
Chapter 1
Basic Constructions of Secure Multiparty

Computation

Peeter LAUD a, Alisa PANKOVA a, Liina KAMM a, and Meilof VEENINGEN b

a Cybernetica AS, Estonia
b Eindhoven University of Technology, Netherlands

Abstract. In this chapter, we formally define multiparty computation tasks and the
security of protocols realizing them. We give a broad presentation of the existing
constructions of secure multiparty computation (SMC) protocols and explain why
they are correct and secure. We discuss the different environmental aspects of SMC
protocols and explain the requirements that are necessary and sufficient for their
existence.

Introduction

There are several cryptography textbooks that rigorously cover the basic definitions and
constructions of secure multiparty computation, e.g. [1,2,3]. In this introductory chapter,
we do not attempt to repeat this rigorous treatment. Instead, we will give the basic secu-
rity definitions of SMC and present the major ideas behind different SMC protocols, suf-
ficient for understanding the algorithms and protocols in the rest of this book. We refer
to other sources for thorough proofs and discussions on these constructions.

1. Definitions

An SMC protocol for a functionality f allows a number of parties to evaluate f on
the inputs they have provided, and learn its outputs without learning anything beyond
their own inputs and outputs. Almost all SMC techniques expect f to be expressed as a
Boolean or an arithmetic circuit, and process it gate by gate. We can specify a multiparty
computation task using the following definitions.

Definition 1 An arithmetic circuit over a ring R is a tuple C = (G,Vin,Vout,λ), where

• G = (V,E) is a directed acyclic graph, where the incoming edges of each vertex
have been linearly ordered;

• Vin ⊆ {v ∈ V |−→deg(v) = 0} and Vout ⊆ V denote the input and output vertices of
the circuit (here

−→
deg(v) denotes the number of incoming edges of the vertex V);

• λ assigns to each v ∈V an operation λ (v) : R
−→
deg(v)→ R.

Applications of Secure Multiparty Computation
P. Laud and L. Kamm (Eds.)
© 2015 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-532-6-1

1

A Boolean circuit can be seen as a special case of Def. 1, where R =Z2. The seman-
tics of a circuit C = (G,Vin,Vout,λ) extend mapping Vin → R to mapping V → R, thereby
assigning values to all vertices in Vout.

Definition 2 A multiparty computation task for a set of parties P = {P1, . . . ,Pn} is a
tuple f = (C,Tin,Tout), where C = (G,Vin,Vout,λ) is an arithmetic circuit, Tin : Vin → P

determines which party provides each input, and Tout ⊆Vout×P states which outputs are
learned by which parties.

To solve the multiparty computation task, the parties execute some protocol Π, with
the party Pi having an interactive (Turing) machine Mi that implements the steps of Pi in
this protocol. At first, the machine Mi receives the inputs xi from Pi, and in the end, returns
the outputs to Pi. Here, xi is a mapping from the set T−1

in (Pi) to R. We let x : Vin → R
denote the concatenation of all parties’ inputs. Let x[Pi] denote xi. For a subset of parties
P′ ⊆ P, we let x[P′] denote the tuple of all x[P] with P ∈ P′.

In the threat model of SMC, some parties may be corrupted, but the honest par-
ties do not know which ones. The secrecy of honest parties’ inputs has to be protected
against the coalition of corrupt parties. Also, the honest parties should still obtain correct
outputs despite the actions of corrupt parties. We can formalize both of these require-
ments through the real/ideal-model paradigm. In this paradigm, we specify our desired
properties through a protocol that contains an ideal component that makes these prop-
erties “obviously hold”. In case of SMC, this ideal component F f

SMC collects the inputs
of all parties, computes the functionality f , and hands the outputs back to the parties.
Correctness and secrecy are obvious, because F f

SMC indeed computes f , and each party
only gets back its own outputs. The execution of this ideal protocol produces certain out-
puts for the honest parties, as well as for the adversary (modeled as a Turing machine)
controlling all the corrupted parties. The output by the adversary may reflect its guesses
about the inputs and outputs of honest parties. In the real protocol, the ideal component
is not available and the messages exchanged are different, but all honest parties and the
adversary again produce some outputs. The protocol is secure if any outputs produced
by the real protocol could also have been produced by the ideal protocol — for any real
adversary, there is an ideal adversary, so that their outputs look the same in some sense,
even when taking into account the outputs by honest parties. We formalize these notions
below.

Definition 3 The ideal component for securely computing the multiparty functionality f
by n parties is an interactive Turing machine F f

SMC that works as follows:

• On input xi from the i-th party, where xi has the correct type (i.e. it maps T−1
in (Pi)

to the ring R), it stores xi and ignores further inputs from the i-th party.
• After receiving x1, . . . ,xn, it computes z = f (x), where z is a mapping from Vout to

R. Let zi be the restriction of z to T−1
out (Pi).

• For all i, the machine F f
SMC sends zi to the i-th party.

Definition 4 Let Pc⊂P be the set of corrupted parties, S the adversarial Turing machine
controlling them, f = (C,Tin,Tout) a multiparty computation task for the set of parties P,
and x a possible input for this task. The ideal-model outcome of computing f on x with
corrupted parties Pc and adversary S is a probability distribution IDEALPc

f ,S(x) sampled
as follows:

P. Laud et al. / Basic Constructions of Secure Multiparty Computation2

1. Send x[Pc] to S. The adversary S returns y — a mapping from T−1
in (Pc) to R,

specifying the actual inputs of corrupted parties to F f
SMC computing f .

2. Each honest party Pi sends xi to F f
SMC. Each corrupted party Pi sends yi to F f

SMC.
Each party Pi receives zi from F f

SMC. Let zc be the concatenation of the values zi
for Pi ∈ Pc.

3. Send zc to the adversary S. It returns (Ph′ ,rA), where Ph′ ⊆ P\Pc and rA is a tuple
of elements of R.

4. For each honest party Pi ∈ Ph′ , let ri be the tuple of values z(v), where (v,Pi) ∈
Tout. For each honest party Pi �∈ Ph′ , let ri =⊥.

5. Output rA and ri for all honest parties Pi.

We see that in sampling IDEALPc
f ,S(x), the adversary indeed learns only the inputs

of corrupted parties. But as the adversary controls these parties, it can somewhat affect
the outcome of computing f by choosing corrupted parties’ inputs itself. This is a power
that we obviously have to tolerate because the real-model adversary can do the same
(as specified in Def. 5). The adversary receives the outcome of f for corrupted parties
and is able to influence which of the honest parties actually receive their outputs. Again,
this corresponds to the capability of the real-model adversary to prematurely stop the
execution of the protocol, as defined next.

Definition 5 Let Pc ⊂ P = {P1, . . . ,Pn} be the set of corrupted parties, A the adversarial
Turing machine controlling them, Π = (M1, . . . ,Mn) a multiparty computation protocol
for task f (with Mi being the machine executed by Pi), and x a possible input to the
protocol. The real-model outcome of executing Π on x with corrupted parties Pc and
adversary A is a probability distribution REALPc

Π,A(x) sampled as follows:

1. Execute in parallel the machines Mi(x[Pi]), computing the messages for parties
Pi ∈ P\Pc, and A(x[Pc]), computing the messages for all parties in Pc. During the
execution, all messages sent to parties in Pc are routed to A, and A is allowed to
send messages on behalf of any P∈ Pc. Let rA be the output of A and ri the output
of Mi. Messages sent between honest parties are not learned by A.

2. Output rA and ri for all honest parties Pi.

Having defined the outcomes of ideal and real executions, the security of an SMC
protocol is straightforward to define. Typically, security is not provided against any set
Pc of corrupted parties, but only against certain coalitions. It is possible to precisely keep
track of tolerated coalitions [4], but in this book, we simplify the presentation and only
consider threshold adversaries that are allowed to corrupt up to t parties for some t < n.

Definition 6 An n-party protocol Π for a functionality f is a secure multiparty compu-
tation protocol tolerating at most t malicious parties if for all Pc ⊆ P with |Pc| ≤ t and
all adversaries A, there is an adversary S, so that for all possible inputs x to f ,

REALPc
Π,A(x)

d
= IDEALPc

f ,S(x) . (1)

The sign d
= in Eq. (1) denotes that the two distributions have to be very close to each

other. This closeness can be interpreted in different ways.

P. Laud et al. / Basic Constructions of Secure Multiparty Computation 3

• One may require the two distributions to be equal.
• In practice, an equally acceptable requirement is the statistical ε-closeness of the

two distributions, where ε is an acceptable failure probability (typically around
2−80 or less).

• Alternatively, one may require the two distributions to be merely computation-
ally indistinguishable [5], meaning that no efficient (i.e. probabilistic polynomial-
time) algorithm can tell them apart with success probability that is non-negligibly
better than 1/2. In this case, we actually have two families of distributions, in-
dexed by the security parameter η determining the length of cryptographic keys
etc. in Π. The running time of Π, A and S (as functions of η) must also be poly-
nomial in η . The success probability of the distinguishing algorithm must be at
most 1/2+α(η), where α is a negligible function (i.e. limη→∞ ηc ·α(η) = 0 for
all c). If cryptographic constructions are part of Π, then this is the natural level of
closeness in Eq. (1).

In Def. 6, the adversary is given full control over the parties it controls. In practice,
the adversary may be unable to change the execution of these parties, but still be able to
observe their internal state and the messages they exchange with other parties. We thus
also define security against semi-honest parties. We obtain this definition by making the
following changes to Def. 4, Def. 5 and Def. 6:

• In step. 1 of Def. 4, the output y from the adversary S must equal x[Pc].
• In step. 3 of Def. 4, the set Ph′ must be equal to P\Pc.
• While participating in the protocol in the first step of Def. 5, the adversary A must

use the actual machines Mi (for the parties Pi ∈ Pc) to compute the messages sent
by Pi.

