Fractional
Order Systems

Edited by
lvo Petras
Printed Edition of the Special Issue Published in Mathematics

z
www.mdpi.com/journal/mathematics ’/M\D\Py



Fractional Order Systems






Fractional Order Systems

Special Issue Editor

Ivo Petras

MDPI e Basel o Beijing « Wuhan e Barcelona e Belgrade

ml\DPI

F



Special Issue Editor
Ivo Petras
Technical University of Kosice

Slovakia

Editorial Office

MDPI

St. Alban-Anlage 66
4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal
Mathematics (ISSN 2227-7390) in 2019 (available at: https:/ /www.mdpi.com/journal/mathematics/
special_issues/Fractional Order_Systems)

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number,
Page Range.

ISBN 978-3-03921-608-6 (Pbk)
ISBN 978-3-03921-609-3 (PDF)

(© 2019 by the authors. Articles in this book are Open Access and distributed under the Creative
Commons Attribution (CC BY) license, which allows users to download, copy and build upon
published articles, as long as the author and publisher are properly credited, which ensures maximum
dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons
license CC BY-NC-ND.




Contents

About the Special Issue Editor . . . . ... ... ... ... ... .. ...
Preface to “Fractional Order Systems” . . . . ... ... ... .. ... ... ... ........

Ivo Petrds and Jan Terpak

Fractional Calculus as a Simple Tool for Modeling and Analysis of Long Memory Process in
Industry

Reprinted from: Mathematics 2019, 7,511, d0i:10.3390/math7060511 . . . . . ... ... ... ...

Inés Tejado, Blas M. Vinagre, José Emilio Traver, Javier Prieto-Arranz and Cristina
Nuevo-Gallardo

Back to Basics: Meaning of the Parameters of Fractional Order PID Controllers

Reprinted from: Mathematics 2019, 7, 530, d0i:10.3390/math7060530 . . . . . ... .. .. ... ..

Tomas Skovranek, Vladimir Despotovic
Audio Signal Processing Using Fractional Linear Prediction
Reprinted from: Mathematics 2019, 7, 580, d0i:10.3390/math7070580 . . . . . .. ... ... .. ..

Bohdan Datsko, Igor Podlubny and Yuriy Povstenko

Time-Fractional Diffusion-Wave Equation with Mass Absorption in a Sphere under Harmonic
Impact

Reprinted from: Mathematics 2019, 7, 433, d0i:10.3390/math7050433 . . . . . .. ... .. ... ..

Richard L. Magin, Hamid Karani, Shuhong Wang and Yingjie Liang
Fractional Order Complexity Model of the Diffusion Signal Decay in MRI
Reprinted from: Mathematics 2019, 7, 348, d0i:10.3390/math7040348 . . . . . ... ... ... ...

Xudong Hai, Guojian Ren, Yongguang Yu and Conghui Xu

Adaptive Pinning Synchronization of Fractional Complex Networks with Impulses and
Reaction-Diffusion Terms

Reprinted from: Mathematics 2019, 7, 405, d0i:10.3390/math7050405 . . . . . ... ... ... ...

Jiamin Wei, YangQuan Chen, Yongguang Yu and Yuquan Chen
Optimal Randomness in Swarm-Based Search
Reprinted from: Mathematics 2019, 7, 828, d0i:10.3390/math7090828 . . . . . .. ... ... .. ..






About the Special Issue Editor

Ivo Petras (Professor, PhD., DrSc.) received his MSc. (1997), PhD. (2000), and DrSc. (2013) degree
in process control at the Technical University of Kosice and the Slovak University of Technology in
Bratislava, Slovak Republic, respectively. He works at the Institute of Control and Informatization of
Production Processes, Faculty of BERG, Technical University of Kosice as a Professor. His research
interests include control systems, automation and applied mathematics. He is a member of IEEE,
IFAC, and SSAKI. He has published five books, five book chapters, over 70 journal papers, and over

90 refereed conference papers.






Preface to “Fractional Order Systems”

Fractional calculus deals with the consideration of integrals and derivatives of arbitrary order
(constant, variable, and distributed) as well as also with integro-differential equations, so called,
fractional differential equations. Historically, fractional calculus has been recognized since the
inception of regular calculus, with the first written reference dated in September 1695 in a letter
from Leibniz to L'Hospital. Nowadays, fractional calculus has a wide area of applications in areas
such as physics, chemistry, bioengineering, chaos theory, control systems engineering, and many
others. In all those applications, we deal with fractional order systems in general. Moreover, fractional
calculus plays an important role even in complex systems and therefore allows us to develop better
descriptions of real-world phenomena. On that basis, fractional order systems are ubiquitous, as the
whole real world around us is fractional. Due to this reason, it is urgent to consider almost all systems
as fractional order systems.

This Special Issue is focused on the theory and multidisciplinary applications of fractional order
systems in science and engineering. It consists of the following collection of papers:

Fractional Calculus as a Simple Tool for Modeling and Analysis of Long Memory Process in
Industry by Ivo Petrds and Jan Terpdk.

Back to Basics: Meaning of the Parameters of Fractional Order PID Controllers by Inés Tejado,
Blas M. Vinagre, José Emilio Traver, Javier Prieto-Arranz and Cristina Nuevo-Gallardo.

Audio Signal Processing Using Fractional Linear Prediction by Tomas Skovranek and
Vladimir Despotovic.

Time-Fractional Diffusion-Wave Equation with Mass Absorption in a Sphere under Harmonic
Impact by Bohdan Datsko, Igor Podlubny and Yuriy Povstenko.

Fractional Order Complexity Model of the Diffusion Signal Decay in MRI by Richard L. Magin,
Hamid Karani, Shuhong Wang and Yingjie Liang.

Adaptive Pinning Synchronization of Fractional Complex Networks with Impulses and
Reaction-Diffusion Terms by Xudong Hai, Guojian Ren, Yongguang Yu and Conghui Xu.

Optimal Randomness in Swarm-Based Search by Jiamin Wei, YangQuan Chen, Yongguang Yu
and Yuquan Chen.

These papers reflect the latest research achievements in the field of fractional calculus and its

applications in various areas.

Ivo Petras

Special Issue Editor
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Article
Fractional Calculus as a Simple Tool for Modeling
and Analysis of Long Memory Process in Industry

Ivo Petras and Jan Terpak
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Abstract: This paper deals with the application of the fractional calculus as a tool for mathematical
modeling and analysis of real processes, so called fractional-order processes. It is well-known
that most real industrial processes are fractional-order ones. The main purpose of the article is to
demonstrate a simple and effective method for the treatment of the output of fractional processes in
the form of time series. The proposed method is based on fractional-order differentiation/integration
using the Griinwald-Letnikov definition of the fractional-order operators. With this simple approach,
we observe important properties in the time series and make decisions in real process control. Finally,
an illustrative example for a real data set from a steelmaking process is presented.

Keywords: fractional calculus; fractional-order system; long memory; time series; Hurst exponent

1. Introduction

In this paper, we discuss how the fractional calculus is used in modeling and analysis of
fractional-order processes (e.g., a real industrial process). Fractional-order processes are characterized
by long memory, local memory or heavy-tailed distributions. These properties cannot be neglected in
time series analysis. The fractional calculus provides a tool for both long memory and local memory
process analysis.

Long memory processes are known to play an important role in many areas of science and
technology. The idea of applying a fractional-order model in time series analysis is not new. In the
last 20 years, a significant progress has been made in understanding the probabilistic foundations and
statistical principles of such processes. For instance, the Hurst exponent was used as a measure of
long-term memory of time series [1]. In [2] a fractionally differenced autoregressive-moving average
process was used. Nowadays, fractional calculus, fractional-order systems, fractional-order processes
and fractional signal processing techniques and their real world applications in various areas have been
described in several works [3-8]. Long memory has been observed even in economics [9]. A very useful
application of the fractional calculus in the time series analysis of heart rate variability was shown
in [10]. Some new fractional (a.k.a. fractal) time series models and processes have been discussed in
the tutorial review [11].

In this article, we propose a useful tool for applied researchers and practitioners who need to
analyze data in which power laws, long memory, self-similar scaling or fractal properties are relevant.
We combine the two modeling approaches: statistical analysis and the fractional calculus.

2. Preliminaries

2.1. Fractional Calculus

Fractional calculus has been known since the beginning of integer-order calculus, as it dates back
to the 1695 correspondence between Leibniz and L'Hospital. It is a generalization of integration and
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differentiation to a non-integer order fundamental operator ,D}, where a and b are the bounds of
the operation and « is an arbitrary order. The usual notation for the left-sided fractional-order
integro-differential operator of a function f(t) defined within the interval t > 0is (D{f(t) =
d*f(t)/dt* = f@)(t), with « € R. The basic theory was developed mainly in the 19th century,
and engineering applications were realized mainly in the second half of the 20th century. There exist
a lot of definitions of fractional-order operators (integrals and derivatives) for constant, variable,
distributed and even complex order. However, in this paper, we consider only the Griinwald-Letnikov
definition of constant order, which is equivalent to other definitions (Caputo, Riemann-Liouville) for
a wide class of the functions, under certain conditions [5].

Definition 1. The Griinwald-Letnikov definition of the fractional-order operator is given as [5]:

oDRF0) = fim i 3 (<11 (%) e ), 8

where [.] means the integer part.

The form (1) of the fractional operator definition is very helpful for finding a numerical
approximation of fractional derivatives/integrals as well as the solution of fractional differential
equations. For the definition of binomial coefficients, we may use the relation based on Euler’s Gamma
function, defined as follows:

(:x) F(a+1) )

i) TG+D)T(a—j+1)

where () = 1.

Some other definitions of fractional-order operators, useful properties, special transforms and
methods for analytical and numerical solutions of fractional differential equations can be found,
for example, in [4-6,12].

2.2. Fractional-Order Processes

It is well-known that a fractional-order process can be considered as the output of
a fractional-order system, and has long memory properties. The essence of fractional-order processes
is a power-law, which demonstrates the long memory itself. Generally, there is a large number of
real processes, where the fractional calculus can be applied [8]. Westerlund proposed a description of
a “universal process” by the following equation [13]:

= koDzx(1), ®

where the input, x(7), is an intensive signal, the output, y(7), is extensive, and parameters, k and «, are
the process constants. For example, for electrical processes, the electrical current is an extensive signal,
and the electrical voltage is an intensive signal. Similarly, for mechanical processes, it is force and
position; for heat processes, it is heat flux and temperature, and so on [14]. Thus, the fractional-order
processes are widely found in science, technology and engineering systems [6].

Moreover, the use of fractional-order derivatives for the description and analysis of real processes
also requires their geometrical interpretation [3,15-18]. For example, let us consider the function
f(t) = 72 as an intense signal. The line passing through the point P(y, f(19)) is given by the equation

f(r) = f(m) = f* () (t— ), )

where f(®) (1) is the slope of the line. Figure 1 shows the plot of a function with lines formed with
fractional order derivatives at the point P(1,1).
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Figure 1. Plot of the function f(7) = 72 with lines formed with fractional-order derivatives at the point
P(1,1).

In the case of the first-order derivative, the slope of the line is equal to the tangent line. The tangent
angle of the line slope at a given point in the function depends on the value of the fractional-order
derivative at the considered point.

Definition 2. According to the Griinwald-Letnikov definition (1), the tangent of the angle 6 can be expressed

as follows:
Lo bif (r —jh)

tan® = () (1) ~ v )

or
0 + 52 bif (x — jh)

h !
where binomial coefficients b; represent the weight of the effect of the function history, respectively, the sum
Z]?";l bif (T — jh) partially accumulate the history of the function. For the binomial coefficients bj, an
expression (8) can be used.

tan® = () (1) ~ with by =1, (6)

2.3. Fractional Time Series

Fractional time series are characterized by the Hurst exponent (parameter). The Hurst exponent H
was originally developed by Harold Edwin Hurst in hydrology for determining optimal dam sizing for
the Nile river. It is directly related to fractal dimension D, such that D = 2 — H. The Hurst exponent is
defined as follows [19-21]:

Definition 3. Let us consider d as a duration, which is a period of time that includes several points in the time
series over the range R as a difference between the largest and smallest deviation encountered during a duration
d, then we can write:

Rudf, (0<H<1),

where H is the Hurst exponent. It means that the higher the Hurst exponent is, the smoother the curve is.
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The Hurst exponent is used as a measure of long memory in a time series. It takes on values
from 0 to 1. A value of 0.5 indicates the lack of long-range dependence, and the time series has no
statistical dependence. Absolute values of the autocorrelation functions decay exponentially to zero.
A parameter H less than 0.5 corresponds to anti-persistency. When H exceeds one half and is closer to
1, it indicates greater degree of persistence or long-range dependence. For the cases 0.5 < H < 1 and
0 < H < 0.5, power-law decay is typically observed. Time series that are Gaussian may be analyzed
efficiently, but those which exhibit anti-persistence (negatively correlated process) or persistence
(positively correlated process) resist simple analysis. By using the operation of fractional integration
to an anti-persistent time series (or fractional differentiation to a persistent time series), Gaussian
behavior can be observed.

3. Proposed Method and Analysis Tool

As was mentioned in the previous section, there exists a technique for correcting the data to
remove the anti-persistence or persistence by applying fractional calculus of order 1/2 — H. This yields
data that obey Gaussian statistics and therefore the time series can be processed and analyzed. Thus,
if a white Gaussian process is fractional differ-integrated with order —a, then the acquired time series
has the Hurst parameter equal to a + 1/2. Fractional integration and differentiation are significant
novelties in analysis because of the improved accuracy of estimates and properties of the series.
If a series is not described properly, then further analyses will not be accurate. A review of methods
for the estimation of the Hurst parameter, which are helpful as simple diagnostic tools for time series,
was given in [6]. The R/S method is one of the most well-known estimators. A useful Matlab function
for the exponent estimation is available [22].

Moreover, for numerical computation of the fractional-order operation, the following formula
derived from the Griinwald-Letnikov definition (1), at the points kT (k = 1,2,...), can be used [4]:

k
aDE f(8) = T~ Y bif (b — ), ?)
=0

where t; = kT, T is the time step of calculation (sampling period) and the binomial coefficients b; can
be calculated according to recurrence relation:

by =1, bj:<1—1;f“>bj,l. @®)

A Matlab function based on a discrete form of the relations (7) and (8) has been provided [23].

By applying both aforementioned techniques, we obtain a powerful tool for analysis of real
(fractional-order) processes, especially in the case, when we do not have enough a priori information
about the process due to a lack of measured information, etc.

4. Example: Modeling and Analysis of Industrial Process

4.1. Process Description

In this example, the data of the steelmaking process in a basic oxygen furnace located at U.S.
Steel Kosice, Ltd., Slovak Republic, are presented. The data of 240 melts were collected during the
year 2018. The basic oxygen furnace is a pear shaped vessel, where pig iron from the blast furnace
and ferrous scrap is refined into steel by blowing high-purity oxygen through the hot metal. This
large vessel has a capacity of up to 400 tons of melt at high temperatures of 1650 to 1700 °C. It is
a highly complex thermochemical process with high energy consumption. The heat energy is obtained
by burning mainly carbon and silicon that are in the inputs. The basic material inputs to the basic
oxygen furnace process are pig iron, ferrous scrap, slag additives, and blown oxygen. The outputs of
the process consist of steel, slag, and waste gas [24,25].



Mathematics 2019, 7, 511

Very important information about the process and at the end of the process is the concentration
of carbon monoxide and carbon dioxide in the waste gas (see Figure 2 for one selected melt). At the
start of the process, the concentration is zero, and the concentration then increases to maximum values,
and at the end decreases to zero again. Similarly, the change of the total concentration of carbon oxides
corresponds to the decarburization rate. In terms of process control, the decarburization rate below
a certain threshold value means terminating the process in the basic oxygen furnace.

concentration of GO + CO, / m® . m?3
o o o o o o o o
N & B & & 4 = e

o

0 100 200 300 400 500 600 700 800 900 1000 1100
time/s

Figure 2. The change of CO and CO; concentration.
The decarburation rate can be given by

dmc o (ng(cowg + COZ,wg) (9)
Tt a VM !

where ¢y is the measured waste gas flow, COyg and CO; 44 are measurement concentration of carbon
monoxide and carbon dioxide in the waste gases, and V), is the molar volume [26]. Calculation of the
decarburization rate according to Equation (9) is only possible in the case where the waste gas flow is
measured. If the waste gas flow is not measured, we need to find a method to determine the end of the
process. Taking into account the information about of the fractional-order process, we applied the new
proposed method.

4.2. Process Analysis

Signal depicted in Figure 2 is a long memory process and a typical long-range dependence time
series, with the Hurst exponent H = 0.98, where R/S statistic and Hurst line is depicted as log-log plot
in Figure 3. The slope of the line gives the Hurst exponent.

The signals, which exhibit fractional properties, should be investigated using the fractional
calculus technique to obtain better analysis results. Using the relation (7) derived from the
Griinwald-Letnikov definition (1), for T = 1 s, the change of the concentration of carbon oxides
for various orders is shown in Figure 4. We used the same melt as is depicted in Figure 2. In the case of
the first-order derivative, the values move in a narrow range around a value equal to zero, and, at the
end of the process, there is a slight decrease. This is because the first-order derivative means roughly
the difference of two consecutive values of the function. In the case of the derivative of order less
than one, the values move above the zero and only fall below the limit value if the process ends. This
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follows from the memory effect, that is, that the value of the fractional-order derivative of the function
is affected by all previous function values. The question is which order of derivative we should use.

7
O RS
6r Hurst line
5r 1
4t J
2
4
< 3¢ 1
D
ke
2r 1
1r 1
or 4
-1 L L L L L L
0 1 2 3 4 5 6 7
log (time)
Figure 3. The slope of the Hurst line.
0.025 T T T T T
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Figure 4. The change of CO and CO, concentration for various orders a € (0,1].

The use of half-order derivatives for the computation of heat flux, based on the known history of
temperatures, was described in [5,12]. If we generalize this case, then it is possible to use half-order
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derivatives for the computation of the extensive signal behavior (heat flow, mass flow, electric current,
and so on), based on the known behavior of the intensive signal (temperature, concentration, electrical
potential, and so on).

In our case, the mass flow of carbon (dmc(T)/dT) is proportional to the concentration of carbon
oxides (xco,co, (7)) as

dmc (1) ~ d*xco,co,(T)
dt dt®

The data analysis of 240 melts was undertaken. Different orders of fractional differentiation
within interval the a € (0, 1] were calculated for all concentrations of the considered melts, as it is
depicted in Figure 4. Subsequently, the end point value or minimum value was determined. Table 1
shows and compares the values of the statistical indices for the orders « obtained from all 240 melts.
Because of different values, a relative standard deviation in percent as a measure of variability was
also calculated. The values indicate that the smallest relative standard deviation is between & = 0.4
and « = 0.5.

. (10)

Table 1. Statistical values for the process end point.

«  Arithmetic Mean  Median  Range R Standard Deviation S  Relative Standard Deviation

0.0 0.001552 0.001157  0.008391 0.001753 112.99
0.1 —0.110144 —0.110675  0.058425 0.012487 11.33
0.2 —0.135971 —0.135620  0.072973 0.013492 9.92
0.3 —0.124915 —0.125612  0.050907 0.010584 8.47
0.4 —0.102376 —0.101533  0.035958 0.007871 7.68
0.5 —0.079537 —0.078806  0.026901 0.006659 8.37
0.6 —0.060418 —0.060031  0.030330 0.006287 10.40
0.7 —0.046102 —0.044751  0.032936 0.006192 13.43
0.8 —0.035730 —0.034599  0.037782 0.006508 18.21
0.9 —0.028537 —0.027227  0.042185 0.006910 24.21
1.0 —0.023569 —0.021991  0.044271 0.007089 30.07

4.3. Simulation Results and Discussion

From the above results, it follows that, for the given device, we can determine the process endpoint
using the fractional derivative of the concentration of carbon oxides. The value of the derivative order
and the endpoint value should be determined for each basic oxygen furnace separately based on
the analysis of the measured data during long period. It should be noted that, according to the
fractional time series theory, the order of fractional derivative should correspond to the Hurst exponent
of measured data in the time series. It is an effective tool that is useable for various long memory
processes. For the melt depicted in Figure 2, the Hurst exponent H = 0.98 was obtained. For accurate
determination of the end point in the process, we should analyze the fractionally differentiated time
series with order & = 0.98 — 1/2 = 0.48, which also corresponds to the results obtained by statistical
analysis shown in Table 1.

In Figure 5, the change of CO and CO, concentration for order & = 0.48 for one particular
melt is depicted as it was shown in Figure 2. From the figure, we may determine the process end
point which is extremely significant for the furnace operator. In the presented case, the process
end point is approximately at 900 s. Since the steelmaking process is a process characterized by
high energy consumption, the accurate finishing time of each melt is very important for minimizing
production costs.

Moreover, the order of differentiation applied to the time series (measured data) moderates the
curve shape (function) as it was demonstrated in Figure 1, as well as by the relations (5) or (6), where
the history of the function is considered. In the case of a basic oxygen furnace, the function is the
concentration of carbon oxides.
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Figure 5. The change of CO and CO,; concentration for order a = 0.48.
5. Conclusions

In this paper, we described a simple tool for the modeling and analysis of long memory processes
such as the steelmaking process. This approach is based on the Griinwald-Letnikov definition of
fractional-order operator (derivative/integral). In this particular case, we used this definition because
of data being presented in a time series, where the other definitions are not appropriate for such
data processing since the data are given as a sequence, not a function. Obviously, for mathematical
modeling where the process can be described by a function, it is more suitable to use Caputo’s
definition mainly because of better setting of initial conditions. However, another advantage for using
the Griinwald-Letnikov definition is the possibility of using a short memory principle [5], especially
in industry, where the hardware devices have limited memory and processor speed.

Combining two known mathematical tools, the fractional calculus technique and statistical
methods, we obtain a simple but powerful tool to determine the process end point from measured
data in the form of time series without direct measurement of the necessary exact value, in our case,
the waste gas flow measurement. It is extremely important for industry to minimize costs as well as
technical difficulties with making such a measurement.

We presented the techniques and tools for data processing with references for Matlab functions.
Finally, an illustrative example of a real industrial process is given to demonstrate the effectiveness of
obtained results.
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Abstract: The beauty of the proportional-integral-derivative (PID) algorithm for feedback control
is its simplicity and efficiency. Those are the main reasons why PID controller is the most common
form of feedback. PID combines the three natural ways of taking into account the error: the actual
(proportional), the accumulated (integral), and the predicted (derivative) values; the three gains
depend on the magnitude of the error, the time required to eliminate the accumulated error, and the
prediction horizon of the error. This paper explores the new meaning of integral and derivative
actions, and gains, derived by the consideration of non-integer integration and differentiation orders,
i.e., for fractional order PID controllers. The integral term responds with selective memory to the
error because of its non-integer order A, and corresponds to the area of the projection of the error
curve onto a plane (it is not the classical area under the error curve). Moreover, for a fractional
proportional-integral (PI) controller scheme with automatic reset, both the velocity and the shape of
reset can be modified with A. For its part, the derivative action refers to the predicted future values of
the error, but based on different prediction horizons (actually, linear and non-linear extrapolations)
depending on the value of the differentiation order, y. Likewise, in case of a proportional-derivative
(PD) structure with a noise filter, the value of y allows different filtering effects on the error signal to
be attained. Similarities and differences between classical and fractional PIDs, as well as illustrative
control examples, are given for a best understanding of new possibilities of control with the latter.
Examples are given for illustration purposes.

Keywords: fractional; control; PID; parameter; meaning

1. Introduction

The proportional-integral-derivative (PID) controller is distinguished as the most common form
of feedback. In process control today, more than 95% of the control loops are of PID type, but these
controllers can be found in all areas where control is used.

Despite its straightforward structure, the popularity of PID controllers lies in the simplicity of
the design procedures and in the effectiveness obtained to the system performance [1]. Those are
the main reasons why PID controllers have survived many changes in technology, from mechanics
and pneumatics to microprocessors via electronic tubes, transistors, integrated circuits, among others.
Actually, practically all PID controllers made today are based on microprocessors, so this electronic
element has had a dramatic influence on this kind of control providing PIDs additional advances
features, such as gain scheduling, continuous adaptation, and automatic tuning [2].

From the control engineering point of view, improving system behavior is the major concern.
To that end, the generalization of classical PID controllers to non-integer orders of integration and
differentiation was firstly proposed in [3]. Intuitively, with this extension of classical PIDs there are
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more tuning parameters and, consequently, more flexibilities in adjusting time and frequency responses
of the control system. This also translates in more robustness in designs.

However, the first step when applying an existing or new controller is to understand exactly
what their actions can do in closed-loop in order to take full advantage of the possible effects on the
system response. In the case of integer order, the interpretation of the three actions of PIDs seems to be
clear [4-6]:

e  the proportional action is simply proportional to the current control error;

e theintegral action is related to the past values of the control error, so represents the accumulated
error, i.e., the area under the error curve;

e the derivative action predicts future values of the error or, in other words, corrects based on the
rate of change of the deviation from the set-point.

Since the pioneering work of Podlubny, there is ample evidence that supports that fractional
order PIDs (FOPIDs) have been extensively studied and applied in many fields. Undoubtedly, the lists
that are reported below are quite far from aiming at completeness, failing to mention literal hundreds
of other published texts related to FOPIDs; relevant and recent papers were selected for giving the
reader an idea of the development volume on this topic that can be found in the specialized literature.
Fundamentals of FOPIDs can be found in, e.g., [7-10]. In what concerns design methods, among the
reported, the following can be highlighted: Ziegler-Nichols-type rules [11-14], optimal tuning [15-18],
tuning for robustness purposes [19-21], auto-tuning [22,23], and tuning based on reducing the number
of parameters [24]. Likewise, numerous advanced control schemes based on FOPID controllers
were proposed, such as, Smith predictors structures [25-27], internal mode control [28-30], hybrid
control [31], gain scheduling [32-34], gain and order scheduling [35,36], among others. Current reviews
in the development of FOPIDs can be found in [37-42]; likewise, few current examples of application
in industry are described in [43-50].

