i]

4202002 42002 413072002 S52002 512002 5152002 S/a0r2002

1]
100 <
a1}
o —
o | ——— e
20
Q ' 1
SMT02 000 §M1T02 12:00 SMB/02 0:00

Figure 4. Time series of Stratton and a neighboring station during 2002 droughts. a) The daily time series of Tmax for
Stratton and Stratton AWDN station (a058019). b) Hourly time series at Stratton AWDN station. (after 28).
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Instrumental failures and abnormal events also lead to QA failures. Fig. 4 shows the time
series of the Stratton Station in Color adooperated as part of the automated weather net-
work. This station has nighttime (midnight) readings while all of the neighboring sites are
AM or PM stations. Stratton thus has the most flagged records in the state (6): the highlight-
ed records in Fig. 4 were flagged. We checked the hourly data time series to investigate the
QA failure in the daily maximum temperature time series for the time period from April 20
to May 20, 2002. No value was found to support a Tmax of 88 for May 6 in the hourly time
series, thus 88 °F appears to be an outlier. On May 7 a high of 85 °F is recorded for the PM
station observation interval, in which the value of the afternoon of May 6 is recorded as the
high on May 7. The 102 °F observation of May 8 at 6:00 AM appears to be an observation
error caused by a spike in the instrument reading. The observation of 93 °F at 8:00 AM May
17 is supported by the hourly observation time series (see Fig. 4 (b)) and is apparently asso-
ciated with a down burst from a decaying thunderstorm.

5.4. 1992 Andrew Hurricane

In Fig. 5 the evolution of the spatial pattern of flagged records from August 25 to August 28,
1992 during Hurricane Andrew and the corresponding daily weather maps shows a heavy pat-
tern of flagging.. The flags in the spatial pattern figures are cumulative for the days indicated.
The test shows that the spatial regression test explicitly marks the track of the tropical storm.
Starting from the second land-fall of Hurricane Andrew at mid-south Louisiana, the weather
stations along the route have flagged records. The wind field formed by Hurricane Andrew
helps to define the influence zone of the hurricane on flags. Many stations without flags have
daily precipitation of more than 2 inches as the hurricane passes, which confirms that the spa-
tial regression test is performing reasonably well in the presence of high precipitation events.

5.5. Cold front in 1990

Flags for the cold front event during October, 1990 were examined. The maximum air tem-
perature dropped by as much as 40 °F during the passage of the cold front. Spatial patterns
of flags on October 6 coincide with the area traversed by the cold front and many stations
were flagged in such states as North Dakota, South Dakota, Iowa, and Nebraska. On Octo-
ber 7, the cold front moved to southeast regions beyond Nebraska and Iowa. Of course near-
by stations on opposite sides of the cold front may experience different temperatures thus
leading to flags. This may be further complicated when different times of observation are
involved. The cold front continues moving and the area of high frequency of flags also
moves with the front correspondingly.

A similar phenomenon can be found in the test of the precipitation and the minimum tem-
perature. A spatial regression test of any of these three variables can roughly mark the
movements of the cold front events. The identified movements of the cold fronts and associ-
ated flagging of “good records” may lead to more manual work to examine the records.
Simple pattern recognition tools have been developed to identify the spatial patterns of
these flags and reset these flags automatically (see Fig. 6).
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Figure 5. Daily weather maps and spatial pattern of flagged records for 1992 Andrew Hurricane events. (after 28).

The spatial patterns of flagged records are significant for both the spatial regression test of
the cold front events and the tropical storm events. However, most of these flagged records
are type I errors, thus we tested a simple pattern recognition tool to assist in reducing these
flags. Differences still exist between the distribution patterns of the flagged records for the
cold front event and the tropical storm events due to the characteristics of cold front events
and tropical storm events. These differences are:

* Cold fronts have wide influence zones where the passages of the cold fronts are wider
and the large areas immediately behind the cold front may have a significant flagged frac-
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tion of weather stations. The influence zones of the tropical storms are smaller where only
the stations along the storm route and the neighboring stations have flags.

* Cold fronts exert influences on both the air temperature and precipitation. The temper-
ature differences between the regions immediately ahead of the cold fronts and regions
behind can reach 10~20 °C. The precipitation events caused by the cold fronts may be
significant, depending on the moisture in the atmosphere during the passage. The trop-
ical storms generally produce a significant amount of precipitation. A few inches of
rainfall in 24 hours is very common along the track because the tropical storms general-
ly carry a large amount of moisture.
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Figure 6. Spatial patterns of flagged records for cold front events and related fronts. The temperature map is the in-
terpolated maximum temperature difference between October 6 and October 7, 1990. The color front is on October
7, and the black one is on October 6. The flags are the QA failures on that day.
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5.6. Resetting the flags for cold front events and hurricanes

Some measurements during the cold front and the hurricane were valid but flagged as outliers
due to the effect of QC tests during times of large temperature changes caused by the cold front
passages and the heavy precipitation occurring in hurricanes. A simple spatial scheme was de-
veloped to recognize regions where flags have been set due to Type I errors. The stations along
the cold front may experience the mixed population where some stations have been affected by
the cold fronts and others have not. A complex pattern recognition method can be applied to
identify the influence zone of the cold fronts through the temperature changes (e.g. using some
methods described in Jain et al, 2000). In our work, we use the simple rule to reset the flag given
that significant temperature changes occur when the cold front passes. The mean and the
standard deviation of the temperature change can be calculated as:

AT=13 AT, @)
n i=1
ou =%Zn:(AYj*A7})—A_T*H ®)
i=0

where AT is the mean temperature change of the reference stations, AT;is the temperature
change at thei ™ station for the current day, # is the number of neighboring stations, and 0,1

is the standard deviation of the temperature change for the current day. A second round test
is applied to records that were flagged in the first round:

AT-f'0,, <AT<AT+f'c,, ©)

whereAT is the difference between maximum/minimum air temperature for the current day
and the last day. The cutoff value f” takes a value of 3.0. The test results with this refinement
for Ty, are shown in Fig. 7 for Oct. 7, 1990. The results obtained using the refinements de-
scribed in this section were labeled “modified SRT” and the results using the original SRT
were labeled “original SRT” in Fig. 7 and 8. Of the 291 flags originally noted only 41 flags
remain after the reset phase. The daily temperature drops more than 20 °F at most stations
where the flags were reset and the largest drop is 55 °F.

For the heavy precipitation events, we compare the amount of precipitation at neighboring
stations to see whether heavy precipitation occurred. We use a similar approach as for tem-
perature to check the number of neighboring stations that have significant precipitation,

g = COMnf(pi 2 pthresho[d) (10)

17
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where the p ; is the daily precipitation amount at a neighboring station, and p g4 iS5 @
threshold beyond which we recognize that a significant precipitation event has occurred at
the neighboring station, e.g. 1 in. When C22andpp,;,; , we reset the flag. Here p is the precip-
itation amount of the current station, and p ,;, is the upper threshold beyond which the
threshold will flag the measurement. Fig.8 shows maps of flags after the reset process. Of
the 78 flags originally noted only 41 flags remain after the reset phase. Most of the remain-
ing flags are due to the precipitation being higher than the upper threshold.
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Figure 7. All points shown were flagged by the original SRT method while the red points were those that are
flagged by the modified SRT method for maximum daily Temperature. Blue symbols are those that are reset by
the modified SRT method.
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Figure 8. This is the reset of flags for the Andrew 1992 hurricane. The flags are the cumulative flags starting from Aug.
20 to Aug. 29, 1992. The flags by the modified SRT method overlay the flags by the original SRT method.
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Flags for the Andrew 1992 hurricane. The flags are the cumulative flags starting from
Aug. 20 to Aug. 29, 1992. The flags by the modified SRT method overlay the flags by the
original SRT method.

6. Multiple interval methods based on measurements from reference
stations for precipitation.

One QC approach involved developing threshold quantification methods to identify a sub-
set of data consisting of potential outliers in the precipitation observations with the aim of
reducing the manual checking workload. This QC method for precipitation was developed
based on the empirical statistical distributions underlying the observations.

The search for precipitation quality control (QC) methods has proven difficult. The high
spatial and temporal variability associated with precipitation data causes high uncertainty
and edge creep when regression-based approaches are applied. Precipitation frequency dis-
tributions are generally skewed rather than normally distributed. The commonly assumed
normal distribution in QC methods is not a good representation of the actual distribution of
precipitation and is inefficient in identifying the outliers.

The SRTmethod is able to identify many of the errant data values but the rate of finding er-
rant values to that of making type I errors is conservatively 1:6. This is not acceptable be-
cause it would take excessive manpower to check all the flagged values that are generated in
a nationwide network. For example, the number of precipitation observations from the co-
operative network in a typical day is 4000. Using an error rate of 2% and considering the
type I error rate indicates that several hundred values may be flagged, requiring substantial
personnel resources for assessment.

(29) found the use of a single gamma distribution fit to all precipitation data was ineffective.
A second test, the multiple intervals gamma distribution (MIGD) method, was introduced.
It assumed that meteorological conditions that produce a certain range in average precipita-
tion at surrounding stations will produce a predictable range at the target station. The
MIGD method sorts data into bins according to the average of precipitation at neighboring
stations; then, for the events in a specific bin, an associated gamma distribution is derived
by fit to the same events at the target station. The new gamma distributions can then be
used to establish the threshold for QC according to the user-selected probability of exceed-
ance. We also employed the Q test for precipitation (20) using a metric based on compari-
sons with neighboring stations. The performance of the three approaches was evaluated by
assessing the fraction of “known” errors that can be identified in a seeded error dataset(18).
The single gamma distribution and Q-test approach were found to be relatively efficient at
identifying extreme precipitation values as potential outliers. However, the MIGD method
outperforms the other two QC methods. This method identifies more seeded errors and re-
sults in fewer Type I errors than the other methods.
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6.1. Estimation of parameters for distribution of precipitation and thresholds from the
Gama distribution

The Gamma distribution was employed to represent the distribution of precipitation. While
other functions may provide a better overall fit to precipitation data our goal is to establish a
reasonable threshold on values beyond which further checking will be required to deter-
mine if the value is an outlier or simply an extreme precipitation event. The precipitation
events are fit to a Gamma distribution,G(y, B). The shape and scale parameters y, B can be
estimated from the precipitation events following (21) and (13),

y= _X2 (11)
S
S2

B= b a (12)

whereX and s are the sample mean and the sample standard deviation, respectively.

The data for each station in the Gamma distribution test include all precipitation events on a
daily basis for a year. The parameters for left-censored (0 values excluded) Gamma distribu-
tions, on a monthly basis, are also calculated, based on the precipitation events for individu-
al months in the historical record. To ascertain the representativeness of the Gamma
distribution, the precipitation value for the corresponding percentiles (P): 99, 99.9, 99.99, and
99.999% were computed from the Gamma distribution and compared with the precipitation
values for given percentiles based on ranking (original data).

The criterion for a threshold test approach can be written as,
x(J,0) <1(p) (13)

wherex(j,t) is the observed daily precipitation on day ¢ at station j and I(p) is the threshold
daily precipitation for a given probability, p (=P/100), calculated using the Gamma distribu-
tion. A value not meeting this criterion is noted as a potential outlier (the shaded area to the
right of the p=0.995 value for the distribution for all precipitation events in Fig. 9). The test
function uses the one-sided test for precipitation, a non-negative variable.

6.2. Multiple interval range limit gamma distribution test for precipitation (MIGD)

Analysis has shown that precipitation data at a station can be fit to a Gamma distribution,
which can then be applied to a threshold test approach. With this method only the most ex-
treme precipitation events will be flagged as potential outliers so errant data at other points
in the distribution are not identified.



Toward a Better Quality Control of Weather Data
http://dx.doi.org/10.5772/51632

Gamma distribution for all
—— days with precipitation
i

Gamma distribution for days when
/ the average of srrounding stations
-, fallz in interval i

4 o i
i 2 i .

R, EERRREE
% 99.5% 99.5%
Figure 9. Schematic of gamma distribution for all daily precipitation events and for the it interval of the MIGD approach.

The MIGD was developed to address these non-extreme points along the distribution. It as-
sumes that meteorological conditions that produce a certain range in average precipitation at
surrounding stations will produce a predictable range at the target station. Our concept is to
develop a family of Gamma distributions for the station of interest and to selectively apply the
distributions based on specific criteria. The average precipitation for each day is calculated for
neighboring stations during a time period (e.g. 30 years). These values are ranked and placed
into n bins with an equal number of values in each. The range for n intervals can be obtained
from the cumulative probabilities of neighboring average time series, {0, 1/n, 2/n, ..., n-1/n, 1}.
For the i * interval all corresponding precipitation values at the station of interest (target sta-
tion) are gathered and parameters for the gamma distribution estimated. This process is re-
peated for each of the n intervals resulting in a family of Gamma curves (G ;). The operational
QCinvolves the application of the threshold test where the gamma distribution for a given day
is selected from the family of curves based on the average precipitation for the neighboring sta-
tions. Each interval can be defined as(E(p(i/n)), E(p((i +1)/n))], where p(i / n)is the cumula-
tive probability associated with i/n, i=0 to n-1, and &(p(i/n)) is the neighboring stations’
average for a given cumulative probability.

Now for each precipitation event, x, at the station of interest, the neighboring stations’ aver-
age is calculated. If the average precipitation falls in the interval(Z(p(i /1)), E(p((i +1)/n))],
then G ;is used to form a test:

G.(1-p)<x(j,1)<G.(p) (14)

where p is a probability in the range (0.5, 1), and the G ; (p) is the precipitation value for the
given probability p in the gamma distribution associated with the i # interval. This equation
forms a two sided test. Any value that does not satisfy this test will be treated as an outlier
for further manual checking. The intervals and the estimation of this method were imple-
mented using R statistical software (19).

The results indicate that the Gamma distribution is well suited for deriving appropriate thresh-
olds for a particular precipitation event. The calculated extreme values provide a good basis

21
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for identifying extreme outliers in the precipitation observations. The inclusion of all precipita-
tion events reduces the data requirements for the quantification of extreme events which gen-
erally requires a long time series of observations (e.g. using Gumbel distribution.) Using the
approach based on the Gamma distribution, a suitable representation of the distribution of
precipitation can be obtained with only a few years of observation, as is the case with newly es-
tablished automatic weather stations, e.g. Climate Reference Network. Further study is re-
quired for probability selection in the Gamma distribution approach.

shame range lower upper q999 q995 q99 q975 q95 q9 ql q05 q025 qo1 005
028820 0~0.0510 0 0.0510 0.8441 | 0.6332 0.5431 0.4251 0.3369 0.2502  0.0055 0.0021  0.0008 | 0.0002 9.39E-05
028820 0.0510~0.1111 0.0510 0.1111  1.1533 | 0.8704 0.7493 0.5903 0.4711 0.3532 0.0097 = 0.0040 0.0017 = 0.0005  0.0002
028820 0.1111~0.1899 0.1111  0.1899  1.2989 | 0.9896 0.8567 0.6816 0.5495 0.4181 0.0156  0.0071 = 0.0033 = 0.0012 | 0.0006
028820 0.1899~0.3326 0.1899 0.3326 1.8631 | 1.4162 1.2243 0.9717 0.7815 0.5925 0.0206  0.0092 0.0042 0.0015  0.0007
028820 0.3326~2.1216 0.3326 21216 2.8514 | 2.1861 1.8996 1.5210 1.2346 0.9484 0.0429  0.0208 0.0102 = 0.0040 | 0.0020

Table 5. Multiple gamma distributions (n=5) for the Multiple Interval Gamma Distribution (MIGD) method at Tucson,
AZ. Lower and upper represent the upper and lower limits of each bin for surrounding station averages. The precipita-
tion threshold for the target station can be selected from g999, 995, 999, 9975, 995, 99, q1,q05,q025,q01, q005,
and g001 as these are associated with gamma distribution for the station of interest.

A simple gamma distribution can be fit to the daily precipitation values at a station. Upper
thresholds can be set based on the cumulative probability of the precipitation distribution.
This single gamma distribution (SGD) test will address the most extreme values of precipita-
tion and flag them for further testing. However, to address non-extreme values of precipita-
tion that are not out on the tail of the SGD another approach is needed. We have formulated
the multiple interval gamma distribution test (MIGD) for this purpose. The main assump-
tion is that the meteorological conditions that produce a certain range in average precipita-
tion at surrounding stations will produce a predictable range of precipitation at the target
station. It does not estimate the precipitation at the target station but estimates the range in-
to which the precipitation should fit.

The average precipitation for each day is calculated for neighboring stations during a histor-
ical period, say 30 years. These values are then ranked and placed into n bins with an equal
number of values in each. For all the values in a given bin, the daily precipitation at the tar-
get station are gathered and a gamma distribution formed. The process is repeated n times
once for each bin resulting in a family of gamma distribution curves. A separate family of
curves can be derived for each month or each season. In operation, the daily average of the
precipitation at surrounding stations is calculated and used to point to the n'th gamma dis-
tribution which in turn provides thresholds against which to test for that day. For instance,
the upper threshold can be selected to correspond with the cumulative probability for the
n’th gamma distribution. The user is able to specify the threshold according the cumulative
probability. For example we can be 99.5 % confident that values will not exceed the corre-
sponding value on the cumulative probability curve. Values that exceed this are not necessa-
rily wrong but flagged for further review. The MIGD will find more precipitation values
that need to be reviewed than the single gamma distribution test.

Table 5 provides an example of the MIGD for n=5 at Tucson, AZ, USA. We update this type of
information on an annual basis. If the precipitation value falls outside the q value of a selected
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confidence level, we mark the value as an outlier. For example, Suppose we select 999 for our
confidence. The precipitation on August 2, 1987 was 1.3 inches while the average of neighbor-
ing stations had a value of 0.06 inches. The average falls between lower and upper in the 274
row, n=2. ie.0.05, 0.11. The rainfall value (1.3 inches) is larger than the q999 threshold (1.15 in-
ches) thus we can say we are 99.9 % confident that the rainfall is an outlier and it should be flag-
ged for further manual examination. Note that 1.3 inches is in no way an extreme precipitation
value but, it's validity can be challenged on the basis of the MIGD test.

One other QC method for precipitation test is the Q-test (20). The Q-test approach serves as
a tool to discriminate between extreme precipitation and outliers and it has proven to mini-
mize the manual examination of precipitation by choice of parameters that identify the most
likely outliers (20). The performance of both the Gamma distribution test and the Q-test is
relatively weak with respect to identifying the seeded errors. The Q-Test is different from
the Gamma distribution method because the Q-Test uses both the historical data and meas-
urements from neighboring stations while the simple implementation of the Gamma distri-
bution method only uses the data from the station of interest.

The MIGD method is a more complex implementation of the Gamma distribution that
uses historical data and measurements from neighboring stations to partition a station’s
precipitation values into separate populations. The MIGD method shows promise and
outperforms other QC methods for precipitation. This method identifies more seeded er-
rors and creates fewer Type I errors than the other methods. MIGD will be used as an op-
erational tool in identifying the outliers for precipitation in ACIS. However, the fraction
of errors identified by the MIGD method varies for different probabilities and among the
different stations. Network operators, data managers, and scientist who plan to use MIGD
to identify potential precipitation outliers can perform a similar analysis (sort the data in-
to bins and derive the gamma distribution coefficients for each interval) over their geo-
graphic region to choose an optimum probability level.

