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Foreword
 

In the past decades, rapid advances in digital IC (integrated circuit) tech­
nology have caused a “digital revolution” in the field of signal processing. 
These days, almost any real-world signal is represented and processed digi­
tally, from physiological vital signs via camera pictures, audio signals, video 
signals, and radar signals to the massive four-dimensional datasets pro­
duced by modern medical imaging equipment. The rapid growth of the fixed 
and mobile Internet, combined with the insatiable appetite of mankind for 
information, will further add fuel to this revolution. 

When real-world signals are converted into a digital form, they are com­
monly split into discrete blocks for further processing. To avoid the edge 
effects across the blocks, the blocks are often weighted by a window function 
that tapers the signal off toward both ends of the block. A window function 
is a mathematical function that is zero-valued outside some chosen interval. 
When a signal is multiplied by a window function, the product is also zero-
valued outside this interval. Effectively, we are viewing the signal through a 
“window,” hence the name of the function. 

Window functions are explicitly or implicitly used in many, if not most, 
digital signal processing systems, and as such are genuinely important. Even 
so, the vast signal processing literature contains a few, if any, of books or 
monographs that are dedicated to this topic. This monograph is a welcome 
exception. To the best of my knowledge, it provides the most comprehensive 
treatment of window functions and their applications available to date. The 
author, Professor dr. ir. K.M.M. Prabhu, has been affiliated since the mid­
1970s with the prestigious Indian Institute of Technology Madras, Chennai, 
India. He has made significant contributions to the development of window 
functions and their implementation intricacies in the mid-1970s and early 
1980s and has maintained an active interest in window functions ever since. 
Hence, he is very well placed to provide an authoritative treatment on the 
topic. 

Window functions have a strong impact on the spectrum of the signal 
and essentially permit a trade-off between time and frequency resolu­
tion. Accordingly, the monograph starts with a review of continuous and 
discrete-time Fourier analysis techniques and of key artifacts such as spectral 
aliasing and leakage. The core of the monograph consists of a survey and 
a detailed feature analysis of an extensive set of continuous and discrete-
time window functions. This is supplemented by a treatment of efficient 
time- and frequency-domain window implementation approaches. The final 
chapters zoom in on the key applications of window functions, such as dig­
ital filter design, spectral analysis, and applications in fields such as radar 

xiii 
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signal processing, biomedical engineering, and audio, speech, and image 
processing. 

I would like to congratulate the author on this valuable addition to the 
signal processing literature. 

Professor dr. ir. J.W.M. Bergmans 
Chairman, Signal Processing Systems Group 

Eindhoven University of Technology 
The Netherlands 



Preface
 

This monograph presents an exhaustive and detailed account of window 
functions and their applications in signal processing. Window functions, 
otherwise known as weighting functions, tapering functions or apodization 
functions, are mathematical functions that are zero-valued outside the chosen 
interval. As a popular quote goes, there are as many numbers of windows as 
the number of people working in signal processing. 

Chapter 1 deals with the Fourier analysis techniques. First, the basic sig­
nals and systems in the continuous time-domain are introduced, followed 
by the continuous-time Fourier transform (CTFT). Its properties and some 
examples are discussed next. We then move on to the discrete-time Fourier 
transform (DTFT), the first transform encountered in digital signal process­
ing, to convert a discrete-time signal into its frequency-domain counterpart. 
The Fourier transform to handle sequences of finite length, called the discrete 
Fourier transform (DFT), is discussed next and its properties and applications 
are highlighted. Finally, the algorithms to compute the DFT faster, namely, 
the fast Fourier transform (FFT) based on decimation-in-time (DIT) and 
decimation-in-frequency (DIF), are described. This chapter concludes with 
an efficient technique to compute linear convolution via circular convolution 
using the DIT and DIF algorithms. 

In Chapter 2, we discuss the pitfalls in the computation of the DFT. There are 
two processes involved while computing the DFT of an analog (continuous­
time) signal: sampling and truncation. While sampling introduces a distortion 
called aliasing, the truncation operation due to the finite length data intro­
duces two other effects known as the frequency leakage and picket-fence 
effect. In this chapter, these effects and the manner in which they can be 
eliminated/reduced are also detailed. The DFT functioning as a bank of 
band-pass filters is also demonstrated. 

Chapter 3 introduces the commonly used window functions in the 
continuous-time-domain, rather than in the discrete-time-domain. The char­
acteristics which qualify a function to be called as a window function are given 
next. The plots of the window functions are provided in the time-domain as 
well as in the frequency-domain. The two near-optimum Kaiser–Bessel win­
dow function families are also discussed in detail. The main characteristics 
of a window function such as normalized half-main-lobe width (NHMLW), 
first side-lobe level (FSLL), maximum side-lobe level (MSLL), ratio of main-
lobe energy to the total energy (MLE), and rate of fall-off of side-lobe levels 
(RFSLL) are also enlisted for all the windows considered here. This chapter 
concludes with a rigorous comparison of all the window parameters. 

xv 
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Chapter 4, titled as the performance comparison of data windows, defines 
a number of parameters, once again in the continuous-time-domain. These 
parameters are computed either analytically or numerically for all the win­
dows which were introduced in Chapter 3. Finally, directions for the choice 
of an appropriate window function for specific applications are provided. 

Discrete-time windows and their figures of merit are discussed in Chapter 5. 
The four different classifications of windows are presented. The discrete-time 
versions of all the windows from Chapter 3, as well as some more popular 
windows discussed in the literature, are reviewed here. Definitions of win­
dow parameters and a discussion on the window selection process are also 
outlined. Finally, the chapter concludes with the two important applications 
of windows; namely, finite impulse response (FIR) digital filter design and 
spectral analysis. 

The two implementation strategies of window functions in the time-domain 
and frequency-domain are dealt with in Chapter 6. A novel scheme to imple­
ment certain types of windows in the frequency-domain is derived and a 
structure called binary windowing structure to implement it is also presented. 
The computational error performance in terms of signal-to-computational 
error ratio (SCER) in both the domains is tabulated and their performances are 
compared. Finally, novel binary windowing structures called canonic signed 
digit (CSD) windowing are presented for all the binary windows considered 
in this chapter. 

FIR filter design using windows is considered in Chapter 7. This chapter 
deals with the different types of ideal filters: lowpass, highpass, bandpass, 
and bandstop filters. A discussion on linear phase filters, followed by the 
four types of filters is presented next. A clear design procedure is given for 
FIR filters. Furthermore, FIR filter design using zeroth-order and first-order 
Kaiser–Bessel windows is presented. These use closed-form expressions in 
determining the filter order as well as the window shape parameter. The 
design of differentiators and Hilbert transformers are also outlined. 

Window functions are vital in nonparametric methods of spectral estima­
tion as well. They are classified as: periodogram PSD estimators, modified 
periodogram PSD estimators, and correlogram estimators. These methods 
and the requirement for window functions are discussed in detail in Chap­
ter 8. This chapter also gives the application of Kaiser–Bessel window in 
spectral analysis. Closed-form expressions are available to compute the win­
dow length and the variable parameter alpha of the Kaiser–Bessel window. 
Besides, we introduce short-time Fourier transform (STFT), which is also 
known as time-dependent Fourier transform, in analyzing nonstationary sig­
nals, such as speech. Several examples are discussed which clearly brings out 
the power of window functions in nonparametric spectral analysis. 

Chapter 9 discusses well-known applications of window functions in the 
fields of radar, sonar, biomedical signal analysis, audio processing, and 
synthetic aperture radar. In the context of radar, the cases considered are high-
range resolution radars, the effect of range side-lobe reduction on SNR and in 
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stretch processing. In biomedical signal processing, we consider FIR/moving 
average filtering of biomedical signals, QRS detection of ECG signals using 
STFT, and so on. Audio de-noising using time–frequency plane, effect of 
windows on linear prediction of speech, and so on are dealt with in the 
audio-processing section. Finally the chapter concludes with topics such as 
the effect of windows in ISAR (inverse synthetic aperture radar) images and 
the usage of windows in improving the contrast ratio in imaging systems. 
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1 
Fourier Analysis Techniques for Signal 
Processing 

There are several methods to transform a time-domain signal into frequency-
domain. The motivation for transforming a signal from one domain to another 
is that the characteristics of a signal are visible directly and can be easily 
extracted from such a representation. For instance, from a signal represented 
in time-domain, we can only extract some features such as the exact start­
ing time instant of the signal or the duration for which the signal existed. 
However, other useful features such as bandwidth and frequency occupied 
by the signal are not directly visible unless we convert it into the frequency-
domain. Another advantage of transforming a signal into the Fourier domain 
is that the convolution operation gets simplified to multiplication. We can use 
Fourier analysis techniques to identify and separate the frequency bands of 
interest from noisy observations. Transforms are vital in many speech appli­
cations (recognition, synthesis, and coding), radio communications, vibration 
analysis, and so on. Some specific areas where Fourier transforms (FTs) are 
applied include steady-state and resonance analysis of signals, modulation, 
filter design, sampling rate selection, stability analysis, correlations by block 
processing, and pitch period estimation. 

In this chapter, we begin by describing the continuous-time Fourier trans­
form (CTFT) technique for continuous-time (CT) signals and then proceed to 
the discrete-time Fourier transform (DTFT) for discrete-time (DT) sequences. 
The DTFT has been developed from the CTFT by utilizing the similarities 
between analyzing continuous- and discrete-time signals. The concept of 
z-transform is introduced next, which is useful in analyzing and synthesizing 
discrete-time signals and systems. However, for present-day applications, the 
DTFT is not amenable to digital computations, since in the forward DTFT, we 
require infinitely many number of computations; while in the inverse DTFT 
(IDTFT), we have an integral notation to deal with. 

Therefore, we resort to the discrete Fourier transform (DFT) which is a 
uniformly sampled version of the DTFT. In the case of DFT, both the forward 
and inverse DFT (IDFT) expressions are discrete as well as finite. Therefore the 
DFT and IDFT remove the restrictions associated with the DTFT and IDTFT, 
respectively. Finally, we discuss the fast Fourier transform (FFT), which is a 
computationally efficient tool to compute the DFT of a signal with a reduced 
number of arithmetic operations. The FFT is commonly used in all digital 
signal processors (DSPs) and general purpose digital computers. 

1 



� 

2 Window Functions and Their Applications in Signal Processing 

1.1 Review of Basic Signals and Systems 

In this section, we start our study of signals which are commonly encountered 
in signal processing. We also enlist the important properties of systems. 

1.1.1 Basic Continuous-Time Signals 

1. Unit step signal: This signal is defined for a time instant ‘t’ as follows: 

0, t < 0 
u(t) =	 (1.1)

1, t > 0. 

This signal is shown in Figure 1.1. 
2.	 Unit impulse function: It is not appropriate to give a duration for 

the impulse function; instead we can say that the area under the 
unit impulse is unity. It can be graphically represented as shown in 
Figure 1.2. It can be assumed as a limiting case of the delta function: 

δ(t) = lim δ�(t).	 (1.2) 
�→0 

We note that the unit impulse function can be related to the unit step 
signal as: 

du(t)
δ(t) = .	 (1.3)

dt 

3. Complex exponential signal: This is represented by the following 
function: 

x(t) = ceat , (1.4) 

where c and a can represent complex numbers, in general. 

u(t) 

1 

t 

FIGURE 1.1 
Unit step signal. 

0 



� 
0, n = 0 

δ[n] = 	  (1.6)
1, n = 0 

2. Unit step sequence: � 
u[n] =  

0, 
1, 

n < 0 
n ≥ 0 

(1.7) 
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t 

δ (t) 

1 

(a) 

0 

t 

1/Δ 

(b) δΔ(t) 

0 Δ 

FIGURE 1.2 
(a) Unit impulse signal. (b) Unit delta function. 

4.	 Sinusoidal signal: The sine function with amplitude A and frequency 
of oscillation �0 is given by: 

x(t) = A sin(�0t + φ), (1.5) 

where φ represents the phase of the sinusoidal signal. 

1.1.2 Basic Discrete-Time Signals 

These signals are similar to their CT counterparts, but defined with respect 
to an integer-valued variable ‘n’. 

1.	 Unit impulse sequence: 

�
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3. Complex exponential: 

x[n] = cαn (1.8) 

where c and α are, in general, complex numbers. 
4. Sinusoidal signal: 

x[n] = A cos[ω0n + φ] (1.9) 

where ω0 is the frequency, φ represents the phase and A is the 
amplitude of the sinusoidal signal. The difference between the CT 
sinusoidal signal and its DT domain is that the equivalent frequency 
in the DT domain lies in the range [−π , π ], whereas in the CT domain, 
it varies in the broad range [−∞, ∞]. 

1.1.3 System and Its Properties 

A discrete-time system can be defined as a transformer from the input space to 
a transformed space. It can schematically be described as shown in Figure 1.3 
and it is mathematically described by the following relation: 

y[n] = T{x[n]}.	 (1.10) 

Some useful properties of general systems are described below. 

1.	 Linearity property: If we consider two output sequences y1[n] and y2[n]
which are defined as the transformations of x1[n] and x2[n]: 

T
x1[n] ←→ y1[n] = T(x1[n]) (1.11) 

T
x2[n] ←→ y2[n] = T(x2[n]) (1.12) 

Then, the system is said to be linear if 

T
ax1[n] + bx2[n] ←→ y3[n] = T(ax1[n] + bx2[n]) (1.13) 

and if y3[n] = ay1[n] + by2[n]. Here, a and b are any arbitrary con­
stants. 

FIGURE 1.3 
System. 

Systemx[n] y[n] 
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2.	 Time invariance property: If the transformation of a signal does not 
vary with time, then the system is said to be time invariant. Let us 
consider a signal x[n] and its delayed version x[n − n0] as 

T
x[n] ←→ y[n]	 (1.14) 

T
x[n − n0] ←→ y1[n].	 (1.15) 

If y1[n] =  y[n − n0], then the discrete-time system is said to be time 
invariant. 

3.	 Causality property: If the output of a system at any time instant 
depends only on the present and past values of the input (and past 
values of the output), then the system is said to be causal. Hence, the 
output at any time does not depend on future values of input and 
output. 

4.	 Stability property: We consider bounded-input bounded-output 
(BIBO) stability. When a bounded-input is applied to the system and 
if the output is bounded, then the system is said to be BIBO stable. 

|x[n]| ≤ Bx ∀n ≤ Bx < ∞ 

and    y[n] ≤ By ∀n, 0  ≤ By < ∞. (1.17) 

It should be noted that only a causal and stable system is physically 
realizable. 

, 0  (1.16) 

1.1.4 LTI Systems 

An important class of systems which obeys the linearity and time-invariance 
properties is called the linear time-invariant (LTI) system. An LTI system 
is uniquely represented by its impulse response h(t) or h[n] (in CT domain 
and in DT domain), which is the output of the system to an unit impulse 
signal. For an LTI system, the output of the system can be uniquely expressed 
as a convolution of the input with the impulse response of the system. The 
continuous-time convolution integral is defined as 

� ∞ 

y(t) = x(τ )h(t − τ)  dτ	 (1.18) 
−∞ 

and the discrete-time convolution sum is defined as 

∞ 
y[n] =  x[k]h[n − k].	 (1.19) 

k=−∞ 
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The above-defined convolution operations are called linear convolution 
operations and, in general, are represented in short-hand notations as 

y(t) = x(t) ∗ h(t) (1.20) 

y[n] =  x[n] ∗  h[n]. (1.21) 

This section has provided a brief overview of the signals and systems needed 
to understand the following chapters. In case the reader is interested in more 
details, refer to Refs. [1–4]. 

1.2 Continuous-Time Fourier Transform 

We can represent the output of an LTI system to an input signal in terms of the 
shifted orthogonal basis signals for the ease of mathematical calculations as 
well as for visualization. The continuous-time periodic signal can be simply 
characterized as a sum of harmonically related sine and cosine waveforms. 
This is popularly known as the Fourier series expansion of the signal, which 
involves the decomposition of the periodic signals into their frequency com­
ponents. To analytically represent an aperiodic signal in a similar manner, 
we need to make an assumption that an aperiodic signal is actually a periodic 
signal with infinite period. This type of time-domain to frequency-domain 
transformation is called the continuous-time Fourier transform (CTFT). There 
are few restrictions, known as the Dirichlet conditions, which a given signal 
should satisfy to be represented in the Fourier domain. These are stated as 
follows: it is sufficient that the signal be absolutely integrable (i.e., bounded 
signal) and it should have a finite number of maxima, minima and disconti­
nuities in finite time. This encompasses a wide variety of signals which can be 
decomposed into a superposition integral of exponentials of infinite duration. 
Complex exponential functions, ejk�0t, are common periodic signals that can 
be used as the orthogonal basis functions. The complex exponential formula 
for continuous-time Fourier series of a periodic signal, x̃(t) (with period T) is  
given by 

∞ 2πjk�0tx̃(t) = ake , �0 = (1.22)
T 

k=−∞ � T/2 

ak = 
1 

x̃(t)e−jk�0t dt, (1.23)
T −T/2 

where ak denotes the Fourier series coefficients, and �0 is the fundamental 
angular frequency in rad/s. This transform pair is quite a significant tool, 
as it states that even arbitrary discontinuous signals can be expressed in 
terms of simple smooth basis functions. Discontinuous parts of the signal 
are represented by the higher-order harmonics in the Fourier series. 
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This can analogously be extended to aperiodic signals by assuming that the 
period T is infinity. This generalization enables frequency-domain conversion 
of a much wider class of signals of interest. Increasing the T results in two 
effects: (i) the magnitude of the spectrum decreases by an order of 1/T, and 
(ii) the spacing between the line spectra decreases with respect to �0. Let 
X(j�) denote the CTFT of x(t). 

When T → ∞, X(j�) approaches a continuous magnitude spectrum (rather 
than a line spectrum in the case of periodic signals). Note that X(j�) is actually 
the envelope of Tak , which is defined as �∞ 

X(j�) = x(t)e−j�tdt	 (1.24) 
−∞ �∞ 

x(t) = 
1 

X(j�)ej�td�.	 (1.25)
2π −∞ 

Equations (1.24) and (1.25) together are known as the continuous-time Fourier 
transform (CTFT) pair. 

We can construct the FT of a periodic signal directly from its Fourier series 
representation. The resulting transform, given below, consists of a train of 
impulses in the frequency-domain. 

∞ 

X(j�) = 2πak δ(� − k�0).	 (1.26) 
k=−∞ 

1.2.1 Properties of the CTFT 

We now enlist some of the useful properties of the CTFT, which can simplify 
the solution of many problems. Let x(t) and y(t) be the time-domain signals 
and their CTFTs be X(j�) and Y(j�), respectively. The FT pair is expressed 

F

F← ←t( )as x
F→ X(j�) and y(t) → Y(j�). 

1.	 Linearity property: This results directly from the linearity property of 
integration. 

←→ aX(j�) + bY(j�).ax(t) + by(t) (1.27) 

F

Here, a and b represent arbitrary constants. This simply means that 
the FT of a linear combination of two arbitrary signals is the same as 
the linear combinations of the transforms of individual components. 
It can be easily extended to linear sum of any arbitrary number of 
signals. 

2.	 Time and frequency shifting property: The shift in time-domain by a 
duration t0 is given by 

←→ ex(t − t0) 
−j�t0 X(j�).	 (1.28) 



 � 

←→ X(j(� − �0)). 
Fj�0t (1.29)x(t)e

3. Conjugation and conjugate symmetry property: For a complex signal x(t): 

→ X∗ 

F

F←
This property directly follows from the evaluation of the complex 
conjugate of Equation (1.24). 

4.	 Differentiation and integration property: The CTFT of dx(t)/dt can be 
found by differentiating Equation 1.25 with respect to t. After differ­
entiation, we find that the higher frequency components of the signal 
become more pronounced. This property can be stated as follows: 

←→ j�X(j�). 

∗ (−j�).	 (1.30)x (t) 

dx(t) 
(1.31)

dt 

In a similar manner, integrating the time-domain signal results in the 
following: 

� t 

−∞ 

1 
X(j�) + πX(0)δ(�). (1.32) 

F

F←→ 

Integration attenuates the magnitude of the signal at higher fre­
quencies and thus acts like a low-pass filter. If X(0) is nonzero, the 
signal contains a DC component, which introduces an impulse in the 
frequency-domain. 

5. Time and frequency scaling property: For a scaling factor ‘a’, this property 
can be given as follows: 

←→ 

x(t) dt
j� 

1 j� 
X (1.33)x(at) . |a| a 

For instance, if a = −1 then 

x(−t) (1.34)
F←→ X(−j�). 

If the scaling factor has a magnitude greater than unity, then the signal 
is compressed in the time-domain, while its frequency spectrum gets 
expanded. For |a| < 1, exactly the converse happens, that is, the time-
domain signal is expanded and the spectrum is scaled down. 
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It shows that shifting the time-domain signal by an amount t0 results 
in a phase shift in the Fourier domain, while the magnitude response 
remains unchanged. We also note that the higher the frequency, the 
greater the phase shift it experiences. This is obvious from the fact 
that, in the same span of time, a higher frequency signal covers more 
number of cycles. Similarly, we can state the corresponding dual 
property of shifting in the frequency-domain as 



    

←→ 2πx(−j�). 
F

X(t) (1.35) 

the squared magnitude of its FT. 
�∞ � ∞ 

7. This gives the relation between the energy ( ) of  Parseval’s theorem: E
a signal in the time-domain and the frequency-domain. We can use 
this property to easily compute the energy of a signal by integrating 

2E | | dt dt( ) �x= = .
2π−∞ −∞ 

8. Convolution in the time-domain is equivalent Convolution property: 
to multiplication in the frequency-domain and vice versa. 

F

1 2
X(j�) (1.36) 

←→ X(j�)H(j�).x(t) ∗ h(t) (1.37) 

This property is vital especially in the analysis of linear time-invariant 
(LTI) systems. 

9.	 Modulation property: This is the dual of the convolution property 
stated above and can be given as follows: 

�∞1	 1 [X(j�) ∗ Y(j�)] =  X(jθ)Y(j(� − θ)) dθ .
2π	 2π −∞ 

F←→ 

Here, we must recall that multiplication of one signal by another 
amounts to modulation. The modulation property is extensively used 
in communications. 

x(t)y(t) 
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6.	 Duality property: This property reveals the effect when we interchange 
the roles of t and �. This helps in finding the CTFTs of some sig­
nals directly from a table of transforms. It simply states that every 
property of CTFT has a dual function, given as follows: 

1.2.2 Examples of CTFT 

1. Find the CTFT of a complex one-sided exponential signal given by: 
x(t) = e−atu(t), a > 0. 

The CTFT of this signal can be determined only if a > 0, since if 
a < 0, the signal fails to be absolutely integrable. Using the CTFT 
Equation (1.24), we obtain 

�∞ �∞ 
−at −atX(j�) = [e u(t)]e−j�tdt = e e−j�tdt 

∞ 0 �∞ 1 = e−(a+j�)tdt = , a > 0. 
0 a + j� 
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x(t) 

1 

(a) 

0 t 

X( jΩ ) 

Ω 

1/a 

0 

(b) 

π/2 

(c) 

−π/2 

Ω 

arg[X( jΩ)] 

FIGURE 1.4 
FT pair of e−atu(t). (a) Time-domain signal. (b) Frequency-domain magnitude plot. (c) Frequency-
domain phase plot. 

Figure 1.4 shows the signal x(t), the magnitude, and phase responses 
of the CTFT of e−atu(t). 

2. Determine the CTFT of a two-sided exponential signal given by: 
x(t) = e−a|t|, a > 0. � ∞ 

−a|t|X(j�) = e e−j�tdt 
−∞ � 0 �∞ 

at −at= e e−j�tdt + e e−j�tdt 
−∞ 0 � 0 � ∞ 

(a−j�)tdt + −(a+j�)tdt 
−∞ 0 

= e e

1 1 = + 
a − j� a + j� 

2a = . 
a2 + �2 



a|t|The signal x(t) and the magnitude response of the FT of e− are 
depicted in Figure 1.5. The phase is zero, since the signal is even 
symmetric in the time-domain. 

3. Find the Fourier transform of the sinusoidal signals: 
a. x(t) = cos(�0t) 

b. x(t) = sin(�0t) 

Note that signals such as sinusoids that exist for all time are not 
absolutely integrable. Absolute integrability is a sufficient condition 
for the existence of FT, but it is not a necessary condition. These 
difficulties can be solved by introducing Dirac delta function in the 
frequency-domain as detailed below. 
a. x(t) = cos(�0t) 

1 � ] 1 1j�0 t + e−j�0t j�0t + −j�0tx(t) = e = e e .
2 2 2 

On comparing the above equation with the expression of the 
Fourier series of a continuous-time periodic signal, we obtain the 
Fourier series coefficients of x(t) as 

a1 = a−1 = 0.5, for k = ±1 and ak = 0, for k = ±1. (1.38) 
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x(t) 

1 

(a) 

0 
t 

(b) X( jΩ ) 

Ω 

FIGURE 1.5 
FT pair of e−a|t|. (a) Time-domain. (b) Frequency-domain. 

2/a 

1/a 

–a 0 a 

�



 

 

  � 

Therefore, using Equation 1.26 

∞ 

X(j�) = 2π ak δ(� − k�0) 

k=−∞ 

= πδ(� − �0) + πδ(� + �0). 

The above CTFT result is depicted in Figure 1.6(a). 
b.	 x(t) = sin(�0t)
 

1 � ] 1 1
j�0t − e−j�0t j�0 t − −j�0tx(t) = e = e e .
2j 2j 2j 

From the above results, the Fourier series coefficients are 

1 1 
a1 = , a−1 = −  for k = ±1 and ak = 0, for k = ±1. (1.39)

2j 2j
 

Therefore,
 

∞ 

X(j�) = 2π ak δ(� − k�0) 

k=−∞ 

π π = δ(� − �0) − δ(� + �0). j j 

The CTFT of the sine signal is shown in Figure 1.6(b). 

4. Determine the CTFT of a rectangular signal given by 

⎧ τ ⎪ ⎪1, |t| ≤ ⎨ 2 
x(t) = ⎪ τ ⎪ ⎩0, |t| > .

2 

�∞ j�τ/2 − e−j�τ/2e
X(j�) = x(t)e−j�tdt = 

−∞ j� 

sin(�τ/2)	 �τ = 2 = τ sinc . 
�	 2π 

Here, we have used the fact that sinc(t) = sin(π t)/(π t). The time-
domain and frequency-domain plots are shown in Figure 1.7. 
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�



�

�   � 

5. Determine the CTFT of a shifted rectangular pulse signal 

x(t) = 

� 
1, 
0, 

0 ≤ t ≤ τ 

otherwise. 
�∞ τ e−j�τ/2 � ]

j�τ/2 − e−j�τ/2−j�tdt = −j�tdt =X(j�) = x(t)e 1.e e
−∞ 0 j� 

sin(�τ/2)−j�τ/2= 2e

= τ e−j�τ/2sinc 
�τ 

.
2π 
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(a) 

Ω 

π 

X ( jΩ ) 

–Ω 0 Ωo o 

π 
j 

π 
j 

Ω0 

(b) X( jΩ ) 

–Ω o Ω o 

– 

FIGURE 1.6 
CTFT of sinusoidal signals. (a) CTFT of cosine signal. (b) CTFT of sine signal. 

Here also, we have used the fact that sinc(t) = sin(π t)/(π t). By com­
paring the above result with the result of the previous example, it can 
be observed that there is only a phase shift involved in the FT. The 
same result can also be obtained by using the time-shifting property 
of the CTFT. 

http:x(t)e1.ee
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� 
6. Consider a signal whose CTFT is given by 

1, |�| ≤ W
X(j�) = 

0, |�| > W. 

Then, using the synthesis relation given in Equation (1.25), we can 
obtain the time-domain signal as 

�W 1 1 2 sin(Wt) 
x(t) = ej�td� = 

π π t 

[ ]
2 −W 2
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FIGURE 1.7 
FT of a rectangular pulse. (a) Time-domain. (b) Frequency-domain. 
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We can observe the duality of this result with that of Example 4. 
7.	 An application of differentiation property: Consider a signal x(t) 

displayed in Figure 1.8(a). 
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FIGURE 1.8 
Figure for Example 7. (a) Input x(t). (b) dx(t)/dt. 
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Differentiating the signal x(t), we get an impulse train given in 
Equation 1.40 below. When we take the derivative of x(t) which is 
a piecewise constant signal, the constant region goes to zero. The 
infinite slope that occurs during the transition is represented by a.δ(t), 
where a is the magnitude of transition. In this example, a = 1 for all 
the transitions. Therefore, 

dx(t) = [δ(t) − δ(t − 1) − δ(t − 3) + δ(t − 4)] . (1.40)
dt 

The impulse train is shown in Figure 1.8(b). Now taking the CTFT 
on either side of the above relation, and applying the differentiation 
property, we obtain 

� −j� − e−j3� + e−j4� 
] 

j�X(j�) = 1 − e

−j2� j2� − ej� − e−j� + e−j2�= e e

−j2� −j�= e ej2� + e−j2� − (ej� + e ) . 

Upon simplification, the FT of x(t) turns out to be 

[ ]
cos(2�) − cos(�)

X(j�) = 2e−j2� .
j� 

Thus, the differentiation property can be used to simplify computa­
tions. 

8. An application of duality property: Consider the following signal: 

2 
x(t) = . 

t2 + 1 

Using the result of Example 2 and recalling the duality property 
(Equation 1.35), we obtain (see Table 1.1) 

F 2a−a|t|e ←→ . 
a2 + �2 

Now with a = 1 and using the duality property, we get 

2 F −|�|←→ 2πe . 
t2 + 1 

In order to summarize the results of this section, Table 1.1 contains a 
list of some useful CTFT pairs. 



  � 

  � 
  � 

TABLE 1.1 

Basic CTFT Pairs 

Signal Fourier Transform �∞ �∞ 
k=−∞ akejk�0 t 2π k=−∞ ak δ(� − k�0) 

ej�0 t 2πδ(� − �0) 

cos(�0t) π [δ(� − �0) + δ(� + �0)] 
sin(�0t) π 

j [δ(� − �0) − δ(� + �0)] 

x(t) = 1 2πδ(�) 

δ(t) 1 
e−j�t0δ(t − t0) �∞ 2π �∞ 

n=−∞ δ(t − nT) k=−∞ δ(� − �0) ⎧ T 
τ ⎪ ⎨1, |t| ≤ 

�τ2 x(t) = τ sinc ⎪ τ 2π ⎩0, |t| > 
2 ⎧
 ⎨
1, 0 ≤ t ≤ τ �τ 

x(t) = τ e−j�τ/2sinc ⎩ 2π0, otherwise ⎧ ⎨W Wt 1, |�| ≤ W 
sinc X(j�) = 

π π ⎩0, |�| > W 
1 

u(t) + πδ(�) 
j� 

1 
e−atu(t) , Re{a} > 0 

a + j� 

1 
te−atu(t) , Re{a} > 0 

(a + j�)2
 

tn−1
 1 
e−atu(t) , Re{a} > 0 

(n − 1)! (a + j�)n 

2a 
e−a|t| , Re{a} > 0 

a2 + �2 ⎧ ⎪ ⎪−1, t < 0 ⎪ ⎨ 2 
x(t) = 0, t = 0 ⎪ j� ⎪ ⎪ ⎩1, t > 0
 

2
 
2πe−|�|

t2 + 1 
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1.3 Discrete-Time Fourier Transform 

The DTFT is the counterpart of CTFT for handling discrete-time signals. The 
basic concepts of FT are common to both the continuous- and discrete-time 
signals. In discrete time also, any periodic signal x̃[n] (with period N) can be 
represented in terms of its discrete Fourier series representation, given by the 



 
 

 

 

  

�

sum of complex exponentials, 

j 2π knNx̃[n] =  ake (1.41) 
k=<N> 

1 −j 2π knNak = x̃[n]e . (1.42)
N 

n=<N> 

Here, k = <N> denotes that k can take any N consecutive values. The terms 
in the series are harmonics of the fundamental frequency, 2π/N. For the 
discrete-time case, the Fourier series is always convergent, since it is only 
a finite summation. 

We now extend the frequency-domain representation to include more 
general aperiodic signals. Let us define a function X(ejω) as 

∞ 

jω −jωnX(e ) = x[n]e . (1.43) 
n=−∞ 

Comparing Equations 1.42 and 1.43, we can see that a� 
ks are the samples of 

X(ejω), spaced at ω0 = 2π/N in the frequency-domain as 

1 jkω0 ).ak = X(e (1.44) 
N 

As N → ∞, ω0 becomes infinitesimally small. This indicates that X(ejω) is 
sampled with spacing ω0 → 0. Thus, X(ejω) can be viewed as a continuous 
function. Similarly, the summation in Equation 1.41 is carried out over N 
consecutive intervals of width ω0 = 2π/N and the total interval of integration 
has a width of 2π . Hence, unlike the CTFT where � range is over the whole 
real axis, the DTFT requires only ω values in the interval [0, 2π ]. 

The DTFT can be derived by taking the CTFT of a sampled signal. The 
IDTFT and the DTFT expressions are given by 

1 π 

x[n] =  X(ejω)ejωndω . (1.45)
2π −π 

∞ 

jω −jωnX(e ) = x[n]e . (1.46) 
n=−∞ 

Equation 1.45 represents the inverse DTFT (IDTFT), also known as the syn­
thesis formula, while Equation 1.46 gives the DTFT, known as the analysis 
formula. The discrete-time periodic signals can be included within the frame­
work of DTFT by interpreting the transform of a periodic signal as an impulse 
train in the frequency-domain as 

∞  � 
X(ejω) = 2πak δ ω − 

2π
k − 2π l . (1.47)

N 
l=−∞ k=<N> 
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The DTFT of x[n] is said to exist only if Equation 1.46 converges in some sense. 
There are two types of convergence (also known as summability) which are 
defined as follows. 

• Absolute summability: If  x[n] is an absolute summable sequence, then 

∞ 

|x[n]| < ∞.	 (1.48) 
n=−∞ 

Absolute summability is a sufficient condition for the existence of the 
DTFT. 

•	 Square summability: Some sequences may not be absolutely 
summable, but they may be square summable, that is, 

� π 

lim X(ejω) − XM (ejω) 
2 

dω = 0, (1.49)
M→∞ −π 

wherein XM (ejω), we consider only a finite sequence of length M. Thus, 
the sequence is square summable if the mean square error between 
X(ejω) and XM (ejω) tends to zero as M → ∞. The DTFT of a sequence 
can exist under square summability condition as well. 

1.3.1 Properties of DTFT 

Many of the DTFT properties are exact parallels of the properties of 
continuous-time case, except for a few differences (which we shall indicate). 
The commonly used properties of DTFT are described in this section. Let x[n]
and y[n] be time-domain signals and their corresponding DTFTs be X(ejω) 

and Y(ejω), respectively. The DTFT pairs can be expressed as 

F

F

F←→ X(e ←→ Y(e

1.	 Periodicity property: Since the DTFT is periodic in ω with a period 2π , 
we can write 

j(ω+2π) jωX(e ) = X(e ) .	 (1.51) 

2.	 Linearity property: For any arbitrary constants a and b, the DTFT of 
the weighted sum of two sequences is 

←→ aX(e

jω jωx[n] and y[n] (1.50)) ). 

ax[n] +  by[n] jω) + bY(ejω) . (1.52) 
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3. Time shifting property: 

←→ e

However, note that both X(ejω) and e−jωn0 X(ejω) have the same mag­
nitude responses with only a phase shift introduced due to the 
time-shifting property. Therefore, delaying the time sequence has 
the effect of shifting the phase of its transformed version, while the 
magnitude response remains the same. 

4. Frequency shifting property: 

F −jωn0 X(ejω) . (1.53)x[n − n0]

F←→ X(e

5. When the sequence is flipped (i.e., mirror Time reversal property: [ ]x n

F

F

image over −n), then 

←→ X(e

←→ X∗ 

jω0n j(ω−ω0)) . (1.54)x[n]e

−jω) and (1.55)x[−n]
jω), only if x[n] is real. (1.56)x[−n] (e

6. Convolution property: The convolution of two sequences corresponds 
to multiplication of their corresponding DTFTs. 

F←→ X(e

We will now proceed to illustrate that the time-shifting property is a 
special case of the convolution property. According to Equation 1.46, 
the shifted impulse has the following frequency response: 

jω)Y(ejω). (1.57)x[n] ∗ y[n]

F

F

F

←→ e

For any arbitrary input signal x[n] and the impulse response h[n] of 
an LTI system defined as 

←→ H(e

←→ Y(e

−jωnd . (1.58)δ[n − nd]

jω −jωnd) = e , (1.59)h[n] = δ[n − nd]

then the output is 

y[n] = x[n] ∗ δ[n − nd] jω) = e−jωnd X(ejω) . (1.60) 
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7.	 Differentiation in the frequency-domain: Multiplication of x[n] by n 
results in 

F d 
nx[n] ←→ j X(ejω) .	 (1.61)

dω 

8.	 Windowing or modulation property: Let w[n] be a window sequence, 
while x[n] is the input. 

F jωIf w[n] ←→ W(e ) (1.62) 

and y[n] =  x[n].w[n] (1.63) � π1jω jθ j(ω−θ)then, Y(e ) = X(e )W(e )dθ . (1.64)
2π −π 

Equation 1.64 represents a periodic convolution, that is, convolution 
of two periodic functions with the limits of integration extending 
over one period (either −π to π or 0 to 2π ). The duality in the FT 
theorems is evident when we compare the convolution and modula­
tion theorems. In the continuous-time case, this duality is complete. 
We have stated that the convolution in the time-domain is equiv­
alent to multiplication in the frequency-domain (and vice versa) 
for continuous-time signals. However, in the discrete-time case, this 
gets slightly modified. In the discrete time, fundamental differences 
arise because the DTFT is a sum, whereas the inverse transform is 
an integral over a continuous-time period (−π to π ) or (0 to 2π ). 
The convolution of two sequences is equivalent to multiplication 
of the corresponding periodic FTs. Conversely, the multiplication of 
discrete-time sequences leads to the periodic convolution of their indi­
vidual DTFTs. This is an essential distinction between the properties 
of the CTFT and the DTFT. 

9.	 Parseval’s Theorem: This theorem essentially relates the energy (E) in  
the time- and the frequency-domains. For a sequence x[n], 

∞ 1 
�

2 
π 

E = |x[n]|2 = X(ejω) dω. (1.65)
2π −πn=−∞ 

The generalized Parseval’s relation for two signals x[n] and y[n] is 
given by 

∞ 1 
� π 

x[k]y ∗[k] =  X(ejω)Y∗ (ejω)dω. (1.66)
2π −πk=−∞ 



        

10.	 Symmetry properties: Some of the symmetry properties of the DTFT 
are presented below: 

(e

(e

←→ Xe

F

F

F←→ Xo

←→ XR(e

←→ X∗ 

←→ X∗ 

x[n] + x ∗[n]
2 

F

F

∗[n] −jω).	 (1.67)x 

∗[−n] jω).	 (1.68)x 

jω = 
X(ejω) + X∗ (e−jω)

Real part: Re{x[n]} = (e ) .
2 

(1.69) 

x[n] − x ∗[n]
2 

jω = 
X(ejω) − X∗ (e−jω)

Imaginary part: jIm{x[n]} = (e ) .
2 

(1.70) 

x[n] + x ∗[−n]
2 

jω = 
X(ejω) + X∗ (ejω)

Even part: xe[n] =  ) .
2 
(1.71) 

x[n] − x ∗[−n]
2 

jω = 
X(ejω) − X∗ (ejω)F←→ jXI (e

When x[n] is real, its DTFT exhibits the following characteristics: 

jω −jωX(e ) = X∗ (e ).	 (1.73) 
jω −jω	 jω −jωReal part: XR(e ) = XR(e ), Imaginary part: XI (e ) = −XI (e ). 

(1.74) 
jω −jω	 jω −jωMagnitude: X(e ) = X(e ) , Phase: �X(e ) = −�X(e ). 

(1.75) 

Odd part: xo[n] =  ) .
2 
(1.72) 
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1.3.2 Examples of DTFT 

1. Find the DTFT of the signal x[n] = cos(ω0n).
 
The given signal can be expanded as
 

1 1 
x[n] =  ejω0n + e−jω0n .

2 2 

Comparing the above equation with the Fourier series expansion in 
Equation (1.22), we observe that a1 = 2

1 and a−1 = 2
1 . Thus, the DTFT 

of x[n] can be written as a sum of weighted and shifted impulse trains 
as follows: 

∞ 

X(ejω) = π [δ(ω − ω0 + 2π l) + δ(ω + ω0 + 2π l)]. 
l=−∞ 



 

  

 

� 

� ] 

� 

2. Find the DTFT of the signal x[n] =  sin(ω0n). 
Now x[n] can be expanded as 

1 1 
x[n] =  ejω0n − e−jω0n .

2j 2j 

We obtain the Fourier series coefficients as a1 = 1/2j and a−1 = −1/2j. 
Thus, the DTFT of x[n] can be written as 

∞ 
π

X(ejω) = [δ(ω − ω0 + 2π l) − δ(ω + ω0 + 2π l)] . 
j

l=−∞ 

3. Determine the DTFT of a rectangular pulse signal defined as 

1, |n| ≤ N1 x[n] =  . 
0, |n| > N1 

∞ N1 

jω −jωn −jωnX(e ) = x[n]e = e . 
n=−∞ n=−N1 

Let m = (n + N1) then, we can write n = (m − N1) and substitute as 

2N1 1 − e−jω(2N1+1) 

jω −jωm jωN1 jωN1X(e ) = e e = e
1 − e−jω 

m=0 

jω(N1+ 1 −jω(N1+ 12 )e 2 ) − e= 
ejω/2 − e−jω/2 

sin(ω(2N1 + 1)/2) = .
sin(ω/2) 

The time function x[n] and the DTFT are shown in Figure 1.9. 
4. Find the DTFT of a shifted rectangular pulse signal defined as 

1, 0 ≤ n ≤ 2N1 x[n] =  
0, otherwise. 
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We can write, 

2N1 

jω −jωnX(e ) = e
n=0 

−jω(2N1)= 1 + e−jω + · · · + e
−jω(2N1 +1)1 − e= 

1 − e−jω 

sin(ω(2N1 + 1)/2)−j(ωN1)= e .
sin(ω/2) 
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FIGURE 1.9 
Rectangular pulse and its DTFT for N1 = 3. (a) Input x(n). (b) DTFT X(ejω). 

Here, (2N1 + 1) is the length of the sequence and N1 is the symmetry 
point. The closed-form expression is obtained by using the geometric 
summation formula. We could also obtain the same result by apply­
ing the time-shifting property of the DTFT to the signal considered 
in Example 3. 
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5. Determine the DTFT of a triangular pulse signal 

⎧ ⎪n + 1, 0 ≤ n ≤ N1 − 1 ⎨ 
x[n] =  2N1 − 1 − n, N1 ≤ n ≤ 2N1 − 1 ⎪ ⎩0, otherwise. 

A sample triangular pulse signal for N1 = 6 is shown in Figure 1.10. 
We can simplify the calculations by expressing this sequence as the 
self-convolution of a rectangular pulse with itself, given as follows: 

1, 0 ≤ n ≤ N1 − 1 
x1[n] =  

0, otherwise 
jω jω jωand x[n] = x1[n] ∗ x1[n] ⇔ X(e ) = X1(e )X1(e ). (1.76) 

Applying the result considered in Example 4 (shifted rectangular 
pulses), we obtain 

sin(ωN1/2)jω −jω(N1−1)/2X1(e ) = e . (1.77)
sin(ω/2) 

Using the result from Equation 1.77 and substituting into Equa­
tion 1.76, we can obtain X(ejω) as 

[ ]2sin(ωN1/2)jω −jω(N1−1)X(e ) = e .
sin(ω/2) 

0 

1 

2 

3 

4 

5 

6x(n) 

0 1 2 3 4 5 6 7 8 9 10 
Samples (n) 

FIGURE 1.10 
Figure for Example 5. 
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6. Consider the signal x[n] =  anu[n], |a| < 1. Its DTFT is given by 

∞ ∞ 

jω n −jωn −jω)nX(e ) = a u[n]e = (ae
n=−∞ n=0 

1 = .
1 − ae−jω 

7. Consider the signal x[n] =  a|n|, |a| < 1. The DTFT of this signal is 
evaluated as follows: 

∞ 

jω |n| −jωnX(e ) = a e
n=−∞ 

−1 ∞ 

−n −jωn + n −jωn= a e a e
n=−∞ n=0 

∞ ∞ 

n jωn + n −jωn= a e a e
n=1 n=0 

1 1 = − 1 +
1 − aejω 1 − ae−jω 

(1 − a2) =	 .
1 − 2a cos(ω) + a2 

8.	 An application of differentiation property: Find the DTFT of the 
signal 

y[n] =  (n + 1)anu[n], |a| < 1. 

Let x[n] =  anu[n], then y[n] can be written in terms of x[n] as 

y[n] =  nx[n] +  x[n]. 

We know from Example 6 that X(ejω) = 1/(1 − ae−jω). Then, from 
the differentiation property given in Equation 1.61, we can obtain 
Y(ejω) as 

F d jω ae−jω 

nx[n] ←→ j X(e ) = 
dω (1 − ae−jω)2 

−jωae 1
Y(ejω) = + 

(1 − ae−jω)2 (1 − ae−jω) 

1 = . 
(1 − ae−jω)2 
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9. Compute the DTFT of a finite-length exponential sequence (with 
|a| < 1). 

an, 0  ≤ n ≤ N − 1 
x[n] =  

0, otherwise. 

We can rewrite x[n] as the difference of two unit step functions as 
follows: 

x[n] = anu[n] − anu[n − N] 
n N n−N= a u[n] − a a u[n − N] . 

Now computing the DTFT for |a| < 1 and applying the result of 
Example 6, as well as the time-shifting property, we get 

1 aNe−jωN 

X(ejω) = −
1 − ae−jω 1 − ae−jω 

e−jωN1 − aN 

= .
1 − ae−jω 

10. Compute the impulse response of an ideal discrete-time differentiator 
whose frequency response is given by 

Hd(ejω) = jω, |ω| ≤ π . 

Now using the synthesis equation (IDTFT), we get 

1	 π 

hd[n] =  jωejωndω
2π −π [ ]π ejωn ejωnj= ω −
2π jn (jn)2 

−π [	 ]
ejπn ejπn e−jπn e−jπnj= π + + π −

2π jn n2 jn n2 

cos(πn) sin(πn) = − 
n πn2 ⎧ 

(−1)n ⎨ , n �= 0 
hd[n] =  n . ⎩ 0, n = 0 

which is the impulse response of an ideal differentiator. 
11. Compute the impulse response of	 an ideal Hilbert transformer 

defined by 
jω j, −π ≤ ω ≤ 0

H(e ) =	 . −j, 0  ≤ ω ≤ π 



[   �] 

[   �] 

Using the IDTFT equation 

� π1
h[n] =  H(ejω)ejωndω

2π −π 

� 0 � π
 

= 
1 

jejωndω − 
1 

jejωndω

2π −π 2π 0 

[ ]0 [ ]π1 jejωn 1 jejωn 

= −
2π jn −π 

2π jn 0 [ ]
1 2 2 cos(πn) = −

2π n n 

1 − cos(πn) = . 
πn ⎧ 2 ⎨ , n = odd 

h[n] =  nπ . ⎩ 
0, n = even 

which gives the impulse response of an ideal Hilbert transformer. 
12. Determine the DTFT of the following sequence. (Note: This repre­

sents Hann window which will be discussed later.) 

2πn 
wH [n] = 0.5 1 − cos , 0 ≤ n ≤ N − 1. (1.78)

N − 1 

This sequence can be represented as 

2πn 
wH [n] = 0.5 1 − cos wR[n],

N − 1

where the rectangular window is wR[n] = 1, is defined in the range 
0 ≤ n ≤ N − 1. The DTFT of the rectangular window can be obtained 
from Example 4 as 

sin(ωN/2)jω −jω(N−1)/2WR(e ) = e .
sin(ω/2) 
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Now applying the frequency-shifting property of the DTFT to 
WR(eiω), we can compute the DTFT of Equation 1.78 as 

( ) ( ) ( )
jω jω j(ω− N

2
−
π 

1 )WH e = 0.5WR e − 0.25WR e( ) 
j(ω+ 2π 

N−1 )− 0.25WR e

( )	 N ω − 2πsin
j(ω− 2π −j(ω− N

2
−
π 

1 )
(N−1) 2 N−1where, WR e N−1 ) = e 2 � ( )]

1	 ω − 2πsin 2 N−1 �
N 

( )] 
ω − 2π 

(N−1) sin−jω jπ 2 N−12= e e � ( )]
1	 ω − 2πsin 2 N−1 �

N 
( )] ( )	 ω − 2π 

(N−1) sin
j(ω− 2π −jω 2 N−1WR e N−1 ) = −e 2 � ( )] .1	 ω − 2πsin 2 N−1 ( ) �

N 
(
ω + 2π 

)]
(N−1) sin

j(ω+ N
2
−
π 

1 ) −jω 2 2 N−1Similarly, WR e = −e � ( )] . 
sin 1 ω + 2π 

2 N−1 

On adding the above terms, and applying the linearity property, we 
obtain the final expression for the DTFT of a Hann window as 

N ω − 2πsin(ωN/2) sin
jω −jω(N−1)/2	 2 N−1WH (e ) = 0.5e	 − 0.5 � ( )]

sin(ω/2) sin 1 ω − 2π 

2 N−1 �
N 

( )]  
sin ω + 2π 

2 N−1+	 � ( )] . 
sin 2

1 ω + N
2
−
π 

1 

13. Determine the DTFT of the following sequence, which represents 
Hanning window, 

2πn 
wH [n] = 0.54 − 0.46 cos , 0  ≤ n ≤ N − 1 .  

N − 1 

Using the results of Example 12, we can directly write the DTFT of 
the sequence as 

N ω − 2πsin(ωN/2) sin
jω −jω(N−1)/2	 2 N−1WH (e ) = e 0.54 − 0.23 � ( )]

sin(ω/2) sin 1 ω − 2π 

2 N−1 

sin N ω + 2π 

2 N−1+ � ( )] .1	 ω + 2πsin 2 N−1 

This expression is different from Example 12 only in terms of the 
coefficients. 
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TABLE 1.2 

Basic DTFT Pairs 

Signal Fourier Transform 

k=�N� akejkω0 n 

ejω0 n 

cos(ω0n) 

sin(ω0n) 

x[n] =  1 

δ[n] 
δ[n − n0 ] �∞ 

k=−∞ δ[n − kN] ⎧
 ⎨
1, |n| ≤ N1 
x[n] =  ⎩0, |n| > N1 ⎧
 ⎨
1, 0 ≤ n ≤ N1 − 1 
x[n] =  ⎩0, otherwise 

W Wn
sinc 

π π 

u[n] 

anu[n], |a| < 1 

a|n| , |a| < 1 

(n + 1)anu[n], |a| < 1 ⎧ 
(−1)n ⎪ ⎨ , n = 0 

nhd [n] =  ⎪ ⎩0, n = 0 ⎧ 2 ⎨ , n = odd 
h[n] =  nπ ⎩0, n = even 

�∞ � 
2π ak δ (ω − ω0k − 2π l)l=−∞ k=<N> 

2π 
�∞ 

l=−∞ δ(ω − ω0 − 2π l)
 �∞

π [δ(ω − ω0 + 2π l) + δ(ω + ω0 + 2π l)]l=−∞
π �∞ 

l=−∞ [δ(ω − ω0 + 2π l) − δ(ω + ω0 + 2π l)]
j �∞2π l=−∞ δ(ω − 2π l) 

1 
−jωn0e

2π �∞ 
k=−∞ δ(ω − kω0)N 

sin ω N1 + 2
1 

sin (ω/2) 

sin(ωN1/2)(N1 −1) 

e−jω 2 

sin(ω/2) ⎧
 ⎨
1, |ω| ≤ W 
X(ejω) = ⎩0, W < |ω| ≤ π
 

1 �∞
+ π l=−∞ δ(ω − 2π l)
1 − e−jω 

1 
1 − ae−jω 

1 − a2 

1 − 2a cos(ω) + a2 

1 
(1 − ae−jω)2 

Hd (ejω) = jω, |ω| ≤  π 

⎧
 ⎨
j, −π ≤ ω ≤ 0 
H(ejω) = ⎩−j, 0  ≤ ω ≤ π 

The FTs of the commonly used signals are presented in Table 1.2. 
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1.4 Z-transform 

As we have discussed in the previous sections, the transform-domain analysis 
of a signal is important in any signal processing application. In this section, we 
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introduce another transform-domain, which is a complex frequency-domain, 
called the z-plane. The transformation of a signal into the z-plane is called 
z-transform. The z-transform is a more generalized transformation when 
compared to the DTFT and is applicable to broader classes of signals. The 
z-transform of a signal x[n] is defined as 

∞ 

X(z) = x[n]z−n , (1.79) 
n=−∞ 

where z = rejω. Another advantage of z-transform is that it allows us to bring in 
the power of complex variable theory on problems of discrete-time signals. 
The primary roles of the z-transform in engineering practice are the study 
of system characteristics and the derivation of computational structures for 
implementing discrete-time systems on computers. 

Figure 1.11 shows the z-plane which extends from −∞ < |z| < ∞. The circle 
shown in the z-plane is called the unit circle, where |z| =  1. On this circle, 
z = ejω, hence the z-transform evaluated on the unit circle converges to the FT 
of the signal. Equation 1.79 is a power series, hence the power series converges 
under the criterion 

∞ 

x[n]r−n < ∞. (1.80) 
n=−∞ 

The region in the z-plane where Equation 1.80 converges or z-transform con­
verges is called the region of convergence (ROC). Owing to the multiplication 
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of the sequence by the real exponential r−n, it is possible for the z-transform 
to converge even if the corresponding DTFT does not. The FT can be consid­
ered as a special case of z-transform and it exists only if the ROC contains the 
unit circle. The z-transform is always specified with a ROC. Consider a signal 
anu[n] whose z-transform is given by 

∞ 

X(z) = (az−1)n 

n=0 

= 1 + az−1 + (az−1)2 + (az−1)3 + · · ·  

1 = , |z| > |a|. (1.81)
1 − az−1 

Now consider another signal −anu(−n − 1), the z-transform of which is 
given by 

−1 

X(z) = − (az−1)n 

n=−∞ 

−1 −1 −1z)3= −a z − (a z)2 − (a . . .  

1 = , |z| < |a|. (1.82)
1 − az−1 

By comparing the z-transforms in the above two examples, we can see that the 
expressions are the same and the only difference is in their ROCs. Hence, ROC 
is required to uniquely represent the z-transform of a signal. The convergence 
of Equation 1.79 is dependent only on |z|, since 

∞ 

|X(z)| < ∞, if  |x[n]| z−n < ∞. (1.83) 
n=−∞ 

Hence, the ROC of the z-transform consists of all the values of z in the complex 
plane where the inequality in Equation 1.83 is satisfied. As a consequence of 
this, the ROC will be an annular region of the entire complex z-plane given by 

Rx− < |z| < Rx+. (1.84) 

The lower limit Rx− may be zero and Rx+ could possibly be ∞. 
The inverse z-transform of X(z) can be obtained by the expression 

1 
x[n] =  X(z)zn−1dz, (1.85)

2π j c 
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TABLE 1.3 

Basic z-Transform Pairs 

Signal z-Transform ROC 

δ[n]
 
u[n]
 

−u[−n − 1]
 
δ[n − m]
 
anu[n]
 

−anu[−n − 1]
 

nanu[n]
 

−nanu[−n − 1]
 

cos(ω0n)u[n]
 

sin(ω0n)u[n]
 

rn cos(ω0n)u[n]
 

rn sin(ω0n)u[n]
 

an, 0  ≤ n ≤ N − 1
 

1 
1 

1 − z−1 

1 
1 − z−1 

z−m 

1 
1 − az−1
 

1
 
1 − az−1
 

az−1
 

(1 − az−1)2
 

az−1
 

(1 − az−1)2
 

1 − cos(ω0)z−1
 

1 − 2 cos(ω0)z−1 + z−2
 

sin(ω0)z−1
 

1 − 2 cos(ω0)z−1 + z−2
 

1 − r cos(ω0)z−1 

1 − 2r cos(ω0 )z−1 + r2z−2 

r sin(ω0)z−1 

1 − 2r cos(ω0 )z−1 + r2z−2 

1 − aNz−N 

1 − az−1 

Entire z-plane 

|z| > 1 

|z| < 1 

All z, except at z = 0 or  z = ∞  

|z| > |a| 

|z| < |a| 

|z| > |a| 

|z| < |a| 

|z| > 1 

|z| > 1 

|z| > |r| 

|z| > |r| 

Entire z-plane 

where the symbol c denotes a contour integral in the z-plane over a counter­
clockwise arbitrary closed path in the region of convergence and enclosing 
the origin z = 0. In practice, we will not evaluate this integral directly, since 
that would require the knowledge of complex-function theory. Instead, we 
will evaluate the inverse z-transform by inspection using the one-to-one rela­
tionship between x[n] and X(z). To facilitate this, the z-transform of some 
standard sequences are tabulated in Table 1.3. 

A class of z-transform called the rational transforms—which are very 
important in signal processing applications—can be represented in the form 

P(z)
X(z) = , (1.86)

Q(z) 

where P(z) and Q(z) are polynomials in z. These systems can be represented 
by linear constant coefficient difference equations (LCCDEs). The roots of the 
denominator polynomial Q(z) are called poles and the roots of the numerator 
polynomial P(z) are called zeros. In this class of systems, the properties of 
the system can be completely interpreted in terms of the position of the poles 
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TABLE 1.4 

z-Transform Properties 

Signal	 z-Transform ROC 

ax1[n] +  bx2[n] aX1(z) + bX2 (z) Rx1 ∩ Rx2 

x[n − n0]	 z−n0 X(z) Rx except at z = 0 or  z = ∞  
z 

zn 
0 x[n] X |z0|Rx
 z0
 

dX(z) 
nx[n]	 −z Rxdz
 
x ∗[n] X∗ (z ∗ ) Rx
 

1 1 Re{x[n]} = [x[n] +  x ∗[n]] [X(z) + X∗ (z ∗ )] Contains Rx2 2
 
1 1
 Im{x[n]} = [x[n] −  x ∗[n]] [X(z) − X∗ (z ∗ )] Contains Rx2j 2j 

1 1 
x[−n]	 X 

z Rx 

x1[n] ∗  x2[n]	 X1(z)X2(z) Rx1 ∩ Rx2 
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and zeroes in the z-plane. These concepts are extensively used in different 
domains of signal processing. In the chapter dealing with filter design which 
we will come across in more detail. 

The properties of the z-transform closely follow those of the DTFT. In addi­
tion, we also need to specify the ROC of the resulting signal. Let x1[n] and x2[n]
be two arbitrary signals with the z-transforms X1(z) and X2(z), respectively, 
and let their ROCs be Rx1 and Rx2 , respectively. Let a and b be two arbitrary 
constants. The properties of the z-transform are tabulated in Table 1.4. 

The other two properties are: 

•	 Initial-value theorem: For a causal signal x[n], it turns out that 

x[0] =  lim X(z).	 (1.87) 
z→∞ 

•	 Parseval’s theorem: This relates the power or energy of x[n] to that of 
its z-transform. 

∞ 1 
�

1|x[n]|2 = X(z)X∗ z−1dz. (1.88)
2π j c z ∗ 

n=−∞ 

1.4.1 Examples of z-Transform 

1. Consider a signal that is the sum of two real exponentials: 

 	 �n  �n1 1 
x[n] =  u[n] +  u[n] (1.89)

2 3 



 
  
  

        

 �  �

The z-transform is given by 

∞   �n  �  
1 1 n 

−nX(z) = u[n] +  u[n] z
2 3 

n=−∞
∞  � ∞  �

1 n 1 n 
−n= u[n]z−n + u[n]z

2 3 
n=−∞ n=−∞ 

∞ n ∞ n1 1−1 −1= z + z
2 3 

n=0 n=0 

1 1 = + 
1 − 1 z−1 1 − 1 z−1 

2 3 

2 − 5 z−1 

= ( ) (6 )
1 − 1 z−1 1 − 1 z−1

2 3 ( )
2z z − 5 

= ( ) ( 12 ) . (1.90) 
z − 1 z − 1 

2 3 

For the convergence of X(z), both sums must converge. This requires 
1 −1 1 −1 1 1that z < 1 and z < 1, which implies |z| > and |z| > ,2 3 2 3 

respectively. Thus, from the properties of z-transform, the ROC is the 
region of overlap of both terms. Hence, the ROC of X(z) is given by 

1 |z| > . (1.91)
2 

2. Let us consider another signal 

 �  n1 n 1 
�

x[n] = −  u[−n − 1] +  u[n]. (1.92)
2 3 

The z-transform can also be obtained in a more straightforward man­
ner as given below: Note that the first sequence grows exponentially 
as n → −∞. From Table 1.3, it follows that 

 �n1 z 1 1 
u[n] ← ,→ |z| >

3 1 − 1
3 z

−1 3  �n1 z 1 1 − u[−n − 1] → , |z| <← .
2 1 − 1 z−1 2

2 
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N−1 

X[k] =  
n=0 

x[n]e−j 2π 
N kn , k = 0, 1, . . . , N − 1. (1.93) 

The inverse DFT (IDFT) can also be defined in a similar way as 

x[n] =  
1 
N 

N−1 

k=0 

X[k]ej 2π 
N kn , n = 0, 1, . . . , N − 1. (1.94) 

Notice that Equations 1.93 and 1.94 have similar forms, except for a scale 
factor and different signs of the exponential terms. 

Relation between DTFT and DFT: DTFT of a sequence of length N defined 
over the range [0, N − 1] can be obtained from DFT using the relation 
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By the linearity property of the z-transform,
 

1 1 1 1

X(z) = + , |z| > , |z| < . 

1 − 1
3 z

−1 1 − 1
2 z

−1 3 2 

2 − 5 z−1 

= ( ) (6 ) . 
1 − 1 z−1 1 − 1 z−1

2 3 

In this case, the ROC is the annular region 1 < |z| < 1 . Note that the 3 2 
ROC does not contain the unit circle; hence its FT does not exist (as 
it is not absolutely summable). 

1.5 Discrete Fourier Transform 

In one of the preceding sections, we have discussed the definition and prop­
erties of the DTFT, where ω is a continuous variable. It is apparent that it is 
not possible to implement the FT pair for DTFT given in Equations 1.45 and 
1.46 on general purpose digital computers or digital signal processors (DSPs). 
We see that Equation 1.45 has an integral sign, while Equation 1.46 requires 
infinitely several computations. Owing to these two difficulties, we define 
a new transform known as the discrete Fourier transform (DFT), which is 
amenable to digital implementation. 

