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Research on molecule-based magnetic materials was systematized in the 1980s and expanded
rapidly. In Magnetochemistry, a special issue focusing on molecule-based magnetic substances has been
published. However, the functionalities of those substances have grown daily, and researchers’ quests
does not seem to decline. This molecule-based magnetism has developed across many fields, including
chemistry, physics, material chemistry, and applied physics, and the use of various functionalities of
these molecule-based magnetic substances greatly influences the research on spin-based devices. This
special issue is articulated around ten ordinal articles, in honor of Professor Masahiro Yamashita, who
contributed greatly to this field, on the occasion of his 65th birthday.

First of all, Barbara Sieklucka will give an introduction to the scholarly achievements of Professor
Masahiro Yamashita [1]. He has contributed a huge amount to the study of molecule-based magnets
and strongly correlated electron system fields. Shinya Hayami and co-workers have investigated the
promise of the pseudo pressure effects of the intercalation spin crossover (SCO) complex by using the
transformation of graphene oxide (GO) to reduced graphene oxide (rGO) [2]. Their goal was to provide
new insights into the study of pressure effects for molecule-based magnets in two-dimensional (2D)
materials, such as graphene, BN, and MoS2. Takashi Kajiwara, Yasutaka Kitagawa, and co-workers
investigated the correlation between the f orbitals of Dy(III) ions and the σand πorbitals of ligands
to bring out the magnetic anisotropy [3]. These results indicated that the coordination geometry and
molecular orbitals of Ln complexes should be considered when designing single-molecule magnets
(SMMs). Ryuta Ishikawa and co-workers demonstrated the field-induced SMM properties of dinuclear
Ln Kramers (Er and Yb) complexes with an electroactive chloralilate-bridging ligand [4]. Their goal was
to able to reversibly switch SMM properties via an electrochemical approach. Dawid Pinkowicz and
co-workers demonstrated that they could switch the magnetic properties of a Ni(II) coordination polymer
under increased pressure [5]. This result indicates that mechanical force can be positively used for
changing magnetic properties without physical collapse. Samia Benmansour, Carlos J. Gómez-García,
and co-workers investigated the 2D structures of an MnCr honeycomb and observed long-range
ferrimagnetic ordering upon changing the solvents [6]. These experimental results can be applied to
the reversible switching of TC (magnetic ordering temperature) by introducing and removing guest
molecules. Constantina Papatriantafyllopoulou and co-workers investigated Co2Ln clusters, which
have a triangular metal geometry, and the Co2Dy derivative exhibited an ac frequency dependence [7].
Mixed 3d/4f clusters might provide potential for SMM properties by using a uniaxial magnetic control.
Vassilis Psycharis, Mark M. Turnbull, Spyros P. Perlepes, and co-workers demonstrated that the choice
of ligand brings about the ability to form interesting structural types in 3d metal chemistry [8]. Their
work demonstrated the flexibility of ligands and their utility in the synthesis of 3d metal complexes with
interesting structures and properties. Keiichi Katoh, Masahiro Yamashita, and co-workers investigated
the relationship between the coordination geometry and magnetic relaxation phenomena for dinuclear

Magnetochemistry 2020, 6, 17 www.mdpi.com/journal/magnetochemistry1
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Dy complexes [9]. These results demonstrate that precise control of the coordination environment enables
control of the magnetic relaxation properties. Yasutaka Kitagawa, Masayoshi Nakano, and co-workers
examined the possibility of intramolecular magnetic interactions in pyrazole-bridged dinuclear 3d metal
complexes [10]. These results suggest that rational design guidelines for molecule-based magnets based
on the quantum chemical calculation would be effective for modifying the interactions and properties
of molecule-based magnetic materials.

I have put together a special issue on molecule-based magnets, “A Themed Issue of Functional
Molecule-based Magnets: Dedicated to Professor Masahiro Yamashita on the Occasion of his 65th
Birthday”, and hope it will be of use to everyone. I wish to thank the authors for providing such
impressive and interesting papers, and the referees and editorial staff who took the time to write
valuable comments.

Author Contributions: K.K. wrote this editorial. The author has read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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Professor Masahiro Yamashita at the Tohoku University, Japan, celebrates his 65th birthday in
2019. His co-workers, colleagues, and friends congratulate him on this happy occasion. For the
celebration, the Special Issue of “A Themed Issue of Functional Molecule-Based Magnets: Dedicated to
Professor Masahiro Yamashita on the Occasion of his 65th Birthday” encompasses articles submitted
by authors from all around the globe. The range of international contributions reflects Masahiro’s
diverse scientific interests as well as his close relationship with the molecular magnetism community.

Professor Masahiro Yamashita received his Doctor of Science in 1982 from the Kyushu University.
He then joined the Institute for Molecular Science (IMS). In 1985, he was appointed to the position
of Assistant Professor at Kyushu University. In 1989, he was appointed to the position of Associate
Professor at Nagoya University. He was a Full Professor at Tokyo Metropolitan University from 2000 to
2004. He is now a Full Professor at Tohoku University and Principal Investigator of the Soft Materials
Group in Advanced Institute for Materials Research (AIMR) at Tohoku University.

He is also Visiting Professor at Nanjing University, Zhenjiang University, Xi’an Jaotong University,
Sun Yat Sen University, Peking University, Guilin Normal University, Nankai University (China), and
Cagliari University (Italy).

Professor Masahiro Yamashita is one of the most influential scientists in the fields of
multifunctional nanoscience of advanced metal complexes. In his research he has focused on quantum
molecular spintronics, single molecule and single chain quantum magnets, strongly electron correlated
nanowire metal complexes, and molecule-based magnets encapsulated in carbon nanotubes.

He has been honored with the following awards: the Inoue Scientific Award (2002), the Chemical
Society of Japan Award for Creative Work (2005), the Award of Japan Society of Coordination Chemistry
(2014), and the Mukai Award (2019). He is now an Associate Member of the Science Council of Japan.
He is also Associate Editor of Dalton Transactions as well as a Fellow of the Royal Society of Chemistry
(FRSC). He is known for his strong dedication to research, teaching, and mentoring of students. In the
course of his academic career he has guided 47 Ph.D. students and numerous masters students, through
to graduation.

He has successfully organized the most prestigious conferences in the field of molecular
magnetism which include: the International Conference, “Single-Molecule Quantum Magnets and
Single-Chain Quantum Magnets—New Generation of Quantum Nanomagnets”, Okazaki, Japan, 2006;
the 62nd Fujihara Seminar, "Frontier and Perspectives in Molecule-Based Quantum Magnets”, Sendai,
Japan, 2012; as well as the 15th International Conference on Molecule-Based Magnets (ICMM2016) and
the 43rd International Conference on Coordination Chemistry (ICCC2018) in Sendai, Japan.

Professor Masahiro Yamashita’s scientific activity is evidenced by ca. 450 research articles,
90 reviews, 20 books and book chapters, and countless contributions at conference lectures.

On this special occasion, I would like to join Masahiro’s students, co-workers, collaborators, and
friends in congratulating him on this 65th birthday. We all wish for him to continue and to enjoy his
scientific endeavors in good health.

Magnetochemistry 2019, 5, 25 www.mdpi.com/journal/magnetochemistry3



Magnetochemistry 2019, 5, 25

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

4



magnetochemistry

Article

Pressure Effects with Incorporated Particle Size
Dependency in Graphene Oxide Layers through
Observing Spin Crossover Temperature

Hikaru Kitayama 1, Ryohei Akiyoshi 1 , Masaaki Nakamura 1 and Shinya Hayami 1,2,*

1 Department of Chemistry, Graduate School of Science and Technology, Kumamoto University,
2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan; 179d8024@st.kumamoto-u.ac.jp (H.K.);
187d9041@st.kumamoto-u.ac.jp (R.A.); m_nakamura@kumamoto-u.ac.jp (M.N.)

2 Institute of Pulsed Power Science (IPPS), Kumamoto University, 2-39-1 Kurokami, Chuo-ku,
Kumamoto 860-8555, Japan

* Correspondence: hayami@kumamoto-u.ac.jp; Tel.: +81-096-342-3469

Received: 23 March 2019; Accepted: 8 April 2019; Published: 11 April 2019

Abstract: This research highlights the pressure effects with the particle size dependency incorporated
in two-dimensional graphene oxide (GO)/reduced graphene oxide (rGO). GO and rGO composites
employing nanorods (NRs) of type [Fe(Htrz)2(trz)](BF4) have been prepared, and their pressure effects
in the interlayer spaces through observing the changes of the spin crossover (SCO) temperature (T1/2)
have been discussed. The composites show the decrease of interlayer spaces from 8.7 Å to 3.5 Å that
is associated with GO to rGO transformation. The shorter interlayer spaces were induced by pressure
effects, resulting in the increment of T1/2 from 357 K to 364 K. The pressure effects in the interlayers
spaces estimated from the T1/2 value correspond to 24 MPa in pristine [Fe(Htrz)2(trz)](BF4) NRs under
hydrostatic pressure. The pressure observed in the composites incorporating NRs (30 × 200 nm) is
smaller than that observed in the composite incorporating nanoparticles (NPs) (30 nm). These results
clearly demonstrated that the incorporated particle size and shape influenced the pressure effects
between the GO/rGO layer.

Keywords: pressure effect; spin crossover; graphene oxide; iron complex

1. Introduction

Van der Waals interactions in the pores of micro-porous materials are known to generate a
pseudo-pressure effect, leading to the expression of characteristic phases and unique properties in
the pores under mild conditions. [1–6]. For example, potassium iodide (KI) nanocrystals inside
the nanotube spaces of single-walled carbon nano-horns display a structural phase transition by
pseudo-pressure corresponding to ca. 1.9 GPa [7]. In microporous of metal-organic frameworks
[{[Cu2(pzdc)2(pyz)]·2H2O}n] (pzdc—pyrazine-2,3-dicarboxylate), O2 molecules show similar behavior
to the solid phase above the freezing point of O2 [8].

Recently, interlayers of two-dimensional (2D) materials, such as graphene, boron nitride (BN),
and MoS2, were found to play an important role for the confinement of molecules and pseudo-pressure
effects [9–12]. For instance, pressure corresponding to 1.2 ± 0.3 GPa was observed by trapping
pressure-sensitive molecules of triphenyl amine (TPA) and boric acid (BA) into an interlayer of
graphene [9]. In typical 2D layered materials, the correlations between pressure (P) and the interlayer
distance (d) were estimated using the equation of P ≈ Ew/d, where Ew is the adhesion energy [11,12].
As such this is an indication that the pressure effects that occur in the interlayer are significantly affected
by the interlayer distance. Thus, 2D materials that possess a tunable interlayer have the possibility of
tuning pressure effects, leading to the generation of unique phases and physical properties.

Magnetochemistry 2019, 5, 26 www.mdpi.com/journal/magnetochemistry5
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Graphene oxide (GO), an oxidized graphene, is a 2D material that has oxygen functional groups,
such as hydroxyl, carboxyl, and epoxy groups [13–16]. These oxygen functional groups on the
GO surface were removed by thermal reduction treatment, resulting in reduced graphene oxide
(rGO) [17–19]. Importantly, their interlayer distances decrease from 7.9 Å in GO to 3.4 Å in rGO as a
result of the removal of the oxygen functional groups [20–22]. Therefore, a pseudo pressure effect can
be generated via GO/rGO transformation.

Recently, we reported tunable pressure effects on GO/rGO layers by changing the thermal treatment
temperature [23]. In this context, nanoparticles (NPs) of a spin crossover (SCO) complex of type
[Fe(Htrz)2(trz)](BF4) (trz: 1,2,4-triazole) were used for monitoring the pressure effect changes on the
GO/rGO layers. SCO complexes, [Fe(Htrz)2(trz)](BF4), are also well known to exhibit SCO phenomena
between low spin (LS) and high spin (HS) states, reversibly with thermal hysteresis [24–27]. In addition,
the SCO temperature (T1/2) of [Fe(Htrz)2(trz)](BF4) is sensitive to the hydrostatic pressure that behaves
to restrict the structural transition synchronized with the SCO behavior. The correlation between P
and T1/2 has also been reported in [Fe(Htrz)2(trz)](BF4) NPs [28]. In a prior study, we reported that the
composite incorporating [Fe(Htrz)2(trz)](BF4) bulk particles (BPs) of 100 nm did not show any pressure
effect, but did exhibit a pressure effect for the composite incorporating NPs of 30 nm, since the GO
nanosheet can cover the NPs completely.

In the present study, we aimed to further investigate the pressure effects between the GO/rGO
layers. For this purpose, we prepared GO (1)/rGO (2) composites incorporating cylinder shape
nanorods (NRs) [Fe(Htrz)2(trz)](BF4) with a size of 30 × 200 nm (intermediate size of previously
reported particle) as a way to detect the pressure effects (Figure 1). Then, pressure effects in the GO/rGO
layers were discussed by monitoring T1/2, and a comparison was made with GO/rGO composites
incorporating spherical NPs (30 × 30 nm) and bulk particles (100 × 100 nm) respectively.

 
Figure 1. Schematic illustration of pressure effects in graphene oxide (GO)/ reduced graphene oxide
(rGO) layers incorporating [Fe(Htrz)2(trz)](BF4) nanorods (NRs).

2. Results and Discussion

The [Fe(Htrz)2(trz)](BF4) NRs were synthesized by the reaction between FeCl2·4H2O, NaBF4,
and 1-H-1,2,4-triazole, using the ligand-melt method [29]. Composite 1 was prepared by mixing GO
and [Fe(Htrz)2(trz)](BF4) NRs in a mass ratio of 1:2 in ethanol, which was then filtrated. Composite
2 was obtained by subsequent heating at 473 K for 12 h. The GO/rGO transformation in these
composites was confirmed by investigating the current–voltage (I–V) properties. The I–V curve for
composite 1 shows mainly an insulator property in accordance with the behavior of GO. The electron
conductivity of composite 1 was 7.67 × 10−11 A, applied at 1 V. On the other hand, composite 2 showed
7.28 × 10−6 A applied at 1 V, in accordance with the oxygen functional groups being removed to yield
rGO. This transformation is also corroborated by the powder X-ray diffraction (PXRD) patterns, as
presented in Figure 3.

The scanning electron microscopy (SEM) images of the [Fe(Htrz)2(trz)](BF4) NRs, composite 1,
and composite 2 are presented in Figure 2 and Figure S2. The SEM image demonstrated that the
size of the NR complex was 29.6 nm in width and 203.4 nm in length. For composites 1 and 2, the
NRs incorporated between the GO/rGO layers were observed obviously. Furthermore, the presence

6
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of [Fe(Htrz)2(trz)](BF4) was clearly confirmed by the energy dispersive X-ray (EDX) spectroscopy
(Figure 2c,d). The Fourier transform infrared spectra (FT-IR) results also supported the presence of
[Fe(Htrz)2(trz)](BF4) NRs composited within the GO/rGO interlayers (Figure S3).

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2. Scanning electron microscopy (SEM) images of (a) composite 1 and (b) composite 2.
SEM-energy dispersive X-ray spectroscopy (SEM-EDX) results for (c) composite 1 and (d) composite 2.

As such, the changes of the interlayer distance that is associated with the transformation of GO
to rGO were investigated by powder X-ray diffraction (PXRD) measurements (Figure 3). Results
shows that pristine GO has a distinct peak at 2θ = 10.15◦, with an interlayer distance of 8.70 Å. As for
composite 1, the GO peak was observed at 2θ = 10.17◦ and an interlayer distance of 8.68 Å, where the
remaining peaks are ascribed to the presence of [Fe(Htrz)2(trz)](BF4) NRs. In the case of composite 2

(which was treated at 473 K for 12 h), the interlayer distance decreased to 3.5 Å (2θ = 25◦) as a result of
the removal of the oxygen functional groups on the GO layers. From these results, it can be anticipated
that pressure effects occurred between the interlayers.

7
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Figure 3. Powder X-ray diffraction (PXRD) patterns for pristine GO, pristine rGO, [Fe(Htrz)2(trz)](BF4)
NRs, composite 1, and composite 2.

In order to investigate the influence of the pressure effects on the SCO behavior, caused by the
shorter interlayer distance associated with the structural transformation between GO and rGO, the
temperature-dependent magnetic susceptibility for the [Fe(Htrz)2(trz)](BF4) NRs, composite 1, and
composite 2 were measured in the temperature range of 300 to 400 K. The magnetic susceptibility for
the [Fe(Htrz)2(trz)](BF4) NRs in the form of the χmT vs. T plot can be seen in Figure S4, where χm is
the molar magnetic susceptibility and T is the temperature. From these results, [Fe(Htrz)2(trz)](BF4)
NRs show SCO behavior at T1/2 = 356 K, with a thermal hysteresis of 29 K. The χgT vs. T plots for
composite 1 and composite 2 are shown in Figure 4, where χg is the magnetic susceptibility per gram.
Both composites 1 and 2 exhibited SCO behavior at T1/2 = 357 K and 364 K respectively. The T1/2

value of composite 2 is 7 K higher than that observed in composite 1. Accordingly, these results are in
agreement with pressure effects behavior when decreasing the interlayer distance.

Figure 4. χgT vs. T plots for composite 1 (heating: (�); cooling: (�)) and composite 2 (heating: (�);
cooling: (�)).

The pseudo-pressure effects were estimated from the T1/2 value using the Clausius–Clapeyron
equation (Equation (1)) reported by Colacio and co-workers, where p is hydrostatic pressures [28],
as follows:

T1/2(p) = T1/2 + 290(66)p (1)

8



Magnetochemistry 2019, 5, 26

The values of SCO temperature and pseudo-pressure for GO/rGO composite when
[Fe(Htrz)2(trz)](BF4) of different size and shape are incorporated are summarized in Table 1. As a result
of the calculation, the pseudo-pressure originated from the transformation of composite 1 to
composite 2 is equal to 24 MPa. We have reported previously that GO/rGO composites incorporating
[Fe(Htrz)2(trz)](BF4) NPs with a size of 30 nm show an increase of the T1/2 value from T1/2 = 351 K in the
GO, to T1/2 = 362 K in rGO due to pressure effects corresponding to 38 MPa [23]. The pseudo-pressure
effect observed in the composite with NRs (30 × 200 nm) was smaller than that observed in the
composite with NPs (30 nm). Considering that no pressure effects were observed for the composite
incorporating BPs of 100 nm size, it can be concluded that the accommodated particle size and shape
crucially affected the pseudo-pressure effects within the GO/rGO layers. For the case of small particle
size, the GO layers stack regularly. GO layers form the ordered stacking structures when incorporating
NRs, however, the surface area of the NRs influencing the pressure effects is larger than the NPs with a
size of 30 nm (Figure 5). It is then proposed that a large surface of NRs leads to small pressure effects.

Table 1. Summary of spin crossover (SCO) temperatures (T1/2) and pseudo-pressure.

T1/2 (K) Pseudo-Pressure

1 (GO/NRs) 357
24 MPa

2 (rGO/NRs) 364
GO/NPs 351

38 MParGO/NPs 362
GO/BPs 357 No pressure
rGO/BPs 352

The particle size is 30 × 200 nm in nanorods (NRs), 30 nm in nanoparticles (NPs), and 100 nm in bulk particles (BPs).

Figure 5. Schematic illustration of the pressure effects with incorporated particle size and shape
dependency in the GO/rGO layers.
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3. Materials and Methods

3.1. Synthesis

All the materials and reagents were obtained from Wako Pure Chemical Industries (Osaka-shi,
Osaka, Japan) and Tokyo Chemical Industry (TCI) Co., Ltd (Chuo-ku, Tokyo, Japan) and used without
further purification.

3.1.1. [Fe(Htrz)2(trz)](BF4) NRs (30 × 200 nm)

The [Fe(Htrz)2(trz)](BF4) NRs were prepared according to the previously reported procedure [29].
The mixture of FeCl2·4H2O (200 mg, 1 mmol), NaBF4 (110 mg, 1 mmol), and 1-H-1,2,4-triazole (5 g,
72.4 mmol) was heated at 150 ◦C for 5 min. After heating, the resulting melt was cooled to room
temperature. The obtained crude product was dispersed in ethanol. The dispersion was centrifuged at
4800 r/min, washed with ethanol, and then collected using a membrane filter (1 μm) so as to give the
product as a violet powder.

3.1.2. Graphene Oxide (GO)

The graphene oxide was prepared by Hummer’s method with a minor modification [21].
The mixture of graphite (2 g), grinded NaNO3 (2 g), and H2SO4 (92 mL) was stirred for 30 min
at 0 ◦C. Subsequently, KMnO4 powder (10 g) was added carefully, and the resulting mixture was
stirred at 35 ◦C for 60 min. Then, deionized water (92 mL) was dropped into the mixture slowly, and
the mixture was heated at 95 ◦C for 20 min. Subsequently, deionized water (200 mL) was poured into
the reaction mixture. Then, a 30% H2O2 solution (30 mL) was dropped very carefully so as to convert
the manganese dioxide and unreacted permanganate into soluble sulfates in an ice bath. The mixture
was centrifuged at 3000 r/min to remove the supernatant liquid. The precipitate was washed with a 5%
HCl solution three times, and then with distilled water five times. The resulting solid was washed
with ionized water three times, and exfoliated by ultrasonication for 2 h. The solution was centrifuged
at 8000 r/min for 30 min, then the supernatant dispersion was centrifuged at 15000 r/min for 30 min to
give the graphene oxide (GO) dispersion.

3.1.3. GO–[Fe(Htrz)2(trz)](BF4) NRs Composite (1)

The mixture of GO in ethanol (30 mg/50 mL) and [Fe(Htrz)2(trz)](BF4) NRs in ethanol (60 mg/50 mL)
was stirred at 25 ◦C for 6 h. After stirring, the brown product was centrifuged at 4000 r/min for 30 min,
and the crude product was collected using a membrane filter (1 μm), washed with ethanol to give
the product.

3.1.4. rGO–[Fe(Htrz)2(trz)](BF4) NRs Composite (2)

Composite 1 was reduced to composite 2 by thermal treatments in a vacuum at 473 K for 12 h.

3.2. Measurement

All the measurements for composites 1 and 2 were performed three times using a film sample.
Current-voltage (IV) properties were measured using an electrochemical analyzer, BAS, Model
ALS/DY2323 BI-POTENTIOSTAT (Sumida-ku, Tokyo, Japan). The scanning electron microscopy
(SEM) images and SEM-energy dispersive X-ray spectroscopy (SEM-EDX) data were collected on
a JEOL, JSM-7600 F instrument (Akishima-shi, Tokyo, Japan). Fourier transform infrared spectra
(FT-IR) were collected on SHIMADZU, IRAAffinity-1S (Kyoto-shi, Kyoto, Japan). The powder
X-ray diffraction (PXRD) patterns were recorded on a Rigaku, MiniFlex II X-ray diffractometer
(Akishima-shi, Tokyo, Japan). The temperature dependence of magnetic susceptibilities was measured
on a Superconducting Quantum Interference Device (SQUID) magnetometer, Quantum Design Japan,
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MPMSXL-5 (Toshima-ku, Tokyo, Japan). The samples were placed inside the SQUID chamber and
measured between 300 and 400 K at field strengths of 0.5 T.

4. Conclusions

In summary, we have prepared a composite consisting of GO/rGO and a SCO complex of
[Fe(Htrz)2(trz)](BF4) NRs (30 × 200 nm). It was found that the shorter interlayer caused by the
transformation of GO to rGO leads to pseudo-pressure effects. GO composite exhibited SCO behavior at
T1/2 = 357 K, whereas for rGO composite T1/2 was at 364 K. The observed pressure for [Fe(Htrz)2(trz)](BF4)
NRs estimated from the T1/2 value corresponded to 24 MPa and being lower than that observed for the
case of NPs (30 nm). Clearly, these findings provide new insight towards the research regarding the
pressure effects in 2D materials including graphene, BN, MoS2.

Supplementary Materials: The following are available online at http://www.mdpi.com/2312-7481/5/2/26/s1.
Figure S1: I–V curves for 1 and 2. Figure S2: SEM image of [Fe(Htrz)2(trz)](BF4) NRs. Figure S3: FT-IR spectra for
[Fe(Htrz)2(trz)](BF4) NRs, composite 1, and composite 2. Figure S4: χmT vs. T plot for [Fe(Htrz)2(trz)](BF4) NRs.
Figure S5: χgT vs T plots for composite 1 and composite 2.
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Abstract: A series of Dy(III) mononuclear complexes [DyA2L]+ (L denotes Schiff base N5 ligand that
occupies equatorial positions and A− denotes bidentate anionic O-donor ligands such as NO3

− (1),
AcO− (2), and acac− (3)) were synthesized to investigate the correlation between the slow magnetic
relaxation phenomena and the coordination structures around Dy(III). The Dy(III) ion in each complex
is in a nona-coordination with the anionic O-donor ligand occupying up- and down-side positions of
the N5 equatorial plane. 2 and 3 show slow magnetic relaxation phenomena under a zero bias-field
condition, and all complexes showed slow magnetic relaxation under the applied 1000-Oe bias-field
conditions. Arrhenius analyses revealed that the ΔE/kB, the barrier height for magnetization flipping,
increases in this order, with the values of 24.1(6), 85(3), and 140(15) K. The effects of the exchanging
axial ligands on the magnetic anisotropy were discussed together with the DFT calculations.

Keywords: lanthanide complex; slow magnetic relaxation; single-molecule magnet; crystal structure;
AC susceptibility; DFT calculation

1. Introduction

Single-molecule magnets (SMMs) are fascinating molecule-based nanomaterials, which are
characterized by slow relaxation of magnetization at low temperatures [1–10]. Magnetic anisotropy
plays an essential role in preventing the magnetization flipping; as the orbital angular momentum
of 4f electrons is unquenched in the complex formations, each lanthanide(III) (Ln(III)) ion possesses
a large magnetic moment correlated with the total angular momentum J, which is defined by the
length of the vector summation of the spin angular momentum S and the orbital angular momentum
L. The Dy(III) ion is the most fascinating lanthanide ion due to a large total angular momentum of
J = 15/2, accompanied by the Kramers characteristic and an oblate type electronic distribution [11–19].
The magnetic anisotropy of lanthanide ions is strongly correlated with the electronic repulsion with the
crystal field of an appropriate anisotropy; this means an axially stressed crystal field is advantageous
for realizing an easy axis anisotropy of the oblate type lanthanide ion. The J ground state splits into
2J + 1 numbered substates with different components along the z axis, i.e., Jz. In an appropriate
anisotropic crystal field, the pair of substates with the highest Ising character was relatively stabilized
compared with those of less Ising type pairs to give an easy axial magnetic anisotropy. To achieve such

Magnetochemistry 2019, 5, 27 www.mdpi.com/journal/magnetochemistry13
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an anisotropic crystal field, the combination of neutral and anionic ligands, with the former located at
equatorial positions and the latter located along the z axis, is simple but powerful [18,20–23]. This
strategy is effective both for light and heavy lanthanide ions with oblate type electronic distributions,
such as Ce(III), Nd(III) [24,25], Tb(III), and Dy(III). To this effect, we have previously reported several
mononuclear Ln(III) complexes (Ln = Ce, Pr, and Nd) incorporated with neutral and anionic ligand
pairs, such as 18-crown-6 and NO3

−, 1,10-diaza-18-crown-6, and NO3
− [26], and a single helical N6

ligand (Figure 1, L′) and NO3
− [21], respectively. In all these complexes, the central Ln(III) ion is

surrounded by an (aza)crown ether or a helical ligand L′ in an equatorial manner, and axial positions
are occupied by two or three nitrate anions; this leads to an easy-axial magnetic anisotropy and slow
magnetic relaxation phenomena of Ce(III) and Nd(III) as Kramers ions. The radii of the macrocyclic
and helical ligands are slightly larger than the ionic radii of the lanthanide ions, and hence the ligands
show distortion [20,26] or helication [27] in the complex formation, hence the coordination distances
are rather long and the coordination itself is weak. The mismatching between ligand radius and
lanthanide radius becomes larger for heavy lanthanide ions and, for the case of macrocyclic ligands,
we have not succeeded in synthesizing heavy lanthanide complexes with macrocyclic ligands to
reveal the correlation between slow magnetic relaxation phenomena and the molecular structure
accompanied with a series of axial ligands. In this study, we decided to introduce a smaller N5 ligand
L as an equatorial ligand, shown in Figure 1. The molecular radius of L is smaller than those of the
macrocyclic ligands and the helical ligand L′. Complexes of L with heavy lanthanide ions, such as
Tb(III) or Dy(III), will be sufficiently stable to exchange axial ligands with different donating abilities.
Moreover, it is expected that L can occupy equatorial positions in a flatter manner than L′, being free
from helication. In this study, we synthesized a family of Dy(III) complexes with the general formula of
[DyA2L]+ (A− = bidentate anionic O-donor ligand), such as [Dy(NO3)2L]NO3 (1), [Dy(AcO)2L]CF3SO3

(2), and [Dy(acac)2L]CF3SO3 (3), to investigate the correlation between the axial ligand nature and
slow magnetic relaxation phenomena. Syntheses, crystal structures, magnetic properties, and DFT
calculation results of these complexes are discussed.

Figure 1. Structure of N6 ligand L′ and N5 ligand L.

2. Results

2.1. Synthesis and Characterization

We have newly synthesized three Dy(III) complexes by the reaction of an appropriate dysprosium
salt with L in an organic solvent, such as Dy(NO3)3·5H2O in MeCN for 1, Dy(AcO)3·4H2O and
Dy(CF3SO3)3 in a 2:1 molar ratio in EtOH for 2, and Dy(acac)3 and Dy(CF3SO3)3 in a 2:1 molar ratio in
2-propanol for 3, to obtain crystals suitable for single X-ray crystallography. Their structures were
revealed from the crystallographic analyses both for single crystals and microcrystalline samples
(Powder X-ray diffraction (PXRD) data are given as Figure S1, in the Supplementary Information).

Crystal structures of the cationic part of three complexes are shown in Figure 2 and Figures S2–S5.
Crystallographic data, accompanied by the selected distances and angles, are summarized in Tables S1
and S2. 1 and 2 crystallized in a triclinic crystal system with a P-1 space group, whereas 3 crystallized
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in monoclinic P21/n. In the complexes, a neutral L ligates as a pentadentate ligand which occupies
equatorial positions forming four pentagonal chelate rings. Two anionic ligands, such as NO3

− in 1,
AcO− in 2, or acac− in 3, occupy the positions above and below the lanthanide ion in a bidentate
fashion, to complete the N5O4 nona-coordination of the Dy(III) ion. In all cases, one whole molecule
is crystallographically independent; however, each has pseudo two-fold symmetry along the axis
passing through Dy and N4 of the central pyridine ring. L shows twist distortion around the pseudo
two-fold axis, which can be evaluated from the values of the dihedral angles between the two terminal
pyridine rings involving N1 and N7. The estimated angles were 25.45(11)◦, 19.92(13)◦, and 57.40(11)◦,
for 1, 2, and 3, respectively, and strongly correlated with the axial ligands. The nitrate and acetate
ligands coordinated with the formation of four-membered chelate rings and they were less bulky
than acetylacetonate, which had coordinated forming six-membered chelate rings. In all complexes,
the shortest contacts between O-donor and N-donor atoms (i.e., O2···N1 and O4···N7) were very
similar within the range of 2.692(3) to 2.837(2) Å, indicating the presence of van der Waals contacts.
The steric repulsion among axial nitrate or acetate ligands and equatorial L was small, and 1 and 2

had similar small values of dihedral angles. The steric repulsion in 3 is expected to be larger leading
to a larger twisting of L. The twisting of L is also defined by the planarity of the five equatorially
coordinating N-donors. The maximum deviations of the N-donor from the ideal planes defined by
N5Dy were estimated as 0.3534(11) Å, 0.3330(10) Å, and 0.6594(19) Å, respectively. The coordination
distances in the complexes show a systematic difference in the series of 1, 2, and 3. Dy–N distances
elongated along this order: Dy–N distances were 2.4184(17)–2.4939(18) Å for 1, 2.4547(16)–2.5018(18)
Å for 2, and 2.536(2)–2.696(3) Å for 3. On the contrary, Dy–O distances shortened in this order:
2.3903(16)–2.4657(16) Å for 1, 2.3923(16)–2.4357(16) Å for 2, and 2.287(2)–2.370(2) Å for 3. The longest
Dy–N distances in 3 resulted from the twisting of L. The coordination distances of O-donors and
N-donors in 1 were almost similar, whereas in 2, Dy–O distances were slightly shorter than those of
Dy–N. The molecular structures of 1 and 2 were very similar, with twisting of L, and the difference
in coordination distances reflects the difference in negative charge distributions between nitrate and
acetate O-donor atoms. Because a negative charge in the nitrate delocalized among three oxygen atoms,
the charge density of O-donor atoms in the nitrate is slightly smaller than those of the acetate anion.
Larger negative charges in the O-donor enforced a slight shortening of the coordination distance in 2,
and it also enforced a slight elongation of the Dy–N distances. The anisotropic ligand field is defined
by both the difference in coordination distances and the difference in negative charge distributions
of donor atoms. The overall ligand field geometries of 1–3 were similar, and could lead to an axially
stressed ligand field by sandwiching the Dy(III) ion between negatively charged O-donor ligands.
The observed structural trend suggests that the magnetic anisotropy is enhanced in the order of 1,
2, and 3 because the difference in the coordination distances become larger in this order. The larger
negative charges and the shorter coordination distances of O-donors lead to a larger stress along z-axis,
and this is likely to enhance the easy-axial magnetic anisotropy for Dy(III) as an oblate ion.

In 2, crystalline solvent molecules showed heavy disordering. They were assigned as two EtOH
and one H2O, with 50%, 25%, and 50% occupancies according to the elemental analyses. These
solvent molecules were closely located to O3 (~2.85 Å) suggesting the hydrogen bond formation,
however, π electrons of the acetate ligand are symmetrically delocalized (O3-C22 = 1.263(3) Å and
O4-C22 = 1.265(3) Å), and hence the negative charge distributions of O3 and O4 would be similar.
Therefore we assumed that the influence of the hydrogen bond formations on the ligand field anisotropy
around Dy(III) ion would be negligible.