• In Def. 6, modified definitions of ideal- and real-model outcomes must be used.

In literature, malicious parties are also called “active” and semi-honest parties are
called “passive”. Correspondingly, one speaks about active vs. passive security, and about
actively vs. passively secure protocols. These synonyms will also be used interchangably
throughout this book.

2. Oblivious Transfer

Oblivious transfer (OT) is a two-party computational task. The inputs from the first party,
called the sender, are two bit-strings m0,m1 of the same length. The input of the second
party, called the receiver is a bit b. The output of the receiver is mb, while the sender gets
no outputs. Oblivious transfer is used as a sub-protocol in several SMC protocols.

2.1. Basic Construction

The following construction first appeared in [6]. It requires a cyclic group G where the
Diffie-Hellman problem is hard, e.g. the group Z

∗
p. Let g be a fixed generator of G. The

computational Diffie-Hellman problem (CDH) is to construct gxy from g, gx and gy for
random integers x,y ∈ {0, . . . , |G| − 1}. The possibly easier decisional Diffie-Hellman
problem (DDH) is to distinguish tuples (g,gx,gy,gxy) from tuples (g,gx,gy,gz), again for
random integers x,y,z. A problem is hard if no efficient algorithm can solve it with a non-

P. Laud et al. / Basic Constructions of Secure Multiparty Computation4

negligible success probability (in case of decisional problems, with a success probability
that is non-negligibly better than 1/2). Hence, in the definitions of CDH and DDH, group
G actually depends on the security parameter η .

Let H be a cryptographic hash function mapping elements of G to bit-strings of the
length |m0|= |m1|. For b ∈ {0,1} let b = 1−b. The following protocol securely realizes
oblivious transfer.

1. The sender generates a random C←G and sends it to the receiver.
2. The receiver picks a← {0, . . . , |G|− 1}, sets hb = ga and hb = C · h−1

b . It sends
h0,h1 to the sender.

3. The sender checks that h0h1 = C. If not, it aborts the protocol. Otherwise, it

generates r0,r1
$← G and sends gr0 , gr1 , c0 = H(hr0

0)⊕m0 and c1 = H(hr1
1)⊕m1

to the receiver.
4. The receiver computes mb = cb⊕H((grb)a).

We see that in this protocol, the sender basically treats h0 and h1 as public keys for
ElGamal encryption [7]. It encrypts m0 with h0 and m1 with h1. The receiver is able to
decrypt under one of the keys, but not under the other one. The protocol is information-
theoretically secure against the sender (even if it is malicious), because (h0,h1) is uni-
formly distributed among the pairs of elements of G whose product is C. Security against
a semi-honest receiver follows from the hardness of the DDH problem. In general, secu-
rity against a malicious receiver is difficult to prove. However, it will follow from CDH if
the hash function H is assumed to be a random oracle [8], i.e. H(x) is a random bit-string
independent of any other H(x′) (or several of them).

We see that that the computational complexity of this OT construction is similar to
public-key operations. Indeed, as key exchange can be built on OT [9], it is unlikely that
it could be implemented with cheaper symmetric-key primitives only [10].

2.2. Random Oblivious Transfer

Random oblivious transfer (ROT) is a variation of OT that we present here for the benefit
of Sec. 2.3 on increasing the practicality of OT. It is a randomized two-party task, where
neither the sender nor the receiver input anything, the sender obtains two uniformly,
independently sampled random messages r0,r1 of predetermined length, and the receiver
obtains a random bit b and the message rb.

Clearly, with the help of OT we can build ROT — the sender and the receiver will
just run OT with random inputs. We can also use ROT to build OT as follows. Let the
sender have two messages m0 and m1, and the receiver have the bit b.

1. The sender and the receiver run ROT, with the sender receiving r0,r1 and the
receiver receiving b′ and rb′ .

2. The receiver sends c = b⊕b′ to the sender.
3. The sender sends m′0 = m0⊕ rc and m′1 = m1⊕ rc to the receiver.
4. The receiver computes mb = m′b⊕ rb′ .

Indeed, m′b⊕ rb′ = mb⊕ rb⊕c⊕ rb′ = mb. The protocol is secure for the receiver, because
c is independent of b. It is also secure for the sender, because mb is masked by rb′ , which
the receiver does not have. If the ROT protocol is secure against malicious adversaries,
then the resulting OT protocol also has the same security level.

P. Laud et al. / Basic Constructions of Secure Multiparty Computation 5

2.3. Extending Oblivious Transfers

Even though public-key encryption is expensive, it is widely used through the hybrid
mechanism — to encrypt a long message m, generate a symmetric key k, encrypt m
under k, and k (which is much shorter) under the public-key encryption primitive. As
we show next, similar constructions exist for OT — a small number of OT instances can
be converted into a large number of OT instances with only the help of symmetric-key
cryptography.

First, an OT instance for transferring a short message from the sender to the re-
ceiver can be converted into an OT instance for large messages by considering these short
messages as keys that encrypt real messages. If the sender has two long messages m0
and m1, and the receiver has a bit b, then the sender may generate two keys k0,k1, send
Enc(k0,m0) and Enc(k1,m1) to the receiver, and use OT to transfer kb to the receiver.
Second, m OT instances for messages of the length n, with m n, can be converted into
n ROT instances for messages of the length m, as we show next [11]. Such an OT ex-
tension construction is the main tool to make OT-s practicable in various protocols. The
construction where s[i] denotes the i-th bit of the bit-string s, is the following:

1. The receiver randomly generates messages r1
0, . . . ,r

m
0 ,c of the length n. It defines

ri
1 = ri

0⊕ c for all i ∈ {1, . . . ,m}.
2. The sender generates a bit-string b of the length m.
3. The receiver and the sender use m instances of OT (with roles reversed) to transfer

qi = ri
b[i] from the receiver to the sender, where i ∈ {1, . . . ,m}.

4. For each j ∈ {1, . . . ,n}, the sender defines the m-bit string s j
0 as consisting of the

bits of q1[j], . . . ,qm[j]. It also defines s j
1 = s j

0⊕b.
5. For each j ∈ {1, . . . ,n}, the receiver defines the m-bit string s j as consisting of

bits r1
0[j], . . . ,r

m
0 [j].

6. In the j-th instance of ROT, the output to the sender is H(j,s j
0), H(j,s j

1), and the
output to the receiver is c[j], H(j,s j).

Here, H is a cryptographic hash function from pairs of integers and m-bit strings to m-
bit strings. Indeed, one may not simply return s j

0,s
j
1 to the sender and s j to the receiver,

because they satisfy s j
0⊕ s j

1 = s j′
0 ⊕ s j′

1 for all j, j′. The hash function H is used to break
this correlation between different pairs (s j

0,s
j
1).

The functionality of the construction is easy to verify and its security can be proved
if H is modeled as a random oracle. However, the full power of the random oracle is not
needed to break the correlations. The authors of the construction introduce the notion of
correlation-robust hash functions [11] and show that this is sufficient for security.

If the underlying OT protocol is secure against malicious adversaries, then the pre-
sented ROT construction is also secure against a malicious sender. But it is only se-
cure against a semi-honest receiver, because of the need to maintain the relationship
ri

0⊕ ri
1 = c for all i. If ri

0⊕ ri
1 can take different values for different i-s, then the receiver

may be able to learn both of the sender’s messages. Security against a malicious receiver
can be obtained through the following cut-and-choose technique [12]. Here, σ is a statis-
tical security parameter, which affects the complexity of the construction and the sucess
probability of a cheating receiver.

1. Run σ copies of the previous construction.

P. Laud et al. / Basic Constructions of Secure Multiparty Computation6

2. Let the sender randomly choose σ/2 of these copies. In these, the receiver reveals
to the sender all the messages it has generated. If they are not consistent, the
sender aborts. Otherwise, the messages in these σ/2 copies are discarded and the
runs of the other σ/2 copies are combined as described in the steps below.

3. The receiver randomly picks a bit-string c′ of the length n. The bits of c′ are the
choice bits of the receiver in n instances of ROT.

4. For each j ∈ {1, . . . ,n} and for each of the σ/2 runs still in use, the receiver tells
the sender whether the bits c′[j] and c[j] (in this copy) were the same. If they
were not, then the sender swaps s j

0 and s j
1 in this copy.

5. In each instance of ROT, the two messages output to the sender and the message
output to the receiver are exclusive ORs of the same messages in each of the σ/2
copies still in use.

We can again verify that the construction is functional. Its security is based on the use of
exclusive OR in combining the non-discarded runs: if in at least one of them, the receiver
cannot know both messages to the sender, then it cannot know them in the combined exe-
cution either. The probability that the check in step 2 is passed, but no honestly generated
runs remain afterwards, is at most 2−σ/2.

3. The GMW Protocol

Goldreich et al. [13] proposed one of the first SMC protocols. Let the multiparty compu-
tation task f for n parties be given as a Boolean circuit, where the possible operations are
exclusive OR, conjunction, and passing constants. The protocol evaluates the circuit gate
by gate, representing the value computed at each gate in a privacy-preserving manner
and invoking subprotocols to construct the representation of the result of a gate from the
representations of its inputs. In this protocol, the representation �b� of a Boolean value
b ∈ Z2 consists of n Boolean values �b�1, . . . ,�b�n satisfying �b�1⊕·· ·⊕ �b�n = b. The
component �b�i is known to party Pi. The protocol works as follows:

Inputs If party Pi provides an input x for the input vertex v, it will randomly generate

b1, . . . ,bn−1
$←Z2 and define bn = b1⊕·· ·⊕bn−1⊕x. It sends b j to party Pj, which

will use that value as �x� j.
Constants A constant c computed by a nullary gate is represented as �c�=(c,0,0, . . . ,0).
Addition If the result x of gate v is computed as x = y1⊕ y2 for some y1 and y2 com-

puted in gates v1 and v2, and the representations �y1� and �y2� have already been
computed, then each party Pi defines �x�i = �y1�i⊕ �y2�i.