The DFT is defined for N samples of x[n] at N equally spaced frequencies ωk . 
Given the sequence x[n] for all n, its DTFT was defined in Equation 1.46. We 
now consider a periodic signal with period N and compute only N samples 
of X(ejω) for ω = kω0, for k = 0, 1, 2, ..., N − 1, with ω0 = 2π/N. Then, we can 
define DFT as 
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N− 11 j 2N 
π knx[ n] =  X[ k] e

N 
k= 0 

N− 1 �
1 2πk

X(ejω) = X[ k] φ ω − , (1.95)
N N 

k= 0 

sin(ωN/2)− jω(N− 1)/2where φ(ω) = e .
sin(ω/2) 

Proof: 

1 N− 1 
j 2π knNx[ n] =  X[ k] e

N 
k= 0 

N− 1 N− 1 N− 11jω − jωn j 2N 
π kn − jωnX(e ) = x[ n] e = X[ k] e e

N 
n= 0 n= 0 k= 0 

N− 1 N− 11 − j(ω− 2N 
π k)n= X[ k] e

N 
k= 0 n= 0 

− j(ω− 2π k)NN1 N− 1 1 − e= X[ k] − j(ω− 2π k)NN
k= 0 1 − e

N− 1 2π N1 sin ω − k− j(ω− 2π k)( N− 1 ) N 2N 2= X[ k] e �( ) ]
N 2π 1sin ω − N k 2k= 0 

1 N− 1 2πk = X[ k] φ ω − , (1.96)
N N 

k= 0 

sin(ωN/2)− jω(N− 1)/2where, φ(ω) = e .
sin(ω/2) 

Equation 1.96 is called the DFT interpolation formula and φ(ω) is known as 
the interpolation function. 
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1.5.1 Properties of the DFT 

The DFT of two finite duration sequences of length N, x[ n] and y[ n] , is  
represented as 

DFT DFT
x[ n] ←−−→ X[ k] and y[ n] ←−−→ Y[ k] . (1.97) 

Let a and b be any two arbitrary constants. 
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1.	 Linearity property: If two finite-length sequences x1[n] and x2[n] are 
linearly combined as 

x3[n] = ax1[n] + bx2[n],	 (1.98) 

then the DFT of the resultant X3[k] (i.e., the DFT of x3[n]) can be 
written as 

X3[k] = aX1[k] + bX2[k].	 (1.99) 

If the individual sequences x1[n] and x2[n] are not of equal lengths, 
but are of lengths N1 and N2, respectively, then the length of x3[n]
will have to be N3 = max(N1, N2). It makes sense only if the DFTs are 
computed with the same lengths, that is, N ≥ N3. If  N2 > N1, then 
X1[k] is the DFT of the sequence x1[n] padded with (N2 − N1) zeros. 
Therefore, we have to pad that sequence which is smaller in length 
with zeros, such that the lengths of the individual sequences are made 
equal. 

2.	 Circular shifting property: When x[n] is shifted by m, 

DFT −j 2π 
Nx[(n − m)N ] ←−−→ e kmX[k]. (1.100) 

We note that n and k must be in the range 0 ≤ n < N − 1, 0 ≤ k < 

N − 1. Here, (n − m)N denotes modulo N. This type of shift is known 
as circular shift. 

3.	 Duality property: 

DFT
X[n] ←−−→ Nx[(−k)N ], 0  ≤ k ≤ N − 1. (1.101) 

4.	 Conjugation property: 

DFT
x ∗[n] ←−−→ X∗[(−k)N ]. (1.102) 

5.	 Time reversal property: Here, we consider flipping the sequence with 
modulo N. 

DFT
x[(−n)N ] ←−−→ X[−k], 0 ≤ n ≤ N − 1. (1.103) 

6. Symmetry properties: If the even and odd parts of a signal x[n] are 

1 
xe[n] =  [x[n] + x ∗[(−n)N ] (1.104)

2 
1 

xo[n] =  [x[n] − x ∗[(−n)N ], (1.105)
2 
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then, the following relations hold: 

DFT 1 Re{x[n]} ←−−→ Xe[k] =  [X[(k)N ] +  X∗[(−k)N ]. (1.106)
2 

DFT 1
jIm{x[n]} ←−−→ Xo[k] =  [X[(k)N ] −  X∗[(−k)N ]. (1.107)

2 
DFT

xe[n] ←−−→ Re{X[k]}.	 (1.108) 

DFT
xo[n] ←−−→ jIm{X[k]}.	 (1.109) 

When x[n] is a real sequence, then 

X[k] =  X∗[(−k)N ]	 (1.110) 

Re{X[k]} = Re{X[(−k)N ]} and Im{X[k]} = −Im{X[(−k)N ]}. 
(1.111) 

|X[k]| = |X[(−k)N ]| and �{X[k]} = −�{X[(−k)N ]}. (1.112) 

7.	 Circular convolution property: If x1[n] and x2[n] are N length sequences 
and 

DFT	 DFT
x1[n] ←−−→ X1[k] and x2[n] ←−−→ X2[k], (1.113) 

then their circular convolution (denoted by ∗�) can be expressed as 

x3[n] =  x1[n] ∗	 (1.114)� x2[n] 
N−1 

= x1[(m)N ]x2[(n − m)N ]	 (1.115) 
m=0 

= x1[n] ∗ ←DFT→ X3[k] =  X1[k]X2[k]. (1.116)� x2[n] −−

8.	 Multiplication of two sequences: This is the converse of the previous 
property, which can be stated as follows: 

DFT 1 N−1 

x1[n]x2[n] ←−−→ X1[l]X2[(k − l)N ]. (1.117)
N 

l=0 

9.	 Linear convolution using circular convolution: Let x1[n] be a sequence of 
length L and x2[n] be a sequence of length P, then the length of the 
resultant linearly convolved sequence will be N1 = L + P − 1. The 
linear convolution expression is given by 

N−1 

x3[n] =  x1[m]x2[n − m]. (1.118) 
m=0 



 

Their circular convolution expression was already given in Equa­
tion 1.115. In the DTFT domain, the linear convolution can be 
represented in terms of the multiplication of the individual DTFTs of 
x1(n) and x2(n) as follows: 

jω jω jωX3(e ) = X1(e )X2(e ). (1.119) 

Therefore, we can define the DFT as 

j 2π k j 2π k j 2π kN N NX3[k] = X3(e ) = X1(e )X2(e ) = X1[k]X2[k], 0  ≤ k ≤ N − 1 
(1.120) 

where X1[k] and X2[k] are N-point DFTs of x1[n] and x2[n], respec­
tively. Now upon reconstruction of x3[n], we get the following 
periodic sequence: 

⎧ ∞
 ⎪
 ⎨ x3[n − rN], 0  ≤ n ≤ N − 1 
x3p [n] =  (1.121)r=−∞ ⎪ ⎩0, otherwise. 

Hence, the circular convolution that corresponds to X1[k]X2[k] is 
identical to the linear convolution corresponding to X1(ejω)X2(ejω), 
if N, the lengths of X1[k]X2[k], satisfies the condition N ≥ 
N1. Otherwise, there will be aliasing in x3p [n]. If both the 
sequences are padded with zeros, such that the total length 
of each sequence becomes (N1 = L + P − 1), then the circu­
lar convolution would be equivalent to the linear convolution. 
We require linear convolution in digital signal processing and, 
therefore, circular convolution can be used to compute linear 
convolution. 
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1.5.2 Examples of DFT 

1. Compute the N-point DFT of a rectangular pulse, 

x[n] = 1, 0 ≤ n ≤ 4. (1.122) 

The period of x[n] is not mentioned and, therefore, we consider the 
following two cases. 



  

  

� 

Case 1: Period N = 5 

N−1 4 
−j 2N 

π nk −j 2π nk5X[k] =  x[n]e = e
n=0 n=0 

1 − e−j2πk 

= (1.123)
1 − e−j 2π k5 

5, k = 0 = (1.124)
0, otherwise 

= {5, 0, 0, 0, 0} (1.125) 

Case 2: Now let the period be N = 10. Then, 

N−1 4 
−j 2N 

π nk −j 210 
π nkX[k] =  x[n]e = e (1.126) 

n=0 n=0 

1 − e−jπk 

= . (1.127)
1 − e−j 210 

π k 

The time-domain sequences of cases 1 and 2 are given in Figure 1.12 
and their corresponding DFTs are given in Figure 1.13. 

For comparing the DFTs of both the sequences, we can consider 
the interpretation of the DFT as the periodic sampling of the DTFT. 
The DTFT of x[n] is given by 

sin(5ω/2)jω −j2ωX(e ) = e . (1.128)
sin(ω/2) 

For N = 5, X(ejω) is sampled at five equidistant points around the unit 
circle; if N is doubled (N = 10), it is sampled at 10 equidistant points 
around the unit circle. Hence, the second case can be considered as 
x[n] padded with five zeros, so as to make N = 10. From this result, 
we can conclude that the effect of zero padding of x[n] does not 
improve the resolution, but only gives a better picture of the DFT 
spectrum. 

Case 3: Now consider another sequence 

x1[n] = {1, 0, 1, 0, 1, 0, 1, 0, 1, 0}. (1.129) 

Find the DFT for N = 10. 
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The transform is defined as 

9 9 
−j 2π 

10X1[k] =  x1[n]e nk = x1[n]WN
nk , (1.130) 

n=0 n=0 

−j( 2π

where the twiddle factor WN = e 10 ). On expanding, we obtain 

X1[k] = 1.W0k 
10 + 1.W2k 

10 + 1.W4k 
10 + 1.W6k 

10 + 0.W1k 
10 + 0.W3k 

10 + 0.W5k 
10 

+ 0.W7k 
10 + 0.W9k 

10 + 1.W8k 
10 . (1.131) 

Hence, the alternate terms become zero. By substituting the values 
of k, we obtain the complete DFT sequence as 

X1[k] = {5, 0, 0, 0, 0, 5, 0, 0, 0, 0}. (1.132) 

Note that the given signal x1[n] is actually a zero-interpolated version 
of x[n]. It is interesting to note that X1[k] is a repetition of X[k] (in case 
1), that is, X1[k] = {X[k], X[k]}. 
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0 

1 

(a) x[n] 

n 
0 1 2 3 4 

(b) x[n] 

1 

0
0 1 2 3 4 5 6 7 8 9 n 

FIGURE 1.12 
Two time-domain sequences. (a) Case 1: N = 5. (b) Case 2: N = 10. 
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� 
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FIGURE 1.13 
N-point DFT of a rectangular pulse. (a) Case 1: N = 5. (b) Case 2: N = 10. 

2. The DFT of x[n] is X[k] = {1, 2, 3, 4, 5}. Find the DFT of the zero-
interpolated signal g[n], as defined in Equation 1.134: 
Given that 

DFT
x[n] ←−−→ {1, 2, 3, 4, 5}, (1.133) 

let g[n] be defined as 

x[n/2], if  n multiple of 2 
g[n] =  (1.134)

0, otherwise 

We can deduce from the previous example that 

DFT
g(n) ←−−→ {1, 2, 3, 4, 5, 1, 2, 3, 4, 5}. (1.135) 

In other words, the N-fold zero-interpolation of x[n] yields a corre­
sponding replication in the DFT domain. 



 

 

    

  

� 
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0 

5 

k 

|X[k]| 

0 1 2 3 4 5 6 7 8 9 

FIGURE 1.14 
DFT of a periodic cosine sequence with length N = 10, r = 2. 

3. The DFT of a periodic cosine sequence with period N defined as 

2π 
x[n] = cos rn , 0  ≤ n ≤ N − 1 (1.136)

N 
N−1 

can be given by, X[k] =  x[n]Wkn, 0  ≤ k ≤ N − 1 (1.137)N 
n=0 

where WN = e−j(2π/N) represents the twiddle factor.
 
x[n] can be expanded in terms of the exponentials as
 

rn + Wrnx[n] =  
1 � 

W− ]	 
(1.138)

2 N N 

N−1 N−11 rnWkn WrnWknX[k] =  W− +	 (1.139)N N N N2 
n=0 n=0 

N−1 N−11 1
W(k−r)n W(k+r)n = N + N . (1.140)

2 2 
n=0 n=0 

Then, from the orthogonality property of the DFT, we obtain 

⎧ ⎪ N , if  k = r ⎨ 2 

X[k] =  N , if  k = N − r . (1.141)
2 ⎪ ⎩0, otherwise 

The plot of X[k] is shown in Figure 1.14. 
4. Illustration of the comparison between linear and circular	 con­

volution. 
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Figure 1.15 shows two signals x[n] and h[n] of length 3 each. The 
linear convolution can be performed as follows: 

∞ 

y[n] =  x[k]h[n − k]. (1.142) 
k=−∞ 

The linear convolution can be performed just like ordinary multipli­
cation as illustrated in Table 1.5 [5].
 
Find the linear and circular convolutions of two sequences x[n] = 

{1, 2, 3} and h[n] = {1, 2, 3}.
 

(a)
 
3
 

1 

2

A
m

pl
itu

de
 

00 1 2 
Samples (n) 

(b) 
3 
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2

A
m

pl
itu

de
 

00 1 2 
Samples (n) 

FIGURE 1.15 
Inputs. (a) Input x(n). (b) Impulse response h(n). 

TABLE 1.5 

Linear Convolution 

1 2 3 
* 1 2 3 

3 6 9 
2 4 6 

1 2  3  

1  4  10  12  9  
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The result of the linear convolution is shown in Figure 1.16(a) and 
the sequence is 

x[n] = {1, 4, 10, 12, 9}. 

The circular convolution of the two sequences is given in Figure 
1.16(b). The circular convolution can be computed by the two 
concentric circle approach as illustrated in Figure 1.17. 
(a) First, overlay the sequence x[n] on an outer circle in an anticlock­

wise direction and then overlay the sequence h[n] in an inner 
circle in a clockwise direction as illustrated in Figure 1.17(a). 
Perform point-by-point multiplication and add to give: 

y�[0] = 1 + 6 + 6 = 13. (1.143) 

(b) Then, rotate the inner circle in an anticlockwise direction by one 
sample and then again do the point-by-point multiplication as 

(a) 14 

12 

2 

0 1 2 3 4 
Samples (n) 

A
m
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de
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0 

(b) 
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0 
0 1 

Samples (n) 

FIGURE 1.16 
Linear and circular convolutions of x[n] and h[n]. (a) Linear convolution. (b) Circular convolution. 
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11 
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3 

2(a) 

12 
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3 

3 

2(b) 

13 

2 

1 

3 

2(c) 

FIGURE 1.17 
Circular convolution of x[n] and h[n]. (a) Stage 1. (b) Stage 2. (c) Stage 3. 

shown in Figure 1.17(b), which will give us: 

y�[1] = 2 + 2 + 9 = 13. (1.144) 

(c) Then, once again, rotate the inner circle (anticlockwise), multiply 
and add the result as shown in Figure 1.17(c) to get: 

y�[2] = 3 + 4 + 3 = 10. (1.145) 

Therefore, the circular convolution of x[n] and h[n] gives the 
following result: 

y�[n] = x[n] � h[n] = {13, 13, 10}. (1.146) 

Upon comparing y[n] and y�[n], we can see that not only the 
numerical values of the convolution are different but also the 
length of the sequences are not as same as the linear convolution. 
Suppose, we augment the two sequences with zeros, such that the 
length of each sequence is (N1 + N2 − 1), that is, in this example 
(3 + 3 − 1 = 5), then each sequence can be thought as extended 



 
0 1 N1–1 N1 + N2 – 2 n 

Input x (n)e

0 

1 

xe(n) 
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sequences, xe[n] and he[n], as follows: 

xe[n] = {1, 2, 3, 0, 0} (1.147) 

he[n] = {1, 2, 3, 0, 0}. (1.148) 

If we now perform the circular convolution operation using the 
two concentric circle approach discussed above, we obtain the 
following result: 

y[n] = {1, 4, 10, 12, 9}, (1.149) 

which is the same as linear convolution. The fact that circular 
convolution equals linear convolution is extremely important in 
many signal processing applications. The linear convolution of 
a sequence x[n] having N1 (i.e., 0 to (N1 − 1)) samples with a 
sequence of N2 samples will result in a sequence of (N1 + N2 − 1) 
samples in length. Thus, the linear convolution will have all of 
its nonzero values in the interval 0 ≤ n ≤ (N1 + N2 − 2) points. 

We can conclude from the above example that if a sequence of 
length N1 is followed by (N2 − 1) zero-valued sequence, then the 
resulting sequence which has (N1 + N2 − 1) points can be circu­
larly convolved with another sequence of length N2, augmented by 
(N1 − 1) zeros. The result thus obtained will be the same if we perform 
linear convolution. Linear convolution can be obtained via circular 
convolution, provided a proper choice is made for the number of 
points (in circular convolution). Therefore, both the sequences should 
be padded with zeros such that the total length of each sequence 
(xe[n] and he[n]) becomes (N1 + N2 − 1) samples. If N1 = N2 = N, then 
the total length of the sequence is (2N − 1). We can compute the linear 
convolution of x[n] and h[n] via DFT as follows: 

y[n] = xe[n] � he[n] = IDFT [Xe[k].He[k]] = DFT−1 [Xe[k].He[k]] , 
(1.150) 



(2N – 1) point 

DFT 

X (k)
DFT ex [n]e (2N – 1) point 

(2N – 1) point IDFT 
y[n] =  x[n]*h[n] 

h [n]e H (k)e

where Xe[k] and He[k] are the DFTs of xe[n] and he[n], respectively. 
Equation 1.150 can be represented in terms of a block schematic as 
given in Figure 1.18. The output y[n] will be the linear convolution 
of x[n] and h[n]. The procedure discussed above is attractive since 
there is an algorithm called the fast Fourier transform (FFT) which 
can compute the DFT much faster and it is efficient, especially if the 
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h (n)e

1 

0 
N2–1 nN1 + N2 –20 1 

Input h (n)e

FIGURE 1.18 
Linear convolution via DFT and IDFT. 

TABLE 1.6 

Summary of Properties of DFT 

Finite-Length Sequence (Length N) N-Point DFT (Length N) 

x[N + n] = x[n] X[k + N] = X[k] 
ax1[n] + bx2 [n] aX1 [k] + bX2[k] 

e−j 2π kmX[k]Nx[(n − m)N ]
X[n] Nx[(−k)N ] 
x ∗[n] X∗[(−k)N ] 
x[(−n)N ] X[−k] 
x1[n] ∗ X1[k]X2[k]�x2[n] 
x1[n]x2[n] 1 �N−1 X1[l]X2[(k − l)N ]N l=0 
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TABLE 1.7 

Summary of Symmetry Properties of DFT 

Finite-Length Sequence (Length N)	 N-Point DFT (Length N) 

Re{x[n]}	 1 [X[(k)N ] + X∗[(−k)N ]2 

jIm{x[n]}	 1 [X[(k)N ] − X∗[(−k)N ]2 

xe [n] =  1 [x[n] + x ∗[(−n)N ]	 Re{X[k]}2 

xo[n] =  1 [x[n] − x ∗[(−n)N ]	 jIm{X[k]}2 

When x[n] is real	 X[k] = X∗[(−k)N ] 
Re{X[k]} = Re{X[(−k)N ]}
Im{X[k]} = −Im{X[(−k)N ]}
|X[k]| = |X(−k)N |
�{X[k]} = −�{X[(−k)N ]} 

sequence length is large. The FFT algorithm is discussed in the next 
section. 

The properties of DFT are summarized and presented in Tables 1.6 and 1.7. 

1.6 Fast Fourier Transform 

So far, we have seen how to compute the DFT of a signal. Now we will 
introduce an efficient tool for the computation of the DFT termed as FFT. 
This can be done by exploiting the periodicity and symmetry properties of 
the twiddle factors Wkn

N , which are given as follows: 

1.	 Wk(N−n) 

N = W−kn (Wkn
N N ) 

∗ , complex conjugate property
 
2. Wkn	 = Wk(n

=
+N) (k+N)n


N	 N = WN , periodicity in n and k

There are several algorithms available for the efficient computation of the DFT 
and these have come to be known as fast Fourier transform (FFT) algorithms. 
All these algorithms are based on the fundamental principle of decomposing 
the computation of the DFT of a sequence of length N into successively smaller 
DFTs (known as the “divide and conquer” approach). 

In this section, we will discuss in detail two such popular algorithms: 

1. Decimation-in-time FFT algorithm 
2. Decimation-in-frequency FFT algorithm 

1.6.1 Decimation-in-Time FFT (DIT-FFT) 

The decimation-in-time FFT (DIT-FFT) algorithm is based on decomposing 
the time sequence x[n] into successively smaller sub-sequences and hence its 



 

  

  

  

  

name. Here, we consider only a radix-2 FFT algorithm, where N is a power 
of 2. We now explain the process of DIT-FFT in detail. The DFT of x[n] is 

N−1 

X[k] =  x[n]WN
nk , k = 0, 1, . . . , N − 1. (1.151) 

n=0 

We can separate x[n] into even- and odd-numbered samples as 

X[k] = x[n]Wnk + x[n]WN
nk . (1.152)N 

n=even n=odd 

On substituting the variables n = 2r for n-even and n = 2r + 1 for n-odd, we 
obtain 

N N−1 −12 2 

X[k] =  x[2r]W2rk + x[2r + 1]W(2r+1)k (1.153)N N 

r=0 r=0 

N N−1 −12 2 

= x[2r](WN 
2 )rk + Wk x[2r + 1](WN 

2 )rk . (1.154)N 
r=0 r=0 

N )
kn = WknBut, we can prove that (W2 . By substituting this result into Equa-N 

2 

tion 1.154, we get 

N N−1 −12 2 

X[k] =  x[2r]Wrk x[2r + 1]Wrk (1.155)N + Wk 
NN2 2 

r=0 r=0 

= Xe[k] + WN
k Xo[k], k = 0, 1, . . . , N − 1 (1.156) 
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where Xe[k] and Xo[k] are N/2-point DFTs of the even-numbered and the odd-
numbered samples of x[n], respectively. This procedure of decomposing the 
sequence into smaller sequences can be continued, since the new N/2-point 
DFT blocks generated are again periodic in k with period N/2. Hence, these 
blocks can be further divided into two N/4-point DFT blocks (by decomposing 
again into even and odd parts). We proceed in this way till the blocks are 
reduced to two input blocks. 

We will now consider an example for a sequence of length N = 4, which is 
shown in Figure 1.19. Let us apply the DIT-FFT algorithm by decomposing 
the inputs of Figure 1.19 into two N/2-point DFT computations of even- and 
odd-numbered samples, as shown in Figure 1.20. 

For a generalized case, we can draw the elementary computation, called 
a butterfly, as shown in Figure 1.21(a). From the symmetry and periodicity 
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properties of WN
r , we can deduce that 

2 2Wr+ N = Wr W 
N = −Wr (1.157)N N N N . 

In particular, the number of complex multiplications has been reduced by 
half when compared to the number presented in Figure 1.21(a). With this 
observation, the butterfly computation of Figure 1.21(a) can be simplified to 
a form shown in Figure 1.21(b), which requires only one complex multipli­
cation instead of two (see Equation 1.157). The basic signal flow graph of 
Figure 1.21(b) is an efficient replacement for the butterflies of the form of 
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FIGURE 1.19 
Example of a 4-point DFT. 

FIGURE 1.20 
Decomposition of a 4-point FFT into two 2-point FFT blocks. (a) Block diagram. (b) Butterfly 
structure. 
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FIGURE 1.21 
Butterfly structures. (a) Butterfly structure. (b) Efficient butterfly structure. 
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FIGURE 1.22 
Complete butterfly diagram for a 4-point FFT. 

Figure 1.21(a). We can obtain the signal flow graph of Figure 1.22 from Fig­
ure 1.20(b) and 1.21(b). Now using this, we complete the butterfly diagram 
for a 4-point DFT as shown in Figure 1.22. 

1.6.1.1 Computational Savings 

Let us now examine the computational savings provided by the FFT tech­
nique. In the case of an N-point DFT as given by Equation 1.93, the 



 

 

Xm–1[p] X [p]m 

Xm–1[q] X [q]m 
r –1WN 
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computation of each term requires the sum of N products. Hence, for the 
computation of N-point DFT, we require N2 complex multiplications and 
N(N − 1) complex additions. 

In the case of N-point FFT, there are r = log2 N stages. Each stage requires 
N/2 complex multiplications by twiddle factors and N complex additions. 
Hence, the total number of complex multiplications is of the order of 
(N/2 log2 N) and the total number of complex additions is of the order of 
(N log2 N). 

1.6.1.2 In-Place Computation 

In the case of DFT computations using FFT, the complex coefficients are stored 
in memory and read out for multiplication when required. Similarly, the 
intermediate stage results also need to be stored for the computation of the 
output of the next stage. An intermediate stage is shown in Figure 1.23. 

Xm[p] = Xm−1[p] + WN
r Xm−1[q] (1.158) 

Xm[q] = Xm−1[p] − WN
r Xm−1[q] (1.159) 

However, the intermediate results Xm−1[p] and Xm−1[q] are used only for the 
computation of the next stage Xm[p] and Xm[q], and they are never used later. 
Hence, instead of using new memory locations for Xm[p] and Xm[q], we can 
keep these results in place of Xm−1[p] and Xm−1[q], and thus the memory can 
be saved. This is called in-place computation. 

1.6.2 Decimation-in-Frequency FFT (DIF-FFT) 

In the previous subsection, for the case of DIT-FFT algorithm, we have divided 
the input sequence x[n] into smaller sequences. Now in the case of decimation­
in-frequency (DIF-FFT) algorithm, we decompose the output sequence X[k]
into smaller subsequences in an analogous manner and hence its name. 

FIGURE 1.23 
rth Stage butterfly. 



 

 

 

Here, we consider computing the even- and odd-numbered frequency 
samples separately as follows: 

N −1 [ [ ]]2 N 
Wrn N 

X[2r] =  x[n] + x n + , r = 0, 1, . . . , − 1 (1.160)
22 
N 

2 
n=0 

N 
2 −1 [ [ ]]

N 
W(2r+1)nX[2r + 1] =  x[n] − x n + 

2 N 

n=0 

N −1 [ [ ]]2 N 
Wrn N 

Wn= x[n] − x n + N , r = 0, 1, . . . , − 1. 
2 

n=0 
2 N 2 

(1.161) 

Hence, we can decompose the output sequence as shown in Figure 1.24 for 
a 4-point case. Now we can proceed on similar lines by dividing the output 
sequence into progressively smaller blocks (just as was done in the case of 
DIT-FFT for the input sequence, x[n]). The elementary butterfly structure for 
DIF-FFT is presented in Figure 1.25. 

The concept of in-place computation can be used in the DIF-FFT as well, 
since 

Xm[p] = Xm−1[p] + Xm−1[q] (1.162) 

Xm[q] = [Xm−1[p] − Xm−1[q]]WN
r . (1.163) 

The complete butterfly diagram for a 4-point DIF-FFT is given in Figure 1.26. 
Now on comparing the 4-point butterfly structures for DIT-FFT and DIF-FFT, 
we can observe that in DIT-FFT, the inputs were given in the bit-reversed 
order; whereas for the latter, the outputs appear in the bit-reversed order. 
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FIGURE 1.24 
4-point FFT using DIF-FFT. 
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1.6.3 Inverse DFT from FFT 

The expression for the DFT and the inverse DFT (IDFT) are reproduced below 
(as discussed in Section 1.5): 

N−1 

X[k] =  x[n]WN
kn , k = 0, 1, . . . , N − 1 (1.164) 

n=0 

1 N−1 

x[n] =  X[k]W−kn , n = 0, 1, . . . , N − 1 (1.165)
N N 

k=0 

where WN = e−j(2π/N) is called the twiddle factor. 
We note that in both Equations 1.164 and 1.165, the expressions differ only 

in the sign of the power of WN and the presence of a scale factor 1/N in the 
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FIGURE 1.25 
mth Stage butterfly of DIF-FFT. 
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FIGURE 1.26 
Flow graph of a 4-point DIF-FFT. 

We can also observe that DIT-FFT and DIF-FFT flowgraphs are transposes of 
each other (see Figures 1.22 and 1.26). 
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FIGURE 1.27 
Block diagram for inverse DFT using FFT. (a) Inverse DFT. (b) Simplified inverse DFT. 

IDFT expression. Thus, it is possible to compute the inverse DFT using the 
forward FFT technique with some modifications of the input and output. 

From Equation 1.165, we can write 

1 N−1 

x ∗[n] =  X∗[k]WN
kn , n = 0, 1, . . . , N − 1 (1.166)

N 
k=0 

N−1 

X∗Nx∗[n] =  [k]Wkn (1.167)N 
k=0 

= DFT{X∗[k]}. (1.168) 

Therefore, we can recover x[n] as follows: 

1 
x[n] =  [DFT{X∗[k]}]∗ , n = 0, 1, . . . , N − 1. (1.169)

N 

The basic block diagrams are given in Figure 1.27. 

1.6.4 Linear Convolution Using DIT-FFT and DIF-FFT 

Since FFT computes the DFT faster, we can use the FFT algorithm to compute 
the linear convolution. It has been shown earlier that the input to the DIT-FFT 
is in bit-reversed order, while the output is in natural order. However, in the 
case of DIF-FFT, it is just the reverse, that is, the input will be in natural order 
while the output will be in bit-reversed order. We can use these two algo­
rithms to compute the linear convolution very efficiently as detailed below. 

Since the DIF-FFT takes the input in natural order and gives the output in 
bit-reversed order, this scheme can be used to compute the forward DFTs 
of the two sequences. Since the outputs Xe[k] and He[k] are in bit-reversed 
order, we use DIT-IFFT to compute the inverse DFT after the point-by-point 
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DIF-FFT 

DIF-FFT 
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He[k] 

Xe[k] 

DIT-IFFT 

FIGURE 1.28 
Linear convolution via. DIF-FFT and DIT-IFFT. 

multiplication. This is illustrated in Figure 1.28. Therefore, if we use the above 
scheme, we need not do any bit reversal in computing the linear convolution 
via the FFT approach. Here, xe[n] and he[n] represent the extended sequences, 
since we will have to pad the original sequences x[n] and h[n] with appro­
priate number of zeros, in order to obtain linear convolution from circular 
convolution. 

In this chapter, we have considered different Fourier analysis methods, their 
properties and applications. We have considered the digital implementation 
of Fourier transform in detail. 
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2 
Pitfalls in the Computation of DFT 

In this chapter, we turn our attention to the issues in spectral estimation and 
FIR filter design. Quite often, the DFT is used as an approximation to the 
CTFT. However, we should be aware of the fact that there are several pit­
falls associated with this approximation. The discrepancies between the DFT 
and the CTFT arise because DFT requires sampling and truncation. Improper 
sampling gives rise to “aliasing errors.” Aliasing refers to the distortion of the 
signal spectrum due to the introduction of spurious low-frequency compo­
nents owing to a combination of a very low sampling rate and an improper 
anti-aliasing filter. Section 2.1 briefly describes sampling, reconstruction, and 
the associated distortion called aliasing. 

The other two types of pitfalls arise due to the truncation of the data while 
applying the DFT. These distortions are called (i) frequency leakage (or just 
leakage) and (ii) picket-fence effect (or scalloping loss). These are discussed 
in detail in Sections 2.2 and 2.4, respectively. However, before we discuss 
the picket-fence effect, we will introduce the representation of the DFT as a 
bank of bandpass filters, in Section 2.3. DFT resolution, zero-padding, and 
frequency-domain sampling are discussed in Section 2.5. 

2.1 Sampling, Reconstruction, and Aliasing 

The concepts of sampling, reconstruction, and aliasing can be demonstrated 
by means of a familiar example. While capturing motion pictures, the cam­
era converts the dynamic scene into a sequence of frames. These frames 
are usually taken at regular time intervals of 24 frames/second. The frame 
rate has been chosen by taking into account the persistence of vision of the 
human eye. Sampling essentially selects a set of finite data points as a repre­
sentation of the continuous-time signal at the corresponding time duration. 
Movie frames thus take samples of the scene information during each sec­
ond. When it is played, our eyes and brain fill the missing data between 
the frames and thus provide the illusion of a continuously varying video. 
This operation of filling the breaks between the sampled data points is called 
reconstruction. 
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In general terms, reconstruction converts a sampled sequence back into 
a continuous-time signal. It generates an infinite amount of data from the 
samples. In the motion picture example, the reconstructed signal is a hal­
lucination of our brain. What are the problems associated with sampling? 
Naturally, one cannot expect the reconstructed signal to be an exact copy 
of the original. Sampling often yields a type of distortion that is called as 
aliasing. Let us explain this distortion by an example. Imagine the scene of 
a clockwise rotating wheel. As long as its speed of rotation is less than half 
the number of frames/second, we perceive it correctly. However, when the 
speed increases beyond this value, the wheel actually appears to rotate anti-
clockwise, that too at a reduced speed! Its apparent speed is now the number 
of frames/second minus its real speed. Another observation we can make is 
that, when the speed is exactly equal to the number of frames/second, the 
wheel is seemingly stationary. This occurs because the wheel is now sam­
pled at an identical position. Now, if the speed is increased further, the wheel 
apparently rotates clockwise again, but at a reduced speed. To generalize, the 
wheel always appears to rotate at a speed not higher than half the number of 
frames/second (in either direction). 

Sampling is the basis of DSP and, hence, a thorough understanding of sam­
pling is necessary for practical applications. Minimizing the phenomenon of 
aliasing is one of the vital problems. Engineering applications often provide 
the continuous-time signal in the form of a voltage wave, and sampling is 
carried out using electronic circuitry. Reconstruction is also performed in 
a similar manner. Further, the distortion of the sequence is caused by the 
physical limitations of electronic circuitry. 

History of sampling theorem: The sampling theorem is usually attributed 
to Shannon who introduced it in the field of information theory in 1949 
[1]. However, a Russian scientist named Kotelnikov had found it inde­
pendently around the same time. The credit for first discovering the 
theorem and its importance should be given to E.T. Whittaker who pub­
lished a remarkable paper [2] on the sampling theorem in 1915, wherein 
he also discloses a formula for reconstructing the waveform from its 
samples. This laid the foundation for modern digital signal process­
ing. We thereby refer to sampling as the Whittaker Kotelnikov Shan­
non or WKS sampling theorem, using the first letters of all three sur­
names. 

There are several ways to sample an analog or a continuous-time signal, 
xc(t). We will consider the most general method called periodic or uniform 
sampling. This is described by the following relationship: 

xc(t)|t=nTs = xc(nTs) = x[n], (2.1) 

where x[n] represents the uniformly sampled discrete-time signal obtained 
after sampling a continuous-time signal xc(t) and Ts represents the sampling 
period or sampling time in seconds. Here, Fs = T

1 
s 

is called the sampling 



 � 
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rate (in samples per second) or the sampling frequency, expressed in Hertz 
(Hz). Therefore, the uniform sampling establishes a relationship between 
the time variables t and n of the continuous-time and discrete-time signals, 
respectively, as follows: 

n 
t = nTs = . (2.2)

Fs 

In view of Equation 2.2, there exists a linear relationship between the 
continuous-time frequency variable Fs (or �s = 2πFs, where the unit of �s 

is radians/second) in Hertz and the discrete-time frequency variable f (or ω, 
where the unit of ω is radians/sample) is dimensionless. This relation can be 
established by considering a continuous-time signal given by 

xc(t) = sin(�t + θ) = sin(2πFt + θ). (2.3) 

If xc(t) is sampled uniformly at a rate of Fs = 1 samples/second, we obtain Ts 

xc(t)|t=nTs = xc(nTs) ≡ x[n] 
= sin(�t + θ)|t=nTs = sin(2πFnTs + θ) 

2πnF = sin + θ . (2.4)
Fs 

A discrete-time sinusoidal signal can be represented as 

x[n] = sin[ωn + θ ] = sin[2π fn + θ ], (2.5) 

where n is an integer variable called the sample number, θ is the phase in 
radians, and ω is the frequency in radians/sample (or if we use f , then in 
cycles/sample). 

Now, if we compare Equations 2.4 and 2.5, we note that the frequency 
variables F and f are related by 

F
f = , (2.6)

Fs 

or, equivalently, � and ω are related by the following: 

ω = �Ts. (2.7) 

Therefore, the relationship given in Equation 2.6 justifies the name relative 
or normalized frequency, which is sometimes used to describe the frequency 
variable f . As implied by Equation 2.6, we can use f to determine the frequency 
F (in hertz) only if the sampling frequency Fs is known. 



Now, let us consider a continuous-time signal: 

xc(t) = sin(2πFot), −∞ < t < ∞. 

If this signal is sampled at a rate of Fs (or 1 ) samples/second, the resulting Ts 

discrete-time sequence, x[n] can be represented as in Figure 2.1. Now, if we 
are asked to reconstruct the signal from these samples, we may end up with 
many possibilities. Two of such representations are given in Figure 2.2. In this 
figure, the frequencies of the two sinusoids are (Fo + Fs) and Fo. These two 
sinusoids share the same samples since, by expansion, we obtain 

sin[2π(Fo + Fs)nTs] =  sin[2πFonTs + 2πFsnTs] 
= sin[2πFonTs + 2πn] 
= sin[2πFonTs]. 

In fact, any sinusoid with frequency (Fo + lFs), where l is an integer, fits exactly 
into these sampled values. Thus, an infinite number of continuous-time 
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FIGURE 2.2 
Possible signal reconstructions. 
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FIGURE 2.1 
Sampled data. 
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sinusoids can be obtained from the same set of discrete-time signal samples. 
Equivalently, we can say that the frequencies Fk = (Fo + lFs), −∞ < l < ∞, 
are indistinguishable from the frequency Fo after sampling and hence they 
are the aliases of Fo. Hence, sampling a continuous-time signal introduces a 
distortion called aliasing. This uncertainty arises because the sinusoid with 
frequency (Fo + Fs) does not have enough number of samples per period. 
Therefore, to uniquely reconstruct the signal the sampling frequency should 
be selected such that the sinusoid with maximum frequency (denoted as Fmax) 
has at least two samples per period. In other words, if the sampling period 
Ts < T

2 
o , where To is the time period of the signal, then we must choose the sam­

pling frequency Fs > 2Fmax. This ensures that we can reconstruct the original 
signal without aliasing. 

2.1.1 WKS Sampling Theorem 

Further insight can be gained by representing Equation 2.1 as a two-stage 
process, as depicted in Figure 2.3 [3]. The first stage is the modulation process, 
where the continuous-time signal xc(t) is multiplied with the impulse train 
s(t) given by 

∞ 

s(t) = δ(t − nT). (2.8) 
n=−∞ 

The output of the modulator (or multiplier) is 

xs(t) = xc(t)s(t) 
∞ 

= xc(t) δ(t − nT). (2.9) 
n=−∞ 

The conversion from impulse train xs(t) to discrete-time sequence x[n] is given 
in Figure 2.3 only to make the process complete [3]. In practice, the entire 
system is replaced with an analog-to-digital converter (ADC). Since xs(t) is 
the product of xc(t) and s(t), the Fourier transform of xs(t) is the convolu­
tion of their Fourier transforms, Xc(j�) and S(j�), respectively. The Fourier 

s(t) 

xs(t) 

Conversion from 
impulse train to

discrete-time 
sequence 

x[n] = xc(nT )xc(t) 

FIGURE 2.3 
C/D converter. 
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transform of s(t) is again an impulse train given by 

2π 
∞ 

S(j�) = δ(� − k�s). (2.10)
T 

k=−∞ 

where �s is the sampling frequency.
 
Therefore, using Equations 2.9 and 2.10, we get
 

1
Xs(j�) = Xc(j�) ∗ S(j�)

2π 

1 2π 
∞ 

= Xc(j�) ∗ δ(� − k�s)2π T 
k=−∞ 

1 ∞ 

= Xc(j(� − k�s)). (2.11)
T 

k=−∞ 

We note that Equation 2.11 gives the mathematical relationship between the 
Fourier transform of a continuous-time signal xc(t) and the Fourier trans­
form of the sampled signal xs(t). If we assume that Xc(j�) is a lowpass signal 
band-limited to �N rad/sec, then Xs(j�) contains the replicas of Xc(j�) placed 
at integer multiples of the sampling frequency �s. The entire operation is 
illustrated in Figure 2.4, where Xc(j�), S(j�), and Xs(j�) are shown in Fig­
ures 2.4(a), (b), and (c), respectively. From Figure 2.4(c), we can observe that 
the replicas of Xc(j�) are placed at . . .  , −2�s, −�s, 0,  �s, 2�s, . . .. These repli­
cas do not overlap if (�s − �N ) > �N or equivalently, (�s > 2�N ). In such a 
case, the continuous-time signal can be exactly reconstructed without any 
loss of information using an ideal lowpass filter, as depicted in Figure 2.5. 
The cutoff frequency of such a lowpass filter (�c) should be carefully selected 
such that 

�N < �c < (�s − �N ). (2.12) 

On the other hand, if the sampling frequency is selected such that �s < 2�N , 
then the replicas of Xc(j�) overlap as shown in Figure 2.4(d), thereby pro­
ducing a distortion called aliasing. Here, the high-frequency components 
get folded into the lower frequencies of other replicas. In this case, the 
continuous-time signal cannot be reconstructed completely. To avoid this, 
we should ensure that xc(t) is band-limited and is sampled with a frequency 
�s > 2�N . Here, �N is called the Nyquist frequency, while 2�N is referred to 
as the Nyquist rate. The above discussion leads us to the Nyquist–Shannon 
sampling theorem that is stated as follows. 

Nyquist–Shannon Sampling Theorem 

If Xc(j�), the CTFT of xc(t), is band-limited, that is, Xc(j�) = 0 for |�| > �N , 
then xc(t) can be exactly reconstructed from its samples x[n] =  xc(nT), n = 
0, ±1, ±2, . . .  , if we choose �s = 2

T 
π > 2�N . 



 
 

Relationship between the Input and Output of C/D Converter 

To obtain the relation between Xs(j�), Xc(j�), and X(ej�T ) (which is the DTFT 
of x[n]), we start by taking the CTFT of xs(t) as follows [3]. From the earlier 
discussion, we can write 

� ∞ ∞ 

Xs(j�) = xc(t) δ(t − nT)e−j�tdt 
t=−∞ n=−∞ 

� ∞ ∞ 

= xc(t)e−j�tδ(t − nT)dt. (2.13) 
t=−∞ n=−∞ 
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FIGURE 2.4 
(a) FT of xc(t), (b) FT of the impulse train, and (c) and (d) FTs of xs(t) with sampling frequencies 
�s > 2�N and �s < 2�N , respectively. 
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From the sifting theorem, we have 

� ∞ 

x(t)δ(t − τ)dτ = x(τ ). (2.14) 
t=−∞ 

If we interchange the integration and summation in Equation 2.13 and if we 
use the sifting theorem, we get 

∞ 

−j�nTXs(j�) = xc(nT)e . (2.15) 
n=−∞ 

Note that the summation and integration in Equation 2.13 can be interchanged 
only if the infinite summation converges uniformly for all values of t [3]. 

We know that the DTFT of a sequence x[n] is defined as 

∞
 

jω −jωn
X(e ) = x[n]e . (2.16) 
n=−∞ 
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FIGURE 2.5 
(a) FT of sampled signal, (b) frequency response of an ideal lowpass filter, and (c) frequency 
response of the reconstructed signal. 



 

   

We can relate X(ejω) and Xs(j�) using Equations 2.15 and 2.16 as 

jω j�TXs(j�) = X(e )|ω=�T = X(e ). (2.17) 

Therefore, from Equations 2.11 and 2.17, we can relate X(ejω) and Xc(j�) as 
follows: 

X(ej�T ) = 
1 
T 

∞ 

k=−∞ 

Xc(j(� − k�s)) (2.18) 

or equivalently 

X(ejω) = 
1 
T 

∞ 

k=−∞ 

Xc j 
ω 

T 
− 

2πk 
T 

�� 
. (2.19) 

From Equation 2.19, we can observe that X(ejω) is the frequency-scaled ver­
sion of Xs(j�). This is because all the samples in the discrete-time signal are 
spaced by unity, irrespective of the sampling period T. The discrete-time sig­
nal can be obtained by time-scaling the impulse-modulated signal xs(t) by T. 
Consequently, the frequency axis is scaled by a factor of T 

1 . 
( )
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2.1.2 Reconstruction of Continuous-Time Signals from 
Discrete-Time Samples 

When we generate the discrete-time signal from the impulse-modulated sig­
nal xs(t), the implicit time period information present in the signal is lost. 
Therefore, we need both the discrete-time sequence x[n] and the sampling 
frequency Fs for the reconstruction of the continuous-time signal from its 
samples. The reconstruction process is depicted as a two-stage process as 
shown in Figure 2.6 [3]. 

The first step is the conversion of the sequence to an impulse train by using 
the information of the sampling period T. This process can be mathematically 
represented as in Equation 2.20 below: 

∞ 

xs(t) = x[n]δ(t − nT). (2.20) 
n=−∞ 

FIGURE 2.6 
Reconstruction of xc (t). 



 

 

 

If xc(t) is band-limited and sampled with a frequency greater than the Nyquist 
rate, then the continuous-time signal xc(t) can be exactly reconstructed with­
out any loss of information by passing xs(t) through an ideal lowpass filter 
with frequency response Hr (j�). The cutoff frequency �c of the lowpass filter 
should be selected such that (�N < �c ≤ �s − �N ). The impulse response of 
the ideal lowpass reconstruction filter with the cutoff frequency π 

T is given by 

sin(π t/T)
hr (t) = . (2.21)

(π t/T) 

We shall see the characteristics of hr (t) given by Equation 2.21. First, we note 
that 

hr(0) = 1. (2.22) 

This directly follows from the small angle approximation. Second 

hr (nT) = 0, for n = ±1, ±2, . . . . (2.23) 

The output of the reconstruction filter will be the convolution of xs(t) with 
hr (t). This is given by the following relationship: 

�∞ 

xr(t) = xs(τ )hr(t − τ)dτ 
τ=−∞ �∞ ∞ 

= x[n]δ(τ − nT)hr (t − τ)dτ . (2.24) 
τ=−∞ n=−∞ 

Interchanging the order of integration and summation and using the sifting 
theorem given in Equation 2.14 in the above equation (Equation 2.24), we 
obtain 

∞ 

xr (t) = x[n]hr(t − nT). (2.25) 
n=−∞ 

Substituting hr(t) (see Equation 2.21) in Equation 2.25, we get 

∞ sin(π(t − nT)/T) 
xr(t) = x[n] . (2.26)

π(t − nT)/T 
n=−∞ 

The filtering process is very obvious in the frequency-domain, where the filter 
allows exactly one replica as shown in Figure 2.5(c). In the time-domain, the 
same process can be explained in terms of sinc interpolation, as illustrated 
below. 

Figure 2.7 shows an impulse train obtained by assigning the strength of 
impulse at nT to nth discrete sample (shown as dotted lines). This signal is 
convolved with the impulse response of an ideal lowpass filter (sinc function) 
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T 

xs(t) 
xc(t) 

t 

FIGURE 2.7 
Impulse train-modulated signal. 

t 

xr(t) 

FIGURE 2.8 
Reconstruction of continuous-time signal. 

to obtain the continuous-time signal. The impulse response of the ideal low-
pass filter is shifted by integer multiples of T and scaled by the corresponding 
strengths of the impulses in xs(t). This is shown in Figure 2.8. From this plot, 
we can observe that exactly one sinc function contributes to the interpolated 
continuous-time signal at the sampling points. 

The Fourier transform of the reconstructed signal xr (t) is related to the 
transformed input signal xc(t) as 

Xr (j�) = Xc(j�)Hr(j�). (2.27) 

If the reconstruction filter is ideal and the cutoff frequency is selected appro­
priately, then the reconstructed signal, Xr(j�), will be the same as the input 
signal, Xc(j�). 

2.2 Frequency Leakage Effect 

The effect of frequency leakage can be illustrated using a continuous-time 
cosine signal given by 

x(t) = cos(�ot), −∞ < t < ∞. 



 

 

� 
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0 T(c) 
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. . .. . . 

FIGURE 2.9 
Rectangular data window implied when a finite record of data is analyzed. (a) Signal, 
(b) rectangular window, and (c) finite-length record. 

This is sketched in Figure 2.9a. The CTFT of this signal is given by 

X(j�) = π [δ(� + �o) + δ(� − �o)]. (2.28) 

The CTFT of this signal can be considered as two impulses located at ±�o 

and weighted by π , as shown in Figure 2.10(a). While computing the finite 
Fourier transform, we are forced to take only a finite number of data sam­
ples covering a time duration of T seconds and neglect everything that has 
happened before (and after) this period. In effect, the infinitely ranged sig­
nal x(t) is multiplied by a rectangular window w(t) = 1, 0 ≤ t ≤ T (shown in 
Figure 2.9(b)) to obtain 

xw(t) = x(t)w(t) = cos(�ot), 0  ≤ t ≤ T. (2.29) 

The resulting signal xw(t) is shown in Figure 2.9(c). Multiplication in the time-
domain is equivalent to the convolution in the frequency-domain. Hence, the 
finite Fourier transform of any finite record of data is equivalent to convolving 
the CTFT of the actual signal with the CTFT of the rectangular window. The 
transform of a rectangular window is given by 

�T −j�T 

W(j�) = T sinc e 2 , −∞ < � <  ∞. (2.30)
2π 

Thus, the CTFT of an infinitely ranged pure cosine wave, x(t), gives rise to 
two impulses at frequencies ±�0, as shown in Figure 2.10(a). However, in 
the case of the finite Fourier transform of a cosine wave, the impulse function 
is convolved with the infinitely ranged Fourier transform of the rectangular 
window. The resulting Fourier transform of xw(t) is given by 

Xw(j�) = X(j�) ∗ W(j�) 

�T −j�T 
2= π [δ(� + �o) + δ(� − �o)] ∗  T sinc e

2π 
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FIGURE 2.10 
(a) Magnitude response of a cosine signal. (b) Leakage in finite extent data. 

2= πT [sinc((� + �o)T/2π) + sinc((� − �o)T/2π)] e 
−j�T 

, 

− ∞ < � <  ∞. (2.31) 

The magnitude response of the resulting function |Xw(j�)|, shown in Fig­
ure 2.10(b), are two sinc functions centered at ±�o. This function is not 
localized on the frequency axis and in fact has a series of spurious peaks 
called side lobes, that decay quite slowly (−6 dB/octave). This effect is due to 
the truncation, which is unavoidable while applying the finite DTFT. Owing 
to these side lobes, it is possible for the finite DTFT to exhibit a number of 
frequency components instead of only one. To localize the contribution of a 
given frequency, the usual approach is to apply a different data window to 
the time series that has lower side lobes in the frequency-domain than that 
of a rectangular window. However, this will give rise to yet another effect in 
terms of loss of frequency resolution. 

Alternatively, if the input frequency components are integer multiples of 
the reciprocal of the sample length, then the leakage will be zero (only in 
discrete-time case). The response is zero at adjacent points, because the zeros ( )

sin xof the x response exactly coincide with the location of the DFT output 
points. 

2.2.1 Zero Leakage Case 

We will now show that the leakage is produced due to the combination of the 
sinc side-lobe amplitudes and the transform of the sinusoidal components, 
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whose frequencies are not integer multiples of the reciprocal of the sample 
length T [4]. 

Let the input sequence to the DFT be x[n] = Aejω0n�T , where �T = T/N, 
while T is the sampling interval (in seconds) and N is the sequence length. 
The DFT can be computed as follows: 

N−1 
−j2πnk 

NX[k] =  x[n]e , k = 0, 1, . . .  , (N − 1) 

n=0 

N−1 
−j2πnk = Aejω0 n�Te N 

n=0 

N−1	 �
2πk

(jnα)= A e , where α = ω0�T − . 
N 

n=0 

The above expression is actually a geometric summation. Therefore, this can 
be written as a quotient of two terms as follows: 

1 − e(jNα) j Nα j Nα −j Nα 
2 2 2e e − e= A = A

1 − e(jα) ej α ej α − e−j α 
2 2 2 (

Nα 
)

sin = A ej (N−1)α 22	 . ( ) . (2.32)
sin α 

2 

Substituting back the value of α, we obtain the following expression: 

sin N ω0�T − 2πk 
(ω0�T− 2πk 2 N2 N )]X[k] = A e[j (N−1) 

. � ( )] . (2.33)1 ω0�T − 2πksin 2 N 

2πm 2πmIf ω0�T = N or ω0 = T , then f0 (ω0 = 2π f0) is an integer multiple of the 
reciprocal of the sample length T. Then, we find that X[k] can be expressed 
as follows: 

sin [π(m − k)](π(m−k))]NX[k] = A e[j (N−1) 

. � ] . (2.34)
sin π (m − k)N 

As m → k, the expression for X[k] becomes 

sin(π(m − k))
X[k] = A lim	 . (2.35) 

m→k sin(π(m − k)/N) 

By applying L’Hospital’s rule, we obtain 

cos(π(m − k))
X[k] = A lim N	 . (2.36) 

m→k cos(π(m − k)/N) 



    

� 
AN, k = m

X[k] =  (2.37)
0, k = m. 

Therefore 
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X(k)
 

AN
 

m m + 2m – 2 
m + 1m – 1 

k 

FIGURE 2.11 
DFT output response to demonstrate zero leakage case. 

�

The above result produces the response in the frequency-domain as shown 
in Figure 2.11. For the sake of comparison, we have shown the sinc function 
response as dotted lines. Note that the response is zero at adjacent output ( )

sin xpoints. This is true because the zeros of the x response exactly coincide 
with the location of the DFT output points. 

2.2.2 Maximum Leakage Case 

If f0 is not an integer (m) multiple of the reciprocal of the sample length, but ( ) (
m+ 1 

)
2rather m + 1 , then f0 = and we obtain the plot of X[k] as demonstrated 2 T 

in Figure 2.12. From Figure 2.12, it can be seen that the amplitude of X[m − 1]
and X[m + 2] is approximately equal to AN . Calculating the ratio of the ampli­5 

tude at these points and the peak center point, we get, 20 log AN/5 � −13 dB. AN 
Therefore, the quantity −13 dB corresponds to the peak side-lobe level of 
a rectangular window. In this case, it can be seen that the response at the 
adjacent points (near the main output point) is nonzero. In this example, 
the zeros of the sinc response no longer line up with the adjacent output 
points, since the input frequency is not an integer multiple of the recip­
rocal of the sample length. Consequently, we observe that in the overall 
DFT, the output has energy at frequencies that are not present in the DFT 
input. This spreading or smearing of energy is referred to as frequency leakage 
or simply leakage. It can be shown that for a single frequency component 
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m + 1m 

≈ –AN/5 

X(k) 

k
0 

m – 1 m + 2 

AN 

2AN/π 

FIGURE 2.12 
Spectral leakage. 

input, at a frequency midway between two DFT bins, the leakage is sig­
nificant (−25 dB) for about eight output points (on either side of the DFT 
bins) [4]. 

From the above discussion, we see that to reduce or minimize the leakage 
problem, we must either limit the frequency components of the input signal 
to be only integer multiples of T 

1 or reduce the side-lobe amplitudes by using 
appropriate windows, having lower side-lobe amplitudes in the frequency-
domain. It is obvious that the first choice is not practical and, therefore, we 
must find a way to reduce the side-lobe levels. 

In the above example, we took a signal having a single frequency com­
ponent. However, the leakage problem increases significantly as the input 
waveform progresses in complexity from a single frequency component to 
a waveform with many frequency components having differing amplitudes 
buried in noise. For this case, the leakage will produce nonzero Fourier coef­
ficients throughout the output band. Therefore, these leakage components 
could be of sufficient amplitudes so as to mask the desired low-amplitude fre­
quency components that are present in the input signal. Hence, the problem 
of leakage is quite significant in spectral analysis. 

Example 

The following example illustrates the leakage effect. Consider the follow­
ing two discrete-time sequences: 

( )
1. x1 [n] = cos 2πn , 0  ≤ n ≤ 4.5 ( )

2πn(1.5)2. x2 [n] = cos , 0  ≤ n ≤ 4.5 

The periodic extension of these two sequences are given in Figures 2.13 
and 2.14. From the last section, we have seen that there are only N dis­
tinguishable frequencies for which we get zero leakage when we take the 
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x1[n] 
1 

0.5
 

0
 n 

−0.5
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0 5 10 15 

FIGURE 2.13 
x1[n] extended up to three periods. 

N-point DFT of the sequence. One set of these frequencies is 

2πk 
ωk = , k = 0, 1, 2, . . . , N − 1. (2.38)

N 

In this example, x1[n] has a frequency component corresponding to one 
of these frequencies, resulting in no-leakage case as shown in Figure 2.15. 
On the other hand, frequency of x2[n] does not correspond to any of the 
DFT bins, resulting in the spread of energy throughout the spectrum, as 
given in Figure 2.16. In Figures 2.15 and 2.16, the dotted lines represent 
the DTFT of the sequence. We can see that, owing to the proper choice of 
N, the DFT of x1[n] obtained by sampling the DTFT has only zeros at all 
the frequencies, other than at the signal frequency components, 2

5 
π and 8

5 
π 

or 2π

5 
k , with k = 1 and k = 4. 

Another intuitive approach to study the effect of leakage is to observe 
the periodic repetition of the sequences. The periodic repetition of x2[n]
shows clear discontinuities (Figure 2.14) at n = 5, 10, 15, . . . , unlike 

x2

1 

0.5
 

0
 n 

−0.5 

−1 

Discontinuities 

0 5 10 15 

[n] 

FIGURE 2.14 
x2[n] extended up to three periods. 
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FIGURE 2.15 
DFT of x1[n] (zero leakage case). 

|X2[k]| 
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k0 
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FIGURE 2.16 
DFT of x2[n] (leakage case). 

the extended signal of x1[n] (Figure 2.13). These discontinuities are 
responsible for the nonzero leakage in the case of x2[n]. 

2.3 DFT as a Filter Bank 

In an earlier chapter, we have seen how we can relate the DTFT with the DFT 
of a finite-length sequence x[n]. If the DTFT of a sequence x[n], represented 
as X(ejω), is a function of a continuous variable ω, then the DFT itself is a 
sequence. They can be related as follows: 

N−1 

2πkX[k] =  x[n]e−jωn|ω= N 

n=0 

N−1 
−j 2πkn 

N= x[n]e , k = 0, 1, . . . , N − 1. (2.39) 
n=0 



  

  

 

Therefore, the DFT of a sequence is a sampled form of the DTFT. The DFT 
can be considered as the bank of bandpass filters [5], tuned to frequencies 
corresponding to the DFT bins. Let the discrete-time signal be x[n] = ejωn. Let 
us observe the DFT output sequences, X(0), X(1), . . . , X(N − 1), as  ω is varied 
from 0 to 2π . 

N−1 N−1 1 − ejωN 

X(0) = x[n]W0 = ejωn = N 1 − ejω 

n=0 n=0 (
ωN 

)
sin 2 j(N−1)ω/2= ( ) .e . 
sin ω 

2 

In Figure 2.17(a), we show the plot of |X(0)| versus ω, assuming that N = 5. 
Now, let us compute X(1) as illustrated below: 

N−1 N−1 
jωn jωn −j 2N 

π nX(1) = e .WN
n = e .e

n=0 n=0 

N−1 1 − ej(ω− 2
N 
π )N 

N )= ej(ω− 2π n = 
j(ω− 2

N 
π ) 

n=0 1 − e( )
sin ωN 

2 jω( N
2 
−1 ) ej N 

π 

.= ( ) e
ω − πsin 2 N 

The corresponding plot is given in Figure 2.17(b) for N = 5. In general, we 
can express X[k] as follows: 

sin( ωN )2 jω( N−1 j πk 
2 NX[k] =  e ) e , k = 0, 1, . . . , (N − 1). (2.40)

sin( ω 

2 − π

N
k ) 

If we choose N = 5, then the magnitude responses of X(0), X(1), . . . , X(4) can 
be sketched as given in Figures 2.17(a) through (e). 

Figure 2.17(f) combines all the elemental plots of Figures 2.17(a) through 
(e), but the side lobes are omitted for the sake of clarity. Therefore, from 
Figure 2.17, we can conclude that the DFT represents (or is analogous to) a 
bank of bandpass filters. Hence, the DFT can be interpreted in the following 
three ways: 

1. A reversible transformation that converts one complex sequence into 
another. 

2. It corresponds	 to samples of the z-transform of the sequence, 
equispaced on the unit circle (i.e., z = ej 2π 

N k ). 
3. A bank of bandpass filters. 
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FIGURE 2.17 
Magnitude response plots at DFT bins as ω is varied from 0 to 2π . (a) |X(0)|. (b) |X(1)|. (c) |X(2)|. 
(d) |X(3)|. (e) |X(4)|. (f) Main lobes of X(k). 

2.4 Picket-Fence Effect or Scalloping Loss 

The picket-fence effect is produced by the inability of the DFT to observe the 
spectrum as a continuous function since the computation of the spectrum 
is limited to integer multiples of the fundamental frequency [5,6]. From the 
discussion of the previous section, we can say that the Fourier transformation 
of the discrete data can be viewed as passing the data through a bank of 
bandpass filters. Ideally, each Fourier coefficient would act as a complex filter 
(the absolute values of all the coefficients are equal to one). However, because 
of the finite-length data, which is equivalent to multiplying the data by a 
rectangular window, the amplitude response of the filter is in the form of the ( )

sin xmain lobes of x functions. The normalized frequency response is shown 
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in Figure 2.18 (side lobes are not shown for the sake of clarity). Note that the 
amplitude axis is normalized to unity. 

Therefore, at the frequencies computed, these main lobes appear to be inde­
pendent filters, with unity magnitude response. However, if the data consist 
of a spectral component that lies, say, for example, between the fourth and 
fifth harmonic frequencies, then the component is seen by both the filters 
centered at the fourth and fifth harmonics, but at a value less than unity. In 
the worst case, when the spectral component lies exactly half-way between 
the computed harmonics, the amplitude of the signal is reduced to 0.637 [7], 
which represents the worst case. When this value is squared, the apparent 
peak power of the signal is only 0.406. Thus, the power spectrum seen by 
this set of bandpass filters has a ripple that varies by a factor of 2.5 to 1. The 
rippled curve (shown in the second plot of Figure 2.18), also known as the 
picket-fence effect, is responsible for the processing loss of input frequencies 
between the bin centers. Therefore, one seems to be viewing the true spec­
trum (using the DFT) through a “picket-fence” [7], since we can observe the 
exact behavior only at discrete points. This effect can be reduced by applying 
a data window that has a broader main-lobe width (in the frequency-domain) 
but a larger attenuation in the side lobes than that of a rectangular window. 

The picket-fence effect occurs because the N-point DFT cannot resolve the 
spectral components any closer than the spacing 
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FIGURE 2.18 
Picket-fence effect: DFT coefficients as a set of bandpass filters. (Redrawn from G.D. Bergland, 
A guided tour of the fast fourier transform, IEEE Spectrum, Vol. 6, pp. 41–52, July 1969.) 
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If the sampling rate is fixed, �f can be decreased by increasing the number 
of points in the DFT. 

2.5 Zero-Padding and Frequency Resolution 

If the data length is limited to T s, where T < To, then the data may be 
extended to To by adding additional zero-valued sampling points. This is 
called zero-padding and is explained below. 

2.5.1 Zero-Padding 

In this section, we look at the necessity and applications in which zero-
padding is employed [8]. It is used in the following scenarios: 

1.	 Filling the sequence with zeros to utilize the radix-2 FFT algorithm: Suffi­
cient number of zeros (Nz) are added to the N-point data to satisfy 
the requirement that 

(N + Nz) = 2m	 (2.41) 

for a radix-2 FFT, where m is an integer that represents the number of 
stages of the FFT algorithm. Besides, the harmonics of the frequency 

1 
(N + Nz)T 

(where T is the sampling interval) coincides with the signal frequen­
cies. 

2.	 Implementing linear convolution through circular convolution: The circu­
lar convolution of the two sequences x1[n] and x2[n] is computed as 
follows: 

N−1 

yc[n] =  x1[(m)N ]x2[(n − m)N ] (2.42) 
m=0 

where (-)N denotes the modulo N operation. 
As stated in the properties of the DFT, the circular convolution is 

directly related to the DFTs of x1[n] and x2[n] as 

Yc[k] = X1[k]X2[k].	 (2.43) 

Therefore, the circular convolution (denoted as x1[n] � x2[n]) can 
be computed as 

yc[n] = x1[n] � x2[n] = IDFT{X1[k]X2[k]}, (2.44) 
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where X1 2 1 2

tively. It was found that the circular convolution calculated from the 
DFTs is computationally efficient rather than using Equation 2.42 
directly. This will be evident if sequences of very large lengths 
are considered. 