Despite so many variations and applications of the FOPID algorithm, as well as design and
tuning methods, up to now a detailed description of the meaning of the parameters of such controllers
cannot be found in the literature. Nevertheless, although few, studies on the geometric and physical
interpretation of integrals and derivatives of arbitrary (not necessary integer) order have been
published [51,52], but it still remains as an open problem.

These circumstances make the understanding of the meaning of the parameters of FOPIDs
a priority. With so much in play, this paper explores the new meaning of integral and derivative
actions, and gains, derived by the consideration of non-integer integration and differentiation orders.
Similarities and differences between classical and fractional PIDs, as well as illustrative control
examples, are given for a best understanding of new possibilities of control with the latter.

The remainder of this paper is organized as follows. Section 2 describes the control algorithm
of classical PID and its generalization to non-integer order. Section 3 explains the meaning of the
parameters of non-integer PIDs. Section 4 discusses similarities and differences between classical and
fractional PIDs. Illustrative examples are given in Section 5. Main conclusions of this paper are drawn
in Section 6.

2. Generalities

This section describes the control algorithm of classical PIDs and its generalization to
non-integer order.

2.1. Classical PID Controller

The use of PID control consists of applying properly the combination of three types of corrective
actions to the error signal, which represents how far or near is the desired output from the actual
output. As widely known, these three control actions are proportional, integral and derivative.
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The key aspect when tuning PID controllers is in deciding how to best combine those three terms
to achieve the most efficient regulation of the process variable for the considered problem. As well
known, the most obvious way is to use a simple weighted sum where each term is multiplied by
a tuning constant or gain, and the results are then added together as follows:

t
u(t) =K, (e(t) + %/0 e(t)dt + Tdd;(:)> , 1)
where u(t) is the control signal, e(t) is the control error (e = ysp — y, i.e., the difference between the
desired set-point, ysp, and the measured process variable, y), and Ky, T;, and T, are the controller
parameters: proportional gain, integral time constant, and derivative time constant, respectively.
Control law (1) guarantees that the present (due to the proportional action), the past (by means
of the integral action) and the future of the error (by the derivative action) are taken into account,
as shown in Figure 1. Two main observations can be made to (1): (1) the controller needs only compute
the current error between the measured process variable and the desired set-point to calculate how
much and how fast that difference has been changing over time, and (2) the relative contributions of
each term then can be then adjusted by choosing appropriate values of the controller parameters.

€ Present
Past { Future

‘ oty et+Ty) 1

Figure 1. Evolution of the error (classical proportional-integral-derivative (PID) controllers).
2.2. Fractional Order PID Controller

The generalization to non-integer orders of (1) leads to the typical algorithm of a FOPID
controller, i.e.,

u(t) = K, (e(t) + %D’)‘e(t) + Tﬂ)“e(t)) , )

where and A, i € R* are the non-integer orders of the integral and derivative terms, respectively,
and D is the fractional operator defined as Riemann-Liouville as [10,53]

D) = s SO0 ®

(n is a general non-integer order, and I'(—), the gamma function).

Similarly to the classical version, control law (2) combines the three natural ways of taking into
account the error: current, accumulated, and predicted error. However, in contrast to the integer
counterpart, fractional operators are non local, which results in new meaning of the integral and
derivative actions, and gains. In particular, the fractional integration of the error is not already the
area under its curve; it can be viewed as the area of the projection of the curve onto a plane. Hence,
what the integration order A is doing is a selection of the history of the error or, what is the same,
the integral term responds with selective memory to the past values of the error. For its part, the action
of a controller with proportional and fractional derivative action may be interpreted as if the control
is made proportional to the predicted process output, where the prediction is definitively different
from the classical case: it is made by extrapolating the error by a straight line that is not tangent to the
error curve at the current value of the error, or by a curve (i.e., linear and non-linear extrapolations).
More details of these and other possibilities will be explained in Section 3.
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Figure 2 is an attempt to illustrate these effects. It should be remarked that, in this figure, the error
was considered as the function e(t) = t + 0.5sin() (taken from [51]). To show the integral and
derivative effects for non-integer orders, it must be said that:

e  For integral action, left-side Riemann-Liouville fractional integral of the error was considered as:

oIte(t) = /0 e(1)dgi (1), @)

where

8(1) = ﬁ (tA —(t- T)A> . ®)
Then, taking the axes 7, g; and e, function g;(7) was plotted in the plane (7, g¢) for 0 < 7 < ¢.
Along the obtained curve, a “fence” was plotted varying e(7), so the top edge of the “fence” is
a 3D line (7,4:(7),e(t)) for 0 < T < t. The area of the projection of this “fence” onto the plane
(7,e) corresponds to the value of the integer order integral of the error (i.e., the classical area
under the curve), whereas that of the projection onto the plane (g, e) corresponds to the value of
fractional order integral (4). All this reasoning was adapted from [51].

e  For derivative action, straight lines that pass through the point e(t) and whose slope matches the
value of the differentiation of order y of the error curve at that point were plotted.

The following values of the orders were taken for simulations: A = 0.75, 3 = 14, yp = 1,
and u3z = 04.

Figure 2. Evolution of the error (fractional PID controllers).

3. Going Into Detail About Parameters

This section contains the explanation of the meaning of the parameters of FOPID controllers,
in comparison with those classical of integer order. It should be remarked that, despite the fact
the proportional action is not affected by a fractional order, it is also included for completeness
of information.
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3.1. Proportional Action

The proportional action increases the deviation between the set-point value ys, and the system
outputy (i.e., the error) with the proportional gain K;,. The main drawback of using a pure proportional
control action is that it produces a steady-state error, which motivates that it can be also considered as:

u(t) = Kpe(t) + up, (6)

where u;, is a bias or reset [4]. Indeed, when ¢ = 0, the control signal reduces to u(t) = uy.
The parameter u;, usually takes the value (iax + tyin) /2, Wwhere . and 1t are the maximum and
minimum limits of the actuator, respectively. However, sometimes u;, can be adjusted manually to
a value that ensures that the steady-state error is zero at a given set-point.

Likewise, the proportional gain can be specified in terms of its inverse proportional band,
Py, which represents the percentage of change in the error signal necessary to cause a full-scale
change in the proportional action. As can be observed in Figure 3, the tendency of y to oscillate
increases as P, decreases. The large oscillations occurring with a small P, are due to the fact that
the power is reduced very quickly when the system output enters the proportional band, meaning
a balanced state cannot be established immediately.

Indeed, confusing “proportional band” with “proportional gain” leads to a decreased proportional
action when the control engineer wants more, and vice-versa.

Medium P}, Small P, Large Py,

Figure 3. System response for different P,.
3.2. Integral Action

The main function of the integral action is to guarantee that the steady-state error is zero, i.e.,
the output of the controlled system is equal to the desired set-point in steady-state. The following
simple explanation proves this affirmation. Let us consider a system controlled by a fractional order
proportional-integral (PI) controller in steady-state where both the control signal (uss) and the error
(ess) are constant. If this is the case, the control signal will be given by [3]

A
uss = Kp <€ss + %ﬁ) . 7)
While ess # 0, this clearly contradicts the hypothesis that the control signal w4 is constant.
Thus, similarly to the integer case, a controller with integral action of fractional order will always give
zero error in steady-state.
Integral action was known originally as a device that automatically resets the bias u; of
a proportional controller. Figure 4 shows the scheme of the extension to non-integer orders of a PI
controller with automatic reset. As can be observed, the first order filter in the feedback loop is replaced
by its fractional version of order A. From the block diagram, the control signal can be obtained as

u=Kpe+1I, (8)
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with
1
I=U(s)———
) 1T
ar
=1+ TIW =e,
= TP = Kye
)

_ 1 —A
= 1=Ky De().

Substituting (9) in (8), the control signal is given by
u(t) =K, (e(t) + lD’/\e(t)
=K, T ,

thus the control scheme of the figure is equivalent to a fractional order PI controller. Figure 5 shows
unit step responses of the fractional system in the feedback loop in Figure 4. Unlike the integer order
case (see Figure 5a), both the velocity and the shape of resetting can be controlled by the integration
order, A, as shown in Figure 5b. It can be observed that it is even possible to obtain underdamped

(10)

responses when A > 1.

\/

I
1

1 —+ T,‘S)‘

Figure 4. Fractional proportional-integral (PI) controller scheme (classical implementation with

automatic reset).
Itis important to remark that function fode_so1 () was taken from [10] to obtain the step responses

in MATLAB.
1 .
08! A
: //
=06 /
= 1
=] )
s |
© ol
04, —T,-0.1]]
! -- -Ti =1
/ T=5
02 i=5 |
!-/ g Ti =10
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(@

Figure 5. Effects of the automatic reset of the integral action when changing: (a) integral time constant

T; (integer case) (b) integration order A (fractional case).
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3.3. Derivative Action

The objective of the derivative action is to improve the system stability in closed-loop. Classical
derivative controllers give responses to changing error signals but do not, however, respond to constant
error signals, since with a constant error the rate of change of error with time is zero. Because of this,
the derivative term is combined with, at least, the proportional term. By contrast, fractional derivative
controllers do response to constant error signals; the differentiation of fractional order of a constant is
different from zero.

The derivative action of a proportional-derivative (PD) controller can be viewed as a crude
prediction of the error in future, where the prediction is made by extrapolating the error by the tangent
to the error curve at time t, being T}; the prediction horizon (see Figure 1). (Actually, the derivative
action uses linear extrapolation, not prediction.) For the fractional case, the basic structure of the
controller is

u(t) = Ky (e(t) + TyD¥e(t)) . (11)

Analogously to the classical case, an approximation of e(t + T;) may be
e(t+ Ty) ~e(t) + TyD'e(t). (12)

The control signal is then proportional to an estimation of the error at time T; ahead over
a straight line that, in general, is not tangent to the error curve, and whose slope matches the value of
the differentiation of y-th order of the error curve at the point e(t) [52], as shown in Figure 2. Likewise,
another way of viewing the prediction is from fractional Taylor series for fractional derivatives. In this
case, the prediction horizon is done over a curve (i.e., non-linear extrapolation). More details about
prediction can be found in Appendix A.

Therefore, different prediction horizons (in fact, linear and non-linear extrapolations) for the error
can be obtained choosing accordingly the value of .

The classical implementation of a fractional derivative action is illustrated in Figure 6. From this
figure, the following relation can be obtained

u<s>=<1 - )E<S)f o' Es), 13)

T 1 Tyst T4 Tyst

which corresponds to a derivative action of fractional order with noise filter. It is well known that the
derivative part of the PID controller requires low-pass filtering to limit the high-frequency gain.

> 1

—1
1+ Tyst

Figure 6. Fractional order derivative action scheme (classical implementation).
Let us focus only on the noise filter of (13), i.e.,

1

Gy(s) = T T (14)
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Notice that: (1) it has the property G¢(0) = 1 to ensure that the process output equals the set-point
in steady-state; (2) as usual, it has a low-pass character; and (3) the order of the filter is .

In the literature, the classical filters to reduce noise effects in PID controllers are up to second
order, usually given as follows [54]:

1
1+ TfS,

1
1+ Tps + Tf2/252’

Gnls) = (15)

Gpa(s) (16)

where Ty is the filter time constant. Note that filter (16) has complex poles with damping ratio
0 =0.707.

Figure 7 shows Bode plots of the filters, of both integer and fractional order, for T; = Tf =0.1.
As can be seen in Figure 7b, changes in the order y allow to have different frequency responses ranged
between those of the two integer filters (Figure 7a), and consequently, different filtering effects on
the error signal can be attained. Another issue to take into account is that most design methods for
classical PIDs do not consider noise. Due to this fact, the filter time constant is often suggested to
be chosen as a fraction of the derivative time, i.e., Tf = T,;/N. However, this solution has severe
drawbacks, as reported in [55]. On the contrary, this is not necessary for the fractional case because
there is an only parameter to be tuned, y, and it is included in the controller design.

0 , Oprmr———=
3 3
[0) Lo}
S 5o E
= £
g &
= =
-100 -
10'
0
fod Q
81007 @100 F
< ~o <
o el o
-200 . -200 -
10° 102 10° 10! 102 10°
Frequency (rad/s) Frequency (rad/s)
(a) (b)

Figure 7. Frequency response of the noise filter: (a) first and second order low-pass filters (integer case)
(b) fractional filter for different values of y (fractional case). For simulations, the following values were
taken: Ty = Ty = 0.1.

4. Classical Versus Fractional PIDs

This section discusses the similarities and differences between classical and fractional PIDs.
In particular, only integral and derivatives parts are compared— the proportional part is similar for
both kinds of controllers. The properties described below are summarized in Table 1.
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Table 1. Similarities and differences between classical and fractional proportional-integral-derivatives

(PID) controllers.

Action Domain Effect on

Integer

Fractional

Steady-state error

Elimination

1 with respect

If e > 0, u grows linearly with time

The same but the growing or

Time to the sign of e If e < 0, u decreases linearly with time the decrease is not linear with time
I Automatic reset The velocity of reset can be changed Both the velocity and the shape of
reset can be changed
The magnitude curve decreases with The magnitude curve decreases with
Frequency a slope of 20 dB/dec a slope of 20A dB/dec
Frequency
response Decrease of 71/2 rad in the phase Decrease of (rA)/2 rad in the phase
curve curve
Does not response, so the derivative -
. . Does response, so the derivative term
Constant errors term needs to be combined with, at AN
. can be used individually
least, the proportional term
T Time T, ahead over a curve (non-linear
me extrapolation) or over a straight line (linear
Prediction Time T; ahead over the tangent to extrapolation) that passes through the point
horizon the error curve at e(t) e(t) and whose slope matches the
value of the fractional differentiation of
order i of the error curve at that point
D The magnitude curve grows with The magnitude curve grows with a slope
Frequency a slope of 20 dB/dec of 20A dB/dec
response Increment of 77/2 rad in the phase Increment of (71A)/2 rad in the phase
curve curve
Frequency Low-pass filters up to second order Low-pass filter of order p
Parameter y allows to have different
Filtering Usually needs two parameters to be frequency responses, ranged between those

tuned, i.e., Tf (filter time constant)
and N (ratio between T; and Tf)

of the two integer filters, and consequently,
have different filtering effects on the error

signal.

4.1. Integral Part

As is well known, the main effects of the integral action are those that make the system response
slower, decrease its relative stability, and eliminate the steady-state error for inputs for which previously
had a finite error. These effects can be observed in the different domains of analysis as follows. In the
time-domain, the effects on the transient response cause a decrease of the rising time and an increase of
the settling time and the overshoot. In the complex plane, the integral action causes a displacement of
the root locus of the system towards the right half-plane. Finally, in the frequency-domain, an increase
of —20 dB/dec in the slopes of the magnitude curves and a decrement of 77/2 in the phase plots can
be observed.

In the case of a fractional integration order A € (0, 1), the selection of the value of A translates
into a certain weighting of the effects mentioned above. In the time-domain, for example, due to the
fact that the integral action only responds to errors other than zero by increasing the control action,
for positive errors, and decreasing it in case of negative, if the error is constant, the control action
can be ramped up with different slopes or velocities, as can be observed in Figure 8a. For a square
error signal (Figure 8b), it can be observed that there is a set of effects of the control action over the
error that range from the pure proportional action (A = 0) to the classical integral action (A = 1).
For intermediate values of A, the control action grows when the error is constant, which results in
a removal of the steady-state error, whereas decreases when the error goes to zero, which reduces the
instability of the system. In the complex plane, it can be seen that the selection of a value of parameter
A moves the root locus of the system towards the right half-plane. In the frequency-domain, the fact
that A can vary between 0 and 1 introduces the possibility of adding a constant increment to the slope
of the magnitude curve between 0 and —20 dB/dec (actually, a value of —20A dB/dec), as well as
a constant lag to the phase curve between 0 and —7t/2 rad (specifically, a value of —(7tA)/2 rad).
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Figure 8. Effects of the integral action according to integration order A on different error signals:

(a) constant (b) square.

4.2. Derivative Part

Amplitude

The derivative action increases the system stability and tends to accentuate the noise effects at
high frequencies. In the time-domain, this is manifested, mainly, by a decrease in both the overshoot
and the settling time. In the complex plane, it produces a displacement of the system root locus
towards the left half-plane. In the frequency-domain, a constant phase lead of 77/2 and an increase of
20 dB/dec in the slopes of the magnitude curves.

Following a reasoning parallel to that made for the integral action, it is easy to understand that all
these effects are weighted by choosing an appropriate value of the order of the derivative, u € (0,1)

(see Figure 9).

Amplitude

Figure 9. Effects of the derivative action according to differentiation order y on a trapezoidal signal.

5. Illustrative Examples

Time (s)

This section provides two examples to illustrate the properties of both integral and derivative
actions, as well the effects of their fractional orders.

Example 1. Let us consider a system given by the following transfer function [4]

G(s) =

1

(s+1)°

19

(17)
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controlled by a fractional order PI of the form:

Cls) =K, (1 + %) as)

To illustrate the properties of the integral action and the effect of its fractional order, Figure 10
shows unit step responses in closed-loop of system (17) controlled by fractional PI controller (18).
The proportional gain is constant, K, = 1, whereas the integral time T; and A are changed individually
in Figure 10a,b, respectively. More precisely, responses for the classical case (A = 1) are plotted
in Figure 10a. As expected, the steady-state error is removed when T; takes finite values; the case
T; = oo corresponds to pure proportional control, where the steady-state error is 50 percent. Likewise,
the smaller the values of T;, the faster the response, but the more oscillatory [4]. The effects of changing
the integration order, A, can be seen in Figure 10b (T is fixed to 2). In this case, the smaller the values of
A, the slower the response. Unlike T;, oscillations and system response are not affected by parameter A.

Changing T, (A = 1) Changing A (T, = 2)

16 -
1.4 | 14l
121 L
/\\
1r L )
>0.8 e
0.6 L
—A=0.25
04f ] —i-os
A=0.75
02t | 1o
— =125
0 ‘ | ‘ : ‘ ‘ | |
0 10 20 30 40 50 0 10 20 30 40 50
Time (s) Time (s)
(a) (b)

Figure 10. Step responses in closed-loop of system (17) controlled by fractional PI controller (18) when
changing: (a) integral time constant T; (K, = 1, A = 1) (b) integration order A (K, =1, T; = 2).

Example 2. Now, consider the double integrator with unit gain, i.e.,

1
G(s) = Z (19)
controlled by a fractional order PD of the form:
C(s) = Kp (1 + Tys"). (20)

The properties of the derivative action and its non-integer order are illustrated in Figure 11,
which shows unit step responses in closed-loop of system (19) controlled by fractional PD controller
(20). Similarly to the previous example, the proportional gain is constant, K, = 1, whereas the
derivative time T; and y are changed in an individual way in Figure 11a,b, respectively. In particular,
responses for the classical case (4 = 1) are plotted in Figure 11a. As expected, damping increases
when T increases. In other words, the higher the values of Ty, the faster the response. The effects
of changing y can be observed in Figure 11b (T} is set to 2). In this case, the smaller the values of y,
the slower the damping. Unlike Ty, y only affects the overshoot.
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Changing Td (n=1) Changing p (Td =2)
VAN 2\
—T4=05]
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Figure 11. Step responses in closed-loop of system (19) controlled by fractional PD controller (20) when
changing: (a) derivative time constant T; (K, = 1, p = 1) (b) integration order u (K, = 1, Ty = 2).

It must be said that the function fode_sol() was also used to obtain the step responses of
both examples.

6. Conclusions

Although ample studied and successfully applied to many kinds of control problems,
the extension of classical proportional-integral-derivative (PID) controllers to non-integer orders
presents a main weakness: basis, in terms of understanding of the effects of their parameters on the
system response, is sometimes omitted, and even unknown. This can be explained, in part, because the
geometric and physical interpretation of integrals and derivatives of arbitrary (not necessary integer)
order still remains as an open problem. This paper has focused on the new meaning of integral
and derivative actions, and gains, derived by the consideration of non-integer integration and
differentiation orders, i.e., for fractional order PID (FOPID) controllers. Similarities and differences
between classical and fractional PIDs, as well as illustrative examples were given for a best
understanding of the possibilities of control with the latter.

When the integral term is concerned, it was shown that it responds with selective memory because
of the non-integer order A. That was also viewed as the area of the projection of the error curve onto
a plane, which is definitively different from the classical area under the error curve. Moreover, taking
into account a fractional proportional-integral (PI) controller scheme with automatic reset, unlike the
integer order case, it was also shown that both the velocity and the shape of resetting can be controlled
by the integration order, A.

With respect to derivative action, it was illustrated that different prediction horizons (in fact, linear
and non-linear extrapolations) for the error can be obtained for a fractional proportional-derivative
(PD) choosing accordingly the value of the differentiation order, . Likewise, in case of an structure
with noise filter, the value of y allows different filtering effects on the error signal to be attained.
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Appendix A. Analysis of Prediction Horizon

This appendix gives information about the approximation of the prediction of the error at
time T, ahead, i.e., the approximation of e(t 4+ T;) to understand the meaning of a fractional order
derivative action.

Given a continuous function y, the fractional Euler method establishes that [56]

ht ) .

y(tiza) zy(t,-)JrD"y(t,-)m((erl)V71P‘). (A1)

Let assume that the error ¢(t) is a continuous function, and T; = kh, k € Z*, where & is a fixed
step. Thus, e(t 4 T;) can be approximated by:

(4 Ty) ~ e(t) + De(t) =" (i =) (A2)

e ey Ve )
which is referred to as approximation #1. Likewise, analogously with the integer case, the prediction
may be also expressed as
e(t+ Ty) = e(t) + T;Dle(t), (A3)

It is referred to as approximation #2.

Hence, taking into account approximation #1, the prediction in future of the error is done from
a non-linear extrapolation due to the fact that the term on the right in (A2) is non-linear. In contrast,
the prediction with (A3) is carried out over a straight line (linear extrapolation) that passes for point
t, and whose slope matches the value of the y-th order differentiation of the error. Thus, the control
signal is proportional to an estimation of the control error at time T; ahead, where that estimation
is obtained by non-linear or linear extrapolation. Both predictions are illustrated in Figure A1 for
different values of y and Ty, namely, = {0.4,0.8,1,1.25} and T; = {1,2,1.5}, and considering the
error as e(t) = t +0.5sin(t) and e(t) = 0.01>(1 — 2 cos(t)). As can be observed, although there are big
differences between the approximations above, the prediction function assumed to the derivative term
is guaranteed at time T; ahead, especially when approximation given by (A2) is taken: it approaches,
to a large extent, the actual curve of the error.

p=04,T =2 p=08T, =1
14 . ; 3 ‘ ‘
7.4 >
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Figure A1l. Cont.
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Abstract: Fractional linear prediction (FLP), as a generalization of conventional linear prediction (LP),
was recently successfully applied in different fields of research and engineering, such as biomedical
signal processing, speech modeling and image processing. The FLP model has a similar design as
the conventional LP model, i.e., it uses a linear combination of “fractional terms” with different
orders of fractional derivative. Assuming only one “fractional term” and using limited number of
previous samples for prediction, FLP model with “restricted memory” is presented in this paper
and the closed-form expressions for calculation of FLP coefficients are derived. This FLP model
is fully comparable with the widely used low-order LP, as it uses the same number of previous
samples, but less predictor coefficients, making it more efficient. Two different datasets, MIDI
Aligned Piano Sounds (MAPS) and Orchset, were used for the experiments. Triads representing
the chords composed of three randomly chosen notes and usual Western musical chords (both of
them from MAPS dataset) served as the test signals, while the piano recordings from MAPS dataset
and orchestra recordings from the Orchset dataset served as the musical signal. The results show
enhancement of FLP over LP in terms of model complexity, whereas the performance is comparable.

Keywords: audio signal processing; linear prediction; fractional derivative; musical signal

1. Introduction

The sinusoidal model is widely used for representation of pseudo-stationary signals, especially in
audio coding [1] and musical signal processing [2]. Parameters of the sinusoidal model are determined
frame-wise from the input audio/musical signal, and a sound is synthesized using the extracted
parameters [3]. A pure tone can be represented as a single sine wave, whereas the musical chords are
produced by combining three or more sine waves with different frequencies. In fact, any musical tone
can be described as a combination of sine waves or its partials, each with its own amplitude, phase
and frequency of vibration [4]. A sine wave can be fully described using three parameters: amplitude,
phase and frequency. Obviously, such signal is redundant; hence, there is no need to encode and
transmit each signal sample.

Linear prediction (LP) can be used to remove redundancy by predicting the current signal sample
from the signal history, as the weighted linear combination of past samples. In that case, only the
coefficients of the predictor need to be transmitted, not the signal samples themselves. While LP is
extensively used for modeling speech signal [5-7], it did not prove to be the best choice for modeling
audio signals. This is unexpected, since a signal represented by a combination of sine waves should
be perfectly predicted using an LP model with an order twice larger than the number of sinusoids.
The problem might be the fact that LP can model well signals with equally distributed tonal components
in the Nyquist interval, which is not the case with audio, where tonal components are concentrated in
a substantially smaller frequency region in comparison to the signal bandwidth [8]. This happens due
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to the fact that audio signals are usually sampled at a much higher frequency than the frequency of
their tonal components. Nevertheless, there are applications of LP in audio coding algorithms using
the so-called frequency-warped LP [9,10], where the unit delays are replaced by the first-order all-pass
filter elements to adjust the frequency resolution in the spectral estimate to closely approximate the
frequency resolution of human hearing [9]. LP is also used in acoustic echo cancelation [11], music
dereverberation [12], audio signal classification [13] and audio/music onset detection [14,15].