The shortest Dy···Dy distances were estimated as 7.2871(13) Å (symmetry code: 1 - x, 1 - y, 1- z),
7.9634(10) Å (symmetry code: 1 - x, -y, 1 - z), and 9.1817(8) Å (symmetry code: 1 - x, 1 - y, -z). The Dy···Dy
separations were long enough to avoid through-space magnetic interactions. The packing diagrams in
the unit cell are given as Figures S2–S4.
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Figure 2. ORTEP drawing of the cationic parts of 1 (top), 2 (central), and 3 (bottom) at the 50%
probability level. Hydrogen atoms are omitted for clarity: (a,c,e) Top view and (b,d,f) side view of
the molecules.
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2.2. Magnetic Properties of the Complexes

2.2.1. DC Susceptibility of the Complexes

DC susceptibility data were recorded at various temperatures for all complexes under an
application of 1000 Oe DC field. Figure 3 shows the temperature dependence of χMT products.
The Curie constant for Dy(III) ion in an isotropic ligand field was estimated as 14.2 emu K mol−1

(J = 15/2, g = 4/3), and the observed values at 300 K, 13.8, 16.0, and 14.6 emu K mol−1, respectively,
were close to the expected values. This may indicate that the magnetic anisotropy is small in these
complexes. The χMT values were almost constant down to 150 K (for 1) or 100 K (for 2 and 3), and then
χMT gradually decreased as the temperature was cooled, due to the thermal depopulation among the
substates arising from the 6H15/2 ground state which split under the anisotropic crystal field.

Figure 3. Temperature dependence of the χMT product for each complex measured under a 1000 Oe
DC field applied condition.

2.2.2. AC Susceptibility of the Complexes

The slow magnetic relaxation of the complexes was revealed by measuring the alternating current
(AC) magnetic susceptibility under the applied conditions of zero field or direct current (DC) field.
For all complexes, slow magnetic relaxation phenomena were initially analyzed under a zero DC bias
field (Figure S6), which exhibited no out-of-phase signals χM” for 1, and weak signals for 2 and 3

owing to the quantum-tunneling magnetization (QTM) relaxation process, which was faster for 1 and 3

than the flipping of the magnetic field. For 2, χM” shows a peak at ~6000 Hz, which is almost constant
in the temperature range up to 6.0 K. This indicates that the magnetization relaxation occurs via QTM
in this temperature range. The frequency dependences of χM” were analyzed on the basis of the
Cole–Cole equation (see below), and the QTM relaxation rate τQTM was estimated as 2.70(9) × 10−5 s.
Upon applying the DC bias field, fast relaxation via the QTM process was suppressed and slow
magnetic relaxations were observed for all complexes. To reveal the effects of the bias field on slow
magnetic relaxations, the bias field dependences of the out-of-phase susceptibilities were measured
under the DC field in the ranges of 0 to 3000 Oe and 0 to 5000 Oe for several temperatures (Figure 4).
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(a) (b) 

 

(c) 

Figure 4. DC field dependence of the relaxation rate τ−1 of (a) 1, (b) 2, and (c) 3 measured in the
temperature ranges of 2 to 4 K, 4 to 7 K, and 6 to 12 K, respectively.

In all complexes, slow magnetic relaxation occurred when a weak DC field of 200 Oe was applied,
and it became slower as the applied field increased. The relaxation rate reached a minimum under a DC
field of 1000 to 2000 Oe, and was enhanced again when the field was further strengthened, mainly due
to the direct process of relaxation becoming predominant. Hence, the dynamic magnetic property of
each complex was revealed under the application of 1000 Oe DC, where the QTM and direct processes
were effectively suppressed. Under this condition, all complexes exhibited frequency-dependent
in-phase (χM

′) and out-of-phase (χM”) susceptibilities at temperatures up to 4.2 K, 7.8 K, and 14 K,
for 1, 2, and 3 respectively, with an AC frequency up to 10,000 Hz. Figure 5 shows the frequency
dependence of the χM

′T products and χM” values.
1 and 2 showed bilaterally symmetric shapes of out-of-phase signals, and hence the AC

susceptibility data were analyzed with the Cole–Cole Equation (1) given below [28].

χ ∗ (ω) = χS +
χT − χS

1 + (iωτ)1−α (1)

Here χT and χS denote the isothermal and the adiabatic susceptibilities, respectively, τ denotes
the relaxation time at each temperature, and α denotes the distribution of τ (Tables S3 and S4). At first,
the frequency dependence of χM

′T products was fitted using these four parameters, and the frequency
dependences of χM” were reproduced using the estimated parameters, which showed good agreement
with the observations. The estimated α values were small enough, and hence the slow magnetic
relaxations occurred via a single process.
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(a) 

 

(b) 

 

(c) 

Figure 5. AC susceptibility data of (a) 1, (b) 2, and (c) 3 measured under an application of 1000 Oe bias
field: frequency dependence of the products of temperature and in-phase susceptibility (closed circles)
and out-of-phase susceptibility (open circles) measured at several temperatures. Solid curves represent
theoretical calculations on the basis of the Cole–Cole equation for 1 and 2, or the Cole–Davidson
equation for 3, of which the estimated parameters are listed in Tables S3–S5.
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3 showed slightly asymmetric signals both for χM
′T and χM”, which obeyed the Cole–Davidson

Equation (2) given below [29].

χ ∗ (ω) = χS +
χT − χS

(1 + iωτ)1−β (2)

Here β denotes the distribution of τ. The analyses were carried out similarly to those for 1 and 2;
the frequency dependences of χM

′T products were fitted with Equation (2) first, of which the estimated
parameters were listed in Table S5, and then the frequency dependence of χM” were reproduced.
The β values were large at low temperature, with the largest value of 0.53 at 3.0–4.0 K; these became
smaller at higher temperatures, reaching down to 0.41 at 13 K. Both α and β parameters describe the
distributions of τ from the ideal value; however, their scales were slightly different. Figure 6 shows the
theoretical calculations of χ” for the different α and β values. In both cases, α = 0 and β = 0 mean that
the distribution of relaxation time is zero and all molecules flip with a unique relaxation time. This
obeys the Debye equation. The peaks of both plots were normalized as 1.0 at α = 0 and β = 0. When
the distribution of τ becomes wider, the number of molecules which flip in the different relaxation time
increases, and hence the peak height becomes lower depending on α and β. For the same height of
the χ” plots, β takes a value 2.0–2.8 times larger than that of α. Considering this relationship, the β
values for 3 correspond to the α values at around 0.2, and hence the distribution of τ is regarded to be
sufficiently small. Hence, we assumed 3 to be a field-induced SMM.

Figure 6. Theoretical curves of the out-of-phase susceptibility χ” as a function of ωτ for several α
values (left) or β values (right), calculated on the basis of the Cole–Cole and Cole–Davidson equations.
At α = 0 and β = 0, both plots obey Debye equation. The value of χ” was normalized as 1.0 at ωτ = 0
and α = 0 for the left plot and at ωτ = 0 and = 0 for the right plot.

Next we examined the temperature dependence of relaxation time τ using two methods. The left
column in Figure 7 shows the Arrhenius plots for three complexes measured under a 1000 Oe DC
applied field. Bent plots were obtained for all complexes over the entire temperature range. The QTM
and direct processes were effectively suppressed under these conditions (Figure 4), and hence the bent
shaped plots were due to the presence of Raman and Orbach processes; these two processes dominate
in different temperature ranges. The data were first analyzed using the linear Arrhenius equation for
the data in high temperature regions, where the Orbach process is predominant. This gave the best
fit parameters of ΔE/kB = 19.1(3) K and τ0

−1 = 2.1(2) × 10−7 s for 1, 82(3) K and 5(2) × 10−10 s for 2,
and 84(3) K and 5(1) × 10−8 s for 3.

The right column in Figure 7 shows the temperature dependence of τ in double logarithm plots.
It is known that the Raman process dominates in low temperature regions and that it obeys Equation (3)
below. In plots of ln(τ) vs. ln(T), relaxation via the Raman process is easily identified as a linear region
found at low temperatures. The data here were analyzed using Equation (3), which gave the best fit
parameters of C = 96(15) s−1 K−4.0 and n = 4.0(2) for 1, C = 0.17(3) s−1 K−5.42 and n = 5.42(13) for 2,
and C = 0.048(4) s−1 K−5.12 and n = 5.12(4) for 3.

τ−1 = CTn, lnτ = − ln C− n ln T (3)
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Finally, the whole dataset was analyzed using Equation (4) which considers both Raman and
Orbach processes [30,31].

τ−1 = CTn + τ−1
0 exp

(−ΔE
kBT

)
, (4)

(a) 

(b) 

(c) 

Figure 7. Temperature dependence of the flipping time of magnetization τmeasured for (a) 1, (b) 2,
and (c) 3 under an application of 1000 Oe DC field. (left) Arrhenius plots and (right) ln(τ) vs. ln(T)
plots. The blue lines represent theoretical calculations based on the linear Arrhenius equation for the
Orbach process (left) or based on Equation (3) for the Raman process (right). The blue curves represent
theoretical calculations considering both Orbach and Raman processes, expressed as Equation (4).

The estimated values are summarized in Table 1. Some parameters differ from the values based
on the simple Raman or Orbach process. This may be due to the narrow range of temperatures where
slow magnetic relaxation was observed.

Table 1. Best fit kinetic parameters for magnetization flipping estimated for complexes 1–3 on the basis
of the Equation (4).

Complex 1 2 3

ΔE kB
-1/K 24.1(6) 85(3) 140(15)

τ0/s 9.0(9) × 10−8 5(2) × 10−10 3(3) × 10−9

n 3.09(15) 5.4(1) 5.06(4)
C/s-1 K-n 174(18) 0.17(2) 0.054(4)
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From the structural analyses, the crystal field anisotropy as well as the magnetic anisotropy is
enhanced in the order of 1 to 3, and the kinetic parameters in Table 1 clearly support the idea. This
result indicates that magnetic relaxation phenomena are strongly dependent on the nature of axial
ligands, and that the increase of negative charge distributions on O-donor atoms plays a primitive
role in enhancing the magnetic anisotropy. However, the structural changes from complex 1 with
NO3

− axial ligands to 2 with AcO− axial ligands were small, while the increase of ΔE/kB values was
rather drastic. This may suggest the presence of other factors enhancing the barrier height of the
magnetization flipping; hence we examined the electronic structures of the complexes with the DFT
technique shown below.

2.3. Molecular Orbital Analyses

To elucidate the electronic structures of these complexes, we performed density functional theory
(DFT) calculations for three model structures m1–m3, pertaining to complexes 1–3, respectively,
as illustrated in Figure 8. Calculated atomic spin densities of the Dy(III) ions in each model summarized
in Table 2 are confirmed to be ~5.0, showing that the appropriate electronic configurations are
obtained. Kohn-Sham orbital shapes and the energies of f orbitals are summarized in Figure S7 in the
Supplementary Information, together with orbital energies of the highest occupied molecular orbital
(HOMO). The energy level of occupied f electrons is approximately −10 to −13 eV, much lower than
those of HOMO; this suggests that those are independent of the effects of frontier orbitals. On the
other hand, those energy levels are comparable to the levels of coordinating σ orbitals and the stable π

orbitals of ligands. As a consequence, some f orbitals can be hybridized with those ligand orbitals,
although it is usually assumed that the f orbitals do not interact with ligand orbitals. As depicted in
Figure S7, the f orbitals of m1 are almost localized, except for HOMO-39(a) and HOMO-46(a) that
are also found in equatorial ligand, while those of m2 and m3 are more delocalized by hybridization
especially with σ and π orbitals of axial AcO− and acac− ligands, respectively. In addition, the atomic
spin densities of the Dy(III) ions in m2 and m3 are slightly smaller than those in m1. The result also
indicates that the f spins are slightly delocalized to the ligands in m2 and m3. Hence, the f electrons
are considered to interact with axial ligand orbitals in m2 and m3 but not in m1, suggesting that the
magnetic anisotropy of m2 and m3 can be affected by such hybridization between f and ligand orbitals.

  

[Dy(NO3)2L]NO3 (m1) [Dy(AcO)2L]CF3SO3 (m2) [Dy(acac)2L]CF3SO3 (m3) 

Figure 8. Model structures m1–m3 for complexes 1–3, respectively.
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Table 2. Calculated atomic spin densities assigned to each f orbitals.

Orbitals m1 m2 m3

f 0 0.49 0.43 0.80
f+1 0.98 0.72 0.64
f−1 0.88 0.84 0.35
f+2 0.51 0.86 0.73
f−2 0.55 0.21 0.72
f+3 0.61 0.85 0.74
f−3 0.93 0.51 0.44

Sum of f orbitals 4.96 4.42 4.41

3. Materials and Methods

3.1. General Procedures and Methods

All chemicals and reagents were of reagent grade and used without further purification.
All chemical reactions and sample preparations for physical measurements were performed in
an ambient atmosphere. Variable temperature magnetic susceptibility measurements were performed
on PPMS-9 and MPMS-XL magnetometers (Quantum Design). Diamagnetic corrections for each
sample were applied using Pascal’s constants. Elemental analyses were carried out with the help of the
Research and Analytical Centre for Giant Molecules, Graduate School of Science, Tohoku University.

3.2. Synthesis of Complexes

Synthesis of L: The ligand L was prepared according to a previously reported method [32].
10 mmol of 2,6-diacetylpyridine and 20 mmol of 2-pyridylhydrazine were dissolved into 25 mL of
EtOH and one drop of conc. HCl solution was added. The resulting solution was stirred at 60 ◦C for
1 h to give a pale-yellow precipitate. The solution was left to stand for one night at room temperature
to complete the reaction, and then the precipitate was filtrated under reduced pressure, washed with
EtOH, and dried in vacuo. Yield 3.01 g (8.7 mmol, 87%).

Synthesis of [DyL(NO3)2]NO3 (1): To the suspension of L (34.3 mg, 0.1 mmol) in MeCN (5 mL),
5 mL of 0.02 M Dy(NO3)3·5H2O solution in MeCN was added. The resulting yellow-orange solution
was left to stand for several days to give yellow prismatic crystals of 1 suitable for X-ray crystallography.
Yield 52 mg, 75%. Elemental Anal. Calcd. for [Dy(L)(NO3)2]NO3 (C19H19DyN10O9) C, 32.89; H, 2.76;
N, 20.19. Found C, 32.92; H 2.78; N, 20.07.

Synthesis of [DyL(AcO)2]CF3SO3 (2): With the suspension of L (20.7 mg, 0.06 mmol) in EtOH
(2 mL), 0.8 mL of 0.05 M ethanolic solution of Dy(AcO)3·4H2O and 0.2 mL of 0.1 M ethanolic solution
of Dy(CF3SO3)3 were reacted. The resulting yellow-orange solution was sealed and left to stand for
several days, giving yellow cubic crystals of 2 suitable for X-ray crystallography. Yield 35 mg, 72%.
Elemental Anal. Calcd. for [Dy(L)(AcO)2]CF3SO3·0.75EtOH·0.5H2O (C25.5H30.5DyF3N7O8.25S) C, 37.41;
H, 3.76; N, 11.98. Found C, 37.49; H 3.66; N, 12.15.

Synthesis of [DyL(acac)2]CF3SO3 (3): To the suspension of L (20.6 mg, 0.06 mmol) in 2-propanol
(2 mL), 0.8 mL of 0.05 M Dy(acac)3 and 0.2 mL of 0.1 M Dy(CF3SO3)3 solutions in the same solvent
were added. The resulting yellow-orange solution was sealed and left to stand for several days to give
yellow prismatic crystals of 3 suitable for X-ray crystallography. Yield 15 mg, 29%. Elemental Anal.
Calcd. for [Dy(L)(acac)2]CF3SO3·H2O (C30H35DyF3N7O8S) C, 41.26; H, 4.04; N, 11.23. Found C, 41.16;
H 3.95; N, 11.24.

3.3. Crystallography

A single crystal of each complex was mounted on a Rigaku Varimax Saturn area detector for data
collection using confocal monochromated MoKα radiation at low temperature (153 K). Intensity data
were corrected for absorption using an empirical method included in the Crystal Clear software [33].
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The structures were solved by direct methods with SIR-97 [34], and structure refinement was carried
out using the full-matrix least-squares method on SHELXL-2013 [35]. Non-hydrogen atoms were
anisotropically refined and hydrogen atoms were treated using the riding model. Crystallographic data
are summarized in Tables S1 and S2 of the Supplementary Information. The complete crystal structure
results, including bond lengths, angles, and atomic coordinates, are available as a CIF file in the
Supplementary Information. The CCDC numbers are 1903775, 1903776, and 1903777 for compounds 1,
2, and 3, respectively.

3.4. DFT Calculation

DFT calculations were performed for the model structures of m1–m3. Cartesian coordinates of
the models summarized in Table S7 in the Supplementary Information are taken from the results of the
above X-ray crystallographic analyses. All calculations were carried out using a Becke 3-parameter
Lee-Yang-Parr hybrid functional set (B3LYP) [36] with a spin-unrestricted method under the gas phase
condition. As a basis set, the Stuttgart RSC 1997 effective core potential [37] was used for the Dy atom
in all models. 6-31+G* and 6-31G* were used for NO3

− in m1 and the other ligands, respectively.
All calculations were performed using Gaussian09 [38].

4. Conclusions

Using N5 ligand L, three Dy(III) complexes with similar coordination structures were synthesized.
In each complex, equatorial positions of Dy(III) ion were occupied by five N-donor atoms from L,
and the up- and down-sides were occupied by anionic O-donor atoms aiming to achieve the easy-axis
magnetic anisotropy of an oblate type Dy(III) ion. In an anisotropic crystal field, the oblate shaped
electronic cloud of the Kramers pair with the most Ising character was relatively stable. The complexes
showed slow magnetic relaxation phenomena under application of a 1000 Oe bias DC field, and the
barrier heights for the magnetization flipping were estimated as ΔE/kB = 24.1(6) K, 85(3) K, and 140(15)
K from the Arrhenius analyses, considering both Orbach and Raman relaxation processes. This
order of barrier height is consistent with the strength of the crystal field anisotropy assessed from
structural analysis of characteristics such as the Dy-O and Dy-N distances. However, the difference
of the ΔE/kB values between 1 and 2 were unexpectedly greater than the difference in coordinating
structures. From the DFT calculations, it was found that the π character of the axial ligand plays
significant role in the enhancement of magnetic anisotropy. In 2 and 3, the results indicated that the
interactions between f orbitals of Dy(III) and both σ and π orbitals of AcO− and acac− ligands were
small but not ignorable, and that this may cause the presence of stronger magnetic anisotropy than
in 1. Our calculation results are not quantitative at present, and the prediction requires experimental
confirmation; however, the idea could give a new perspective in designing SMMs with lanthanide(III)
ions. Such an investigation is in progress in our group.

Supplementary Materials: The following are available online at http://www.mdpi.com/2312-7481/5/2/27/s1,
Figure S1: PXRD patterns of 1–3, Figures S2–S4: crystal packing of 1–3, Figure S5: Ortep drawings of 1–3, Figure S6:
frequency dependence of χM

′T and χM” of 1–3 measured under zero bias field condition, Figure S7: Kohn–Sham
orbitals of f orbitals for models m1–m3, Table S1: crystallographic data for 1–3, Table S2: selected bond distances
and angles for 1–3, Table S3: best fitted parameters using Cole–Cole equation for 1, Table S4: best fitted parameters
using Cole–Cole equation for 2, Table S5: best fitted parameters using Cole–Davidson equation for 3, Table S6:
Cartesian coordinates of m1–m3 for DFT calculations.
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Abstract: A series of chloralilate-bridged dinuclear lanthanide complexes of formula
[{LnIII(Tp)2}2(μ-Cl2An)]·2CH2Cl2, where Cl2An2− and Tp− represent the chloranilate and hydrotris
(pyrazolyl)borate ligands, respectively, and Ln = Gd (1), Tb (2), Ho (3), Er (4), and Yb (5) was
synthesized. All five complexes were characterized by an elemental analysis, infrared spectroscopy,
single crystal X-ray diffraction, and SQUID measurements. The complexes 1–5 in the series were
all isostructural. A comparison of the temperature dependence of the dc magnetic susceptibility
data of these complexes revealed clear differences depending on the lanthanide center. Ac magnetic
susceptibility measurements revealed that none of the five complexes exhibited a slow magnetic
relaxation under a zero applied dc field. On the other hand, the Kramers systems (complexes 4 and
5) clearly displayed a slow magnetic relaxation under applied dc fields, suggesting field-induced
single-molecule magnets that occur through Orbach and Raman relaxation processes.

Keywords: lanthanide ions; slow magnetic relaxation; single-molecule magnets

1. Introduction

Single-molecule magnets (SMMs) and single-ion magnets (SIMs), comprising molecules with a one
spin center, have attracted significant attention as potential candidates for molecule-based electronic
applications such as high-density information storage [1], quantum computing [2–5], and spintronic
devices [6–9]. For the realization of such applications, a very large barrier height and a high blocking
temperature for the reorientation of the magnetic moment must be achieved. The barrier height and
blocking temperature in SMMs and SIMs depend on two key factors, namely, a significant magnetic
anisotropy and large number of spins. Thus, the high magnetic anisotropy and large number of spins
per ion make lanthanide(III) ions (LnIII) highly suitable for application in SMMs and SIMs. In fact,
the development of SMMs and SIMs based on Ln complexes is on the rise [10–18]. These LnIII-based
SMMs and SIMs generally display very high barrier heights and blocking temperatures over those
of the representative cluster-type SMM [MnIII

8MnIV
4O12(CH3COO)16(H2O)24]·2CH3COOH·4H2O,

which is based on first-row transition metal ions [19,20].
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Recently, chloralilate (Cl2An2−) bridged dinuclear LnIII complexes of the formula
[{LnIII(Tp)2}2(μ-Cl2An)]·2CH2Cl2 (Tp− = hydrotris(pyrazolyl)borate) have been reported in the
literature [21–24]. In these complexes, the DyIII analogue displays a slow magnetic relaxation
under small applied dc magnetic fields, thus behaving as a field-induced SMM [22–24]. This paper
reports the syntheses, structures, and magnetic properties of a series of Cl2An2− bridged dinuclear
Ln complexes of the formula [{Ln(Tp)2}2(μ-Cl2An)]·2CH2Cl2 [Ln = Gd (1), Tb (2), Ho (3), Er (4),
and Yb (5)] to systematically investigate the magnetic properties in other LnIII analogues of
[{LnIII(Tp)2}2(μ-Cl2An)]·2CH2Cl2.

2. Results and Discussions

2.1. Structural Descriptions

The series of Cl2An2− bridged neutral dinuclear LnIII complexes 1–5 were prepared by a slight
modification of the original method reported by Kaizaki et al. [21]; some of these complexes have
been previously reported [22–24]. All the complexes were isolated as X-ray quality single crystals
through several recrystallizations from a concentrated dichloromethane solution layered with hexane.
The purity of these freshly prepared single crystals was confirmed by an elemental analysis.

A single-crystal X-ray diffraction (SCXRD) analysis showed 1–5 crystallizing as an isostructural
series in the monoclinic space group P21/n (No.14), with an asymmetric unit containing half of
the dinuclear complexes and one CH2Cl2 molecule as the lattice solvent (Figure 1 and Table S1).
Consequently, the unit cell comprises two complete dinuclear complexes and two lattice CH2Cl2
solvents. An inversion center is located at the midpoint of the central bis-bidentate Cl2An2− bridging
ligand, rendering the two LnIII centers equivalent by symmetry. In all five complexes, the coordination
environments around the LnIII centers are eight-coordinated with six N atoms from the two Tp− capping
ligands and two O atoms from the bridging Cl2An2− ligand. The average Ln–O and Ln–N distances
of complexes 1–5 are in the ranges of 2.330(2) to 2.398(3) Å and 2.446(2) to 2.514(3) Å, respectively
(Table 1), and are in agreement with previously reported values for other Ln-based complexes [10–18].
For all five complexes, the Ln–O distances are ≤0.12 Å shorter than the Ln-N distances, since the O
atoms in the bridging Cl2An2− ligand exhibit a larger negative partial charge than the N atoms in the
Tp− ligand. A comparison of the bond distances in 1–5 reveals a slight decrease in the average Ln–O
and Ln–N distances, from left to right across the isostructural series, as expected from the change in the
ionic radii. This systematic decrease is evidence of the lanthanide contraction phenomenon [25–28].

 
Figure 1. Solid state molecular structure of [{Ln(Tp)2}2(μ-Cl2An)]·2CH2Cl2 with thermal ellipsoids
drawn at a 50% probability level with the exception of lanthanide atoms shown at a 99% probability
level. The spring green, blue, red, sundown, vivid lime green, and gray ellipsoids represent Ln, N, O, B,
Cl, and C atoms, respectively. Hydrogen atoms and lattice solvent molecules are omitted for clarity.
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Table 1. Selected bond distances 1 (Å) for 1–5.

Ln–O 2 Ln–N 2 Intramolecular Ln···Ln 3 Intermolecular Ln···Ln 4

1 2.398(3) 2.514(3) 8.7042(5) 8.7420(5)
2 2.375(3) 2.492(3) 8.661(2) 8.703(2)
3 2.363(2) 2.482(2) 8.6424(5) 8.7308(4)
4 2.348(2) 2.465(2) 8.6084(9) 8.699(1)
5 2.330(2) 2.446(2) 8.5599(9) 8.671(1)

1 Note that the single crystal X-ray diffraction data for 1–5 were collected at different temperatures. 2 Averages
of crystallographically independent Ln–O and six Ln–N values. 3 Symmetry code: −x + 1, −y + 1, −z + 2.
4 Closest separation.

The coordination geometry and environment around the LnIII centers have a significant influence
on the electronic structure and magnetic anisotropy. To determine the coordination geometries
of the LnIII centers for 1–5, continuous shape measurements (CShM) were determined using the
SHAPE Version 2.1 software [29,30], where two LnIII centers are related by inversion symmetry and
therefore possess the same coordination geometry (vide supra). Based on the resultant SHAPE indices
(0.722–0.831 for 1–5; Table 2), the eight-coordinate LnIII centers of 1–5 are best described as having
slightly distorted triangular dodecahedral geometries.

Table 2. Summary of SHAPE parameters 1 for lanthanide centers in the series of the dinuclear complexes 1–5.

SAPR 2 TDD 3 BTBR 4

1 2.320 0.831 1.788
2 2.291 0.809 1.774
3 2.199 0.764 1.728
4 2.215 0.749 1.732
5 2.189 0.722 1.707

1 A shape index equal to zero represents an ideal geometry. 2–4 SAPR, TDD, and BTBR are square antiprismatic,
triangular dodecahedral, and bi-augmented trigonal prismatic geometries, respectively.

The bond distances within the quinoidal rings (e.g., Cl2An2− ligand) bound to the LnIII centers
provide strong information on the electronic structures of the ligands. The average C–O and C–C
distances, with the delocalized bonding in the Cl2An2− rings of 1–5, are in the range 1.252(4)–1.260(5)
Å and 1.390(5)–1.394(4) Å, respectively, while the C–C distances with single bonding are in the range
of 1.532(4)–1.542(4) (Table 3). The bond distances within the quinoidal rings of the bridging Cl2An2−
ligands fall within the same error over 1–5, which all adopt bi-separated delocalized forms [23].
These results are strongly supported by the infrared (IR) spectral data (Scheme 1).

Scheme 1. Bi-separated delocalized structure of Cl2An2− in 1–5.
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Table 3. Selected bond distances 1 (Å) for the Cl2An2− moiety in 1–5.

C–O 2 C–C 2 C–C 3

1 1.259(4) 1.391(5) 1.537(4)
2 1.252(4) 1.390(5) 1.542(4)
3 1.258(3) 1.394(3) 1.537(3)
4 1.256(3) 1.392(4) 1.534(4)
5 1.253(3) 1.393(4) 1.532(4)

1 Bonds are shown in detail in Scheme 1. 2 Averages of two crystallographically independent delocalized C–O and
C–C values. 3 Values of the C–C single bond moiety.

For complexes 1–5, the respective intramolecular LnIII···LnIII separations through the Cl2An2−
bridges are in the range of 8.5599(9)–8.7042(5) Å, whereas the closest intermolecular LnIII···LnIII

separations, which are in the range of 8.671(1)–8.7420(5) Å, are comparable with the intramolecular
distances (Table 1). These close intra- and intermolecular LnIII···LnIII distances may lead to magnetically
dipolar interactions, which could create a small bias that allows for the quantum tunneling of the
magnetization at the zero field (vide infra).

2.2. Infrared Spectroscopy

The IR spectra of 1–5 provide complementary structural feature information to that obtained
by SCXRD analysis (Figure S1). The IR vibrations associated with the bridging Cl2An2− ligand in
the five complexes are typified by predominant C–Cl and C–O vibrations at ~850 and 1530 cm−1,
respectively [22–24]. These results are a promising indication that the Cl2An2− ligand in complexes
1–5 is in a bi-separated delocalized form [22–24,31]. Furthermore, the presence of the ancillary
Tp− ligands in complexes 1–5 is confirmed by characteristic vibrations at ~2470 cm−1 (c.f., Tp−,
νBH = ~2440 cm−1) [22–24,32]. The predominant contributions to the vibrational modes are from the
skeleton of the ligand and, thus, there are no significant differences in the IR spectra. The changes in
the atomic weight of the LnIII centers are reflected in the specific peak shifts of the IR spectra. For the
five complexes, the most notable change is observed in the Ln–O vibrations at ~460 cm−1, where the
Ln–O vibrational peak shifts to a higher energy (453–466 cm−1) with an increasing atomic number.
This increase can be explained by the lanthanide contraction effect.

2.3. Magnetic Properties

2.3.1. Static Magnetic Properties

For all of the dinuclear complex series (1–5), the temperature (T) dependence of the dc magnetic
susceptibility (χM) data was collected under an applied dc field of 0.1 T in the temperature range of
1.8–300 K. A comparison of the resulting χMT versus T data reveals marked differences between the dc
magnetism of complexes 1–5. The χMT values at 300 K for 1–5 (15.73, 22.80, 27.97, 22.44, and 5.12 cm3

K mol−1, respectively) are in good agreement with the expected values (15.75, 23.63, 28.13, 22.95, and
5.14 cm3 K mol−1, respectively) for two non-interacting LnIII centers. The χMT products for complexes
2–5 gradually decreased over the temperature range of 300–50 K. Subsequently, they rapidly decreased
below 50 K and finally reached values of 15.02, 8.91, 4.47, 13.32, and 2.50 cm3 K mol−1, respectively,
at 1.8 K, due to the depopulation of the excited crystal field state. For complexes 2–5, the isothermal dc
magnetization at 1.8 K increased steeply with an increasing magnetic field at low magnetic field regions
before increasing linearly in high magnetic field regions, finally reaching respective values of 9.63, 11.51,
9.32, and 3.85 μB at 7 T without saturation, indicating very strong magnetic anisotropy (Figure 2b).
Moreover, no hysteresis was observed for 2–5, even at 1.8 K using a conventional superconducting
quantum interference device (SQUID). This suggests that the static magnetic behavior observed for
2–5 arose from significant spin-orbit coupling interactions and a strong unquenched orbital angular
momentum. On the other hand, 1 comprises a half-filled 4f shell. Thus, its ground state has no orbital
angular momentum and can be considered a spin-only system. In this case, the first-order effect of the
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spin-orbit coupling disappears for the ground electronic term 8S7/2, and magnetic anisotropy is caused
by the second-order effect of the spin-orbit coupling; this is known as zero-field splitting. The χMT
value of 15.73 cm3 K mol−1 at 300 K observed for 1 is in good agreement with the expected values
(15.75 cm3 K mol−1) for two non-interacting GdIII centers. The χMT product for 1 remains essentially
constant down to 10 K and then gradually decreases to 15.02 cm3 K mol−1 at 1.8 K. The magnetization
curve of 1 at 1.8 K was saturated at 14 μB at 7 T, confirming that 1 is in the ground state of 8S7/2.

 
(a) 

 
(b) 

Figure 2. (a) Temperature dependence of the molar magnetic susceptibility times the temperature for
1–5 over the temperature range between 1.8 and 300 K under an applied dc field of 0.1 T; (b) Field
dependence of molar magnetization for 1–5 over the dc field range between 0 and 7 T at 1.8 K. The broken
lines correspond to ideal free-ion values. The solid red lines represent fits to the experimental data
using the spin Hamiltonian based on the zero-field splitting, which has been previously described in
detail [23].