The linear convolution of sequences x1[n] and x2[n] is defined as 

∞ 

yl[n] =  
 

x1 m x2 n m . (2.45) 
m=−∞ 

[ ] [ − ]

If one sequence is of length N1 and the other sequence is of length N2, 
then yl[n] will be of length L = (N1 + N2 − 1). Circular convolution 
can be considered as the aliased version of the linear convolu­
tion. In fact, the circular and linear convolutions are related (see 
Section 1.5.2) by 

∞ 

yc[n] =  
 

yl[n 
k  

− kN], n = 0, 1, . . . , N − 1. (2.46) 
=−∞

where N is the length of each sequence and L is the length of linear 
convolution. From the relation, yc[n] will be equal to yl[n] when the 
shifts N is equal to L. 

If the sequences are padded with sufficient number of zeros, i.e., 
(L – N) then we can use IDFT to compute the linear convolution. This 
is illustrated by the following example. 

Example 

Consider the sequences x1[n] = x2[n] = {1, 1, 1}. 
Here, N1 = N2 = 3. The linear convolution of these two 
sequences is 

yl[n] = {1, 2, 3, 2, 1}, 

and the result of the circular convolution is 

yc [n] = {3, 3, 3}. 

In this example, N = 3. The circular convolution obtained using 
the linear convolution from Equation 2.46 is graphically depicted 
in Figure 2.19. We now pad the sequences x1[n] and x2[n] with 
(N2 − 1) and (N1 − 1) zeros, respectively, to make them equal to 
(N1 + N2 − 1) in length. We then compute the circular convolu­
tion to obtain the linear convolution. From Figure 2.20, we can 
see that there is no aliasing, and the circular convolution is the 
same as the linear convolution for the zero-padded case. There­
fore, once we pad the sequences with the required number of 

[k] and X [k] are the DFTs of x [n] and x [n], respec­



� 
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zeros, we can compute the circular convolution using the IDFT 
of the product of the DFTs of individual sequences to get the 
linear convolution. 

3.	 Providing a better display of the spectrum of a finite-length sequence: We 
consider an example where Nz zeros are added to a sequence (which 
originally had a nonzero length of Nf ) to give a sequence of N values, 
and then an N-point DFT is computed. The sampled values of the ( )
DFT spectrum are spaced 2π apart. For a sequence x[n] definedNf +Nz 

as 

1, n = 0, 1, 2, 3 
x[n] = 	  (2.47)

0, otherwise, 
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FIGURE 2.19 
Circular convolution as aliased form of linear convolution. 



  N−1 �
2πk

X(ejω) = X[k]φ ω − , (2.48)
N 

k=0 

where 

−jω( N−1 
e 2 ) sin(ωN/2)

φ(ω) = · . (2.49)
N (ω/2) 
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FIGURE 2.20 
Circular convolution by linear convolution (after zero-padding). 

the DTFT magnitude response |X(ejω)| of the above sequence x[n] is 
shown in Figure 2.21. While Figure 2.22(a) shows the DFT of a four-
point sequence without any zero-padding, Figures 2.22(b) and 2.22(c) 
show the 8-point and 16-point DFTs of the zero-padded sequences, 
respectively. From these plots, we can observe that as more num­
ber of zeros are added, the DFT provides closely spaced samples of 
its Fourier transform of the original sequence and thus generates a 
better-looking display [9]. However, it must be mentioned here that 
we do not have any additional information that could be obtained by 
sampling the interpolation formula, which is given by 



84 Window Functions and Their Applications in Signal Processing 

0 
0.5 

1 
1.5 

2 
2.5 

3 
3.5 

4 

ω 

|X(e jω )| 

0 π/2 π 3π/2 2π 

FIGURE 2.21 
DTFT of x[n]. 

Here, Equations 2.48 and 2.49 provide the interpolation formula and 
the interpolation function, respectively. We emphasize that zero-
padding does not actually improve the frequency resolution but only 
gives a better-looking display of the available data (without addi­
tional calculations) to evaluate the values of the DFT through the 
interpolation formula. 

2.5.2 Frequency Resolution 

The sequence x[n] is often produced by sampling a continuous-time signal 
xc(t), resulting in the sequence xc(nT). The DFT coefficients for this sampled 
signal can be written as X[k�f ] rather than simply X[k], where �f represents 
the frequency spacing of the coefficients. This is the same as T in x(nT) rep­
resenting the time spacing of the sampled signal. Therefore, the frequency 
components in the DFT are spaced apart according to the following relations: 

Fs 1 1 
�f = or �f = = , (2.50)

N NT To 

where Fs is the sampling frequency (or T is the sampling interval, T = 1 )Fs 

and N is the period of the resulting sequence, �f is the frequency spacing 
(also called as frequency resolution) and To is the record length (To = NT). 
To resolve closely spaced frequencies, or in other words to increase the 
resolution, we need to make �f appropriately smaller. 

As discussed before, the application of DFT to a finite-length data gives rise 
to leakage and picket-fence effects. These effects can be reduced by weighting 
the data with suitable windows. However, the use of data windows (other 
than rectangular window) affects the bias, variance, and frequency resolution 
of the spectral estimates. In general, the variance of the estimates increases 
with the use of windows. An estimate is said to be consistent if both the bias 
and the variance of the estimate tend to zero as the number of observations 
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FIGURE 2.22 
x[n] and its DFTs: (a) No zero-padding. (b) Padding with four zeros. (c) Padding with 12 zeros. 

is increased. Hence, the issues associated with the spectral estimation of a 
random data by the DFT technique reduce to the problem of establishing effi­
cient data windows or data-smoothing schemes. This topic shall be discussed 
in detail in a forthcoming chapter. 
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3 
Review of Window Functions
 

3.1 Introduction 

This chapter presents a concise review of all popular window functions that 
are commonly employed in digital signal processing. Since no window is the 
best in all aspects, it should be selected according to the user’s requirements. 
First, the characteristics that qualify a function to be a window function are 
outlined in Section 3.2. In Section 3.3, almost all the window functions are cat­
aloged, along with their time-domain and frequency-domain representations. 
The Fourier domain representations of these windows are also discussed at 
length. Section 3.4 provides theorems relating to the rate of fall-off side-lobe 
levels (RFSLL) of windows. We then describe the various basic parameters of 
the windows that are useful in choosing an efficient window for a particular 
application. Finally, a comprehensive comparison of all the windows in terms 
of their computed parameters is provided in Section 3.5. 

3.2 Characteristics of a Window Function 

In this section, we list some of the desirable characteristics of a window 
function. For ease of discussion, we describe the window functions in the 
continuous domain in time and frequency. Here, f (t) represents the window 
of length 2τ in the time-domain and F(j�) represents its continuous Fourier 
transform, that is, � τ 

F(j�) = f (t)e−j�tdt. (3.1) 
−τ 

In the rest of this chapter, the main lobes and the side lobes refer to those 
of the Fourier transform F(j�) of the window. Every window, f (t), and its 
Fourier transform, F(j�), are required to possess the following properties: 
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1.	 f (t) should be real and nonnegative. 
2.	 f (t) should be an even function, that is, f (t) = f (−t) and therefore 

F(j�) is real. 
3.	 f (t) should attain its maximum at t = 0, that is, 

  f (t)   ≤ f (0), for all t 
and f (t) = 0 for |t| > τ , where τ represents the one-sided duration of 
the window. 

4.	 F(j�) should have a main lobe about the origin and side lobes on 
either side. 

5. The main-lobe width should be as narrow as possible. 
6. The main lobe must contain a large part of the total energy. 
7. The maximum side-lobe level (MSLL) should be as small as possible, 

relative to the main-lobe peak. 
8. If the mth derivative of f (t) is impulsive, then the peak of the side 

lobes of |F(j�)| decays asymptotically as 6m dB/octave. The proof of 
this property is presented in Section 3.4. 

On the basis of the above characteristics, a number of windows have been 
proposed by researchers and are detailed below. Each window is illustrated 
by the plots of the time function and its Fourier transform. 

3.3 List of Windows 

We shall now briefly present some of the well-known window functions 
used in the signal processing literature. Each window is described by its 
functional form in the continuous time-domain, f (t), and its CTFT, F(j�). 
In the following discussion, τ represents the one-sided duration of the win­
dow in the time-domain. Figures 3.1 through 3.16 (except for Figures 3.5 
and 3.8) present the plots of window functions in the time-domain and their 
CTFTs. The time-domain function is plotted as a function of the normalized 
time parameter, (t/τ ). The normalized magnitude of the Fourier transform 
is plotted as a function of the normalized frequency parameter (�τ/2π), 
where the normalization is carried out with respect to the amplitude at the 
origin, F(0). The normalized magnitude is expressed in dB scale, that is, 

F(j�)20 log10 F(0) 
. We also provide vital parameters such as (i) normalized half 

main-lobe width (NHMLW), (ii) first side-lobe level (FSLL), (iii) maximum 
SLL (MSLL), (iv) ratio of main-lobe energy to total energy (MLE), and (v) 
rate of fall-off side-lobe level (RFSLL). The same terminology is followed for 
all the windows discussed in this chapter. In Table 3.1, all the main proper­
ties of the window functions described in Sections 3.3.1 through 3.3.18 are 
summarized. 
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3.3.1 Rectangular (Box Car) Window 

The rectangular window [1], which is also called a uniform window or a box 
car window due to its shape, is defined as follows: 

1, |t| ≤ τ
f (t) = (3.2)

0, elsewhere 

and its CTFT is 

2τ sin(�τ) 
F(j�) = , −∞ < � <  ∞. (3.3)

�τ 

Therefore, the CTFT of a rectangular window function represents a sinc 
function. 

The rectangular window results from the direct truncation of the signal. 
The Fourier transform of this window shows that the first side lobe of this 
window is about one-fifth of the main-lobe peak and the side lobes fall at a 
rate of 

� 

1 . The time-domain (i.e., f (t) vs. t/τ ) and the frequency-domain (i.e., 
F(j�) vs. �τ/2π ) plots of a rectangular window are given in Figure 3.1(a). ( )
In the frequency-domain plot, the abscissa (x-axis) is given by �τ and the 2π 

F(j�)ordinate (y-axis) is given by 20 log10 F(0) 
. Thus, both the amplitude and the 

frequency axes display normalized values. Therefore, the normalized half 
main-lobe width (NHMLW) of the rectangular window is 0.5. The MSLL of 
this window, which is also the same as the first side-lobe level (FSLL), is about 
−13 dB. 

3.3.2 Triangular (Bartlett) Window 

The triangular window [1] is derived by linearly convolving two rectangular 
windows of half the duration (i.e., τ/2). This window is specified by the time-
domain function ⎧ ⎨ |t|

1 − , |t| ≤ τ
f (t) = τ (3.4) ⎩0, elsewhere 

and its corresponding Fourier transform is 

⎡ �⎤2
�τ

sin ⎢ ⎥2 ⎢ ⎥F(j�) = τ � , −∞ < � <  ∞. (3.5) ⎣ ⎦�τ 

2 
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Therefore, the Fourier transform pair of the Bartlett window can be repre­
sented as follows:  

 t 4 sin2 �τ 

1 − 
| |� 

←→F  

(
2 

)
. (3.6) 

τ | |≤τ  (�2
t  τ)  

The relevant plots are shown in Figure 3.1(b). We can observe that the half 
main-lobe width of this window is twice that of the rectangular window (i.e., 

FIGURE 3.1 
Window functions (time- and frequency-domain plots). (a) Rectangular (box car) window. (b) 
Triangular (Bartlett) window. 



 

  �� 

f (t) = 

⎧ ⎨cos 
π t 
2τ 

� 
, |t| ≤ τ 

(3.7) ⎩0, elsewhere 

and 

(( ) ) (( ) )
sin � + π τ sin � − π τ2τ 2τF(j�) = ( ) + ( ) , 

� + π � − π 

2τ 2τ 

− ∞ < � <  ∞. (3.8) 

The Fourier transform pair for this window can be expressed as follows: 

π t F cos(�τ) 
cos ←→ 4πτ . (3.9)

2τ (π 2 4�2τ 2)|t|≤τ 
−

The advantage of this window is the ease with which the term can be gen­
erated. This window is depicted in Figure 3.2(a). Note that the NHMLW of 
this window is 0.75, (i.e., one and a half times that of the rectangular win­
dow), while the RFSLL is 

�

1
2 (see Equation 3.9). As shown in Table 3.1, the 

FSLL is about 23 dB down. The side-lobe levels for all the window functions 
discussed in the rest of the section are also given in this table. 

 � 
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1.0) and that the side lobes fall at the rate of 
�

1
2 (since F(j�) � 

�

4
2τ 

as � → ∞). 
It can be noted that this is the simplest window that exhibits a nonnegative 
Fourier transform. This happens due to the self-convolution property, which 
can always be achieved by convolving any window by itself. 

3.3.3 Cos(x) Window 

The time function of this window [2] and its Fourier transform are given by 

3.3.4 Hann (Raised-Cosine) Window 

This window was proposed by the Austrian meteorologist Julius von Hann. It 
is also known by different names: the raised-cosine, von Hann window [1,2], 
and so on. It is defined by the Fourier transform pair 

⎧ 
π t ⎨0.5 + 0.5 cos , |t| ≤ τ 

f (t) = τ (3.10) ⎩0, elsewhere 
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and 

(( ) ) (( ) )
sin(�τ) sin � + π τ sin � − π τ

F(j�) = + 0.5 ( τ ) + ( τ ) , 
� � + π � − π 

τ	 τ 

− ∞ < � <  ∞.	 (3.11) 
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FIGURE 3.2 
Window functions (time- and frequency-domain plots). (a) Cosine window. (b) Hann window. 
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� 

� 

� 

f (t) = 

⎧ ⎪ ⎨ (1 + k) 

2 
+ 

(1 − k) 

2 
cos 

π t 
τ 

, |t| ≤ τ 
(3.13) ⎪ ⎩0, elsewhere 

whose Fourier transform is (( ) ) (( ) )
sin(�τ) (1 − k) sin � + π

τ 
τ sin � − π

τ 
τ

F(j�) = (1 + k) + ( ) + ( ) , 
� 2 � + π � − π 

τ τ 

− ∞ < � <  ∞. (3.14) 

Equation 3.13 can be interpreted as a cosine-squared response, weighted by a 
factor (1 − k) and sitting on a pedestal of height k, where k ≤ 1. Equation 3.14 
can be simplified and written as follows: 

[π 2(1 + k) − 2k�2τ 2] sin(�τ) 
F(j�) = . (3.15)

�(π 2 − �2τ 2) 

2k
It can be seen that F(j�) → 0 with the rate of � , as  � → ∞. 
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The Hann window can be represented in a short-hand notation as 

 
1 1 
2

 
π t 2 π sin(�τ) + cos 

F
 . (3.12)

2 τ 

�� 
←→

�(π 2 − �2τ 2)|t|≤τ 

From Equation 3.11, it is obvious that the Fourier transform of the Hann 
sinwindow is the sum of three (x) terms. The function at the origin is assigned x 

a weight of unity and the other two are shifted sinc functions on either side 
of the origin by 

(± π

τ 

)
with an assigned weight of 0.5 each. This yields sig­

nificantly reduced side lobes over that of the rectangular window, but at the 
expense of the main-lobe width (which is twice that of the rectangular win­

2 
dow). The side lobes fall off at a rate 1 π

3 ( �) � 
�

(since F j � 2 3 as → ∞). The 
τ �

corresponding plots of the Hann window are shown in Figure 3.2(b). This 
window is also called a cos2(x) window, since it results by just expanding the 
square of a cosine function. 

3.3.5 Truncated Taylor Family 

Taylor functions are obtained by adding a weighted-cosine series to a constant 
(called a pedestal). A simpler form of these functions can be obtained by 
dropping some of the higher-order terms in the Taylor series expansion. If all 
other terms, except for the first two significant ones, are dropped, a truncated 
Taylor function is obtained, which can be expressed as [3] 
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2

FIGURE 3.3 
Window functions (time-domain and frequency-domain plots). (a) Truncated Taylor window 
with k = 0.072. (b) Hamming window. 

The range of side-lobe levels varies as a function of the pedestal height (see 
Figures 3.2(b) and 3.3(a)). Figures 3.2(b) and 3.3(a) represent the plots for the 
values of k = 0 (Hann window) and k = 0.072, respectively. It is interesting 
to point out that the truncated Taylor family is closely related to two other 
functions: the Hann window results when k = 0 and the Hamming window 
(discussed below), which is a truncated Taylor window with k = 0.08 (see 
Figure 3.3(b)). 



 

  

  

  
f (t) = 

⎧ ⎪ ⎨0.75 cos 
π t 
2τ 

� 
+ 0.25 cos 

3π t 
2τ 

� 
, | t| ≤ τ 

(3.19) ⎪ ⎩0, elsewhere. 

� 

�� 

� 
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3.3.6 Hamming Window 

This window can be thought of as an optimized form of the Hann window, 
and it was proposed by Hamming [1,4]. The coefficients of this window are 
optimized so as to obtain the minimum FSLL. The Hamming window finds 
applications in optics for apodization, which smoothens the input intensity 
or transmission profile, such that it approaches almost zero at the edges. Its 
functional form is represented by 

⎧ 
π t ⎪ ⎨0.54 + 0.46 cos , | t| ≤ τ 

f (t) = τ (3.16) ⎪ ⎩0, elsewhere 

whose Fourier transform can be written as follows: 

[ ] (( ) ) (( ) )
sin(�τ) sin � + π τ sin � − π τ

F(j�) = 1.08 + 0.46 ( τ ) + ( τ ) , 
� π π� + � − 

τ τ 

− ∞  < � <  ∞ . (3.17) 

Equations 3.16 and 3.17 together can be represented by a Fourier transform 
pair as follows: 

π t F [ 1.08π 2 − 0.16�2τ 2] sin(�τ) 
0.54 + 0.46 cos ←→ . (3.18)

τ �(π 2 − �2τ 2)| t|≤ τ 

It can be seen that the asymptotic attenuation in the case of Hamming window (
0.16 

)
is . 

The time- and Fourier-domain plots are shown in Figure 3.3(b). From these 
plots, we can see that the MSLL is about − 42 dB and the side lobes fall at the 
rate of 

� 

1 . This slow fall-off rate is due to the small discontinuity (0.08) at the 
edges of the window. However, the FSLL of this window is about − 44 dB. 
Following the discussion in Section 3.3.5, we must point out here that the 
Hamming window yields the lowest side-lobe levels for the truncated Taylor 
class of window functions (with k = 0.08). 

3.3.7 Cos3(x) Window 

The time function of this window [2] is obtained by expanding the cos3(x) 

function (hence its name) and it can be rewritten as 
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and its Fourier domain representation is expressed as 

(( ) ) (( ) )
sin � + 2

π

τ
τ sin � − 2

π

τ
τ

F(j�) = 0.75 ( ) + ( )
� + 2

π

τ
� − 2

π

τ(( ) ) (( ) )
sin � + 3π τ sin � − 3π τ+ 0.25 ( 2τ) + ( 2τ) , −∞ < � < ∞. 

� + 3π � − 3π 

2τ 2τ

(3.20) 

The NHMLW of this window is 1.25 and the side-lobe fall-off rate can be 
proven to be of the order of 

�

1 (see Figure 3.4). 4 

3.3.8 Sum-Cosine Window 

This function can be considered as an optimized form of the cos3(x) window 
(similar to that of the Hamming and Hann windows) [5]. It is expressed as 

f (t) = 

⎧ ⎪ ⎨(1 − 2B) cos 
π t 
2τ 

� 
+ 2B cos 

3π t 
2τ 

� 
, |t| ≤ τ 

(3.21) ⎪ ⎩0, elsewhere 
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FIGURE 3.4 
Cos3 (x) Window (time and frequency-domain). 



  
  

 

    

  

� 

� 

� 

where B is a constant and the Fourier representation of f (t) is 

(( ) ) (( ) )
sin � + π τ sin � − π τ2τ 2τF(j�) = (1 − 2B) ( ) + ( )

� + π � − π 

2τ 2τ (( ) ) (( ) )
sin � + 3π τ sin � − 3π τ2τ 2τ+ 2B ( ) + ( ) , −∞ < � <  ∞. 

� + 3π � − 3π 

2τ 2τ 

(3.22) 

We will now discuss in detail how a sum-cosine window is synthesized [5,6]. 
Recall the time function of the rectangular window: 

1, |t| ≤  τ
fr(t) = (3.23)

0, elsewhere 

and that of the cosine window: ⎧ 
π t ⎪ ⎨cos , |t| ≤ τ
2τfc(t) = (3.24) ⎪ ⎩0, elsewhere. 

The Fourier transforms of the rectangular and cosine windows are given by 

2 sin(�τ) 
Fr (j�) = , −∞ < � <  ∞. (3.25) 

and (( ) ) (( ) )
sin � + π τ sin � − π τ2τ 2τFc(j�) = (

π 
) + (

π 
) , −∞ < � <  ∞, (3.26)

� + � −2τ 2τ 

respectively. 
Consider A and B to be two real constants and let the Fourier transform 

of the rectangular window be shifted to the right (and left) of the origin by (
3π 

)
an amount 2τ 

[5]. The resulting waveforms of the three elemental Fourier 
transforms, namely, BFr (j(� + 3π )), BFr(j(� − 3π )), and AFc(j�), are displayed 2τ 2τ 

in Figure 3.5. Therefore, a linear combination of these three waveforms gives 

Fsc(j�) = AFc(j�) + BFr j � + 
3π 

2τ 

�� 
+ BFr j � − 

3π 

2τ 

�� 
, (3.27) 

whose inverse CTFT can be shown to be 

fsc(t) = A cos 
π t 
2τ 

� 
+ 2B cos 

3π t 
2τ 

� 
, |t| ≤  τ . (3.28) 
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FIGURE 3.5 
Fourier transforms of cosine and rectangular windows. 

Since the window functions are required to be even, without the loss of gener­
ality, fsc(t) can be assumed to be unity at the origin (i.e., A + 2B = 1), in which 
case Equation 3.28 reduces to 

π t 3π t
fsc(t) = (1 − 2B) cos + 2B cos , |t| ≤ τ . (3.29)

2τ 2τ 

It can be noticed from Figure 3.5 that the side-lobe ripples from the func­
tions BFr(� ± 3

2
π

τ 
) tend to cancel the side-lobe ripples from AFc(�), thereby 

considerably reducing the overall side-lobe levels of the resulting Fourier 
transform, Fsc(j�). However, this will be at the expense of the main-lobe 
width. To achieve the minimum side-lobe level, constant B is evaluated under 
two different constraints, specified by the following criterion: 

Fsc(0) = Maximum	 (3.30)
Fsc(j�1) 

and 

Fsc(0) = Maximum,	 (3.31)
Fsc(j�p) 

where |Fsc(j�1)| is the peak magnitude of the first side-lobe of Equation 3.27, 
that is, its peak magnitude in the interval ( 5π , 7π ). Here |Fsc(j�p)| is the largest 2τ	 2τ 

peak magnitude of the first two side lobes of Equation 3.27 [5]. The synthesis 
problem can now proceed in two ways: 

i.	 Choose the value of B in Equation 3.29 to satisfy the condition of 
Equation 3.30. 

ii. Select B in Equation 3.29 such that it satisfies Equation 3.31. 
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Consequently, two values of B are obtained using the conditions in (i) 
and (ii). Using numerical techniques, the values of B are determined to be 
0.100 and 0.103, respectively, corresponding to the above two conditions [5]. 
Figures 3.6(a) and (b) show the plots of normalized magnitudes of the Fourier 
transforms of the sum-cosine window for these values of B, together with their 
corresponding time functions. The graphs shown are drawn as a function of 
the normalized time and frequency parameters. 

FIGURE 3.6 
Sum-cosine windows (time- and frequency-domain plots). (a) Sum-cosine window with B = 
0.100. (b) Sum-cosine window with B = 0.103. 



   

  

  
 

⎧ 
π t 2π

cos + 0.125 cos 
� ⎪ 0.375 + 0.5 

� 
t 

, | τ 
f (t) = 

⎨  t
τ τ 

| ≤ 
(3.33) ⎪ ⎩0, elsewhere, 

whose Fourier transform can be expressed as 

sin(�τ) sin 
F(j�)  0.75 

((
� 

 0.5 
+ π

)
τ
) 

sin 
((

� − π

+
)
τ= + τ  τ 

�

)

sin  2π

(
� + π � − π 

τ

) 
τ (( + ) ) 

sin 
(( − 2� τ � π

(
τ

)
+ 0.125 τ  τ ,  .  ( < � <  

� + 2π
+

) ) 
−∞ ∞) (

� − 2π 

τ τ 

) 
(3.34) 

� �� 
� ] 
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The Fourier transform pair in the case of the sum-cosine window is 

π t 3π t 
(1 − 2B) cos + 2B cos

2τ 2τ | t|≤ τ 

F 4�2τ 3(8B − 1) + 3π 2(3 − 8B) 4πτ cos(�τ) ←→ . (3.32)
[16�4τ 4 − 40�2π 2τ 2 + 94π 4] 

The asymptotic attenuation of side lobes for large � is given by � π(8
�

B
2 
− 1) . 

The distinct feature of the sum-cosine window is its simple form (similar 
to that of the Hamming window). From the plots of Figure 3.6(b) and the 
corresponding results given in Table 3.1, it is clear that further modifications 
to Equation 3.31 to include more side lobes still yields a value of B = 0.103. 
For this family of windows, the side-lobe fall-off rate in both the cases is 

�

1
2 , 

which is better than the rectangular window, but not as good as the cos3(x) 

window discussed earlier. The performance comparison of this window with 
the near-optimum window is done in Section 3.5 of this chapter. 

3.3.9 Cos4(x) Window 

It should be noted that this window is the product of two Hann windows [2]. 
Therefore, the cos4(x) window (see Figure 3.7) is defined by 

The plots for this window function are shown in Figure 3.7. The side lobes 
fall at a rate of 

�

1
5 from the main lobe. However, the FSLL of this window is 

only about − 47 dB and the NHMLW is 1.5. 
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FIGURE 3.7 
Cos4

(x) Window (time- and frequency-domain plots). 

3.3.10 Raised-Cosine Family 

The normalized main-lobe widths of the synthesized window functions 
[5,7] detailed below fall in between those of the Hamming and sum-cosine 
windows. This family of window functions is defined as 

⎧ 
(1 − 2D) π t 2π t ⎪ ⎨ 1 + cos + 2D cos , |t| ≤ τ

2 τ τf (t) = (3.35) ⎪ ⎩0, elsewhere, 

with its Fourier representation given by the expression 

⎡ ⎤ (( ) ) (( ) )
sin (�τ) (1 − 2D) ⎢ sin � + π

τ 
τ sin � − π

τ 
τ ⎥F(j�) = (1 − 2D) + ⎣ ( ) + ( ) ⎦π� 2 � + π 

τ � − 
τ (( ) ) (( ) )

sin � + 2π τ sin � − 2π τ+ 2D ( τ ) + ( τ ) , −∞ < � <  ∞. 
� + 2π � − 2π 

τ τ 

(3.36) 

The raised-cosine set of windows [7] is synthesized by adopting a procedure 
similar to the one presented in Section 3.3.8 (for the sum-cosine window) and 
is detailed below: 



 

  

  

� 

� 

� 

[ �] [ �] 

Consider the rectangular window 

1, |t| ≤ τ
fr (t) = (3.37)

0, elsewhere 

and the raised-cosine (Hann) window 

⎧ 
π t ⎨0.5 + 0.5 cos , |t| ≤ τ 

frc(t) = τ (3.38) ⎩0, elsewhere 

whose Fourier transforms, respectively, are given by 

2 sin(�τ) 
Fr (j�) = , −∞ < � <  ∞. (3.39) 

and 

(( ) ) (( ) )
sin(�τ) sin � + π

τ 
τ sin � − π

τ 
τ

Frc (j�) = + 0.5 ( ) + ( ) , 
� � + π � − π 

τ τ 

− ∞  < � <  ∞. (3.40) 

Consider Figure 3.8, which shows the scaled and shifted waveforms of 
(j�), DFr(j(� + 2π )) and DFr (j(� − 2π )) [5]. Here, A and D are realAFrc τ τ 

constants. Adding these terms, we obtain 

2π 2π
Frcf (j�) = AFrc(j�) + DFr j � + + DFr j � − , (3.41)

τ τ 
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FIGURE 3.8 
Fourier transforms of raised-cosine and rectangular windows. 
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whose inverse Fourier transform can be shown to be 

A π t 2π t
frcf (t) = 1 + cos + 2D cos , | t| ≤ τ . (3.42)

2 τ τ 

By restricting the function frcf (t) to be unity at the origin (i.e., (A + 2D) = 1), 
which is in accordance with the basic properties of windows, we slightly 
modify Equation 3.42 as follows: 

π t 2π t
frcf (t) = (0.5 − D) 1 + cos + 2D cos , | t| ≤ τ . (3.43)

τ τ 

We now need a scheme to choose an optimum value of D [5]. Let φ be 
the NHMLW of the window to be synthesized. Select D in Equation 3.43 in 
accordance with the following set of conditions [5]. Let Frcf (j�) be the Fourier 
transform of frcf (t). 

i. The difference between the first zero of Frcf (j�) and φ is less than a 
small specified value δ. 

ii.
 
Frcf (0)
 = Maximum, (3.44)

Frcf (j�p) 

(
5π 

)
where Frcf (j�p) is the peak magnitude of Frcf (j�) in the interval φ, 

τ 
. 

Using numerical techniques, the values of D are determined for the nor­
malized values of φ = 1.10, 1.15, 1.20, and 1.245 (while δ = 0.005) [5]. This 
set of windows is named as raised-cosine family, since one of the func­
tions used is the raised-cosine pulse. The plots of Figures 3.9(a) through (d) 
depict the normalized magnitudes of the Fourier transforms of raised-cosine 
family for four different values D = 0.0113, 0.0138, 0.0155, and 0.0165, respec­
tively, together with their corresponding normalized time functions. For the 
above-mentioned values of D, the NHMLW are 1.10, 1.15, 1.20, and 1.245, 
respectively. 

The Fourier transform pair of this family of window is given as follows: 

π t 2π t 
(0.5 − D) 1 + cos + 2D cos 

τ τ | t|≤ τ 

F 4π 4(1 − 2D) − π 2�2τ 2(1 + 2D) + 4D�4τ 4 sin(�τ) ←→ . (3.45)
�(�4τ 4 − 5π 2�2τ 2 + 4π 4) 

(
4D 

)
The asymptotic attenuation of F(j�) for large values of � is given by 

� 
. 

From Equation 3.43, it is clear that the Hann window is a special case of 
the raised-cosine family when D = 0. The above family of windows, apart 
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FIGURE 3.9 
Raised-cosine window family (time- and frequency-domain plots). (a) Raised-cosine window 
with D = 0.0113. (b) Raised-cosine window with D = 0.0138. 

from being simple in form, has the slight advantage of obtaining a variable 
main-lobe width (though to a limited extent) by choosing different values of 
the constant D. A comparison of how this family of windows performs with 
respect to the near-optimum window family is made in Section 3.5. 
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f (t) = 

⎧ ⎨0.42 + 0.5 cos 
π t 
τ 

� 
+ 0.08 cos 

2π t 
τ 

� 
, |t| ≤ τ 

(3.46) ⎩0, elsewhere 
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FIGURE 3.9 
(Continued). Raised-cosine window family (time- and frequency-domain plots). (c) Raised-cosine 
window with D = 0.0155. (d) Raised-cosine window with D = 0.0165. 

3.3.11 Blackman Window 

The Blackman window [1,2] is defined by the following Fourier transforma­
tion pair: 



  

  

   

 

� �� 

� 

and 

[ ] (( ) ) (( ) )
sin(�τ) sin � + π τ sin � − π τ

F(j�) = 0.84 + 0.5 ( τ ) + ( τ )
� � + π � − π 

τ τ (( ) ) (( ) )
sin � + 2π τ sin � − 2π τ+ 0.08 ( τ ) + ( τ ) , −∞ < � <  ∞. 

� + 2π � − 2π 

τ τ 

(3.47) 

The Fourier transform pair of the Blackman window can be given as follows: 

π t 2π t
0.42 + 0.5 cos + 0.08 cos 

τ τ |t|≤τ 

F (3.36π 4 − 0.36π 2�2τ 2) sin(�τ) ←→ . (3.48)
�(�4τ 4 − 5π 2�2τ 2 + 4π 4) 

0.36π 2 

Therefore, F(j�) � as � → ∞. The plots for this window are shown 
�3τ 2 

in Figure 3.10(a). We note here that the MSLL of this window is as low as 0.001 
of the main-lobe peak (which is about −60 dB). The side-lobe fall-off rate is 

�

1
3 

(see Equation 3.48). However, the main-lobe width of this window is thrice 
that of the rectangular window. This window can be considered as a special 
case of the cos4(x) window which was described in Section 3.3.9. 

  

  � � 

3.3.12 Optimized Blackman Window 

It can be seen that the window function described in Section 3.3.11 has not been 
optimized. We discuss the optimization procedure here [5,8]. A generalized 
form of the Blackman window [1,2] can be represented by 

f (t) = 

⎧ ⎪ ⎨A + 2B cos 
π t 
τ 

� 
+ 2C cos 

2π t 
τ 

� 
, |t| ≤ τ 

(3.49) ⎪ ⎩0, elsewhere 

where A, B, and C are real constants. Restricting the function to be unity at 
the origin, but keeping the constant B = 0.25, Equation 3.49 gives 

π t 2π t
f (t) = (0.5 − 2C) + 0.5 cos + 2C cos , |t| ≤ τ (3.50)

τ τ 
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whose Fourier transform is (( ) ) (( ) )
sin(�τ) sin � + π

τ 
τ sin � − π

τ 
τ

F(j�) = (1 − 4C) + 0.5 ( ) + ( )
� � + π � − π 

τ τ (( ) ) (( ) )
sin � + 2π τ sin � − 2π τ+ 2C ( τ ) + ( τ ) , −∞ < � <  ∞. 

� + 2π � − 2π 

τ τ 

(3.51) 
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2

FIGURE 3.10 
Blackman window functions (time- and frequency-domain plots). (a) Blackman window. (b) 
Optimized Blackman window. 



    
    

 
  

⎧ ⎪ ⎪0.35875 + 0.48829 cos 
π t ⎪ ⎪ ⎪ τ ⎪ 

� 
⎨ 

f (t) = ⎪ ⎪ ⎪ +0.14128 cos 
2π t 
τ 

� 
+ 0.01168 cos 

3π t 
τ 

� 
, |t| ≤ τ (3.53) 

⎪ ⎪ ⎪ ⎩0, elsewhere 

whose Fourier transform is given by the expression 

[ ]
sin(�τ) sin ((� + π/τ)τ) sin ((� − π/τ)τ) 

F(j�) = 0.7175 + 0.48829 + 
� (� + π/τ) (� − π/τ) [ ]

sin ((� + 2π/τ)τ) sin ((� − 2π/τ)τ)+ 0.14128 + 
(� + 2π/τ) (� − 2π/τ) 
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We set the coefficient B = 0.25 (which is the same as in the case of the 
Blackman window) itself, since it is easier to implement this coefficient in 
the frequency-domain [5]. The implementation of windows is discussed in 
Chapter 6. The optimization of the constant C is performed, such that the 
ratio 

F(0) = Maximum, (3.52)
F(j�1) 

where F(j�1) is the peak magnitude of the first side lobe [5]. Using numerical 
techniques, the value of C was found to be 0.044, which satisfies Equation 3.52. 
The important parameters of the Blackman and the optimized Blackman 
windows are provided in Table 3.1. Figure 3.10(b) shows the plots of the nor­
malized log-magnitude of F(j�) as a function of the normalized frequency, 
along with the normalized time function of the window. 

The results given in Table 3.1 show that the new coefficients of the opti­
mized Blackman window yield about 10 dB improvement in the FSLL and 
4.5 dB improvement in the MSLL, over that of the Blackman window. How­
ever, the main-lobe width remains the same as in the case of the Blackman 
window. Therefore, if an application demands immediate side-lobe rejection, 
this optimized window offers a better solution. 

3.3.13 Blackman–Harris Window 

The Blackman–Harris window [2] is defined as the sum of four terms (as 
against three terms in the Blackman window). It is described below: 
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FIGURE 3.11 
Blackman–Harris window function (time- and frequency-domain plots). 

[ ]
sin ((� + 3π/τ)τ) sin ((� − 3π/τ)τ) + 0.01168 + , 

(� + 3π/τ) (� − 3π/τ) 

− ∞ < � <  ∞. (3.54) 

This window achieves a trade-off between the main-lobe width and the side 
lobe level. It exhibits side lobes just shy of −92 dB from the main lobe. How­
ever, the main-lobe width of this window is four times that of the rectangular 
window, while the side lobes fall at the same rate as the original Black-
man window (in Section 3.3.11). The reader can refer to Figure 3.11 for the 
corresponding plots. 

3.3.14 Parabolic Window 

The parabolic window [2] is similar to the cosine lobe discussed in Section 
3.3.3. This window has the time-domain form 

⎧ �2 ⎪ |t|⎨1 − , |t| ≤ τ 
f (t) = τ (3.55) ⎪ ⎩

0, elsewhere 



 

    
     

  
f (t) = 

⎧ ⎪ ⎨ 1 
π 

sin 
π t 
τ 

� 
+ 1 − 

|t|
τ 

� 
cos 

π t 
τ 

� 
, |t| ≤ τ 

(3.57) ⎪ ⎩0, elsewhere 

whose Fourier transform yields the following optimum spectral window: 

(1 + cos �τ) 
F(j�) = 4π 2τ , −∞ < � <  ∞. (3.58)

(π 2 − �2τ 2)2 

 

� 

� 
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and the corresponding spectral window is given by 

4τ sin (�τ) 
F(j�) = − cos (�τ). (3.56)

(�τ)2 �τ 

This exhibits a discontinuous first derivative at the boundaries (see Section 
3.4). Owing to this property, its transform has a fall-off side-lobe rate of the 
order of 1/�2 only (see Equation 3.56). The FSLL of this window is about 
−22 dB from the main-lobe peak (see Figure 3.12(a)). 

3.3.15 Papoulis Window 

The time-limited function of the Papoulis window [9] is represented by 

In our context, the “optimum” window is meant in the sense that it has 
the largest energy content in the main lobe of its Fourier transform (simi­
lar to Kaiser’s modified zeroth-order Bessel window function family, to be 
discussed in Section 3.3.19), while the side lobes contain less energy. The 
main-lobe width of this window is almost the same as that of the Blackman 
window. The FSLL of this window is −46 dB. Nevertheless, the side lobes fall 

4π 2 

at a much faster rate of 
�

1
4 (since F(j�) � 

�4τ 3 
, as  � → ∞) than in any 

other case, as can be observed from Figure 3.12(b). 

3.3.16 Tukey Window 

This is also known as the cosine-tapered window and can be expressed as 
a cosine-lobe convolved with a rectangular window. This window [10] is 
defined as 

⎧ ⎪1, |t| ≤ βτ ⎪ ⎪ ⎪ ⎨ π(|t| − βτ) 
f (t) = 0.5 + 0.5 cos , βτ ≤ |t| ≤ τ (3.59) ⎪ (1 − β)τ ⎪ ⎪ ⎪ ⎩

0, elsewhere. 
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FIGURE 3.12 
Window functions (time- and frequency-domain plots). (a) Parabolic window. (b) Papoulis 
window. 

The resultant Fourier transform is consequently the product of two individual 
transforms given below: 

sin [�(1 + β)/2] cos [�(1 − β)/2]
F(j�) = . (3.60)

� [1 − (1 − β)2(�/π)2] 

This window represents an attempt to smoothly set the data to zero at the 
boundaries (see Figure 3.13). The value of β used in both the time- and 
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 � 

3.3.17 Parzen (Jackson) Window 

The Parzen window [10] function is defined in three different ranges and is 
presented as follows: 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 1 − 6 
|t|
τ 

�2 

1 − 
|t|
τ 

� 
, |t| ≤ 

τ 

2 
f (t) = ⎪ ⎪ ⎪ 2 1 − 

|t|
τ 

�3 

, ⎪ ⎪ ⎩0, 

Its Fourier transform can be shown to be 

( ) 4 
3τ 4sin �τ 

F(j�) = 
�τ 

,
4 4 

τ (3.61)≤ |t| ≤ τ
2 
elsewhere. 

−∞ < � <  ∞. (3.62) 

The NHMLW of this window is two, which is four times that of the rect­
1 192

angular window. The side-lobe fall-off rate is 
�4 (since F(j�) � 

�4τ 3 
as 
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FIGURE 3.13 
Tukey window function (time- and frequency-domain plots, with β = 0.5). 

frequency-domain plots is 0.5. The window evolves from the rectangular to 
the Hann window, as the parameter β varies from zero to unity (0 ≤ β ≤ 1) 
(Figure 3.13). 
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FIGURE 3.14 
Parzen window function (time- and frequency-domain plots). 

� → ∞), similar to the Papoulis window discussed in Section 3.3.15 (see Fig­
ures 3.12(b) and 3.14 for details). Since the side-lobe fall-off rate of the Parzen 
window is quite rapid, we cannot observe other side lobes (beyond the first) 
in Figure 3.14. It is a nonnegative window and it is similar to the Bartlett 
window by virtue of its self-convolution construction. 

3.3.18 Dolph–Chebyshev Window 

The class of window functions with the minimum main-lobe width for a given 
side-lobe amplitude is known as the continuous-time Dolph–Chebyshev 
weighting functions [11]. The Fourier transform of the weights is chosen to 
be the Dolph–Chebyshev function given by 

cos π�
F(j�) = cos P cos−1 , (3.63)

cos πB/2 

where � is the normalized frequency, such that |�| ≤ 1/2. Then the side lobes 
of the Fourier transform of any sine wave in the input will be minimax [12]. In 
Equation 3.63, P is one less than the number of weights and B is the normal­
ized bandwidth [13]. The discrete-time Dolph–Chebyshev window function 
is discussed in Chapter 5 (Section 5.2.23). 



 

 

� ⎡ ⎤ ⎧ �2 

f (t) = 

⎪ ⎪ ⎪ ⎪ ⎨ 
⎪ ⎪ ⎪ ⎪ 

I0 ⎣α 1 − 

I0(α) 

t 
τ 

⎦ 
, |t| ≤ τ 

(3.65) 

⎩
0, elsewhere 

and [ J ( )2
]

sinh α 1 − � 

α 

F(j�) = J ( )2
, −∞ < � <  ∞, (3.66) 

(sinh α) 1 − �

α 

where I0(x) is the modified zeroth-order Bessel function of the first kind and 
α is a variable parameter. The function I0(x) can be generated by means of the 
rapidly convergent series approximation: 

∞ [ ( )k 
]21 x

I0(x) = 1 + . (3.67)
k! 2 

k=1 

In practice, we require no more than 15–25 terms of this series. It can be 
shown that by adjusting the parameter α within the usual range of 4 ≤ α ≤ 9 
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3.3.19 Kaiser’s Modified Zeroth-Order Bessel Window Function Family 

Optimum window function: The function f (t), whose CTFT is F(j�) that max­
imizes the energy inside some selected frequency interval (−�1, �1) with 
respect to the total energy can be represented by 

��1 

|F(j�)|2d� 

�−
∞ 
�1 = Maximum. (3.64) 

|F(j�)|2d� 
−∞

Such a function f (t) is called the optimum window function. A window which 
obeys such a condition was derived by Slepian and Pollak (1961) and is called 
prolate-spheroidal wave function [14]. However, the two sets of modified Bessel 
window function families, namely, the modified zeroth-order (this section) 
and the modified first-order Kaiser–Bessel (Section 3.3.20), are simple approx­
imations to these quite complicated functions. These windows were proposed 
by Kaiser [15] and are described in this section and the next. 

Kaiser has introduced a set of windows that are relatively simple but closely 
approximate the zeroth-order prolate-spheroidal wave functions [14], which 
are known to be optimum spectral windows. The two sets of Kaiser windows 
described here and in Section 3.3.20 are known to be near-optimum. The first 
family of time-limited functions suggested by Kaiser is given by the Fourier 
transform pair [15] 
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3.3.20 Kaiser’s Modified First-Order Bessel Window Function Family 

The second set of windows again propounded by Kaiser [15] is given by the 
time function 

f (t) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 
⎪ ⎪ ⎪ ⎪ ⎩ 

I1 

[
γ 

J 
1 − 

( 
t 
τ 

)2
] 

I1(γ ) 

J 
1 − 

( 
t 
τ 

)2 
, 

0, 

|t| ≤ τ 

elsewhere, 

(3.68) 
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FIGURE 3.15 
Dolph–Chebyshev window (time- and frequency-domain plots). 

for optimum results, the side-lobe levels can be minimized at the expense of 
the main-lobe widths [15–17]. The above-mentioned choice of α values corre­
spond to a range of maximum side-lobe amplitudes of about 30 dB down to 
67 dB, with respect to the main-lobe peak. We have provided the plots for this 
window family for two different values of α (see Figure 3.16). For this family of 
windows, the side-lobes fall at a rate of −6dB/octave. The figures presented 
give an idea of how the behavior of the window parameters changes with 
the α values. Since the modified zeroth-order Bessel window family closely 
approximates the zeroth-order prolate-spheroidal wave functions (which are 
proven to be optimum) the zeroth-order Bessel family is also called the near-
optimum window function family. However, the computational complexity of 
the modified zeroth-order Bessel function is relatively low, when compared 
to prolate-spheroidal wave functions [15]. The results of this window function 
family are summarized in Table 3.2. 
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  � 
and its corresponding Fourier transform is given by 

( )2 

cosh γ 1 − � − cos �τ 
γ 

F(j�) = , −∞ < � <  ∞. (3.69)
(cosh γ − 1) 
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FIGURE 3.16 
Window functions (time- and frequency-domain plots). (a) Modified Bessel window of zeroth-
order with α = 5.4413981. (b) Modified Bessel window of zeroth-order with α = 6.5. 



 
Here, I1(x) represents the modified first-order Bessel function of the first kind 
and it is defined as 

I1(x) = 
∞ 

m=0 

1 
m!(m + 1)! 

(x 
2 

)2m+1 

. (3.70) 
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TABLE 3.2 

Parameters of Kaiser’s Modified Zeroth-Order Bessel Family 

Normalized Ratio of Main-Lobe 

Half Main-Lobe First Side-Lobe Maximum Side-Lobe Energy to 

α Value Width (NHMLW) Level (FSLL) (dB) Level (MSLL) (dB) Total Energy (MLE) 

5 0.94 −36.73 −36.73 0.999741√ 
π 3 1.0 −39.79 −39.79 0.999881 
6 1.078 −43.82 −43.82 0.999956√ 
π 3.84 1.100 −44.93 −44.93 0.9999654 
6.5 1.149 −47.44 −47.44 0.999982√ 
π 4.29 1.150 −47.49 −47.49 0.9999819√ 
π 4.76 1.200 −50.07 −50.07 0.9999894 
7 1.221 −51.15 −51.15 0.999993√ 
π 5.25 1.250 −52.62 −52.62 0.9999944 
7.5 1.294 −54.93 −54.93 0.999997 
8 1.368 −58.67 −58.67 0.9999989 
8.5 1.442 −62.55 −62.55 0.99999996 

Again, the side lobes can be varied by choosing different values of the win­
dow function parameter, γ [15]. The time- and frequency-domain plots of the 
first-order Kaiser–Bessel family for two different values of γ are shown in 
Figure 3.17. However, of the two families proposed by Kaiser, the modified 
zeroth-order Bessel family is closer to the optimum zeroth-order prolate-
spheroidal wave functions [14]. The modified first-order Bessel family has the 
slight advantage of smaller first side lobes when compared to either zeroth-
order Bessel window family or prolate-spheroidal wave functions, but its 
side-lobe fall-off rate is slower (see Figures 3.16 and 3.17) [15]. These obser­
vations can be easily verified from the plots given in Figures 3.16 and 3.17 as 
well as from Tables 3.2 and 3.3. 

3.4 Rate of Fall-Off Side-Lobe Level 

This is one of the vital parameters associated with the Fourier transform of a 
window in detecting weak harmonics. A theorem relating the time function 
f (t) and the RFSLL is stated and proved in the next section. 
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FIGURE 3.17 
Window functions (time- and frequency-domain plots). (a) Modified Bessel window of first-order 
with γ = 6.1296883. (b) Modified Bessel window of first-order with γ = 8.0451893. 

3.4.1 Theorem 

If the time function of a window f (t) is continuous and bounded for the first 
n derivatives, then its side lobes will fall off at the rate of 

�n
1 
+1 [18]. 



� 
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TABLE 3.3 

Parameters of Kaiser’s Modified First-Order Bessel Family 

Normalized Ratio of Main-Lobe 

Half Main-Lobe First Side-Lobe Maximum Side-Lobe Energy to 

γ Width Level (FSLL) Level (MSLL) Total Energy 

Value (NHMLW) (dB) (dB) (MLE) 

6.129688 0.976 −41.84 −41.79 0.999789 
6.565842 1.046 −46.91 −45.14 0.999902 
7.103980 1.139 −54.43 −49.67 0.999962 
7.576740 1.227 −62.67 −54.05 0.999984 
8.045189 1.320 −58.86 −57.88 0.999993 
8.513068 1.418 −64.25 −61.93 0.999997 
8.983568 1.511 −70.54 −66.08 0.9999986 
9.458593 1.567 −78.21 −70.12 0.9999993 

Proof: 

This theorem can be proved for the first derivative and can be extended to 
higher derivatives using the Fourier transform properties. If a function f (t) 
of bounded variation is Riemann integrable, then its transform F(j�) falls at 
least as fast as 1 . 

� τ 

F(j�) = f (t)e−j�t dt 
−τ � τ � τ 

= f (t) cos(�t) dt − j f (t) sin(�t) dt. (3.71) 
−τ −τ 

If f (t) is a monotonically increasing (or decreasing) function, then 

� b � � bε 

f (t)g(t) dt = f (a) g(t) dt + f (b) g(t) dt, (3.72) 
a a ε 

where g(t) can be any arbitrary function. The window function f (t) can be 
written as the difference of two monotonically increasing functions, f1(t) 
and f2(t) as depicted in Figure 3.18. Hence, all the windows will satisfy 

τ τ τ−τ −τ −τt t t 

= – 

f (t) f1(t) f2(t) 

FIGURE 3.18 
Decomposition of a window function into two monotonically increasing functions. 



    
        

    

    
    

    
    

  

 

� � �

�τEquation 3.72. We consider only the first term, that is, −τ 
f (t) cos(�t) dt of 

Equation 3.71. Using Equation 3.72, we can rewrite the first term as 

τ ε τ 

f1(t) cos(�t) dt = f1(−τ)  cos(�t) dt + f1(τ ) cos(�t) dt (3.73) 
−τ −τ ε � β | sin(�α) − sin(�β)| 2 

cos(�t)dt = ≤ (3.74) 
α |�| |�| � τ 4M

f1(t) cos(�t)dt ≤ , where M = max{f1(−τ), f1(τ )}. (3.75) 
−τ |�|

Now, considering both f1(t) and f2(t), we obtain 

� τ 4M 
f (t) cos(�t)dt ≤ , where M = max{f1(−τ), f1(τ ), f2(−τ), f2(τ )}. 

−τ |�|
(3.76) 

Following a similar approach for the second term with sin(�t), we obtain 

� τ 4M
f (t) sin(�t)dt ≤ . (3.77) 

−τ |�| 
From Equations 3.76 and 3.77, it is clear that F(j�) falls at least as fast as 

� 

1 . 
If the first derivative is bounded, then f (1)(t) falls at the rate of 

� 

1 , which 
in turn implies that F(j�) falls at the rate of 

�

1
2 (since the Fourier transform 

of f (1)(t) is j�F(j�)). Therefore, if the function f (t) and its n derivatives are 
of bounded variation, then the above procedure can be repeated upto the 
nth derivative to obtain F(j�), which tends to zero at least as fast as 

�n
1 
+1 , as  

|�| → ∞. 

3.4.2 Side-Lobe Fall-Off Rate in the Time-domain 

We now look at the computation of side-lobe fall-off rate in the time-
domain [19]. The continuous-time version of a generalized window function 
of interest sometimes can be expressed in a generalized form as 

K 
πkt 

� 
f (t) = akcos , |t| ≤ τ (3.78)

τ 
k=0 

where ak represents real constants. Without the loss of generality, f (0) can be 
set to be unity. In such a case, all the coefficients of a window will add up to 
unity as follows: 

K 

ak = 1. (3.79) 
k=0 
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 � 

We find from Equation 3.78 that 

K 

f (±τ)  = lim f (t) = (−1)kak . (3.80)
|t|→τ 

k=0 

If f (±τ) is nonzero, then the weighting function f (t) is said to be discontinuous 
at t = ±τ and hence the asymptotic decay rate of F(j�) will be according to 

� 

1 for large �. Conversely, if Equation 3.80 is zero, then f (t) is continuous for 
all t. Furthermore, f (1)(t) is continuous for all t, since we have 

π 
K 

πkt 
� 

f (1)(t) = −  kak sin , |t| < τ , (3.81)
τ τ 

k=0 

and 

f (1)lim (t) = 0; f (1)(t) = 0, |t| > τ . (3.82)
|t|→τ 

Thus, when the weighting function values f (±τ)  in Equation 3.80 are zero, 
f (t) and f (1)(t) are both continuous for all t. 

However, f (2)(t) may not be continuous at t = ±τ . Therefore, we have from 
Equation 3.81 that 

π 2 K � 
πkt

f (2)(t) = −  k2ak cos , |t| < τ , (3.83)
τ 2 τ 

k=0 

and 

lim f (2)(t) = −  
π

τ 2

2 K 

(−1)kk2ak . (3.84)
|t|→τ 

k=0 

If Equation 3.84 is not zero, then f (2)(t) is discontinuous at t = ±τ and F(j�) 

will decay as 
�

1
3 , for large values of �. However, if Equation 3.84 is zero, then 

f (2)(t) is continuous for all t, and it follows that f (3)(t) is continuous for all t. 
Consequently, F(j�) decays at least as quick as 

�

1
5 for large �, following the 

arguments presented above (similar to Equation 3.84). The side-lobe fall-off 
rate calculations for the Hamming and Hann windows using this method are 
presented below: 

Hamming Window: The Hamming window is defined as 

⎧ 
π t ⎨0.54 + 0.46 cos , |t| ≤ τ 

f (t) = τ . ⎩0, otherwise 
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Comparing Equation 3.78 with the Hamming window definition, we get 

K = 1, a0 = 0.54 and a1 = 0.46 

The weighting function value at t = ±τ can be calculated using Equa­
tion 3.80 as 

f (±τ)  = lim f (t) = a0 − a1 = 0.08. (3.85)
|t|→τ 

The Hamming window has nonzero value at t = ±τ . Therefore, its side lobes 
decay at the rate of 

� 

1 (i.e., −6 dB/octave) only. 

Hann Window: As defined previously, the Hann window function is given by 

⎧ 
π t ⎨0.5 + 0.5 cos , |t| ≤ τ 

f (t) = τ . ⎩0, otherwise 

The coefficients a0 and a1 in this case are 0.5 (see Equation 3.78). 
Using Equation 3.80, we can calculate f (t) at t = ±τ as 

f (±τ)  = lim = a0 − a1 = 0. (3.86)
|t|→τ 

Hence the Hann window is continuous at the boundaries. 
From Equations 3.81 and 3.82, we saw that the first derivative f (1)(t) con­

tains only sine terms and is equal to zero at t = ±τ . Therefore, f (1)(t) is also 
continuous. 
At t = ±τ , the second derivative values can be found using Equation 3.84 as 
follows: 

π 2 K 
π 2 

f (2) (−1)kk2(±τ)  = −  ak = . (3.87)
τ 2 2τ 2 

k=0 

f (2)(t) is nonzero at t = ±τ , and therefore its side lobes decay at 
�

1
3 

(−18 dB/octave). 

3.5 Comparison of Windows 

We can now proceed to compare the various windows based on their param­
eters such as FSLL, MSLL, NHMLW, the ratio of the main-lobe energy to the 
total energy (MLE), and the RFSLL. The half main-lobe width refers to the 
width of half the central lobe of the Fourier transform of the window. Since a 
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window is real and even, its Fourier transform is also real and even. For any 
comparison to be meaningful, it would be appropriate if one of the parame­
ters of the window is kept constant. Hence, we can use the NHMLW for the 
purpose of comparison. The ratio of the peak of the FSLL to that of the main 
lobe is yet another useful parameter. The magnitude of this ratio is referred 
to as the FSLL. MSLL refers to the ratio between the maximum of the peak 
magnitudes of all side lobes and the absolute value of the main-lobe peak 
itself. While the NHMLW is dimensionless (since it is normalized), the MSLL 

F(j�)and the FSLL are expressed in decibels (dB), that is 20 log10 F(0) 
. 

The above-mentioned parameters are computed for almost all the windows 
described in the previous section and are listed in Tables 3.1 through 3.3. To 
make a proper comparison among different windows, it is necessary to keep 
the main-lobe widths of the windows the same. We now provide a detailed 
analysis of the parameters of some interesting windows. Since the modified 
zeroth-order Bessel windows with variable parameters are near-optimum, it 
is only natural to compare all the other windows with this family. 

To find the value of α corresponding to a particular value of the NHMLW, 
the following relationship has been arrived at by the author of this mono­
graph, given by 

α2 = (�2 − π 2) (3.88) 

where � = 2πY and Y is the required NHMLW. Therefore, to obtain the 
value of α for Y = 1 (NHMLW for the Hann or Hamming case), the value √ 
of α2 = (2πY)2 − π 2 = (4π 2 − π 2) = 3π 2 or α = π 3 = 5.4413981. On sim­√ 
ilar lines, for an NHMLW, y = 1.5, the value of α = (2π × 1.5)2 − π 2 = √ √ √ 

9π 2 − π 2 = 8π 2 = π 8. Therefore, considering the Hamming window 
and the modified zeroth-order Bessel window with α = 5.4413981, we find 
that both have the same NHMLW of unity (refer Figures 3.3(b) and 3.16(a)). 
The NHMLWs of the Hann, Hamming, and modified zeroth-order Bessel fam­
ily with α = 5.4413981 can be verified from Figures 3.2(b), 3.3(b), and 3.16(a), 
respectively. From Tables 3.1 and 3.2, it is clear that the Hamming window 
yields the lowest FSLL and the lowest MSLL than that of the correspond­
ing modified zeroth-order Bessel or Hann window. However, by observing 
the plots of Figures 3.3(b) and Figure 3.16(a), for the Hamming and zeroth-
order Bessel window with α = 5.4413981, respectively, it is seen that Kaiser’s 
window has lower side-lobe peaks from the third lobe onwards. In contrast, 
the Hamming window (omitting the first two side lobes), continues to oscil­
late approximately sinusoidally, with slowly diminishing amplitudes. On the 
other hand, the amplitudes of the side lobes of Kaiser’s modified zeroth-order 
Bessel window diminish much more rapidly. The large main-lobe energy of 
Kaiser’s window explains this faster fall-off rate of the side lobes. Further, it 
can be shown that the RSFLL is 

� 

1 for both the Hamming and Kaiser’s zeroth-
order Bessel family. However, in the case of the Hann window, the FSLL is 
only about −31.5 dB, which is also the MSLL, while the rate of fall-off for 



125 Review of Window Functions 

the side lobes is 1 
3 �

(refer Figure 3.2(b)). This rate of fall-off side lobes is much 
faster than either the Hamming or modified zeroth-order Bessel window with √ 
α = π 3. Kaiser et al. have considered the use of the I0−sinh window family 
for spectral analysis and non-recursive digital filter design, respectively, in 
Refs. [16,17]. 

To determine how good the synthesized sum-cosine windows are, we com­
pare them with Kaiser’s near-optimum modified zeroth-order Bessel family. 
For a meaningful comparison, we choose the parameter α, such that the 
NHMLW of the Bessel window is also the same as that of the  sum-cosine 
window, which is equal to 1.25. It can be shown that α

√= π 5.25 yields an 
NHMLW of 1.25 for the modified zeroth-order Bessel window. The impor­
tant parameters of the sum-cosine window and the Bessel window are given 
in Tables 3.1 and 3.2, respectively. The results show that the FSLL of the sum-
cosine window, with B = 0.100, is 6 dB lower than that of Kaiser’s window, 
whereas the MSLL remains almost the same in both the cases. However, 
the main-lobe energy of the sum-cosine window is slightly smaller than 
that of Kaiser’s zeroth-order Bessel window, but the difference is only about 
0.00078%. Therefore, the energy ratios indicate that the side lobes of the mod­
ified zeroth-order Bessel window fall almost at the same rate as those of 
the sum-cosine windows. It is also seen that the sum-cosine window (with 
B = 0.103) yields an improvement of nearly 1.5 dB in the FSLL (which is also 
equal to the MSLL in this case) over that of Kaiser’s window. Nevertheless, 
the difference in the main-lobe energies is about the same as before. 

To compare the performance of the raised-cosine family of windows with 
those of Kaiser’s modified zeroth-order Bessel windows, the values of α are 
determined such that the NHMLW are 1.10, 1.15, 1.20, and 1.25. The important 
parameters of the raised-cosine family and the Bessel windows are listed in 
Tables 3.1 and 3.2, respectively. These results show that the raised-cosine 
family of windows yield about 4–9 dB improvement in the FSLL and the 
improvement in the MSLL varies from +2.8 dB to −0.85 dB, when compared 
to Kaiser’s windows. However, the window with D = 0.0113 yields a loss of 
about 3 dB in both cases. The energy ratios indicate that the energy in the 
main lobe of the modified zeroth-order Bessel window is only slightly larger 
than that of the corresponding windows of the raised-cosine family (about 
0.005%). This is similar to the case of the Hamming window, that is, the main-
lobe energy of the Hamming window is less than that of the corresponding 
Kaiser–Bessel window. 

Table 3.3 provides similar parameters for the modified first-order Bessel 
family of windows for different values of γ . The author has also developed a 
mathematical relationship to obtai√n the value of for a specified NHMLW.  γ

It is given by the relation γ = 2π 2Y − 1, where Y is the required NHMLW. 
We consider two cases: (i) for an NHMLW  of 1, the value of γ

γ

= 2π , (ii) 
for an NHMLW of 1.5, the value of is 2 

√
2π (γ = 8.885765). As discussed 

earlier, for the same value of the NHMLW, this family of windows has the 
slight advantage of having lower FSLL than the corresponding zeroth-order 
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Bessel window family, but the RFSLL is slower. Besides, the computational 
complexity of the first-order Bessel family is much higher than the modified 
zeroth-order Bessel family of windows. To conclude, from the basic compar­
ison presented in this chapter, we further point out from Table 3.1 that the 
Hann, Hamming, and the truncated Taylor windows belong to the same class 
of window functions. Among these, the Hamming window has the advantage 
of exhibiting the lowest side-lobe levels. 

It is to be noted that the parameters of almost all the window functions 
described in Section 3.3 are given in Tables 3.1 through 3.3 in the increasing 
order of NHMLW. The window functions presented in Table 3.1 are called 
fixed windows, while those presented in Tables 3.2 and 3.3 are called variable 
window function families. 
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4 
Performance Comparison of Data Windows
 

In this chapter, we compute several parameters of a window that are useful 
in choosing a suitable window for particular applications, such as power 
spectral estimation via discrete Fourier transform (DFT) and the design of 
FIR digital filters. A comprehensive comparison of the windows that were 
introduced in Chapter 3 is made based on the computed parameters. All 
the parameters listed are computed using the properties of windows in the 
continuous-time-domain. 