7. Quality control of the NCDC dataset to create a serially complete
dataset.

Development of continuous and high-quality climate datasets is essential to populate Web-
distributed databases (17) and to serve as input to Decision Support Systems (e.g., 27).

Serially complete data are necessary as input to many risk assessments related to human en-
deavor including the frequency analysis associated with heavy rains, severe heat, severe
cold, and drought. Continuous data are also needed to understand the climate impacts on
crop yield, and ecosystem production. The National Drought Mitigation Center (NDMC)
and the High Plains Regional Climate Center (HPRCC) at the University of Nebraska are de-
veloping a new drought atlas. The last drought atlas (1994) was produced with the data
from 1119 stations ending in 1992. The forthcoming drought atlas will include additional
stations and will update the analyses, maps, and figures through the period 1994 to the
present time. A list was compiled from the Applied Climate Information System (ACIS) for
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stations with a length of at least 40 years of observations for all three variables: precipitation
(PRCP), maximum (Tmax), and minimum (Tmin) temperatures. Paper records were scruti-
nized to identify reported, but previously non-digitized data to reduce, to the extent possi-
ble, the number of missing data. A list of 2144 stations was compiled for the sites that met
the criterion of at least 40 years data with less than two months continuous missing gaps for
at least one of the three variables. The remaining missing data in the dataset were supple-
mented by the estimates obtained from the measurements made at nearby stations. The spa-
tial regression test (SRT) and the inverse distance weighted (IDW) method were adopted in
a dynamic data filling procedure to provide these estimates. The replacement of missing val-
ues follows a reproducible process that uses robust estimation procedures and results in a
serially complete data set (SCD) for 2144 stations that provide a firm basis for climate analy-
sis. Scientists who have used more qualitative or less sophisticated quantitative QC techni-
ques may wish to use this data set so that direct comparisons to other studies that used this
SCD can be made without worry about how differences in missing dataprocedures would
influence the results. A drought atlas based on data from the SCD will provide decision
makers more support in their risk management needs.

After identifying stations with a long-term (at least 40 years) continuous (no data gaps lon-
ger than two months) dataset of Tmax, Tmin, and/or PRCP for a total of 2144 stations, the
missing values in the original dataset retrieved from ACIS were filled to the extent possible
with the keyed data from paper record and the estimates using the SRT and IDW methods.
Two implementations of SRT were applied in this study. The short-window (60 days) imple-
mentation provides the best estimates based on the most recent information available for
constructing the regression. The second implementation of SRT fills the long gaps, e.g. gaps
longer than one month using the data available on a yearly basis. The IDW method was
adopted to fill any remaining missing data after the two implementations of SRT.

This is the first serially complete data set where a statement of confidence can be associated
with many of the estimates, ie. SRT estimates. The RMSE is less than 1F in most cases and
thus we are 95% confident that the value, if available, would lie between +2F of the estimate.
This data set is available ! to interested parties and can be used in crop models, assessment
of severe heat, cold, and dryness. Probabilities related to extreme rainfall for flooding and
erosion potential can be derived along with indices to reflect impact on livestock produc-
tion. The data set is offered as an option to distributing raw data to the users who need this
level of spatial and temporal coverage but are not well positioned to spend time and resour-
ces to fill gaps with acceptable estimates.

Analysis based on the long-term dataset will best reveal the regional and large scale climatic
variability in the continental U.S., making this an ideal data set for the development of a
new drought atlas and associated drought index calculations. Future data observations can
be easily appended to this SCD with the dynamic data filling procedures described herein.

1 Contact the High Plains Regional Climate Center at 402-472-6709
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8. Issues relating QC to gridded datasets,

Gridded datasets are sometimes used in QC but, we caution against this for the following
reasons.New datasets created from inverse distance weighted methods or krigging suffer
from uncertainties. The values at a grid point are usually not "true"'measurements but are
interpolated values from the measurements at nearby stations in theweather network.Thus,
the values at the grid points are susceptible to bias. When further interpolation is made to a
given location within the grid, bias will again exist at the specific location between the grid-
ded values..Fig.10provides an example of potential bias. Outside of a gridded data set the
target location would give a large weight to the value at station 5. However, if the radius
used for the gridded data is as in the Fig.10, then the closest station to the target station (5)
will not be included in the grid-based estimation.

ot
Ye
-

Figure 10. An example of station distribution used in the grid method.

9. Quality control of high temporal resolution datasets

The Oklahoma Mesonet (http://www.mesonet.org/) measures and archives weather condi-
tions at 5-minute intervals (Shafer et al., 2000). The quality control system used in the net-
work starts from the raw data of the measurements for the high temporal resolution data. A
set of QC tools was developed to routinely maintain data of the Mesonet. These tools de-
pend on the status of hardware and measurement flag sets built in the climate data sys-
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tem.The Climate Reference Network (CRN, Baker et al. 2004) is another example of the QC
of high frequency data, which installs multiple sensors for each variable to guarantee the
continuous operation of the weather station and thus the quality control can also rely on the
multiple measurements of a single variable. This method is efficient to detect the instrumen-
tal failures or other disturbances; however the cost of such a network may be prohibitive for
non-research or operational networks. The authors of this chapter also carried out QC on a
high temporal resolution dataset in the Beaufort and Chukchi Sea regions. Surface meteoro-
logical data from more than 200 stations in a variety of observing networks and various
stand-alone projects were obtained for the MMS Beaufort and Chukchi Seas Modeling Study
(Phase II). Many stations have a relatively short period of record (i.e. less than 10 years).The
traditional basic QC procedures were developed and tested for a daily data and found in
need of improvement for the high temporal resolution data. In the modification, the time
series of the maximum and the minimum were calculated from the high resolution data. The
mean and standard deviation of the maximum and the minimum can then be calculated
from the time series (e.g max and min temperatures) as the (u,, s,) and (u,, s,), respectively.
The equation (6) using (u, + fs,) and (u, - f s,) forms limits defined by the upper limits of the
maximum and lower limits of the minimum. The value falling outside the limits will be flag-
ged as an outlier for further manual checking. Similarly, the diurnal change of a variable
(e.g. temperature) was calculated from the high resolution (hourly or sub-hourly) data. The
mean and standard deviation calculated from the diurnal changes will form the limits.

The traditional quality control methods were improved for examining the high temporal
resolution data, to avoid intensive manual reviewing which is not timely or cost efficient.
The identified problems in the dataset demonstrate that the improved methods did find con-
siderable errors in the raw data including the time errors (e.g. month being great than 12).
These newtools offer a dataset that, after manual checking of the flagged data, can be givin a
statement of confidence. The level of confidence can be selected by the user, prior to QC.

The applied in-station limit tests can successfully identify outliers in the dataset. Howev-
er, spatial tests based information from the neighboring stations is more robust in many
cases and identifies errors or outliers in the dataset when strong correlation exists. The
good relationship between the measurements at station pairs demonstrates that there is a
potential opportunity to successfully apply the spatial regression test (SRT, 18) to the sta-
tions which measure the same variables (i.e. air temperature orwind speed). The short
term measurements at some stations may not be efficiently QC’ed with only the three
methods described in this work. One example is the dew point measurements at the first-
order station Iultin-in-Chukot. More than 90 percent of the dew point measurements were
flagged, because the parameters for QC’ing the variable used the state wide parameters
which cannot reflect the microclimate of each station.

10. Summary and Conclusions

Quality control (QC) methods can never provide total proof that a data point is good or bad.
Type L errors (false positives) or Type Il errors (false negatives) can occur and result in labeling
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of good data as bad and bad data as good respectively. Decreasing the number of Type I and
Type Il errors is difficult because often a push to decrease Type I errors will result in an unin-
tended increase inType II errors and vice versa. We have derived a spatial technique to intro-
duce thresholds associated with user selected probabilities (i.e. select 99.7% as the level of
confidence that a data value is an outlier before labeling it as bad and/or replacing it with an es-
timate). We base this technique on statistical regression in the neighborhood of the data in
question and call it the Spatial Regression Test (SRT). Observations taken in a network are of-
ten affected by the same factors. In weather applications individual stations in a network are
generally exposed to air masses in much the same way as are neighboring stations. Thus, tem-
peratures in the vicinity move up and down together and the correlation between data in the
same neighborhood is very high.Similarly seasonal forcings on this neighborhood (e.g. the day
to day and seasonal solar irradiance) are essentially the same. We have defined a neighbor-
hood for a station as those nearby stations that are best correlated to it. We found that the SRT
method is an improvement over conventional inverse distance weighting estimates (IDW). A
huge benefit of the SRT method is it’s ability to remove systematic biases in the data estimation
process. Additionally, the method allows a user selected threshold on the probability as con-
trasted to the IDW. Although the SRT estimates are similar to IDW estimates over smooth ter-
rain, SRT estimates are notably superior over complex terrain (mountains) and in the vicinity
of other climate forcing (e.g. ocean/land boundaries). Gridded data sets that result from IDW,
Kriging or most other interpolation schemes do not provide unbiased estimates. Even when
grid spacing is decreased to a point where the complexity of the land surface is well represent-
ed there remains two problems: what is the microclimate of the nearest observation points and
what is the transfer function between points. This is a future challenge for increasing the quali-
ty of data sets and the estimation of data between observation sites.
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1. Introduction

The traditional methodology of Statistical Quality Control (SEQ) is based on a fundamental
supposition that the process of the data is independent statisticaly, however, the data not al-
ways are independent. When a process follows an adaptable model, or when the process is a
deterministic function, the data will be autocorrelated.

Drawing the process of data is extremely valuable, however, under such circumstances, there
isn’t any scientific reason to use the traditional techniques of statistical control of quality, be-
cause it will induce erroneous conclusions and facilitate a safety absence that the process is
under statistical control with flaw in the identification of systematic variation of the process.

Thus, the theme here proposed is to investigate the acting and the adaptation of the tradi-
tional use of the statistical control of process methods in no-stationary processes, and to dis-
cuss the use of time series methodologies to work with correlated observations.

2. Theorical Review

History of Quality Control is as old as the history of the industry itself. Before the Industrial
Revolution, the quality was controlled by the vast experience of the artisans of the time,
which guarantee product quality. The industrial system has suffered a new technical era,
where the production process split complex operations into simple tasks that could be per-
formed by workers with specific skills. Thus, the worker is no longer responsible for all
product manufacturing, leaving the responsibility of only a part of it (Juran, 1993).

It is within this context that the inspection, which sought to separate the non-conforming
items from the establishment of specifications and tolerances. A simple inspection did not
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improve the quality of products, only provided information on the quality level of these and
pick the items conform, those not complying. The constant concern with costs and produc-
tivity has led to the question: how to use information obtained through inspection to im-
prove the quality of products?

The solution of this question led to the recognition that variability was a factor inherent in
industrial processes and could be understood through the statistics and probability, noting
that could be measurements made during the manufacturing process without having to wait
for the completion of the production cycle.

In 1924, Dr. Walter. A. Shewhart of Bell Telephone Laboratories, developed a statistical
graph to monitor and control the production process, being one of the tools of Statistical
Quality Control. The purpose of these graphs was differentiate between aleatoériasl causes
unavoidable and causes a remarkable process. According to Shewhart (1931), if the random
causes were present, one should not tamper with the process, if assignable causes are
present, one should detect them and eliminate them. In other words, these graphics monitor
the change or lack of instability in the process thus ensuring quality products.

Studies by Johnson and Basgshaw (1974) and Harris and Ross (1991) showed that the graph-
ics Shewhart and cumulative sums (CUSUM) are sensitive to the presence of autocorrelated
data (data that are not independent of each other over time), especially when the autocorre-
lation is extreme, ie tools are not suitable for the process control.

You will need to process the data first and then control them statistically. The presence of
autocorrelation in the data leads to growth in the number of false alarms. Alwan and Rob-
erts (1988) show that many false alarms (signals of special causes) may occur in the presence
of moderate levels of autocorrelation, and the resulting measurement system, the dynamics
of the process or both aspects, and conventional control charts are used without knowing
the presence or absence of correlation, much effort can be spent in vain.

Many methods have been proposed to deal with statistical data autocorrelation. The interest
in the area was stimulated by the work of Box and Jenkins, published in 1970 work entitled
Time Series Analysis: Forecasting and Control, where it was presented among several quan-
titative methods, methodology used to analyze the behavior of the time series. The method
of Box and Jenkins uses the concept of filter composed of three components: component au-
toregressive (AR), the integration filter (I) component and the moving average (MA).

The reason for monitoring residual processes is that they are independent and identically
distributed with mean zero, when the process is controlled and remains independent of pos-
sible differences in the mean when the process gets out of control. Zhang (1998), the tradi-
tional graphics Shewhart, CUSUM graphics, the graphics may be applied to the EWMA
waste, since the use of graphics residual control has the advantage that they can be applied
to autocorrelated data, even if the data is nonstationary processes. When a graph of residual
control is applied to a non stationary, it can only be concluded that the process has some
deviation in the system because of a non stationary there is no constant average and / or
constant variance.



Applications of Control Charts Arima for Autocorrelated Data
http://dx.doi.org/10.5772/50990

3. Statistical Quality Control

The statistical quality control (SQC) is a technique of analyzing the process, setting stand-
ards, comparing performance, verify and study deviations, to seek and implement solutions,
analyze the process again after the changes, seeking the best performance of machinery
and / or persons (Montgomery, 1997).

Another definition is given by Triola (1999), which states that the SQC is a preventive meth-
od where the results are compared continuously through statistical data, identifying trends
for significant changes, and eliminating or controlling these changes in order to reduce them
more and more.

SPC charts are designed to detect shifts among natural fluctuations caused by chance noises.
For example, the Shewhart chart utilizes the standard deviation (SD) statistic to measure the
size of the in-control process variability. By graphically contrasting the observed deviations
against a multiple (usually, triple) of SDs, the control chart is intended to identify unusual
departures of the process from its normal state (controlled state).

Under certain assumptions, when the observed deviation from the mean exceeds three SDs,
it is said that the process is out of control since there is only a probability of 0.0026 for the
observation to fall outside the three SD limits given an unshifted mean chance the process
mean is shifted. This Shewhart chart scheme is in effect a statistical hypothesis testing that
reveals only whether the process is still in-control (Chen and Elsayed, 2000).

To better understand the technical statistical quality control, it is necessary to bear in mind
that the quality of a product manufactured by a process is inevitably subject to variation,
and which can be described in terms of two types concerned.

The special cause is a factor that generates variations that affect the process behavior in un-
predictable ways, it is therefore possible to obtain a standard or a probability distribution.

The common cause is defined as a source of variation that affects all the individual values of a
process. It results from various sources, without having any predominance over the other.

When these variations are significant in relation to the specifications, it runs the risk of hav-
ing non-compliant products, ie products that do not meet specifications. The elimination of
requiring special causes a local action, which can be made by people close to the process, for
example, workers. Since the common causes require actions on the system of work that can
only be taken by the administration, since the process is itself consistent, but still unable to
meet specifications (Ramos, 2000).

According to Woodall et al (2004), Statistical Quality Control is a collection of tools that are
essential in quality improvement activities.

Descriptive Statistics

According to Reid and Sanders (2002), descriptive statistics can be helpful in describing cer-
tain characteristics of a product and a process. The most important descriptive statistics are
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measures of central tendency such as the mean, measures of variability such as the standard
deviation and range, and measures of the distribution of data. We first review these descrip-
tive statistics and then see how we can measure their changes.

The mean: To compute the mean we simply sum all the observations and divide by the total
number of observations. The equation for computing the mean is:

n

pIE2

)_(_ i=1
n

where: x= mean;
x;= the observationi,i=1,2,....n;

n=number of observation.

The range and standard deviation: There are two measures that can be used to determine the
amount of variation in the data. The first measure is the range, which is the difference be-
tween the largest and smallest observations in a set of data. Another measure of variation is
the standard deviation. Standard deviation is a statistic that measures the amount of data dis-
persion around the mean.The equation for computing the standard deviation is (Reid and
Sanders, 2002),:

where: 0= standard deviation of a sample
x=the mean;

x;=the observationi,i=1,2,....n;
n=number of observation in the sample

Small values of the range and standard deviation mean that the observations are closely
clustered around the mean. Large values of the range and standard deviation mean that the
observations are spread out around the mean.

Distribution of the data

A third descriptive statistic used to measure quality characteristics is the shape of the distri-
bution of the observed data. When a distribution is symmetric, there are the same number of
observations below and above the mean. This is what we commonly find when only normal
variation is present in the data. When a disproportionate number of observations are either
above or below the mean, we say that the data has a skewed distribution.
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Figure 1. Normal distributions with varying standard deviations (adapted of Reid and Sanders, 2002).
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Figure 2. Differences between symmetric and skewed distributions (adapted of Reid and Sanders, 2002).

Control Charts

In any production process, no matter how well designed or carefully maintained it is, a cer-
tain amount of inherent or natural variability will always exist. Natural variability is the cu-
mulative effect of many causes small, essentially unavoidable. When this variation is
relatively small, generally considered an acceptable level of performance of the process. In
the context of statistical quality control, this natural variability often called "a stable system
of special causes" is said to be in statistical control. Control charts are used to examine
whether or not the process is under control, ie, indicate only random causes are acting on
this process. Synthesize a wide range of data using statistical methods to observe the varia-
bility within the process, based on sampling data. Can inform us at any given time as the
process is behaving, if it is within prescribed limits, signaling thus the need to seek the cause
of variation, but not showing us how to eliminate it (Ryan, 1989).

It was W. A. Shewhart (1931) which introduced control charts in 1924 with the intention to
eliminate variations to distinguish them from the common causes and special causes. A con-
trol chart consists of three parallel lines: a line that reflects the average level of process oper-
ation, and two external lines called upper control limit (UCL) and lower control limit (LCL),
calculated according to the standard deviation of a process variable (Shewhart, 1931).

There are several types of control charts, as the characteristic values or purpose, and we can
divide them by attribute control charts and control charts for each variable.
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Control charts by attributes

A control chart for attributes, on the other hand, is used to monitor characteristics that have
discrete values and can be counted. Often they can be evaluated with a simple yes or no de-
cision (Reid and Sanders, 2002).

There are two broad categories of control charts for attributes: those who classify items into
compliance or non-compliant, as is the case of graphs of the fraction of the number of faulty
or defective, and those who consider the number (amount) of nonconformity existing graph-
ics such as the number of defects in the sample or per unit.

According to Ramos (2000), the difficulties are:

a) due to the small size of the batch, the approximation of binomial and Poisson by the nor-
mal distribution may no longer be valid, in which case the limits of control charts can not be
determined by standard formulas;

b) the probability distributions Binomial and Poisson may not adequately represent the
studied phenomenon. This occurs when the parts are manufactured simultaneously (multi-
ple mold cavities, for example), in which the incidence of defects or defects is not independ-
ent, statistically speaking.