2.3.2. Dynamic Magnetic Properties

To study the possibility of a slow magnetic relaxation, the ac susceptibility measurements for
1–5 were performed at 1.8 K with a dc magnetic field in the range of 0–0.3 T. The out-of-phase ac
susceptibility (χM”) signals for all five complexes in the absence of an applied field did not present
any apparent peaks in the available frequency (ν) range. As expected for the eight-coordinated
triangular dodecahedral geometry of the two LnIII centers, an approximate D2d symmetry was
observed. This led to the crystal field parameters B0

2, B0
4, B4

4, B0
6, and B4

6, wherein B4
4 and B4

6 are
the off-diagonal components. The existence of these off-diagonal crystal field parameters strongly
suggests the mixing of the ground MJ states. Furthermore, the LnIII centers in 1–5 comprise isotopes
that display a nuclear spin, resulting in the nuclear hyperfine interaction effect [33–37]. Additionally,
the intra- and/or intermolecular separations between the LnIII centers suggests the presence of dipolar
interactions [10–18]. These contributions lead to the absence of a slow magnetic relaxation under a
zero applied dc field, thereby allowing the quantum tunneling of the magnetization. In such cases,
the application of a dc field can suppress and break up the quantum tunneling, caused by nuclear
hyperfine couplings, dipolar interactions, and transverse fields from the off-diagonal crystal field
splittings, and reveal the slow relaxation of the magnetization. However, under small static dc magnetic
fields, frequency-dependent non-zero χM” signals were only clearly observed for the Kramers ions in
complexes 4 and 5 (Figure 3, Figures S2 and S3). For these two complexes, each χM” peak maximum
shifted to a lower frequency with an increasing applied dc field ≤0.1 T. A further increase in the
applied dc field resulted in the maximum χM” shifting to a higher frequency. Notably, 4 and 5 also
presents another minor magnetic relaxation process at higher dc fields (Figure 3), which may arise
from thermally assisted quantum tunneling [10–18]. The dc field dependence of the low temperature
relaxation times (τ = 1/2πν) for 4 and 5 was extracted at each of these fields by fitting ν versus χM’ and
χM” and the Argand plots [38,39] (χM’ versus χM”) using a generalized Debye model [40]. The values
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determined for 4 and 5 are listed in Tables S2 and S3 and plotted in Figure S3. The two magnetic
relaxation processes of the direct and quantum relaxation pathways were elucidated by fitting the
variable-field magnetic relaxation data of 4 and 5 using Equation (1) [10–18]:

τ−1 = AHnT +
B1

1 + B2H2 (1)

where the first and second terms represent the respective direct and quantum tunneling pathways.
Moreover, because of the presence of Kramers ions, the power index m = 4 was used for the direct
process. The best fits, based on Equation (1), are presented as solid black lines in Figure 3 and
are summarized in Table 4. These results imply that the dipolar interactions and/or off-diagonal
crystal fields support quantum tunneling at low magnetic dc fields. On the other hand, due to the
presence of spin-active nuclei, single-phonon direct relaxation dominates at high dc fields. In addition,
the optimum dc field for 4 and 5 was determined as ~0.1 T.

Figure 3. Comparison of the field-dependent relaxation time (τ) at 1.8 K for two distinct major (filled
circles) and minor (open circles) relaxations observed for 4 (green), and 5 (blue). The solid black lines
represent fits to the experimental data using the appropriate magnetic relaxation pathways considering
both the quantum tunneling and direct processes (Equation (1)).

Table 4. Summary of field-dependent ac magnetic data 1 for 4 and 5.

A (s−1 K−1 T−4) B1 (s−1) B2 (T−2)

4 6.80 × 105 1.03 × 103 3.85 × 102

5 2.70 × 104 2.82 × 102 6.42
1 Data measured at 1.8 K.

Subsequently, ac susceptibility measurements were performed under an applied dc field of 0.1 T
in the temperature range of 1.8–10 K (Figure 4), where the optimum dc magnetic field for 4 and 5 was
determined as 0.1 T (variable-field magnetic relaxation data; vide supra, Figure 3). The temperature
dependences of the magnetic relaxation times for 4 and 5 were extracted in the temperature range
of 1.8–5.0 K by fitting ν versus χM’ and χM” and the Argand plots using a generalized Debye model
(Figures 4 and 5, and Tables S4 and S5, respectively). The Argand plots for 4 and 5 comprised one
semicircle with small α parameters in the ranges of 0.08–0.42 (4) and of 0.02–0.18 (5).
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(a) (b) 

Figure 4. Frequency dependence of the molar in-phase (top) and out-of-phase (bottom) susceptibility
for (a) 4 and (b) 5 over the frequency 1–1000 Hz and the temperature range 1.8–5.0 K in a 2.5 Oe ac field
under an applied dc field of 0.1 T. The solid black lines represent fits to the experimental data using the
generalized Debye model with the α parameter in the ranges of 0.08–0.42 for 4 and of 0.02–0.18 for 5.

 
(a) (b) 

Figure 5. Argand plots for the molar ac susceptibility data of (a) 4 and (b) 5 in the temperature range
1.8–5.0 K under an applied dc field of 0.1 T. The solid black lines correspond to fits to the experimental
data using the generalized Debye model with the α parameter in the ranges of 0.08–0.42 for 4 and of
0.02–0.18 for 5.

The linear regions at a high temperature in the plots of τ versus 1/T (Figure S4) were
fitted, assuming an Orbach relaxation (ideal thermal excitation over the energy barrier for the
molecule [10–18,40]), as described by Equation (2):

τ−1 = τ−1
0 exp

(
−Δeff

kBT

)
(2)

Arrhenius fits of the temperature-dependent relaxation time afford the thermally activated barriers
Δeff = 26.0 cm−1 (τ0 = 1.79 × 10−9 s) for 4 and 21.5 cm−1 for 5 (τ0 = 2.81 × 10−8 s). The extracted τ0 values
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fall within the typical range of LnIII-based single-molecule and single-ion magnets [10–18]. As the
temperature decreases, the plots of τ versus 1/T for 4 and 5 become gradually nonlinear (Figure 6).
Such behavior suggests the coexistence of multiple magnetic relaxation pathways, which is caused
by energy transfer from the spin to the lattice; this is known as the spin-lattice relaxation [10–18].
Hence, the variable temperature relaxation times for 4 and 5 were analyzed in terms of their spin-lattice
relaxation (Equation (3)):

τ−1 = AHnT +
B1

1 + B2H2 + τ−1
0 exp

(
−Δeff

kBT

)
+ CTm (3)

where the first, second, third, and fourth terms represent the direct, quantum tunneling, Orbach,
and Raman relaxation processes, respectively [10–18]. Since the temperature dependence of the τ
data was collected at the optimum dc field of 0.1 T, the direct and quantum tunneling contributions
should be excluded. Therefore, the overall τ versus 1/T data for 4 and 5 can only be fit with the Orbach
and Raman contributions. The best fits, presented as solid black lines, are illustrated in Figure 6 and
Figure S5, while their best-fit parameters are listed in Table 5. The calculated m values are smaller
than the ideal value of m = 9 for the Kramers ions, suggesting that these Raman-like relaxations are
attributed to acoustic and optical vibrations [10–18].

τ Δ

Figure 6. Comparison of the temperature-dependent relaxation under an applied dc field of 0.1 T for 4

(green) and 5 (blue). The solid black lines represent fits to the experimental data using the appropriate
magnetic relaxation pathways (Equation (3)).

Table 5. Summary of temperature-dependent ac magnetic data for 4 and 5.

τ0 (s) Δeff (cm−1) C (s−1 K−n) m

4 3.04 × 10−9 25.9 17.50 4.84
5 2.68 × 10−8 22.3 31.39 3.55

2.4. Electrochemistry

The Cl2An2− ligand could be utilized not only as a bridging unit for designing novel multinuclear
coordination assemblies, but also as a non-innocent ligand, namely a reversible redox active ligand.
Therefore, utilizing the non-innocent Cl2An2− as the bridging ligand in SMMs offers the enticing
possibility for redox controllable magnetic behavior via an electrical signal. To probe the redox
behavior of the field-induced SMMs 4 and 5, electrochemical measurements were carried out in
degassed CH2Cl2 with n-Bu4NPF6 as the supporting electrolytes. The cyclic voltammogram shows
the single quasi-reversible one-electron reduction at E1/2 = 1.05 V for 4 and 1.07 V for 5 versus the
ferrocene/ferrocenium couple (vs. Fe(Cp)2

0/1+), which was assigned as the ligand-based process
(Figure S6). The E1/2 values of 4 and 5 are similar to those reported for related compounds [22–24].
Attempts and efforts to isolate the one-electron reduced products can be found elsewhere [22–24].
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3. Experimental Section

3.1. Materials and Methods

The lanthanide chlorides and solvents were purchased from Wako Pure Chemical Industries, Ltd.
(Osaka, Japan). Na2Cl2An·3H2O and KTp were purchased from Tokyo Chemical Industry (TCI) Co.,
Ltd. (Tokyo, Japan). All chemicals were of reagent grade and were used as received. Both CH2Cl2
and hexane were of super dehydrated grade. All of the reactions and manipulations were performed
under aerobic conditions at an ambient temperature.

3.2. Synthesis of [{Ln(Tp)2}2(μ-Cl2An)]·2CH2Cl2 (Ln = Gd (1), Tb (2), Ho (3), Er (4) and Yb (5))

All the complexes were synthesized according to a previously reported method [21],
with modifications. Single crystals suitable for single-crystal X-ray measurements were obtained by
recrystallization from CH2Cl2/hexane. Notably, several recrystallizations were necessary to obtain
samples of sufficient purity. Crystalline yields for each complex were in the range of 38–51%. Anal.
Calcd. for C44H44B4Cl6Gd2N24O4: C, 34.24; H, 2.87; N, 21.78%. Found: C, 34.56; H, 2.91, N, 21.94%.
Anal. Calcd. for C44H44B4Cl6Tb2N24O4: C, 34.17; H, 2.87; N, 21.73%. Found: C, 34.29; H, 2.88, N,
21.63%. Anal. Calcd. for C44H44B4Cl6Ho2N24O4: C, 33.90; H, 2.85; N, 21.57%. Found: C, 34.12; H, 2.71,
N, 21.66%. Anal. Calcd. for C44H44B4Cl6Er2N24O4: C, 33.80; H, 2.84; N, 21.50%. Found: C, 33.81; H,
2.98, N, 21.24%. Anal. Calcd. for C44H44B4Cl6Yb2N24O4: C, 33.55; H, 2.82; N, 21.34%. Found: C, 33.42;
H, 2.91, N, 21.55%.

3.3. Single Crystal X-ray Crystallography

The single crystals of 2–5 were coated with Nujol, quickly mounted on MicroLoops (MiTeGen
LLC., Ithaca, NY, USA), and immediately cooled in a cold N2 stream to prevent any lattice solvent loss.
The data collections were performed on a Rigaku Saturn 724 or R-AXIS RAPID II IP diffractometer
(Rigaku Corporation, Tokyo Japan) with graphite-monochromated Mo-Kα radiation (λ= 0.71075 Å) and
a low-temperature device. The data integration, preliminary data analysis, and absorption collections
were performed on a Rigaku CrystalClear-SM 1.4.0 SP1 [41], using the CrystalStructure 4.2.2 [42]
crystallographic software packages. The molecular structures were solved by the direct methods
included in SIR2011 [43] and refined with the SHELXL [44] program. All non-hydrogen atoms were
refined anisotropically. CCDC-1905608–1905611 for 2–5 contain the supplementary crystallographic
data for this paper and can be obtained free of charge from The Cambridge Crystallographic Data
Centre via www.ccdc.cam.ac.uk/data_request/cif. All the hydrogen atoms were included in the
calculated positions. Table S1 summarizes the lattice constants and structure refinement parameters
for complexes 2–5.

3.4. Physical Measurements

The elemental analysis was performed on a J-Science Lab Micro Corder JM10 (J-Science Lab Co.,
Ltd., Kyoto, Japan). The Fourier transform infrared spectra were collected using KBr disks, on a
JASCO FT/IR-410 spectrometer (JASCO Corporation, Tokyo, Japan) in the range of 400–4000 cm−1 at a
resolution of 4 cm−1 at an ambient temperature. The magnetic data were collected using a Quantum
Design MPMS3 SQUID magnetometer (Quantum Design Japan, Inc., Tokyo Japan). The measurements
were performed with crushed crystalline samples in a calibrated gelatin capsule. The dc magnetic
susceptibility measurements were performed in the temperature range of 1.8–300 K in a dc field of
0.1 T. The field-dependent dc magnetization measurements were performed from −7 to +7 T at 1.8 K.
The ac susceptibility measurements were performed in the temperature range of 1.8–15 K in a 2.5 Oe
ac field, oscillating at a frequency range of 1–997 Hz in different applied dc fields. The obtained
magnetic susceptibility data were corrected for diamagnetic contributions from the sample holder as
well as for the core diamagnetism of each sample, estimated from Pascal’s constants [45]. The cyclic
voltammetric measurements were performed in a 0.1 M CH2Cl2 solution of n-Bu4NPF6 using an
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ALS/chi Electrochemical Analyzer Model 610A with a computer-controlled workstation (ALS Co., Ltd,
Tokyo, Japan). The solutions contained approximately 1 mM in compounds. The experiments were
performed under a continuous flow of N2 gas using a standard three-electrode cell (platinum working
and counter electrodes with an Ag/Ag+ reference electrode, respectively). The reported potentials are
all referenced to the Fe(Cp)2

0/1+ couple, which was determined using Fe(Cp) as an internal standard at
0 V.

4. Conclusions and Outlook

The series of Cl2An2− bridged dinuclear Ln complexes with the formula
[{Ln(Tp)2}2(μ-Cl2An)]·2CH2Cl2 (Ln = Gd (1), Tb (2), Ho (3), Er (4), and Yb (5)) were successfully
synthesized and systematically characterized by a single X-ray diffraction and by SQUID measurements.
All five dinuclear Ln complexes were isostructural and clearly displayed the structural change
attributed to the lanthanide contraction effect. A comparison of the dc magnetic data for 1–5 revealed
clear differences depending on the LnIII centers. None of the five complexes displayed any slow
relaxation of the magnetization under a zero applied dc field, while only two complexes (4 and
5) presented a slow relaxation of the magnetization in the presence of small dc fields. These two
complexes correspond to Kramers ions. The dynamic magnetic properties of 4 and 5 were interpreted
by using multiple relaxation pathways, whereby both Orbach and Raman relaxation processes
were considered.

The proposed series comprises dinuclear Ln complexes with an electroactive Cl2An2− bridging
ligand. For more potential applications, an important challenge is to switch the slow magnetization
phenomena with chemical and physical external fields. These electrochemical molecular switches
must be from particularly attractive molecule-based devices, in which the electroactive molecules are
reversibly converted between different redox states triggered by an electrical signal. To realize such
applications, electrical switchable characteristics focusing on complexes 4 and 5 are in progress.

Supplementary Materials: The following are available online at http://www.mdpi.com/2312-7481/5/2/30/s1,
Table S1: X-ray crystallographic data for 1–5, Figure S1: IR spectra of 1–5, Figure S2: Frequency dependence of ac
susceptibilities under variable dc fields for 1–5, Figure S3: Argand plots under variable dc fields for 1–5, Figure S4:
τ versus 1/T plots with fits using Equation (2) for 4 and 5, Figure S5: τ versus 1/T plots with fits using Equation (3)
for 4 and 5, Table S2: Summary of dc magnetic fields dependent relaxation times and α values for 4, Table S3:
Summary of dc magnetic fields dependent relaxation times and α values for 5, Table S4: Summary of temperature
dependent relaxation times and α values for 4, Table S5: Summary of temperature dependent relaxation times and
α values for 5, Figure S6: Cyclic voltammograms of 4 and 5.
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Abstract: High-pressure (HP) structural and magnetic properties of a magnetic coordination
polymer {[NiII(pyrazole)4]2[NbIV(CN)8]·4H2O}n (Ni2Nb) are presented, discussed and compared
with its two previously reported analogs {[MnII(pyrazole)4]2[NbIV(CN)8]·4H2O}n (Mn2Nb) and
{[FeII(pyrazole)4]2[NbIV(CN)8]·4H2O}n (Fe2Nb). Ni2Nb shows a significant decrease of the long-range
ferromagnetic ordering under high pressure when compared to Mn2Nb, where the pressure enhances
the Tc (magnetic ordering temperature), or to Fe2Nb exhibiting a pressure-induced spin crossover.
The different HP magnetic responses of the three compounds were rationalized and correlated with
the structural models as determined by single-crystal X-ray diffraction.

Keywords: ferromagnetism; long-range magnetic ordering; X-ray diffraction; high pressure; nickel(II);
octacyanidoniobate(IV); coordination polymers

1. Introduction

Structural and magnetic measurements under high pressure are the most reliable source of
straightforward magneto-structural correlations in crystalline magnetic solids. These types of studies
make it possible to fine-tune the structure and physical properties in a continuous manner—a feature
that cannot be achieved via chemical modifications, which often introduce unexpected complications
(different packing modes, additional intra- and intermolecular contacts). The application of high
pressure is known to be extremely useful for enhancing the magnetic ordering temperature of extended
coordination systems [1–5], ligand field and magnetic anisotropy tuning of mononuclear complexes [6,7]
and control of the spin crossover behavior [8,9]. The combined high-pressure single-crystal X-ray
diffraction (scXRD) and SQUID magnetometry make a perfect set of tools to study and understand
the changes induced by this type of mechanical stimulus. scXRD structural analysis experiments
are commonly performed using diamond anvil cells (DACs) [10] and, in the case of high-pressure
SQUID magnetometry, the most common environment chamber is a piston-cylinder cell (PCC) made
of diamagnetic copper-beryllium alloy [11].

Magnetic coordination polymers are known for their high responsiveness to mechanical
stress and high pressure. In particular, cyanide-bridged Prussian Blue analogs [12] and the
related octacyanometallate-based bimetallic assemblies [2] show significant magnetic changes under
high pressure.

Magnetochemistry 2019, 5, 33 www.mdpi.com/journal/magnetochemistry39
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Herein, we present the quenching of the long-range ferromagnetic ordering in a cyanide-bridged
coordination polymer {[NiII(pyrazole)4]2[NbIV(CN)8]·4H2O}n (Ni2Nb) based on nickel(II) (S = 1)
and niobium(IV) (S = 1

2 ). We also discuss its properties in comparison to MnII and FeII

analogs: {[MnII(pyrazole)4]2[NbIV(CN)8]·4H2O}n (Mn2Nb) and {[FeII(pyrazole)4]2[NbIV(CN)8]·4H2O}n

(Fe2Nb) [13].

2. Results and Discussion

2.1. X-ray Crystal Structure Description under High Pressure

Ni2Nb shows some interesting structural distortions when pressurized using a Merrill–Bassett
DAC [14]. Its structure under pressure was determined by scXRD (Figure 1 and Table 1) [13]. Ni2Nb
crystallizes in a tetragonal space group I41/a and forms a three-dimensional (3-D) CN-bridged skeleton
with a flattened diamond-like topology where the niobium and nickel ions are all linked by cyanide
ligands. The niobium(IV) centers play the role of the four-fold tetrahedral nodes in the 3-D framework
of Ni2Nb (Figure 1a,b).

 
Figure 1. Structural diagrams presenting the cyanido-bridged framework of
{[NiII(pyrazole)4]2[NbIV(CN)8]·4H2O}n down crystallographic axis z (a) and axis x (b). H2O,
pyrazole and non-bridging CN− are omitted for clarity. (c) The local geometry of the NbIV-CN-NiII

structural motif.
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Table 1. Single-crystal X-ray diffraction (scXRD) unit-cell parameters for Ni2Nb at room temperature
and high pressure.

Formula C32H40N24NbNi2O4
Temperature, K 296(2)
λ, Å 0.71073 Å
Molecular weight, g/mol 1035.11
Crystallographic system tetragonal
Space group I41/a

0.0001 GPa
Unit cell, Å a = 21.4340(4)

c = 9.6410(2)
Volume V, Å3 V = 4429.23(15)

0.25(2) GPa
Unit cell, Å a = 21.2935(17)

c = 9.584(2)
Volume V, Å3 V = 4345.0(10)

0.61(2) GPa
Unit cell, Å a = 21.2002(7)

c = 9.4404(5)
Volume V, Å3 V = 4243.0(3)

1.00(2) GPa
Unit cell, Å a = 21.0921(13)

c = 9.3306(11)
Volume V, Å3 V = 4151.0(6)

1.30(2) GPa
Unit cell, Å a = 20.9721(8)

c = 9.292(2)
Volume V, Å3 V = 4087.1(1)

1.50(2) GPa
Unit cell, Å a = 20.8535(18)

c = 9.219(7)
Volume V, Å3 V = 4009(3)

1.88(2) GPa
Unit cell, Å a = 20.8438(9)

c = 9.184(4)
Volume V, Å3 V = 3990.3(17)

2.15(2) GPa
Unit cell, Å a = 20.704(10)

c = 9.167(7)
Volume V, Å3 V = 3930(4)

2.48(2) GPa
Unit cell, Å a = 20.635(16)

c = 9.121(6)
Volume V, Å3 V = 3884(5)

The high-pressure compression of Ni2Nb is presented in Table 1 and Figure 2 as the pressure
dependence of the normalized unit-cell volume V/V0, where V0 is the unit-cell volume at 1000 hPa,
along with the relevant data for the two analogs Mn2Nb and Fe2Nb published previously [8]. The
unit-cell volumes of Mn2Nb, Fe2Nb and Ni2Nb are significantly compressed up to 87.6%, 84.6% and
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87.7% of the initial value at ca. 2.4 GPa, respectively. The V/V0 vs. p dependences were fitted using the
third-order Birch-Murnaghan equation of state (BMEOS) [15,16] (Equation (1)):

p(V) =
3K0

2

⎡⎢⎢⎢⎢⎣(V0

V

) 7
3 −

(V0

V

) 5
3
⎤⎥⎥⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩1 +

3
4

(
K′0 − 4

)⎡⎢⎢⎢⎢⎣(V0

V

) 2
3 − 1

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ (1)

where p—pressure, V0—volume at zero pressure, in this case the ambient pressure, V—volume,
K0—isothermal bulk modulus at zero pressure, K’0—dimensionless first derivative of K0 with respect to
pressure. The solid lines in Figure 2, which represent the best fit to Equation (1), match the experimental
data for Ni2Nb and Mn2Nb in the investigated pressure range. In the case of Fe2Nb there is a strong
deviation from the BMEOS above 1 GPa. The best fit parameters K0 and K0’ are: 10.7 ± 0.9 and 8.7 ± 1.8
GPa for Mn2Nb, 10.4 ± 1.6 and 8.2 ± 5.6 GPa for Fe2Nb (from the 0–1 GPa range fit) and 11.9 ± 1.2 and
6.9 ± 2.0 GPa in the case of Ni2Nb. The bulk modulus K0 value is identical for all isomorphs within
the experimental error and quite similar to other molecule-based coordination compounds [6,17,18].
Noteworthy, the K0 for the studied coordination polymers are nearly two orders of magnitude smaller
than for diamond (440 GPa) and only one order larger than for rubber (1 GPa) [19]. This places the
mechanical properties of coordination polymers somewhere between typical inorganic solids and
soft matter.

 
Figure 2. Combined graph (a) of V/V0(p) dependencies for Ni2Nb (magenta) (b), Mn2Nb (blue) (c) and
Fe2Nb (red) (d). The solid lines are the best fit to the Birch–Murnaghan equation of state (BMEOS). The
dotted line for Fe2Nb above 1.2 GPa is only a guide for the eye.

The analysis of the coordination spheres of NiII and NbIV in Ni2Nb under high pressure leads
to similar observations as for Mn2Nb [8]: the Nb–C and C–N distances as well as Nb–C–N angles
remain roughly unchanged, while the Ni–N bonds (Figure 3a) shrink significantly in a linear fashion
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(Figure 3b). This fact and the good match between the V/V0(p) dependence and the BMEOS both
indicate that no pressure-induced phase transition occurs at room temperature in Ni2Nb and Mn2Nb.
In fact, the behavior of these two solids is very similar while that of Fe2Nb is quite different and strongly
deviates from BMEOS due to the SCO (SCO - spin crossover) behavior. Also, the Fe–N distances shrink
in a non-linear fashion in Fe2Nb above 1.5 GPa.

 

Figure 3. Pressure dependence of the M–NCN bond lengths (full symbols) and M–Npyrazole (open
symbols) in the full pressure range (a) and in the pressure range where only linear changes are observed
(b) for Ni2Nb (magenta), Mn2Nb (blue) and Fe2Nb (red). Highlights in (a) are only for guiding the eye,
while the lines in (b) are the best linear fit: solid for M–NCN and dotted for M–Npyrazole.
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A more detailed analysis of M–N bonds up to 1.5 GPa (Ni2Nb, Mn2Nb and Fe2Nb follow
the BMEOS in this pressure range) demonstrates that M–NCN shrinkage is much larger than that of
M–Npyrazole (Figure 3b and Table 2). As a result, the elongated octahedral coordination spheres of FeII in
Fe2Nb and NiII in Ni2Nb become closer to a perfect octahedron at around 0.7 and 1.2 GPa, respectively.

Table 2. Shrinkage of the M–NCN and M–Npyrazole bonds under pressure. The Δ(M–N)/Δp values are
the slopes of the best linear fit from Figure 3b.

Mn2Nb Fe2Nb Ni2Nb

Δ(M-NCN)/Δp (Å GPa−1) −0.044 −0.067 −0.040
Δ(M-Npyrazole)/Δp (Å GPa−1) −0.003 −0.020 −0.007

2.2. Magnetic Properties under High Pressure

The magnetic properties of Mn2Nb and Fe2Nb (Figures 4 and 5, respectively) have been discussed
in detail in a previous report [8]. It was established that at ambient pressure both Mn2Nb and Fe2Nb
are ferrimagnets with long-range magnetic ordering temperatures (Tc) of 23.4 and 9.4 K, respectively.
However, the behavior of these compounds under high pressure is very different. Mn2Nb (Figure 4)
displays a very strong and linear increase of the Tc from 23.4 K at ambient pressure to 36.5 K at 1.03
GPa. The linear fit of the Tc(p) dependence (Figure 4c) leads to dTc/dp = 12.4 ± 0.2 K GPa−1, typical
for octacyanidoniobate(IV)-based systems and Prussian Blue analogs [2]. Fe2Nb, on the other hand,
exhibits almost complete quenching of the long-range magnetic ordering under pressure, resulting in
paramagnetic properties above 0.7 GPa (Figure 5).

Ni2Nb is a ferromagnet due to the local ferromagnetic interactions between NbIV and NiII ions [13]
with the Curie temperature (TC) of 13.2 K. It exhibits a completely different type of magnetic response
to high pressure (Figure 6) when compared to the other two analogs Mn2Nb and Fe2Nb. The TC

of Ni2Nb decreases with increasing pressure, which is characteristic for ferromagnets [20,21], and
confirms the presence of local ferromagnetic interactions between NbIV and NiII. The TC shift is 1.9 K
GPa−1, as obtained from the linear fit of the TC(p) dependence (Figure 6c, TC is the position of the dχ/dT
peak in the χ(T) measurement at 10 Oe). The pressure response of Ni2Nb is much weaker and opposite
to Mn2Nb, where the antiferromagnetic interactions between NbIV and MnII are present. Hence, the
underlying local magnetic interactions in Ni2Nb (ferromagnetic) vs. Mn2Nb (antiferromagnetic) are
the source of the observed difference. The shortening of the Ni–NCN bonds favors the resonance
integral and makes the antiferromagnetic contribution to the total exchange interaction stronger while
destabilizing the ferromagnetic one. Overall, the JNiNb coupling constant decreases under pressure.

Ni2Nb does not present a loss of the magnetic moment under high pressure, which is confirmed
by the pressure-independent magnetization at saturation values of 5.3 Nβ (at 2.0 K and 7 T; Figure 6b)
up to 1.10 GPa and the structural pressure response that matches the BMEOS. The magnetization at
saturation values are close to 5.2 Nβ, as expected for two NiII (S = 1) and one NbIV (S = 1

2 ) coupled
ferromagnetically (assuming gNb = 2.0 and gNi = 2.1 [22]).

Ni2Nb also shows interesting pressure-induced changes in the M(H) dependencies in the 0.1–5 T
magnetic field range (Figure 6b). Following the initial sharp increase of the magnetization around
0.05 T in each case, there is a clear dependence with M(H) attaining lower values at higher pressure.
All M(H) curves “meet” again above 5 T, converging to the same saturation value of 5.3 Nβ. This
behavior is most probably related to the changes of the magnetic anisotropy of the NiII centers arising
from the shortening of the Ni–NCN bonds along the CN–Ni–CN axis of the NiII coordination sphere, as
evidenced by high-pressure structural studies (Figure 3b). The contribution of [NbIV(CN)8]4− to the
pressure-induced magnetic anisotropy change in the M2Nb family can be excluded based on the fact
that M(H) for Mn2Nb does not change at all with increasing pressure (Figure 4b).
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Figure 4. Temperature dependence of molar magnetic susceptibility χ(T) at 10 Oe (a), M(H) at 2.0 K (b)
and Tc(p) (c) for Mn2Nb under high pressure. The solid line in (a) is only a guide for the eye, while in
(c) it represents the best linear fit.
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Figure 5. Temperature dependence of molar magnetic susceptibility χ(T) at 100 Oe (a), M(H) at 2.0 K
(b) and fraction of the high-spin FeII γ(p) at 60 K (c) for Fe2Nb under high pressure. The solid lines in
(a,c) are only guides for the eye.
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Figure 6. Temperature dependence of molar magnetic susceptibility χ(T) at 10 Oe (a), M(H) at 2.0 K (b)
and Tc(p) (c) for Ni2Nb under high pressure. The solid lines in (a,b) are only guides for the eye, while
in (c) it represents the best linear fit.
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3. Materials and Methods

3.1. Materials

Chemicals used in this study were of analytical grade and were obtained from commercial sources
(Sigma-Aldrich Co., Avantor, Alfa-Aesar). K4[Nb(CN)8]·2H2O was prepared according to the newest
available procedure [23]. {[NiII(pyrazole)4]2[NbIV(CN)8]·4H2O}n (Ni2Nb) was obtained according to
the literature procedure and its purity/identity was confirmed by elemental analysis and powder X-ray
diffraction, which were identical to those published previously [13].

3.2. Single-Crystal X-ray Diffraction under Pressure

The single crystal diffraction data for Ni2Nb were collected at room temperature for a single
crystal placed in a Merrill–Bassett DAC filled with Fluorinert 77 as the pressure transmitting medium
and a chip of ruby. The ruby fluorescence method was used for the pressure determination inside the
DAC chamber. The diffraction frames were collected on KUMA KM4-CCD and Xcalibur EOS machines
(running Crysalis software; instruments presently manufactured by Rigaku Oxford Diffraction) using
a Mo Kα radiation source and a graphite monochromator (λ = 0.71073 Å). The data were corrected
for the sample and DAC absorption as well as the for the gasket shadow [24]. Overlaps with the
diamond reflections were excluded from the refinement. Non-H atoms were refined anisotropically
(weighted full-matrix least-squares on F2) [25]. The summary of crystallographic data can be found in
Table 1. The Cambridge Crystallographic Data Center (CCDC) 1909715–1909722 contains the detailed
supplementary crystallographic information for this paper. The crystallographic information files
(CIFs) can be obtained free of charge from the CCDC via ww.ccdc.cam.ac.uk/data_request/cif.

The details of the related single-crystal XRD measurements under pressure for Mn2Nb and Fe2Nb
were reported previously [8].

3.3. Magnetic Measurements under Pressure

Magnetic measurements under pressure for Mn2Nb and Fe2Nb were reported previously [8].
Ni2Nb was characterized in a similar fashion using a Quantum Design MPMS3 SQUID-VSM (Sand
Diego, USA) magnetometer. A powdered sample of Ni2Nb was loaded into the CuBe piston-cylinder
cell (manufactured by HMD, Japan; purchased from Quantum Design) with a piece of high-purity
lead as the manometer and Daphne 7373 oil as the pressure-transmitting medium. The pressure
determination at low temperature was performed with 0.02 GPa accuracy by using the linear pressure
dependence of the superconducting transition of Pb (−0.379 K GPa−1). Magnetic data were corrected
for the diamagnetic contribution of the sample and the pressure cell.

4. Conclusions

A combined high-pressure magneto-structural study of a magnetic coordination polymer
{[NiII(pyrazole)4]2[NbIV(CN)8]·4H2O}n Ni2Nb was carried out and revealed a strong magnetic
response of this material to mechanical stress. The magnetic ordering temperature of Ni2Nb
shifted linearly towards lower temperatures at higher pressure due to the ferromagnetic character
of the exchange coupling between NbIV and NiII ions. Such behavior is completely different
from that observed for the two analogs {[MnII(pyrazole)4]2[NbIV(CN)8]·4H2O}n Mn2Nb and
{[FeII(pyrazole)4]2[NbIV(CN)8]·4H2O}n Fe2Nb. Mn2Nb exhibited an opposite effect—a strong
enhancement of Tc under pressure due to the antiferromagnetic exchange coupling between the
constituent magnetic ions. Our study confirms the usefulness of combined high-pressure studies
to understand the magnetic properties of molecular magnets and the possibility to fine-tune their
properties by applying a mechanical stimulus—namely, high pressure.
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Abstract: We report the synthesis and the characterization of six new heterometallic chloranilato-based
ferrimagnets formulated as (NBu4)[MnCr(C6O4Cl2)3]·nG with n = 1 for G = C6H5Cl (1), C6H5I (3), and
C6H5CH3 (4); n = 1.5 for G = C6H5Br (2) and n = 2 for G = C6H5CN (5) and C6H5NO2 (6); (C6O4Cl2)2−
= 1,3-dichloro,2,5-dihydroxy-1,4-benzoquinone dianion. The six compounds are isostructural and show
hexagonal honeycomb layers of the type [MnCr(C6O4Cl2)3]− alternating with layers containing the NBu4

+

cations. The hexagons are formed by alternating Mn(II) and Cr(III) connected by bridging bis-bidentate
chloranilato ligands. The benzene derivative solvent molecules are located in the hexagonal channels
(formed by the eclipsed packing of the honeycomb layers) showing π-π interactions with the anilato
rings. The six compounds behave as ferrimagnets with ordering temperatures in the range 9.8–11.2 K that
can be finely tuned by the donor character of the benzene ring and by the number of solvent molecules
inserted in the hexagonal channels. The larger the electron density on the aromatic ring and the larger the
number of solvent molecules are, the higher Tc is. The only exception is provided by toluene, where the
formation of H-bonds might be at the origin of weaker π-π interactions observed in this compound.