The leakage that occurs in spectral estimation (via DFT) due to the promi­
nent side lobes of the spectral window obviously degrades the accuracy of 
the results. Windows are weighting functions applied to the finite observa­
tion data to reduce the spectral leakage. There are four basic factors that need 
to be considered while choosing a window: (a) resolution or bandwidth, (b) 
stability, (c) leakage, and (d) smoothness. We shall now examine each of them 
in detail. 

(a) Resolution refers to the ability of a spectrum estimate to represent fine 
structures in the frequency properties of the data, such as narrow peaks in 
the spectrum. Owing to the averaging involved in computing a spectrum 
estimate, a narrow peak in the periodogram is spread out into a broader 
peak. The width is roughly an image of the spectral window used in the 
estimate. Note that the width of the suitably defined spectral window is the 
bandwidth of the estimate. If the spectrum of a time series consists of two 
narrow peaks that are closer together than the bandwidth of the estimate 
used, we find that the two narrow peaks overlap, resulting in a single peak 
(which is broader). Thus, the estimate fails to resolve two narrow peaks that 
occur in close proximity to each other in the true spectrum. 

(b) Stability of a spectrum estimate refers to the extent to which the esti­
mates computed from different segments of a series concur, or the extent to 
which irrelevant fine structures in the periodogram are eliminated. Actually, 
resolution and stability are conflicting requirements since a high stabil­
ity requires averaging over many periodograms, whereas this results in a 
reduced resolution. 

(c) As discussed in one of the earlier chapters, leakage occurs because of the 
side lobes in the spectral window. This could be reduced by applying appro­
priate window functions. The smoothness of a spectrum is a less tangible 
property that would add a further conflict in requirements. 

129 
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(d) Smoothing the input observations by a data window has three detrimen­
tal effects on the spectral estimates: 

i. Attenuation of the amplitudes 
ii. Loss of statistical stability 

iii. Loss in bandwidth of analysis 

It is well known that applying windows on the data tapers the amplitude 
and thus introduces an attenuation of the spectral estimates [1–6]. A weighting 
factor, known as variance compensation factor (Q), salvages against this loss 
and produces a window that has unit area in the frequency-domain. The 
effective attenuation of the spectrum values due to data smoothing is reduced 
by dividing the spectrum estimates (obtained from DFT) by the compensating 
factor. This can be computed easily (for a specific data window) and the 
procedure to obtain Q is described in the next section. 

The loss of statistical accuracy due to windowing is automatically overcome 
by the cyclic nature of the algorithm [1], as this produces increasingly stable 
estimates. The reduction of bandwidth is unavoidable when applying data 
windows. A measure of this loss can be obtained a priori from the dispersion 
factor (to be defined later) and the frequency resolution is adjusted to provide 
a suitable bandwidth of analysis. 

When a data window is applied, it causes an increase in the bandwidth of 
analysis. This, in turn, reduces the effective length of data over which it is 
applied. Therefore, the period of the data should be enhanced by some factor 
when the leakage is to be reduced and a specific 3 dB frequency has to be main­
tained. The half-power bandwidths of various windows are related to that of 
the rectangular window by means of the 3 dB ratios. These ratios also give a 
measure of the increase in the main-lobe width caused by data smoothing. 

4.1 Definition of Window Parameters 

It is to be noted that all the parameters are defined and computed in the 
continuous-time and continuous-frequency-domains. The important win­
dow parameters (apart from the ones discussed in the previous chapter) in 
the context of performance, following the definitions of Refs. [1–6], are listed 
below: 

i.	 Variance compensation factor (Q): The variance compensation factor 
of a window is computed by the following definition: � τ 

Q = 
1 

f 2(t) dt.	 (4.1)
2τ −τ 

As is evident, this quantity is unity in the case of uniformly 
weighted data window and is less in the case of other windows. 
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The attenuation caused due to data smoothing can be compensated 
by normalizing the spectrum estimates obtained from the DFT by 
the value of the variance compensating factor, Q. 

ii.	 Dispersion factor (η): This factor is defined as follows: 

f 2(t) dt 
η = 

�

[−
τ 

�τ ]2 . (4.2)
1 τ 

f (t) dt
2τ −τ 

It is also known as the equivalent noise bandwidth of the window. 
A study of the dispersion factor indicates that windows that cause 
severe tapering of the data result in a spectral response, which 
has a wider main-lobe width when compared to the rectangular 
window (for which η = 1). However, the side lobes are drastically 
reduced. Therefore, the application of a data window is a judicious 
compromise between the smearing effect caused by the window 
broadening and the leakage suppression that it provides. 

iii.	 Coherent gain (G): The coherent gain factor is defined as 

1 τ 

G = f (t) dt.	 (4.3)
2τ −τ 

Only in the case of a rectangular window, this factor is unity, 
while for all other windows the gain is reduced since the window 
smoothly tapers to zero near the boundaries. This reduction in pro­
portionality is quite vital as it presents a known bias on spectral 
amplitudes. 

iv.	 Total energy (E): The total energy in the time-domain is represented 
by the following definition: 

� τ 

E = f 2(t) dt.	 (4.4) 
−τ 

This parameter is also important since the variance of the smoothed 
spectral estimate depends on E. 

v.	 Major-lobe energy (MLE) content: The MLE content is defined as 
the ratio of the energy contained in the main lobe of the Fourier 
transform of the window to its total energy in the time-domain, 
computed with τ = 1. It also provides an idea of the energy that is 
contained in the side lobes of the Fourier transform of the window. 

vi.	 Half-power bandwidth: This is also known as the 3 dB bandwidth 
and is yet another criterion that we should consider in the win­
dow selection process. It is the width of the window at half-power 
points. This criterion reflects the fact that two equal-strength main 
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lobes that are separated in frequency by an amount less than 
their corresponding 3 dB bandwidths will essentially exhibit a sin­
gle spectral peak, and thus cannot be resolved as two distinct 
peaks. Therefore, this parameter indicates the resolution that can 
be obtained while applying a particular window. 

vii.	 Peak side-lobe level (PSLL) or maximum side-lobe level (MSLL): It rep­
resents the ratio of the peak magnitude of the side lobe to the 
magnitude of the main lobe at zero frequency (DC). This parameter 
is expressed in dB. 

viii. Normalized half-power bandwidth (�BW): This can be defined as 

Half-power bandwidth of the window 
under consideration 

�BW =	 .
Half-power bandwidth of the rectangular window 

ix.	 Normalized half main-lobe width (�W): This ratio is defined as 
follows: 

Main-lobe width of the window under consideration 
�W =	 .

Main-lobe width of the rectangular window 

x.	 6 dB bandwidth. 
xi.	 Rate of fall-off of side-lobe levels (RFSLL). 

xii.	 Degradation loss (L): This is the reciprocal of the dispersion factor, 
which is expressed in dB. 

Note that the half-power bandwidth (�BW), 6 dB bandwidth, MLE content, 
PSLL, normalized half main-lobe width (�W), and RFSLL are all parameters 
concerned with the Fourier transform of the data window. Therefore, these 
parameters are all computed numerically, except for the RFSLL. The pro­
cedure for computing the RFSLL was already detailed in Chapter 3. Other 
parameters such as variance compensation factor (Q), dispersion factor (η), 
coherent gain (G), and total energy (E) can be computed using the expressions 
given in Equations 4.1 through 4.4, respectively. 

4.2 Computation of Window Parameters 

We will now proceed to compute each of the parameters described in 
Equations 4.1 through 4.4 for the truncated Taylor family of windows [2,3] 
considered in the previous chapter. 



The expression for the truncated Taylor family of windows [3] is repro­
duced below: 

(1 + K) (1 t
( ) 

− K)= cos | ≤ τ . (4.5)
2

+
 

π
f t

� 
, |t

2 τ 

From the definition of the variance compensation factor given in Equation 4.1, 
we obtain 

1 
� τ 

[
(1 + K) (1 K 2

(Q)TTF 
− )= cos dt. (4.6)

2τ τ 2
+

 
π t 

2 τ −

�]

Expanding Equation 4.6, we obtain 

 
1 

[
1 

(Q)TTF 

� τ + K 2 (1 ) ( − K 2) 2 

2τ −τ 

 
π t =

4
+ cos

4 τ 

� 

(1 + K)(1 − K)+ cos 
2 

 
π t 

�] 
dt. (4.7)

τ 

Using trigonometric identities, we can simplify Equation 4.7 as follows: 

1 τ 2 (1 K2(1 K) ) π t 
(Q)TTF 

+ −=
�  

+ cos
2τ −τ 4 2 

 
τ 

� 

− K 2(1 )+
[  

2π t 
 1 + cos 

�] 
dt.

8 τ 

Upon integration and simplification, we obtain the following result: 

1 (1 K 2 ) (1 K 2 )
(Q)TTF 

[ + −= τ + τ 
τ 4 8 

]

1 
 

[
(3 

τ 
+ 2K + 3K2) =

τ 8 

]

(3 + 2K 
 

+ 3K2) = . (4.8)
8 
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Equation 4.8 provides the expression for the variance compensation factor 
(Q). If we set  K = 0 in Equation 4.5, it represents the Hann window and 
its corresponding Q � 0.375. The Hamming window results when K = 0.08 
and in this case, Q � 0.4. The variance compensation factor for all the other 
windows considered in the previous chapter are presented in Tables 4.1 
through 4.3. Now, consider the expression for the dispersion factor, η, given 
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by Equation 4.2, which can be expressed as 

2τQ 2τQ
η = = . (4.9)[� τ 

]21 DEN 
f (t) dt

2τ −τ 

The denominator (DEN) of Equation 4.9 is computed for the truncated Taylor 
family (using Equation 4.5) as follows: 

[� � ]21 τ (1 + K) (1 − K) π t
DEN = + cos dt

2τ −τ 2 2 τ 

= 
1

[(1 + K)τ ]2 

2τ
 

(1 + K)2τ
 = . (4.10)
2 

The substitution of Equations 4.8 and 4.10 into Equation 4.9 yields the 
following expression for the dispersion factor for the truncated Taylor family: 

(3 + 2K + 3K2)
(η)TTF = .

2(1 + K)2 

Noting that the energy, E = 2τQ, we have 

(3 + 2K + 3K2)τ
(E)TTF = .

4 

We recall that the coherent gain G by definition is 

� τ1
G = f (t) dt.

2τ −τ 

For the truncated Taylor family, G is given by 

� τ [ �]
1 (1 + K) (1 − K) π t 

(G)TTF = + cos dt
2τ −τ 2 2 τ 

1 = [(1 + K)τ ]
2τ
 

(1 + K)
 = .
2 

The rest of the parameters are computed numerically, assuming the value of 
τ to be unity. 
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Following the above steps, all the parameters [4–6] are computed for the 
remaining data windows considered in Section 3.3 of the previous chapter. It 
must be emphasized that in the case of Kaiser’s modified zeroth-order Bessel 
family [7] as well as Kaiser’s modified first-order Bessel family [7], all the 
parameters have to be computed numerically. Tables 4.1 through 4.3 pro­
vide the computed values of the parameters. For the purpose of comparison, 
the corresponding values of the rectangular window are also included in 
Table 4.1. 

Figure 4.1(a) shows the plots of NHMLW versus MSLL in dB, for various 
data windows, including that of Kaiser’s modified zeroth-order and first-
order Bessel families of windows. It is interesting to note that these plots 
are straight lines in the case of the Kaiser–Bessel windows. An approximate 
linear relationship between the side-lobe levels and the main-lobe widths is 
obtained for Kaiser’s modified zeroth-order Bessel family and is given by 

y � −52x + 12.4, 

where x represents the NHMLW and y gives the MSLL in dB. The main-lobe 
width for this class of windows can be changed by varying the value of α 

(the parameter of the window family), which usually lies within the range 
4 ≤ α ≤ 9 for optimum results [7]. A similar relationship can be obtained for 
Kaiser’s modified first-order Bessel family of windows, which can be given 
as follows: 

y � −47.68x + 4.68, 

where x again represents the NHMLW of Kaiser’s modified first-order Bessel 
family and y gives the corresponding MSLL in dB. The NHMLW and the 
MSLL for these two families of windows are also included in Tables 4.2 
and 4.3 for the sake of comparison. 

Figure 4.1(b) shows the plot of the NHMLW versus the side-lobe energy 
(SLE), for different data windows. Again, in the case of the modified zeroth-
order Bessel family, this follows a regular shape. For a given main-lobe width, 
the modified zeroth-order Bessel window contains maximum energy in the 
main lobe of its Fourier transform and, consequently, the minimum in the 
side lobes of its Fourier transform. Therefore, Kaiser’s modified zeroth-order 
Bessel windows are called near-optimum windows since they closely approx­
imate the optimum prolate-spheroidal wave functions whose band-limiting 
properties are well known [8]. 

4.3 Discussion on Window Selection 

In spectral estimation, a desirable window is the one that yields small values 
of the variance compensation factor (Q), dispersion factor (η), total energy (E), 
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PSLL, �W and �BW, and a large value of the main-lobe energy (MLE) con­
tent. However, the results of Tables 4.1 through 4.3 show that the decrease in 
the PSLL is associated with an increase in both �W and η, which is a measure 
of the increase in the main-lobe width. Similarly, a smaller value of the PSLL 
leads to a higher leakage suppression. A rise in η implies a corresponding 
increase in the loss of frequency resolution. The variance of the smoothed 
spectral estimate is proportional to the total energy, E, when the data are sim­
ple functions of a Gaussian process. It is to be noted that the variance of any 
estimate is a measure of its reliability: the smaller the value of E, the higher 
is its reliability. Therefore, it is necessary to make a compromise between the 
variance and the bias of an estimator of a spectrum. The bias can only be made 
small by making the main lobe as narrow (and as close to a delta function) 
as possible. On the other hand, a narrow spectral window results in a large 
variance. Thus, the selection of an optimal data window for spectral estima­
tion turns out to be a judicious compromise among the various parameters 
presented in these Tables. 

For the purpose of designing FIR digital filters, a window with the smallest 
main-lobe width and the lowest PSLL is best suited for weighting the Fourier 
coefficients, h(n). However, these conditions cannot be met simultaneously. 
Therefore, the selection of a window for this application is again a trade-off 
between these two parameters. 

The graphs presented in Figures 4.1(a) and (b) are useful in selecting a data 
window that is closest to the near-optimum Kaiser–Bessel window, namely, 
the modified zeroth-order Bessel family. A window that lies very close to the 
straight line (corresponding to the zeroth-order Kaiser–Bessel window) of 
Figure 4.1(a) and the curve (again corresponding to the zeroth-order Kaiser– 
Bessel window) of Figure 4.1(b) is desirable. The graphs indicate that the 
sum-cosine window satisfies these conditions simultaneously. From the above 
discussions, it is clear that there is no unique window that has universal 
applications for optimum results. 
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5 
Discrete-Time Windows and Their Figures 
of Merit 

Having introduced a variety of popular windows in the continuous-time­
domain in Chapter 3, we will now discuss their discrete-time counterparts, 
so that they can be implemented in several digital signal processing appli­
cations. To have a wider choice, we have also included few more windows 
in this chapter, the characteristics of which were not discussed in Chapter 3. 
We have also defined a number of parameters that will enable the user to 
select appropriate windows, depending on the application. Finally, based on 
the parameters computed, we compare the performance of the discrete-time 
window functions. Section 5.1 presents different classes of window func­
tions. Discrete-time windows are discussed in Section 5.2. Different figures 
of merit, which will enable proper window selection, are defined in Section 
5.3. The concept of time–bandwidth product is introduced in Section 5.4. 
Finally, Section 5.5 gives applications of windows in finite impulse response 
filter design and power spectral estimation. 

5.1 Different Classes of Windows 

As we have seen in the earlier chapters, window functions are weighting func­
tions associated with the spectral analysis of a time series. They act as either 
intrinsive parameters or externally applied kernels of the spectral estimation 
techniques, thereby improving the statistical characteristics of the spectrum. 

We can classify windows into four different categories that are incorporated 
in time series analysis as well as in power spectrum estimation techniques. 
The four different classes are detailed below: 

i.	 Data windows: As the name indicates, this is a time function that 
is directly applied to the data or a time series. It may be a set of 
weighting coefficients or a smoothing time function, depending on 
the format of the data. 

ii.	 Frequency window: This is a weighting function applied in the 
frequency-domain on the Fourier transform of the data. This amounts 
to the convolution (or multiplication) of the data windows and the 
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Freqency
window function 

Lag window
function 

Spectral window
function 

FT—Fourier transform 
IFT—Inverse Fourier transform 

IFT 

IFT 

Spectrum Product Correlation 

Data window 
function 

FT 

FT 

FIGURE 5.1 
Interplay between different forms of window functions. 

Fourier transform of the data. Taking inverse Fourier transform of a 
frequency window yields its time-domain counterpart. 

iii.	 Lag window: This is a sequence with which the covariance function 
of an observed process is weighted. The rectangular lag window is 
given by 

1,	 −M ≤ n ≤ M
f (n) =	 (5.1)

0,	 otherwise. 

where (2M + 1) is the window length. All the lag windows here 
are defined for the interval [−M, M], and are symmetrical about the 
origin. 

iv.	 Spectral window: This is obtained by taking the Fourier transform of 
the lag window. This can be considered as a filter through which the 
true spectrum of a process is estimated. 

Figure 5.1 represents the inter-relationships between the various forms of 
windows described above. Lag windows are generally applied to the covari­
ance estimate of an input process. This in turn reduces the variance of the 
resulting spectral estimate. Data windowing (or data smoothing) is employed 
to minimize the frequency leakage effects, which is similar to the Gibbs 
phenomenon occurring in approximation theory. 

Example 

We illustrate the four different categories of windows by means of some
 
examples.
 
Data window: As an example, a rectangular data window is used.
 

1,	 n = 0, 1, . . . , (N − 1)
f [n] = 	  (5.2)

0, otherwise. 



        
    

        
    

� 

For the data window represented in Equation 5.2 and shown in 
Figure 5.2(a), the corresponding, lag, frequency and spectral windows 
are obtained as follows: 

Lag window: Using the relationships given in Figure 5.1, we can generate 
the corresponding lag window as the autocorrelation of the data window. 
Thus, for a rectangular window, it generates a corresponding triangular 
lag window as shown in Figure 5.2(c). The amplitude of this triangular 
window is normalized to unity. This gives 

1 − |
N
k| , k = 0, ±1, . . . , ±(N − 1)

d[k] =  (5.3)
0, otherwise. 

Frequency window: This is obtained as the Fourier transform of the rectan­
gular data window, which is shown in Figure 5.2(b), and is given by the 
following expression: 

sin(Nω/2)
F(ejω) = . (5.4)

sin(ω/2) 

Spectral window: It is the Fourier transform of the above lag window (see 
Equation 5.3). This is shown in Figure 5.2(d) and is equal to 

jω 1 sin(Nω/2) 
2 

D(e ) = . (5.5)
N sin(ω/2) 
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FIGURE 5.2 
Interplay between various window functions. (a) Data window. (b) Frequency window. (c) Lag 
window. (d) Spectral window. 
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5.2 Discrete-Time Windows 

In this section, we will catalog some popular windows as well as some not-so­
well-known windows, in the discrete-time-domain. Most of the windows are 
the sampled versions of the continuous-time windows described in Section 
3.3. We will provide the discrete form of each window and also its important 
characteristics. All the windows are presented as even functions (symmetric 
about the origin), while their lengths (N + 1) are odd. 

5.2.1 Rectangular (Box Car) Window 

This is the simplest window since the truncation of the input data amounts to 
applying the rectangular window. It is otherwise called the Dirichlet window. 
It is defined as 

N
f [n] = 1, 0 ≤ |n| ≤  . (5.6)

2 

5.2.2 Triangular (Bartlett) Window 

An (N + 1)-length triangular window (including zeros at the edges) is 
obtained by linearly convolving two rectangular windows of lengths N 

2 each. 
Therefore, the transform of this window is obviously the square of the Dirich­
let kernel. It is the simplest among those windows that exhibit a nonnegative 
Fourier transform due to its self-convolution property. Its functional form is 
given as follows: 

|2n| N
f [n] = 1 − , 0  ≤ |n| ≤  . (5.7)

N 2 

5.2.3 Cosαx Window Family 

In this family of windows, changing the value of the parameter α generates 
different windows. 

( )
α

πn N
f [n] = cos , 0  ≤ |n| ≤  , (5.8)

N 2 

where α takes on integer values. 

5.2.4 Hann Window 

The Hann window is actually a special case of the cosα x window, with α = 2, 
that is, 

2πn N
f [n] = 0.5 + 0.5 cos , 0  ≤ |n| ≤  . (5.9)

N 2 



   

 

 

   

� 

�� � 

5.2.7 Sum-Cosine Window 

This is an optimized form of the cos3 x window. 

( )πn 3πn N
f [n] = (1 − 2B) cos + 2B cos , 0  ≤ |n| ≤  . (5.12)

N N 2 

It is to be noted that we discuss the figures of merit of various windows, 
including the sum-cosine window, in Section 5.3. Further, in Table 5.3, we 
summarize the results with B = 0.1 and 0.103, for the sum-cosine window. 
The reason for obtaining two optimum values of B for the sum-cosine window 
was already given in Section 3.3.8. The values of the PSLL are, respectively, 
52 and 54 dB, for the B = 0.1 and 0.103 [1]. 

5.2.8 Raised-Cosine Window Family 

In this class of windows, changing the value of the parameter D results in 
windows with slightly different main-lobe widths that lie in between the 
Hann (or Hamming) and sum-cosine windows. 

1 − 2D 2πn 4πn N
f [n] =  1 + cos + 2D cos , 0  ≤ |n| ≤  . (5.13)

2 N N 2 

If D = 0, then f [n] gives the Hann window. As was done for the previ­
ous window, in Section 5.3 and Table 5.3, we summarize the results for 

� � � 

� 
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5.2.5 Truncated Taylor Family of Windows 

This is a generalized window that is expressed as 

1 + k 1 − k 2πn N
f [n] =  + cos , 0  ≤ |n| ≤  . (5.10)

2 2 N 2 

Here k can take the values in the range 0 ≤ k ≤ 1. We note that the Hann 
window is a special case of the truncated Taylor family with k = 0. 

5.2.6 Hamming Window 

This window is again a special case of the truncated Taylor family with 
k = 0.08. 

2πn N
f [n] = 0.54 + 0.46 cos , 0  ≤ |n| ≤  . (5.11)

N 2 

In the case of the Hamming window, the value of k is selected such that the 
peak side-lobe level (PSLL) is minimized. 



  

  

 

5.2.11 Tukey Window 

This window can be generated by convolving a cosine lobe of length ( α

2 
N ) 

with a rectangular window of length (1 − α 

2 )N. The Tukey window is also 
referred to as a tapered cosine window. Its time-domain expression is given by 

⎧ N ⎪ ⎪1, 0 ≤ |n| ≤ (1 − α) ⎪ ⎪ � 2 

f [n] =  

⎪ ⎨ 
⎪ ⎪ ⎪ ⎪ ⎪ 0.5 

⎡ 
⎢ ⎢ ⎣ 1 + cos 

⎛ 
⎜ ⎜ ⎝ 

π n − (1 − α) 
N 
2 

αN/2 ⎩ 
⎞ 
⎟ ⎟ ⎠ 

⎤ 
⎥ ⎥ ⎦ , (1 − α) 

N 
2 

≤ |n| ≤  
N 
2 

. 

(5.16) 

If α = 0, then the Tukey window reduces to a rectangular window and when 
α = 1, it takes the form of the Hann window. 

� � 
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D = 0.0113, 0.0138, 0.0155, and 0.0165 [1]. The rationale behind four different 
optimum values of D for the raised-cosine family of windows was provided in 
Section 3.3.10 (for its continuous–time counterpart). The PSLL varies between 
−42 and −51 dB, respectively. 

5.2.9 Blackman Window 

This belongs to the more general class of the Blackman–Harris window family 
(see Section 5.2.12) consisting of only two cosine terms and a constant. 

2πn 4πn N
f [n] = 0.42 + 0.5 cos + 0.08 cos , 0  ≤ |n| ≤  . (5.14)

N N 2 

5.2.10 Optimized Blackman Window 

The coefficients of the Blackman window given in Equation 5.14 were found 
to be not optimal. The optimized form of the Blackman window is given by 

2πn 4πn N
f [n] = 0.412 + 0.5 cos + 0.088 cos , 0  ≤ |n| ≤  . (5.15)

N N 2 

While optimizing the PSLL, the second coefficient is kept to be the same 
(0.5) as the original Blackman window [1]. This is because the coefficient 0.5 
has a special significance while implementing this window in the frequency-
domain. We shall provide more details on this topic in chapter 6 (see Section 
6.4). 
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5.2.12 Blackman–Harris Window 

There are several variations of the Blackman–Harris window depending on 
the coefficients chosen. Four examples are listed in Table 5.1 given below [2,3]. 
The general expression is given as  

2πn 4πn 6πn N
f [n] = a0 + a1 cos a cos a cos , 0  n  . 

N

� 
+ 2 

 
N

� 
+ 3

 
N 

� 
≤ | | ≤

2 
(5.17) 

It has been found that the minimum three-term window can give a side-lobe 
level of −70.83 dB, whereas the minimum four-term window can achieve a 
side-lobe level as low as −92.01 dB for large values of window length. 

5.2.13 Nuttall Window Family 

The Nuttall window family has better side-lobe structure when compared to 
the Blackman–Harris windows for large values of window lengths. The win­
dow definition is similar to the sum-cosine expression given in Equation 5.18 
with coefficients given in Table 5.2 [3]. The minimum three-term Nuttall win­
dow can achieve a PSLL as low as −71.48 dB and the four-term can reach upto 
−98.17 dB, maintaining the same rate of fall-off of side-lobe level (RFSLL) of 
the Blackman–Harris window (−6 dB/octave), for large values of window 
length. 

TABLE 5.1 

Blackman–Harris Window Family 

Minimum Minimum 

Three-Term Three-Term Four-Term Four-Term 

(−70.83 dB) (−62.05 dB) (−92.01 dB) (−74 dB) 

a0 

a1 

a2 

a3 

0.42323 
0.49755 
0.07922 

– 

0.44959 
0.49364 
0.05677 

– 

0.35875 
0.48829 
0.14128 
0.01168 

0.40217 
0.49703 
0.09892 
0.00188 

TABLE 5.2 

Nuttall Window Family 

Nuttall Window a0 a1 a2 a3 

Three-term with continuous third derivative 0.375 0.5 0.125 – 
Three-term with continuous first derivative 0.40897 0.5 0.09103 – 
Four-term with continuous fifth derivative 0.3125 0.46875 0.1875 0.03125 
Four-term with continuous third derivative 0.338946 0.481973 0.161054 0.018027 
Four-term with continuous first derivative 0.355768 0.487396 0.144232 0.012604 
Minimum three-term 0.4243801 0.4973406 0.0782793 – 
Minimum four-term 0.3635819 0.4891775 0.1365995 0.0106411 
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5.2.14 Flat-Top Window 

Flat-top window got its name from the maximally flat structure of the main 
lobe. Here, we discuss only the third-order and fifth-order flat-top windows. 
They can be defined as follows: 

2πn 4πn
f [n] = a0 + a1 cos + a2 cos 

N N 

6πn 8πn N + a3 cos + a4 cos , 0  ≤ |n| ≤  . (5.18)
N N 2 

where a0 = 0.2811, a1 = 0.5209, and a2 = 0.198 for the third-order flat­
top window, and a0 = 0.21557895, a1 = 0.41663158, a2 = 0.277263158, a3 = 
0.083578947, and a4 = 0.006947368 for the fifth-order flat-top window [4]. 

The time-domain and frequency-domain plots for the fifth-order flat-top 
window are given in Figures 5.3(a) and (b), respectively. From Figures 5.3(a), 
we can see that the flat-top window exhibits negative weights. This is an 
exception from the windows discussed earlier. The maximally flat main-lobe 
structure can be obtained by equating derivatives of F(ejω) at ω = 0 to zero [4]. 

FIGURE 5.3 
(a) Fifth-order flat-top window weights for N = 41. (b) Magnitude response of f [n]. 



 

Due to the flat and wide main-lobe structure, the scalloping loss (discussed 
in Section 5.3) is very small for this window. 

5.2.15 Parabolic Window 

This window is described as follows: 

2n 
�2 N 

f [n] = 1 − , 0  ≤ |n| ≤  . (5.19)
N 2 

It exhibits a discontinuous first derivative at the edges and therefore its side 
lobes fall off at −12 dB/octave. 

5.2.16 Riemann Window 

This is defined as the central lobe of the sinc kernel. (
2πn 

)
sin N N

f [n] =  , 0  ≤ |n| ≤  . (5.20)2πn 2
N 

It is similar to the cos αx window discussed in Section 5.2.3, when α = 1 value 
is substituted. 

5.2.17 Poisson Window 

This is actually a family of windows with α being the variable parameter. It 
has the general form 

|n| N
f [n] = e−α N/2 , 0  ≤ |n| ≤  (5.21)

2 

The usual α values are 2, 3, and 4. It has a discontinuity at the boundaries and 
therefore the transform falls off at a rate of −6 dB/octave only. 

5.2.18 Gaussian Window 

We know that the frequency response of a Gaussian time function is also a 
Gaussian. Since the time span of a Gaussian function is infinity, it must be 
truncated at the ends to use it as a window function. This window has the 
following form: 

− 1
2 [α N/2 ]2 N 

f [n] = e
n 

, 0  ≤ |n| ≤  . (5.22)
2 

It should be noted that as we increase the value of α, the width of the window 
decreases, and this will in turn reduce the severity of the discontinuity at the 
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edges. However, this will increase the main-lobe width, and consequently 
reduce the side-lobe levels, in the transform domain. The commonly used 
values of α are 2.5, 3, and 3.5. 

5.2.19 Cauchy Window 

This window is also a family with the variable parameter α. It is given by 

1 N
f [n] =  � , 0  ≤ |n| ≤  . (5.23) 

n 
�2 21 + α N/2 

The usual values of α used in practice are 3, 4, and 5. The Fourier transform 
of the Cauchy window turns out to be a two-sided exponential function. 

5.2.20 Hann–Poisson Window 

This window can be constructed as the product of the Hann and the Poisson 
windows (which were introduced in Sections 5.2.4 and 5.2.17). 

n |n| N 
e(−αf [n] = 0.5 1 + cos π N/2 ), 0  ≤ |n| ≤  . (5.24)

N/2 2 

The usual values of α are 0.5, 1, and 2. The RFSLL in the Hann–Poisson win­
dow is −18 dB/octave, which is the same as the Hann window. This window 
is actually similar to the Poisson window family. This set of windows exhibit 
a very large main-lobe width. 

5.2.21 Papoulis (Bohman) Window 

This window is a result of the convolution of the half-duration cosine-lobe 
with itself. 

|n| πn 1 π |n| N
f [n] =  1 − cos + sin , 0  ≤ |n| ≤  . (5.25)

N/2 N/2 π N/2 2 

Naturally, the Fourier transform of this window is the square of the cosine 
lobe’s Fourier transform. The Papoulis window can alternatively be expressed 
as the product of the triangular window with a single cycle of a cosine window 
of the same period. The second term appearing in the above window function 
acts as a correction term. This is added so that the first derivative is set to zero at 
the boundaries. The third derivative of the Papoulis window is discontinuous 
and therefore the RFSLL is 

ω

1
4 or −24 dB/octave. 
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5.2.22 Jackson (Parzen) Window 

The Jackson window is obtained by convolving two triangular windows of 
one-half extent and is given by 

⎧ ⎪ [ 
n 

]2 [ |n| ] 
N ⎪ ⎪1 − 6 1 − , 0  ≤ |n| ≤⎨ N/2 N/2 4

f [n] =  [ ]3 (5.26) ⎪ ⎪ |n| N N ⎪ ⎩2 1 − , ≤ |n| ≤  . 
N/2 4 2 

The Fourier transform of this window is the square of the Fourier transform 
of the triangular window. Therefore, the RFSLL of the side lobes in the case of 
the Parzen window will be 

ω

1
4 . The transform of this window is non-negative, 

just like the triangular window, because of its self-convolution construction. 

5.2.23 Dolph–Chebyshev Window 

In signal processing applications, we always look for a window that exhibits 
a narrow bandwidth for a known finite duration. A similar problem is faced 
by the antenna design community. In the antenna context, the problem is 
to illuminate an antenna of finite aperture to obtain a narrow main-lobe 
beam, while restricting the side-lobe levels. The closed-form solution to 
the minimum main-lobe width for a given side-lobe level is offered by the 
Dolph–Chebyshev window. The DFT of this window is given by � � (

πk 
)]]

cos N cos−1 β cos NF[k] =  � � , 0  ≤ k ≤ N − 1 (5.27) 
cosh N cosh−1

(β) 

where β = cosh[cosh−1
(10α)/N] (5.28) ⎧π √ ⎨ − tan−1[X/ 1 − X2], |X| ≤ 1 −1 2and cos (X) = .√ ⎩ln[X + X2 − 1], |X| ≥ 1 

To obtain the corresponding window samples f [n] in the time-domain, we 
simply perform an IDFT on the Dolph–Chebyshev window samples F[k] and 
scale the amplitude, such that the peak value is unity, like in the case of other 
window time samples. 

5.2.24 Modified Zeroth-Order Kaiser–Bessel Window Family 

The modified zeroth-order Kaiser–Bessel window is defined as [ J ( )2
]

Io α 1 − 2n 
N N

f [n] =  , 0  ≤ |n| ≤  . (5.29)
Io[α] 2 
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where Io(x) is the modified Bessel function of zeroth-order and first kind, 
defined as 

∞ ( )2m1 x
Io(x) = . (5.30)

(m!)2 2 
m=0 

Kaiser had discovered a simple approximation to the prolate-spheroidal 
wave function of order zero, which is difficult to compute. Since the prolate-
spheroidal wave function maximizes the energy in a band of frequencies, say 
W, such a function is said to be optimum. As the zeroth-order Kaiser–Bessel 
family approximates this property of the zeroth-order prolate-spheroidal 
wave function, it is also called the near-optimum window family. 

5.2.25 Modified First-Order Kaiser–Bessel Window Family 

I
[

22n
1 γ 

f 

J 
1 − (

N

)
2

]
N[n] =  , 0  

2n 
≤ |n| ≤  . (5.31) J ( ) 2 I1[γ ] 1 − N 

In the above expression, I1(x) represents the modified first-order Bessel 
function of the first kind. It is defined as 

∞  1 (x)2m+1

I1(x) = . (5.32)
m!(m + 1)

m
! 2 =0 

As in the case of the modified zeroth-order Kaiser–Bessel family, the side-lobe 
level can be varied by choosing different values of γ . The modified first-order 
Bessel family has the slight advantage of smaller first side-lobe compared 
to either the zeroth-order Bessel windows or the prolate-spheroidal wave 
functions, but on the other hand, the RFSLL is a bit slower. 

5.2.26 Saramäki Window Family 

This is a new class of window functions that are found to be a closer approx­
imation to the prolate-spheroidal wave functions than the Kaiser–Bessel 
window family. These windows are derived using frequency transforma­
tion that maps the frequency response of a rectangular window to another 
frequency response having wider main-lobe width [5]. 

The Saramäki window function is defined as 

N/2 

f̂ [n] = f̂0[n] + 2 f̂  
k [n], (5.33) 

k=1 
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where f̂0 = δ[n] and f̂  
k 

� 
s can be calculated using the recursive relation as 

follows: ⎧ ⎪γ − 1, n = 0 ⎨ 
f̂1[n] =  γ /2, |n| = 1 (5.34) ⎪ ⎩0, otherwise 

2(γ − 1)f̂  
k−1[n] − f̂  

k−2[n] + γ [f̂  
k−1[n − 1] + f̂  

k−1[n + 1]], −k ≤ n ≤ k
f̂k[n] =  

0, otherwise. 
(5.35) 

If we compute f̂ [n], we find a window function for which f̂ [0] is not equal to 
1. We therefore scale this function using the relation 

f̂ [n]/f̂ [0], 0  ≤ |n| ≤  N 

f [n] =  2 (5.36)
0, otherwise. 

5.2.27 Ultraspherical Window 

The ultraspherical window is one of the newly introduced windows, which 
has wide applications in signal processing. We note that the Kaiser–Bessel 
window, the Dolph–Chebyshev window, and the Saramäki window dis­
cussed earlier have a variable parameter in addition to the window length. 
This is to control the PSLL of the window. Apart from these two parameters, 
the ultraspherical window has a third parameter that controls the RFSLL. The 
ultraspherical window coefficients in the range of −M to  M, for a window of 
length N = 2M + 1 can be calculated as follows [6]: 

� M−|n| � 
μx2M 

μ μ + M + |n| − 1 μ + M − |n| − 1
f [n] =  

M + |n| M + |n| − 1 M − |n| − m 
m=0 

M + |n|× (1 − x
μ 

−2) 
m . (5.37)

m 

The binomial coefficients can be calculated as 

α α α(α − 1)...(α − p + 1) = 1, = , p ≥ 1.
0 p p! 

The parameter xμ given in the window definition (see Equation 5.37) can 
be used to adjust the width of the main lobe and μ controls the RFSLL. Figure 
5.4 shows the ultraspherical window magnitude response for μ = 1.2, 0, and 
−0.9 with fixed xμ. From this figure, we can see that 
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FIGURE 5.4 
Ultraspherical window magnitude response for xμ = 1.1, N = 31, and μ taking the values 0, 1.2, 
and −0.9. 

i. For positive values of μ, the side lobes decrease as we go from 0 to π . 
ii. For negative values of μ, the side lobes increases. 

iii. For μ = 0, we get the Dolph–Chebyshev window, where all the side 
lobes are equal. 

iv. For μ = 1, the Saramäki window is also a special case of ultraspheri­
cal window [6]. The coefficients calculated from Equation 5.37 are not 
normalized. The normalized ultraspherical window can be obtained 
by dividing f [n] by f [0] for odd N, or by  f [0.5] for even N. 

5.2.28 Odd and Even-Length Windows 

The windows defined in this section can be obtained from the continuous-time 
windows (introduced in Chapter 3) by taking samples at 

2nτ N 
t = nT = , |n| ≤  ,

N 2 

where τ is the one-sided duration of the window and N is an even number 
(but length is odd). This is depicted in Figure 5.5 for the Hann window. These 
are odd length windows and therefore the point of symmetry is always an 
integer. However, in practice, we may come across many applications that 
uses radix-2 FFT and thus require even-length windows. 

Even-length windows can be obtained by shifting the continuous-time 
windows by T 

2 and sampling the shifted window at 

2nτ N N 
t = nT = , − ≤ n ≤ − 1 (5.38)

N 2 2 

as shown in Figure 5.6. Equivalently, we can replace n by (n + 1
2 ) in all 

the discrete-time window definitions for odd lengths and compute the 
coefficients, with n taking the values −N 

2 ≤ n ≤ (N 
2 − 1). 
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FIGURE 5.5 
Odd-length window. 

0 T 2T 
t 

... ... 

–T–2T (N–1)T/2 

f (t + T/2) 

–NT/2 

FIGURE 5.6 
Even-length window. 

Note: Windows such as rectangular, Hann, Blackman, and so on have zeros at 
the edges. These zeros do not contribute to the output. They are included only 
to maintain consistency in the discrete-time and continuous-time window 
definitions. In the hardware implementation, we generally take only nonzero 
coefficients to reduce unnecessary computations. 

5.3 Figures of Merit 

The most important application of window functions is in spectral analysis. 
They are sometimes used in the design of linear-phase FIR filters. In both 
these applications, the reduction of spectral leakage is one of the vital factors 
in choosing a window from among several window functions. In this section, 
various parameters of windows are defined that pertain to the time-domain 
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as well as to the frequency-domain [1,2]. All these parameters will help us in 
selecting an appropriate window function for a particular application. The 
computed parameters for all the window functions are presented in Tables 
5.3, 5.4 and 5.5 at the end of this section. 

1.	 Equivalent noise bandwidth (B): Owing to spectral leakage, impulse 
functions are replaced by broader bandwidth sampling functions. As 
the side lobes of these functions contribute to noise, the window must 
be designed so as to reduce these side lobes. The Equivalent noise 
bandwidth (ENBW) measures the noise performance of the window 
function. The magnitude, say at a frequency ωo, is computed by tak­
ing the weighted sum of the contributions from all the frequencies. 
Therefore, the value at ωo is biased by its own frequency, broadband 
noise, and other interfering harmonics. 

Consider the case of a signal having a single tone at ωo and 
the broadband white noise spread over the entire spectrum. The 
accumulated noise at this frequency can be minimized by using win­
dows having lower bandwidths. The parameter ENBW is defined as 
the bandwidth of a hypothetical (ideal) rectangular filter that has the 
same root mean square (RMS) value of noise signal as that of the win­
dow of interest (shown in Figure 5.7) [7]. Here, the peak powers of the 
rectangular filter and that of the window under consideration must 
be the same. Let No be the noise power spectral density (PSD). Then, 
the noise power Pn, accumulated by the window, can be defined as 

� π 

Pn = 
No |F(ejω)|2dω.	 (5.39)
2π −π 

|F(e jω )|2 

PSD of window 
PSD of hypothetical
rectangular filter 

ω 

ENBW 

FIGURE 5.7 
Equivalent noise bandwidth. 
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From Parseval’s theorem, this can also be computed in the time-
domain using the expression 

N−1 

Pn = No |f [n]|2.	 (5.40) 
n=0 

The noise power collected by the rectangular filter is 

Pn = No F2(0) B (5.41) 
2N−1 

= No |f [n]| B 
n=0 �N−1 |f [n]|2 

Therefore, the ENBW measure is given by B = � n=0 �2 . �N−1 f [n]n=0 

(5.42) 

The ENBW is easy to compute and this definition can be used to 
compare the side-lobe behavior of different windows. The smaller 
the value of ENBW, the better the performance of the window, in the 
presence of broadband noise. We note that the ENBW of the rectan­
gular window is N 

1 bins. Using the Schwartz inequality, it is possible to 
prove that no other window can have a smaller ENBW than N 

1 bins. 
The parameter ENBW (normalized to N 

1 ) for all windows considered 
in this chapter is presented in Tables 5.3 through 5.5. Owing to the 
normalization factor, the value of ENBW for a rectangular window 
is unity. 

2.	 Coherent gain (G): When a window is applied on a signal, it tends to 
taper the signal to zero near the boundaries or edges of the observa­
tion interval. This happens because of the effect of applying the data 
window, which smoothly approaches zero at the edges. The signal 
power gets reduced due to this tapering. The magnitudes at the fre­
quency bins will no longer be equal to its true values. Coherent gain 
(G) gives a known scaling factor to get the absolute values at these 
frequencies. This is also known as the DC gain of the window. It is 
defined as 

N−1 

G = f [n]. 
n=0 

For a rectangular window, the DC gain is N, the number of terms in 
the window. However, for any other window, the DC gain will be 
reduced, since it tapers down to zero at the edges. This reduction in 
the DC gain is important since it accounts for a definite scaling of the 
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amplitudes of the signal spectrum. Coherent power gain is the square 
of the sum of the window terms, given by 

 2 
N−1 

G2 = f [n] . 
n=0 

The values of G for different windows are also presented in Tables 5.3 
through 5.5. Note that the coherent gain is normalized by dividing 
with N. Therefore, the coherent gain (G) of a rectangular window is 
unity and for all other windows, it is less than one. 

3.	 Degradation loss (L): This is also known as the processing gain, and 
it indicates the degradation of the signal-to-noise ratio (SNR) due to 
windowing. It depends on the shape of the window (since that in turn 
determines the ENBW). This loss L is the ratio of the output SNR of 
the signal after windowing [(SNR)O] to the input SNR of the original 
sequence [(SNR)I )]: 

(SNR)OL = . 
(SNR)I 

The use of window functions effectively results in the reduction of 
signal power and the accumulation of noise from the neighboring 
frequencies. The degradation loss (L) can alternatively be defined as 

Coherent power gain 
L =	 .

B 

Coherent power gain is a measure of reduction in signal power, 
whereas B (which denotes the ENBW) measures the noise from other 
frequency components. If there is only one coherent component, then 
the coherent power gain will be unity. In such a case 

( )2 �N−1 f [n]1 n=0 
L = = .	 (5.43)

B �N−1 f 2[n]n=0 

The degradation loss is computed for all the windows, by assuming 
only one coherent component, and this is presented in Tables 5.3 
through 5.5. 

4.	 3 dB and 6 dB bandwidths: These are important metrics that determine 
the minimum separation required between two frequency compo­
nents of equal amplitudes, such that they can be resolved. In other 
words, resolution means that there should be a local minimum 
between the two peaks. The rectangular window has excellent reso­
lution characteristics for signals of comparable strengths. In the case 



167 

0 

(a) 

Frequency 

En
er

gy 3 dB 

Single
maxima 

(b) 

0 

En
er

gy

6 dB 

Local 
minima 

Resulting 
curve 

Frequency 

Discrete-Time Windows and Their Figures of Merit 

of DFT, the neighboring components are weighted by the window 
and added coherently including the side lobes. As a rule of thumb 
for resolvability, the gain at the crossover of the kernel must be less 
than 0.5 [7]. This implies that 6 dB bandwidth is the deciding factor of 
spectral resolution rather than the 3 dB bandwidth. The comparison 
between 6-dB and 3-dB bandwidths is given in Figure 5.8. However, 
the difference between the 3 dB bandwidth and noise power band­
width is a good indicator to study the performance of the windows. 
The 3 dB bandwidth, 6 dB bandwidth, and �BW (normalized with 
respect to the rectangular window’s 3 dB bandwidth) are all included 
in Tables 5.3 through 5.5. The parameter �BW is defined as 

3 dB bandwidth of window 
�BW = .

3 dB bandwidth of rectangular window 

An example of the 6-dB and 3-dB bandwidths of the Hamming 
window is provided in Figure 5.8. 

FIGURE 5.8 
Minimum resolution bandwidth. (a) Nonresolvable peaks. (b) Resolvable peaks. 
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5.	 Main-lobe width (�W): To represent fine structures in the spectrum, 
it is essential that the kernel should have a very narrow main-
lobe width. This parameter (�W) determines the extent to which 
the visibility of a weak component is affected by the presence of a 
nearby strong coherent component. We note here that the rectan­
gular window exhibits the smallest main-lobe width and therefore 
gives excellent frequency resolution capability. Hence, this param­
eter is also normalized with respect to the rectangular window’s 
main-lobe width. The parameter �W for all the windows are pre­
sented in Tables 5.3 through 5.5. Owing to the scaling factor, �W for 
a rectangular window is 1.0. 

6.	 Scalloping loss or picket-fence effect: In the DFT spectrum, all the fre­
quency bins are equally spaced by the reciprocal of the length of the 
data. If the frequency of the signal falls exactly in between two bins, 
then its energy is distributed between these two bins, resulting in the 
distortion of the spectrum. This type of distortion is called the scallop­
ing loss or picket-fence effect. This parameter is obviously maximum if 
it falls exactly halfway between any two frequency bins as shown in 
Figure 5.9. Scalloping loss can be defined as the ratio of the coherent 
gain (G) for a signal frequency component located exactly midway 
between two DFT bins to the coherent gain of a signal frequency 
component located exactly at a DFT bin. It is defined as [2]. 

  �N−1 f [n]e−j πn 
N 

  n=0 
  |F( ωs )

Scalloping loss 
|=	  2N 

N 1 = . (5.44)� − f [n] F(0)
n=0 

This can be reduced either by selecting a proper value of the length 
of finite extent data or by increasing the length of the observation 

k 
m m + 1 

Signal frequency halfway
between two bins 

FIGURE 5.9 
Frequency of signal halfway between two bins. 



169 Discrete-Time Windows and Their Figures of Merit 

interval. Yet another solution involves arranging the harmonic fre­
quencies to be more closely spaced and coincident with the signal 
frequencies. This may be achieved by zero-padding (adding zeros) 
the true data. However, these additional zeros will not contribute to 
any new information. 

7.	 Worst-case processing loss (WCPL): The WCPL is the sum of maximum 
scalloping loss due to the worst-case frequency allocation and the 
degradation loss due to the window. Therefore, this is a measure 
of the reduction of output SNR resulting from the combination of 
the window function and the worst-case frequency locations. This 
is essentially a measure of the worst-case reduction of SNR, and for 
any good window this must be less than 3.8 dB. Therefore, from Table 
5.3, it can be seen that the windows such as rectangular, Cauchy (α  
4), Gaussian (α = 3.5), Poisson (α 

≥
= 4), and Blackman–Harris (four­

term, −92 dB) are to be avoided. It can be observed from Table 5.3 that 
the WCPL value for these cases ranges from 3 to 4.3. It is interesting to 
note that the WCPL is always less than 3.8 for all the other windows 
considered here, including the modified zeroth-order Kaiser–Bessel 
window family and the modified first-order Kaiser–Bessel window 
family. The performance of the parameters of these two Kaiser–Bessel 
window families is compared in Tables 5.4 and 5.5. 

8.	 Overlap correlation: When a window is applied to a signal, the data 
sequence gets tapered to zero at the edges, which will obviously 
lead to loss of information. Short-duration events occurring at the 
ends of the observation window will be neglected, if the nonover­
lapped window is considered. This can be avoided by processing 
the sequence with overlapping windows. The amount of overlap 
required varies from 20% in the case of the rectangular window to 
76% in the Blackman–Harris window case. However, in general, 50% 
or 75% overlap is necessary to retain most of the information in the 
signal. We obtain more number of segments for averaging in the over­
lapped case, which reduces the variance of the signal’s spectrum. This 
also has the effect of the reduction of noise power to some extent. 

9.	 Peak side-lobe level (PSLL) and first side-lobe level (FSLL): We have seen in 
Chapter 2 that the noncoherent component causes spectral leakage. 
This leakage might sometimes dominate nearby weak harmonics. 
The parameters that helps in the selection of a window to detect 
these weak harmonics are (i) the RFSLL, (ii) the PSLL, and (iii) the 
first side-lobe level (FSLL). It is to be noted that for some windows, the 
PSLL need not necessarily be the first side-lobe level. For example, 
the Hamming window has a first side-lobe level −44 dB while its 
PSLL is about −42 dB. Therefore, the PSLL is higher than the FSLL 
(see Figure 5.10). Therefore, the Hamming window is a preferred 
choice in applications where the immediate side-lobe rejection is of 
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FIGURE 5.10 
DTFT of Hamming window. 

major concern. The PSLL for all the windows mentioned are listed in 
Tables 5.3 through 5.5. 

10.	 Rate of fall-off of side-lobe level (RFSLL): The RFSLL is yet another 
parameter with which we must be concerned with. The unit of RFSLL 
is in terms of decibels per octane (dB/oct). The graphical computa­
tion of RFSLL for the rectangular window is illustrated in Figure 5.11. 
This figure shows that for higher frequencies, the side lobe goes 
down by about −6 dB/octave. If we require attenuation at higher 
frequencies, then we should select a window that has a more rapid 
RFSLL. For example, the Hann window is better suited in such an 
application than a Hamming window, since the RFSLL in this case is 
−18 dB/octave. 

−50 
−45 
−40 
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FIGURE 5.11 
RFSLL for rectangular window. 
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11.	 Variance compensation factor (Q): The variance compensation factor, 
Q, is defined as follows: 

1 N−1 

Q = f 2[n]. (5.45)
N 

n=0 

The attenuation caused due to data smoothing can be compensated 
by dividing the spectral estimates from the DFT by the value of the 
compensating factor, Q. The value of Q in the case of the rectangular 
window is unity and is always less in the case of other windows. 

All the above-mentioned parameters are also computed for the variable 
window function families, namely, the modified zeroth-order Kaiser–Bessel 
and the modified first-order Kaiser–Bessel families, and are presented in 
Tables 5.4 and 5.5, respectively. The parameters given in Table 5.3 through 
5.5 are calculated for a window length of N = 57. Owing to aliasing in the 
frequency-domain, these parameters vary slightly with N. 

5.4 Time–Bandwidth Product 

The time–bandwidth product is usually defined for deterministic and finite 
energy signals. Although a signal f [n] cannot be both time-limited and 
band-limited simultaneously, its characteristics can be defined by using an 
equivalent time width and bandwidth. These definitions hold for signals that 
are real, nonnegative, and symmetric, and which exhibit maximum value at 
n = 0 [8]. Therefore, this is applicable for almost all the window functions. 
The equivalent time width Ne is defined as 

�∞ f [n]
Ne = n=−∞ .	 (5.46)

f [0] 

The time width is defined as the width of the rectangular signal with height 
f [0] and area equal to that of the signal f [n]. Similarly, the equivalent 
bandwidth Be can be defined in the frequency-domain as 

1 
�π F(ejω) dω2π −πBe = .	 (5.47)

F(0) 
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From the definition of the DTFT and IDTFT expressions, we obtain the 
following relationships: 

� π1
f [0] =  F(ejω) dω, (5.48)

2π −π 

∞ 

F(0) = f [n]. (5.49) 
n=−∞ 

By substituting the expressions for f [0] and F(0) in Equations 5.46 and 5.47 
and after canceling the common terms in the product of Ne and Be, we obtain 

NeBe = 1. (5.50) 

From the equivalent time–bandwidth product, it is clear that the spectral 
resolution is approximately the reciprocal of the observation interval. Hence, 
the length of the finite extent data (N) can be selected from Equation 5.50 to 
meet the required spectral resolution as well as variance. 

5.5 Applications of Windows 

In present-day applications, we rely more on DSPs rather than their ana­
log counterparts. We now consider two important applications of windows, 
namely, filter design and spectral analysis. 

5.5.1 FIR Filter Design Using Windows 

For implementing a filter in a DSP, we often prefer to use linear-phase FIR 
filters instead of infinite impulse response (IIR) filters [9,10]. However, the dis­
continuities in the frequency response of ideal filters result in infinite length 
impulse response. The desired frequency response of an ideal lowpass filter 
is given by 

1, 0 ≤ |ω| ≤ ωcHd(ejω) = (5.51)
0, ωc < |ω| < π  

and its impulse response is given by 

sin(ωcn)
hd[n] =  , −∞ ≤ n ≤ ∞. (5.52)

πn 

Figure 5.12 shows the ideal lowpass filter frequency response and its impulse 
response. The method of FIR filter design from the ideal IIR filter involves 
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Hd(e jω) 

−ω c ω c 

1 

ω0 

hd(n) 

Samples n0 

ωc/π 

FIGURE 5.12 
Ideal lowpass filter and its impulse response. 

an approximation of the ideal filter response by a practically realizable filter. 
There are many techniques available for the design of a linear-phase FIR filter. 
All these techniques are based on some approximation criterion or a measure 
of goodness for the response of a designed filter, in comparison to the ideal 
desired response. The most popular design uses direct optimization tech­
niques [11,12]. However, the simplest method for FIR filter design is called 
the impulse response truncation (IRT) method or the windowing method. The 
major drawback of this method in contrast to the optimization method is that 
in IRT it is impossible to design a filter of minimal length that meets the fre­
quency response requirements in the passband and stopband. This method 
is based on the truncation of the Fourier series of the input sequence. Every 
desired filter response Hd(ejω) of a nonrecursive filter is a periodic function in 
ω with period 2π . Therefore, Hd(ejω) can be represented as a Fourier series as 
follows: 

∞ 

jω −jωnHd(e ) = hd[n]e . (5.53) 
n=−∞ 

The coefficients of this Fourier series can be recognized as being equal to the 
impulse response of a digital filter given by 

� π1 jωndω.hd[n] =  Hd(ejω)e (5.54) 
2π −π 

In general, the function hd[n] designed is of infinite length and is noncausal 
(see Figure 5.12). The simplest method to design an FIR filter is to truncate 
the Fourier series for a desired length of the filter (as shown in Figure 5.13) 
and then apply a right shift of ( N2 

−1 ) samples to make it causal, as depicted in 

http:Hd(ej�)e(5.54


� 

� 
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hd(n) 

0 Samples n−(N−1)/2 (N−1)/2 

FIGURE 5.13 
Truncation of impulse response. 

Figure 5.14. Hence, we can obtain the impulse response of the desired filter as 

hd[n], 0  ≤ n ≤ N − 1
h[n] =  (5.55)

0, otherwise. 

If we carefully examine Equation 5.55, we can conclude that this is nothing 
but a rectangular windowing operation. Hence, the impulse response of the 
filter can be rewritten as 

h[n] = hd[n]w[n], (5.56) 

where w[n] is a rectangular window defined as 

1, 0 ≤ n ≤ N − 1 
w[n] =  (5.57)

0, otherwise. 

To understand the characteristics of the frequency response of the designed 
filter, it would be easier if we investigate the effect of this windowing oper­
ation in the frequency-domain. In the frequency-domain, this operation is 
represented by a convolution operation of Hd(ejω) and the frequency response 

N−10 

h(n) 

Samples n 

FIGURE 5.14 
Shifted impulse response. 



of the rectangular window W(ejω) as follows: 

� π1jω jθ j(ω−θ)H(e ) = Hd(e )W(e )dθ . (5.58)
2π −π 
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This convolution operation is depicted pictorially in Figure 5.15. 
Let us now take an example of the FIR filter design using the window­

ing approach. The frequency response and the impulse response of an ideal 
lowpass filter were given in Figure 5.12. The magnitude response of the rect­
angular window is provided in Figure 5.16. The rectangular window has 
a narrower main lobe and larger side lobes when compared to the other 
common windows. 

The frequency response of the resulting lowpass filter is shown in 
Figure 5.17. Here, we can see that the frequency response of the filter is not 
flat since it has ripples in the passband and the stopband. Besides, the tran­
sition between the passband and the stopband is not sharp. There is a large 
transition band in between. These features of the filter are due to the direct 
truncation of the IIR. When we convolve Hd(ejω) with the window response, 
the main lobe of the window results in a transition band between the pass-
band and the stopband. The side-lobes of the window give rise to the ripples 
in the passband and stopband. Hence, the transition width of an FIR lowpass 
filter designed using the windowing method is proportional to the main-lobe 
width of the window and the ripples are proportional to the side-lobe levels 
of the window. 

To compare the performance of the FIR lowpass filter designed using dif­
ferent windows, we show the effects of the Hann and Hamming windows. 
The Hann window and its Fourier transform are shown in Figure 5.18. The 
Hann window and the Hamming window have larger main-lobe widths and 
smaller side-lobe levels when compared to the rectangular window. 

Hence, the FIR lowpass filter designed using the Hann window and the 
Hamming window have a larger transition bandwidth and smaller ripples. 
Figures 5.19 and 5.20 show the frequency responses of FIR lowpass filters 

−ω c−π π 

W (e j(ω−θ )) 

Hd(e jθ) 

ωcω 

H (e jω) 

FIGURE 5.15 
Convolution of the desired frequency response and the rectangular window response. 

θ 
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w [n] 

–π π0 ω 

n 

1 

N 

W(e jω) 

FIGURE 5.16 
Rectangular window in time-domain and frequency-domain. 

designed using these two windows. The transition bandwidth of both are 
almost equal, but the ripples due to the Hamming window are lower, as 
expected. 

The log magnitude frequency response of FIR lowpass filter using rectan­
gular, Hann, and Hamming windows are shown in Figures 5.21 through 5.23. 

H (e jω) 

−ωc ω−π c 

1.09 
1 

0.083 π0 ω 

FIGURE 5.17 
Response of FIR lowpass filter using rectangular window. 



     
      

⎡ 
2 
⎤ 

1 M 
−j2π fn ⎣ ⎦Pxx(f ) = lim ξ x[n]e . (5.59)

M→∞ 2M + 1 
n=−M 

       2 
1 N−1 

−j2π fnPPER(f ) = x[n]e . (5.60)
N 

n=0 
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FIGURE 5.18 
Hann window in time-domain and in frequency-domain. 

5.5.2 Spectral Analysis 

The PSD of a random signal can be estimated by using two classical techniques 
based on Fourier analysis, called the periodogram and the correlogram [8,13,14]. 
In the periodogram method, the PSD is calculated from 

As M → ∞, the periodogram approaches to its original PSD. However, in 
practical applications, we have access to only one set of samples for the esti­
mation of PSD. Therefore, we can assume that the random signal is ergodic, 
that is, the time series properties are assumed to remain the same. Now, the 
PSD of the periodogram can be computed as 

Although the bias in the estimated PSD tends to zero as the length of the 
finite extent data increases, the variance of the estimate remains unchanged 
because of the ergodicity assumption. In fact, the variance here will be very 
high and comparable to the mean itself. 



     
      1 L−1 

Pavg (f ) = P(m) (5.61)PER(f ) ,
L 

m=0 
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FIGURE 5.19 
Response of FIR lowpass filter (a) using Hann window. (b) Zoomed plot of passband. (c) Zoomed 
plot of stopband. 

The variance of the signal can be reduced to some extent using the Welch 
method of periodogram. Here, the entire available data is divided into L seg­
ments, of N length each. The periodogram is computed using Equation 5.60 
for each segment and finally averaged using the following expression: 
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FIGURE 5.20 
Response of FIR lowpass filter (a) using Hamming window. (b) Zoomed plot of passband. (c) 
Zoomed plot of stopband. 

to obtain a better variance. Here, P(m) 

PER(f ) is the periodogram of the mth 
segment. The variance in this case is reduced by L 

1 . 
The sharp truncation of the segments leads to spurious peaks in the peri­

odogram, thus increasing the bias. By changing the number of segments, 
either the bias or the variance can be controlled, but not both simultaneously. 
To reduce the bias in the estimate, each segment is multiplied with a data 
window. Data windows taper the data near the edges of the segments slowly 
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FIGURE 5.21 
Log magnitude response due to rectangular window. 

to zero, which reduces the bias. In general, overlapped segments are used to 
obtain more segments for averaging, thereby reducing the variance. 

From the Wiener–Khinchin theorem, the PSD can also be estimated using the 
autocorrelation function as follows: 

N−1 
−j2π fkPCOR(f ) = rxx[k]e , (5.62) 

k=−(N−1) 

where rxx is the autocorrelation function, computed as 

⎧ 
N−1−k ⎪ 1 ⎨ ∗x [n]x[n + k], k = 0, 1, . . . , N − 1 

rxx[k] =  N	 (5.63)
n=0 ⎪ ⎩ 

r ∗ [k],	 k = −(N − 1), −(N − 2), . . . , −1.xx
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FIGURE 5.23 
Log magnitude response due to Hamming window. 

The problems of high bias and variance exist even in this method. To alleviate 
these effects, the data is first segmented and the autocorrelation is computed 
for individual sections. Here, both the bias and variance problems arise due 
to the autocorrelation estimator. As the lag increases, the number of product 
terms used for averaging will decrease, thereby increasing the variance. For 
k = N − 1, only one product term (x ∗[0]x[N − 1]/N) is used for averaging. 
Hence, the autocorrelation at these lags must be given less weightage. This 
can be done by multiplying the autocorrelation function with a lag window 
(w[k]) and the expression for this is given by 

N−1 
−j2π fkPCOR(f ) = w[k]rxx[k]e . (5.64) 

k=−(N−1) 

This method of estimating the PSD is called the Blackman–Tukey spectral esti­
mation [15]. The lag window is always defined to be symmetrical about 
zero. 