Multiplication If the result x of some gate is computed as x = y1 ∧ y2, and �y1� and
�y2� are already available, then the representation �x� is computed as follows. We
have x =

⊕n
i=1

⊕n
j=1�y1�i ∧ �y2� j. For each i, j,k ∈ {1, . . . ,n}, party Pk will learn

a value ci jk ∈ Z2, such that
⊕n

k=1 ci jk = �y1�i ∧ �y2� j. These values are computed
as follows:

• If i = j, then ciii = �y1�i∧ �y2�i and ciik = 0 for k �= i.
• If i �= j then ci ji ∈Z2 is chosen randomly by Pi. Party Pi defines the bits d0 = ci ji

and d1 = �y1�i⊕ci ji. Parties Pi and Pj use oblivious transfer to send d�y2� j to Pj;
this value is taken to be ci j j. If k �∈ {i, j}, then ci jk = 0.

P. Laud et al. / Basic Constructions of Secure Multiparty Computation 7

Afterwards, each party Pk defines �x�k =
⊕n

i=1
⊕n

j=1 ci jk.
Outputs If party Pi is expected to learn the value x computed in some gate v, and �x� has

already been computed, then each party Pj sends �x� j to Pi. Party Pi will output
x = �x�1⊕·· ·⊕ �x�n.

It is not difficult to verify that the protocol correctly computes f . The protocol is secure
against a passive adversary that controls an arbitrary number (i.e. up to n−1) of parties,
if the protocol used for oblivious transfer is secure against passive adversaries. Indeed,
as long as the adversary does not know all the components of the representation �x�, and
if each component of this representation is distributed uniformly, then the adversary has
no idea about the actual value of x. Apart from the sharing of inputs, the only place in
the protocol where an adversarially controlled Pj may receive a message from an honest
Pi is during oblivious transfer, where Pj learns ci j j. This value is masked by a freshly
generated ci ji. Hence the view of the adversary can be simulated by generating random
bits for all messages that adversarially controlled parties receive.

The protocol is actually more general than presented above. In addition to exclusive
OR and conjunction, all other binary Boolean operations can be handled in a manner
similar to the multiplication protocol. Indeed, in this protocol, party Pi defines the bits
db = ci ji⊕ �y1�i∧b for b ∈ {0,1}. Party Pj receives the bit that corresponds to b = �y2� j.
Instead of conjunction, any other operation can be used to compute db.

The protocol is not secure against malicious adversaries, because there are no checks
to ensure that the parties are behaving according to the protocol. A generic way to
achieve security is to use zero-knowledge proofs [5] to show that the protocol is being
followed [1, Chapter 7.4]. Due to the high cost of these proofs, they are not used in
practice.

4. Secure Multiparty Computation Based on Garbled Circuits

Garbled circuits [14] present a different approach to two-party SMC. Let f =(C,Tin,Tout)
be a two-party computation task where C = (G,Vin,Vout,λ) is a Boolean circuit and
G = (V,E) . Without a loss of generality, assume that the vertices in Vout have no suc-
cessors. Also assume that only party P2 gets outputs (i.e. Tout =Vout×{P2}). We discuss
later, how a (private) output to P1 can be provided. In its most basic form, a garbling of
C is the result of the following steps:

1. For each v∈V , generate two keys k0
v and k1

v (for a chosen symmetric-key encryp-
tion scheme).

2. Let w ∈ V\Vin. Let u,v ∈ V be the two predecessors of w (in this order).
Let ⊗ be the operation λ (w) of w. Let gw denote the following garbling
of w: a random permutation of the four ciphertexts Enc(k0

u,Enc(k0
v ,k

0⊗0
w)),

Enc(k0
u,Enc(k1

v ,k
0⊗1
w)), Enc(k1

u,Enc(k0
v ,k

1⊗0
w)), and Enc(k1

u,Enc(k1
v ,k

1⊗1
w)).

3. Let v ∈ Vout. The output garbling gout
v of v is a random permutation of the two

ciphertexts Enc(k0
v ,0) and Enc(k1

v ,1).
4. Output keys k0

v and k1
v for v ∈ Vin, and all garblings and output garblings con-

structed in the previous steps.

To compute f in a privacy-preserving manner, party P1 garbles circuit C and sends
all garblings and output garblings of vertices to P2. For each v ∈ Vin, where Tin(v) = P1,

P. Laud et al. / Basic Constructions of Secure Multiparty Computation8

party P1 also sends the key kb
v to P2, corresponding to the input b of P1 to vertex v. For

each v ∈ Vin, where Tin = P2, parties P1 and P2 use oblivious transfer to transmit kb
v to

P2, corresponding to the input b of P2 to vertex v. Party P2 will then evaluate the garbled
circuit — going through the vertices of C in topological order, it attempts to decrypt the
ciphertexts in the garbling gv of each vertex v, using the keys it learned while processing
the ancestors of v. Assuming that P2 recognizes when decryption fails, it finds that it
cannot decrypt two out of four ciphertexts, can remove one layer of encryption for one
ciphertext, and can remove both layers of encryption for one ciphertext. Hence P2 learns
one key while processing gv. This key is equal to kb

v for the bit b that would have been
computed in vertex v if f had been executed in the clear, but P2 does not know whether
this key is k0

v or k1
v . Similarly, for output garblings gout

v , party P2 attempts to decrypt the
two ciphertexts using the key it learned at v. One of the decryptions is successful and
results in a bit that P2 takes as the result from gate v.

This protocol provides security against semi-honest adversaries (that have corrupted
one party). It is quite clearly secure for P2 if the used OT protocol is secure, as P2 only
interacts with P1 through that protocol. Security for P1 follows from the security proper-
ties of the encryption scheme, from the inability of P2 to obtain both keys of any gate,
and from its inability to find out whether the key it has corresponds to bit 0 or 1 [15].

The functionality f can be modified and the protocol slightly extended to provide
output to P1 as well. If f # is the functionality we want to compute, giving f #

1 (x1,x2) to
P1 and f #

2 (x1,x2) to P2 (where xi is the input from Pi), then we let f provide the output
(f #

1 (x1,x2)⊕ r, f #
2 (x1,x2)) to P2 on inputs (x1,r) from P1 and x2 from P2. When invoking

the secure two-party protocol for f , party P1 lets r be a random bit-string. After executing
the protocol, P2 sends f #

1 (x1,x2)⊕ r back to P1 who unmasks it.
There are a number of optimizations that reduce the cryptographic load of the gar-

bled circuit construction. Instead of using an encryption scheme secure against chosen-
plaintext attacks (as our security arguments in previous paragraphs tacitly assumed), the
construction of garbling can be modified so that a block cipher, or even just a pseudoran-
dom generator is used [16]. In case of a block cipher, it is possible to do all encryptions
with a single key [17], meaning that if any standard cipher (e.g. AES) is used, the key
expansion must be done only once. In addition, it is possible to construct the garblings so
that the evaluator knows which ciphertext out of the four possible ones it has to decrypt.

More substantial optimizations can significantly reduce the effort of garbling and
evaluating the circuit. When using the free-XOR technique [18], the garbler first selects
a random and private bit-string R of the same length as the keys. It will then select the
keys k0

v and k1
v for each non-XOR gate v so that k0

v ⊕ k1
v = R. For each XOR-gate w with

inputs u and v, it defines k0
w = k0

u⊕ k0
v and k1

w = k0
w⊕R. In this way, kb

u⊕ kc
v = kb⊕c

w for
all b,c ∈ {0,1}. The non-XOR gates are garbled as usual. No effort has to be made to
garble the XOR-gates. Similarly, the evaluator only has to compute a single exclusive
OR of bit-strings in order to evaluate a garbled XOR-gate. When using the free-XOR
technique, one attempts to minimize not the size of the entire circuit, but the number of
the non-XOR gates in it.

If we use block ciphers in garbling the circuit, then we can choose the keys k0
w,

k1
w for some gate w so that one of the ciphertexts in the garbling of w is a constant

ciphertext, e.g. 0. If u and v are the input gates of w and ⊗ is the operation of w, then
we can randomly choose bu,bv ∈ {0,1} and define kbu⊗bv

w = Dec(kbv
v ,Dec(kbu

u ,0)). The
ciphertext 0 does not have to be sent from the garbler to the evaluator, reducing the

P. Laud et al. / Basic Constructions of Secure Multiparty Computation 9

communication complexity by 25% [19]. This technique is compatible with the free-
XOR technique described above. A different technique allows eliminating two out of
four elements of the garbling of an AND-gate, still keeping the compatibility with free
XORs [20].

It is possible to make garbled circuits secure against malicious adversaries. Again,
cut-and-choose techniques can be used. To make sure that P1 actually garbles the circuit
that both parties have agreed to evaluate, it is going to garble the same circuit not just
once, but σ times for a statistical security parameter σ . Party P2 selects σ/2 out of them,
and P1 hands over all randomness that was used to produce these garblings of the circuit
for f . After checking the validity of the opened garbled circuits, party P2 executes the
other σ/2 of the garbled circuits and takes the majority of their results as the final result.
It is important to combine the results from different circuits using majority, instead of
failing if P2 receives several different results from the σ/2 circuits it is executing, as the
fact whether or not P2 has failed can give one bit of information about the inputs of P2 to
a malicious P1.

Using the cut-and-choose technique introduces further complications relating to the
preparation of inputs. Namely, P2 has to make sure that the keys it receives are valid (and
that complaints about invalidity do not leak information to P1), correspond to its inputs,
and to the same inputs of P1 in all garbled circuits. We refer to [21] for details.