Keywords: two-dimensional (2D) ferrimagnets; chloranilato; heterometallic layers; honeycomb
layers; molecule-based magnets

1. Introduction

One of the main advantages of molecule-based magnets is the possibility to modulate or
tune the properties of the magnets by simply changing or modifying the building blocks used
to prepare them [1]. This strategy led, at the end of last century, to the synthesis of different series of
molecule-based magnets whose ordering temperatures and coercive fields could be modified with ease.
A typical example is provided by the series of cyano-bridged heterometallic compounds formulated
as AxMy[M’(CN)6]z·nH2O, where A is a monovalent cation, and M and M’ are trivalent or divalent
transition metal ions [2–4]. In this series, the magnetic exchange through the CN bridge can be
modulated [5,6] by changing A, M, and M’ to obtain materials with interesting magnetic properties
as photomagnetism [7–9], single molecule magnets [10,11], and even magnetic order above room
temperature [12]. Another family of molecule-based magnets whose properties can be easily modified
by changing the constituent metallic atoms is the series of oxalato-based two-dimensional (2D) magnets
formulated as (A)[MIIMIII(C2O4)3] (A+ =monocation; MII =Mn, Fe, Co, Ni, Cu, . . . ; MIII = Fe, Cr, . . . ;
C2O4

2− = oxalate dianion, Figure 1b) that show ferro-, ferri-, or canted antiferromagnetic ordering
with Tc ranging from 6 K to 48 K depending on M(II) and M(III) [13–22].

A third and recent example is the series of anilato-based heterometallic 2D honeycomb magnets
formulated as (A)[MIIMIII(C6O4X2)3]·G, where A+ is a monocation (see Table 1); M(II) and M(III)
are transition metal ions as Mn(II), Fe(II), Cr(III), and Fe(III), G may be many different solvent
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molecules (see Table 1), and C6O4X2
2− is the 1,3-disubstituted-2,5-dihydroxy- 1,4-benzoquinone

dianion (with X = H, Cl, Br, NO2, . . . Figure 1a), known as anilato-type ligands [23]. This family
of magnets shows a honeycomb (6,3)-2D structure with the same topology as the oxalato ones and,
as in the oxalato family, it is also possible to change the magnetic properties by simply changing
the building blocks [23,24]. Albeit, there are three important differences between these two series;
the first difference is observed in the sign of the magnetic coupling—it is always antiferromagnetic
in the anilato-based compounds, whereas it may be ferro- or antiferromagnetic depending on the
metal ions, for the oxalato series. This fact precludes the presence of magnetic ordering in the
homo-metallic anilato-based lattices but not in the hetero-metallic ones, where long range ferrimagnetic
is observed when the spin states of the metal ions are different [Mn(II)Cr(III) and Fe(II)Fe(III),
see Table 1]. The second difference is the rigidity of the oxalato ligand (Figure 1b) in contrast to the
anilato ligand that can be easily modified by changing the X group (X = H, F, Cl, Br, I, CH3, Cl/CN,
NO2, . . . ) [25]. This change has already allowed a tuning of the ordering temperatures in the series
of compounds (NBu4)[MnCr(C6O4X2)3] (X = H, Cl, Br, and I) [23] The third important difference is
the size; the hexagonal cavities of the honeycomb structure are twice as large in the anilato-based
compounds and, when packed in an eclipsed way, originate hexagonal channels with BET areas of
up to 1440 m2/g [26]. These hexagonal channels may be filled with solvent molecules (in contrast to
the oxalato-based compounds) that can be easily removed, giving rise, in some cases, to important
changes in the magnetic properties. Thus, in compound (NMe2H2)2[Fe2(C6O4Cl2)3]·2H2O·6DMF, the
removal of the solvent molecules results in a decrease of the ordering temperature from 80 to 26 K [27].
In compound (Et(i-Pr)2NH)[MnCr(C6O4Br2)3]·H2O·0.5CHCl3, the removal of the solvent molecules
changes the magnetic behavior (the solvated compound is a metamagnet with a critical field of 490 mT
at 2 K, whereas the de-solvated phase is a ferrimagnet with Tc = 9 K) [28].

The possibility to change the magnetic properties (ordering temperatures, magnetic behavior, or
critical and coercive fields) by simply changing the solvent molecules is, therefore, a very appealing
strategy to modulate Tc in these series of 2D magnets. Furthermore, when using lanthanoids as metal
ions, the solvent molecules also play a key structural role in these (6,3)-2D lattices [24,29–38].

In this context, we have recently initiated a detailed study of the role played by the solvent
molecules located in the hexagonal channels in the structure and the magnetic properties of these
2D magnets formulated as (A)[MIIMIII(C6O4X2)3]·G. To perform this study, we have initially selected
Mn(II) and Cr(III) as MII and MIII, since this couple of metal ions crystallizes more easily (Table 1). We
have selected A = NBu4

+ as the cation and chloranilato as the ligand (X = Cl), and we have focused on
a series of benzene derivative solvent molecules (C6H5X with X = Cl, Br, I, CH3, CN, and NO2), since
they seem to play a template role that facilitates the crystallization of these 2D lattices. With this idea
in mind, we have prepared the series of compounds formulated as (NBu4)[MnCr(C6O4Cl2)3]·n C6H5X
with n/X = 1/Cl (1), 1.5/Br (2), 1/I (3), 1/CH3 (4), 2/CN (5), and 2/NO2 (6). This series of compounds are
solvates since they are isostructural and only differ in the solvent molecules. They present the structure
of compound (NBu4)[MnCr(C6O4Br2)3]·C6H5Br·0.5H2O (A) [39] and show a fine modulation of the
ordering temperatures in the range 9.8–11.2 K depending on the electronic properties of the benzene
derivative molecule and on the number of solvent molecules inserted in the channels.

Here, we present the chemical and the magnetic characterization of the six compounds and show
that it is possible to fine-tune the ordering temperatures with a simple change of the solvent molecules.
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(a) (b) 

Figure 1. (a) The anilato family of ligands (C6O4X2)2− showing the typical bis-bidentate coordination
mode also shown by the oxalato ligand (b).

Table 1. Magnetic properties of all the structurally characterized hetero-metallic layered compounds of
the type (A)[MIIMIII(C6O4X2)3]·(solvent).

CCDC Formula Packing
Space
Group

Tc (K)
Hcoer

(mT) a Ref.

MIRFEA [(H3O)(phz)3][MnCr(C6O4Cl2)3(H2O)] b eclipsed P3 5.5 19.4 [23]

MIRFIE [(H3O)(phz)3][MnCr(C6O4Br2)3]·2H2O·2CH3COCH3 eclipsed P-31m 6.3 34.0 [23]

MIRFOK [(H3O)(phz)3][MnFe(C6O4Br2)3]·H2O eclipsed P-31m - - [23]

MIRFUQ (NBu4)[MnCr(C6O4Cl2)3] alternated C2/c 5.5 11.8 [23]

HOWHAE [Fe(sal2-trien)][MnCr(C6O4Cl2)3]·
0.5CH2Cl2·CH3OH·0.5H2O·5CH3CN alternated C2221 10.0 35 [40]

HOWHEI [Fe(4-OH-sal2-trien)][MnCr(C6O4Cl2)3]·G alternated P6122 10.4 87 [40]

HOWHIM [Fe(sal2-epe)][MnCr(C6O4Br2)3]·4CH3CN alternated P21/c 10.2 10 [40]

HOWHOS [Fe(5-Cl-sal2-trien)][MnCr(C6O4Br2)3]·
CH2Cl2·CH3OH·4H2O·1.5CH3CN alternated P21/c 9.8 66

MUMKUC [Fe(acac2-trien)][MnCr(C6O4Cl2)3]·2CH3CN alternated C2/c 10.8 65 [41]

MUMLAJ [Fe(acac2-trien)][MnCr(C6O4Br2)3]·2CH3CN alternated C2/c 11.1 77 [41]

MUMLEN [Ga(acac2-trien)][MnCr(C6O4Br2)3]·2CH3CN alternated C2/c 11.6 72 [41]

SEPLAD (Me2NH2)[MnCr(C6O4Br2)3]·2H2O alternated P-31c 7.9 90 [28]

SEPLEH (Et2NH2)[MnCr(C6O4Br2)3] alternated P-31c 8.9 100 [28]

SEQCID (Et3NH)[MnCr(C6O4Cl2)3] alternated P-31c 8.0 150 [28]

SEPROX (Et(i-Pr)2NH)[MnCr(C6O4Br2)3] alternated P-31c 9.0 4 c [28]

1910770 (NBu4)[MnCr(C6O4Br2)3]·C6H5Br·0.5H2O eclipsed P21 9.5 33 [39]

QEFPOJ [(H3O)(phz)3][FeFe(C6O4Cl2)3]·12H2O d eclipsed P-31m 2.4 1.0 [42]

QEFPID [(H3O)(phz)3][FeFe(C6O4Br2)3]·12H2O d eclipsed P-31m 2.1 1.0 [42]

NIHJEW01 [C(N2H3)3][FeFe(C6O4(CN)Cl)3]·29H2O d eclipsed P3 4.0 6 [43]

1909314 (NBu4)[MnCr(C6O4Cl2)3(C6H5CHO)]·C6H6
b eclipsed P21 7.0 7.6 [44]

1909315 (NBu4)[MnCr(C6O4Br2)3(C6H5CHO)]·C6H6
b eclipsed P21 6.7 10 [44]

1909316 (NBu4)[MnCr(C6O4Cl2)3(C6H5CHO)]·C6H5CHO b eclipsed P21 6.8 5.0 [44]

1909317 (NBu4)[MnCr(C6O4Br2)3(C6H5CHO)]·C6H5CHO b eclipsed P21 6.7 20 [44]
a at 2 K; b the H2O or C6H5CHO molecule is coordinated to the Mn ion; c A solvated phase of this compound is
metamagnetic with a critical field at 2 K of 490 mT. d These compounds are homo-metallic but show two different
oxidation states.

2. Results and Discussion

2.1. Syntheses of the Complexes

The six compounds were synthesized by carefully layering solutions containing the precursor
[Cr(C6O4Cl2)3]3− anion and Mn(II) ions with the corresponding benzene derivative solvents. In all
cases, an intermediate layer was needed to slow down the crystallization process and prevent the
formation of amorphous or low quality crystalline materials. All the attempts to obtain good quality
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single crystals failed, although the X-ray powder diffractograms showed that they are all isostructural
to the closely related compound (NBu4)[MnCr(C6O4Br2)3]·C6H5Br·0.5H2O (A) [39].

2.2. FT-IR Spectra

As expected, the six compounds showed very similar IR spectra (Figure 2). The only differences
corresponded to the bands associated with the solvent molecules. Table 2 lists the main bands and
their assignments. The FT-IR spectra in all cases confirmed the presence of the corresponding solvent
molecules (C6H5Cl in 1, C6H5Br in 2, C6H5I in 3, C6H5CH3 in 4, C6H5CN in 5, and C6H5NO2 in 6),
in agreement with the chemical and the thermo-gravimetric analysis.

 

 

(a) (b) 

Figure 2. (a) Absorbance FT-IR spectra of compounds 1–6 in the range 4000–400 cm−1 (a) and
1800–400 cm−1 (b).

Table 2. Main IR bands (cm−1) and their assignments for compounds 1–6.

Band 1 (C6H5Cl) 2 (C6H5Br) 3 (C6H5I) 4 (C6H5CN) 5 (C6H5CH3) 6 (C6H5NO2)

ν(C-H)
2959
2929
2873

2959
2929
2873

2960
2928
2873

2962
2931
2873

2960
2928
2873

2963
2931
2873

ν(C≡N) 1 - - - 2227 - -

ν(C=O) 1609 1606 1607 1607 1607 1606

ν(N-O)as
1 - - - - - 1520

ν(C=C) 1 1506 1506 * 1505 1507 * 1505 * 1505

ν(C=C) +
ν(C-O) 1495 1496 1496 1497 1496 1495

δ(C-H) 1383 1382 1383 1383 * 1383 * 1383

ν(C-C) + ν(C-O) 1360 1362 1361 1360 1359 1361

ν(N-O)s
1 - - - - - 1344 *

ν(C-N) 1 - - - - - 877

δ(C-X) 860 858 858 858 858 857

ν(C-Cl) 1 740 - - - - -

δ(C-H) 1 700
684

737
682

730
685

734
687

730
693

705
683

ρ(C-X) 577 576 576 577 576 577

* shoulder; 1 Bands corresponding to the solvent molecules.
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2.3. Thermogravimetric Analysis

The thermogravimetric analysis of compounds 1–6 (Figure 3) showed an initial weight loss with a
plateau in the range ca. 200–290 ◦C depending on the sample (Table 3). This weight loss corresponded
to the release of the benzene derivative solvent molecules. The experimental weight loss (Table 3)
indicated that compounds 1, 3, and 4 contained one solvent molecule (C6H5Cl in 1, C6H5I in 3,

and C6H5CH3 in 4), whereas compound 2 contained 1.5 C6H5Br molecules and compounds 5 and 6

contained two solvent molecules (C6H5CN in 5 and C6H5NO2 in 6). These values are in agreement
with the elemental analysis in all cases (see experimental section). We can, therefore, conclude that the
used solvents (C6H5Cl, C6H5Br, C6H5I, C6H5CH3, C6H5CN, and C6H5NO2) entered in the structures
of compounds 1–6 (as observed in the IR spectra), and that compounds 1, 3, and 4 contain one solvent
molecule, compound 2 contains ca. 1.5, and compounds 5 and 6 contain around two solvent molecules
per formula. At higher temperatures (around 350 ◦C), all compounds showed an abrupt weight loss
corresponding to the decomposition and the release of the chloranilato ligand. As can be seen in
the derivative plot, compound 4 needed a higher temperature (around 300 ◦C) to release the toluene
molecule, suggesting that this molecule has a stronger interaction with the 2D lattice (probably due to
the formation of H-bonds, as already observed in other anilato-based lattices) [34].

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 3. Thermogravimetric measurements and the corresponding derivative curves in the temperature
range 30–700 ◦C for compounds 1 (a), 2 (b), 3 (c), 4 (d), 5 (e), and 6 (f).

Table 3. Experimental and calculated weigh losses (%) for compounds 1–6 at the first plateau at around
250–300 ◦C.

Compound
Temperature
Range (◦C)

Experimental
Weight Loss (%)

Solvent
Calculated

Weight Loss

(NBu4)[MnCr(C6O4Cl2)3]·C6H5Cl (1) 30–200 10.8 1 C6H5Cl 10.4
(NBu4)[MnCr(C6O4Cl2)3]·1.5C6H5Br (2) 30–250 22.0 1.5 C6H5Br 19.5

(NBu4)[MnCr(C6O4Cl2)3]·C6H5I (3) 30–200 16.6 1 C6H5I 17.4
(NBu4)[MnCr(C6O4Cl2)3]·C6H5CH3 (4) 30–290 9.7 1 C6H5CH3 8.7
(NBu4)[MnCr(C6O4Cl2)3]·2C6H5CN (5) 30–250 16.8 2 C6H5CN 17.5

(NBu4)[MnCr(C6O4Cl2)3]·2C6H5NO2 (6) 30–220 20.7 2 C6H5NO2 20.2

2.4. Structures of Compounds 1–6

Compounds 1–6 are isostructural to compound (NBu4)[MnCr(C6O4Br2)3]·C6H5Br·0.5H2O (A), [39]
as shown by their X-ray powder diffractograms (Figure 4). The unit cell parameters of compounds 1–6

(Table 4), calculated from their X-ray powder diffractograms based on the structure of A with X’Pert
HighScore Plus software, [45] further confirmed the isostructurality. Interestingly, compounds 1–6 did
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not show any correlation between the size and the number of the solvent molecules and the unit cell
parameters, suggesting that the solvent molecules are located in the hexagonal channels rather than in
the interlayer space and, therefore, they do not modify the structure.

 

Figure 4. Simulated X-ray powder diffractogram of compound (NBu4)[MnCr(C6O4Br2)3]·C6H5Br·0.5H2O
(A) and experimental diffractograms of compounds 1–6.

Table 4. Unit cell parameters of compounds 1–6 determined from their X-ray powder diffractograms at
room temperature.

Compound a (Å) b (Å) c (Å) (◦) Volume (Å3)

(NBu4)[MnCr(C6O4Br2)3]·C6H5Br·0.5H2O (A) a 9.9557(5) 23.6054(10) 12.2129(6) 105.187(5) 2769.9(2)
(NBu4)[MnCr(C6O4Br2)3]·C6H5Br·0.5H2O (A) b 10.104(4) 23.70(1) 12.363(5) 106.78(4) 2834.17

(NBu4)[MnCr(C6O4Cl2)3]·C6H5Cl (1) 9.799(8) 23.76(3) 12.08(1) 104.71(8) 2719.83
(NBu4)[MnCr(C6O4Cl2)3]·1.5C6H5Br (2) 9.89(1) 23.66(4) 12.06(2) 103.7(1) 2740.18

(NBu4)[MnCr(C6O4Cl2)3]·C6H5I (3) 9.71(4) 23.6(1) 12.23(6) 104.3(5) 2720.50
(NBu4)[MnCr(C6O4Cl2)3]·C6H5CH3 (4) 9.822(7) 23.88(3) 12.09(1) 104.95(8) 2739.65
(NBu4)[MnCr(C6O4Cl2)3]·2C6H5CN (5) 9.887(9) 23.55(3) 12.08(1) 104.5(1) 2723.03

(NBu4)[MnCr(C6O4Cl2)3]·2C6H5NO2 (6) 9.58(4) 23.7(1) 11.98(6) 105.8(4) 2611.89
a Single crystal X-ray data at 120 K [39]. b Determined from X-ray powder data at room temperature.

Compound A (and compounds 1–6) presents a layered structure where anionic layers of formula
[MnCr(C6O4X2)3]− with X = Br (A) and Cl (1–6) alternate with cationic layers of NBu4

+ cations
(Figure 5a). The interlayer distance is 8.7 Å. The anionic layers show the classical honeycomb structure
with Mn(II) and Cr(III) ions alternating in the vertex of the hexagons and the anilato ligands in the
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sides (Figure 5b). The benzene derivative solvent molecules are located in the hexagonal channels
formed by the eclipsed packing of the honeycomb layers (Figure 5c) and show strong π-π interactions
with the anilato rings with an interplane angle of 6.95◦, a centroid–centroid distance of 3.870 Å, and a
shift distance of 1.425 Å (Figure 5d). The Br···Br distances between the Br atom of the C6H5Br molecule
and the closest bromanilato ligands are 3.82 and 3.90 Å, only slightly above the sum of the van der
Waals radii (3.72 Å).

   
(a) (b) 

  

(c) (d) 

Figure 5. Structure of (NBu4)[MnCr(C6O4Br2)3]·C6H5Br·0.5H2O (A). (a) Side view of the alternating
cationic (in red) and anionic (in yellow) layers. The solvent molecules are depicted in blue. (b) Top
view of the honeycomb layer [same color code as in (a)]. (c) Perspective view of the hexagonal channels
[same color code as in (a)]. (d) View of one hexagon showing the π–π interactions between the aromatic
ring and one anilato ring (in purple). Color code: Mn = orange, Cr = dark green, C = grey, O = red,
N = dark blue, and Br = brown. The H atoms were omitted for clarity.

2.5. Magnetic Properties

As expected, compounds 1–6 show quite similar magnetic properties, although, as we note below,
there are slight differences in the ordering temperatures and the coercive fields depending on the
solvent inserted in the hexagonal channels. All compounds show χmT values at room temperature
in the range 6.25–6.35 cm3 K mol−1 (Table 5 and Figure 6a)—very close to the calculated spin only
values for S = 3/2 Cr(III) and S = 5/2 high spin Mn(II) ions [χm is the molar magnetic susceptibility per
Mn(II)Cr(III) couple]. These χmT values show a continuous smooth decrease on cooling the samples
and reach minimum values at around 20 K, followed by a sharp increase at around 12 K (inset Figure 6a).
This behavior indicates the presence of a ferrimagnetic Mn-Cr coupling in all the samples, as observed
in all the previously characterized [MnCr(C6O4X2)3]− lattices (Table 1). At ca. 10 K, all the samples
show a maximum in χmT, followed by an abrupt decrease due to the saturation effects of χm at low
temperatures (Figure 6b). The sharp increase observed at ca. 10–12 K suggests the onset of a long range
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ferrimagnetic ordering, in agreement with the sharp increase observed in the thermal variation of χm

at ca. 10–11 K in all compounds (inset in Figure 6b).

  

(a) (b) 

χ

χ
Figure 6. (a) Thermal variation of the χmT product (a) and χm (b) for compounds 1–6. Insets show
zooms of the low temperature regions.

The isothermal magnetization cycles at 2 K of all the samples provide a further confirmation of the
long range ferrimagnetic ordering (Figure 7). Thus, these measurements show a sharp increase of the
magnetization at low fields and hysteresis cycles for all compounds with coercive fields in the range
16.2–56.2 mT (Figure 7b and Table 5). The magnetization values at 5 T in all cases are close to 2.1–2.2 μB

(Figure 7a and Table 5), which is the expected value for a ferrimagnetic coupling between the S = 3/2
and 5/2 of the Cr(III) and the Mn(II) ions of the lattice. Moreover, at high fields, the magnetization
shows a linear smooth increase, further confirming the ferrimagnetic coupling in compounds 1–6.

 

 

(a) (b) 

μ μ

Figure 7. (a) Isothermal magnetization cycles at 2 K for compounds 1–6. (b) The low field region.

Table 5. Magnetic properties of compounds 1–6.

Compound χmT @ 300 K (cm3 K mol−1) Tc (K) M @ 5 T (μB) Hc (mT)

(NBu4)[MnCr(C6O4Cl2)3]·C6H5Cl (1) 6.29 10.4 2.20 43.7
(NBu4)[MnCr(C6O4Cl2)3]·1.5C6H5Br (2) 6.22 10.7 2.15 44.7

(NBu4)[MnCr(C6O4Cl2)3]·C6H5I (3) 6.26 11.0 2.11 30.2
(NBu4)[MnCr(C6O4Cl2)3]· C6H5CH3 (4) 6.26 9.8 2.20 16.2
(NBu4)[MnCr(C6O4Cl2)3]·2C6H5CN (5) 6.27 10.8 2.20 19.3

(NBu4)[MnCr(C6O4Cl2)3]·2C6H5NO2 (6) 6.30 11.2 2.12 56.2
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A further confirmation of the long range ferrimagnetic order and a more precise determination of
the ordering temperatures was obtained with magnetic susceptibility measurements in the presence of
an alternating magnetic field (AC measurements). These measurements show, in all cases, a sharp peak
in the in-phase (χ’m) and in the out-of-phase (χ”m) signals that does not change with the frequency
(Figure 8), confirming the presence of a long range order at low temperatures in all cases. The ordering
temperatures, determined as the temperature where χ”m become non-zero, are all in the range 9.8–11.2 K
(Table 5). These values are similar to those observed in most of the reported [MnCr(C6O4X2)3]− lattices
(Table 1).

   

(a) (b) (c) 

   

(d) (e) (f) 

χ χ χ χ χ χ

χ χ χ χ χ χ

Figure 8. Thermal variation of the in-phase (χ’m, left scales, filled symbols) and the out-of-phase
(χ”m, right scales, empty symbols) of compounds 1 (a), 2 (b), 3 (c), 4 (d), 5 (e), and 6 (f) at
different frequencies.

In order to compare the ordering temperatures (Tc) of compounds 1–6, we have plotted the
thermal variation of χ’m and χ”m at a fixed frequency (110 Hz) for all compounds (Figure 9). We can
see that, even if the differences in some cases are very small, the order of Tc is: C6H5NO2 (6) > C6H5I
(3) ≈ C6H5CN (5) > C6H5Br (2) > C6H5Cl (1) > C6H5CH3 (4) (Table 5).

 

(a) (b) 

χ χ

Figure 9. (a) Thermal variation of χ’m (a) and χ”m (b) at 110 Hz for compounds 1–6.

Although we do not have details of the crystal structure, we can assume that, in all cases, the
solvent molecules (between one and two per hexagonal cavity) must interact via strong π–π stacking
with the anilato rings. This assumption is supported by the similar unit cell parameters determined
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from the X-ray powder diffractograms (Table 4). If the solvent molecules were located out of the
hexagonal cavities (i.e., in the interlayer space), then the a and the c parameters and the unit cell volume
(that are determined by the interlayer space) would be quite different in compounds 1–6, in contrast with
the experimental data. Since Tc depends on the magnetic coupling through the anilato ring, and this
coupling depends on the electron density of the anilato rings, [23] we can presume that the differences
in Tc reflect the differences in the electron density of the anilato rings (since the six compounds contain
the same anilato-type ligand). This modulation of Tc with the electron density on the anilato ring
was also observed in the closely related series (NBu4)[MnCr(C6O4X2)3] with X =H, Cl, Br and I [23].
On one hand, the sequence observed for the halobenzene derivatives (C6H5I > C6H5Br > C6H5Cl)
agrees with the idea that the aromatic ring in C6H5Cl had less electron density and, accordingly,
donates less electron density to the anilato ring, resulting in a weaker magnetic coupling and a lower
Tc. On the other hand, the higher values observed for the C6H5CN and C6H5NO2 derivatives may
be attributed to the fact that there are two aromatic molecules per hexagon in these two compounds.
The only compound that do not follow the expected trend is the C6H5CH3 derivative (4). Since the
-CH3 group is electron donating, it should present a higher Tc than the three halobenzene derivatives.
A possible reason to explain this anomaly might be the formation of H-bonds between the -CH3 group
and the oxygen atoms or the chlorine atoms of the chloranilato ligand. The formation of such H-bonds
has already been observed in other related Ln(III)-containing anilato-based lattices [34]. The higher
temperature needed in the thermogravimetric measurements to release the toluene molecule in this
compound agrees with this idea. These H-bonds are expected to shift the aromatic ring of the toluene
molecule from its ideal position, reducing the π–π stacking with the anilato ring and, accordingly,
the electron density on the anilato ring and Tc.

The idea that the solvent molecules play an important role in Tc is further supported by the fact
that the de-solvated compound (NBu4)[MnCr(C6O4Cl2)3] (B) [23] shows an ordering temperature of
5.5 K (Table 1), well below the observed ones in compounds 1–6. Although compound B has a slightly
different structure (the honeycomb layers are alternated, and the hexagonal rings are completely
planar), the lower value of Tc in the de-solvated compound suggests that the presence of the solvent
molecules increases the electron density in the anilato rings and, accordingly, the magnetic coupling
and the ordering temperatures. In fact, preliminary measurements performed on compound 6 after
heating the sample at 400 K under vacuum to remove the PhNO2 molecules show a slight decrease
in Tc (and an important decrease of the coercive field), further supporting the idea that the solvent
molecules are responsible for the fine tuning of Tc.

Despite compounds 1–6 show very close unit cell parameters (Table 4), we cannot discard that,
besides the electronic effect, the solvent molecules exert a very tiny structural effect. Although with
more important structural changes, this structural effect has already been observed in compounds
(NMe2H2)2[Fe2(C6O4Cl2)3]·2H2O·6DMF [27] and (Et(i-Pr)2NH)[MnCr(C6O4Br2)3]·H2O·0.5CHCl3 [28].

3. Experimental Section

3.1. Starting Materials

Chloranilic acid (H2C6O4Cl2), MnCl2·4H2O, and all the used solvents (C6H5Cl, C6H5Br, C6H5I,
C6H5CH3, C6H5CN, and C6H5NO2) are commercially available and were used as received without
further purification. The precursor salt (NBu4)3[Cr(C6O4Cl2)3] was prepared as reported in the
literature [23].

3.2. Synthesis of (NBu4)[MnCr(C6O4Cl2)3]·C6H5Cl (1)

Compound 1 was prepared by carefully layering, at room temperature, a solution of
(NBu4)3[Cr(C6O4Cl2)3] (70 mg, 0.05 mmol) in acetonitrile (10 mL) on top of a solution of MnCl2·4H2O
(40 mg, 0.2 mmol) in 4 mL of MeOH and 6 mL of chlorobenzene. An intermediate layer with a mixture
of methanol:chlorobenzene (8:1) was used in order to slow down the diffusion. The solution was
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allowed to stand for two weeks to obtain a dark powder, which was filtered and air-dried. FT-IR
(ν/cm−1, KBr pellet): 3440 (vs), 2960 (m), 2930 (w), 2873 (w), 1608 (m), 1497 (vs), 1360 (vs), 1306 (w),
1008 (w), 858 (s), 743 (m), 700 (w), 685 (w), 628 (s), 578 (m), 513 (s), 465 (m).

Anal. Calcd. (%) for C40H41Cl7CrMnNO12: C, 44.37; N, 1.29; H, 3.82. Found (%): C, 43.74; N,
1.21; H, 3.99. Elemental ratio estimated by electron probe microanalysis (EPMA): found: Mn:Cr:Cl =
11.5:11.4:77.1 (1.0:1.0:6.8). Calc. for C40H41Cl7CrMnNO12: Mn:Cr:Cl = 1:1:7.

3.3. Synthesis of (NBu4)[MnCr(C6O4Cl2)3]·1.5C6H5Br (2)

Compound 2 was prepared as 1 but using bromobenzene instead of chlorobenzene. The solution
was allowed to stand for two weeks to obtain a dark powder, which was filtered and air-dried. FT-IR
(ν/cm−1, KBr pellets): 3420 (vs), 2961 (m), 2930 (w), 2872 (w), 1608 (m), 1497 (vs), 1361 (vs), 1305 (w),
1066 (w), 1006 (m), 856 (s), 736 (m), 683 (w), 670 (w), 626 (s), 576 (m), 513 (s), 463 (m).

Anal. Calcd. (%) for C43H43.5Br1.1Cl6CrMnNO12: C, 42.83; N, 1.16; H, 3.63. Found (%): C, 42.82; N,
1.05; H, 3.45. Elemental ratio estimated by electron probe microanalysis (EPMA): found: Mn:Cr:Cl:Br
= 9.9:10.2:63.4:16.4 (1.0:1.0:6.4:1.6). Calc. for C43H43.5Br1.5Cl6CrMnNO12: Mn:Cr:Cl:Br = 1:1:6:1.5.

3.4. Synthesis of (NBu4)[MnCr(C6O4Cl2)3]·C6H5I (3)

Compound 3 was prepared as 1 but using iodobenzene instead of chlorobenzene. The solution
was allowed to stand for two weeks to obtain a dark powder, which was filtered and air-dried. FT-IR
(ν/cm−1, KBr pellets): 3443 (vs), 2961 (m), 2926 (w), 2872 (w), 1606 (m), 1496 (vs), 1363 (vs), 1306 (w),
1011 (m), 858 (s), 730 (m), 683 (w), 666 (w), 627 (s), 577 (m), 513 (s), 458 (s).

Anal. Calcd. (%) for C40H41ICl6CrMnNO12: C, 40.91; N, 1.19; H, 3.52. Found (%): C, 39.40; N, 0.99;
H, 3.99.

3.5. Synthesis of (NBu4)[MnCr(C6O4Cl2)3]·C6H5CH3 (4)

Compound 4 was prepared as 1 but using toluene instead of chlorobenzene. The solution was
allowed to stand for two weeks to obtain a dark powder, which was filtered and air-dried. FT-IR
(ν/cm−1, KBr pellets): 3440 (vs), 2961 (m), 2930 (w), 2872 (w), 1608 (m), 1497 (vs), 1361 (vs), 1305 (w),
1008 (m), 856 (s), 730 (m), 696 (w), 670 (w), 630 (s), 576 (m), 513 (s), 463 (m).

Anal. Calcd. (%) for C41H44Cl6CrMnNO12: C, 46.35; N, 1.32; H, 4.17. Found (%): C, 45.13; N, 1.12;
H, 4.10.

3.6. Synthesis of (NBu4)[MnCr(C6O4Cl2)3]·2C6H5CN (5)

Compound 5 was prepared as 1 but using benzonitrile instead of chlorobenzene. The solution
was allowed to stand for two weeks to obtain a dark powder, which was filtered and air-dried. FT-IR
(ν/cm−1, KBr pellets): 3443 (vs), 2963 (m), 2930 (w), 2873 (w), 1605 (m), 1497 (vs), 1360 (vs), 1306 (w),
1005 (m), 858 (s), 755 (m), 733 (w), 686 (w), 627 (s), 577 (m), 547 (w), 513 (s), 461 (m).

Anal. Calcd. (%) for C44.5H44.5Cl6CrMnN2.5O12: C, 49.00; N, 3.57; H, 3.94. Found (%): C, 47.00;
N, 3.16; H, 3.01.

3.7. Synthesis of (NBu4)[MnCr(C6O4Cl2)3]·2C6H5NO2 (6)

Compound 6 was prepared as 1 but using nitrobenzene instead of chlorobenzene. The solution
was allowed to stand for two weeks to obtain a dark powder, which was filtered and air-dried. FT-IR
(ν/cm−1, KBr pellets): 3443 (vs), 2961 (m), 2934 (w), 2872 (w), 1606 (m), 1496 (vs), 1360 (vs), 1306 (w),
1005 (m), 858 (s), 791 (w), 736 (w), 705 (m), 683 (w), 666 (w), 625 (s), 577 (m), 513 (s), 463 (m).

Anal. Calcd. (%) for C43H43.5Cl6CrMnN2.5O15: C, 45.42; N, 3.45; H, 3.81. Found (%): C, 44.56;
N, 3.21; H, 3.42.

61



Magnetochemistry 2019, 5, 34

3.8. Magnetic Measurements

Magnetic measurements were performed with a Quantum Design MPMS-XL-5 SQUID
magnetometer (San Diego, CA, USA) with an applied magnetic field of 0.1 T (0.5 T for compound 4)
in the 2–300 K temperature range on polycrystalline samples of all the compounds with masses
of 7.514, 3.824, 9.056, 1.002, 5.932, and 4.998 mg for compounds 1–6, respectively. The isothermal
magnetization hysteresis measurements were done with fields from−5 to 5 Tesla at 2 K. AC susceptibility
measurements were performed on the same samples with an AC field of 0.395 mT in the temperature
range 2–14 K and in the frequency range 10–1000 Hz. Susceptibility data were corrected for the sample
holder and for the diamagnetic contribution of the salts using Pascal’s constants [46].

