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Preface 

This book is dedicated to various aspects of electromagnetic wave theory and its 
applications in science and technology. The covered topics include the fundamental
physics of electromagnetic waves, theory of electromagnetic wave propagation and
scattering, methods of computational analysis, material characterization, 
electromagnetic properties of plasma, analysis and applications of periodic structures
and waveguide components, and finally, the biological effects and medical
applications of electromagnetic fields. Even though the classical electromagnetic
theory is well-established and experimentally verified, it is far from being a closed
subject. In spite of the fact that the theory is capable of providing explanations for all 
(classical) electromagnetic effects, there are several fundamental problems that remain 
open. These problems mainly concern the electromagnetic waves behaving like
quantum particles. In order to complete the theory of electromagnetic waves, a new 
fundamental physics emerged suggesting novel concepts to explain observed physical
phenomena. The first part of this book is dedicated to the research in this field 
including various aspects of vacuum field theory, electromagnetic wave contribution
to the quantum structure of matter, and matter waves. 

Modelling and computations in electromagnetics is a fast-growing research area. The
general interest in this field is driven by the increased demand for analysis and design 
of non-canonical electromagnetic structures and rapid increase in computational
power for calculation of complex electromagnetic problems. The second part of this 
book is devoted to the advances in the analysis techniques such as the method of exact
absorbing boundary conditions, fractional operator approach, and fractional boundary 
conditions. The problems of diffraction on infinitely thin surfaces are considered, and
the difficulties in the analysis of axially-symmetrical open resonators are addressed. 

The third part of the book deals with electromagnetic wave propagation and scattering 
effects. The main focus is made on atmospheric refraction and propagation in the
lower troposphere, atmospheric attenuation due to the humidity, interaction of
electromagnetic waves with inhomogeneous media composed of complex particles,
modelling of scattering from random rough surfaces, and the problems of propagation 
in waveguides with imperfectly reflecting boundaries. 
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XIV      Preface

Waveguides are essential parts of millimetre and submillimetre-wave devices and 
systems. They are used for guiding electromagnetic energy between the components 
of the system. In the mentioned frequency band, periodic structures are also often 
used for wave guiding as well as for realization of delay lines, filter elements, and 
interaction structures in vacuum electron devices. The fourth part of the book starts 
with the description of the method of matrix formalism and its application to the 
analysis of planar waveguides and periodic structures. Then, the open resonators and 
open waveguides employing periodic structures and their implementation in vacuum 
electron devices are considered. The fourth part concludes with a chapter on 
waveguide mode converters.  

The fifth part of the book is dedicated to interaction of electromagnetic waves with 
materials and implementation of electromagnetic methods for material analysis and 
characterisation. This includes scattering and generation of waves on cubically 
polarisable dielectrics, electromagnetic properties of elastomers, temperature 
behaviour of microwave absorption in ferrites and permittivity of soil. Time and 
frequency domain measurement techniques are also considered here. 

Plasma technology is becoming increasingly attractive for radio communications, 
radio astronomy and military (stealth) applications due to electromagnetic properties 
of plasma medium. The shielding properties of plasma are investigated in the sixth 
part of this book. The final (seventh) part of this book deals with biological effects of 
electromagnetic radiation and its implementation to medical imaging, particularly, 
sensitivity and resolution improvement of molecular imaging using magnetic 
nanoparticles. 
The presented material in this book is based on recent research work conducted by the 
authors working within the covered topics, who deserve all the credits for the 
presented scientific results. 

Vitaliy Zhurbenko 
Technical University of Denmark, 

Denmark 
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The Fundamental Physics of  
Electromagnetic Waves 

Juliana H. J. Mortenson 
General Resonance, LLC 

USA 

1. Introduction 
A new foundational physics is emerging which radically changes our concepts of 
electromagnetic waves. The original quantum ideas of Max Planck and Albert Einstein from 
the turn of the twentieth century, are undergoing an impressive renaissance now at the turn 
of the twenty-first century.  The result is a fundamental physics of electromagnetic waves 
that is both new and classical.  Einstein’s insistence that quantum mechanics was incomplete 
- that “hidden variables” were yet to be discovered - was correct.  The recent discovery of 
those variables is the driving force behind this rebirth of the foundations of quantum 
mechanics and the fundamental physics of electromagnetic (“EM”) waves.   
The new quantum variables have led to the discovery of new universal constants for EM 
waves.  The new constants have revealed an elegant simplicity in quantum concepts, that 
requires no paradoxical explanations and imposes no uncertainties or limits. Instead, the 
new physics provides a more realistic understanding of physical concepts related to EM 
waves.  The old paradigm is disappearing, and yielding to a new paradigm which is both 
more understandable and more powerful. 

2. Background 
It is often said that to successfully navigate the future one must understand the past.  The 
fundamental physics of electromagnetic waves are no exception to this wisdom.  In fact, an 
understanding of the origins of 20th century physics regarding electromagnetic waves is of 
vital importance to understanding the scientific revolution that is currently taking place. 

2.1 Physics in the ages of reason and enlightenment 
Galileo Galilei (1564 – 1642) was one of the most influential scientists of the millennium, 
however he lived during a time when the protestant reformation was gaining momentum and 
Europe was in turmoil.  The Catholic Church was losing its hold on much of northern Europe 
and the Thirty Years’ War raged. Galileo resided on the Italian peninsula, where the Church 
maintained a strong hold, and he could not rely on the protection of reformers in other parts of 
Europe. None-the-less, even though “pagan” beliefs associated with frequency and resonance-
related phenomena had been banned by the Church for centuries, Galileo performed research 
on natural resonant frequencies in a pendulum system.  (Mortenson, 2010b).  



 1 

The Fundamental Physics of  
Electromagnetic Waves 

Juliana H. J. Mortenson 
General Resonance, LLC 

USA 

1. Introduction 
A new foundational physics is emerging which radically changes our concepts of 
electromagnetic waves. The original quantum ideas of Max Planck and Albert Einstein from 
the turn of the twentieth century, are undergoing an impressive renaissance now at the turn 
of the twenty-first century.  The result is a fundamental physics of electromagnetic waves 
that is both new and classical.  Einstein’s insistence that quantum mechanics was incomplete 
- that “hidden variables” were yet to be discovered - was correct.  The recent discovery of 
those variables is the driving force behind this rebirth of the foundations of quantum 
mechanics and the fundamental physics of electromagnetic (“EM”) waves.   
The new quantum variables have led to the discovery of new universal constants for EM 
waves.  The new constants have revealed an elegant simplicity in quantum concepts, that 
requires no paradoxical explanations and imposes no uncertainties or limits. Instead, the 
new physics provides a more realistic understanding of physical concepts related to EM 
waves.  The old paradigm is disappearing, and yielding to a new paradigm which is both 
more understandable and more powerful. 

2. Background 
It is often said that to successfully navigate the future one must understand the past.  The 
fundamental physics of electromagnetic waves are no exception to this wisdom.  In fact, an 
understanding of the origins of 20th century physics regarding electromagnetic waves is of 
vital importance to understanding the scientific revolution that is currently taking place. 

2.1 Physics in the ages of reason and enlightenment 
Galileo Galilei (1564 – 1642) was one of the most influential scientists of the millennium, 
however he lived during a time when the protestant reformation was gaining momentum and 
Europe was in turmoil.  The Catholic Church was losing its hold on much of northern Europe 
and the Thirty Years’ War raged. Galileo resided on the Italian peninsula, where the Church 
maintained a strong hold, and he could not rely on the protection of reformers in other parts of 
Europe. None-the-less, even though “pagan” beliefs associated with frequency and resonance-
related phenomena had been banned by the Church for centuries, Galileo performed research 
on natural resonant frequencies in a pendulum system.  (Mortenson, 2010b).  



  
Electromagnetic Waves 

 

4 

In 1632, Galileo published his ”Dialogue” and in a daring move described the mechanics of 
natural resonant frequencies writing, “the Pendulum makes its vibrations with one and the same 
frequency” and “every Pendulum hath the Time of its Vibrations…pre-fixed…[and] it is impossible 
to make it move under any other Period, than that …which is natural unto it.” (Galilei, 1632)   He 
described the resonant accelerating forces produced by precisely time puffs of his breath 
stating, “by blowing upon [the Pendulum one may] confer a Motion, and a Motion considerably 
great by reiterating the blasts, but only under the Time properly belonging to its Vibrations”.  
Galileo thus provided one of the first documented descriptions of resonance, namely the 
increase in amplitude and energy of a system’s vibrations when an applied vibration, 
motion or energy matches the natural frequency of the system. Unfortunately, the Church 
was less accommodating than Galileo had anticipated.  He was convicted of heresy and 
placed under house arrest for the rest of his life. 
Pierre de Fermat (1601 – 1665) was a French attorney who was in his mid-thirties when 
Galileo was accused of heresy. Although Fermat’s personal passion was mathematics, he 
was well aware that pursuit of certain mathematical subjects could be very dangerous.  Thus 
Fermat engaged in his passion in secret, scribbling notes in the margins of books in his 
private library.  One set of notes was a resonance equation, demonstrating that as the rate of 
a mechanical vibration (e.g., a puff of breath) neared the natural vibratory rate of a body 
(e.g., the swing of a pendulum), the amplitude of vibrations in the body increased (also see 
Figure 1., below): 

  2y = 1 / 1+x   (1) 
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itu

de
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Fig. 1. Fermat’s resonance curve showing an increase in vibration amplitude when forces are 
applied at natural resonant frequencies (“vr”). 

The brilliant young Isaac Newton (1643 – 1727) wrote his famous Principia, describing his 
three (3) laws of motion around the time of Fermat’s death. (Newton, 1898) The religious 
climate in England was quite chaotic at the time, and Newton waited another twenty (20) 
years to actually publish his Principia. His second law (force equals mass times acceleration) 
provided the basis for yet another resonance equation: 
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where “A” is the amplitude of the system’s oscillations, “a” is the acceleration in the 
system’s oscillation (caused in Galileo’s case by the force of his small puffs of breath), “νr” is 
the resonant or natural frequency of the system, and “νo” is the frequency of the outside 
force applied to the system.  As this second resonance equation shows, an outside force 
applied at a frequency which is either much higher or much lower than the natural resonant 
frequency of the system, produces a large denominator and hence a small amplitude.  
Conversely, the closer the frequency of the outside force is to the resonant natural 
frequency, the smaller the denominator becomes. Very large amplitudes are produced. 
When the outside frequency exactly matches the resonant frequency of the system the 
amplitude is theoretically infinite (Figure 2.). 
 

 
Fig. 2. Graphical representation of resonant amplitude equation (Eq. 2).   The resonant 
frequency “vr” is at the origin, and input frequency of the outside force “vo” varies.  As the 
input frequency approaches the resonant frequency, amplitude approaches infinity. 

Newton distinguished the force exerted by an accelerating body, from the energy of a body 
simply in motion (which he referred to as vis viva) the product of mass and velocity: 

  m vvis viva    (3) 

where “m” is mass and “v” is velocity.  This led to the great vis viva controversy several 
decades later (see below).  By 1704 Newton had published his treatise “Opticks” in which he 
proposed the corpuscular theory of light, namely that light is composed of tiny particles  
that travel in straight lines.  In a foreshadowing of Einstein’s later work, Newton stated, 
"Are not gross Bodies and Light convertible into one another, ...and may not Bodies receive much of 
their Activity from the Particles of Light which enter their Composition?" 
A few decades later the great vis viva controversy erupted with Giovanni Poleni’s (1683–
1761) proposal that vis viva energy was proportional to the product of mass and velocity 
squared, putting him at odds with Newton.   The debate was soon joined by Leibnitz, 
Huygens, and others. Dutch physicist Willem Gravesande (1688 –1742) performed 
meticulous experiments and concluded that energy of motion, “follow[s] the Ratio compounded 
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frequency “vr” is at the origin, and input frequency of the outside force “vo” varies.  As the 
input frequency approaches the resonant frequency, amplitude approaches infinity. 

Newton distinguished the force exerted by an accelerating body, from the energy of a body 
simply in motion (which he referred to as vis viva) the product of mass and velocity: 

  m vvis viva    (3) 

where “m” is mass and “v” is velocity.  This led to the great vis viva controversy several 
decades later (see below).  By 1704 Newton had published his treatise “Opticks” in which he 
proposed the corpuscular theory of light, namely that light is composed of tiny particles  
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A few decades later the great vis viva controversy erupted with Giovanni Poleni’s (1683–
1761) proposal that vis viva energy was proportional to the product of mass and velocity 
squared, putting him at odds with Newton.   The debate was soon joined by Leibnitz, 
Huygens, and others. Dutch physicist Willem Gravesande (1688 –1742) performed 
meticulous experiments and concluded that energy of motion, “follow[s] the Ratio compounded 
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of the Masses, and the Squares of the Velocities” (underline added). (Gravesande, 1747)  The 
noted French Newtonian scholar, Emilie du Châtelet (1706 – 1749) in her 1740 book, 
“Institutions Physiques” asserted that vis viva energy is proportional to the product of mass 
and velocity squared, based on Gravesand’s painstaking experiments.   
While the vis viva debate raged, the Italian mathematical prodigy Maria Gaetana Agnesi 
(1718–1799), published her 1748 book on calculus and differential equations, organizing the 
work of Fermat, Newton, Leibnitz and others. (Agnesi, 1748)  She expanded on Fermat’s 
resonance curve, providing a detailed geometric proof and a third resonance equation: 

 2 2 2y = ha / a + x   (4) 

where “h” is the height of the curve and “a” the half-width at half-maximum.  Her book was 
an immediate sensation throughout Europe, and resonance began to become a well known 
scientific principle, in spite of the English translation error that resulted in the resonance 
curve being known as the “Witch of Agnesi”.  (Spencer, 1940) 

2.2 Nineteenth century physics 
By the nineteenth century, the brilliant Joseph Louis Lagrange (1736 – 1813) had organized 
the works of nearly every known scientist on matters of velocity, inertia, force, energy, and 
dynamics into his “Méchanique Analytique”.  (Lagrange, 1811)  Lagrange declared that for a 
body at constant velocity, its energy (vis viva) was equal to “mv2”, resulting “solely from the 
inertia forces of the bodies”. Conversely, the energy required to accelerate a body was a 
function of the distance over which a force acted “F δs”. Lagrange explained that all systems 
exhibited a dynamic equilibrium between the vis viva of constant velocity and the forces of 
acceleration, “The sum of these two quantities, when equated to zero, constitutes the general formula 
of dynamics… when the equilibrium does not hold, the bodies must necessarily move due to all or 
some of the forces which act on them.”  For purposes of systematically explaining analytic 
mechanics Lagrange stated that he had assumed that an acceleration always occurs in a time 
period at least as long as the unit time for velocity.  His assumption effectively fixed the 
acceleration time interval at “one second” and excluded accelerations taking place in less 
than one second. 
Lagrange also addressed resonance dynamics using a mathematical function: “in the case 
where the same function is a maximum, the equilibrium will not be stable and once disturbed the 
system will begin by performing fairly small oscillations but the amplitude of the [resonant] 
oscillation will continually grow larger.” He included additional sections on “harmonics [at the] 
nodes of vibration”, “the resonance of a sonorous body”, and the resonance dynamics of 
pendulum oscillations.  
Forty years later, Gaspard-Gustave de Coriolis (1792–1843) borrowed heavily from 
Lagrange’s work in his popular engineering textbook.  (Coriolis, 1829)  Coriolis adopted 
Lagrange’s assumption regarding the acceleration time interval for simplicity’s sake, and 
explicitly explained that this assumption excluded consideration of “instantaneous” effects. 
Without the assumption, separate time variables for velocity and acceleration would have 
been required. Coriolis also introduced the concept of kinetic energy as a convenience in 
engineering applications involving gravitational effects: “the mass times one-half the square of 
the speed [½mv2]…will introduce more simplicity…since the factor ‘½(v2/g)’ is nothing more than 
the height from which a heavy body…must fall so that it may acquire the speed ‘v’”.  Acutely aware 
that his kinetic energy formula did not apply to objects moving at constant velocity, Coriolis 
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wrote that when “the speeds have become the same… [the kinetic energy] becom[es] zero”.  
Coriolis’ caveats were soon forgotten, however.  By the time James Clerk Maxwell (1831-
1879) later wrote his basic physics textbook, he errantly summarized, “The kinetic energy of a 
body is the energy it has in virtue of being in motion…”  
Meanwhile, the interdisciplinary scientist Thomas Young, M.D., (1773 – 1829) began 
publishing physics articles anonymously (to protect the reputation of his medical practice).  
He eventually went public, and according to Young his greatest scientific achievement was 
establishment of the wave theory of light, based on his double slit experiment.  Published 
exactly 100 years after Newton’s Opticks, Young’s reports on the wave-like interference of 
light eventually resulted in abandonment of Newton’s light corpuscle theory.  This led to 
development of the belief that matter was composed of small particles, and light composed 
of continuous waves. 
Another interdisciplinary scientist - Hermann von Helmholtz, M.D., (1821 – 1894) - was an 
army surgeon who set up energy-related experiments on frogs in his army barracks. Those 
same biomechanical experiments led to his great treatise on the transformation and 
conservation of energy.  (Helmholtz, 1889) Helmholtz’s work on conservation of energy 
became the first law of thermodynamics, namely that energy is neither created nor 
destroyed, but is instead conserved and transformed from one form to another, “…heat, 
electricity, magnetism, light, and chemical affinity … from each of these different manifestations of 
[energy] we can set every other [manifestation] in motion”.  Helmholtz carefully differentiated 
between orderly work energy and disorderly thermal energy, and taught that the total 
energy of a system was their sum:  

 U   A   TS   (5) 

where “U” is the internal energy of a system, “A” the work (Helmholtz) energy, “T” 
temperature, “S” entropy, and the product “TS” thermal energy.  
Helmholtz also wrote extensively about resonance which is, “always found in those bodies 
which when once set in motion by any impulse, continue to perform a long series of vibrations before 
they come to rest … provided the periodic time of the gentle blows is precisely the same as the periodic 
time of the body’s own vibrations, very large and powerful oscillations may result.  But if the periodic 
time of the regular blows is different from the periodic time of the oscillations, the resulting motion 
will be weak or quite insensible.” (Helmholtz, 1862) He also described resonant coupling as 
“sympathetic resonance”. Helmholtz eventually rose to the highest physics position in 
Germany at the University of Berlin, where he influenced many young students including 
Max Planck (1858 – 1947) and Heinrich Hertz (1857 – 1894).  (Helmholtz, 1896 and 1904) 
After Helmholtz challenged Hertz to prove the existence of Maxwell’s theoretical EM 
waves, Hertz succeeded brilliantly. The new EM waves were called “resonant Hertzian 
waves”, based on the resonant electrical processes Hertz used to transmit and receive them. 

2.3 The quantum revolution 
By the late 1800’s, the young Max Planck was himself a professor at the University of Berlin 
and was doing theoretical work on Hertz’s electromagnetic waves.  (Planck 1896 and 1897)  
Planck modeled the  EM waves on the one hand as resonant waves capable of producing 
orderly work energy “A”, and on the other hand as EM waves produced by random chaotic 
motions based solely on temperature “TS” (blackbody radiation).  (Planck, 1900)  Late in 
1900 Planck met with success regarding the random thermal EM waves when he empirically 
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determined the correct formula for blackbody radiation.  A proper derivation of that 
empirical equation, however, was another matter altogether and according to Planck was 
the hardest work of his life. (Planck, 1901 and 1920) 
Planck started with the Helmholtz equation (U = A + TS) and then introduced his non-
controversial resonance hypothesis: EM “resonant Hertzian waves” are orderly and are thus 
completely free to be converted into work, and thereby constitute work energy, “A”.  Planck 
next explained that, because the blackbody apparatus used in the laboratory had been 
specifically designed to exclude all resonant EM waves, he could assume there was no work 
energy in the blackbody device.  According to Planck, “A” equaled zero, and thus “the entire 
problem is reduced to determining S as a function of U”.  He borrowed Wilhelm Wien’s method 
of solving for energy density (which eliminated a time variable) and also eventually resorted 
to the statistical methods of his arch nemesis, Ludwig Boltzmann (1844 – 1906). 
Boltzmann’s kinetic mechanics were based on the limiting assumption that all the elements 
(e.g., molecules or atoms) in a system were moving randomly, in a completely disordered 
manner.  Boltzmann’s mechanics were restricted to the thermal energy portion, “TS”,  of 
Helmholtz’s energy equation and could not be applied to orderly work energy, “A”.  The 
blackbody device and experiments were deliberately designed to exclude work energy and 
measure only disorderly, chaotic thermal energy, however.  This fact allowed Planck to use 
Boltzmann’s statistical methods in his blackbody derivation, and “determin[e] S [solely] as a 
function of U”.  It also required however, that Planck introduce his quantum hypothesis – 
namely, that energy is quantized in small uniform amounts. Significantly, Planck assumed 
that those small uniform amounts of energy were different for each frequency, creating an a 
priori limitation which excluded consideration of a unit of energy for EM waves, analogous 
to the unit of charge for electrons. Mathematically Planck’s quantum hypothesis took the 
form of the quantum formula which Planck assumed as a given: 

 E  h v  (6)

where “h” is Planck’s action constant, 6.626 X 10-34 Joule seconds.  
Planck also calculated a thermodynamic constant, now called the Boltzmann constant: 

 BE  k T  (7) 

where “E” is the energy of a single element (e.g., a single atom or molecule) based solely on 
its temperature “T”, and “kB” is the Boltzmann constant, 1.38 ×10−23 Joules per degree K per 
element.  Just as Helmholtz’s equation provided the energy of a macroscale system based on 
its temperature (“TS”), Planck’s thermodynamic equation provided the energy of an 
individual microscale element based on its temperature (“kBT”).  Thus, the Boltzmann 
constant is the microscale equivalent of entropy.  Planck never introduced a microscale 
equivalent of the work energy “A”, however: the blackbody experiments excluded work 
energy.  This resulted in a microscale energy formula which was necessarily incomplete for 
any system in which work energy was present.   
While some scientists used Planck’s blackbody equation for practical applications, his 
revolutionary quantum hypothesis received little attention - until, that is, Albert Einstein’s 
(1879 – 1955) own revolutionary papers were published in 1905.  (Einstein, 1905)  Einstein had 
seized on Planck’s quantum hypothesis and used it to provide explanations for a number of 
unexplained phenomena such as the photoelectric effect and ionization of gases.  The 
interactions of EM waves and matter, he proposed, “appear more readily understood if one assumes 
that the energy of light is discontinuously distributed in space”, e.g., in small particles or packets 
along the lines of Newton’s “light corpuscles”, and is absorbed in “complete units” or “quanta”. 
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Although highly controversial, Einstein’s papers brought attention to Planck’s quantum 
hypothesis and formula. A few years later, Niels Bohr (1885 – 1962) adopted Planck’s 
quantum formula in his theory of the hydrogen atom.  (Bohr, 1913)  Controversy still raged 
however, and Robert Millikan (1858 – 1963) undertook a series of meticulous experiments 
testing the validity of Planck’s constant and what he described as Einstein’s “reckless” 
theories regarding energy quanta and  photoelectric phenomena.  (Millikan, 1916) 
Millikan, well familiar with Planck’s accepted resonance hypothesis distinguished the 
photoelectric effect as an ordered work function and not a thermal effect: “photoelectrons do 
not share in the energies of thermal agitation…absorption [of EM waves] is due to resonance (and we 
know of no other way in which to conceive it…)”.  Echoing Galileo, Millikan stated, “the 
phenomena of absorption and of emission show that…oscillators possess natural frequencies…and the 
characteristic waves which they emit are of these frequencies…if any particular frequency is incident 
upon such a substance the oscillators in it which are in tune with the impressed waves may be 
assumed to absorb the incident waves”. Regarding the resonant work nature of the photoelectric 
effect he stated, “emission of [electrons] from the atom…takes place especially copiously when the 
impressed frequency coincides with a ‘natural frequency’… [It] furnishes a proof which is quite 
independent of the facts of black-body [thermal] radiation, of the correctness of the fundamental 
assumption of the quantum theory, namely, the assumption of a discontinuous…energy absorbed by 
the electronic constituents of atoms from [EM] waves”. (Underline added) 
The quantum revolution begun by Planck and Einstein was taking hold. 

2.4 The quantum paradox 
As the quantum revolution began to gain momentum, paradoxes and puzzles began cropping 
up. The simple model of light waves and matter particles had been disrupted.  Louis de 
Broglie (1892 – 1987) added to the confusion in the early 1920’s when he proposed that if light 
could be both a wave and a particle, then so could matter.  (de Broglie, 1924) Pursuing that line 
of reasoning, de Broglie found the lack of a unit of energy for EM waves, i.e., “an isolated 
quantity of energy” particularly troublesome. Without an energy constant for light (i.e., an 
isolated quantity of energy), de Broglie was unable to determine the fundamental mass of light 
using Einstein’s energy-mass equivalence equation, “E = mc2”.   Instead, the energy of light 
paradoxically depended on its frequency.   De Broglie made the best of a conceptually difficult 
situation, and instead set Einstein’s mass equivalence  equation equal to Planck’s quantum 
formula and solved for the rest mass of light at a particular frequency: 

 2
0 0m  hc v , therefore 2

0 0m  h /  v c   (8) 

where “m0” is the rest mass of light, and “c” the speed of light in vacuo.  Since the number of 
different frequencies of EM waves are theoretically infinite, this approach produced a 
paradoxically infinite number of values for the rest mass of light.  Unlike other particles 
such as the electron or proton, de Broglie could find no constant rest mass associated with 
light particles.   
The lack of any energy or mass constants for light was quite puzzling indeed. Unbeknownst 
to de Broglie, Planck’s limiting assumption about different quanta for each frequency 
excluded the very unit quantity of energy de Broglie sought. De Broglie could at least 
conclude however, that the rest mass of light in the visible region was quite small and in his 
Nobel prize speech explained, “The general formulae…may be applied to corpuscles of [visible] 
light on the assumption that here the rest mass m0 is infinitely small… the upper limit of m0 … is 
approximately 10-24 gram.  (de  Broglie, 1929) 
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De Broglie also used Planck’s quantum formula to derive the momentum for light: 

 0m c    hv/ c h /     (9) 

finding that the momentum of light appeared to be directly proportional to its frequency, 
and thus inversely proportional to its wavelength “λ”.  Once again, De Broglie obtained a 
zoo of values - this time for momentum since the range of frequencies and wavelengths in 
the EM spectrum is infinite.   
In the meantime, Neils Bohr undertook his ambitious project modeling the hydrogen atom 
based on Planck’s quantum formula and constant. Bohr found that he could not calculate 
time intervals in regard to the interactions between EM waves and electrons.  He was forced 
to model instantaneously “jumping electrons” instead.  (Bohr, 1913 and 1920) Few (including 
Bohr) were satisfied with the jumping electrons however, and in the mid-1920’s two new 
approaches to quantum mechanics were introduced.  In 1925, Werner Heisenberg, 
introduced matrix mechanics. (Heisenberg, 1925) A year later Erwin Schrödinger began 
publishing a series of papers on wave equations, intended to represent the real electron 
waves suggested by de Broglie.  (Schrödinger, 1982) 
Even with these two new approaches quantum mechanics still did not make sense to many 
early quantum pioneers.  It lacked the certainty and definiteness of classical mechanics.  
Efforts to compensate for the many paradoxes included additional principles such as 
Heisenberg’s uncertainty principle, and Bohr’s complementarity principle. (Heisenberg, 
1920 and Bohr, 1928)  Additional variables and constants of inexplicable origin were 
discovered, such as the dimensionless fine structure constant.  Discussion and debates 
continued.  The Bohr-Heisenberg school of probabilities and uncertainty battled the Einstein 
– Schrödinger school of realism and certainty.  Without answers for such simple matters as 
an energy constant or rest mass for light, the Bohr-Heisenberg school eventually prevailed. 
Scientists concluded (over Schrödinger’s strenuous objections) that his wave equations 
represented only probabilities, and not real physical waves.  The consensus that finally 
emerged was that the classical mechanics of our macroscale world simply could not be 
applied to the kaleidoscopic microscale world of the quantum.  According to Bohr, a 
classical limit existed at the very highest electron energy levels in atoms, and below that 
limit classical mechanics simply could not be applied.   
The iconoclastic brilliance which initially led Einstein to make his “reckless” quantum 
proposals, would not allow him to join the quantum crowd and he insisted that something had 
been missed.  He simply could not believe that God and the universe were so perversely 
paradoxical.  In 1935, Einstein published his “EPR” paper loudly proclaiming that quantum 
mechanics was incomplete due to the existence of ”hidden” quantum variables.  (Einstein, 
1935) Einstein and others such as Bohm and Bell tried to describe the hidden variables, but 
such a task was difficult, if not impossible.  (Bohm, 1952) How does one describe a quantum 
variable mathematically, when the very nature of the variable is unknown?  Small groups of 
scientists have attempted to keep Einstein’s quest alive, but the scientific community as a 
whole abandoned efforts to find any “hidden variables”.  Instead, it was generally agreed that 
the paradoxical nature of quantum mechanics was an undeniable reality of life. Incredible 
efforts then went into developing more quantum models incorporating the paradoxes, such as 
theories of strings, super-symmetry, membranes, and the like. 
Einstein’s stubborn insistence that something had been missed was correct, however.  The 
first of his “hidden variables” was discovered nearly a century later, the result of a small 
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mathematical thread. (Brooks, 2009,a) Tracing that thread through the historical record, it 
led to the discovery that a minor mathematical inadvertence in Planck’s brilliant blackbody 
work had induced him to assume an incomplete and abbreviated version of the full quantum 
formula. All of quantum physics was based on Planck’s simple quantum formula, and that 
assumed formula was incomplete: it was missing a time variable. After restoring the time 
variable, Planck’s constant took on new fundamental meaning. The rich quantum tapestry 
that emerged, revealed beautifully symmetric quantum principles grounded in reality and 
certainty, using the complete quantum formula and a more inclusive or complete  
“thermo”dynamic formula.  (Brooks, 2009,b) 

3. The complete quantum formula 
The complete quantum formula is: 

 
mE   h t v   (10) 

where “h̃” is the energy constant for light (6.626 X 10-34 Joules/oscillation) and “tm” is the 
measurement time variable. 