If P2 is malicious, then the output of P1 obviously cannot be simply masked with
a random r as P2 could modify it afterwards. Instead, the original functionality f # is
modified to compute an authenticated encryption [22] of the output of P1, using a key
that is part of the input of P1 to the circuit. This encryption is learned by P2 and sent back
to P1 who verifies its integrity and decrypts it.

5. Secure Multiparty Computation Based on Shamir’s Secret Sharing

A secret sharing scheme allows a value to be shared among n parties so that certain coali-
tions of them can recover it from their shares, and certain other, smaller coalitions obtain
no information about that value from their shares. Most frequently, there is a threshold
t, so that all the coalitions with a size of at least t can find the value, and no coalition
smaller than t gets any information. We will explore this case. Secret sharing is rele-
vant for SMC because a number of operations can be performed on secret-shared values
without leaking any further information about the values themselves to small coalitions.

Shamir’s secret sharing scheme [23] is based on polynomial interpolation. Let F
be a field with at least n + 1 elements. Let c1, . . . ,cn be mutually different, non-zero
elements of F. If a dealer wishes to share a value v among the parties P1, . . . ,Pn, it will
randomly generate a polynomial f of a degree of t − 1 at most, satisfying f (0) = v,
and send si = f (ci) to party Pi. The polynomial is generated by randomly generating

a1, . . . ,at−1
$← F and defining f (x) = v+a1x+a2x2 + · · ·+at−1xt−1.

Polynomials over fields can be interpolated: for any t points (i.e. argument-value
pairs), there is exactly one polynomial of a degree of t− 1 at most that passes through
these points. For a fixed set of arguments, the coefficients of this polynomial can be
computed as linear combinations of the values of the polynomial. In particular, using the
notation of the previous paragraph, for each I = {i1, . . . , it} of the size t, there are coef-
ficients λ I

i1 , . . . ,λ
I
it , so that v = ∑ j∈I λ I

j s j. Using this equality, any t parties can recover

P. Laud et al. / Basic Constructions of Secure Multiparty Computation10

the secret. On the other hand, fewer than t parties obtain no information at all about the
secret. If I′ ⊆ {1, . . . ,n} and |I′|< t, then for any v′ there is a polynomial of a degree of
t − 1 at most that passes through the points {(i,si)}i∈I′ and (0,v′). Moreover, for each
v′ ∈ F, the number of such polynomials is the same.

It is possible to perform computations with shared values. If s1
1, . . . ,s

1
n are shares

for v1 (using polynomial f1), and s2
1, . . . ,s

2
n are shares for v2 (using polynomial f2), then

s1
1+s2

1, . . . ,s
1
n+s2

n are shares for value v1+v2 (using polynomial f1+ f2). Indeed, adding
points corresponds to adding polynomials. If the degrees of f1 and f2 are at most t− 1,
then the degree of f1 + f2 is also at most t−1. Similarly, the value cv for a public c ∈ F

is represented by the shares cs1, . . . ,csn. Hence, linear combinations of shared values can
be computed by computing the same linear combinations of shares.

The multiplication of shared values is also possible through a protocol between
P1, . . . ,Pn. The following protocol [24] requires 2t− 1 ≤ n. Using the same notation as
in the previous paragraph, let f = f1 · f2. The degree of f is at most 2t−2. Party Pi com-
putes f (ci) = s1

i · s2
i and shares it among all n parties using a polynomial of a degree of

t−1 at most. If all parties do it, they have available the shared values of f (c1), . . . , f (cn).
As n≥ 2t−1, the value vv′ = f (0) is a linear combination of these shared values. Each
party computes this linear combination on its shares, resulting in a sharing of vv′.

The described protocols are constituents of an SMC protocol among n parties, se-
cure against a passive adversary corrupting at most t − 1 parties, where 2t − 1 ≤ n. In
other words, the number of corrupted parties must be smaller than n/2. We can securely
evaluate arithmetic circuits (in which the operations are constants, additions, multipli-
cations with a constant, and multiplications) over a finite field F. Similarly to Sec. 3,
the circuit is evaluated gate-by-gate and the result v ∈ F of a gate is represented as
�v� = (�v�1, . . . ,�v�n), so that �v�1, . . . ,�v�n are a Shamir’s secret sharing of v secure
against t−1 parties. The protocol works as follows:

Inputs A party Pi providing an input v to some vertex will secret-share v among all n
parties (including itself).

Constants The constant c ∈ F is represented by shares (c,c, . . . ,c). Indeed, these are the
values of the constant polynomial f (x) = c (of degree 0, i.e. at most t− 1) at the
points c1, . . . ,cn.

Arithmetic operations The representation �v� of a value v computed in a gate for ad-
dition, multiplication with a constant, or multiplication is computed from the rep-
resentations of the values in the predecessors of that gate, using the protocols de-
scribed in this section.

Outputs If the party Pj is expected to learn a value v computed in some gate, then each
party Pi sends �v�i to Pj. The party Pj uses interpolation to compute v.

The protocol is secure against passive adversaries. A simulator is easy to construct
after noting that a coalition of parties of the size of t− 1 or less only ever sees random
values of F as incoming messages. But a malicious party Pi can cheat in the following
places:

• When sharing a value, it can pick a polynomial of degree t or more.
• In the multiplication protocol, it can incorrectly compute s1

i · s2
i , where s1

i and s2
i

are its shares of the values that are multiplied together.

P. Laud et al. / Basic Constructions of Secure Multiparty Computation 11

• When sending its share to another party (which is supposed to learn the value in
some gate), it can send a wrong share.

The first and last issue are solved by using verifiable secret sharing (VSS) [25,26,27]. If
the VSS scheme has the necessary homomorphic properties, then it can be used to solve
the second issue as well. Next, we will describe Pedersen’s VSS scheme [25], which is
conceptually simple, although not the most efficient. It can be used to make the described
SMC protocol secure against malicious adversaries.

Let a broadcast channel be available. All parties receive the same values over this
channel, even if they were broadcast by a malicious party. A broadcast channel can be
built with the help of digital signatures. Let F= Zp for some prime number p and let G
be a group where the discrete logarithm problem is hard, and |G| = p. Let g,h ∈ G, so
that C = logg h would be unknown to all parties. Such g and h are easy to generate: each
party Pi broadcasts a random gi ∈G and hi ∈G; and g and h are defined as the products
of those.

When using Pedersen’s VSS, a dealer computes the sharing �v� of a value v ∈ Zp
among the parties P1, . . . ,Pn in the following manner:

• Randomly generate a1, . . . ,at−1,a′0, . . . ,a
′
t−1

$← Zp. Let a0 = v. Define f (x) =
v+a1x+ · · ·+at−1xt−1 and f ′(x) = a′0 +a′1x+ · · ·+a′t−1xt−1.

• Broadcast y j = ga j ha′j for all j ∈ {0, . . . , t−1}.
• Send (f (ci), f ′(ci)) to party Pi.

The party Pi, having received (si,s′i) can verify its share with respect to the published
values. The following equation must hold:

gsihs′i =
t−1

∏
j=0

y
c j

i
j . (2)

Indeed, if the share (si,s′i) corresponds to the broadcast values, then taking the logarithm
(to the base of g) of the sides of this equation gives us si +Cs′i = f (ci) +C f ′(ci). If
the dealer were able to produce a different set of broadcast values that would still pass
verification, it could use them to recover C. On the other hand, the broadcast values do
not reveal anything further about the value v. In fact, each y j is a random element of G
as it has been masked with ha′j .

We now show how the issues defined above can be solved with Pedersen’s VSS.

• Ensure that the polynomial degree is at most t−1. By construction, the logarithm

of ∏t−1
j=0 y

c j
i

j is equal to some polynomial g of degree t−1 evaluated on ci. How-
ever, as we have shown above, the same logarithm equals f (ci)+C f ′(ci). We need
to show that the degree of f is at most t−1 in this case. If deg(f (ci)+C f ′(ci)) =
d1 ≤ t− 1, but deg(f (ci)) = d2 > t− 1, then the last d2− d1 coefficients of the
polynomials f and C f ′ should be negations of each other. The coefficients of f
and f ′ are known to the sender and, hence, it may compute C =−ai/a′i for some
i ∈ {d1, . . . ,d2}.

• Multiplication protocol. In the particular multiplication protocol presented above,
each party computes s = s1 · s2 and then shares it amongst all the n parties. The
party that shares the product s = s1 · s2 can commit the shares si of s exactly in

P. Laud et al. / Basic Constructions of Secure Multiparty Computation12

the same way as the input is committed, publishing (gsi ,hs′i). Assuming that the
shares of s1 and s2 have already been committed in the same way, the party has to
prove that s = s1 · s2.
A linear combination can be computed locally by any party. The commit-
ment for α1s1 + . . .+ αmsm is (gα1s1+...+αmsm ,hα1s′1+...+αms′m) = ((gs1)α1 · . . . ·
(gsm)αm ,(hs′1)α1 · . . . · (hs′m)αm), where (gsi ,hs′i) have already been committed.
Since s is a linear combination of si, the parties are able to compute (gs,hs′).
Similarly, they compute (gs1

,hs′1) and (gs2
,hs′2). Now there are different ways of

verifying s = s1 · s2 .

∗ Verifying a multiplication is easy if the homomorphic scheme allows verifying
products (there is an operation � so that E(x)�E(y) = E(x · y) for a commit-
ment function E). Such schemes exist, but they are not very efficent in practice
(see Sec. 6 for details).