Control charts for variable

Control charts for variables monitor characteristics that can be measured and have a contin-
uous scale, such as height, weight, volume, or width. When an item is inspected, the varia-
ble being monitored is measured and recorded (Reid and Sanders, 2002).

They may not be used for quality characteristics that cannot be measured because the con-
trol of the process requires monitoring of the mean and variability of measures. The graph-
ics control variables used to data that can be measured or which undergo a continuous
variation.

Some of the methods suitable for the construction of different control charts are the Shewhart
chart, Chart MOSUM - Moving Sum, the EWMA Chart - Weight Exponential Moving Average (Ex-
ponentially Weighted Moving Averages) and CUSUM Chart - Cumulative Sum (Cumulative Sum).

Shewhart control charts

The first formal model of control chart was proposed by Dr. Walter A. Shewhart (1931),
which now bears his name. Let X a statistical sample which measures a characteristic of the
process used to control a production line. Suppose that u is the population mean of X and ¢
is the population standard deviation.

The following equations are used to describe the three parameters that characterize the She-
whart control charts (Montgomery, 1997)

UCL=u +ko, 1)
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CL=u )
LCL=u-koy ®)

where UCL is the upper control limit, CL is the center line or the average of the process, LCL
is the lower control limit of the process, and k is the distance the control limits by the center
line, which is expressed as a multiple of the ostandard deviation. The value of k is 3 most
widely used.

The control graph is divided into zones (Figure 3). If a data point falls outside the control
limits, we assume that the process is probably out of control and that an investigation is
warranted to find and eliminate the cause or causes.

Observation out of control

Variation due to
. assignable causes

) ’ N T
* Variation due
® to normal causes
’ |
LC'L a1 a0 & 0 & & & 4 h & R & & & 0 B 2 B 0 9§ 4}

l Variation due
to assignable causes

c
(%]
-

Volume in ounces
©
(

Sample Number

Figure 3. Control chart (adapted of Reid and Sanders, 2002).

X - S Control Charts

A mean control chart is often referred to as an X chart. It is used to monitor changes in the
mean of a process. The X - S control charts are generally preferred over the X - Rcharts
when 110 or 12, since for larger samples the amplitude sampling R loses the efficiency to
estimates, when compared to the sample standard deviation. The X control charts is used
in order to control the mean of the considered process. The two charts should be used simul-
taneously (Werkema, 1995).

The limits of the X - S control charts are obtained in a similar manner, calculated under the
assumption that the quality feature of interest (x) has a normal distribution with (¢) mean
and (o) standard deviation, ie, in abbreviated form (Panagiotidou and Nenes, 2009; Werke-
ma, 1995).

x~N(u, o)

However, satisfactory results are obtained even when this assumption is not true and distri-
bution of x can only be considered approximately normal. In practice the y and o parame-
ters are unknown and must be estimated from sample data. The method of estimation of u
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and ¢ again involves taking m samples (subgroups rational) primary, each containing n ob-
servations of the quality characteristic considered.

Estimation ofy:

The (i) mean is estimate through the overall average of the sample (x)as defined in the

equation:
IR AT b (4)
m m i=1 !
where x;, i=1,2,..,m is the i-ésima sample mean:
Xiqg+ Xin + o+ X
_ il i2 n
I A il (5)

n

Estimation of obased on sample standard deviation:

The (o) standard deviation is estimate based in the (s) standard deviation mean as defined
by:

_ Sl+52+...+s 1 m
5= —= (6)
m m&s,
where s;, i=1,2,...,m is the i-ésima sample of the standard deviation:
@)

Aos
It can be shown that the standard deviation sigma must be estimated by =——, where ¢jis a
4
correction factor, tabulated as a function of size n of each sample.
Expressions for calculating the limits of X —Scontrol charts:

X control charts -

UCL =% +35 [cn=x + A 8)

=11

CL = )

LCL =% -35 [cpln=X - A (10)
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where A,=3 / ¢/ is a constant tabulated as a function of size 1 of each sample.

S control charts -

UCL =§+30,=B,3 (11)
CL =3 (12)
- N -

LCL =5-30,=B;s (13)

A
where o, is a estimative of the standard deviation of the distribution of the S and B, and B,

are constants tabulated in function of size n of each sample (Panagiotidou and Nenes, 2009;
Werkema, 1995).

Identification of Process in Control

It is understood that the process is controlled to:

a) all points on the chart are within the control limits;

b) the arrangement of points within the control limits is random.
Identification of Process out of Control

According Montgomery (2009), various criteria may be simultaneously applied to a control
graph for determining whether the process is under control. The basic criterion is one or
more points outside the control limits. The additional criteria are sometimes used to increase
the sensitivity of the control graphs when there is a small change in the process, so as to re-
spond quickly to an assignable cause.

The Shewhart control charts have some rules sensitizers (Montgomery, 2009):

1. One or more points outside the control limits;

2. Two or three consecutive points outside the warning limits of 2-sigma;

3. Four or five consecutive points above of the limits of one-sigma;

4. A sequence of eight consecutive points of a same side of the center line;

5. Six points in a sequence is always increasing or decreasing;

6. Fifteen points in sequence in the area C (both above and below the center line);
7. Fourteen points alternately in sequence up or down;

8. Sequence of eight points on both sides of the center line CL;

9. A standard non-random data;

10. One or more points near a limit or control.
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Typical patterns of behavior are non-random (Lourengo Filho, 1964):

a) Periodicity - increases and decreases at regular intervals of time. The periodicity appears
as one of the operating conditions of the process suffers periodic changes or when regular
exchange of machines or operators.

b) Trend - when the points are directed substantially upwards, or downwards. The general
trend indicates a gradual deterioration of a critical process. This "decay" can be a tool wear
and operator fatigue.

c) Shift - changes in performance of the process. The cause of the change can be introduction
of new machinery, new operators, new methods or even a quality program, which usually
brings motivation and improves performance.

4. Time Series

The time series analysis aims to: investigate the mechanism generating the time series; to
forecast future values of the series, to describe the behavior of the series; seek relevant perio-
dicities in the data. A model that describes a series does not necessarily lead to a procedure
(or formula) prediction. You need to specify a function-loss, beyond the model, to get the
procedure. A function-loss, which is often used, is the mean square error, although on some
occasions, other criteria or loss functions are more appropriate (Morettin and Toloi, 2006;
Camargo and Russo, 2011).

Autocorrelation

The autocorrelation is a measure of dependency between observations Same series separat-
ed by a given range named retardation.

Be a time seriesY,. The ratio between the covariance (Y,,Y,_ ) and variance (Y,) defines a
autocorrelation coefficient simple (r,), while the sequence of r,values is called autocorrela-

tion function simple (AFS) (Camargo and Russo, 2006).

The graphical representation of this function is called correlogram. Formally, the autocorre-
lation coefficients simple between Y, and their Y,_;lagged values, are defined by:

~ cov(Y,, Y, ) B tgl (Yt_Y)(Yt—k_Y) "
"= var(Y,) Zn:(Y 7y
t
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We can see the existence of unit root if the values of the autocorrelation function begin near
to unit and decline slowly and gradually as increases the distance (number of lags, k) be-
tween the two sets of observations to which they concern, calling himself, not stationary and
follows a random walk. If these coefficients decline rapidly as this distance increases, there
is a series of characteristics of stationary (Morettin and Toloi, 2006; Russo et al. 2006).

Stationary Processes

A common assumption in many time series techniques is that the data are stationary. A sta-
tionary process has the property that the mean, variance and autocorrelation structure do
not change over time. A process is considered stationary if its statistical characteristics do
not change with time.

Stationarity is a assumption in time series analysis. It means that the main statistical proper-
ties of the series remain unchanged over time. More precisely, a process {Y,} is said to be
completely stationary or strict sense stationary (abbreviated as SSS) if the process Y, and
Y

asY,.

1+, have the same statistics for anyn. So, the characteristich(Hn), for all n, will be the same

Non-Stationary Processes

A big reason for using a stationary data sequence instead of a non-stationary sequence is
that non-stationary sequences, usually, are more complex and take more calculations when
forecasting is applied to a data series (Beusekom, 2003).

Where a series submit over time variation in your parameters, so, we have a series non-sta-
tionary, which when submitted to differentiation process becomes stationary. If the time ser-
ies is not stationary, we can often transform it to stationarity with one of the following way:

a) Difference the data, by create the new series
Y, =X,-X;,4

The differenced data will contain one less point than the original data. Although you can
difference the data more than once, one difference is usually sufficient.

b) If the data contain a trend, we can fit some type of curve to the data and then model the
residuals from that fit.

c) For non-constant variance, taking the logarithm or square root of the series may stabilize
the variance. For negative data, you can add a suitable constant to make all the data positive
before applying the transformation. This constant can then be subtracted from the model to
obtain predicted (i.e., the fitted) values and forecasts for future points.

White noise

In according of Cochrane (2005), The building block for our time series models is the white
noise process, which I'll denoteg;,. In the least general case,

¢~id.d.N(0,02)
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Notice three implications of this assumption:

1. E(¢,)=E(¢, | €y, €_5..)=E(¢, | all information at t—1)=0

2. E(g;¢,_j)=cov(g;e;)=0

2

3. var(e,)=var(e, | ¢,_;, €_,...)=var(¢, | all information at t—1)=0

The first and second properties are the absence of any serial correlation or predictability.
The third property is conditional homoscedasticity or a constant conditional variance. Later,
we will generalize the building block process. For example, we may assume property 2 and
3 without normality, in which case the ¢, need not be independent. We may also assume the

first property only, in which case ¢, is a martingale difference sequence (Cochrane, 2005).

Summary of time series models:
Autoregressive models - AR(p)

The class of models purely autoregressive is defined by:

Y,= (15)

where @, (B) has p coefficients. The AR (p) assumes that the result is the weighted sum of its
p past values than white noise.

The condition of stationarity of the AR (p) states that all the p roots of the characteristic
equation fall outside the unit circle (Russo, et al, 2006).

Moving average models - MA(q)

According to Russo, et al (2009), the class of moving averages models is defined by
Y;=06,(B)g, (16)
where 0,(B) has q coefficients. The models MA (q) resulting from the linear combination of

random shocks that occurred during the current and past periods.

The invertibility condition requires that all roots of the characteristic equation fall outside
the unit circle.

Autoregressive and moving average models - ARMA (p,q)

The class of models, autoregressive-moving average is of type

_ Qq(B)‘;t (17)

Y=,
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where (pp(B )has p coefficients and Gq(B ) has q coefficients. With a combination of models AR

(p) and MA (q), it is expected that the models ARMA (p,q) be models extremely parsimoni-
ous, using few coefficients to explain the same serie.

From the standpoint of adjustment, it is very important because you can adjust more quick-
ly. The condition of stationary and invertibility of a ARMA (p, q) require that all p roots of f
(B) 0 and all the q roots of q (B) 0 fall outside the unit circle (Russo, et al, 2009).

Autoregressive Integrated Moving Averages Models - ARIMA (p,d,q)

The class of autoregressive-integrated-moving-average models are defined by the equation,

0,(B)a,

P (18)
" ¢,(B)(1-B)"
to an integrator positive d. Made the differentiation of the series d times necessary to make it
stationary, then the ARIMA(p, d, q) model can be adjusted through the ARMA(p,q) model
(Russo, et al, 2009).

Sazonal Model - SARIMA

According to Fischer (1982), the appearance of some short-term cyclical behavior is called
seasonality. For a full treatment about series of time, need to characterize and eliminate this
cyclic function of time to become the condition of stationarity.

Seasonality means a tendency to repeat a certain behavior of the variable that occurs with
some regularity in time. That is, are those series that have variations of a similar amount of
time to another, characterized by showing high serial correlation between observations of
the variable spaced by the period of seasonality, and, of course, the serial correlation be-
tween the next observations.

Similar to the process ARIMA (p,d,q) this process develops the model in one of three basic
forms of description of each value ofY,, and applies the same procedures developed for a
model where the seasonal component is not present. After establishing the value of the vari-
able in period t+h, then applies the expectancy operator. Forecast errors, confidence inter-
vals and updating are treated similarly to the ARIMA model (Fischer, 1982).

Box-Jenkins Methodology

This method for the prediction is based on the setting called tentative ARIMA models, has a
flexible modeling methodology that forecasts are made from the current and past values of
these series. Therefore, describing both the stationary behavior as the non-stationary zero.
ARIMA models are able to describe the process of generating a variety of series for forecast-
ers (corresponding to the filters) without taking into account the economic relations, for ex-
ample that generated the series (Morretin and Toloi, 2006).

The determination of the best model for "Box and Jenkins" methodology following this steps
(Leroy, 2006):
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Identification

Identification is the most critical phase of the "Box and Jenkins" methodology, it is possible
that several researchers to identify different models for the same series, using different crite-
ria of choice (ACF, PACF, Akaike, etc..). Typically, the models should be parsimonious. The
study analyzes the ACF and PACF, and attempts to identify the model. The process seeks to
determine the order of (p,d,q), based on the behavior of the Autocorrelation Functions
(ACF) and Partial Autocorrelation (PACF), as well as their respective correlograms.

Estimation:

After identifying the best model should then adjust and examine it. The adjusted models are
compared using several criteria. One of the criteria is the of parsimony, in which it appears
that the incorporation of coefficients additional improves the degree of adjustment (increas-
es the R? and reduces the sum of squared residuals) model, but you reduces the degrees of
freedom. One of ways to improve the degree of adjustment of this model to time series data
is to include lags additional in Cases AR (p), MA (q), ARMA (p, q) and ARIMA.

The inclusion of additional lags implies increasing the number of repressors, which leads to
a reduction in the sum of squared residuals estimated. Currently, there are several criteria
for selection of models that generate a trade-off between reductions in the sum of squared
residuals and estimated a more parsimonious model.

Generally, when working with lagged variables are lost about the time series under study.
Therefore, to compare alternative models (or competitors) should remain fixed number of
information used for all models compared.

Checking:

Aspiring to know the efficacy of the model found, takes place waste analysis. If the residuals
are autocorrelated, then the dynamics of the series is not completely explained by the coeffi-
cients of the fitted model. It should be excluded from the process of choosing the model(s)
with this feature.

An analysis of existence (or not) of serial autocorrelation of waste is made based on the func-
tions of autocorrelation and partial autocorrelation of waste and their respective correlo-
grams. It is noteworthy that, when estimating a model, it is desired that the error produced
by it have characteristic "white noise" that is, this will be independent and identically dis-
tributed (i.i.d. condition).

Forecast:

Predictions can be ex-ante, made to calculate future values of short-term variable in the study.
Or, ex-post held to generate values within the sample period. The better these last, the more
efficient the model estimated. We choose the best model throught the lower Mean Absolute
Percentage Error (MAPE). It is a formal measure of the quality of forecasts ex-post. There-
fore, the lower value of the MAPE is the best fit of forecasts of the model to time series data.
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5. Methodology and Results

In this work we analyzed the Téxtil Oeste Ltda industry, whose Statistical Control of Proc-
esses implantation happened in 1999. Here, we limited to analyze the control charts for con-
tinuous variables as tools used for the control of the process. The conventional Shewhart
control charts were used added of other appropriated models to transformations of autocor-
relations data in data that are independent and usually distributed.

In thread’s polypropylene process there are several outputs to consider critical. One of these
outputs is the thread’s resistance. In an effort to develop a control plan to assure quality of
the appropriate surface, it was certain that the resistance has a main impact on surface quali-
ty of the thread. So, to verify the quality of the thread, it’s resistance should be controlled.

At once, the data used in this study is the daily data of the thread’s polypropylene resistan-
ces control.

These data are for the models identification and estimation and for the models predictive
capacity analysis. Before control charts be applied, three fundamental assumptions must be
met: The process is under control; the data are normally distributed; and the observations
are independent.

Montgomey (2009) considers that the points out of control are stipulated reasonably well for
the controls charts of Shewhart when the normality assumption is somewhat violated, but
when observations aren’t independent, control charts yield deceiving results. Many process-
es don’t produce independent observations. Alwan (1991) describes a method for control
charting with autocorrelated data. The method involves fitting a time series curve and con-
trol charting the residuals.

It was made a study that helped to verify where it is the largest instability of the process, so
that we can make a better control of the system. It is suspected that the daily thread’s resist-
ance data aren’t independent, and the result of a plot of these data, as showing in Figure 4,
supports this belief.

The problem is to implement statistical control for a process that has autocorrelation (Dob-
son, 1995). The Figure 4 shows us the great data variability. Calculations were performed to
confirm the autocorrelation’s suspected.

Calculations were done to confirm the suspected autocorreation. The autocorrelation coeffi-
cient for thread’s resistance is defined as

k

Z (xt—J_C)(ka—J_C)
= k=012, ...
Z (x,—x)?

t=1

where k = time periods ahead

n = total number of data
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Real observations
850 850

800 800
750 750
700 700

650 650

600 600

550 550

souelsisey

500 500
-100 0 100 200 300 400 500 600 700 800 900 1000 1100

Daily data

Figure 4. Daily data.

1
The standard error at lag k, if k=1 1isSe, =~/;, and the standard error at lag k, if k1 is

1 k-1 5
Se.= ;1+2§r1.

The autocorrelation coefficient for k=1 and k =2are:

160680,24

"= "971034 016
and

100113,10

"= "g71034 010

The standard error for k=1 and k =2are:

[ 1
S€1= W=0,0310

and

1
5e2=~/ Toatll+ 2(0,16)*1=0,0317
The Figure 5 shows the autocorrelation coefficients and 2 standard errors for these coeffi-
cients for up to 24 lags, and the Figure 6 shows the partial autocorrelation coefficients and
the 2 standard errors for these coefficients for up to 24 lags.
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Autocorrelations coefficients

Thread's resistance

(Standard errors are white-noise estimates)
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Figure 5. Autocorrelations coefficients.

As we can see, the data are highly autocorrelated. The autocorrelation coefficients for lags
1-7 exceed two the standard errors. Before a control charts can be used, these data must be

transformed to guarantee the independence of each observation.

To find an independent, normally distributed data set, Montgomery (2009) recommends to

model the structure and to develop the control charting of the residuals directly.

The Box & Jenkins’s methodology was used, to determine the parameters of the model (Box,

Jenkins and Reinsel, 2008).

Partial autocorrelations coefficients

Thread's resistance

(Standard errors assume AR order of k-1)
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Figure 6. Partial autocorrelations coefficients.
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Thread's resistance
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Figure 7. Residuals of thread's resistance.

The Figures 8 and 9 show that the obtained model is adapted to the resistance data. The au-

tocorrelation coefficients were calculated for the transformed data defined for the model

ARIMA (1,1,1), to validate that the autocorrelation has been removed from the data.
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Figure 8. Autocorrelation coefficients.
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Partial autocorrelation coefficients

for transformed data
Thread's resistence: ARIMA (1,1,1) Residuals
(Standard errors assume AR order of k-1)
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Figure 9. Partial autocorrelations coefficients for transformed data.

Figure 8 and 9 show that the defined data is independent from an observation to another

observation. And the table 1 shows the Chi-square test to verify the normality.