3.9. X-ray Powder Diffraction

The X-ray powder diffractograms were collected on polycrystalline samples of compounds 1–6

using a 0.5 mm glass capillary that was mounted and aligned on an Empyrean PANalytical powder
diffractometer using CuKα radiation (λ = 1.54177 Å). A total of six scans were collected at room
temperature in the 2θ range 5–40◦ and merged in a single diffractogram.

3.10. Physical Properties

FT-IR spectra were performed on KBr pellets and collected with a Bruker Equinox 55
spectrophotometer. C, H, and N analyses were performed with a Thermo Electron CHNS Flash
2000 analyser and with a Carlo Erba mod. EA1108 CHNS analyzer. The Mn:Cr:Cl:X ratios (X = Cl in 1

and Br in 2) of the bulk samples were estimated by electron probe microanalysis (EPMA) performed in a
Philips SEM XL30 equipped with an EDAX DX-4 microprobe. Thermogravimetric (TG) measurements
were performed in Pt crucibles with a TA instruments TGA 550 thermobalance equipped with an
autosampler. The TG measurements were done in the 30–700 ◦C temperature range at 10 ◦C/min under
a N2 flux of 60 mL/min.

4. Conclusions

The series of six compounds formulated as (NBu4)[MnCr(C6O4Cl2)3]·nG with n = 1 for
G = C6H5Cl (1), C6H5I (3), C6H5CH3 (4), n = 1.5 for C6H5Br (2), and n = 2 for G = C6H5CN (5),
and C6H5NO2 (6) show that it is possible to prepare a complete series of isostructural 2D ferrimagnets
by simply changing the solvent molecules. This series presents the classical honeycomb 2D lattice with
an eclipsed packing of the layers giving rise to hexagonal channels and shows long range ferrimagnetic
order with Tc ranging from 9.8 to 11.2 K. Interestingly, this fine modulation of Tc seems to be related to
the electronic character and the number of solvent molecules that enter in the hexagonal channels of
these 2D ferrimagnets. We have also prepared the corresponding bromanilato series with the same
solvent molecules. Preliminary magnetic measurements show that they are also ferrimagnets with
very similar Tc and with a very close sequence of ordering temperatures, further supporting the above
results. Work is in progress to complete these series with other aromatic (and not aromatic) solvents
and for other anilato ligands and even metal ions. Finally, attempts to remove and/or exchange the
different solvent molecules are under investigation. Preliminary results suggest that it is indeed
possible to exchange and even to remove the solvents molecules and, as expected, the exchanged and
the evacuated compounds slightly modify their ordering temperatures.
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Abstract: The synthesis, structural characterization and magnetic study of novel CoII/4f
and CoII/YIII clusters are described. In particular, the initial employment of di-2-pyridyl
ketone, (py)2CO, in mixed metal Co/4f chemistry, provided access to four triangular clusters,
[CoII

2MIII{(py)2C(OEt)(O)}4(NO3)(H2O)]2[M(NO3)5](ClO4)2 (M = Gd, 1; Dy, 2; Tb, 3; Y, 4), where
(py)2C(OEt)(O)− is the monoanion of the hemiketal form of (py)2CO. Clusters 1–4 are the first reported
Co/4f (1–3) and Co/Y (4) species bearing (py)2CO or its derivatives, despite the fact that over 200
metal clusters bearing this ligand have been reported so far. Variable-temperature, solid-state dc
and ac magnetic susceptibility studies were carried out on 1–4 and revealed the presence of weak
ferromagnetic exchange interactions between the metal ions (JCo-Co = +1.3 and +0.40 cm−1 in 1 and 4,
respectively; JCo-Gd = +0.09 cm−1 in 1). The ac susceptibility studies on 2 revealed nonzero, weak
out-of-phase (χ”M) signals below ~5 K.

Keywords: 3d/4f metal clusters; di-2 pyridyl ketone; magnetism; cobalt; lanthanides; mixed metal
Co/Ln clusters

1. Introduction

The synthesis and characterization of new mixed-metal 3d/4f clusters has attracted immense
interest over the last few decades, due to their fascinating structural features (high nuclearities,
unprecedented metal topologies, aesthetically pleasing architectures, etc.), as well as due to their
interesting magnetic properties [1–3]. In particular, 4f ions often favor the formation of heterometallic
compounds that possess exceptionally high nuclearities, with representative examples being clusters
of Ni64Gd96 [4], Ni76La60 [5], Ni54Gd54 [6], Cu36Dy24 [7], Ni10Gd42 [8], Ni30La20 [9,10], etc. This
intriguing ability of 4f ions possibly stems from their strong oxophilicity, which, in combination with
their high coordination numbers, results in the formation of hydroxo/oxo species that readily promote
the aggregation process. Concerning the magnetic properties of the 3d/4f compounds, the 4f ions
bring several advantages, such as their considerable number of unpaired electrons (e.g., Gd3+ has
seven unpaired e−) and their large single ion anisotropy (e.g., Tb3+, Dy3+, Ho3+, etc.) as a result of
their orbital angular momentum. The above properties make them ideal candidates for the synthesis

Magnetochemistry 2019, 5, 35 www.mdpi.com/journal/magnetochemistry67
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of heterometallic clusters with single-molecule magnetism behavior (SMMs) [11,12], fulfilling the
desirable features for a compound to behave as an SMM, namely (i) high spin ground state (S) and
(ii) negative axial zero field splitting parameter (D). SMMs are discrete metal compounds that exhibit
superparamagnetic behavior below a blocking temperature TB and have been proposed for several
technological applications including high-density information storage, molecular spintronics and
qubits for quantum computation [11–15].

The study of mixed-metal 3d/4f reaction systems, as a means for the isolation of new SMMs with
a high energy barrier for the magnetization reversal, has led to a large variety of such species that now
include Mn/4f [16–21], Fe/4f [22–25], Ni/4f [8,26], Cu/4f [27–30] and Co/4f [8,31–33] compounds [1,2]. It
is noteworthy that the majority of 3d/4f SMMs are Mn/4f clusters containing some MnIII centers with an
S = 2 spin state and a significant uniaxial anisotropy. Some remarkable examples, e.g., a Mn6Tb2 [18]
and a Mn21Dy [17] cluster, display high energy barriers for the magnetization reversal (Ueff = 103 K
and 74 K, respectively), which are of comparable magnitude to the family of the most thoroughly
studied homometallic carboxylato Mn12 SMMs [11]. On the other hand, the reported Co/4f SMMs are
significantly less, despite the fact that the combination of the anisotropic 3d7 CoII with the 4f ions
has a great potential to yield SMMs with high Ueff and distinctively different properties from other
heterometallic species. A possible explanation for this could be related to synthetic challenges such as
the oxidation of the Co2+ to the diamagnetic and low spin Co3+, which occurs easily in the presence of
a base under ambient conditions.

Many carboxylate and O or N,O-ligands have been used for the synthesis of 3d/4f metal
clusters [1–3]; amongst them, di-2-pyridyl ketone ((py)2CO, Scheme 1) is very attractive as its carbonyl
group can easily undergo nucleophilic attack, providing a wide range of hemiaketal and gem-diol
derivatives that are able to link many metal ions, favoring the formation of high nuclearity metal
clusters with interesting structural features and magnetic properties [34,35]. Over 200 homo- and
heterometallic compounds have now been reported, containing (py)2CO and its derivatives, thus the
absence of such Co/4f clusters is noticeable considering the great development of this research field.

 

 
Scheme 1. A schematic representation of (py)2CO (top) and its transformation to (py)2C(OEt)(OH)
(bottom).
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In 2010, our groups employed (py)2CO in Ni/4f cluster chemistry and reported a new family of
triangular Ni2Ln compounds with interesting magnetic properties [36,37]. Expanding this research,
we herein report the synthesis and characterization of four isostructural triangular Co2M clusters
(M=Tb, Dy, Gd, Y); these compounds are the first examples of Co/4f or Y species bearing (py)2CO and
its derivatives, with the Co2Dy analogue displaying out-of-phase ac magnetic susceptibility signals at
low temperatures, indicative of the slow relaxation of the magnetization.

2. Results and Discussion

2.1. Synthetic Comments

We have developed an intense interest in the synthesis of 3d/4f metal clusters by the employment
of various pyridyl oximate- and alkoxide-containing ligands; these research efforts have yielded
a variety of new mixed-metal species with interesting structural features and magnetic properties,
including Ni8Dy8 [38,39], Ni2Ln2 [40], Ni3Ln [26], Ni2Ln [36,37,40], Mn4Ln2 [41], etc. Restricting
further discussion to the use of (py)2CO in this field, we recently reported the first Mn/4f compounds,
which belong to a family of cross-shaped Mn4Ln2 clusters, where some of them exhibit slow relaxation
of magnetization; whereas, in the past, we reported the first Ni/4f compounds with the monoanionic
form of (py)2CO. Wishing to expand this work, we recently decided to investigate the previously
unexplored reaction system of Co2+/Ln3+/(py)2CO.

The reaction of Co(ClO4)2·6H2O, Ln(NO3)3·6H2O (Ln=Gd, 1; Dy, 2; Tb, 3) or Y(NO3)3·6H2O (4),
(py)2CO and CH3CO2Na·3H2O in EtOH afforded a red solution from which well-shaped red crystals
of compounds 1–4 with the general formula [Co2M{(py)2C(OEt)(O)}4(NO3)(H2O)]2[M(NO3)5](ClO4)2

were subsequently isolated. The formation of 1–4 is summarized in Equation (1).

EtOH
4 Co(ClO4)2·6H2O + 3M(NO3)3·6H2O + 8(py)2CO + 8NaO2CMe·3H2O + 8EtOH →[

Co2M
{
(py)2C(OEt)(O)

}
4
(NO3)(H2O)

]
2
[M(NO3)5](ClO4)2 + 8MeCO2H + 2NaNO3 + 6NaClO4 + 66H2O

Gd, 1; Dy, 2; Tb, 3; Y, 4

(1)

The nature of the base and the crystallization method are not crucial for the identity of the products
and affect only their crystallinity and the reaction yield; we were able to isolate 1–4 (IR evidence) by
using other bases, such as NaOMe, NaOEt, LiOH·H2O, etc. On the other hand, the ratio of the reactants
and the nature of solvent affect the product identity, as by further increasing the excess of (py)2CO,
mononuclear CoII compounds are isolated. EtOH is the only solvent that favors the formation of 1–4,
whereas the use of different solvents yields amorphous products that could not be further characterized.

2.2. Description of Structures

A representation of the cationic [Co2Gd{(py)2C(OEt)(O)}4(NO3)(H2O)]2+ that is present in the
molecular structure of 1 is shown in Figure 1. A representation of the elipsoid plot for 1 is shown in
Figure S1 in the supplementary material. Selected interatomic distances and angles for 1 are listed in
Table 1.

Complex 1 crystallizes in the monoclinic space group C 2/c. Its structure consists of two isostructural
triangular cationic clusters [Co2Gd{(py)2C(OEt)(O)}4(NO3)(H2O)]2+, which are symmetrically related
with a 2-fold crystallographic axis. The positive charge of the cation is balanced by one [Gd(NO3)5]2−
and two NO3

− counterions. The cationic cluster is comprised of two Co2+ and one Gd3+ ions,
which are held together by four (py)2C(OEt)(O)− ligands. The {Co2GdO4}3+ core of this complex
displays an oxo-centered triangular arrangement, in which one μ3-alkoxo group coming from one
(py)2C(OEt)(O)− ligand bridges the three metal centres; in addition, three μ2-O2− ions, from three
different (py)2C(OEt)(O)− ligands, are located peripherally, bridging the two metal ions in each edge of
the triangle. Alternatively, the structural core in 1 can be described as a defective cubane, in which one
vertex and three edges are missing. The central μ3-O2− ion deviates 1.12(2) Å from the plane formed
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by the metal ions. The intermetallic distances in 1 are Co1 . . . Gd = 3.471 Å, Co2 . . . Gd = 3.546 Å and
Co1 . . . Co2 = 3.192 Å.

Figure 1. Structure of the cationic cluster 1. The hydrogen atoms and the counteranions were omitted
for clarity.

Table 1. Selected interatomic distances (Å) and angles (degrees) for 1.

Gd(1)-O(1) 2.252(15) Co(1)-N(5) 2.220(20)
Gd(1)-O(3) 2.387(15) Co(2)-O(3) 2.142(13)
Gd(1)-O(7) 2.304(13) Co(2)-O(5) 2.048(14)
Gd(1)-N(2) 2.582(17) Co(2)-O(7) 2.046(14)
Gd(1)-N(8) 2.578(19) Co(2)-N(4) 2.070(16)
Co(1)-O(1) 2.021(15) Co(2)-N(6) 2.08(2)
Co(1)-O(3) 2.265(15) Co(2)-N(7) 2.176(19)
Co(1)-O(5) 1.984(16) Gd(1)-Co(1) 3.471(3)
Co(1)-N(1) 2.083(18) Gd(1)-Co(2) 3.546(3)
Co(1)-N(3) 2.093(19) Co(1)-Co(2) 3.192(4)

Co(1)-O(1)-Gd(1) 108.5(6) Co(2)-O(7)-Gd(1) 109.1(5)
Co(1)-O(3)-Gd(1) 96.5(5) Co(1)-O(3)-Co(2) 92.8(5)
Co(2)-O(3)-Gd(1) 102.9(6) Co(1)-O(5)-Co(2) 104.6(7)

The monoanionic (py)2C(OEt)(O)− ligands are derived from the nucleophilic attack of one EtOH
molecule on the central C atom of the carbonyl group of (py2)CO. The three (py)2C(OEt)(O)− ligands
adopt a η1:η2:η1:μ2 coordination mode, with the fourth one being coordinated to the metals in a
η1:η3:η1:μ3 fashion (Scheme 2). The two CoII ions are six-coordinate with their coordination spheres
({O1, O5, O3, N1, N3, N5} for Co1; {O3, O5, O7, N4, N6, N7} for Co2) displaying distorted octahedral
geometries. The three O and the three N donor atoms around each CoII ion adopt the facial, fac-
topological arrangement; each CoII ion is surrounded by three five-membered chelate rings, formed by
three different (py)2C(OEt)(O)− ligands. The Co oxidation state was assigned by charge considerations
and bond-valence sum (BVS) calculations [42].
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Scheme 2. A schematic representation of the coordination modes of (py)2C(OEt)(O)− in 1.

Gd1 is eight-coordinate and its {O1, O3, O7, O9, O10, O12, N2, N7} coordination sphere is rich
in O donor atoms as a consequence of the oxophilic character of the lanthanides. Its coordination
environment is formed by two five-membered chelate rings, the central μ3-O2− ion, one bidentate
chelate NO3

− ion and one terminal H2O molecule. Gd2 in the [Gd(NO3)5]2− ion is 10-coordinated,
surrounded by five bidentate chelating nitrate groups. Gd2 lies on a crystallographic 2-fold axis, which
passes through the N11 atom of a NO3

− group.
To deduce the coordination polyhedra defined by the donor atoms around Gd1, a comparison of

the experimental structural data with the theoretical data for the most common polyhedral structures
with eight vertices was performed by means of the program SHAPE [43,44]; a reliable, high-quality fit
was not achieved.

Closer inspection of the crystal structure of 1 reveals the absence of strong H-bonding interactions.
This might be a result of the very well-separated neighboring Co2Gd units. The shortest metal···metal
distance between neighboring trinuclear clusters is 10.564 Å (Gd1 . . . Gd1), while the shortest
metal···metal distance between a trinuclear cluster with a neighboring [Gd(NO3)5]2− anion is 7.491 Å
(Gd1 . . . Gd2).

Compounds 2–4 are isostructural with 1, as confirmed by a comparison of their unit cell dimensions.
The identity, purity and stability of these compounds was also studied by powder X-ray diffraction
(pxrd) studies (Figure S2 in the Supplementary Material).

Compound 1 and its structural analogues (2–4) are the first Co/Ln or Y clusters bearing (py)2CO
and/or its transformed gem-diol or hemiketal derivatives. They also join the very small family of
heterometallic 3d/4f/(py)2CO clusters [26,36,37,41,45,46]; thus, they provide insight into the coordination
chemistry of this versatile ligand and unlock the chemical and structural features, which can further
lead to the isolation of higher nuclearity heterometallic species.

2.3. Magnetism Studies

Solid-state, variable-temperature dc magnetic susceptibility (χM) data were collected on
vacuum-dried microcrystalline samples of complexes 1–4 in the 2.0–300 K range, and they are
shown in Figure 2, top, as χMT vs. T plots. The experimental values for 1–4 at 300 K are 16.04,
26.86, 23.09 and 5.5 cm3·K·mol−1, respectively, being close to the expected ones for one and a half
non-interacting LnIII cations (1, Gd, S = 7/2, L = 0, 8S7/2, g = 2; 2, Dy, S = 5/2, L = 5, 6H15/2, g = 4/3; 3, Tb,
S = 3, L = 3, 7F6, g = 3/2; 4, Y, S = 0) and two non-interacting high spin CoII cations (S = 3/2, g = 2) of
15.05, 26.1, 21.5 and 3.8 cm3·K·mol−1, respectively.

The study of the static magnetic properties of highly anisotropic LnIII cations with high-spin
CoII ions (S = 3/2) within the same molecule is challenging because both types of paramagnetic
centers present spin-orbit contribution due to the strong orbital contribution to the magnetic moment;
this yields high anisotropies, which prevent the use of spin-only Hamiltonians for the mathematical
interpretation and fitting of the experimental curves [47,48]. Although L is not fully quenched, spin-only
Hamiltonians are used to fit the curves for practical reasons, where feasible, in the reported compounds.
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For complex 4, the χMT vs. T curve remains almost constant with the decreasing temperature from
300 to 50 K and then drops to 3.7 cm3·K·mol−1. This complex contains a diamagnetic YIII, which allows
the study of the interaction between the Co(II) ions using the spin Hamiltonian H = −2J (ŜCo1·ŜCo2) +

DŜz2 + Σiμge f f
→
HŜi in the full range of temperature; the exchange interactions between the CoII ions

are weak ferromagnetic with J = +0.40 cm−1, D = 9.5 cm−1 and g = 2.35.

 

Figure 2. χMT vs. T plots (top) and field dependence of the magnetization at 2 K (bottom) for 1–4.
Solid line represents the best fit for 1 and 4.

The χMT vs. T curve for 1 remains almost constant until 20 K and then starts to increase, reaching
the value of 20.01 cm3·K·mol−1 at 2 K, which shows an extremely weak ferromagnetic coupling between
the metal ions. The fitting of the experimental data to the Hamiltonian equation H = −2J(ŜCo1 ŜGd +

ŜCo2 ŜGd)−2J’(ŜCo1 ŜCo2) + DŜz
2 + Σiμge f f

→
HŜi, in the whole temperature range, provided the coupling

values between CoII-CoII ions (J = +1.3 cm−1) and CoII-GdIII ions (J = +0.09 cm−1), respectively, with
a mean g value of 2.35. This magnetic coupling is in agreement with previous studies in CoII-GdIII

complexes, which always present a ferromagnetic coupling when the CoII is a high spin cation [49,50].
Complexes 2 and 3 exhibit a similar magnetic behavior to that of complex 1, with a very smooth

drop while cooling down due to the depopulation of the Stark sublevels, reaching a minimum
(21.88 cm3·K·mol−1 for 2; 18.99 cm3·K·mol−1for 3) at 12 K.
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The field dependence of the magnetization at 2 K for complexes 1–4 is shown in Figure 2, bottom.
For complexes 1–3, the magnetization increases rapidly below 1 T. For 4, magnetization presents
a value of 3.8 cm3·K·mol−1, which corresponds to the value of two ferromagnetically coupled CoII

cations at 2 K (S = 1/2 for each one). For 1–3, the values of the magnetization at 5 T are 13.5, 10.9 and
10.9 μβ, respectively.

The study of the dynamic magnetic properties was also performed for all compounds under a zero
magnetic field, revealing a clear dependency of the χM” on temperature and frequency for complex 2

(Figure S3, Supplementary Material), indicating that 2 might be an extremely weak SMM.

3. Materials and Methods

3.1. Materials, Physical and Spectroscopic Measurements

All manipulations were performed under aerobic conditions using materials (reagent grade)
and solvents as received. Elemental analyses (C, H, N) were performed by the University of Patras
microanalysis service. IR spectra (4000–400 cm−1) were recorded using a Perkin Elmer 16PC FT-IR
spectrometer with samples prepared as KBr pellets. Powder X-ray diffraction data (pxrd) were collected
using an Inex Equinox 6000 diffractometer. Solid-state, variable-temperature and variable-field magnetic
data were collected on powdered samples using an MPMS5 Quantum Design magnetometer operating
at 0.03 T in the 300–2.0 K range for the magnetic susceptibility and at 2.0 K in the 0–5 T range for the
magnetization measurements. Diamagnetic corrections were applied to the observed susceptibilities
using Pascal’s constants. Alternating current (ac) magnetic susceptibility experiments were carried out
at 1000 Hz.

3.2. Synthesis of [Co2Gd{(py)2C(OEt)(O)}4(NO3)(H2O)]2[Gd(NO3)5](ClO4)2 (1)

Solid (py)2CO (0.111 g, 0.60 mmol) and NaO2CMe·3H2O (0.041 g, 0.30 mmol) were added to a
pink solution of Co(ClO4)2·6H2O (0.110 g, 0.30 mmol) in EtOH (15 mL) under stirring, yielding a red
solution. Gd(NO3)3·6H2O (0.046 g, 0.10 mmol) was then added and the resulting solution was stirred
for 30 min. The red solution was allowed to stand undisturbed in a closed flask. Red prismatic crystals
appeared after 2 days, which were collected by filtration, washed with EtOH (2 × 5 mL) and Et2O
(2 × 5 mL) and dried in air. Yield: ~65%. Anal. Calcd (Found) for 1: C, 38.91 (38.80); H, 3.39 (3.72); N,
10.03 (9.73) %. Selected IR data (KBr, cm−1): 3390 (s,b), 2972 (m), 2928 (w), 2897 (w), 1602 (m), 1568 (w),
1470 (s), 1441 (m), 1384 (s), 1317 (s), 1222 (m), 1090 (s), 1053 (s), 903 (w), 777 (m), 686 (m), 635 (m), 624
(m), 541 (w), 474 (m).

3.3. Synthesis of [Co2Dy{(py)2C(OEt)(O)}4(NO3)(H2O)]2[Dy(NO3)5](ClO4)2 (2)

This was prepared in the same manner as complex 1 but using Dy(NO3)3·6H2O (0.046 g, 0.10 mmol)
in place of Gd(NO3)3·6H2O. After 2 days, red prismatic crystals of 2 appeared, which were collected
by filtration, washed with EtOH (2 × 5 mL) and Et2O (2 × 5 mL) and dried in air. Yield: ~60%. Anal.
Calcd (Found) for 2: C, 38.72 (38.91); H, 3.37 (3.75); N, 9.99 (10.08) %. Selected IR data (KBr, cm−1):
3394 (s,b), 2974 (m), 2930 (w), 2897 (w), 1604 (m), 1570 (w), 1472 (s), 1443 (m), 1384 (s), 1315 (s), 1225
(m), 1090 (s), 1054 (s), 904 (w), 780 (m), 686 (m), 635 (m), 625 (m), 542 (w), 472 (m).

3.4. Synthesis of [Co2Tb{(py)2C(OEt)(O)}4(NO3)(H2O)]2[Tb(NO3)5](ClO4)2 (3)

This was prepared in the same manner as complex 1 but using Tb(NO3)3·6H2O (0.046 g, 0.10 mmol)
in place of Gd(NO3)3·6H2O. After 2 days, red prismatic crystals of 3 appeared, which were collected
by filtration, washed with EtOH (2 × 5 mL) and Et2O (2 × 5 mL) and dried in air. Yield: ~65%. Anal.
Calcd (Found) for 3: C, 38.85 (38.73); H, 3.39 (2.99); N, 10.02 (9.84) %. Selected IR data (KBr, cm−1):
v = 3394 (s,b), 2974 (m), 2930 (w), 2896 (w), 1604 (m), 1570 (w), 1472 (s), 1442 (m), 1384 (s), 1316 (s), 1224
(m), 1089 (s), 1054 (s), 904 (w), 780 (m), 686 (m), 636 (m), 626 (m), 542 (w), 474 (m).

73



Magnetochemistry 2019, 5, 35

3.5. Synthesis of [Co2Y{(py)2C(OEt)(O)}4(NO3)(H2O)]2[Y(NO3)5](ClO4)2 (4)

This was prepared in the same manner as complex 1 but using Y(NO3)3·6H2O (0.038 g, 0.10 mmol)
in place of Gd(NO3)3·6H2O. After 2 days, red prismatic crystals of 4 appeared, which were collected
by filtration, washed with EtOH (2 × 5 mL) and Et2O (2 × 5 mL) and dried in air. Yield: ~65%. Anal.
Calcd (Found) for 4: C, 41.56 (41.47); H, 3.62 (3.53); N, 10.72 (11.09) %. Selected IR data (KBr, cm−1):
3390 (s,b), 2972 (m), 2928 (w), 2897 (w), 1602 (m), 1568 (w), 1470 (s), 1441 (m), 1384 (s), 1317 (s), 1222
(m), 1090 (s), 1053 (s), 903 (w), 777 (m), 686 (m), 635 (m), 624 (m), 541 (w), 474 (m).

Caution! Although no such behavior was observed during the present work, perchlorate and nitrate salts
are potentially explosive; such compounds should be synthesized and used in small quantities, and treated with
utmost care at all times.

3.6. Single-Crystal X-ray Crystallography

Data were collected at the University of Cyprus on an Oxford-Diffraction SuperNova diffractometer,
equipped with a CCD area detector and a graphite monochromator utilizing Mo-Kα radiation (λ
= 0.71073 Å). Suitable crystals were attached to glass fiber using paratone-N oil and transferred to
a goniostat, where they were cooled to 100 K for data collection. Empirical absorption corrections
(multi-scan based on symmetry-related measurements) were applied using CrysAlis RED software [51].
The structure was solved by direct methods using SIR92 [52] and refined on F2 vai the full-matrix least
squares method using SHELXL97 [53] and SHELXL-2014/7 [54]. Software packages used are listed
as follows: CrysAlisCC for data collection, CrysAlisRED for cell refinement and data reduction [51],
WINGX for geometric calculations [55], DIAMOND [56] and MERCURY [57] for molecular graphics.
The program SQUEEZE [58], a part of the PLATON package of crystallographic software, was used
to remove the contribution of highly disordered solvent molecules. The non-H atoms were treated
anisotropically, whereas the H atoms were placed in calculated, ideal positions and refined as riding
on their respective C atoms. Unit cell parameters and structure solution and refinement data for 1

are listed in Table S1. An initial search of reciprocal space for 2–4 revealed monoclinic cells with
dimensions similar to those of 1; thus, full data collection of their structures was not pursued.

Several crystals of compound 1, from different preparations and at different periods of time,
were carefully tested on the X-rays (using CuKa and MoK radiation) at ambient and low (100 K)
temperatures. The diffraction quality of the crystals proved to be moderate and structure determination
was eventually carried out by means of the best data set collected. It is important to mention that
compound 1 has a unit cell and structure similar to a Ni2Gd analogous compound, as previously
reported by us [36,37], though the latter differs mainly in the nature of the 3d metal ion, i.e., it contains
NiII instead of CoII; thus, although the crystallographic data are not of the best quality, the information
they provide about the structure is absolutely reliable.

The X-ray crystallographic data for 1 have been deposited with a CCDC reference number CCDC
1906734. They can be obtained free of charge at http://www.ccdc.cam.ac.uk/conts/retrieving.html or
from the Cambridge Crystallographic Data Center, 12 Union Road, Cambridge, CB2 1EZ, UK: Fax:
+44-1223-336033; or e-mail: deposit@ccdc.cam.ac.uk.

4. Conclusions

Four new mixed-metal CoII
2Ln (Ln = Gd, 1; Dy, 2; Tb, 3) and CoII

2Y (4) clusters are described,
bearing the anionic hemiaketalic form of di-2-pyridyl ketone as an organic ligand. Compounds
1–4 display a triangular metal topology and were synthesized by the reaction of Co(ClO4)2·6H2O,
M(NO3)3·6H2O, (py)2CO and CH3CO2Na·3H2O in EtOH. They are the first heterometallic Co/4f or Y
clusters containing (py)2CO or its derivatives, and join a very small family of such compounds with
this ligand. dc and ac magnetic susceptibility studies revealed the presence of weak ferromagnetic
exchange interactions between the metal ions, with 2 exhibiting nonzero, weak out-of-phase (χ”M)
signals at temperatures below ~5 K.
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(py)2CO remains a rich wellspring of new metal clusters with interesting structural features and
magnetic properties, after many years of intense research efforts that have yielded a massive number
of compounds. Further studies on the use of this ligand for the synthesis of new 3d/4f metal clusters
are in progress and will be reported in due course.

Supplementary Materials: The following are available online at http://www.mdpi.com/2312-7481/5/2/35/s1:
Figure S1. Representation of the elipsoid plot for 1, Figure S2. Theoretical and experimental pxrd patterns for
1–4, Figure S3: Representation of χ’ (black line) and χ” (red line) for 2, Figure S4: Linear fit of the ac magnetic
suscetibility data for 2 at the frequency of 1000 Hz using the generalized Debye model to extract the slow relaxation
parameters, Table S1: Crystallographic data for complex 1.
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Abstract: Syntheses, crystal structures and characterization are reported for four new complexes
[Cu4Br2(L)4]Br2 (1), [Ni4(NO3)2(L)4(H2O)](NO3)2 (2), [Co2(L)3](ClO4)3 (3) and [Co(L)2](ClO4)
(4), where L− is the monoanion of the ditopic ligand N′-(1-(pyridin-2-yl)ethylidene)pyridine-
2-carbohydrazide (LH) built on a picolinoyl hydrazone core fragment, and possessing a bidentate
and a tridentate coordination pocket. The tetranuclear cation of 1·0.8H2O·MeOH is a strictly planar,
rectangular [2 × 2] grid. Two 2.21011 L− ligands bridge adjacent CuII atoms on the short sides of
the rectangle through their alkoxide oxygen atoms, and two 2.11111 ligands bridge adjacent CuII

atoms on the long sides of the rectangle through their diazine groups; two metal ions are 5-coordinate
and two are 6-coordinate. The tetranuclear cation of 2·0.2H2O·3EtOH is a square [2 × 2] grid. The
two 6-coordinate NiII atoms of each side of the square are bridged by the alkoxide O atom of one
2.21011 L− ligand. The dinuclear cation of 3·0.8H2O·1.3MeOH contains two low-spin octahedral
CoIII ions bridged by three 2.01111 L− ligands forming a pseudo triple helicate. In the mononuclear
cation [Co(L)2]+ of complex 4, the low-spin octahedral CoIII center is coordinated by two tridentate
chelating, meridional 1.10011 ligands. The crystal structures of the complexes are stabilized by a
variety of π–π stacking and/or H-bonding interactions. Compounds 2, 3 and 4 are the first structurally
characterized nickel and cobalt complexes of any form (neutral or anionic) of LH. The 2.01111 and
1.10011 coordination modes of L−, observed in the structures of complexes 3 and 4, have been
crystallographically established for the first time in coordination complexes containing this anionic
ligand. Variable-temperature, solid-state dc magnetic susceptibility and variable-field magnetization
studies at 1.8 K were carried out on complexes 1 and 2. Antiferromagnetic metal ion···metal ion
exchange interactions are present in both complexes. The study reveals that the cation of 1 can
be considered as a practically isolated pair of strongly antiferromagnetically coupled (through the
diazine group of L−) dinulear units. The susceptibility data for 2 were fit to a single-J model for
an S = 1 cyclic tetramer. The values of the J parameters have been rationalized in terms of known
magnetostructural correlations. Spectral data (infrared (IR), ultraviolet/visible (UV/VIS), 1H nuclear
magnetic resonance (NMR) for the diamagnetic complexes) are also discussed in the light of the
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structural features of 1–4 and the coordination modes of the organic and inorganic ligands that are
present in the complexes. The combined work demonstrates the ligating flexibility of L−, and its
usefulness in the synthesis of complexes with interesting structures and properties.

Keywords: coordination clusters; [2 × 2] grids; magnetic studies; N′-(1-(pyridin-2-yl)ethylidene)
pyridine-2-carbohydrazide cobalt(III); nickel(II) and copper(II) complexes

1. Introduction

The word “ligand” is derived from the Latin verb “ligare” meaning “to bind” [1]. It was first
introduced by Alfred Stock when lecturing in Berlin (1916) on the chemistry of boranes and silanes.
However, it came into common use only in the 1950s, mainly through the PhD Thesis of Jannik
Bjerrum [2]. Nowadays, the appropriate use of old ligands and the design of new, sophisticated
ones is one of the pylons of modern inorganic chemistry. Theoretical concepts related to ligands
include the chelate effect, the macrocyclic effect, the conformation of chelating rings, the chemistry of
non-innocent ligands, the hard and soft bases concept and the isoelectronic and isolobal relationships,
among others. Of particular interest is also the study of the reactivity of coordinated ligands, an
approach in which the metal ion activates a proligand, transforming it through an in situ reaction and
providing unusual ligands that sometimes cannot be synthesized by conventional organic or inorganic
synthesis [3,4]. The proper choice of bridging ligands has played a key role in the development of
modern magnetochemistry and the interdisciplinary field of molecular magnetism [5], where the
metal···metal exchange interactions mediated through the bridges are responsible for a variety of
interesting magnetic phenomena [6–9].

Polytopic organic ligands are particularly interesting in coordination chemistry and magnetochemistry.
Their design and subsequent synthesis introduces preprogrammed coordination information that is
“stored” in the coordination pockets [10,11]. When such ligands react with a transition metal ion, it
interprets this information according to its own coordination “algorithm”. If the coordination pocket
does not contain many donor atoms to fully saturate the coordination requirements of the metal ion,
self-assembly can take place favoring the formation of homoleptic or heteroleptic coordination clusters [12].
The obtained nuclearity depends largely on the polytopic nature of the ligand and the preferred metal
ion coordination number and geometry [10–13]. This in turn leads to a wide variety of magnetic
exchange interactions, which depend on the number and nature of bridges and the magnetic orbitals that
are available.