3.1 The time variable 
The complete quantum formula is quite similar to an energy relationship found in Planck’s 
early theoretical electromagnetic work from the late 1890’s.  He converted time-based power 
measurements, “E/t”, to total energy values by multiplying by the measurement time, “tm”.  
Planck’s EM theory used that simple conversion in a generic relationship in which the 
oscillation energy of a system was proportional to the product of a generic constant “a”, the 
measurement time variable, and frequency: 

  mU a  t  v    (11) 

A few years later, the time variable was lost in Planck’s complicated blackbody derivation.  
Instead of multiplying time-based energy measurements by the measurement time, Planck 
adopted Wien’s mathematical methods which converted the power measurements into 
energy density values by dividing by the speed of light.  This caused the measurement time 
variable “δtm” to be simultaneously fixed at a value of “one second”, and then “hidden”.  
Proof of these facts are found in Planck’s 1901 blackbody paper, in which he described the 
experimental data and mathematical methods he used: 
“§11. The values of both universal constants h and k may be calculated rather precisely with the aid of 
available measurement.  F. Kurlbaum, designating the total energy radiating into air from 1 sq cm of 
a black body at temperature t C in 1 sec, by St  found that: 

2 2
100 0–     0.0731 /    7.31  105  / ”S S watt cm x erg cm sec     

Instead of multiplying Kurlbaum’s time-based power measurement by the measurement 
time to obtain total energy (as Planck had done in his earlier work), he converted the power 
measurement to energy density by dividing by the speed of light “c” (3 X 1010 cm/sec), 
according to Wien’s method: 
“From this one can obtain the energy density of the total radiation energy in air at the absolute 
temperature 
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The time variables in the numerator and denominator cancelled out and Planck was 
seemingly able to address energy independent of time.  Dividing by the constant speed of 
light however, is the same as multiplying by time: 

 
2

2 3
/E ts E t Ex
c sts s

    (12) 

where “s” is distance.  In this case the time value by which the power measurement was 
multiplied was the constant “one second” unit time of the constant speed of light.  Planck 
seems to have been unaware that by using Wien’s energy density calculation he was 
actually causing the infinitely variable measurement time to be fixed at a constant value of 
one second.  He also seems to have been unaware that the fixed time variable was 
subsequently hidden in the final calculations of his action constant “h”:  

 34h  6.626 X 10 Joule seconds   (13) 

His action constant is actually the product of a true universal constant - “ h ” - and the fixed, 
hidden measurement time variable, “tm”. 

 
mh   ht  where 1 secondmt    (14) 

3.2 The energy constant 
When the missing time variable is restored to the quantum formula, the identity of Planck’s 
real universal constant becomes apparent.  The hidden constant is, in fact, a universal energy 
constant, namely the energy of a single oscillation or EM wave.  This universal energy 
constant for light is that same ”isolated quantity of energy” de Broglie searched for, i.e., the 
fundamental small quantum of light’s energy: 

  34h  6.626 X 10 Joules /oscillation   (15) 

This fact is easily verified by solving Planck’s incomplete formula for the energy of a single 
oscillation of light (see Brooks, 2009a for derivations). The numerical value Planck calculated 
for his action constant “h” is actually the numerical value of the mean oscillation energy of 
individual EM waves.  The “isolated quantity of energy” hoped for by de Broglie, has been 
found. 
The universal nature of this constant is made clear by consideration of the energy constant 
over a wide range of wavelengths, time periods and frequencies.  The mean energy of a 
single EM wave remains constant regardless of whether it is a radio wave, microwave, 
infrared, visible or ultraviolet wave.  For low frequency and long wavelength EM waves 
such as radio waves, the constant mean oscillation energy is spread out diffusely over a 
large volume of space.  At higher frequencies and shorter wavelengths, the energy becomes 
more concentrated in a smaller volume of space.  In the ultraviolet region, the energy of an 
oscillation becomes extremely dense, being confined to a very small region of space, around 
100 nanometers or so in dimension. The amount of energy in a single oscillation is the same, 
however, regardless of the volume or time period it occupies.  
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The constancy of the energy of a single EM wave over a variety of wavelengths and time 
periods means that the elementary quantum of light is constant over a shift in time or space.  
When a property is constant over a shift in time or space, that property is conserved and 
represents a universal property.  The fundamental relationships are now clear.  Just as the 
electron has a fundamental unit of charge which is conserved and represents a universal 
constant for electrons, light has a fundamental unit of energy, “h̃”, which is conserved and 
represents a universal constant for EM waves. 

3.3 The frequency variable 
Planck’s quantum formula was incomplete, and as a result did not contain the oscillation 
energy constant. This in turn resulted in a quantum formula in which the units did not 
balance: 

     E Joules  = h Joule seconds   oscillations per secondv , but Joules  Joules oscillations  
  (16) 

Scientists found they were unable to balance the quantum equations and use complete 
mathematical notation for frequency, namely cycles, waves or oscillations per second.  As a 
result, mathematically incomplete notation, which omitted descriptive units for frequency’s 
numerator, was adopted instead. Frequency is currently described in the International 
System of Units (“SI”) as “1/sec” or “sec-1”. This incomplete SI notation for frequency 
removes an essential mathematical element of reality in quantum mechanics.  
Incomplete mathematical notation for frequency is no longer required to compensate for the 
deficiencies of the incomplete quantum formula.  With the recognition of the energy 
constant – energy per oscillation - frequency can once again be correctly and completely 
notated as oscillations per unit time.  The use of complete mathematical notation in quantum  
mechanics restores a vital aspect of mathematical reality.  Recognition of “oscillations” in 
the numerator of frequency measurements provides a theoretical element corresponding to 
each element of reality in the complete quantum formula.  As Einstein argued, such a 
correspondence is a critical requirement of a complete quantum mechanics. 

3.4 The photon 
In 1926, Gilbert Lewis coined the term “photon” for Einstein’s light quantum.  The energy of 
the photon was calculated with Planck’s (incomplete) quantum formula, “E = hv”.  
Questions have been raised from time to time since then, as to whether the “photon” is truly 
an indivisible particle of light.  The answer to that question is now clearly, “No”.  The 
photon as previously defined is not an indivisible elementary particle.    
The fixed time variable and energy constant had been hidden in Planck’s “action” constant, 
and so it was not apparent to Lewis or others that what they were calling the ‘”photon” was 
actually a time-based quantity of light energy, which relied on a fixed and arbitrary one 
second measurement time interval.  A time-based amount of energy which relies on an 
arbitrarily defined time interval cannot be a fundamental or elementary particle of light.  
The photon is not an elementary particle of light. 
What is the elementary particle of light, then?  As identified by the universal energy 
constant, the elementary particle of light is the single oscillation of EM energy, i.e., a single 
cycle or wave of light.  The elementary particle of light possesses the constant energy of 
6.626 X 10-34 Joules.  It is the smallest known quantum of energy in the universe.   What was 
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labeled a “photon” by 20th century physics is actually a collection or ensemble of these small 
elementary light particles.  Each individual oscillation is a “complete unit” of light and can be 
emitted or absorbed as a complete and discreet unit.   
The “photon” is not an indivisible particle of light, and is in fact a collection or ensemble of 
light oscillations, which can act separately and individually as complete energy units.  Upon 
absorption by a detector or object, the energy of a collection of discreet oscillations can  
spread over several atoms or molecules, resulting in a multi-atom, energy distribution state 
known as “entanglement”.  (Brooks, 2009, c) This entanglement of EM energy can take place 
in different patterns or distributions, depending on the nature of the absorbing or detecting 
material.  Similarly, emission of light energy can occur from an “entangled” energy state 
shared by multiple atoms or molecules in the emitter.  An ensemble of EM waves with fewer 
than “N” oscillations (where “v = N/sec”) results in a “sub-photonic” collection of EM 
waves. The ultimate sub-photonic particle is the elementary particle of light, the single EM 
oscillation.   

3.5 The mass of light 
De Broglie bemoaned the absence of “an isolated quantity of energy” with which he could 
calculate the constant rest mass of light.  Using the energy constant for light, it is now 
possible to complete de Broglie’s calculations and determine the rest mass of a single 
quantum of light.  Under de Broglie’s original formulation using Einstein’s energy-mass 
equivalence equation of “E = mc2”, the rest mass of light is readily determined: 

 51
0m    7.372 X 10 kg /oscillation   (17) 

This value is within the same order of magnitude as the most recent and reliable estimates 
for the upper limits of the rest mass of light.  Since the energy of a single oscillation of light 
is constant, regardless of its wavelength, time period or frequency, its mass is also constant 
regardless of its wavelength, time period or frequency.  Hence, the mass of light is constant 
over a shift in time or space.  The mass of light is thus conserved and represents another 
universal constant for light (Mortenson, 2011).  
Just as the density of light’s constant wave energy varies with the length and volume the wave 
occupies, the density of its mass varies as well.  The mass of long EM radio waves, spread over 
a distance and volume of hundreds of meters, is low in density.  The identical mass, when 
confined to the small wavelength and volume of an X-ray oscillation (on the order of 10-8 to 10-

11 meters) is trillions of times more dense.  High density X-ray oscillations, with their intensely 
concentrated mass and energy, can create interactions not typically seen with low density 
radio waves, and give rise to effects such as X-ray scattering and particle-like properties.  

3.6 The momentum of light 
Momentum is classically calculated as the product of an object’s mass and its speed.  Using 
the constant mass of an EM oscillation as calculated above, and the constant speed of light 
(2.99 X 108 m/sec), De Broglie’s calculation for the momentum of light can be completed: 

 42
0  m c   2.21 X 10  kg m /sec per osc     (18) 

As with mass, the momentum of a single oscillation of light is constant, rather than being 
infinitely variable. The momentum of an EM wave is constant regardless of its wavelength, 
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time period or frequency.  Thus the momentum of light is constant over a shift in time or 
space, and is a conserved property.   
In terms of de Broglie’s earlier calculations for the masses and momenta of photons, the mass 
and momentum constants for EM waves are not contradictory or confounding.  It should be 
remembered that the photon of 20th century concepts was actually a collection of elementary 
light particles, i.e., EM oscillations.  Collections of masses and momenta can be additive.  
Summation of the constant mass and momentum of single oscillations (based on the number 
of oscillations “N” in a one second “photon”) yields the same collective mass and momentum 
that de Broglie obtained with his photon-based calculations. Although de Broglie’s mass and 
momentum calculations provided infinitely variable results, it is now recognized that his 
variable results were an artifact of the missing energy, mass and momentum constants.  A 
previously unrecognized symmetry for conservation becomes apparent.  Energy, mass and 
momentum are all conserved for both light and matter, completing the triad of conservation 
relationships outlined earlier by Helmholtz, Einstein and de Broglie. 

3.7 The force of light 
Energy, mass and momentum are all constant and conserved for light.  Using classical 
mechanics, however, it is easily discerned that the force exerted by light is not constant.   
According to Lagrange, force is the product of mass and the change in velocity “during the 
instant dt” when the velocity changes: 

 F  m v /  dt  (19) 

For changes in velocity occurring in an interval of time equal to or greater then the velocity 
unit time, the same time variable for both velocity and acceleration can be used.  If, on the 
other hand, the acceleration (or deceleration) occurs in a time interval much smaller than the 
velocity unit time (i.e., an “instantaneous” event), a second time variable, “ta”, must be used 
for the acceleration time interval.  When an EM oscillation is emitted by an object, a small bit 
of mass of 7.372 X 10-51 kg is instantaneously accelerated to the speed of light, “c”.  Likewise, 
when a light wave is absorbed by an object, its mass is instantaneously decelerated.  The 
acceleration or deceleration occurs “during the instant dt” which is the time period “τ” of the 
EM wave.  The force that accelerates an EM oscillation at its emission (or that is exerted by 
an oscillation when it is absorbed) is thus: 

 aF  m c /  t  where at     (20) 

The time periods of EM waves are infinitely variable, as are their frequencies  (τ = 1/v).  
Thus, although the mass and velocity of EM waves are constant, the forces which they exert 
are not.  The forces associated with light oscillations vary inversely with their time periods, 
and directly with their frequencies (“F = m c v”). 
The energy and mass of a radio wave, distributed over a comparatively long period of time, 
exert relatively little force on an absorbing detector.  The energy and mass of an X-ray or 
gamma ray oscillation, on the other hand, are concentrated in a minute period of time and 
exert tremendously large forces on an absorbing object.   
These EM light forces are additive, and given sufficient accumulation the forces can be quite 
large and result in the physical acceleration of absorbing matter.  (Liu et al, 2010)  The force 
of light is the operative mechanism behind “space sails” which are now being employed on 
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 51
0m    7.372 X 10 kg /oscillation   (17) 

This value is within the same order of magnitude as the most recent and reliable estimates 
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11 meters) is trillions of times more dense.  High density X-ray oscillations, with their intensely 
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 42
0  m c   2.21 X 10  kg m /sec per osc     (18) 

As with mass, the momentum of a single oscillation of light is constant, rather than being 
infinitely variable. The momentum of an EM wave is constant regardless of its wavelength, 
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time period or frequency.  Thus the momentum of light is constant over a shift in time or 
space, and is a conserved property.   
In terms of de Broglie’s earlier calculations for the masses and momenta of photons, the mass 
and momentum constants for EM waves are not contradictory or confounding.  It should be 
remembered that the photon of 20th century concepts was actually a collection of elementary 
light particles, i.e., EM oscillations.  Collections of masses and momenta can be additive.  
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of oscillations “N” in a one second “photon”) yields the same collective mass and momentum 
that de Broglie obtained with his photon-based calculations. Although de Broglie’s mass and 
momentum calculations provided infinitely variable results, it is now recognized that his 
variable results were an artifact of the missing energy, mass and momentum constants.  A 
previously unrecognized symmetry for conservation becomes apparent.  Energy, mass and 
momentum are all conserved for both light and matter, completing the triad of conservation 
relationships outlined earlier by Helmholtz, Einstein and de Broglie. 

3.7 The force of light 
Energy, mass and momentum are all constant and conserved for light.  Using classical 
mechanics, however, it is easily discerned that the force exerted by light is not constant.   
According to Lagrange, force is the product of mass and the change in velocity “during the 
instant dt” when the velocity changes: 

 F  m v /  dt  (19) 

For changes in velocity occurring in an interval of time equal to or greater then the velocity 
unit time, the same time variable for both velocity and acceleration can be used.  If, on the 
other hand, the acceleration (or deceleration) occurs in a time interval much smaller than the 
velocity unit time (i.e., an “instantaneous” event), a second time variable, “ta”, must be used 
for the acceleration time interval.  When an EM oscillation is emitted by an object, a small bit 
of mass of 7.372 X 10-51 kg is instantaneously accelerated to the speed of light, “c”.  Likewise, 
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an oscillation when it is absorbed) is thus: 

 aF  m c /  t  where at     (20) 

The time periods of EM waves are infinitely variable, as are their frequencies  (τ = 1/v).  
Thus, although the mass and velocity of EM waves are constant, the forces which they exert 
are not.  The forces associated with light oscillations vary inversely with their time periods, 
and directly with their frequencies (“F = m c v”). 
The energy and mass of a radio wave, distributed over a comparatively long period of time, 
exert relatively little force on an absorbing detector.  The energy and mass of an X-ray or 
gamma ray oscillation, on the other hand, are concentrated in a minute period of time and 
exert tremendously large forces on an absorbing object.   
These EM light forces are additive, and given sufficient accumulation the forces can be quite 
large and result in the physical acceleration of absorbing matter.  (Liu et al, 2010)  The force 
of light is the operative mechanism behind “space sails” which are now being employed on 
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space craft.  The sails of the ancient mariners were pushed by the forces of the wind which 
filled them.  The sails of modern space explorers are now filled by the forces of light which 
impinge on them.  Likewise, an object emitting light experiences a recoil force proportional 
to the emission force of the EM waves.  (She et al, 2008) 

3.8 Classical limit 
The quantum pioneers anticipated that classical mechanics would be used to provide a  
description of physical processes at very small length and energy scales.  Numerous 
roadblocks were encountered, however, due to the hidden quantum variables and 
constants.  The quantum mechanics developed by Heisenberg and Schrödinger provided a 
mathematical framework for low energy kinetics, however they were unable to obtain the 
certainty and definitiveness provided by classical mechanics.  Without the mass constant for 
EM waves, it was impossible to use classical properties of position, time, and mass in any 
meaningful way.  Heisenberg and Bohr found that they were limited to finding just 
probabilities, and that they could apply classical mechanics only at very high electron 
energy levels.  The region where the classical and quantum mechanics formed a boundary 
zone, was deemed the “classical limit” by Bohr.  (Bohr, 1920) Above the limit, classical 
mechanics could be applied with reality and certainty, while below the limit all was 
uncertain and only quantum mechanics could be applied.   
Using the new quantum variables and constants, the classical limit/boundary zone between 
quantum and classical mechanics is disappearing.  (Mortenson, 2010,a)  It is now possible to 
use classical mechanics at the smallest possible energy levels for light, equivalent to 
fractions of a percentage of the lowest known electron energy levels.  The kinetics of energy 
absorption for a single EM oscillation, namely 6.626 X 10-34 Joules, are now fully describable 
using classical mechanics.  In this regard, the classical limit previously theorized by Bohr, is 
being recognized as an artifact of the missing quantum variables and constants.   
The application of classical physics at the smallest known energy levels, is made possible 
with the use of the second hidden time variable, Lagrange’s acceleration time variable, “ta”.  
The absorption or emission of an EM oscillation in the visible light region takes place in 10-10 

seconds.  This results in a near instantaneous deceleration or acceleration of light’s mass.  
The energy required to accelerate a body is a function of the distance over which the force 
acts, “F δs”.  In the case of an individual EM oscillation, the distance over which the force 
acts is the wavelength, “λ” of the oscillation.   Multiplying the variable force for light by its 
wavelength, i.e.,  “F δs  = (m c v) λ”, results in constant energy of “mc2”, or in other words 
6.626 X 10-34 Joules/osc.  The energy constant for light is thus quickly derived from first 
principles of position, time and mass.   
Lack of appreciation, for the caveats of Lagrange and Coriolis regarding acceleration time 
intervals and instantaneous events, contributed to the perception that a barrier or limit 
existed between classical and quantum mechanics.  The new fundamental physics of EM 
waves reveals that particle mechanics can be described at both the macroscale and 
microscale levels using the certainty, realism and determinism of classical mechanics.   

3.9 The uncertainty principle 
Heisenberg suggested the uncertainty principle as a response to the inability of early 
quantum pioneers to determine quantum properties related to time or energy with any 
certainty.  He proposed that changes in energy and time are uncertain to the extent that their 
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product must always be greater than or equal to Planck’s constant (ΔE Δt  ≥  h).  That 
principle included, of course, the incomplete quantum constant “h”, which hid an energy 
constant and a fixed time variable.  Heisenberg’s uncertainty principle cured a multitude of 
quantum paradoxes, and as David Bohm wrote a generation later, “the physical interpretation 
of the quantum theory centers around the uncertainty principle”.  When “h” is properly replaced 
with the energy constant and measurement time however, the physical interpretation of 
quantum theory is changed dramatically and centers around certainty and constancy, where 
the change in energy is the energy of a single EM wave, and the change in time “Δt” and 
measurement time “tm” are equal to the time period “τ” for the oscillation.: 

 mE t    h t     and E  h    (21) 

The smallest possible change in energy is the energy of a single wave of light.   
This concept was obscured in the past due to the absence of a separate energy constant and 
time variable in Planck’s quantum formula.  Under the circumstances, it was inevitable that 
calculations of quantities involving time and energy, would yield uncertain results.  The 
uncertainty is now gone, replaced by a quantum mechanics that accommodates a more 
certain and realistic physical interpretation. 

3.10 The fine structure constant 
The fine-structure constant “has been a mystery every since it was discovered more than fifty years 
ago, and all good theoretical physicists put this number up on their wall and worry about it….It’s one 
of the greatest damn mysteries of physics: a magic number that comes to us with no understanding by 
man…”  (Feinman, 1988) 
Using the newly discovered quantum constants and variables, the fine structure constant 
“” is far less of a mystery.  Examination of the fine structure constant in relation to light’s 
action “S” and Planck’s constant “h” (i.e., “ h = S”), and substitution  of  “h” with the  
energy constant “ h ” one finds: 

 1S
h

   , or in other words osc(Et)
E

   and osct    (22) 

The fine structure constant is not dimensionless.  It represents a scaling constant between 
time and a single oscillation of EM energy, i.e., “osc t”.  As such, a theoretical element 
corresponding to an element of reality is now provided for the fine structure constant.  This 
is a critical requirement for a complete quantum mechanics. 

3.11 Wave – Particle duality  
Two opposing models of light – particles and waves – have been debated for centuries.  Some 
investigations suggest light is composed of waves, while others suggest particles.   This 
conundrum led Einstein to object, ““But what is light really?  Is it a wave or a shower of photons? 
There seems no likelihood for forming a consistent description of the phenomena of light…we must use 
sometimes the one theory and sometimes the other…”. (Einstein, 1938)  Bohr responded to these two 
contradictory pictures of reality with his complementarity principle, asserting that certain 
aspects of light could be viewed one way or another, but never both at the same time. 
We are now presented with a picture of reality which demands that we view light 
simultaneously as a wave and a particle. The elementary “particle” of light is the single EM 
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absorption for a single EM oscillation, namely 6.626 X 10-34 Joules, are now fully describable 
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waves reveals that particle mechanics can be described at both the macroscale and 
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product must always be greater than or equal to Planck’s constant (ΔE Δt  ≥  h).  That 
principle included, of course, the incomplete quantum constant “h”, which hid an energy 
constant and a fixed time variable.  Heisenberg’s uncertainty principle cured a multitude of 
quantum paradoxes, and as David Bohm wrote a generation later, “the physical interpretation 
of the quantum theory centers around the uncertainty principle”.  When “h” is properly replaced 
with the energy constant and measurement time however, the physical interpretation of 
quantum theory is changed dramatically and centers around certainty and constancy, where 
the change in energy is the energy of a single EM wave, and the change in time “Δt” and 
measurement time “tm” are equal to the time period “τ” for the oscillation.: 
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The smallest possible change in energy is the energy of a single wave of light.   
This concept was obscured in the past due to the absence of a separate energy constant and 
time variable in Planck’s quantum formula.  Under the circumstances, it was inevitable that 
calculations of quantities involving time and energy, would yield uncertain results.  The 
uncertainty is now gone, replaced by a quantum mechanics that accommodates a more 
certain and realistic physical interpretation. 
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ago, and all good theoretical physicists put this number up on their wall and worry about it….It’s one 
of the greatest damn mysteries of physics: a magic number that comes to us with no understanding by 
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energy constant “ h ” one finds: 
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The fine structure constant is not dimensionless.  It represents a scaling constant between 
time and a single oscillation of EM energy, i.e., “osc t”.  As such, a theoretical element 
corresponding to an element of reality is now provided for the fine structure constant.  This 
is a critical requirement for a complete quantum mechanics. 
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Two opposing models of light – particles and waves – have been debated for centuries.  Some 
investigations suggest light is composed of waves, while others suggest particles.   This 
conundrum led Einstein to object, ““But what is light really?  Is it a wave or a shower of photons? 
There seems no likelihood for forming a consistent description of the phenomena of light…we must use 
sometimes the one theory and sometimes the other…”. (Einstein, 1938)  Bohr responded to these two 
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We are now presented with a picture of reality which demands that we view light 
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oscillation or “wave”.  Although the time and space the wave occupies may vary, that 
variance is according to the constant ratio “c”, and the elementary particle’s energy, mass 
and momentum remain constant as well. 
The divergent pictures of the past resulted from relative size differences between the EM 
waves and the matter with which they interacted.   For example, scattering studies were first 
performed using soft X-rays with wavelengths larger than atoms, and no clear-cut particle 
properties were detected.  When Arthur Compton used ultra-short hard X-rays and gamma 
rays, however (up to two orders of magnitude smaller than an atom) he observed particle-like 
properties. (Compton, 1923) The concentrated energy and mass of the X–ray and gamma ray 
waves appeared as small points relative to the size of the atoms in the irradiated materials.  
On the other hand, one and two-slit experiments demonstrate wave-like properties for light 
via interference bands. These wave-like properties are also relative, however, to the sizes of 
the light oscillations and the matter with which they interact. For a slit whose width is equal 
to the wavelength of the light, no interference bands are observed and particle-like behavior 
is seen. It is only when the width of the slit is increased relative to the wavelength of the 
light that interference bands and wave-like properties begin to appear.  
Recent experiments with light slits and “single photons” reveal as much about the detecting 
material as they do about the light itself.  A “photon” is merely a collection of individual EM 
quanta. When visible light waves (which are much larger in size (400 – 800 nm) relative to 
the individual atoms in the detector (0.1 – 0.5 nm)), strike a detector the energy of the light 
wave ensemble impinges on multiple detector atoms simultaneously.  This produces an 
energy entanglement state in several of the detector atoms. (Brooks, 2009, c)  Distribution of 
the light energy over several atoms excites a small point-like portion of the detector material 
resulting in a photonic reaction, and produces a particle-like pattern in the detector. 
(Roychouhuri, 2009) Although the resulting detector imaging appears to show the buildup 
over time of “photon” collisions, they actually show the buildup of energy entanglement 
states in the detector itself, which are subject to positive and negative interference within 
and between groups of entangled atoms. 

4. Energy dynamics 
The experimental data Planck used to derive the blackbody equation and thermodynamic 
formula did not include any measurements arising from orderly work energy. Hence, 
Planck did not include work energy in his thermodynamic formula, “E =  kB T”.  Instead, 
Planck’s formulation was limited exclusively to the energy of a small system element (e.g., 
an atom, molecule or ion) based only on its temperature and random chaotic motion. 
When orderly work energy is present in a system, more inclusive formulae must be used to 
represent the total energy of a system or its elements. (Brooks, 2009b and Mortenson, 2010b) 
Helmholtz’s energy equation, “E = A + TS”, embodies once such inclusive formula on the 
macroscale, and represents the total energy of a system as the sum of its work and thermal 
energies.  This more complete formula encompasses significantly more than simple 
thermodynamics, and is more appropriately referred to as an energy dynamics formula.   

4.1 Energy dynamics formula 
A complete energy dynamic formula for an entire system is given by Helmholtz’s energy 
equation, “E = A + TS”, (Equation 4., above).  While calculation of the thermal energy of a 
system is relatively simple and straightforward, determination of the total work energy can 
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be considerably more involved.  Work energies come in many forms, including mechanical, 
chemical, gravitational and resonant energies.  Resonance work energy is a broad category 
encompassing time-varying forces and fields such as sound waves, electric or magnetic 
fields, and light waves.  These resonant energies couple to matter via “sympathetic resonance” 
and are denoted in the fundamental energy dynamics formula as, “Ar”: 

 r   E  A  TS    (23) 

The fundamental principle described by Galileo in his pendulum studies holds true for 
resonant work energies, i.e., “by [providing a time-varying energy one may] confer a Motion, and a 
Motion considerably great by reiterating…but only under the Time properly belonging to its 
Vibrations”.  Anyone who has pushed a child on a swing has applied a resonant mechanical 
energy to the child/swing system.  Pushing the child at just the right time (i.e., the resonant 
frequency for the child/swing ensemble) increases the speed, height and excitement of the 
child’s ride.  Pushing at the wrong time, when the child is a few meters away, produces no 
effect on the system and may detract from the excitement of the child’s ride. 
In the same way, electromagnetic waves impinging on a material transfer resonant EM 
energy to the absorbing matter via their momentum, force, speed and mass. An acceleration 
of the oscillating element within the system results from the applied EM force, and an 
increase in the oscillation amplitude of that element results (see Fig. 1, above). Thus, 
“pushing” the system elements with EM waves at just the right time increases the amplitude 
(height) of the system’s oscillations and excites them to higher energy levels.  The amount 
the system’s oscillation amplitude increases is a function of how close the resonant EM wave 
frequency is to the oscillation frequency inside the system (Eq. 2., and Fig. 2, above).   
The increased oscillation amplitudes and energy levels in the system can perform work in a 
variety of ways, depending on which element or oscillation amplitude is increased.  For 
example, changes in motion, chemical, material, organizational, or behavioral states may all 
result from a resonant energy excitement in the system.   
Expressed at the microscale level, a complete energy dynamics formula for the total energy 
of an individual element in a system is formulated parallel to Helmholtz’s system formula: 

 e   BE  W    k T    (24) 

where “We”, is the total microscale work variable representing the total work performed on 
an individual element.  In the case of resonance work energy, a resonance work variable, 
“rA” can be used.  This microscale resonance work variable represents the energy gained by 
an individual element in a system, as a result of resonance work energy, “Ar ”, applied to the 
system as a whole: 

 A   BE   r    k T    (25) 

4.2 Determination of system resonance work energy “Ar” 
The resonance work energy (system/macroscale) and variable (element/microscale) may be 
determined experimentally.  An aqueous solvent system under resonant conditions was 
compared to an identical system under thermal conditions (see Table 1., below): 1   
                                                 
1 Experimental Procedure – Distilled water (500 ml at 20° C) was placed in each of two 1,000 ml beakers.  One 
beaker was irradiated with resonant vibrational electromagnetic frequencies of water for three (3) hours, by a light 
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Expressed at the microscale level, a complete energy dynamics formula for the total energy 
of an individual element in a system is formulated parallel to Helmholtz’s system formula: 

 e   BE  W    k T    (24) 

where “We”, is the total microscale work variable representing the total work performed on 
an individual element.  In the case of resonance work energy, a resonance work variable, 
“rA” can be used.  This microscale resonance work variable represents the energy gained by 
an individual element in a system, as a result of resonance work energy, “Ar ”, applied to the 
system as a whole: 

 A   BE   r    k T    (25) 

4.2 Determination of system resonance work energy “Ar” 
The resonance work energy (system/macroscale) and variable (element/microscale) may be 
determined experimentally.  An aqueous solvent system under resonant conditions was 
compared to an identical system under thermal conditions (see Table 1., below): 1   
                                                 
1 Experimental Procedure – Distilled water (500 ml at 20° C) was placed in each of two 1,000 ml beakers.  One 
beaker was irradiated with resonant vibrational electromagnetic frequencies of water for three (3) hours, by a light 
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 Resonant system Thermal system 

Weight Dissolved (g/100ml NaCl) 26.0 23.8 

Moles Dissolved (NaCl) 4.65 4.25 

Heat of solution (kJ) 17.4 16.0 

Table 1. Resonant vs. Thermal aqueous solvent system 

The heat of solution is a measurement of the work performed by the solvent on the 
dissolving solute. The work performed by the resonant system was 17.4 kJ, while the 
thermal system performed only 16.0 kJ of work on the NaCl solute.  The energy dynamics 
formulae for both systems are: 

 Thermal system TE  TS , and  16.0 kJ   274  K  S    (26) 

 Resonant system R rE  A  TS   and  r17.4 kJ  A     274  K  S     (27) 

Subtracting, one finds that the resonance work energy, “Ar ”, in  the resonant system is 1.4 kJ 
of energy: 

  rA     1.4 kJ   (28) 

4.3 The resonance factor 
The ratio of the total energy in the resonant system to the total energy in the thermal system: 

 R T fE /  E    r   (29) 

is the resonance factor, “rf “.   In the aqueous solvent system described above, the 
resonance factor is 1.09.  There was 9% more energy available in the resonant system to 
perform work on the solute and to dissolve it.  This resonance work energy was in 
addition to the thermal energy already inherent in the system as a result of its 
temperature. 