For two degrees of freedom, )(02,05=5,991. As the calculation qui-square value was x?=

5,0415, and it is smaller than the critical value, the data are considered as normal. Now the

behavior of the productive process can be verified.

The Chi-square test was executed, to verify the normality:

Lower Limit Upper Limit Obs Exp (Obs-Exp)?/ Exp
649,0708 743,3123 744 696,1916 3,2831
648,9230 743,4601 672 696,1916 0,8406
648,7757 743,6074 702 696,1916 0,0485
648,6288 743,7543 690 696,1916 0,0551
648,4823 743,9008 720 696,1916 0,8142

Total 5,0415

Table 1. Test the Chi-square.

Figure 10 shows (X ) and (S) charts for the real data.
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Figure 10. X and S charts for real data.

Through the illustration 10 we can notice the sequence of observations and limits of the tra-
ditional Shewhart charts, where several points were out of the control limits, indicating that
the process is apparently out of control. In fact, before the transformation of the data, we
found the data really correlated what took us to model for a process ARIMA (Wardell, Mos-
kowitz and Plante, 1994).
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Figure 11. (X) and (S) charts for transformed data.
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Figure 11 shows (X) and (S) charts for transformed data. Verifications revealed that the sys-
tem had been drained during this time period and actions were taken to correct the prob-
lem. The problem was in the first observations, which were ignored, the normality condition
was verified, and the control charts X and S were replotted.

Through the Figure 11 we can observe that the control charts for the same data, indicate that
the residual values are practically inside of control limits for the average. According to War-
dell, Moskowitz and Plant (1994) it is entirely possible in traditional control charts, the
points are out of the limits because of the systematic or the common causes and not because
of occurrence of special causes.

6. Conclusion

According to Reid and Sanders (2002), there are several types of statistical quality control
(5QC) techniques. One category of SQC techniques consists of descriptive statistics tools
such as the mean, range, and standard deviation. These tools are used to describe quality
characteristics and relationships. Another category of SQC techniques consists of statistical
process control (SPC) methods that are used to monitor changes in the production process.
To understand SPC methods you must understand the differences between common and as-
signable causes of variation.

Common causes of variation are based on random causes that cannot be identified. A certain
amount of common or normal variation occurs in every process due to differences in materi-
als, workers, machines, and other factors. Assignable causes of variation, on the other hand,
are variations that can be identified and eliminated. An important part of statistical process
control (SPC) is monitoring the production process to make sure that the only variations in
the process are those due to common or normal causes. Under these conditions we say that a
production process is in a state of control. You should also understand the different types of
quality control charts that are used to monitor the production process: x-bar charts, R-range
charts, p-charts, and c-charts, Reid and Sanders (2002).

In this chapter we show how to use the techniques of quality control for autocorrelated data.
Thus, the data collected were analyzed simultaneously, the continuous variables, to find a
possible reason for lack of control in the final stages of production. We presented methods
for using the techniques of statistical quality control for correlated observations. It is the au-
tocorrelation data, is modeled by the continuous variables ARIMA. With the residuals ob-
tained in the models, we applied the Shewhart control charts.

The traditional Shewhart control charts can be used for process control, even when the as-
sumptions of independent observations are transgressed, by removing the autocorrelation
with a time series models. For applying those techniques, the thread’s resistance stayed in
control state for the average. The result was a decrease in the variation of surface quality of
the polypropylene thread that is produced, while simultaneously it increased the surface
quality average.
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Many companies, because they believe in the advantages that can be obtained from the prac-
tice of SQC, invest many resources in the implementation, especially of the conventional
control charts, called Shewhart charts. Since it is not necessary to a thorough knowledge of
statistics, is more favorable to the deployment of these graphs by the companies, but not al-
ways the results are as expected. There is a concern with the correlation of data.

In this context, the text presented throughout this chapter can serve as a reference to the in-
dustries that face difficulties in deploying statistical quality control. However, one must be
careful with the type of variables to analyze what is being proposed, which allows us to con-
clude that this proposed combination of techniques for time series with control charts, claim
to be complete and extended to cover all possible difficulties we can find. In the classic mod-
el of monitoring, there is no such information to identify an non conform item, in the end of
teh proces, no one knows how to do for the same does not happen, because the variables
used in the previous process are autocorrelated.
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1. Introduction

Acceptance sampling is a procedure used for sentencing incoming batches. Sampling plan
consist of a sample size and a decision making rule. The sample size is the number of items
to sample or the number of measurements to take. The decision making rule involves the
acceptance threshold and a description of how to use the sample result to accept or reject the
lot. Acceptance sampling plans are also practical tools for quality control applications, which
involve quality contracting on product orders between the vendor and the buyer. Those
sampling plans provide the vendor and the buyer rules for lot sentencing while meeting their
preset requirements on product quality. Scientific sampling plans are the primary tools for
quality and performance management in industry today. In an industrial plant, sampling
plans are used to decide either to accept or reject a received batch of items. With attribute
sampling plans, these accept/reject decisions are based on a count of the number of defec-
tive items. The sample size is assumed constant in traditional sampling plans.

In this section, several new decision making policies for the acceptance sampling problem are
introduced. The objective of these models is to find constant control thresholds for lot sentenc-
ing problem.

The single stage acceptance sampling plan based on the control threshold policy is present-
ed in section 2, the acceptance sampling policy based on number of successive conforming
items is presented in section 3, and acceptance sampling policy using the minimum angle
method is presented in sections 4. Acceptance sampling policy based on cumulative sum of
conforming Items run lengths comes in section 5 and acceptance sampling policy based on
Bayesian inference comes in section 6. Finally the chapter is concluded in section 7.

© 2012 Fallah Nezhad; licensee InTech. This is a paper distributed under the terms of the Creative Commons
I m Ec H Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and reproduction in any medium, provided the original work is properly cited.



56 Practical Concepts of Quality Control

2. Single Stage Acceptance Sampling Plan based on the Control
Threshold Policy [1]

We suppose a batch of size  is received which its proportion of the defectives items is equal
top. For a batch of sizen, random variable Y is defined as the number of inspected items and
z is defined as the number of items classified as 'defective' after inspection. The number of
inspected items has an upper threshold equal tom. For Y =1, 2, ..., m inspected items (m<n)
the batch will be rejected if x <zwhere x is the upper control level for batch acceptance. In the
other words, when the number of defective items in the inspected items gets more than the
control threshold x then decision making process stops and the batch is rejected.

The probability distribution function of Y is determined by the following equations,

gpr{z}:

Pr{z<x-1}+Pr{z=x}

Pr{Y}: o\ Z

x—1

Y-1 .
[X_Jpx(l—p)y x<Y<m

In Eq. (1), Y =mindicates that all items are inspected therefore, the number of defective items
has been less than xor x,;, defective item has been m,, inspected item. For the casex<Ym, x,,

defective item has been Y, inspected item thus, the probability distribution function of Y

follows a negative binomial distribution. The expected mean of the number of inspected
items is determined as follows:

x-1 _1
ELY=m, (’:)PZ“‘P)M *m(;n-l)P"(l—p)“
£ Y_l x-1
+Z Y(x—l )Px(l—P)Y—x:mZ (:l)pz(l_P)m_Z"' (2)

- (Y_l) x Y -x
Y x-1 P (1—;7)

Y=x

x-1
approximation method of estimating negative binomial probabilities with Poisson distribu-
tion [2], following is concluded,

Since Pr{Y}= )px(l—p)y_" x<Ym is a negative binomial distribution thus using the
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e*)\/\ Y -x
Pr{Y}=P0iSSOTl(A)=m (3)
1-p . . L .
where A=x is the parameter of Poisson distribution. In order to improve the accuracy

of this approximation, mand xshould be sufficiently large numbers. Using the above ap-

proximation method, following is concluded,

x-1(m ) - m e—/\/\ Y -x
wovs, o (o £y Ay @

Now, let P, denotes the probability of rejecting the batch. The batch is rejected if the number
of defective items is more than or equal to x thus the value of P, is determined by the fol-
lowing equation,

11

Pe=), (T)P A-p 5)

In order to calculate the total cost, including the cost of rejecting the batch, the cost of in-
spection and the cost of defective items, assume R is the cost of rejecting the batch, cis the

inspection cost of one item and c' is the cost of one defective item, so the total cost, C,, is
determined by conditioning C,.on two events of rejecting or accepting the batch, thus the ob-

jective function is written as follows:

C,=E(C,

Reject the batch ) P(Reject the batch) +
E (Cx |Accept the batch)P(Accept the batch) = P, (R +CE[Y] )+ (6)

x X

(npc’+cE[Y]x)(1—11)= PR+npc (1-P.)+cE[Y]

X

Thus we have,

x-1(m
C,=P.R+npc'(1-P,)+mc), ) p*(1-p)"=
z=0
m e_A/\ Y-x m (m) , iz
+CYZ=X YW:R; 2 p (1—p) (7)
-1 [(m ~ m e_/\A Y -x
2 . )Pz(l-z?)”’ npe'+mo)+e ) Y Fry—x v 1)
z=0 Y=x
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In Eq. (7), cE[Y ],is the total cost of inspection and npc' is the total cost of defective items.
The optimal value of xis determined by minimizing the value of objective functionC,. Using

the optimization methods, it is concluded that,

S m z m—z
RZ(Z}U‘(I—p) +
z=x-1
8)
m -AqY-x 2
¢ ﬂd ! m m—z
) Y ———==—||mc+npc (1- +
2T ryyy | et );(z jp (1-p)
-AqY-x
N A
c Z Ye—+
Y=r-1 F(Y—(x—l)+1)
To evaluate above equation, following equality is considered,
" E’_/\A Y-x " 8_/\}\ Y —(x-1)
YZ:;( Ym_yg_l Y ry =D +1) =
m e*/\A Y -x ef/\A m—(x-1) (9)
2 T —x+1) "Tn-(x-1)+1)

Y=x

-A y m=(x-1)
A
Since m is a sufficiently large number thus the value of mm is approximately
equal to zero therefore it is concluded that,
m
__ x=1¢1 _ ,ym—~(x-1)
AC, R(x—l)p (1-p)

m -1 ey, B e AT
#lmeempe)| _y Jp*A=pl el iy Ty = (10)

' m - (e mo gAY X
(mc +npc —R)(x_l)p Y(1-p) ( 1)+CYZZXW

To ensure that x minimizes the objective function (7), it is necessary to find the value of x

that satisfies following inequalities:
Acx+1=cx+1_cx>0’ ACX=CX_CX—1<O (11)

Hence,
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eA) Y &)
Acx+1 (mc+npc —R)( ) (1—].’7) +CZ m
(12)
B , (m ) m(-1) m /\AY X
AC,=(mc +npc'-R) 1P T1-p) +CZ m<0
Now Ifmc +npc'<R, then,
m —AAY—x
CZ e /’i
m el m—(x-1) y:XF(Y—x-l-l)
P (1-p) > >
x-1 (R—(mc+npc ))
(13)

m e*linx

¢ 2 Ty —xa) >{mjpx (1

(R —(mc + npc’))

Since with increasing the value of x the value of binomial distribution with parameters m and
p decreases thus according to the properties of binomial distribution, it is concluded that
x>(m +1)p therefore, the optimal value of xis determined using the following formula,

m e—llY—x

) P A
m _ = T(Y-x+1)

. Nop: 1 (]_ (x-1) Y=x
x,x>(m+ )p{x—ljp ( p) >(R—(mc+npc'))
x = Min (14)

m —AAYX
CYZ;:I (Y- x+1)>[m

(R —(mc+ npc ))

>

X

jp"(l—p)""x

Also The objective function, C,, should be minimized regarding two constraints on Type-I
and Type-II errors associated with the acceptance sampling plans. Type-I error is the proba-
bility of rejecting the batch when the nonconformity proportion of the batch is acceptable.
Type-II error is the probability of accepting the batch when the nonconforming proportion
of the batch is not acceptable. Then, in one hand, ifp=0,, the probability of rejecting the
batch should be less thana. On the other hand, in case wherep=6,, the probability of accept-
ing the batch should be less than$ where 6, is the AQL (Accepted Quality Level ) and 6,is
the LQL (Limiting Quality Level) anda is the probability of Type-I error and f is the proba-
bility of Type-II error in making a decision, therefore, the optimal value of xis determined

using the following formula,
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x;x>(m+1)p

i 7/1}‘Y X

[m ]p'”_l(l—p)m'(x’l)>(y (r-x+1)

=Mi m -4 qY-x

X in CZ el (15)
Y:MF(Y—x+1)> m

(R—(mc+npc'))

x—1 R—(mc+npc ))

Whenmic +npc'>R, It is concluded that Eq. (16) is positive for all values of xsox=0. In this
case, if one defective item is found in an inspected sample then the batch would be rejected.
In this case, the rejection cost R is less than the total cost of inspecting m items and the cost
of defective items, hence rejecting the batch would be the optimal decision. However, in
practice the rejection cost R is usually big enough so that, we overlooked that case.

/\/\Y -x
Acx=(mc+npc'—R)( ) (1= pymt 1>+CZ T(Y -x+1) (16)

3. Acceptance Sampling Policy Based on Number of Successive
Conforming Items [3]

In a typical acceptance-sampling plan, when the number of conforming items between suc-
cessive nonconforming items is more than an upper control threshold, the batch is accepted,
and when it is less than a lower control threshold, the batch is rejected otherwise, the inspec-
tion process continues. This initiates the idea of employing a Markovian approach to model
the acceptance-sampling problem. As a result, in this method, a new acceptance-sampling
policy using Markovian models is proposed, in which determining the control thresholds
are aimed. The notations required to model the problem at hand are given as:

N: The number of items in the batch

p: The proportion of nonconforming items in the batch
I: The cost of inspecting one item

c: The cost of one nonconforming item

R: The cost of rejecting the batch
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E(TC): The expected total cost of the system

E(AC): The expected total cost of accepting the batch

E(RP): The expected total cost of rejecting the batch

E(I): The expected total cost of inspecting the items of the batch
U: The upper control threshold

L : The lower control threshold

Consider an incoming batch of Nitems with a proportion of nonconformitiesp, of which
items are randomly selected for inspection and based on the number of conforming items
between two successive nonconforming items, the batch is accepted, rejected, or the inspec-
tion continues. The expected total cost associated with this inspection policy can be ex-
pressed using Eq. (17).

E(TC)=E(AC) + E(RP) + E(I) 17)

Let Y be the number of conforming items between the successive (i-1)"and i " noncon-
forming items, Uthe upper and L the lower control thresholds. Then, if Y;>U the batch is
accepted, if Y;<L the batch is rejected. Otherwise, if L <Y;<U the process of inspecting

items continues. The states involved in this process can be defined as follows.

State 1: Y falls within two control thresholds L, i.e.,,L <Y,<U , thus the inspection proc-

ess continues.

State 2: Y;is more than or equal the upper control threshold, i.e.,Y;>U , hence the batch is

accepted.

State 3: Yis less than or equal the lower control threshold, i.e.,Y,;<L , hence the batch is

rejected.

The transition probabilities among the states can be obtained as follows.
Probability of inspecting more items=p,;=Pr{L <Y.<U}

Probability of accepting the batch=p,,=Pr{Y,>U}

Probability of rejecting the batch=p;,=Pr{Y,;<L }

where the probabilities can be obtained based on the fact that the number of conforming

"and i" nonconforming items, Y, follows a geometric

items between the successive (i—1)
distribution with parameterp, i.e., Pr(Yl-=r)=(l -p) p;r=0, 1, 2, ...Then, the transition proba-

bility matrix is expressed as follows:
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1 2 3

1| Pu Po Pi
P20 1 0 (18)

510 0 1

As it can be seen, the matrix P is an absorbing Markov chain with states 2 and 3 being ab-
sorbing and state 1 being transient.

To analyze the above absorbing Markov chain, the transition probability matrix should be
rearranged in the following form:

A O
] (19)
R Q
Rearranging the P matrix yields the following matrix:
2 3 1
2l 10 0
3010 (20)
P2 Ps Pu
Then, the fundamental matrix M can be obtained as follows [4],
1 1 1
M =my=(I-Q) “T1-p,  1-PL <Y,<U] (21)

Where I is the identity matrix and m;; denotes the expected long-run number of times the

transient state 1 is occupied before absorption occurs (i.e., accepted or rejected), given that the
initial state is 1. The long-run absorption probability matrix, F, is calculated as follows [4],

2 3
P12 P13 (22)
F=MxR=1
I-py 1-py

The elements of the F matrix, f;,, f;5 denote the probabilities of the batch being accepted or

rejected, respectively.

The expected cost can be obtained using Eq. (17) containing the batch acceptance, rejection,
and inspection costs. The expected acceptance cost is the cost of nonconforming items (Npc)
multiplied by the probability of the batch being accepted (i.e., f1,). The expected rejection cost

is the rejection cost (R) multiplied by the probability of the batch being rejected (i.e., f3).

Moreover, m;,is the expected long-run number of times the transient state 1 is occupied before
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absorption occurs. Knowing that in each visit to transient state, the average number of inspec-

tions is-; (the mean of the geometric distribution), the expected inspection cost is given by

E(I)=my, (23)

Therefore, the expected cost for acceptance-sampling policy can be expressed as a function
of fi5 f13and my,as follows:

E(TC)=cNpfip+ Rf15+ pimll (24)

Substituting for f;, andm;;, the expected cost equation can be rewritten as:

P12 P12 I 1
E(TC):Npcl’Pu +R(1_1’P11)+?(1’P11) (25)

Eq. (25) can be solved numerically using search algorithms to find L and U that minimize the
expected total cost. The objective function, E(TC), should be minimized regarding two con-
straints on Type-I and Type-II errors associated with the acceptance sampling plans. Type-I
error is the probability of rejecting the batch when the nonconformity proportion of the batch
is acceptable. Type-II error is the probability of accepting the batch when the nonconform-
ing proportion of the batch is not acceptable. Then, in one hand, ifp=AQL , the probability
of rejecting the batch should be less thana. On the other hand, in case wherep=LQL , the
probability of accepting the batch should be less thanf where o and fare the probabilities of
Type-I and Type-II errors, hence,

Pr{Y, >U}
p=AQL = TopL <y <ujzl™@
Pr{Y,>U,)
- >1-p
1-Pr{L <Y,;<U]

(26)

p=LQL — 1

The optimum values of L and Uamong a set of alternative values are determined solving the
model given in (25), numerically, where the probabilities are obtained using the geometric
distribution.

4. Acceptance Sampling Policy Using the Minimum Angle Method based
on Number of Successive Conforming Items [5]

The practical performance of any sampling plan is determined through its operating charac-
teristic curve. When producer and consumer are negotiating for designing sampling plans, it
is important especially to minimize the consumer risk. In order to minimize the consumer’s
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risk, the ideal OC curve could be made to pass as closely throughl AQL , 1-a][AQL , p1.
One approach to minimize the consumers risks for ideal condition is proposed with minimi-
zation of angle ¢ between the lines joining the pointstAQL , 1-al, [AQL , fland
[AQL , 1-al[LQL , B]. Therefore in this case, the value of performance criteria in minimum
angle method will be [6],

LQL - AQL
Tan(¢)= Pr (AQL )-Pr(LQL )

(27)

where Pr (LQL ), Pr,(AQL )is the probability of accepting the batch when the proportion of

defective items in the batch is respectivelyLQL , AQL . Assume A is the pointl AQL , 1-aJ,
Bis the point [AQL , fland C is the point [LQL , f]thus the smaller value ofTan(qb), the
angle ¢ approaching zero, and the chord AC approachingAB, the ideal condition.