∗ If the group G supports a bilinear pairing (a function e : G×G �→ G so that
e(ga,gb) = e(g,g)ab for all g ∈G, a,b ∈ Z), then the product s = s1 · s2 can be
verified as e(gs1

,gs2
) = e(g,g)s1s2

.
∗ Multiplication triples can be used to reduce all the multiplications to linear

combinations. This is described in more detail in Sec. 7.
∗ The most general method for verifying multiplications is to use any zero-

knowledge proofs of knowing s̄2, so that gs̄2
= gs2

and (gs1
)s̄2

= gs1s2
. Here,

gs̄2
= gs2

proves that s̄2 = s2 as a discrete logarithm is unique in the group G.

• Verifying a share sent by another party. Each secret input s is committed as
(gs,hs′), where s′ is the leading coefficient of the polynomial f ′. Each intermedi-
ate value is either a linear combination or a product of the previous values. These
operations can be verified as shown in the previous clause.

6. Secure Multiparty Computation Based on Threshold Homomorphic Encryption

Threshold homomorphic encryption is another method that allows revealing a secret
value to any coalition of at least t parties, while giving no information about that value
to any coalition smaller than t.

In a (t,n)-threshold homomorphic cryptosystem, anybody can perform the following
operations using the public key:

• Encrypt a plaintext.
• Add (denoted ⊕) two ciphertexts to obtain a (uniquely determined) encryption of

the sum of the corresponding plaintexts.
• Multiply (denoted⊗) a ciphertext by a constant to obtain a (uniquely determined)

encryption of the product of the plaintext with the constant.

Decryption is only possible if at least t out of the n decryption keys are known. An
example of such a cryptosystem is the threshold variant of the Paillier cryptosystem
from [28]; see [29] for details.

Computation on homomorphic encryptions can be performed by the n parties hold-
ing the decryption keys for the cryptosystem. Additions and multiplications by a constant
can be performed locally using the homomorphic operators ⊕ and ⊗. Multiplications of

P. Laud et al. / Basic Constructions of Secure Multiparty Computation 13

encryptions X of x and Y of y can be performed using an interactive protocol between
the n parties due to [30]. In this protocol, each party i chooses a random value di, and
broadcasts encryptions Di of di and Ei =Y ⊗(−di) of y ·(−di). The parties then compute
X ⊕D1⊕ ·· · ⊕Dn, and threshold decrypt it to learn s = x+ d1 + . . .+ dn. This allows
them to compute the encryption Z = Y ⊗ (x+d1 + · · ·+dn) of y · (x+d1 + · · ·+dn) and,
hence, also an encryption of x · y as Z⊕⊕n

i=1 Ei.
While computations on homomorphic encryptions are much slower than computa-

tions on secret shares, the advantage is that it is easy to make them secure against an
active adversary. Namely, in the above multiplication protocol, the parties can use zero-
knowledge proofs to prove that each Ei indeed contains the product y · (−di) and that
their share of the threshold decryption of X ⊕D1 · · ·⊕Dn was correct. To perform these
proofs, [29] uses a multiparty variant of Σ-protocols. Recall that a Σ-protocol for a binary
relation R is a three-move protocol in which a potentially malicious prover convinces an
honest verifier that he knows a witness for a certain statement. First, the prover sends
an announcement to the verifier. The verifier responds with a uniformly random chal-
lenge. Finally, the prover sends its response, which the verifier verifies. In order to let
all n parties prove statements to each other simultaneously, they jointly generate a single
challenge to which they all respond. Namely, each party broadcasts a commitment to its
announcement, the parties jointly generate a challenge, and, finally, the parties broadcast
their response to this challenge, along with an opening of their commitment.

Combining these techniques, we get an SMC protocol among n parties, which is
secure against an active adversary corrupting at most t−1 parties. The protocol securely
evaluates arithmetic circuits over the plaintext ring ZN of the threshold homomorphic
cryptosystem, e.g. N is an RSA modulus in the case of Paillier encryption. The proto-
col also achieves robustness in the sense that, if at least t parties are honest, then all
parties are guaranteed to learn the computation result. In particular, if t = 1, then the
protocol guarantees privacy and correctness for all honest parties (but no robustness).
If t = �(n+1)/2�, then the protocol guarantees privacy, correctness, and robustness if
fewer than t parties are corrupted. The full protocol works in the manner described below.

Inputs Party Pi providing an input v broadcasts a homomorphic encryption of v. Each
party proves knowledge of the corresponding plaintext. This prevents parties from
adaptively choosing their inputs based on the inputs of others.

Constants The constant c ∈ ZN is represented by encryption C = Enc(c) of c with fixed
randomness.

Addition If the result x of a gate is computed as x = y1 + y2 and encryptions Y1 and Y2
have already been computed, then each party defines X = Y1⊕Y2.

Multiplication Multiplication is performed using the interactive n-party protocol de-
scribed above, i.e. the parties exchange encryptions Di,Ei, perform an interactive
multiplication proof, exchange threshold decryptions, and perform an interactive
decryption proof. Finally, they compute the product encryption from the decrypted
value and the encryptions Ei.

Outputs If party Pj is expected to learn a value v computed in some gate as encryption
V , then it broadcasts an encryption D of a random value d and proves knowledge
of the plaintext of D. Then, all parties provide threshold decryptions of Z =V ⊕D
and prove correctness of the decryption z. Finally, party Pj computes v = z−d.

P. Laud et al. / Basic Constructions of Secure Multiparty Computation14

The homomorphic encryption scheme defined above can be applied locally (i.e.
without any interaction) to various tasks for which computing the sum and the scalar
product of plaintexts is sufficient. In general, it is not applicable to an arbitrary computa-
tion. Fully homomorphic encryption [31] includes an operation denoted� on ciphertexts
(in addition to ⊕ and ⊗ mentioned before) that allows anybody to multiply two cipher-
texts to obtain a (uniquely determined) encryption of the product of the corresponding
plaintexts. Supporting addition and multiplication is sufficient to perform an arbitrary
computation on plaintexts. However, fully homomorphic encryption schemes are much
less efficient, and hence, a simpler homomorphic scheme is preferable for a more con-
strained task that does not require the support of arbitrary computation (such as com-
puting linear combinations). Alternatively, some special multiplication protocols like the
one presented in this section can be used.

7. Secure Multiparty Computation Based on Somewhat Homomorphic

Encryption

In this section we describe the protocol SPDZ that was initially proposed in [32]. The
main idea of this protocol is to introduce an expensive preprocessing phase that allows
making the online phase cheap.

The SPDZ protocol makes use of the following techniques:

• Message authentication codes (MAC) prevent the shares from being affected by a
malicious adversary.

• Beaver triples reduce multiplication to linear combinations.
• Somewhat homomorphic encryption is used in the preprocessing phase to com-

pute MACs and Beaver triple shares.

Somewhat homomorphic encryption [33] satisfies the properties of homomorphic
encryption (defined in Sec. 6). The difference is that it supports only a finite number of
sequential multiplications. A group that supports a bilinear pairing (see Sec. 6) is an ex-
ample of somewhat homomorphic encryption with at most one sequential multiplication.
SPDZ uses somewhat homomorphic encryption in the preprocessing phase which can
be seen as many smaller arithmetic circuits that are evaluated in parallel, and where the
number of sequential multiplications is not large.

Message authentication codes make it difficult for the adversary to modify the mes-
sages by introducing special correctness checks that are generated for the inputs and
propagated by the operations. SPDZ uses two kinds of additive sharings that allow mes-
sage checking. The generation of these shares is described in more detail in [32].

1. The first sharing is

〈a〉= (δ ,(a1, . . . ,an),(γ(a)1, . . . ,γ(a)n)) ,

where a = a1 + · · ·+ an and γ(a)1 + · · ·+ γ(a)n = α(a+ δ). The party Pi holds
the pair (ai,γ(a)i), and δ is public. The interpretation is that γ(a) = γ(a)1+ · · ·+
γ(a)n is the MAC authenticating the message a under the global key α .
We have 〈a〉+ 〈b〉 = 〈a+b〉 for secret values a and b where + is pointwise
addition: 〈a+b〉 = (δa + δb,(a1 + b1, . . . ,an + bn),(γ(a)1 + γ(b)1, . . . ,γ(a)n +

P. Laud et al. / Basic Constructions of Secure Multiparty Computation 15

γ(b)n)). If c is a constant, c+〈a〉=(δ−c,(a1+c,a2, . . . ,an),(γ(a)1, . . . ,γ(a)n)).
Hence, any linear combination can be computed locally, directly on the shares.

2. The second sharing is

�α� = ((α1, . . . ,αn),(β1, . . . ,βn),(γ(α)i
1, . . . ,γ(α)i

n)i∈[n]) ,

where α = α1 + · · ·+αn and γ(α)i
1 + · · ·+ γ(α)i

n = αβi. The party Pi holds the
values αi,βi,γ(α)1

i , . . . ,γ(α)n
i . The idea is that γ(α)i

1 + · · ·+ γ(α)i
n is the MAC

authenticating α under the private key βi of Pi. To open �α�, each Pj sends to
each Pi its share α j of α and its share γ(α)i

j of the MAC on α made with the
private key of Pi. Pi checks that ∑ j∈[n] γ(α)i

j = αβi. To open the value to only
one party Pi (so-called partial opening), the other parties simply send their shares
only to Pi, who does the checking. Only shares of α and αβi are needed for that.