4.4 Determination of element resonance work energy “rA” 
The amount of resonance work energy at the microscale is the resonance work variable, 
“rA”.  In the solvent system example, individual elements in the system irradiated with 
resonant EM waves possessed greater energy than the elements in the thermal system. 
The value of the microscale resonance work energy can be calculated using Equation 25., 
above: 
                                                                                                                            
source using 2.1 kJ total energy.  The other beaker was placed in an opaque incubator for three (3) hours.  The 
water in both beakers at the end of the three (3) hours was 23° C.  Sodium chloride (250 g) was added to each 
beaker, and the beakers were stored identically in a darkened cabinet.  Twenty (20) hours later temperatures of the 
solutions were identical (21° C / 274° K).  The solutions were decanted and the dissolved weight, salinity 
and concentration measurements of the resonant and thermal saline solutions were made using standard methods. 
(Brooks et al, 2005)  
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 Thermal element t BE  k T  and 23
TE    405 X 10 J per molecule   (30) 

 Resonant element r A   BE  r    k T   and 23
rE     440 X 10 J per molecule   (31) 

Subtraction shows that each water molecule in the resonant system performed an additional 
35 X 10-23 J of work on the solute, as a result of absorption of the resonant EM waves. 

4.5 Virtual thermal effects of resonant EM waves 
When resonant EM waves perform work on a system and increase one or more oscillation 
amplitudes within the system, that increased oscillation energy is free to be transformed into 
work within the system.  In the case of the aqueous solvent system described in the 
experimental example above, the vibrational oscillations of the solvent water molecules were 
excited. This in turn led to a change in the behavior of the water as a solvent.  The resonant 
water dissolved 26.0 g/100 ml of NaCl, while the thermal water dissolved only 23.8 g/100 ml.   
To what temperature would the thermal system need to be raised, in order to dissolve the 
same amount of NaCl that the resonant system dissolved, all else being equal?  This is 
readily calculated by setting the total element energy in the resonant system equal to the 
thermal energy, and solving for temperature “T”: 

 r   BE  k T , therefore r   BT  E /  k   (32) 

T   319ºK (46ºC)   

In order to dissolve the same amount of NaCl in the thermal system, that the resonant 
system had dissolved, the thermal system would have had to be heated to 46 º C.  The water 
in the resonant system behaved as though it had been heated to 46 º C, even though it had 
not.  The EM waves provided a virtual thermal effect in the resonant solvent system. 

4.6 Energy efficiency of resonant EM waves 
As Helmholtz described many decades ago, energy can be transformed and converted from 
one form to another, “…heat, electricity, magnetism, light, and chemical affinity “.  The 
efficiencies with which these transformations take place is not uniform across all 
conversions of energy.  Depending on the process and desired end-result or product, the 
energy transformation efficiency can vary widely.  For example, in the water solvent 
example given above, one would need to heat the water to 46 º C, in order to dissolve the 
same amount of salt that the resonant water system had dissolved.  Heating 500 ml of water 
to that higher temperature would require at least 52 kJ of energy.   
On the other hand, the light source which provided the resonant vibrational EM waves to 
the resonant system consumed only 2.1 kJ of energy.  (Mortenson & George, 2011).  The total 
additional energy required to achieve the desired end-result or product (i.e., dissolve more 
salt), is far less with the resonant EM waves: ninety-six percent (96%) less, in fact.   
The total extra heat of dissolution work performed by the resonant water on the solute was 
1.4 kJ.  The energy transformation efficiency for the resonant system was  67%.  If one were 
to heat the thermal water to increase its temperature by 25º, using the 52 kJ of energy, the 
efficiency of the thermal energy conversion into heat of dissolution would be only 3%.  
There is more than an order of magnitude difference between the energy conversion 
efficiency of the resonant EM system and the thermal system.   
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4.7 Boltzmann weighting 
Under Boltzmann mechanics for purely random and chaotic thermal systems, the elements 
(e.g., molecules) in a system adhere to a thermal distribution curve (Figure 3.a., below).   In 
general terms, at low temperatures, most of the elements or molecules are at the lowest 
possible energy level or ground state. As the temperature in the system increases, the 
elements begin to leave the lower energy levels and populate the upper energy levels.  At 
very high temperatures, several of the upper energy levels may be populated, leaving  few 
molecules in the lowest ground state.  The distribution of elements in the energy levels is 
determined with the Boltzmann factor: 

n BE /k Te  

This is a weighting factor that determines the probability that an element will be in the “nth” 
energy state when the system is in thermodynamic equilibrium.  The Boltzmann factor 
excludes consideration of resonant work energies (which are orderly), and assumes 
completely random motions in the system.  Helmholtz energies are thus typically assumed 
to be at a minimum when Boltzmann mechanics are applied. 
 

 
Fig. 3. Comparison of energy level population states under thermal conditions and resonant 
EM conditions. Upper energy level populations are increased as temperature increases.  
Absorption of resonant EM waves produces an irregular resonant energy distribution curve.  
This can result in system behavior equivalent to a “virtual” thermal distribution curve.  

When a system is exposed to resonant EM waves, a “virtual” thermal effect can be 
produced, as in the aqueous solvent example above.  In such a case, the “virtual” thermal 
distribution may be determined using a modification to the Boltzmann weighting factor: 

n f BE /r k Te  

in which the resonance factor, “rf” is included.  The resulting thermal distribution curve reveals 
the energy state distribution curve of the thermodynamic system that would result in the same 
desired product or behavior that is produced by the system absorbing resonant energy.   
The assumptions of randomness in the Boltzmann mechanics do not apply to resonant EM 
systems, with their uniform work energies, and systems exposed to resonant EM waves do 
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not follow the smooth thermal distributions curves, however.  Individual energy levels in 
the system may be selectively populated, changing the shape of the traditional smooth 
curve, to a bulging or “lumpy” energy distribution curve. (Figure 3b., above).  Absorption of 
resonant EM waves initially results in increased population of an upper energy level.  As the 
energy is converted to work in the system, the energy state devolves and relaxes.  When all 
of the work energy has been spent, a thermal distribution is once again exhibited.  
Depending on which energy level(s) are selectively populated, the work performed will 
vary and can include speeding the rate of a reaction in a catalytic manner, e.g., virtual 
thermal effects can replace chemical activation energies. (Fukushima J. et al, 2010)   

4.8 Equilibrium constant 
In chemical and materials systems the work performed by the resonant EM waves can also 
shift the equilibrium of the system and produce dramatic changes in its chemical and 
material dynamics.  In the dynamic equilibrium of chemical and material systems, in which 
reactants are transformed into products at the same rate products are transformed back into 
reactants, the equilibrium constant “K” indicates the point of dynamic equilibrium (product-
to-reactant concentration ratio). Systems with a large equilibrium constant contain mostly 
product, while a low “K” indicates mainly reactants.   
 

   
Fig. 4. a. Thermal system Fig. 4. b. Resonant system 

In statistical thermodynamics the equilibrium constant is proportional to another natural log, K 
≈ e-ΔE/RT” (where ΔE is chemical free energy).  When resonant EM waves are present in a 
system, the resonance factor properly appears in the denominator of the power notation, i.e., 
“rfRT” to reflect the total increase in system energy.  If the resonant EM waves increase chemical 
free energy, “ΔE”, the ratio of chemical free energy to system energy remains the same. The 
equilibrium constant does not change, however the EM waves act as a catalyst and increase the 
rate of the reaction.   (If the chemical free energy decreases, i.e., the resonance factor is less than 
“one”, the EM waves will act as a negative catalyst and slow the rate of reaction.)  
When resonant EM waves are absorbed and transformed to something other than chemical 
free energy, then ΔE/rfRT < ΔE/RT , and the equilibrium constant will increase.  Resonant 
EM waves that perform useful work on a system can thus increase the equilibrium constant, 
“K”, and increase the actual concentration of desired products.  Resonant EM waves can 
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not follow the smooth thermal distributions curves, however.  Individual energy levels in 
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Fig. 4. a. Thermal system Fig. 4. b. Resonant system 
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cause a shift of the equilibrium curve. (Figure 4.b., above)  In other words, resonant EM 
waves can achieve results not obtainable with classical catalysis or thermodynamics.  (Brooks 
and Abel, 2007, Blum et al, 2003, Fukushima H., 2010, and Roy et al, 2002) 

5. Conclusion 
The two fundamental formulae which formed the foundations of quantum mechanics and 
20th century physics were both incomplete in regard to electromagnetic waves. The quantum 
formula was missing a time variable and energy constant, due to a minor inadvertence in 
Max Planck’s derivation of the blackbody equation.  Unforeseen consequences occurred as a 
result.  The identity of the true elementary particle of light – the single EM oscillation – was 
obscured.  Mathematical nomenclature for frequency became incomplete.  Calculations of 
the mass, momentum, and force of EM waves were made impossible.  Paradoxical 
principles including the classical limit, the uncertainty principle, and the complementarity 
principle were made necessary.  Dimensionality of the fine structure constant was hidden, 
and great confusion arose over the wave vs. particle nature of light.  Use of the complete 
quantum formula remedies these difficulties and provides a sound foundation for a certain 
and realistic quantum mechanics. 
Likewise, the thermodynamic formula derived in Planck’s blackbody work was not an 
inclusive or complete formula for energy dynamics. The complete energy dynamics 
formulae allow the resonant EM work energies in systems to be accounted for 
mathematically, both at the macroscale and microscale.  Traditional Boltzmann mechanics 
cannot be strictly applied to EM waves, because Boltzmann mechanics assume completely 
random motions.  Absorption of uniform EM waves requires modifications of Boltzmann 
weighting. Resonant EM waves can provide virtual thermal effects, decreased energy 
requirements, and increased energy efficiencies.  Depending on how their energy is 
converted to work, resonant EM waves can act as catalysts - changing chemical or materials 
reaction rates - or they can shift reaction equilibria altogether, producing effects and 
products not seen or obtainable under typical thermodynamic conditions.   
A new and powerful scientific paradigm is being revealed in the fundamental physics of 
electromagnetic waves. 
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1. Introduction

“A physicist needs his equations should be mathematically sound and that in working with
his equations he should not neglect quantities unless they are small”
P.A. M. Dirac

Classical electrodynamics is nowadays considered [29; 57; 80] the most fundamental physical
theory, largely owing to the depth of its theoretical foundations and wealth of experimental
verifications. Electrodynamics is essentially characterized by its Lorentz invariance from a
theoretical perspective, and this very important property has had a revolutionary influence
[29; 57; 80; 102; 111] on the whole development of physics. In spite of the breadth and
depth of theoretical understanding of electromagnetism, there remain several fundamental
open problems and gaps in comprehension related to the true physical nature of Maxwell’s
theory when it comes to describing electromagnetic waves as quantum photons in a vacuum:
These start with the difficulties in constructing a successful Lagrangian approach to classical
electrodynamics that is free of the Dirac-Fock-Podolsky inconsistency [53; 111; 112], and end
with the problem of devising its true quantization theory without such artificial constructions
as a Fock space with “indefinite” metrics, the Lorentz condition on “average”, and
regularized “infinities” [102] of S-matrices. Moreover, there are the related problems
of obtaining a complete description of the structure of a vacuum medium carrying the
electromagnetic waves and deriving a theoretically and physically valid Lorentz force
expression for a moving charged point particle interacting with and external electromagnetic
field. To describe the essence of these problems, let us begin with the classical Lorentz force
expression

F := qE + qu × B, (2.1)

where q ∈ R is a particle electric charge, u ∈ E3 is its velocity vector, expressed here in the
light speed c units,
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his equations he should not neglect quantities unless they are small”
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Classical electrodynamics is nowadays considered [29; 57; 80] the most fundamental physical
theory, largely owing to the depth of its theoretical foundations and wealth of experimental
verifications. Electrodynamics is essentially characterized by its Lorentz invariance from a
theoretical perspective, and this very important property has had a revolutionary influence
[29; 57; 80; 102; 111] on the whole development of physics. In spite of the breadth and
depth of theoretical understanding of electromagnetism, there remain several fundamental
open problems and gaps in comprehension related to the true physical nature of Maxwell’s
theory when it comes to describing electromagnetic waves as quantum photons in a vacuum:
These start with the difficulties in constructing a successful Lagrangian approach to classical
electrodynamics that is free of the Dirac-Fock-Podolsky inconsistency [53; 111; 112], and end
with the problem of devising its true quantization theory without such artificial constructions
as a Fock space with “indefinite” metrics, the Lorentz condition on “average”, and
regularized “infinities” [102] of S-matrices. Moreover, there are the related problems
of obtaining a complete description of the structure of a vacuum medium carrying the
electromagnetic waves and deriving a theoretically and physically valid Lorentz force
expression for a moving charged point particle interacting with and external electromagnetic
field. To describe the essence of these problems, let us begin with the classical Lorentz force
expression

F := qE + qu × B, (2.1)

where q ∈ R is a particle electric charge, u ∈ E3 is its velocity vector, expressed here in the
light speed c units,
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2 Will-be-set-by-IN-TECH

E := −∂A/∂t −∇ϕ (2.2)

is the corresponding external electric field and

B := ∇× A (2.3)

is the corresponding external magnetic field, acting on the charged particle, expressed in terms
of suitable vector A : M4 → E3 and scalar ϕ : M4 → R potentials. Here “∇” is the standard
gradient operator with respect to the spatial variable r ∈ E3, “×” is the usual vector product in
three-dimensional Euclidean vector space E3, which is naturally endowed with the classical
scalar product < ·, · >. These potentials are defined on the Minkowski space M4 := R × E3,
which models a chosen laboratory reference system K. Now, it is a well-known fact [56; 57; 70;
80] that the force expression (2.1) does not take into account the dual influence of the charged
particle on the electromagnetic field and should be considered valid only if the particle charge
q → 0. This also means that expression (2.1) cannot be used for studying the interaction
between two different moving charged point particles, as was pedagogically demonstrated in
[57].
Other questionable inferences, which strongly motivated the analysis in this work, are related
both to an alternative interpretation of the well-known Lorentz condition, imposed on the
four-vector of electromagnetic potentials (ϕ, A) : M4 → R × E3 and the classical Lagrangian
formulation [57] of charged particle dynamics under an external electromagnetic field. The
Lagrangian approach is strongly dependent on the important Einsteinian notion of the rest
reference system Kr and the related least action principle, so before explaining it in more
detail, we first analyze the classical Maxwell electromagnetic theory from a strictly dynamical
point of view.

2. Relativistic electrodynamics models revisited: Lagrangian and Hamiltonian
analysis

2.1 The Maxwell equations revisiting
Let us consider the additional Lorentz condition

∂ϕ/∂t+ < ∇, A >= 0, (2.4)

imposed a priori on the four-vector of potentials (ϕ, A) : M4 → R × E3, which satisfy the
Lorentz invariant wave field equations

∂2 ϕ/∂t2 −∇2 ϕ = ρ, ∂2 A/∂t2 −∇2 A = J, (2.5)

where ρ : M4 → R and J : M4 → E3 are, respectively, the charge and current densities of the
ambient matter, which satisfy the charge continuity equation

∂ρ/∂t+ < ∇, J >= 0. (2.6)

Then the classical electromagnetic Maxwell field equations [56; 57; 70; 80]

∇× E + ∂B/∂t = 0, < ∇, E >= ρ, (2.7)

∇× B − ∂E/∂t = J, < ∇, B >= 0,
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hold for all (t, r) ∈ M4 with respect to the chosen reference system K.
Notice here that Maxwell’s equations (2.7) do not directly reduce, via definitions (2.2) and
(2.3), to the wave field equations (2.5) without the Lorentz condition (2.4). This fact is very
important, and suggests that when it comes to a choice of governing equations, it may be
reasonable to replace Maxwell’s equations (2.7) and (2.6) with the Lorentz condition (2.4),
(2.5) and the continuity equation (2.6). From the assumptions formulated above, one infers
the following result.

Proposition 2.1. The Lorentz invariant wave equations (2.5) for the potentials (ϕ, A) : M4 →
R × E3, together with the Lorentz condition (2.4) and the charge continuity relationship (2.5), are
completely equivalent to the Maxwell field equations (2.7).

Proof. Substituting (2.4), into (2.5), one easily obtains

∂2 ϕ/∂t2 = − < ∇, ∂A/∂t >=< ∇,∇ϕ > +ρ, (2.8)

which implies the gradient expression

< ∇,−∂A/∂t −∇ϕ >= ρ. (2.9)

Taking into account the electric field definition (2.2), expression (2.9) reduces to

< ∇, E >= ρ, (2.10)

which is the second of the first pair of Maxwell’s equations (2.7).
Now upon applying ∇× to definition (2.2), we find, owing to definition (2.3), that

∇× E + ∂B/∂t = 0, (2.11)

which is the first of the first pair of the Maxwell equations (2.7).
Applying ∇× to the definition (2.3), one obtains

∇× B = ∇× (∇× A) = ∇ < ∇, A > −∇2A =

= −∇(∂ϕ/∂t)− ∂2 A/∂t2 + (∂2 A/∂t2 −∇2 A) =

=
∂

∂t
(−∇ϕ − ∂A/∂t) + J = ∂E/∂t + J, (2.12)

leading to
∇× B = ∂E/∂t + J,

which is the first of the second pair of the Maxwell equations (2.7). The final “no magnetic
charge” equation

< ∇, B >=< ∇,∇× A >= 0,

in (2.7) follows directly from the elementary identity < ∇,∇× >= 0, thereby completing the
proof.

This proposition allows us to consider the potential functions (ϕ, A) : M4 → R × E3 as
fundamental ingredients of the ambient vacuum field medium, by means of which we can try to
describe the related physical behavior of charged point particles imbedded in space-time M4.
The following observation provides strong support for this approach:
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4 Will-be-set-by-IN-TECH

Observation. The Lorentz condition (2.4) actually means that the scalar potential field ϕ : M4 → R

continuity relationship, whose origin lies in some new field conservation law, characterizes the deep
intrinsic structure of the vacuum field medium.
To make this observation more transparent and precise, let us recall the definition [56; 57; 70;
80] of the electric current J : M4 → E3 in the dynamical form

J := ρv, (2.13)

where the vector v : M4 → E3 is the corresponding charge velocity. Thus, the following
continuity relationship

∂ρ/∂t+ < ∇, ρv >= 0 (2.14)

holds, which can easily be recast [122] as the integral conservation law

d
dt

∫

Ωt

ρd3r = 0 (2.15)

for the charge inside of any bounded domain Ωt ⊂ E3 moving in the space-time M4 with
respect to the natural evolution equation

dr/dt := v. (2.16)

Following the above reasoning, we are led to the following result.

Proposition 2.2. The Lorentz condition (2.4) is equivalent to the integral conservation law

d
dt

∫

Ωt

ϕd3r = 0, (2.17)

where Ωt ⊂ E3 is any bounded domain moving with respect to the evolution equation

dr/dt := v, (2.18)

which represents the velocity vector of local potential field changes propagating in the Minkowski
space-time M4.

Proof. Consider first the corresponding solutions to the potential field equations (2.5), taking
into account condition (2.13). Owing to the results from [57; 70], one finds that

A = ϕv, (2.19)

which gives rise to the following form of the Lorentz condition (2.4):

∂ϕ/∂t+ < ∇, ϕv >= 0. (2.20)

This obviously can be rewritten [122] as the integral conservation law (2.17), so the proof is
complete.

The above proposition suggests a physically motivated interpretation of electrodynamic
phenomena in terms of what should naturally be called the vacuum potential field, which
determines the observable interactions between charged point particles. More precisely,
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we can a priori endow the ambient vacuum medium with a scalar potential field function
W := qϕ : M4 → R, satisfying the governing vacuum field equations

∂2W/∂t2 −∇2W = 0, ∂W/∂t+ < ∇, Wv >= 0, (2.21)

taking into account that there are no external sources besides material particles possessing
only a virtual capability for disturbing the vacuum field medium. Moreover, this vacuum
potential field function W : M4 → R allows the natural potential energy interpretation,
whose origin should be assigned not only to the charged interacting medium, but also to any
other medium possessing interaction capabilities, including for instance, material particles
interacting through the gravity.
This leads naturally to the next important step, which consists in deriving the equation
governing the corresponding potential field W̄ : M4 → R, assigned to the vacuum field
medium in a neighborhood of any spatial point moving with velocity u ∈ E3 and located
at R(t) ∈ E3 at time t ∈ R. As can be readily shown [53; 54], the corresponding evolution
equation governing the related potential field function W̄ : M4 → R has the form

d
dt
(−W̄u) = −∇W̄, (2.22)

where W̄ := W(r, t)|r→R(t), u := dR(t)/dt at point particle location (R(t), t) ∈ M4.
Similarly, if there are two interacting point particles, located at points R(t) and R f (t) ∈ E3 at
time t ∈ R and moving, respectively, with velocities u := dR(t)/dt and u f := dR f (t)/dt, the
corresponding potential field function W̄ : M4 → R for the particle located at point R(t) ∈ E3

should satisfy
d
dt
[−W̄(u − u f )] = −∇W̄. (2.23)

The dynamical potential field equations (2.22) and (2.23) appear to have important properties
and can be used as a means for representing classical electrodynamics. Consequently, we
shall proceed to investigate their physical properties in more detail and compare them with
classical results for Lorentz type forces arising in the electrodynamics of moving charged point
particles in an external electromagnetic field.
In this investigation, we were strongly inspired by the works [81; 82; 89; 91; 93]; especially
by the interesting studies [87; 88] devoted to solving the classical problem of reconciling
gravitational and electrodynamical charges within the Mach-Einstein ether paradigm. First,
we revisit the classical Mach-Einstein relativistic electrodynamics of a moving charged point
particle, and second, we study the resulting electrodynamic theories associated with our
vacuum potential field dynamical equations (2.22) and (2.23), making use of the fundamental
Lagrangian and Hamiltonian formalisms which were specially devised for this in [52; 55].
The results obtained are used to apply the canonical Dirac quantization procedure to the
corresponding energy conservation laws associated to the electrodynamic models considered.

2.2 Classical relativistic electrodynamics revisited
The classical relativistic electrodynamics of a freely moving charged point particle in the
Minkowski space-time M4 := R × E3 is based on the Lagrangian approach [56; 57; 70; 80]
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with Lagrangian function
L := −m0(1 − u2)1/2, (2.24)

where m0 ∈ R+ is the so-called particle rest mass and u ∈ E3 is its spatial velocity in the
Euclidean space E3, expressed here and in the sequel in light speed units (with light speed c).
The least action principle in the form

δS = 0, S := −
∫ t2

t1

m0(1 − u2)1/2dt (2.25)

for any fixed temporal interval [t1, t2] ⊂ R gives rise to the well-known relativistic
relationships for the mass of the particle

m = m0(1 − u2)−1/2, (2.26)

the momentum of the particle

p := mu = m0u(1 − u2)−1/2 (2.27)

and the energy of the particle

E0 = m = m0(1 − u2)−1/2. (2.28)

It follows from [57; 80], that the origin of the Lagrangian (2.24) can be extracted from the action

S := −
t2∫

t1

m0(1 − u2)1/2dt = −
τ2∫

τ1

m0dτ, (2.29)

on the suitable temporal interval [τ1,τ2] ⊂ R, where, by definition,

dτ := dt(1 − u2)1/2 (2.30)

and τ ∈ R is the so-called proper temporal parameter assigned to a freely moving particle
with respect to the rest reference system Kr. The action (2.29) is rather questionable from
the dynamical point of view, since it is physically defined with respect to the rest reference
system Kr , giving rise to the constant action S = −m0(τ2 − τ1), as the limits of integrations
τ1 < τ2 ∈ R were taken to be fixed from the very beginning. Moreover, considering this
particle to have charge q ∈ R and be moving in the Minkowski space-time M4 under action
of an electromagnetic field (ϕ, A) ∈ R × E3, the corresponding classical (relativistic) action
functional is chosen (see [52; 55–57; 70; 80]) as follows:

S :=
τ2∫

τ1

[−m0dτ + q < A, ṙ > dτ − qϕ(1 − u2)−1/2dτ], (2.31)

with respect to the rest reference system, parameterized by the Euclidean space-time variables
(τ, r) ∈ E4, where we have denoted ṙ := dr/dτ in contrast to the definition u := dr/dt. The
action (2.31) can be rewritten with respect to the laboratory reference system K moving with
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velocity vector u ∈ E3 as

S =

t2∫

t1

Ldt, L := −m0(1 − u2)1/2 + q < A, u > −qϕ, (2.32)

on the temporal interval [t1, t2] ⊂ R, which gives rise to the following [56; 57; 70; 80]

dynamical expressions

P = p + qA, p = mu, m = m0(1 − u2)−1/2, (2.33)

for the particle momentum and

E0 = [m2
0 + (P − qA)2]1/2 + qϕ (2.34)

for the particle energy, where, by definition, P ∈ E3 is the common momentum of the particle
and the ambient electromagnetic field at a space-time point (t, r) ∈ M4.
The expression (2.34) for the particle energy E0 also appears open to question, since the
potential energy qϕ, entering additively, has no affect on the particle mass m = m0(1 −
u2)−1/2. This was noticed by L. Brillouin [59], who remarked that since the potential energy
has no affect on the particle mass, this tells us that “... any possibility of existence of a
particle mass related with an external potential energy, is completely excluded”. Moreover,
it is necessary to stress here that the least action principle (2.32), formulated with respect to
the laboratory reference system K time parameter t ∈ R, appears logically inadequate, for
there is a strong physical inconsistency with other time parameters of the Lorentz equivalent
reference systems. This was first mentioned by R. Feynman in [29], in his efforts to rewrite the
Lorentz force expression with respect to the rest reference system Kr. This and other special
relativity theory and electrodynamics problems induced many prominent physicists of the
past [29; 59; 61; 64; 80] and present [4; 5; 60; 65; 66; 68; 69; 81; 82; 87; 89; 90; 93] to try to develop
alternative relativity theories based on completely different space-time and matter structure
principles.
There also is another controversial inference from the action expression (2.32). As one can
easily show [56; 57; 70; 80], the corresponding dynamical equation for the Lorentz force is
given as

dp/dt = F := qE + qu × B. (2.35)

We have defined here, as before,

E := −∂A/∂t −∇ϕ (2.36)

for the corresponding electric field and

B := ∇× A (2.37)

for the related magnetic field, acting on the charged point particle q. The expression (2.35)
means, in particular, that the Lorentz force F depends linearly on the particle velocity vector
u ∈ E3, and so there is a strong dependence on the reference system with respect to which the
charged particle q moves. Attempts to reconcile this and some related controversies [29; 59;
60; 63] forced Einstein to devise his special relativity theory and proceed further to creating his
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general relativity theory trying to explain gravity by means of geometrization of space-time
and matter in the Universe. Here we must mention that the classical Lagrangian function L in
(2.32) is written in terms of a combination of terms expressed by means of both the Euclidean
rest reference system variables (τ, r) ∈ E4 and arbitrarily chosen Minkowski reference system
variables (t, r) ∈ M4.
These problems were recently analyzed using a completely different “no-geometry” approach
[6; 53; 54; 60], where new dynamical equations were derived, which were free of the
controversial elements mentioned above. Moreover, this approach avoided the introduction
of the well-known Lorentz transformations of the space-time reference systems with respect
to which the action functional (2.32) is invariant. From this point of view, there are
interesting conclusions in [83] in which Galilean invariant Lagrangians possessing intrinsic
Poincaré-Lorentz symmetry are reanalyzed. Next, we revisit the results obtained in [53; 54]
from the classical Lagrangian and Hamiltonian formalisms [52] in order to shed new light
on the physical underpinnings of the vacuum field theory approach to the investigation of
combined electromagnetic and gravitational effects.