The values of Pr,(LQL ), Pr,(AQL ) are determined as follows,
Pr{iu<y,}
p=AQL —~Pr(AQL)= f1,(AQL )= T-pr>v,>L |
1

Pr{lu <Y}
p=LQL —1-Pr(LQL)=1- f,,(LQL)=1-—prrsy. > |

(28)

Since the values of LQL , AQL are constant andLQL AQL therefore the objective function
is determined as follows,

V =Min{Pr,(LQL )~Pr,(AQL )} (29)

Another performance measure of acceptance sampling plans is the expected number of
inspected items. Since sampling and inspecting usually has cost, therefore designs that min-
imizes this measure and satisfy the first and second type error inequalities are considered to
be optimal sampling plans. Since the proportion of defective items is not known in the start
of process, in order to consider this property in designing the acceptance sampling plans, we
try to minimize the expected number of inspected items for acceptable and not acceptable
lots simultaneously. Therefore the optimal acceptance sampling plan should have three prop-
erties, first it should have a minimized value in the objective function of the minimum angle
method that is resulted from the ideal OC curve and also it should minimize the expected
number of inspected items either in the decisions of rejecting or accepting the lot. Therefore
the second objective function is defined as the expected number of items inspected. The value
of this objective function is determined based on the value ofm,;(p)where m,,(p) is the expect-

ed number of times in the long run that the transient state 1 is occupied before absorption

occurs, since in each visit to transient state, the average number of Inspections 18, conse-

quently the expected number of items inspected is given by%mu(p). Now the objective
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functions WandZare defined as the expected number of items inspected respectively in the
acceptable condition(p=AQL ) and not acceptable condition(p=LQL ).

W= ]\Z[ll/n {ALQL m, (AQL)}
(30)

m,, (LQL)}

Z =Min !
L | LOL

Now one approach to optimize the objective functions simultaneously is to define control
thresholds for objective functions Z, W and then trying to minimize the value of objective
functionV . For example if parameters Z,, W, are defined as the upper control thresholds for

Z, W then the optimization problem can be defined as follows,

Miniv'y
St. (31)
Z<Z,W<W

Optimal values of L , Ucan be determined by solving above nonlinear optimization prob-
lem using search procedures or other optimization tools.

5. Acceptance Sampling Policy Based on Cumulative Sum of Conforming
Items Run Lengths [7]

In an acceptance-sampling plan, assume Yis the number of conforming items between the

successive (i—1)" and i defective items. Decision making is based on the value of S; that is
defined as,

5;=Y;+Y,, (32)

The proposed acceptance sampling policy is defined as follows,

If S;>U then the batch is accepted
If S;<L the batch is rejected
If L <S;<U the process of inspecting the items continues

where U s the upper control threshold and L is the lower control threshold.

In each stage of the data gathering process, the index of different states of the Markov mod-
el, j, is defined as:
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j=1represents the state of rejecting the batch. In this state S;<L thus the batch is rejected.

j=Y,+2 where Y;=0, 1, 2...,, U -1 represents the state of continuing data gathering. In this

state, L <5,=Y;+Y;_;<Uthus the inspecting process continues.
j=U +2 represents the state of accepting the batch. In this state S;>U hence the batch is
accepted.

In other word, the acceptance-sampling plan can be expressed by a Markov model, in which
the transition probability matrix among the states of the batch can be expressed as:

1 j=k=1
0 j=Lk>1
Pr(Y, <L-j+2) U+2>j>1,L>j-2,k=1
0 U+2>j>1LL<j-2k=1
U+2>j>LU+2>k>1,j+k-4<L
Pi=10 Ut2> j>sLU+25k>1, j+k—-4>U (33)
Pr(Y, =k-2) U+2>j>LU+2>k>LU> j+k-4>L
1 Jj=k=U+2
0 J=U+2,k<U+2
Pr(Y, 2U-j+2) U+2>j>Lk=U+2

+1denotes the

where, p ;is probability of going from state jto state kin a single step and Y
number of conforming items between the successive defective items and
Pr(Y,,=r)=(1-p)'p 7r=0,1 2, .. where pdenotes the proportion of defective items in the

batch.

The values of p  are determined based on the relations among the states, for example where
U+2>j>1, L 2j-2, k=1 then according to the definition of j, it is concluded that j=Y,+2

and transition probability of going form state jto state k =1is equal to the probability of rejecting
the batch that is evaluated as follows,

pi1=Pr(L 25,,=Y 1 +Y)=Pr(L 2Y, 1+ j-2)=Pr(Y <L - j+2) (34)
In the other case where, U +2>j>1, U +2>k>1, U>j+k-4>L , based on the definition of
j, we havej=Y,; +2 thus it is concluded that

pi=Pr(L <8;1=Y +Y;<U, Y,y =k-2)=

Pr(L <j-2+Y;,<U, Yiy=k-2)= (35)

Pr(L <j-2+k-2<U, Y, ;=k-2)=Pr(L <j+k-4<U, Y;,;=k-2)

i+1
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In the other case where, U +2>j>1, k=U +2, then according to the definition of j, we have
j=Y;+2 thus it is concluded that,

Piua=Pr(Siq=Y g+ Y;2U)=Pr(Y, + j-22U)=Pr(Y,;2U - j+2) (36)

In the other case where, U +2>j>1, U +2>k>1, j+k-4>U , then according to the defini-

tion of j, we have j=Y; + 2 thus it is concluded that,

pu=Pr(L <S =Y +Y;<U, Y, =k-2, j+k-42U)
=Pr(L <j-2+Y,, <U, Y, ,=k-2, j+k-4>U) (37)
=Pr(L <j+k-4<U, j+k-42U)=0

As a result, when L =1and U =3 for example, the transition probability matrix among the

states of the system can be expressed as:

_ 1 2 3 4 5 _
T 0 0 0 0
2l Pr(Y <1) 0 0 Pr(Y=2) Pr(Y=>3)
P’|Pr(¥<0) 0  Pr(y=1) 0  Pr(yY> (38)
40 Pr(Y =0) 0 0 Pr(Y >1)
0 0 0 0 1

And it can be seen the matrix P is an absorbing Markov chain with states 1 and 5 being ab-

sorbing and states 2, 3, and 4 being transient.

Analyzing the above absorbing Markov chain requires to rearrange the single-step probabil-
ity matrix in the following form:

:{A O}

R 0 (39)

whereAis the identity matrix representing the probability of staying in a state that is defined
as follows

_r

Ois the probability matrix of escaping an absorbing state (always zero) that is defined as
follows
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O1|:O 0 0:| 1)

Qis a square matrix containing the transition probabilities of going from a non-absorbing

state to another non-absorbing state that is defined as follows

oo )
Q-3 0 Pr(Y=1) 0 (42)
4| Pr(Y =0) 0 0

And Ris the Matrix containing all probabilities of going from a non-absorbing state to an

absorbing state (i.e., accepted or rejected batch) that is defined as follows

1 5
o| Pr(Y <1) Pr(Y=3)

R-3| Pr(Y<0) Pr(Y= (43)
4 0 Pr(Y >1)
Rearranging the P matrix in the latter form yields the following:
_ 1 5 2 3 4 _
! 1 0 0 0 0
5 0 1 0 0 0
P’ Pr(Y<1) Pr(¥23) 0 0 Pr(Y=2) (44)
3| Pr(Y<0) Pr(Y=>2) 0 Pr(Y=1) 0
4_ 0 Pr(Y>1) Pr(Y=0) 0 0

Bowling et. al. [4] proposed an absorbing Markov chain model for determining the optimal
process means. According to their method, matrix M that is the fundamental matrix contain-
ing the expected number of transitions from a non-absorbing state to another non-absorbing

state before absorption occurs can be obtained by the following equation,
M=(I-Q)" (45)

For the above numerical example, i.e.,, when L =landU =3, the fundamental matrix M can
be obtained as:
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2 3 4 -1
2 1 0 —Pr(Y =2)
M=(I-Q)'=3 0 1-Pr(Y =1) 0 (46)
4/ -Pr(Y =0) 0

where Iis the identity matrix.

Since m jjirepresents the expected number of the times in the long-run the transient state jis
occupied before absorption occurs (i.e., before accepted or rejected), and matrix F is the ab-
sorption probability matrix containing the long run probabilities of the transition from a
non-absorbing state to an absorbing state. The long-run absorption probability matrix, F,
can be calculated as follows:

F=M xR (47)

Again when L =landU =3, the elements of F (f K J=2,34 k=1, 5) represent the
probabilities of the batch being accepted and rejected, respectively, given that the initial
state isj=2, 3, 4. In this case, the probability of accepting the batch is obtained as:

Probability of accepting the batch=

Pr(Accepting the batch | the initial state is ) xPr(the initial state is j)
=2

= (48)
4
=) f ;sPr(Y =j=2)+ Pr(Y 23)
=2
Also the expected number of inspected items will be determined as follows,
Expected number of inspected items =
u+ ((the number of inspected items in state j)| us (i-2) (49)
=) (the number of visits to state j) _]Zzz ]

This new acceptance-sampling plan should satisfy two constraints of the first and the sec-
ond types of errors. The probability of Type-I error shows the probability of rejecting the
batch when the defective proportion of the batch is acceptable. The probability of Type-II
error is the probability of accepting the batch when the defective proportion of the batch is
not acceptable. Then on the one hand ifp=AQL , the probability of rejecting the batch will
be less than a and on the other hand, in case wherep=LQL , the probability of accepting
the batch will be less thanf where a and Bare the probabilities of Type-I and Type-II er-

rors. Hence,
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p=AQL - Probability of accepting the batch>1-«
(50)
p=LQL — Probability of accepting the batch<p

From the inequalities in (50), the proper values of the thresholds L and U are determined
and among the feasible ones, we select one that has the least value for expected number of
inspected items that is obtained using Eq. (49).

6. A New Acceptance Sampling Design Using Bayesian Modelling and
Backwards Induction [8]

In this research, a new selection approach on the choices between accepting and rejecting a
batch based on Bayesian modelling and backwards induction is proposed. The Bayesian
modelling is utilized to model the uncertainty involved in the probability distribution of the
nonconforming proportion of the items and the backwards induction method is employed
to determine the sample size. Moreover, when the decision on accepting or rejecting a batch
cannot be made, we assume additional observations can be gathered with a cost to update
the probability distribution of the nonconforming proportion of the batch. In other words, a
mathematical model is developed in this research to design optimal single sampling plans.
This model finds the optimum sampling design whereas its optimality is resulted by using
the decision tree approach. As a result, the main contribution of the method is to model the
acceptance-sampling problem as a cost optimization model so that the optimal solution can
be achieved via using the decision tree approach. In this approach, the required probabilities
of decision tree are determined employing the Bayesian Inference. To do this, the probability
distribution function of nonconforming proportion of items is first determined by Bayesian
inference using a non-informative prior distribution. Then, the required probabilities are de-
termined by applying Bayesian inference in the backward induction method of the decision
tree approach. Since this model is completely designed based on the Bayesian inference and
no approximation is needed, it can be viewed as a new tool to be used by practitioners in
real case problems to design an economically optimal acceptance-sampling plan. However,
the main limitation of the proposed methodology is that it can only be applied to items not
requiring very low fractions of nonconformities.

6.1. Notations

The following notations are used throughout the paper.

Set of decisions: A={a,, a,}is defined the set of possible decisions where 4, and a, refer to ac-
cepting and rejecting the batch, respectively.
State space: P={p;; I=1, 2, ...; 0<p,;<1}is defined the state of the process where p,represents

nonconforming proportion items of the batch in " state of the process. The decision maker
believes the consequences of selecting decisiong, or 4, depend on P that cannot be deter-
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mined with certainty. However, the probability distribution function of the random variable
p can be obtained using Bayesian inference.

Set of experiments: E ={e;i=1, 2, ...}is the set of experiments to gather more information on
pand consequently to update the probability distribution ofp. Further, ¢is defined an ex-
periment in which iitems of the batch are inspected.

Sample space: Z ={zj; j=0,1,2, .., i}denotes the outcomes of experiment e¢; where z]-shows

the number of nonconforming items ine;.

Cost function: The function u(e, z, a, p) on E xZ x Ax P denotes the cost associated with per-
forming experimente, observingz, making decisiona, and findingp.

N': The total number of items in a batch
R: The cost of rejecting a batch

C: The cost of one nonconforming item
S: The cost of inspecting one item

n: An upper bound on the number of inspected item

6.2. Problem Definition

Consider a batch of size N with an unknown percentage of nonconforming p and assume m
items are randomly selected for inspection. Based on the outcome of the inspection process
in terms of the observed number of nonconforming items, the decision-maker desires to ac-
cept the batch, reject it, or to perform more inspections by taking more samples. As Raiffa &
Schlaifer [9] stated "the problem is how the decision maker chose eand then, having ob-
servedz, choose esuch that u(e, z, a, p) is minimized. Although the decision maker has full
control over his choice of eanda, he has neither control over the choices of znorp. However,
we can assume he is able to assign probability distribution function over these choices."
They formulated this problem in the framework of the decision tree approach, the one that
is partially adapted in this research as well.

6.3. Bayesian Modelling

For a nonconforming proportionp, referring to Jeffrey’s prior (Nair et al. [10]), we first take a
Beta prior distribution with parameters v,=0.5 and 1,=0.5 to model the absolute uncertainty.
Then, the posterior probability density function of p using a sample of v + u inspected items
is

r 1

7}—0.5(1_p)u—0‘5 (51)
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where vis the number of nonconforming items and u is the number of conforming items in
the sample. Moreover, to allow more flexibility in representing prior uncertainty it is con-
venient to define a discrete distribution by discretization of the Beta density (Mazzuchi, &
Soyer [11]). In other words, we define the prior distribution for p,as

o
Pt /2

Pr{p=p}= J fp)dp (52)

l"l’b/z

where pl=(217_1)6 and 6=% forl=1,2, .., m

Now, define (j, i);i=1, 2, ..., nand j=0, 1, 2, ..., i the experiment in which j nonconforming
items are found when iitems are inspected. Then, the sample space Z becomes

={(j, i):0< j<i<n}, resulting in the cost function representation of u[e, (j, i), a,, p;];k=1, 2
that is associated with taking a sample of iitems, observing jnonconforming and adopting
a,or ;;when the defective proportion isp;. Using the notations defined, the cost function is

determined by the following equations:

1) for accepted batch

u(e, (j, i), @, p1)=CNp +Se;
2) for re]ected batch

wley (j, ) @y pr)=R +Se

(53)

Moreover, the probability of finding j nonconforming items in a sample of i inspected
items, i.e.,, Pr{(j, i) | p=p,}, can be obtained using a binomial distribution with parameters

(i, p=py)as:
Pr((j, i) L p=pi}=C/p/(1-p,)"I (54)
Hence, the probability Pr{p=p,, z=z | e=¢;} can be calculated as follows

Pr{p=p, z=2z | e:ei}:Pr{Z:Zj | p=p1, e=e|Pr{p=p]
F’l*’é/z
~Cip(t-p) i | Fpap

o
P~ /2

(55)

Thus,
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'l (56)

In other words, applying the Bayesian rule, the probability Pr{p=p, | z=z, e=e;} can be ob-
tained by

Pr{p=p, z=z le=e}
Pr{p=p, 2=z e=e}= Pr{z=zTe=¢]

Pz*b/z
cpla=p) i | ripi &
_ P /2
!’k*b/z
Sciwia-ny | foup
B Pk'é/z

In the next Section, a backward induction approach is taken to determine the optimal sam-
ple size.

6.4. Backward Induction

The analysis continues by working backwards from the terminal decisions of the decision
tree to the base of the tree, instead of starting by asking which experiment ethe decision
maker should select when he does not know the outcomes of the random events. This meth-
od of working back from the outermost branches of the decision tree to the initial starting
point is often called "backwards induction" [9]. As a result, the steps involved in the solution
algorithm of the problem at hand using the backwards induction becomes

1. Probabilities Pr{p=p,} and Pr{(j, i) | p=p,} are determined using Eq. (52) and Eq. (54),
respectively.

2. The conditional probability Pr{p=p, | z= zj, e=¢; .} is determined using Eq. (57).

3. With a known history(e, z), since pis a random variable, the costs of various possible ter-
minal decisions are uncertain. Therefore the cost of any decision a for the given (e, z) is set
as a random variableu(e, z, a, p). Applying the conditional expectation, E,,, which takes

the expected value of ule, z, a, p) with respect to the conditional probability Pp 1,(Eq. 57), the
conditional expected value of the cost function on state variable p, is determined by the fol-

lowing equation.
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" (e 2z %)= Z (e 2, 4 pOPrip=p 1227, e=¢}) (38)

4. Since the objective is to minimize the expected cost, the cost of having history (e, z) and
the choice of decision (accepting or rejecting) can be determined by

u* (e, zj)=min, u* (¢, z;, @) (59)

5. The conditional probability Pr{z =z | e=e.} is determined using Eq. (56).

6. The costs of various possible experiments are random because the outcome zis a ran-
dom variable. Defining a probability distribution function over the results of experiments
and taking expected values, we can determine the expected cost of each experiment. The

conditional expected value of function u* (¢, ;) on the variable z; is determined by the

following equation.

i

Z {u* (el,z)Prz z le=e.}} (60)

j=0

7. Now the minimum of the values u * (¢;) would be the optimal decision, which leads to an

optimal sample size.

u* =min, u* (¢;)= min, E_|, min, Ep|zu(ei, zj, @, p1) (61)

7. Conclusion

Acceptance sampling plans have been widely used in industry to determine whether a spe-
cific batch of manufactured or purchased items satisfy a pre-specified quality. In this chap-
ter, new models for determining optimal acceptance sampling plans have been presented.
The relationship between the cost model and a decision theory model with probabilistic util-
ities has been investigated. However, the acceptance sampling plan, which are derived from
the optimization of these models, may differ substantially from the plans that other econom-
ic approaches suggest but optimization of these models are simple and efficient, with negli-
gible computational requirements. In next sections, a new methodology based on Markov
chain was developed to design proper lot acceptance sampling plans. In the proposed proce-
dure, the sum of two successive numbers of nonconforming items was monitored using two
lower and upper thresholds, where the proper values of these thresholds could be deter-
mined numerically using a Markovian approach based on the two points on OC curve. In
last section, based on the Bayesian modelling and the backwards induction method of the
decision-tree approach, a sampling plan is developed to deal with the lot-sentencing prob-
lem; aiming to determine an optimal sample size to provide desired levels of protection for
customers as well as manufacturers. A logical analysis of the choices between accepting and
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rejecting a batch is made when the distribution function of nonconforming proportion could
be updated by taking additional observations and using Bayesian modelling.
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1. Introduction

Biomedical calibration measurement is the measurement of the accuracy of the medical de-
vice or the medical system by using the standard measurement system whose accuracy is
known, and is the determination and the record of the deviations. In shortly, by the biomed-
ical calibration measurements, it is established whether the medical devices are appropriate
to the international standards or not, and the problems are also determined if the device is
not adequate to the international standards (Sezdi, 2012).