Beaver triples [34] are triples of values (a,b,c) over the corresponding finite field

F where the computation takes place, generated by randomly picking a,b $← F and
computing c = a · b. Precomputing such triples can be used to linearize multiplica-
tions. This may improve the efficiency of the online protocol phase significantly, as
computing a linear combination can be done locally. In order to compute 〈x〉 · 〈y〉, if
a triple (〈a〉,〈b〉,〈c〉) has been precomputed and shared already, we may first compute
and publish x′ := 〈x〉− 〈a〉 and y′ := 〈y〉− 〈b〉, and then compute a linear combination
〈x∗ y〉 = (x′+ 〈a〉)(y′+ 〈b〉) = x′y′+ y′〈a〉+ x′〈b〉+ 〈a〉〈b〉 = x′y′+ y′〈a〉+ x′〈b〉+ 〈c〉.
Here, the publication of x′ and y′ leaks no information about x and y. In this way, inter-
active multiplication is substituted with an opening of two values. In SPDZ, a sufficient
number of such triples is generated in the preprocessing phase. The triples are random
and depend neither on the inputs nor on the function that is being computed. The checks
performed during preprocessing ensure that all triples used during the online phase are
valid.

In the specification of the protocol, it is assumed for simplicity that a broadcast chan-
nel is available, that each party has only one input, and only one public output value has
to be computed. The number of input and output values can be generalized to an arbitrary
number without affecting the overall complexity (as shown in [32]). The protocol works
as follows:

Initialization The parties invoke the preprocessing to get:

• The shared secret key �α�.
• A sufficient number of Beaver triples (〈a〉,〈b〉,〈c〉).
• A sufficient number of pairs of random values 〈r〉, �r�.
• A sufficient number of single random values �t�, �e�.

The generation of all these values is presented in more detail in [32]. It is based on
a somewhat homomorphic encryption scheme.

Inputs If the party Pi provides an input xi, a pre-shared pair 〈r〉, �r� is taken and the
following happens:

1. �r� is opened to Pi.
2. Pi broadcasts x′i = xi− r.
3. The parties compute 〈xi〉= 〈r〉+ x′i.

P. Laud et al. / Basic Constructions of Secure Multiparty Computation16

Addition In order to add 〈x〉 and 〈y〉, locally compute 〈x+ y〉= 〈x〉+ 〈y〉.
Multiplication To multiply 〈x〉 and 〈y〉 the parties do the following:

1. Take the two triples (〈a〉,〈b〉,〈c〉), (〈 f 〉,〈g〉,〈h〉) from the set of the available
ones and check that indeed, a ·b = c. This can be done as follows:

• Open a random value �t�.
• Partially open a′ = t〈a〉−〈 f 〉 and b′ = 〈b〉−〈g〉.
• Evaluate t〈c〉−〈h〉−b′〈 f 〉−a′〈g〉−a′b′ and partially open the result.
• If the result is not zero the protocol aborts, otherwise go on with (〈a〉,〈b〉,〈c〉).
The idea is that as t is random, it is difficult for the adversary to generate ma-
licious shares so that the result would be 0. This check can be done as part of
the preprocessing for all triples in parallel, and hence, only one random value t
is sufficient.

2. Partially open x′ = 〈x〉− 〈a〉 and y′ = 〈y〉− 〈b〉. Compute 〈z〉 = x′y′+ x′〈b〉+
y′〈a〉+ 〈c〉.

Outputs The output stage starts when the parties already have 〈y〉 for the output value
y, but this value has not been opened yet. Before the opening, it should be checked
that all parties have behaved honestly.

• Let a1, . . . ,aT be all values publicly opened so far, where

〈a j〉= (δ j,(a j1, . . . ,a jn),(γ(a j)1, . . . ,γ(a j)n)) .

A new random value �e� is opened, and parties set ei = ei for i ∈ [T]. All parties
compute a = ∑ j∈[T] e ja j.

• Each Pi commits to γi = ∑ j∈[T] e jγ(a j)i. For the output value 〈y〉, Pi also com-
mits to the shares (yi,γ(y)i) in the corresponding MAC.

• �α� is opened.
• Each Pi opens the commitment γi, and all parties check that α(a+∑ j∈[T] e jδ j) =

∑i∈[n] γi. If the check is not passed, the protocol aborts. Otherwise, the parties
conclude that all the messages a j are correct.

• To get the output value y, the commitments to (yi,γ(y)i) are opened. Now y is
defined as y := ∑i∈[n] yi, and each player checks that α(y+δ) = ∑i∈[n] γ(y)i. If
the check is passed, then y is the output.

This verifies that all the intermediate values a j, and also y, have indeed all been
computed correctly.

8. Universally Composable Secure Multiparty Computation

The security definitions in Sec. 1 consider the case where only a single instance of the
SMC protocol is running. This is rarely the case in reality where we want to run several
instances, possibly concurrently, and possibly together with other protocols. Universal
composability (UC) [35] has emerged as the way to define the security of protocols that is
preserved under concurrent compositions. In UC definitions of the security of protocols,
the ideal and real executions contain one more entity, which is called the environment
that models the other parts of the system in addition to the protocol.

P. Laud et al. / Basic Constructions of Secure Multiparty Computation 17

The ideal-model and real-model executions in Def. 4 and Def. 5 are modified to
incorporate the environment Z that depends on the functionality offered by the protocol.
The modifications are the following:

• The parties P1, . . . ,Pn receive their inputs x1, . . . ,xn from Z . They also hand back
their outputs to Z .

• During the execution,Z can freely communicate with the adversary (S or A). This
models the adversary’s influence on other parts of the system.

• At some moment, the environment Z stops and outputs a bit. This bit is the result
of the execution.

We thus obtain the probability distributions IDEALPc
f ,S(Z) and REALPc

Π,A(Z), both over
the set {0,1}. Intuitively, the bit output by Z represents its guess whether it participated
in an ideal-model or a real-model execution. We can now define the UC security of SMC
protocols, following the general pattern of UC definitions where a real system Π is at
least as secure as an ideal system F if anything that can happen to the environment when
interacting with the real system can also happen when interacting with the ideal system.

Definition 7 An n-party protocol Π for a functionality f is at least as secure as F f
SMC

against attackers corrupting at most t parties, if for all Pc ⊆ P with |Pc| ≤ t and all
adversaries A, there exists an adversary S, so that for all possible environments Z ,

REALPc
Π,A(Z)

d
= IDEALPc

f ,S(Z) . (3)

It is known that if several secure protocols (or several instances of the same secure
protocol) are run concurrently, the adversary may be able to attack the resulting system
as the parties may confuse messages from different sessions [36, Chapter 2]. In practice,
this confusion is eliminated by using suitable session identifiers on messages. This in
turn requires the parties to somehow agree on these identifiers.

9. Party Roles and Deployment Models of Secure Multiparty Computation

The descriptions of SMC protocols given in previous sections assume that all parties of
the SMC protocol provide some inputs to it (possibly trivial ones), participate actively in
the computation, and receive some outputs (possibly trivial ones). In practice, the number
of involved parties may be large. This happens in particular when there are many parties
that provide inputs to the computation. In this case, some of the protocols described
before become inefficient, and other cannot be used at all.

To implement large-scale SMC applications with many parties, we break the sym-
metry among them. We consider three different party roles that define which parties can
see what and who is in charge of certain operations. These three roles include input par-
ties, who secret-share or encrypt the data they provide to the computation. Each of the
protocols described in this chapter has, or can be amended with an input phase that can
be executed by anyone without knowledge of any secrets set up to execute the SMC pro-
tocol. The input parties send the secret-shared or encrypted values to the computing par-
ties, who carry out the SMC protocols on the hidden values. The number of computing
parties is kept small in order to efficiently execute the SMC protocol. The computing

P. Laud et al. / Basic Constructions of Secure Multiparty Computation18

Table 1. SMC deployment models and examples of applications

Basic deployment model Examples of applications

I C Rk SMC

The classic millionaires’ problem [14]

Parties: Two, Alice and Bob (both ICR)
Overview: The millionaires Alice and Bob use SMC to deter-
mine who is richer
Joint genome studies [38]

Parties: Any number of biobanks (all ICR)
Overview: The biobanks use SMC to create a joint genome
database and study a larger population

I C k SMC R m
Studies on linked databases [37]

Parties: The Ministry of Education, the Tax Board, the Popu-
lation Register (all IC) and the Statistical Office (R)
Overview: Databases from several government agencies are
linked to perform statistical analyses and tests

I R k SMC C m
Outsourcing computation to the cloud [31]

Parties: Cloud customer (IR) and cloud service providers (all
C)
Overview: The customer deploys SMC on one or more cloud
servers to process his/her data

I C Rk SMC IR m
Collaborative network anomaly detection [39]

Parties: Network administrators (all IR), a subset of whom
are running computing servers (all ICR)
Overview: A group of network administrators use SMC to find
anomalies in their traffic

I k SMC CRn

 C m

The sugar beet auction [40]

Parties: Sugar beet growers (all I), Danisco and DKS (both
CR) and the SIMAP project (C)
Overview: Sugar beet growers and their main customer use
SMC to agree on a price for purchase contracts

I k SMC Rn

 C m

The Taulbee survey [41]

Parties: Universities in CRA (all I), universities with comput-
ing servers (all IC) and the CRA (R)
Overview: The CRA uses SMC to compute a report of faculty
salaries among CRA members
Financial reporting in a consortium [42]

Parties: Members of the ITL (all I), Cybernetica, Microlink
and Zone Media (all IC) and the ITL board (R)
Overview: The ITL consortium uses SMC to compute a finan-
cial health report on its members

parties send the encrypted or secret-shared results to the result parties, who combine the
received values in order to see the results. A party can have one or several of these roles.
Table 1 from [37] describes several practical prototype applications within the described
party role paradigm.

P. Laud et al. / Basic Constructions of Secure Multiparty Computation 19

10. Classes of Properties of Secure Multiparty Computation Protocols

In previous sections, we have given examples of different sharing schemes and SMC
protocols. We have seen that the protocols can be classified into those secure against
a passive adversary and those secure against an active adversary. There are even more
protocol classifications, some of which we present in this section. Even more protocol
properties can be found in [43].