2.3 The vacuum field theory electrodynamics equations: Lagrangian analysis
2.3.1 A point particle moving in a vacuum - an alternative electrodynamic model
In the vacuum field theory approach to combining electromagnetism and the gravity devised
in [53; 54], the main vacuum potential field function W̄ : M4→ R related to a charged point
particle q satisfies the dynamical equation (2.21), namely

d
dt
(−W̄u) = −∇W̄ (2.38)

in the case when the external charged particles are at rest, where, as above, u := dr/dt is the
particle velocity with respect to some reference system.
To analyze the dynamical equation (2.38) from the Lagrangian point of view, we write the
corresponding action functional as

S := −
t2∫

t1

W̄dt = −
τ2∫

τ1

W̄(1 + ṙ2)1/2 dτ, (2.39)

expressed with respect to the rest reference system Kr. Fixing the proper temporal parameters
τ1 < τ2 ∈ R, one finds from the least action principle ( δS = 0) that

p := ∂L/∂ṙ = −W̄ṙ(1 + ṙ2)−1/2 = −W̄u, (2.40)

ṗ := dp/dτ = ∂L/∂r = −∇W̄(1 + ṙ2)1/2,

where, owing to (2.39), the corresponding Lagrangian function is

L := −W̄(1 + ṙ2)1/2. (2.41)

Recalling now the definition of the particle mass

m := −W̄ (2.42)
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and the relationships
dτ = dt(1 − u2)1/2, ṙdτ = udt, (2.43)

from (2.40) we easily obtain the dynamical equation (2.38). Moreover, one now readily finds
that the dynamical mass, defined by means of expression (2.42), is given as

m = m0(1 − u2)−1/2,

which coincides with the equation (2.26) of the preceding section. Now one can formulate the
following proposition using the above results

Proposition 2.3. The alternative freely moving point particle electrodynamic model (2.38) allows
the least action formulation (2.39) with respect to the “rest” reference system variables, where the
Lagrangian function is given by expression (2.41). Its electrodynamics is completely equivalent to that
of a classical relativistic freely moving point particle, described in Section 2.

2.3.2 An interacting two charge system moving in a vacuum - an alternative electrodynamic
model

We proceed now to the case when our charged point particle q moves in the space-time with
velocity vector u ∈ E3 and interacts with another external charged point particle, moving
with velocity vector u f ∈ E3 in a common reference system K. As shown in [53; 54], the
corresponding dynamical equation for the vacuum potential field function W̄ : M4→ R is
given as

d
dt
[−W̄(u − u f )] = −∇W̄. (2.44)

As the external charged particle moves in the space-time, it generates the related magnetic
field B := ∇ × A, whose magnetic vector potential A : M4→ E3 is defined, owing to the
results of [53; 54; 60], as

qA := W̄u f . (2.45)

Whence, it follows from (2.40) that the particle momentum p = −W̄u equation (2.44) is
equivalent to

d
dt
(p + qA) = −∇W̄. (2.46)

To represent the dynamical equation (2.46) in the classical Lagrangian formalism, we start
from the following action functional, which naturally generalizes the functional (2.39):

S := −
τ2∫

τ1

W̄(1 + |ṙ − ξ̇|2)1/2 dτ, (2.47)

where ξ̇ = u f dt/dτ, dτ = dt(1 − (u − u f )
2)1/2, which takes into account the relative velocity

of the charged point particle q with respect to the reference system K�, moving with velocity
u f ∈ E3 in the reference system K. It is clear in this case that the charged point particle q
moves with velocity u − u f ∈ E3 with respect to the reference system K� in which the external
charged particle is at rest.
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ṗ := dp/dτ = ∂L/∂r = −∇W̄(1 + ṙ2)1/2,
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W̄(1 + |ṙ − ξ̇|2)1/2 dτ, (2.47)

where ξ̇ = u f dt/dτ, dτ = dt(1 − (u − u f )
2)1/2, which takes into account the relative velocity

of the charged point particle q with respect to the reference system K�, moving with velocity
u f ∈ E3 in the reference system K. It is clear in this case that the charged point particle q
moves with velocity u − u f ∈ E3 with respect to the reference system K� in which the external
charged particle is at rest.
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Now we compute the least action variational condition δS = 0 taking into account that, owing
to (2.47), the corresponding Lagrangian function is given as

L := −W̄(1 + (ṙ − ξ̇)2)1/2. (2.48)

Hence, the common momentum of the particles is

P := ∂L/∂ṙ = −W̄(ṙ − ξ̇)(1 + (ṙ − ξ̇)2)−1/2 = (2.49)

= −W̄ṙ(1 + (ṙ − ξ̇)2)−1/2 + W̄ξ̇(1 + (ṙ − ξ̇)2)−1/2 =

= mu + qA := p + qA,

and the dynamical equation is given as

d
dτ

(p + qA) = −∇W̄(1 + |ṙ − ξ̇|2)1/2. (2.50)

As dτ = dt(1 − (u − u f )
2)1/2 and (1 + (ṙ − ξ̇)2)1/2 = (1 − (u − u f )

2)−1/2, we obtain finally
from (2.50) the dynamical equation (2.46), which leads to the next proposition.

Proposition 2.4. The alternative classical relativistic electrodynamic model (2.44) allows the least
action formulation (2.47) with respect to the “rest” reference system variables, where the Lagrangian
function is given by expression (2.48).

2.3.3 A moving charged point particle formulation dual to the classical alternative
electrodynamic model

It is easy to see that the action functional (2.47) is written utilizing the classical Galilean
transformations of reference systems. If we now consider the action functional (2.39) for a
charged point particle moving with respect the reference system Kr , and take into account its
interaction with an external magnetic field generated by the vector potential A : M4 → E3, it
can be naturally generalized as

S :=
t2∫

t1

(−W̄dt + q < A, dr >) =

τ2∫

τ1

[−W̄(1 + ṙ2)1/2 + q < A, ṙ >]dτ, (2.51)

where dτ = dt(1 − u2)1/2.
Thus, the corresponding common particle-field momentum takes the form

P := ∂L/∂ṙ = −W̄ṙ(1 + ṙ2)−1/2 + qA = (2.52)

= mu + qA := p + qA,

and satisfies

Ṗ := dP/dτ = ∂L/∂r = −∇W̄(1 + ṙ2)1/2 + q∇ < A, ṙ >= (2.53)

= −∇W̄(1 − u2)−1/2 + q∇ < A, u > (1 − u2)−1/2,

where
L := −W̄(1 + ṙ2)1/2 + q < A, ṙ > (2.54)
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is the corresponding Lagrangian function. Since dτ = dt(1 − u2)1/2, one easily finds from
(2.53) that

dP/dt = −∇W̄ + q∇ < A, u > . (2.55)

Upon substituting (2.52) into (2.55) and making use of the well-known [57] identity

∇ < a, b >=< a,∇ > b+ < b,∇ > a + b × (∇× a) + a × (∇× b), (2.56)

where a, b ∈ E3 are arbitrary vector functions, we obtain the classical expression for the
Lorentz force F acting on the moving charged point particle q :

dp/dt := F = qE + qu × B, (2.57)

where, by definition,
E := −∇W̄q−1 − ∂A/∂t (2.58)

is its associated electric field and
B := ∇× A (2.59)

is the corresponding magnetic field. This result can be summarized as follows:

Proposition 2.5. The classical relativistic Lorentz force (2.57) allows the least action formulation
(2.51) with respect to the rest reference system variables, where the Lagrangian function is given by
formula (2.54). Its electrodynamics described by the Lorentz force (2.57) is completely equivalent to the
classical relativistic moving point particle electrodynamics characterized by the Lorentz force (2.35) in
Section 2.

As for the dynamical equation (2.50), it is easy to see that it is equivalent to

dp/dt = (−∇W̄ − qdA/dt + q∇ < A, u >)− q∇ < A, u >, (2.60)

which, owing to (2.55) and (2.57), takes the following Lorentz type force form

dp/dt = qE + qu × B − q∇ < A, u >, (2.61)

that can be found in [53; 54; 60].
Expressions (2.57) and (2.61) are equal to up to the gradient term Fc := −q∇ < A, u >, which
reconciles the Lorentz forces acting on a charged moving particle q with respect to different
reference systems. This fact is important for our vacuum field theory approach since it uses
no special geometry and makes it possible to analyze both electromagnetic and gravitational
fields simultaneously by employing the new definition of the dynamical mass by means of
expression (2.42).

2.4 The vacuum field theory electrodynamics equations: Hamiltonian analysis
Any Lagrangian theory has an equivalent canonical Hamiltonian representation via the
classical Legendre transformation[1; 2; 46; 56; 104]. As we have already formulated our
vacuum field theory of a moving charged particle q in Lagrangian form, we proceed now
to its Hamiltonian analysis making use of the action functionals (2.39), (2.48) and (2.51).
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Take, first, the Lagrangian function (2.41) and the momentum expression (2.40) for defining
the corresponding Hamiltonian function

H :=< p, ṙ > −L =

= − < p, p > W̄−1(1 − p2/W̄2)−1/2 + W̄(1 − p2/W̄2)−1/2 =

= −p2W̄−1(1 − p2/W̄2)−1/2 + W̄2W̄−1(1 − p2/W̄2)−1/2 = (2.62)

= −(W̄2 − p2)(W̄2 − p2)−1/2 = −(W̄2 − p2)1/2.

Consequently, it is easy to show [1; 2; 56; 104] that the Hamiltonian function (2.62) is a
conservation law of the dynamical field equation (2.38); that is, for all τ, t ∈ R

dH/dt = 0 = dH/dτ, (2.63)

which naturally leads to an energy interpretation of H. Thus, we can represent the particle
energy as

E = (W̄2 − p2)1/2. (2.64)

Accordingly the Hamiltonian equivalent to the vacuum field equation (2.38) can be written as

ṙ := dr/dτ = ∂H/∂p = p(W̄2 − p2)−1/2 (2.65)

ṗ := dp/dτ = −∂H/∂r = W̄∇W̄(W̄2 − p2)−1/2,

and we have the following result.

Proposition 2.6. The alternative freely moving point particle electrodynamic model (2.38) allows the
canonical Hamiltonian formulation (2.65) with respect to the “rest” reference system variables, where
the Hamiltonian function is given by expression (2.62). Its electrodynamics is completely equivalent to
the classical relativistic freely moving point particle electrodynamics described in Section 2.

In an analogous manner, one can now use the Lagrangian (2.48) to construct the Hamiltonian
function for the dynamical field equation (2.46) describing the motion of charged particle q in
an external electromagnetic field in the canonical Hamiltonian form:

ṙ := dr/dτ = ∂H/∂P, Ṗ := dP/dτ = −∂H/∂r, (2.66)

where

H :=< P, ṙ > −L =

=< P, ξ̇ − PW̄−1(1 − P2/W̄2)−1/2 > +W̄[W̄2(W̄2 − P2)−1]1/2 =

=< P, ξ̇ > +P2(W̄2 − P2)−1/2 − W̄2(W̄2 − P2)−1/2 =

= −(W̄2 − P2)(W̄2 − P2)−1/2+ < P, ξ̇ >= (2.67)

= −(W̄2 − P2)1/2 − q < A, P > (W̄2 − P2)−1/2.
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Here we took into account that, owing to definitions (2.45) and (2.49),

qA := W̄u f = W̄dξ/dt = (2.68)

= W̄
dξ

dτ
· dτ

dt
= W̄ξ̇(1 − (u − v))1/2 =

= W̄ξ̇(1 + (ṙ − ξ̇)2)−1/2 =

= −W̄ξ̇(W̄2 − P2)1/2W̄−1 = −ξ̇(W̄2 − P2)1/2,

or
ξ̇ = −qA(W̄2 − P2)−1/2, (2.69)

where A : M4→ R3 is the related magnetic vector potential generated by the moving external
charged particle. Equations (2.67) can be rewritten with respect to the laboratory reference
system K in the form

dr/dt = u, dp/dt = qE + qu × B − q∇ < A, u >, (2.70)

which coincides with the result (2.61).
Whence, we see that the Hamiltonian function (2.67) satisfies the energy conservation
conditions

dH/dt = 0 = dH/dτ, (2.71)

for all τ, t ∈ R, and that the suitable energy expression is

E = (W̄2 − P2)1/2 + q < A, P > (W̄2 − P2)−1/2, (2.72)

where the generalized momentum P = p + qA. The result (2.72) differs in an essential way
from that obtained in [57], which makes use of the Einsteinian Lagrangian for a moving
charged point particle q in an external electromagnetic field. Thus, we obtain the following
result:

Proposition 2.7. The alternative classical relativistic electrodynamic model (2.70), which is
intrinsically compatible with the classical Maxwell equations (2.7), allows the Hamiltonian
formulation (2.66) with respect to the rest reference system variables, where the Hamiltonian function
is given by expression (2.67).

The inference above is a natural candidate for experimental validation of our theory. It is
strongly motivated by the following remark.

Remark 2.8. It is necessary to mention here that the Lorentz force expression (2.70) uses the particle
momentum p = mu, where the dynamical “mass” m := −W̄ satisfies condition (2.72). The latter
gives rise to the following crucial relationship between the particle energy E0 and its rest mass m0 (at
the velocity u := 0 at the initial time moment t = 0 ∈ R) :

E0 = m0(1 − q2

m2
0

A2
0)

−1/2, (2.73)

or, equivalently,

m0 = E0(
1
2
± 1

2

√
1 − 4q2 A2

0), (2.74)
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where A0 := A|t=0 ∈ E3, which strongly differs from the classical formulation
(2.34).

To make this difference more clear, we now analyze the Lorentz force (2.57) from the
Hamiltonian point of view based on the Lagrangian function (2.54). Thus, we obtain that
the corresponding Hamiltonian function

H :=< P, ṙ > −L =< P, ṙ > +W̄(1 + ṙ2)1/2 − q < A, ṙ >= (2.75)

=< P − qA, ṙ > +W̄(1 + ṙ2)1/2 =

= − < p, p > W̄−1(1 − p2/W̄2)−1/2 + W̄(1 − p2/W̄2)−1/2 =

= −(W̄2 − p2)(W̄2 − p2)−1/2 = −(W̄2 − p2)1/2.

Since p = P − qA, expression (2.75) assumes the final “no interaction” [12; 57; 67; 80] form

H = −[W̄2 − (P − qA)2]1/2, (2.76)

which is conserved with respect to the evolution equations (2.52) and (2.53), that is

dH/dt = 0 = dH/dτ (2.77)

for all τ, t ∈ R. These equations latter are equivalent to the following Hamiltonian system

ṙ = ∂H/∂P = (P − qA)[W̄2 − (P − qA)2]−1/2, (2.78)

Ṗ = −∂H/∂r = (W̄∇W̄ −∇ < qA, (P − qA) >)[W̄2 − (P − qA)2]−1/2,

as one can readily check by direct calculations. Actually, the first equation

ṙ = (P − qA)[W̄2 − (P − qA)2]−1/2 = p(W̄2 − p2)−1/2 = (2.79)

= mu(W̄2 − p2)−1/2 = −W̄u(W̄2 − p2)−1/2 = u(1 − u2)−1/2,

holds, owing to the condition dτ = dt(1 − u2)1/2 and definitions p := mu, m = −W̄,
postulated from the very beginning. Similarly we obtain that

Ṗ = −∇W̄(1 − p2/W̄2)−1/2 +∇ < qA, u > (1 − p2/W̄2)−1/2 = (2.80)

= −∇W̄(1 − u2)−1/2 +∇ < qA, u > (1 − u2)−1/2,

coincides with equation (2.55) in the evolution parameter t ∈ R. This can be formulated as the
next result.

Proposition 2.9. The dual to the classical relativistic electrodynamic model (2.57) allows the
canonical Hamiltonian formulation (2.78) with respect to the rest reference system variables, where
the Hamiltonian function is given by expression (2.76). Moreover, this formulation circumvents the
“mass-potential energy” controversy associated with the classical electrodynamical model (2.32).

The modified Lorentz force expression (2.57) and the related rest energy relationship are
characterized by the following remark.

Remark 2.10. If we make use of the modified relativistic Lorentz force expression (2.57) as an
alternative to the classical one of (2.35), the corresponding particle energy expression (2.76) also gives
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rise to a different energy expression (at the velocity u := 0 ∈ E3 at the initial time t = 0) corresponding
to the classical case (2.34); namely, E0 = m0 instead of E0 = m0 + qϕ0, where ϕ0 := ϕ|t=0.

2.5 Concluding remarks
All of dynamical field equations discussed above are canonical Hamiltonian systems with
respect to the corresponding proper rest reference systems Kr, parameterized by suitable
time parameters τ ∈ R. Upon passing to the basic laboratory reference system K with the
time parameter t ∈ R,naturally the related Hamiltonian structure is lost, giving rise to a
new interpretation of the real particle motion. Namely, one that has an absolute sense only
with respect to the proper rest reference system, and otherwise completely relative with
respect to all other reference systems. As for the Hamiltonian expressions (2.62), (2.67) and
(2.76), one observes that they all depend strongly on the vacuum potential field function
W̄ : M4→ R, thereby avoiding the mass problem of the classical energy expression pointed
out by L. Brillouin [59]. It should be noted that the canonical Dirac quantization procedure
can be applied only to the corresponding dynamical field systems considered with respect to
their proper rest reference systems.

Remark 2.11. Some comments are in order concerning the classical relativity principle. We have
obtained our results without using the Lorentz transformations of reference systems - relying only on
the natural notion of the rest reference system and its suitable parametrization with respect to any
other moving reference systems. It seems reasonable then that the true state changes of a moving
charged particle q are exactly realized only with respect to its proper rest reference system. Then the
only remaining question would be about the physical justification of the corresponding relationship
between time parameters of moving and rest reference systems.

The relationship between reference frames that we have used through is expressed as

dτ = dt(1 − u2)1/2, (2.81)

where u := dr/dt ∈ E3 is the velocity with which the rest reference system Kr moves
with respect to another arbitrarily chosen reference system K. Expression (2.81) implies, in
particular, that

dt2 − dr2 = dτ2, (2.82)

which is identical to the classical infinitesimal Lorentz invariant. This is not a coincidence,
since all our dynamical vacuum field equations were derived in turn [53; 54] from the
governing equations of the vacuum potential field function W : M4→ R in the form

∂2W/∂t2 −∇2W = ρ, ∂W/∂t +∇(vW) = 0, ∂ρ/∂t +∇(vρ) = 0, (2.83)

which is a priori Lorentz invariant. Here ρ ∈ R is the charge density and v := dr/dt the
associated local velocity of the vacuum field potential evolution. Consequently, the dynamical
infinitesimal Lorentz invariant (2.82) reflects this intrinsic structure of equations (2.83). If it is
rewritten in the nonstandard Euclidean form:

dt2 = dτ2 + dr2 (2.84)

it gives rise to a completely different relationship between the reference systems K and Kr ,
namely

dt = dτ(1 + ṙ2)1/2, (2.85)
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rise to a different energy expression (at the velocity u := 0 ∈ E3 at the initial time t = 0) corresponding
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where ṙ := dr/dτ is the related particle velocity with respect to the rest reference system.
Thus, we observe that all our Lagrangian analysis in Section 2 is based on the corresponding
functional expressions written in these “Euclidean” space-time coordinates and with respect
to which the least action principle was applied. So we see that there are two alternatives - the
first is to apply the least action principle to the corresponding Lagrangian functions expressed
in the Minkowski space-time variables with respect to an arbitrarily chosen reference system
K, and the second is to apply the least action principle to the corresponding Lagrangian
functions expressed in Euclidean space-time variables with respect to the rest reference system
Kr .
This leads us to a slightly amusing but thought-provoking observation: It follows from our
analysis that all of the results of classical special relativity related to the electrodynamics
of charged point particles can be obtained (in a one-to-one correspondence) using our new
definitions of the dynamical particle mass and the least action principle with respect to the
associated Euclidean space-time variables in the rest reference system.
An additional remark concerning the quantization procedure of the proposed electrodynamics
models is in order: If the dynamical vacuum field equations are expressed in canonical
Hamiltonian form, as we have done here, only straightforward technical details are required
to quantize the equations and obtain the corresponding Schrödinger evolution equations in
suitable Hilbert spaces of quantum states. There is another striking implication from our
approach: the Einsteinian equivalence principle [29; 57; 63; 70; 80] is rendered superfluous for
our vacuum field theory of electromagnetism and gravity.
Using the canonical Hamiltonian formalism devised here for the alternative charged point
particle electrodynamics models, we found it rather easy to treat the Dirac quantization. The
results obtained compared favorably with classical quantization, but it must be admitted
that we still have not given a compelling physical motivation for our new models.
This is something that we plan to revisit in future investigations. Another important
aspect of our vacuum field theory no-geometry (geometry-free) approach to combining the
electrodynamics with the gravity, is the manner in which it singles out the decisive role of the
rest reference system Kr. More precisely, all of our electrodynamics models allow both the
Lagrangian and Hamiltonian formulations with respect to the rest reference system evolution
parameter τ ∈ R, which are well suited the to canonical quantization. The physical nature of
this fact still remains somewhat unclear. In fact, as far as we know [4; 5; 57; 63; 80], there is no
physically reasonable explanation of this decisive role of the rest reference system, except for
that given by R. Feynman who argued in [70] that the relativistic expression for the classical
Lorentz force (2.35) has physical sense only with respect to the rest reference system variables
(τ, r) ∈ E4. In future research we plan to analyze the quantization scheme in more detail
and begin work on formulating a vacuum quantum field theory of infinitely many particle
systems.

3. The modified Lorentz force and the radiation theory

3.1 Introductory setting
Maxwell’s equations may be represented by means of the electric and magnetic fields or by the
electric and magnetic potentials. The latter were once considered as a purely mathematically
motivated representation, having no physical significance.
The situation is actually not so simple now that evidence of the physical properties of the
magnetic potential was demonstrated by Y. Aharonov and D. Bohm [92] in the formulation
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their “paradox” concerning the measurement of a magnetic field outside a separated region
where it is vanishes. Later, similar effects were also revealed in the superconductivity theory
of Josephson media. As the existence of any electromagnetic field in an ambient space can
be tested only by its interaction with electric charges, the dynamics of the charged particles
is very important. Charged particle dynamics was studied in detail by M. Faraday, A.
Ampere and H. Lorentz using Newton’s second law. These investigations led to the following
representation for the Lorentz force

dp/dt = qE + q
u
c
× B, (2.86)

where E and B ∈ E3 are, respectively, electric and magnetic fields, acting on a point charged
particle q ∈ R having momentum p = mu. Here m ∈ R+ is the particle mass and u ∈ T(R3)
is its velocity, measured with respect to a suitably chosen laboratory reference frame.
That the Lorentz force (2.86) is not completely correct was known to Lorentz. The defect
can be seen from the nonuniform Maxwell equations for electromagnetic fields radiated by
any accelerated charged particle, as easily seen from the well-known expressions for the
Lienard-Wiechert potentials.
This fact inspired many physicists to “improve” the classical Lorentz force expression (2.86),
and its modification was soon suggested by M. Abraham and P.A.M. Dirac, who found the
so-called “radiation reaction” force induced by the self-interaction of a point charged particle:

dp
dt

= qE + q
u
c
× B − 2q2

3e3
d2u
dt2 . (2.87)

The additional force expression

Fs := − 2q2

3c3
d2u
dt2 , (2.88)

depending on the particle acceleration, immediately raised many questions concerning its
physical meaning. For instance, a uniformly accelerated charged particle, owing to the
expression (2.88) , experiences no radiation reaction, contradicting the fact that any accelerated
charged particle always radiates electromagnetic waves. This “paradox” was a challenging
problem during the 20th century [96–98; 100; 102] and still has not been completely explained
[101]. As there exist different approaches to explanation this reaction radiation phenomenon,
we mention here only some of the more popular ones such as the Wheeler-Feynman [99]
“absorber radiation” theory, based on a very sophisticated elaboration of the retarded and
advanced solutions to the nonuniform Maxwell equations, and Teitelbom’s [95] approach
which exploits the intrinsic structure of the electromagnetic energy tensor subject to the
advanced and retarded solutions to the nonuniform Maxwell equations. It is also worth
mentioning the very nontrivial development of Teitelbom’s theory devised recently by [94]
and applied to the non-abelian Yang-Mills equations, which naturally generalize the classical
Maxwell equations.

3.2 Radiation reaction force: the vacuum-field theory approach
In the Section, we shall develop our vacuum field theory approach [6; 52–55] to the
electromagnetic Maxwell and Lorentz theories in more detail and show that it is in complete
agreement with the classical results. Moreover, it allows some nontrivial generalizations,
which may have physical applications.
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particle q ∈ R having momentum p = mu. Here m ∈ R+ is the particle mass and u ∈ T(R3)
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depending on the particle acceleration, immediately raised many questions concerning its
physical meaning. For instance, a uniformly accelerated charged particle, owing to the
expression (2.88) , experiences no radiation reaction, contradicting the fact that any accelerated
charged particle always radiates electromagnetic waves. This “paradox” was a challenging
problem during the 20th century [96–98; 100; 102] and still has not been completely explained
[101]. As there exist different approaches to explanation this reaction radiation phenomenon,
we mention here only some of the more popular ones such as the Wheeler-Feynman [99]
“absorber radiation” theory, based on a very sophisticated elaboration of the retarded and
advanced solutions to the nonuniform Maxwell equations, and Teitelbom’s [95] approach
which exploits the intrinsic structure of the electromagnetic energy tensor subject to the
advanced and retarded solutions to the nonuniform Maxwell equations. It is also worth
mentioning the very nontrivial development of Teitelbom’s theory devised recently by [94]
and applied to the non-abelian Yang-Mills equations, which naturally generalize the classical
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For the radiation reaction force in the vacuum field theory approach, the modified Lorentz
force, which was derived in Section 1, acting on a charged point particle q, is

dp/dt = −q(
1
c

∂A
∂t

+∇ϕ) + q
u
c
× (∇× A)− q∇ <

u
c

, A > (2.89)

where (ϕ, A) ∈ R × E3 is the extended electromagnetic 4-vector potential. To take into
account the self-interaction of this particle, we make use of the distributed charge density
ρ : M4 → R satisfying the condition

q =
∫

R3

ρ(t, r)d3r (2.90)

for all t ∈ R in a laboratory reference frame K with coordinates (t, r) ∈ M4. Then, owing to
2.89 and results in [96], the self-interaction force can be expressed as

Fs = q∇ϕs +
q
c

∂As/∂t+ <
u
c

,∇ > As =

= q∇ϕs + dAs(t, r)/dt, (2.91)

where

ϕs(t, r) =
∫

R3

ρ(t�, r�)d3r�
|r − r� | , As(t, r) =

=
1
c

∫

R3

ρ(t�, r�)u(t�)d3r�
|r − r�| , (2.92)

are the well-known Lienard-Wiechert potentials, which are calculated at the retarded time
parameter t� := t − |r − r�| /c ∈ R. Then, taking into account the continuity equation

∂ρ/∂t+ < ∇, ρu >= 0, (2.93)

for the charge q, from (2.91) one finds using calculations similar to those in [96] that

Fs � 2
3c2

d
dt
[
∫

R3

d3r�
∫

u(t)

R3

d3rρ(t, r)ρ(t, r�)/|r − r�|]− (2.94)

− 2
3c3

d2u
dt2

∫

R3

d3r�
∫

R3

d3rρ(t, r)ρ(t, r�)+

+u < Fes,
u
c2 > − 1

2c3
du
dt

∫

R3

d3r�
∫

R3

d3rρ(t, r)ρ(t, r�) < (r − r�)
|r − r� |2 , u >=

=
4
3

d
dt
[
Ws

c2 u(t)]− 2q2

3c3
d2u
dt2 + ΔFs,

where we defined, respectively, the positive electrostatic self-interaction repulsive energy and
force as
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W̄s :=
1
2

∫

R3

d3r
∫

R3

d3r� ρ(t, r)ρ(t, r�)
|r − r�| , (2.95)

Fes :=
∫

R3

d3r
∫

R3

d3r�ρ(t, r)ρ(t, r�) (r − r�)
|r − r�|3

, (2.96)

and the force component corresponding to the term < u
c ,∇ > As in (2.91) by ΔFs. Assuming

now that the external electromagnetic field vanishes, from (2.89) one obtains that

d
dt
(mu) = − 2q2

3c3
d2u
dt2 +

4
3

d
dt
(msu) + ΔFs, (2.97)

where we have made use of the inertial mass definitions

m := −W̄/c2, ms := Ws/c2, (2.98)

following from the vacuum field theory approach. From (2.97) one computes that the
additional force term is

ΔFs =
d
dt
[(m − 4

3
ms)u] +

2q2

3c3
d2u
dt2 . (2.99)

Then we readily infer from (2.97) that the observed charged particle mass satisfies at rest the
inequality

m �= ms. (2.100)

This expression means that the real physically observed mass strongly depends both on the
intrinsic geometric structure of the particle charge distribution and on the external physical
interaction with the ambient vacuum medium.