The idea of using the signal history is fundamentally rooted in fractional calculus [16]. Fractional
linear prediction (FLP), as a generalization of LP for fractional (arbitrary real) order derivatives,
was recently used in electroencephalogram (EEG) [16,17] and electrocardiogram (ECG) signal
modeling [18], as well as in speech coding [16,19-21]. While in [17-19] the full signal history is
used for predicting the current signal sample, which is impractical from the implementation point
of view, a model with restricted signal memory that uses only the recent signal samples and its
applications is proposed in [21,22]. However, to the best of our knowledge, there are no applications
of FLP in audio/musical signal processing. In this paper, we present FLP with memory restricted to
maximum of four previous samples and apply it to prediction of randomly generated test chords, usual
chords in Western music and piano parts extracted from the MIDI Aligned Piano Sounds dataset; and
musical parts extracted from symphonies, ballets and other classical musical forms, and interpreted by
symphonic orchestras, from the Orchset dataset.

The paper is organized as follows. Section 2 presents an overview of conventional LP and the FLP
with “restricted memory”. Datasets used for experiments are described in Section 3. The numerical
results using the test chords, piano and orchestra musical parts are discussed in Section 4, followed by
concluding remarks in Section 5.

2. Linear Prediction

2.1. Conventional Linear Prediction

Let the signal x(f) represent a linear and stationary stochastic process, where x(,) = x(nT) is the
nth signal sample at arbitrary time ¢, and T is the sampling period. The signal x(t) at time instance
t = nT is modeled as the linear combination of p previous signal samples:

o

R = ) X[, ©)

i=1

where £, denotes the predicted signal sample and 4; are the linear predictor coefficients. The order of
a linear predictor denotes the number of linear predictor coefficients, which is equal to the number of
samples used for prediction.

The prediction error e[,) = x[;) — £[,] is defined as the deviation of the predicted signal £ from the
original signal x, and the mean-squared prediction error is equal to:

2
J=E[d] = {xm - Z”ix[ni]] : @

where E|-] is the mathematical expectation. The optimal predictor coefficients 4; can be determined by
equating the first derivative of ], with respect to 4;, to zero. After some manipulation, we obtain:

4
Y aiRux(k—i) = Rux(k), k=1,2,...,p, 3)
i=1

where Ryx(k) = E X[n) X[n— k]} denotes the autocorrelation function at lag k. Equation (3) is known as
the Yule-Walker equation [7] and can be rewritten in the matrix form as:
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Ryx-a =1y, @
where
Rx(0) Ryx(1) Ryx(2) oo Ru(p—1)
Ryx(1) Rx(2) Ryx(3) ... Rux(p—2)
Rxx = . . . . . ,
Rux(p—1) Rux(p—2) Rux(p—3) ... 0
a=[a a a3 ... aP}T,

roe = [Rix(1) Rer(2) Rx(3) ... Ru(p)]™.

The optimal linear predictor coefficients a can be found from:
a=Ry ' 1o ®)

2.2. Fractional Linear Prediction with “Restricted Memory”

FLP is a generalization of LP using the fractional-order derivatives. Using the analogy from LP,
the nth signal sample can be represented as the linear combination of g “fractional terms”, and can be
written as [16]:

q
Ry = ZaiDa'x[n—l]/ (6)
i=1

where %[, is the estimate of the nth signal sample, g is the number of “fractional terms” used for the
prediction, 4; are the FLP coefficients, and D"x|, 1) are the fractional derivatives of order a; of the
time-delayed signal, where «; € R.

The fractional derivative D* can be approximated by the Griinwald-Letnikov (GL) definition of
a function x(t) at time instant ¢ [23]:

1 L5

(1) (5)wte = m), @
j=0 ]
where / is the sampling period, a and t are lower and upper limits of differentiation, and « € R
is the order of fractional differentiation. Note that the upper limit of summation tends to infinity.
Accounting only for the recent history of the signal, i.e., replacing the lower limit a by the the moving
lower limit t — L (L is the memory length), the “short memory” principle [23] is employed. Due to
this approximation, the number of addends in Equation (7) is not greater than K = |L/h]. For t = nh,
Equation (7) becomes:

h—0 h*

K .
D*x(nh) = lim (-1 (‘;‘) *((n = j)h). ®)
=

Replacing x(nh) with x|,,), and assuming that in the signal prediction only the past samples are used for
the estimation of the predicted signal sample, without including the current sample, i.e., introducing a
time-delay in Equation (8) of one sample, one gets:

Dx :h*“ZK:(—l)f ) xn )
n-1] 2 (V) i

]

Taking into account only one “fractional term” from Equation (6), i.e., when g = 1, one obtains [21,22]:

f[n] = LID'XX[H,H. (10)
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Considering K € I as the upper limit of the summation in Equation (9), i.e., for K = 1:

Dxp, q) = ia (x[n,l] - ax[HO , a1
K=2
Dxpyq) = }37 (x[nq] — QX[ ] — 06(127_“)76[;1730 , (12)
and K = 3:
D%ty = hi <X[n7u — X2) — w (x[nfS] + 2%?%4})) : (13)

we get three modifications of FLP model with “restricted memory” (Equation (10)), which use the
memory (M) of two, three, and four samples, respectively.

Employing the memory of two samples, i.e., substituting D"x|, ;) from Equation (11) into
Equation (10), the two-sample FLP model is defined as:

L = :7 (X[nq] - D‘x[n—z]) , (14)

and the prediction error is evaluated as e[,; = x[,; — £[,. Minimizing the mean squared prediction

error | = E [e[zn]] and substituting the autocorrelation function, the optimal coefficient a can be found.
After some manipulation, the optimal FLP parameter can be written as:

Ryx(1) — aRyx(2)

a=h" . 15
Rox(0) — 20Rux(1) + 2Ry (0) >

In case the order of fractional derivative a tends to zero, we get:
lim a = lim 1" Rur(1) — aRyx(2) — Rall) (16)

2—0 =0 Ryy(0) —2aRyx (1) +a2Ryx(0) ~ Ryx(0)’

i.e., the optimal first-order linear predictor is only a special case of the proposed FLP model with
“restricted memory” using the memory of two previous samples.

Considering the FLP model with “restricted memory” of three samples, where D"x|, jj is
estimated using Equation (12), the predicted sample becomes:

a

- 1—
B) = 4 <X[n71] = P a)x[H]) : (17)

Minimizing the mean squared prediction error | = E [e%n]] , the optimal coefficient a can be found as:

Rux(1) — Ry (2) — “L9 R (3)

=ht .
" Rl =2 (Ree) = 5 R (2)) 0 (Rex0) = DRl1) + R (0)

(18)

As in the case of FLP model with two-sample memory, when the order of fractional derivative « tends
to zero, the computation of the FLP coefficient a reduces to 2 = Ryx(1)/R.x(0), meaning that the
first-order LP is a special case of the FLP model with “restricted memory” using the memory of three
previous samples.
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The last modification of the presented FLP model with “restricted memory” (Equation (10))
is taking into account the memory of four previous samples, ie., D"x|, jj is estimated using
Equation (13):

N a a(l—«a 2—u
) = 32 <x[n71] — X[y 9] — % (x[1173] + Tx[n—4]>) . (19)

Computing the prediction error e|,) = x[,; — £[,; and minimizing the mean squared prediction error

J=E [e% n]] by finding the first derivative of ] with respect to 2 and equating to zero, optimal coefficient
a is obtained in the form:
v Re(l) —aRy(2) — 9 (R (3) — %52R (4))

a=h e (20)
Ryx(0) — 2aRyx (1) + a2Ryx (0) + =541 + (e — 1)#2

where

#1 = <Rxx(0) - 2“3_4Rxx(1) + (IX_TZ)ZR”(O)> 4

w0 <Rxx(2) — Ry (1) — “T_szx(s) + @R”(zo .

Again, as in the case of FLP model with two-sample and three-sample memory, in the case of using the
memory of four samples, when the order of fractional derivative « tends to zero, the computation of
the FLP coefficient a is reduced to 2 = Ryx(1) /Ry (0). This confirms that the proposed FLP models
with the “restricted memory” are generalizations of the low-order LP, i.e., the first-order LP is only
a special case of the presented FLP model.

It was proven in [21,22] that the parameter a of the FLP model with “restricted memory” can
be estimated as the inverse of the number of samples used by the FLP model, i.e., « = 1/M. Thus,
the order of fractional differentiation is in this paper assumed fixed, with the values a = 0.5 for FLP
model with two-sample memory, & = 0.33 for FLP model with three-sample memory, and a = 0.25
for FLP model with four-sample memory. It follows that the FLP model with “restricted memory”
practically uses only one predictor coefficient, which has to be encoded and transmitted, regardless of
the number of previous samples used for prediction.

3. Datasets

3.1. MAPS Dataset

The MIDI Aligned Piano Sounds (MAPS) dataset contains 65 h of stereo audio recordings sampled
at 44.1 kHz with 16 bit resolution (CD quality), recorded either using the software-based sound
generation, or the Disklavier piano [24,25]. The dataset contains four subsets: isolated notes (ISOL);
chords composed of randomly chosen notes (RAND); usual chords in Western music (UCHO); and
piano classical music pieces (MUS). The audio samples were recorded in different recording conditions
(e.g., studio, jazz club, church, and concert hall). RAND, UCHO and MUS subsets were used in the
experiments using all four recording conditions.

3.2. Orchset Dataset

Orchset database contains 64 mono and stereo audio recordings, sampled at 44.1 kHz, extracted from
symphonies, ballets and other classical musical forms and interpreted by symphonic orchestras [26]. The
lengths of the recordings are 10-32 s (mean 22.1 s, standard deviation 6.1 s), the number of recordings
per composer is 1-13, with 15 composers in total. Music excerpts were selected to have a dominant
melody, maximizing the existence of voiced segments per excerpt. In all excerpts, the melody was
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played using more than one instrument from the instrument section, except for one excerpt where only
oboe was used (with orchestral accompaniment).

3.3. Signal Preprocessing

In signal processing applications, e.g.,, when processing speech or audio signal that are
non-stationary signals, the signal is usually divided into short-time windows, denoted as frames,
where the signal is approximately stationary. In the case of audio signal, the frame length is typically
10-120 ms [27,28]. In this study, the experiments were performed using three different frame-sizes,
equal to 10 ms, 60 ms and 120 ms.

The audio signal may contain silent periods, usually at the beginning or at the end of a signal.
This was especially evident in RAND and UCHO subsets of the MAPS dataset, where the silence
periods were even longer than the signal itself. Modeling silent frames is unnecessary since the
resources are spent on parts of the signal which do not contribute to signal reconstruction. Therefore,
the silence frames were removed before further processing. Furthermore, DC offset was removed
from the audio signal, as the signal compression, or any other processing of the signal that includes
the absolute signal levels may lead to distortions and other non-desirable results. Finally, all stereo
recordings were converted to mono by combining left and right channels prior to further processing.

4. Numerical Results and Discussion

The proposed FLP with “restricted memory” given in Equation (10) with the memory of
two (Equation (14)), three (Equation (17)) and four samples (Equation (19)) was compared to
conventional low-order LP using the same signal history. Experiments were performed using two
test signals: the three-note chords composed of randomly chosen notes (MAPS-RAND subset), usual
three-notes Western musical chords (MAPS-UCHO subset), and two musical signals: piano recordings
(MAPS-MUS subset) and orchestra recordings (Orchset). The signals belonging to one recording
condition (studio, jazz club, church, or concert hall) of the particular dataset were concatenated to one
signal prior to applying either LP or FLP.

The prediction gain (PG) served as the predictor performance measure, defined as the ratio
between the variance of the input signal and the variance of the prediction error measured in decibels:

o2

Te,?

PG (dB) = 10logy, @1)

The smaller is the error generated by the predictor, the higher is the gain [29].

Experiments

The results for the randomly generated chords (MAPS-RAND subset) for different recording
conditions (studio, jazz club, church, and concert hall) using four low-order LP models (first-order,
second-order, third-order and fourth-order) and FLP models with the two-sample, three-sample and
four-sample memory are presented in Table 1. The results show that the first-order LP is inappropriate;
however, increasing the prediction-order beyond the second-order LP is not necessary, as it does not
bring significant improvement. Similar behavior can be observed for FLP models, where the best
performing model is the one with the two-sample memory. For the frames having 120 ms length,
its performance is only slightly lower than the performance of the second-order LP, albeit obtained
using only one predictor coefficient (note that the second-order LP that also uses the memory of two
samples, requires the optimization of two predictor coefficients). By decreasing the frame length,
the performance of both LP and FLP decrease, but with FLP approaching LP for the memory of
three and four samples. Note that the results for FLP with the memory of three and four samples
were obtained using two and three predictor coefficients less than in the case of the third-order and
fourth-order LP.
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The prediction results for the chords composed of three randomly chosen notes from the
MAPS-RAND subset are also presented in Figure 1, where the prediction error using the second-order,
third-order and fourth-order LP (black solid line) is compared to the prediction error obtained
using the FLP model with two-sample, three-sample and four-sample memory (red dot-dashed
line). Ten characteristic frames with the length of 60 ms are shown in the figure. The results confirm
that the performance of the second-order LP and the FLP with two-sample memory is comparable for
the signals recorded under different conditions (studio, jazz club, church, and concert hall), and the
difference between the prediction error of the LP and FLP models is generally increasing with the
length of the used memory.

Table 1. Prediction gain (dB) for the chords composed of three randomly chosen notes (MAPS-RAND subset).

MAPS-RAND
Studio Jazz Church Concert
First-order 1741 1753 19.10 15.48
LP Second-order 2394 2391 26.25 2251
Third-order 2485 2452 26.89 23.55
120 ms Fourth-order 2525  24.79 27.15 23.96

Two-sample memory 2340 2336 25.82 22.14
FLP  Three-sample memory 2341  23.68  26.02 22.01
Four-sample memory 2311 25.06 25.88 21.63

First-order 1715  17.35 18.90 15.23

LP Second-order 2290 22.82 25.15 2143
Third-order 2351 2342 25.70 22.14

60 ms Fourth-order 23.85  23.66 25.93 22.51

Two-sample memory 2232 2225 2471 21.07
FLP  Three-sample memory 2247 22,66  25.01 21.08
Four-sample memory 2228 2273 24.96 20.81

First-order 16.35  16.58 18.13 14.65

Lp Second-order 19.82  19.95 21.65 18.86
Third-order 20.28 20.48 22.19 19.29

10 ms Fourth-order 20.46  20.68 22.38 19.50

Two-sample memory 19.30 19.37 21.22 18.50
FLP  Three-sample memory 19.74 19.96 21.78 18.80
Four-sample memory 19.81 20.17 21.94 18.76

Similar behavior as in case of randomly generated chords can be observed when using usual
three-notes Western musical chords (MAPS-UCHO subset). Again, the performance of FLP with
two-sample memory is comparable to the second-order LP for all frames, although FLP is using one
coefficient less (see Table 2).

Ten characteristic frames with the length of 60 ms are shown in Figure 2 for the MAPS-UCHO
subset, where the prediction error using the second-order, third-order and fourth-order LP (black solid
line) is compared to the prediction error obtained using the FLP model with two-sample, three-sample
and four-sample memory (red dot-dashed line). The results confirm that the performance of the
second-order LP and the FLP with two-sample memory is comparable for the signals recorded under
different conditions (studio, jazz club, church, and concert hall), and also that the difference between
the prediction errors of the LP and FLP models is increasing with the length of the used memory.
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The prediction error results for the random chords (MAPS-RAND) for second-order,

third-order and fourth-order LP and the FLP with the two-sample, three-sample, and four-sample
memory: (a) studio recording; (b) jazz club recording; (c) church recording; and (d) concert hall recording.

Table 2. Prediction gain (dB) for the usual Western music three-notes chords (MAPS-UCHO subset).

MAPS-UCHO

Studio Jazz Church Concert
First-order 17.03  18.54 18.74 17.44
LP Second-order 2451  25.75 26.62 25.22
Third-order 2525 2629 27.12 26.02
120 ms Fourth-order 25.61 2652 27.34 26.39
Two-sample memory 2395  25.08 26.29 24.92
FLP  Three-sample memory  23.90  25.44 26.46 24.78
Four-sample memory 2357 2547 26.29 24.37
First-order 16.83  18.37 18.53 17.15
LP Second-order 23.53  24.58 25.42 24.07
Third-order 24.04 2510 2591 24.62
60 ms Fourth-order 2432 2529 26.08 2493
Two-sample memory 2297  23.89 25.07 23.76
FLP  Three-sample memory  23.05  24.36 25.36 23.76
Four-sample memory 22.82 2447 25.30 23.46
First-order 16.07 17.46 17.71 16.38
LP Second-order 2044  21.15 21.77 20.85
Third-order 20.87  21.74 22.32 21.29
10 ms Fourth-order 21.01 2193 22.49 21.45
Two-sample memory 19.95 20.51 21.45 20.57
FLP  Three-sample memory  20.34  21.15 21.99 20.90
Four-sample memory 20.37  21.42 22.14 20.88
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Figure 2. The prediction error results for the three-notes chords (MAPS-UCHO) for second-order,
third-order and fourth-order LP and the FLP with the two-sample, three-sample, and four-sample
memory: (a) studio recording; (b) jazz club recording; (c) church recording; and (d) concert hall recording.

The results for the piano music excerpts using MAPS-MUS subset are also presented for three
different frame sizes, i.e., 10 ms, 60 ms and 120 ms (see Table 3). For shorter frames (10 ms),
the performance of FLP is always comparable to the performance of the corresponding LP that uses the
same signal memory. For longer frames, PG of FLP is comparable to PG of the corresponding LP for
jazz club and church recording conditions, while the performance deteriorates by 1-2 dB only for FLP
with the memory of three and four samples for studio and concert recording conditions, suggesting that
FLP is better suited for signals recorded in reverberant or non-ideal acoustical conditions. Note that
FLP always uses only one predictor coefficient, regardless of the signal memory used for prediction.
For example, for the FLP with the four-sample memory, comparable performance is obtained to the
corresponding fourth-order LP, but with three predictor coefficients less that need to be optimized. This
can lead to substantial savings in bit rate, as predictor coefficients need to be encoded and transferred
to receiver end. Furthermore, note that better performance is obtained using longer frames for both LP
and FLP; hence, more frequent coefficient update does not bring any improvement.

The last experiment was performed using the orchestra music excerpts from the Orchset dataset.
Since LP models are, in general, known to perform well on piano music, we tested the performance of
our model on a more challenging music signal played by the orchestra (see Table 3). The performance
of FLP in comparison to LP is lower than in piano music; however, the model with two-sample memory
is still comparable to the corresponding second-order LP for all frame lengths. Third- and fourth-order
LP models perform better than FLP at the expense of two and three additional coefficients, respectively.
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Table 3. Prediction gain (dB) for musical signal of classical music pieces played by piano (MAPS-MUS
subset) and the classical music pieces performed by orchestra (Orchset dataset).

MAPS-MUS Orchset
Studio Jazz Church Concert
First-order 20.54 22.13 21.90 19.60 18.12
Lp Second-order 31.60  34.04 32.95 30.21 26.82
Third-order 32.36 34.52 33.51 31.24 27.94
120 ms Fourth-order 3286 3475  33.78 31.74 28.15

Two-sample memory 31.59  34.02 3294 30.18 26.70
FLP  Three-sample memory  31.20  34.25 32.98 29.69 26.03
Four-sample memory 30.55 3398  32.65 28.96 25.29

First-order 2049  22.00 21.79 19.58 18.08

LP Second-order 30.27  32.05 31.28 29.10 26.18
Third-order 30.81 32.63 31.87 29.82 26.99

60 ms Fourth-order 31.17 32.80 32.07 30.22 27.18

Two-sample memory 30.25  32.04 3126 29.08 26.09
FLP Three-sample memory  30.14 3256  31.57 28.83 25.56
Four-sample memory 29.66 3244  31.39 28.25 2491

First-order 19.68  20.94 20.77 18.90 17.53

LP Second-order 25.18  25.92 25.66 24.60 23.01
Third-order 25.75  26.75 26.40 25.15 23.37

10 ms Fourth-order 2592  27.01 26.62 25.35 23.49

Two-sample memory 2517 2592 25.66 24.57 23.00
FLP  Three-sample memory  25.70  26.74  26.39 24.97 22.93
Four-sample memory 25.64  27.00 26.52 24.81 22.62

When evaluating the prediction error in case of using musical signals from the MAPS-MUS subset
(see Figure 3) under the same recording conditions as in previous experiments (e.g., studio, jazz club,
church, and concert hall), an interesting observation can be made, i.e., the difference between the
prediction error of the LP and FLP models is not increasing that significantly with the length of the
used memory (especially for the jazz club and church recording conditions), as was the case of using
signals representing chords. Furthermore, it is obvious that the second-order LP and the FLP with
two-sample memory for the shown signals perform at the same level for all four recording conditions.
Similar behavior is present in the case of using orchestra music excerpts from the Orchset dataset
(see Figure 4). Please note that, in Figures 3 and 4, again ten characteristic frames with the length of
60 ms are shown, and that the prediction error using the second-order, third-order and fourth-order LP
(black solid line) is compared to the prediction error obtained using the FLP model with two-sample,
three-sample and four-sample memory (red dot-dashed line).

Here, it should be emphasized that LP and FLP models always use the same number of previous
samples (two, three and four) that allows a fair comparison. Furthermore, it is important to emphasize
that all FLP models show comparable performance in comparison to LP models, even though they
use only two coefficients, i.e., one predictor coefficient 2 and one order of fractional derivative «a,
in comparison to LP models that use two, three and four predictor coefficients (based on the order of
the LP predictor). Moreover, the order of fractional differentiation a does not have to be computed
or optimized. It might be estimated as the inverse of the predictor memory, as previously shown
in [21,22], resulting in only one FLP coefficient that has to be encoded and transmitted. This makes the
proposed FLP significantly more efficient than LP.
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Figure 3. The prediction error results for the musical signals (MAPS-MUS) for second-order, third-order
and fourth-order LP and the FLP with the two-sample, three-sample, and four-sample memory: (a) studio
recording; (b) jazz club recording; (c) church recording; and (d) concert hall recording.
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5. Conclusions

Fractional linear prediction with “restricted memory” that uses two, three, and four previous
samples, respectively, for audio signal prediction is discussed in this work and the closed-form
expressions for the FLP predictor coefficient are derived. Two datasets were used for the experiments
to test the performance of the model and compare it to linear prediction, i.e., MAPS dataset, which
contains chords composed of randomly chosen notes, usual chords in Western music, and piano music
excerpts; and Orchset dataset, which contains music excerpts, extracted from symphonies, ballets and
other classical musical forms, and interpreted by symphonic orchestras.

Using the same number of previous samples for prediction, the results show that FLP is better
suited for prediction of audio signal than the conventional low-order LP models, since it provides
comparable performance, even though it uses less parameters (one predictor coefficients and one order
of fractional derivative). Furthermore, the order of fractional derivative does not have to be optimized
and can be assumed as the inverse of the memory length of the FLP model, making it even more
efficient in comparison to LP model, where the number of predictor coefficients is always equal to
the predictor order. For example, FLP with the memory of four samples requires only one predictor
coefficient, whereas the corresponding fourth-order LP requires four predictor coefficients, at similar
performance. Therefore, substantial savings in transmission costs are possible.
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Abstract: The time-fractional diffusion equation with mass absorption in a sphere is considered
under harmonic impact on the surface of a sphere. The Caputo time-fractional derivative is used.
The Laplace transform with respect to time and the finite sin-Fourier transform with respect to the
spatial coordinate are employed. A graphical representation of the obtained analytical solution for
different sets of the parameters including the order of fractional derivative is given.
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1. Introduction

The classical parabolic diffusion equation with heat or mass absorption [1]

9

a—b; =alAu — bu (1)
also describes bioheat transfer, lateral surface mass or heat exchange in a thin plate, heating of tissue
during laser treatment irradiation, etc. (see, for example [2-5]). The Klein-Gordon equation

82

a—;; =alAu — bu 2)
is used in solid state physics, classical mechanics, nonlinear optics, and quantum field theory [6,7].

The time-fractional equation

“u
ot

= alAu — bu, 0<a<?2, 3)

can be considered as the extension of the parabolic Equation (1) and hyperbolic Equation (2) and was
studied in several publications [8-14].

It should be noted that such a generalization of many classical differential equations with integer
derivatives has numerous applications in rheology, geology, physics, plasma physics, chemistry,
geophysics, engineering, biology, bio-engineering, finance, and medicine (see [15-29], among many
others). There is a great variety of inhomogeneous media where transport phenomena exhibit
anomalous properties, the investigation of which is essential to refine understanding the basic
characteristics of complex systems widely met in nature. Therefore, studying fractional equations
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has generated increasing attention of scientists in many disciplines. At present, the fractional
diffusion-wave equation is generally used to describe a large class of systems at different scales
(from the molecular [30] to the space one [31]) which cover media of the diverse nature (from plasma
physics [29] to living tissue [3]). The study of this equation is also of interest from the point of view of
understanding the complex spatio-temporal dynamics in nonlinear systems of fractional order [32,33].