Trusted setup. Some protocols require pre-sharing of certain information before the
start of an execution. This information is independent from the actual protocol inputs
on which the functionality is computed. Here we consider pre-sharing that is done in a
trusted setup.

A common reference string (CRS) [44] is a polynomial-length string that comes
from a certain pre-specified distribution. All the involved parties must have access to the
same string. Introducing a CRS makes it possible to remove some interaction from the
protocol. For example, the random values that must be generated by one party and sent
to another can be pre-shared before the execution starts.

A protocol may use a public key infrastructure (PKI), where a public and a secret
key are issued to each party. The PKI can be used for various purposes such as signatures,
commitments, and ensuring that only the intended receiver gets the message. Its advan-
tage compared to a CRS is that it can be reused (unless it is used for certain tasks such
as bit commitments, where the secret key is revealed), while in general, a CRS cannot be
reused and a new instance has to be generated for each protocol run.

If there is no trusted setup, it is still possible to achieve the same properties that the
trusted setup gives (for example, include a key exchange subprotocol), at the expense of
an online protocol execution phase.

Existence of a broadcast channel. A broadcast channel allows a party to send the same
message to all other parties in such a way that each receiver knows that each other (hon-
est) party has received exactly the same message.

If there is no explicit broadcast channel, it can still be modeled in some settings.
For example, if at least 2n/3+ 1 of the n parties are honest, then a broadcast can be
implemented as follows. If Pi wants to broadcast m, it sends (init, i,m) to all other parties.
If a party Pj receives (inti, i,m) from Pi, it sends (echo, i,m) to all parties (including
itself). If a party Pj receives (echo, i,m) from at least n/3+ 1 different parties, then it
sends (echo, i,m) to all parties too. If a party Pj receives (echo, i,m) from at least 2n/3+1
different parties, then it accepts that Pi has broadcast m. It can be shown that if at least
one party accepts m, then all the other honest parties do as well.

Assumption level. The security of protocols can be based on the intractability of certain
computational tasks. Some protocols use quite specific assumptions such as factoring
or finding the minimal distance of vectors generated by a matrix over a finite field. In
some cases, the intractability has not even been formally reduced to well-known open
problems. Even if no efficient algorithm for solving these tasks is known right now, it
may still be solved in the future. Some complex tasks (e.g. factoring) can be solved in
polynomial time using quantum computation.

Instead of assuming the hardness of a particular computational task, the security
may be based on a more general assumption such as the existence of trapdoor functions.
For a trapdoor function f , given an input x, it is easy to compute f (x), but it is difficult to

P. Laud et al. / Basic Constructions of Secure Multiparty Computation20

compute x from f (x) unless a special trapdoor is known, which may depend on f itself,
but not on x. A weaker assumption is the existence of one-way functions that do not
require the existence of a trapdoor. When implementing a protocol, a specific one-way
function f can be chosen. If it turns out that this particular f is not one-way, the protocol
will not be immediately broken, as some other f can be used instead. In this case, the
particular implementation becomes insecure, but not the whole protocol.

It is not known if one-way functions exist. There are no computational problems
whose hardness can be steadily proven, so in the best-case scenario no computational
assumptions are used. The next level is statistical security, where the data may leak only
with negligible probability. If the leakage probability is 0, then we have perfect security.

Maliciousness. In previous sections, we considered protocols secure against passive
and active adversaries. We describe two intermediate levels between passive and active
adversaries.

A fail-stop adversary [45] follows the protocol similarly to the passive adversary,
except for the possibility of aborting. This means that the adversary has the power to
interrupt the protocol execution, but nothing more compared to the passive one.

A covert adversary [46] estimates the probability of being caught. It deviates from
the protocol as long as this probability is sufficiently low.

Adversary mobility. A static adversary chooses a set of corrupted parties before the
protocol starts. After that, the set of corrupted parties stays immutable.

An adaptive adversary adds parties to the malicious set during the execution of the
protocol, until the threshold is reached. The choice of the next corrupted party depends
on the state of the other parties corrupted so far.

A mobile adversary can not only add new parties to the malicious set during the ex-
ecution of the protocol, but also remove them, so that some other party can be corrupted
instead.

Corrupted parties. In the simplest case, a single adversary that corrupts a set of parties.
In the case of mixed adversary security, different sets of parties can be corrupted by

different adversaries. For example, it may happen that one of them is passive, and the
other active.

In the case of hybrid security, the protocol may tolerate different sets of corrupted
parties with different capabilities. For example, one set of malicious parties is computa-
tionally bounded, while the other is not.

Fairness. If a protocol has the agreement property, then if at least one honest party
receives its output, then all the other honest parties do as well. If a protocol has the
fairness property, then if any party receives its output, then all the honest parties do as
well.

Composability. If a protocol is secure in the stand-alone model, then it is secure only if
it is executed once, and there are no other protocols running. For example, if one protocol
uses PKI for commitments, the secret key is published when the commitment is opened,
and the keys cannot be reused. Hence, the protocol can be run only once.

If the protocol is sequentially composable, then it is secure regardless of any other
instance of the same protocol running before and after it. However, there may still be
problems if some other protocol is running in parallel. For example, a party P1 may
instantiate two protocol executions with P2 and P3, pretending to be P3 for P2. If P2

P. Laud et al. / Basic Constructions of Secure Multiparty Computation 21

requires proof that it indeed communicates with P3, and sends a corresponding challenge
to which only P3 can respond, then P1 may deliver this challenge to P3 in a parallel
protocol session in which it is the turn of P1 to send the challenge.

A protocol that supports parallel composition is secure even if several instances
are executed in parallel, regardless of the timings that the adversary inserts between the
rounds of all the protocol runs. However, it can still be insecure in the presence of some
other protocols. For example, a protocol that uses PKI for message transmission can be
secure in parallel composition, but executing another protocol that uses the same PKI for
commitments will break it.

A universally composable [35] protocol is secure, regardless of the environment.
More details can be found in Sec. 8.

The presented protocol properties can be seen as dimensional axes that define some
space in which the protocols can be compared to each other. These axes are not orthogo-
nal: if we want to improve one property then the worsening of some other property may
be unavoidable. Below are some possibility and impossibility results of combining these
properties that show how different axes depend on each other. More results can be found
in [43].

10.1. Impossibility Results

If there are no cryptographic assumptions (assuming the existence of private channels),
the following is required:

• If statistical or perfect security is obtained, then either broadcast or private chan-
nels must be assumed [47].

• For unconditional security (negligible failure probability) against t maliciously
corrupted parties, n/3≤ t < n/2, a broadcast channel is required [47].

• There can be no unconditionally secure protocol against an adversary controlling
the majority of the parties. Two-party computation is impossible without crypto-
graphic assumptions [47].

• No protocol can have perfect security against more than n/3 maliciously cor-
rupted adversaries [47].

• Let ta, tp, and t f be the number of actively corrupt, passively corrupt, and fail-
corrupt parties, respectively. Perfect security is possible if and only if 3ta +2tp +
t f < n, regardless of the existence of a broadcast channel (a party that is passively
corrupt and fail-corrupt at the same time is counted twice) [48].

• Unconditional security without a broadcast channel is possible if and only if 2ta+
2tp + t f < n and 3ta + t f < n [48].

• Unconditional security, with a broadcast channel, is possible if and only if 2ta +
2tp + t f < n [48].

For cryptographic security against n/3 or more maliciously corrupt players, either a
trusted key setup or a broadcast channel is required [13].

Fail-stop adversaries can be tolerated only if there are fewer than n/2 corrupt parties,
no matter what other assumptions we use [49].

No protocol with security against malicious adversaries can tolerate more than n/2
corrupted parties without losing the complete fairness property [50].

There is no protocol with UC security against more than n/2 corrupt parties without
setup assumptions [51].

P. Laud et al. / Basic Constructions of Secure Multiparty Computation22

10.2. Possibility Results

Passive adversaries can be handled if fewer than n/2 participants are corrupt [47]. Active
adversaries can be handled, if fewer than n/2 participants are corrupt and we are willing
to tolerate an exponentially small chance of failure or leakage [50].

In the case of a mixed adversary, there are protocols that tolerate fewer than n/3
actively corrupt parties and further passively corrupt parties, so that the total number of
corrupt parties is fewer than n/2 [48].

Using cryptographic assumptions, we can tolerate any number of active adversaries
(although no protection against failures is guaranteed). As an example, we may take any
protocol that uses threshold homomorphic encryption (see Sec. 6), taking an n-out-of-n
threshold encryption.

References

[1] Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cambridge University
Press, New York, NY, USA, 2004.

[2] Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. Secure multiparty computation and secret
sharing: An information theoretic approach (book draft), May 2013. http://www.cs.au.dk/~jbn/

mpc-book.pdf.
[3] Manoj Prabhakaran and Amit Sahai, editors. Secure Multiparty Computation. Number 10 in Cryptology

and Information Security Series. IOS Press, January 2013.
[4] Martin Hirt and Ueli M. Maurer. Player simulation and general adversary structures in perfect multiparty

computation. J. Cryptology, 13(1):31–60, 2000.
[5] Oded Goldreich. Foundations of Cryptography: Basic Tools, volume 1. Cambridge University Press,

New York, NY, USA, 2000.
[6] Mihir Bellare and Silvio Micali. Non-interactive oblivious transfer and spplications. In Gilles Brassard,

editor, Advances in Cryptology - CRYPTO ’89, 9th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 20-24, 1989, Proceedings, volume 435 of Lecture Notes in Computer
Science, pages 547–557. Springer, 1989.

[7] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE
Transactions on Information Theory, 31(4):469–472, 1985.

[8] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby,
editors, CCS ’93, Proceedings of the 1st ACM Conference on Computer and Communications Security,
Fairfax, Virginia, USA, November 3-5, 1993., pages 62–73. ACM, 1993.