3.3 Conclusion
The charged particle radiation problem, revisited in this section, allows the explanation of
the point charged particle mass as that of a compact and stable object, which should have
a negative vacuum interaction potential W̄ ∈ R3 owing to (2.98). This negativity can be
satisfied if and only if the quantity (2.99) holds, thereby imposing certain nontrivial geometric
constraints on the intrinsic charged particle structure [103]. Moreover, as follows from
the physically observed particle mass expressions (2.98), the electrostatic potential energy
comprises the main portion of the full mass.
There exist different relativistic generalizations of the force expression (2.97), all of which
suffer the same common physical inconsistency related to the no radiation effect of a charged
point particle in uniform motion.
Another problem closely related to the radiation reaction force analyzed above is the search
for an explanation to the Wheeler and Feynman reaction radiation mechanism, which is called
the absorption radiation theory. This mechanism is strongly dependent upon the Mach type
interaction of a charged point particle in an ambient vacuum electromagnetic medium. It is
also interesting to observe some of the relationships between this problem and the one devised
above in the context of the vacuum field theory approach, but more detailed and extended
analyzes will be required to explain the connections.
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4. Maxwell’s equations and the Lorentz force derivation - the legacy of Feynman’s
approach

4.1 Poissonian analysis preliminaries
In 1948 R. Feynman presented but did not published [127; 128] a very interesting, in some
respects “heretical”, quantum-mechanical derivation of the classical Lorentz force acting on
a charged particle under the influence of an external electromagnetic field. His result was
analyzed by many authors [129–137] from different points of view, including its relativistic
generalization [138]. As this problem is completely classical, we reanalyze the Feynman’s
derivation from the classical Hamiltonian dynamics point of view on the coadjoint space
T∗(N), N ⊂ R3, and construct its nontrivial generalization compatible with results [6; 52; 53]
of Section 1, based on a recently devised vacuum field theory approach [52; 55]. Upon
obtaining the classical Maxwell electromagnetic equations, we supply the complete legacy
of Feynman’s approach to the Lorentz force and demonstrate its compatibility with the
relativistic generalization presented in [52–55; 72].
Consider the motion of a charged point particle ξ ∈ R under the influence of an external
electromagnetic field. For its description, following [114; 123; 124], it is convenient to
introduce a trivial fiber bundle structure π: M → N, M = N × G, N ⊂ R3, with the
abelian structure group G := R\{0} equivariantly acting [1] on the canonically symplectic
coadjoint space T∗(M). Then we endow the bundle with a connection one-form A :
M→Λ1(M)× G defined as

A(q; g) :=<ϑ(q), ξ >G +g−1dg (2.101)

on the phase space M, where q ∈ N and g ∈ G and α : N → Λ1(N) is a differential form,
constructed from the magnetic potential A : N →E3 as ϑ(q) :=<A(q), dq >E3 ∈ T∗

q (N).
If l : T∗(M) → G∗ is the related momentum mapping, one can construct the reduced phase
space M̄ξ := l−1(ξ)/G � T∗(N), where ξ ∈ G �R is taken to be fixed. This reduced space
has the symplectic structure

ω
(2)
ξ (q, p) =< dp,∧dq > +ξd <A(q), dq >, (2.102)

where we taken in to account that ϑ(q)=<A(q), dq >E3 ∈ T∗
q (N). From (2.102), one readily

computes the respective reduced Poisson brackets on T∗(N):

{qi, qj}
ω

(2)
ξ

= 0, {pj, qi}
ω

(2)
ξ

= δi
j , {pi, pj}ω

(2)
ξ

= ξFji(q) (2.103)

for i, j = 1, 3 with respect to the reference frame K(t, q), characterized by the phase space
coordinates (q, p) ∈ T∗(N). If one introduces a new momentum variable p̃ := p + ξ A(q)

on T∗(N) � (q, p), it is easy to verify that ω
(2)
ξ → ω̃

(2)
ξ :=< dp̃,∧dq >, giving rise to the

following “minimal coupling” canonical Poisson brackets [12; 123; 124]:

{qi, qj}
ω̃

(2)
ξ

= 0, { p̃j, qi}
ω̃

(2)
ξ

= δi
j, { p̃i, p̃j}ω̃

(2)
ξ

= 0 (2.104)
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for i, j = 1, 3 with respect to the reference frame K f (t, q− q f ), characterized by the phase space
coordinates (q, p̃) ∈ T∗(N), if and only if the Maxwell field equations

∂Fij/∂qk + ∂Fjk/∂qi + ∂Fki/∂qj = 0 (2.105)

are satisfied on N for all i, j, k = 1, 3 for the curvature tensor Fij(q) := ∂Aj/∂qi − ∂Ai/∂qj,
i, j = 1, 3, q ∈ N.

4.2 The Lorentz force and Maxwell electromagnetic field equations - Lagrangian analysis
The Poisson structure (2.104) makes it possible to describe a charged particle ξ ∈ R, located at
point q ∈ N ⊂ R3, moving with a velocity q� := u ∈ Tq(N) with respect to the reference frame
K(t, q).The particle is under the electromagnetic influence of an external charged particle
ξ f ∈ R located at point q f ∈ N ⊂ R3 and moving with respect to the same reference
frame K(t, q) with a velocity q�f := u f ∈ Tq f (N), where d

dt (...) := (...)� is the temporal
derivative with respect to the temporal parameter t ∈ R. More precisely, consider a new
reference frame K f (t, q − q f ) moving with respect to the reference frame K(t, q) with velocity
u f . With respect to the reference frame K f (t, q − q f ), the charged particle ξ moves with the
velocity u − u f ∈ Tq−q f (N) and, respectively, the charged particle ξ f stays in rest. Then one
can write the standard classical Lagrangian function of the charged particle ξ with a constant
mass m ∈ R+ subject to the reference frame K f (t, q − q f ) as

L f (q, q�) = m
2
|q� − q�f |2 − ξ ϕ, (2.106)

and the scalar potential ϕ ∈ C2(N; R) is the corresponding potential energy. On the other
hand, owing to (2.106) and the Poisson brackets (2.104), the following equation for the charged
particle ξ canonical momentum with respect to the reference frame K f (t, q − q f ) holds:

p̃ := p + ξ A(q) = δL f (q, q�)/δq�, (2.107)

or, equivalently,
p + ξ A(q) = m(q� − q�f ), (2.108)

expressed in the units when the light speed c = 1. Taking into account that the charged
particle ξ momentum with respect to the reference frame K(t, q) equals p := mu ∈ T∗

q (N),
one computes from (2.108) that

ξ A(q) = −mu f (2.109)

for the magnetic vector potential A ∈ C2(N; R3), which was obtained in [54; 55; 126] using
a vacuum field theory approach. Now, it follows from (2.106) and (2.109) one has the
Lagrangian equations,

d
dt
[p + ξ A(q)] =∂L f (q, q�)/∂q = −ξ∇ϕ, (2.110)

which induce the charged particle ξ dynamics

dp/dt = −ξ∂A/∂t − ξ∇ϕ − ξ < u,∇ > A =
= −ξ∂A/∂t − ξ∇ϕ − ξ < u,∇ > A + ξ∇ < u, A > −ξ∇ < u, A >=

= −ξ(∂A/∂t +∇ϕ) + ξu × (∇× A)− ξ∇ < u, A > .
(2.111)
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As a result of (2.111), we obtain the modified Lorentz type force

dp/dt = ξE + ξu × B − ξ∇ < u, A >, (2.112)

obtained in [54; 55], where

E := −∂A/∂t −∇ϕ, B := ∇× A. (2.113)

This differs from the classical Lorentz force expression

dp/dt = ξE + ξu × B (2.114)

by the gradient component
Fc := −∇ < u, A > . (2.115)

Remark now that the Lorentz type force expression (2.112) can be naturally generalized to the
relativistic case if to take into account that the Lorentz condition

∂ϕ/∂t+ < ∇, A >= 0 (2.116)

imposed on the electromagnetic potential (ϕ, A) ∈ C2(N; R × R3).
Indeed, from (2.113) one obtains the Lorentz invariant field equation

∂2 ϕ/∂t2 − Δϕ = ρ f , (2.117)

where Δ :=< ∇,∇ > and ρ f : N → D�(N) is the generalized density function of the external
charge distribution ξ f . Employing calculations from [54; 55], derive readily from (2.117) and
the charge conservation law

∂ρ f /∂t+ < ∇, J f >= 0 (2.118)

the Lorentz invariant equation on the magnetic vector potential A ∈ C2(N; R3) :

∂2 A/∂t2 − ΔA = J f . (2.119)

Moreover, relationships (2.113), (2.117) and (2.119) imply the true classical Maxwell equations

∇× E = −∂B/∂t, ∇× B = ∂E/∂t + J f , (2.120)

< ∇, E >= ρ f , < ∇, B >= 0

on the electromagnetic field (E, B) ∈ C2(N; R3×R3).
Consider now the Lorentz condition (2.116) and observe that it is equivalent to the following
local conservation law:

d
dt

∫

Ωt

ϕd3q = 0. (2.121)

This gives rise to the important relationship for the magnetic potential A ∈ C2(N; R3)

A = q�f ϕ (2.122)

with respect to the reference frame K(t, q), where Ωt ⊂ N is any open domain with a smooth
boundary ∂Ωt, moving together with the charge distribution ξ f in the region N ⊂ R3 with
velocity q�f . Taking into account relationship (2.109), one obtains the expression for the charged
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particle ξ ‘inertial’ mass as
m = −W̄, W̄ := lim

q f →q
ξ ϕ, (2.123)

coinciding with that obtained in [54; 55; 126]. Her we denoted the corresponding potential
energy of the charged particle ξ by W̄ ∈ C2(N; R).

4.3 The modified least action principle and its Hamiltonian analysis
Using the representations (2.122) and (2.123), one can rewrite the determining Lagrangian
equation (2.110) as

d
dt
[−W̄(u − u f )] =−∇W̄, (2.124)

which is completely equivalent to the Lorentz type force expression (2.112) calculated with
respect to the reference frame K(t, q).

Remark 4.1. It is interesting to remark here that equation (2.124) does not allow the Lagrangian
representation with respect to the reference frame K(t, q) in contrast to that of equation (2.110).

The remark above is a challenging source of our further analysis concerning the relativistic
generalization of the Lorentz type force (2.112). Namely, the following proposition holds.

Proposition 4.2. The Lorentz type force (2.112), in the case when the charged particle ξ momentum is
defined as p = −W̄u, according to (2.123), is the exact relativistic expression allowing the Lagrangian
representation with respect to the charged particle ξ rest reference frame Kr(τ, q − q f ), connected with
the reference frame K(t, q) by means of the classical relativistic proper time relationship:

dt = dτ(1 + |q̇ − q̇ f |2)1/2. (2.125)

Here τ ∈ R is the proper time parameter in the rest reference frame Kr(τ, q − q f ) and, by definition,
the derivative d/dτ(...) := ( ˙...).

Proof. Take the following action functional with respect to the charged particle ξ rest reference
frame Kr(τ, q − q f ) :

S(τ) := −
∫ t2(τ2)

t1(τ1)
W̄dt = −

∫ τ2

τ1

W̄(1 + |q̇ − q̇ f |2)1/2dτ, (2.126)

where the proper temporal values τ1, τ2 ∈ R are considered to be fixed. In contrast, the
temporal parameters t2(τ2), t2(τ2) ∈ R depend, owing to (2.125), on the charged particle ξ
trajectory in the phase space. The least action condition

δS(τ) = 0, δq(τ1) = 0 = δq(τ2), (2.127)

applied to (2.126) yields the dynamical equation (2.124), which is also equivalent to the
relativistic Lorentz type force expression (2.112). This completes the proof.

Making use of the relationships between the reference frames K(t, q) and Kr(τ, q − q f ) in the
case when the external charge particle velocity u f = 0, we can easily deduce the following
result.
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Corollary 4.3. Let the external charge distribution ξ f be at rest, that is the velocity u f = 0. Then
equation (2.124) reduces to

d
dt
(−W̄u)] =−∇W̄, (2.128)

which implies the following conservation law:

H0 = W̄(1 − u2)1/2 = −(W̄2 − p2)1/2. (2.129)

Moreover, equation (2.128) is Hamiltonian with respect to the canonical Poisson structure (2.104) with
Hamiltonian function (2.129) and the rest reference frame Kr(τ, q) :

dq/dτ := ∂H0/∂p = p(W̄2 − p2)−1/2

dp/dτ := −∂H0/∂q = −W̄(W̄2 − p2)−1/2∇W̄

}
⇒ dq/dt = −pW̄−1,

dp/dt = −∇W̄

}
. (2.130)

In addition, if the rest particle mass is defined as m0 := −H0|u=0, the “inertial” particle mass quantity
m ∈ R has the well-known classical relativistic form

m = −W = m0(1 − u2)−1/2, (2.131)

which depends on the particle velocity u ∈ R3.

As for the general case of equation (2.124), analogous results to those above hold as described
in detail in [52–55]. We need only mention that the Hamiltonian structure of the general
equation (2.124) results naturally from its least action representation (2.126) and (2.127) with
respect to the rest reference frame Kr(τ, q).

4.4 Conclusion
We have demonstrated the complete legacy of the Feynman’s approach to the Lorentz force
based derivation of Maxwell’s electromagnetic field equations. Moreover, we have succeeded
in finding the exact relationship between Feynman’s approach and the vacuum field approach
devised in [54; 55]. Thus, the results obtained provide deep physical backgrounds lying in the
vacuum field theory approach. Consequently, one can simultaneously describe the origins of
the physical phenomena of electromagnetic forces and gravity. Gravity is physically based on
the particle “inertial” mass expression (2.123), which follows naturally from both the Feynman
approach to the Lorentz type force derivation and the vacuum field approach.
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Corollary 4.3. Let the external charge distribution ξ f be at rest, that is the velocity u f = 0. Then
equation (2.124) reduces to

d
dt
(−W̄u)] =−∇W̄, (2.128)

which implies the following conservation law:

H0 = W̄(1 − u2)1/2 = −(W̄2 − p2)1/2. (2.129)

Moreover, equation (2.128) is Hamiltonian with respect to the canonical Poisson structure (2.104) with
Hamiltonian function (2.129) and the rest reference frame Kr(τ, q) :

dq/dτ := ∂H0/∂p = p(W̄2 − p2)−1/2

dp/dτ := −∂H0/∂q = −W̄(W̄2 − p2)−1/2∇W̄

}
⇒ dq/dt = −pW̄−1,

dp/dt = −∇W̄

}
. (2.130)

In addition, if the rest particle mass is defined as m0 := −H0|u=0, the “inertial” particle mass quantity
m ∈ R has the well-known classical relativistic form

m = −W = m0(1 − u2)−1/2, (2.131)

which depends on the particle velocity u ∈ R3.

As for the general case of equation (2.124), analogous results to those above hold as described
in detail in [52–55]. We need only mention that the Hamiltonian structure of the general
equation (2.124) results naturally from its least action representation (2.126) and (2.127) with
respect to the rest reference frame Kr(τ, q).

4.4 Conclusion
We have demonstrated the complete legacy of the Feynman’s approach to the Lorentz force
based derivation of Maxwell’s electromagnetic field equations. Moreover, we have succeeded
in finding the exact relationship between Feynman’s approach and the vacuum field approach
devised in [54; 55]. Thus, the results obtained provide deep physical backgrounds lying in the
vacuum field theory approach. Consequently, one can simultaneously describe the origins of
the physical phenomena of electromagnetic forces and gravity. Gravity is physically based on
the particle “inertial” mass expression (2.123), which follows naturally from both the Feynman
approach to the Lorentz type force derivation and the vacuum field approach.
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1. Introduction 
The quantum theory of matter does not describe real matter until electromagnetic theory is 
used to account for such diverse radiative phenomena as spontaneous emission and the shift 
of quantum energy levels.  Classical electrodynamics fails to account quantitatively for these 
radiative effects in the structure of matter.  Quantum electrodynamics (QED) does 
successfully account for radiative effects in the structure of matter once an infinite 
contribution to the energy, which diverges linearly with electromagnetic-wave frequency, is 
subtracted from the theory based on physical argument that such contribution is already 
included, to zeroth order in perturbation theory, in the description of a radiative as opposed 
to a nonradiative or bare electron.  This mathematical procedure is known as mass 
renormalization and introduces the concept that total mass comprises both material and 
electromagnetic contributions, neither of which is observable by itself.  
In Section II of this paper a theory is presented which describes both the material and 
radiative properties of matter in a single, inseparable form. We show that the time-domain 
relativistic-wave equation of Paul Dirac can be inferred from the Lorentz invariant obtained 
from the scalar product of the electron’s four-momentum and an electromagnetic four-
potential, once an electromagnetic carrier-wave frequency is formally identified with the 

rest-mass energy of the electron divided by  , namely 
2mc 


.  (The scalar product of two 

four-vectors  always gives a Lorentz invariant such that the present derivation proves the 
Lorentz invariance of Dirac’s equation in a single step.  In the standard treatment [1], in 
which the Dirac Hamiltonian is the scalar product of two operator four-vectors, a second 
step is required to prove the Lorentz invariance of the wave equation itself.)  Our derivation 
elucidates a long-studied problem in the literature of the identity of Dirac’s equation with 
the spinorial form of Maxwell’s equation [2-5].  The value of   given above is just the cut 
off of the electromagnetic frequency used in QED to insure the finite value of the 
logarithmically-divergent contribution to the energy, which is the only divergent term 
remaining after the term linearly divergent in the frequency has been removed by mass 
renormalization. In summary Dirac’s time-domain relativistic wave equation is 
reinterpreted to be an equation which accounts for both the material and radiative 
properties of matter.       
In Section III we provide an analytic proof that Dirac’s temporally harmonic solution of his 
equationis equivalent to solving temporally coupled equations by adiabatic elimination, which 
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Lorentz invariance of Dirac’s equation in a single step.  In the standard treatment [1], in 
which the Dirac Hamiltonian is the scalar product of two operator four-vectors, a second 
step is required to prove the Lorentz invariance of the wave equation itself.)  Our derivation 
elucidates a long-studied problem in the literature of the identity of Dirac’s equation with 
the spinorial form of Maxwell’s equation [2-5].  The value of   given above is just the cut 
off of the electromagnetic frequency used in QED to insure the finite value of the 
logarithmically-divergent contribution to the energy, which is the only divergent term 
remaining after the term linearly divergent in the frequency has been removed by mass 
renormalization. In summary Dirac’s time-domain relativistic wave equation is 
reinterpreted to be an equation which accounts for both the material and radiative 
properties of matter.       
In Section III we provide an analytic proof that Dirac’s temporally harmonic solution of his 
equationis equivalent to solving temporally coupled equations by adiabatic elimination, which 
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is a widely-used approximation method to solve temporally coupled equations in the optical-
physics literature.  In a wordDirac’s temporally harmonic solution is approximate, but his 
solution ofthe resulting time-independent or energy-domain equation, which is astaple of the 
relativistic quantum mechanics literature, is exact.The current interpretation of Dirac’s theory 
as describing only the material properties of matter derives from Dirac’s solution of his time-

domain equation using the harmonic substitution, ,( , ) ( )
Ei t

D D Er t e r


  
  , albeit this form, 

since it constrains all four components of his energy-domain  vector wave function , ( )D E r
  to 

oscillate in time at a single frequency E 


, is obviously not the general solution.  The same 

harmonic form however exactly solves Schroedinger’s time-domain equation and thus gives a 
result which is compatible with the way quantum theory evolved as a matter-only theory 
without radiative effects until augmented by QED.  
In Section IV numerical results are presented for the general solution of Dirac’s time-dependent 
equation. Fourier analysis of the generaltime-dependent solution shows that the spectrum of 
quantum states for the Coulomb problem comprises coupled positive- and negative-energy 
states.  The wave function is a mixture of bound and continuum states, with an unbound 
component propagating away from the atom in a manner which satisfies the Lorentz-invariant 
relationship or causality between position and time, r**2 - (ct)**2 = 0.  The unbound behavior 
has long been known as Zitterbewegung for a free electron, and here we show its counterpart 
for the Coulomb problem.  In view of the Dirac-Maxwell relationship elucidated in Section II we 
postulate that the physical interpretation of Zitterbewegung is the emission of a photon with 
energy of order 2mc**2 due to the presence of empty negative-energy states in the general time-
dependent solution.  Dirac's artifice of filling up the negative-energy levels with electrons to 
stabilize the atom is not available in the general time-dependent solution. 
In Section V equations of motion for the photon are given.  In Section VI subatomic bound 
solutions are discovered which are expected due to the temporally second-order nature of 
the time-domain Dirac equation.  Subatomic bound solutions do not exist for Dirac’s time-
independent equation (hereafter called standard Dirac theory) due to his use of the single-
frequency temporally harmonic form discussed in Section III.  Thus the existence of a 
complex neutron cannot be ruled out in the case of the general time-dependent solution as it 
was earlier in the case of standard Dirac theory [6].  These solutions resemble known Dirac 
energy-domain functions for Z > 137.  The spectral content of these solutions comprises a 
spectral peak at -mc**2 for an electron and a spectral peak at +mc**2 for a positron - yes this 
state exists for a positive Coulomb potential.  An electron can thus make an upward 
transition into the positive-energy continuum with transition energy 2mc**2, as in standard 
Dirac theory, while a positron can make a downward transition into the negative-energy 
continuum with transition energy -2mc**2.  The upward transition is considered to be a 
matter transition, while the downward transition is considered to be an anti-matter 
transition.  

2. Maxwell-Dirac equivalency 
There exists a physical equivalency between Dirac and Maxwell theories  which can be 
stated as follows.  It is well known that Lorentz’ equation is the Lorentz invariant formed by 
taking the scalar product of the four-gradient and the electromagnetic four-potential, 
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 (1) 

Recall that the scalar product of four-vectors is always a Lorentz Invariant.  One may 
postulate that a four-potential exists for the electron, such that an electron equation of 
motion can be written as the Lorentz invariant formed by taking the scalar product of the 
electron's four-momentum and the electron's four-potential, 

 0( , ) ( , ) ( ) ( )e e e e
i e i e ei eA A i A A
c t c c t c c
 
 

              
        (2) 

The electron scalar and vector potentials can be written in the form of carrier-wave 
expansions, 

 e ei t i t
e e ee e 

     , (3a) 

 e ei t i t
e e eA A e A e 

  
  

, (3b) 

from which on substituting Eqs. (3) into Eq. (2) and separately setting the coefficients of the 
exponential factors equal to zero, we obtain, 

  0( ) ( )e e ei e i c eA A
t
 
          

 
    (4a) 

 0( ) ( )e e ei e i c eA A
t
 
          

 
   . (4b) 

On setting e   , eA  
  , e   , eA  

   we obtain Dirac’s equation 
Identically if the carrier-wave energy is equal to the rest-mass energy 2

e em c  , 

 0( ) ( )ei e i c eA
t
    


       
    (5a) 

 0( ) ( )ei e i c eA
t
    


       
   , (5b) 

where 


 is Pauli’s vector.  Unlike the classical electromagnetic potentials, which are real, 
the electron’s potentials are complex.  This is obvious when we notice that the + and – 
envelopes are not complex or Hermitian conjugates of one another. 
An electromagnetic contribution to the mass of the electron due to the quantum radiation 
field associated with its motion is a well known concept in QED.  Indeed the carrier-wave 
frequency of the electron's four-potential [Eqs. (3)] is equal to mc**2/hbar, which is the high-
frequency cut off for the quantum radiation field assumed in QED atomic structure 
calculations.  The present derivation of Dirac’s equation suggests thatthe total mass of the 
electron is electromagnetic in nature.  This result is consistent with a previous result in 
which the charge of the electron was derived from Maxwell’s equations [7].  



 
Electromagnetic Waves 

 

58

is a widely-used approximation method to solve temporally coupled equations in the optical-
physics literature.  In a wordDirac’s temporally harmonic solution is approximate, but his 
solution ofthe resulting time-independent or energy-domain equation, which is astaple of the 
relativistic quantum mechanics literature, is exact.The current interpretation of Dirac’s theory 
as describing only the material properties of matter derives from Dirac’s solution of his time-

domain equation using the harmonic substitution, ,( , ) ( )
Ei t

D D Er t e r


  
  , albeit this form, 

since it constrains all four components of his energy-domain  vector wave function , ( )D E r
  to 

oscillate in time at a single frequency E 


, is obviously not the general solution.  The same 

harmonic form however exactly solves Schroedinger’s time-domain equation and thus gives a 
result which is compatible with the way quantum theory evolved as a matter-only theory 
without radiative effects until augmented by QED.  
In Section IV numerical results are presented for the general solution of Dirac’s time-dependent 
equation. Fourier analysis of the generaltime-dependent solution shows that the spectrum of 
quantum states for the Coulomb problem comprises coupled positive- and negative-energy 
states.  The wave function is a mixture of bound and continuum states, with an unbound 
component propagating away from the atom in a manner which satisfies the Lorentz-invariant 
relationship or causality between position and time, r**2 - (ct)**2 = 0.  The unbound behavior 
has long been known as Zitterbewegung for a free electron, and here we show its counterpart 
for the Coulomb problem.  In view of the Dirac-Maxwell relationship elucidated in Section II we 
postulate that the physical interpretation of Zitterbewegung is the emission of a photon with 
energy of order 2mc**2 due to the presence of empty negative-energy states in the general time-
dependent solution.  Dirac's artifice of filling up the negative-energy levels with electrons to 
stabilize the atom is not available in the general time-dependent solution. 
In Section V equations of motion for the photon are given.  In Section VI subatomic bound 
solutions are discovered which are expected due to the temporally second-order nature of 
the time-domain Dirac equation.  Subatomic bound solutions do not exist for Dirac’s time-
independent equation (hereafter called standard Dirac theory) due to his use of the single-
frequency temporally harmonic form discussed in Section III.  Thus the existence of a 
complex neutron cannot be ruled out in the case of the general time-dependent solution as it 
was earlier in the case of standard Dirac theory [6].  These solutions resemble known Dirac 
energy-domain functions for Z > 137.  The spectral content of these solutions comprises a 
spectral peak at -mc**2 for an electron and a spectral peak at +mc**2 for a positron - yes this 
state exists for a positive Coulomb potential.  An electron can thus make an upward 
transition into the positive-energy continuum with transition energy 2mc**2, as in standard 
Dirac theory, while a positron can make a downward transition into the negative-energy 
continuum with transition energy -2mc**2.  The upward transition is considered to be a 
matter transition, while the downward transition is considered to be an anti-matter 
transition.  

2. Maxwell-Dirac equivalency 
There exists a physical equivalency between Dirac and Maxwell theories  which can be 
stated as follows.  It is well known that Lorentz’ equation is the Lorentz invariant formed by 
taking the scalar product of the four-gradient and the electromagnetic four-potential, 

 
Electromagnetic-wave Contribution to the Quantum Structure of Matter 

 

59 

 
1 1 0( , ) ( , )A A
c t c t
 
 


      

  
 (1) 

Recall that the scalar product of four-vectors is always a Lorentz Invariant.  One may 
postulate that a four-potential exists for the electron, such that an electron equation of 
motion can be written as the Lorentz invariant formed by taking the scalar product of the 
electron's four-momentum and the electron's four-potential, 
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The electron scalar and vector potentials can be written in the form of carrier-wave 
expansions, 

 e ei t i t
e e ee e 

     , (3a) 

 e ei t i t
e e eA A e A e 

  
  

, (3b) 

from which on substituting Eqs. (3) into Eq. (2) and separately setting the coefficients of the 
exponential factors equal to zero, we obtain, 
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On setting e   , eA  
  , e   , eA  

   we obtain Dirac’s equation 
Identically if the carrier-wave energy is equal to the rest-mass energy 2

e em c  , 
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where 


 is Pauli’s vector.  Unlike the classical electromagnetic potentials, which are real, 
the electron’s potentials are complex.  This is obvious when we notice that the + and – 
envelopes are not complex or Hermitian conjugates of one another. 
An electromagnetic contribution to the mass of the electron due to the quantum radiation 
field associated with its motion is a well known concept in QED.  Indeed the carrier-wave 
frequency of the electron's four-potential [Eqs. (3)] is equal to mc**2/hbar, which is the high-
frequency cut off for the quantum radiation field assumed in QED atomic structure 
calculations.  The present derivation of Dirac’s equation suggests thatthe total mass of the 
electron is electromagnetic in nature.  This result is consistent with a previous result in 
which the charge of the electron was derived from Maxwell’s equations [7].  
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3. Adiabatic nature of Dirac’s solution of his equation 
Although the time-dependent Dirac equation can be written in the Schroedinger form,  

 D
D Di H

t
 


  , (6) 

where HD is the Dirac Hamiltonian and ( , )D r t 
 is Dirac’s four-component vector wave 

function, it does not follow that the energy-domain 
equation can be written in the Schroedinger form, 

 , ,D E D D EE H   ,  (7) 

unless one requires that all components of ( , )D r t   oscillate in time at a single frequency 

E 


, such that ( , )D r t   has the harmonic form ,( , ) ( )
Ei t

D D Er t e r 


   .  The requirement 

does not hold in the general time-dependent solution of a vector wave function whose 
components are temporally coupled.  
Eqs. (5) are rewritten in the standard Dirac form, 
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  , (8b) 

where   is Pauli’s vector and  ,   are the large, small components of Dirac’s four-
component wave function D .  Eq. (8b) can be eliminated exactly in favor of Eq. (8a) as 
follows, 
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           , (9) 

where we have specialized to an electromagnetic field free problem by setting 0A 


.  