5.5.3 Window Selection for Spectral Analysis 

In this section, we provide some guidelines that will enable the user to select 
appropriate windows for spectral analysis. In spectral analysis, the side lobes 
cause smearing or spreading of energy, while the main lobe is responsible 
for appropriate smoothing effects. Since the energy of a spectral window is 
constant, if the side lobes are to be reduced, the main-lobe width has to be 
increased and vice versa. The side-lobe level and the main-lobe width cannot 
be reduced simultaneously for a fixed window length. Thus, the shape of the 
spectral window should be selected appropriately to meet the desired speci­
fications. A prior knowledge of the PSD is required for better estimation. Let 
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us consider different applications and study the effect of different windows 
(rectangular, Hann, and Hamming windows) for each of the following cases. 

Case 1: Two closely spaced frequency components of almost equal strengths— If there 
are two frequency components that are closely spaced with equal strengths, 
then the appropriate window function to resolve both the frequency compo­
nents is the rectangular window. This is due to the fact that the rectangular 
window has the smallest main-lobe width; hence, the smoothing effect will 
be minimum and both the spectral peaks can be seen distinctly. In the case of 
the Hann and Hamming windows, owing to wider main lobes, the smooth­
ing effects will be quite significant and the two spectral peaks may merge 
into a single peak. For this application, the Hamming window gives a better 
result than the Hann window because of a smaller first side-lobe level than 
the PSLL. This advantage will become more clear in Case 2. For example, let 
us take a signal 

x[n] = cos(2πn5/50) + cos(2πn6.81/50), n = 0, 1, 2, . . . , 49. 

The spectral response of this signal using the rectangular, Hann, and Ham­
ming windows is shown in Figure 5.24. Here, we can see that the rectangular 
window resolves both the spectral components distinctly, whereas the Hann 
and Hamming windows show it as a single component. However, in the 
Hamming case, we can still see a small separation at the top of the peak. 

Case 2: Two closely spaced frequency components with unequal strengths—In this 
case, the PSLL of the window also plays an important role. If one of the com­
ponents is very weak in magnitude, then it gets submerged in the side lobes 
of the strong component. This happens in the case of a rectangular window, 
since its side lobe levels are much higher. Hence, the rectangular window may 
not even detect the weak spectral component. Thus, the Hamming window 
is preferred in this application. Even though both the Hamming and Hann 
windows have the same main-lobe widths, the fact that the first side-lobe 
level of the Hamming window is smaller than the PSLL will prove to be an 
advantage. Here, the high side-lobe roll-off rate of the Hann window will not 
have much effect in resolving the weaker spectral component. For instance, 
let us consider the signal 

x[n] = cos(2πn5/50) + 0.05 cos(2πn7.81/50), n = 0, 1, 2, . . . , 49. 

The spectral response of this signal using the rectangular, Hann, and Ham­
ming windows is shown in Figure 5.25. Here, we can clearly observe that the 
rectangular window cannot detect the presence of the weak spectral compo­
nent, whereas the Hamming window detects it clearly. The Hann window can 

http:x[n]=cos(2�n5/50)+0.05
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FIGURE 5.24 
Response of two closely spaced equal-strength signal components. (a) Using rectangular window. 
(b) Using Hann window. (c) Using Hamming window. 
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Magnitude response of signal with two closely spaced, unequal-strength components. (a) Using 
rectangular window. (b) Using Hann window. (c) Using Hamming window. 



185 Discrete-Time Windows and Their Figures of Merit 

also detect it but the spectral estimate is very poor when compared to the Ham­
ming window. However, as the separation between the spectral components 
increases, the situation changes, which is discussed in the next case. 

Case 3: Two far-away frequency components with unequal strengths—In the pres­
ence of a very weak spectral component that is far away from the stronger 
spectral component, the Hann window turns out to be most appropriate. In 
such an application, the high side-lobe roll-off rate of the Hann window will be 
advantageous. As discussed before, the rectangular window will submerge 
the weak spectral component in the side lobes of the stronger component, 
since the sidelobe level is very high (and its falloff rate is slower). In the case 
of the Hamming window, although the side-lobe levels are lower than the 
Hann window, it takes longer time for the side lobes to fall off as its rate is 
slower. The Hann window has high RFSLL, which makes the side lobes to fall 
faster, even though the PSLL is slightly higher than the Hamming window. 
For example, let us consider a signal 

x[n] = cos(2πn5/50) + 0.005 cos(2πn17.26/50), n = 0, 1, 2, . . . , 49. 

The spectral response of this signal using the rectangular, Hann, and Ham­
ming windows is shown in Figure 5.26. Here, we can clearly see that only 
the Hann window is able to detect the weak spectral component clearly. In 
short, if the immediate side-lobe rejection is important in an application, then 
using the Hamming window is the best option. Instead, if the far-off side-lobe 
rejection is the desired criterion, then the Hann window is the most preferred 
choice. 

Case 4: Weak component in the presence of moderate signal component, both close and 
distant in frequency—The spectral response for case 4 is shown in Figure 5.27. 
We can observe that there are frequency components both nearby and distant; 
hence, a window with equiripple side lobes around the main lobe is required 
to keep the bias small. In this case, the side-lobe falloff rate is not important 
because of the presence of the nearby component. Hence, for this application, 
the Dolph–Chebyshev window is preferred because of its equiripple charac­
teristics. Figure 5.27 clearly shows that only the Dolph–Chebyshev window 
can resolve the weak component in the presence of a moderately near and a 
far-away component. 

In conclusion, we use window functions, other than rectangular, to obtain 
a compromise between a narrow main lobe (for high resolution) and low 
side lobes (for low spectral leakage). High resolution provides accurate esti­
mates of the frequency of a sinusoid and results in the separation of two 
sinusoids that are closely spaced in frequency. Low spectral leakage improves 
the detectability of a weak sinusoid in the presence of a strong sinusoid that is 
not bin-centered. A detailed procedure for the FIR filter design using the win­
dow method is presented in Chapter 7. All the issues discussed with respect 
to spectral analysis will be detailed in Chapter 8. 
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FIGURE 5.26 
Magnitude response of signal having two far-off, unequal-strength components. (a) Using 
rectangular window. (b) Using Hann window. (c) Using Hamming window. 
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6 
Time- and Frequency-Domain 
Implementations of Windows 

This chapter presents the implementation details of windows in the time 
and frequency-domains. While computing the discrete Fourier transform 
(DFT), the inevitable truncation of the input time sequence causes all the 
frequency components of the input signal to interfere with one another [1–4]. 
This phenomenon is often called frequency leakage or smearing, as it leads 
to the spreading of energy. Owing to this leakage, the computed spectrum 
differs from the true spectrum. To reduce this unwanted effect, the input 
data is usually multiplied by a suitable window function before performing 
the DFT [5–9]. For a special class of windows, windowing can alternatively 
be implemented in the frequency-domain [7–10]. We consider the imple­
mentation of many windows which belong to that class of windows such 
as Hann, Hamming, Blackman, raised-cosine, and so on, both in the time 
and in the frequency-domains. Computer simulation studies have been car­
ried out to determine the error performance of these implementations in 
both the domains [10,11]. Efficient hardware structures for windowing in 
the frequency-domain are also presented [7,8]. 

6.1 Time-Domain Implementation 

In the time-domain scheme, a block of N data samples, x[n], is multiplied 
by N window samples, f [n], before performing the DFT. The fast Fourier 
transform (FFT) is an efficient tool to compute the DFT. The special-purpose 
hardware that implements the FFT algorithm is called the FFT processor. The 
time-domain windowing technique is illustrated in Figure 6.1. The realization 
given in Figure 6.1 requires (N + 1)/2 stored samples (since the window is 
symmetric) of the window with an odd length N, or ( N 

2 + 1) samples with an 
even length N, and N number of multiplications [9]. Since there is no single 
efficient window that could be used in spectral estimation for all types of data, 
samples of several windows may be stored in a read-only memory (ROM) or 
in a programmable ROM. A special class of programmable windowing schemes 
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x[n] 

Input data samples 
× DFT processor Output 

f [n]

window samples
 

FIGURE 6.1 
Time-domain scheme. 

that can be used to implement several windows in the frequency-domain is 
outlined in the next section. 

6.2 A Programmable Windowing Technique 

In this section, we describe the implementation of a special class of windows 
[9]. Its discrete version of the time function can be represented in the form: 

2πn 4πn 6πn
f [n] = a − 2b cos + 2c cos − 2d cos ,

N N N 

n = 0, 1, . . . , (N − 1) (6.1) 

If the sample f (N/2) has to be unity, we must have (a + 2b + 2c + 2d) = 1. 
The values of these constants a, b, c, and d can be chosen depending on the 
type of window preferred: for example, 

i. a = 0.5, b = 0.25, c = 0, and d = 0 gives the Hann window; 
ii. a = 0.54, b = 0.23, c = 0, and d = 0 yields the Hamming window and 

iii. a = 0.42, b = 0.25, c = 0.04, and d = 0 gives the Blackman window. 

We now consider a finite-valued sequence, x[n] = {x[0], x[1], x[2], . . . , 
x[N − 1]}. The DFT of this sequence x[n] is given by 

N−1 

A[r] =  x[n] exp(−j2πrn/N), r = 0, 1, . . . , (N − 1). (6.2) 
n=0 

The DFT coefficients, A[r], represent the unsmoothed spectrum of x[n]. 
Multiplying the data with a window, f [n], and computing the DFT yields 
the smoothed spectrum, F[r], which is given by 

N−1 

F[r] =  {x[n]f [n]} exp(−j2πrn/N), r = 0, 1, . . . , (N − 1). (6.3) 
n=0 
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Substituting Equation 6.1 in Equation 6.3, we get 

N−1 [ � � �]
2πn 4πn 6πn

F[r] =  x[n] a − 2b cos + 2c cos − 2d cos 
N N N 

n=0 

× exp(−j2πrn/N), r = 0, 1, . . .  , (N − 1). (6.4) 

By expressing the cosine terms in their exponential forms as 

2πn exp(−j2πn/N) + exp(j2πn/N) 
cos = ,

N 2 

4πn exp(−j4πn/N) + exp(j4πn/N) 
cos = , and (6.5)

N 2 

6πn exp(−j6πn/N) + exp(j6πn/N) 
cos = ,

N 2 

and substituting these terms in Equation 6.4 and collecting the appropriate 
exponential terms, we obtain the following expression: 

N−1 

F[r] = a x[n] exp(−j2πrn/N) 

n=0
 

N−1
 

− b x[n] exp −j2πn(r + 1)/N + exp −j2πn(r − 1)/N
n=0
 

N−1
 

+ c x[n] exp −j2πn(r + 2)/N + exp −j2πn(r − 2)/N
n=0
 

N−1
 

− d x[n] exp −j2πn(r + 3)/N + exp −j2πn(r − 3)/N , 
n=0 

r = 0, 1, . . .  , (N − 1). (6.6) 

By using the definition of the DFT as given in Equation 6.2, we can reduce 
Equation 6.6 as follows: 

F[r] = aA[r] − b{A[r + 1] + A[r − 1]} + c{A[r + 2] + A[r − 2]} 
− d{A[r + 3] + A[r − 3]}. (6.7) 

Owing to the periodicity property of the DFT, A[−1] = A[N − 1], A[−2] =
A[N − 2], A[N] = A[0], and in general A[±r] = A[N ± r]. Thus, Equation 6.7 
gives F[r] for all values of r, where r = 0, 1, . . .  , (N − 1). We can now say that 
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FIGURE 6.2 
Frequency-domain implementation of windows. 

F[r] gives a smoothed spectrum. An efficient scheme for implementing differ­
ent windows based on the operation given above is shown in Figure 6.2 [9]. 

The number of multiplications required for the scheme in Figure 6.2 is equal 
to 4N instead of N for the block diagram of Figure 6.1. Although this seems 
to be a serious drawback for the frequency-domain implementation (FDI), 
it is however not the case. In the circuit of Figure 6.1, one needs a general-
purpose multiplier where both inputs have to be represented by a relatively 
large number of bits. As will be shown in this chapter, for the windows defined 
in Equation 6.1, the multiplications by a, b, c, and d can be implemented by a 
very small number of shift and add/subtract operations. 

6.3 Computational Error in Time and Frequency-Domains 

In this section, the error performance of the implementation schemes of win­
dows are computed as explained below [9]. In the following discussion, the 
time-domain implementation (TDI) is carried out as shown in Figure 6.1 and 
the FDI is realized by the scheme shown in Figure 6.2. 

Throughout the computations, the input data samples are quantized to 12 
bits and the FFT is computed with fixed-point arithmetic, by choosing the 
word length to be 12 bits. It may be noted that white Gaussian data is used 
as the input. The quantized data is multiplied by the unquantized samples of 
the window and then the FFT is performed. This resulting sequence is taken 
as the reference (for both the domains). In the TDI, the window samples 
are represented by L bits. The quantized data samples are multiplied by the 
quantized window samples and the FFT of the product is computed. This 
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result is subtracted from the above reference and the difference is recorded 
as the error. This is repeated several times (β) and the variance of the error 
is computed from these trials, for various values of the number of bits L and 
data lengths (N). 

In case of the FDI, the FFT is performed on the input Gaussian data samples. 
The resulting DFT coefficients are multiplied by the coefficients a, b, c, and 
d (depending on the type of window employed) according to Equation 6.7. 
These coefficients are represented by L bits, where L is varied from 7 to 12 
bits. In each case, the result obtained from Equation 6.7 is subtracted from 
the above-mentioned reference and the difference is taken as the error. This 
procedure is repeated over β number of trials and from the resulting errors, 
the variance is computed [9]. 

The signal-to-computational error ratio (SCER) is defined as the ratio of the 
input signal variance to the output error variance. This ratio is computed in 
dB, for various word lengths, and they are tabulated in Tables 6.1 through 6.4 
for the different windows, namely, Hann, Hamming, Blackman, and raised-
cosine windows, respectively. It must be noted that the higher the SCER, the 
more accurate is the performance. 

As seen from Table 6.1, the FDI of the Hann window is far superior to 
its time-domain counterpart, for all the coefficient word lengths considered 
[9,10]. This is because the coefficients (0.5 and 0.25) of the Hann window can 
be represented exactly, whenever the word length is greater than or equal to 
two bits. 

In the case of the Hamming window (Table 6.2), both the TDI and the FDI 
seem to provide mixed SCER performance for different word lengths and 
window coefficient lengths [9]. From the results of Table 6.3, which corre­
spond to the Blackman window, it can be observed that the time-domain 
version yields better SCER for word lengths of 8 bits or less [9,10]. However, 
for the raised-cosine family, with D = 0.0113 (Table 6.4), the implementation 
in the time-domain apparently provides better SCER when the word length 

TABLE 6.1 

SCER (in dB) Performance of Hann Window 

N 16 32 64 128 256 512 

L (β) (500) (275) (125) (50) (25) (10) 

7 TDI 37.86 35.14 33.21 33.41 30.95 30.50 
8 TDI 42.29 40.69 37.00 35.82 33.22 32.21 
9 TDI 46.40 44.74 40.15 37.76 34.44 33.44 
10 TDI 49.74 45.53 41.45 38.07 35.45 33.95 
11 TDI 52.35 45.72 41.36 39.38 35.45 34.15 
12 TDI 51.62 46.17 42.58 39.91 35.72 34.32 

FDI 57.95 51.61 46.38 43.54 39.86 38.22 

Note: L: window coefficient length, β: number of FFTs averaged. 
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TABLE 6.2 

SCER (in dB) Performance of Hamming Window 

N 16 32 64 128 256 512 

L (β) (500) (275) (125) (50) (25) (10) 

7 TDI 35.22 34.07 34.35 33.44 30.95 30.64 
FDI 30.42 30.73 30.10 29.45 28.85 28.23 

8 TDI 40.26 38.85 37.57 36.35 33.38 32.31 
FDI 41.44 41.07 39.27 37.96 36.06 34.88 

9 TDI 45.58 42.91 40.10 38.20 34.64 33.89 
FDI 41.44 41.07 39.27 37.96 36.06 34.88 

10 TDI 49.09 45.87 40.87 39.51 35.19 34.09 
FDI 46.70 45.13 42.45 40.46 37.81 36.42 

11 TDI 49.45 47.41 41.52 39.54 35.31 34.15 
FDI 50.45 47.36 43.87 41.68 38.60 37.14 

12 TDI 50.97 48.18 41.85 39.73 35.69 34.25 
FDI 54.80 49.86 45.38 42.87 39.42 37.85 

Note: L: window coefficient length, β: number of FFTs averaged. 

is 9 bits or less [9]. We must note that the above-mentioned results are only 
approximations [9,10]. 

From these experiments, it is seen that in most of the cases, the differ­
ence in SCER comes down with the increase in data size (N). This happens 
because, with increase in N, the number of arithmetic operations increases 
and the round-off errors contributed by these operations will supercede the 

TABLE 6.3 

SCER (in dB) Performance of Blackman Window 

N 16 32 64 128 256 512 

L (β) (500) (275) (125) (50) (25) (10) 

7 TDI 36.90 33.70 31.78 32.08 30.09 29.94 
FDI 30.54 30.40 28.92 28.68 28.50 27.86 

8 TDI 43.17 38.44 35.57 35.03 32.61 31.73 
FDI 39.38 38.00 36.25 36.06 34.37 33.68 

9 TDI 45.95 40.83 37.62 36.80 33.54 32.71 
FDI 46.37 44.89 41.94 40.14 37.69 36.35 

10 TDI 47.87 43.79 39.92 38.95 34.04 33.40 
FDI 52.37 49.86 45.88 42.54 39.56 37.80 

11 TDI 50.33 44.39 40.91 38.14 34.48 33.46 
FDI 52.37 49.86 45.88 42.54 39.56 37.80 

12 TDI 52.93 45.58 40.83 38.65 34.60 33.48 
FDI 55.21 51.39 46.34 43.07 39.71 38.03 

Note: L: window coefficient length, β: number of FFTs averaged. 



TABLE 6.4 

SCER (in dB) Performance of Raised-Cosine Family (D = 0.0113) 

N 16 32 64 128 256 512 

L (β) (500) (275) (125) (50) (25) (10) 

7 TDI 39.40 36.33 33.05 32.23 30.81 30.15 
FDI 29.21 29.36 29.49 28.01 28.16 27.10 

8 TDI 41.28 39.70 36.29 35.50 32.63 32.10 
FDI 38.03 38.47 37.35 35.37 34.38 33.02 

9 TDI 43.97 39.19 43.50 37.32 34.02 33.08 
FDI 40.83 39.71 40.28 37.40 36.34 34.72 

10 TDI 48.55 43.59 40.03 38.45 34.93 34.09 
FDI 48.86 47.65 44.70 41.55 39.05 37.23 

11 TDI 51.00 45.24 40.86 38.75 35.28 33.97 
FDI 52.38 49.81 45.64 42.45 39.28 37.60 

12 TDI 51.44 45.05 41.98 39.46 35.31 34.38 
FDI 53.81 49.57 45.21 42.63 39.26 37.71 

Note: L: window coefficient length, β: number of FFTs averaged. 
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quantization errors. In the following section, we shall describe an approach 
that improves the efficiency of the schemes in Figures 6.1 and 6.2. 

6.4 Canonic Signed Digit Windowing 

We illustrate that the block diagrams of Section 6.2 become very efficient if we 
use the canonic signed digits (CSD) technique. The CSD technique code is a 
ternary code where we use 0, +1, and −1, rather than 0 and 1 in a binary window 
[8]. This is particularly beneficial since we can construct efficient windows by 
reducing the number of additions using the simple geometrical progression 

N2
 

2−n = 2−N1+1 − 2−N2
 , N1, N2 ∈ Z+ , N2 > N1. (6.8) 
n=N1 

Here, Z+ is the positive integer set. 
As an example, consider the equation 

2−3 + 2−4 + 2−5 + 2−6 + 2−7 + 2−8 + 2−9 = 0.248046875. (6.9) 

We note that Equation 6.9 needs six adders to compute the sum. The same 
result can be obtained using just one adder, as given below: 

2−2 + (−2−9) = 0.248046875. (6.10) 



  

   � � � 
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This is possible using Equation 6.8, since the summation terms are in series. In 
an implementation, the complexity of an adder is the same as the complexity 
of a subtractor. 

Certain simplifications can be done to obtain a redundant form, even if the 
sequence is not in series, such as 

2−2 + 2−3 + 2−4 + 2−6 + 2−7 + 2−8 + 2−9 = 0.466796875. (6.11) 

Again, Equation 6.11 has six adders in series, except for the missing 2−5. This 
can be computed either using a set of two different summations 

2−2 + 2−3 + 2−4 + 2−6 + 2−7 + 2−8 + 2−9 = [2−1 − 2−4] + [2−5 − 2−9], (6.12) 

or by adding and subtracting the missing term as follows: 

2−2 + 2−3 + 2−4 + 2−6 + 2−7 + 2−8 + 2−9 

= 2−2 + 2−3 + 2−4 + 2−5 + 2−6 + 2−7 + 2−8 + 2−9 − 2−5 . 

= 2−1 − 2−9 − 2−5 . 

Here, the number of adders have been reduced to two when compared to 
three in Equation 6.12. These concepts are demonstrated later. 

As discussed earlier, the discrete version of a generalized data window, 
involving cosine terms, can be represented by (N = even): 

K 2πnk 
� 

f [n] =  (−1)kak cos , n = 0, 1, . . . , (N − 1), (6.13)
N 

k=0 

where {ak }K represents real constants. The negative sign results from the shift k=0 

in the origin of the window. We note that the function is centered around N/2. 
We recall that a four-term window can be represented by Equation 6.1, which 
is reproduced below [9] for clarity: 

2πn 4πn 6πn
f [n] = a − 2b cos + 2c cos − 2d cos ,

N N N 

n = 0, 1, . . . , (N − 1). 

We also recall that A[r] is the DFT of a data sequence x[n], n = 0, 1, . . . , (N − 1) 

(see Section 6.2 for details). If f [n] is used to smooth the spectrum A[r], the 
resulting smoothed spectrum is given by Equation 6.7, which is 

F[r] = aA[r] − b {A[r + 1] + A[r − 1]} + c {A[r + 2] + A[r − 2]} 
− d {A[r + 3] + A[r − 3]} , 
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where a, b, c, and d are real constants. By expressing these constants in terms 
of the negative powers of two, the multiplications are carried out by right 
shifts. Further reduction in hardware complexity is obtained by expressing 
F[r] in Equation 6.7 as 

F[r] = 2−μF
� [r], (6.14) 

where 2−μ represents the common factor of all constants used in Equation 6.7 
[8,9]. As will be shown, the schemes proposed in this section do not require 
any multiplication, except by 2−n, which amounts to only scaling or shifting 
by n bits to the right. Also, in the scheme proposed, we need not recompute 
the DFT again if we decide to change the window function. Furthermore, 
these schemes do not require storage for coefficients. 

We shall now describe some of the typical CSD window implementations. 
These CSD windows have been derived by approximating the coefficients of 
the data windows in terms of the binary fractions and optimizing them with 
respect to their side-lobe performance. Hence, most of the CSD windows 
proposed perform at least equal or sometimes even better than the other 
known windows. The CSD window structures for a number of windows are 
presented in the following pages. Continuous-time frequency response plots 
have also been included to understand its frequency-domain behavior. In the 
frequency response plot, the y-axis shows the normalized magnitude of the 
Fourier transform (in dB), while the x-axis gives the normalized frequency. 

6.4.1 Window 1 

The first set of weights that we consider corresponds to the well-known 
Hann window, for which there are only two nonzero coefficients a0 = 0.5 
and a1 = 0.5 (see Equation 6.13) [9]. Therefore, the coefficients for the FDI 
are a = 0.5 and b = 0.25 (Equation 6.4), which can be expressed in the binary 
form as 2−1 and 2−2, respectively. The peak side-lobe level (PSLL) which is 
also the FSLL for this window, is −31.47 dB, but its asymptotic decay rate is 
18 dB/octave. The structure for implementing this window in the frequency-
domain is shown in Figure 6.3(a) and its frequency response is shown in 
Figure 6.3(b). The normalized half main-lobe width (NHMLW) of this CSD 
window is unity. Figure 6.3(b) shows the normalized values of frequency 
(x-axis) and the y-axis gives normalized values of the Fourier transform 
magnitude (expressed in dB). 

6.4.2 Window 2 

The second weighting function to be considered is the Hamming win­
dow, whose coefficients for FDI are a = 0.546875 = 2−1 + 2−5 + 2−6 and 
b = 0.2265625 = 2−3 + 2−4 + 2−5 + 2−7 = 2−2 − 2−5 + 2−7, which is again a two-
term CSD window. The structure for implementing this window is shown 
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FIGURE 6.3 
Illustration of window 1. (a) Binary window structure. (b) Frequency response plot. 

in Figure 6.4(a) and the frequency response of this CSD window is plot­
ted in Figure 6.4(b). The peak side-lobe level (PSLL) and the first side-lobe 
level (FSLL) are −40.84 dB and −48.23 dB, respectively. The NHMLW of this 
window is unity. However, its asymptotic decay rate of the side-lobe envelope 
is only 6 dB/octave. 

6.4.3 Window 3 

The next set of CSD windows proposed are shown in Figures 6.5(a) and 6.6(a), 
whose main-lobe widths fall in between the windows discussed above and 
the Blackman window. 
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FIGURE 6.4 
Illustration of window 2. (a) Binary window structure. (b) Frequency response plot. 

The set of binary coefficients chosen are 

a = 0.4921875 = 2−2 + 2−3 + 2−4 + 2−5 + 2−6 + 2−7 = 2−1 − 2−7, 

b = 0.24609375 = 2−3 + 2−4 + 2−5 + 2−6 + 2−7 + 2−8 = 2−2 − 2−8, and 

c = 0.0078125 = 2−7. (6.15) 
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FIGURE 6.5 
Illustration of window 3 (for a = 0.4921875, b = 0.24609375, c = 0.0078125). (a) Binary window 
structure. (b) Frequency response plot 

We also consider another set of slightly modified coefficients for the three-
term CSD window as follows: 

a = 0.484375 = 2−2 + 2−3 + 2−4 + 2−5 + 2−6 = 2−1 − 2−6,
 

b = 0.2421875 = 2−3 + 2−4 + 2−5 + 2−6 + 2−7 = 2−2 − 2−7, and
 

c = 0.015625 = 2−6. (6.16)
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FIGURE 6.6 
Illustration of Window 3 (for a = 0.484375, b = 0.2421875, c = 0.015625). (a) Binary window 
structure. (b) Frequency response plot. 

The frequency response plots of these windows, the coefficients of which 
are given in Equations 6.15 and 6.16, are given in Figures 6.5(b) and 6.6(b), 
respectively. The NHMLWs of these windows are 1.06 and 1.20, respectively, 
and the asymptotic decay rate of the side-lobe envelope is only 6 dB/octave 
in each case. For the first set of coefficients (Equation 6.15), the FSLL (which 
also happens to be the maximum side-lobe level) is −37.41 dB. For the second 
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set of coefficients given by Equation 6.16, the first and maximum side lobes 
are −54.82 and −52.69 dB, respectively. 

6.4.4 Window 4 

We now describe an equivalent of the Blackman window, which is another 
three-term CSD window. This window has an increased main-lobe width 
of 1.5. Its corresponding asymptotic decay rate is 30 dB/octave, which is 
considered to be excellent. The binary coefficients in this case are 

a = 0.375 = 2−2 + 2−3; b = 0.25 = 2−2; and c = 0.0625 = 2−4. 

The first (as well as the maximum side-lobe level) is only −46.74 dB. The 
implementation scheme is shown in Figure 6.7(a) and the corresponding 
Fourier transform is given in Figure 6.7(b). 

6.4.5 Window 5 

The second set of CSD windows in the category of Blackman windows with 
NHMLW of 1.5 has the following set of coefficients: 

a = 0.42578125 = 2−2 + 2−3 + 2−5 + 2−6 + 2−8 = 2−1 − 2−4 − 2−6 + 2−8, 

b = 0.248046875 = 2−3 + 2−4 + 2−5 + 2−6 + 2−7 + 2−8 + 2−9 = 2−2 − 2−9, and 

c = 0.0390625 = 2−5 + 2−7. 

The scheme for the FDI of this window is shown in Figure 6.8(a) and its DTFT 
in Figure 6.8(b). This window yields an FSLL of −64.73 dB, which is also 
the same as the maximum side-lobe level, giving us a 6.5 dB improvement 
over the original Blackman window. However, the side-lobe decay rate of 
the proposed window is only 6 dB/octave. 

6.4.6 Window 6 

This CSD window, which again falls in the category of a three-term window, 
has NHMLW of 1.42 and its coefficients are: 

a = 0.453125 = 2−2 + 2−3 + 2−4 + 2−6 = 2−1 − 2−4 + 2−6, 

b = 0.24609375 = 2−3 + 2−4 + 2−5 + 2−6 + 2−7 + 2−8 = 2−2 − 2−8, and 

c = 0.02734375 = 2−6 + 2−7 + 2−8 = 2−5 − 2−8. 

The FSLL and the maximum side-lobe level are −67.60 and −59.86 dB, respec­
tively. Figure 6.9(a) shows the FDI of this window and Figure 6.9(b) displays 
its spectrum. 
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FIGURE 6.7 
Illustration of Window 4. (a) Binary window structure. (b) Frequency response plot. 

6.4.7 Window 7 

The next window function that we consider has the following set of coeffi­
cients: 

a = 0.44921875 = 2−2 + 2−3 + 2−4 + 2−7 + 2−8 = 2−1 − 2−4 + 2−7 + 2−8, 

b = 0.24609375 = 2−3 + 2−4 + 2−5 + 2−6 + 2−7 + 2−8 = 2−2 − 2−8, and 

c = 0.029296875 = 2−6 + 2−7 + 2−8 + 2−9 = 2−5 − 2−9. 
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FIGURE 6.8 
Illustration of window 5. (a) Binary window structure. (b) Frequency response plot. 

This three-term CSD window offers an excellent FSLL of −93.50 dB, but the 
decay rate of the Fourier transform of the window is only 6 dB/octave. The 
structure of this window is shown in Figure 6.10(a) and its frequency-domain 
plot is given in Figure 6.10(b). 

We note that for all the windows considered in the three-term category 
(except for window 4), the asymptotic decay rate of the side-lobe envelope 
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FIGURE 6.9 
Illustration of window 6. (a) Binary window structure. (b) Frequency response plot. 

is only 6 dB/octave. However, we present some more windows that offer a 
much better side-lobe decay rate. 

6.4.8 Window 8 

The first set of coefficients in this category of windows is 

a = 0.40625 = 2−2 + 2−3 + 2−5; b = 0.25 = 2−2; and c = 0.046875 = 2−5 + 2−6. 
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FIGURE 6.10 
Illustration of window 7. (a) Binary window structure. (b) Frequency response plot. 

The structure of this window is depicted in Figure 6.11(a), with its fre­
quency response in Figure 6.11(b). This window has a side-lobe fall-off rate 
of 18 dB/octave, which is the same as the original continuous-time Blackman 
window (introduced in Chapter 3). However, the first (and maximum) side-
lobe level in this case is −61.30 dB, which is in fact better than the original 
Blackman window by about 3 dB. 
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FIGURE 6.11 
Illustration of window 8. (a) Binary window structure. (b) Frequency response plot. 

6.4.9 Window 9 

In the next three-term CSD window, the coefficients are set as follows: 

a = 0.4140625 = 2−2 + 2−3 + 2−5 + 2−7, b = 0.25 = 2−2, 

c = 0.04296875 = 2−5 + 2−7 + 2−8. 
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FIGURE 6.12 
Illustration of window 9. (a) Binary window structure. (b) Frequency response plot. 

The structure is shown in Figure 6.12(a) and its response in Figure 6.12(b). 
This window offers FSLL of −72.22 dB, while its peak side-lobe level is 
−61.65 dB. The asymptotic decay rate of this window is 18 dB/octave. There­
fore, this window offers excellent immediate side-lobe rejection as well as far-off 
side-lobe rejection. The performance of this window is much better than the 
continuous-time Blackman window (presented in an earlier chapter). 
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6.4.10 Window 10 

The last set of binary coefficients to be considered in the three-term window 
category is the one with the following constants: 

a = 0.41015625 = 2−2 + 2−3 + 2−5 + 2−8, b = 0.25 = 2−2, and 

c = 0.044921875 = 2−5 + 2−7 + 2−8 + 2−9 = 2−6 − 2−9 + 2−5. 

Its FSLL is −65.68 dB, while the PSLL is −63.52 dB. The FDI is shown in 
Figure 6.13(a) and its frequency response in Figure 6.13(b). However, the 
side-lobes falloff rate is 18 dB/octave like in the previous two cases. 

The third category of CSD windows is the four-term windows, which have 
excellent side-lobe behavior, but at the expense of increased main-lobe widths. 
We have obtained four sets of four-term CSD windows that are considered to 
be optimum with respect to the side-lobe levels and their asymptotic decay 
rates. These sets of windows are considered next. 

6.4.11 Window 11 

The first set of binary coefficients are 

a = 0.3125 = 2−2 + 2−4; b = 0.234375 = 2−3 + 2−4 + 2−5 + 2−6 = 2−2 − 2−6, 

c = 0.09375 = 2−4 + 2−5, and d = 0.015625 = 2−6. 

This window has an asymptotic decay rate of 42 dB/octave. The frequency 
response plot depicted in Figure 6.14(b) shows its maximum side lobe to be 
−60.96 dB and its FDI structure is given in Figure 6.14(a). 

6.4.12 Window 12 

The optimized binary coefficients in this four-term window are 

a = 0.3515625 = 2−2 + 2−4 + 2−5 + 2−7; 

= 2−2 − 2−7b = 0.2421875 = 2−3 + 2−4 + 2−5 + 2−6 + 2−7 

c = 0.07421875 = 2−4 + 2−7 + 2−8, and d = 0.0078125 = 2−7. 

In this case, the FSLL and the maximum side-lobe levels are the same, that is, 
−71.63 dB, but its asymptotic decay rate is 18 dB/octave. This CSD window 
is depicted in Figure 6.15(a) and its frequency response plot in Figure 6.15(b). 
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FIGURE 6.13 
Illustration of window 10. (a) Binary window structure. (b) Frequency response plot. 

6.4.13 Window 13 

This CSD window has four coefficients that are given by 

a = 0.35546875 = 2−2 + 2−4 + 2−5 + 2−7 + 2−8 = 2−2 + 2−3 − 2−6 − 2−8, 

b = 0.244140625 = 2−3 + 2−4 + 2−5 + 2−6 + 2−7 + 2−9 = 2−2 − 2−7 + 2−9, 

c = 0.072265625 = 2−4 + 2−7 + 2−9, and d = 0.005859375 = 2−8 + 2−9. 
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FIGURE 6.14 
Illustration of window 11. (a) Binary window structure. (b) Frequency response plot. 

This results in a frequency response as indicated in Figure 6.16(b). The FSLL 
of this window is −75.42 dB. However, this window has a wide NHMLW of 
1.92, while the asymptotic decay rate is still 18 dB/octave. The discrete-time 
structure of this window is given in Figure 6.16(a). 

6.4.14 Window 14 

The last CSD window we discuss in this chapter has the set of optimized 
binary coefficients as follows: 

a = 0.359375 = 2−2 + 2−4 + 2−5 + 2−6 = 2−2 + 2−3 − 2−6, 
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FIGURE 6.15 
Illustration of window 12. (a) Binary window structure. (b) Frequency response plot. 

b = 0.244140625 = 2−3 + 2−4 + 2−5 + 2−6 + 2−7 + 2−9 = 2−2 − 2−7 + 2−9, 

c = 0.0703125 = 2−4 + 2−7, and d = 0.005859375 = 2−8 + 2−9. 

From Figure 6.17(b), it is seen that this window gives excellent side-lobe atten­
uation, which is nearly −88 dB. The structure for implementing this window 
is shown in Figure 6.17(a). Its asymptotic decay rate of the side-lobe envelope 
is still 18 dB/octave. However, the NHMLW of this window is 2.0, which is 
rather large. 
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FIGURE 6.16 
Illustration of window 13. (a) Binary window structure. (b) Frequency response plot. 

6.5 Modified Zeroth-Order Kaiser–Bessel Window Family 

As discussed in an earlier chapter, the near-optimum modified zeroth-order 
Bessel window invented by Kaiser has a continuous-time Fourier transform 
pair given by 

Io[α 1 − (t/τ)2]
f (t) = , |t| ≤ τ and 

Io(α) 

sinh[α 1 − (�/α)2]
F(j�) = � , −∞ ≤ � ≤ ∞. 

(sinh α) 1 − (�/α)2 
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FIGURE 6.17 
Illustration of Window 14. (a) Binary window structure. (b) Frequency response plot. 

where α is the parameter controlling the main-lobe width and consequently √ √ 
the side-lobe level. We have chosen the values of α to be π 3 ,  π 8, and √ 
π 15, such that the normalized half main-lobe widths are 1.0, 1.5, and 2.0, 
respectively. 

The normalized magnitude plots of the Fourier transform of these windows 
are shown in Figure 6.18. The asymptotic decay rate of the side-lobe envelope 
for the modified zeroth-order Kaiser–Bessel family is only 6 dB/octave. The 
performance of each CSD window proposed can be easily compared with 
respect to the near-optimum Kaiser–Bessel windows having nearly the same 
main-lobe widths. It should, however, be noted that the sum-cosine windows 
discussed in Section 5.2.7 and presented in refs. [9,11] cannot be implemented 
using the CSD structure. 
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FIGURE 6.18 
Frequency response of zeroth-order Kaiser–Bessel 
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6.6 Summary 

In this chapter, we have presented a number of windows with excellent 
side-lobe behavior for implementation in the frequency-domain. Their PSLL 
ranges from −31.47 dB to −87.69 dB, while the asymptotic decay rate of the 
side-lobe envelope varies from 6 dB/octave to 42 dB/octave. The variation in 
the FSLL is from −31.47 dB to −93.50 dB. Table 6.5 presents all the parameters 
of the CSD windows, considered in Section 6.4 as well as the Kaiser–Bessel 
windows of Section 6.5. The distinct advantage of using the proposed CSD 
windows is the ease with which they can be implemented in the frequency-
domain. Conventional time-domain windowing requires (N/2 + 1) stored 
values of the window samples for even N and (N + 1)/2 for odd N, with 
N multiplications. In the scheme suggested, these are replaced by shifts and 
add operations. Yet another advantage of frequency-domain windowing is 
that more than one window may be applied to the same spectrum without the 
need of computing the DFT more than once. To choose appropriate windows 

TABLE 6.5 

Performance of Binary Windows 

Normalized Half First Peak Asymptotic Decay 

Main-Lobe Side-Lobe Side-Lobe Rate of SLL 

Window Width Level (dB) Level (dB) (dB/Octave) 

Window 1 1.0 −31.47 −31.47 18 
Window 2 1.0 −48.23 −40.84 6 
Window 3 1.06 −37.41 −37.41 6 

1.20 −54.82 −52.69 6 
Window 4 1.50 −46.74 −46.74 30 
Window 5 1.50 −64.73 −64.73 6 
Window 6 1.42 −67.60 −59.86 6 
Window 7 1.50 −93.50 −59.42 6 
Window 8 1.50 −61.30 −61.30 18 
Window 9 1.50 −72.22 −61.65 18 
Window 10 1.50 −65.68 −63.52 18 
Window 11 2.0 −60.96 −60.96 42 
Window 12 2.0 −71.63 −71.63 18 
Window 13 1.92 −75.42 −75.42 18 
Window 14 2.0 −88.42 −87.69 18 

Kaiser–Bessel with α√ 
π 3√ 

1.0 −39.79 −39.79 6 
π 8√ 

1.5 −65.47 −65.47 6 
π 15 2.0 −91.25 −91.25 6 
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depending on the application of interest, efficient and economical structures 
are suggested for frequency-domain windowing. To illustrate the frequency-
domain behavior, we have also included the plots of the continuous-time 
Fourier transforms of the windows. 
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7 
FIR Filter Design Using Windows
 

7.1 Ideal Filters 

Filtering refers to the time or frequency-domain processing of a signal, which 
is performed to enhance the required features or to remove unwanted fre­
quency components. Ideal filters allow a band of frequencies and reject 
all other frequencies. Depending on their frequency-domain characteristics, 
filters can be classified as 

i. Lowpass 
ii. Highpass 

iii. Bandstop 
iv. Bandpass 

The magnitude responses of these ideal filters are shown in Figure 7.1 (for 
positive frequencies only). For real filters, the magnitude response is symmet­
ric around ω = 0. In this section, we define the magnitude response of these 
ideal filters and compute their impulse responses, assuming that the phase 
responses are equal to zero (zero-phase filters). 

7.1.1 Lowpass Filter 

The frequency response of a zero-phase ideal lowpass filter (LPF) can be 
defined as 

1, 0 ≤ |ω| ≤ ωcHlp(ejω) = (7.1)
0, ωc < |ω| ≤ π , 

where ωc is the cut-off frequency of this LPF. It allows only low-frequency 
components that are less than the cut-off frequency ωc to pass and to fully 
reject all the frequencies above ωc. The impulse response of the ideal LPF 

219 



(a) |Hlp(e jω )| (b) |Hhp(e jω )| 

1 1 

ω ω
ω π 0 ω π0 c c 

(c) |Hbp(e jω )| (d) |Hbs(e jω )| 

1 1 

ω ω 
0 ω 1 ω 2 π 0 ω 1 ω 2 π 

 � 

� 

220 Window Functions and Their Applications in Signal Processing 

FIGURE 7.1 
Magnitude response of ideal (a) lowpass, (b) highpass, (c) bandpass, and (d) bandstop filters. 

hlp[n] can be obtained by taking the inverse DTFT of Hlp(ejω) as given below: 

� π1 jω jωndωhlp[n] =  Hlp(e )e
2π −π � [ ]ωcωc jωn1 1 e= ejωndω = 
2π 2π jn−ωc −ωc 

ejωcn e−jωcn1 = −
2π jn jn ⎧sin(ωcn) ⎪ ⎨ , −∞ < n < ∞, n �= 0 

= πn (7.2) ⎪ ωc ⎩ , n = 0. 
π 

7.1.2 Highpass Filter 

The frequency response of the ideal highpass filter (HPF) can be defined as 

0, 0 ≤ |ω| ≤ ωcHhp(ejω) = (7.3)
1, ωc < |ω| ≤ π . 

The HPF rejects the frequencies less than the cut-off frequency ωc and allows 
all the frequencies between ωc and π to pass. From Figure 7.1, we can easily 



� 

� 

relate the attenuation characteristics of the zero-phase highpass and the zero-
phase LPFs as 

Hhp(ejω) = 1 − Hlp(ejω). (7.4) 

From this relation, we can now obtain the impulse response of the HPF by 
taking the inverse DTFT on both sides of Equation 7.4. 

⎧ sin(ωcn) ⎪ ⎨− , −∞ < n < ∞, n = 0. 
(πn)hhp[n] = δ[n] − hlp[n] =  (7.5) ⎪ ωc ⎩1 − , n = 0. 
π 

7.1.3 Bandpass Filter 

The bandpass filter (BPF) passes frequencies only in the interval (ω1, ω2). 

jω 1, ω1 ≤ ω ≤ ω2Hbp(e ) = (7.6)
0, elsewhere. 

The impulse response of a BPF can be described as the difference between 
the impulse responses of an LPF with a cut-off frequency ω2 and a second 
lowpass with a cut-off ω1. The corresponding impulse response can thus be 
given by 

hbp[n] =  

⎧ ⎪ ⎨ 
⎪ ⎩ 

sin(ω2n) 

πn 
− 

sin(ω1n) 

πn 
, 

ω2 − ω1 

π 
, 

−∞ < n < ∞, n = 0 

n = 0. 
(7.7) 

7.1.4 Bandstop Filter 

In this case, the filter blocks (or stops) the frequency components in the 
interval (ω1, ω2). 

0, ω1 ≤ ω ≤ ω2Hbs(ejω) = (7.8)
1, elsewhere. 

The impulse response of a bandstop filter (BSF) can be described as the dif­
ference between the impulse responses of an all-pass filter and the BPF in 
Figure 7.1(c). Using Equation 7.7, we obtain 

⎧sin(ω1n) sin(ω2n) ⎪ ⎨ − , −∞ < n < ∞, n = 0 
πn πnhbs[n] = δ[n] − hbp[n] =  (7.9) ⎪ ω2 − ω1 ⎩1 − , n = 0. 

π 
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7.2 Linear Time Invariant Systems 

To define FIR and IIR systems, let us first introduce linear constant coefficient 
difference equations (LCCDEs) in the context of discrete-time systems. The 
LCCDE describes an important subclass of discrete-time systems called linear 
time invariant (LTI) systems, or also called as linear shift invariant (LSI) sys­
tems, whose input x[n] and output y[n] (see Figure 7.2) satisfy an Nth-order 
LCCDE defined in the following form: 

N M 

aky[n − k] =  brx[n − r]. (7.10) 
k=0 r=0 

We assume real LTI systems for which the coefficients of the LCCDE are real. 
Since the system discussed before is causal, we can rearrange Equation 7.10 
in the following way, such that we can compute the present sample y[n] in 
terms of (i) the past output samples y[n − k] and (ii) the present and the past 
input samples x[n] and x[n − k], respectively. This formulation gives us the 
following form: 

N M 

a0y[n] +  aky[n − k] =  brx[n − r]. (7.11) 
k=1 r=0 

We can modify Equation 7.11 by normalizing the coefficient of y[n] to be unity 
(i.e., a0 = 1). Also, the coefficients of the delayed output samples, y[n − k] are 
modified into negative coefficients −ak so that after they are moved to right 
side of Equation 7.11, they become positive. The rearranged LCCDE is of 
the form 

N M 

y[n] −  aky[n − k] =  brx[n − r]. (7.12) 
k=1 r=0 

Therefore 
N M 

y[n] =  aky[n − k] +  brx[n − r]. (7.13) 
k=1 r=0 

The system function or the transfer function H(z), which turns out to be the 
z-transform of h[n], can be computed by taking the z-transform of the LCCDE; 

FIGURE 7.2 
An LTI system. 
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from Equation 7.12, we obtain 

N M 

Y(z) − akz−kY(z) = brz−rX(z). (7.14) 
k=1 r=0 

Rearranging and using the definition of the system function 

Y(z)
H(z) = 

X(z) 
, (7.15) 

we then obtain 

N M 

Y(z) 1 − ak z−k = X(z) brz−r (7.16) 
k=1 r=0 

M 

brz−r 

H(z) = 
Y(z) 
X(z) 

= r=0 

1 − 
N 

ak z−k 

, (7.17) 

k=1 

or equivalently, we can also factor the numerator and denominator polyno­
mials of H(z) as [1] 

M1 M2 

−1 −1 −1(1 − crz ) (1 − frz )(1 − fr 
∗ z ) 

r=1 r=1H(z) = b0 , (7.18)
N1 N2 

−1 −1 ∗ −1(1 − dkz ) (1 − gkz )(1 − gk z ) 

k=1 k=1 

where M = M1 + 2M2 and N = N1 + 2N2. In this expression, cr and dk are 
real zeros and real poles, respectively. The zeros fr, fr 

∗ are complex conjugate 
pairs of zeros and gk , gk 

∗ are complex conjugate pairs of poles. If we observe 
the right-hand side of Equation 7.13, the first sum corresponds to feedback 
terms and the second sum corresponds to feed-forward terms. Digital filters 
without feedback (i.e., all coefficients ak are equal to zero) are called FIR filters. 
Equivalently, FIR filters can also be defined as digital filters having zeros and 
no poles except at the origin z = 0. If the input of such a filter is an isolated 
impulse, the output is nonzero only for (M + 1) samples, where M represents 
the order of the filter. In a similar way, digital filters with feedback terms also 
included are called IIR digital filters. The reason is that the nonzero outputs act 
as forcing terms when fed back to the input, thereby generating the possibility 
of infinite ringing. 
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7.3 FIR Filters 

The general equation relating the input and output of an LTI system is again 
reproduced below: 

N M 

y[n] =  aky[n − k] +  brx[n − r]. (7.19) 
k=1 r=0 

If we set all ak coefficients to zero, then Equation 7.19 reduces to 

M 

y[n] =  brx[n − r]. (7.20) 
r=0 

Now, if we compare Equation 7.20 with the convolution sum expression for 
an LTI system, (reproduced from Chapter 1) which is given by 

M M 

y[n] =  x[r]h[n − r] =  h[r]x[n − r] (7.21) 
r=0 r=0 

= h[n] ∗ x[n], (7.22) 

then Equation 7.20 is in the form of a convolution sum. By setting x[n] = δ[n]
in Equation 7.20, we see that the impulse response is 

M 

h[n] =  brδ(n − r) (7.23) 
r=0 

or � 
h[n] =  

bn, 
0, 

0 ≤ n ≤ M 
elsewhere. 

(7.24) 
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Digital filters are characterized by their coefficients ak and br. However, the 
rate at which the samples are given as inputs (i.e., sampling rate) is not vital. 
Only the time number n of the incoming samples of the signal is important. 
Therefore, digital filter coefficients are a function of only normalized fre­
quencies (normalized with respect to the sampling frequency). This unique 
property of digital filters make them suitable for applications such as zooming 
or multirate filtering (i.e., changing the sampling rate at will), where the same 
digital filters are used, but at different sampling rates. 
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The impulse response given in Equation 7.24 is obviously of finite duration. 
Nevertheless, the output of any FIR system can be computed nonrecursively 
using Equation 7.20, wherein the coefficients are the values of the impulse 
response. In Equation 7.24, M represents the order of the filter. A direct imple­
mentation of an FIR filter would require M delayed samples of the input 
signal x[n], to produce a single output y[n]. Following the analog delay-line 
terminology, M is also known as the number of taps. 

7.3.1 Advantages of FIR Filters 

FIR filters are nonrecursive, that is, they have no feedback terms. Therefore, 
the outputs are a function of a finite number of previous input signals. The 
major advantages of FIR filters are 

1. FIR filters are easy to understand, easy to design and to implement, 
and amenable to being made adaptive. The simple implementation 
of adaptive FIR filters requires the filters to change their coefficients 
in real time to accomodate changes in external conditions. For exam­
ple, the equalization filters in modems change their characteristics in 
response to trasmission-line degradations. 

2. Since FIR filters do not contain feedback terms, they have no poles 
in their transfer function. Therefore, FIR filters are guaranteed to 
be stable (unconditionally). The guaranteed FIR stability is vital for 
adaptive filter design. 

3. FIR filters can be designed to have a perfectly linear phase, which 
implies that such filters will have a constant time or group delay with 
respect to the input signal. Linear phase is guaranteed as long as the 
FIR coefficients are symmetrical (or antisymmetrical) with respect 
to the center point of the impulse response. This is important in 
applications such as speech processing, sonar, and radar, where the 
knowledge of the time delay is necessary. 

4. FIR filters have low sensitivity to coefficient accuracy. This feature 
allows FIR filter implementation with small word lengths. A typical 
range of FIR coefficient accuracy is 12–16 bits, while IIR filters require 
16–24 bits per coefficient. 

5. Using the symmetry or antisymmetry property of the linear-phase 
FIR filters, the number of multiplications per output sample roughly 
gets reduced by a factor of two. 

6. Yet another advantage of FIR filters (over IIR filters) is the flex­
ibility they offer in the desired frequency response. FIR filter fre­
quency response magnitudes can be easily designed to approximate 
any specified function of frequency with a sufficient number of 
coefficients. 



 

� 
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7.4 IIR Filters 

IIR systems are described by Equations 7.13 and 7.17, wherein at least one of 
the feedback coefficients ak is nonzero. The order of the system depends on 
the number of feedback terms and, therefore, from Equations 7.13 and 7.17, 
we can say that they represent an Nth-order system. 

7.4.1 Properties of IIR Filters 

1. Unlike FIR filters, IIR filters can become unstable due to the presence 
of poles in the structure. Besides that, finite word length effects can 
also make them unstable. 

2. No IIR filters does have a perfect linear-phase characteristic. Never­
theless, one can design IIR filters with very good phase linearity. 

3. Since IIR filters are basically recursive, they tend to be more sensi­
tive to round-off noise. Such noise can actually introduce spurious 
oscillations known as limit cycles. 

4. IIR filters must be implemented more carefully than FIR. Delay-free 
loops can cause instability. 

5. However, the major advantage of IIR filters is that for the same fre­
quency characteristic, H(ejω), they require lesser coefficients than FIR 
filters. This leads to fewer operations, thus being able to achieve 
higher throughput. 

6. IIR filters require the smallest storage requirement, since they need 
a least number of coefficients for achieving specified characteristics. 
For example, an IIR highpass filter typically requires only one-third 
of the coefficients of an equivalent FIR filter. 

7.5 Structure of an FIR Filter 

We will reproduce here the difference equation for an FIR filter as follows: 

M 

y[n] =  bkx[n − k]. (7.25) 
k=0 

This can be recognized as the discrete-time convolution of x[n] with the 
impulse response h[n] given as follows: 

bn, 0  ≤ n ≤ M
h[n] =  (7.26)

0, elsewhere. 



z−1 z−1 z−1 z−1 z−1
 
x[n]
 

h[M] 

y[n] 

h[0] h[1] h[2] h[3] h[M−1]

+ + + + + 
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FIGURE 7.3 
Realization of FIR filter. 

The signal flow graph representation of one of the possible structures is shown 
in Figure 7.3. This structure is commonly referred to as tapped-delay line 
structure because of the presence of a chain of delay elements, represented by 
z−1. It is also known as a transversal filter. The signal at each tap along the chain 
is multiplied by the coefficients of the impulse response, and the resulting 
products are summed to form the output y[n]. Often, the comparison between 
FIR and IIR or even better the various algorithms within each category may 
not be always clear-cut. Quite often, the available hardware, software, and 
brainware (know-how) may override some of the considerations while making 
a decision concerning whether to use an IIR or an FIR filter. 

7.5.1 Filter Specifications 

Ideal filters have a zero transition bandwidth, a constant passband, and a 
stopband with an infinite attenuation. In practice, we cannot achieve these 
specifications and we must allow some amount of tolerance. The permissible 
tolerances should be specified before designing the filter. For an LPF, we often 
have the following frequency response specifications: 

δp: Peak passband deviation 
δs: Stopband deviation 
ωp: Passband cut-off frequency 
ωs: Stopband cut-off frequency 
N: Filter length 

All these specifications are depicted in Figure 7.4. In general, δp and δs on a 
linear scale are very small and it is often convenient to express them in dB. 
Therefore, they are expressed in terms of Ap and As (defined in Equations 7.27 
and 7.28), respectively, as follows: 

1 + δpAp = 20 log10 . (7.27)
1 − δp 

and 

As = −20 log10 δs. (7.28) 



 

228 Window Functions and Their Applications in Signal Processing 

1+δp 
1 

1–δp 

δs 

–δs 

ωω sω p0 

Δω 
ΔF 

ΔF : Window main-lobe width 
Δω : Transition bandwidth 

H (e jω ) 

FIGURE 7.4 
FIR filter specifications. 

Here δp and δs can be different for designing FIR filters. However, FIR filters 
designed using impulse response truncation (IRT) have the same passband 
and stopband ripples, that is, δ = δs = δp. This is a serious drawback of the IRT 
technique. Very often, we have frequency response requirements on a linear 
scale where the ripples in the passband are allowed to be much larger than 
in the stopband. Also, we have equiripple requirements in both the bands. 
The IRT technique leads to filters where most ripples in both the bands are 
smaller than needed. These two requirements lead to a filter length that is 
larger than that found with digital optimization techniques. Here ωp and ωs 

are the passband and stopband cut-off frequencies, respectively, normalized 
with respect to the sampling frequency fsamp. 

2π fp 2π fs 
ωp = and ωs = . 

fsamp fsamp 

The difference between passband and stopband cut-off frequencies, �ω, is  
approximately equal to the main-lobe width, �F, of the window. This approx­
imation is vital in calculating the time span of the window to obtain the 
required transition bandwidth. 

7.6 FIR Filter Design 

Any of the following three methods can be used to design FIR filters: 

1. Impulse response truncation (windowing method) 
2. Frequency sampling 
3. Optimal method 



� 
Hlp(ejω) = 

e−jωα , 
0, 

|ω| ≤ ωc 

ωc < |ω| ≤ π . 
(7.29) 

The magnitude response of this filter is 

� 
|Hlp(ejω)| =  

1, 
0, 

|ω| ≤ ωc 

ωc < |ω| ≤ π , 
(7.30) 

and the phase response is 

arg Hlp(ejω) = −αω. (7.31) 

The magnitude response and the phase response of the ideal LPF, with linear 
phase, are given in Figure 7.5. The impulse response corresponding to this 
ideal filter was derived earlier for α = 0. The phase factor, however, only 
gives a shift over α in the time-domain as follows: 

sin ωc(n − α)
hlp[n] =  , −∞ < n < ∞. (7.32)

π(n − α) 

An additional phase of −αω relates to the time shift of α in the time-domain. 
Group delay (dg (ω)) is one of the parameters used to measure the linearity of 
phase. It is defined as 

d
dg(ω) = −  arg H(ejω). (7.33)

dω 

In this example, the group delay turns out to be 

d
dg (ω) = −  (−αω) = α. (7.34)

dω

Observe that the group delay is linearly independent of ω. This will result in 
the frequency components of the signal delayed by the same amount, thereby 
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Although frequency sampling and optimal methods give much better results 
for the given filter specifications, IRT (otherwise termed as windowing 
method) is considered as the simplest approach to design FIR filters. Before 
proceeding to the actual filter design procedure, we must first introduce the 
four types of linear-phase FIR filters. 

7.6.1 Linear-Phase Filters 

The frequency response of an ideal LPF with linear phase can be defined as 



 

 

230 Window Functions and Their Applications in Signal Processing 

0 

π 

(a) 

–π π 

0 

1 

(b) 

–π 

arg H (e jω) 

|H (e jω)| 

−ω c 

ω 

ω
ω c 

−ω c ω c 

FIGURE 7.5 
Ideal LPF with linear phase: (a) magnitude response and (b) phase response. 

avoiding the phase (or delay) distortion [2]. Also, note that the group delay for 
linear phase filters is nothing but the point of symmetry of impulse response. 

Although there is no phase (or delay) distortion in either zero delay or 
constant group delay systems, these filters are nonrealizable due to their infi­
nite extent. To get the finite duration causal linear-phase filter, we consider 
only the coefficients ranging from 0 to N − 1. Note that the truncated impulse 
response with zero delay is no more symmetric, resulting in the nonlinear-
phase response. Therefore, we can always anticipate a small group delay α 

as given in Equation 7.32. The impulse response of all the basic filters are 
shifted by α and are given in Table 7.1 [3]. In the filter design procedures, 
these impulse responses are preferred rather than the one with zero delay. 
The number of coefficients that should be considered to design a causal filter 
depends on the specifications. Once the filter length is calculated, we can find 
the value of α using the relation 

N − 1 
α = . (7.35)

2 

The coefficients of the FIR filter are therefore given by 

h[n] = hd[n]f [n] (7.36) 

sin ωc(n − α) = f [n]. (7.37)
π(n − α) 
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TABLE 7.1 

Impulse Respons

Filter 

e of Linear-Phase Filters 

Impulse Response (h[n] , n = α) h[α] 

Lowpass 
sin(ωc (n − α)) 

π(n − α) 

ωc 

π 

Highpass 
sin(ωc (n − α)) − 

π(n − α) 

ωc1 − 
π 

Bandpass 
sin(ω2(n − α)) sin(ω1(n − α)) − 

π(n − α) π(n − α) 

ω2 − ω1 

π 

Bandstop 
sin(ω1(n − α)) sin(ω2(n − α)) − 

π(n − α) π(n − α) 

ω2 − ω11 − 
π 

�

In Equation 7.37, f [n] represents the samples of the discrete-time data win­
dow that extends from 0 to N − 1 and hd[n] represents the desired impulse 
response. In this case, f [n] is a rectangular window. The frequency response 
of the filter, which is the periodic convolution of the DTFTs of hd[n] and f [n], 
is given by 

1
� π

H ejω ej( θ )F j) = Hd( (e (ω−θ))dθ . (7.38)
2π −π 

This can be written in short hand notation as 

jω 1
H e = H ejω ∗ F ej( ) ) ω

d( ( ). (7.39)
2π 

Here, H(ejω) represents the periodic convolution of the desired ideal frequency 
response with the Fourier transform of the window. Figure 7.6(a) shows the 
ideal frequency response of a LPF with cut-off frequency ωc. To obtain the 
frequency response of the FIR filter, the desired frequency response Hd(ejω) 

is convolved with the frequency response of the window F(ejω) (shown in 
Figure 7.6(b)). The resulting response H(ejω) is depicted in Figure 7.6(c). 

From Figure 7.6(c), we can observe that the passband and stopband rip­
ples are no longer constant and the transition width is not equal to zero. The 
side lobes present in the frequency window are responsible for the ripples in 
the stopband and passband, whereas the main-lobe width of the frequency 
response of the window is responsible for the nonzero transition width. In 
general, the larger the main-lobe width of the frequency window, the more the 
smearing of the filter response. In fact, the transition bandwidth is approxi­
mately equal to the main-lobe width ( 4π 

N in the case of the rectangular window) 
as shown in Figure 7.4. To obtain a sharp transition band, we have to increase 
the value of N (i.e., number of coefficients in the filter response). However, 
higher values of N require more computations. Therefore, we are always left 
with a trade-off between smearing of the desired response and the compu­
tational complexity. Another important point to note is that the minimum 
attenuation remains constant irrespective of the filter length chosen for a 
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FIGURE 7.6 
Truncation of impulse response using the rectangular window. (a) Desired frequency response. 
(b) Frequency response of rectangular window. (c) Frequency response of truncated signal. 

given window. This minimum attenuation is termed as Gibbs number. Gibbs 
number for the rectangular window is 0.0895 [4]. This is illustrated in Fig­
ure 7.7. Observe that the transition bandwidth of the filter designed with 
N = 101 has a steeper transition band than the one designed with N = 21. 
However, the maximum ripple remains the same in both the cases. 
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N = 21 
N = 101 

ω 
π–π 0 

1 

1.09 

FIGURE 7.7 
FIR filters designed with direct truncation with filter lengths N = 21 and N = 101. 

Although a rectangular window gives the smallest transition width for a 
given value of N, its side lobes are much larger. By tapering the window at 
both ends, we can reduce the side-lobe levels, but at the expense of increased 
main-lobe widths, thereby increasing the transition bandwidth. 

The peak side-lobe level (PSLL) of the window, the transition bandwidth, 
and the minimum stopband attenuation of the filter designed with some com­
mon windows are given in Table 7.2 [5]. From Table 7.2, we can see that there 
are two values for the side-lobe level, namely, PSLL and minimum stopband 
attenuation. We have seen that in the case of the rectangular window, it was 
mentioned in an earlier chapter that it has a PSLL of −13 dB. For the design of 
the filter as described here, this results in a first stopband side lobe of −21 dB. 

TABLE 7.2 

Filter Characteristics Using Different Windows 

Peak Minimum 

Side-Lobe Transition Stopband 

Window Level Width Attenuation 

Rectangular −13 4π/N −21 
Bartlett −26 8π/N −25 
Riesz −21 5.72π/N −31 
Riemann −27 6.56π/N −39 
Hann −31 8π/N −44 
Bohman −46 12π/N −52 
Hamming −41 8π/N −53 
de la Vallé-Poussin −53 16π/N −57 
Blackman −57 12π/N −74 
Exact Blackman −51 12π/N −85 
Blackman–Harris (minimum three-term) −71 12π/N −86 
Blackman–Harris (minimum four-term) −92 16π/N −109 
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If the cut-off frequency goes to zero, this first side-lobe level of the result­
ing frequency response gradually tends to −13 dB. This is because Hd(ejω) in 
this case approaches an impulse function. Similar values for the minimum 
stopband attenuation for other windows are presented in Table 7.2. 