[9] Joe Kilian. Founding Crytpography on Oblivious Transfer. In Proceedings of the Twentieth Annual
ACM Symposium on Theory of Computing, STOC ’88, pages 20–31, New York, NY, USA, 1988. ACM.

[10] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-way permutations.
In Johnson [52], pages 44–61.

[11] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers efficiently. In
Boneh [53], pages 145–161.

[12] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty Unconditionally Secure Protocols (Ex-
tended Abstract). In Simon [54], pages 11–19.

[13] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to Play any Mental Game or A Completeness
Theorem for Protocols with Honest Majority. In STOC, pages 218–229. ACM, 1987.

[14] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In FOCS, pages 160–164.
IEEE, 1982.

[15] Yehuda Lindell and Benny Pinkas. A Proof of Security of Yao’s Protocol for Two-Party Computation.
J. Cryptology, 22(2):161–188, 2009.

[16] Yehuda Lindell, Benny Pinkas, and Nigel P. Smart. Implementing two-party computation efficiently
with security against malicious adversaries. In Rafail Ostrovsky, Roberto De Prisco, and Ivan Visconti,
editors, Security and Cryptography for Networks, 6th International Conference, SCN 2008, Amalfi, Italy,

P. Laud et al. / Basic Constructions of Secure Multiparty Computation 23

September 10-12, 2008. Proceedings, volume 5229 of Lecture Notes in Computer Science, pages 2–20.
Springer, 2008.

[17] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. Efficient garbling from a
fixed-key blockcipher. In 2013 IEEE Symposium on Security and Privacy, SP 2013, Berkeley, CA, USA,
May 19-22, 2013, pages 478–492. IEEE Computer Society, 2013.

[18] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR gates and applica-
tions. In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir,
and Igor Walukiewicz, editors, Automata, Languages and Programming, 35th International Colloquium,
ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II - Track B: Logic, Semantics, and
Theory of Programming & Track C: Security and Cryptography Foundations, volume 5126 of Lecture
Notes in Computer Science, pages 486–498. Springer, 2008.

[19] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams. Secure two-party com-
putation is practical. In Mitsuru Matsui, editor, Advances in Cryptology - ASIACRYPT 2009, 15th In-
ternational Conference on the Theory and Application of Cryptology and Information Security, Tokyo,
Japan, December 6-10, 2009. Proceedings, volume 5912 of Lecture Notes in Computer Science, pages
250–267. Springer, 2009.

[20] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole: Reducing data transfer in
garbled circuits using half gates. Cryptology ePrint Archive, Report 2014/756, 2014. http://eprint.
iacr.org/.

[21] Yehuda Lindell and Benny Pinkas. Secure two-party computation via cut-and-choose oblivious transfer.
In Yuval Ishai, editor, Theory of Cryptography - 8th Theory of Cryptography Conference, TCC 2011,
Providence, RI, USA, March 28-30, 2011. Proceedings, volume 6597 of Lecture Notes in Computer
Science, pages 329–346. Springer, 2011.

[22] Charanjit S. Jutla. Encryption modes with almost free message integrity. J. Cryptology, 21(4):547–578,
2008.

[23] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.
[24] Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified vss and fact-track multiparty computa-

tions with applications to threshold cryptography. In PODC, pages 101–111, 1998.
[25] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In

Feigenbaum [55], pages 129–140.
[26] Ranjit Kumaresan, Arpita Patra, and C. Pandu Rangan. The round complexity of verifiable secret shar-

ing: The statistical case. In Masayuki Abe, editor, ASIACRYPT, volume 6477 of Lecture Notes in Com-
puter Science, pages 431–447. Springer, 2010.

[27] Michael Backes, Aniket Kate, and Arpita Patra. Computational verifiable secret sharing revisited. In
Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT, volume 7073 of Lecture Notes in Computer
Science, pages 590–609. Springer, 2011.

[28] Ivan Damgård and Mads Jurik. A Generalisation, a Simplification and Some Applications of Paillier’s
Probabilistic Public-Key System. In Kwangjo Kim, editor, Public Key Cryptography, volume 1992 of
Lecture Notes in Computer Science, pages 119–136. Springer, 2001.

[29] Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. Multiparty computation from threshold ho-
momorphic encryption. In Birgit Pfitzmann, editor, EUROCRYPT, volume 2045 of Lecture Notes in
Computer Science, pages 280–299. Springer, 2001.

[30] Ivan Damgård and Jesper Buus Nielsen. Universally composable efficient multiparty computation from
threshold homomorphic encryption. In Boneh [53], pages 247–264.

[31] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher, editor,
STOC, pages 169–178. ACM, 2009.

[32] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation from some-
what homomorphic encryption. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO, volume
7417 of Lecture Notes in Computer Science, pages 643–662. Springer, 2012.

[33] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009. crypto.
stanford.edu/craig.

[34] Donald Beaver. Efficient multiparty protocols using circuit randomization. In Feigenbaum [55], pages
420–432.

[35] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In FOCS,
pages 136–145. IEEE Computer Society, 2001.

[36] Yehuda Lindell. Composition of Secure Multi-Party Protocols, A Comprehensive Study, volume 2815 of

P. Laud et al. / Basic Constructions of Secure Multiparty Computation24

Lecture Notes in Computer Science. Springer, 2003.
[37] Dan Bogdanov, Liina Kamm, Sven Laur, and Ville Sokk. Rmind: a tool for cryptographically secure

statistical analysis. Cryptology ePrint Archive, Report 2014/512, 2014.
[38] Liina Kamm, Dan Bogdanov, Sven Laur, and Jaak Vilo. A new way to protect privacy in large-scale

genome-wide association studies. Bioinformatics, 29(7):886–893, 2013.
[39] Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas Dimitropoulos. SEPIA: Privacy-

preserving aggregation of multi-domain network events and statistics. In USENIX Security Symposium,
pages 223–239, Washington, DC, USA, 2010.

[40] Peter Bogetoft, Dan Lund Christensen, Ivan Damgård, Martin Geisler, Thomas P. Jakobsen, Mikkel
Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt Nielsen, Jakob Pagter, Michael I.
Schwartzbach, and Tomas Toft. Secure multiparty computation goes live. In Financial Cryptography,
pages 325–343, 2009.

[41] Joan Feigenbaum, Benny Pinkas, Raphael Ryger, and Felipe Saint-Jean. Secure computation of surveys.
In EU Workshop on Secure Multiparty Protocols, 2004.

[42] Dan Bogdanov, Riivo Talviste, and Jan Willemson. Deploying secure multi-party computation for fi-
nancial data analysis - (short paper). In Angelos D. Keromytis, editor, Financial Cryptography, volume
7397 of Lecture Notes in Computer Science, pages 57–64. Springer, 2012.

[43] Jason Perry, Debayan Gupta, Joan Feigenbaum, and Rebecca N. Wright. Systematizing secure compu-
tation for research and decision support. In Michel Abdalla and Roberto De Prisco, editors, Security
and Cryptography for Networks - 9th International Conference, SCN 2014, Amalfi, Italy, September 3-5,
2014. Proceedings, volume 8642 of Lecture Notes in Computer Science, pages 380–397. Springer, 2014.

[44] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its applications.
In Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC ’88, pages
103–112, New York, NY, USA, 1988. ACM.

[45] Zvi Galil, Stuart Haber, and Moti Yung. Cryptographic computation: Secure fault-tolerant protocols and
the public-key model (extended abstract). In Carl Pomerance, editor, Advances in Cryptology - CRYPTO
’87, volume 293 of Lecture Notes in Computer Science, pages 135–155. Springer Berlin Heidelberg,
1988.

[46] Yonatan Aumann and Yehuda Lindell. Security against covert adversaries: Efficient protocols for real-
istic adversaries. J. Cryptology, 23(2):281–343, 2010.

[47] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic
fault-tolerant distributed computation (extended abstract). In Simon [54], pages 1–10.

[48] Matthias Fitzi, Martin Hirt, and Ueli Maurer. Trading correctness for privacy in unconditional multi-
party computation. In Hugo Krawczyk, editor, Advances in Cryptology — CRYPTO ’98, volume 1462
of Lecture Notes in Computer Science, pages 121–136. Springer-Verlag, August 1998. Corrected pro-
ceedings version.

[49] R Cleve. Limits on the security of coin flips when half the processors are faulty. In Proceedings of the
Eighteenth Annual ACM Symposium on Theory of Computing, STOC ’86, pages 364–369, New York,
NY, USA, 1986. ACM.

[50] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest majority
(extended abstract). In Johnson [52], pages 73–85.

[51] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of universally composable two-
party computation without set-up assumptions. In Eli Biham, editor, Advances in Cryptology – EU-
ROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages 68–86. Springer Berlin
Heidelberg, 2003.

[52] David S. Johnson, editor. Proceedings of the 21st Annual ACM Symposium on Theory of Computing,
May 14-17, 1989, Seattle, Washigton, USA. ACM, 1989.

[53] Dan Boneh, editor. Advances in Cryptology - CRYPTO 2003, 23rd Annual International Cryptology
Conference, Santa Barbara, California, USA, August 17-21, 2003, Proceedings, volume 2729 of Lecture
Notes in Computer Science. Springer, 2003.

[54] Janos Simon, editor. Proceedings of the 20th Annual ACM Symposium on Theory of Computing, May
2-4, 1988, Chicago, Illinois, USA. ACM, 1988.

[55] Joan Feigenbaum, editor. Advances in Cryptology - CRYPTO ’91, 11th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 11-15, 1991, Proceedings, volume 576 of Lecture
Notes in Computer Science. Springer, 1992.

P. Laud et al. / Basic Constructions of Secure Multiparty Computation 25