The ligand of the present work is N′-(1-(pyridin-2-yl)ethylidene)pyridine-2-carbohydrazide [other
names: methyl(pyridin-2-yl)methanone picolinoylhydrazone or 2-acetylpyridine picolinoylhydrazone],
drawn in its enol-imino form in Scheme 1 and abbreviated as LH. It is a ditopic ligand built on a
picolinoyl hydrazone core fragment (it can also be considered as an asymmetric alkoxy diazine
ligand [14]) possessing a bidentate and a tridentate coordination pocket. The deprotonated ligand
(L−) has two potentially bridging functional groups (μ-O, μ-N-N) and, because of the free rotation
around the N–N single bond, can exist in two different coordination conformers, both of which can in
principle form spin-coupled dinuclear and polynuclear metal complexes with quite different magnetic
properties. We decided to work with this ligand because its published coordination chemistry has
been limited [14–21]. Since no Co(II) and Ni(II) complexes of L− have been reported, we first targeted
compounds with these metal ions. We were also interested in preparing Cu(II) complexes, because
the only reported complex [Cu4(L)4(H2O)2](NO3)4 [14] is a structurally impressive square [2 × 2] grid
and can be considered magnetically as an essentially isolated pair of antiferromagnetically coupled
dinuclear fragments. We report herein our results from the synthetic investigation of the CuBr2/LH,
Ni(NO3)2·6H2O/LH and Co(ClO4)2·6H2O/LH reaction systems and the characterization of the products
obtained. This paper can be considered as a continuation of our interest in the chemistry and magnetism
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of 3d-metal coordination clusters [9,22], and in the coordination and metal ion-meditated/promoted
transformation properties of polydentate ligands containing two or more functionalities (including
2-pyridyl, carbonyl and hydrazone/azine groups, among others) [4,23–27].

Scheme 1. The free ligand N′-(1-(pyridin-2-yl)ethylidene)pyridine-2-carbohydrazide (LH) drawn in its
enol-imino form.

2. Results and Discussion

2.1. Synthetic Comments

A variety of MII/X−/LH/B (M = Co, Ni, Cu; X = Cl, Br, NO3, ClO4; B = Et3N, LiOH, R4NOH,
NaO2CR′ with R,R′ = various groups) reaction systems, involving various solvent media, reagent
ratios and crystallization techniques, were systematically investigated before arriving at the optimized
synthetic conditions reported in Section 3. In many instances we have isolated microcrystalline powders
with reasonable analytical data, but we report here only the structurally characterized products.

The CuBr2/NaO2CPh/LH (1:1:1) reaction mixture in MeOH gave a green solution from which
greenish brown crystals of [Cu4Br2(L)4]Br2·0.8H2O·MeOH (1·0.8H2O·MeOH) were subsequently
isolated in a good yield (~60%). Assuming that 1 is the only product from the reaction system, its
formation can be summarized by Equation (1). Use of other bases, e.g., Et3N and Me4NOH·5H2O,
gave powders of the same product (infrared (IR) evidence).

4 CuBr2 + 4 LH + 4 NaO2CPh MeOH→ [Cu4Br2(L)4]Br2 + 4 PhCO2H + 4 NaBr (1)

Complex [Ni4(NO3)2(L)4(H2O)](NO3)2 (2), crystallographically characterized as 2·0.2H2O·3EtOH,
was prepared by the 1:1 reaction between Ni(NO3)2·6H2O and LH in CH2Cl2-EtOH, Equation (2), in a
rather low yield (~30%). The use of CH2Cl2 was necessary to improve the quality of the obtained brown
crystals. Use of Et3N in the reaction mixture gave the same complex in a powder form, Equation (3),
but—somewhat to our surprise—with no significant yield improvement.

4 Ni(NO3)2 6H2O + 4 LH
EtOH−CH2Cl2→ [Ni4(NO3)2(L)4(H2O)](NO3)2 + 4 HNO3 + 23 H2O (2)

4 Ni(NO3)2 6H2O + 4 LH + 4 Et3N
EtOH−CH2Cl2→ [Ni4(NO3)2(L)4(H2O)](NO3)2 + 4 (Et3NH)(NO3) + 23 H2O (3)

Depending on the Co(II): LH reaction ratio used, the Co(ClO4)2·6H2O/LH reaction system gave
two products in MeOH under aerobic conditions, namely [Co2(L)3](ClO4)3 (3), crystallographically
formulated as 3·0.8H2O·1.3MeOH, and [Co(L)2](ClO4) (4) in moderate yields (~50%). Both products are
Co(III) complexes, the atmospheric air oxygen being the oxidant; the oxidation is certainly facilitated
by the N-rich environment from the ligand. The 2:3 reaction between Co(ClO4)2·6H2O and LH gives
complex 3 according to Equation (4). The addition of the base is not necessary for the formation and
isolation of the dinuclear complex; its presence increases slightly the yield of the reaction. Use of an
excess of LH (LH: CoII = 2:1) has provided access to the 1:2 mononuclear cationic complex 4; the use of
base here is necessary for the isolation of the compound in satisfactory yields, Equation (5). Complex 3
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can be converted to compound 4 (albeit in a low yield) in MeOH under reflux, Equation (6). The yield
can be impressively improved by the addition of base, e.g., LiOH, Equation (7).

4 CoII(ClO4)2·6H2O + 6 LH + O2
MeOH−−−−−→ 2 [CoIII,III2 (L)3](ClO4)3 + 2 HClO4 + 26 H2O (4)

4 CoII(ClO4)2·6H2O + 8 LH + 4 Et3N + O2
MeOH−−−−−→ 4 [CoIII(L)2](ClO4) + 4 (Et3NH)(ClO4) + 26 H2O (5)

[Co2(L)3](ClO4)3 + LH MeOH−−−−−→
T

2 [Co (L)2](ClO4) + HClO4 (6)

[Co2(L)3](ClO4)3 + LH + LiOH MeOH−−−−−→
T

2 [Co(L)2](ClO4) + LiClO4 + H2O (7)

2.2. Spectroscopic Characterization in Brief

IR and ultraviolet/visible (UV/VIS) spectra of the complexes were obtained from analytically
pure samples which have the formulae 1, 2, 3·H2O and 4 (Section 3). In the IR spectrum of sample
3·H2O, the broad band centered at ~3420 cm−1 is due to the v(OH) vibration of the lattice water [7].
The v(OH) vibration of coordinated H2O in the spectrum of 2 also appears in this region. The IR
spectrum of the free ligand LH exhibits a medium-intensity band at 3316 cm−1 and a very strong band
at 1702 cm−1, assigned to the v(NH) and v(C = O) vibrations, respectively [14,15]. The appearance of
these stretching vibrations indicates that LH is present in its keto-amino form, and not in the enol-imino
form drawn in Figure 1. Such vibrations are absent from the spectra of the complexes, the spectral
regions 3400–3100 cm−1 and 1700–1610 cm−1 showing no bands. The absence of these bands indicates
that (i) the ligands are deprotonated in the complexes and (ii) the carbon–oxygen bond of coordinated
L− does not have an appreciable double bond character [23]; these facts are confirmed in the crystal
structures of the complexes (vide infra). The highest wavenumber bands in the 2000–400 cm−1 region
are at 1594 (1), 1598 (2), 1606 (3 H2O) and 1602 (4) cm−1, assigned to a pyridyl stretching vibration [7].

The KBr spectrum of 2 exhibits a strong sharp band at 1384 cm−1, assigned to the v3(E’)[vd(NO)]
vibrational mode of the planar ionic nitrate of D3h symmetry [28]. The absence of bands that would
be indicative of the monodentate and bidentate coordinated nitrato groups (present in the structure
of the cluster) is rather surprising. This suggests [29,30] that the nitrato ligands are replaced by
bromides that are in excess in the KBr matrix, thus producing ionic nitrates (KNO3); this replacement
is facilitated by the pressure that is applied for the preparation of the KBr matrix. As expected, extra
nitrato bands appear in the mull (nujol, hexachlorobutadiene) spectra of 2. For example, the bands
at 1501 and 1300 cm−1 are assigned [28–30] to the v1(A1)[v(N = O)] and v5(B2)[vas(NO2)] vibrational
modes, respectively, of the coordinated nitrato group. The separation of these two bands is large
(~200 cm−1), suggesting a bidentate nitrato ligand of C2v symmetry [28]. The v5(B2)[vas(NO2)] band of
the monodentate nitrato group could not be assigned with certainty in the mull spectra because other
bands of stretching vibrations origin appear in the 1450–1350 cm−1 region. The band at 1294 cm−1

is a serious candidate for the v1(A1)[vs(NO2)] vibration of the monodentate nitrato ligand which is
expected around 1300 cm−1 [28]. The spectra of 3·H2O and 4 exhibit a strong band at 1090–1080 and a
medium-intensity band at ~625 cm−1, attributable to the IR-active v3(F2)[vd(Cl-O)] and v4(F2)[δd(OClO)]
vibrations of the uncoordinated Td ClO4

− counterion, respectively [28].
The d-d spectrum of 1 in MeOH consists of a featureless band at 745 nm; this wavelength is fairly

typical of a distorted square pyramidal or/and a tetragonally distorted six-coordinate geometry [31,32].
The spectrum also exhibits an absorption at ~370 nm assignable to a Br−-to CuII LMCT transition [32].
Copper(II) is relatively easy to reduce to copper(I) and the observed transition from a π orbital of the
bromo ligand to the singly occupied 3d orbital of CuII occurs at a relatively low energy (~27,000 cm−1).
The d-d spectrum of 2 in MeOH consists of three bands at 365, 615 and 980 nm assignable [32,33] to the
3A2g →3T1g (P), 3A2g →3T1g (F) and 3A2g →3T2g transitions, respectively, in an octahedral 3d8 ligand
field; the wavelengths are typical of Ni(II) chromophores possessing both N and O donors [32,33]. The
UV/VIS spectra of concentrated solutions of 3·H2O and 4 in MeCN are typical for low-spin octahedral
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{CoIIIN6} and {CoIIINxO6-x} chromophores, respectively [32,34]. The low-spin octahedral ground term
is 1A1g and there are two spin-allowed transitions, with lower lying spin triplet partners, all derived
from (t2g)5(eg)1. Under this scheme, the bands/shoulders at 395, 440, 580 and 735 nm in the spectrum
of 3·H2O are assigned to the 1A1g →1T2g, 1A1g →1T1g, 1A1g →3T2g and 1A1g →3T1g, respectively.
The corresponding transitions in the spectrum of 4 appear at 405, 450, 590 and 760 nm.

Figure 1. Partially labelled plot of the structure of the cation [Cu4Br2(L)4]+2 that is present in the crystal.
Structure of 1·0.8H2O·MeOH. Symmetry code: (‘) = −x + 1, −y + 2, −z. A plot with thermal ellipsoids is
presented in Figure S17.

The 1H nuclear magnetic resonance (NMR) spectra of the diamagnetic, analytically pure samples
3·H2O and 4 in deuterated dimethyl sulfoxide (DMSO-d6) are almost identical, except the extra peak
at δ 3.17 ppm in the former due to the protons of the lattice H2O. Singlet resonances of the methyl
protons were observed at the rather low-field δ value of 3.35 ppm, while the resonances of the eight
pyridyl rings appear in the δ region 8.60–7.45 ppm; the integration ratio is 3:8, as expected. These
facts indicate the presence of a single L− species in solution, but our data—combined with literature
reports [18]—do not permit safe conclusions concerning the coordinated or non-coordinated nature of
the anionic species in solution.

Representative spectra of the complexes are presented in Figures S1–S16.
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2.3. Description of Structures

The structures of the four complexes have been solved by single-crystal, X-ray crystallography.
Aspects of the molecular and crystal structures are shown in Figures 1–8 and Figures S17–S21.
Crystallographic data are presented in Table S1, while numerical data concerning interatomic distances,
bond angles and H-bonding interactions are listed in Tables 1–4 and Figures S2–S5.

Figure 2. A layer of the tetranuclear cations of complex 1·0.8H2O·MeOH parallel to the (001) plane.
The dashed pink and violet lines indicateπ–π stacking interactions between centrosymmetrically-related
pairs of aromatic rings containing the N1 and N4 atoms, respectively.

Figure 3. Partially labelled plot of the structure of the cation [Ni4(NO3)2(L)4(H2O)]2+ that is present in
the.crystal structure of 2·0.2H2O·3EtOH. A plot with thermal ellipsoids is presented in Figure S19.
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Figure 4. A layer of the tetranuclear cations of complex 2·0.2H2O·3EtOH parallel to the (100) plane.
The dashed pink and violet lines indicate interchain and intrachain, respectively, π–π stacking
interactions. The dashed yellow lines represent interstripe H-bonding interactions.

Figure 5. Partially labelled plot of the structure of the cation [Co(L)2]+ that is present in the crystal
structure of 4. A plot with thermal ellipsoids is presented in Figure S20.
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Figure 6. A layer of 4 parallel to the (1–10) plane. The dashed pink and solid violet lines indicate
π–π. interactions between pairs of N1- and N4-containing rings, respectively. The dashed green lines
represent the C12-H(C12)· · ·N8 and C12-H(C12)· · ·O2 intrachain H bonds. The dashed orange lines
represent the C17-H(C17)· · ·N4, C1-H(C1)· · ·O5 and C13-H(C13)· · ·O5 interchain H bonds. Atoms C1,
C12, C13 and C17 are aromatic carbon atoms not labelled in Figure 5 and Figure S4. Atom O5 belongs
to the ClO4

− counterion not shown in Figure 5 and Figure S4.

Figure 7. Partially labelled plot of the cation [Co2(L)3]3+ that is present in the crystal structure of
3·0.8H2O·1.3MeOH. A plot with thermal ellipsoids is presented in Figure S21 (left).
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Figure 8. A chain of [Co2(L)3]3+ cations parallel to the [101] direction in the crystal structure
of 3·0.8H2O·1.3MeOH. The dashed orange and green lines indicate the H-bonding interactions
C9-H(C9)· · ·O1 and C17-H(C17)· · ·O3, respectively. Atoms C9 and C17 are aromatic carbon atoms, not
labelled in Figure 7 and Figure S21.

Table 1. Selected interatomic distances (Å) and bond angles (◦) for complex 1·0.8H2O·MeOH a.

Interatomic Distances (Å) Bond Angles (◦)
Cu1-N1 2.143(5) N2-Cu1-N5 172.7(2)
Cu1-N2 1.989(5) O2-Cu1-Br1 147.7(1)
Cu1-O2 2.073(4) N1-Cu1-Br1 117.0(1)
Cu1-N5 1.994(5) N1-Cu1-N2 80.3(2)
Cu1-Br1 2.450(1) N1-Cu1-N5 97.0(2)
Cu2-N7 1.980(5) N1-Cu1-O2 95.3(2)
Cu2-N8 2.193(5) N2-Cu1-O2 93.4(2)
Cu2-O2 2.331(4) N5-Cu1-Br1 95.1(1)
Cu2-N3′ 1.975(5) N3′-Cu2-N7 175.5(2)
Cu2-N4′ 2.054(5) N8-Cu2-O2 148.2(2)
Cu2-O1′ 2.117(4) N4′-Cu2-O1′ 155.4(2)
C6-O1 1.257(7) N3′-Cu2-N4′ 79.1(2)
C6-N2 1.346(8) N7-Cu2-N8 77.4(2)
N2-N3 1.384(7) O2-C19-N6 126.8(5)
N3-C8 1.290(8) C19-N6-N7 110.3(5)
C19-O2 1.287(7) N6-N7-C21 118.1(5)
C19-N6 1.331(7) O1-C6-N2 125.0(5)
N6-N7 1.401(6) C6-N2-N3 110.2(5)
N7-C21 1.281(7) N2-N3-C8 123.7(5)

a Symmetry code (‘) = −x + 1, −y + 2, −z.

The crystal structure of 1·0.8H2O·MeOH consists of tetranuclear cations [Cu4Br2(L)4]+2 (Figure 1
and Figure S17), Br− counterions, and lattice H2O and MeOH molecules. The cation possesses
a crystallographic inversion center in the midpoint of the Cu1· · ·Cu1′ (or Cu2· · ·Cu2′) distance.
The cation is a rectangular [2 × 2] grid; all the metal centers are strictly coplanar (by symmetry). The
sides of the rectangle are 4.121(1) Å (Cu1· · ·Cu2/Cu1′· · ·Cu2′) and 4.797(1) Å (Cu1· · ·Cu2′/Cu1′· · ·Cu2),
and the diagonals are 6.690(1) Å (Cu1· · ·Cu1′) and 5.935(1) Å (Cu2· · ·Cu2′).
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Table 2. Selected interatomic distances (Å) and bond angles (◦) for complex 2·0.2H2O·3EtOH.

Interatomic Distances (Å) Bond Angles (◦)
Ni1· · ·Ni2 3.922(1) O1-Ni1-N4 154.1(1)
Ni1· · ·N3 3.938(1) O2-Ni1-N8 153.9(1)
Ni1· · ·N4 5.526(1) N3-Ni1-N7 177.9(1)
Ni2· · ·Ni3 5.559(1) O1-Ni1-O2 91.4(1)
Ni2· · ·Ni4 3.921(1) O2-Ni1-N3 105.3(1)
Ni3· · ·Ni4 3.895(1) N3-Ni1-N4 78.0(1)

Ni1-O1 2.147(2) O1-Ni2-O5 158.2(1)
Ni1-O2 2.144(2) O3-Ni2-O6 165.1(1)
Ni1-N3 1.988(2) N1-Ni2-N9 177.5(1)
Ni1-N4 2.083(2) O1-Ni2-O3 95.0(1)
Ni1-N7 1.984(2) O5-Ni2-O6 60.7(1)
Ni1-N8 2.107(2) O6-Ni2-N9 93.3(1)
Ni2-O1 2.049(2) O2-Ni3-O1W 169.9(1)
Ni2-O3 2.054(2) O4-Ni3-O8 171.1(1)
Ni2-O5 2.161(2) N5-Ni3-N13 179.1(1)
Ni2-O6 2.113(2) O2-Ni3-O4 90.5(1)
Ni2-N1 2.041(2) O1W-Ni3-O8 93.9(1)
Ni2-N9 2.036(2) O8-Ni3-N5 86.8(1)
Ni3-O2 2.068(2) O3-Ni4-N12 154.5(1)
Ni3-O4 2.052(2) O4-Ni4-N16 154.7(1)
Ni3-O8 2.121(2) N11-Ni4-N15 174.5(1)

Ni3-O1W 2.080(2) O3-Ni4-O4 94.4(1)
Ni3-N5 2.048(2) N11-Ni4-N12 78.5(1)
Ni3-N13 2.055(2) N15-Ni4-N16 78.4(1)
Ni4-O3 2.144(2) O8-N18-O9 120.7(3)
Ni4-O4 2.126(2) O8-N18-O10 118.8(3)

Ni4-N11 1.987(2) O9-N18-O10 120.5(3)
Ni4-N12 2.093(2) O5-N17-O6 116.2(3)
Ni4-N15 1.979(2) O5-N17-O7 122.2(4)
Ni4-N16 2.091(2) O6-N17-O7 121.6(4)

Table 3. Selected bond lengths (Å) and angles for complex 4.

Bond Lengths (Å) a Bond Angles (◦) a

Co1-O1 1.899(2) O1-Co1-N1 165.2(1)
Co1-N1 1.927(2) O2-Co1-N5 165.4(1)
Co1-N2 1.855(2) N2-Co1-N6 174.7(1)
Co1-O2 1.892(2) O1-Co1-N2 82.5(1)
Co1-N5 1.915(2) O1-Co1-O2 91.3(1)
Co1-N6 1.857(2) O2-Co1-N6 82.6(1)
C8-O1 1.290(3) N2-Co1-N5 100.7(1)
C8-N3 1.329(3) O1-C8-N3 125.1(2)
N3-N2 1.391(3) C8-N3-N2 106.3(2)
N2-C6 1.298(3) N3-N2-C6 123.7(2)
C21-O2 1.306(3) O2-C21-N7 124.2(2)
C21-N7 1.317(3) C21-N7-N6 107.3(2)
N7-N6 1.383(3) N7-N6-C19 123.9(2)
N6-C19 1.299(3) O3-Cl1-O4 109.7(1)
Cl1-O3 1.440(2) O3-Cl1-O6 110.7(1)
Cl1-O4 1.435(2) O4-Cl1-O5 108.8(1)
Cl1-O5 1.442(2) O5-Cl1-O6 108.8(1)
Cl1-O6 1.428(2)

a The Cl-O bond lengths and O-Cl-O bond angles refer to the perchlorate counter ion not shown in Figure 5 and
Figure S20.
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Table 4. Selected interatomic distances (Å) and bond angles (◦) for complex 3·0.8 H2O·1.3MeOH.

Interatomic Distances (Å) Bond Angles (◦)
Co1· · ·Co2 3.467(2) N1-Co1-N11 170.6(3)

Co1-N1 1.953(6) N2-Co1-N5 172.5(3)
Co1-N2 1.906(6) N6-Co1-N12 172.0(3)
Co1-N5 1.951(6) N1-Co1-N2 81.3(3)
Co1-N6 1.899(6) N2-Co1-N6 92.0(3)

Co1-N11 1.910(6) N5-Co1-N6 81.6(3)
Co1-N12 1.931(6) N11-Co1-N12 82.1(3)
Co2-N3 1.900(6) N3-Co2-N9 170.3(3)
Co2-N4 1.935(6) N4-Co2-N7 171.1(2)
Co2-N7 1.901(6) N8-Co2-N10 171.4(2)
Co2-N8 1.946(6) N3-Co2-N4 81.7(2)
Co2-N9 1.942(7) N4-Co2-N8 93.1(2)

Co2-N10 1.909(6) N7-Co2-N8 81.6(3)
C6-O1 1.242(9) N8-Co2-N9 94.1(3)
C6-N2 1.363(9) O1-C6-N2 126.9(7)
N2-N3 1.407(7) C6-N2-N3 114.6(6)
N3-C7 1.310(8) N2-N3-C7 121.6(6)
C19-O2 1.319(9) O2-C19-N6 126.1(8)
C19-N6 1.311(8) C19-N6-N7 119.4(6)
N6-N7 1.384(8) N6-N7-C20 120.5(6)
N7-C20 1.331(9) O3-C32-N10 124.9(9)
C32-O3 1.253(9) C32-N10-N11 117.9(6)

C32-N10 1.348(8) N10-N11-C33 121.3(6)
N10-N11 1.400(8)
N11-C33 1.292(8)

Two 2.21011 (Harris notation [35]) anionic L− ligands bridge adjacent CuII atoms on the short
sides of the rectangle through their alkoxide oxygen atoms (O2, O2′). Two 2.11111 L− ligands bridge
adjacent CuII atoms on the long sides of the rectangle with their diazine groups (N2-N3, N2′-N3′). The
two different coordination modes are shown in Scheme 2. The Cu2/Cu2′ ions are 6-coordinate with a
distorted octahedral geometry, the trans coordination angles being in the range 148.2(2)–175.5(2)◦. The
Jahn–Teller axis is defined as N8-Cu2-O2 [Cu2-N8 = 2.193(5) Å, Cu2-O2 = 2.331(4) Å]. The Cu1/Cu1′
ions are 5-coordinate with a {CuIIN3OBr} chromophore; the access to the sixth donor site is blocked by
the presence of the methyl groups. The coordination geometry can be described as either distorted
square pyramidal or distorted trigonal bipyramidal. Analysis of the shape-determining angles using
the approach of Addison and Reedjik [36] yields a value for the trigonality index, τ, of 0.42 (τ = 0
and 1 for square pyramidal and trigonal bipyramidal geometry, respectively). Adopting the square
pyramidal description, the basal plane consists of donor atoms N2, N5, O2 and Br1, with atom N1
occupying the apical position. The alternative distorted trigonal bipyramidal description places
donor atoms N2 and N5 at the axial positions, and atoms N1, O2 and Br1 at the equatorial sites. The
Cu1-O2-Cu2 (Cu1′-O2′-Cu2′) angle is 138.6(2)◦. Establishing the site of deprotonation is sometimes
difficult for L− and related ligands. The C6-O1, C6-N2, N2-N3, N3-C8 and C19-O2, C19-N6, N6-N7,
N7-C21 bond distances (Table 1) indicate a charge delocalization within the OCNNC backbone of the
two crystallographically independent, deprotonated ligands of the tetranuclear cation. If we should
define the deprotonated atom, the relatively long C6-O1 and C19-O2 distances [1.257(7) and 1.287(7) Å,
respectively] suggest that the O atoms are the principal sites of deprotonation [14].
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Scheme 2. The to date crystallographically established coordination modes of LH and L−, and the
Harris notation that describes these modes. The neutral ligand (LH) is shown in the keto-amino
form. The central OCNNC unit of the anionic ligand has been drawn in a manner that emphasizes its
delocalized description that appears in most complexes.

The tetranuclear cations of the complex form layers parallel to the (001) plane through π–π
stacking interactions (Figure 2). The Cg1· · ·Cg1” and Cg2· · ·Cg2”’ distances are 3.713(1) and 3.661(1)
Å, respectively, where Cg1 is the centroid of the N1-containing aromatic ring and Cg2 is the centroid of
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the N4-containing ring [symmetry codes: (‘’) = −x + 2, −y + 2, −z; (‘′’) = −x + 1, −y + 1, −z]. The cations
that form the layers interact further through π–π overlaps between centrosymmetrically-related ligands
involving the N5, N8- and N5*, N8*-containing rings which are at a 3.34 Å distance and belong to
adjacent layers (Figure S2), thus building the 3D architecture of the structure [symmetry code: (*) = −x
+ 1, −y + 2, −z + 1]. The Br− counterions, and the solvate H2O and MeOH molecules are hosted in the
lattice through H bonds (Table S18).

The crystal structure of 2·0.2H2O·3EtOH consists of tetranuclear cations [Ni4(NO3)2(L)4(H2O)]2+

(Figure 3 and Figure S19), NO3
− counterions, as well as EtOH and H2O molecules. The cation is a

square [2 × 2] grid. The four metal ions are practically coplanar, the distances from their best mean
plane being: Ni1 0.0016(4) Å, Ni2 0.0016(4) Å, Ni3 0.016(4) Å and Ni4 0.017(4) Å. The sides of the
square are in the 3.895(1)–3.938(1) Å range, and the diagonals are 5.526(1) Å (Ni1· · ·Ni4) and 5.559(1) Å
(Ni2· · ·Ni3).

The two NiII atoms of each side of the square are bridged by the alkoxide O atom (O1, O2,
O3, O4) of one 2.21011 L− ligand (Scheme 2) and the core of the cluster cation is thus {Ni4(OR)4}4+.
One terminal H2O ligand and one monodentate nitrato group are coordinated to Ni3, while the two
vacant coordination sites at Ni2 are occupied by two oxygen atoms (O5, O6) of a bidentate chelating
nitrato group. The metal ions are all six-coordinate with distorted octahedral geometries, and the
chromophores are {Ni1N4O2}, {Ni2N2O4}, {Ni3N2O4} and {Ni4N4O2}. The Ni-O and Ni-N bond
lengths are typical [7,37,38] for octahedral Ni(II) complexes. The C-Obridging bond distances are in
the narrow 1.295(3)–1.306(3) Å, indicating the predominance of single CO bond character [15]. The
Ni-O-Ni angles are ~138◦. Within the cation, there is a strong H bond with O1W as donor and the
non-coordinate O9 atom of the nitrato ligand as acceptor (Figure 3, Table S3).

The tetranuclear cations of the complex form layers parallel to the (100) plane through π–π
stacking interactions and H bonds (Figure 4). The π–π overlap of the N8- and N12′-containing rings of
neighboring cluster cations create chains parallel to the b axis [symmetry code: (‘) = −x, y − 1, z]; the
distance between their centroids is 4.076(1) Å and the angle between the ring planes is 9.2(2)◦. Through
the π–π overlap of centrosymmetrically-related rings that contain N1 and N1” [symmetry code: (‘’)
= −x + 2, −y − 1, −z − 1; the distance between the planes is 3.36(2) Å] and belong to neighboring
cluster cations, pairs of chains are formed extending parallel to the b axis and thus double chains are
created. Cations belonging to neighboring double chains interact through C20-HC(C20)· · ·O10 and
C15-H(C15)· · ·O1W H bonds (Table S3), where C20 and C15 are methyl and aromatic carbon atoms,
respectively, forming layers of double chains parallel to the (100) plane. These layers are stacked along
the a axis. Nitrate counterions and lattice EtOH molecules are hosted between the layers through an
extensive H-bonding network (Table S3); these species are linked with each other and also connect
neighboring layers building the 3D architecture of the structure. The donors of these H bonds are
mainly the oxygen atoms of the lattice H2O and EtOH molecules, while the acceptors are counter
nitrate and lattice EtOH oxygen atoms.

We start the structural descriptions of the Co(III) complexes with the simplest compound, i.e.,
4. The crystal structure of 4 consists of ions [Co(L)2]+ (Figure 5 and Figure S20) and ClO4

− in an 1:1
ratio. Both mutually perpendicular L− ions act as tridentate chelating, meridional 1.10011 ligands
(Scheme 2), each ligand forming two practically planar 5-membered chelating rings. The metal ion is
coordinated by two alkoxide oxygen atoms (O1, O2), two 2-pyridyl nitrogen atoms (N1, N5) and two
hydrazone nitrogen atoms (N2, N6) resulting in a distorted octahedral geometry. The trans angles of
the octahedron are 165.2(1), 165.4(1) and 174.7(1)◦. Due to the meridional character of each anionic
ligand, two pairs of trans coordination sites are each occupied by donor atoms of the same L− group
(O1/N1, O2/N5), whereas the third pair of coordination sites consists of nitrogen atoms (N2, N6) from
different ligands. The Co-(O, N) bond lengths are in the range 1.855(2)–1.927(2) Å and agree very well
with values observed for low-spin Co(III) ions in octahedral environments [35,39,40]. The two Co-N
bond lengths for each ligand differ [1.927(2) vs. 1.855(2) Å, and 1.915(2) vs. 1.857(2) Å]; the shorter
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bond distance (stronger bond) pertains to the hydrazone nitrogen atoms (N2, N6), probably due to the
presence of some negative charge on these atoms (because of delocalization).

The mononuclear cations of 4 form chains parallel to the [111] crystallographic direction through
π–π stacking interactions between centrosymmetrically-related N(1)- and N(1′)-containing rings
[symmetry code: (‘) = −x, −y + 1, −z + 1; the distance between the planes is 3.62(1) Å] and between
centrosymmetrically-related N(4)- and N(4′)-containing rings [symmetry code: (‘) = −x + 1, −y +
2, −z + 2; the distance between the planes is 3.36(1) Å] (Figure 6). The cations of a given chain are
further linked through C12-H(C12)· · ·N8 and C12-H(C12)· · ·O2 bifurcated H bonds (Table S4); C12 is
an aromatic carbon atom. The chains are connected through C17-H(C17)· · ·N4, C1-H(C1)· · ·O5 and
C13-H(C13)· · ·O5 H bonds forming layers parallel to the (1–10) plane; atoms C1, C13 and C17 are
aromatic carbon atoms and O5 belongs to the ClO4

− counterion. These layers are stacked along the b
axis and linked through C14-H(C14)· · ·O4, C13-H(C13)· · ·O5 and C7-HB(C7)· · ·N7 H bonds (Table S4);
C14 is an aromatic carbon atom and C7 is a methyl carbon atom.

The crystal structure of 3·0.8H2O·1.3MeOH consists of dinuclear cations [Co2(L)3]3+ (Figure 7 and
Figure S21) and ClO4

− counterions in an 1:3 ratio, as well as solvent H2O and MeOH lattice molecules.
The cation has approximate D3 symmetry with the three bis(bidentate) 2.01111 L− ligands (Scheme 2)
wrapped around the Co1· · ·Co2 axis in such a way as to give each metal ion a distorted octahedral
{CoIIIN6} coordination. The CoIII-N bond lengths are in the range 1.899(6)–1.953(6) Å confirming [34,40]
the low-spin character of the two 3d6 metal ions. These bond distances follow the same trend seen for 4,
i.e., CoIII-N (hydrazone) < CoIII-N (2-pyridyl). The trans coordination angles for Co1 and Co2 are in the
ranges 170.6(3)–172.5(3)◦ and 170.3(3)–171.4(2)◦, respectively. Each six-coordinate CoIII atom adopts a
fac configuration; the 2-pyridyl nitrogen atoms (and also the hydrazone nitrogen atoms) are arranged
so as to define one face of the octahedron for each metal center. The Co1· · ·Co2 distance is rather
short, i.e., 3.467(2) Å, due to the presence of three diatomic bridges between the two metal ions. The
cation can be considered as a pseudo triple helicate. We prefer the term pseudo (or helicate-type) because
ligands that form helicates generally comprise two bidentate coordinating groups A-B connected via
some linker [41–46]; this linker is absent in L−. In most cases (including our complex) the helicities of
the two metal centers (i.e., Δ and Λ) may be mechanically coupled, so for example formation of a Δ
configuration at the first metal ion induces Δ configuration at the second; this is clearly illustrated in
Figure S21c for one of the [Co2(L)3]3+ cations of compound 3·0.8H2O·1.3MeOH which is a homochiral
Δ,Δ (“right-handed”) system. Due to the centrosymmetric space group (P1), both enantiomers (Δ,Δ
and Λ,Λ) are present in the helical structure of the complex [41,43], i.e., the crystal is a racemic sample.