Dirac’s energy-domain solution is obtained by substituting ( , ) ( , )
Ei t

Er t e r t 


    and 
assuming that ( , )E r t   is slowly varying in the time compared to the exponential factor such 
that the integral is evaluated approximately by holding ( , ')E r t   constant at t’=t.  Then the 
integration is performed, and the rapidly oscillating lower-limit contribution is dropped as 
small compared to the stationary upper-limit contribution.  Such approximations to solve 
coupled time-dependent equations are known in the optical-physics literature as adiabatic 
elimination.  Dirac’s second-order equation for the large component follows immediately,  
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where we have used the identity, ( )( ) ( )A B A B i A B        
      

 and the time has been 
dropped from the argument list since the approximations to the t’ integral render the wave 

function stationary. Clearly Dirac’s use of the Schroedinger forms ( , ) ( )
Ei t

Er t e r 


  
 and 

( , ) ( )
Ei t

Er t e r 


  
 to write the energy-domain form of his coupled time-dependent 

equations [Eqs. (8)] rests on an implicit assumption that adiabatic elimination of one of these 
equations in favor of the other is an accurate approximation.  On other words the 
Schroedinger form does not hold exactly in the case of a vector wave function whose 
components are temporally coupled. 
Dirac’s harmonic ansatz for his time-dependent equation gives him aenergy-domain 
equation which is exactly solvable for the free-electron and Coulomb problems.  The 
Schroedinger form of the temporal solution, which is exact for Schroedinger’s scalar wave 
equation but not for Dirac’s vector wave equation, is in effect a form of calibration of Dirac 
theory to Schroedinger theory and has cast Dirac theory in the limited role of “correcting” 
Schroedinger theory primarily for relativistic effects in atomic structure.  Probably as a 
result of its restricted use in electron physics, time-domain Dirac theory until recently had 
not been used to discover the a priori physical basis for Fermi-Dirac statistics [8], which is a 
spin-dependent phenomenon.  The history of quantum mechanics instead followed a path 
of ensuring that Schroedinger wave functions satisfy Fermi-Dirac statistics on the basis of 
experimental observation and not a priori theory by using the Slater determinantal wave 
function to  solve Schroedinger’s wave equation for many electrons, even though 
Schroedinger theory, in which particle spin is absent, contains no physical basis for Fermi-
Dirac statistics.  One must instead turn to time-domain Dirac theory and the Dirac current to 
discover the physical basis for Fermi-Dirac statistics, which is elucidated using spin-
dependent quantum trajectories [8].  Richard Feynman [9] once asked if spin is a relativistic 
requirement and then answered in the negative because the Klein-Gordon equation is a 
valid relativistic equation for a spin-0 particle.  The correct answer is thatspin is a relativistic 
requirement to insure Lorentz invariance in a vector-wave theory such as the Dirac or 
Maxwell theories.  In the sense that Fermi-Dirac statistics depends critically on spin and yet 
is a phenomenonof order (Zc)0, where c is the speed of light and Z is the atomic number, it 
would appear that authors [10] are misguided who present the quantum theory of matter as 
fundamentally based on Schroedinger theory as augmented by Dirac theory for “relativistic 
corrections” of order Z4c-2 due to the acceleration of an electron moving near a nucleus with 
atomic number Z.  

4. Genera solution of Dirac’s time-domain wave equation 
In this section the general time-dependent solution is presented free of any harmonic bias.  

Solving the Coulomb problem (
2Zee V

r
    ) the radial form of Eq. (9), 
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follows from the well-known substitutions, 

 ( , ) ( , ) ( , )r t G r t    
  (12a) 

 1ˆ( )r L
r r
  


    
    (12b) 

 r̂      
  (12c) 

 1( )L        
 , (12d) 

where the angular functions are Dirac’s two-component spinors.Eq. (11) is solved 
numerically in the variables r and ct for the hydrogen-like ground state ( 1   ) with Z=70, 
starting for mathematical convenience  with a Schroedinger wave function at initial time 
and using the trapezoid rule to evaluate the integral.  It is found that the evolved wave 
function is insensitive to the starting function at initial time.   
At the point t=t’ the Crank-Nicolson  implicit integration procedure is used in order to 
insure that the time integration of the equation itself is unconditionally stable. Fig. 1 shows 
the spectrum of states calculated from the inverse temporal Fourier transform of the wave 
function [11-12].  The spectrum has a strong peak in the positive-energy regime and a weak 
peak in the negative-energy regime, which lies in the negative-energy continuum and thus 
accounts for the unbound tail (Fig. 2).  This temporally expanding tail appears to be the 
Coulomb counterpart of the Zitterbewegung solution calculated by Schroedinger [13] using 
the time-dependent Dirac equation for a free electron. 
Fig. 2 shows the real part of radial wave function times r. Notice that the wave function is 
unusual in that it behaves like a bound state close to the nucleus but yet is unbound with a 
small-amplitude tail along the r axis whose length is equal to ct.  In other words the tail 
propagates away from the nucleus at the speed of light.  Nevertheless I have normalized the 
wave function for unit probability of finding the electron within a sphere of radius rmax.  The 
amplitude of the interior portion flows with time between the real part (Fig. 2) and 
imaginary part of the wave function such that the probability density is steady within the 
radius of the atom.  (ct)max is chosen to be three-fourths of rmax in order that the propagating 
piece of the wave function stays well away from the grid boundary at rmax.  Calculations 
show that the results are Insensitive to rmax  and therefore to (ct)max as long as rmax is well 
outside the region represented by the bound piece of the wave function, that is well outside 
of the radius of the atom as represented by standard Dirac theory.  Notice that if the 
dynamical calculation were extended to very large times, then the wave function would fill 
a verylarge volume.  In principle after a sufficient time the wave function could fill a volume 
the size of the universe although its interior part would remain the size of an atom. 
What is the physical interpretation of Zitterbewegung?  In view of theMaxwell-Dirac 
equivalency elucidated in Section II, we postulate here thatit is a photonic energy of order 
2mc**2, which is the energy gap betweenthe positive- and negative-energy electron continua 
and which was identified in Section II as an electromagnetic carrier-wave energy equal to 
2  .   This amount of energy must be carried away from the atom in a continuous sense 
since there is no net loss of interior probability densityover time.  The energy originates 
from the electron’s simulta-neous double occupancy of both positive- and negative-energy 
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states(Fig. 4) whose energy difference is of order 2mc**2.  In standard Diractheory the 
positive- and negative-energy levels are dynamically uncoupledsuch that Dirac assumed 
that electrons exclusively occupy the positive-energy levels and that the atom was stabilized 
by a set of negative-energy levels – the negative-energy sea – which are totally filledwith 
electrons such that the Pauli Exclusion Principle forbad thedownward fall of an electron 
from positive- to negative-energy levelsaccompanied by the emission of a photon with 
energy of order 2mc**2. 
 
 
 
 

 
 
 
 

Fig. 1. Spectrum showing weak coupling of the positive- and negative-energy regions.  The 
continuum edges are at /E c mc   au.  The energy is obtained by multiplying the graphical 
numbers by c.  A blow up of the positive energy peek shows good agreement with the 
eigenvalue at 17474.349, although the spectral calculation, because of the nature of the 
spectral determination of the eigenenergy,  is not good to the number of significant figures 
shown. 
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Fig. 2. Solid: imaginary part of the solution of Eq. (6) times r for Z=50.(ct)max=0.75rmax=0.75 
au. The number of ct, r grid points is 20K, 20K.   Dotted:  radial solution of Eq. (5) times r. 
The eigenvalue is found from the zero wronskian of forward and backward integrations and 
is equal to 17474.349 au to the number of significant figures shown in agreement with the 
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 is the fine structure constant. 

Dotted:  wave function calculated from the radial equation inferred from Eq. (5). 

In the general time-domain solution presented here it appears that theatom is self-stabilizing 
due to the mixed material-electromagnetic natureof the electron.  Recall that in Section II we 
postulated that the electron’sequation of motion should be the scalar product of its material 
four-momentum and its electromagnetic four potential.  The solution of the equation of 
motion shows that the electron can share two ground-state material energy levels with 
energy conservation and without temporal decay of its quantum state as long as the energy 
difference between the two ground-state levels is converted to the energy of a continuously-
emitted photon. 
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5. Photon equations of motion 
In this section equations of motion for the photon are given and used to calculate a 
divergence-free Lamb shift [14-15].  As in the case of the electron in Section II we assume 
that a complex four-potential exists for the photon such that a photon EOM can be written 
as the Lorentz invariant formed by taking the scalar product of the photon's four-
momentum and the photon's four-potential, 

 2 2 0( , , ) ( , ) ( , )e
e eE H A E H A

c t c tmc mc  
 
 

          
          , (13) 

for either electric or magnetic fields ,E H
 

.  The photon four-momentum was found in [14] 
from   times a form of the four-gradient whose scalar product with the four-electromagnetic-
energy density gives the electromagnetic continuity equation. This is simply the 
electromagnetic analog of writing the material continuity equation as the scalar product of the 
four-gradient and the material four-density. 
The electron scalar and vector potentials can be written in the form of carrier-wave expansions, 
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from which on substituting Eqs. (14) into Eq. (13) and separately setting the coefficients of 
the exponential factors equal to zero, we obtain, 
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On setting ,E H   , ,E HA  
  , ,E H   , ,E HA  

   we obtain the Dirac form for 
the photon EOM presented previously assuming zero photon mass ( 0  ), 
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i t

E H E He    and , ,
i t

E H E He    in Eqs. (16) we derive stationary equations 
for ,E H  and ,E H ; then we eliminate the equation for ,E H  in favor of a second-order 
equation for ,E H ,obtaining equations for the electric and magnetic photon wave functions 
which have the Helmholtz form, 
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Fig. 2. Solid: imaginary part of the solution of Eq. (6) times r for Z=50.(ct)max=0.75rmax=0.75 
au. The number of ct, r grid points is 20K, 20K.   Dotted:  radial solution of Eq. (5) times r. 
The eigenvalue is found from the zero wronskian of forward and backward integrations and 
is equal to 17474.349 au to the number of significant figures shown in agreement with the 
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Dotted:  wave function calculated from the radial equation inferred from Eq. (5). 

In the general time-domain solution presented here it appears that theatom is self-stabilizing 
due to the mixed material-electromagnetic natureof the electron.  Recall that in Section II we 
postulated that the electron’sequation of motion should be the scalar product of its material 
four-momentum and its electromagnetic four potential.  The solution of the equation of 
motion shows that the electron can share two ground-state material energy levels with 
energy conservation and without temporal decay of its quantum state as long as the energy 
difference between the two ground-state levels is converted to the energy of a continuously-
emitted photon. 
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for either electric or magnetic fields ,E H
 

.  The photon four-momentum was found in [14] 
from   times a form of the four-gradient whose scalar product with the four-electromagnetic-
energy density gives the electromagnetic continuity equation. This is simply the 
electromagnetic analog of writing the material continuity equation as the scalar product of the 
four-gradient and the material four-density. 
The electron scalar and vector potentials can be written in the form of carrier-wave expansions, 
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from which on substituting Eqs. (14) into Eq. (13) and separately setting the coefficients of 
the exponential factors equal to zero, we obtain, 
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On setting ,E H   , ,E HA  
  , ,E H   , ,E HA  

   we obtain the Dirac form for 
the photon EOM presented previously assuming zero photon mass ( 0  ), 

 2 0,
, ,( , )E H

E H E H
ei E H

c t c mc
    


     

   (16a) 

 2 0,
, ,( , )E H

E H E H
ei E H

c t c mc
 
  


     

 
 (16b) 

Writing , ,
i t

E H E He    and , ,
i t

E H E He    in Eqs. (16) we derive stationary equations 
for ,E H  and ,E H ; then we eliminate the equation for ,E H  in favor of a second-order 
equation for ,E H ,obtaining equations for the electric and magnetic photon wave functions 
which have the Helmholtz form, 
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where we have used the identity, ( )( ) ( )A B A B i A B        
       .Eq. (17b) for 0   was 

used in previous work to calculate the Lamb shift [14] and anomalous magnetic moment 
[16]. 

6. Subatomic bound states 
Dirac’s time-domain equation can be cast in the form of an equationsecond order in space 
and time; thus we should expect a second spatial-temporal solution to exist which is 
independent of the first spatial-temporal solution which we have elucidated in Section IV.  I 
show that a regime exists in which an adiabatic solution to the time-dependent Dirac 
equation is not justified even in an approximate sense.  The existence of the regime is easily 
recognized by writing Dirac equations in the form given by Eq. (11) for the large component 
with a reversal of charge and for the small component with no reversal of charge and then 
seeking solutions for which the phase in the exponential factor vanishes for all times.  These 
equations are, 
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Eqs. (21) are solved numerically for Z=1 and 1    using the same techniques used to solve 
Eq. (11).  The two equations for positronic or electronic binding are solved for a wave 
function or its complex conjugate respectively.  The spectrum is found to be given simply by 

2E mc    (Fig. 3).  The real part of the wave function is shown in Fig. 4.   Notice that if a 
bound state exists for one charge, then a bound state must also exist for the other charge by 
the charge-conjugation symmetry of Dirac’s equation.  Charge-conjugation symmetry is well 
known in standard time-independent Dirac theory, whose adiabatic regime does not 
support positronic-electronic bound states, and arises in Dirac’s interpretation of the 
negative-energy states in which a hole or absence of an electron registers the existence of a 
positron or conversely in a positron world the absence of a positron would signal the 
existence of an electron. 
Although the wave function is pulled inward toward the origin, its extent is still large 
compared to the radius of the proton rp=1.3x10-13 cm = 2.46x10-5 au. 
The spectral energies are those which cancel the terms 2mc  on the left side of Eqs. (21) and 
for which the stationary phases on the right side occur at 2mc2-|V| = 0.  For the unit-
strength Coulomb potential the radius at which the stationary-phases occur is given by 

2

22sp
er
mc

 , which is roughly the radius of the proton. 

The bound behavior of the positronic-electronic wave function shown in Fig. 4 can be 
understood as follows.  Recognizing that the first and third terms on the left side of Eq. (21) 
cancel from the spectral values 2E mc    (Fig. 3),  one may write an equation in which zero 
phase of the integration factor is assumed and which is the time derivative of both sides of 
Eq. (21) with zero phase, 
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A solution to Eq. (22) is sought in the form ( , ) ( )i tf r t e g r  for the complex separation 
constant r ii  , giving the equation for g,  

 
2

2 2 2
2 2 0| |( )r ig g V ig g
r rr r c

   



   


. (23) 

 
 
 
 

 
 
 
 
 

Fig. 3. Spectra from the solution of Eq. (21) using rmax=0.1 au.  Solid:  positive charge.  
Dashed:  negative charge. The continuum edges are at /E c mc   au.   The energy is 
obtained by multiplying the graphical numbers by c. 
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Fig. 4. Real part of the positronic or electronic solution of Eq. (21) times r at ct=0.0375 (solid), 
0.0750 (dashed), and 0.1125 (dotted) au showing the convergence to a stationary solution.  
The initial wave function, which s hydrogenic and spread out in the domain 0.25x10-5<r<0.2 
au, is pulled into the origin as shown in the figure.  

Figs. 5-6 show plots of the real part of f and of the real and imaginary parts of g respectively 

for r=ct and 
2

92r
mc  


, and 
2

35i
mc 


.   Except for the behavior near the origin the 

unnormalized solution of Eq. (23) is a good mimic of the solution of Eq. (21) shown in Fig. 3.  
Remarkably the bound positronic-electronic states in the nonadiabatic regime (Fig. 4) exhibit 
an altogether different form of binding than that of Schroedinger or time-independent Dirac 
theory.  This is obvious from the spectrum (Fig. 3), in which the energies lie at the edges of 
the positive-and negative-energy continua.  One may understand this form of binding as 
binding which satisfies the four-space Lorentz-invariant  relationship 2 2 0( )r ct   between 
position and time .  In other words the binding can occur as a temporal exponential decay in 
which ct = r  rather than as a spatial exponential decay requiring eigenvalues which fall 
somewhere in the gap between the two continua.  This point is clear fromFigs. 5-6 in which 
binding occurs in the temporal part of the function f(r,t) (Fig. 5) while the radial function 
g(r) is unbound (Fig. 6). 
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Fig. 5. Simulation using Eqs. (22)-(23) of the wave function shown in Fig. 4.  The simulated 
wave function is unnormalized. 
 

 
Fig. 6. Unnormalized wave function obtained from Eq. (23) by outward integration.  Solid:  
real part.  Dashed:  imaginary part.  
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1. Introduction

Schrödinger conceived his wave equation having in mind de Broglie’s famous relation from
which we learnt to attribute complementary behavior to quantum objects depending on
the experimental situation in question. He also thought of a wave in the sense of classical
waves, like electromagnetic waves and others. However, the space-time asymmetry of the
equation with governs quantum phenomena lead the scientific community to investigate the
new physics this specific wave was about to unveil. It turns out that in certain experimental
condition classical light has its behavior dictated by a bidimensional Schrödinger equation for
a free particle. This fact is well known for several years (Yariv, 1991; Snyder & Love, 1991;
Berman, 1997; Marte & Stenholm, 1997). For this special kind of waves it is possible to define
the analog of a Hilbert space and operators which do not commute (as reviewed in section 2)
in such a way that the mathematical analogy becomes perfect. A natural question emerging
in this context, and the case of the present investigation is the following: how far, in the sense
of leaning new physics, can we take this analogy ?
We have been able to show that the generalized uncertainty relation by Robertson and
Schrödinger, naturally valid for paraxial waves, can shed new light on the physical context of
a beautiful phenomenon, long discovered by Gouy (Gouy, 1890; 1891) which is an anomalous
phase that light waves suffer in their passage by spatial confinement. This famous phase
is directly related to the covariance between momentum and position and since for the “free
particles" we are considering xx pp

2
xp constant we see that Gouy phase can be indirectly

measured from the coordinate and momentum variances, quantities a lot easier to measure
than covariance between x and p. On the other hand, as far as free atomic particles are
concerned, experiments elaborated to test the uncertainty relation (Nairz et al., 2002) will
reveal to us the matter wave equivalence of Gouy phase. Unfortunately the above quoted
experiment was not designed to determine the phase and that is the reason why, so far, we
have only an indirect evidence of the compatibility of theory and experiment. The last aim
of our research is to try to encourage laboratories with facilities involving microwave cavities
and atomic beams to perform an experiment to obtain the Gouy phase for matter waves.
We believe that Gouy phase for matter waves could have important applications in the field of
quantum information. The transversal wavefunction of an atom in a beam state can be treated
not only as a continuous variable system, but also as an infinite-dimensional discrete system.
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2 Will-be-set-by-IN-TECH

The atomic wavefunction can be decomposed in Hermite-Gaussian or Laguerre-Gaussian
modes in the same way as an optical beam (Saleh & Teich, 1991), which form an infinite
discrete basis. This basis was used, for instance, to demonstrate entanglement in a two-photon
system (Mair et al., 2001). However, it is essential for realizing quantum information tasks that
we have the ability to transform the states from one mode to another, making rotations in the
quantum state. This can be done using the Gouy phase, constructing mode converters in the
same way as for light beams (Allen et al., 1992; Beijersbergen et al., 1993). In a recent paper is
discussed how to improved electron microscopy of magnetic and biological specimens using
a Laguere-Gauss beam of electron waves which contains a Gouy phase term (McMorran et al.,
2011).

2. Analogy between paraxial equation and Schrödinger equation

One of the main differences in the dynamical behavior of electromagnetic and matter
waves relies in their dispersion relations. Free electromagnetic wave packets in vacuum
propagate without distortions while, e.g., an initially narrow gaussian wave function of a free
particle tends to increase its width indefinitely. However, the paraxial approximation to the
propagation of a light wave in vacuum is formally identical to Schrödinger’s equation. In this
case they are bound to yield identical results.
We start our analysis by taking the simple route of a direct comparison between the Gaussian
solutions of the paraxial wave equation and the two-dimensional Schrödinger equation.
Consider a stationary electric field in vacuum

E r A r exp ikz . (1)

The paraxial approximation consists in assuming that the complex envelope function A r
varies slowly with z such that 2 A/ z2 may be disregarded when compared to k A/ z. In
this condition, the approximate wave equation can be immediately obtained and reads (Saleh
& Teich, 1991)

2

x2

2

y2 i4
1

L z
A x, y, z 0, (2)

where L is the light wavelength.
Consider now the two-dimensional Schrödinger equation for a free particle of mass m

2

x2

2

y2 2i
m
h̄ t

x, y, t 0. (3)

Here, x, y, t stands for the wave function of the particle in time t. Assuming that the
longitudinal momentum component pz is well-defined (Viale et al., 2003), i.e., pz pz, we
can consider that the particle’s movement in the z direction is classical and its velocity in this
direction remains constant. In this case one can interpret the time variation t as proportional
to z, according to the relation t z/vz. Now using the fact that P h/pz and substituting
in Equation (3) we get

2

x2

2

y2 i4
1

P z
x, y, t z/vz 0, (4)

where P is the wavelength of particle. As we can see the Equations (2) and (4) are formally
identical.
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The analogy between classical light waves and matter waves is more apparent if we use the
formalism of operators in the classical approach introduced by Stoler (Stoler, 1981). In this
formalism, the function A x, y, z is represented by the ket vector A z . If we take the inner
product with the basis vectors x, y , we obtain A x, y, z x, y A z . The differential
operators i / x and i / y acting on the space of functions containing A x, y, z are
represented in the space of abstract ket by the operators k̂x and k̂y. The algebraic structure of
operators k̂x, k̂y, x̂ and ŷ is specified by the following commutation relations

x̂, k̂x x̂k̂x k̂x x̂ i, ŷ, k̂y i, x̂, ŷ x̂, k̂y ŷ, k̂x 0. (5)

2.1 The generalized uncertainty relation for light waves
The analogy between the above equations in what concerns the uncertainty relation can be
immediately constructed given the formal analogy between the equations.
Consider the plane wave expansion of the normalized wave u x, t in one dimension (Jackson,
1999)

u x, t
1
2

dkx A kx ei kx x kx t . (6)

The amplitudes A kx are determined by the Fourier transform of the u x, 0 (t 0 for
simplicity)

A kx
1
2

dx u x, 0 e ikx x. (7)

The averages of functions f x, kx of x and kx are evaluated as (Stoler, 1981)

f x, kx dx u x, 0 fs x, i
x

u x, 0 , (8)

in complete analogy with quantum mechanics. The function fs x, i x is obtained from

f x, kx substituting the c-number variable kx by the operator i x followed by symmetric

ordering. For example, if f x, kx xkx, then fs x, i x
i
2 x x x x . Thus, we can

write the variances
xx x̂2 x̂ 2, (9)

kxkx k̂2
x k̂x

2, (10)

and the covariance

xkx

i
2

dx u x x
x x

x u x x̂ k̂x , (11)

and get

xx kxkx
2
xkx

1
4

. (12)

Equation (12) is the equivalent of generalized Schrödinger-Robertson uncertainty relation but
for paraxial waves. It is also true in this context that the evolution given by Equation (2)
preserves this quantity. This fact allows us to experimentally assess the covariance xkx by
the measurements of xx and kxkx , which are quite simple to perform. Moreover, as we show
next, xkx is directly related to the Rayleigh length and Gouy phase.

73Gouy Phase and Matter Waves



2 Will-be-set-by-IN-TECH

The atomic wavefunction can be decomposed in Hermite-Gaussian or Laguerre-Gaussian
modes in the same way as an optical beam (Saleh & Teich, 1991), which form an infinite
discrete basis. This basis was used, for instance, to demonstrate entanglement in a two-photon
system (Mair et al., 2001). However, it is essential for realizing quantum information tasks that
we have the ability to transform the states from one mode to another, making rotations in the
quantum state. This can be done using the Gouy phase, constructing mode converters in the
same way as for light beams (Allen et al., 1992; Beijersbergen et al., 1993). In a recent paper is
discussed how to improved electron microscopy of magnetic and biological specimens using
a Laguere-Gauss beam of electron waves which contains a Gouy phase term (McMorran et al.,
2011).

2. Analogy between paraxial equation and Schrödinger equation

One of the main differences in the dynamical behavior of electromagnetic and matter
waves relies in their dispersion relations. Free electromagnetic wave packets in vacuum
propagate without distortions while, e.g., an initially narrow gaussian wave function of a free
particle tends to increase its width indefinitely. However, the paraxial approximation to the
propagation of a light wave in vacuum is formally identical to Schrödinger’s equation. In this
case they are bound to yield identical results.
We start our analysis by taking the simple route of a direct comparison between the Gaussian
solutions of the paraxial wave equation and the two-dimensional Schrödinger equation.
Consider a stationary electric field in vacuum

E r A r exp ikz . (1)

The paraxial approximation consists in assuming that the complex envelope function A r
varies slowly with z such that 2 A/ z2 may be disregarded when compared to k A/ z. In
this condition, the approximate wave equation can be immediately obtained and reads (Saleh
& Teich, 1991)

2

x2

2

y2 i4
1

L z
A x, y, z 0, (2)

where L is the light wavelength.
Consider now the two-dimensional Schrödinger equation for a free particle of mass m

2

x2

2

y2 2i
m
h̄ t

x, y, t 0. (3)

Here, x, y, t stands for the wave function of the particle in time t. Assuming that the
longitudinal momentum component pz is well-defined (Viale et al., 2003), i.e., pz pz, we
can consider that the particle’s movement in the z direction is classical and its velocity in this
direction remains constant. In this case one can interpret the time variation t as proportional
to z, according to the relation t z/vz. Now using the fact that P h/pz and substituting
in Equation (3) we get

2

x2

2

y2 i4
1

P z
x, y, t z/vz 0, (4)

where P is the wavelength of particle. As we can see the Equations (2) and (4) are formally
identical.
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The analogy between classical light waves and matter waves is more apparent if we use the
formalism of operators in the classical approach introduced by Stoler (Stoler, 1981). In this
formalism, the function A x, y, z is represented by the ket vector A z . If we take the inner
product with the basis vectors x, y , we obtain A x, y, z x, y A z . The differential
operators i / x and i / y acting on the space of functions containing A x, y, z are
represented in the space of abstract ket by the operators k̂x and k̂y. The algebraic structure of
operators k̂x, k̂y, x̂ and ŷ is specified by the following commutation relations

x̂, k̂x x̂k̂x k̂x x̂ i, ŷ, k̂y i, x̂, ŷ x̂, k̂y ŷ, k̂x 0. (5)

2.1 The generalized uncertainty relation for light waves
The analogy between the above equations in what concerns the uncertainty relation can be
immediately constructed given the formal analogy between the equations.
Consider the plane wave expansion of the normalized wave u x, t in one dimension (Jackson,
1999)

u x, t
1
2

dkx A kx ei kx x kx t . (6)

The amplitudes A kx are determined by the Fourier transform of the u x, 0 (t 0 for
simplicity)

A kx
1
2

dx u x, 0 e ikx x. (7)

The averages of functions f x, kx of x and kx are evaluated as (Stoler, 1981)

f x, kx dx u x, 0 fs x, i
x

u x, 0 , (8)

in complete analogy with quantum mechanics. The function fs x, i x is obtained from

f x, kx substituting the c-number variable kx by the operator i x followed by symmetric

ordering. For example, if f x, kx xkx, then fs x, i x
i
2 x x x x . Thus, we can

write the variances
xx x̂2 x̂ 2, (9)

kxkx k̂2
x k̂x

2, (10)

and the covariance

xkx

i
2

dx u x x
x x

x u x x̂ k̂x , (11)

and get

xx kxkx
2
xkx

1
4

. (12)

Equation (12) is the equivalent of generalized Schrödinger-Robertson uncertainty relation but
for paraxial waves. It is also true in this context that the evolution given by Equation (2)
preserves this quantity. This fact allows us to experimentally assess the covariance xkx by
the measurements of xx and kxkx , which are quite simple to perform. Moreover, as we show
next, xkx is directly related to the Rayleigh length and Gouy phase.
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Next, we show one important result which is a consequence of this analogy - the Gouy phase
for matter waves. The free time evolution of an initially Gaussian wave packet

x, y, 0
1

b0
exp

x2 y2

2b2
0

, (13)

according to Schrödinger’s equation is given by (da Paz, 2006)

x, y, t
1

B t
exp

x2 y2

2B2 t

exp i
m x2 y2

2h̄R t
t . (14)

The comparison with the solution of the wave equation in the paraxial approximation with
the same condition at z 0 yields

w z B t b0 1
t
0

2
1
2

, (15)

R z R t t 1 0
t

2
, (16)

z t arctan
t
0

, (17)

and

z0 0
mb2

0
h̄

. (18)

The parameter B t (w z ) is the width of the particle beam (of light beam), the parameter R t
(R z ) is the radius of curvature of matter wavefronts (wavefront of light), t ( z ) is the
Gouy phase for matter waves (for light waves). The parameter 0 is only related to the initial
condition and is responsible for two regimes of growth of the beam width B t (da Paz, 2006;
Piza, 2001), in complete analogy with the Rayleigh length which separates the growth of the
beam width w z in two different regimes as is well known in optics (Saleh & Teich, 1991).
The above equations show that the matter wave propagating in time with fixed velocity in
the propagation direction and the stationary electric field in the paraxial approximation are
formally identical [if one replaces t z/vz in the Equations (15–17)].
Next we show that t is directly related to the Schrödinger-Robertson generalized
uncertainty relation. For quadratic unitary evolutions (as the free evolution in the present
case) the determinant of the covariance matrix is time independent and for pure Gaussian
states saturates to its minimum value,

det xx xp

xp pp

h̄2

4
(19)

where

xx
B t 2

2
, pp

h̄2

2b2
0

, (20)
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and

xp
h̄t

2 0

h̄
2

tan 2 t . (21)

Since the covariance xp is non-null if the Gaussian state exhibits squeezing (Souza et al.,
2008), if one measures xp, from the above relation it is possible to infer the Gouy phase for
a matter wave which can be described by an evolving coherent wave packet. For light waves
this is a simple task as can be seen below.