Biomedical calibration measurement is different from other industrial calibration studies.
Measurements are generally performed where the medical device that will be tested, is used
in hospital. Only some medical devices, for example pipettes, thermometers are tested in
laboratory environment.

Accreditation is the appraising of a measurement service in according to the international
technical criterias, is the acception of its qualification and the controlling of it regularly.
For an enterprise, being accredited is a reputable status. It shows that the enterprise has a
quality management system and performs the requirements of the implemented stand-
ards. The enterprices are periodically recontrolled by an accreditation agency to protect
the status and to continue fulfilling of the requirements of the business standards. The
controls create the most important quality assurance of the businesses that take service
from these laboratories.

In many countries, from Brazilia to China, there are accreditation studies (Boldyrev et al.,
2004; Boschung et al., 2001; Iglicki et al., 2006; Kartha et al., 2003; Alexander et al., 2008; Goff
et al., 2009; McGrowder et al., 2010). In Turkey, the studies of accreditation is controlled by
Turkish Accreditation Agency (TURKAK). If the list of the accredited laboratory is investi-

© 2012 Sezdi; licensee InTech. This is a paper distributed under the terms of the Creative Commons
I m Ec H Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and reproduction in any medium, provided the original work is properly cited.
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gated from the web site of TURKAK, it is seen that there are approximately 14 accredited
enterprises that give services in biomedical calibration measurements (TURKAK website).
But these are not in a single accredited enterprise type. While some of them are accepted as
testing laboratories, some of them are accepted as calibration laboratories, the others are ac-
cepted as inspection bodjies.

The standard used in the accreditation of testing laboratories and calibration laboratories is
TS EN ISO/IEC 17025:2005. ISO 17025 contains the quality management system of the testing
and calibration laboratory. It examines all work flows, organization structure and technical
suffiency. The standard used in the accreditation of inspection bodies is TS EN ISO/IEC
17020:2004 (ISO IEC 17025, 2005; ISO IEC 17020, 2004).

There is not yet a specific study about the medical accreditaton in TURKAK. If hospitals de-
mand the medical accreditation during they take the medical calibration service, they must
work with the accredited laboratory in according to their measured medical device or system.
It can be a medical device, radiological system or only a parameter such as temperature,
mass...etc. There is a confusion about which accreditation studies should preferred for which
medical devices. Is the accreditation certificate about non-medical parameters sufficient tech-
nically for biomedical calibration? In other words, is testing of a defibrilator by the mass ac-
creditation or testing of an anesthetic machine by the temperature accreditation, ethical?

There may be many parameters that must be considered during the biomedical calibration
measurements of any medical device. For example, testing of a ventilator contains flow,
pressure and volume parameters. If a sufficieny is wanted, sufficiency about three parame-
ters must be wanted seperately. In addition to this, the personnel who will perform the
measurement, must be professional. The biomedical calibration needs the specialization of
the biomedical personnel. It brings many problems that the biomedical calibration is per-
formed by the non-educated personnel about biomedical and that the industrial accredita-
tion is accepted as sufficient. Particularly, inattentive studies, in operation rooms and
intensive care rooms, causes many unexpected problems.

The important point that attracts the attention in this study is that the hospitals take the in-
adequate services if they don’t investigate the accreditation content. If the content of the ac-
creditation studies is known, the customer will be knowledgeable about which accreditation
should be preferred for which medical device or medical system.

2. Accreditation

Accreditation is a quality infrastructure tool which supports the credibility and value of the
work carried out by conformity assessment bodies. Accreditation provides formal recogni-
tion that an organisation is meeting internationally accepted standards of quality, perform-
ance, technical expertise, and competence.

A product or service accompanied by a conformity attestation delivered by an accredit-
ed conformity assessment body inspires trust as to the compliance with applicable speci-
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fied requirements. Thereby accreditation favours the elimination of technical barriers to
trade. Accreditation provides a global acceptance of the services and establishs a confi-
dence for the quality.

The trusting mechanism between accreditation bodies is constructed on the multi literal
agreements at the international and regional accreditation body organisations, like IAF ( In-
ternational Accreditation Forum), ILAC (International Laboratory Accreditation Coopera-
tion), EA (Europen Cooperation for Accreditation), etc.

Turkish Accreditation Agency (TURKAK) started to provide accrediation services in 2001
and became a cooperator of Europian Cooperation for Accreditation (EA) for all available
accreditation schemes at 2008. Currently TURKAK is a full member of EA, IAF and ILAC. It
serves as international accreditation agency.

Accreditation is beneficial to the accredited body itself, to Government and to users of ac-
credited bodies.

Accredited bodies have benefits as below:

1. the laboratories are controlled by independent conformity assessment bodies and they
meet international standards for competence,

2. an effective marketing tool is provided,

3. the measurements are demonstrated as traceble in according to the national or interna-
tional standards,

Accredited service provides benefits for customers:

1. assurance that tests are performed by using calibrated equipment by personnel with the
right level of expertise,

2. assurance that calibration or test devices are controlled and traced periodically in ac-
cording to the international standards,

3. elimination of technical barriers to trade,

4. addition of credibility to the test results by accredited conformity assessment bodies,
Generally, accreditation applications are classified as 4 items.

* Accreditation of testing, calibration and medical laboratories,

* accreditation of product, service or inspection,

* accreditation of certification of management systems, and

* accreditation of personal certification bodies.

In laboratory and inspection accreditation, high respectability both at the national and inter-
national level as an indicator of technical competence is essential. Laboratory and inspection
accreditation aim to give services accurate and reliable testing, analysis or calibration meas-
urements. Laboratory accreditation ensures the official recognition of laboratory competence
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and offers an easy method to customers in determining and choosing reliable testing, analy-
sis and calibration services.

The process of laboratory accreditation is regulated and standardized according to the inter-
national standards. Reports and certificates issued by accredited laboratories are interna-
tionally accepted. While the standard for testing and calibration laboratories is ISO IEC
17025:2005, the standard for inspection bodies is ISO IEC 17020:2004.

Accreditation activities of certification bodies of management system provide quality of cer-
tification of management system. Accreditation services in this field is generally given for
ISO 9001:2008 certification, ISO 14001:2004 certification, ISO 22000:2005 certification, ISO
27001:2005 certification and ISO 13485:2003 certification. For this type of accreditation,
ISO/IEC 17021:2011 standard is used (ISO/IEC 17021, 2011).

Accreditation of personal certification bodies that certificate the personnel making conformi-
ty assessments to make their activities in accordance with specified national and internation-
al standards, is provided by using the standard of ISO/IEC 17024:2003 (ISO/IEC 17024, 2003).

Accreditation bodies use accreditation mark or logo over their certificates or reports that
contain their measurement/test results. But, such logo or marks must be used only over
the certificates or reports including accredited facilities. TURKAK also provides accredita-
tion symbol to be used in the output documents to be issued for the accredited services.
It contains information about the accreditation field, accreditation standard and unique
number of the accredited body, the accreditation number. The logo used by TURKAK can
be seen in figure 1.

TURKAK

Accreditation Field

Standard Nr

Accreditation Nr

Figure 1. The accreditation logo used by TURKAK (TURKAK website).
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2.1. Proficiency Testing & Interlaboratory Comparisons

For accreditation studies, the quality assurance of the test results is obtained by interla-
boratory comparisons and proficiency testing (PT) (Bode, 2008; Kubota et al., 2008; Ko-
pler et al, 2005). The interlaboratory comparisons and proficiency testing bring
significant benefits to laboratories.

Proficiency Testing provides the infrastructure for a laboratory to monitor and improve the
quality of its routine measurements (fig. 2). Proficiency Testing is the only quality measure
which is specifically concerned with a laboratory’s outputs. Proficiency Testing gives a pos-
sibility to identify any problems caused from other aspects of its quality system, such as
staff training and method validation.

a . )
Accreditation

Sampling
Method ! |1 2 yuallty
1 - ang Qual
alidation :
i :> Measurement Fesults
Iraining

Syslem

N

Figure 2. The factors in accreditation process.

Proficiency Testing is treated as important performance criteria regarding the evaluation of
the technical competence of the laboratories. Laboratories that will be accredited should par-
ticipate to Proficiency Testing programme or/and interlaboratory comparison for the main
and sub disciplines they demand for accreditation and should submit satisfactory results ac-
cording to defined criterias.

Proficiency Testing providers demonstrate the quality of their Proficiency Testing pro-
grammes. There are two important international guides to which Proficiency Testing pro-
viders can demonstrate the quality of their Proficiency Testing programmes:

1. ISO/IEC 17043: Conformity assessment - General requirements for proficiency testing
(ISO/IEC 17043, 2007)

2. ILAC G13: Guidelines for the Requirements for the Competence of Providers of Profi-
ciency Testing Schemes (ILAC G13, 2007)

The basic of the ISO/IEC 17043 is the ISO/IEC Guide 43. For several years, this document has
provided several guidance on the development and operation laboratory proficiency testing
for a relatively new field of activity. It contained very basic guidance and little attention to
the use of the outcomes by laboratory accreditation bodies (Tholen, 2007).

Guide 43 have provided guidance in 5 areas (ISO Guide 43, 1997). They are;

* to distinguish between use of interlaboratory comparisons for Proficiency Testing and for
other purposes (introduction to Part 1)
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* the development and operation of Proficiency Testing schemes (Part 1)
* the selection and the use of schemes by laboratory accreditation bodies (Part 2)
* guidance on statistical methods (Annex A) and

* guidelines for development of a quality manual for the operation of Proficiency Testing
schemes (Annex B)

The statistical annex led to the development of ILAC Guide 13. ILAC G13 contains the techni-
cal guidelines from Guide 43-1 expressed as requirements and includes the quality manage-
ment system requirements from ISO/IEC Guide 25. Since G13 has management system
requirements that are consistent with ISO/IEC 17025, Proficiency Testing providers accredited
to this document are considered to be in conformity with the requirements of ISO 9001:2000
(Tholen, 2007). The standard ISO/IEC 17043 describes the criteria concerning the quality to be
respected when developing proficiency tests and the use that can be made of these tests by the
accreditation bodies. ILAC-G13 is useful to organizers for competence (Fraville et al., 2010).

The Proficiency Testing programmes of many Proficiency Testing providers around the
world are now accredited by their national accreditation bodies, normally against the above
documents. However, not all countries are ready to accredit Proficiency Testing providers,
and not all Proficiency Testing providers wish to be accredited.

Proficiency Testing programmes are operated by a variety of organizations within Europe
and the rest of the world. Many Proficiency Testing programmes are international. There is
a database of available Proficiency Testing programmes. In selecting the most appropriate
Proficiency Testing it is important to consider a number of issues in order to judge its suita-
bility for your purpose (ISO Guide 34, 2000; ISO Guide 43, 1997).

3. Accreditation Standards

The accreditation standards used in biomedical calibration measurements can be classified
into 2 groups. TS EN ISO / IEC 17025 and TS EN ISO / IEC 17020. While the standard of
17025 is used for the accreditation of testing and calibration laboratories, the standard of
17020 is used for the accreditation of inspection bodies.

The laboratory accreditation standards should not be confused with ISO 9001 standard. ISO
9001 is widely used in the assessment of the quality systems of production and service or-
ganizations. Certification of organizations according to the ISO 9001 system expresses the
compliance of that organization's quality system with this standard (ISO 9001). When certi-
fying laboratories according to ISO 9001, this certification makes no statement on the techni-
cal competence of laboratories. From this point, the certificate's power to convince the
market and prospects of laboratories is quiet insufficient.
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3.1. The standard of TS EN ISO / IEC 17025

ISO IEC 17025, entitled “General Requirements for the Competence of Testing and Calibra-
tion Laboratories”, is an international standard describing the general requirements to meet
for the recognition of that a laboratory is competent to perform specific tests (ISO IEC 17025;
2005). This international standard is used to develop the quality, management and technical
systems of laboratories (Abdel-Fatah, 2010; Glavic-Cindro et al., 2006; Brantner et al., 2011;
Zapata-Garcia et al., 2007; Jerone et al., 2008). Technical requirements are updated to include
the addition of formal personnel training plans and detailed records, method development
and validation procedures, measurement of method uncertainty, and a defined equipment
calibration and maintenance program (Honsa et al., 2003). ISO 17025 certification can be ap-
plied to all organizations that give services of testing or calibration. These organizations are
the first-party, second-party and third-party laboratories.

First-party Laboratories: Manufacturer Laboratories, Second-party Laboratories: Customer
Laboratories, Third-party Laboratories: Independent Laboratories.

This standard can be applied to all laboratories regardless of the scope of test or calibration
activities and the number of personnel.

If testing and calibration laboratories comply with the requirements of this standard, a qual-
ity management system to meet the principles of ISO 9001 will be also applied. There is a
cross-match among TS EN ISO 17025 standard and ISO 9001. TS EN ISO 17025 standard cov-
ers technical competence requirements, not covered by ISO 9001.

3.1.1. The content of the standard of TS EN 1SO / IEC 17025

TS EN ISO 17025 standard is assessed in two main categories. The standard of TS EN ISO
IEC 17025 contains both the management and technical requirements. In standard, 4th item
describes the management system and 5th item describes the technical activities. The con-
tent of 17025 standard is as follows:

0 Introduction

1 Scope

2 Cited in standards and / or documents

3 Terms and definitions

4 Management requirements

4.1 Organization

4.2 Management system

4.3 Document control

4.4 Review of requests, tenders and contracts

4.5 Subcontracting of tests and calibrations
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4.6 Purchasing of service and materials

4.7 Customer service 4.8 Complaints

4.8 Complaints

4.9 Control of nonconforming testing and / or calibration work
4.10 Improvement

4.11 Corrective action

4.12 Preventive action

4.13 Control of records

4.14 Internal controls

4.15 Management reviews

5 Technical requirements

5.1 General

5.2 Personnel

5.3 Accommodation and environmental conditions
5.4 Test and calibration methods and method validation
5.5 Devices

5.6 Measurement traceability

5.7 Sampling

5.8 Calibration procedures

5.9 Assuring the quality of test and calibration results
5.10 Reporting of the results

The laboratory must be an institution that can be held legally responsible. Laboratory man-
agement system must consist of facilities in fixed laboratory and temporary or mobile facili-
ties that are linked to the laboratory.

3.2. The standard of TS EN ISO / IEC 17020

ISO 17020, entitled “General Criteria for the Operation of Various Types of Bodies Perform-
ing Inspection”, is an internationally recognized standard for the competence of inspection
bodies. Inspection parameters may include such aspects as the quantity, quality, safety, suit-
ability, facilities or systems (ISO IEC 17020; 2004).

There are 3 types of inspection organizations. They are:

Type A: Inspection body must be independent. Both the inspection organization and its per-
sonnel must not be related to the inspected materials. They must not be the material’s de-
signers, manufacturers, suppliers, installers, purchasers, owners or operators.
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Type B: Inspection services should be given to the organization that consists of the inspection
body. Type B bodies can not service to other organizations.

Type C: This type of bodies give services to both the organization that consists of the inspec-
tion body and other organizations.

TS EN ISO 17020 standard can be applied regardless of the scope of inspection activities in
the company. TS EN ISO 17020 certification can be given all kinds of inspection bodies that
are willing to give service in accordance with this standard.

3.2.1. The content of the standard of TS EN 1SO / IEC 17020
In the standard of TS EN ISO IEC 17020, the technical requirements are the main aspect. TS
EN ISO 17020 standard consists of 16 items. They are:

0 Introduction

1 Scope

2 Definitions

3 Administrative Rules

4 Independence, impartiality and integrity

5 Privacy

6 Organization and management

7 Quality System

8 Personnel

9 Equipment

10 Inspection methods and procedures

11 Samples and materials to be inspected

12 Records

13 Inspection reports and inspection certificates

14 The use of subcontractors

15 Complaints and appeals

16 Co-operation

4. Accreditation Types

As it was mentioned earlier, there are 3 accreditation types for biomedical calibration meas-
urements. They are:

¢ Calibration laboratories
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¢ Testing laboratories

* Inspection bodies

4.1. Calibration Laboratories

A calibration laboratory is a laboratory that performs test, calibration and repair of measur-
ing instruments. The calibration of equipment is achieved by means of a direct comparison
against measurement standards or certified reference materials. These standards are also
regularly calibrated themselves, in comparison with another standard of lower uncertainty.

Example Example
Measurement Measurement Method
Measurement . Measurement
Parameter Condition i Standard
Range Uncertainty
Pressure 0-70 bar Air 0,2 %
Euramet CG-17 / v.01
70 -700 bar Hydraulic 0,2%
Temperature In controlled
distribution volume (oven,
-40 +200 °C ] 0,68 °C Euramet CG-13 /v.01
of controlled incubator,
volume freezer...))
Scales (non 0-600gr E2 class mass 210°
automatic) 0-10kg F1 class mass 110°
Euramet CG-18 / v.03
0-150kg M1 class mass 110+
0-1000 kg M1-M2 mass 210*
Temperature 0-60°C Water bath 0,72°C Measurement in
of glass 60— 150 °C Dry block 0,74 °C laboratory by using
thermometer oil bath comparison method
50-100 pl 0,100 pl
200 pl 0,158 ul
Volume 500l 0,315l TS1S0 4787
Piston 1ml in laboratory 0,452 ul TS EN ISO 8655-2
pipettes 2 ml 1,209 pl TS EN ISO 8655-6
5ml 2,851 ul
10 ml 5,991 pl
Temperature 0-250°C 0,56 °C Measurement in
) Ice bath and dry )
meters with 250 - 600 °C 0,82 °C laboratory by using
) block oven ‘
display comparison method
20% - 70% RH 1,4% RH Measurement in
Moisture 70% - 90% RH Humidity cabinet 2 2% RH laboratory by using

comparison method

Table 1. The content of accreditation studies of calibration laboratories.
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Calibration laboratories give services to all industry, textile, paint, food or health care etc.
The company's working area is not important. The parameter to be measured is essential.
For example, the mass for the weighing of food, rotational speed of the paint mixing device,
hardness of the material used in manufacturing, the temperature of refrigerators used for
drug store. The parameters are measured and a calibration certificate is prepared.

The biomedical measurements in calibration laboratories are also performed generally as pa-
rameter measurements. The parameters can be classified as electrical parameters, pressure-
vacuum parameters, temperature-humidity parameters, mass-volume parameters. An
example study for accreditation of calibration laboratories can be seen in Table 1.