The dinuclear cations of 3·0.8H2O·1.3MeOH form chains parallel to the [101] crystallographic
direction through C9-H(C9)· · ·O1 and C17-H(C17)· · ·O3 H bonds (Figure 8, Table S5). These chains
build the 3D architecture of the complex through H bonds involving aromatic carbon atoms as donors,
and ClO4

− and lattice H2O oxygen atoms as acceptors (Table S5).
Complexes 1–4 join a family of structurally characterized coordination complexes containing LH

and L− as ligands. The to date characterized metal complexes are listed in Table 5 along with information
about the coordination mode of the ligands, the nuclearity/dimensionality of the products and the
coordination geometry of the metal ions involved. Perusal of Table 5 shows that 2, 3 and 4 are the first
structurally characterized nickel and cobalt complexes of any form (neutral or anionic) of the ligand.
The L− coordination modes 2.01111 and 1.10011 (Scheme 2) have been crystallographically established
for the first time in the Co(III) complexes 3 and 4. The rectangular [2 × 2] grid complex [Cu4Br2(L)4]Br2

(1) is structurally similar to complex [Cu4(L)4(H2O)2](NO3)4 [14], albeit with slight differences resulting
from the different nature of the ancillary inorganic ligand (Br− vs. H2O). Many (but not all) structural
characteristics of the square [2 × 2] grid complex [Ni4(NO3)2(L)4H2O](NO3)2 (2) resemble those of the
Mn(II) complexes [Mn4(CF3SO3)(L)4(H2O)3](CF3SO3)3 [15] and [Mn4(N3)4(L)4] [19].
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2.4. Magnetochemistry

Direct current (dc) magnetic susceptibility data (χ) on dried polycrystalline, analytically pure
samples of 1 and 2 were collected in the 1.8–310 K range in an applied field of 1 kOe. The data are
plotted as χ vs. T and χT vs. T plots in Figure 9; Figure 10. Magnetization data were collected as a
function of field from 0 to 50 kOe at 1.8 K and are presented in Figures S22 and S23. Although M vs. H
per mole may be presented in units of Bohr magneton, we present the data in units of emu/mol because
current literature uses these units commonly.

Figure 9. χ vs. T and χT vs. T plots for compound 1. Arrows on the plots indicate which y-axis.
Applies to which data. The solid line is the best fit of the χ vs. T data to the S = 1/2 dimer model; see
the text for details.

Figure 10. χ vs. T and χT vs. T plots for compound 2. Arrows on the plots indicate which y-axis
applies to. Which data. The solid line is the best fit of the χ vs. T data to the cyclic S = 1 tetramer model;
see the text for details.

94



Magnetochemistry 2019, 5, 39

Data for 1 show a maximum in χ near 175 K indicative of significant antiferromagnetic interaction
(Figure 9). The χT decreases as T decreases reaching ~0 emu K/mol Oe at ~25 K. Magnetization for this
complex reaches a saturation value of 36 emu/mol at 30 kOe, which is clearly too small for the bulk
sample (Figure S22). A saturation value of nearly 24,000 emu/mol for four CuII ions would be expected,
indicating that the bulk sample is in a singlet ground state at 1.8 K and only a minor paramagnetic
impurity is providing the observed moment. Susceptibility data for 1 were fit to a model for an S = 1/2
dimer using MAGMUN 4.1 [47]. The quality of fit is high through the maximum in χ, but begins
to deviate below 75 K, where the magnetism is dominated by the contributions of a trace magnetic
impurity. The results yield a Curie constant (C) of 1.66(3) emu K/mol Oe (0.41/CuII), J = −198(2) K
(using the Hamiltonian H = −JΣS1·S2) and ρ = 0.4(1)% (ρ is the paramagnetic impurity). Attempts to
fit the data to the same model with a Curie–Weiss correction to account for interdimer interactions
yielded virtually identical results and a ϑ value of −0.9(2) indicating that the interdimer interactions
are not significant.

The symmetry and rectangular nature of the complex (Figure 1 and Figure S17) suggest a
model with two J values, one for the diazine (or hydrazonate)-mediated exchange and one for the
alkoxido-mediated exchange. Attempts to fit the data to such a model with two J values resulted in
J1 = −195(2) K and J = −1(1) K, again indicating that the exchange between the diazine-bridged dimeric
units of the tetranuclear cation is negligible. This observation is in very good agreement with results
for the structurally similar complex [Cu4(L)4(H2O)2](NO3)4 by the group of Thompson [14]. As in the
case of the present complex 1, the CuII centers in the nitrate complex exist as diazine-bridged pairs of
alkoxido-bridged dimers and they reported a value of ~ −215 K through the diazine bridge and 0 K
through the oxygen bridge. The J2 = ~ 0 K value is consistent with the orthogonal alkoxide bridging
arrangement [14]. The J1 value for 1 is entirely consistent with the large (155.3◦) Cu-N-N-Cu torsion
angle at the diazine bridge and the well established correlations involving this angle and exchange
integral for a series of dinuclear copper(II) complexes [14,48,49] in which the metal ions are bridged
by a diazine group. Thus, 1 can be considered as a practically isolated pair of antiferromagnetically
coupled dinuclear units.

The magnetization of compound 2 reaches a value of ~1400 emu/mol at 50 kOe, well below the
expected saturation value for four NiII ions (~48,000 emu/mol), but the magnetization is still clearly
rising (Figure S23) indicating that a significantly larger field would be needed to saturate the sample.
This suggests the presence of measurable antiferromagnetic exchange in the complex, but also shows
that the bulk material is still paramagnetic at 1.8 K, unlike sample 1. The χT product decreases as
T decreases rather smoothly in the 310–100 K range, and then more rapidly in the 100–1.8 K range
reaching a value of ~0.05 emu K/mol Oe at 1.8 K.

Susceptibility data for 2 were fit to a model for an S = 1 cyclic (square) tetramer using MAGMUN
4.1 [47]. The fit is qualitatively acceptable, but overestimates the temperature of the maximum in
χ by ~5 K, although the value of χ at χmax is well reproduced (Figure 10). The fitted values are
Curie constant = 4.61(3) emu K/mol Oe (1.15/NiII), J = −12.6(1) K (H = −JΣS1·S2), ρ = 0.25(5) % and
D = 22.5(5) K. Attempts to fit the data to a simple S = 1 dimer model were unsuccessful. Although
somewhat large, the fitted value for the single-ion anisotropy of the NiII ions (D = 22.5(5) K) is not
without precedent [50–52] and substantially larger values have been reported [53–55]. It is clear that
the structure has lost its solvate lattice molecules, based on the analytical data and on the powder
X-ray diffraction pattern for the sample used for magnetic data collection, and as a result the symmetry
of the system could have been reduced. The quality of fit suggests that the cyclic S = 1 model is
reasonable, but the slight change in structure may render the superexchange pathways inequivalent
and thus the values presented likely represent an average of J, C and D values. The inequivalence of
the superexchange pathways might also be due to the different nature of the terminal donor atoms for
the NiII centers of the cation [Ni4(NO3)2(L)4(H2O)]2+. In any case, and especially in the absence of a
better understanding of the structure of the desolvated material, additional detailed analysis would
likely lead to an overinterpretation of the data available.
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The antiferromagnetic J coupling between the NiII centers in the cation of cluster 2 is clearly
associated with the large Ni-O-Ni angles [7,39,56,57]; the Ni1-O1-Ni2, Ni2-O3-Ni4, Ni4-O4-Ni3 and
Ni3-O2-Ni1 (Figure 3 and Figure S3) are 138.4(1), 138.2(1), 137.5(1) and 138.5(1)◦, respectively.

3. Experimental Section

3.1. Materials, Physical and Spectroscopic Measurements

All manipulations were performed under aerobic conditions using reagents and solvents
(Alfa Aesar, Karlsruhe, Germany; Aldrich, Tanfrichen, Germany) as received. The organic ligand
LH was synthesized in typical yields of >95% as described in the literature [14–16,18], i.e., by the 1:1
reaction between picolinic acid hydrazide and 2-acetylpyridine in refluxing EtOH for 3 h. Its purity
was checked by microanalyses (C, H, N), determination of the melting point (found, 193–194 ◦C;
reported, 195–197 ◦C), and 1H NMR and IR spectra. Elemental analyses (C, H, N) were performed by
the University of Patras (Patras, Greece) microanalytical service. Fourier transform infrared (FT–IR)
spectra were recorded using a Perkin-Elmer 16PC spectrometer (Perkin-Elmer, Watham, MA, USA)
with samples prepared as KBr pellets and as nujol or hexochlorobutadiene mulls between CsI disks.
1H NMR spectra of the diamagnetic Co(III) complexes were recorded on a 400 MHz Bruker Avance
DPX spectrometer (Bruker, Karlsruhe, Germany) using (Me)4Si as internal standard. UV/VIS solution
spectra were recorded using a Specord 50 Plus spectrophotometer (Analytik Jena, Jena, Germany).
Magnetic susceptibility data were collected using a Quantum Design MPMS-XL SQUID magnetometer
(San Diego, CA, USA). Samples of 1 and 2 were ground and loaded into gelatin capsules. Magnetization
data were collected as a function of field from 0 to 50 kOe at 1.8 K. Several data points were collected
as the field was reduced back to zero to check for hysteresis effects; none were observed. Susceptibility
data were collected for the background signal of the sample holder (measured independently), for the
diamagnetic contributions of the constituent atoms as estimated via Pascal’s constants [58], and for the
temperature-independent paramagnetism of the CuII and NiII ions.

3.2. Synthesis of Complex [Cu4Br2(L)4]Br2·0.8H2O·MeOH (1·0.8H2O·MeOH)

To a stirred solution of LH (0.048 g, 0.20 mmol) in MeOH (20 mL) were added solids NaO2CPh
(0.029 g, 0.20 mmol) and CuBr2 (0.045 g, 0.20 mmol). The resulting green slurry was stirred at room
temperature for a further 30 min, filtered to remove an amount of NaBr and the green-brown filtrate
was left undisturbed in a closed flask. X-ray quality, greenish brown crystals of the product were
formed over a period of 3 days. The crystals were collected by filtration, washed with cold MeOH
(2 × 1 mL) and Et2O (3 × 2 mL), and dried in a vacuum dessicator over P4O10 overnight. The yield
was 62%. The complex was satisfactorily analyzed as lattice solvent-free, i.e., as 1. Analyses calculated
for C52H44N16O4Cu4Br4 (found values in parentheses): C 40.79 (41.02), H 2.90 (2.84), N 14.64 (14.50) %.
IR bands (KBr, cm−1): 3080w, 3035w, 2960w, 1594m, 1576sh, 1534s, 1474s, 1436w, 1370s, 1322w, 1290m,
1258m, 1180m, 1144w, 1100w, 1080w, 1042m, 1016m, 920m, 804sh, 780m, 752m, 716m, 710m, 688m,
654sh, 640w, 574w, 565w, 504w, 462w. UV/VIS bands (MeOH, nm): 245, 280sh, 370, ~745.

3.3. Synthesis of Complex [Ni4(NO3)2(L)4(H2O](NO3)2·0.2H2O·3EtOH (2·0.2H2O·3EtOH)

To a stirred slurry of LH (0.048 g, 0.20 mmol) in CH2Cl2 (2 mL) was added a green solution
of Ni(NO3)2·6H2O (0.058 g, 0.20 mmol) in EtOH (10 mL). The resulting greenish brown solution
was stirred at room temperature for a further 45 min, filtered and the filtrate was allowed to stand
undisturbed in a closed flask. X-ray quality brown crystals of the product were precipitated over a
period of two weeks. The crystals were collected by filtration, washed with cold EtOH (2 × 2 mL)
and Et2O (5 × 3 mL), and dried in a vacuum dessicator over anhydrous CaCl2. Typical yields were in
the range 30–35%. The complex was satisfactorily analyzed as lattice solvent-free, i.e., as 2. Analyses
calculated for C52H46N20O17Ni4 (found values in parentheses): C 42.84 (42.67), H 3.19 (3.26), N 19.22
(18.87) %. IR bands (KBr, cm−1): 3420mb, 3070w, 3030w, 2950w, 1598w, 1560w, 1522m, 1466m, 1438w,
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1384s, 1368sh, 1294w, 1260w, 1182w, 1162w, 1144w, 1102w, 1066w, 1048w, 1026w, 922w, 810w, 780w,
761w, 714w, 694w, 642w, 562w, 505w, 420w. UV/VIS bands (MeOH, nm): 250sh, 290sh, 365, 615, ~980.
The same complex can be prepared -in comparable yields- using 1 equiv. of Et3N per ligand in the
reaction mixture.

3.4. Synthesis of Complex [Co2(L)3](ClO4)3·0.8H2O·1.3MeOH (3·0.8H2O·1.3MeOH)

To a stirred yellow solution of LH (0.024 g, 0.10 mmol) in MeOH (10 mL) was added solid
Co(ClO4)2 ·6H2O (0.037 g, 0.10 mmol). The solid soon dissolved and the resulting brown solution was
stirred overnight at room temperature, filtered and the filtrate was allowed to stand undisturbed in
a closed flask. X-ray quality brown crystals of the product were precipitated over a period of 3–4
days. The crystals were collected by filtration, washed with cold MeOH (1 mL) and Et2O (3 × 1 mL),
and dried in air. The yield was 48% (based on the available LH). The complex was satisfactorily
analyzed as [Co2(L)3]·H2O, i.e., as 3·H2O. Analyses calculated for C39H35N12O16CoCl3 (found values
in parentheses): C 40.66 (40.54), H 3.07 (3.12), N 14.59 (14.74) %. IR bands (KBr, cm−1): 3422mb, 3094w,
2951w, 2902w, 1606m, 1508m, 1458m, 1436m, 1376m, 1334w, 1300w, 1258w, 1178m, 1105sh, 1088s,
918w, 806w, 765sh, 756w, 718w, 688w, 662w, 624m, 510w, 412w. UV/VIS bands (MeCN, nm): 295, 395,
440, 580, 735. 1H NMR peaks (DMSO-d6, δ/ppm): 8.59(d, 3H), 8.25(dd, 6H), 8.18(d, 3H), 8.02(d, 3H),
7.93(t, 3H), 7.55 (mt, 6H), 3.35(s, 9H), 3.17(s, 3H). The same complex can be prepared-in slightly higher
yields(~55%)-by the addition of 1 equiv. of Et3N per ligand in the reaction mixture.

3.5. Syntheses of Complex [Co(L)2](ClO4)(4)

Co(ClO4)2 ·6H2O (0.037 g, 0.10 mmol) and LH (0.072 g, 0.30 mmol) were dissolved in MeOH (9 mL).
To the resulting red solution, Et3N (0.042 mL, 0.30 mmol) was slowly added. The solution became dark
brown-red, was stirred overnight, filtered and left undisturbed in a closed flask. X-ray quality brown
crystals of the product were precipitated over a period of 2–3 days. The crystals were collected by
filtration, washed with cold MeOH (2 mL) and Et2O (10 × 2 mL), and dried in air. Typical yields were
in the 50–55% range (based on the available cobalt). Analyses calculated. for C26H22N8O6CoCl (found
values in parentheses): C 49.03 (49.37), H 3.49 (3.45), N 17.60 (16.99) %. IR bands (KBr, cm−1): 3074w,
3012w, 2956w, 2933w, 1602m, 1496s, 1474sh, 1450s, 1430sh, 1372s, 1328m, 1310w, 1292w, 1256w, 1170m,
1118s, 1092sh, 1080s, 994w, 916w, 812w, 782m, 772sh, 754w, 742w, 718m, 704m, 662w, 624m, 512w, 495w,
429w. UV/VIS bands (MeCN, nm): 285, 405, 450, 590, ~760. 1H NMR peaks (DMSO-d6, δ/ppm): 8.58(d,
2H), 8.24(q, 4H), 8.15(d, 2H), 8.02(d, 2H), 7.88(t, 2H), 7.53 (mt, 4H), 3.34(s, 6H). Complex 4 can also
be prepared by the 1:1 reaction between 3 and LH in refluxing MeOH in the absence of external base
(yield <20%) and in the presence of LiOH (yield ~65%), Equations (6) and (7), respectively (vide supra).

3.6. Single-Crystal X-ray Crystallography

Suitable crystals of 1·0.8H2O·MeOH (0.09× 0.13× 0.18 mm), 2·0.2H2O·3EtOH (0.22 × 0.32 × 0.55 mm),
3·0.8H2O·1.3MeOH (0.07 × 0.12 × 0.17 mm) and 4 (0.19 × 0.29 × 0.30 mm) were taken from the
mother liquor and immediately cooled to −113 ◦C (3·0.8H2O·1.3MeOH) and −103 ◦C (for the
other three compounds). Diffraction data were collected on a Rigaku R-AXIS SPIDER Image Plate
diffractometer using graphite-monochromated Mo Kα (1·0.8H2O·MeOH, 2·0.2H2O·3EtOH) or Cu Kα

(3·0.8H2O·1.3MeOH, 4) radiation. Data collection (ω-scans) and processing (cell refinement, data
reduction and empirical absorption correction) were performed using the CrystalClear package [59].
The structures were solved by direct methods using SHELXS-97 [60] and refined by full-matrix
least-squares techniques on F2 with SHELXL, ver. 2014/6 [61]. Important crystallographic and
refinement details are listed in Table S1. All non-H atoms were refined anisotropically. The H atoms of
the four structures were either located by difference maps and refined isotropically or were introduced
at calculated positions and refined as riding on their corresponding bonded atoms. Plots of the
structures were drawn using the Diamond 3 program package [62].
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The X-ray crystallographic data for the complexes have been deposited with CCDC
(reference CCDC 1915158, 1915160, 1915159 and 1915157 for 1·0.8H2O·MeOH, 2·0.2H2O·3EtOH,
3·0.8H2O·1.3MeOH and 4, respectively). They can be obtained free of charge at http://www.ccdc.cam.
ac.uk/conts/retrieving.html or from the Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge, CB2 1EZ, UK: Fax: +44-1223-336033; or e-mail: deposit@ccdc.cam.ac.uk.

4. Concluding Comments and Perspectives

It is rather difficult to conclude on a project that is still at its infancy. The present work extends the
body of results (Table 5) that emphasize the ability of L− to form interesting structural types in 3d-metal
chemistry. [2 × 2] rectangular (1) and square (2) grids have been characterized, while the interesting
triple helicate-type dinuclear complex 3 was also isolated. Complexes 2–4 are the first, structurally
characterized cobalt and nickel complexes of LH or L−, while the two L− coordination modes in the
Co(II) complexes (Table 5, Scheme 2) have been confirmed for the first time, emphasizing the flexibility
and versatility of this ditopic ligand. The magnetic properties of 1 and 2 have been interpreted using
one exchange interaction, and the former can be described as consisting of two antiferromagnetically
coupled dinuclear units.

We believe that the research described herein has not exhausted new results. Indeed, studies in
progress are producing additional products with other, magnetically interesting 3d-metal ions; our
belief is that we have scratched only the surface of the coordination chemistry of LH/L−. As far as
future perspectives are concerned, we shall try to prepare lanthanide(III) clusters (only mononuclear
complexes with the neutral ligand are known [17]; see also Table 5) and 3d/4f-metal complexes, based
on L−, with interesting magnetic properties. We are also trying to isolate complexes with ditopic
ligands that are similar to LH, but with groups other than the methyl group (Scheme 1), because it is
currently not evident whether the preparation and stability of 3d-metal complexes are dependent on
the particular nature of the R substituent on the carbon atom next to the 2-pyridyl group.

Supplementary Materials: The following are available online at http://www.mdpi.com/: Figures S1–S4: IR
spectra of the free ligand and representative complexes. Figures S5–S12: Solution UV/VIS/Near-IR electronic
spectra of the complexes. Figures S13–S16: 1H NMR spectra of the diamagnetic Co(III) complexes in DMSO-d6.
Figure S17: ORTEP plot of the tetranuclear cation [Cu4Br2(L)4]2+. Figure S18: The 3D arrangement of complex
1·0.8H2O·MeOH. Figure S19: ORTEP plot of the tetranuclear cation [Ni4(NO3)2(L)4(H2O]2+. Figure S20: ORTEP
plot of the mononuclear cation [Co(L)2]+. Figure S21: Various structural plots of the cation [Co2(L)3]3+. Figure
S22: Magnetization data for complex 1 at 1.8 K. Figure S23: Magnetization data for complex 2 at 1.8 K. Table S1:
Crystallographic data for the four complexes. Tables S2–S5: H-bonding interactions in the crystal structures of
the complexes.
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Abstract: When using single molecule magnets (SMMs) in spintronics devices, controlling
the quantum tunneling of the magnetization (QTM) and spin-lattice interactions is important.
To improve the functionality of SMMs, researchers have explored the effects of changing the
coordination geometry of SMMs and the magnetic interactions between them. Here, we report
on the effects of the octa-coordination geometry on the magnetic relaxation processes of dinuclear
dysprosium(III) complexes in the low-temperature region. Mixed ligand dinuclear Dy3+ triple-decker
complexes [(TPP)Dy(Pc)Dy(TPP)] (1), which have crystallographically equivalent Dy3+ ions, and
[(Pc)Dy(Pc)Dy(TPP)] (2), which have non-equivalent Dy3+ ions, (Pc2− = phthalocyaninato; TPP2− =
tetraphenylporphyrinato), undergo dual magnetic relaxation processes. This is due to the differences
in the ground states due to the twist angle (ϕ) between the ligands. The relationship between the
off-diagonal terms and the dual magnetic relaxation processes that appears due to a deviation from
D4h symmetry is discussed.

Keywords: Dy3+ ion; triple-decker; spin dynamics; octa-coordination geometry

1. Introduction

Rational design and synthesis of single molecular magnets (SMMs) and molecular nanomagnets
(MNMs) suitable for quantum information processing (QIP) in quantum computers (QCs) remains
difficult [1–7]. Over the past two decades, a wide range of SMMs with controlled spin relaxation
processes and high performance have been reported. The charge density distribution of oblate-type
lanthanoid ions, (like terbium(III) and dysprosium(III)), strongly improves axial coordination properties
of square antiprism (D4d), pentagonal bipyramidal (D5h), and “vent metallocene” type complexes
(SMM characteristics have been confirmed for C1 symmetry) [8–10]. In the D4d ligand field system, the
SMM characteristics can be controlled by manipulating the ground state via rotation of the ligands by
protonation/deprotonation [11,12], coupling of Tb3+-bisphthalocyaninato (Pc2−) complex with cadmium
ions, etc. [13]. Recently, several groups have shown the relationship between octa-coordination
environments and the magnetic relaxation processes of Tb3+-Pc2− multiple-decker SMMs along the C4

rotation axis. From these reports, correlations between the twist angle (ϕ), ligand field (LF) parameters,
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and the lowest ground state of Pc2− have been clarified [14]. However, the influence of the coordination
environment on the spin relaxation phenomena is not completely understood. In the case of Dy3+ ions,
the magnetic relaxation mechanism strongly depends on the electronic structure and can sometimes
be complicated. In 2003, Ishikawa and coworkers determined that the lowest ground states (Jz) of
the DyPc2 complex to be |Jz| = 13/2 by using magnetic measurements when ϕ is 45◦ and |Jz| = 11/2
when ϕ is 32◦ [15,16]. In our previous work, we have shown that for some complexes with two
crystallographically equivalent Dy3+ ions, the ground state is split by the Zeeman effect only if the
angle is 45◦, resulting in dual relaxation processes. There have been other attempts to elucidate the
identities of the dual processes by using theoretical and experimental approaches. Thus, it is important
to carefully design the coordination environment around the Dy3+ ion in order to investigate the
correlation between the magnetic relaxation process and the ground state in detail. In other words,
due to the sensitivity toward the coordination environment, Dy3+ complexes are easier to control
than Tb3+ complexes. In this paper, in addition to the dinuclear Dy3+ triple-decker complexes we
have reported so far, we discuss the relationship between coordination environment and magnetic
properties for (TPP)Dy(Pc)Dy(TPP)] (1) and [(Pc)Dy(Pc)Dy(TPP)] (2) (Pc2− = phthalocyaninato and
TPP2− = tetraphenylporphyrinato) with C4 symmetry.

2. Results and Discussion

2.1. Synthesis and Crystal Strucures

We synthesized the compounds following reported procedures [17]. Single crystal X-ray diffraction
analyses on triple-decker complexes 1 and 2 were performed to investigate the coordination environment
around the Dy3+ ions (Table S1). For 1, which crystallized in the tetragonal space group I4/m, the twist
angle (ϕ) between the outer TPP2− ligand and the inner Pc ligand was determined to be 4◦. Therefore,
the coordination environment around the Dy3+ ions has a slightly distorted square-prism (SP) structure.
Since the inner Pc2− ligand acts as a mirror plane in the molecule, the two Dy3+ ions are equivalent,
and the distance between them was determined to be 3.71 Å. This is a relatively long value among the
dinuclear Dy3+ triple-decker complexes reported so far. Compound 2 crystallized in the monoclinic
space group C21/c, and the Dy3+ ions are inequivalent. ϕ between the outer and the inner Pc2− ligands
was determined to be 39◦, meaning that it has a square-antiprism (SAP) structure. ϕ between the inner
Pc2− ligand and the TPP2− ligand was 14◦, which is indicative of a highly distorted SAP structure.

Besides the ϕ between the ligands in the multi-decker type SMM [18], the distance between the
coordination isoindole nitrogen atom (Niso) and the metal ions (d), and the angles between the C4 axis
and the direction of Dy3+–Niso (α) affect the properties of these type of SMMs [19]. From a comparison
of 1 and 2 with previously studied Dy3+ triple-decker complexes 1–6 (Table 1) [20,21], site A of 1 and 2

involving a TPP2− ligand has a small ϕ. Moreover, distances d2 and d3 between the Niso of the Pc2−
ligand and the metal ions, as indicated in Figure 1, are greater than those in other complexes. 6 has a
large d2 at the small ϕ site, and ϕ decreases with increases in d2 and d3. In other words, the TPP2−
ligands strongly push the Dy3+ ions to the outside of the complex.

The ground states of the Dy3+ ions can be estimated from the structure, and theoretical calculations
of electrostatic potentials distributed over α for the 4f-shells indicate that the ground state |JZ| is highly
dependent on αand d [22]. The ground states of 1 and 2 were estimated from the data in Table 1, and |JZ| =

11/2 and 13/2 are the lowest ground states, respectively. However, the |JZ| levels of these dinuclear Dy3+

triple-decker complexes are known to mix [19], and intermediate |JZ| levels have the lowest basal order
since α is near the magic angle of 54.7◦ [20,21]. Therefore, ϕdetermines the ground states of the Dy3+ ions.

Crystal packing diagrams for 1 and 2 are shown in Figure 2. The intermolecular Dy3+-Dy3+

distances along the c axis in 1 and 2 were determined to be 13.61 Å and 11.63 Å, respectively. The
molecules of 1 and 2 are rather well-separated from neighboring molecules due to the tetraphenyl
groups of the TPP2− ligands and chloroform molecules as crystal solvents (Table S2). Furthermore,
PXRD patterns for 1 and 2 at 293 K are slightly different from those simulated from X-ray single
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crystallographic data for 1 at 120 K because of partial elimination of crystal solvents (Figure S7). From
elemental analysis, some of the crystal solvent desorbed. However, the magnetic properties of the
same sample remained unchanged after several months, meaning that solvent desorption has little
effect on the magnetic properties. The crystal system is the same regardless of whether a solvent is
present or absent, meaning that it does not affect the magnetic measurements.

 

(a) (b) 

Figure 1. Top and side views of (a) [(TPP)Dy(Pc)Dy(TPP)] (1) and (b) [(Pc)Dy(Pc)Dy(TPP)] (2). The
bottom of (a) and (b) are enlargements of the coordination spheres around the Dy3+ ions. H atoms and
crystal solvents are omitted for clarity. Dy3+: light green, C: grey, and N: light blue.

 

(a) 

 

(b) 

Figure 2. Packing diagrams for (a) [(TPP)Dy(Pc)Dy(TPP)] (1) and (b) [(Pc)Dy(Pc)Dy(TPP)] (2).
Intermolecular Dy3+ distances indicated by black dotted arrows. H atoms and crystal solvents
are omitted for clarity. Dy3+: light green, C: grey, and N: light blue.
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Table 1. Selected crystallographic data for Dy3+-Pc triple-decker complexes.

Complex α1 [◦] α2 [◦] α3 [◦] α4 [◦] d1 [Å] d2 [Å] d3 [Å] d4 [Å] ϕA [◦] ϕB [◦]
[(TPP)Dy(Pc)Dy(TPP)] 1 59 46 46 59 2.39 2.67 2.67 2.39 4 4
[(Pc)Dy(Pc)Dy(TPP)] 2 57 49 45 60 2.35 2.57 2.72 2.37 39 14

[(Pc)Dy(ooPc)Dy(Pc)] 3 a 57 48 48 57 2.35 2.59 2.59 2.35 45 45
[(ohPc)Dy(ohPc)Dy(ohPc)] 4 b 57 47 47 57 2.35 2.60 2.60 2.35 27 27
[(obPc)Dy(obPc)Dy(obPc)] 5 c 57 48 48 57 2.35 2.60 2.60 2.35 32 32

[Dy4] 6 d 57 46 49 57 2.33 2.65 2.53 2.37 23 45
a ooPc = 2,3,9,10,16,17,23,24-octakis(octyloxy)phthalocyaninato; b ohPc2− = 2,3,9,10,16,17,23,24-octakis(hexyloxy)
phthalocyaninato; c obPc2− = 2,3,9,10,16,17,23,24-octakis(butoxy)phthalocyaninato; d [Dy(obPc)2]Dy(Fused-Pc)
Dy[Dy(obPc)2] (Fused-Pc4− =bis{72,82,122,132,172,182-hexabutoxytribenzo[g, l, q]-5, 10, 15, 20-tetraazaporphirino}[b,
e]benzenato).

2.2. Static Magnetic Properties

The static magnetic susceptibility of 1 and 2 were measured in the T range of 1.8–300 K using
a superconducting quantum interference device (SQUID) magnetometer. The χMT value at 300 K is
consistent with the value expected for the two Dy3+ ions (6H15/2, S = 5/2, L = 5, g = 4/3). Curie–Weiss
plots for 1 and 2 are shown in Figure 3. Linear approximation was performed over the entire T range
to obtain values of the Curie (C) (28.50 cm3 K mol−1 (1) and 28.20 cm3 K mol−1 (2)) and Weiss constants
(θ) (–2.33 K (1) and –1.97 K (2)) (Figures S8 and S9). In χMT versus T plots, the values for 1 decreased
with a decrease in T, reaching a minimum of 19.9 cm3 K mol−1 at 1.8 K, which indicates that magnetic
properties of the Dy3+ complexes mainly originate from LF effects, such as thermal depopulation of the
Stark sublevels [23–25]. As for 2, there was a slight increase in the χMT values when T < 4 K. Since the
intermolecular metal distance is sufficiently long [26], the increase is thought to be due to the magnetic
dipole interactions between the Dy3+ ions in the molecule. All Dy3+-Pc complexes so far reported
exhibit similar ferromagnetic behavior. However, the behavior of the χMT values for 1 is different from
the other Dy3+ triple-decker complexes, and an increase in the χMT values was not observed in the low
T region. Although the fact that the intermolecular distance is similar for each complex, the difference
in LF parameters of the Dy3+ ions has a dramatic effect. In other words, the increase in the off-diagonal
terms and the change in the LF splitting energy along with the change in symmetry are important
factors affecting the magnetic behavior. Fitting of the data was performed using the PHI program with
reported LF parameters [27]. However, we could not obtain consistent results for 1 and 2 because their
ground states are complicated due to mixing of the off-diagonal terms.

(a) (b) 

Figure 3. T dependence of χMT measured on powder samples of (a) 1 and (b) 2 in the T range of
1.8–300 K in an Hdc of 0.5 kOe. The inset is a magnified plot of 1.8–30 K.

In order to confirm the magnetic anisotropy of the molecule, T dependence of MH were performed
(Figure 4). For both complexes, the magnetization did not saturate up to 70 kOe. However, splitting
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of the M versus HT−1 plot occurred, indicating that not only depopulation occurred but also both
complexes had large magnetic anisotropies. In addition, butterfly-type hysteresis was not observed
during the MH measurements at 1.8 K. When uniaxial anisotropy is strong, the saturation magnetization
value (Ms) is expressed as Ms = 1/2 × g*(z) × S̃ where S̃ = 1/2 [28]. So, the Ms values of 1 and 2 were Ms

= 8.6 μB and Ms = 7.4 μB, calculated using |Jz| = 13/2 (g*(x) = g*(y) = 0, g*(z) = 17.3) and 11/2 (g*(x)
= g*(y) = 0, g*(z) = 14.7), respectively. Although the measured values are larger than the calculated
values (1: 13.6 μB, 2: 13.7 μB), they are smaller than the effective magnetic moments (μeff) of two Dy3+

ions (μeff = 21 μB).

 

(a) (b) 

Figure 4. Magnetic field (H) dependence of the magnetization (M) for powder samples of (a) 1 and (b)
2 in the T range of 1.8–20 K.