In Equation (3) and further in this paper, for more concise notation, d;{n(t) denotes the Caputo
fractional derivative [16,34]

daf(t) _ 1 /Ot(t _ T)Yl*lX*l dnf(T) d

der T T(n—ua) dr” g

n—1<a<mn, 4)

and I'(a) denotes the gamma function.

Angstrt’)m was the first to investigate the standard parabolic heat conduction equation under
harmonic impact and laid the foundations for the new area of study known as “oscillatory diffusion”
or “diffusion-waves” (see [35-37] and references therein). Periodic solutions of the bioheat equation
were investigated in [38]. The harmonic point source in the bioheat equation was used in therapeutic
hypotermia [39,40]; applications of the time-harmonic impact in ultrasound surgery were studied
in [41].

As a rule, in the previous studies of diffusion or heat conduction equation the quasi-steady-state
oscillations were investigated when the solution u(x, t) was represented as a product of a function of
the spatial coordinates U(x) and the time-harmonic term e/“! with the angular frequency w

u(x, ) = U(x) et ()

without consideration of the initial conditions.
The use of assumption (5) is based on the well known formula for the derivative of the integer
order 1 of the exponential function
dreM
der
In the event of the non-integer order of time derivative, the assumption (5) cannot be used
since [42]

= \"eM, (6)

dte — )\ eAt 7(” — D‘)/ )‘t) 75 A% e)\t

i T(n— ) n—1l<a<n, (7)
with (4, x) being the incomplete gamma function [43]
X
y(a,x) = /0 e *udu. (8)

It is worthy of notice that for the Riemann-Liouville fractional derivative [16,34] with the lower
limit of integration at 0

Drof(t) = % [ﬁ ./Ot(t — 1) (7) dr] , n-l<a<n, ©)

we also have [16]
D& eM = Epq . (AF) # A%eM. (10)

Here E, g(z) is the Mittag-Leffler function in two parameters a and 3 [16,34]

E&’,ﬁ (Z) = rgm, QR(IX) >0, ,B eC, zeC. (11)

40



Mathematics 2019, 7, 433

In this paper, the initial-boundary-value problem for Equation (3) is studied in a spherical domain
for the case of central symmetry under the Dirichlet boundary condition varying harmonically in time.
The present paper develops and extends the results of the previous investigations [44,45], where the
corresponding problems for line and half-line domains were investigated.

2. Statement of the Problem

The time-fractional diffusion equation with mass absorption (mass release) is examined in a sphere

“u %u 2 9u
— 27 <
pm a<8r2+rar) bu, 0<r<R, 0<t<oo, O<a<2, (12)

under zero initial conditions

t=0: u=0, 0<a<2, (13)
t=0: %Lt‘zo, l<a<?, (14)

and harmonic impact on the surface of a sphere
r=R: u=upe“ (15)

As in the case of classical diffusion equation (when a = 1) and the wave equation (When a = 2)
the boundedness condition at the origin is also adopted:

r=0: u#oo. (16)

In what follows, the integral transform technique will be used. Recall the Laplace transform rule
for the Caputo derivative

{d"‘fi )} _ e - Y PN H o1 <a<n, a7
dt k=0

where the transform is marked by the asterisk, and s is the Laplace transform variable.
The following finite sin-Fourier transform is amenable to the central symmetric problem in a
spherical domain 0 < r < R [46]. For the Dirichlet boundary condition:

P} =T = [ v 2 gy 1s)

PRGN = 1) = ¢ ¥ 8 (e ", (19)

||M8

where the transform is marked by the tilde, and

krm
k=1 (20)
is the Fourier transform variable.
For the central symmetric Laplace operator
d2f(r) 2df(r ~
F { 10 | 2dfe )} — g (e + (-DRAR). @

41



Mathematics 2019, 7, 433

Applying to the problems (12)-(16) the Laplace transform with respect to time t and the finite
sin-Fourier transform (18) with respect to the radial coordinate 7, we get in the transform domain

1 1

~k = (-1 k+1 Rug — =
u (Ck,S) ( ) a u05“+ﬂ§£+b5—iw

(22)

The solution is obtained after inversion of the integral transforms:

2au

u(r, ) = 210 3~ (1) gesin () / e [ (a4 b))t Tar @)

k=1 0

where E, 4(z) is the Mittag-Leffler function (11), and the convolution theorem as well as the following
equation for the inverse Laplace transform [16]

-1 s P B—1 «
LN sy = B (1), a>0, p>0, (24)

have been used.
In numerical calculations, the nondimensional quantities are used:

o o [7011/11 _7R2/“
ufu—o, rfﬁ, = xRt wfmw,
_ R?
b= 7[), 1 = R¢ = k. (25)

Hence, using in integral in (23) the substitution T = tw, for the real part of the solution we get
=TT - e k+1 : = 1&71 2 7\ 7. ,n -7
i(7, L, b,w) = Y (=1 ysin (riyk)/ W Egq [f (i]k + b) tw ] cos [@H(1 —w)] dw, (26)
k=1 0
where we can see that the solution i depends not only on time and spatial coordinate, but also on the
parameters b and @.

To simplify calculations, it would be worthwhile to introduce a substitution z = w*. Hence,

‘N.

(7, i b,@) =

=

: g(_l)kﬂﬂk sin (Fr7x,) /01 Ena [— (17,% + l_7> f”‘z] cos {a‘zf (l - zl/”‘)} dz.  (27)

To evaluate the Mittag-Leffler function the algorithms suggested in [47] were used; see also the
MATLAB function [48] that implements these algorithms.

The numerical results are shown in Figures 1-5. Calculations were carried out for the grid size
step Af = 0.1, A7 = 0.05. A graphical representation of the solution (27) makes it possible to analyze
not only the limiting cases of the problem (see Section 3), but also to understand the influence of
the main parameters of the problem (including the value of the order of fractional derivative) on the
spatial-temporal evolution of the solution.

It is seen from Figures that time oscillations of the solution are governed by the harmonic term
/!, The increasing of absorption parameter b decreases the oscillation amplitude (Figures 2b and 3d),
whereas increasing « increases it (Figures 2a—d and 3d). As the Mittag-Leffler function

Eap (*xz) = si%x, (28)

the space oscillations of the solution depending on the order of fractional derivative appear for « > 1.5
(Figures 1d and 2d) and become well-marked for & approaching 2. The influence of both factors is
evident from Figures 4 and 5.
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Figure 1. Evolution of the solution for the problems (12)—(15) under constant impact. The results of
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Figure 5. Evolution of the solution for the problems (12)—(15) for different orders of fractional derivative

The results of computer simulation of the formula (27) for the parameters b = 2, @ = 2.0 and different
values of a: &« = 0.75—(a); « = 0.95—(b); &« = 1.75—(c); « = 1.95—(d).

3. Analysis of the Quasi-Steady-State Oscillations

Now, we shall investigate two particular cases of the problem studied in the previous section
corresponding to the integer values of the order of time derivative. For & = 1, we have

(@) = (~1)1aRug ——

1

S 29

s+all+bs—iw @)

Taking into account that [49]
—qt _ o1t
-1 { 1 } _e e ) 30)
(s+p)(s+q) P=a

we arrive at the solution to the bioheat equation

2auy & k1 Crsin(rGe) i
) = —— -1
u(rt) r IE( ) agff—l-b—&-iwe
2auy & k1 Cksin(rGe)  —(ac240)e
S L e
k=1 k

Similarly, for o = 2,

(31)
T (85) = (~1)aRug —— 1 (2
’ $2+al2+bs—iw
Taking into consideration that [49]
1 1 o 1 gt q ..
£ {(szﬂﬂ) Graf e [ ey s 9
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we obtain the solution to the Klein-Gordon equation

2aug ka1 Gesin (r8) oot
1) = -1 =
u(r ) r k:z:l( ) u(;"%—‘,-b—a)ze
201y > k+1 _Giesin (réy) [z W gn [ Jaz2
— (=1)"" —5——=% |cos | y/ali + bt | + ————=sin | \/al: + bt ) |.(34)
r k;l aZl+b— w? k \/@ k
For integer «, we can assume that
u(r, t) = U(r)e. (35)
For & = 1, the function U(r) fulfills the equation
d*U  2dU  b+iw
A G0
under the boundary condition
r=R: U(r) =up, (37)
and for b > 0 has the solution bounded at the origin
sinh |r\/(b+iw)/a
u(r) = R0 [ } (38)

" sinh [Ry/(b+ iw)/a]

Therefore,
sinh |r\/(b+iw)/a
u(r,t) = R0 [ ) et (39)
" sinh [R b+ z‘w)/a]
(for negative value of b, sinh will be substituted by sin).
The first term in the solution (31) can be evaluated analytically using the following formula [50]

okl ko _ msinh(rp)
k;( 1) g sin (kr) = 2 sinh(np)’ T<r<m,. (40)
e k . 7t sin(rp)
ket _n -
k; (1) g sin (kr) 2 sin(p)’ T<r <7t (41)

It was emphasized in [51] that Equation (41) is also valid for complex values of p and hence turns
into Equation (40) for imaginary p.

Taking into account Equation (40), we obtain that the first term in the solution (31) coincides
with the quasi-steady-state solution (39), whereas the second term in Equation (31) describes the
transient process.

The similar analysis can be carried out for & = 2 based on the assumption (35). In this case, the
function U/(r) fulfills the equation

du 2dU b-w?

dr? * r dr

U=0o, (42)

under the boundary condition
r=R: U(r) =up, (43)
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and for b > w? has the solution bounded at the origin

 Rug sinh [1’ (bfwz)/a]

u(r)=—— , (44)
" sinh [R«/(b — wz)/a]
whereas for b < w?
sin |7y/(w? —b)/a
u@) = X0 [ | (45)
" sin [R (w? — b)/a]
Hence, for b > w?
sinh |r/(b—w?)/a|
u(r,t) = Rug [ } elwt, (46)
" sinh [R (b— wz)/a}
and for b < w?
sin |7y/(w? —b)/a|
u(r,t) = Rity [ ( ] et (47)

I sin [R\/ (w? — h)/a]

The first term in the solution (34) after accounting for Equations (40) and (41) coincides with the
quasi-steady-state solutions (46) and (47), respectively, whereas the second term in (34) describes the
transient process.

4. Conclusions

The time-fractional diffusion-wave equation with the Caputo fractional derivative of the order
0 < a < 2 with mass absorption was studied in a spherical domain under the Dirichlet boundary
condition varying harmonically in time. The Caputo derivative of the exponential function has
a much more complicated form than the corresponding derivative of the integer order. Hence,
the assumption that the solution of the problem can be represented as a product of a function of the
spatial coordinate and the time-harmonic term without consideration of the initial conditions cannot
be used. The solution is obtained using the Laplace transform with respect to time and the finite
sin-Fourier transform specifically adapted for a spherical domain and is expressed in terms of the
Mittag-Leffler function. A graphical representation of the obtained analytical solution demonstrates
the influence of the main parameters of the problem including the value of the order of fractional
derivative on the spatial-temporal evolution of the solution.
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Abstract: Fractional calculus models are steadily being incorporated into descriptions of diffusion
in complex, heterogeneous materials. Biological tissues, when viewed using diffusion-weighted,
magnetic resonance imaging (MRI), hinder and restrict the diffusion of water at the molecular,
sub-cellular, and cellular scales. Thus, tissue features can be encoded in the attenuation of the
observed MRI signal through the fractional order of the time- and space-derivatives. Specifically, in
solving the Bloch-Torrey equation, fractional order imaging biomarkers are identified that connect
the continuous time random walk model of Brownian motion to the structure and composition of
cells, cell membranes, proteins, and lipids. In this way, the decay of the induced magnetization is
influenced by the micro- and meso-structure of tissues, such as the white and gray matter of the brain
or the cortex and medulla of the kidney. Fractional calculus provides new functions (Mittag-Leffler
and Kilbas-Saigo) that characterize tissue in a concise way. In this paper, we describe the exponential,
stretched exponential, and fractional order models that have been proposed and applied in MRI,
examine the connection between the model parameters and the underlying tissue structure, and
explore the potential for using diffusion-weighted MRI to extract biomarkers associated with normal
growth, aging, and the onset of disease.

Keywords: anomalous diffusion; complexity; magnetic resonance imaging; fractional calculus

1. Introduction

“One of the principal objects of theoretical research in my department of knowledge is to
find the point of view from which the subject appears in the greatest simplicity”. J. Willard
Gibbs, Letter in Proc. Amer. Acad. Arts & Sci. (1881), pp. 420—421.

Mathematical models are a prism through which we can view the complexity of nature [1]. Just as a
prism separates sunlight into the colors of its optical spectrum—portraying hidden features (frequency,
intensity, and polarization)—the formulation of a model identifies features not displayed in the raw
data. Parameter extraction and estimation mimic a spectrograph by selecting individual spectral
components for analysis. In both measurement and modeling, we seek to isolate specific aspects of a
physical phenomenon for further study. Success is measured by the degree to which the spectra (or
model) captures particular features of the image or visual scene. In paint, the pigments can be identified
by a UV-Vis spectrophotometer, but in painting color is described by hue, value, tone, tint, shade, and
saturation, all of which are processed by the eye as characteristics of a picture. In modeling biomedical
images, we use mathematics to help the brain recognize patterns by identifying new measures of image
complexity that convey information in terms of contrast and resolution. Like a spectrograph attached
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to a telescope or microscope, a mathematical model seeks to capture information hidden in the image
of a star or a cell.

Magnetic resonance imaging (MRI) systems are imaging spectrographs that combine camera and
spectrometer so as to display the internal structure and composition of the human body [2]. Due to the
mismatch between the sub-millimeter resolution of MRI and the sub-micron architecture of biological
tissues, mathematical models are needed to describe the mesoscale complexity of living systems. Here,
the versatility of MRI offers a variety of tools that encode the mobility of water (molecular rotation and
translation) in terms of the magnetic resonance spectrum, and the decay or relaxation of its individual
components [3]. In addition, manipulation of the imaging pulse sequence—through modulation of
the applied radiofrequency and pulse gradient fields—provides image contrast. Interpretation of this
sub-pixel (or for a selected slice, sub-voxel) contrast requires a dynamic model of the local magnetic
dipole moment per unit volume, which in the case of diffusion, is the Bloch-Torrey equation [4].

Diffusion-weighted MRI (DW-MRI), based on the Bloch-Torrey equation, is implemented by
selective phase encoding within each imaging voxel. This typically involves using a pair of rectangular
gradient pulsed (Stejskal-Tanner pulses [5]) to capture the diffusion of water in tissue over the distance
of several microns. The DW-MRI signal appears as an exponential signal decay (after appropriate
normalization for the local signal intensity and the intrinsic T and T, relaxation times) [6]. Hence,
the connection between the molecular diffusion coefficient, D (mm?/s) and the detected signal decay
involves coarse graining of the magnetic dipole moment per unit volume (M, Amp/m), selection of the
transverse component (Myy), detection of an induced time domain signal (S(t), volts/s), slice selection,
phase and spatial encoding to form an image, I(x,y), and finally diffusion encoding into the diffusion
signal for each imaging voxel, S(b) = Spexp(-bD), where diffusion-weighting, b, depends on the pulse
gradient strength, g, width, 6, and separation time, A, for rectangular Stejskal-Tanner pulses, e.g., b =
(ygd)*(A — §/3), and 7 is the gyromagnetic ratio, 42.57 MHz/Tesla for water protons. The analytical
solution of the Bloch-Torrey equation is only possible for simple geometries and relatively uniform
samples (ideally for Gaussian diffusion in homogenous, isotropic, and unbounded materials) [7].
Relaxation of these conditions leads to the need for additional gradient pulses, which extend the overall
imaging time. Hence, the need to simplify this model is guided, on one hand, by a desire to correlate
the detected DW-MRI signal with specific tissue features (e.g., isotropic versus anisotropic diffusion or
normal versus anomalous diffusion) and on the other by the need to keep the imaging protocol as
short as possible—at least in clinical exams.

Anomalous diffusion is characterized by a non-linear growth in the mean squared displacement
(MSD) with time [8]. In complex, heterogeneous materials, such as biological tissues, anomalous
diffusion has been observed directly in cells and membranes using high resolution optical techniques
(fluorescence correlation spectroscopy (FCS), and fluorescence recovery after photobleaching (FRET)),
and indirectly in tissues using DW-MRI [9]. Molecular crowding and close cell packing hinder
the movement of water reducing the apparent diffusion coefficient from its nominal value of
2.5 % 1073 mm?/s to 0.8 x 107> mm?/s in brain gray matter, while the MSD remains proportional
to the diffusion time [10]. At longer diffusion times (typically greater than 50 ms), the water trapped
in and around cells finds its motion not only hindered, but also restricted [11]. For example, water
trapped in cells and sub-cellular organelles crosses the associated membranes very slowly and this
barrier alters the free diffusion and water transport such that the MSD now increases with time in a
sub-linear manner, MSD = 2Dt%, where 0 < « < 1; a process termed anomalous and sub-diffusive.
Both Gaussian (fractional Brownian motion, Langevin equation) and non-Gaussian (continuous time
random walk, (CTRW), Lorentz obstructed motion) diffusion models have been suggested describe
the DW-MRI data [12]. An example of DW-MRI data is displayed in Figure 1, which is a plot of the
normalized signal intensity (5/Sp) versus b-value for white matter (WM), gray matter (GM), and cerebral
spinal fluid (CSF) acquired from a normal human brain using a clinical 3 Tesla MRI scanner [13]. The
semilogarithmic plot for CSF is the expected straight line characteristic of a single exponential decay.
The GM signal exhibits a smaller apparent diffusion coefficient (decay rate) with a small upward
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curvature at b-values above 1000 s/mm?. Hence, both CSF and GM can be described as examples of
normal Gaussian diffusion. The WM signal, however, shows a much larger curvature in this plot and a
decay rate (slope) that appears to decrease with increasing b-value [14]. Water diffusion in WM is an
example of anomalous diffusion where the highly myelinated axons and dense fiber bundles of the
white matter add barriers that restrict the movement of tissue water.

WM

SIS,

GM

0.1 CSF

1
0 1000 2000 3000 4000 5000 6000 7000
* 2
b (s/mm”)

Figure 1. Normalized signal intensity plotted versus b for selected regions of interest (ROI) in white
matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) for a human brain (reprinted from
ref. [13] with permission). DW-EPI T2-weighted image at 3.0 Tesla, TR/TE = 4000/97 ms, FOV =22 cm -
22 cm, matrix 128 -72 (zero padded to 256 - 256 during image reconstruction), in plane resolution =
1.72 mm X 3.05 mm and slice thickness = 4 mm. The experimental data were fit to the fractional order
stretched exponential model, S(b) = Spexp[(~=bD)%)], (WM, ot = 0.64, D = 0.41 x 1073 mm?/s ; GM, o =
0.82, D = 0.66 x 1073 mm?/s ; CSF, « = 0.95, D = 2.72 x 103 mm?/s).

Two research paradigms are commonly explored in DW-MRI. First, one can build simplified
models of tissue structure by selecting two, three, or four tissue compartments or components, each
with a specific, and to be determined, parameter set (e.g., intra- and extra-cellular diffusion and
membrane permeability). Diffusion Tensor Imaging (DTI) applies this approach to each image voxel
via gradient pulses applied in multiple (at least six) directions. Other approaches (CHARMED,
NOODI, AxCaliper, etc.) [15], extend the data collection to multiple b-value shells sampled in hundreds
of directions. Alternatively, one can select a heuristic model for S(b), such as the kurtosis, S(b) =
Soexp(—bD)exp[(K/6)(bD)?] [16], or the stretched exponential model, S(b) = Sy exp[—(bD)*] [17], and fit
the available clinical data to the extended set of model parameters {Sy,D,K} or {Sy,D,a}, respectively.
Such models, since they have an extra parameter, will provide an improved fit to S(b) data that extends
over multiple b-values. The sword of Damocles in the first approach is the added imaging time, while
for the second, it is the dichotomy between the precision of the parameter fit and the ambiguity in
the connection between the tissue composition and fitting parameter. Another factor, most often
overlooked for both models is the likelihood that the fitting process is degenerate, that is, more than
one set of parameters can fit the data with the same least squares fit error [18].

In this paper, we will combine the two modeling approaches described above by using a varying
diffusion coefficient D(b) to account for the complexity of the tissue as an inverse power law for higher
values of diffusion weighting (b-values), and by generalizing the stretched exponential and kurtosis
diffusion decay models by extending the governing diffusion decay to fractional order. The fractional
order model naturally accounts for both multiple compartments and non-Gaussian diffusion. After a
few preliminary definitions, we will outline an extended form for the fractional diffusion coefficient
model, and the corresponding integer and fractional order diffusion decay equations. Examples of
the expected functional behavior of the diffusion signal decay as a function of b-value will be plotted
and fit to ex vivo bovine optic nerve tissue. In the Discussion we will describe how these models
expand the available modeling tools for DW-MRI data and describe how they can be used to fit animal
and clinical data. Overall, this approach provides a way to extend the heuristic stretched exponential
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approach toward more complete multiple-compartment models. This bridge uses fractional order
derivatives and varying diffusion coefficients as connecting links.

2. Definitions and Properties

The signals analyzed in DW-MRI, f(b) = S(b)/Sy, are expressed in terms of b, the diffusion-weighting
variable defined above for a pair of rectangular diffusion pulses [2-4]. Typically, f(b) is a single valued
function that is positive, real, and monotonically decreasing for b-values in the range from 0 to
5000 s/mm?. For each pixel in an MR image, f(b) is fit to data acquired by varying b in magnitude
and gradient direction. The default function used in most DW-MRI is the single exponential, f(b) =
exp(=bD). This model reflects the underlying assumptions of a linear, first order relaxation model
appropriate for free or hindered Gaussian diffusion. In biological tissues, a sum of exponentials or
the stretched exponential, f(b) = exp[(-=bD)?*], where 0 < & < 1, is often needed to describe the data,
particularly at high b-values. When neither of these approaches are satisfactory, non-Gaussian behavior
is considered, and in this paper we will describe it by using a fractional-order relaxation model. Our
model involves the Caputo fractional derivative, CD"‘[f(b)], so below we have defined this derivative
operator and its properties. In addition, we also define the Mittag-Leffler function because this function
frequently appears in various forms when solving fractional-order differential equations. We will show
that the Mittag-Leffler function is also a generalization of the exponential.

2.1. Caputo Fractional Derivative

The simplest description of the non-local, Caputo fractional derivative of order « (0 < « < 1) is as
an integral convolution of a power law decay, b~ */T(1 — o), with f(b) [19], hence:

b—ll
CnHa
DY f(b) = f(b)* 1
A ORVOR u
where the gamma function, I'(z) is defined for all z > 0 by:
I'(z) = f Fle ™ dx . )
0

For integer values of n, I'(1 + n) = nI'(n) = n!, and in the limit as « approaches 1, the Caputo
fractional derivative converges to the integer result, *D * f(b) = df(b)/db. Whereas, for f'(b) = dfidb,
we have:

1 (h_a () gy
Cpafp) =) T b o ( W )db 0<ac<l
oDy f(b)
df(b) _
7 a=1

, ®)

Applying the Caputo fractional derivative to monomial of arbitrary degree, k yields:

I(1+x«)

Crapx
DY = ————
0= Ml+x-a)

(b, )
which gives 1 and 0 for b = 1, and a = 0 and & = 1, respectively. Hence, the Caputo fractional derivative
is a simple extension of the integer result db*/db = [!/(x — 1)!]b(K’1): x b1 However, for other
common functions, such as the sin(b), cos(b) and exp(b), the results are not quite as simple.

Applying the Caputo fractional derivative term by term to the power series expansion of the
single exponential f(b) = exp(b), yields:

—ab
gm@:w@w_ﬁﬂ”. )
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Rather than tabulate all the changes incurred when applying the Caputo fractional derivative
to familiar functions, mathematicians have developed particular special functions with simpler
behavior under the fractional derivative operation. One such function was defined by the Swedish
mathematician, Magnus Gustaf Mittag-Leffer; it is a generalization of the exponential.

2.2. Mittag-Leffer Function

The Mittag-Leffer function, like the Bessel function, comes in different kinds (first, second,
modified, etc.), and occurs in both integer and fractional order. It was developed out of the need to
simplify the solution of certain classes of ordinary differential equations. Also, like the Bessel function,
the Mittag-Leffer function can be defined in terms of a convergent power series. For more information
on the Mittag-Leffer function, please consult the monograph by Mainardi and colleagues [20]. There
are many versions of the Mittag-Leffler function which subsume almost all of the basic functions of
mathematical physics. In this article, we only need three kinds of Mittag-Leffler functions, which we
will define in terms of their corresponding power series.

2.3. Exponential Function

Since I'(n + 1) = n/, the simple decaying exponential has the following power series representation:

exp(= ”;)rnﬂ : ©)

2.4. One Parameter Mittag-Leffer Function

The one parameter Mittag-Leffler function [20] is a generalization of the exponential with the
parameter, , inserted a multiplying the integer . It has the following power series representation:

v (="
b) = ”; Fna+1) @
Note, that E;(—b) = exp(=b) and Eo(—b2) = cos(b).

2.5. Two Parameter Mittag-Leffer Function

The two parameter Mittag-Leffler function [20] includes a second parameter g in the gamma
function of the power series as:

Eop(~ =Z:] m+ﬁ @®)

Note that here, Eq1(—b) = exp(=b), E1 5 (—b) = [1 — exp(—b)I/b, and E5(~b?) = [sin(b)]/b.