The accreditation of calibration measurements is carried out via parameter measurements.
Unlike other types of accreditation studies, parameter measurement is accredited for calibra-
tion laboratory. As of today, ISO IEC 17025 is taken as the basis for laboratory accreditation
purposes. This standard is recognized worldwide. The requirements of this standard are
provided for the general requirements on a laboratory's quality management system and
technical competence. Laboratories accredited according to ISO IEC 17025 are re-evaluated
periodically by the accreditation body and decision is made for the maintenance of accredi-
tation based on results obtained.

Laboratories intending to maintain accreditation are required to participate inter-laboratory
comparison and proficiency testing programs on their scope of accreditation and achieve
successful results.

4.2. Testing Laboratories

The biomedical measurements in testing laboratories are performed on the basis of the med-
ical device. The test procedures are prepared to test all parameters in the medical device.
Defibrillators, ventilators...etc. are tested completely to measure all parameters in it. If there
are many parameters in a device such as ECG parameters (electrical), blood pressure param-
eters (pressure), body temperature parameters (temperature), they are measured in accord-
ing to the measurement procedures in the place of where medical device works and a
certificate is prepared.

In Turkey, the standard of 17025 is applied to testing laboratories for the medical devices. The
content of the accreditation studies of testing laboratories can be seen in Table 2 and Table 3.

Device Under Test Testing Name Testing Method - Standard

Earth resistance TS EN 60601-1 (item 8.7)

Electrical Safety Tests Chassis leakage current TS EN 60601-1 (item 8.7)
for

. . ) Patient leakage current TS EN 60601-1 (item 8.7)
all Electrical Biomedical

Devices Patient auxiliary leakage TS EN 60601-1 (item 8.7)

current
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Device Under Test

Testing Name

Testing Method - Standard

Applied part leakage

current

TS EN 60601-1 (item 8.7)

RMS chassis voltage

TS EN 60601-1 (item 8.9)

DC chassis voltage

TS EN 60601-1 (item 8.9)

Mains voltage

TS EN 60601-1 (item 8)

Device current

TS EN 60601-1 (item 8)

Performance-Safety Tests
for

Defibrillators

ECG pulse test

TS EN 60601-2-27 (item 50.102.15)

ECG amplitude test

TS EN 60601-2-27 (item 50.102.15)

ECG frequency test

TS EN 60601-2-27 (item 50.102.8)

ECG arythmia test

TS EN 60601-2-27 (item 56.8)

Energy test

TS EN 60601-2-4 (item 50)

Charge time test

TS EN 60601-2-4 (item 101)

Synchronized discharge testTS EN 60601-2-4 (item 104)

Performance-Safety Tests
for

Electrosurgical Units

Power distribution test

TS EN 60601-2-2 (item 50.1)

HF leak test

TS EN 60601-2-2 (item 19.3.101)

REM alarm test

TS EN 60601-2-2 (item 52)

Performance-Safety Tests
for
Pulse Oximeter (sPO2)

sPO2 performans test

TSENISO 9919 (item 50.101)

ECG pulse test

TS EN 60601-2-27 (item 50.102.15)

sPO2 alarm test

TSEN SO 9919 (item 104)

Performance-Safety Tests
for
Electrocardiography
(ECG)

ECG pulse test

TS EN 60601-2-27 (item 50.102.15)

ECG amplitude test

TS EN 60601-2-27 (item 50.102.15)

ECG frequency test

TS EN 60601-2-27 (item 50.102.8)

ECG arythmia test

TS EN 60601-2-27 (item 56.8)

ECG ST test

TS EN 60601-2-27 (item 50.102.15)

ECG printer test

TS EN 60601-2-27 (item 50.102.16)

Performance-Safety Tests
for
Noninvasive Blood
Pressure Monitor (NIBP)

NIBP performans test

TS EN 60601-2-30 (item 50.2)

NIBP cuff pressure test

TS EN 60601-2-30 (item 22.4.1)

NIBP cuff leakage test

TS EN 60601-2-30 (item 50.2)

NIBP alarm test

TS EN 60601-2-30 (item 51.103)

Performance-Safety Tests
for

Aspirators

Vacuum test

TS ENISO 10079-1

Accuracy test

TS ENISO 10079-1

Flow test

TS ENISO 10079-1

Table 2. The content of accreditation studies of testing laboratories.
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Device Under Test

Testing Name

Testing Method - Standard

Performance-Safety Tests
for

Infusion Pumps

Air control test

TS EN 60601-1-24 (item 51-104)

Flow accuracy test

TS EN 60601-1-24 (item 50-103)

Congestion performance
test

TS EN 60601-1-24 (item 2-122)

Alarm test

TS EN 60601-1-24 (item 51-106)

Performance-Safety Tests
for

Aspirators

Vacuum test

TS ENISO 10079-1

Performance-Safety Tests
for

Shymphonometers

Accuracy test TS ENISO 10079-1
Flow test TS ENISO 10079-1
System leak test TS EN 1060
Manometer test TS EN 1060
Accuracy test TS EN 1060

Performance-Safety Tests
for

Patient Monitor

ECG pulse test

TS EN 60601-2-27 (item 50.102.15)

ECG amplitude test

TS EN 60601-2-27 (item 50.102.15)

ECG frequency test

TS EN 60601-2-27 (item 50.102.8)

ECG arythmia test

TS EN 60601-2-27 (item 56.8)

ECG ST test

TS EN 60601-2-27 (item 50.102.15)

ECG printer test

TS EN 60601-2-27 (item 50.102.16)

Pacemaker test

TS EN 60601-2-27 (item 50.102.12)

ECG alarm test

TS EN 60601-2-27 (item 51.102)

Breath performance test

TS EN 60601-2-27 (item 50.102.8)

Breath alarm test

TS EN 60601-2-27 (item 51.102)

NIBP performans test

TS EN 60601-2-30 (item 50.2)

NIBP cuff pressure test

TS EN 60601-2-30 (item 22.4.1)

NIBP cuff leakage test

TS EN 60601-2-30 (item 50.2)

NIBP alarm test

TS EN 60601-2-30 (item 51.103)

IBP static pressure test

TS EN 60601-2-34 (item 51.102)

IBP dynamic pressure

TS EN 60601-2-34 (item 51.102)

IBP alarm test

TS EN 60601-2-34 (item 51.203.1)

sPO2 performans test

TSENISO 9919 (item 50.101)

sPO2 alarm test

TSENISO 9919 (item 104)

Table 3. The content of accreditation studies of testing laboratories (continued).



92

Practical Concepts of Quality Control

4.3. Inspection Bodies

Inspection bodies which applied for accreditation must accomplish the requirements of stand-
ard ISO IEC 17020:2004. Inspection means investigation of the product design, product, serv-
ice, process or the factory and their professional judgment based on the determination of the
conformity of the general rules. Inspection bodies are conformity assessment companies. After
the inspection, they transmit report to the customer, no certification. In Turkey, 17020 standard
is applied for the radiography systems and clean room classification. The content of the accred-

itation studies of inspection bodies can be seen in Table 4.

Medical Device Inspection Type

Standard

kVp

IPEM Report No 32, European Commission

Radiation Protection No 91

Exposure time

IPEM Report No 32, European Commission

Radiation Protection No 91

Exposure repeatability

and linearity

IPEM Report No 32, AAPM Report No 74,
European Commission Radiation Protection
No 91

Tube output and stability

IPEM Report No 32, European Commission

Radiation Protection No 91

Filtration and

half value layer

IPEM Report No 32, AAPM Report No 74,
FDA 21 CFR 1020.30, European Commission

Radiation Protection No 91

CONVENTIONAL Collimati IPEM Report No 32, European Commission
ollimation
RADIOGRAPHY Radiation Protection No 91
) European Commission Radiation Protection
X-ray beam alignment
No 91
IPEM Report No 32, European Commission
Focal spot size
Radiation Protection No 91
Automatic IPEM Report No 32, European
exposure control Commission Radiation Protection No 91
European Commission Radiation Protection
Grid adjustment No 91
AAPM Report No 74
European Commission Radiation Protection
Leakage radiation No 91
FDA 21 CFR 1020.30
European Commission Radiation Protection
INTRA-ORAL and kVp

No 91 IPEM Report No 91
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Medical Device

Inspection Type

Standard

Exposure time

European Commission Radiation Protection
No 91 IPEM Report No 91

Tube output

European Commission Radiation Protection
No 91

Patient entrance dose

IPEM Report N:91, European Commission

PANORAMIC Radiation Protection N 162
CONVENTIONAL
Filtration and European Commission Radiation Protection
DENTAL
half value layer No 91 FDA 21 CFR 1020.30
RADIOGRAPHY
) European Commission Radiation Protection
X-ray beam size
No 91 IPEM Report No 91
) ) European Commission Radiation Protection
Patient focus distance
No 91
Image repeatability IPEM Report No 91
European Commission European Guidelines
Focus film distance for Quality in Breast Cancer Screening and
Diagnosis
Tissue thickness sensor IPEM Report 89
) European Commission Radiation Protection
Compression force
No 91,
European Commission European Guidelines
for Quality in Breast Cancer Screening and
kVp accuracy and ) ) o o
. Diagnosis, European Commission Radiation
repeatability ]
Protection No 91, ACR Mammography QC
Manual
CONVENTIONAL European Commission European Guidelines
for Quality in Breast Cancer Screening and
MAMMOGRAPHY

Tube output, tube output
speed and repeatability

Diagnosis, European Commission Radiation
Protection No 91 IPSM Report N59, ACR
Mammography QC Manual, IPEM Report No
89

Tube output-mAs

IPEM Report No 91, IPEM Report No 89

Filtration and half value

layer

European Commission European Guidelines
for Quality in Breast Cancer Screening and
Diagnosis, IPEM Report 89, ACR
Mammography QC Manual

Mean glandular tissue

dose

European Commission European Guidelines
for Quality in Breast Cancer Screening and

Diagnosis, ACR Mammography QC Manual
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Medical Device

Inspection Type

Standard

Image contrast and high

contrast resolution

European Commission European Guidelines
for Quality in Breast Cancer Screening and
Diagnosis, European Commission Radiation
Protection No 91 and 162, ACR
Mammography QC Mn

Collimation, Grid factor
and determination of

grid errors

European Commission European Guidelines
for Quality in Breast Cancer Screening and
Diagnosis, IPEM Report 89, European
Commission Radiation Protection 91, ACR

Mammo QC Manual

Image homogeneity and

assessment of artifacts

European Commission European Guidelines
for Quality in Breast Cancer Screening and
Diagnosis, IPEM Report 89, ACR
Mammography QC Manual

Leakage radiation

European Commission European Guidelines
for Quality in Breast Cancer Screening and

Diagnosis

DIGITAL (FLAT PANEL)
and CONVENTIONAL
IMAGE AMPLIFIED
FLOROSCOPY (DSA
ANJIO, CARDIAC,

C ARM MOBIL)

kVp

IPEM Report No 32, IPEM Report No 91,
European Commission Radiation Protection
No 91, AAPM Report No 74

Filtration and half value

IPEM Report No 32, IPEM Report No 91,

IPEM Report No 32, European Commission

layer Radiation Protection No 91, AAPM Report
No 74
Tube Output IPEM Report No 32, AAPM Report N:70

Maximum exposure

speed

European Commission Radiation Protection
No 91 and 162, IPEM Report No 32, AAPM
Report No 70 - 74

Patient entrance dose

Draft European Commission Radiation
Protection No 162, AAPM Report No 70,
AAPM Report No 74

Image amplified entrance

dose

European Commission Radiation Protection
No 91 and 162, AAPM Report No 70 and 74

Brightness control

IPEM Report N:32, AAPM Report No 70

Gray scale

IPEM Report No 32

Image artifacts

IPEM Report No 32

Compliance of areas

(exposured-displayed)

European Commission Radiation Protection
No 91, IPEM Report No 32
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Medical Device

Inspection Type

Standard

High contrast and low

contrast resolution

European Commission Radiation Protection
No 91, IPEM Report No 32

Contrast detail

IPEM Report No 32

kVp

IPEM Report No 91

Exposure time

IPEM Report No 91 and 32, European

Commission Radiation Protection No 91

Exposure repeatability

and linearity

IPEM Report No 91 and 32, European
Commission Radiation Protection No 91,
AAPM Report No 74

IPEM Report No 91 and 32, European

Tube output and stabilit
FLOROSCOPY P Y Commission Radiation Protection No 91
RADIOGRAPY
IPEM Report No 91 and 32, European
(STOMACH TABLE) Collimation P P
Commission Radiation Protection No 91
Gray scale IPEM Report No 32
European Commission Radiation Protection
High contrast and low No 91, Draft European Commission
contrast resolution Radiation Protection No 162, IPEM Report
No 32
Contrast detail IPEM Report No 32
kVp IPEM Report No 32,
Half value layer test IPEM Report No 32,
Position of external and IPEM Report No 32, IPEM Report No 91
internal scanning lights
Coronal and Sagittal IPEM Report No 32, IPEM Report No 91
Alignment
The slope of gantry AAPM Report No 39
Table axial motion IPEM Report No 32, IPEM Report No 91,
COMPUTED
accuracy IEC61223-2-6
TOMOGRAPHY

Table helical motion

accuracy

IPEM Report No 32, IPEM Report No 91,
IEC61223-2-6

Table distance sensor

IPEM Report No 32, IPEM Report No 91

Computed tomography
dose index (CTDI)

IPEM Report No 32, ECEUR 16262

Tube output (CTDI Air)

and linearity

IPEM Report No 32

Slice thickness

IPEM Report No 32, I[EC61223-2-6
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Medical Device

Inspection Type

Standard

CT number linearity

IPEM Report No 32, IPEM Report No 91

Highcontrastresolution

IPEM Report N:32 and 91, [EC 61223-2-6

Low contrast resolution IPEM Report No 32

NCRPM Report No 99, IPEM Report No 32
and 91

Noise measurement

CT number uniformity IPEM Report N:32 and 91, IEC 61223-2-6

Image homogeneity AAPM Report of Task Group No 1

Image depth AAPM Report of Task Group No 1

Distance accuracy AAPM Report of Task Group No 1
ULTRASOUND

Axial resolution AAPM Report of Task Group No 1
DEVICE

Lateral resolution AAPM Report of Task Group No 1

Dead zone AAPM Report of Task Group No 1

Cyst diameter AAPM Report of Task Group No 1

) IPEM Report 89, IPEM Report No 32,

Negatoskop brigthness o o

NEGATOSKOP and European Commission European Guidelines

and levels of bright of
VIEWING ROOM o for Quality in Breast Cancer Screening and
viewing room

Diagnosis, ACR Mammography QC Manual

Table 4. The content of accreditation studies of inspection bodies.

5. Discussion

In Turkey, accreditation studies about biomedical calibration are performed in 3 different
types. Calibration laboratories, testing laboratories and inspection bodies. Normally, al-
though the scope of their applications seems like they are nested, they are separated from
each other with little detail. Inspections of radiography devices and clean rooms are per-
formed by inspection bodies. Other medical devices except for pipettes, thermometers, hu-
midity meters that must be measured in laboratory conditions, are tested by testing
laboratories and they are accredited in according to the standard of ISO IEC 17025. In cali-
bration laboratories, it is essential to ensure appropriate environmental conditions for meas-
urements. Because of this, measurements that require special measuring environment are
performed in calibration laboratories.

If the differences and details of accreditation studies about biomedical calibration measure-
ments are known by the health organizations, to make the right choice in the selection of
calibration laboratory, testing laboratory or inspection body is inevitable.
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6. Conclusion

Quality service can be only taken from the accredited laboratories. As a matter of fact, the
national and international procedures of accreditation say, “There is not an obligation. The
accreditation depends on the base of voluntary.” (TURKAK website).

Even if accreditation is not obligated, the expectation in medical calibration measurements is
that the personnel must be professional, the calibration procedures and the test devices, cali-
brators must be appropriate to the international standards.
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Formation of Product Properties Determining Its
Quality in a Multi-Operation Technological Process
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1. Introduction

Quality management of manufacture products requires knowledge of the values and inter-
action of all factors which form the quality. The mathematical description or the model of
the process for obtaining the required product properties which correspond to the specified
quality are needed for this purpose in the first place.

One of the most widespread processes in machine-building manufacture is the multi-opera-
tion technological process. As known, formation of product properties starts from receiving
blank parts or raw materials to the enterprise warehouse for subsequent processing or re-
processing. After blanking operations, the main technological operations (TOs) are per-
formed, which in most cases are concluded by final assembling. Sometimes final surface
finishing and/or deposition of coating is performed after assembling.

During formation of product properties it is necessary to take into account the measurement
errors which inevitably appear during quality control at each TO. In general, the technologi-
cal process may be considered as a set of successive technologic states (TS) EV[1], in which
the property index (PI) or a set of PIs obtained at the completed TO have passed quality con-
trol and keep their values unchanged. This allows representing the technological process in
the form of a tuple

E, <E,<..<E <..<E_; <E_, r=1s (1)

where:
< is the symbol of ordered preference in the sense of closeness to the final TS;

r and s are the subscripts of current TS and final TS, respectively.

© 2012 Rostovtsey, licensee InTech. This is a paper distributed under the terms of the Creative Commons
I m Ec H Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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The question now arises: what should be regarded as parallel transformation of the proper-
ties considered here? Undoubtedly, assembling TOs should. Here this tuple is expressed in
another form:

(B, By BB ) <E

)

S/

where T is the sign of transposition of several E, in vectorial form of recording.!

In case of such, so to say, ‘existential’” approach to formation of product properties, TS E,
must be considered as achieving of the prescribed value by property P, at the completed TO
or, in vectorial form, as achieving of the prescribed values by a set of properties (P,), which
is testified by the PIs obtained as the result of post-operation check.

For the development of mathematical model of formation of product properties (expressed by
relevant PIs) during technological process, it is essential to represent each TO in the form of el-
ementary oriented graph (fig.1), which nodes correspond to adjacent TSs (preceding TS E,
and subsequent TS E)), respectively [1]. Graph edge r oriented at TS E, is symbolizing a TO or,
if it is principally significant, a technological step, during which the property P, or properties
(P,) are transformed from TS E,  into TS E,, as shown in fig. 1 a and 1b, respectively.

a) b)

I C.\:r, r-1 I (C.»:r r-l)

Figure 1. Mathematical model of a technological operation r of transformation of one (a) or several (b) property indi-
ces of a product from technological state E, into technological state E, with transformation coefficients &r,r-1 or
(&r,r-1), respectively.

For each PI achieved by TS E,, it is convenient to split the combined random error w? into

three components: inherent error w ,, extrinsic error ¢ , (carried from the previous TO or
TOs), and check error « ,, with the following equation valid for the variances of these errors
[2-4]:

( = W -|- / _|_
1y r L’)i’ Kpr . ( '))

1 Initial letter of the word «Existence» — state (French)
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Neglecting the infinitely small quantities of higher orders, formula (3) allows transition to
the product properties transformation coefficient

é.r,r-lz = ?/)r / wr-lz‘ (4)

However, it should be noted that in some cases, where functional connection between coeffi-
cient £ ,.; and PI exists in some or other form, it is not possible to neglect these infinitely
small quantities of higher orders?’. This coefficient is considered here as “weight” of edge r,
fig. 1.