2.2 The Gouy phase for light waves
The generalized uncertainty relation for the Gaussian light field can be immediately obtained.
Indeed the variances

xx
w2 z

4
, (22)

kxkx

k
2z0

, (23)

xkx

z
2z0

1
2

tan 2 z , (24)

satisfy the equality

xx kxkx
2
xkx

1
4

. (25)

Analogue expressions can be found for the second moments of the y transverse component.
The saturation at the value 1/4 allows for the determination of the covariance xkx . From
Equation (25) and using the expressions (22) and (23) we get

xkx z
1
2

w z
w0

2
1, (26)

which is a function of z/z0 just like expression (17) for the Gouy phase.
The connection between the Gouy phase and the covariance xkx is of purely kinematical
nature. As pointed by Simon and Mukunda (Simon & Mukunda, 1993), the parameter space
of the gaussian states has a hyperbolic geometry, and the Gouy phase has a geometrical
interpretation related to this geometry.
Note that xkx can be positive or negative according to the Equation (26). However, the
Equation (26) was deduced assuming that the focus of the beam is z 0. If we shift the
focus to any position zc, as in the experiment, we must take this into account. The plus and
minus sign in Equation (26) can be better understood if we look at the Equation (24)

xkx

z
2z0

xkx

z zc

2z0
, (27)

which agrees with the experimental data as we show in what follows. Here we can see that
for light waves propagating in the direction of focus (z zc) the covariance is negative, on
the other hand, for light waves propagating after focus (z zc) the covariance is positive.
Now note Equation (26) suggests that by measuring the beam width w z we can indirectly
infer the value of xkx and thus the value of the Gouy phase by Equation (24). Next, we
describe a simple experiment to measure w z . To experimentally obtain the beam width as a
function of the propagation distance, we use the following experimental arrangement shown
in Figure 1 (Laboratory of Quantum Optics at UFMG), where L1 represents a divergent lens,

75Gouy Phase and Matter Waves



4 Will-be-set-by-IN-TECH

Next, we show one important result which is a consequence of this analogy - the Gouy phase
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Piza, 2001), in complete analogy with the Rayleigh length which separates the growth of the
beam width w z in two different regimes as is well known in optics (Saleh & Teich, 1991).
The above equations show that the matter wave propagating in time with fixed velocity in
the propagation direction and the stationary electric field in the paraxial approximation are
formally identical [if one replaces t z/vz in the Equations (15–17)].
Next we show that t is directly related to the Schrödinger-Robertson generalized
uncertainty relation. For quadratic unitary evolutions (as the free evolution in the present
case) the determinant of the covariance matrix is time independent and for pure Gaussian
states saturates to its minimum value,
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Since the covariance xp is non-null if the Gaussian state exhibits squeezing (Souza et al.,
2008), if one measures xp, from the above relation it is possible to infer the Gouy phase for
a matter wave which can be described by an evolving coherent wave packet. For light waves
this is a simple task as can be seen below.

2.2 The Gouy phase for light waves
The generalized uncertainty relation for the Gaussian light field can be immediately obtained.
Indeed the variances
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Analogue expressions can be found for the second moments of the y transverse component.
The saturation at the value 1/4 allows for the determination of the covariance xkx . From
Equation (25) and using the expressions (22) and (23) we get
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which is a function of z/z0 just like expression (17) for the Gouy phase.
The connection between the Gouy phase and the covariance xkx is of purely kinematical
nature. As pointed by Simon and Mukunda (Simon & Mukunda, 1993), the parameter space
of the gaussian states has a hyperbolic geometry, and the Gouy phase has a geometrical
interpretation related to this geometry.
Note that xkx can be positive or negative according to the Equation (26). However, the
Equation (26) was deduced assuming that the focus of the beam is z 0. If we shift the
focus to any position zc, as in the experiment, we must take this into account. The plus and
minus sign in Equation (26) can be better understood if we look at the Equation (24)
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which agrees with the experimental data as we show in what follows. Here we can see that
for light waves propagating in the direction of focus (z zc) the covariance is negative, on
the other hand, for light waves propagating after focus (z zc) the covariance is positive.
Now note Equation (26) suggests that by measuring the beam width w z we can indirectly
infer the value of xkx and thus the value of the Gouy phase by Equation (24). Next, we
describe a simple experiment to measure w z . To experimentally obtain the beam width as a
function of the propagation distance, we use the following experimental arrangement shown
in Figure 1 (Laboratory of Quantum Optics at UFMG), where L1 represents a divergent lens,
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L2 a convergent lens and D is a light detector. With this arrangement we can measure the
width of the beam as a function of z. The width of the beam in position z is the width of the
intensity curve, adjusted by a Gaussian function. In Figure 2, we show the width of the beam
for different distances z, along with the corresponding result for xkx .

Fig. 1. Sketch of experimental arrangement used to indirectly measure the Gouy phase of a
focused light beam.

Fig. 2. On the left, the width of Gaussian beam w z as a function of propagation direction z.
Solid curve corresponds to the Equation (15) and the points were obtained of experiment. On
the right, covariance xkx as a function of z zc. Solid curve corresponds to the Equation (27)
and the points were obtained of experiment through the equation (26).

The determination of xkx or w z allows us to determine z (see Figure 3).

3. Macromolecules diffraction and indirect evidence for the Gouy phase for matter
waves

Recent experiments involving the diffraction of fullerene molecules and the uncertainty
relation are shown to be quantitatively consistent with the existence of a Gouy phase for
matter waves (da Paz et al., 2010). In Ref. (Nairz et al., 2002) an experimental investigation
of the uncertainty relation in the diffraction of fullerene molecules is presented. In that
experiment, a collimated molecular beam crosses a variable aperture slit and its width is
measured as a function of the slit width. Before reaching the slit diffraction the molecular
beam passes through a collimating slit whose width is fixed at 0 10 m, producing a
correlated beam (see Figures 1 and 3 in Ref. (Nairz et al., 2002)).
The wave function of the fullerene molecules that leave the slit of width b0, in the transverse
direction, is given by

kx x̄, 0
1

b0
exp

x̄2

2b2
0

ikx x̄ , (28)
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Fig. 3. Gouy phase for Gaussian light beam as a function of propagation direction z zc.
Solid curve corresponds to the Equation (17) and the points were obtained of experiment
through the Equation (24).

where kx is the transverse wave number. The wave function on the screen is given by

kx x, t dx̄G x, t; x̄, 0 kx x̄, 0 , (29)

where

G x, t; x̄, 0
m

2 ih̄t

1
2 exp

im
2h̄t

x x̄ 2 , (30)

and t z/vz is the propagation time from slit to detector, vz is the most probable speed on the
z direction. After some algebraic manipulations we obtain, for the normalized wave function
at the detector, the following result

kx x, t
1

B t
exp

1
2B2 t

x
b2

0t

0
kx

2

exp
i t

2
im

2h̄R t
x2 b4

0k2
x

2mb4
0

h̄t
xkx , (31)

where B t , R t and t are given by the Equations (15), (16) and (17), respectively.
As discussed in Ref. (Viale et al., 2003), given the way the fullerene molecules are
produced, it is reasonable to assume that the outgoing beam after the diffraction slit has a
random transverse momentum. Due to the thermal production the beam contains different
components kx, although it has been collimated (Viale et al., 2003). The beam is an
incoherent mixture of wave functions with wavenumber kx randomly distributed according to
probability distribution g 0 kx . This distribution depends on the geometry of the collimator,
secondary source, which reduces the beam width in the direction x. The index 0 represents
the plane of the secondary source (the plane of the collimator), which means that the loss
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intensity curve, adjusted by a Gaussian function. In Figure 2, we show the width of the beam
for different distances z, along with the corresponding result for xkx .

Fig. 1. Sketch of experimental arrangement used to indirectly measure the Gouy phase of a
focused light beam.

Fig. 2. On the left, the width of Gaussian beam w z as a function of propagation direction z.
Solid curve corresponds to the Equation (15) and the points were obtained of experiment. On
the right, covariance xkx as a function of z zc. Solid curve corresponds to the Equation (27)
and the points were obtained of experiment through the equation (26).

The determination of xkx or w z allows us to determine z (see Figure 3).

3. Macromolecules diffraction and indirect evidence for the Gouy phase for matter
waves

Recent experiments involving the diffraction of fullerene molecules and the uncertainty
relation are shown to be quantitatively consistent with the existence of a Gouy phase for
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of the uncertainty relation in the diffraction of fullerene molecules is presented. In that
experiment, a collimated molecular beam crosses a variable aperture slit and its width is
measured as a function of the slit width. Before reaching the slit diffraction the molecular
beam passes through a collimating slit whose width is fixed at 0 10 m, producing a
correlated beam (see Figures 1 and 3 in Ref. (Nairz et al., 2002)).
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Fig. 3. Gouy phase for Gaussian light beam as a function of propagation direction z zc.
Solid curve corresponds to the Equation (17) and the points were obtained of experiment
through the Equation (24).

where kx is the transverse wave number. The wave function on the screen is given by

kx x, t dx̄G x, t; x̄, 0 kx x̄, 0 , (29)

where
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and t z/vz is the propagation time from slit to detector, vz is the most probable speed on the
z direction. After some algebraic manipulations we obtain, for the normalized wave function
at the detector, the following result
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where B t , R t and t are given by the Equations (15), (16) and (17), respectively.
As discussed in Ref. (Viale et al., 2003), given the way the fullerene molecules are
produced, it is reasonable to assume that the outgoing beam after the diffraction slit has a
random transverse momentum. Due to the thermal production the beam contains different
components kx, although it has been collimated (Viale et al., 2003). The beam is an
incoherent mixture of wave functions with wavenumber kx randomly distributed according to
probability distribution g 0 kx . This distribution depends on the geometry of the collimator,
secondary source, which reduces the beam width in the direction x. The index 0 represents
the plane of the secondary source (the plane of the collimator), which means that the loss
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of coherence of the beam is due to the production mechanism only. It is not physically
reasonable to assume that a coherent wave packet leaves the diffraction slit due to the thermal
production of the fullerene molecules as discussed above. Therefore, in order to introduce
some incoherence along the spatial transverse direction, where the quantum effects occur, we
use the formalism of density matrices (Gase, 1994; Ballentine, 1998; Scully & Zubairy, 1997;
Fano, 1957). The density matrix of the beam at time t is given by

x, x , t dkxg 0 kx kx x, t kx
x , t . (32)

For simplicity, let us take a probability distribution of wave number kx be a Gaussian function
centered at kx 0 and width kx kx / 2, i.e.,

g 0 kx
1

kx

exp
k2

x
2
kx

. (33)

This allows us to obtain for the density matrix Equation (32), the following result

x, x , t
1
B̄ t

exp
x x 2 4

P x x 2

4B̄2 t
exp

im
2h̄R̄ t

x2 x 2 , (34)

where

B̄ t b0 1
t
¯0

2
1
2

, R̄ t t 1
¯0
t

2
, (35)

¯0 2
P 0, 2

P 1 b2
0

2
kx

. (36)

We observe that the density matrix Equation (34) is a mixed state due to the incoherence of
the source. The bar has been used to differentiate the parameters of the pure Gaussian state of
matter waves of the respective parameters from a mixed Gaussian state. The quantity 2

P is
the quality factor of the particle beam. The quantity ¯0 is a generalization of the definition of
time aging (Piza, 2001) (timescale) for partially coherent Gaussian state of matter waves. We
see that this quantity is always smaller than the aging time of Gaussian pure states, 0, and in
this case, a mixed Gaussian state will spread faster with time than the pure Gaussian states.
In the coherent limit kx 0 (ideal collimation), we obtain the parameters of pure Gaussian
state, Equations (15), (16) and (17).
In the limit t 0 (the plane of source), we have

0 x, x
1

b0
exp

x2 x 2

2b2
0

exp
2
kx

4
x x 2 , (37)

where the last exponential term of this equation make the role of the spectral degree of
coherence defined in the theory of optical coherence (Mandel & Wolf, 1995). We see that the
dependence of this term with the transverse position appears as the difference between the
positions and, in this case, the source of fullerenes is a source of type Schell (Mandel & Wolf,
1995). Again, the source of fullerenes we refer to here is the collimation slit and not the oven.
With the density matrix, we obtain the intensity at the detector by using x x e t z/vz,
i.e.,

I x, t x, x, t
1
B̄ t

exp
x2

B̄2 t
. (38)

78 Electromagnetic Waves Gouy Phase and Matter Waves 9

Next, we calculate the new elements of the covariance matrix and obtain the following results

xx x̂2 dxx2 x, x, t

B̄ t
2

, (39)

pp p̂2 dx kx
x , t h̄2

2

x2 kx x, t
x x

g 0 kx dkx

h̄2

2

4
P

b2
0

, (40)

and

xp
x̂ p̂ p̂x̂

2
dx kx

x , t x ih̄
x kx x, t

x x
g 0 kx dkx

h̄
2

2
P

t
¯0

. (41)

With these new elements, we obtain the following result for the determinant of covariance
matrix

det
xx xp

xp pp

4
P

h̄2

4
. (42)

This result shows that the determinant of the covariance matrix remains time independent,
but has a different value from h̄2

4 , because now we have an incoherent state.
The experimental result for the width WFWHM (full width at half maximum) at the detector,
realized by the group of A. Zeilinger in Ref. (Nairz et al., 2002) is shown in Figure 4 and
compared with our theoretical calculation, Equation (39) (where WFWHM 2 2 ln 2 xx). The
points are experimental data extracted from Ref. (Nairz et al., 2002), the dashed curve is the
beam width with incoherence effect and without convolution with the detector and the solid
curve takes into account both effects. These curves show that to adjust the experimental points
with theoretical model, we take into account the convolution with the detector and the partial
coherence of the fullerenes source. To take into account the convolution with the detector, we
use a detector width FWHM of order of 12 m, where we took as reference the value quoted
in (Nairz et al., 2002). The parameter that measures the partial coherence in the transverse
direction of the beam that best fits the experimental data is given by kx 9.0 106 m 1.
With this value of kx we calculate the initial transverse coherence length, i.e., 0x x t 0
and we obtain 0x kx / 2 1 1.3 10 7 m. As we do not take into account the coupling
with the environment in our model, the initial coherence length remains constant in time, i.e.,

x t 0x. To compare the value of the coherence length with the value of the wavelength,
we calculate P through the equation P z h/mvz (where vz 200 m/s is the most
probable speed) and we obtain P 2.5 pm. Thus, we have 0x P, and the condition
discussed in Ref. (Mandel & Wolf, 1995) for a locally coherent source is guaranteed. Because
the source size is much larger than transverse coherence length, i.e., 0 0x, the angle of
beam divergence of fullerenes produced in the secondary source (collimation slit) is given by

¯0
P 1

0x
6.1 rad, (43)
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of coherence of the beam is due to the production mechanism only. It is not physically
reasonable to assume that a coherent wave packet leaves the diffraction slit due to the thermal
production of the fullerene molecules as discussed above. Therefore, in order to introduce
some incoherence along the spatial transverse direction, where the quantum effects occur, we
use the formalism of density matrices (Gase, 1994; Ballentine, 1998; Scully & Zubairy, 1997;
Fano, 1957). The density matrix of the beam at time t is given by

x, x , t dkxg 0 kx kx x, t kx
x , t . (32)

For simplicity, let us take a probability distribution of wave number kx be a Gaussian function
centered at kx 0 and width kx kx / 2, i.e.,
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This allows us to obtain for the density matrix Equation (32), the following result
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We observe that the density matrix Equation (34) is a mixed state due to the incoherence of
the source. The bar has been used to differentiate the parameters of the pure Gaussian state of
matter waves of the respective parameters from a mixed Gaussian state. The quantity 2

P is
the quality factor of the particle beam. The quantity ¯0 is a generalization of the definition of
time aging (Piza, 2001) (timescale) for partially coherent Gaussian state of matter waves. We
see that this quantity is always smaller than the aging time of Gaussian pure states, 0, and in
this case, a mixed Gaussian state will spread faster with time than the pure Gaussian states.
In the coherent limit kx 0 (ideal collimation), we obtain the parameters of pure Gaussian
state, Equations (15), (16) and (17).
In the limit t 0 (the plane of source), we have
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1
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x2 x 2

2b2
0

exp
2
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4
x x 2 , (37)

where the last exponential term of this equation make the role of the spectral degree of
coherence defined in the theory of optical coherence (Mandel & Wolf, 1995). We see that the
dependence of this term with the transverse position appears as the difference between the
positions and, in this case, the source of fullerenes is a source of type Schell (Mandel & Wolf,
1995). Again, the source of fullerenes we refer to here is the collimation slit and not the oven.
With the density matrix, we obtain the intensity at the detector by using x x e t z/vz,
i.e.,

I x, t x, x, t
1
B̄ t

exp
x2

B̄2 t
. (38)
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Next, we calculate the new elements of the covariance matrix and obtain the following results

xx x̂2 dxx2 x, x, t

B̄ t
2

, (39)

pp p̂2 dx kx
x , t h̄2

2

x2 kx x, t
x x

g 0 kx dkx

h̄2

2

4
P

b2
0

, (40)

and

xp
x̂ p̂ p̂x̂

2
dx kx

x , t x ih̄
x kx x, t

x x
g 0 kx dkx

h̄
2

2
P

t
¯0

. (41)

With these new elements, we obtain the following result for the determinant of covariance
matrix

det
xx xp

xp pp

4
P

h̄2

4
. (42)

This result shows that the determinant of the covariance matrix remains time independent,
but has a different value from h̄2

4 , because now we have an incoherent state.
The experimental result for the width WFWHM (full width at half maximum) at the detector,
realized by the group of A. Zeilinger in Ref. (Nairz et al., 2002) is shown in Figure 4 and
compared with our theoretical calculation, Equation (39) (where WFWHM 2 2 ln 2 xx). The
points are experimental data extracted from Ref. (Nairz et al., 2002), the dashed curve is the
beam width with incoherence effect and without convolution with the detector and the solid
curve takes into account both effects. These curves show that to adjust the experimental points
with theoretical model, we take into account the convolution with the detector and the partial
coherence of the fullerenes source. To take into account the convolution with the detector, we
use a detector width FWHM of order of 12 m, where we took as reference the value quoted
in (Nairz et al., 2002). The parameter that measures the partial coherence in the transverse
direction of the beam that best fits the experimental data is given by kx 9.0 106 m 1.
With this value of kx we calculate the initial transverse coherence length, i.e., 0x x t 0
and we obtain 0x kx / 2 1 1.3 10 7 m. As we do not take into account the coupling
with the environment in our model, the initial coherence length remains constant in time, i.e.,

x t 0x. To compare the value of the coherence length with the value of the wavelength,
we calculate P through the equation P z h/mvz (where vz 200 m/s is the most
probable speed) and we obtain P 2.5 pm. Thus, we have 0x P, and the condition
discussed in Ref. (Mandel & Wolf, 1995) for a locally coherent source is guaranteed. Because
the source size is much larger than transverse coherence length, i.e., 0 0x, the angle of
beam divergence of fullerenes produced in the secondary source (collimation slit) is given by

¯0
P 1

0x
6.1 rad, (43)
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Fig. 4. Beam width of fullerene molecules C70 as a function of slit width. Solid and dashed
curves correspond to our calculation, Equation (35), and the points are the experimental
results obtained in Ref. (Nairz et al., 2002). Dashed curve corresponds to the incoherent case
without convolution with the detector and solid curve corresponds to the case where both
effects were taken into account. To adjust the theoretical calculation with the experimental
data we use kx 9.0 106 m 1 and t z/vz 6.65 ms.

a value consistent with the experimental value quoted in Ref. (Nairz et al., 2000) (2
10 rad).
The range of wavelengths along the direction x is given by

x
2
kx

986 nm, (44)

where kx kx / 2 6.4 106 m 1.
The value obtained for the range of wavelengths is the same order of magnitude of the
transverse coherence length 0x, what justifies the existence of quantum effects along this
direction. The component of the wave vector in the direction z has the value kz mvz/h̄
2.24 1012 m 1. The values found for kz and kx show that kz kx and thus, paraxial
approximation is guaranteed for the partially coherent matter wave beam.

3.1 Covariance xp and Gouy phase
In this section, we calculate the covariance between position and momentum and the Gouy
phase for fullerenes molecules considering the free Schrödinger equation. We calculate the
phase and show that it is also related to the covariance xp as well as in the case of pure
Gaussian states.
Starting from the determinant of the covariance matrix for mixed Gaussian state, Equation
(42), we can express xp in terms of the beam width, i.e.,

xp
h̄ 2

P
2

WFWHM

2 ln 2b0

2
1

1
2

, (45)

where WFWHM is measured in the laboratory. The curve for xp, obtained with experimental
data of the Ref. (Nairz et al., 2002) through the Equation (45), is showed in Figure 5 and
compared with the theoretical value, Equation (41).

80 Electromagnetic Waves Gouy Phase and Matter Waves 11

Fig. 5. Covariance xp as a function of slit width. Solid curve corresponds to our calculation,
Equation (41), and the points were obtained of experiment reported in Ref. (Nairz et al.,
2002) through the Equation (45). The parameters are the same of Figure 4.

3.1.1 Gouy phase for a mixed Gaussian state
A more recent definition justifies the physical origin of the Gouy phase in terms of space
enlargement, governed by the uncertainty relation, of a beam whose transverse field
distribution is a Gaussian function (or arbitrary) (Feng & Winful, 2001). According to Equation
(11) in Ref. (Feng & Winful, 2001) the Gouy phase t and the beam width B t for a pure
Gaussian state of matter waves are related by the expression

t
h̄

2m

t dt

B t 2 . (46)

Here, we conjecture, based on the obtained results, that this definition holds for partially
coherent Gaussian states since the spread of these states is also governed by the uncertainty
relation. Thus, for a state given by Equation (34), the Gouy phase is

t
1

2 2
P

arctan
t
¯0

, (47)

where the factor 1
2 appears because we are working in one dimension. Note that, again t is

related to xp and is affected by the partial coherence of the initial wave packet, i.e.,

t
1

2 2
P

arctan
2 xp

h̄ 2
P

. (48)

In Figure 6, we show the phase extracted from Equation (48). As expected, the variation in
phase is /4, because we are dealing with a one-dimensional problem of diffraction and the
propagation of the beam will be from t 0 to t z/vz (Feng & Winful, 2001). This result
shows that the existence of a Gouy phase is compatible with the experimental data involving
diffraction of fullerene molecules. It is an indirect evidence of the Gouy phase for matter
waves (da Paz, 2011; da Paz et al., 2010).

4. Quantum lens and Gouy phase for matter waves

In the previous section, we have shown an indirect evidence for the Gouy phase for matter
waves based on the analogy existent between the paraxial equation for wave optics and
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Fig. 4. Beam width of fullerene molecules C70 as a function of slit width. Solid and dashed
curves correspond to our calculation, Equation (35), and the points are the experimental
results obtained in Ref. (Nairz et al., 2002). Dashed curve corresponds to the incoherent case
without convolution with the detector and solid curve corresponds to the case where both
effects were taken into account. To adjust the theoretical calculation with the experimental
data we use kx 9.0 106 m 1 and t z/vz 6.65 ms.
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The range of wavelengths along the direction x is given by
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where kx kx / 2 6.4 106 m 1.
The value obtained for the range of wavelengths is the same order of magnitude of the
transverse coherence length 0x, what justifies the existence of quantum effects along this
direction. The component of the wave vector in the direction z has the value kz mvz/h̄
2.24 1012 m 1. The values found for kz and kx show that kz kx and thus, paraxial
approximation is guaranteed for the partially coherent matter wave beam.

3.1 Covariance xp and Gouy phase
In this section, we calculate the covariance between position and momentum and the Gouy
phase for fullerenes molecules considering the free Schrödinger equation. We calculate the
phase and show that it is also related to the covariance xp as well as in the case of pure
Gaussian states.
Starting from the determinant of the covariance matrix for mixed Gaussian state, Equation
(42), we can express xp in terms of the beam width, i.e.,
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where WFWHM is measured in the laboratory. The curve for xp, obtained with experimental
data of the Ref. (Nairz et al., 2002) through the Equation (45), is showed in Figure 5 and
compared with the theoretical value, Equation (41).
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Fig. 5. Covariance xp as a function of slit width. Solid curve corresponds to our calculation,
Equation (41), and the points were obtained of experiment reported in Ref. (Nairz et al.,
2002) through the Equation (45). The parameters are the same of Figure 4.

3.1.1 Gouy phase for a mixed Gaussian state
A more recent definition justifies the physical origin of the Gouy phase in terms of space
enlargement, governed by the uncertainty relation, of a beam whose transverse field
distribution is a Gaussian function (or arbitrary) (Feng & Winful, 2001). According to Equation
(11) in Ref. (Feng & Winful, 2001) the Gouy phase t and the beam width B t for a pure
Gaussian state of matter waves are related by the expression

t
h̄

2m

t dt

B t 2 . (46)

Here, we conjecture, based on the obtained results, that this definition holds for partially
coherent Gaussian states since the spread of these states is also governed by the uncertainty
relation. Thus, for a state given by Equation (34), the Gouy phase is

t
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arctan
t
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, (47)

where the factor 1
2 appears because we are working in one dimension. Note that, again t is

related to xp and is affected by the partial coherence of the initial wave packet, i.e.,

t
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P

arctan
2 xp

h̄ 2
P

. (48)

In Figure 6, we show the phase extracted from Equation (48). As expected, the variation in
phase is /4, because we are dealing with a one-dimensional problem of diffraction and the
propagation of the beam will be from t 0 to t z/vz (Feng & Winful, 2001). This result
shows that the existence of a Gouy phase is compatible with the experimental data involving
diffraction of fullerene molecules. It is an indirect evidence of the Gouy phase for matter
waves (da Paz, 2011; da Paz et al., 2010).

4. Quantum lens and Gouy phase for matter waves

In the previous section, we have shown an indirect evidence for the Gouy phase for matter
waves based on the analogy existent between the paraxial equation for wave optics and
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Fig. 6. Gouy phase as a function of slit width. Solid curve corresponds to our calculation,
Equation (47), and the points were obtained of experiment reported in Ref. (Nairz et al.,
2002). The parameters are the same of Figure 4.

Schrödinger equation for matter waves (da Paz, 2011; da Paz et al., 2010). Due to this formal
similarity a question which arises naturally is if a similar phase anomaly may occur in the
region around the focus of an atomic beam. In order to answer this question, in this section
we present the evolution of an atomic beam described by a Gaussian wave packet interacting
dispersively with a cavity field (da Paz, 2011; da Paz et al., 2007).
The model we use is the following (Averbukh etal., 1994; Rohwedder & Orszag, 1996; Schleich,
2001): consider two-level atoms moving along the Oz direction and that they penetrate a
region where a stationary electromagnetic field is maintained. The region is the interval
z Lc until z 0. The atomic linear moment in this direction is such that the de Broglie
wavelength associated is much smaller than the wavelength of the electromagnetic field.
We assume that the atom moves classically along direction Oz and the atomic transition of
interest is detuned from the mode of the electromagnetic field (dispersive interaction). The
Hamiltonian for this model is given by

ĤAF
p̂2

x
2m

g x̂ â† â (49)

where m is the atom mass, p̂x and x̂ are the linear momentum and position along the direction
Ox, â† and â are the creation and destruction operators of a photon of the electromagnetic
mode, respectively. The coupling between atom and field is given by the function g x

E2 x where is the atomic linear susceptibility,
2

h̄ , where 2 is the square of the dipole
moment and is the detuning. E x corresponds to the electric field amplitude in vacuum.
The effective interaction time is tL

Lc
vz

, where vz is the longitudinal velocity of the atoms.
The dynamics of the closed system is governed by the Schrödinger equation

ih̄
d
dt

ĤAF . (50)

At t 0 the state of the system is given by a direct product of the state corresponding to
the transversal component of the atom and a field state, cm F . The field state can be
expanded in the eigenstates of the number operator â† â

F
n

n n ,
n

n
2 1. (51)
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When atom and field interact the atomic and field states get entangled. We can then write

t
n

n dx n x, t x n , (52)

where

ih̄
t n x, t

h̄
2m

2 g x n n x, t , (53)

or, if one defines

n t dx n x, t x , (54)

the Equation (53) takes the form

ih̄
d
dt n t

p̂2
x

2m
g x̂ n n t . (55)

Next, we will use the harmonic approximation for g x which is a fine approximation
provided the dispersion of the wavepacket in the transverse direction b0 is much smaller than
the wavelength of the electromagnetic field mode (Schleich, 2001). Taking the main terms of
the Taylor expansion of the function g x ,

g x g0
g2

1
2g2

1
2

g2 x x f
2

, (56)

we get

ih̄
d
dt n t

p̂2
x

2m
1
2

m 2
n x̂ x f

2
n t

Ĥn n t , (57)

where x f g1/2g2 and 2
n ng2/m. In order to obtain focalization of the atomic beam

it is crucial that the initial state be compressed in momentum since this initial momentum
compression is transferred dynamically to the x coordinate and a focus can be obtained
(da Paz et al., 2007; Rohwedder & Orszag, 1996). In fact, the momentum compression is a
necessary condition in optics to obtain a well defined focus (Saleh & Teich, 1991).

4.1 Time evolution
According to Bialynicki-Birula (Bialynicki-Birula, 1998), the general form of a Gaussian state
in the position representation, is given by

x
u 1

4 exp i
x̄ p̄
2h̄

exp
x x̄ 2 u iv

2
i
p̄x
h̄

, (58)

where x̄ and p̄ are the coordinates of “center of mass" of the distribution in phase space and u
and v give the form of this distribution.
A dynamic governed by a Hamiltonian quadratic in position and momentum keep the
Gaussian shape of a Gaussian initial state. This is the case of the problem treated here. The
atomic motion can be divided into two stages: the first, the atom undergoes the action of a
harmonic potential when it crosses the region of electromagnetic field while, in the second
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Fig. 6. Gouy phase as a function of slit width. Solid curve corresponds to our calculation,
Equation (47), and the points were obtained of experiment reported in Ref. (Nairz et al.,
2002). The parameters are the same of Figure 4.