2.6. Three Parameter Mittag-Leffer Function

There are several ways to extend the Mittag-Leffler function to three parameters—one credited to
Prabhakar [21], and another to Kilbas and Saigo [22]. We will use the Kilbas-Saigo definition, which in
power law form can be written as:

Eam, 1 ch : ©)

where ¢y = 1 and:

ﬁ Cla(jm +1) +1]
T[a

la(jm+1+1)+1] (10)

j
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Note that Eq 11(=b) = exp(=b), E41,1(-b) = E4(=b), and Ea,ﬁ,1(—b) = Ea,ﬁ(—b).
Two useful results can be established by applying the Caputo derivative term by term to these
power series expressions. First, we find the following for the one parameter Mittag-Leffler function:

§DEEL[-(bD)"| = -D*Ea[-(0D)"] . (11

Thus, the stretched Mittag-Leffler function solves the homogeneous fractional order differential
equation SD‘;y(b) + D%(b) = 0. And, for a = 1, the above expression reduces to the simple
relationship dlexp(-bD)J/db = -D exp(-bD), and gives the solution to the corresponding first order
differential equation.

For the inhomogeneous fractional order differential equation:
SDey(b) + D*y(b) = g(b), (12)

with 0 < a <1, and y(0) = B, the solution [22] is:

b
y(b) = BEL[-(bD)"] + f (b= 1) B[~ (' D) g (b )b . (13)
0
Finally, for the following homogeneous fractional order differential equation:
§D3y(b) + DB(BD) y(b) =0, (14)
and y(0) = B, the solution [23] is:

y(b) = BEa1+p/ap/a|-(bD)**F] , (15)

which is a reduced form of the three parameter Mittag-Leffler function, witha = a, m =1 + p/a, and [ =
p/a. Also, @ and p are restricted to the conditions, 0 < a <1, and — a < <1 - a. We will refer to this
particular case as the Kilbas-Saigo function in the following text.

3. Results

3.1. Fractional Order D(b) Models

A key feature of the anomalous diffusion exhibited in DW-MRI is the fall-off or reduction of the
decay rate at b-values above 1000 s/mm?. A recent paper [14] surveyed integer order models of this
phenomena, where the apparent diffusion coefficient Dy was expressed as a decaying function of b
with a separate decay rate, Dy, for example, D(b) = Dyexp[—(bD1)]. Here, we focus on fractional order
models for systems with both a constant and an inverse power law decay rate. A summary of our
approach is given in Figure 2, which illustrates the different integer and fractional order models that
will be described. For the integer order case, with a constant diffusion coefficient, D(b) = Dy, the linear
differential equation model, yields the classical exponential decay, S(b)/Sy = exp[—(bDy)]. A common
extension of this model [23,24] assumes an inverse power law decay rate, D(b) = (1 + B)Dy( bDy)?,
where —1 < f < 0. This integer order, linear differential equation has a stretched exponential solution,
S(b)/Sy = exp[—( bDy) 1P ], which has often been used to fit DW-MRI signals (see, [17,24,25]). The
fractional § parameter is zero for the cases of normal and hindered diffusion, as in CSF and gray matter,
but less than one for situations where anomalous diffusion appears—such as in brain white matter.
Nevertheless, this signal decay model is still exponential, and will decay faster than a power law at
high b-values.
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Fractional-order

deS(b)
db®

+DES(b) = 0

deS(b Model Selection for ds(b
Ez ) + D& (bDg)PS(b) = 0 the Decay of Diffusion 7() +DoS(b) = 0
db MRI Signal db
Fractional-order with power Constant Diffusion Coefficient
law rate
ds(b)

-t (1+ B)Dy (bDy)BS(b) = 0

Power law rate

Figure 2. A diagram illustrating four approaches selected for generalization of the classical Gaussian
model of diffusion-weighted signal attenuation in magnetic resonance imaging (MRI) (integer or
fractional order, each with a constant diffusion coefficient or one with an inverse power law decay). An
example of a representative differential equation for S(b) is shown for each case.

Fractional order models asymptotically decay as a power law, so another way to capture the
power law tail of the anomalous diffusion signal decay is to consider the decay process to be governed
by a Caputo fractional order derivative (order , with 0 < « < 1) and a constant diffusion coefficient, Dy.
The solution for this case is the single parameter stretched Mittag-Leffer function, S(b)/Sy = Eo[—(bDg)"].
This model is attractive because at low b-values it decays as a stretched exponential (approx. 1 — b*/I'(1
+ @) + ... ) and at high b-values decays as a power law of the form (b~%I'(1 — a)) [23]. It has been fit
to DW-MRI data by Magin, Ingo, and others [12,26]. For completeness, we also show the case of a
fractional order Caputo derivative model (order &) with an inverse power law decay rate (order f).
The solution for this case is a three parameter Mittag-Leffler function (Kilbas-Saigo form, see Equation
(15) and Table 1), but for the inverse power law decay rate is expressed using only « and f as S(b)/Sy =
Ea, 14/ ol bDy)**F], [23]. Two things should be noted about this function. First, the conflation of the
separate fractional parameters—the « connected with the order of the Caputo fractional derivative,
while the § is connected with the presumed inverse power law decay of the diffusion decay rate,
D(b). The second thing to note is that, the « and f in this solution are not the «, § of the second order
Mittag-Leffler function, but reflect a particular condition on the «, 1, and I parameters of the three
parameter Mittag-Leffler function. In addition, from its construction, we note that the fractional order
derivative with the inverse power law decay rate case includes all of the other models as special cases.
All four are displayed in Table 1 for reference and ease of comparison.

Table 1. Summary of Diffusion Decay functions, S(b), for Selected Cases.

Constant Power Law
S(b) = Spexp(~bDy) S(b) = So exp(~(bDg)'*F)
Mittag-Leffler Kilbas-Saigo
S(b) = SoEa(-(bDy)")) S(b) = SoE, 1,1, 1(~(bD0)**F)

b= ()/gb)z( - %), S(b=0") = Sy, where, «, B, and Dy are constants, and 0 < « < 1,-1 < < 0.

In order to display the behavior of the four signal decay models, we have prepared plots of the
different diffusion signal decay functions for a selected set of the oc and  parameters. The functions
were evaluated using MATLAB® (MathWorks, Natick, MA 01760) and the code is publicly available
at [27]. In the MRI field, the stretched exponential was first applied by Bennett et al. [17] to model
DW-MRI data. Figure 3 is a plot S(b)/Sy = exp[—(bDp)**F)] versus b for b-values between 0 and
4000 s/mm?, and Dy = 1 x 1073 mm?/s. We selected five values for (1 + B)=0.2,04,0.6,0.8, and 1.0.
The last value in this sequence, corresponding to = 0, gives the single exponential function. Three
things should be noted about these normalized decay curves. First, they all go through the point f(b) =
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0.37 when bDg = 1, and for smaller b-values, all the curves fall below the exponential, while for bDy > 1,
the decay curves are all higher. Thus, the stretched exponential function mimics the combination of a
fast plus a slow decay. The deviation from the exponential decreases as the value of (1 + ) increases.
Second, slope of the stretched exponential becomes increasingly steep near b = 0, and in fact diverges
when (1 + ) < 1. This behavior can be eliminated by shifting the stretched exponential, but that
changes the character of the decay [28]. Third, for high b-values, the stretched exponential decays as
a power law on a semilogarithmic graph, but not on a linear scale. The multiexponential character
of the stretched exponential can be extracted using the inverse Laplace transform (see the work of
Berberan-Santos et al., [29]) and it also finds applications in the cumulative function of the Weibull
probability distribution [30].

power-law
1 T T T T T T T
—_—1+(=0.2
0.9 —_—1+3=04 |
= 1+3=0.6
——1+3=0.8
0.8 1+4=1.0 7
0.7 1
0.6 4
a
= 051 4
©n
041 1
0.3F 4
0.2 b
01

00 500 1000 1500 2060 2560 3060 3500 4000
bls/mm?]
Figure 3. The normalized signal decay of S(b)/Sy for a stretched exponential decay is plotted for b-values
between 0 and 4000 s/mmz, and Dy =1 x 1078 mmz/s. Five values for (1 + ) =0.2,0.4, 0.6, 0.8, and 1.0
are displayed. The last value in this sequence gives the single exponential function. As the value of (1 +
B) moves toward 1, the shape of the decay curve transitions from a multiple exponential with fast and
slow components to a single exponential decay.

The single parameter Mittag-Leffer function is well known as a relaxation model for dielectric
and viscoelastic materials [31,32], and more recently in MRI [12,26]. is a plot S(b)/Sy = E.[-(bDy)*]
versus b for b-values between 0 and 4,000 s/mm?2, and Dy=1x 1073 mm?/s. We selected five values
for « = 0.2, 04, 0.6, 0.8, and 1.0. The last value in this sequence, corresponding to « = 1, gives
the single exponential function. The one parameter Mittag-Leffler function behaves, overall, in a
manner similar to that of the stretched exponential—falling below the exponential at low b-values,
and above it at high b-values. However, as shown in Figure 4, all the curves do not pass through
bDg = 1, but most go through S(b)/Sy = 0.5 near bDy = 0.7. And, for high b-values, on linear scales,
the curves flatten out as the « values decrease, reflecting a significant reduction in the apparent
diffusion constant—a hallmark of restricted diffusion. On logarithmic scales at high b-values, the one
parameter Mittag-Leffler will appear as a straight line, which is characteristic of a pure power decay
(see, Carpinteri and Mainardi [31] for these plots). The one parameter Mittag-Leffler has been used
to fit DW-MRI data by several groups [12,26] and there is a growing recognition that the fractional
order, «, is a homogeneity measure of the sub-voxel tissue environment—as the cellular heterogeneity
increases (homogeneity decreases), the « values fall below 1.0. This view is consistent with the spectral
distribution model of the one parameter Mittag-Leffler presented by Carpinteri and Mainardi [31],
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and the inverse Laplace transform analysis of Berberan-Santos [33]. Both models coalesce to a Dirac
delta function when « = 1.0, and broaden significantly as « < 1.0, indicating a growing population
of compartments with low diffusion rates (coefficients). Hence, one can interpret the one parameter
Mittag-Leffler function as a concise multiexponential model of complex, heterogeneous material, and a
natural candidate to use when searching for imaging biomarkers of tissue changes or pathology.

Mittag-Leffler
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Figure 4. The normalized stretched Mittag-Leffler signal decay of S(b)/Sy is plotted versus b-values
between 0 and 4000 s/mm?, with Dp=1x 1073 mm?/s. Five values for o = 0.2, 0.4, 0.6, 0.8, and 1.0 are
displayed. The last value in this sequence, corresponding to « = 1, gives the single exponential function.
As the value of o decreases, the shape of the decay curve transitions from stretched exponential to an
asymptotic power law decay.

The three parameter Mittag-Leffler function (Kilbas-Saigo function), when expressed using only o
and g was derived and first applied in MRI by Hanyga and Seredynska [34], but plotted only over a
narrow range. Here, we follow the recent work of Capelas de Oliveira, Mainardi, and Vaz [22] and, in
addition, suggest that the a and  parameters of the Kilbas-Saigo function might provide separate
tissue characterization parameters. We selected different values for a and f subject to the conditions,
0O<a<land 0 < a+ p <1 toensure complete monotonicity and non-negativity of the spectral
distribution [22]. Figure 5 is a plot S(b)/Sy = Emhﬁ/%ﬂ/a[—(bDo)“*ﬁ] versus b for b-values between
0 and 4000 s/mm?, and Dy = 1 X 10~ mm?/s with @ = 1, and § = 0, -0.2, 0.4, —0.6, and —0.8. The
signal decay in this case is a weighted stretched exponential and is similar to the stretched exponential
case shown in Figure 3 (i.e., S(b)/So = exp[—(1+p)~1(bDo)'*F]). Figure 6 is a plot of the Kilbas-Saigo
function for the same range of b-values and Dy, but with @« = 0.8, and  =0.2,0, 0.2, —0.4, and —0.6.
In this figure we observe the effects of both @ and f on the decay. The fractional derivative order «
contributes multiexponential features to the decay, while the power law exponent  influences the low
b-values more strongly than the high b-values. Figure 7 is a plot of the Kilbas-Saigo function for the
same range of b-values and Dy, but with = 0.2, and a = 0.2, 0.4, 0.6, 0.8, and 1.0. In the figure, we see
for a fixed power law decay of D(b) the shift from lower to higher decay rates as a approaches the
exponential function. The separate effects of the two fractional order parameters are also portrayed
in the spectral distribution (inverse Laplace transform) of the Kilbas-Saigo function, where for f =0
(Figure 4 in [22]) decreasing a shifts the spectrum to lower frequencies (smaller D values), which is
the basis for the power law tail in the signal decay curve. On the other hand, for fixed a (Figures 5
and 6 in [22]), decreasing p only broadens the distribution about its mean value, which attenuates the
diffusion signal in a more uniform manner over the entire range of b-values.
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Kilbas-Saigo: a=1.0
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Figure 5. The normalized stretched Kilbas-Saigo signal decay of S(b)/S is plotted versus b-values
between 0 and 4000 s/mm?, and Dy = 1 x 1073 mm?/s with « = 1, and § = 0, 0.2, —0.4, —0.6, and —0.8.
The signal decay in the « = 1 case is a weighted stretched exponential. As the value of § decreases, the
shape of the decay curve transitions from a stretched exponential decay to a pattern with a asymptotic
power law decay.
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Figure 6. The normalized stretched Kilbas-Saigo signal decay of S(b)/S is plotted versus b-values
between 0 and 4000 s/mm?, and Dy = 1 X 103 mm?/s with & = 0.8, and § = 0.2, 0, =0.2, —0.4, and —0.6.
In this figure, we observe the effects of both « and f on the decay.
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Figure 7. The normalized stretched Kilbas-Saigo signal decay of S(b)/S is plotted versus b-values
between 0 and 4000 s/mm?, and Dy = 1 x 1073 mm?/s with = 0.2, and « = 0.2, 0.4, 0.6, 0.8, and 1.0. In
the figure, we see for a fixed power law decay of D(b) the shift from lower to higher decay rates as
approaches the exponential function.

3.2. Fitting Fractional Order D(b) Models to DW-MRI Data

As an example application of these DW-MRI signal decay models, we fit the stretched Kilbas-Saigo
function to published ex vivo data acquired from an intact bovine optic nerve [35]. Fits to the
exponential, stretched exponential, stretched one parameter Mittag-Leffer were also performed and
the results are provided as Supplementary Material. Since the optic nerve consists of bundles of axons,
the diffusion signals were measured both along (parallel) and across (perpendicular) the axons. Given
the cylindrical structure of the individual nerve axons, we would expect the diffusion to be hindered
in the direction along the nerve, and restricted in the direction across the nerve. The Stejskal-Tanner
diffusion pulse sequence [5] consists of a pair of rectangular gradient pulses of height g, duration 5, and
separation A. It was applied by varying the gradient strength, g, and direction for a series of increasing
diffusion times (A = 8, 10, 20, and 30 ms) with & set to 3 ms in all cases. The increase in the diffusion
time between the gradient pulses can be expected to increase the restricted diffusion contribution
for both gradient directions (i.e., when the diffusion length, Lp = (2DA)Y2 exceeds the radius of the
axons, typically 5 microns in the parallel case and less than one micron in the perpendicular case).
The data was extracted from Figure 1 in [35], and fit using nonlinear least squares optimization in
MATLAB®. The mean squared error was calculated for the Kilbas-Saigo function in both the parallel
and perpendicular gradient directions. These results are presented in Table 2. As expected, the parallel
gradient direction exhibited larger values of the diffusion coefficient than the perpendicular gradient
direction (0.72 x 1073 mm?/s versus 0.2 x 1073 mm?/s, when A = 30 ms). The stretched Kilbas-Saigo
function was able to fit both the parallel and the perpendicular data for all diffusion times. Figure 8 is
a plot of the parallel and perpendicular cases when A = 30 ms. In the parallel case the « value (ca.,
0.75) did not change with increasing diffusion time, while the § value decreased from 0.33 to 0.06. In
the perpendicular case, the a value fell from 0.62 to 0.38 with increasing diffusion time, while the 8
value decreased only from 0.31 to 0.20. These results suggest that the stretched Kilbas-Saigo function is
sensitive to both gradient direction and diffusion time. Our goal in this proof of concept paper was
only to introduce the Kilbas-Saigo function as a candidate for modeling DW-MRI data. Nevertheless,
the nature of the @ and p in the model offers the potential of distinguishing between multiexponential
(compartmental) contributions via the « parameter and tissue complexity (surface to volume ratio and
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membrane permeability) contributions through the  parameter. Further analysis of whole imaging
slices is needed to establish whether or not this, or another model provides better contrast.

Table 2. Summary of Fitting Results for the Stretched Kilbas-Saigo Decay Model.

A =30ms A =20ms A =10ms A=8ms
Parallel 7.19 7.14 8.86 8.74
. raallel D x 104 mm?/s
Perpendicular 1.95 2.05 2.72 2.75
Parallel « 0.76 0.75 0.64 0.74
Perpendicular 0.38 0.42 0.38 0.62
Parallel B 0.06 0.14 0.33 0.26
Perpendicular 0.31 0.27 0.46 0.20
Parallel M 5.84 x 1074 5.09 x 107 347x 1074 1.64x 1074
. ean-squared error 4 4 4 4
Perpendicular 4.38 x 10 2.77 x 10 2.53x 10 4.61x10
1 T T
Vertical: curve fit
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Figure 8. An example of the normalized stretched Kilbas-Saigo signal decay fits of S(b)/Sy to the bovine
optic nerve data for the parallel and perpendicular directions with A = 30 ms. The photomicrographs
are from [35] and are used with permission from the journal Magnetic Resonance in Medicine.

4. Discussion

“One cannot collect all the beautiful shells on the beach” Anne Morrow Lindbergh, Gift from
the Sea, 1955.

Fractional calculus interpolates between the integer order operations of calculus just as the real
numbers are interspersed between integers. Investigators can employ various fractional derivatives
(e.g., Griinwald-Letnikov, Riemann-Liouville, Caputo, Riesz, Hadamard, and Erdélyi-Kober) to stitch
together earlier or surrounding data in an extended space-time model of a physical process such as
diffusion or dielectric relaxation [19]. The fractional derivatives threads are woven into the model via
generalized transcendental functions (Mittag-Leffler, Kilbas-Saigo, Wright, and the H-function of Fox)
which are functions that often fit the experimental data with greater fidelity and precision [30-32].
In this paper, addressing the decay of diffusion-weighted magnetic resonance signals, we view the
problem from a simple perspective—that of a fractional order relaxation with either a fixed or a
power-law varying rate constant. The resulting fractional order Kilbas-Saigo model encompasses
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the simple exponential, the stretched exponential and the stretched Mittag-Leffler function as special
cases [21-23].

In previous papers, we investigated the challenge of extracting specific complexity measures from
DW-MRI data [12,13]. The choices are myriad, while the data is often sparse. Nevertheless, by tuning
the applied MR pulse sequence (e.g., by changing the gradient direction or by increasing the diffusion
time between gradient pulses) to match a particular aspect of the tissue under study, savings in time
and an economy of interpretation are possible. For example, in diffusion tensor imaging (DTI), one
uses a simple exponential decay function, but applies the diffusion pulse gradients in six or more
directions to capture the anisotropy of skeletal muscle or brain white matter [10]. In a similar manner,
in diffusion kurtosis imaging (DKI), by applying gradients in multiple directions and at multiple
b-values, the signal decay encodes a measure of restricted diffusion [16]. In some situations, we acquire
diffusion trace data to reduce the contributions of tissue anisotropy [36], but extend the range of
b-values to 4000 s/mm? or greater to capture aspects of sub-voxel tissue complexity in the fractional
order parameters of the Mittag-Leffler function [37,38].

The connection between tissue complexity and the fractional order diffusion decay process is
explicit when extremely short diffusion gradient pulses are employed [12,26]. For this situation, the
time-space fractional order diffusion equation is known to express—via the Continuous Time Random
Walk (CTRW) generalization of Brownian motion—the underlying traps and jumps in the movement
of restricted and hindered tissue water. And, while the short gradient pulse duration sequence (A > o)
is often applied in laboratory NMR and animal MRI, the larger gradient coils used in human scanners
are not currently able to meet this condition. Also, complete mapping of the diffusion signal {g, A, 5}
carries a time penalty that precludes exploration of a wide range of values in a typical clinical scanning
protocol. Hence, an underlying theme in our work is to optimize imaging time, model selection and
full data space characterization.

What are the trade-offs between the respective fractional order models (decay functions) considered
in the paper? In general, as the b-value increases beyond 1000 s/mm? (e.g., varying g, for fixed A and
d) the diffusion regime moves from the domain of hindered diffusion (where diffusion is Gaussian,
and the decay is exponential) to one of restricted diffusion (where the diffusion is non-Gaussian,
and the decay is often multi-exponential). In the Gaussian case, S(b) = Spexp[—(bDy)], we note the
reduction in the apparent diffusion coefficient from its value of 2.4 x 10~ mm?/s in cerebral spinal
fluid to 0.8 X 107 mm?/s in brain gray matter by a tortuosity factor of 3, so the apparent diffusion
coefficient, ADC = Dcgp/3. For intermediate b-values (10003000 s/mm?), the stretched exponential
decay function, S(b) = Sy exp[—(bDy)*], can be used, but so can a bi-exponential model, a kurtosis
model or the varying diffusion coefficient (VDC) model where D(b) = Dy exp(—bD1) [14,39]. When the
b-values increase above 3000 s/mm?, the exponential models all rapidly decay while the signal often
persists due to trapped tissue water, which exhibits an inverse power law decrease in signal intensity.
This behavior can be captured by the VDC model, but it is also naturally encoded in the Mittag-Leffler
decay, S(b) = SoEn[—(bDy)*], which for low b-values approximates the stretched exponential, and for
high b-values decays asymptotically as (bDy)~*. The Kilbas-Saigo generalization of the Mittag-Leffer
function is the mother function (model) for all three cases, and has been applied before by Hanyga
and Seredynska [34] to diffusion in MRI and by Lin to problems in NMR [40,41]. The behavior of the
Kilbas-Saigo modeling approach for the case of varying A (for fixed g and 6) has not yet been fully
examined. Here, we were successful in capturing the anisotropy of the bovine optic nerve and the
emergence of anomalous diffusion as the diffusion time increases. These results are similar to the
behavior of the g-space model, S(b) = SoEa[—Da g qP(A-05/3)*], where g = (yg0)/2T is a measure of the
strength of the diffusion gradient phase encoding [26]. Future such studies would involve normal and
tumor tissues and could employ oscillating diffusion gradients for short times and stimulated echo
imaging for long times.

The motivation for fractional calculus models of diffusion signal decay in MRI has both a
practical and a theoretical basis [42]. The practical emerges from advances in diffusion—weighted
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imaging sequences that use stronger gradients (b-values, above 2000 s/mm?) to probe sub-voxel
tissue compartments. The signal from regions with relatively unhindered diffusion (e.g., cerebral
spinal fluid) decays very quickly, while the signal from regions exhibiting pronounced hindered and
restricted diffusion persists. Researchers and clinicians fit these signals to a variety of models (e.g.,
multi-exponential, stretched exponential, and kurtosis) to account for the change in the apparent
diffusion coefficient as the b-value increases—fits that provide additional imaging biomarkers of
sub-voxel structure [43—45]. In this ongoing effort, the medical community seeks to link the model
parameters to changes in tissue due to local and diffuse disease. The theoretical basis for considering
fractional calculus models emerges from the growing recognition in the biophysics community of the
prevalence of anomalous diffusion—due to molecular crowding—in cells and cell membranes [8,9].
Mathematical models of anomalous diffusion include Gaussian models (Brownian and fractional
Brownian motion), Langevin equations, the non-Gaussian CTRW, and Lorentz obstructed transport
models [46,47]. Within this group, there is a recurrence of power law behavior in the statistics of
stochastic models, the correlation coefficients of dynamic models and the waiting time and jump
increment probabilities in non-Gaussian models. Since the integral and differential operators of
fractional calculus naturally accommodate power laws, via convolution, it is not surprising that
anomalous diffusion can be cast in the mathematical language of fractional calculus. Alternatively, the
diffusion process can be described by generalizing the diffusion constant into a diffusion coefficient
that is a function of either b-value or diffusion time.

5. Conclusions

In this paper, we described DW-MRI signal decay using sub-diffusion models that can be expressed
simply in terms of b-value: exponential, stretched exponential, Mittag-Leffler and Kilbas-Saigo. The
stretched Kilbas-Saigo function encompasses this set, and depending on the gradient direction and
range of b-values acquired in the experiment, can fit the data with three parameters: (i) Dy, the
apparent diffusion coefficient; (ii) a, the order of the fractional derivative; and (iii) 3, the fractional
exponent of the inverse power law decay of D(b). The goal was to illustrate how this model can
capture the anomalous decay of S(b) observed when data collected over a range of diffusion times. The
resulting model parameters encode aspects of the sub-voxel tissue structure, hence offer the potential
for describing changes that are brought about by the onset of disease or the success of treatment.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/2227-7390/7/4/348/s1.
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Abstract: In this paper, a class of fractional complex networks with impulses and reaction-diffusion
terms is introduced and studied. Meanwhile, a class of more general network structures is considered,
which consists of an instant communication topology and a delayed communication topology.
Based on the Lyapunov method and linear matrix inequality techniques, some sufficient criteria are
obtained, ensuring adaptive pinning synchronization of the network under a designed adaptive
control strategy. In addition, a pinning scheme is proposed, which shows that the nodes with delayed
communication are good candidates for applying controllers. Finally, a numerical example is given
to verify the validity of the main results.