7.6.2 Types of FIR Filters 

Let h[n] be the causal finite length impulse response of the filter. Then, the 
frequency response of the filter is given by 

N−1 

H jω
 

h[n] −jωn(e ) = e . (7.40) 
n=0 

This can be expressed in terms of the amplitude response A(ejω) and the phase 
response θ(ω) as follows: 

H jω (ejω)ej(e ) = A θ(ω). (7.41) 

The amplitude response A(ejω) can take both positive and negative real val­
ues. Phase response θ(ω) should be piece-wise linear to avoid group delay 
distortions, that is, 

θ(ω) = αω − β, (7.42) 

where α and β are arbitrary constants. Equation 7.40 can be rewritten by 
expressing e−jωn as the sum of sine and cosine terms to give 

N−1 N−1 

H(ejω) = 
 

h n  cos(ωn)  j h n  sin(ωn). (7.43) 
n=0 

[ ] +
 
n

[ ]
=0 

The phase response can also be computed from Equation 7.43 using the 
following expression: 

N−1 

h (ωn) 

1 n 0 

[n] sin

θ(ω) 

⎡  ⎤ 
= tan−

⎢⎢ =
⎥ ⎢ ⎥ 

. (7.44) ⎣⎢ N−1 
⎥ 

h[n] cos(ωn) 

n=0 

⎥ ⎦ 



 
 

 
 

 

Equating the phase response that we obtained in Equations 7.42 and 7.44, 
we get ⎡ N−1 ⎤ 

h[n] sin(ωn)⎢ ⎥ 
(αω − β) = tan−1 

⎢ ⎢ ⎢ n=0 

N−1 

⎥ ⎥ ⎥ . (7.45) ⎣ ⎦ 
h[n] cos(ωn) 

n=0 

Taking tan on both sides of Equation 7.45, we obtain 

N−1 

h[n] sin(ωn) 
sin(αω − β) n=0tan(αω − β) = = . (7.46)
cos(αω − β) N−1 

h[n] cos(ωn) 

n=0 

After cross-multiplying and simplifying the above equation, we obtain 

N−1 

h[n] sin(ω(α − n) + β) = 0. (7.47) 
n=0 

The solutions of this equation are given by [5,6] 

1. β = 0, α = (N − 1)/2 and h[n] = h[N − 1 − n], 0  ≤ n ≤ N − 1. 
2. β = ± π , α = (N − 1)/2 and h[n] = −h[N − 1 − n], 0  ≤ n ≤ N − 1.2 

Note that here α is the total group delay and can be either an integer or 
(integer + 1 ), depending on the value of N. Then, depending on whether h[n]2 
is even symmetric or odd symmetric, and N being odd or even, four types of 
linear-phase FIR filters can be defined as follows: 

1. Type 1: Even symmetric impulse response with odd filter length 
2. Type 2: Even symmetric impulse response with even filter length 
3. Type 3: Odd symmetric impulse response with odd filter length 
4. Type 4: Odd symmetric impulse response with even filter length 

The group delay is an integer for types 1 and 3, whereas it is (integer+ 1
2 ) for 

types 2 and 4. This additional half group delay obtained for type 2 and type 
4 FIR filters actually turns out to be useful in some applications. The impulse 
response of the LPF for these four FIR filter types are shown in Figures 7.8 
through 7.11. It should be noted that in the case of antisymmetric impulse 
response with N odd (type 3), h[n] is always zero at the center point. 
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7.6.3 Frequency Response of Type 1 FIR Filter 

In this section, we will actually derive the expression for the frequency 
response of type 1 FIR filter. Since the impulse response is symmetric and 
the filter length is odd, the frequency response of type 1 FIR filter can be 
written as follows: 

N−1 

H j(e ω) = 
 

h[n]e−jωn

n=0 

(N−3)/2 N 
 

 
h n e−jωn  h 

[ − 1 N−1 

= j

n 0 

[ ] +
2 

] 
e− ω(N−1)/2 + 

n (

 
h n

N 1)/2 

[ ]e−jωn . (7.48) 
= = +
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FIGURE 7.8 
Type 1 FIR impulse response. 

FIGURE 7.9 
Type 2 FIR impulse response. 



  

 

Replacing n with (N − 1 − m) in the third term, we obtain 

(N−3)/2 [ ] (N−3)/2N − 1jω −jω(N−1)/2 + −jω(N−1−m)H(e ) = h[n]e−jωn + h e h[N − 1 − m]e .
2 

n=0 m=0 

(7.49) 

Since h[n] = h[N − 1 − n], we get  

(N−3)/2 ( ) [ ]
H(ejω) = h[m] ejω( N

2 
−1 −m) + ejω( N

2 
−1 −m) + h

N − 1 
e−jω(N−1)/2. (7.50)

2 
m=0 
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FIGURE 7.10 
Type 3 FIR impulse response. 
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FIGURE 7.11 
Type 4 FIR impulse response. 



 
   

 

   

TABLE 7.3 

Linear-Phase FIR Filter Types 

Filter 

Type N Symmetry 

Frequency 

Response H(ejω ) 

Constrained 

Zeros 

Filters That Can 

Be Designed 

1 Odd Even ejω(N−1)/2 
(N−1)/2 

n=0 

a[n] cos(ωn) — Any filter 

2 Even Even ejω(N−1)/2 
N/2 

n=1 

b[n] cos ω n − 
1 
2 

�� 
ω = π LPF, BPF 

(N−1)/2 

3 Odd Odd je−jω(N−1)/2 

n=0 

a[n] sin(ωn) ω = 0, π BPF, 
differentiator, 
Hilbert 
transformer 

4 Even Odd je−jω(N−1)/2 
N/2 

n=1 

b[n] sin ω n − 
1 
2 

�� 
ω = 0 HPF, BPF, 

differentiator, 
Hilbert 
transformer 
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Replacing m with [(N − 1)/2 − n] in the above equation and on simplifying, 
we obtain 

j ω(N 2

 
(N−3)/2 

ω j 1)/
 [

N − 1 N 
e cos(ωn) h 

− 1
H( ) = e− − 2h n (7.51)

2 2 
n 0 

−
] 

+
=

[ ] 

or, equivalently 

H jω = jω(N− )/2(e 1) e

 
(N−1)/2  

a[n] cos(ωn) 

n

 
(7.52) 

=0 

where 

a[n] =  

�
2h 

�
N−1 

2 − n
]

, n = 1, 2, . . .  , (N − 1)/2 
(7.53)

h
�

N−1
2 

] 
, n = 0. 

Similarly, the frequency responses of the other three FIR filter types can be 
derived. The filter types, along with the corresponding frequency responses, 
are listed in Table 7.3. b[n] given for frequency responses of type 2 and type 
4 filters in the table is defined as follows: 

b[n] = 2h[N/2 − n]. (7.54) 
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FIGURE 7.12 
Pole-zero plots of the four FIR filter types. (a) Type 1. (b) Type 2. (c) Type 3. (d) Type 4. 

The frequency response of type 2 FIR filter is zero at ω = π , irrespective 
of the filter coefficients. Hence, there is a constrained zero at ω = π , which 
implies that we cannot design filters with nonzero attenuation at ω = π . For 
instance, we cannot design highpass or bandstop filters using type 2 FIR fil­
ter. Similarly, we find that type 3 FIR filter has constrained zeros at ω = 0 
and ω = π , whereas type 4 FIR filter has constrained zero at ω = 0. There­
fore, type 3 FIR filter can be used for designing BPFs. Type 4 is useful for 
designing highpass, bandpass, differentiators, and Hilbert transformers (see 
Section 7.9). Note that type 1 FIR filter is the most versatile one as it has 
no constrained zeros. Therefore, it can be used for designing any type of 
filter. The typical pole-zero plots of the four FIR filter types are given in 
Figure 7.12. 

7.6.4 Design Procedure for Filters 

1. First, we design an ideal filter with the given specifications, by 
assuming the cut-off frequency (ωc) to be the mean of passband and 
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stopband cut-off frequencies, that is, 

(ωp + ωs)
ωc = .

2 

2. Determine the impulse response hd[ n] of the ideal filter from Table 7.1. 
3. From Table 7.2, we can select the window that has the smallest 

main-lobe width and can satisfy the minimum stopband attenua­
tion requirement. Note that the stopband and passband ripples are 
equally affected by the side lobes of the window. Therefore, the max­
imum passband attenuation (or the minimum stopband attenuation) 
is selected to be 

20 log10[ min{ δp, δs}] . (7.55) 

4. Find the number of filter coefficients (N) using the relation between 
transition bandwidth and N given in Table 7.2. 

5. Truncate the impulse response using the selected window to obtain 
the symmetric filter coefficients. 

Note that the value N computed in step 4 is only an approximate value. 
Therefore, if the desired filter specifications are not met, then we repeat the 
procedure with a different value of N. 

Example 1 

Design an HPF using the IRT method with the following specifications: 

ωp = 0.65πrad/sample ωs = 0.55πrad/sample A = 54 dB 

From the windows listed in Table 7.2, the Hamming window satisfies 
the minimum attenuation criterion and it has the narrowest main-lobe 
width (for the given attenuation), when compared to other windows. 
Therefore, we choose the Hamming window to design this filter with 
the above specifications. 

Transition bandwidth of the filter (�ω) = (ωp − ωs)  0.1π 

The main-lobe width of the Hamming window is 8π 

=
N . 

As stated earlier, the transition bandwidth is approximately equal to 
the main-lobe width of the window. Therefore, we can calculate the filter 
length (N) from this approximation. 

8π ≈ 0.1π 
N 

=⇒ N ≈ 80. 

Since we cannot use type 2 FIR filter for designing HPF, we select N = 81 
and we use a type 1 linear-phase filter. Now, we can obtain the filter coef­
ficients by truncating the impulse response with the Hamming window 
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f [n] of length N = 81. 

sin(0.6πn)
hd [n] = δ[n] −  , < n <  

πn 
−∞ ∞

h[n] = hd [n − 40]f [n], 0 : n : 80. 

The magnitude response of the filter designed with the Hamming window 
is given in Figure 7.13. To understand the effect of windows on filter atten­
uation characteristics, let us design the filter with the same specifications 
using the Hann and Blackman windows as well. 

Since the main-lobe width of the Hann window is the same as that of the 
Hamming window, for a given transition width, the filter length remains 
the same. The frequency response of the filter truncated with the Hann 
window is given in Figure 7.14. Observe that the minimum stopband 
attenuation is only −44 dB. Even if we decrease the transition width by 
taking a higher filter order, we cannot meet the required minimum stop-
band attenuation. Therefore, we can use the Hann window for the filter 
design only if the stopband attenuation is less than −44 dB (see Table 7.2). 

Now, let us design the filter using the Blackman window. The main-
lobe width of the Blackman window is 12π 

N . Therefore, the filter length N 
is given by 

12π 
0.1π 

N 
≈

=⇒ N ≈ 120. 

The filter length is increased by one to design the filter with type 1 (odd 
length) FIR filter. Filter coefficients can be obtained by truncating the 
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FIGURE 7.13 
Magnitude response of the filter designed with the Hamming window. 
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FIGURE 7.14 
Magnitude response of the filter designed with the Hann window. 

impulse response as follows: 

h[n] = hd [n − 60]f [n], 0 : n : 120 (7.56) 

where the window function f [n] used is the Blackman window of length 
N = 121. From the magnitude response plot of the filter designed using 
the Blackman window (Figure 7.15), we can observe that the minimum 
side-lobe attenuation is −75 dB, that is, the designed filter has outper­
formed the required specifications. However, we make an observation 
at this juncture that to obtain the same transition bandwidth, the Black-
man window approach requires a larger filter length than the Hann or the 
Hamming window. 
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FIGURE 7.15 
Magnitude response of the filter designed with the Blackman window. 
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7.7 Kaiser–Bessel Windows for FIR Filter Design 

From the above example, we have seen that the filters designed using the 
window functions given in Table 7.2 have fixed values of δ. Therefore, in 
many cases, these windows may not satisfy (or even outperform) the required 
specifications. Kaiser–Bessel windows (both I0–sinh and I1–cosh families) do 
not suffer from the above limitations. These windows have adjustable shape 
parameters (α and γ ) that allow us to choose the appropriate window to obtain 
any desired value of ripple δ or attenuation. Such windows are called variable 
windows. The filter design procedure using the Kaiser–Bessel zeroth-order 
(I0–sinh) and first-order (I1–cosh) windows are discussed in this section. 

7.7.1 Filter Design Using Kaiser–Bessel Zeroth-Order (I0–Sinh) Window 

The I0–sinh window is unique in the above class since it has a near-optimum 
performance, in the sense that it has maximum energy in the main-lobe of its 
Fourier transform as well as a relatively simple implementation. This window 
depends on two parameters: the shape parameter α and its length N. For an 
odd length N = 2M + 1, the I0–sinh window is defined, for n = 0, 1, . . .  , (N − 
1), as follows: 

I0 α 1 − (n − M)2/M2 

f [n] =  , 0 ≤ n ≤ 2M (7.57)
I0(α) 

where I0(x) is the modified Bessel function of the first kind and order zero. 
The numerator of Equation 7.57 can be rewritten in the following form. This 
form is more convenient for the purpose of numerical evaluation: 

� √ ]
I0 α n(2M − n)/M

f [n] =  . (7.58)
I0(α) 

The I0–sinh window is symmetric about its center point, that is, n = M, and 
has the value f [M] = 1. At the edges of the window, that is, at n = 0 and 
n = (N − 1), it has the value 1 , since I0(0) = 1. Note that the case α = 0 in  I0(α) 

Equation 7.58 reduces to the rectangular window. Figure 7.16 shows the time 
function of the I0–sinh window for α = 0, 4, and 8. Figure 7.17 displays the 
magnitude of the frequency response of the I0–sinh window for α = 0, 4, and 
8, with N being constant. Figure 7.18 shows the magnitude response of the 
I0–sinh window for N = 11, 21, and 41, with α held constant, that is, α = 8. 
It can be clearly observed from Figure 7.17 that by increasing α, the side-
lobe level decreases, at the expense of increased main-lobe width. Similarly, 
from Figure 7.18, we can see that the resolution is increased by varying the 
filter length from N = 11 to 41, but the side-lobe levels remain the same in all 
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FIGURE 7.16 
Kaiser window with α = 0, 4, and 8. 

the cases. Therefore, we note that the desired trade-off between the side-lobe 
amplitude and the main-lobe width can be achieved by varying N and α. Also 
note that if a window in the time-domain is tapered more, the side lobes of the 
Fourier transform becomes smaller, but the main-lobe width gets broader. 

Kaiser had proposed a pair of equations that allow the filter designer to 
predict the values N and α required to meet certain given frequency-selective 
filter specifications [7,8]. The window parameters (N, α) can be computed 
in terms of the filter specifications, namely the ripple δ and the transition 
width �ω. The design equations developed by Kaiser [7,8] are given in the 
remaining section. 
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FIGURE 7.17 
Magnitude Responses of I0–sinh window with α = 0, 4, and 8, and N = 21. 
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We define 

�ω = (ωs − ωp) and 
(7.59) 

δ = δs = δp. 

Therefore, the resulting filter will have passband and stopband ripples equal 
to δ. This value of δ is usually expressed in dB as follows: 

A = −20 log10 δ or δ = 10−A/20. (7.60) 

The shape parameter α of the I0–sinh window was determined empirically 
by Kaiser and can be calculated from Equation 7.61 as follows: 

⎧ ⎪0.1102(A − 8.7), A > 50 ⎨ 
α = 0.5842(A − 21)0.4 + 0.07886(A − 21), 21  ≤ A ≤ 50 (7.61) ⎪ ⎩0, A < 21. 

Recall that when α = 0, the I0–sinh window becomes a rectangular window 
for which A = 21. Note that A represents the ripple in dB given by Equa­
tion 7.60. The filter order N can also be calculated from A. We know that 
the filter order is related to the transition width. Kaiser has also found that 
to achieve the prescribed values of A and �ω, N must satisfy the relation as 
follows: 

(A − 7.95)
N = . (7.62)

2.285 �ω 
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FIGURE 7.18 
Magnitude responses of I0–sinh window with parameters N = 11, 21, and 41, and α = 8. 



Equation 7.62 predicts N to be within ±2 over a wide range of values of �ω 

and A. Therefore, by using the closed-form expressions, the I0–sinh window 
method avoids the trial-and-error approach. 

In most of the practical applications, the value of the attenuation A is always 
greater than 50 dB, and therefore we generally use the following formulae for 
calculating α and M: 

(A − 7.95)
α = 0.1102(A − 8.7), N = . (7.63)

2.285 �ω 

For designing an LPF using the I0–sinh window, we summarize the procedure 
as follows: 

1. Find the passband ripple (δp) and the stopband ripple (δs) from 
the actual passband attenuation (Ap) and the minimum stopband 
attenuation (As) using the following formulae: 

100.05Ap − 1 = 10−0.05Asδp = and δs . (7.64)
100.05Ap + 1 

2. Determine the stopband attenuation (A) using the following equa­
tion: 

A = −20 log10 min{δp, δs}. (7.65) 

3. Calculate the shape parameter (α) of the  I0–sinh window and filter 
length (N) from Equations 7.61 and 7.62, respectively. 

4. Plug in the values of N and α in Equation 7.57 to obtain I0–sinh 
window coefficients. 

5. Truncate the ideal impulse response hd[n] using the I0–sinh window 
coefficients (obtained in step 4) to get the required filter coefficients. 
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Example 2 

Design an LPF using the I0–sinh window with the following filter 
specifications: 

ωp = 0.2πrad/sample Ap = 0.1 dB 

ωs = 0.3πrad/sample As = 43 dB 



We can calculate δp and δs using Equations 7.27 and 7.28, respectively, 
as follows: 

100.05Ap − 1 
δp = = 0.0058

100.05Ap + 1 

= 10−0.05Asδs = 0.0071. 

The passband ripple is less than the stopband ripple. Therefore, choose 

δ = min{δp, δs} = δp = 0.0058. 

Minimum stopband attenuation: A = −20 log δ = 44.797 dB. 
The filter length N can be calculated using Equation 7.62 as follows: 

(44.797 − 7.95)
N = ≈ 52.

2.285(0.1π)
 

Substituting the value of A in Equation 7.61 yields
 

α = 0.5842(44.797 − 21)0.4 + 0.07886(44.797 − 21) = 3.9524. 

Compute the filter coefficients as stated in steps 4 and 5 in the design 
procedure. The frequency response of the designed FIR filter is shown in 
Figure 7.19. To observe the ripples in the passband, the error between the 
desired frequency response and the frequency response of the designed 
FIR filter is also provided in Figure 7.20. It is clear from this plot that the 
maximum passband and stopband ripples are equal in magnitude but less 
than 0.0058. 
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FIGURE 7.19 
Magnitude response of the filter designed with the Kaiser–Bessel window (N = 59, α = 3.9524). 
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FIGURE 7.20 
Error plot. 

Example 3 

Design a BPF using the I0–sinh window with the following specifications: 

ωs1 = 0.35πrad/sample ωp1 = 0.44πrad/sample 

ωp2 = 0.72πrad/sample ωs2 = 0.83πrad/sample 

Ap = 0.1 dB, As = 56 dB. 

The transition widths are �ω1 = ωp1 − ωs1 = 0.09π and �ω2 = ωs2 − ωp2 = 
0.11π . 

Since the transition width of the filter depends on the main-lobe width, 
we cannot have different transition widths in a window-based filter 
design. Therefore, we always choose the minimum transition bandwidth 
for designing multiband filters. In this example, we choose �ω = 0.09π . 

Since the transition width is changed, the cut-off frequency is no longer 
the mean of the passband and the stopband frequencies. The new cut-off 
frequencies can be computed as follows: 

ωc1 = ωp1 − �ω/2 = 0.395π 

ωc2 = ωp2 + �ω/2 = 0.765π . 

The ripples δp and δs can be calculated using Equations 7.27 and 7.28 as 
follows: 

100.05Ap − 1 
δp = = 0.0058

100.05Ap + 1 

and
 

= 10−0.05As
δs = 0.00158. 

Minimum stopband attenuation A = −20 log δ = 56 dB.
 
Filter length N can be calculated as
 

(56 − 7.95)
N = = 75.

2.285(0.09π) 



  � 

7.7.2 Filter Design Using Kaiser–Bessel First-Order (I1-Cosh) Window 

The time-domain expression for the I1-cosh window [9] is 

( )2 
n−N/2I1 γ 1 − N/2 

f [n] =  � ( )2
, 0 ≤ n ≤ N (7.66) 

n−N/2I1[γ ] 1 − N/2 

where I1[γ ] is the modified Bessel function of the first kind and first order, 
and γ is the shape parameter of the window. Similar to the Kaiser–Bessel 
zeroth-order window, by adjusting the values of N and γ , we can get the 
desired main-lobe width and minimum stopband attenuation in the case of 
the Kaiser–Bessel first-order window [9]. 
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FIGURE 7.21 
Magnitude response of the bandpass filter designed with the I0–sinh window. 

The shape parameter can be obtained from Equation 7.61 as 

α = 0.1102(56 − 8.7) = 5.2125. 

The magnitude response of the designed filter is given in Figure 7.21. From 
the figure, we can see that this filter satisfies all the given specifications. 
From these two examples, we can conclude that the I0–sinh window can 
be used to design any filter with arbitrary minimum side-lobe attenuation 
and transition width, by selecting appropriate values of α and N. 
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The first three steps in the filter design procedure using the I1-cosh win­
dow are similar to the design procedure outlined for the I0–sinh windows in 
Section 7.7.1. Once we get the attenuation A from step 3, we can calculate γ 

and the filter length using the relations given below: 

⎧ ⎪0.1095(A − 0.9703), A > 37.5 ⎪ ⎪ ⎨ 
γ = 0.5106(A − 20)0.7262, 20  ≤ A ≤ 37.5 (7.67) ⎪ ⎪ ⎪ ⎩0, A < 20 

and 

A − 6.9539
N = . (7.68)

2.285�ω 

Example 4 

Now, let us design an LPF using the I1-cosh window with the same 
specifications as in Example 2. 

ωp = 0.2πrad/sample Ap = 0.1 dB 

ωs = 0.3πrad/sample As = 43 dB 

The passband ripple is smaller than the stopband ripple in this example. 
So we design the filter that meets the passband attenuation. Attenuation 
A can be obtained as 

A = −20 log δ = 44.797 dB. 

For this value of attenuation and the required transition bandwidth 
(0.1π ), we can compute the filter order N and shape parameter γ using 
Equations 7.68 and 7.67, respectively, as 

44.797 − 6.9539
N = = 53

2.285(0.1π) 

and 

γ = 0.1095(44.797 − 0.9703) = 4.799. 

Since the filter length is even, we design the LPF using the type 2 filter. 
From these values of N and γ , we can get the I1-cosh window coefficients 
and use it to truncate the impulse response of the ideal LPF. The mag­
nitude response of this filter is given in Figure 7.22 to verify whether it 
meets the required specifications. It is to be observed that the filter length 
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FIGURE 7.22 
Magnitude response of lowpass filter designed using the I1-cosh window. 

required to design a filter for the given specifications is almost the same 
for both the I1-cosh and the I0-sinh windows. In almost all the cases, the 
filter designed with the I0-sinh window outperforms the one designed 
using the I1-cosh window. For the purpose of comparison of the zeroth 
and the first-order Kaiser–Bessel windows, the minimum side-lobe atten­
uation (Gibbs number) that can be attained for a given shape parameter 
is given in Figure 7.23. 
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Comparison of I1-cosh and I0-sinh filters. 
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7.8 Design of Differentiator by Impulse Response 
Truncation 

In signal processing applications, we usually come across many situations 
where we need to differentiate a time signal to find the rate of change of a 
signal. The differentiator can be represented using the difference equation, 
which can be easily implemented by a general-purpose digital computer or a 
special-purpose digital hardware. The procedure for finding the differentiator 
coefficients for the hardware implementation is given in this section. 

We now proceed with the frequency response of a discrete-time differen­
tiator 

Hd(ejω) = jω, −π ≤ ω ≤ π . (7.69) 

The impulse response of the differentiator was derived in Chapter 1 (see 
Section 1.3.2), which is reproduced below: 

cos πn sin πn 
hd[n] =  − . (7.70)

πn πn2 

Figure 7.24 shows the impulse response of the differentiator. Clearly, the 
impulse response is anti-symmetric. We can see from Table 7.3 that the filters 
having antisymmetric impulse response can be designed with type 3 or type 4 
FIR filters. 

The design procedure of a differentiator is similar to the design of other 
filters. The impulse response is truncated by an appropriate window function 
to make it realizable. The differentiators designed with type 3 and type 4 
FIR filters, using the rectangular window, are shown in Figures 7.25 and 
7.26, respectively. From these figures, it is clear that type 4 gives a closer 
approximation to the ideal differentiator. This is because type 3 filter has a 

FIGURE 7.24 
Impulse response of differentiator. 
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0 π–π ω 

H(e jω ) 

FIGURE 7.25 
Frequency response of a differentiator designed with type 3 FIR filter. 

FIGURE 7.26 
Frequency response of differentiator designed with type 4 FIR filter. 

constrained zero at ω = π , which is responsible for bringing down the impulse 
response to zero at both the edges. 

We also note that we get a better approximation of the differentiator using 
type 4 at the expense of (integer + 12 ) group delay. This half-delay can be 
compensated at other parts of the system. 

7.9 Design of Hilbert Transformer Using Impulse Response 
Truncation 

Quite often, a Hilbert transformer is used in communication systems to 
eliminate either the negative or the positive frequency components from the 
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FIGURE 7.27 
Frequency response of ideal Hilbert transform. 

real signals.∗ It can also be used as an ideal 90◦ phase shifter. It only alters the 
phase response of the signal by keeping the magnitude response unchanged. 
The frequency response of the Hilbert transformer (depicted in Figure 7.27) 
can be defined as follows: 

⎧ ⎪j, ω <  0 ⎨ 
H(ejω) = 0, ω = 0 (7.71) ⎪ ⎩−j, ω >  0. 

The impulse response of the Hilbert transformer h[n] can now be obtained 
by taking the inverse DTFT of H(ejω), as described below: 

h[n] =  
1 

2π 

� π 

−π 

H(ejω)ejωndω 

= 
1 

2π 

� 0 

−π 

jejωndω + 
1 

2π 

� π 

0 
−jejωndω 

= 
1 

2π 

[
jejωn 

jn 

]0 

−π 

− 
1 

2π 

[
jejωn 

jn 

]π 

0 

= 
1 

2π 

[
2 
n 

− 
2 cos(πn) 

n 

] 
= 

1 − cos(πn) 

πn � 
= 

2 
πn , 
0, 

n = odd 
n = even. 

(7.72) 

∗ Signals having only positive or negative frequencies are called analytic signals. 
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FIGURE 7.28 
Frequency response of the Hilbert transformer designed using type 3 and type 4. (a) Type 3 
frequency response. (b) Type 4 frequency response. (c) Type 3 impulse response. 
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FIGURE 7.28 
(Continued). Frequency response of the Hilbert transformer designed using type 3 and type 4. 
(d) Type 4 impulse response. 

Observe that the impulse response is antisymmetric in nature, leaving us with 
only type 3 or type 4 FIR filters to design a Hilbert transformer. The design 
procedure is straightforward. Once we obtain the impulse response, it is trun­
cated to a suitable length using a window. Figures 7.28(a) and (b) display the 
frequency response plots of the Hilbert transformer designed with type 3 
and type 4 filters, with lengths N = 31 and N = 30, respectively. The impulse 
response given in Equation 7.72 is for odd lengths. Refer to Section 5.2.28 to 
find the impulse response of the Hilbert transformer for even lengths. In Fig­
ures 7.28(c) and (d), the corresponding impulse responses are shown. Similar 
to the case of a differentiator design discussed earlier, type 4 seems to be a 
better approximation in the case of the Hilbert transformer, when compared 
to type 3. However, in practice, type 3 filter requires lesser number of com­
putations and can generate the output at twice the speed, when compared to 
type 4 filter. This is evident once we observe the impulse responses of the type 
3 and type 4 Hilbert transformer. Type 3 impulse response has zeros for all 
even values of n (see Figure 7.28(a)), whereas to design a Hilbert tranformer 
with type 4 impulse response, it is sampled at (integer+ 12 ) values making all 
the coefficients nonzero, as shown in Figure 7.28(b). The number of multipli­
cations required reduces to (N/2) in type 3 design, making it a better choice 
from the implementation point of view. 
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8 
Application of Windows in Spectral Analysis 

Every signal obtained from nature can be considered as a realization of a ran­
dom process, but in practice, we will only have finite number of samples of 
this process. Therefore, to characterize this process, we need to estimate its 
statistical parameters from the available data samples. Power spectral estima­
tion is a process of estimating the different frequency components contained 
in a signal. Spectral estimation methods can be broadly classified into two 
categories: nonparametric estimators and parametric estimators. Since win­
dow functions are only applicable to nonparametric methods, we will only 
concentrate on this category of spectral analysis. 

The performance of any power spectral estimator is evaluated based on 
several goodness measures that are outlined below: 

•	 Bias: It is defined as the difference between the mean or expected 
value ε[x̂] of the estimates and its true mean: 

bias(X̂(ω)) = ε{X̂(ω) − X(ω)}. (8.1) 

If the bias is zero, then it is called an unbiased estimator. 
•	 Variance: It denotes the spread of the power spectral density (PSD) 

about its mean value. It is expressed as 

var(X̂(ω)) = ε{(X̂(ω) − ε{X̂(ω)})2}. (8.2) 

A good estimator should have a small variance, in addition to having 
a small bias. 

•	 Mean square error (MSE): It is a measure that combines the bias and 
variance associated with the estimator. It is defined as 

MSE(X̂(ω)) = ε{(X̂(ω) − X(ω))2} 
= ε{(X̂(ω) − ε{X̂(ω)})2} + (ε{X̂(ω) − X(ω)})2 

= var(X̂(ω)) + (bias(X̂(ω)))2.	 (8.3) 
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•	 Consistency: If the bias and variance both tend to zero as the num­
ber of observations becomes large, then the estimator is said to be 
consistent. 

•	 Resolution: This corresponds to the ability of an estimator to provide 
fine details of the random process. For example, suppose the PSD 
of the random process has two peaks with the same amplitude at 
frequencies ω1 and ω2. Then, the resolution of the estimator is mea­
sured by the minimum separation between ω1 and ω2 for which the 
estimator still reproduces two distinct peaks at those frequencies. 

Spectral estimation aims at finding the PSD or spectral information of a 
signal on an average basis, such that the estimate has less bias and variance, 
apart from having the required frequency resolution. In general, a signal can 
be obtained as an output sequence of a system where the input can be an 
impulse train (as in the case of voiced speech) or white noise input for cases 
such as seismic signals (reflections from the layers of the earth). Signals are 
generally associated with noise, which inevitably introduces variance. Any 
attempt to acheive more frequency resolution than a limit also increases the 
variance as it picks up undesired noise. It is very difficult to achieve the twin 
goals of reducing both bias and variance. 

8.1 Nonparametric Methods 

The nonparametric methods are based on Fourier transform techniques to 
find the PSD estimate [1]. There are two basic PSD estimators: 

i.	 Periodogram methods: They are based on the direct transformation of 
the data, followed by averaging. 

ii.	 Correlogram methods: These methods first formulate the correlation 
estimates from the given data. 

8.1.1 Periodogram PSD Estimator 

The introduction to the periodogram method was given in Chapter 5. Here, 
we will discuss the concept in detail. The power spectral density (PSD) is 
defined as in [2] by 

⎧ 
2 
⎫ ⎨ N ⎬1jω	 −jωnPxx(e ) = lim ε x[n]e . (8.4)

N→∞ ⎩2N + 1 ⎭ 
n=−N 
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where 2N + 1 is the length of the signal window. We can define a periodogram 
in two ways. Taking the Fourier transform of the autocorrelation estimate 
results in an estimate of the PSD, which is known as the periodogram: 

N−1 
jω −jkωPPER(e ) = rxx[k]e . (8.5) 

k=−(N−1) 

The autocorrelation estimate rxx[k] is the autocorrelation of the rectangu­
lar windowed version of the sequence x[n] of length N. Let us define this 
windowed sequence as xR[n]. Then rxx[k] is defined as 

1 
rxx[k] =  xR[k] ∗ xR

∗ [−k]. (8.6)
N 

Taking the Fourier transform of Equation 8.6, we get 

1 1 2jω jω jω jωPPER(e ) = XR(e )XR
∗ (e ) = XR(e )

N N 
2 

1 N−1 

= x[n]e−jωn , (8.7)
N 

n=0 

where XR(ejω) is the DFT of xR[n], which is in turn equal to the N point DFT of 
x[n], thus giving an alternate expression for periodogram. Now let us examine 
the value of the estimate at a particular frequency ω0. Then, the periodogram 
can be expressed as 

1 N−1 2 

PPER(ejω0 ) = x[n]e−jω0n . (8.8)
N 

n=0 

Therefore, Equation 8.8 represents the power of the frequency component ω0 

in that signal. This is just an inner product of two data sequences. Hence, 
Equation 8.8 can be expressed as a convolution operation with a filter which 
has an impulse response h[n]. Let the impulse response of the filter be 

1 ejω0n 
N , for n = −(N − 1), −(N − 2), . . . , −1, 0 

h[n] =  (8.9)
0, otherwise. 

The sequence h[n] is time-reversed and hence, after convolution, becomes the 
inner product expression. This operation can be expressed as 

2N−1 

PPER(ejω0 ) = N h[n − k]x[k] . (8.10) 
k=0 n=0 



  

  

 

 
 � 

The DTFT of h[n] is given as 

∞ 0 1jω −jωn jω0 n −jωnH(e ) = h[n]e = e e
N 

n=−∞ n=−(N−1) [ ]
e(j(ω−ω0)(N−1)) 1 − e−j(ω−ω0)N 

= 
1 − e−j(ω−ω0)N 

1 sin((ω − ω0)N/2)
(j(ω−ω0)(N−1)/2)= e . (8.11)

N sin((ω − ω0)/2) 

The scale factor N is necessary to account for the filter bandwidth. To obtain 
the spectral density, the power is divided by the length of the data, which 
gives the PSD estimate. By examining Equation 8.11, we infer that it is the 
frequency response of a shifted rectangular window. Hence, the convolution 
operation is just a set of bandpass filtering operations to give the amount 
of power in that particular frequency band. Therefore, we can say that the 
periodogram method generates the PSD estimate of the given signal. 

Bias of periodogram: The expected value of the periodogram can now be 
calculated as in Ref. [3]: � 

N−1 
jω −jωkε{PPER(e )} =  ε rxx[k]e

k=−(N−1) 

N−1 

= ε{rxx[k]}e−jωk , (8.12) 
k=−(N−1) 

where 

N−1−k1 
ε{rxx[k]} = ε{x[n + k]x ∗[n]}

N 
n=0 

N − k = rx[k]. (8.13)
N 

In Equation 8.13, rx[k] represents the unbiased estimate of the true auto-
correlation of the signal x[n]. Therefore, the autocorrelation estimate of the 
rectangular windowed signal is weighted with a Bartlett (triangular) window. 
Thus, Equation 8.13 can be written as 

ε{rxx[k]} = fB[k]rx[k], (8.14) 

where ⎧ ⎨ N − |k| 
, |k| ≤  N − 1

fB[k] =  N (8.15) ⎩0, otherwise. 
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Equation 8.15 represents a triangular or Bartlett window in the time-domain. 
Substituting Equation 8.14 into Equation 8.12, we obtain 

∞ 

jω −jωkε{PPER(e )} =  rxx[k]fB[k]e . (8.16) 
k=−∞ 

Equation 8.16 can be interpreted as a convolution operation, and using the 
properties of the Fourier transform we can represent it as 

1 
ε{rxx[k]} = Pxx(ejω) ∗ FB(ejω), (8.17)

2π 

where FB(ejω) is the Fourier transform of the Bartlett window, represented as 

[ ]2 
jω 1 sin(Nω/2)

FB(e ) = . (8.18)
N sin(ω/2) 

Now, as N → ∞, the sinc-squared pulse converges toward a Dirac delta func­
tion in the frequency-domain. Hence, the expected value of the periodogram 
estimate approaches the true PSD, and thereby the bias tends to zero, as given 
below: 

lim ε{PPER(ejω)} = Pxx(ejω). (8.19)
N→∞ 

Variance of periodogram: The variance of the periodogram method [3] can be 
calculated as follows: 

2 
1 N−1 

jω −jωkPPER(e ) = x[k]e
N 

k=0 

N−1 N−11 −j(k−l)ω= x[k]x ∗[l]e . (8.20)
N 

k=0 l=0 

The variance can be determined from the covariance expression given by 

cov{PPER(ejω1 )PPER(ejω2 )} = ε{PPER(ejω1 )PPER(ejω2 )} − ε{PPER(ejω1 )}ε{PPER(ejω2 )}. 
(8.21) 

The second moment of the periodogram can be computed as 

N−1 N−1 N−1 N−11 −j(k−l)ω1 e−j(m−n)ω2ε{PPER(ejω1 )PPER(ejω2 )} =  ε{x[k]x ∗[l]x[m]x ∗[n]}e . 
N2 

k=0 l=0 m=0 n=0 

(8.22) 
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Now, assuming x[n] as a Gaussian random process, we can make use of the 
moment factorizing theorem, which is given by 

∗ ∗ ∗ ∗ ∗ε{x[k]x [l]x[m]x [n]} = ε{x[k]x ∗[l]}ε{x[m]x [n]} + ε{x[k]x [n]}ε{x[m]x [l]}. 
(8.23) 

Thus, using Equation 8.23, we can simplify Equation 8.22 as 

�2sin(N(ω1 − ω2)/2)
ε{PPER(ejω1 )PPER(ejω2 )} = σx 

4 1 + , (8.24)
N sin((ω1 − ω2)/2) 

where σ 2 is the variance of x[n], when assumed that x[n] is a Gaussian random x 

process. For a Gaussian signal x[n], the variance is ε{PPER(ejω)} = σx 
2. Therefore, 

the covariance of the periodogram is given by 

[ ]2sin(N(ω1 − ω2)/2) 
cov{PPER(ejω1 )PPER(ejω2 )} = σ 4 . (8.25)x N sin((ω1 − ω2)/2)

Finally, the variance of the periodogram estimate is obtained from Equa­
tion 8.25 by setting ω1 = ω2. 

var{PPER(ejω)} = σ 4. (8.26)x 

However, as N → ∞, the variance does not go to zero. For the Gaussian 
process 

lim ε{PPER(ejω)} = Pxx(ejω) = σ 2 
xN→∞ 

=⇒ var{PPER(ejω)} = P2 (ejω). (8.27)xx

Resolution of periodogram estimate: For a fixed value of N, there is a limit 
on the proximity of the two sinusoids such that they can be resolved as two 
distinct peaks. This is usually given by the 6 dB bandwidth of the window. 
Hence, for periodogram PSD estimate, the resolution is the 6 dB bandwidth 
of the Bartlett window [3]: 

2π
Res{PPER(ejω)} = 0.89 . (8.28)

N 

The technique described above was the original unmodified periodogram 
PSD estimate [2]. However, this method produces statistically inconsistent 
PSD estimates, that is, as the length of the data increases (N → ∞), the mean 
converges to the true PSD, but the variance does not tend to zero. This problem 
arises because of the fact that the expectation operation was ignored in the 
PSD computation. To overcome this, it is necessary to average the PSD of 
many outputs to cause the variance to decrease. 

http:Res{PPER(ej�)}=0.89
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In many cases of practical interest, the data consist of sinusoidal inputs 
or white noise-like inputs. In such a case, the application of an appropriate 
window is essential. The effect of different windows on spectral estimation 
will be discussed in the following sections. Presently, let us discuss in detail 
the effect of the length of the sequence on the bias and variance of the peri­
odogram. Let us consider a signal having three sinusoidal components: two 
of which are closely spaced ones and the third component is distant from 
them, described as follows: 

x[n] = sin[0.15625πn] + 0.01 sin[0.21875πn] + 0.00316 sin[0.46875πn]. 
(8.29) 

To the signal x[n], white noise with a variance of 0.002 is added. 
From Figure 8.1, we can say that the bias is reduced as the value of win­

dow length N is increased, giving us an accurate spectral estimate, but the 
variance does not reduce. Figures 8.2 and 8.3 show the superimposed figures 
of 50 iterations of the PSD estimate using the periodogram method. Here, 
we can see that the width of the dark region (in Figures 8.2 and 8.3) remains 
constant with an increase in N. This dark region corresponds to the spread 
of the periodogram PSD estimate curves. Hence, we can conclude that the 
periodogram is not a consistent estimation of the PSD. 

8.1.2 Modified Periodogram PSD Estimator 

The periodogram estimate of a random process that is windowed with any 
general window (other than the rectangular window) is called modified peri­
odogram. This method uses a window to smooth a single periodogram to 
obtain a better spectral estimate [2]. The operation of windowing in the time-
domain is equivalent to convolution in the frequency-domain. We note that 
all the windows presented in the previous chapters have a lowpass filtering 
effect. Thus, it will result a smoothing of the periodogram, in based on the 
type of window selected [4]. This smoothing effect of the window reduces 
the variance of the PSD estimate. At the same time, it improves the resolution 
of the PSD estimate. This is because even in the absence of a window in the 
periodogram PSD estimator, a rectangular window was present implicitly. 
The rectangular window has a more narrow main-lobe width, but has higher 
side-lobe levels, which causes the main lobes of the weaker signal compo­
nents to be masked by the side lobes of a stronger signal component. In this 
case, we can use an effective window function, f [n], which has lower side-lobe 
levels, such as Hann, Hamming, Blackman, or Kaiser window. The effect of 
different windows on a periodogram PSD estimator is shown in Figures 8.4 
and 8.5. The modified periodogram estimate is given by 

2 
1 ∞ 

jω −jωnPM(e ) = x[n]f [n]e , (8.30)
NU 

n=−∞ 

http:x[n]=sin[0.15625�n]+0.01
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FIGURE 8.1 
Periodogram estimate for increasing N (no noise added). (a) N = 64. (b) N = 256. (c) N = 1024. 

where N is the length of the window and U (which is defined in Equation 8.31) 
is a constant that makes the modified periodogram asymptotically unbiased: 

1 N−1
2

U = f [n] .	 (8.31)
N 

n=0 
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FIGURE 8.2 
Periodogram for several values of N (with additive white noise). (a) N = 128. (b) N = 256. 

Bias of modified periodogram: Using the procedure for calculating the bias of 
the periodogram estimate, we can get the expected value of the modified 
periodogram as 

1 2jω jω jωε{PM(e )} =  Pxx(e ) ∗ F(e ) . (8.32)
2πNU 

F(ejω)|As N → ∞, the term |
NU in Equation 8.32 will converge to an impulse 

function. This will result in ε{PM(ejω)} approaching close to Pxx(ejω), which in 
turn causes the bias to tend to zero. 

Variance of modified periodogram: The variance of the modified periodogram 
does not change much, since it is just a periodogram of a windowed sequence. 
Hence 

var{PM(ejω)} ≈ P2 (ejω). (8.33)xx
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FIGURE 8.3 
Periodogram for several values of N (with additive white noise). (a) N = 512. (b) N = 1024. 

Resolution of modified periodogram: The spectral resolution of the peri­
odogram is the 6 dB bandwidth of the lag window, which will be applied 
onto the autocorrelation function (ACF). The resolution can be defined as the 
3 dB bandwidth of the data window since it transforms into the 6 dB band­
width of the lag window. The 3 dB as well as the 6 dB bandwidths of all 
common windows were already presented in Chapter 5 (see Table 5.3). 

Figures 8.4 and 8.5 display the modified periodogram PSD estimates using 
different windows. The signal contains three sinusoidal components: one 
strong signal component, next a weak signal component, and then a third 
much weaker component that is farther away from the other two compo­
nents, as given in Equation 8.29. Here, the length of the sequence N is fixed 
as 256. In Figure 8.2(b), we found that the periodogram with N = 256 was 
unable to resolve the nearby weak signal components. Also, the estimation 
of the far-off weaker signal component was not accurate. However, with the 
aid of windowing, these components can be resolved better. In Figure 8.4(a), 
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FIGURE 8.4 
Modified periodogram estimate. (a) Using Bartlett window. (b) Using Hann window. 

the Bartlett window was unable to resolve the nearby weak signal compo­
nent, but surprisingly, it could resolve the far-off weaker component better. 
This is due to the faster decay rate of the side lobes of the Bartlett window. 
In the case of Hann and Hamming windows, both the weaker components 
could be resolved properly for this example (see Figures 8.4(b) and 8.5(a)). The 
Blackman window also resolves all the spectral components in this case (see 
Figure 8.5(b)), but due to the larger main-lobe width, the spectral resolution 
is less than that obtained using Hann and Hamming windows. The applica­
tion of Hann, Hamming and Blackman windows in spectral estimation were 
already discussed in Chapter 5. 

The modified periodogram is still not a consistent estimator, since the vari­
ance of the estimator does not go to zero as N → ∞. Thus, the advantage 
of windowing is to provide a trade-off between resolution and the spectral 
masking provided by the side lobes of the window functions. 



270 Window Functions and Their Applications in Signal Processing 

(a) 40 

Po
w

er
 sp

ec
tr

al
 d

en
sit

y (
dB

) 

20 

0 

−20 

−40 

−60 

−80 

−100 

0.15625 

0.2227 
0.4707 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Normalized frequency (ω/π ) 

–100 

–80 

–60 

–40 

–20 

0 

20 

40(b) 

0.15625 

0.21875 
0.46875

Po
w

er
 sp

ec
tr

al
 d

en
sit

y (
dB

) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Normalized frequency (ω/π ) 

1 

FIGURE 8.5 
Modified periodogram estimate (continued). (a) Using Hamming window. (b) Using Blackman 
window. 

Figures 8.6 through 8.10 show the effect of noise on the modified peri­
odogram estimator. In all the examples illustrated in these figures, we have 
considered white noise with a variance of 0.01, which is −40 dB in magnitude. 
In Figures 8.6 through 8.10, each has two subplots: one showing the overlaid 
plots of 50 iterations of the modified periodogram method on the signal (with 
random white noise added) and the second subplot showing the average of 
all the 50 plots. From these plots, we can conclude that if the noise level is close 
to the PSLL of the window used, then the effect of noise on spectral estimation 
will be greater. Thus, all the windows that have PSLL less than this value will 
give poorer estimates. Hence, in this example, the performance of rectangu­
lar, Bartlett, and Hann windows (in the presence of white noise) is poor when 
compared to the other windows, since their PSLL is close to −40 dB. 
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FIGURE 8.6 
Effect of noise on modified periodogram using rectangular window. (a) Overlaid plots. 
(b) Averaged plots. 

8.1.3 Spectral Analysis Using Kaiser–Bessel Window 

In the previous sub-section, we have used only the common fixed parameter 
windows. For such windows, we are unable to fix the required resolution and 
frequency leakage simultaneously. When we try to improve the resolution 
using a window with a narrow main lobe, we will have more spectral leakage 
due to the high side-lobe levels. Hence, we often prefer variable parameter 
windows, where both these parameters can be controlled simultaneously [5]. 
One among them is the Kaiser–Bessel window with a variable parameter α. 
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FIGURE 8.7 
Effect of noise on modified periodogram using Bartlett window. (a) Overlaid plots. (b) Averaged 
plots. 

In the recent times, the Kaiser window has become popular for FIR filter 
design. In the case of FIR filter design problem, a convolution of the frequency 
response of the window with a “brick-wall” ideal filter response is important. 
However, in spectral analysis, the frequency response of the window is more 
vital. Hence, the formula used for calculating the Kaiser window parameters 
(as used for FIR filter design) are not appropriate for the spectral analysis 
applications. Kaiser and Schafer [6] have further developed simple design 
formulae that facilitate the usage of the Kaiser window for spectral analysis. 
These equations are used in computing accurate values for the window length 
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FIGURE 8.8 
Effect of noise on modified periodogram using Hann window. (a) Overlaid plots. (b) Averaged 
plots. 

N and the shape factor α, for a given side-lobe level R in dB, as well as the 
frequency resolution �ω. The expression for the length (N) is given as 

2π 
(N − 1) = c , (8.34)

�ω 

where c is a factor that depends on the type of window. For the Kaiser window, 
c is given by 

6(R + 12) 
c = . (8.35)

155 
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FIGURE 8.9 
Effect of noise on modified periodogram using Hamming window. (a) Overlaid plots. 
(b) Averaged plots. 

The window shape parameter α can be obtained in terms of R as 
follows: 

⎧ ⎪0,	 R ≤ 13.26 ⎨ 
α = 0.76609(R − 13.26)0.4 + 0.09834(R − 13.26), 13.26 < R ≤ 60 ⎪ ⎩0.12438(R + 6.3), 	  60  < R ≤ 120. 

(8.36) 
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FIGURE 8.10 
Effect of noise on modified periodogram using Blackman window. (a) Overlaid plots. 
(b) Averaged plots. 

Incidentally, when α = 0, the Kaiser–Bessel window becomes rectangu­
lar and 13.26 dB represents the attenuation of the first side-lobe level of 
the rectangular window. Once the window length N and α are computed, 
we can generate the desired Kaiser window in the time-domain using the 
expression 

I0(α 1 − (n − M)2/M2)
f [n] =  , n = 0, 1, . . .  , N − 1 (8.37)

I0(α) 
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where M = (N − 1)/2. The given data can then be windowed by f [n]. Let us 
now demonstrate the procedure by considering a signal 

x[n] = sin[0.4πn] + 0.00316 sin[0.5πn] + 0.8 sin[0.6πn]. (8.38) 

Since the magnitude of the second sinusoidal component is approximately 
about −50 dB, we have to use a window with side-lobe levels less than −50 dB. 
However, to be on the safe side, we can choose R = 70 dB, and the resolution 
can be computed by the formula 

ω2 − ω1 
�ω = 

3 
0.6π − 0.5π = = 0.0333π .

3 

Now, we can compute the values of N, c, and α using the expression given in 
Equations 8.34 through 8.36, respectively, as 

α = 0.12438(70 + 6.3) = 9.490, 

6(70 + 12) 
c = = 3.174,

155 
2π

and N = 1 + 3.174 × = 191.44. 
�ω 

From Figures 8.11 and 8.12, we can clearly observe that the Kaiser–Bessel 
window is one of the most suitable windows for the spectral analysis of the 
above signal. We can also see that the Hamming window is not even able 
to resolve the weak signal component. The Hann window is able to detect 
the weak component, but the peak is smaller in magnitude and hence, under 
noisy conditions, the peak may not be detected and this window may also not 
perform well. Hence, we can confirm that for spectral analysis requiring high 
resolution and lower side-lobe levels, the Kaiser window is a better choice. 

Now, let us consider the signal defined in Equation 8.29 (in the previous 
sub-section). The modified periodogram estimate using the Kaiser window is 
given below. The weakest signal component has a magnitude −50 dB. Now, 
let us calculate the required values of N, c, and α for this signal. To make 
a comparison with other windows, let us take R = 50. Then, we find from 
Equations 8.34 to Equation 8.36 that 

(0.21875π − 0.15625π) π 
�ω = = , (8.39)

3 48 
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FIGURE 8.11 
Spectral analysis using Hamming, Hann, and Kaiser–Bessel windows. (a) Using Hamming 
window. (b) Using Hann window. (c) Using Kaiser–Bessel window with α = 9.49. 



α = 0.76609(50 − 13.26)0.4 + 0.09834(50 − 13.26) = 6.85, (8.40) 

6(50 + 12) 
c = = 2.4, (8.41)

155
 
2π


and N = 1 + 2.4 × = 231. (8.42)
�ω 
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FIGURE 8.12 
Spectral analysis using Kaiser–Bessel window (second example). 

By comparing the plot given in Figure 8.12 with those of Figures 8.4 and 
8.5, we can clearly see that the Kaiser window is a better choice for spectral 
analysis purposes because of the fact that the side-lobe attenuation as well as 
the resolution required can be simultaneously achieved, for a wide range of 
signals, by varying the parameter α. Similar to the FIR filter design problem, 
the periodogram using the Kaiser–Bessel window requires lower lengths of 
the data to provide better spectral estimates when compared to the other 
windows. 

8.1.4 Bartlett Periodogram 

The main drawback of the periodogram PSD estimate is its high variance 
since we have neglected the expectation operation. Therefore, we create a 
pseudo-ensemble by dividing the input signal into non-overlapping segments 
of length L [1]. Then, we individually compute the periodogram estimate for 
each of these segments and finally average the periodogram estimates with 
respect to the frequency points as follows: 

1 P−1 
jω P(i) jωPB(e ) = PER(e ), (8.43)

P 
i=0 



     
      

 

where P is the number of segments and P(i) represents the individual PER 

segment’s periodogram estimate given by 

2 
1 L−1 

P(i) jω −jωn) = xi[n]e . (8.44)PER(e L 
n=0 

Bias of Bartlett periodogram: The bias of the Bartlett periodogram is computed 
as follows: 

1 P−1 
jω jω jωε{P(i)

ε{PB(e )} =  PER(e )} = ε{PPER(e )}. (8.45)
P 

p=0 

This is because all the segments have identical and independent peri­
odograms. 

Variance of Bartlett periodogram: Its variance is given by 

P2 (ejω) 
var{PB(ejω)} ∝  xx . (8.46)

P 
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Thus, the variance of the spectral estimate is reduced as P is increased. How­
ever, the decrease in variance may be much less than desired, if the segments 
are not statistically independent. 

By comparing the Bartlett periodogram estimate given in Figure 8.13 with 
the periodogram estimate given in Figure 8.3(b), we can observe that the 
variance is reduced considerably. This reduction in variance is due to averag­
ing of the periodograms of P sub-sequences. In this case, the length of window 
N = 1024 and P = 4 was used, but the reduction in variance is less than a factor 
of four because of the correlation existing between the sub-sequences. Thus, 
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FIGURE 8.13 
Bartlett periodogram for N = 1024. 
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as N → ∞, with both P → ∞ and L → ∞, the bias as well as the variance of 
the Bartlett periodogram approaches zero. Hence, it can be considered as a 
consistent estimator. 

In Figure 8.14, Bartlett periodograms with P = 4 and P = 16, with N = 2048 
are shown. Larger length of data has been used to make the difference more 
clear. In the case of P = 4, we can see that the variance of the periodogram 
for 50 iterations (with noise added) produces more variance than in the 
case when P = 16. The variance accounts for the darker regions of the plot 
due to the overlaying of different plots. For the P = 16 case, the variance 
is comparatively reduced, because 16 different periodograms are averaged 
out. However, the reduction in variance is not as good as that given by 
Equation 8.46. In this method, the reduction in variance is achieved at the 
expense of loss in resolution. This is because, as the value of P increases, the 
segment length reduces; hence, the individual periodograms will have low 
resolution. 

Resolution of Bartlett periodogram: The expression for the resolution of the 
Bartlett method is similar to the periodogram estimate, except that the length 
of the data is changed with respect to the length of the segment [3]. Therefore, 
the resolution of the Bartlett method is poorer, that is, 

Res{P (ejω
B

 
2π 

�  
2π

)} = 0.89 = 0.89P 
� 

, (8.47)
L N 

where L = N
P . In Figure 8.15, Bartlett periodograms with P = 4 and P = 16 

(with N = 1024) are shown. From these plots, we can clearly see that the 
resolution gets reduced dramatically when averaging is done over P peri­
odograms. The disadvantage of this method is that the spectral resolution is 
reduced due to the fact that we divide the input signal into segments. Hence, 
a trade-off should be maintained between the number of segments P and the 
number of data samples within a segment N as LP ≤ N, the length of the 
input sequence. 

8.1.5 Welch Periodogram Method 

This is a modified version of the Bartlett periodogram in which a data win­
dow is applied on each of the segments before computing the periodogram. 
The segments are allowed to overlap, and hence the number of segments 
over which averaging is done can be increased, thereby giving a better esti­
mate with reduced variance. The effect of applying a data window is to 
suppress the effects of side lobes. However, this results in smearing of peaks, 
which inevitably reduces the resolution [1]. The expression for the Welch 
periodogram estimate is given by 

2P−1 L−11jω −jωnPW (e ) = f [n]x[n + iD]e , (8.48)
PLU 

i=0 n=0 

http:Res{PB(ej�)}=0.89
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 1 P−1 
jω P(i) jωPW (e ) = M (e ),	 (8.49)

P 
i=0 
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FIGURE 8.14 
Effect of P on variance of Bartlett periodogram (for N = 2048). (a) P = 4. (b) P = 16. 

where P is the number of sub-sequences of length L and D is the off­
set between data points in x[n], which goes to a particular point in two 
adjacent subsequences. Hence, (L − D) represents the number of overlap­
ping segments. We recall that U is a normalization constant defined in 
Equation 8.31 (see modified periodogram discussed in Section 8.1.2). 

Bias of Welch periodogram: The Welch periodogram can be represented in 
terms of the modified periodogram as 



ε{PW (ejω)} = ε{PM(ejω)} 
1 2 = Pxx(ejω) ∗ F(ejω) , (8.50)

2πLU 
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FIGURE 8.15 
Effect of different values of P on resolution of Bartlett periodogram (N = 1024). (a) P = 4. 
(b) P = 16. 

where P(i) 
M (ejω) is the modified periodogram of each sub-sequence. The 

expected value of the Welch estimate is given as 

where F(ejω) is the Fourier transform of the L-point data window. The Welch 
periodogram estimator is an asymptotically unbiased estimator, similar to 
the case of the modified periodogram. 

Variance of Welch periodogram: The variance is difficult to compute because 
the overlapping introduces a correlation between different subsequences. 
Hence, similar to the Bartlett periodogram, the variance of the Welch peri­
odogram is also inversely proportional to the number of sub-sequences, as 



shown below: 
P2 (ejω) 

var{PW (ejω)} ∝  xx . (8.51)
P 

For an overlap of 50%, the variance of the Welch periodogram estimate is 

9 L 
var{PW (ejω)} ≈  P2 (ejω). (8.52)

16 N xx
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Thus, as N → ∞, the variance of the Welch periodogram estimate tends to 
zero. Hence, it can be called a consistent PSD estimator. 

Resolution of Welch periodogram: The resolution of PW (ejω) is determined by 
the spectral resolution of each sub-sequence of x[n]. Now, similar to the 
modified periodogram, the resolution of the Welch method is also window-
dependent. However, the resolution of the Welch method will be poorer 
because the sub-sequences have smaller lengths. 

From Figures 8.16 and 8.17, we can observe that as the overlap is increased, 
and the variance of the Welch estimator using the Hann window is reduced. 
This reduction in variance arises because a larger number of segmental peri­
odograms are available for averaging (than without overlap) as in the case of 
Bartlett method. However, we can see that as the overlap increases beyond 
70%, there is not much reduction in the variance, since the segments become 
more correlated. Hence, we commonly use an overlap of 50–75%, as increasing 
the overlap beyond this does not improve the variance. 

Figures 8.18 through 8.20 display the effect of applying different window 
functions for the Welch method. The introduction of windows in the Welch 
periodogram method has the same advantage as given in the case of the mod­
ified periodogram. In these figures, an overlap of 50% is used with N = 1024. 
We can clearly see that the resolution of the Welch periodogram depends on 
the data window used. 

8.1.6 Blackman–Tukey Method 

Another method to compute PSD is through the correlogram method, where 
we compute a PSD estimate as the Fourier transform of the ACF as shown 
below: 

(N−1) 

PPER(ω) = rxx[k]e−jωk , (8.53) 
−(N−1) 

where ⎧ ⎨ 1 �N−1−k x ∗[n]x[n + k], for k = 0, 1, . . . , (N − 1). 
rxx[k] =  N n=0 (8.54) ⎩ ∗ r [−k], for k = −(N − 1), . . . , −1.xx
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FIGURE 8.16 
Welch periodogram with different overlapping (with Hann window). (a) Overlap of 10%. (b) 
Overlap of 20%. (c) Overlap of 40%. 
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FIGURE 8.17 
Welch periodogram with different overlapping (with Hann window). (a) Overlap of 50%. (b) 
Overlap of 70%. (c) Overlap of 90%. 
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FIGURE 8.18 
Welch periodogram with different windows. (a) Hamming window. (b) Bartlett window. 

Poor estimates of the ACF leads to inferior performance of the periodogram 
method. The ACF estimate with smaller lags can be estimated more accurately 
than the ones with lags close to N. This is because a smaller number of terms 
are used in the summation. Therefore, the large variance of the periodogram 
is due to the high weightage given to the flawed autocorrelation estimate 
used in its evaluation. 

Blackman and Tukey [7] have proposed a weighting scheme, such that 
the autocorrelations with greater lags are associated with lower weights. The 
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FIGURE 8.19 
Welch periodogram with different windows. (a) Hann window. (b) Blackman window. 

expression for this estimator is given by 

(N−1) 

PBT (ω) = f [k]rxx[k]e−jωk , (8.55) 
−(N−1) 

where f [k] is a window function that is non-negative, symmetric, and non-
increasing with respect to |k|, that is, 
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FIGURE 8.20 
Welch periodogram with Kaiser–Bessel window with α = 7. 

1. 0 ≤ f [k] ≤ f [0] = 1 
2. f [−k] = f [k]
3. f [0] = 0, for |k| > M, where M ≤ N − 1 

This scheme is called the Blackman–Tukey spectral estimator. This happens 
to be equivalent to the periodogram method, if 

f [k] = 1, for |k| ≤ M = N − 1. (8.56) 

The weighting of ACF will reduce the variance of the spectral estimator 
but this is at the expense of increasing the bias. There are several lag win­
dows available in the literature [8] but only a certain class of windows is used 
for computing the PSD using the Blackman–Tukey method. This arises from 
the fact that when we represent Equation 8.55 in the frequency-domain, it 
becomes a convolution operation of the lag window with PPER, which can be 
expressed as 

� π 

PBT = F(ω − ξ)PPER(ξ)dξ . (8.57) 
−π 

Thus, owing to the convolution operation, we can use the spectral window 
function, which has the property 

F(ejω) ≥ 0, −π ≤ ω ≤ π . (8.58) 
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This constraint is set to avoid a negative spectral estimate due to the appli­
cation of the lag window. Hence, only certain window functions such as the 
Bartlett, Parzen (Jackson), Bohman windows are used. 