In case of several Pls, formulas (3) and (4) may be written in vectorial-matrix form:
(@) = (@) +() + (), (5)
where round brackets denote vectorial form of the relevant errors, and
€ r1) = W)/ (@) ©6)

where (& ., Z) is the matrix of transformation of PI from TS r-1 to TS r.

Passing to the nonrandom component Arz of PI combined error, it is necessary to tie its cen-

ter of grouping to zero reference point which corresponds to PI nominal value. Depending
on accepted normalization method, such point may be either the middle of PI tolerance
zone, or one of the limits (left or right) of PI tolerance zone. These limits represent the so-
called functional (if related to E,) thresholds or technological (in this case) thresholds [4-6],
left x _and right x .

Hence, the requirements to PI may be represented for each of these thresholds by semi-open
intervals

x > x, a0 ) and  x < x7,(0, 2, @)
respectively, and for the tolerance zone — by segment
< x <), ®)

allowing to place PI values on x number axis.

2 E.g., in case of assembling fuel-regulating components of gas turbine engines.
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If TS E, contains several non-random combined errors (Arz), they may be united, similar to

random errors, into the common vector of displacement of their centers of grouping. There-
fore, the non-random analog of formula (5) will be:

(A,) = (Aw)+(Av,) +(Ak,), ©9)

where Axr is set to zero because of assumed centrality of measurement errors distribution
(systematic error of measurements must be close to zero due to timely certification and cali-
bration of measuring instruments).

Then formula (9) will take the form

(A,) = (Bw)+(AY,), (10)

P

Then it is necessary to reveal the inversion of PI errors, showing how the errors from the
previous TSs migrate to subsequent TSs, and to perform, so to say, their mathematical con-
volution, uniting them into appropriate mathematical expressions [2—4, 6]. Let us start from
consecutive transformation of errors of random PI components.

Thus, as mentioned earlier, blank parts or raw materials are received to the enterprise ware-
house. Naturally, their PT has a combined error @, specified by delivery terms (at first, let

us consider the simplest case of inversion of a single PI). In this case inversion starts from TS
E; with combined technological error w ; , and its first step is: transition from TS E, to TS

E,, with quadratic transformation of error variances corresponding to this step

N ST SR SR BAPT S S
wy = wy Yy Ry = wy F W R 11)

The second step performs transition from TS E, to TS E;, which is characterized by two
quadratic transformations:

I T ST SN S SR S SRR S
wy = wy iy bRy =Wy G, tRy =

= W5+ (W TG +Ry) TR = (12)

S SRS S ST JC S BN I S
= Wy H )y T kW Gy A

Structure of formula (12) contains the forming, so to say, nucleus of inversion of manufac-
turing errors, or the inversion nucleus:

202, 4242 2
Epy +Ep&nwn, (13)
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Using the method of mathematical induction, let us try to find out the tendencies of subse-
quent evolution of this nucleus in course of approaching to the final TS. For this purpose, let
us perform similar quadratic transformations on the third step of inversion

22,202 2 2 2 2 2 20,2062 2
wy = Wyttt =0 +§4%w +ry = wy + w5 W+

5%2521“’1v + 5%2”2 + ”%) + ”4 = uJ4 +§ 3“’% + 543522 ot (14)
+£43€%2€21W1 +54%£%2’” ¥ +f4%’” 3) + “4

and on the fourth step of inversion

R N S I
= w5 + 554(% —|—§43w2 + 543532 » t 543522521 1y + 543522“2
+£4%“3 + h4) + “5 = (15)

= Ws + 554“’4 + 55452 + & 4543532 2 +§54§43§32521 1, +
+554E42532K2 + 554543 3T 554" + K'

Formula (14) shows quite evidently the general tendencies of increase of inversion nucleus
components and increase of the inversion structure as a whole. This allows making the first
steps for generalization and more convenient perception of the results obtained.

To improve visual appearance of formula (14), let us introduce the generalizing coefficient
E,,, denoting it as multiplicative coefficient of PI transformation. For s-1 linear transforma-
tions of PI, this coefficient is the product:

Es] = ér21532"'£r,r-1"‘gs,s-l = rlilzgr,r—l‘ (16)
Similarly, for quadratic transformation of errors characterized bycfr "R
S
51 - S21£32 %r r-1v Eszs 1= Hz frz,r-l- (17)
Now formula (14) may be rewritten in a simpler manner:
way = wh +Eqw + S5 +Egw; +E§1W12E + a8)

=2 2, =2 2 =2
+25ky + Ssgky T ~54"54 + “5
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Then let us generalize formula (17) for arbitrary number s of TSs, with parallel combining of

similar terms:

Wl = w ‘|'~sc 1(“’5271 +K’<2—1)+Efs—2(w52—2 "’“52,2)*""4'

Sy,

_ _ (19)
+:§,r(wr +'L”l)+ 52((*}2 +“‘2)+‘—~.1 122 +hs2

The following step for generalization of the results obtained will be introduction in formula

(18) of the operator X for summing multiplicative coefficients Z, , ; of transformation for the
r=3 4

s
current index r which is the number of TSs, i.e. 252 ;-
r=3

S
2 _ 2 =2 2 2 =2 2 2

u)sz =W + r§3 “r,r—l(wr—l + K/r—l) + ‘s,lwlz + Kg, (20)
representing the mathematical convolution of combined limiting error w, in the technologi-
cal process containing s TOs performed consecutively.

In case of parallel execution of TOs, as mentioned above, the mathematical convolution on

the basis of formula (2) will be

2 2 2 2 2
Wy :fs,lzwlE Jffs,zz‘*’zE +---+£ W +. +£ 51y W 51y (21)
or in concise form
oo
wsz - r§1 gs'rwrz 22)

Now it is possible to consider in detail the structure of formulas (19) and (20). Formula (19)

contains two inversion nuclei: the main nucleus

S

Z Sy 1( r2-l "’“rz-l) (23)

and additional nucleus
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220
Zaler)

(24)

The additional inversion nucleus shows that the error of blank part PI or raw material PI at

TS E, directly affects PI of the resulting TS Eg, regardless of other TSs. Once again this dem-

onstrates that special diligence is required for checking incoming blank parts, materials and

supplies received from exterior enterprises for reprocessing. Both nuclei are circumposed by

intrinsic errors w g 2 and « g2 of the final, S-th TO; these errors also deserve close attention.

It should be noted that the extrinsic (introduced) error 1 , is not present in formulas (19) and

(20). It may be compared to a sewing needle which does not remain in the fabric sewn by it.
As for the parallel transformation of PI errors given by formula (20) is concerned, the inver-

sion of PI errors is performed here in the manner formally identical for all and every TS.

The resulting formula for the non-random component of PI error and consequently per-

formed TOs will look like the linear analog of formula (19):

A=A+ Y=
z 7 r=3

S

A+ S5, Ay

r,r-1

and for TOs performed in parallel - like the linear analog of formula (20):

s-1
A =X¢

Sy oS

For several PIs, according to formulas (5) and

(6), expressions (19) and (20) will become vectorial-matrix expressions, i.e.

@7,) = (Dt 3@ @R+ 6] EEE) +6),

and

respectively.

The same relates to expressions (21) and (22):

(25)

(26)

(27)

(28)
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(83,) = (A5 £ (E ) B HEg (A, (29)
and
s-1
(0, L&, o)) @0

In formulas (23) — (26), the round brackets indicate vectorial nature of the relevant compo-
nent, excluding multiplicative transformation coefficients (Z). These coefficients here are

the product of matrices, either linear matrices

S

(Ea1) = (C)(&a2)-(& p)(61) = TL(&11) (31)

or quadratic matrices

(E) =GN AE, )= TLE, ) ®)

If we consider the consequently performed TOs, then the combined measurement error x,

accumulated for one PI during the entire technological process in the resultant TS E; may be
obtained from formula (19) in the form

(kD) = (s2)+ 23(Ef,r.1 )57 y) (33)

In case of TOs performed in parallel, this error may be expressed according to formula (20)

as:

(k) = 2 (6, )(5) (34)

I

When several PlIs are checked, the formulas (29) and (30) will take vectorial-matrix form, i.e.

(52) = ( )+s( =2 )(2,) (35)
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and
(E)(K2) (36)

Formulas (29) - (32) allow determining the share of measurement errors Ks% in the combined

error w? for a single PI as well as for several PIs, (Ksi) in (a)si ), respectively, i.e. k, /w, in the

resulting TS E, [6]. For the current, intermediate TSs E, this relation will have a similar form

K, Jw, .

The described above method of mathematical convolution of errors, including measure-
ment errors, in a multi-operational technological process has been applied to production
of aggregates for shipbuilding and aerospace industry [3,4,7]. It allows not only reveal-
ing, performing mathematical convolution and determining the relationship between PI
errors and measurement errors, but also creates prerequisites for comprehensive optimiza-
tion of measurement errors and selection of measuring instruments at all TOs of a techno-

logical process [5].

In connection with broadening introduction of mathematically fuzzy (MF) methods in tech-
nological practice [8], it is interesting to know, at least as a first approximation, how the de-
scribed above may be interpreted in MF form. In the aspect under consideration it is quite
often caused by complexity or practical impossibility of actual determination of the value &
.1 OF values (& ,.;) for transformation coefficients of product Pls using analytical or, so to
say, mathematically unfuzzy (MUF) methods. First of all, we are interested in MUF results
of forming product PIs in a multi-operational technological process represented by formulas
(21 - 26) obtained above.

Let us regard fig. 4, which is a MF analog of fig. 1 for MUF transformation, as the first step
in solving this problem. As before, TO here is represented by the oriented graph of trans-
forming PI from TS E_; into E,, which edge now symbolizes MF coefficient & . of this trans-
formation.

Formally this coefficient may be supposed to exist as a MF analog of formula (4) — the ratio
of dividing two MF numbers in the symbolic notation

=0V, (37)

where & ., 1, and v, are the components of formula (4) expressed in MF form, highlight-

ed hereinafter by bold type to distinguish from MUF form.
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a) b)
szl (621)

é -1, 12 (éfr-l,r-z )

>

L2 1]

£y (fr -] )

C::s—l,s-z (és—l. 82 )

L2 12

@ ’

(:xzs, s-1 ((:s s-1 )

Figure 2. Mathematical model of a technological process with sequential transformation of one (a) or several (b)
property indices from the first technological state E, into resulting technological state Es with ig
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N~
(

S ()

[ Iy,

Figure 3. Mathematical model of a technological process with parallel transformation of several property indices from
S-1 preceding technological states into one resulting technological state ES by performing r-1 technological opera-
tions with transformation coefficients (&r,r-1).
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Q‘~"\1
T
(o]
—]
|
o r\i
R
T
—
]

~| <

Figure 4. The outline of a component to be measured. p, — total limiting technologic spread of L, dimension, obtained
in the process of elaboration of the component production technology,p,, ; — desired total limiting technologic
spreads of L, and L; dimensions, required for the selection of an appropriate measuring tool.

However, here this ratio in general case is not applicable in the form of transformation coef-
ficient, because MF operations of multiplying and dividing of MF numbers are not inverse
to each other. This means that if X and Y are MN numbers, then X ¢ Y / X # Y. Regrettably,
this also holds for operations of algebraic addition and deduction: (X+Y) - Y # X.

Therefore, in MF case, MUF coefficient & .., may be applied for its direct purpose only in the
special case when determined relation exists between MF PIs of adjacent TSs E, and E_ ;. The
MF PIs obtained by some or other method shall be brought to mathematical unfuzziness
(mathematically cleared)” or defuzzied.

Then the following relationships will be true:

&ra= Bl By, = /v, (38)

rr-1

where:
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Bi, and Bv,__are carriers (or bases) of MF numbers ¢ ;and v,_,
Z-1 -1

1/;, and Vr_;,l are mathematically cleared (defuzzied) values of MF errors ¢, and vy, respective-
ly,

« = »is the superscript of mathematical clearing of MF number.

It may be noted that By, and Bv, are analogs of ¢, and vy, while t,l;, and vr;_l are analogs
of Ay and Av, , respectively. This means that both MF data and MUF data are combined in

one and the same MF number, allowing to present MF convolution for PI formation by one
expression, rather than by two expressions, as in MUF case and in this transitional case.

For this purpose we will have to refer to MF binary relations on classical sets. The latter are
a special case of MF sets defined on Cartesian product [9]. In the case under consideration,
as shown in [10], for PI of TS E_; and E,, there is a fuzzy binary relation of R —order of P,
and P, respectively>:

PRP (39)

r,

which is a fuzzy set with membership function on unfuzzy Cartesian product of two univer-
sals P, and P,..

Now let us determine appearance of PI quality check by measurement in MF case. For a sin-
gle PI x it consists of the following [10]:

¢ actual value of PI x is determined;

* using inequalities (7) or (8), it is compared with PI value(s) specified in the act on produc-
tion delivery and acceptance, i. e. with PI functional thresholds x -and x~ ;

* basing on these inequalities, either presence or absence of the relevant property P, with
the product is revealed;

* if property Px is present, the product quality is considered as complying with the require-
ment imposed on it;

* if property Px is absent, the product quality is considered as non-complying with the re-
quirement imposed on it

In this connection, when MF approach is used, measurement errors on the left x _and right
x . functional thresholds and the influence of these errors on the results of product quality
control are of interest.

The measurement errors here have the form of the so-called function of membership (FM)

3 “And I saw mathematically clear...” (N.V.Gogol)

113



114 Practical Concepts of Quality Control

0 (0) = (o 1y 4y ) (40)

where x means the PI measured, ___

0 means current (sequential) number of the term (0 =1,0),

® means overall number of terms,

1 means grade of membership (GM) of the term in respect of the measurement result (0<n< 1),
+ means summation sign, considered as logical only inside angle brackets “<“ and “ >”.

A priori, when knowledge base (in the form of expert estimates, experimental data or some
other precedents) is not available, it is reasonable to use the probabilistic FM composed bas-
ing on Gaussian normal differential distribution law normalized in regard of mean square de-
viations. For this purpose, MF unitary normalization of probabilities of this law is additionally
used by means of dividing these probabilities by modal value. This value here is assumed
equaling to 0.3989. Then these, now Gaussian, FM will look as follows for different ®:

0=3 <0,011073/00 +1,0000 + 0,0110‘3f‘”>, (41)
0=5 (001105, +0,3246 5, + 1,000+ +0,3246"% 1 0,0110°), (42)
0-=7 <0,011073,00+0,135472,00+ 0,6067_y 4, + 1,0000+0,6067 % + 0,1354%% + 0,0110*3/""}. (43)

FM (38) and (39) in graphic form are shown in fig.6 and 7, respectively.

Vrz-l Vrz

Figure 5. Mathematically fuzzy model of a technological operation r of transformation of one of property indices of a
product from technological state E,; into technological state E,. v, and V..~ functions of appurtenance of property

indices in the technological states of E,and E, ;.
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1,0000
0,00 1_] [1,00 11
&
-3c 0 +3o
£h £X
Figure 6. Three-term Gaussian function of membership (0 = 3).
1,0000
0,3246 0,3246
0,00]_] 0,0011
| %
3¢ -1,5 0 +1,5 +3|0
A A JAN JAN JA

Figure 7. Five-term Gaussian function of membership (© =5).
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It is important to note that though fig. 6 in appearance resembles the so-called MF triangular
number, but in no case should be confused with it, because of “eine grosse Kleinigkeit”
(German) — zero GM value at its left and right edges.

Logical summands of FM (37) — (39) are the GM of terms provided with subscripts or super-
scripts, except the modal term, which GM always equals to 1. These subscripts and super-
scripts indicate the number of root-mean-square deviations o along PI x axis of current
terms from the modal term, with relevant sign. Positive deviations are contained in super-
scripts, negative deviations — in subscripts.

For the majority of practical measurements, it is quite sufficient to evaluate the combined
limiting measurement error « , using three-term FM (37). Combined limiting spread of PI x
is most conveniently represented by five-term FM (38) and by seven-term FM (39).

Let us assume that the dimension of the component is checked by a checking measurement
system employing a double-limit electric contact sensor, and has FM (37) for the limiting
spread of sensor contacts triggering.

Vo =(001 + 100+ 0.07°7), (44)

figure 8 a, where values —1,0 um of subscript and +1,0 pm of superscript of GM 0,01 for two
utmost terms correspond to combined limiting error +1 um of sensor contacts triggering.

Let us assume a priori, in the first approximation, that the spread of the dimension of a com-
ponent corresponds to FM (39) in the form

Voo =(001 5 +0.14 5 4 061+ 100 + 0617+ 01472+ 0017) (45)

comp —

graphically presented in fig. 8 b.

As seen from FM (39), the width of its carrier in the units of measurement of subscripts and
superscripts equals to 6 um. GM values in formulas (40) and (41) are given with accuracy of
two digits after decimal point, which is practically sufficient for performing logical opera-
tions (algebraic operations using GM values will not be given here at all).

As a result of this, FM (41) is “fuzzified”, creating the combined FM determined by MF sum-
ming shown in figure 8.

Then let us proceed with check by measurement. From MF point of view, check operation
means alignment of the left (x ) or, as the case may be, right (x ) thresholds — limits of
tolerance zone of component dimension, i.e. FM carrier (38), with the appropriate position of
sensor contacts triggering adjusted for each of these thresholds. This alignment causes trig-
gering of sensor contacts, in this case — at the low limit of sensor adjustment, introducing
into FM (38) the check error characterized by FM (39). As the result, FM (38) is “fuzzified”,
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Figure 8. Mathematically fuzzy relationships during check by measurement of component dimensions using electrical
contact sensor at the lower limit of tolerance zone. a i b — functions of appurtenance of electric contact check errors
and controlled component dimensions, respectively.

creating the combined FM determined by MF summing shown in figure 8.

Eventually, we get the required sum

<0,01_4 +0,01 ,+ 0,14 , + 0,61 ,+ 1,00+0,617" + 0,147 +0,01+3+0,01+4>, (46)

which is the seven-term FM (39),“fuzzified” by two terms up to nine-term FM.

This leads to the following conclusions related to quality check by measurement:

1.

Adjustment of triggering of any threshold checking device to one of the limits of the
specified tolerance zone of PI x of the product causes additional error @ .., located
symmetrically to the left and to the right of this zone as @ (s, With MF normalized
GM 1), which is not over 0,01 (more precisely, 0,0110) for a priori assumed Gaussian FM;

If PI x of a product is given as a functional or technological threshold, then the error w
sensor iNtroduced by threshold checking device is located symmetrically to the left and to
the right from this threshold, with the same MF indices of precision as for the tolerance
zone mentioned above;

Manufacturing of a product which quality corresponds to PI x specified by some or oth-
er method may be guaranteed by symmetrical respective narrowing of its tolerance
zone.
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4. In order to increase the accuracy of the results of checking PI of the product @ geneor at
the left side and at the right side, or by the same displacement to the right and to the left
of the left threshold x _ or right threshold x _ specified instead of it, it is necessary to
reduce the error w ., to reasonable technical-economic limits, while MF normalized
GM shall be not over 0.01.
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