Keywords: fractional complex networks; adaptive control; pinning synchronization; time-varying
delays; impulses; reaction—diffusion terms

1. Introduction

Complex networks, which are composed of a large set of nodes connected by edges, are used to
describe many large-scale systems in nature and human societies, such as the Internet, power grid
networks, the World Wide Web and so on [1-3]. Therefore, it is very meaningful and important
to investigate the dynamical behaviors of complex networks. Up until now, there have been a
large number of excellent scientific research results on the dynamical analysis of complex networks,
including of synchronization [4], state estimation [5], impulsive control [6], and so on.

Synchronization, as one of the most important collective behaviors of complex dynamical
systems, widely exists in the world, ranging from natural systems to man-made networks [7,8].
In recent years, synchronization has received a great deal of attention due to its potential application
in various fields, including signal processing, secure communication, biological systems, and so
on [9-11]. Various types of synchronization problems have been studied, such as projective lag
synchronization [12], cluster synchronization [13], and exponential synchronization [14]. However, as
we know, it is impossible for most dynamical systems to achieve synchronization by themselves in
many real situations. Some control strategies must be designed to force the systems to be synchronized,
such as feedback control [15], impulsive control [16], and adaptive control [17]. It could be a waste
of money and resources op add controllers to all nodes in a large-scale network. In order to solve
this problem, a pinning control strategy, which involves only a small fraction of all the nodes being
controlled to force networks to become synchronized, has been proposed and extensively studied by
researchers [18,19]. To reduce the enormous difference in control strength between theoretical values
and practical needs, adaptive control, as a valid method, has been discussed in literature [20,21].

In practice, diffusion phenomena cannot be ignored. For example, electrons move in a nonuniform
electromagnetic field and, in the process of chemical reactions, different chemicals react with each
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other and spatially diffuse in the inter-medium until a balanced-state spatial concentration pattern
has been structured. Thus, it is reasonable to consider complex networks with reaction-diffusion
terms. In recent years, some papers concerning the control and synchronization of complex dynamical
systems with diffusion effects terms have been published [22-24]. In the real world, the state of
artificial and biological networks are often subject to instantaneous perturbations and experience
abrupt changes at certain instants, which may be caused by switching phenomena, frequency changes,
or other sudden noises. These instantaneous perturbations always exhibit impulsive effects. Impulsive
dynamical systems have naturally received a lot of attention, and some excellent results have been
published [25,26]. Therefore, it is necessary to investigate the influence of impulsive perturbations on
complex networks.

It should be noted that all of the mathematical models in this paper are fractional systems.
As a generalization of traditional calculus, fractional calculus [27] provides an excellent instrument
for the description of memory and the hereditary properties of various materials and processes.
With the development of scientific research, these advantageous properties of fractional integration
and differentiation have been noticed by more and more researchers, and fractional calculus, as a useful
tool, has been widely applied in many fields such as mathematical biology [28], signal processing [29],
and so on.

In addition, to be more practical, it is necessary to consider time delay. Due to the finite switching
speed of amplifiers and the finite signal propagation time, time delay naturally exists in all kinds of
dynamical systems and is unavoidable, which may lead to instability, chaos, or other performances
of dynamical systems [30,31]. Thus, it is valuable to investigate the phenomenon of time delay in
complex dynamical systems, and some outstanding results from research into time delay have been
published, such as [32].

Motivated by the above discussions, the main contributions of this paper are as follows. (1) A class
of fractional complex networks with impulses and reaction—diffusion terms is studied. Meanwhile,
a class of more general network structures is considered in which all nodes are divided into three
categories: nodes can only send information to others instantly; nodes can only be connected with
others with a time delay; and nodes can communicate both instantly and with a delay. (2) Some
sufficient conditions are derived to ensure the adaptive pinning synchronization of the network.
(3) A pinning scheme is designed that shows that some delay-coupled nodes should be pinned first.

The rest of this paper is arranged as follows: some preliminaries and the model description of
fractional networks with impulses and reaction-diffusion terms are provided in Section 2; in Section 3,
the main results of this paper are described; next, in Section 4, a numerical simulation is presented to
illustrate the effectiveness and correctness of the main results; finally, the conclusion of this paper is
given in Section 5.

Notations: Let RT = [0,+c0), R = (—o00,+00), R" be the n-dimensional Euclidean space,
and R"*™ be the space of n x m real matrices. P € R"*" > 0 (P € R"" < 0) means that matrix
P is symmetric and semi-positive (semi-negative) definite. P € R"*" > 0 (P € R"*" < 0) means
that matrix P is symmetric and positive (negative) definite. I, denotes an n X n real identity matrix.
AT is the transpose of matrix A. B~! means the inverse of matrix B. Let A2 = AT A where A € R"*".
® represents the Kronecker product of two matrices. A, (+) and Ayx () denote the minimum and
the maximum eigenvalue of the corresponding matrix, respectively. || - || denotes the Euclidean norm

of a vector, for example, || B ||= \/¥i BZ where p = (B1,- -+, Bn)T.

2. Preliminaries and System Description

In this section, some basic definitions of fractional calculus are introduced as the preliminaries
of this paper, and some necessary conclusions are presented for use in the next several sections.
Meanwhile, the mathematical model of a class of fractional complex networks with impulses and
reaction—diffusion terms is described and the definition of synchronization of complex networks
is given.

67



Mathematics 2019, 7, 405

2.1. Fractional Integral and Derivative

Definition 1 ([33]). Riemann-Liouville fractional derivative with order « for a function x : Rt — R is

defined as

X 1 qm t a1
RDtx(t) = mﬁ/to(t—r)’” 1y (1)dr,

where 0 < m—1 < a < m, m € Zy, and Z denotes the collection of all positive integers. T'(-) is the
gamma function.

Definition 2 ([33]). Riemann—Liouville fractional integral of order « for a function f : R™ — R is defined by

R () = g [ (=0 e

where o« > 0 and T'(-) is the gamma function.

Lemma 1 ([33]). For any constants ki and ko, the linearity of the Riemann—Liouville fractional derivative is
described by
i DF (k1 f (1) +kag (1)) = kify DEF() + kafy DG (8).

Lemma 2 ([33]). If p > q > O, then the following equality
WDIRILf(8) = 5D} £ (1)
holds for sufficiently good functions f(t). In particular, this relation holds if f (t) is integrable.

Lemma 3 ([34]). Let x(t) : R" — R" be a vector of differentiable function. Then, for any time instant t > to,
the following inequality holds

wDF(xT (1) Px(t)) < 227 (1) (PF D x(1)),
where 0 < & < 1and P € R"*" is a constant, square, symmetric, and positive definite matrix.

Lemma 4 ([35]). Let Q bea cube |x¢| < Ik =1,2,---,q, and let h(x) be a real-valued function belonging to
CH(Q), which vanishes on the boundary Q) of Q), i.e., h(x)|3q = 0. Then,

oh
2 < 2 2
/Qh (X)dx - lk /Q(axk) dx’

where x = (x1,xp,- - - ,xq)T.

Lemma 5 ([36]). The following linear matrix inequality (LMI)

<0,

L {Q(X) S(x)
S()7T R(x)

where Q(x)T = Q(x) and R(x)T = R(x), is equivalent to any one of the following conditions:
(1) Q(x) <0, R(x) = S(x)"Q(x) 'S (x) <0;
(2) R(x) <0, Q(x) —S(x)R(x)"1s(x)T < 0.

Lemma 6 ([37]). Forany x, y € R", € > 0, the inequality 2xTy < exTx + %yTy holds.
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2.2. Theories of Graphs and Matrices

An undirected graph G = {V, £} consists of nodes V = {1,2,-- -, N} and a set of edges . If there
is an edge between nodes i and j, then (i, j) € £, and node j is called the neighbor of node i and vice
versa. The Laplacian matrix L = (L;j) N« representing the topological structure of graph G is defined
as: wheni # j, Lij = Lj < 0if (i,j) € £; otherwise, L;j = Ljj = 0; Ljj = — Z,N:L,-# Lij=— sz:Li#. Lji,
which ensures the property that Zjlil Lij = Zfil Lij=0.

Lemma 7 ([38]). If L is the Laplacian matrix of a connected network, Lij = Lj; < 0 fori # j, and Zjlil Lij=0
foralli =1,...,N, then all eigenvalues of the matrix

Liy+e Lp -+ Liy
Ly Ly - Lon
Lyt Lna -+ Lan

are positive for any positive constant e.

Lemma 8 ([39]). For matrices A, B, C, and D with appropriate dimensions, the Kronecker product @ satisfies

(1) (0A) @ B= A® (6B), where 0 is a constant;
2) (A+B)@C=A®C+B&C

3) (A®B)(C®D)=(AC)® (BD);

4) (A®B)T=ATwBT.

Lemma 9 ([40]). The Laplacian matrix L in an undirected graph is semi-positive definite. It has a simple zero
eigenvalue, and all the other eigenvalues are positive if and only if the graph is connected.

2.3. System Description

In this paper, a class of fractional complex networks with time-varying delays is considered. It is
assumed that there exist two different modes of communication between the nodes in a network:
instant communication and delayed communication. Namely, the network structure consists of
two topologies, the instant communication topology G and the delayed communication topology
G. G ={V,E}and § = {V,€}, where £ and & denote the sets of instant communication links
and delayed communication links, respectively. Let L = (L;j)nxn and I= (ﬁij)NX N represent the
Laplacian matrices of G and G, respectively. It is noted that each node in the network has at least one
mode of communication and that the graphs G and § can be disconnected, which implies that they
consist of several connected components, and each component is considered as a cluster (group or
family). In other words, if there are p nodes that can only communicate with other nodes instantly and
g nodes that can only be connected to others with delays, then there exist two elementary matrices F
and H such that

Ly 0 0 0 0 Ly o o0 0
0 L, 0 0 0 0 I, o0 o0

FTLF=|: - ¢ = |, HLH=|: -t : |, @
0 0 0 Ly O 0 0 0L o
0 0 0 0 0Ogxq 0 0 0 0 Opxp

where L; and [; are the Laplacian matrices of the ith connected component of G and G, respectively.
Then the mathematical model of fractional complex networks with impulses and reaction—diffusion
terms is considered as follows:
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0%z;(x,t) N N .
5 = DAzi(x,t) + f(zi(x,t)) —c Y LijTzj(x,t) —¢ Y Lijfzj(x,t —7(t)),i=1,--+ Nt # ty;
= =

zi(o b)) = zi(x b)) + pi (o te), k=1,2,--,

where 9" denotes the Riemann-Liouville fractional derivative operator of order a (0 < a < 1);
x=(x,%,...,5)T €EQCRI,A= ZZ:](%) is the Laplace diffusion operator on ); z;(x,t) =
k

(zin(x, 1),z (x,t), ..., zin(x,1))T € R" is the state vector of the ith node at time ¢ and in space x;
D = diag(dy,dy,--- ,dy) > 0, and d; is the transmission diffusion coefficient along the ith node;
T(t) > 0 corresponds to the time-varying delay at time ¢, and it is a continuous function satisfying
0<t(t) <™, t(t) < P < 1, where ™ = sup 7(t) and 7P are nonnegative constants; f : R" —
>t
R™ is a continuously differentiable vector function; ¢ > 0 and ¢ > 0 are the coupling strength;
I = diag(y1, 71, ,¥n) € R™" and I = diag(§1,91, -+ ,fn) € R"™*" are positive semi-definite
inner coupling matrices where 7;,§; > 0 if two nodes can communicate through the jth state and
7j,9j = 0 otherwise; L = (Li]')N «yand L = (ﬂij)N «N are the Laplacian matrices representing the
topological structure of the network; t; (k = 0,1,2,---) denote impulsive moments and satisfy
tp < t < tp < -1, klim tp = oo, and tyg — b > w > 0; zi(x, 1) and zi(x,t,j') are the state
—00
variables of the ith node before and after impulsive perturbation, respectively; z;(x, t;) = lim z;(x, ),
b
zi(x, tf) = lin} zi(x,t), and assuming that z;(x,t,") = z;(x,t), the solution of system (2) is left
t—tf

continuous at time f; pix(x, tx) : R" — R™ is the function of the change of z;(x, t) at time #; in space x.
Next, the dynamics of an isolated node can be described by

0%z (x, t)

ot = DAZ()(X, t) +f(20(x, t))r (3)

where zg(x,t) € R" is the state vector of the isolated node and may be an equilibrium point, a periodic
orbit, or even a chaotic orbit.

Synchronization errors between the relative state of nodes in network and the state of an
isolated node can be defined by e;(x,t) = z;(x,t) —zo(x,t), i = 1,2,---,N. Next, the definition
of synchronization of complex networks is given as follows

Definition 3. A complex network (2) is said to be synchronized if for any initial condition, the following
equality is satisfied:

lim || ¢;(x,t) |= im || z;(x,t) —zo(x,t) |=0, i=1,2,---,N.
t—o0 t—oo

Remark 1. The model (2) has been proposed and studied in [41,42]. But it is different from [41,42] in that
impulsive perturbations, reaction—diffusion terms, and a class of more general network structures are considered
in this paper. All nodes in the network can be divided into three categories: (1) nodes that can only send
information to others instantly; (2) nodes that can only be connected to others with a time delay; and (3) nodes
that can communicate with others both instantly and with a delay. Note that the assumption that the whole
network should be connected is no longer needed. Thus, the mathematical model is more practical.

Remark 2. The impulses in the system (2) can be understood as a special property of the system itself or some
uncertain disturbances caused by external noises. The pulse period may be no longer fixed or regular, and the
intensity of the impulses can be uncertain.

3. Main Results

In this section, some sufficient criteria for pinning and adaptive synchronization of complex
networks (2) are derived, and a pinning scheme is given to discuss which node should be selected first.
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Throughout this paper, the following assumptions are needed:

Assumption 1. The set Q) is that QO = {x : x = (x1,xp, - - - ,xq)T, | xp |<ly, k=1,2,---,q} wherely
(k=1,2,---,q) are positive constants.

Assumption 2. There exist functions 8y (x, ty) such that the functions py(x, ty.) satisfy

N
pir(x, t) = =G (x, ) [Y Lijzj(x, 1)), 0 < 6, 1) < Ao (D)
=1 max
wherei =1,2,--- ,N,k=0,1,2,---. 8 (x, tg) : RIt1 5 R stands for the impulsive strength of the ith node
at time instants t and in space x.

Assumption 3. (One-sided Lipschitz condition) There exists a constant diagonal matrix & =
diag(81,8s,...,8,) such that

(u(x,£) = 0(x, )T (Fu(x, 1)) — f(0(x,)) < (u(x, ) — 0(x, 1) E(u(x, t) —o(x, 1),

Yu,v € R", t€ R", x € Q.

Remark 3. Note that Assumption 3 is very mild [43]. For example, all linear and piece-wise linear functions
satisfy this condition. In addition, if of;/ou; (i,j = 1,2,...,n) are bounded, the above condition is satisfied
in many well-known systems such as the Lorenz system, Chen system, Lii system, recurrent neural networks,
Chua’s circuit, and so on. Generally speaking, any function in the system that satisfyies the Lipschitz condition
can guarantee this assumption. According to [44], any Lipschitz function is a one-sided Lipschitz function,
but the converse is not true. This means that for some nonlinear functions with a big Lipschitz constant,
the corresponding one-sided Lipschitz constant matrix = may be a non-positive definite matrix (see the example
given in [45]).

3.1. Adaptive and Pinning Control
The boundary and initial value conditions of complex networks are given in the following form:

zi(x, 1) =0, te[tg—™, ), x €y (4)

Zi(x/s) = (Poi(xr S) € Rnl s € [to - TMIO)/ xeQ, (5)

wherei=0,1,2,---,N, and ¢y;(x,s) is bounded and continuous on Q x [ty — ™, 0).
Then, the synchronization error system between systems (2) and (3) is given as follows:

&, N
% = DAe;(x,t) + f(zi(x, 1)) — f(zo(x, £)) — c]; L;iTe;j(x,t)

-

S

tijfej(x/t —1(t)) +ui(x,t), t#t; ©)

j=1

N
ei(x, ) = ei(x,t) — 6, )Y Lijej(x,t)], i=1,2,--- ,N, k=1,2,---,
i

where 2}11 Lij = 0and Zszl ﬂ,'j = 0 are used above. u;(x,t) is the n-dimensional linear feedback
controller on the ith node. Without loss of generality, it is assumed that the first / nodes are controlled
in the network, and the pinning controller is designed by
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—b;Te;(x,t) i=1,...,1,
wil by = el %)
0 i=1+1,...,N,

where b; >0 (i =1,2,---,1) denotes control gain.
Next, a theorem is established to derive the synchronization criteria for network (2).

Theorem 1. Suppose Assumptions 1-3 hold. Under control law (7), network (2) with initial conditions (4) and
(5) can be synchronized if there exist a positive definite matrix Q € R™ " and a positive constant € such that the
following inequalities are satisfied:

Aas(—ED + B+ 5 Q) Iy — Ain (D) (cL + B) V(D)
2 <0, 8)
V2e¢, Zmrxx( ) _IN
i[ ~Q<o0 )
2¢" -

where ¢ = Y], é,B:diug(bl,hz,---,bN)andbi >0(=1,---,1),b;=0(i=14+1,---,N).

Proof of Theorem 1. Let || e(x,t) I>= Z el (x,t)ej(x,t)  where e(t) =

(eT(x,t),el(x,t), - el (x,£))T. Then, the proof of this theorem can be given in two steps.
Firstly, the case of t > tpand t = t;, (k = 1,2,---) is considered. According to Assumption 2,
the following inequality holds:

| e(x,t) 7= Ze (%, t)ei(x, 1)

N
{ei(x, 1) — e (x, ) [Y Lije;(x, i) ]} {ei(x, t) — G (x, 1) [2 Lijej(x,t)]}  (10)
1 i =

= ET(xr tk) [InN - (Jx,tkL) ® Iﬂ]ze(x/ tk)
SH e(xrtk) HZ,

M= T

1

where 0y 1, = diag (1 (x, tr), oo (X, tr), - -+, Onk (%, tg)).-
Secondly, the case of t > tgand t € (#, 1] (k =0,1,2,---) is considered. Consider the following
Lyapunov function for error system (6),

[ o1 ! T
= LGLA e+ L [ otk ay

where Q > 0and Q € R"*".
Taking the time derivative of V(t) along the trajectories of (6), it is evident that ¢;(x, ) and
are continuous when (x,t) € Q) X (t, t¢41]. Then, by Lemmas 2 and 3, the following inequality holds

" el(xt)
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e;(x, N
/{Z a étu t)]+Z[17]TD€?(x,t)QE,‘(x,t)

i=1

AT - ) 0a (- )]

<[4 ;[e? (e, D (x,) + €] (x,) (i 1)) = £ (z0(x, 1))
N

—ce] (x,t) Y LyjTej(x,t) — ée] (x,t )
=

+ Z (x,1)Qe;(x, t) — (x,t —7(4))Qei(x,t — T(t))]}dx

[\12

L f" ej(x,t = 7i(t)) + ui(x, t)]

-
Il
—

(12)

N
= /()izzleiT(x,t)DAe[(x,t)dx + /Qi;e?(x,t)[f(zi(x,t)) — f(zo(x,t))]dx

N N
- /0 Y [cef (x,t) Y LiTej(x,t) + éef (x,t)
i=1 j=1

L; ilej(x,t —T(t)) — ui(x, t)]dx

Mz

Il
—_

j

+/ i[#eT(x £)Qe;(x, t) — el (x,t — T())Qe;(x, t — T(t))]dx
o &1 =D e DRE D T i :

From Green'’s formula and the boundary conditions, the following equality holds:

/ Ze x,t)DAe;(x, t)dx = / 22611 x, t)djAejy(x, t)dx

Q5=
N

= Zdl /Q E,‘Z(x, t)Aeil(x,t)dx (13)

N n q X N
yyal- Y [ e <y S ai- 3 5 [ dnlex
=722éidl'/ge?,(x,t)dx (14)

Y Shal! - Te:
V(t) < — Z Y 7/Qez-T(x,t)Dei(x,t)deLg/nezr(x,t)._‘e,(x,t)dx
- /ﬂ[c (x,t) (L@ T)e(x, t) +eel (x,t) (L @ T)e(x, t — T(t))]dx (15)

/ Ze x, £)b;Te;(x,t) dx+/ Z[ e (x,1)Qe;(x,t) — el (x,t — T(t))Qei(x, t — T(t))]dx,

where e(x,t — T(t)) = (] (x,t — T(t)), el (x,t — T(t)), -+ e (x,t — T(t))T.
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By using Lemma 6, an inequality holds as follows:

V() < — /O zeT (x,)(Iy ® D)e(x, t)dx + /Q eT(x,1)(Iy @ E)e(x, t)dx — /Q ceT(x,£)(L ® T)e(x, t)dx

+ /Q ;[eeT(x,t)(I: 2 P)2e(x, ) + leT(x,t — 1 (1))e(x,t — T(1))]dx — /O eT(x,1)(B @ T)e(x, H)dx

Sl A Eomes, (1) (In ® Q)e(x, £) — e (x,t — T(1)) (In @ Q)e(x, t — 7(t))]dx (16)

:/QeT(x,t)[IN®(7§D+E+wQ) (cL+B) @ T + (1 & F)2e(x, t)dx

2
+/QeT(x,t—T(t))[1N®(£In—Q)]e(x,t—r(t))dx,

where ¢ = ZZ:1 llz’ B = diag(by,bp,- -+ ,by)and b; >0 (i =1,2,---,1),b; =0(i=1+1,--- ,N).
k
Then, according to Lemma 5 and conditions (8) and (9) in Theorem 1, the following
inequality holds:

V(t) < /OeT(x, HIN® (-¢D+E+ ﬁQ) (cL+ B) QT+ < B (I: )2le(x, t)dx < 0. (17)

Next, it can be proven that || e(x,t) ||— 0 for t — oo and t # ;. Suppose, for the purpose of
contradiction, that tlim | e(x,t) ||# 0. According to the properties of function V(¢) that V() > 0 and
—00

V(t) < 0, there exists a positive constant 7 > 0 such that V(t) — 1 for t — co (monotone and bounded
property). Thus, V() — 0 for t — co. Then the following inequality holds:

— 1 - < . T < . 2
0= lim V() < fim [ & (x,1)e(x, )dx < lim /Q Aax® | e(x,£) || dx < 0, (18)
where ® = Iy ® (—¢D + E+ ﬁQ) —(cL+B)®T + %(ﬁ @ I)2. This contradicts the previous
hypothesis.

In conclusion, || e(x,t) || 0 for t — co. According to Definition 3, complex network (2) can be
synchronized under controller (7). O

Remark 4. According to Lemma 5 the matrix Q in (8) and (9) can be found by solving the linear matrix
inequalities Apax(—ED + & + 1-5Q)IN — Awin(T)(cL + B) + 4 N2 o0 gnd £1, - Q < 0.
Furthermore, conditions (8) und (9) provide the control design for synchmmzatzon of network (2). It is
easy to see that the coupling strengths ¢ and ¢ play a key role in (8) and (9). If the coupling strengths c and ¢ can
be designed, the larger ¢ and the smaller ¢ can make these conditions easier to satisfy.

In order to reduce the enormous difference in control strength between theoretical values and
practical need, adaptive and pinning control is considered. Then, without loss of generality, it is
assumed that the first / nodes are controlled in the complex networks (2) and an adaptive pinning
controller is designed by
{u(x t) = —b;i(£)Te;i(x, 1) i=1,...,1, 19)
6i(8) = fo el (x,)Tei(x, ),

where b;(t) >0 (i =1,2,-- - ,1) denote control strength.
Next, a theorem is obtained to guarantee that the complex networks (2) can be adaptively
synchronized.
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Theorem 2. Suppose Assumptions 1-3 hold. Under the adaptive law and controller (19), network (2) with
initial conditions (4) and (5) can be synchronized if there exists a positive definite matrix Q € R™" and
constants € > 0, b >0 (i =1,--- 1) such that the following conditions are satisfied:

Amax(=CD+E+ 1= TDQ)IN Amin(T)(cL + BY) %IZ

it <0, (20)
2

£ ~Q0<0 (21)
2¢ " -
where B* = diag(b;, b3, -+ ,by) and by >0 (i=1,--- 1), bf =0(i=1+1,--- ,N).{=Y] | .

k

Proof of Theorem 2. The proof of this theorem is given in two steps.
Firstly, the case of > tpand t = t;, (k = 1,2, - - ) is considered. Similar to the proof of Theorem 1,
the following conclusion can be obtained immediately:

Il eCx, 6) IP<I e(x, 1) |17 (22)

Secondly, the case of t > tgand t € (#, ty1] (k =0,1,2,---) is considered. Consider the following
Lyapunov function for error system (6),

1&g eyt N1 f T 1Y )2
- /Q{Ei;folt (e (x,t)ei(x,t))Jrgm/tiT(t) e; (x,5)Qe;(x,s)ds}dx + E[;(b,-(t) -0, (23)

where Q > 0 € R"™"and b} >0 (i =1,---,1),bf =0(i =1+4+1,---,N). by (i =1,---,1I) are
non-negative constants that should be determined later.