Bias of Blackman–Tukey method: In the Blackman–Tukey method, we apply a 
lag window to the ACF. Hence, the expectation of PBT (ejω) is obtained as 

� 
M 

jω −jωkε{PBT (e )} = ε fBT [k]rxx[k]e
k=−M 

M N − |k| � 
= fBT [k] rx[k]e−jωk , (8.59)

N 
k=−M 

where fBT [k] denotes the lag window and fB[k] =  N−|k| is the Bartlett window. N 
The length of the lag window is 2M. Now, applying the modulation property 
of the Fourier transform in Equation 8.59, we obtain 

1jω jω jω jωε{PBT (e )} =  FBT (e ) ∗ FB(e ) ∗ Pxx(e ). (8.60)
2π 

Owing to the presence of the explicit window term FB(ejω), we will get the 
effect of applying both the lag window and the implicit Bartlett window 
on the autocorrelation sequence. As N → ∞, the expression FBT (ejω) ∗ FB(ejω) 

tends to an impulse function. Therefore 

lim ε{PBT (ejω)} = Pxx(ejω). (8.61)
N→∞ 

Thus, the Blackman–Tukey method is asymptotically unbiased. 
Variance of Blackman–Tukey method: The variance of the Blackman–Tukey 

method is given by 

P2 (ejω) 
M 

var{PBT (ejω)} ≈  xx fBT [k], N � M. (8.62)
N 

k=−M 

Thus, the higher the value of M, the higher the variance. 
Resolution of Blackman–Tukey method: The spectral estimate of the PBT (ejω) is 

dependent on the window function used. Since the length of the lag window 
is 2M, the spectral resolution is given by 

2π
Res{PBT (ejω)} = b , (8.63)

2M 

where b is a parameter that depends on the 6 dB bandwidth of the window. 
Hence, as the value of M increases, the resolution gets better. 
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Figures 8.21 and 8.22 show the Blackman–Tukey PSD estimate, each with a 
Bartlett lag window of different lengths. A typical composite signal consisting 
of three sinusoidal components can be represented as 

x[n] = sin[0.15625πn] + 0.8 sin[0.25πn] + 0.2 sin[0.46875πn], (8.64) 

White noise with a variance of 0.2 is added to the above signal. 
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FIGURE 8.21 
Effect of varying M on variance and resolution of Blackman–Tukey method. (a) M = N. 
(b) M = 0.6N. 
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FIGURE 8.22 
Effect of varying M on variance and resolution of Blackman–Tukey method (continued). 
(a) M = 0.5N. (b) M = 0.2N. 

In Figure 8.21(a), we have used M = N. Hence, it includes the complete 
autocorrelation sequence, thereby resulting in a higher resolution of the spec­
tral estimate. However, this resolution is obtained at the expense of higher 
variance, which is apparent from the plot. Now, as the value of M is reduced, 
the variance of the Blackman–Tukey estimate also gets reduced (see Fig­
ure 8.21(b)). The plots given in Figure 8.21 have very high variance, whereas 
the result shown in Figure 8.22 has a reduced variance (without much effect on 
resolution). Hence, the preferred value of M is less than N/2. In Figure 8.23, 
the plots have a much lower variance, but the resolution of the estimate is 
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FIGURE 8.23 
Effect of varying M on variance and resolution of Blackman–Tukey method (continued). (a) 
M = 0.1N. (b) M = 0.08N. 

poorer. Therefore, the recommended value of M can be taken to be greater 
than N/5. 

8.1.7 Daniel Periodogram 

This is an approach to obtain a smooth periodogram estimate by averaging 
over the adjacent spectral frequencies [1]. Hence, we can define the expression 
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for averaging over P points on either side of the frequency axis, ωi, as  

1 i+P 

PD(ejωi ) = Pxx(ejωn ). (8.65)
2P + 1 

n=i−P 

This approach is a special case of the Blackman–Tukey method, where the 
window used is rectangular. We notice that this operation is just lowpass 
filtering. 

8.1.8 Application of the FFT to the Computation of a Periodogram 

The computation of a periodogram using a digital computer can be simplified 
by the use of an FFT algorithm. In case of FFT computation, we sample the 
frequency range [−π , π ] into N equidistant discrete-frequency points spaced 
at 2π 

N . This was already described in Chapter 1. An interesting fact is that here 
the frequency at the kth sample point is 2π 

N k. We find that the frequencies can 
have finer spacing if N is increased (since the spacing is 2π 

N ). This can be done 
by padding (N1 − N) zeros to the right of x[n], thereby increasing the length 
to N1. However, we can see from practical results that this modification only 
improves the computation of periodogram but not the actual resolution (see 
Chapter 1). 

In Figure 8.24, we have shown the effect of increasing the number of 
FFT points around the unit circle. From these plots, we can conclude that 
the increase in frequency sampling points by padding with zeros does not 
increase the resolution; instead, it only improves the visual representation of 
the periodogram. The finer details are revealed better in Figure 8.24(c) than 
in Figure 8.24(a). 

8.1.9 Short-Time Fourier Transform 

We can define the time-dependent or short-time Fourier transform (STFT) 
[9] as 

∞ 

jω −jωkXn(e ) = f [n − k]x[k]e . (8.66) 
k=−∞ 

The STFT can be interpreted in two different ways: either as the Fourier 
transform of a windowed sequence or as a linear filtering operation. From 
Equation 8.66, it is clear that STFT is the Fourier transform of a windowed 
sequence x[k]f [n − k], where f [n] represents a window function. Using this 
approach, we can obtain a localization in time of the signal as well. This 
method is used in the case of nonstationary signals, such as speech signals. 
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FIGURE 8.24 
Effect of increasing the number of FFT points. (a) N1 = 256. (b) N1 = 1024. (c) N1 = 4096. 

In this approach, we localize the signal in time by applying a window. The 
window length has to be chosen in such a way that the signal within that 
period can be assumed to be stationary. 
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The spectrogram is a graphical representation of the magnitude response 
of the STFT. Figures 8.25 through 8.27 show the spectrograms using some 
common windows such as rectangular, Hamming, Hann, triangular, and 
Blackman. The DTFTs of these windows, their main-lobe widths, side-lobe 
attenuation levels, and other properties have already been discussed in 
Chapters 3 and 5. All these characteristics can be clearly verified from the 
spectrogram plots. In these figures, the magnitude of the STFT is shown as 
a color gradient. The spectrogram is computed for a nonstationary signal 
having three signal components, which occur for only a short duration. The 
signal consists of two short-duration sinusoidal components separated by 
white noise in time. 

Using rectangular window: For this window, the main-lobe width is very nar­
row, but the side-lobe attenuation is quite low (around −13 dB) and remains 
constant irrespective of the length of the window. Only the main-lobe width 
becomes much sharper when the window length increases. However, the 
high side-lobe levels will lead to spectral leakage. Since this window has 
high spectral resolution, it can be used in problems where we need to resolve 
very closely spaced spectral peaks with high amplitudes. One such appli­
cation is formant extraction in a speech signal. In the spectrogram shown in 
Figure 8.25(a), we can see that due to spectral leakage, the energy is spread 
over the entire spectrum, but with narrow lines at the actual frequencies (due 
to the high resolution). 

Using Hamming window: In this case, the main-lobe width is twice that of 
the rectangular window, but the side-lobe attenuation is more than −40 dB. 
Therefore, the spectral resolution obtained due to this window is poorer when 
compared to the rectangular window case, but it has less spectral leakage. 
Another additional feature of this window is that it provides a smoother 
spectrum when compared to a spiky spectrum exhibited by the rectangu­
lar window. Hence, it is mainly used in speech applications as a trade-off 
between resolution and spectral leakage. In the spectrogram, we can see 
that the frequency lines have concentrated energy and the spectral leakage 
is less. 

Using Hann window: The spectral resolution that can be obtained by the 
Hann window is almost the same as the Hamming window case, but the 
side-lobe attenuation is much higher. We can also observe from the spec­
trogram that the spectral leakage is quite less than that of the Hamming 
window (Figure 8.26(a)). Since the Hann window is a very smooth filter, it 
undesirably distorts the time-domain signal waveform (more than the Ham­
ming window case) because of its shape. However, the Hann window is 
preferred over the Hamming window because of its high side-lobe fall-off 
rate. 

Using Blackman window: For this window, the spectral bandwidth is very 
large and the side-lobe attenuation is very high. Hence, we can see from the 
spectrogram that the spectral leakage is very low compared to the above 
windows, but the spectral resolution is poorer (Figure 8.27(a)). This window 
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FIGURE 8.25 
Spectrograms. (a) Using rectangular window. (b) Using Bartlett window. 

is not preferred for spectral estimation applications, since it smoothens out 
the spectral peaks. 

Using Kaiser–Bessel window (with α = 7): From the spectrogram plots, it 
is clear that a Kaiser–Bessel window (Figure 8.27(b)), with an appropriate 
value of α, is optimum for spectral estimation. The Kaiser–Bessel window 
is a variable-parameter window and we can choose α depending on the 
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FIGURE 8.26 
Spectrograms. (a) Using Hamming window. (b) Using Hann window. 

requirements. This is, of course, an advantage when compared to all the other 
standard fixed windows. 

8.1.10 Conclusions 

By comparing all the methods that make use of windows for spectral esti­
mation, it is not easy to converge on a single window that is the best in 
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FIGURE 8.27 
Spectrograms. (a) Using Blackman window. (b) Using Kaiser–Bessel window with α = 7. 

all applications. However, we can say that one of the appropriate fixed-
parameter windows for most applications is the Hann window due to its 
higher side-lobe roll-off rate. The Kaiser–Bessel window has the advantage 
of being a variable-parameter window which makes it amenable for good 
performance in most applications. Hence, for the same window length, we 
can achieve lower PSLL using Kaiser–Bessel window, which will enable us 
to detect weaker signal components even better than the Hann window. 
Under certain conditions, the Hann window turns out to be superior to the 
Kaiser–Bessel window. One such case is illustrated in the following example. 



FIGURE 8.28 
Comparison of performance of spectral estima√ tor using different windows. (a) Hann window.  
(b) Zeroth-order Kaiser window (with α = π 3). 

. 

299 Application of Windows in Spectral Analysis 

Consider a signal 

x[n] = sin[0.15625πn] + 0.1 sin[0.1875πn] + 0.0001 sin[0.46875πn] + η, 
(8.67) 

where η is additive white noise with a variance of 0.00009. 
From Figures 8.28 through 8.30, we can observe that the Hann window 

performs better than all the other commonly used windows. By using a √ 
Kaiser–Bessel window with α = π 3, we obtain the same main-lobe width 
as that of the Hann or Hamming window. Under this constraint and for a 
fixed window length N = 256, only the Hann window is able to resolve all 
the spectral components perfectly. In the case of Kaiser and Hamming win­
dows, they can still resolve the closely spaced frequency components (since 
their main-lobe widths are smaller), but both fail to detect the far away weak 
signal component. This failure is due to the high side-lobe level as well as 
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FIGURE 8.29 
Comparison of performance of spectral estimator using different windows. (a) Hamming 
window. (b) Zeroth-order Kaiser–Bessel window (with α = 10.73). 

. 

FIGURE 8.30 
Performance of spectral estimator using first-order Kaiser–Bessel window. 
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low side-lobe roll-off rate of Hamming and Kaiser–Bessel windows. How­
ever, in the case of the Kaiser–Bessel window, we can change the parameter 
α such that the required side-lobe level can detect the weaker signal com­
ponent. This is shown in Figure 8.29(b), where it is clear that as the value 
of α is increased, the side-lobe level reduces at the expense of increased 
main-lobe width, which in turn results in merging of the nearby signal 
components. This reduces the resolution of the spectral estimation method. 
Figure 8.30 presents the spectrum of the signal given in Equation 8.67 using 
the first-order Kaiser–Bessel window (with γ = 2π ). This window has the 
same main-lobe width as that of the Hann and Hamming windows. Under 
such circumstances, this window also fails to detect all the spectral compo­
nents distinctly. The superior performance of the Hann window is due to 
the fact that the side-lobe roll-off rate is −18 dB/octave, when compared to 
−6 dB/octave for the Kaiser–Bessel window. Therefore, in most of the spec­
tral analysis applications, the Hann window is preferred especially when the 
signal contains a weak signal component, which is farther away from the 
other components. 

References 

1.	 S.L. Marple Jr., Digital Spectral Analysis with Applications, Prentice-Hall, Englewood 
Cliffs, NJ, 1987. 

2.	 S.M. Kay, Modern Spectral Estimation: Theory and Applications, Prentice-Hall, Engle­
wood Cliffs, NJ, 1988. 

3.	 M.H. Hayes, Statistical Digital Signal Processing and Modeling, John Wiley & Sons 
Inc., New York, NY, 1996. 

4.	 F.J. Harris, On the use of windows for harmonic analysis with the discrete Fourier 
transform, IEEE Proceedings, vol. 66, no. 1, pp. 51–83, January 1978. 

5.	 S.J. Orfanidis, Introduction to Signal Processing, Prentice-Hall, Englewood Cliffs, NJ, 
1996. 

6.	 J.F. Kaiser and R.W. Schafer, On the use of the I0-sinh window for spectral analysis, 
IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-28, no. 1, pp. 
105–107, February 1980. 

7.	 R.B. Blackman and J.W. Tukey, The Measurement of Power Spectra from the Point of 
View of Communication Engineering, Dover Publications, Inc., New York, 1958. 

8.	 P. Stoica and R. Moses, Spectral Analysis of Signals, PHI Learning Private Limited, 
New Delhi, 2011. 

9.	 A.V. Oppenheim and R.W. Schafer, Discrete-Time Signal Processing, 3rd Edn., 
Prentice-Hall, Upper Saddle River, NJ, 2010. 



http://taylorandfrancis.com


9 
Applications of Windows
 

9.1 Windows in High Range Resolution Radars 

The term “radar” stands for radio detection and ranging. As the name sug­
gests, the primary function of most of the radars is to find the range of certain 
target objects. When two or more such targets are very close, it becomes dif­
ficult to identify them as individual targets. Radar that overcomes such a 
difficulty is said to have good range resolution capability. In radar applica­
tions, it is desirable to have high range resolution (HRR) [1], while maintaining 
adequate average transmitted power (ATP). This is accomplished by a tech­
nique called pulse compression, as a part of which, either the frequency 
modulation (FM) or the phase modulation (PM), is employed. FM can in turn 
have variants that use one of the following waveforms: linear FM (LFM) wave­
form, frequency-modulated continuous waveform, and stepped frequency 
waveform (SFW). One undesirable effect of pulse compression is that side 
lobes appear at the output. This problem can be solved by making use of win­
dow functions. It is known from the earlier chapters that a proper choice of 
a window can considerably reduce the side-lobe effect. LFM pulse compres­
sion can be implemented either by correlation processing (mainly used for 
narrow-band and some medium-band applications) or by stretch processing 
(used for wideband applications). The use of SFW is known to produce HRR 
target profiles. We will now proceed to see how exactly windowing is used 
in (i) obtaining HRR target profiles and (ii) stretch processing. Furthermore, 
we shall illustrate the effect of different windows on pulse compression using 
computer simulations for various scenarios. 

9.1.1 HRR Target Profiling 

Consider a case where a series of N narrow-band pulses are transmitted, such 
that the frequency is stepped up or down by a fixed-value δf from pulse to 
pulse. Each group of N pulses can be referred to as a burst. Let τ � and T denote 
the pulse width and pulse repetition interval (PRI), respectively. 

Each pulse may employ some form of modulation, say LFM or PM. Let the 
center frequency of the nth pulse of a burst be given by 

fn = f0 + n(δf ), n ∈ [0, N − 1] . (9.1) 
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Then, the corresponding transmitted waveform is given by 

Cn cos(2π fnt + θn), t ∈ [nT, nT + τ �]
Sn(t) = 

0, otherwise 

where Cn is a constant and θn is the relative phase. A target located at range 
R0 and at time t = 0, with a radial velocity v has a round-trip delay of τ(t), 
which is given by 

R0 − vt 
τ(t) = , (9.2)

0.5c 

where c is the velocity of light (3 × 108 m/s). Then, the received signal from 
such a target is given by 

Srn(t) = Cn
� cos(2π fn(t − τ(t)) + θn), t ∈ [nT + τ(t), nT + τ(t) + τ �], (9.3) 

where Cn 
� is a constant. 

Before we can analyze the received signal, it has to be first down-
converted to base-band. By mixing the received signals with the waveform 
yn = Ccos(2π fnt + θn), we obtain 

C� 
Srnyn = nC [cos(2π fn(2t − τ) + 2θn) + cos(2π fnτ)]. (9.4)

2 

Upon lowpass filtering, it will result in the following in-phase component: 

C� C 2R0 − 2vt
XI = n cos 2π fn . (9.5)

2 c 

The quadrature component can be obtained by considering the product of 
Srn with yn phase-shifted by 90◦, that is, −C sin(2π fnt + θn) which results in 

Cn
� C − [sin(2π fn(2t − τ) + 2θn) + sin(2π fnτ)]. (9.6)
2 

After applying a lowpass filter, we obtain the quadrature component as 

C� C
XQ = −  n sin(2π fnτ). (9.7)

2
 

The samples of the target’s reflection due to a single burst is given by
 

Xn = 0.5Cn
� C(XI + jXQ), (9.8) 



 

 

 

    

whose IDFT is defined as 

N−1 ( )
1 ln −2 fn
 
N c (R0−vt)Hl = 0.5Cn

� Cej2π , 0  ≤ l < N − 1. (9.9)
N 

n=0 

This provides information about the range profile. Normalizing Hl, by  
taking 0.5Cn

� C = 1 and substituting n(δfn) for fn, we obtain 

N−1 

Hl = e(
j2πn 

N )
(

l− 
2NR0(δfn) 

c 

)
. (9.10) 

n=0 

Denoting η = 
(

l − 2NR0(δfn ) 

c 

)
following geometric series: 

in the previous equation, we arrive at the 

N−1 

Hl = e(
j2πnη 

N ), (9.11) 
n=0 

Nwith the first term being unity and having a common ratio of e(
j2πη ). Therefore 

j2πη1 − e sin πη jπη(1− N 
1 )Hl = j2πη 

= e . (9.12)
1 − e Nsin πη 

N 

sin πηFrom this, it can easily be seen that the synthesized range profile, ,sin πη 
N 

has high side-lobe amplitudes, which can be reduced by performing the 
  

windowing operation, prior to taking the IDFT. 
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9.1.2 Simulation Results 

Simulations have been carried out to plot the range profiles of targets for two 
specific cases, where the relative distances between the three targets is taken 
as follows: 

Case 1: (908, 910, 910.2) m (two of the targets very close) 
Case 2: (908, 910, 912) m (targets reasonably apart) 

Among the various window functions discussed in ref. [2], we now use the 
following: rectangular, triangular, Hamming, Hann, Blackman, and Nuttall 
window functions, to study the relative performance. The Nuttall window 
function [3] that is in-built in MATLAB is in fact the minimum four-term 
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Blackman–Harris window, which is given by 

 
2πn 

f 
�  

4πn 
�  

6πn[n] = a0 + a1 cos + a2 cos + a3 cos 
� 

, 0  
N

≤ n ≤ N 
N N 

(9.13) 

where (a0, a1, a2, a3) = (0.3635819, −0.4891775, 0.1365995, −0.0106411). 
The simulation results are shown in Figures 9.1(a) through (f) for Case 

1 and in Figures 9.2(a) through (f) for Case 2. The subplots shown in 
Figure 9.1 are supposed to show the three peaks corresponding to the 
three targets. However, we note in the subplots (other than the rectangu­
lar case in Figure 9.1(a)) that the small amplitude corresponding to the 
third target makes it very difficult to distinguish it from the peak due 
to the presence of target 2. This can be attributed to the following two 
reasons: 

1. The radar cross section (RCS) for the three targets are taken as 
2(100, 10, 1) m , and hence the amplitudes of the peaks appear to be 

decreasing from the left to the right in each subplot of Figure 9.1. 
2. The side lobes associated with the second target suppress the peak 

of the third target. This can be clearly observed in Figure 9.1. 

In Figure 9.2 (corresponding to Case 2), where the targets are reason­
ably apart, all the windows considered are capable of resolving the three 
targets. However, we observe from Figures 9.2(a) through (d) that the 
Hann window (Figure 9.2(d)) has some advantage over the rectangu­
lar, triangular, and Hamming windows in such a scenario, since the 
side-lobe roll-off rate is relatively higher in the case of the Hann win­
dow. 

9.2 Effect of Range Side Lobe Reduction on SNR 

Pulse compression is required to achieve the twin goals of HRR [1] and the 
maintenance of adequate ATP. LFM waveform is used often in several appli­
cations that rely on pulse compression. It is well known that the matched 
filter waveform associated with the LFM pulse compression signal essen­
tially has the sinc shape, with range side lobes extending on either side of 
the compressed pulse. These Doppler side lobes may be partially controlled 
by varying the amplitudes of the pulses upon transmission and/or recep­
tion. However, this reduces the SNR as well as range resolution, under 
peak power limitations. In this section, we provide the general expres­
sions for the loss factor for all the three cases. The numerical results are 
presented for physically realizable weighting functions that possess desirable 
characteristics. 
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FIGURE 9.1 
Range profiles for various windows when the relative distance of three targets is taken as [908, 
910, 910.2] m. (Targets 2 and 3 are very close.) (a) Rectangular. (b) Triangular. (c) Hamming. (d) 
Hann. (e) Blackman. (f) Nuttall. 

9.2.1 Introduction 

The matched filters for a linear FM pulse compression radar are designed to 
yield a sharp pulse output. The peak amplitude of the pulse depends upon 
the target cross section. In a multiple-target environment, N targets of dif­
ferent cross sections must be observed by the pulse compression radar. The 
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FIGURE 9.2 
Range profiles for various windows when the relative distance of three targets is taken as 
[908, 910, 912] m. (Targets are reasonably apart.) (a) Rectangular. (b) Triangular. (c) Hamming. 
(d) Hann. (e) Blackman. (f) Nuttall. 

matched filter generates N sharp pulses; the peak amplitude of the nth pulse 
being proportional to the cross section of the nth target. However, owing to 
the finite-duration nature of the input data, each sharp pulse (main lobe) is 
surrounded by secondary side lobes (minor lobes). These are also called range 
side lobes in this context, which can be fairly high in amplitude. 
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Consider, for example, a uniform weighting function f [n] of unit 
height and length N. The magnitude function of the DTFT of f [n] is 
(sin(0.5ωN))/(sin(0.5ω)), from which it can be shown that the first (and the 
largest) of the range side lobes is 13.2 dB below the peak of the compressed 
pulse. It has a decay rate of 6 dB/octave (or equivalently 20 dB/decade), 
which is rather slow. Hence, when a radar is processing signals from sev­
eral targets of different cross sections, the main lobes of smaller targets can 
be masked by the side lobes of a stronger target. This obviously makes the 
detection of smaller targets difficult. 

The situation could be improved by appropriately weighting either the 
transmitted or the received waveform. However, there is a trade-off in terms 
of loss in SNR and range resolution. A better control of the side lobes may be 
obtained by time-weighting the transmitted waveform, as well as weighting 
upon reception [4]. However, weighting at both sides will lead to greater loss 
in SNR when compared to only receiver weighting, in obtaining the same 
range side lobes [3]. Urkowitz et al. [4] have extended the results of Ref. [5] 
to a sequence of pulses, in which the pulse height (amplitude of the pulse) 
is weighted, again with peak height limitation. The purpose of this section 
is to apply the formulae given by Urkowitz to several realizable weighting 
functions [4,5], which provide excellent characteristics. A general expression 
is derived for the loss factor under peak power limitations. The loss factor 
formulae are provided for the following three cases: 

Case A: Full weighting upon reception, with uniform weighting on 
transmission 

Case B: Square root of the nominal weighting on transmission and 
reception 

Case C: Full weighting on both transmission and reception 

The loss factor is defined as the ratio of the maximum achievable SNR to the 
actual SNR. We have experimented with many weighting functions that are 
simple to implement. The general characteristics of the weighting functions 
pertaining to range side lobe reduction are also tabulated. 

9.2.2 Loss Factor 

To obtain the general expression for the loss factor (LF) [4], it is necessary 
to get the actual SNR as well as the maximum possible SNR. The maximum 
SNR is obtained when the weighting is uniform (or no weighting), both upon 
transmission and reception. The loss factor is computed as detailed below: 

Consider a sequence of N transmitted pulses of amplitudes a[k], k = 
1, 2, . . .  , N, occurring at the time instances t[k] (Figure 9.3). One of the pulses 
will have the maximum amplitude such that a[k] = amax, for some k. The pulse 
sequence might undergo pulse compression. The sequence of the compressed 



a(3) = amax 

a(k)a(2) 
a(1) a(4) 

t(1) t(2) t(3) t(4) t(k) 

  

 

 

� ] � ] � ] 
pulse is given by 

a [1] a p , a [2] a p , . . . , a [N] a p . (9.14) 

Some amount of noise, having a variance of σ0
2, may also get added to the 

sequence above. This process is illustrated in Figure 9.4. These pulses will 
be again weighted by the reference sequence r[k]. With n[k] representing the 
noise, the final output of this scheme will be of the form: 

N N 

b[k] =  r[k](a[k]a[p] + n[k]). (9.15) 
k=1 k=1 

The output signal component is 

N 

Signal = a[p] a[k]r[k] (9.16) 
k=1 

and the output noise variance, since all are statistically independent, is 

N 

Noise = σ0
2 r2[k]. (9.17) 

k=1 
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FIGURE 9.3 
Typical sequence of pulses. 

a[p]a[k] b[k] 

Pulse 
compression 

Input Output 
sequence 

Noise Reference 

×+ b[k]N 
k=1 

∑ 

sequence (n[k]) sequence (r[k]) 

FIGURE 9.4 
Weighting and summing of received pulse sequence. (Redrawn from C.L. Temes, Side lobe 
suppression in a range-channel pube-compression radars, IRE Transcations on Military Electronics, 
vol. MIL-6, pp. 162–169 April, 1962.) 



The SNR ratio is defined by the ratio of square of Equations 9.16 and 9.17, 
which is given by ( )2 �N 

a2[p] k=1 a[k]r[k]
SNR = . (9.18)

σ 2 �N 
0 1 r2[k]k=

The maximum SNR is obtained by substituting a[k] = amax and r[k] = 1, 
that is 

a2[p]
(SNR)max = Na2 , (9.19)max σ 2 

0 

and the LF is obtained by taking the ratio of Equation 9.19 to Equation 9.18 
and is obtained as �NNa2

1 r
2[k]max k=LF = ( )2 . (9.20) �N 

1 a[k]r[k]k=

Note that LF is always >1. The loss factor is calculated from Equation 9.20 
for the following three cases. 

Case A: Full nominal weights upon reception and uniform weighting 
on transmission, that is 

a[k] = 1 and r[k] = f [k], (9.21) 

where f [k] represents nominal weights. The LF is given by 

�NN k= f 2[k]
LF1 = ( 1 )2 . (9.22) �N f [k]k=1 

Case B: Square root of the nominal weights upon transmission and 
reception, that is 

J J 
a[k] = amax f [k]/fmax and r[k] =  f [k]. (9.23) 

Then, we obtain the corresponding loss factor as 

�NN fmaxLF2 = k=1 . (9.24)�N f [k]k=1 

Here, fmax represents the maximum value of f [k]. 
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Case C: Full nominal weights on both transmission and reception. In 
this case 

a[k] = amaxf [k]/fmax and r[k] = f [k]. (9.25) 

In such a situation, we obtain the loss factor LF3 as 

Nf 2 

LF3 = max . (9.26)�N f 2[k]k=1 

It has been shown in Ref. [4] that LF1 ≤ LF2 ≤ LF3. which can easily be 
verified from Tables 9.1 and 9.2. It is interesting to note that LF1, LF2, and LF3 

TABLE 9.1 

Loss Factor for Different Weighting Functions 

Function Weighting Number of 

Number Constants Pulses LF1 (dB) LF2 (dB) LF3 (dB) 

1 A = 0.5 4 1.7609 2.3226 2.8843 
B = 0.5 8 1.7609 2.8418 3.9226 
C = 0.0 16 1.7609 2.9684 4.1758 
D = 0.0 32 1.7609 2.9998 4.2388 

2 A = 0.54 4 1.3444 2.0476 2.7507 
B = 0.46 8 1.3444 2.5213 3.6981 
C = 0.0 16 1.3444 2.6375 3.9306 
D = 0.0 32 1.3444 2.6664 3.9885 

3 A = 0.53836 4 1.3597 2.0584 2.7570 
B = 0.46164 8 1.3597 2.5339 3.7081 
C = 0.0 16 1.3597 2.6506 3.9414 
D = 0.0 32 1.3597 2.6796 3.9995 

4 A = 0.42 4 2.3264 2.6524 2.9784 
B = 0.5 8 2.3723 3.4919 4.6115 
C = 0.08 16 2.3723 3.6988 5.0253 
D = 0.0 32 2.3723 3.7503 5.1284 

5 A = 0.375 4 2.7621 2.8843 3.0065 
B = 0.5 8 2.8880 3.9226 4.9573 
C = 0.125 16 2.8880 4.1758 5.4637 
D = 0.0 32 2.8880 4.2388 5.5895 

6 A = 0.44959 4 2.0487 2.4954 2.9420 
B = 0.49364 8 2.0703 3.2298 4.3893 
C = 0.05677 16 2.0703 3.4115 4.7526 
D = 0.0 32 2.0703 3.4567 4.8432 

continued 
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TABLE 9.1 (continued) 

Loss Factor for Different Weighting Functions 

Function Weighting Number of 

Number Constants Pulses LF1 (dB) LF2 (dB) LF3 (dB) 

7 A = 0.4243801 4 2.2704 2.6214 2.9724 
B = 0.497396 8 2.3140 3.4501 4.5862 
C = 0.0782793 16 2.3140 3.6545 4.9951 
D = 0.0 32 2.3140 3.7055 5.0970 

8 A = 0.355768 4 2.7658 2.8862 3.0067 
B = 0.487396 8 3.0562 4.0924 5.1287 
C = 0.144232 16 3.0562 4.3896 5.7231 
D = 0.012604 32 3.0562 4.4637 5.8712 

9 A = 0.3635819 4 2.7095 2.8571 3.0047 
B = 0.4891775 8 2.9581 4.0138 5.0695 
C = 0.1365995 16 2.9581 4.2992 5.6403 
D = 0.0106411 32 2.9581 4.3703 5.7825 

TABLE 9.2 

Loss Factor of Some Additional Weighting Functions 

Function Weighting Number of 

Number Constants Pulses LF1 (dB) LF2 (dB) LF3 (dB) 

1 A = 0.42323 4 2.2815 2.6275 2.9736 
B = 0.49755 8 2.3262 3.4605 4.5948 
C = 0.07922 16 2.3262 3.6660 5.0057 
D = 0.0 32 2.3262 3.7172 5.1081 

2 A = 0.35875 4 2.8958 2.9527 3.0095 
B = 0.48829 8 2.9704 3.9933 5.0162 
C = 0.14128 16 2.9704 4.2411 5.5118 
D = 0.01168 32 2.9704 4.3023 5.6342 

3 A = 0.40217 4 2.4784 2.7351 2.9918 
B = 0.49703 8 2.5309 3.6270 4.7231 
C = 0.09392 16 2.5309 3.8453 5.1598 
D = 0.00188 32 2.5309 3.8996 5.2684 

4 A = 0.40897 4 2.4238 2.7056 2.9874 
B = 0.5 8 2.4849 3.5925 4.7000 
C = 0.09103 16 2.4849 3.8107 5.1364 
D = 0.0 32 2.4849 3.8650 5.2450 

5 A = 0.338946 4 3.1974 3.1029 3.0084 
B = 0.481973 8 3.2742 4.1985 5.1228 
C = 0.161054 16 3.2742 4.4551 5.6361 
D = 0.018027 32 3.2742 4.5183 5.7623 



   � � � 
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are in geometric progressions, with LF2 being the geometric mean of the other 
two, that is LF1 and LF3. 

9.2.3 Weighting Function 

The generalized weighting function is given by 

2π t 4π t 6π t
f (t) = A − B cos + C cos − D cos , 0  ≤ t ≤ T. (9.27)

T T T 

The minus sign results due to the shift in the origin of the weighting function. 
A typical weighting function is shown in Figure 9.5. Here, T represents the 
duration of the weighting function and T � is the burst duration. The sampling 
instances are represented by t(1), t(2), . . . , t(N). The kth sampling time, for 
uniform spacing, is given by 

(2k − 1)
t[k] =  , k = 1, 2, . . . , N. (9.28)

2N 

Using Equation 9.28 in Equation 9.27, we get 

[ ] [ ]
π(2k − 1) 2π(2k − 1)

f [k] = f [t[k]] = A − B cos + C cos 
N N [ ]

3π(2k − 1)− D cos , k = 1, 2, . . . , N. (9.29)
N 

T/N 

1 

t 

T′= Burst duration 

t(1) t(2) t(N)T 

FIGURE 9.5 
A typical weighting function. 
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For regular spacing and when N is even, fmax is given by 

[ ] [ ] [ ]
π(N + 1) 2π(N + 1) 3π(N + 1)

fmax = A − B cos + C cos − D cos . 
N N N 

(9.30) 

The loss factors for all the three cases considered are calculated for different 
weighting constants, A, B, C, and D, and are given in Tables 9.1 and 9.2. The 
loss factors are expressed in dB, that is, 10 log10(LF). These values are tabulated 
for different numbers of pulses as well. As an illustration to compute various 
entries of Table 9.1, we consider the Hamming window of size N = 4. Then, 
Equation 9.29 can be written as 

π(2k − 1)
f [k] = 0.54 − 0.46 cos , k = 1, 2, 3, 4. (9.31)

N 

f [1] = f [4] = 0.2147; f [2] = f [3] = 0.8653 = fmax. 

Using Equation 9.22, 

1.5896
LF1 = 4 = 1.3628. (9.32)

4.6656 

This is equivalent to 1.3444 dB. From Equation 9.24, we get 

0.8653
LF2 = 4 = 1.6024, (9.33)

2.1600 

which when expressed in dB corresponds to 2.0476 dB. These values are tabu­
lated in Table 9.1, under function no. 2. The other entries of Tables 9.1 and 9.2 
can be computed on similar lines. The various combinations of the quadlet (A, 
B, C, D) have been taken from Refs. [2,3]. For example, function nos. 1, 2, and 
4 correspond to the Hann, Hamming, and Blackman windows, respectively. 
Apart from LF, the other factors to be considered in the selection of weighting 
function in the range side lobe reduction are 

1. Main-lobe broadening factor given by the ratio 

Half-power bandwidth of weighting function 
Half-power bandwidth of uniform weighting 

2. First side-lobe and peak side-lobe levels. 



3. The integration loss defined as 

⎡ ⎤1 �2T 
( 0 f (t) dt)2 ⎢ 2T ⎥10 log10 ⎣ ⎦ . (9.34)�2T 

0 f 2(t) dt 

4. The decay rate of the side lobes, which can be expressed in dB/octave. 
These are given in Table 9.3 for all the cases considered in Table 9.1. 
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TABLE 9.3 

Weighting Function Data 

Main-Lobe Side-Lobe 

Broadening First Side Lobe Peak Integration Decay Rate 

S. No. Factor (dB) Side Lobe (dB) Loss (dB) (dB/octave) 

1 1.63 −31.47 −31.47 −1.76 18 
2 1.48 −44.05 42.69 −1.34 6 
3 1.48 −43.19 −43.19 −1.36 6 
4 1.86 −58.12 −58.12 −2.37 18 
5 2.12 −46.75 −46.75 −2.89 30 
6 1.73 −74.52 −62.05 −2.07 6 
7 1.83 −71.48 −71.48 −2.31 6 
8 2.17 −93.36 −93.32 −3.06 18 
9 2.12 −98.34 −98.14 −2.96 6 

9.2.4 Results and Discussions 

A larger loss factor indicates a smaller SNR. The three cases considered here 
are in the order of increasing loss functions. The main-lobe-broadening fac­
tor indicates the loss in frequency resolution due to the effect of weighting 
functions. Hence, a weighting function having better side-lobe rejection and 
minimum main-lobe-broadening factor will be desirable. The integration loss 
is another factor that indicates the loss in SNR incurred due to weighting. The 
side-lobe decay rate is also yet another powerful indicator that must be con­
sidered. It is desirable that the side-lobes decay at a faster rate, to preserve the 
dynamic range between the two targets widely spaced in frequency. In con­
clusion, a weighting function having low loss factor (for a particular case), 
low side-lobe level, smaller main-lobe broadening factor, and faster decay 
rate of the side-lobe envelope is required for range side-lobe reduction in a 
linear FM pulse compression radar. Though Hamming window is considered 
as a reasonable choice on an average, the choice of a window for a particular 
application has to be decided on a case-to-case basis, keeping in view the 
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window properties. The Kaiser and ultraspherical windows have the addi­
tional advantage that there is a flexibility to vary the different parameters and 
get closer to the desired characteristics. 

9.3 Window Functions in Stretch Processing 

In radar applications that employ extremely high-bandwidth LFM signals, 
a technique called stretch processing is used at the receiving end [1]. This 
facilitates proper decision making (such as the presence/absence of targets, 
their count, etc.) based on which subsequent action can be taken. The term 
“proper decision making” here refers to the ability to correctly detect the 
presence of targets, along with other desired parameters (say, range, radial 
velocity, etc.). As seen from the block diagram given in Figure 9.6, the received 
signal is mixed with a reference signal (which is a replica of the transmitted 
signal) and is passed through a lowpass filter. 

This results in constant tones corresponding to the positions of the targets. 
Let the reference signal be an LFM waveform and the starting frequency of 
the chirp signal used be fr . The instantaneous frequency after lowpass filter­
ing will be proportional to the target range. Hence, if a peak at frequency 
f1 implies the presence of a target at range R, then the presence of a peak ( )
at frequency f2 indicates that a target at a range Rf2 is present. In case f1 

the radar receives echoes from some targets that are very close (in time or 

FIGURE 9.6 
Block diagram of stretch processing. (Redrawn from B.R. Mahafza, Radar Systems Analysis and 
Design Using MATLAB, CRC Press, 2nd edn., 2005.) 



   

range), then identifying them as separate targets depends on the resolution 
capability of the system. The task of identifying relatively close objects is often 
difficult. 

Let the normalized transmitted signal be of the form: 

( (
s(t) = cos 2π frt + 0.5μt2

)) 
, t ∈ [0, τ �] , (9.35) 

where fr = starting frequency of the chirp signal, μ = 
τ

B 
� is the LFM coefficient, 

τ � is the chirp duration, and B is the chirp bandwidth. Assuming the range of 
the nth scatterer be Rn, the output of the lowpass filter will be 

N	 ��
2RnBt foRi R2B 

so(t) = an cos 4π + − i , (9.36)
cτ � c c2τ � 

n=1 

where an is proportional to the nth target’s cross section, antenna gain, and 
range attenuation. τ � is relatively larger when compared to 2R

c 
i . To study 

the effect of various windows on detection, simulations are carried out to 
implement stretch processing using the following specifications [1]: 

i. Number of scatterers = 3 
ii. Uncompressed pulse width, τ = 0.01 s 

iii. fo = 5.6 GHz 
iv. Chirp bandwidth = 1 GHz 
v. Range receive window, R = 30 m 

vi. Vector of scatterer’s range
 
Case 1: Targets spaced at (3, 6, 11) m (reasonably apart), RCS =
 

(1, 1, 1) m2 (Figure 9.7) 
Case 2: Targets spacing is (3, 11, 11.12) m (two of them are close, i.e., 

11.12 − 11 < R
2 
τ ), RCS = (1, 1, 1) m2 (Figure 9.8) 

Case 3: Targets spaced reasonably apart at (3, 6, 11) m, RCS = 
(1, 1, 2) m2 (Figure 9.9) 

Case 4:	 Targets spaced at (3, 11, 11.12) m (two of them are close) 
RCS = (1, 1, 2) m2 (Figure 9.10) 

The corresponding results are shown in Figures 9.7 through 9.10, wherein 
subfigures (a) through (f) correspond to different window functions. From 
Figure 9.7, it can be seen that the peak locations obtained (3.015, 6.03, 11.08) m 
differ from the actual values (3, 6, 11) m. A similar shift can also be inferred 
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FIGURE 9.7 
Compressed echo signals with relative ranges of three targets being (3, 6, 11) m (targets are rea­
sonably apart) and their RCS given by (1, 1, 1) m2. (a) Rectangular. (b) Triangular. (c) Hamming. 
(d) Hann. (e) Blackman. (f) Nuttall. 

from Figure 9.10. One of the reasons for such a shift can be attributed to the 
finite precision aithmetic used in the computations. When the relative range 
tuple is (3, 6, 11) m, such that all the targets are well apart, then all the window 
functions considered (rectangular, triangular, Hamming, Hann, Blackman, 
and Nuttall) are capable of identifying each target distinctly (Figures 9.7 and 
9.9). However, when the two targets are closer and are of equal strengths, 
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FIGURE 9.8 
Compressed echo signals with relative ranges of three targets being (3, 11, 11.12) m (two of them 
very close) and their RCS given by (1, 1, 1) m2. (a) Rectangular. (b) Triangular. (c) Hamming. (d) 
Hann. (e) Blackman. (f) Nuttall. 

then, as can be seen in Figure 9.8(a), one of the peaks (the right-most in this 
case) is considerably smaller than the other peak. This can be attributed to the 
stronger side lobe of the rectangular window. Such a phenomenon cannot be 
observed in Figure 9.8(b) through (f). From Figures 9.8(c) and (d), Hamming 
window is preferred over the Hann window, as the difference (peak − valley) 
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FIGURE 9.9 
Compressed echo signals with relative ranges of three targets being (3, 6, 11) m (reasonably apart) 
and their RCS given by (1, 1, 2) m2. (a) Rectangular. (b) Triangular. (c) Hamming. (d) Hann. (e) 
Blackman. (f) Nuttall. 

is more in the case of the former than the latter. It is interesting to note that if 
closely spaced targets of unequal strengths are considered (Figure 9.10), then 
for the rectangular case, the two peaks are distinctly seen (due to the narrow 
main-lobe width), while the two peaks seem to merge into a single peak in 
the case of other window functions (which have relatively wider main-lobe 
widths). 
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FIGURE 9.10 
Compressed echo signals (as obtained by using various windows) with relative ranges of three 
targets being (3, 11, 11.12) m (two of them very close) and the corresponding RCS is given by 
the tuple (1, 1, 2) m2. (a) Rectangular. (b) Triangular. (c) Hamming. (d) Hann. (e) Blackman. (f) 
Nuttall. 

9.4 Application of Window Functions in Biomedical 
Signal Processing 

Organisms have many complex systems, which are in turn made up of sev­
eral subsystems that carry out different physiological processes. Biomedical 
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signals are observations of these physiological processes, gene to pro­
tein sequences, neural to cardiac rhythms, and tissues and organ images. 
They convey the information about the corresponding biological system. 
Some of the commonly studied biomedical signals are action potential (AP) 
of cells, electroneurogram (ENG), electromyogram (EMG), electrocardio­
gram (ECG), electroencephalogram (EEG), event-related potential (ERP), 
electrogastrogram (EGG), phonocardiogram (PCG), vibromyogram (VMG), 
vibroarthogram (VAG), electro-oculogram (EOG), electroretinogram (ERG), 
and so on. Table 9.4 lists the frequency ranges and dynamic ranges of a few 
biomedical signals [6]. 

In biomedical applications, mere acquisition of the signals is not sufficient; 
it is also required to process it to extract the relevant information. Biomed­
ical signals get corrupted by several sources of errors such as the addition 
of noise due to imprecision of instruments or interference from power lines. 
Besides, the measured signal may also contain the interference from other sys­
tems, which may also be a complex function of the required and unnecessary 
signals. For example, in measuring the ECG of a fetus, the signal acquired is 
correlated with the mother’s ECG. There are more complex processes that cor­
rupt the relevant signal for diagnosis. Therefore, accurate processing of these 
signals is necessary for an optimal estimation of the signal and its parameters 
for proper diagnosis. 

9.4.1 Biomedical Signal Processing 

By now it is quite obvious that the processing of biomedical signals is 
extremely important. Even though these signals differ only in application, 
the processing has to be done with utmost care because making errors in 

TABLE 9.4 

List of Biomedical Signals, Their Frequency Ranges, and Their Dynamic Ranges 

Signals Frequency Range Dynamic Range Comments 

AP 100 Hz–2 kHz 10 μV–100 mV Cell membrane potential 
ENG 100 Hz–1 kHz 5 μV–10 mV Nerve bundle potential 
ERG 0.2 Hz–200 Hz 0.5 μV–1 mV Evoked flash potential 
EOG 0 Hz–100 Hz 10 μV–5 mV Corneal retinal potential 
EEG (surface) 0.5 Hz–100 Hz 2 μV–100 μV Scalp potential 
EMG (single fiber) 500 Hz–10 kHz 1 μV–10 μV AP from single muscle fiber 
Surface EMG (skeletal) 2 Hz–500 Hz 50 μV–5 mV AP from skeletal muscle 

fiber 
Surface EMG (smooth) 0.01 Hz–1 Hz 50 μV–5 mV AP from smooth muscle 

fiber 
ECG 0.05 Hz–100 Hz 1 μV–10 mV AP from heart potential 
High-frequency ECG 100 Hz–1 kHz 100 μV–2 mV Notchs and slus superim­

posed on the ECG 
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normal signals may lead to a minor damage (cost or product), but making 
errors in biomedical signal processing may lead to irreparable losses (may 
cost a life in the worst circumstances). The success of the application depends 
on the origin and knowledge of the signal. It requires special treatment and 
demands a clear understanding of the biomedical signal characteristics. 

Biomedical signals are stochastic in nature and hence they cannot be pre­
dicted. With the acquired signal (discrete-time), processing has to be done 
to extract its information. There are several techniques that are directly used 
in biomedical signal processing. These include sampling, frequency-domain 
analysis, windowing, short-time Fourier transform (STFT), spectral estima­
tion, signal enhancement, optimal filtering, adaptive filtering, segmentation 
of nonstationary signals, and so on. Of these techniques, we have considered 
only the applications that use window functions. The calculation of various 
functions that are used as major tools such as the power spectral density, auto-
correlation, and cross-correlation requires the knowledge of the signal from 
−∞ to +∞. This is, of course, impractical because the signal is not available 
for long durations. Therefore, we do not use the signal itself but a windowed 
signal. For computing STFT, windowing is used for breaking down long-
duration signals into signals of shorter duration, thereby the characteristics 
of the signals during these intervals can be assumed to be stationary. 

9.4.2 FIR Filtering of Biomedical Signals 

During acquisition, the biomedical signals get corrupted by different types 
of artifacts and interferences such as power line interference, electrode con­
tact noise, motion artifacts, muscle contraction, and so on. For a meaningful 
analysis of these signals, steps have to be taken to filter out all these noise 
sources. Here, we consider the effect of FIR filters designed from various 
window functions under additive white Gaussian noise (AWGN) conditions. 

We consider an example of an ECG signal that is taken from the MIT-BIH 
Arrhythmia Database [7] and the signal used here is the modified limb lead 
II (MLII), obtained by placing the electrodes on the chest. The ECG signal is 
sampled at a rate of 360 Hz and then corrupted by white Gaussian noise at 
different SNR levels. To denoise the ECG signal, FIR bandpass filters with 
different window functions at the sampling frequency of 360 Hz have been 
designed. The filter passband was set at 3–55 Hz, the transition bandwidths 
are 0.1–3 Hz on the lower side and 56–58.9 Hz on the upper side, with a pass-
band attenuation of 0.01 dB and a stop-band attenuation of 80 dB [8]. The 
length of all the designed FIR filters is 1001. The flat-top window and its fre­
quency response are shown in Figure 9.11. Figure 9.11 also shows the FIR 
filter coefficients and the frequency response of the filter designed using the 
flat-top window. Figures 9.12 through 9.16 show the noisy ECG signal and 
the bandpass-filtered ECG signal using various window functions. Table 9.5 
shows the SNR of the noisy ECG signal and the FIR-filtered ECG signal using 
various windows. The first row in Table 9.5 represents the SNR of the noisy 
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FIGURE 9.11 
Time-domain and frequency-domain representations of flat-top window (dashed line) and 
bandpass filter designed using flat-top window (solid line). 

ECG signals subjected to different noise levels. The remaining rows repre­
sent the corresponding SNR after bandpass FIR filtering using the various 
window functions. 

To conclude, from the results shown in Table 9.5, we can observe that at 
high SNRs, the FIR filter designed using flat-top window performs better 
than other FIR filters. However, at low SNRs, all the FIR filters designed 
using different windows are almost identical in their performance. 

An EEG signal example is taken from the CHB-MIT Scalp EEG Database [7], 
and this signal is sampled at 256 Hz. The EEG signal was subjected to additive 
white Gaussian noise at different SNR levels to obtain noisy EEG signals. 

FIGURE 9.12 
(a) Noisy ECG signal and bandpass-filtered ECG signals using (b) rectangular, (c) triangular, 
and (d) Hann windows. 
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FIGURE 9.13 
(a) Noisy ECG signal and bandpass-filtered ECG signals using (b) Hamming, (c) Parzen, and 
(d) Tukey windows. 

To denoise the EEG signal, FIR lowpass filters with different windows at 
a sampling frequency of 256 Hz have been designed. The filter cut-off was 
set at 40 Hz, the transition bandwidth is from 40 to 42.8 Hz with a passband 
attenuation of 0.01 dB and a stop-band attenuation of 80 dB. The length of all 
the FIR filters that have been designed is 1001. Table 9.6 shows the SNRs of the 

FIGURE 9.14 
(a) Noisy ECG signal and bandpass-filtered ECG signals using (b) Bohman, (c) Gaussian, and 
(d) Kaiser–Bessel windows. 
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FIGURE 9.15 
(a) Noisy ECG signal and bandpass-filtered ECG signals using (b) Bartlett, (c) Blackman, and 
(d) flat-top windows. 

noisy EEG signal and the FIR-filtered EEG signal using various windows. The 
first row in Table 9.6 represents the SNR of the EEG signals that are subjected 
to different noise levels and subsequent rows represent the corresponding 
SNR after lowpass FIR filtering using various window functions. 

From the results shown in Table 9.6, we can observe that the triangular 
window-based FIR filter performs slightly better than the other windows 

FIGURE 9.16 
(a) Noisy ECG signal and bandpass-filtered ECG signals using (b) Blackman–Harris, (c) four-term 
Blackman–Harris, and (d) Bartlett–Hann windows. 
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TABLE 9.5 

Signal-to-Noise Ratio (SNR) of Bandpass-Filtered ECG Signals Using 
Various Windows 

Signal SNR at Different Levels of Noise 

Noisy ECG 0.1268 0.0529 −1.0303 −2.526 −4.9923 
Rectangular −0.0254 −0.0487 −0.4027 −0.9913 −2.2384 
Triangular 0.7308 0.7041 −0.4027 −0.3883 −1.7843 
Hann 0.4027 0.3775 −0.0112 −0.6511 −1.9849 
Hamming 0.3681 0.3430 −0.0427 −0.6783 −2.0051 
Parzen 0.6524 0.6259 0.2157 −0.4554 −1.8408 
Tukey 0.0815 0.0577 −0.3047 −0.9059 −2.1746 
Bohman 0.5856 0.5594 0.1551 −0.5075 −1.8791 
Gaussian 0.446 0.4206 0.0283 −0.6169 −1.9596 
Kaiser–Bessel −0.0113 −0.0347 −0.3897 −0.9800 −2.2299 
Blackman 0.5477 0.5218 0.1207 −0.5372 −1.901 
Flat-top 1.095 1.0661 0.6151 −0.1144 −1.5937 
Blackman–Harris 0.6806 0.6539 0.2412 −0.4335 −1.8249 
Four-term 0.6699 0.6433 0.2316 −0.4418 −1.831 
Blackman–Harris 
Bartlett–Hann 0.4812 0.4556 0.0609 −0.5879 −1.9364 

considered. However, the improvement in the performance is not significant. 
In both the cases (bandpass and lowpass) considered here, it is clearly evi­
dent that the use of window functions in the FIR filter design improves the 
performance. 

9.4.3 Moving Average Filtering of Biomedical Signals 

The measured biomedical signals are usually corrupted by random noise. 
Moving average (MA) filter can be used to denoise the corrupted biomedical 
signals before analyzing them. In MA filtering, the value at each sample is 
obtained as a weighted sum of neighboring samples. The number of neigh­
boring samples used depends on the length of the window. The MA filter can 
be considered as an FIR type, lowpass filter that removes the high-frequency 
noise present in the signal. These are also called as smoothing filters, which 
increase the SNR. The length of the window roughly determines the cut-off 
frequency of this filter. A long smoothing window reduces the variance in 
the EEG amplitude estimate, but at the cost of increased bias. On the other 
hand, a short smoothing filter has low bias, but the variance is increased. 
Generally, weighted windows are used (i.e, nonrectangular). The windows 
we considered to average the signals are: rectangular, triangular, Hann, Ham­
ming, Parzen, Tukey, Bohman, Gaussian, Kaiser–Bessel, Blackman, flat-top, 
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TABLE 9.6 

Signal-to-Noise Ratio (SNR) of Lowpass-Filtered EEG Signals Using Various Windows 

Signal SNR at Different Levels of Noise 

Noisy EEG 5.0524 2.5171 0.0024 −2.0545 −4.9546 
Rectangular 9.0622 6.9292 4.6376 2.7053 −0.0948 
Triangular 9.0916 6.9576 4.6651 2.7324 −0.0679 
Hann 9.064 6.9309 4.6392 2.7067 −0.0933 
Hamming 9.0639 6.9307 4.639 2.7066 −0.0935 
Parzen 9.0665 6.933 4.6411 2.7086 −0.0916 
Tukey 9.0621 6.9291 4.6376 2.7053 −0.0948 
Bohman 9.0658 6.9324 4.6406 2.708 −0.0921 
Gaussian 9.0645 6.9313 4.6396 2.7071 −0.093 
Kaiser–Bessel 9.0623 6.9292 4.6377 2.7053 −0.0948 
Blackman 9.0652 6.9319 4.6401 2.7076 −0.0925 
Flat-top 9.071 6.937 4.6447 2.7119 −0.0884 
Blackman–Harris 9.0665 6.9331 4.6412 2.7086 −0.0915 
Four-term Blackman–Harris 9.0664 6.933 4.6411 2.7085 −0.0916 
Bartlett–Hann 9.0707 6.9373 4.6454 2.7129 −0.0872 

Blackman–Harris, four-term Blackman–Harris, and Bartlett–Hann. A win­
dow length of seven is used in this moving average filter. To compare the 
performance of the moving average filter using various windows, we use 
EEG signals to which synthetic AWGN has been added. Figures 9.17 through 
9.21 show the noisy EEG signal and the moving average filtered EEG signal 
using various windows. Table 9.7 shows the SNR of the noisy EEG signal and 
the moving average filtered EEG signal using various windows. From the 
results shown in Table 9.7, we can observe that at high SNRs, rectangular and 
Kaiser-Bessel windows perform better than all the other windows. However, 
at low SNRs, triangular and Hamming windows perform better than other 
windows. 

Another performance evaluation measure of moving average filter using 
different windows is carried out using EMG signal from muscles. Table 9.8 
shows the SNRs of the noisy EMG signal and the moving average filtered EMG 
signal using various windows. The first row shows the SNRs of the noisy EMG 
signals (for various noise levels) and the remaining rows represent the corre­
sponding SNRs after applying various windows for moving average filtering. 
The results shown in Table 9.8 indicate that at high SNRs, the rectangular 
and Kaiser–Bessel windows perform better than other windows. However, 
at low SNRs, the triangular and Hamming windows perform better than other 
windows. In both the cases (EEG and EMG) considered here, at high SNRs, 
the performance of the rectangular and Kaiser-Bessel windows does not dif­
fer significantly when compared to the triangular window. Therefore, using 
windows in moving average filter will improve its performance. 
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FIGURE 9.17 
(a) Noisy EEG signal and moving average-filtered EEG signals using (b) rectangular, (c) trian­
gular, and (d) Hann windows. 

FIGURE 9.18 
(a) Noisy EEG signal and moving average filtered EEG signals using (b) Hamming, (c) Parzen, 
and (d) Tukey windows. 
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FIGURE 9.19 
(a) Noisy EEG signal and moving average filtered EEG signals using (b) Bohman, (c) Gaussian, 
and (d) Kaiser–Bessel windows. 

FIGURE 9.20 
(a) Noisy EEG signal and moving average filtered EEG signals using (b) Bartlett, (c) Blackman, 
and (d) flat-top windows. 
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FIGURE 9.21 
(a) Noisy EEG signal and moving average filtered EEG signals using (b) Blackman–Harris, 
(c) four-term Blackman–Harris, and (d) Bartlett–Hann windows. 

TABLE 9.7 

Signal-to-Noise Ratio (SNR) of Moving Averaged Filtered EEG Signal 
Using Various Windows 

Noisy EEG 1.2042 −0.0597 −2.8092 −5.257 −7.2061 
Rectangular 2.3077 2.0621 1.2361 0.2011 −0.9327 
Triangular 2.0752 1.9732 1.6358 1.1407 0.5328 
Hann 1.5429 1.4672 1.2178 0.8347 0.3603 
Hamming 1.7205 1.6372 1.363 0.9474 0.4339 
Parzen 1.4005 1.3373 1.1312 0.8081 0.4027 
Tukey 1.8919 1.7518 1.2804 0.6153 −0.1588 
Bohman 1.3094 1.2512 1.0618 0.7625 0.3854 
Gaussian 1.5851 1.5122 1.2734 0.9054 0.4466 
Kaiser–Bessel 2.3446 2.1087 1.3141 0.3102 −0.7967 
Bartlett 1.5808 1.5088 1.2718 0.9066 0.4501 
Blackman 1.3479 1.2874 1.0902 0.7799 0.3897 
Flat top 0.7223 0.689 0.5813 0.4045 0.1755 
Blackman–Harris 1.1648 1.1063 0.9197 0.6246 0.2504 
Four-term Blackman−Harris 1.1774 1.1181 0.9287 0.6298 0.2511 
Bartlett–Hann 1.5525 1.4779 1.232 0.8537 0.3844 
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TABLE 9.8 

Signal-to-Noise Ratio (SNR) of Moving Averaged Filtered EMG Signal 
Using Various Windows 

Noisy EMG 1.4044 0.0538 −1.0107 −3.0366 −4.9888 
Rectangular 3.3907 3.0354 2.7034 1.8937 0.9799 
Triangular 2.9111 2.7791 2.6515 2.3051 1.9068 
Hann 2.18 2.0883 1.997 1.7494 1.4602 
Hamming 2.4238 2.3210 2.2194 1.9436 1.6233 
Parzen 1.9474 1.8734 1.7989 1.5978 1.3626 
Tukey 2.8459 2.6562 2.4726 1.9905 1.4335 
Bohman 1.8121 1.745 1.6769 1.4942 1.28 
Gaussian 2.2155 2.1276 2.0403 1.8029 1.527 
Kaiser–Bessel 3.4395 3.0978 2.7781 1.9933 1.1065 
Bartlett 2.2101 2.1226 2.0363 1.8006 1.5274 
Blackman 1.8704 1.8002 1.7292 1.538 1.3141 
Flat top 0.9583 0.9228 0.885 0.7916 0.6778 
Blackman–Harris 1.6574 1.5912 1.5249 1.3451 1.1346 
Four-term Blackman−Harris 1.6785 1.6112 1.5438 1.3611 1.1471 
Bartlett–Hann 2.1878 2.0973 2.0074 1.7631 1.4783 

9.4.4 QRS Detection in ECG Based on STFT 

The STFT finds several applications in biomedical signal processing. In the 
case of an ECG signal, it is used to detect the location of the QRS complex. 
The QRS complex denotes the deflections on an ECG signal; it is a combina­
tion of Q wave, R wave and S wave (see Figure 9.22). The morphology of an 
ECG signal mainly consists of a P wave, a QRS complex, and a T wave for 
each cardiovascular cycle. Figure 9.22 shows a synthetic ECG signal for one 
cardiac cycle. The QRS complex locations are useful in determining the heart 
rate variability. Here, the STFT is employed to remove the unwanted infor­
mation such as the P wave, the T wave, and the noise, and the STFT temporal 
information at 45 Hz is used to detect the QRS complex [9]. 

The STFT of an input signal x(t) is defined as 

�−∞ 

T(f , τ)  = [x(t j2 ft)f (t − τ)]e− π dt, 
−∞ 

where f (t − τ)  denotes the shifted window function and x(t) is the input 
signal. The temporal information located at 45 Hz is obtained as described 
below (see also Ref. [9]): 

E(τ ) = log(|T(45, τ)|2). 
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FIGURE 9.22 
Synthetic ECG signal. 

To detect the QRS complex, adaptive thresholding is done on the temporal 
information. Finally, the locations of QRS complexes have been evaluated 
from the position of local maxima. 

Figures 9.23 through 9.28 show the STFT temporal information at 45 Hz 
and the complete STFT using various windows. From these figures, we can 
observe that the STFT temporal information at 45 Hz is different for these 
windows. Therefore, the performance of the QRS detection algorithm will 
also vary with the type of window used. 

Figures 9.29 through 9.33 show a portion of the ECG signal and the corre­
sponding locations of the QRS complex that have been detected using various 
window functions that are used to calculate STFT. By observing these fig­
ures, we conclude that the use of Hamming, Hann, and Bartlett window 
functions for computing the STFT will result in a much accurate detection of 

Time (s) 

FIGURE 9.23 
STFT and its temporal information at 45 Hz using rectangular window. 
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FIGURE 9.24 
STFT and its temporal information at 45 Hz using Kaiser–Bessel window. 
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FIGURE 9.25 
STFT and its temporal information at 45 Hz using Blackman window. 

STFT for 45 Hz STFT 
2 180 

1.8 160 
1.6 140 

M
ag

ni
tu

de
 (d

B) 1.4 120 
1.2 100 

1 H
z

800.8 
0.6 60 

0.4 40 

0.2 20 
0 0 

0  10 20 30 40 50 60  5  10 15 20 25 30 35 40 45 50 55  
Time (s) Time (s) 

FIGURE 9.26 
STFT and its temporal information at 45 Hz using Hamming window. 

the QRS complex than the other windows. When no window is used (i.e., in 
effect applying a rectangular window) in the STFT, the QRS locations are not 
detected correctly. This can be clearly seen in Figure 9.29(b). Therefore, the use 
of window functions plays a significant role in biomedical signal processing. 
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FIGURE 9.27 
STFT and its temporal information at 45 Hz using Hann window. 
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FIGURE 9.28 
STFT and STFT magnitude at 45 Hz using Gaussian window. 

9.5 Audio Denoising Using the Time–Frequency Plane 

Music and other audio signals such as speech are often susceptible to back­
ground noise from audio equipments and surrounding environment. Several 
methods such as power subtraction and processing in wavelet and Fourier 
domains have been tried to address this problem. These methods, in addi­
tion to removing noise, create isolated time–frequency structures, which are 
known as “musical noise.” 

9.5.1 Time–Frequency Plane 

Signals are generally analyzed either in the time-domain (the zero crossing 
rate) or in the frequency-domain (Fourier analysis, subband energy, etc.). 
Joint time and frequency analysis gives critical information of signals whose 
frequency varies with time and is generally used in the analysis of human 
speech, multicomponent signals, and source separation among others. A 
time–frequency (TF) plane, X[l, k] is a two-dimensional plane obtained by 
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FIGURE 9.29 
(a) ECG signal and detected QRS locations using (b) rectangular, (c) triangular, and (d) Hann 
windows. 

FIGURE 9.30 
(a) ECG signal and detected QRS locations using (b) Hamming, (c) Parzen, and (d) Tukey 
windows. 
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FIGURE 9.31 
(a) ECG signal and detected QRS locations using (b) Bohman, (c) Gaussian, and (d) Kaiser–Bessel 
windows. 