2.3. Dynamic Magnetic Properties

In order to investigate the magnetic relaxation processes, alternating current (ac) magnetic
susceptibility measurements were performed on powder samples of 1 and 2. For 2, the χM” values
were frequency (ν) dependent in the range of 0.1–1000 Hz in a zero magnetic field (Figures S10–S13),
whereas for 1, they were not. To clarify these differences, ac magnetic susceptibility measurements were
performed in different magnetic fields at 1.8 K. When H was in the range of 0–5 kOe, the magnetization
of both complexes underwent dual relaxation processes (Figure 5). As shown in Figure 6, the magnetic
relaxation times (τ) calculated from the χM” versus ν plot on the low ν side increased monotonically
with an increase in H, and the τ values calculated from the high ν side reached a local maximum in
specific applied Hdc. These results indicate that the maximum Hdc suppresses QTM and promotes
a direct process [29], and the results can be reproduced using a mixture of QTM, direct and Raman
processes with Equation (1) (Table S3):

τ−1 = AHnT +
B1

1 + B2H2 + D. (1)

In previous work, we have reported that compound 3 exhibited dual magnetic relaxation processes
when Hdc was larger than 2.5 kOe [14]. To understand the details of the dual magnetic relaxation
dynamics of 1 and 2, we analyzed the ratio of relaxation time ρ (= τ2/τ1). The ρ values of 1 correspond
to the occurrence of a single relaxation process in the Dy3+ SMM system. If the value is large enough
(>1000), dual magnetic relaxation processes are observed separately [30]. Since the splitting of relaxation
is observed at 0.25 kOe for 1 and 2, it can be said that it responds more sensitively to Hdc. This is
another indication that the ground states of Dy3+ ions are more complicated.
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(a) (b) 

Figure 5. ν dependence of the real (χM
′) and imaginary (χM”) parts of the ac susceptibilities of (a) 1

and (b) 2 in Hdc of 0–5 kOe at 1.8 K. Black solid lines were fitted by using an extended Debye model to
obtain τ. Argand plots are in the supporting information (Figures S16 and S17)

(a) (b) 

Figure 6. (a) τ versus H for 1 at 1.8 K obtained from the least-squares fitting using an extended Debye
model. τ from the high frequency region have the maxima each other. (b) τ versus H for 2. The data
were fitted using a mixture of as the quantum tunneling of the magnetization (QTM), direct and Raman
processes with the parameters listed in the SI.

ν dependences of the χM” values of 1 and 2 were measured in the range of 1–1000 Hz in various
Hdc, and a split in the χM” values was observed below 8 and 20 K, respectively. In a χM” versus T
plot, a peak top was observed in the T range below 2 K, indicating that the magnetic moment was not
frozen or that a different relaxation processes, like QTM, was dominate. We used the Kramers–Kronig
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equation [31–35], which infers the pre-exponential factor τ0 and the activation barrier Ueff from the
χM”/χM’ versus T (2.5–4 K) plot, to fit the data:

χM”/χM
′ = ωτ, (2)

χM”/χM
′ = ωτ0 + exp (Ueff/T), (3)

ln (χM”/χM
′) = ln (ωτ0) + Ueff/T. (4)

From a χM”/χM
′ plot for 1, Ueff was determined to be about 8.1 cm−1, and τ0 ≈ 10−7 s. For 2, Ueff

was determined to be about 2.7 cm−1, and τ0 ≈ 10−6 s (Figures S14 and S15). The small τ0 indicates, that
the contribution from an Orbach process becomes small. Figure 7 shows the relationship between Ueff

and ϕ [15,16]. From this figure, as ϕ decreases from 45◦, the activation energy tends to decrease. This
is because a contribution from the off-diagonal LF terms promotes QTM, and during the conversion
from SAP to SP geometries. Thus, B0

2 becomes smaller, and off-diagonal terms B4
4 and B4

6 become larger,
resulting in a narrower Ueff. It is thought that a small ϕ has a negative effect on the activation barrier.
In other words, the small ϕ of 1 and 2 cause a decrease in the activation barrier.

Figure 7. Ueff versus ϕ plots for related Dy3+-Pc single molecule magnets (SMMs). Blue dotted lines are
guides only. Dotted circles indicate the values for 1 and 2, and the color dots indicate 3–6 in Hdc. Since
2 and 6 have two different Dy3+ sites, the distribution of which could not be separated distribution,
both ϕ values are displayed.

To investigate the magnetic relaxation properties of 1 and 2 at low T, ν dependence measurements
were performed in an applied Hdc in the T range of 1.8–4.5 K. An Argand plot for both complexes
showed that a dual magnetic relaxation process occurred. τ for each component was calculated by
fitting the imaginary component of the ac magnetic susceptibility with the extended Debye model
(Equations S2 and S3, Figure 8), and using those values, an Arrhenius plot was obtained (Figure 9).
From a fitting with Equation (5) on the values for 1, τ obtained from the low ν side indicates that a
QTM process independent of T occurs, and that obtained from the high ν side is proportional to T−9,
meaning that it is a Raman process (Table S4). However, the fitting of the data for 1 is not accurate due
to large deviation in the τ values. In particular, when τ values at T > 2.5 K, the spin dynamics of 1

could not be determined. On the other hand, for 2, τ obtained from the low ν side is proportional to
T−1.7, and that obtained from the high ν side indicates that a direct process occurs. For both complexes,
the lowest ground state estimated from the crystal structure is expected to contain a large amount of
mixing. Therefore, even when a complex has crystallographically equivalent Dy3+ ions, dual relaxation
processes occur between mixed states in an applied magnetic field. In the case of 1, the D4h symmetry
around the Dy3+ ion has a large effect on the off-diagonal term, causing QTM to be dominant. In
addition, T is proportional to n ≈ −2 which could be reproduced using a PB process to fit the data.

109



Magnetochemistry 2019, 5, 65

However, since Raman processes can involve acoustic-optical phonons (n = 1–6) [18], it is difficult to
separate each contribution due to the complicated ground state of 2.

τ−1 = AHnT + CTm + τ−1
QTM. (5)

(a) (b) 

Figure 8. ν dependence of the out of phase (χM”) parts of the ac magnetic susceptibilities of 1 (a) and 2

(b) measured in the T range of 1.8–4.5 K in Hdc. Black solid lines were fitted by using an extended
Debye model to obtain τ. Argand plots are located in the supporting information (Figures S18 and S19).

(a) (b) 

Figure 9. An Arrhenius plot for (a) 1 and (b) 2, for which the τ values were obtained from χM” versus
ν plots in Hdc of 1.3 and 2 kOe, respectively, in the T range of 1.8–4.5 K. The blue circles indicate the τ
values from the low ν region and red circles indicate those from the high ν region. Black solid lines
were fitted by using Equation (5).

110



Magnetochemistry 2019, 5, 65

3. Materials and Methods

3.1. Synthesis

Solvents were used without further purification. Dy(acac)3·4H2O and the free ligand
were purchased from TCI Tokyo Chemical Industry Co., LTD, Tokyo, Japan. Dy(acac)3·4H2O
(180 mg, 0.40 mmol) and H2TTP (tetraphenylporphyrin) (150 mg, 0.25 mmol) were added to dry
1,2,4-trichlorobenzene (40 mL). The solution was refluxed under nitrogen for 4 h. After cooling, Li2Pc
(158 mg, 0.60 mmol) was added to the mixture. Then, the solution was refluxed for 12 h. After
cooling, the reaction mixture was added to n-hexane (500 mL). The obtained solid was purified by
using column chromatography on silica gel with chloroform as the eluent. [(TTP)Dy(Pc)Dy(TTP)]
(1) was obtained from a deep brownish red fraction, which was the first fraction, by removing the
solvent (16%), and [(Pc)Dy(Pc)Dy(TTP)] (2) was obtained from the dark green second fraction (34%).
Spectroscopic data used for characterization are described in the SI (Figures S5 and S6). Column
chromatography (C-200 silica gel, Wako and Sephadex G-10, Pharmacia Biotech) was used to remove
the remaining impurities. Dark red block crystals of 1 were obtained from chloroform/n-hexane (27
mg). ESI-MS: m/z (%): 2062.47242 (100) [M−1+] (Figures S1 and S2); elemental analysis calcd (%) for
C120H72N16Dy2·4CHCl3: C 58.62, H 3.02, N 8.82; found: C 60.03, H 3.21, N 8.89. Black fine needle
crystals of 2 were obtained from chloroform/n-hexane (83 mg). ESI-MS: m/z (%): 1962.38956 (100) [M+]
(Figure S3 and S4); elemental analysis calcd (%) for C108H60N20Dy2·CHCl3: C 60.01, H 2.84, N 12.72;
found: C 62.91, H 3.28, N 13.36. The results of the elemental analysis for 2 indicates desorption of
some of the CHCl3 molecules compared with the number of CHCl3 molecules calculated from the
crystal structure.

3.2. Physical Measurements

Elemental analyses were conducted on a PerkinElmer 240C elemental analyzer (PerkinElmer,
Waltham, MA, USA) at the Research and Analytical Centre for Giant Molecules, Tohoku University.
UV-Vis-NIR spectra were acquired using CHCl3 solution on a Shimadzu UV-3100pc (Shimadzu, Kyoto,
Japan). IR spectroscopy was performed on ATR method on FT/IR-4200 spectrometer at 298 K. Magnetic
susceptibility measurements were conducted on a Quantum Design SQUID magnetometer MPMS-XL
and MPMS-3 (Quantum Design, San Diego, CA, USA) in the T and dc field ranges of 1.8–300 K and
±50 kOe, respectively. AC measurements were performed in the frequency range of 0.1–1000 Hz with
an ac field amplitude of 3 Oe. A polycrystalline sample suspended in n-eicosane was used for the
measurements. Crystallographic data for 1 and 2 were collected at 120 K on a Rigaku Saturn724+ CCD
Diffractometer (Rigaku, Tokyo, Japan) with graphite-monochromated Mo Kα radiation (λ = 0.71075 Å)
produced using a VariMax microfocus X-ray rotating anode source. Single crystals with dimensions of
0.10 × 0.07 × 0.01 mm3 (1) and 0.15 × 0.20 × 0.04 mm3 (2) were used. Data processing was conducted
using the Crystal Clear crystallographic software package [36]. The structures were solved by using
direct methods using SIR-92 [37]. Refinement was carried out using the Yadokari-XG package [38]
and SHELXT. The non-Hydrogen atoms were refined anisotropically using weighted full-matrix least
squares on F. Hydrogen atoms attached to the carbon atoms were fixed using idealized geometries and
refined using a riding model. CCDC 1940003 for 1 and 1940004 for 2. Powder X-ray diffraction was
conducted on a Bruker AXS D2 phaser (Bruker Corporation Billerica, MA, USA).

4. Conclusions

Complexes 1 and 2 were synthesized similar to previously reported Dy3+-Pc complexes with a
TPP2− ligand. The TPP2− ligands induce a smaller twist angle (ϕ) between the ligands than those in
the previous complexes due to the effects of steric repulsion from the phenyl group. Although 1 has
D4h symmetry due to the two TPP2− ligands, 2 has lower symmetry due to having only one TPP2−.
From dc magnetic measurements on both complexes, the χMT values decreased due to depopulation.
Measurement of M-HT−1 indicated uniaxial anisotropy, but it is smaller than the expected values for
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a pseudospin model. No hysteresis opening at 1.8 K was observed, suggesting a mixture of ground
states, which is consistent with the estimation of the ground state using the value of α obtained from
the crystal structure data. In addition, dual slow magnetization relaxation was observed for both
complexes from ac magnetic susceptibility measurements in an applied Hdc. Ueff calculated by using
the Kramers–Kronig equation is very small and corresponded to the tendency of previous triple-decker
compounds to decrease with decrease of ϕ. From above the results, 1 and 2 are field-induced SMMs.
For 1, QTM and Raman processes occur due to the symmetry of D4h, whereas for 2, mixed relaxation
(Raman, PB) and QTM processes occur. The contributions of the Raman and PB processes must be
clarified. The magnetic processes involve spin relaxation in mixed ground states, and the off-diagonal
term is dominant. This is different from conventional dinuclear Dy3+ complexes. Multiple relaxation
processes could be turned on by adjusting ϕ to 4◦ (1) and 14◦ (2), and this can be used to prepare
functional SMMs whose characteristics can be switched on and off by changing ϕ.

Supplementary Materials: The following are available online at http://www.mdpi.com/2312-7481/5/4/65/s1.
Figure S1: ESI-MS spectrum of 1 in CHCl3. The peak at 2062.47242 corresponds to [M-1+]. Figure S2: Experimental
(top) and simulated (bottom) ESI-MS spectra of 1 in CHCl3. The peak at 2062.47242 corresponds to [M−1+]. Figure
S3: ESI-MS spectrum of 2 in CHCl3. The peak at 1962.38956 corresponds to [M+]. Figure S4: Experimental (top)
and simulated (bottom) ESI-MS spectra of 2 in CHCl3. The peak at 1962.38956 corresponds to [M+]. Figure S5:
IR spectrum for 1 (top) and 2 (bottom) by using an ATR method at 298 K. Figure S6: UV-vis-NIR spectra for 1

(top) and 2 (bottom) in CHCl3 (5.1 × 10–3 (1), and 4.7 × 10–3 (2)) at 298 K. Figure S7: PXRD patterns for 1 (top)
and 2 (bottom). Figure S8: Curie–Weiss plot for 1. Linear approximation is performed over the entire T range,
from which the values of Curie constant (C) (28.50 cm3 K mol−1) and Weiss constant (θ) (–2.33 K) were obtained.
Figure S9: Curie–Weiss plot for 2. Linear approximation is performed over the entire T range, from which the
values of Curie constant (C) (28.20 cm3 K mol−1) and Weiss constant (θ) (–1.97 K) were obtained. Figure S10:
Frequency (ν) and temperature (T) dependences of the (a) in-phase (χM

′) and (b) out-of-phase (χM”) ac magnetic
susceptibilities of 1 in 0 kOe. Figure S11: Frequency (ν) and temperature (T) dependences of the (a) in-phase (χM

′)
and (b) out-of-phase (χM”) ac magnetic susceptibilities of 2 in 0 kOe. Figure S12: Frequency (ν) and temperature
(T) dependences of the (a) in-phase (χM

′) and (b) out-of-phase (χM”) ac magnetic susceptibilities of 1 in 1.3 kOe.
Figure S13: Frequency (ν) and temperature (T) dependences of the (a) in-phase (χM

′) and (b) out-of-phase (χM”)
ac magnetic susceptibilities of 2 in 2 kOe. Figure S14: χM”/χM’ versus T (2.5–4 K) plot for 1. Figure S15: χM”/χM’
versus T (2.5–4 K) plot for 2. Figure S16: Argand plots (χM” versus χM

′) for 1 at 1.8 K in several dc magnetic
fields (0-5 kOe). Black solid lines were guides for eye. Figure S17: Argand plots (χM” versus χM

′) for 2 at 1.8 K in
several dc magnetic fields in the range of 0–5 kOe. Black solid lines were guides for eye. Figure S18: Argand plots
(χM” versus χM

′) for 1 in 1.3 kOe in the T range of 1.8–4.5 K. Black solid lines are guides for the eye. Figure S19:
Argand plots (χM” versus χM

′) for 1 in 2 kOe field in the T range of 1.8–4.5 K. Black solid lines are guides for the
eye. Table S1: Selected crystallographic data for 1 and 2. Table S2: Selected crystallographic data for 1 and 2. Table
S3: Parameters for fitting the τ verses H plots. Table S4: Parameters of fitting for τ verses T plot.
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Abstract: A possibility of the intramolecular ferromagnetic (FM) interaction in pyrazole-bridged
dinuclear Mn(II), Fe(II), Co(II), and Ni(II) complexes is examined by density functional theory (DFT)
calculations. When azide is used for additional bridging ligand, the complexes indicate the strong
antiferromagnetic (AFM) interaction, while the AFM interaction becomes very weak when acetate
ligand is used. In the acetate-bridged complexes, an energy split of the frontier orbitals suggests
the orbital counter-complementarity effect between the dxy orbital pair, which contributes to the FM
interaction; however, a significant overlap of other d-orbital pairs also suggests an existence of the
AFM interaction. From those results, the orbital counter-complementarity effect is considered to be
canceled out by the overlap of other d-orbital pairs.

Keywords: pyrazole-bridged dinuclear metal complex; effective exchange integral (J); density
functional theory (DFT); broken-symmetry (BS) method; orbital complementarity

1. Introduction

Since the discovery of single-molecule magnets (SMMs) [1–3], a huge number of studies have been
devoted to finding the compounds with a higher blocking temperature (TB). Because a blocking barrier
height (Ueff) is in proportion to |D|S2, where D and S are magnetic anisotropy and spin size, respectively,
a larger (negative) D or larger S is required to realize the higher TB. In recent years, for example,
lanthanide ions such as Tb(III) or Dy(III) have been introduced to enlarge |D| values by increasing
the magnetic anisotropy. An alternative way to realize the high-TB compound is an introduction
of a plural number of metal ions to increase the spin size S. Because it is usually difficult to align
the metal ions in the ferromagnetic manner, sometimes, the ferrimagnetic interaction using different
valencies such as Mn(IV)/Mn(III) has been utilized to increase the size of S [3]. If we have rational and
effective guidelines to align spins on each metal ion ferromagnetically, however, the size of S is easily
increased. The ferromagnetic interaction is often explained by the orbital degeneracy due to the orbital
orthogonality. The orbital orthogonality has succeeded in the explanation of many ferromagnetic
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materials [4]. For example, in the Prussian blue analogues (PBA), which is one of the ferromagnetic
materials, the orbital degeneracy originating in the orthogonality between t2g and eg orbitals causes
the ferromagnetic interaction [5–8]. The orbital orthogonality found in such PBA analogues, however,
requires the linearly aligned metal–ligand–metal structures, as well as the specific combination of metal
ions such as Cr(III)/Cr(II), so that it is considered to have less degrees of freedom in molecular structures.
On the other hand, it has been known that some heterogeneous bridging ligands between two Cu(II)
ions make different contributions to the magnetic exchange interactions [9,10]. A pyrazole, which is
a heterocyclic five-membered ring compound, is often used as a bridging ligand between two metal
ions [9–12]. Kida, Okawa, and co-workers reported that pyrazole-bridged dinuclear-Cu(II) complexes
with azide and acetate as counter bridging-ligands shown in Figure 1 exhibit anti-ferromagnetic (AFM)
and ferromagnetic (FM) behavior, respectively [9,10]. They explained this phenomenon by an orbital
complementarity/counter-complementarity that originates in the orbital interaction between Cu(II)
and bridging-ligands. On the other hand, the theoretical studies with ab initio and density functional
theory (DFT) calculations have been one of the powerful tools for the investigation of the effective
exchange integrals (J), especially for the polynuclear metal complexes [13–19]. Up to now, there have
been only several papers that examine the exchange interactions of those complexes by theoretical
calculations [14–18]; furthermore, those are devoted to elucidating the mechanism of the ferromagnetic
interaction between two metal ions. The concept of the orbital counter-complementarity, however,
predicts the ferromagnetic materials from differences in the phase of molecular orbitals between
ligands and metals; therefore, it can be applied to the theoretical design of ferromagnetic molecules.
As described below, it is considered that the magnetic interaction is not necessarily ferromagnetic,
except for the Cu(II) complex, because of competition between the ferromagnetic interaction by orbital
counter-complementarity and antiferromagnetic interaction by direct d–d overlap. In this study, as the
first step for the molecular design, we examine whether this concept can be applied to metal ions,
except for Cu(II), by introducing them into the model structures. Here, we examine the high-spin
species of divalent 3d metal ions; Mn(II), Fe(II), Co(II), and Ni(II).

 

complex 1 

 

complex 2 

Figure 1. Dinuclear Cu(II) complexes bridged by azide (complex 1) and acetate (complex 2) ligands.

2. Theoretical Background

2.1. Orbital Complementarity and Counter-Complementarity

The concept of the orbital complementarity and counter-complementarity is briefly explained
here using the dinuclear copper(II) complexes illustrated in Figure 1 [9,10]. Because each Cu(II)
ion has a spin in the dxy orbital, two Cu(II) ions in the complex form π-type symmetric bonding
(ϕs) and anti-symmetric anti-bonding (ϕa) orbitals within the xy plane, as illustrated in Figure 2.
The metal–metal bonding and anti-bonding orbitals also interact with the bridging-ligand orbitals.
The pyrazole (ϕpz) ligand, which provides an anti-symmetric coordination orbital, interacts with the
anti-symmetric (ϕa) orbital and forms in-phase (ϕa + ϕpz) and out-of-phase (ϕa −ϕpz) orbitals. In the
case of complex 1, the azide ligand orbital (ϕaz) can interact with ϕa (Figure 2a), and the out-of-phase
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orbital (ϕ∗
a−(pz+az)

) becomes unstable, while the bonding-orbital ϕs does not interact with ligand
orbitals. As a result, two spins belong to the lower ϕs rather than ϕ∗

a−(pz+az)
, and thus the AFM state is

predicted to become the ground state. On the other hand, in the case of complex 2, ϕa and ϕs interact
with pyrazole (ϕpz) and acetate (ϕac), respectively. Consequently, the two formed out-of-phase orbitals,
that is, ϕ∗a−pz and ϕ∗s−ac, tend to be quasi-degenerate. Therefore, the FM state is predicted to become
the ground state of complex 2. Those explanations, however, assume an interaction among ligand
orbitals and ϕa (and ϕs) orbitals that consist of dxy of Cu(II). As mentioned above, we examine the
high-spin species of Mn(II), Fe(II), Co(II), and Ni(II), because the low-spin species do not have spins
in the dxy orbital. Because metal ions examined in this paper have more spins (e.g., s = 5/2, 2, 3/2,
and 1 for Mn(II), Fe(II), Co(II), and Ni(II), respectively), the direct overlap between other d-orbital
pairs can contribute to the AFM interaction. In this sense, the relative stability between the FM and
AFM states is predicted to be determined by a balance between the FM interaction via the orbital
counter-complementarity caused by dxy and the AFM interaction via direct overlap of other orbitals.

Figure 2. Schematic representation of orbital interactions for (a) complementarity and (b)
counter-complementarity found in complexes 1 and 2, respectively.
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2.2. Computational Models

On the basis of the reported structures of two complexes 1 and 2 illustrated in Figure 1,
we constructed model structures by substituting Mn(II), Fe(II), Co(II), and Ni(II) ions. In order
to conduct a systematic analysis, we assume an octahedral coordination for all models and the axial
positions of metal ions are capped by ammonia molecules that provide a moderate ligand field,
as illustrated in Figure 3a. For comparison, Cr(II) complexes that do not have electrons in dxy orbitals
are also examined (Figure 3b).

  
(a) (b) 

Figure 3. Illustration for pyrazole-bridged dinuclear metal complexes substituted by Mn(II), Fe(II),
Co(II), Ni(II) ions (a), and Cr(II) ions (b). Note that a square planar structure is assumed for the Cr(II)
complexes because the octahedral structure is not obtained by the geometry optimization.

2.3. Computational Details

For all calculations, we employed the broken-symmetry (BS) method [20] using the B3LYP
functional [21] with the 6-31G* [22] basis set to obtain the spin-polarized electronic structures.
The model structures were, at first, fully optimized and the optimized geometries were confirmed not
to have any imaginary frequencies. In order to investigate the difference in the structures between
the AFM and FM states, we performed the geometry optimization for both states. At each optimized
geometry, the intramolecular magnetic interaction between two metal ions was discussed based on the
effective exchange integral (J) values calculated by the Yamaguchi equation [23,24],

J =
EAFM − EFM

〈S2〉FM − 〈S2〉AFM
(1)

where EX and 〈S2〉X denote total energies and 〈S2〉 values of spin state X (X = FM and AFM).
All calculations were performed in the gas phase using Gaussian09 [25].

3. Results and Discussion

3.1. Optimized Structures and Calculated J Values

The optimized Cartesian coordinates of model structures for both AFM and FM states are
summarized in Table S1 in Supplementary Materials. The calculated total energies and 〈S2〉 values
are summarized in Tables S2 and S3 in Supplementary Materials. We also confirm that the Fe(II) and
Co(II) complexes energetically prefer the high-spin metal species rather than the low-spin species,
as summarized in Tables S4 and S5 in Supplementary Materials. In addition, the stability of those
model complexes is examined by roughly estimating the stabilization energies, as summarized in Table
S6 in Supplementary Materials. The results indicate the possibility of existence of all model structures.
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Calculated J values at the optimized geometry are summarized in Table 1. All models show
negative J values even at the optimized structures for the FM states, indicating that the AFM exchange
interaction between the metal ions is dominant even in the acetate-bridged complexes, in contrast
to the Cu(II) complexes [17]. The azide-bridged complexes, however, exhibit significantly stronger
AFM interaction, while the calculated J values of those acetate-bridged complexes are close to zero,
indicating the small energy gap between the AFM and FM states. The result suggests that the orbital
complementarity/counter-complementarity affects the magnetic interaction, like in Cu(II) complexes.

Table 1. Calculated J values at the optimized structures, where JAFM and JFM represent calculated J
values with the antiferromagnetic (AFM) and ferromagnetic (FM) structures, respectively.

M X JAFM/cm−1 JFM/cm−1 Exptl b/cm−1

Cr(II) N3
– −8.9 −8.3

CH3CO2
– −3.2 −3.1

Mn(II) N3
– −9.1 −8.1

CH3CO2
– −0.3 −0.2

Fe(II) N3
– −13.1 −11.3

CH3CO2
– −1.1 −1.0

Co(II) N3
– −26.1 −23.0

CH3CO2
– −2.0 −0.1

Ni(II) N3
– −74.2 −33.1

CH3CO2
– −3.2 −3.1

Cu(II) a N3
– −436 −364 −371

CH3CO2
– 13.5 23.0 >8.9

a Calculated values in the work of [17]. b Experimental values in the work of [9].

3.2. Orbital Energy Difference

Next, we examined the energy gap between the symmetric and antisymmetric orbitals (ΔE),
which is the origin of the concept of orbital complementarity, as illustrated in Figure 2. Here, ΔE is
defined as follows,

ΔE =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∣∣∣∣∣E(

ϕ∗
a−(pz+az)

)
− E(ϕs)

∣∣∣∣∣ X = N−3∣∣∣∣E(
ϕ∗a−pz

)
− E(ϕ∗s−ac)

∣∣∣∣ X = CH3CO2
−

(2)

If ΔE value is negligible, those two orbitals shown in Figure 2 are quasi-degenerate and the FM
state becomes stable owing to Hund’s rule. As seen from Table 2, ΔE values of the azide-bridged
complexes are larger than those of the acetate-bridged complexes. For example, the ΔE value of the
acetate-bridged Mn(II) complex is 0.06 eV. ΔE values of the acetate-bridged complexes are shown to be
small as compared with that of the Cu(II) complex [17]; therefore, the FM state is expected to become
stable. However, their J values are found to be small, but still negative. This result indicates another
mechanism to stabilize the AFM state, suggesting the overlap between metal ions via other d-orbitals.

3.3. Natural Orbital Analyses

In order to explain the AFM interaction of the acetate-bridged complexes, spin-unrestricted natural
orbital (UNO) analysis is performed for the AFM state of each complex. The UNOs are obtained by
diagonalizing the first order density matrix, and the occupation number of orbital i (ni) is related to the
overlap between α and β orbitals (Ti) as

Ti = ni − 1. (3)

If ni is close to 1.0, then the two electrons in the corresponding α and β orbitals are spatially
polarized, indicating that spins on the metal ions are almost localized there, that is, the fully
spin-polarized state. On the other hand, ni should be equal to 2.0 if those are fully overlapped,
and spins disappear. The calculated occupation numbers of magnetic orbitals are summarized in
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Table 3 and corresponding natural orbitals are depicted in Figures S1–S8. Although the dxy orbitals of
which the occupation numbers are close to 1.0 are spin-polarized, they still have significant overlap.
In addition, other metal d-orbital pairs also have larger overlaps that contribute to the AFM interaction
with the direct d-d overlap. For example, the overlaps between dzx orbitals that are in a range of
0.013–0.025 is found to be comparable to those of dxy in the acetate-bridged complexes. As a result,
those orbital overlaps between those d-orbital pairs are considered to contribute to the stabilization of
the AFM state. In those complexes, metal ions and bridging ligands are in the same plane; therefore,
the metal–metal distance is a clue to consider the magnetic interaction. As summarized in Table S7 in
Supplementary Information, the metal–metal distances depend on the metal species; however, they do
not show a significant relationship between the overlap and the distances. It suggests that such a small
overlap does not change the molecular structure, but only the magnetic interaction.

Table 2. Energy gap between the symmetric and antisymmetric combinations of the magnetic orbitals
(ΔE ) in the FM state.

M X ΔE / eV

Mn(II) N3
− 0.42

CH3CO2
− 0.06

Fe(II) N3
− 0.40

CH3CO2
− 0.07

Co(II) N3
− 0.29

CH3CO2
− 0.12

Ni(II) N3
− 0.20

CH3CO2
− 0.18

Cu(II) a N3
− 1.33

CH3CO2
− 0.60

a In the work of [17]. Note that the values are calculated by UBHandHLYP/6-31G* level of theory, and thus
overestimated.

Table 3. Occupation numbers (n) of unrestricted natural orbitals (UNOs) for magnetic orbitals of model
complexes, where dominant d-orbitals in each UNO are expressed in square parentheses.

M X HONO HONO-1 HONO-2 HONO-3 HONO-4

Mn(II) N3
− 1.002[

dx2−y2

] 1.011
[
dyz

]
1.012 [dz2 ] 1.025 [dzx] 1.093

[
dxy

]
CH3CO2

− 1.006 [dz2 ]
1.007[

dx2−y2

] 1.013
[
dyz

]
1.017

[
dxy

]
1.018 [dzx]

Fe(II) N3
− 1.009

[
dyz

]
1.012 [dz2 ] 1.021 [dzx] 1.087

[
dxy

]
CH3CO2

− 1.004[
dx2−y2

] 1.009
[
dyz

]
1.016 [dzx] 1.019

[
dxy

]
Co(II) N3

− 1.011 [dz2 ] 1.023 [dzx] 1.094
[
dxy

]
CH3CO2

− 1.007 [dz2 ] 1.013 [dzx] 1.022
[
dxy

]
Ni(II) N3

− 1.019 [dz2 ] 1.113
[
dxy

]
CH3CO2

− 1.012 [dz2 ] 1.029
[
dxy

]
Cu(II)a N3

− 1.188
[
dxy

]
CH3CO2

− 1.002
[
dxy

]
a Calculated values in the work of [17].

In order to confirm the effects of the orbital complementarity, counter-complementarity, and direct
overlap, we examined the Cr(II) complexes. As the high-spin Mn(II) ion has d5 configuration,
each d-orbital is filled by one electron in the complexes, while a dxy orbital is not occupied in the
case of the Cr(II) complex (d4 configuration) owing to the strong ligand field by surrounding ligands.
A difference in the calculated J values between azide- and acetate-bridged complexes for the Cr(II)
complexes is found to be less than that for the Mn(II) complexes. This contrast suggests that the
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orbital counter-complementarity effect contributes to a decrease of the energy gap between the AFM
and FM states. In addition, calculated J values of the azide-bridged Mn(II) and Cr(II) complexes are
almost the same; nevertheless, the acetate-bridged Cr(II) complex shows a negative value about 3 cm–1

smaller than the Mn(II) complex. An electron configuration of the Cr(II) complexes can be obtained
by eliminating electrons from dxy orbitals of the Mn(II) complexes; therefore, roughly speaking,
the difference is predicted to originate in the stabilization of the FM state caused by the degeneracy in
ϕ∗a−pz and ϕ∗s−ac, that is, orbital counter-complementarity. From those results, it is predicted that the
FM interaction via the counter-complementarity is canceled by the AFM interaction via overlap of
other d-orbitals in those complexes.

Finally, we consider a possibility of an end-on type coordination of the azide complex. It has been
reported that the azide ligand can bridge two metal ions with the end-on type manner as well as the
side-on type, which is considered above [26,27]. We performed geometry optimization of the dinuclear
Cu(II) complex for the end-on type structure, which is summarized in Table S8 in Supplementary
Information. The total energies of the side-on and end-on type structures that are summarized in
Table S9 in Supplementary Information indicate the side-on type is significantly stable in comparison
with the end-on type. Therefore, we did not mention the end-on type structures of other metal
complexes in this manuscript, although the end-on type induces the ferromagnetic interaction.

4. Conclusions

In this paper, we examine the possibility of the intramolecular FM interaction in pyrazole-bridged
dinuclear Mn(II), Fe(II), Co(II), and Ni(II) complexes. We confirmed that the azide-bridged complexes
indicate the strong AFM interaction, while the acetate-bridged complexes exhibit a very weak AFM
interaction. These results suggest that the counter-complementarity effect, which contributes to the FM
interaction, competes with the AFM interaction caused by overlap of other d-orbital pairs. Conversely,
there is the possibility that these 3d metal complexes exhibit an FM interaction if one can decrease the
overlap. For that purpose, a rational designing guideline based on the quantum chemical calculation is
considered to be effective for modifying the species of substituents and their substitution positions [28].

Supplementary Materials: The following are available online at http://www.mdpi.com/2312-7481/6/1/10/s1,
Table S1: Optimized cartesian coordinates (Å) of acetate bridged dinuclear Ni(II) complex; Table S2: Calculated
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structures; Table S4: Calculated total energies and 〈S2〉 values of low-spin Fe(II) (s = 0) complexes; Table S5:
Calculated total energies and 〈S2〉 values of low-spin Co(II) (s = 1/2) complexes; Table S6: Stabilization energy
(kJ/mol) for each complex; Table S7: Metal-metal distances (Å) in each complex; Table S8: Optimized cartesian
coordinates (Å) of end-on azide bridged dinuclear Cu(II) complex; Table S9: Calculated total energies and 〈S2〉
values at AFM structures for dinuclear Cu(II) complex with side-on and end-on type azide bridges; Figure S1:
Calculated natural orbitals of magnetic orbitals for acetate-bridged Mn(II) complex; Figure S2: Calculated
natural orbitals of magnetic orbitals for acetate-bridged Fe(II) complex; Figure S3: Calculated natural orbitals of
magnetic orbitals for acetate-bridged Co(II) complex; Figure S4: Calculated natural orbitals of magnetic orbitals
for acetate-bridged Ni(II) complex; Figure S5: Calculated natural orbitals of magnetic orbitals for azide-bridged
Mn(II) complex; Figure S6: Calculated spin-unrestricted natural orbitals of magnetic orbitals for azide-bridged
Fe(II) complex; Figure S7: Calculated spin-unrestricted natural orbitals of magnetic orbitals for azide-bridged
Co(II) complex; Figure S8: Calculated spin-unrestricted natural orbitals of magnetic orbitals for azide-bridged
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