Similar to the proof of Theorem 1, computing the derivative of V(t) along the trajectories of error
system (6) under the adaptive law and controller (19), the following inequality is obtained,

i=1k=1"k
—/[ceT( )L @T)e(x, t) + éeT (x, 1) (L@ D)e(x, t — 7(t))]dx
(24)
~ [ X el enbtrex ax+ [ Z[ el (0 1) Qei(x, 1)
i=1
— el (x,t — (1)) Qei(x, dx + Z(b- / (x,)Tei(x, )d
i=1
Then,
N 4 1 N T _
—;kgg/ne x,t)De;(x, t)dx + Z_; e (x, £)Ee;(x, t)dx
— ceT(x ce Lot - X
/[ (x, ) (L@T)e(x,t) + e (x,t)(L @ D)e(x, t — T(t))]d 25)

/Ze xtbrelxtdx+/z TDlxt)Qe(xt)
— Tt~ T(5)Qer(x, £ — T(6))Jdx.
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The rest is the same as in the proof of Theorem 1. Therefore, the complex networks (2) can be
synchronized under the adaptive law and controller (19). Meanwhile, the following equalities hold:

lim b;(t) = b}, for }Lrg bi(t)=0,i=1,---,L (26)

t—oo

|

3.2. Pinning Scheme of Complex Networks
In order to design a pinning scheme for network (2), some notations are introduced for
simplicity. Let

A2

! '"zﬂx(r) L2 — eApin(T)L. 27)

1—71

€
¥ = Apax(—ED + E+ ——5 Q)In +

Using matrix decomposition, the following equation holds:

A—=Apin(T)B E

H=Y —Ayin (F)B = ET C

, (28)

obtained by removing the first / row—column pairs of matrix ¥.
Then, a necessary condition is proposed to clearly reveal how the network’s characters can affect
the pinning synchronization criteria.

~ A2 ™) ~
where B = diag(by, by, -+ ,b). C = (Apmar(—D +E+ 725Q)In + e f2 _ cr (L), is

Theorem 3. (Necessary condition) Suppose Assumptions 1-3 hold. To satisfy condition (8), it is necessary that

1 €CA2,.. (T

N
Hjj = Apax(—¢D + E+ . TDQ) + 5 ) ZL%’/- — Amin(T)(cLij +b;) <0, 1<i<1, (29)
j=1

H 1 eeA2 (T
Hii:)\mux(—gD“rd"rliTDQ)"r m2M(

N
) 3 L5 = Amin(T)eLi <0, 1+1<i<N. (30)
j=1

Proof of Theorem 3. According to Lemma 5, condition (8) is equivalent to H < 0. It is necessary that
H;; <0. O

Remark 5. tij is an element of the Laplacian matrix L, which denotes the delayed communication topology
of network (2). According to the definition of the Laplacian matrix, the greater the degree of the ith node is,

N o
the greater the value of L%j is, and vice versa. From (29) and (30), for the nodes without a controller, the degrees
=1

of these nodes in the delayed communication topology must be less than a critical value. Namely, the condition

N
‘21 LIZ]- < (#(f)) (Ain(T)eLii — Amax (—ED + E 4+ ﬁQ)) must be satisfied, which indicates that the
j=

€8N 20y
nodes with large degrees in delayed communication topology should be controlled first, otherwise, (30) is
not satisfied. This is consistent with the intuition that the delayed communication between nodes can lead
to some instability in the network. In addition, some results have been proposed [43] that, in the instant
communication topology network, nodes with very low and very large degrees are good candidates for applying
pinning controllers.

In order to be more practical, some low-dimensional conditions are presented to guarantee the
global asymptotic stability of the pinning process.
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Theorem 4. Suppose Assumptions 1-3 hold. Under controller (7), the pinning controlled network (2) is
globally synchronized when the following two conditions are satisfied:

Amax(A — EC71ET)

b; >
! /\min(r)

;=121 (3D

eA2, (1) 1
Amar (L 2 e, (D)) < ~Aae(~ED +34 150, ©2)
where b; is the pinning feedback gain, A, B, and C are defined in (28), and (Mﬁz — CApin(T)L); is the

minor matrix of Mﬁz — cAyin (T) L by removing its first I row—column pairs.
Proof of Theorem 4. From Lemma 5, it follows (31) and (32) that H < 0, which is equivalent to (8). [

Remark 6. The synchronization conditions (31) and (32) are easier to verify than (8). Thus, Theorem 4 has
more practical value. Meanwhile, the conditions (8), (31), and (32) provide a method of controller design for
synchronization of the complex networks (2).

Remark 7. Note that for &« = 1, the model of complex networks (2) reduces to the classical integer-order
system with impulsive effects and reaction—diffusion terms. It is not difficult to verify that, in the case of
« = 1, the conditions given in Theorems 1, 2, and 4 can also guarantee the synchronization of corresponding
integer-order complex networks via the designed controllers (7) and (19). Therefore, the synchronization results
in Theorems 1, 2, and 4 extend and improve the synchronization results for integer-order complex networks with
reaction—diffusion terms and impulsive effects compared to the fractional case.

Remark 8. When D = 0, the partial differential equations (2) can be degraded to fractional ordinary differential
equations. It is easy to demonstrate that in this special case, the criteria given in Theorems 1, 2, and 4 are
also valid for ensuring the synchronization of corresponding ordinary differential systems under controllers (7)
and (19).

Remark 9. In recent years, many outstanding results from the analysis of the stability of fractional systems,
as in [46-49], have been reported. But, since there exists an integration term in the definition of the
Riemann—Liouville fractional derivative, which means that the fractional derivative of a function x(t) at
any given moment depends on its initial state, the existing fractional Lyapunov methods are invalid for analyzing
the stability of fractional systems with impulsive effects. Thus, according to Lemma 2, two special Lyapunov
functions with fractional integration terms are constructed to complete the proof of Theorems 1 and 2.

Remark 10. Adaptive control for fractional complex networks (2) is studied in this paper. However, there is no
such property of the Riemann—Liouville fractional derivative that x(t) — m for ﬁ)Dg“x(t) — 0, where m is a
constant. Therefore, an integer-order adaptive law (19) is designed rather than a fractional-order adaptive law.
This is more practical because the computational complexity of fractional derivatives is much higher than that of
integral derivatives.

4. Numerical Simulations

In this section, an example is given to illustrate the effectiveness of the main results.

Example 1. Consider the two-dimensional Riemann—Liouville fractional complex network (2), which consists
of five nodes, with impulses and reaction—diffusion terms. The parameters are designed as: « = 0.95; A = %,
x€Q={x]|0<x <} D =diag(0.3,0.3) t(t) = 1; T, T are identity matrices; c = 1, ¢ = 0.25; and the

Laplacian matrices L, L are given as follows:
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01 -01 0 0 0 02 -02 0 0 0

—01 02 -01 0 0 —02 04 -02 0 0
L=| 0 -01 02 -01 o0/, L=| 0 —-02 04 —02 O0/|. (33

0 0 -01 02 -01 0 0 -02 04 —02

0 0 0 -01 01 0 0 0 —02 02

The nonlinear function f : R> — R%is

[ 2tanh(s1(t)) — 1.2tanh(sy(t)
fs) = (1.8tunh(sll(t)) + 1.71tanh(2s2(t))> ’

where s(t) = (s1(t),s2(t))T. The boundary and initial value conditions of the isolated node (3) and network (2)
are given in the form

zi(x,t) =0, te[-1,0), x€0dQ, i=0,1,2,---,5 (34)

zi(x,5) = (¢i1(x), o(x))T, s€[-1,0), xeQ, i=0,1,2,---,5, (35)

where ¢g1(x) = —sin(x), pop(x) = 0.3sin(x), ¢11(x) = @12(x) = sinx, ¢n1(x) = @n(x) = 0.5sinx,
@31(x) = @32(x) = —0.7sinx, ps1(x) = @ap(x) = —0.5sinx, ¢s1(x) = @sp(x) = 1.5sinx. The impulsive
strength functions are given as follows: 61¢(x, ty) = 0.8, o (x, t;) = 0.8 | cos(%)sin(%k) |, 3k (x, t) = 0.3 |
cos(xty) |, dgp(x, tr) = 0.1 | sin(%)cos(%k) |, dsk(x, t) = 0.2 | sin(x)cos(ty) |, k = 1,2,---. The pulse
period is ty 1 — f = 0.4s.

Pinning control strategy is considered here, supposing the first node in network (2) is controlled.
Then, the appropriate controller and adaptive law can be designed as follows:
L.t,-(x,t) = —b;(t)Te;(x,t) i=1, 36)
bi(t) = [ el (x, )Te;(x, t)dx,

where ¢;(x, t) = z;j(x,t) —zo(x,t) (i=1,---,5). by(t) > 0and b1(0) = 0.2.

Let || e(x,t) || stand for the norm of synchronization error between systems (2) and (3).
In Figures 14, it is shown that under the adaptive law and designed controller (36), complex networks
(2) with reaction—diffusion terms and impulsive effects can achieve synchronization. In Figure 5,
it is easy to see that the adaptive control parameter b;(t) turns out to be a constant b; = 8.788,
which satisfies the conditions in Theorem 2, when synchronization is realized. The efficiency of
Theorem 2 can be demonstrated by this example.

le(x,0)]

8

Error

2792 =
245 5004 175 40 500
1.396 300 3%
[T~ s 200 20

0.349

Space x Time t

Figure 1. Spatiotemporal evolution of the error norm || e(x,t) | between systems (2) and (3)
without controller.
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Figure 3. Time evolution of the synchronization error || e(x,t) || between systems (2) and (3) without

controller at x = 0.698.
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Figure 4. Time evolution of the synchronization error || e(x,t) | between systems (2) and (3) with

controller (36) at x = 0.698.
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Figure 5. Trajectory of control parameter by (t) of the adaptive controller (36) in Example 1.
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5. Conclusions

Pinning and adaptive synchronization of fractional complex networks with impulses and
reaction—diffusion terms is investigated in this paper. In order to analyze the stability of the fractional
systems with impulsive effects, two special Lyapunov functions with fractional integration terms are
constructed and the Lyapunov method is applied. By designing appropriate controllers and adaptive
laws, some sufficient criteria for pinning and adaptive synchronization of fractional complex networks
with time-varying delays are derived. In addition, a pinning scheme is proposed in which some
delay-coupled nodes should be prioritized for pinning. Finally, a numerical example is given to
demonstrate the effectiveness and correctness of the main results. A goal of our future investigations
is to study more general impulsive fractional systems and analyze the dynamical behaviors of these
special systems.
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Abstract: Lévy flights is a random walk where the step-lengths have a probability distribution
that is heavy-tailed. It has been shown that Lévy flights can maximize the efficiency of resource
searching in uncertain environments and also the movements of many foragers and wandering
animals have been shown to follow a Lévy distribution. The reason mainly comes from the fact
that the Lévy distribution has an infinite second moment and hence is more likely to generate an
offspring that is farther away from its parent. However, the investigation into the efficiency of
other different heavy-tailed probability distributions in swarm-based searches is still insufficient
up to now. For swarm-based search algorithms, randomness plays a significant role in both
exploration and exploitation or diversification and intensification. Therefore, it is necessary to
discuss the optimal randomness in swarm-based search algorithms. In this study, cuckoo search
(CS) is taken as a representative method of swarm-based optimization algorithms, and the results
can be generalized to other swarm-based search algorithms. In this paper, four different types of
commonly used heavy-tailed distributions, including Mittag-Leffler distribution, Pareto distribution,
Cauchy distribution, and Weibull distribution, are considered to enhance the searching ability of CS.
Then four novel CS algorithms are proposed and experiments are carried out on 20 benchmark
functions to compare their searching performances. Finally, the proposed methods are used to system
identification to demonstrate the effectiveness.

Keywords: optimal randomness; swarm-based search; cuckoo search; heavy-tailed distribution;
global optimization

1. Introduction

Swarm-based search algorithms have attracted great interest of researchers in fields of
computational intelligence, artificial intelligence, optimization, data mining, and machine learning
during the last two decades [1]. Moreover, the swarm intelligence algorithms and artificial intelligence
have been successfully used in complex real-life applications, such as wind farm decision system,
social aware cognitive radio handovers, feature selection, truck scheduling and so on [2-5]. Up to now,
a lot of swarm-based search algorithms have been presented, including artificial bee colony (ABC) [6],
cuckoo search (CS) [7], firefly algorithm (FA) [8], particle swarm optimization (PSO) [9] and so on.

Among the existing swarm-based search algorithms, CS is presented in terms of the obligate
brood parasitic behavior of some cuckoo species and the Lévy flight behavior of some birds and
fruit flies. CS searches for new solutions by performing a global explorative random walk together
with a local exploitative random walk. One advantage of CS is that its global search utilizes Lévy
flights or process, instead of standard random walks. Lévy flights play a critical role in enhancing
randomness, as Lévy flights is a random walk where the step-lengths have a probability distribution
that is heavy-tailed. At each iteration process, CS firstly searches for new solutions in Lévy flights
random walk. Secondly, CS proceeds to obtain new solutions in local exploitative random walk.

Mathematics 2019, 7, 828; do0i:10.3390/ math7090828 83 www.mdpi.com/journal /mathematics
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After each random walk, a greedy strategy is used to select a better solution from the current and
newly generated solutions according to their fitness values. Due to the salient features such as simple
concept, limited parameters, and implementation simplicity, CS has aroused extensive attention and
has been accepted as a simple but efficient optimization technique for solving optimization problems.
Accordingly, many new CS variants have been continuously presented recently [10-14]. However, there
is still a lot of space in designing newly improved or enhanced techniques to help to increase the
accuracy and convergence speed and enhance the searching stability for the original CS algorithm.

In nature, the movements of many foragers and wandering animals have been shown to follow a
Lévy distribution [15] rather than a Gaussian distribution. It is found that foragers frequently take a
large step to enhance their searching efficiency since it is the product of natural evolution over millions
of years. Inspired by the mentioned natural phenomena, CS is proposed in combination with Lévy,
where the step-length is drawn from a heavy-tailed probability distribution and large steps frequently
take place flights. In fact, before CS, the idea of Lévy flights was applied in Reference [16] to solve a
problem of non-convex stochastic optimization, due to big jumps of the Lévy flights process. In this way,
it can enhance the searching ability compared with the Gaussian distribution where large steps seldom
happen. More exactly, we have to say the foragers should move following a heavy-tailed distribution
since the Lévy distribution is a simple heavy-tailed distribution which is easy to analyze. There are
many other heavy-tailed distributions such as the Mittag-Leffler distribution, Pareto distribution,
Cauchy distribution and the Weibull distribution, and large steps still frequently happen when using
them to generate the steps. For swarm-based optimization algorithms, randomness plays a significant
role in both exploration and exploitation or diversification and intensification [17]. Therefore, it is
necessary to discuss the optimal randomness in swarm-based search algorithms.

In this paper, we mainly focus on the discussion on the impact of different heavy-tailed
distributions on the performance of swarm-based search algorithms. In the study, CS is taken as
a representative method of swarm-based optimization algorithms, and the results can be generalized to
other swarm-based search algorithms. At first, some basic definitions of the heavy-tailed distributions
and how to generate the random numbers according to the given distribution are provided.
Then by replacing the Lévy flight with steps generated from other heavy-tailed distributions,
four different randomness-enhanced CS algorithms (namely CSML, CSP, CSC, and CSW) are
presented by applying Mittag-Leffler distribution, Pareto distribution, Cauchy distribution and
Weibull distribution. Finally, dedicated experimental studies are carried out on a test suite of
20 benchmark problems with unimodal, multimodal, rotated and shifted properties to compare
the performance of different variant algorithms. The experimental results demonstrate that the four
proposed randomness-enhanced CS algorithms show a significant improvement over the original
CS algorithm. This suggests that the performance of CS can be improved by means of integrating
different heavy-tailed probability distributions rather than Lévy flights into it. At last, an application
problem of parameter identification of unknown fractional-order chaotic systems is further considered.
Based on the observations and results analysis, the randomness-enhanced CS algorithms are able
to exactly identify the unknown specific parameters of the fractional-order system with better
effectiveness and robustness. The randomness-enhanced CS algorithms can be regarded as an
efficient and promising tool for solving the real-world complex optimization problems besides the
benchmark problems.

The remainder of this paper is organized as follows. The principle of the original CS algorithm is
described in Section 2. Section 3 gives details of four randomness-enhanced CS algorithms after a brief
review of several commonly used heavy-tailed distributions. Experimental results and discussions of
randomness-enhanced CS algorithms are presented in Section 4. Finally, Section 5 summarizes the
conclusions and future work.
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2. Cuckoo Search Algorithm

Cuckoo search (CS), developed by Yang and Deb, is considered to be a simple but promising
stochastic nature-inspired swarm-based search algorithm [7,18]. CS is inspired by the intriguing brood
parasitism behaviors of some species of cuckoos, and is enhanced by Lévy flights instead of simple
isotropic random walks. Cuckoos are considered to be fascinating birds not only for their beautiful
sounds but also for their aggressive reproduction strategy. Some cuckoo species lay their eggs in
host nests, and at the same time, they may remove host birds” eggs in order to increase the hatching
probability of their own eggs. For simplicity in describing the standard CS, there are three idealized
rules as follows [7]: (1) Only one egg is laid by each cuckoo bird at a time, and dumped in a randomly
chosen nest; (2) The next generations of cuckoos search for new solutions using the best nests with
high-quality; (3) The number of available host nests is fixed, and the egg laid by a cuckoo is discovered
by the host bird with a probability P, € [0, 1]. In this condition, the host bird can either remove the egg
or simply abandon the nest and build a completely new nest.

The purpose of CS is to substitute a not-so-good solution in the nests with the new and potentially
better solutions (cuckoos). At each iteration process, CS employs a balanced combination of a local
random walk and the global explorative random walk under control of a switching parameter P,.
A greedy strategy is used after each random walk to select better solutions from the current and newly
generated solutions based on their fitness values.

2.1. Lévy Flights Random Walk

At generation t, a global explorative random walk carried out by using Lévy flights can be defined
as follows:

Ul = X!+ a0 @ Lévy @ (X! — Xpest), 1)

where U} denotes a new solution generated in Lévy flights random walk, and X}, is the best solution
obtained so far. « > 0 is the step size related to the scales of the problem of interest, X, is the best
solution obtained so far, the product ® represents entrywise multiplications, and Lévy(A) is defined
according to a simple power-law formula as follows:

Lévy(A) ~ 7174, 2

where t is a random variable, 0 < A < 2 is a stability index. Moreover, it is worth mentioning that
the well-known Gaussian and Cauchy distribution are its special cases when its stability index A is
respectively set to 2 and 1.

In practice, Lévy(A) can be updated as follows:

Lévy(A) ~ \U\Lm"” €)

where A is suggested as 1.5 [18], 2 and v are random numbers drawn from a normal distribution with
mean of 0 and standard deviation of 1, m(-) denotes the gamma function, and ¢ is expressed as:

1/A
, m(\)sin (”TA) / “
(@]
2.2. Local Random Walk

The local random walk can be defined as:

Ui = Xj+r @ H(P, — €) @ (X] — X}), (5)
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where X! and X;{ are two different selected random solutions, r and € are two independent random
numbers with uniform distribution, and H(u) is a Heaviside function. The local random walk utilizes
a far field randomization to generate a substantial fraction of new solutions which are sufficiently far
from the current best solution. The pseudo-code of the standard CS algorithm is given in Algorithm 1.

Algorithm 1 Pseudo code of the standard CS algorithm

Input: Population size NP, fraction probability P,, dimensionality D, the maximum number of

function evaluations Max_FEs, iteration number ¢ = 1, objective function f(X).
Output: The best solution.

1 t=1;

2: Generate an initial population of NP host nests Xt i=1,2,...,NP);

3: Evaluate the fitness value of each nest Xt

4. FES = NP;

5. Determine the best nest with the best fitness value;

6: while FES<Max_FEs do

7. // Lévy flights random walk

8 fori=1,2,..,NPdo

9: Generate a new solution Uf randomly using Lévy flights random walk according to

Equation (1);

10: Greedily select a better solution from Ut and Xf according to their fitness values;

11: FES=FES+1;

12:  end for

13:  // Local random walk, a fraction (P,) of worse nests are abandoned and new ones are built
14 fori=1,2,.., NP do

15: Search for a new solution U/ using local random walk according to Equation (5);
16: Greedily select a better solution from U! and X! according to their fitness values;
17: FES=FES+1;

18:  end for

19:  Obtain the best solution so far Xp,;

20: t=t+1;

21: end while

3. Randomness-Enhanced CS Algorithms

The standard CS algorithm uses Lévy flights in global random walk to explore the search space.
The Lévy step is taken from the Lévy distribution which is a heavy-tailed probability distribution.
In this case, a fraction of large steps is generated, which plays an important role in enhancing the
search capability of CS. Although many foragers and wandering animals have been shown to follow
a Lévy distribution [15], the investigation into the impact of other different heavy-tailed probability
distributions on CS is still insufficient up to now. This motivates us to make an attempt to apply
the well-known Mittag-Leffler distribution, Pareto distribution, Cauchy distribution and Weibull
distribution to the standard CS algorithm, by using which, more efficient searches are supposed to
take place in the search space thanks to the long jumps. In this section, a brief review of several
commonly used heavy-tailed distributions is given and then the scheme of the randomness-enhanced
CS algorithms is introduced.

3.1. Commonly Used Heavy-Tailed Distributions

This subsection provides the definition of heavy-tailed distribution and several examples of
commonly used heavy-tailed distributions.
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Definition 1 (Heavy-Tailed Distribution). The distribution of a real-valued random variable X is said to have
a heavy right tail if the tail probabilities P(X > x) decay more slowly than those of any exponential distribution,
that is, if
P(X > x)

e—A\x = (6)

for every A > 0. Heavy left tails are defined in a similar way [19].

lim
X—00

Example 1 (Mittag-Leffler Distribution). A random variable is said to subject to Mittag-Leffler distribution
if its distribution function has the following form
0 (- 1)k71 xkB
= S 7
=Y i )

k=1

where 0 < B <1, x > 0, and Fg(x) = 0 for x < 0. For 0 < B < 1, the Mittag-Leffler distribution is a
heavy-tailed generalization of the exponential, and reduces to the exponential distribution when p = 1.

A Mittag-Leffler random number can be generated using the most convenient expression proposed by
Kozubowski and Rachev [20]:

i 1/p
Tp=—ylnu (% - cos([%r()) , 8)

where 7y is the scale parameter, u, v € (0, 1) are independent uniform random numbers, and Ty is a Mittag-Leffler
random number.

Example 2 (Pareto Distribution). A random variable is said to subject to Pareto distribution if its cumulative
distribution function has the following expression:

a

1—(2), x>p,

rg= {178 o
0, x<b,

where b > 0 is the scale parameter, a > 0 is the shape parameter (Pareto’s index of inequality).

Example 3 (Cauchy Distribution). A random variable is said to subject to Cauchy distribution if its cumulative
distribution function has the following expression:

F(x) = %arctan (@) + %, (10)

where y is the location parameter, o is the scale parameter.

Example 4 (Weibull Distribution). A random variable is said to subject to Weibull distribution if it has a tail
function F as follows:

F(x) = e~ /0 a1

where k > 0 is the scale parameter, { > 0 is the shape parameter. If and only if ¢ < 1, the Weibull distribution
is a heavy-tailed distribution.

3.2. Improving CS with Different Heavy-Tailed Probability Distributions

For swarm-based search algorithms, randomness plays a significant role in both exploration
and exploitation or diversification and intensification [17]. It is very necessary to discuss the optimal
randomness in swarm-based search algorithms. Randomness is normally realized by employing
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pseudorandom numbers, based on some common stochastic processes. Generally, randomization
is achieved by simple random numbers that are drawn from a uniform distribution or a
normal distribution. But in other cases, more sophisticated randomization approaches are considered,
for example, random walks and Lévy flights. Here, we have to say the foragers should move following
a heavy-tailed distribution since Lévy distribution is a simple heavy-tailed distribution which is easy
to analyze. There are many other heavy-tailed distributions such as Mittag-Leffler distribution, Pareto
distribution, Cauchy distribution, and Weibull distribution, and large steps still frequently happen
when using them to generate the steps. In this paper, we mainly focus on the discussion on the impact
of different heavy-tailed distributions on the performance of swarm-based search algorithms. In the
study, CS is taken as a representative method of swarm-based optimization algorithms, and the results
can be generalized to other swarm-based search algorithms.

In this section, four randomness-enhanced cuckoo search algorithms are proposed in this paper.
Specifically, the following modified CS methods are considered: (1) CS with the Mittag-Leffler
distribution, denoted as CSML; (2) CS with the Pareto distribution, denoted as CSP; (3) CS with
the Cauchy distribution, denoted as CSC; (4) CS with the Weibull distribution, referred to CSW. In the
modified CS methods, the aforementioned four different heavy-tailed probability distributions are
respectively used to be integrated into CS instead of the original Lévy flights in the global explorative
random walk. By using these heavy-tailed probability distributions, the updating Equation (1) can be
reformulated as follows

U! = X! + « @ Mittag — Leffler(8, 7) @ (X! — Xpesr), (12)
Uf = X!+ a @ Pareto(b, a) @ (X! — Xpest), (13)

U! = X! +a ® Cauchy(p, 0) @ (X! — Xpest), (14)

Ut = X!+ a @ Weibull(¢, k) @ (X! — Xpesr), (15)

where Mittag — Leffler(, ) in Equation (12) denotes a random number drawn from Mittag-Leffler
distribution; Pareto(b, a) in Equation (13) represents a random number drawn from Cauchy distribution;
Cauchy(y, ) in Equation (14) denotes a random number drawn from Cauchy distribution; Weibull(«, «)
in Equation (15) means a random number drawn from Weibull distribution. Compared with the
standard CS algorithm, the differences of randomness-enhanced cuckoo search methods lie in line 9
from Algorithm 1.

Remark 1. In this paper, our emphasis is to study the effects of different heavy-tailed distributions on the
swarm-based search algorithms.