FIGURE 9.32 
(a) ECG signal and detected QRS locations using (b) Bartlett, (c) Blackman, and (d) flat-top 
windows. 
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FIGURE 9.33 
(a) ECG signal and detected QRS locations using (b) Blackman–Harris, (c) four-term Blackman– 
Harris, and (d) Bartlett–Hanning windows. 

transforming a signal x[n] using a set of time–frequency atoms gl,k , where 
l and k, respectively, are the time and frequency scale parameters given as 
follows: 

N−1 
X[l, k] = �x, gl,k � =  x[n]g ∗ [n].l,k 

n=0 

The commonly used TF atoms are the Fourier, Gabor, or Gammatone 
atoms. The T-F plane obtained using the Fourier atom is called a spectrogram 
and the plane obtained using Gammatone atoms is called the cochleagram 
[10]. To reconstruct the signal back to x[n] from the TF plane, the TF atoms 
must be on a tight frame, which implies that there exists some A > 0 such that 

1 ||x||2 = |�x, gl,k �|2. 
A

l,k 

Given one such A, the reconstruction of the signal is 

1 
x[n] =  X[l, k]gl,k [n]. 

A
l,k 



 

 

If the atoms are orthogonal, then A = 1 and the reconstruction is unique, 
else there are many possible reconstructions for x[n] and are given by 

1 
x[n] =  C[l, k]gl,k [n],

A 
l,k 

with the constraint that 

||x||2 ≤ 
1 |C[l, k]|2, (9.37)
A 

l.k 

where C[l, k] = �x, gl,k �. 
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9.5.2 Audio Denoising Using Time–Frequency Plane 

Ephraim and Mallah [12] suggested the removal of musical noise using non-
diagonal time–frequency estimators. An improvement in the performance 
of the algorithm was observed using a block thresholding technique. This 
section details the diagonal estimator method leading to the power subtrac­
tion technique for noise reduction and concludes with the more recent block 
thresholding technique as detailed in Ref. [11]. 

Consider a noisy signal y[n] given by 

y[n] = x[n] + e[n], 

where x[n] is the true signal and e[n] is the noise component. The time– 
frequency transform decomposition of y[n] over the set of time–frequency 
atoms gl,k [n] results in coefficients written as 

N−1 

Y[l, k] = �y, gl,k � =  y[n]g ∗ [n].l,k 
n=0 

Assuming that gl,k [n] defines a tight frame, y[n] can be reconstructed by 

1 
y[n] =  Y[l, k]gl,k [n]. 

A 
l,k 

The denoising algorithm reconstructs the signal by attenuating the individ­
ual TF units using a factor a[l, k]. The denoised signal is then given by 

1 
x̂[n] =  a[l, k]Y[l, k]gl,k [n],

A 
l,k 



 

 

  

  

� 
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where x̂[n] is the estimated denoised signal. We use X̂[l, k] = a[l, k]Y[l, k] to 
denote its corresponding time–frequency coefficients. 

Following from Equation 9.37, the quadratic estimation risk, r, associated 
while reconstructing the signal is given by 

1 
r = E{||x − x̂||2} ≤  E{|X[l, k] − X̂[l, k]|2}, (9.38)

A 
l,k 

where E{θ} is the estimate of θ . The upper bound on r, called the oracle risk, 
ro, can be found by differentiating Equation 9.38 with respect to a. The risk ro 

can be evaluated to occur at 

1 
a[l, k] = 1 − , (9.39)

ξ̂ [l, k] + 1 

where ξ̂ [l, k] = X2[l, k]/σ 2[l, k] is the a priori SNR, which unfortunately is an 
unknown quantity. 

To overcome this, we use diagonal estimators of the SNR ξ [l, k] that are 
computed from the a posteriori SNR defined by γ [l, k] = |Y[l, k]|2/σ 2[l, k]. The 
empirical Weiner estimator is then defined as 

1 
a[l, k] =  1 − , (9.40)

ξ̂ [l, k] + 1 + 

where (z)+ = max(z, 0) and ξ̂ [l, k] = γ [l, k] − 1. 
A more generalized form of the Weiner estimator is 

[ ]β1 
β2 

1 
a[l, k] =  1 − λ (9.41)

ξ̂ [l, k] + 1 + 

where β1, β2 ≥ 0, and λ ≥ 1 is the over-subtraction factor. This is generally 
observed as the power subtraction method for noise reduction. 

9.5.3 Block Thresholding 

To minimize the musical noise, we divide the time–frequency plane into I 
blocks of Bi. The resulting estimator depends on the TF units in a neighbor­
hood. The signal estimated x̂ from y using the block thresholding estimator 
is calculated by 

I 

x̂[n] =  aiY[l, k]gl,k [n]. 
i=1 (l,k)∈Bi 



  

 

 

 

 � 

To find ai, we again minimize the risk r 

r = E{||x − x̂||2} ≤  
1 I

E{|aiY[l, k] −  X[l, k]|2}. (9.42)
A 

i=1 (l,k)∈Bi 

Differentiation of Equation 9.42 with respect to ai and equating it to zero, 
we find r to have a maximum value at 

1 
ai = 1 − , (9.43)

ξi + 1 

where ξi = F̄i 
2/σ̄i 

2 is the average a priori SNR in Bi. Note that F̄i 
2 is obtained as 

1
F̄2 = |F[l, k]|2,i B# 

i (l,k)∈Bi 

where B# 
i is the number of TF units in the ith block. 

We can estimate ξi using the a posteriori SNR by using the relation 

Ȳ2
 

ξ̂i = i − 1,
 
σ 2¯ i 

where 
1 

σ 2¯ i = 
B# |σ [l, k]|2 

i (l,k)∈Bi 

and 
1

Ȳ2 = |Y[l, k]|2.i B# 
i (l,k)∈Bi 

If the noise is stationary, the noise variance does not depend upon time: 
σ 2[l, k] =  σ 2[k]. Generalizing Equation 9.43, ai can be written as 

λ 
ai = 1 − . (9.44)

ξ̂i + 1 + 

Adaptive Block Thresholding: Better denoising performance can be achieved by 
adaptively choosing the block size of block Bi by minimizing the risk defined 
in Equation 9.42. This approach requires the estimation of the attenuating 
factor ai using the Stein unbiased risk estimate (SURE) [13]. 
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9.5.4 Effect of Windows 

In this section, we use Fourier atoms to obtain the TF plane. The windowed 
Fourier atoms can be written as gl,k [n] =  w[n − lu] exp (i2πkn/K), where w[n] 
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is the window. The resulting TF plane, called the spectrogram, is given by 

N−1 

X[l, k] =  x[n]w[n − lu] exp (i2πkn/K). (9.45) 
n=0 

The signal x[n] chosen for this experiment is a musical signal having an 
SNR of −5 dB and sampled at 11 KHz. The objective of this experiment is to 
improve the SNR of the signal using a block thresholding technique. 

Since windowing in the time-domain results in convolution in the 
frequency-domain, disturbing the spectral characteristics of the signal, the 
choice of the window w[n] becomes very important. Neglecting the sinu­
soidal component in Equation 9.45, the windowed signal, xw[n] = x[n]w[n], 
in the frequency-domain is 

� π1jω −jω� −j(ω−ω�)Xw(e ) = W(e )X(e )dω� .
2π −π 

For a proper representation of the signal, W(ejω) should be highly concen­
trated around ω = 0. A rectangular window, for example, has a main-lobe 
width that is inversely proportional to the window length, with a substan­
tial energy spread in the side lobe. Windows such as Hamming, Hann and 
triangular have a very high energy concentration in the main lobe when com­
pared to the side lobes. The localization of energy around ω = 0 for Hann 
and other similar windows ensures minimum spectral leakage across the 
time–frequency units. This property of the Hann window gives an improved 
denoising performance when compared to other windows. 

A summary of the results obtained by using different windows is displayed 
in the form of a bar chart (shown in Figure 9.34). As expected, the performance 
of the rectangular window is poor, due to spectral leakages. It results in a 
very low SNR of only −2.51 dB, when compared to 15.53 dB using the Hann 
window. The best SNR result was obtained using the Hann window, with 
comparable results using Hamming, triangular, and Kaiser windows. 

9.6 Effect of Windows on Linear Prediction of Speech 

One of the breakthroughs of automatic speech recognition research is in 
speech coding. Human speech transmission through mobile networks, in its 
current form, owes its existence to speech-coding techniques, without which 
the cost of a phone call through a mobile network would be prohibitively 
high. To reduce the amount of data transmitted through a network, the 
raw human speech is encoded using algorithms such as linear predictive 
coding. 
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FIGURE 9.34 
Signal-to-noise ratio comparison of various windows. 

9.6.1 Linear Prediction Coder 

The most commonly used speech-coding algorithm is the lossy linear pre­
dictive coding (LPC). This uses an Nth order autoregressive (AR) or all-pole 
model to represent speech frame using N coefficients. The LPC algorithm 
models the spectral envelope of the signal and gives lesser importance to 
details as shown in Figure 9.35. The reconstructed signal from LPC coef­
ficients has a different temporal structure when compared to the original 
signal. However, it still retains the vital aspects of the speech data, such as 
pitch and spectral peaks, which are critical to understand the human speech. 

To compute the LPC coefficients [14], the digital signal, x[n], is segmented 
using a window, w[n]. Each windowed frame is given by 

y[n] = x[n]w[n]. 

The Nth order linear predictor of y[n] is defined using N previous 
components as 

N 

ỹ[n] =  αky[n − k]. 
k=1 

where αk is the weight associated with the kth previous sample. When viewed 
as a system, the linear predictor has a system function defined as 
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Ỹ(z) N 

P(z) = = αkz−k . 
Y(z) 

k=1 

The error obtained using the Nth-order all-pole model is computed as 

N 

e[n] = y[n] − ỹ[n] = y[n] −  αky[n − k]. (9.46) 
k=1 

Representing Equation 9.46 as a system, the error e[n] is obtained by passing 
the signal y[n] through a system A(z) defined by 

E(z) Y(z) − Ỹ(z) N 
−kA(z) = = = 1 − P(z) = 1 − αkz . (9.47)

Y(z) Y(z) 
k=1 

We note that A(z) is called the LPC polynomial. The all-pole system, H(z), 
is then denoted as 

1 1
H(z) = = . (9.48)

A(z) N 

1 − αkz−k 

k=1 
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FIGURE 9.35 
Magnitude response comparison of the original signal and its estimate using LPC coefficients. 
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Here, H(z) represents the LPC model and the N values of αk are known as 
the LPC coefficients. 

Advantages of using LPC 

A speech signal is generally sampled at 8000 samples per second. Each frame 
is represented by 10 all-pole spectrum parameters. Furthermore, we have 
three parameters: the pitch frequency, voicing versus nonvoicing decision, 
and gain [17], making a total of 13 parameters. Assuming 100 frames/s and 
N = 10 gives a total of 1300 parameters, which have to be transmitted every 
second, when compared to 8000 samples of uncompressed speech. From this, 
the reduction in the data and bandwidth requirement associated with LPC is 
apparent. 

Limitations of LPC 

Though LPC gives a concise representation of a speech signal, it is highly 
sensitive to noise. Small errors in LPC coefficients, which often occur while 
transmitting data through a noisy wireless channel, destroy speech properties 
and render the reconstructed speech signal illegible. 

9.6.2 Line Spectral Frequencies 

We shall now introduce line spectral frequencies (LSF). To make speech 
representation coefficients more robust to noise, we split each pole of the 
LPC transfer function into two separate poles as shown in Figure 9.36 for a 
segment of speech signal. 

The LPC polynomial, A(z), which generates the prediction error sequence, 
Equation 9.47 on expansion gives 

A(z) = 1 − α1z−1 − α2z−2 − α3z−3 − α4z−4 − · · · − αNz−N . (9.49) 

The reciprocal polynomial Ã(z) is then formed by 

˜ −(N+1)A(z−1 −N+1 − α1z−N + z−(N+1)A(z) = z ) = −αNz−1 − · · · − α2z , (9.50) 

where the roots of Ã(z) are the inverse of the roots of A(z). 
The line spectral pairs P(z) and Q(z) corresponding to vocal tract models 

[14] are now defined by 

P(z) = A(z) + Ã(z) = A(z) + z−(p+1)A(z−1), 

Q(z) = A(z) − Ã(z) = A(z) − z−(p+1)A(z−1). 

Polynomials P(z) and Q(z) have their roots on the unit circle. These roots, 
ordered in ascending order of frequencies, are called the line spectral frequencies 
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(LSF) [16]. Polynomial A(z) can be reconstructed from P(z) and Q(z) by 

P(z) + Q(z)
A(z) = .

2 

The reconstructed A(z) is stable and is robust to errors. 

9.6.3 LSF Variation due to Windows 

A speech signal is generally broken into a set of frames using windows for 
further processing. Windows play an important role in the linear analysis 
of speech signal and several factors need to be taken into account before 
choosing the right window. Here, we analyze the effect of windows on LSF 
coefficients. 

For speech analysis, an important aspect of a window is its length. A 
window of 30 ms duration is considered to be optimal in speech-processing 
applications [14]. This window length is optimum, since it is not so long as 
to lose the local statistical properties of the signal such as stationarity. It is 
also not so short that the autocorrelation values can no longer be estimated 
by averaging lagged values [15]. Since multiplication in the time-domain is 
convolution in the frequency-domain, the convolution smears the frequency 
features, depending on the width of the main lobe of the window frequency 

FIGURE 9.36 
Pole zero plot of LPC (N = 9) and LSF transfer functions. 
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TABLE 9.9 

Pedestal Heights of Different Windows 

Window Pedestal (%) 

Rectangular 100 
Hann 0 
Modified Hann 0 
Hamming 8 
Modified Hamming 8 
Ultraspherical (α = 0.8) 1.35√ 
Kaiser (α = π 3) 2.47 
Blackman 0 
Blackman–Harris 0 

response. Selecting the appropriate window, therefore, depends on choos­
ing a window with the right main-lobe width. Another important aspect of 
windows is the pedestal height, which is the difference between the value of 
the first and the last sample of the window function. Pedestal height has an 
effect on the attenuation of the side lobes in the frequency response and sig­
nificantly impacts the estimation of linear parameters. The pedestal heights 
for different windows are provided in Table 9.9. 

LSF comparison using a Hamming window (with a pedestal height of 8%), 
a Hann window (zero pedestal height), and a rectangular window are shown 
in Figures 9.37(a) through (c). These coefficients were obtained for a speech 
segment “This was easy for me” spoken by a male that was sampled at 8000 Hz. 
Windows were advanced one sample at a time. 

A modified Hann window [15] is given by 

⎧ ⎨ 1 + α 1 − α π(2n + 1)− cos , 0  ≤ n ≤ N − 1 
w[n] =  2 2 N (9.51) ⎩ 0, elsewhere 

We observe smooth variations as the Hann window (with α = 0) 
advances (Figure 9.37(a)), mainly due to the zero pedestal property of the 
Hann window. 

A slightly more perturbed LSF variation can be observed while using the 
Hamming window. A Hamming window [15] can be obtained from Equa­
tion 9.51 using α = 0.08. The glitches in the LSF variation (Figure 9.37(b)) 
occur due the small pedestal height of the Hamming window. 

A rectangular window has a high pedestal that gives heavy oscillations in 
LSF estimation as shown in Figure 9.37(c). LSF variation as a function of time 
for the Blackman, flat-top, Kaiser, triangular, and ultraspherical windows are 
shown in Figures 9.37(d) through 9.38(d). 
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FIGURE 9.37 
LSF coefficients using different windows. (a) Hann window. (b) Hamming window. (c) 
Rectangular window. (d) Blackman window. 

9.7 Application of Windows in Image Processing 

Since its origin in the 1950s, microwave imaging systems have been widely 
exploited in applications such as target identification, remote sensing, 
nondestructive testing, and the military. Two systems of this kind are the syn­
thetic aperture radar (SAR) and the inverse synthetic aperture radar (ISAR). 
SAR is a high-resolution remote sensing technique carried on a moving plat­
form such as a satellite or an airplane and it is intended for imaging remote 
terrains. SAR is applied mainly in surveillance, archaeology, mining, agri­
culture, ecology, and geophysics. Inverse SAR is quite similar, but it is a 
stationary radar system that captures images of moving targets like aircraft, 
ship, or tank. ISAR is generally used for the identification and classification 
of targets, especially in airborne maritime surveillance. In a common sce­
nario, aerial targets are imaged via a ground-based radar, whereas ground-
or sea-based targets are imaged with the help of an airborne radar. In this 
study, we focus on aircraft ISAR imaging via ground-based radar. 



FIGURE 9.38 
LSF coefficients √using different windows. (a) Flat-top window. (b) Triangular window. (c) Kaiser  
window (α = π 3). (d) Ultraspherical window (α = 0.8). 
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9.7.1 Windows for ISAR Images 

The basic principle of ISAR imaging is to coherently collect the scattered large 
bandwidth echoes produced due to the rotation of the object, which brings 
about a change in the viewing angle to the radar. By processing the echo 
signals collected, information of the individual point scatterers on the target 
object and their relative range can be derived. Therefore, the radar image can 
be assumed to consist of many energy points called scattering centers. ISAR 
signal processing consists of the following steps [18]: 

i. Range compression deconvolves the echoed signal from the trans­
mitted signal, thereby forming the range profile. 

ii. Motion compensation registers the moving targets with respect to 
the radar. 

iii. Next, the image is constructed by arranging the received signal 
samples in a polar grid of different viewing angles and Doppler 
frequencies in frequency spatial domain. 
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The radar image resolution is decided collectively in range and cross-
range directions [19]. The range resolution is inversely proportional to the 
transmitted electromagnetic signal bandwidth and the cross-range resolu­
tion is inversely proportional to the radar antenna aperture size. Finally, the 
range and cross-range mapped ISAR image is formed by taking the inverse 
two-dimensional FFT of the sample signals interpolated on the grid. The ISAR 
technique requires the phase of the received signal to be in coherence. The 
ISAR processing steps involved in ISAR are shown sequentially in Figure 9.39. 

Several algorithms for the ISAR image reconstruction have been proposed 
in Refs. [20–22]. The simplest of them is the range-Doppler (or range vs. cross-
range) technique, which is applicable when the effective rotation vector does 
not vary with the integration time. The range is defined as the axis parallel to 
the direction of propagation from the radar to the target. Cross-range is the 
axis perpendicular to the range direction. If the target is moving or rotating 
at a constant speed relative to the radar, then the Doppler spectral analysis 
of the time history of range profiles provides information regarding the tar­
get’s scattering centers. Thus, the Doppler frequency content and the relative 
position of scatterers can be determined. While generating range profiles, 
the location of target scatterers upto within one range cell is obtained. On 
the other hand, by cross-range processing, the targets residing even within 
the same range cell can also be separated. In this manner, the range versus 
cross-range map of the target’s scattering centers is formed. 

Raw ISAR readings 

Generate range profiles
via range compression 

Motion compensation 

Doppler windowing 

Doppler processing 

ISAR IMAGE 

FIGURE 9.39 
ISAR processing steps. 
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While constructing ISAR images, certain parameters need to be controlled to 
obtain a good quality image. One such enhancement technique is windowing, 
which smoothens the point spread function (PSF) of the ISAR image [23]. The 
PSF is the impulse response of an ISAR imaging system to a point scatterer. 
In the Cartesian coordinate system, if Bx is the aspect bandwidth and By is the 
frequency bandwidth, then the PSF is given by 

PSF(x, y) = sinc((Bx/π)x)sinc((By/π)y) (9.52) 

The physical meaning of PSF is illustrated in Figures 9.40(a) through (f). 
Here, seven point scatterers are shown in Figure 9.40(a), and the correspond­
ing PSF in Figure 9.40(b). The resultant ISAR image is the convolution of the 
point scatterers with the 2-D PSF, shown in Figure 9.40(c). The image in the 
2-D range versus cross-range planes is shown in Figure 9.40(e). When a suit­
able window is applied, the image gets smoothened out as in Figure 9.40(d) 
and its convolved plot is shown in Figure 9.40(f). 

The tails in the PSF that represent the side lobes in the sinc functions (in 
range and cross-range directions) must be suppressed and this is accom­
plished by the process of windowing. Prior to windowing, we perform 
zero-padding on the ISAR readings, which boosts the image quality by 
interpolating the image data in the frequency-domain. Zero-padding in the 
time-domain increases the number of sample points (in between the actual 
samples) in the frequency-domain, and thus makes the reconstruction better 
by allowing continuous transition. For a 2-D ISAR image, the zero-padding is 
performed in both the directions. After zero-padding, various window func­
tions are applied with suitable parameters. It is to be noted that though the 
windows make the ISAR image smoother, the resolution of the image gets 
poorer. 

9.7.2 Experimental Analysis 

The ISAR image readings are taken corresponding to ISAR aircraft image [23]. 
The Cartesian coordinate system (X–Y) is fixed on the object with range given 
along the Y-axis and cross-range along the X-axis. The center frequency is 
taken as ( fc) and the speed of light is denoted by c with a value 3 × 108 m/s. 
After range compression, 32 range profiles (M) and 64 cross-range profiles 
(N) are taken. The range frequency bandwidth is denoted by By and the 
cross-range frequency bandwidth by Bx. Using these, the range/frequency 
resolution (�f ) and cross-range/aspect resolution (�φ), which decide the 
resultant image quality, can be found by 

�f = c/2Bx (9.53) 

and �φ = (π/kc)By, (9.54) 
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FIGURE 9.40 
(a) Point scatterers. (b) Point spread function. (c) Convolved image. (d) Convolved windowed 
image. (e) 2-D ISAR image. (f) Windowed ISAR image. 

where kc is the wave number for fc given by 

kc = 2π fc/c. (9.55) 
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Using these, the frequencies ( f ) and the look-angles (φ) are selected as 
follows: 

f = [(fc − �fM/2), (fc − �f (M/2 − 1)), . . . , fc, . . . , (fc + �f (M/2 − 1))]
(9.56) 

and φ = [(φc − �φN/2), (φc − �φ(N/2 − 1)), . . . , φc, . . . , (φc + �φ(N/2 − 1))]
(9.57) 

The Equations 9.56 and 9.57 are used for obtaining the backscattered electric 
field samples denoted by E(f , φ). Then, the two-dimensional inverse Fourier 
transform integral is applied as 

� ∞ �∞ 
j2π(2f /c)x j2π(kc φ/π)yd(2f /c)d(kcISAR(x, y) = E(f , φ)e e φ/π). (9.58) 

−∞ −∞ 

Since, in this study, the backscattered electric field samples are collected 
within a small frequency and aspect angle bandwidth, inverse fast Fourier 
transform (IFFT) can be easily applied. The final ISAR image thus formed is 
shown in Figure 9.41. The backscattered electric field samples for the three 
radar images are obtained from Ref. [23]. The ISAR images formed are rep­
resented in a logarithmic scale of around 20 dB dynamic range. It is observed 
in the ISAR images that the main backscattering centers are present in the 
wings, propellers, tires, nose and tail of the aircrafts. The ISAR images are 
now interpolated by zero-padding four times, which provides continuity in 
the values of the 2-D ISAR image. On the zero-padded ISAR images, we 
have tested many windows to observe their performance. On the three ISAR 
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FIGURE 9.41 
ISAR image of an aircraft. 
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FIGURE 9.42 
Results of windowing on the ISAR image. (a) Rectangular window. (b) Blackman window. (c)
 
Triangular window. (d) Blackman–Harris window. (e) Gaussian window. (f) Bartlett window.
 

images formed, the windows used are rectangular, Blackman, triangular, 
Blackman–Harris, Gaussian, Bartlett, Dolph–Chebyshev, Hamming, Hann, 
Kaiser, ultraspherical, and exponential. The ISAR example in Figure 9.41 
is zero-padded and then a window is applied. The results are shown in 
Figures 9.42 and 9.43. 
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FIGURE 9.43 
Results of windowing on the ISAR image (continued). (a) Dolph–Chebyshev window. (b) Ham­
ming window. (c) Hann window. (d) Kaiser window (α = 4.71). (e) Ultraspherical window 
(x0 = 1.007, β = 0.95). (f) Exponential window (α = 4.71). 

9.7.3 Results and Conclusions 

From Figures 9.42 and 9.43, it can be seen that Hamming, Kaiser, exponen­
tial, and ultraspherical windows offer comparatively better performance for 
ISAR images, since they provide the desired smoothing and suppression of 
unwanted side lobes. We can observe from these figures that Blackman, 



357 Applications of Windows 

Blackman–Harris, and Dolph–Chebyshev windows provide a smudging 
effect on the ISAR images, thereby drastically decreasing the resolution. 
Hence, these windows are not preferred. The rectangular window has the 
least smoothing effect on the ISAR images and, therefore, can be ruled out. If 
we compare the rest of the windows, it turns out that the Hamming window 
provides an increase in the contrast ratio of the ISAR image. 

Although the triangular and Bartlett windows provide more contrast to 
the ISAR images than the Hamming window, their smoothing performance 
is not satisfactory. Gaussian window decreases the resolution of ISAR images 
considerably (compared to the triangular and Bartlett windows), so using this 
window is not advisable. 

For Kaiser windows, the range of α that gives better performance is 
observed to be 4 ≤ α ≤ 5. The optimum can be chosen to be α = 4.71 (1.5π). 
The same is true for the exponential window. The Kaiser window compar­
isons for different values of α are shown in Figure 9.44. The parameters for 
the ultraspherical window can be flexibly chosen in accordance with the posi­
tion and nature of the target. The optimum values chosen here are x0 = 1.007 
and α = 0.95 as they provide the optimum results required in our applica­
tion. Thus, the ultraspherical window provides a more compact ISAR image 
compared to all the other windows considered in this study. 

All the windows and their parameters are compared in terms of their 
smoothing effect on three 2-D ISAR images, taking into consideration the 
loss of resolution. The specific characteristics of each window on the ISAR 
images are observed and noted, thereby making it possible for the ISAR image 
interpreter to apply the desired window depending on the requirement. 

9.8 Windows to Improve Contrast Ratio in Imaging Systems 

Image processing has widespread applications in the fields of computer 
vision, medical imaging, microscope imaging, and radar imaging, wherein 
the image data can take various forms such as a video sequence, views from 
multiple cameras, or multidimensional data from a medical scanner. The 
quality of an image measures the perceived image’s degradation. It is very 
much dependent on the imaging systems used, as they generate distortions or 
artifacts in the signal readings. Therefore, image quality assessment is quite 
relevant. One of the image quality metrics that is of utmost significance is the 
contrast ratio (CR) [24]. 

An imaging system’s CR is defined as the difference between the whitest 
and the blackest pixel values, in terms of brightness or luminescence, and is 
usually expressed as a ratio of an integer to unity (integer:1). The CR measure 
allows an imaging system to detect low-contrast objects lying next to high-
contrast objects, which is quite useful in medical imaging applications. 
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FIGURE 9.44 
Results of using Kaiser window for different values of α. (a) α = 2. (b) α = 2.5. (c) α = 3. (d) α = 4. 
(e) α = 5. (f) α = 6. 

Imaging systems [25], such as SAR/ISAR, computerized tomography, and 
charge coupled device-based x-rays construct images using inverse 2-D win­
dowed DFTs on spatial frequency domain data. They are highly influenced 
by the windows used, as the characteristic of the window has a direct 
consequence on the contrast of the image. 



 
The frequency response of a window, f (n), is given by 

N−1 ( )
jω −jωnF e = f (n)e . (9.59) 

n=0 

A vital characteristic of a window that is often overlooked is the main-lobe 
to side-lobe energy ratio (MSR). The MSR of a window is a very important 
image quality measure as it describes the worst-case energy leakage from 
the bright to the dark area of the image. Thus, it has a direct impact on the 
CR tolerance of the imaging systems. For describing the MSR, we consider 
the parameter of the window (ωm), which corresponds to the frequency in 
the main-lobe region with an amplitude equal to the highest side lobe of the 
window. It is depicted in Figure 9.45 for the ease of understanding. The MSR 
is represented as 

MSR = 

�ωm 

0 �π 

ωm 

|F 
(
ejω

)|2dω 

|F (ejω)|2dω 
. (9.60) 

The side-lobe energy is given by 

Es = 2 
� π 

ωm 

|F 
(
ejω

) |2dω . (9.61) 

The main-lobe energy is defined as 

Em = 2 
�ωm 

0 
|F 

(
ejω

) |2dω . (9.62) 
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Position of ωm in a Blackman window. 



Hence, the total energy is 

Et = Es + Em . (9.63) 

Therefore, the contrast ratio can be defined as 

Es + EmCR = = 1 + MSR. (9.64)
Es 

Now, the design and analysis of the windows’ parameters affecting the CR 
is performed by considering the following equation [26]: 

fTf
CR = 

fTQf 
, (9.65) 
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TABLE 9.10 

CR Values for Different Window Functions 

Window Function CR (in dB) 

Rectangular 19.9059 
Kaiser–Bessel, α = 2 31.4298 
Exponential, α = 2 40.6247 
Kaiser–Bessel, α = 3 43.6460 
Triangular 50.2682 
Bartlett 50.1182 
Exponential, α = 3 52.1751 
Kaiser–Bessel, α = 4 57.7346 
Exponential, α = 4 64.3444 
Hann 65.5163 
Hamming 68.7951 
Kaiser–Bessel, α = 5 72.6151 
Gaussian 76.6924 
Exponential, α = 5 77.3568 
Kaiser–Bessel, α = 6 88.0623 
Exponential, α = 6 91.2039 
Kaiser–Bessel, α = 7 103.8475 
Exponential, α = 7 105.6402 
Exact Blackman 114.2239 
Kaiser–Bessel, α = 8 119.7239 
Exponential, α = 8 120.6123 
Kaiser–Bessel, α = 9 135.9583 
Exponential, α = 9 135.9805 
Dolph–Chebyshev 170.0871 
Blackman–Harris 178.1653 
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where F(ejω) = fTv such that fT = [f (0), f (1), f (2), . . . , f (N − 1)] and v = 
[1, e−jω , e−j2ω , . . . , e−j(N−1)ω]T . 

Q is a real, symmetric, and a positive-definite Toeplitz matrix whose 
elements are given by 

⎧ ωm ⎪ ⎨ − sinc (ωs(m − n)), for m �= n 
q(m, n) = 

π . (9.66) ⎪ ωm ⎩1 − ,	 for m = n 
π 

In this manner, by choosing the appropriate window length (N), different 
windows can be substituted in Equation 9.65 and analyzed for their CR value 
measurement. The ultraspherical window, which has three parameters, has 
an advantage over the other windows due to its adjustable side-lobe pattern. 
This can alter the energy contained in the side lobes, and consequently the 
CR measure. 

9.8.1 Experimental Analysis 

The contrast ratio of various windows are tabulated so that we can compare 
their performance. The analysis is performed by applying different windows 
in Equation 9.65 and comparing their CR performance. The value of N is 131 
in all the cases, while ωm for each window is found independently. Table 9.10 
contains all CR values in the ascending order. We seek a window that exhibits 
the maximum contrast ratio. 

9.8.2 Results and Conclusions 

From Table 9.10, it can be observed that the Blackman–Harris window gives 
the maximum contrast ratio, whereas the rectangular window provides the 
least. Among Kaiser–Bessel and exponential windows, for the same value of 
α, the exponential window gives a better CR, with 2 ≤ α ≤ 9. Therefore, from 
the point of view of contrast ratio, the Blackman–Harris window is found to 
be the optimum window for imaging systems. 
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frequency-domain, 68
 
linear, 293
 
lowpass, 265
 
MA filter, 328–333
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LSF coefficients, 350
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325
 
FM, see Frequency modulation (FM)
 
Formant extraction, 295
 
Fourier atom, 339, 342
 
Fourier series, 6
 

coefficients, 12
 
continuous-time periodic signal, 11
 
convergent, 18
 
representation, 17
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Fourier transforms (FTs), 1
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Frequency leakage, 59, 189
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CTFT, 70
 
example, 74–76
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rectangular data window, 70
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zero leakage case, 71–72, 73
 

Frequency modulation (FM), 303
 
Frequency resolution, 84, 85
 

dispersion factor, 130
 
loss of, 71
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Frequency sampling, 228, 293
 
Frequency scaling property, 8
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input data samples, 192
 
quantization errors, 195
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FSLL, see First side-lobe level (FSLL)
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Gaussian process
 

functions of, 142
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Gaussian window
 
ISAR image, 355, 357
 
main-lobe width, 154
 
STFT magnitude, 336
 
time function, 153
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Half-power bandwidth
 
main-lobe broadening factor, 315
 
normalized, 132
 
3 dB bandwidth, 131
 

Hamming window, 93, 95, 96, 122–123
 
DTFT of, 170
 
effect, 175
 
FIR lowpass filter response, 179
 
ISAR images, 357
 
log magnitude response, 181
 
magnitude response of signal, 186
 
PSLL, 149
 
SCER performance, 194
 
weak component response, 187
 
window 2, 197
 

Hann window, 123, 148
 
effect, 175
 
FIR lowpass filter response, 178
 
Fourier transform pair, 91
 
log magnitude response, 180
 
magnitude response of signal, 186
 
parameters, 93
 
SCER performance, 193
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transition bandwidth and ripples, 175
 
weak component response, 187
 
window functions, 92, 197
 

Hann–Poisson window, 154
 
Hertz (Hz), 61
 
High range resolution (HRR), 303
 

HRR radars, 303
 
HRR target profiling, 303–305
 
IDFT, 305
 
pulse of burst, 303
 
simulation results, 305–306
 
target’s reflection, 304
 
windows in, 303
 

Highpass filter (HPF), 220; see also 
Lowpass filter (LPF)
 

frequency response of, 220
 
impulse response, 221
 

Hilbert transformer design
 
filter types, 256
 
frequency response, 254, 255
 
using impulse response truncation,
 

253
 
HPF, see Highpass filter (HPF)
 
HRR, see High range resolution (HRR)
 

I 

Ideal filters
 
BPF, 221
 
BSF, 221
 
HPF, 220–221
 
LPF, 219–220
 

IDFT, see Inverse discrete Fourier 
transform (IDFT) 

IDTFT, see Inverse discrete-time Fourier 
transform (IDTFT) 

IFFT, see Inverse fast Fourier transform 
(IFFT) 

IIR filters, see Infinite impulse response 
filters (IIR filters) 

Image processing, 349
 
CR in, 357–361
 
experimental analysis, 352–356
 
results, 356–357
 
windows for ISAR images, 350–352
 

Impulse response
 
antisymmetric, 235
 

BSF, 221
 
coefficients of, 227
 
design of differentiator, 252, 253
 
design of Hilbert transformer, 253–256
 
discrete-time convolution, 226
 
FIR filters, 228
 
of HPF, 221
 
ideal discrete-time differentiator, 27
 
ideal Hilbert transformer, 27
 
ideal lowpass filter and, 173
 
infinite length, 172
 
of linear-phase filters, 231
 
LTI system, 5, 20
 
PSF, 352
 
shifted, 174
 
truncation of, 174
 
type 2 FIR, 236
 
type 3 FIR, 237
 
type 4 FIR, 237
 

Impulse response truncation method 
(IRT method), 173, 228
 

design of differentiator, 252
 
frequency response, 253
 
half-delay, 253
 
Hilbert transformer design, 253–256
 

In-place computation, 54, 55
 
Infinite impulse response filters 

(IIR filters), 172; see also Finite 
impulse response filters 
(FIR filters) 

coefficient, 225
 
properties of, 226
 

Initial-value theorem, 34
 
Integration loss, 316
 
Integration property, 8
 
Interpolation formula, 83
 

DFT, 37, 84
 
sampling, 83
 

Inverse discrete Fourier transform
 
(IDFT), 1, 36
 

block diagram for, 57
 
from FFT, 56
 
synthesis formula, 18
 

Inverse discrete-time Fourier transform
 
(IDTFT), 1, 18, 27, 28
 

Inverse fast Fourier transform (IFFT),
 
354
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349
 

aircraft image, 354
 
image readings, 352
 
processing steps, 351
 
signal processing, 350
 
windowing results, 355, 356
 
windows for, 350
 

IRT method, see Impulse response
 
truncation method (IRT
 
method)
 

J 

Jackson window, see Parzen window 
Just leakage, see Frequency leakage 

K 

Kaiser–Bessel first-order window
 
comparison with Zeroth-order
 

window, 251
 
filter design procedure, 250
 
time-domain expression, 249
 

Kaiser–Bessel window
 
FIR filter design, 272
 
first-order window, 249–251
 
using Hamming window, 277
 
using Hann window, 277
 
spectral analysis using, 271, 278
 
time-domain, 275
 
weakest signal component, 276
 
window shape parameter, 274
 

Kaiser–Bessel zeroth-order window
 
bandpass filter design, 249
 
BPF design, 248
 
error plot, 248
 
LPF design, 246, 247
 
magnitude responses, 244, 245, 247
 
pair of equations, 244
 
parameters, 243
 
shape parameter, 245
 

Kaiser windows, 357, 358
 
Kaiser’s modified first-order Bessel
 

window function
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parameters, 120
 
time-and frequency-domain plots, 118
 
window functions, 119
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Bessel window function
 
family, 116
 

optimum window function, 115
 
parameters, 118
 
window functions, 117
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Lag window, 146
 
autocorrelation of data window, 147
 
Bartlett, 290
 
Blackman–Tukey method, 288
 
effect of, 289
 
rectangular, 146
 
6 dB bandwidth, 268
 
symmetrical, 181
 

LCCDE, see Linear constant coefficient
 
difference equation (LCCDE)
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frequency, 59, 189
 
low spectral, 185
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spectral, 129, 343
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LF, see Loss factor (LF)
 
LFM, see Linear frequency modulation
 

(LFM)
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discrete-time systems, 222
 
rational transforms, 33
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DFT and IDFT, 49, 81
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result, 46
 
sequence samples, 48, 81
 

Linear frequency modulation (LFM), 303
 
coefficient, 318
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LSF variation, 347–349
 

Linear predictive coding (LPC), 344
 
advantages of, 346
 
coefficients, 346
 
limitations of, 346
 
magnitude response comparison, 345
 
pole zero plot of, 347
 
polynomial, 345
 
windowed frame, 344
 

Linear shift invariant systems (LSI
 
systems), 222
 

Linear time invariant systems (LTI
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analysis of, 9
 
convolution sum expression, 224
 
digital filters, 224
 
FIR filters, 223
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input and output, 224
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Linear-phase filters
 
filter characteristics, 233
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impulse response of, 231
 
periodic convolution, 231
 
truncation of impulse response, 232
 
types, 238
 

Linearity property, 19
 
DFT, 38
 
DTFT, 19, 29
 
finite-length sequences, 38
 
integration, 7
 
transformations, 4
 
z-transform, 36
 

Loss factor (LF), 309
 
expression for, 306, 309
 
output signal component, 310
 
sequence of pulses, 310
 
SNR ratio, 311
 
weighting functions, 312, 313, 316
 

Lowpass filter (LPF), 219; see also
 
Highpass filter (HPF)
 

cutoff frequency, 68
 
DTFT, 220
 
frequency response, 176, 219, 220
 
using Hamming window, 179
 
using Hann window, 178
 
ideal, 64
 
impulse response, 175
 
MA filter, 328
 
magnitude response of, 251
 
using rectangular window, 176
 
SNR, 329
 
windowing method, 175
 

LPC, see Linear predictive coding (LPC)
 
LPF, see Lowpass filter (LPF)
 
LSFS, see Line spectral frequencies
 

(LSFS)
 
LSI systems, see Linear shift invariant
 

systems (LSI systems)
 
LTI systems, see Linear time invariant
 

systems (LTI systems)
 

M 

MA filter, see Moving average filter
 
(MA filter)
 

Magnitude response, 241
 
of bandpass filter, 249
 
with Blackman window, 242
 
cosine signal, 71
 
DTFT, 83
 
FT, 11
 
with Hamming window, 181, 241
 
with Hann window, 180, 242
 
of lowpass filter, 251
 
rectangular window, 175, 180
 
spectrogram, 295
 
time-shifting property, 20
 
ultraspherical window, 158
 

Main-lobe broadening factor, 315, 316
 
Main-lobe energy (MLE), 88, 93,
 

142, 359
 
Kaiser’s window, 124
 
ratio of, 88, 123
 
sum-cosine window, 125
 

Main-lobe peak, 107
 
Fourier transform, 89
 
FSLL, 111
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Main-lobe peak (Continued)
 
maximum side-lobe amplitudes, 116
 
MSLL, 88, 124
 

Main-lobe to side-lobe energy ratio
 
(MSR), 359
 

Main-lobe width, 131, 168
 
Blackman window, 109
 
data window, 79
 
dispersion factor, 131
 
Dolph–Chebyshev window, 114
 
expense of, 94
 
FIR lowpass filter, 175
 
frequency response, 156
 
frequency window, 231
 
Hann window, 241
 
Kaiser’s modified zeroth-order Bessel
 

family, 139
 
normalized, 102
 
PSLL, 142
 
rectangular window, 182, 343
 
transition bandwidth, 240
 
variable, 105
 

Maximum leakage case
 
frequency leakage, 73
 
leakage effect, 74–76
 
leakage problem, 74
 
spectral leakage, 74
 

Maximum side-lobe level (MSLL), 132;
 
see also Peak side-lobe level
 
(PSLL)
 

data windows parameters, 93
 
Kaiser’s modified zeroth-order bessel
 

family, 118
 
main-lobe peak, 88, 107
 
NHMLW, 139
 
parameters, 142
 
time-and Fourier-domain plots, 96
 

Mean square error (MSE), 259
 
Microwave imaging systems, 349
 
MLE, see Main-lobe energy (MLE)
 
Modified first-order Bessel family, 171
 

Kaiser–Bessel function, 156
 
parameters of Kaiser’s, 120, 125
 
performance comparison of, 137, 165
 

Modified limb lead II (MLII), 324
 
Modified periodogram, 265
 

using Bartlett window, 269, 272
 
bias of, 267
 
using Blackman window, 270, 275
 

using Hamming window, 270, 274
 
using Hann window, 269, 273
 
PSD estimator, 265
 
using rectangular window, 271
 
resolution of, 268
 
sinusoidal components, 268
 
variance of, 267
 

Modified zeroth-order Bessel family,
 
142, 171
 

binary windows performance, 216
 
continuous-time Fourier transform
 

pair, 213
 
frequency response, 215
 
Kaiser–Bessel window family,
 

155–156, 213
 
normalized magnitude plots, 214
 
performance comparison of, 136, 164
 

Modulation property, 9
 
dual of convolution property, 9
 
of Fourier transform, 289
 
window sequence, 21
 

Moment factorizing theorem, 264
 
Moving average filter (MA filter), 328
 

EMG signal, 329
 
neighboring samples, 328
 
noisy and MA-filtered EEG signals,
 

330, 331, 332
 
SNR, 332
 

MSE, see Mean square error (MSE)
 
MSLL, see Maximum side-lobe
 

level (MSLL)
 
MSR, see Main-lobe to side-lobe energy
 

ratio (MSR)
 
Multirate filtering, see Zooming filtering
 
Musical noise, 336, 340, 341
 

N 

Near-optimum Kaiser–Bessel window,
 
142, 214
 

Near-optimum window family, 105, 156
 
Near-optimum window function family,
 

see Zeroth-order Bessel family
 
NHMLW, see Normalized half
 

main-lobe width (NHMLW)
 
Nonparametric methods, 260
 

Bartlett Periodogram, 278–280
 
Daniel periodogram, 292–293
 
FFT computation, 293, 294
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Fourier transform techniques, 260
 
modified periodogram PSD estimator,
 

265–271
 
periodogram PSD estimator, 260–265
 
spectral analysis, 271–278
 
STFT, 293–297
 
Welch periodogram method, 280–283
 

Normalized half-power bandwidth,
 
132, 167
 

Normalized half main-lobe width
 
(NHMLW), 88, 197
 

Bessel window, 125
 
Blackman windows, 202
 
data windows comparison, 140, 141
 
data windows parameters, 93
 
Fourier transform, 132
 
Kaiser’s modified first-order Bessel
 

family, 139
 
rectangular window, 89
 

Nuttall window family, 151
 
Nyquist frequency, 64
 
Nyquist rate, 64
 
Nyquist–Shannon sampling theorem,
 

64, 65
 
frequency-scaled version, 67
 
FT, 66
 
relationship, 65
 
summation and integration, 66
 

O 

Odd length windows, 158, 159
 
Odd symmetric impulse responses, 235
 
Optimal method, 228, 229
 
Optimized Blackman window, 107
 

coefficients, 150
 
Fourier transform, 108
 
using numerical techniques, 109
 
parameters, 93
 

Optimum window function, 115
 
Overlap correlation, 169
 

P 

Papoulis window, 93
 
discontinuous, 154
 
time-limited function of, 111
 
window functions, 112
 

Parabolic window, 93, 110–111
 
discontinuous first derivative, 153
 
window functions, 112
 

Parseval’s theorem
 
CTFT, 9
 
DTFT, 21
 
time-domain, 161
 
Z-transform, 34
 

Parzen window, 93, 113, 114
 
Passband cut-off frequency, 227
 
Passband ripple, 250
 
PCG, see Phonocardiogram (PCG)
 
Peak passband deviation, 227
 
Peak side-lobe level (PSLL), 170, 197, 198
 

asymptotic decay rate, 197
 
decrease in, 142
 
filter characteristics, 233
 
Hamming window, 149
 
using Kaiser–Bessel window, 298
 
rectangular window, 73
 
weak harmonics, 169
 
zero frequency, 132
 

Pedestal height, 348
 
function of, 95
 
of windows, 348
 

Performance comparison
 
data windows, 140, 141
 
modified first-order Bessel family, 137
 
modified zeroth-order Bessel family,
 

136
 
windows, 134
 

Periodic cosine sequence, 44
 
Periodic sampling, 41, 60
 
Periodicity property, 19, 191
 
Periodogram methods, 177, 260, 267, 268;
 

see also Modified periodogram
 
autocorrelation estimate, 261
 
bias of, 262
 
Gaussian random process, 264
 
peaks in, 179
 
PSD, 260
 
resolution of, 264
 
sinusoidal components, 265
 
spectral estimation, 266
 
variance of, 263
 
Welch method of, 178
 

Phase modulation (PM), 303
 
Phase response
 

FIR filters, 234
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Phase response (Continued)
 
of FT, 10
 
of ideal LPF, 229, 230
 
zero-phase filters, 219
 

Phonocardiogram (PCG), 323
 
Picket-fence effect, 59, 168, 169; see also
 

Frequency leakage effect
 
finite-length data, 84
 
inability of DFT, 78
 
rippled curve, 79
 

PM, see Phase modulation (PM)
 
Point spread function (PSF), 352, 353
 
Poisson window, 153, 154
 
Power spectral density (PSD), 160
 

Blackman–Tukey spectral
 
estimation, 181
 

modified periodogram estimate, 270
 
of periodogram, 177, 260
 
variance, 259
 
Wiener–Khinchin theorem, 180, 181
 

Power spectral estimator, 259
 
PRI, see Pulse repetition interval (PRI)
 
Processing gain, see Degradation loss
 
Programmable windowing technique
 

DFT, 191
 
frequency-domain
 

implementation, 192
 
time function, 190
 

Prolate-spheroidal wave function, 115
 
modified first-order Bessel family, 118
 
near-optimum windows, 139
 
zeroth-order, 116, 156
 

PSD, see Power spectral density (PSD)
 
PSF, see Point spread function (PSF)
 
PSLL, see Peak side-lobe level (PSLL)
 
Pulse compression, 303
 

goals of HRR, 306
 
LFM, 306
 
linear FM, 307
 
radar applications, 303
 
range side-lobe reduction, 316
 

Pulse repetition interval (PRI), 303
 
Pulse sequence
 

pulse compression, 309
 
weighting and summing of, 310
 

Q 

QRS wave detection
 
adaptive thresholding, 334
 

ECG signal, 334, 337, 338, 339
 
QRS locations, 337, 338, 339
 
STFT, 333
 

R 

Radar cross section (RCS), 306
 
Radar image, 350
 

backscattered electric field
 
samples, 354
 

resolution, 351
 
Radix-2 FFT algorithm, 51, 80
 
Raised-cosine family, 105, 106
 

asymptotic attenuation, 104, 105
 
Fourier transforms, 103
 
inverse Fourier transform, 104
 
using numerical techniques, 104
 
parameters, 93
 
rectangular window, 103
 
SCER performance, 195
 
synthesized window functions, 102
 
window family, 149–150
 

Raised-cosine window, see Hann
 
window
 

Range side lobe reduction effect, 306
 
FM pulse compression radar,
 

307, 308
 
loss factor, 309–314
 
results, 316–317
 
on SNR, 306
 
uniform weighting function, 309
 
weighting function, 314–316
 

Range-Doppler technique, 351
 
Rate of fall-off of side-lobe level
 

(RFSLL), 93, 151, 170
 
decomposition, 120
 
Fourier transform, 118, 119
 
in Hann–Poisson window, 154
 
for rectangular window, 170
 
theorem, 119, 120–121
 
in time-domain, 121–123
 
window function decomposition, 120
 

Rational transforms, 33
 
RCS, see Radar cross section (RCS)
 
Read-only memory (ROM), 189
 
Reconstructed signal, 60
 

Fourier transform of, 69
 
frequency response, 66
 
from LPC coefficients, 344
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Reconstruction, 59
 
characteristics, 68
 
continuous-time signals, 67, 69
 
cutoff frequency, 69
 
impulse train-modulated signal, 69
 
integration and summation, 68
 

Rectangular window
 
CTFT of, 89
 
data window, 70, 147
 
Dirichlet window, 148
 
in FIR filter design, 174, 175
 
half main-lobe width, 90
 
log magnitude response, 180
 
magnitude response of signal, 186
 
resolution characteristics, 166–167
 
RFSLL for, 170
 
3 dB bandwidth, 167
 
in time and frequency-domain, 176
 
transition bandwidth and ripples, 175
 
weak component response, 187
 

Region of convergence (ROC), 31–32
 
Resolution, 129, 260
 

Bartlett periodogram, 280, 282
 
Blackman–Tukey method, 289, 292
 
frequency, 84
 
high resolution, 185
 
HRR, 303
 
ISAR images, 357
 
loss of frequency, 71, 142
 
periodogram estimate, 264
 
PSD estimate, 265
 
radar image, 351
 
random process, 260
 
rectangular window, 166, 167
 
spectrum estimate, 129, 167
 
speech applications, 295
 

RFSH, see Rate of fall-off side-lobe level
 
(RFSLL)
 

RFSLL, see Rate of fall-off of side-lobe
 
level (RFSLL)
 

Riemann window, 153
 
ROC, see Region of convergence (ROC)
 
ROM, see Read-only memory (ROM)
 
Root mean square (RMS), 160
 

S 

Sampling, 60
 
discrete-time signal, 60–61
 
linear relationship, 61
 

normalized frequency, 61, 62
 
Nyquist–shannon sampling theorem,
 

64, 65
 
relationship, 65–67
 
sampled data, 62
 
signal reconstructions, 62
 
WKS sampling theorem, 60, 63, 64
 

SAR, see Synthetic aperture radar (SAR)
 
Saramäki window family, 156–157
 
Scaling factor, 8–9, 161
 
Scalloping loss, see Picket-fence effect
 
Scattering centers, 350
 

Doppler spectral analysis, 351
 
ISAR images, 354
 

SCER, see Signal-to-computational error
 
ratio (SCER)
 

Schwartz inequality, 161
 
Self-convolution property, 91, 148
 
SFW, see Stepped frequency waveform
 

(SFW)
 
Short-time Fourier transform (STFT),
 

293, 324
 
using Bartlett window, 296
 
using Blackman window, 295, 296, 298
 
using Gaussian window, 336
 
using Hamming window, 295, 296
 
using Hann window, 295, 296, 299, 335
 
using Kaiser–Bessel window, 296, 297,
 

298
 
using rectangular window, 295, 296,
 

334
 
window length, 294
 

Side lobes, 71
 
asymptotic attenuation of, 101
 
of Bartlett window, 269
 
decay rate of, 316
 
Dolph–Chebyshev window, 155
 
Doppler, 306
 
first side-lobe and peak, 315
 
Fourier transform, 87, 114
 
FSLL, 89
 
in frequency window, 231
 
Hamming window, 182
 
modified first-order Bessel family, 118
 
MSLL, 88
 
peak magnitude, 99, 124
 
PSLL, 132
 
PSF, 352
 
range of, 95
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Side lobes (Continued)
 
rate of fall-off, 118, 125
 
rectangular window, 73, 79, 275
 
RFSLL, 87, 155
 
in spectral window, 129
 
weak spectral component, 185
 

Side-lobe fall-off rate, 97
 
Blackman window, 206
 
Hann window, 295
 
NHMLW, 113
 
of Parzen window, 114
 
in time-domain, 121–123
 

Signal processing
 
biomedical, 324
 
characteristics, 1
 
continuous-time signals, 2, 3
 
discrete-time signals, 3–4
 
FT, 1
 
linear convolution, 48
 
LTI systems, 5–6
 
system and properties, 4, 5
 

Signal-to-computational error ratio
 
(SCER), 193
 

Blackman window performance, 194
 
Hamming window performance, 194
 
Hann window performance, 193
 
raised-cosine family performance, 195
 

Signal-to-Noise Ratio (SNR), 166, 328
 
of bandpass-filtered ECG signals, 328
 
of lowpass-Filtered EEG signals, 329
 
of MA filtered EEG signal, 332
 
of MA filtered EMG signal, 333
 

Simulations
 
Blackman–Harris window, 306
 
range profiles of windows, 305,
 

307, 308
 
Smearing, 189
 

DFT, 189
 
effect, 131
 
of energy, 73
 
filter response, 231
 
side lobes, 181
 

Smoothing, 130
 
effects, 182
 
performance, 357
 
periodogram, 265
 
time function, 145
 

Smoothing filters, see Moving average
 
filter (MA filter)
 

SNR, see Signal-to-Noise Ratio (SNR)
 
Spectral analysis, 159–160; see also Finite
 

impulse response filters (FIR
 
filters)
 

autocorrelation function, 180
 
Blackman–Tukey spectral estimation,
 

181
 
correlogram, 177
 
equal strengths, frequency
 

components of, 182, 183
 
far-away frequency components with
 

unequal strengths, 185, 186
 
periodogram, 177, 178, 178
 
PSD calculation, 177
 
spectral estimation, 260
 
unequal strengths, frequency
 

components of, 182, 184–185
 
weak component in signal
 

component, 185, 187
 
Welch method, 178
 
Wiener–Khinchin theorem, 180, 181
 
window selection, 181–182
 
windows application in, 259
 

Spectral estimator
 
Blackman–Tukey, 288
 
Hamming window, 300
 
Hann window, 299
 
Zeroth-order Kaiser–Bessel window,
 

300
 
Zeroth-order Kaiser window, 299
 

Spectral leakage, 74
 
high side-lobe levels, 295
 
impulse functions, 160
 
low spectral leakage, 185
 
minimum, 343
 
noncoherent component, 169
 
reduction of, 159
 
weighting functions, 129
 

Spectral response, 131
 
Spectral window, 129
 

convolution operation, 288
 
data window, 147
 
energy of, 181
 
Fourier transform, 111, 146
 
side lobes, 129
 

Spectrogram, 295, 339
 
using Blackman window, 298
 
using Hamming window, 297
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using Kaiser–Bessel window,
 
296
 

TF plane, 343
 
Speech analysis, 347
 
Square summability, 19
 
Stability, 129
 

guaranteed FIR, 225
 
IIR filters, 226
 
property, 5
 

Stein unbiased risk estimate 
(SURE), 342
 

Stepped frequency waveform (SFW), 303
 
STFT, see Short-time Fourier transform
 

(STFT) 
Stopband
 

cut-off frequency, 227
 
deviation, 227
 
FIR lowpass filter, 178
 
passband and, 175
 
passband ripple, 250
 
PSLL, 233
 

Stretch processing
 
block diagram of, 317
 
echo signals compression, 319, 320,
 

321, 322
 
specifications, 318
 
window functions in, 317
 

Summability, absolute, 19
 
Sum-cosine window, 96, 97–98
 

asymptotic attenuation, 101
 
Bessel window, 125
 
cos3x window, 149
 
Fourier transforms, 98, 99, 101
 
linear combination, 98
 
normalized time and frequency
 

parameters, 100
 
parameters, 93
 
side-lobe ripples, 99
 
synthesis problem, 99–100
 
window functions, 102
 

Summability, see Convergence 
SURE, see Stein unbiased risk estimate 

(SURE) 
Symmetry properties
 

DFT, 38–39, 50
 
DTFT, 22
 
FFT, 50
 

Synthesis formula, see Inverse DTFT 
(IDTFT) 

Synthesized sum-cosine windows, 125
 
Synthetic aperture radar (SAR),
 

349, 358
 

T 

Tapered cosine window, see Tukey 
window
 

Tapped-delay line structure, 227
 
Taylor functions, 94
 
TDI, see Time-domain implementation
 

(TDI)
 
Ternary code, 195
 
TF plane, see Time–frequency plane
 

(TF plane)
 
3 dB bandwidth, see Half-power
 
bandwidth
 
Time reversal property, 20, 38
 
Time scaling property, 8
 
Time shifting property, 7–8, 20
 
Time-domain function, 88
 
Time-domain implementation (TDI),
 

189, 190, 192
 
arithmetic operations, 194
 
computational error in, 192
 
input data samples, 192
 
quantization errors, 195
 
quantized data samples, 192–193
 
SCER, 193, 194
 
scheme, 190
 
windows, 192
 

Time–bandwidth product, 171–172 
Time–frequency plane (TF plane), 336
 

block thresholding technique, 340
 
diagonal estimators of SNR, 341
 
Fourier atom, 339
 
reconstructions, 340
 

Total energy, 131
 
half-power bandwidth, 132
 
optimum window function, 115
 
parameters, 123
 

Transforms, 1
 
duality property, 9
 
rectangular and cosine windows, 98
 
sum-cosine window, 100
 
z-transform, 33
 

Transversal filter, 227
 
Triangular window, see Bartlett
 

windows
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Truncated Taylor family, 94, 95
 
dispersion factor for, 138
 
Hamming window, 149
 
parameters, 93, 130–131
 
performance comparison, 134
 
of windows, 149
 

Truncation, 71
 
DFT, 59
 
Fourier series, 173
 
impulse response, 174, 232
 
input time sequence, 189
 
rectangular window, 89
 

Tukey window, 111, 150
 
ECG signal and QRS locations, 337
 
Fourier transform, 112
 
frequency-domain plots, 113
 
functions, 113
 
noisy ECG signal, 326
 
noisy EEG signal, 330
 
parameters, 93
 

U 

Ultraspherical window, 157, 158, 361
 
LSF variation, 348, 350
 
magnitude response, 158
 
parameters for, 357
 

Unbiased estimator, 259, 282
 
Uniform sampling, see Periodic
 

sampling
 
Uniform window, see Rectangular
 

window
 

V 

Variable window, 118, 126, 243
 
Variance, 259
 

Bartlett periodogram, 279
 
Blackman–Tukey method, 289
 
lag window, 146
 
LTI systems, 5–6
 
narrow spectral window, 142
 
SCER, 193
 
Welch periodogram, 282–283
 

Variance compensation factor, 130–131
 
DFT, 171
 
expression for, 133
 
window selection, 139, 142
 

Vibroarthogram (VAG), 323
 
Vibromyogram (VMG), 323
 

Vocal tract models, 346
 
Von Hann window, see Hann window
 

W 

WCPL, see Worst-case processing loss
 
(WCPL)
 

Weighting function
 
data, 316
 
Dolph–Chebyshev window, 114
 
factors, 315
 
frequency window, 145
 
loss factor for, 312
 
uniform spacing, 314
 
windows, 129
 

Welch method
 
periodogram, 178
 
resolution, 283
 

Welch periodogram method
 
with Bartlett window, 286
 
bias of, 281
 
with Blackman window, 287
 
expression for, 280
 
with Hamming window, 286
 
with Hann window, 287
 
with Kaiser–Bessel window, 288
 
with overlapping, 284, 285
 
resolution of, 283
 
variance of, 282, 283
 
window dependent, 283
 

Whittaker Kotelnikov Shannon
 
sampling theorem (WKS
 
sampling theorem), 60
 

C/D converter, 63
 
modulator output, 63
 
sampling frequency, 64
 
two-stage process, 63
 

Wiener–Khinchin theorem, 180, 181
 
Window functions, 87
 

bandwidths, 3 dB and 6 dB, 166–167
 
Blackman window, 106–107
 
Blackman–Harris window, 109, 110
 
characteristics, 87–88
 
coherent gain, 161, 166
 
comparison, 123–126
 
Cos (x) window, 91, 92
 
Cos3(x) window, 96, 97
 
Cos4(x) window, 101, 102
 
data windows, 145, 146, 147
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degradation loss, 166
 
Dolph–Chebyshev window, 114
 
ENBW, 160–161
 
frequency window, 145, 146, 147
 
Hamming window, 95, 96
 
Hann window, 91, 92, 93, 94
 
interplay between window functions,
 

146, 147
 
Kaiser’s modified first-order Bessel
 

window function family, 116,
 
117, 118
 

Kaiser’s modified zeroth-order Bessel
 
window function family, 115,
 
116
 

lag window, 146, 147
 
list of windows, 88
 
main-lobe width, 168
 
optimized Blackman window, 107,
 

108–109
 
overlap correlation, 169
 
Papoulis window, 111
 
parabolic window, 110–111
 
Parzen window, 113, 114
 
performance comparison of windows,
 

162–165
 
picket-fence effect, 168, 169
 
PSLL and FSLL, 169, 170
 
raised-cosine family, 102–103, 104,
 

105, 106
 
rectangular window, 89, 90
 
RFSLL, 118, 119, 121–123, 170
 
scalloping loss, 168
 
spectral analysis, 159–160
 
spectral window, 146, 147
 
sum-cosine window, 97–98, 99–100,
 

101
 
triangular window, 89–90, 91
 
truncated Taylor family, 94, 95
 
Tukey window, 111, 112, 113
 
variance compensation factor, 171
 
WCPL, 169
 

Window parameters, 130
 
coherent gain, 131
 
computation, 132–139
 
dispersion factor, 131
 
half-power bandwidth, 131–132
 
MLE content, 131
 
normalized half main-lobe width, 132
 

normalized half-power bandwidth,
 
132
 

PSLL or MSLL, 132
 
total energy, 131
 
variance compensation factor, 130–131
 

Window selection, 139–142
 
almost equal strengths, 182
 
for spectral analysis, 181–182
 
unequal strengths, 182, 185
 
weak component, 185
 

Window shape parameter, 274, 275
 
Windows, 129
 

classes, 145, 146, 147
 
CSD window structures, 197
 
Dolph–Chebyshev, 357
 
filter characteristics, 233
 
in HRR radars, 303–306
 
list, 88
 
parameters of data, 93
 
pedestal heights, 348
 
performance comparison, 134–135, 141
 
performance of binary, 216
 
picket-fence effects, 84
 
raised-cosine set, 102
 
synthesized sum-cosine, 125
 

Windowing method, see Impulse
 
response truncation method
 
(IRT method)
 

Windowing or modulation property, 21
 
WKS sampling theorem, see Whittaker
 

Kotelnikov Shannon sampling
 
theorem (WKS sampling
 
theorem)
 

Worst-case processing loss (WCPL), 169
 

Z 

z-plane, 31–32
 
position, 33, 34
 
z-transform pairs, 33
 

Z-transform, 1
 
advantage, 31
 
basic z-transform pairs, 33
 
examples, 34–36
 
LCCDE, 33, 34
 
properties, 34
 
rational transforms, 33
 
ROC, 31–32
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Z-transform, 1 (Continued) 
system function, 222–223 
transform-domain analysis, 

30–31 
Zero leakage case, 71–72
 

DFT output response, 73
 
frequency-domain, 73
 
geometric summation, 72
 
in time-domain, 352
 

Zero-padding 
filling sequence, 80
 
interpolation formula, 83, 84
 

Zero-padding
 
ISAR images, 354
 
linear convolution implementation, 

80–82
 
spectrum display, 82–83
 

Zooming filtering, 224
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