Remark 2. Since CS is a popular swarm-based search algorithm, we only use it as an representative.
Similar analyses for optimal randomness can be applied to other swarm-based algorithms.

Remark 3. The source code of randomness-enhanced cuckoo search algorithms (namely CSML, CSP,
CSC, CSW), written in Matlab, is available at https://www.mathworks.com/matlabcentral/fileexchange/71758-
optimal-randomness-in-swarm-based-search.

4. Experimental Results

This study focuses on discussing the effectiveness and efficiency of the proposed
randomness-enhanced CS algorithms. To fulfill this purpose, extensive experiments are carried out on
a test suite of 20 benchmark functions. The superiority of randomness-enhanced CS algorithms over
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the standard CS is tested, then a scalability study is performed. Finally, an application to parameter
identification of fractional-order chaotic systems is also investigated.

4.1. Experimental Setup

For parameter settings of CS, CSML, CSP, CSC and CSW, the probability P, is set to 0.25 [7],
the scaling factor « is set to 0.01. The proposed randomness-enhanced CS algorithms introduce new
parameters to CS: the scale parameter y and the Mittag-Leffler index  in CSML; the scale parameter b
and the shape parameter a in CSP; the location parameter y and the scale parameter ¢ in CSC; the scale
parameter x > 0 and the shape parameter & in CSW. As for these newly introduced parameters, their
values are given in Table 1 after analysis in Section 4.2.

Table 1. Parameters for randomness-enhanced cuckoo search (CS) algorithms.

Distribution Algorithm  Parameters
Mittag-Leffler distribution =~ CSML v=45=038
Pareto distribution CSpP a=15b=45
Cauchy distribution CSsC c=45u=038
Weibull distribution CSW ¢=03«xk=4

All the selected benchmark functions are minimization problems, and a more detailed description
of these benchmark functions can be found in References [21,22]. The test suite consists of 20
unconstrained single-objective benchmark functions with different characteristics, including unimodal
(Fspn, Fros), multimodal (Fuer, Fgrw, Fras, Fsens Fsal, Foonts Fpn1 and Fypp) and rotated and/or shifted
functions (F;-Fjg) as described in Appendix A. Moreover, the population size satisfies NP = D where
D denotes the dimension of the problem unless a change is mentioned.

In the experimental studies, the maximum number of function evaluations (namely Max_FEs)
is taken as the termination criterion and set to 10,000 x D. The average of the function error value
f(Xpest) — f(X¥) is used to assess the optimization performance, where X, is the best solution found
by the algorithms in each run and X* is the actual global optimal solution of the test function. All the
algorithms are evaluated for 50 times and the averaged experimental results are recorded for each
benchmark function respectively. Besides, two non-parametric statistical tests for independent samples
are taken to detect the differences between the proposed algorithm and the compared algorithms.
The tests contain the Wilcoxon signed-rank test at the 5% significance level and the Friedman test.
The symbol “1”, “t” and “~" respectively denote the average performance gained by the chosen
approach is weaker than, better than, and similar to the compared algorithm. Meanwhile, the best
experimental results for each benchmark problem are marked in boldface, for clarity.

4.2. Parameter Tuning

From Section 3.2, it can be seen that each of the four randomness-enhanced CS algorithms
brings two new user-defined parameters, for example, the scale parameter y and the Mittag-Leffler
index B in CSML. To illustrate the impact of these two parameters on the optimization results and to
offer reference values to users of our algorithm, parameter analyses are conducted in advance and
corresponding experiments are performed on unimodal function F;, and multimodal function Fy
with dimension D set to 30. The optimal value of selected benchmark functions is 0. 10,000 x D is
the default value for Max_FEs. 15 independent runs are carried out for each parameter setting to
reduce statistical sampling effects. The experimental results are plotted in Figure 1. For simplicity
of description, only the result of parameter tuning for CSML is shown here, and the same operation
is conducted on CSP, CSC, and CSW. In Figure 1a, 7 varies within interval [0.5,4.5] in steps of 0.5,
B varies from 0.1 to 0.9 in steps of 0.1, and “Error’ represents the average value of the differences
between the benchmark function value and its optimal value over 15 independent runs.
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Figure 1. Impact of user-defined parameter values of CSML, CSP, CSC and CSW on the results for
selected benchmark functions. (a) CS with the Mittag-Leffler distribution, CSML. (b) CS with the Pareto
distribution, CSP. (c) CS with the Cauchy distribution, CSC. (d) CS with the Weibull distribution, CSW.

From Figure la, we can see that the Mittag-Leffler index 8, in general, has a slight effect on
the performance of CSML, whereas the value of scale parameter -y shows a more significant impact
on the experimental results. According to the right part of each subfigure in Figure 1a, the larger
the value of scale parameter 7 is, the better the performance of CSML will be. In view of the above
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considerations, we set the values of y and 8 to 4.5 and 0.8 for all the experiments being conducted in
the next subsections. For Pareto distribution, Cauchy distribution and Weibull distribution, the same
parameter analysis is performed according to Figure 1b—d. The user-defined parameter values for all
the randomness-enhanced CS algorithms are listed in Table 1.

4.3. Performance Evaluation of Randomness-Enhanced Cs Algorithms

In this section, lots of experiments are performed in order to probe into the effectiveness and
efficiency of different heavy-tailed distributions on the performance of CS, and meanwhile, to decide
the optimal randomness in improving CS. In our experiments, the standard CS and four proposed
randomness-enhanced CS algorithms (namely, CSML, CSP, CSC, and CSW) are tested on 20 test
functions where D is set to 30. The experimental results are presented in Table 2.

Table 2. Comparisons between CS and four randomness-enhanced CS algorithms at D = 30.

Fun (e CSML CSP CcsC CSW

Fypp 9.58x10~31 4.90x10754 4.74x10~%% 1.17x1057% 4.40x10751%
Fros 1.20x10? 5.22x10%% 3.10x10°F 2.74x10%% 8.62x10%
Fock 7.70%x1013 1.06x 10~ 14% 1.07x10~14% 9.56x10~15% 8.28x10~15%
Frwo 7.11x10717  0.00x10% 0.00x10% 0.00x10% 0.00x10%
Frus 2.32x10! 1.38x10'% 1.88x 101 1.49x 10 8.34x100%
Fon 1.57x10% 5.37x10%* 1.32x10%F 4.80x10%* 3.56x10'%
Fol 3.76x10~1 2.96x10~ 1% 3.00x10~ 1% 2.84x10~ 1% 2.20x10~ 1%
Fon 3.73%102 2.00x10%% 2.49x10%% 2.27x10%% 1.93x10%%
Fypi 2.07x1073 1.57x10~32% 1.57x10-32% 2.07x1073% 1.57x10~32%
Fpna 482x1072%  1.35x107%%F  1.35x107%2F  1.35x107%%F  1.35x10 %%
b2 6.48x10730 0.00x10°% 0.00x10%F 0.00x10°% 0.00x10°%
F 1.05%10~2 1.10x 1034 2.77x10~ 4 1.40x103% 1.23x10-2t
F 2.17x10° 3.04x100F 2.99x100* 3.25x%100F 3.61x100F
E 1.79%x10° 4.98x102% 3.58x102%F 4.02x102# 5.51x10%%
Fs 3.17x10° 2.44x10%% 1.98x10%% 2.11x10%% 1.94x10%F
Fs 2.78x10! 1.57x10'% 9.91x10%F 1.23%10'% 1.59%10'%
F 1.34x1073 2.22x1073% 5.79x1073% 3.73x1073* 2.49x1073*
Fg 2.09%10! 2.09%10'~ 2.09x10'~ 2.09%10™~ 2.09x10'~
Fo 2.84x10! 1.30x10'% 2.74x10'F 1.28x10'F 6.81x10%
Fio 1.69 %102 1.21x10%% 1.31x10%* 1.18x10%% 1.03x10%%
1/~ /t - 17/1/2 17/1/2 16/2/2 16/1/3
p-value - 8.97x1073 1.00x 1072 1.00x1072 1.87x1072
Avg. rank 435 2.78 2.88 2.58 2.43

“1”,“t” and “~" respectively denote the performance of CS is worse than, better than, and similar to those of the proposed
algorithms according to the Wilcoxon’s rank test at a 0.05 significance level.

According to Table 2, it can be clearly found that CS with different heavy-tailed
probability distributions provides significantly better results when compared with the original CS.
Specifically speaking, in terms of the total number of “}/~ /t”, CS is inferior to CSML, CSP, CSC,
and CSW on 17, 17, 16 and 16 test functions, similar to CSML, CSP, CSC and CSWon 1,1,2and 1
test functions, and superior to CSML, CSP, CSC, and CSW on 2, 2, 2 and 3 test functions, respectively.
It is worth noting that CSML, CSP, CSC and CSW are capable of achieving the global optimum on test
problem Fgr,y and Fy, while CS does not. Moreover, all the p-values are less than 0.05. These results
suggest that CSML, CSP, CSC, and CSW are able to significantly improve the performance of CS
for the test functions at D = 30. The comprehensive ranking orders are CSW, CSC, CSML, CSP,
and CS in a descending manner. This indicates that the integration of different heavy-tailed probability
distributions into CS not only retains the merit of CS but also performs even better. Besides, the Weibull
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distribution performs the best in enhancing the search ability of CS, that is, CSW is supposed to be
the optimal randomness in improving CS among all the comparison methods for solving benchmark
problems at D = 30.

To further discuss the convergence speed of the four randomness-enhanced CS algorithms, several
test problems (namely Fpp,, Ferw, F1 and Fpg) at D = 30 are selected to plot the convergence curves of the
averages of the function error values within Max_FEs over 50 independent runs, which are presented
in Figure 2. From Figure 2, it can be observed that CSML, CSP, CSC, and CSW converge outstandingly
faster than CS according to the convergence curves. In summary, it can be concluded that the standard
CS algorithm can be improved by integrating different heavy-tailed probability distributions rather
than Lévy distribution into it.

Besides, to analyze the reasons for different performances among the four proposed
randomness-enhanced CS algorithms, the jump lengths of CS, CSML, CSP, CSC, and CSW (namely,
a ® Lévy(A), & @ MittagLeffler(B, v), « ® Pareto(b, a), « ® Cauchy(y, o), and a ® Weibull(¢, x)) are
depicted in Figure 3, where the parameters are given in Table 1 and the scaling factor is set to 0.01.
From Figure 3, it can be observed that (1) Lévy distribution and Cauchy distribution are one-sided
distribution where all the random numbers are positive, and the other three distributions are two-sided;
(2) large steps frequently take place for all distributions; (3) since the tail of Weibull distribution is the
lightest, the extreme large steps (compared with its mean) are less likely to happen.

Fo Fyruy

Average Error
Average Error

o

0 0.5 1 1.5 2 25 3

13 Fy

Average Error
Average Error

0 0.5 1 1.5 2 25 3

(©)

Figure 2. Convergence curves of CS and different improved CS algorithms for selected functions at
D = 30. (a) Sphere’s Function Fyp;. (b) Griewank’s Function Fgrq. (c) Shifted Sphere Function F.
(d) Shifted Rotated Rastrigin’s Function F.
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Figure 3. Jump lengths of CS, CSML, CSP, CSC and CSW. (a) Lévy distribution of CS. (b) Mittag-Leffler
distribution of CSML. (c) Pareto distribution of CSP. (d) Cauchy distribution of CSC. (e) Weibull
distribution of CSW.
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4.4. Scalability Study

In this section, a scalability study comparing with the standard CS algorithm is conducted in order
to study the effect of problem size on the performance of the four proposed randomness-enhanced
CS algorithms. We carry out experiments on the 20 benchmark functions with dimension D set to
10 and 50. When D = 10, the population size is chosen as NP = 30; meanwhile, when D = 50,
the population size is selected as NP = D. All the other control parameters are kept unchanged.
The experimental results achieved by CS and four proposed randomness-enhanced CS algorithms at
D =10and D = 50 are listed in Tables 3 and 4, respectively, and the results of the Wilcoxon signed-rank
test are also given in the tables.

According to Table 3, CSML, CSP, CSC, and CSW are significantly better than CS on 7, 17, 18 and
19 test functions, similar to CSon 0, 1, 1 and 1 test functions, and worse than CS on 13,2, 1 and 0 test
functions, respectively. The comprehensive ranking orders in the case of D = 10 are CSW, CSC, CSP,
CS, and CSML in descending manner. The results show that the performance improvement of using
different heavy-tailed probability distributions persists expect CSML when the problem dimension
reduces to 10. In the case of D = 50, it can be observed from Table 4 that CSML, CSP, CSC and CSW
perform better than CS on 16, 14, 16 and 16 test functions, to CSon 1, 1, 1 and 1 test functions, and worse
than CS on 3, 5, 3 and 3 test functions, respectively. Meanwhile, the corresponding comprehensive
ranking orders when D = 50 are CSC, CSML, CSP, CSW and CS. In general, we can draw conclusions
that the advantages of four randomness-enhanced CS algorithms over the standard CS are overall
stable when the problem dimension increases, except CSML which deteriorates to a certain extent
when D set to 10. Furthermore, regarding to the different comprehensive ranking orders obtained at
every dimension, it is pointed out that CS with Lévy flights seems not the optimal randomness when
compared with those using different heavy-tailed probability distributions in CS.
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Table 3. Comparisons between CS and four randomness-enhanced CS algorithms at D = 10.

Fun cs CSML CSP Ccsc CSW
Fopn 4.87x1072%  339x10731F  421x10748F  2.04x107%F  2.48x 107464
Fros 9.63x10°1  3.02x10'* 1.12x1071%  1.75x1071F  297x1071F
Fok 416x10711 250x1074F  437x10715F  444x10715F 44410154
Ferw 344x1072  0.00x10%F  222x10-%  2.07x10"%  144x10~%
Fras 3.00x10° 6.93x101* 2.25x%100F 295x10° 1% 2.26x107%
Fsen 6.72x 10 3.80x 103" 1.38x10'% 691x1073%  1.27x10~%
Foa 1.04x1071  4.78x1071"  9.99x1072F  9.99x1072F  9.99x1072%
Funt 2.40% 10 9.89x102* 1.54x10'% 1.01x10M 5.72x10%%
Fym 1.96x10710  201x10728%  4.71x10732F  4.71x107%2F  4.71x10732¢
Fyz 486x1072  9.17x1073%F  1.35x10732F 1.35x107%2F 1.35x10-32%
F 413x107%  0.00x10%% 0.00x10%% 0.00x10%% 0.00x10%%
F 8.16x10714  3.73x102* 1.33x10721F  454%x10719F  1.51x10716%
F 2.08x102 1.70x107* 7.20x10%* 6.78x102* 8.31x10%*
Fy 1.01x1075  1.96x10*t 1.46x107%%F  1.20x1078%  4.82x1078%
Fs 9.30x107>  6.82x103" 6.13x10719F  511x10°%  9.27x10°9%
Fs 9.78x10~1  4.11x10'* 6.38x1071%  3.48x1071F  2.69x1071F
E 533x1072  1.07x1073%  591x1072"  472x1072F  439x107%
Fs 2.04x10! 2.11x10'* 2.04x10'%  2.04x10'® 2.03x10M%
Fo 2.75% 100 7.37x10tt 1.80x10%% 1.79%x1071%  2.35x1010%
Fio 1.99% 10 2.89x10%* 1.63x 104 1.59x 101 1.43x10'%
i/~ /t - 7/0/13 17/1/2 18/1/1 19/1/0
Avg. rank  4.10 4.28 228 2.25 2.10

“1”,“t” and “~" respectively denote the performance of CS is worse than, better than, and similar to those of the proposed

algorithms according to the Wilcoxon’s rank test at a 0.05 significance level.

Table 4. Comparison results between CS and four randomness-enhanced CS algorithms at D = 50.

Fun cs CSML CSP CcscC CSwW
Fyp 3.79x107Y  347x1073%  7.41x107%%  575%x107%%  2.73x10 24
Fros 4.22x10? 3.07x10F 2.82x 10 2.99x10F 3.41x10M
Fack 2.85x1072  243x10714f  205x10714F  2.05x10°14  7.40x10 13
Ferw 1.93x1071  0.00x10°%  0.00x10%%  0.00x10°%  0.00x100%
Fras 8.44x10! 6.80x101% 8.69x101* 7.54x101% 7.37x101%
Eyep 4.87x10° 4.14x10%% 6.05x103* 4.38x10%% 2.38x10%%
Foul 6.69x1071  4.68x1071F  4.87x1071F  422x10°1  3.68x107 ¥
Font 1.36x10% 9.58x10%% 1.21x10%% 1.09x10%% 1.13x10%%
Fym 8.13x1073  6.74x1072%  1.04x10~%7%  7.21x1073%%  1.47x10-2%
Fynz 325x1071%  1.02x107%F  1.57x10732F  1.44x1073%%  2.01x10-2%
£ 1.40x10716  0.00x10%% 0.00%109% 0.00x10°F 3.57x10724%
F 2.34x10? 3.57x10%F 1.86x10%% 4.49%102* 8.59x10%*
F3 8.53x 100 1.66x107t 1.47x107% 1.83x107t 1.85x107%
Fy 2.72x10* 1.99x10%% 1.72x 10 1.91x10%% 1.88x10%
Fs 1.06x10* 6.95x10%F 6.49x10%% 6.65x10%F 6.30x10*03%
Fs 6.38x10! 3.90x101% 4.15x101% 3.63x101F 4.43x101%
F, 1.30x1073  1.81x1073t  356x1073"  243x1073t  3.64x1073F
Fs 2.11x 10 2.11x10'% 211x10%  211x10'% 2.11x10'%
E 1.24x10? 7.04x10M% 1.27x10% 7.47x10M% 6.50x10%
Fio 3.87x102 2.87x10%F 3.13x10%% 2.85x10%F 2.69x10%%
/= /t - 16/1/3 14/1/5 16/1/3 16/1/3
Avg.rank 4.10 2.58 2.70 2.55 3.08

“1”,”1” and “~" respectively denote the performance of CS is worse than, better than, and similar to those of the proposed

algorithms according to the Wilcoxon'’s rank test at a 0.05 significance level.
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4.5. Application to Parameter Identification of Fractional-Order Chaotic Systems

In this section, the four proposed randomness-enhanced CS algorithms (namely, CSML, CSP,
CSC and CSW) are applied to identify unknown parameters of fractional-order chaotic systems,
which is a critical issue in chaos control and synchronization. Our main task of this section is to
further demonstrate that improving CS with different heavy-tailed probability distributions can also
effectively tackle the real-world complex optimization problems besides the benchmark problems.
In fact, by using a non-Lyapunov way according to problem formulation suggested in Reference [23],
the nonlinear function optimization can be converted to from parameter identification of uncertain
fractional-order chaotic systems.

In the numerical simulation, the fractional-order financial system [24] under the Caputo definition
is taken for example, which can be described as

oD{'x(t) = z(t) + x(t)(y(H) — a),
oDy(t) = 1 — by(t) — x2(t), (16)
oDPz(t) = —x(t) — cz(t),

where g1,42,93 and a,b,c are fractional orders and systematic parameters.
When (91,42, 93) = (1,0.95,0.99), (a,b,c) = (1,0.1,1) and initial point (xp,y0,2z0) = (2,—1,1),
the system above is chaotic.

Suppose the structure of system (16) is known and the systematic parameters a, b, ¢ are unknown,
then the objective function is defined as

N
F=Y | X — Xl 17)
k=1

where X; and X denote the state vector of system (16) and its estimated system at time k,
respectively. k = 1,2,..., M is the sampling time point and M denotes the length of data used
for parameter estimation. ||-|| denotes Euclid norm. Parameter identification can be achieved by
searching suitable (a*, b*, c*) such that the objective function (17) is minimized, that is,

(a*,b*,c*) =arg min F, (18)

(@,b,0)cm

where mis the searching space admitted for systematic parameters. Figure 4 depicts the distribution
figure of system (16) for the objective function values.

14

b 09 a  (q1.92.93)=(1,0.95,0.99)

Figure 4. Distribution of the objective function values for system (16).
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The validation of the proposed methods in this paper is further proved by comparing CSML,
CSP, CSC and CSW with the standard CS algorithm for parameter identification. In the simulations,
the maximum iteration number is set to 200 and the population size is set to 40. For the system to
be identified, the step size is set to 0.005 and the number of samples set to 200. In addition, it is
worth mentioning that the same computation effort is used in implementation for all the compared
algorithms to make a fair comparison. Table 5 lists the statistical results of the average identified values,
the corresponding relative error values and the objective function values for system (16). From Table 5,
it can be clearly observed that all the four proposed randomness-enhanced CS algorithms outperform
CS according to the average objective function values and they are able to generate estimated values
with much higher accuracy than CS. Besides, it can be seen that CSP surpasses CS, CSML, CSW
and CSC in obtaining the best average identified values, the corresponding relative error values
and the objective function values.

Table 5. Statistical results of different methods for system (16), in terms of the average estimated values,
the relative error values and objective function values.

Method ~ CS CSML CSP csc CcsSW

a 0.999999825481796 ~ 0.999999979386471  1.000000001165006 0.999999930875086 ~ 0.999999994619958

la L0l 175%10-7 2.28x1078 117x10~7 6.91x1078 5.38x107°
0.100000078306700 ~ 0.100000006492360  0.099999999732393  0.100000038684769 ~ 0.100000001325757

L20d0) 7.83x10°7 1.12x10~7 2.68x1077 3.87x1077 2.06x10°8

c 1.000000126069434  0.999999979588057 ~ 0.999999995606294  0.999999876500337 ~ 0.999999979353103

L L0001 26x10-7 461x1078 439x1077 1.23x10~7 1.33x10°8

Faggista  1.07x107° 4.75%10~7 7.46x10~8 1.89x10~° 1.03x10~7

Foia 5.46 x 107° 2.74 %1077 329 x 1078 9.38 x 1077 6.12x 1078

a, b and c are parameters to be identified. Their actual values are 1.00, 0.10 and 1.00, respectively.

Moreover, Figure 5 shows the convergence curves of the relative error values of the estimated
parameters and objective function values for the corresponding system via CSML, CSP, CSC, CSW
and CS. From Figure 5a—c, the relative error values of the estimated values generated by the
randomness-enhanced CS algorithms converge to zero more quickly than the original CS. This indicates
that CS algorithms with the four different heavy-tailed probability distributions are able to obtain
more accurate values of the estimated parameters. In terms of Figure 5d, the objective function values
of CSML, CSP, CSC, CSW also decline faster than CS and among which CSP performs the best. It is
noteworthy that CSW has a similar convergence curve of objective function values with CSP and can
converge to the nearby area of CSP. Therefore, CSW can still be considered as an efficient tool for
solving optimization problems.

According to the foregoing discussion, it can be summarized that the randomness-enhanced CS
algorithms are able to exactly identify the unknown specific parameters of the fractional-order system
(16) with better effectiveness and robustness and CSP together with CSW may be treated as a useful
tool for handling the problem of parameter identification.
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Figure 5. The convergence curves of the relative error values and objective function values for
system (16). (a) The relative error value of a. (b) The relative error value of b. (c) The relative
error value of c. (d) Objective function value of F.

5. Conclusions

The purpose of this paper is to study the optimal randomness in swarm-based search algorithms.
In the study, CS is taken as a representative method of swarm-based optimization algorithms and the
results can be generalized to other swarm-based search algorithms. The impact of different heavy-tailed
distributions on the performance of CS is investigated. By replacing Lévy flights with steps generated
from other heavy-tailed distributions in CS, four different randomness-enhanced CS algorithms
(namely CSML, CSP, CSC and CSW) are presented by applying Mittag-Leffler distribution, Pareto
distribution, Cauchy distribution and Weibull distribution, in order to improve the optimization
performance of CS. The improvement in effectiveness and efficiency is validated through dedicated
experiments. The experimental results indicate that all four proposed randomness-enhanced
CS algorithms show a significant improvement in effectiveness and efficiency over the standard
CS algorithm. Furthermore, the randomness-enhanced CS algorithms are successfully applied to
system identification. In summary, CS with different heavy-tailed probability distributions can be
regarded as an efficient and promising tool for solving the real-world complex optimization problems
besides the benchmark problems.

Future promising topics can be directed to (1) theoretically analyze the global convergence
of randomness-enhanced CS algorithms; (2) do a similar analyses to other swarm-based search
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algorithms for the optimal randomness; (3) since the search range is always finite for swarm-based
search algorithms, it is necessary to study the optimal randomness in a finite range.
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Appendix A

The description of the 20 benchmark functions is given as follows. The formulae of the
corresponding benchmark functions are presented in Table AT.

. Fspn: Sphere’s Function.

. Fs: Rosenbrock’s Function.

. Fyck: Ackley’s Function.

Fgrw: Griewank’s Function.

. Fras: Rastrigin’s Function.

. Fyep: Generalized Schwefel’s Problem 2.26.

. Fyy: Salomon’s Function.

. Fype: Whitely’s Function.

. Fyn1: Generalized Penalized Function 1.

. Fyn2: Generalized Penalized Function 2.

. Fy: Shifted Sphere Function.

. F: Shifted Schwefel’s Problem 1.2.

. F3: Shifted Rotated High Conditioned Elliptic Function.

. Fy: Shifted Schwefel’s Problem 1.2 with Noise in Fitness.

. F5: Schwefel’s Problem 2.6 with global Optimum on Bounds.
. Fg: Shifted Rosenbrock’s Function.

. F7: Shifted Rotated Griewank’s Function without Bounds.

. Fg: Shifted Rotated Ackley’s Function with Global Optimum on Bounds.
. Fy: Shifted Rastrigin’s Function.

. Fyp: Shifted Rotated Rastrigin’s Function.
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