Schrödinger equation for matter waves (da Paz, 2011; da Paz et al., 2010). Due to this formal
similarity a question which arises naturally is if a similar phase anomaly may occur in the
region around the focus of an atomic beam. In order to answer this question, in this section
we present the evolution of an atomic beam described by a Gaussian wave packet interacting
dispersively with a cavity field (da Paz, 2011; da Paz et al., 2007).
The model we use is the following (Averbukh etal., 1994; Rohwedder & Orszag, 1996; Schleich,
2001): consider two-level atoms moving along the Oz direction and that they penetrate a
region where a stationary electromagnetic field is maintained. The region is the interval
z Lc until z 0. The atomic linear moment in this direction is such that the de Broglie
wavelength associated is much smaller than the wavelength of the electromagnetic field.
We assume that the atom moves classically along direction Oz and the atomic transition of
interest is detuned from the mode of the electromagnetic field (dispersive interaction). The
Hamiltonian for this model is given by

ĤAF
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x
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g x̂ â† â (49)

where m is the atom mass, p̂x and x̂ are the linear momentum and position along the direction
Ox, â† and â are the creation and destruction operators of a photon of the electromagnetic
mode, respectively. The coupling between atom and field is given by the function g x

E2 x where is the atomic linear susceptibility,
2

h̄ , where 2 is the square of the dipole
moment and is the detuning. E x corresponds to the electric field amplitude in vacuum.
The effective interaction time is tL

Lc
vz

, where vz is the longitudinal velocity of the atoms.
The dynamics of the closed system is governed by the Schrödinger equation

ih̄
d
dt

ĤAF . (50)

At t 0 the state of the system is given by a direct product of the state corresponding to
the transversal component of the atom and a field state, cm F . The field state can be
expanded in the eigenstates of the number operator â† â
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When atom and field interact the atomic and field states get entangled. We can then write
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where

ih̄
t n x, t
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2 g x n n x, t , (53)

or, if one defines

n t dx n x, t x , (54)

the Equation (53) takes the form

ih̄
d
dt n t

p̂2
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g x̂ n n t . (55)

Next, we will use the harmonic approximation for g x which is a fine approximation
provided the dispersion of the wavepacket in the transverse direction b0 is much smaller than
the wavelength of the electromagnetic field mode (Schleich, 2001). Taking the main terms of
the Taylor expansion of the function g x ,

g x g0
g2

1
2g2

1
2

g2 x x f
2

, (56)

we get

ih̄
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Ĥn n t , (57)

where x f g1/2g2 and 2
n ng2/m. In order to obtain focalization of the atomic beam

it is crucial that the initial state be compressed in momentum since this initial momentum
compression is transferred dynamically to the x coordinate and a focus can be obtained
(da Paz et al., 2007; Rohwedder & Orszag, 1996). In fact, the momentum compression is a
necessary condition in optics to obtain a well defined focus (Saleh & Teich, 1991).

4.1 Time evolution
According to Bialynicki-Birula (Bialynicki-Birula, 1998), the general form of a Gaussian state
in the position representation, is given by

x
u 1

4 exp i
x̄ p̄
2h̄

exp
x x̄ 2 u iv

2
i
p̄x
h̄

, (58)

where x̄ and p̄ are the coordinates of “center of mass" of the distribution in phase space and u
and v give the form of this distribution.
A dynamic governed by a Hamiltonian quadratic in position and momentum keep the
Gaussian shape of a Gaussian initial state. This is the case of the problem treated here. The
atomic motion can be divided into two stages: the first, the atom undergoes the action of a
harmonic potential when it crosses the region of electromagnetic field while, in the second
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part, the atom evolves freely. In the two stages, the Hamiltonian governing the evolution are
quadratic in atomic position and momentum [cf. Equation (57)]. Since the initial atomic state
is Gaussian, we can consider that throughout evolution, such state will preserve the form
given by Equation (58). In this case, the parameters x̄, p̄, u and v are functions of time, and
their respective equations of motion can be derived from the Schrödinger equation.
Consider a particle of mass m moving under the action of a harmonic potential. The natural
frequency of this movement is n. The Hamiltonian governing this dynamic is given by

Ĥ
p̂2

x
2m

1
2

m 2
nx̂2. (59)

In position representation, the evolution of the state of the particle is governed by the
Schrödinger equation

ih̄
t

x, t
h̄2

2m

2

x2
1
2

m 2
nx2 x, t . (60)

Suppose that the initial state of the particle is Gaussian. We obtain the equations of motion for
the parameters x̄, p̄, u and v by substituting the general form (58) in equation above, grouping
the terms of same power in x x̄ , and then separating the real and imaginary parts. This
procedure takes six equations for the four parameters mentioned. The system is therefore,
“super-complete". Eliminating such redundancy, the equations of motion are the following

˙̄x
p̄
m

, (61a)

˙̄p m 2
nx̄ , (61b)

K̇ i
m 2

n
h̄

i
h̄
m

K2 , (61c)

where we define K u iv. Here, the dots indicate time derivation. Note that the equations
of motion for the coordinates of the centroid of the distribution are equivalent to the classical
equations of movement to the position and momentum of a particle moving in a harmonic
potential.
A important observation must be made here. One of the two equations removed is not
consistent with the others in (61). This equation is the following:

p̄ ˙̄x ˙̄px̄
p̄2

m
m 2

nx̄2 h̄2

m
u. (62)

To see this, just replace the expressions (61a), (61b) in the above equation. We obtain u 0,
which makes no sense, since u represents the inverse square of the width of the Gaussian
package. The only way to “dribble" this inconvenience is to redefine the general state as

x
u 1

4 exp i
x̄ p̄
2h̄

i
2

exp
x x̄ 2 u iv

2
i
p̄x
h̄

, (63)

where is a real function of time. This global phase, in general neglected (see, e.g.,
(Bialynicki-Birula, 1998; Piza, 2001)), ensures the consistency of the equations of motion
because, in addition to Equations (61), we must have

˙ h̄
m

u. (64)
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/2 is known as Gouy phase. Equation (64) relates the Gouy phase with the inverse square of
the beam width . The same result was obtained for light waves transversally confined in Ref.
(Feng & Winful, 2001).

4.2 Focalization of the atomic beam
In Figure 7 we illustrated how the quantum lens work out. We consider that a initial Gaussian
state compressed in the momentum (region I) penetrates in a region where a stationary
electromagnetic field is maintained (region II). The atoms and the field inside the cavity
interact dispersively. Dispersive coupling is actually necessary to produce a quantum lens,
because the transitions cause aberration at the focus (Berman, 1997; Rohwedder & Orszag,
1996; Schleich, 2001). When the atomic beam leaves the region of the electromagnetic field,
the atomic state evolves freely and the compression is transferred to the position (region III).
Let us assume, as an initial atomic state, the compressed vacuum state

x n t 0 n x, t 0
1

b0

1/2
exp

x2

2b2
0

, (65)

where b0 is the initial width of the packet and b0 bn h̄/ m n . For the parameters x̄,

Fig. 7. Initial atomic compressed state in momentum . The evolution inside the cavity rotates
the state and transfer the compression to the position.

p̄, K and , we get
x̄ t tL x f cos nt , (66)

p̄ t tL m nx f sin nt , (67)

and

K t tL cos nt i
b2

n
b2

0
sin nt

1
1
b2

0
cos nt i

1
b2

n
sin nt , (68)

for the initial conditions x̄0 x f , p̄0 0, u b 2
0 and v 0. Also, from Equation (68) we

obtain

u t tL b2
0 cos2

nt
b4

n

b4
0

sin2
nt

1

. (69)
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part, the atom evolves freely. In the two stages, the Hamiltonian governing the evolution are
quadratic in atomic position and momentum [cf. Equation (57)]. Since the initial atomic state
is Gaussian, we can consider that throughout evolution, such state will preserve the form
given by Equation (58). In this case, the parameters x̄, p̄, u and v are functions of time, and
their respective equations of motion can be derived from the Schrödinger equation.
Consider a particle of mass m moving under the action of a harmonic potential. The natural
frequency of this movement is n. The Hamiltonian governing this dynamic is given by
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the parameters x̄, p̄, u and v by substituting the general form (58) in equation above, grouping
the terms of same power in x x̄ , and then separating the real and imaginary parts. This
procedure takes six equations for the four parameters mentioned. The system is therefore,
“super-complete". Eliminating such redundancy, the equations of motion are the following
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where we define K u iv. Here, the dots indicate time derivation. Note that the equations
of motion for the coordinates of the centroid of the distribution are equivalent to the classical
equations of movement to the position and momentum of a particle moving in a harmonic
potential.
A important observation must be made here. One of the two equations removed is not
consistent with the others in (61). This equation is the following:
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the beam width . The same result was obtained for light waves transversally confined in Ref.
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In Figure 7 we illustrated how the quantum lens work out. We consider that a initial Gaussian
state compressed in the momentum (region I) penetrates in a region where a stationary
electromagnetic field is maintained (region II). The atoms and the field inside the cavity
interact dispersively. Dispersive coupling is actually necessary to produce a quantum lens,
because the transitions cause aberration at the focus (Berman, 1997; Rohwedder & Orszag,
1996; Schleich, 2001). When the atomic beam leaves the region of the electromagnetic field,
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1

b0

1/2
exp

x2

2b2
0

, (65)

where b0 is the initial width of the packet and b0 bn h̄/ m n . For the parameters x̄,

Fig. 7. Initial atomic compressed state in momentum . The evolution inside the cavity rotates
the state and transfer the compression to the position.

p̄, K and , we get
x̄ t tL x f cos nt , (66)

p̄ t tL m nx f sin nt , (67)

and

K t tL cos nt i
b2

n
b2

0
sin nt

1
1
b2

0
cos nt i

1
b2

n
sin nt , (68)

for the initial conditions x̄0 x f , p̄0 0, u b 2
0 and v 0. Also, from Equation (68) we

obtain

u t tL b2
0 cos2

nt
b4

n

b4
0

sin2
nt

1

. (69)
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Now u 1 is the width of the gaussian wavepacket squared. At this stage

t tL
1
n n

arctan
b2

n
b2

0
tan nt . (70)

When the atomic beam leaves the region of the electromagnetic field, the atomic state evolves
freely. The equations of motion can be obtained analogously and we get for t tL

x̄ t tL x f cos n n t tL x f sin n, (71)

p̄ t tL m nx f sin n, (72)

K t tL
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b2
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b2
n cos n i b2

n
b2
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sin n i t tL
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b2
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b2
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cos n i sin n
(73)

and

b2
0u t tL cos n

t tL

n
sin n

2 b4
n

b4
0

sin n
t tL

n
cos n

2 1

, (74)

where n ntL and n mb2
n/h̄.

The focus will be located in the atomic beam region where the width of the wavepacket is
minimal. In other words, when u t tL be a maximum there will be the focus. This will
happen when the function

D t cos n
t tL

n
sin n

2 b4
n

b4
0

sin n
t tL

n
cos n

2
(75)

attains its minimum value. The time for which its derivative vanishes is given by

t f
z f Lc

vz
tL n

1 b4
n

b4
0

2
sin n cos n

b4
n

b4
0

cos2 n sin2
n

, (76)

therefore the focus is located at

z f vz n

1 b4
n

b4
0

tan n

b4
n

b4
0

tan2 n
. (77)

The width of the Gaussian beam that passed through the lens, B t 1/ u t , can be written
as

B t b0 1
t t f

0

2
1
2

(78)

where we define
b0 Mb0, (79)

0 M2
0, (80)
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and
M

1

cos2 n
b4

0
b4

n
sin2

n

. (81)

The line was used here to differentiate the beam parameters after the focalization of their
parameters before the focalization. We see that the waist of the beam is increased by factor M
and the package time aging is increased by the M2 (not confuse with the quality factor P).
In optics, the amount M is known as magnification factor (Saleh & Teich, 1991). If the state is
not initially compressed, i.e., if bn b0, does not exist focalization and in this case b0 b0 and

0 0 as we can seen by the Equations (79), (80) and (81).
If we consider an interaction time of atoms with cavity field tL very small, we have the so
called thin lens regime. Because when the interaction time is very small, the movement of
atoms along the transverse direction is also very small, i.e., the average transverse kinetic
energy of atoms is much smaller than the average potential energy Û x produced by field,

p̂2
x

2m Û x (Averbukh etal., 1994). The rotation angle of the atomic state caused by the
interaction with the cavity field n ntL is directly proportional to the interaction time,
thus, if tL is too small, n will also be very small. If we consider n 1 and an initial atomic
state compressed in the momentum with bn/b0 1, the expression for the focal distance,
equation (77), acquires the simple form (Schleich, 2001)

z f
mv2

z
ng2Lc

. (82)

4.3 Phase anomaly
If we integrate the equation of motion (64) for considering the expression for B t given by
the Equation (78), we obtain

t
t

2
h̄

2m

t

t f

dt
B 2 t

1
2

arctan
t t f

0
. (83)

The integration interval is taken from t f to t, because the Gouy phase is the phase of the
Gaussian state relatives to the plane wave at the focus, i.e., at the focus the Gaussian state is
in phase with the plane wave (Saleh & Teich, 1991; Boyd, 1980; Feng & Winful, 2001). At the
focus, 0, as expected. Therefore, the Gouy phase of the atomic wave function undergoes
a change of /2 near the focus t f . The fact that this variation is only /2, in contrast with the
value of for the light, is due to the fact that the quantum lens focuses the atomic beam in
the Ox direction, keeping the Oy direction unperturbed (i.e., the electromagnetic field acts as
a cylindrical lens).

5. Experimental proposal

Consider a Rydberg atom with a level structure given in Figure 8 (left). Three Rydberg levels
e, g, and i are taken into account. The transition between the states e and g is slightly detuned
with a stationary microwave field stored in two separated cavities with frequency , C1 and
C2, and completely detuned with the transition g i. These cavities are placed between two
Ramsey zones, R1 and R2, where a microwave mode quasi-resonant with the atomic transition
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Now u 1 is the width of the gaussian wavepacket squared. At this stage
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The line was used here to differentiate the beam parameters after the focalization of their
parameters before the focalization. We see that the waist of the beam is increased by factor M
and the package time aging is increased by the M2 (not confuse with the quality factor P).
In optics, the amount M is known as magnification factor (Saleh & Teich, 1991). If the state is
not initially compressed, i.e., if bn b0, does not exist focalization and in this case b0 b0 and

0 0 as we can seen by the Equations (79), (80) and (81).
If we consider an interaction time of atoms with cavity field tL very small, we have the so
called thin lens regime. Because when the interaction time is very small, the movement of
atoms along the transverse direction is also very small, i.e., the average transverse kinetic
energy of atoms is much smaller than the average potential energy Û x produced by field,

p̂2
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2m Û x (Averbukh etal., 1994). The rotation angle of the atomic state caused by the
interaction with the cavity field n ntL is directly proportional to the interaction time,
thus, if tL is too small, n will also be very small. If we consider n 1 and an initial atomic
state compressed in the momentum with bn/b0 1, the expression for the focal distance,
equation (77), acquires the simple form (Schleich, 2001)
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4.3 Phase anomaly
If we integrate the equation of motion (64) for considering the expression for B t given by
the Equation (78), we obtain
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The integration interval is taken from t f to t, because the Gouy phase is the phase of the
Gaussian state relatives to the plane wave at the focus, i.e., at the focus the Gaussian state is
in phase with the plane wave (Saleh & Teich, 1991; Boyd, 1980; Feng & Winful, 2001). At the
focus, 0, as expected. Therefore, the Gouy phase of the atomic wave function undergoes
a change of /2 near the focus t f . The fact that this variation is only /2, in contrast with the
value of for the light, is due to the fact that the quantum lens focuses the atomic beam in
the Ox direction, keeping the Oy direction unperturbed (i.e., the electromagnetic field acts as
a cylindrical lens).

5. Experimental proposal

Consider a Rydberg atom with a level structure given in Figure 8 (left). Three Rydberg levels
e, g, and i are taken into account. The transition between the states e and g is slightly detuned
with a stationary microwave field stored in two separated cavities with frequency , C1 and
C2, and completely detuned with the transition g i. These cavities are placed between two
Ramsey zones, R1 and R2, where a microwave mode quasi-resonant with the atomic transition
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g i is stored (see Figure 8). If the electronic atomic state involve the levels i or g, the field in
both Ramsey zones are adjusted to imprint a /2 Rabi pulse on the internal state of the atom.
Then, after the Ramsey zones, the electronic state changes as

i
1
2

i g (84)

and
g

1
2

i g . (85)

Fig. 8. On the left, atomic energy levels compared with the wavelength of the field inside the
cavities C1 and C2. On the right, sketch of the experimental setup to measure the Gouy phase
for matter waves. Rydberg atoms are sent one-by-one with well-defined velocity along the
z-axis. A slit is used to collimate the atomic beam in the x-direction. The Ramsey zones R1
and R2 are two microwave cavities fed by a common source S, whereas C1 and C2 are two
high-Q microwave cavities devised to work as thin lenses for the atomic beam. The field
inside these cavities is supplied by common source S . The state of each atom is detected by
the detector D.

The experimental setup we propose to measure the Gouy phase shift of matter waves is
depicted in Figure 8 (right). This proposal is based on the system of Ref. (Raimond et al.,
2001). Rubidium atoms are excited by laser to a circular Rydberg state with principal quantum
number 49 (Nussenzveig et al., 1993; Gallagher, 1994), that will be called state i , and their
velocity on the z direction is selected to a fixed value vz. As it was stated before, we will
consider a classical movement of the atoms in this direction, with the time component given by
t z/vz. A slit is used to prepare a beam with small width in the x direction, but still without
a significant divergence, such that the consideration that the atomic beam has a plane-wave
behaviour is a good approximation.
If we disregard the cavities C1 and C2, the setup is that of an atomic Ramsey interferometer
(Ramsey, 1985). The cavity R1 has a field resonant or quasi resonant with the transition i
g and results in a /2 pulse on the atoms, that exit the cavity in the state i g / 2

(Raimond et al., 2001; Ramsey, 1985; Kim et al., 1999; Gerry & Knight, 2005). After passing
through the cavity R1, the atoms propagate freely for a time t until the cavity R2, that also
makes a /2 pulse on the atoms. Calling h̄ g and h̄ i the energy of the internal states g
and i respectively, r the frequency of the field in the cavities R1 and R2 and defining gi

g i, the probability that detector D measures each atom in the g state is (Raimond et al.,
2001; Ramsey, 1985; Nogues et al., 1999)

P cos2
r gi t . (86)

Upon slightly varying the frequency r of the fields in cavities R1 and R2, the interference
fringes can be seen (Raimond et al., 2001; Ramsey, 1985; Nogues et al., 1999).
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5.1 Atom focalization by classical fields
The interaction between a two-level atom and a single mode of the electromagnetic field (EMF)
is governed by the semiclassical hamiltonian

ĤAF d̂ E r̂, t . (87)

d̂ d ˆ eg
x is the dipole moment operator, where d is the unitary vector along the direction

of quantization, is the element of the transition matrix between the levels e (excited) and g
(ground state), and ˆ eg

x e g g e . Assuming the longwave approximation, the electric
field E is considered in the position r of the atomic center of mass (r̂ is the corresponding
quantum operator). Here, E is treated classically.
Let us suppose that the atom interacts with a stationary electromagnetic wave kept in a cavity.
Moreover, the atom moves along the Oz direction, while the stationary field is formed by two
counterpropagating components along the Ox axis and linearly polarized in the direction Oy.
We have

E r̂, t y E0 ei kx̂ t E0 ei kx̂ t h.c , (88)

where E0 is a complex amplitude. Thus, we can write

E r̂, t y 2E0 eikx̂ cos t h.c . (89)

Here, k 2 , where is the wavelength of the EMF, and h.c. stands for hermitean conjugate.
Without loss of generality, we can take E0 real. Hence,

E r̂, t 4 yE0 cos kx̂ cos t . (90)

Assuming y d, we have

ĤAF 4pE0 cos kx̂ cos t ˆ eg
x 0 cos kx̂ cos t ˆ eg

x , (91)

where 0 4 E0 is the Rabi vacuum frequency.
The hamiltonian that governs the atomic dynamics during the interaction with the stationary
field is given by

Ĥ
P̂2

x
2m

h̄ eg

2
ˆ eg

z h̄ 0 cos kx̂ cos t ˆ eg
x . (92)

Here, ˆ eg
z e e g g , and m is the atomic mass. In the rotating wave approximation

(RWA), we have

Ĥ
P̂2

x
2m

h̄ eg

2
ˆ eg

z
h̄ 0

2
cos kx̂ e i t e g ei t g e . (93)

In order to remove the temporal dependence of Ĥ, we define ˜ t exp i t
2 ˆ eg

z t .

Then, the evolution of the state ˜ t is governed by the equation

ih̄
d
dt

˜ ˆ̃H ˜ , (94)

where
ˆ̃H

P̂2
x

2m
h̄
2

ˆ eg
z

h̄ 0
2

cos kx̂ ˆ eg
x . (95)
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g i is stored (see Figure 8). If the electronic atomic state involve the levels i or g, the field in
both Ramsey zones are adjusted to imprint a /2 Rabi pulse on the internal state of the atom.
Then, after the Ramsey zones, the electronic state changes as
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for matter waves. Rydberg atoms are sent one-by-one with well-defined velocity along the
z-axis. A slit is used to collimate the atomic beam in the x-direction. The Ramsey zones R1
and R2 are two microwave cavities fed by a common source S, whereas C1 and C2 are two
high-Q microwave cavities devised to work as thin lenses for the atomic beam. The field
inside these cavities is supplied by common source S . The state of each atom is detected by
the detector D.

The experimental setup we propose to measure the Gouy phase shift of matter waves is
depicted in Figure 8 (right). This proposal is based on the system of Ref. (Raimond et al.,
2001). Rubidium atoms are excited by laser to a circular Rydberg state with principal quantum
number 49 (Nussenzveig et al., 1993; Gallagher, 1994), that will be called state i , and their
velocity on the z direction is selected to a fixed value vz. As it was stated before, we will
consider a classical movement of the atoms in this direction, with the time component given by
t z/vz. A slit is used to prepare a beam with small width in the x direction, but still without
a significant divergence, such that the consideration that the atomic beam has a plane-wave
behaviour is a good approximation.
If we disregard the cavities C1 and C2, the setup is that of an atomic Ramsey interferometer
(Ramsey, 1985). The cavity R1 has a field resonant or quasi resonant with the transition i
g and results in a /2 pulse on the atoms, that exit the cavity in the state i g / 2

(Raimond et al., 2001; Ramsey, 1985; Kim et al., 1999; Gerry & Knight, 2005). After passing
through the cavity R1, the atoms propagate freely for a time t until the cavity R2, that also
makes a /2 pulse on the atoms. Calling h̄ g and h̄ i the energy of the internal states g
and i respectively, r the frequency of the field in the cavities R1 and R2 and defining gi

g i, the probability that detector D measures each atom in the g state is (Raimond et al.,
2001; Ramsey, 1985; Nogues et al., 1999)

P cos2
r gi t . (86)

Upon slightly varying the frequency r of the fields in cavities R1 and R2, the interference
fringes can be seen (Raimond et al., 2001; Ramsey, 1985; Nogues et al., 1999).
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We have
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Here, we define eg as the detuning between the frequency of the atomic transition
and the frequency of the field mode. In the limit of thin lens, the kinetic energy term can be
neglected. So, we have

ˆ̃H
h̄
2

ˆ eg
z

h̄ 0
2

cos kx̂ ˆ eg
x . (96)

Let us define the operator ˆ x 0 cos kx̂ . Consider the set composed by the states e, x
e x and g, x g x , where x is an eigenstate of the operator x̂ with eigenvalue x.

In the basis e, x , g, x x , ˆ̃H is represented by the matrix

ˆ̃Hx

x

x

, (97)

which is diagonalized by the eigenvectors

, x x

x 2 2
x

e, x x

x 2 2
x

g, x , (98)

, x x

x 2 2
x

e, x x

x 2 2
x

g, x . (99)

with the following eigenvalues

E ,x
h̄
2 x

h̄
2

2 2
x. (100)

Here, x 0 cos kx is an eigenvalue of the operator ˆ x. In the dispersive limit, we have
x 1. In this limit, the eigenvectors and the eigenvalues given by the above equations can

be approximated by
, x e, x , , x g, x , (101)

E ,x
h̄
2

2
x

2
. (102)

Besides, assuming that the width of the atomic wavepacket is small compared with the
wavelength of the stationary EMF (harmonic approximation), 2

x
2
0 cos2 kx can be

expanded to 2
x

2
min

2
0k2x2. The fact that we have chosen the point /2 to do

the expansion means that we are treating the case of blue detuning 0 , i.e., the case
in which the atoms will pass in the region of electric field node (Berman, 1997). Also we
define 2

x /2 2
min to be different of zero, since the potential is produced by fields

counterpropagating and it difficultly will be null for real cavities. Thus, taking the dispersive
and harmonic approximations, we can define the effective hamiltonian

ˆ̃He f f
h̄
2

2
min

2

2
0

2
k2 x̂2 ˆ eg

z . (103)

As discussed above, the devised experiment uses three atomic levels and the third level i
possesses energy below of the energy of the levels g and e , as shown in Figure 8. The
frequencies gi and eg satisfy gi eg, thus the transition g i is very far from the
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resonance with the stationary mode. In this case, adopting the same reasoning sketched above,
the introduction of this level modifies the effective hamiltonian given in the Equation (103)

ˆ̃He f f
h̄ i
2

ˆ gi
z

h̄
2 g

2
min

2 g

2
0

2 g
k2 x̂2 ˆ eg

z , (104)

where i gi , g eg , and ˆ gi
z g g i i . Note that the effective coupling

between the atom in the state i and the EMF is neglected in the above hamiltonian.
In order to discuss the focalization, let us consider the following initial state

˜ 0
1
2

i g cm x , (105)

where cm stands for some state of the atomic center of mass coordinate. The atom prepared
in this state interacts with the stationary field during a time interval tL. After this interval, the
state of the atom will be given by

˜ tL
1
2

ei i i cm x e i i g g cm x , (106)

where i
i

2 tL, g
g

2
2
min

4 g
tL are the phase shifts accumulated by the electronic

levels during the interaction, and

cm x ei
k2 2

0 tL
4 g

x2

cm x (107)

is the evolved state of the center of mass of atomic beam composed of atoms in g state. As
g 0, blue detuning, after to pass through the cavity satisfying the approaches that we use,

the center of mass state gets a negative quadratic phase. An optical converging cylindrical lens
with focal distance f puts a quadratic phase kx2/ 2 f on the electromagnetic beam (Saleh
& Teich, 1991). By analogy, a thin lens for atoms should put a phase of the type kPx2/ 2 fP
in the atomic beam, where kP mvz/h̄ is the atomic wave number and fP the corresponding
focal distance. If we compare this phase with the phase in the Equation (107), we get

fP
2 g mv2

z

Lch̄k2 2
0

. (108)

This expression is the focal distance for a thin classical lens. Different from Equation (82) to
thin quantum lens, this expression does not have a explicit dependence with photon number
of the field mode.
The Rayleigh range zr and the beam waist w0 of the focused atomic beam also can be
calculated using the analogy with the action of lenses in electromagnetic beams considering
that the incident beam has plane wavefronts (Saleh & Teich, 1991)

zr
1

1 zr/ fP 2 zr , w0
1

1 zr/ fP 2 w0 , (109)

where zr and w0 are the Rayleigh range and the beam waist of the incident beam, respectively,
and fP is the focal distance of the atomic lens.
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Here, we define eg as the detuning between the frequency of the atomic transition
and the frequency of the field mode. In the limit of thin lens, the kinetic energy term can be
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x

2
min

2
0k2x2. The fact that we have chosen the point /2 to do

the expansion means that we are treating the case of blue detuning 0 , i.e., the case
in which the atoms will pass in the region of electric field node (Berman, 1997). Also we
define 2

x /2 2
min to be different of zero, since the potential is produced by fields

counterpropagating and it difficultly will be null for real cavities. Thus, taking the dispersive
and harmonic approximations, we can define the effective hamiltonian

ˆ̃He f f
h̄
2

2
min

2

2
0

2
k2 x̂2 ˆ eg

z . (103)

As discussed above, the devised experiment uses three atomic levels and the third level i
possesses energy below of the energy of the levels g and e , as shown in Figure 8. The
frequencies gi and eg satisfy gi eg, thus the transition g i is very far from the
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resonance with the stationary mode. In this case, adopting the same reasoning sketched above,
the introduction of this level modifies the effective hamiltonian given in the Equation (103)

ˆ̃He f f
h̄ i
2

ˆ gi
z

h̄
2 g

2
min

2 g

2
0

2 g
k2 x̂2 ˆ eg

z , (104)

where i gi , g eg , and ˆ gi
z g g i i . Note that the effective coupling

between the atom in the state i and the EMF is neglected in the above hamiltonian.
In order to discuss the focalization, let us consider the following initial state

˜ 0
1
2

i g cm x , (105)

where cm stands for some state of the atomic center of mass coordinate. The atom prepared
in this state interacts with the stationary field during a time interval tL. After this interval, the
state of the atom will be given by

˜ tL
1
2

ei i i cm x e i i g g cm x , (106)

where i
i

2 tL, g
g

2
2
min

4 g
tL are the phase shifts accumulated by the electronic

levels during the interaction, and

cm x ei
k2 2

0 tL
4 g

x2

cm x (107)

is the evolved state of the center of mass of atomic beam composed of atoms in g state. As
g 0, blue detuning, after to pass through the cavity satisfying the approaches that we use,

the center of mass state gets a negative quadratic phase. An optical converging cylindrical lens
with focal distance f puts a quadratic phase kx2/ 2 f on the electromagnetic beam (Saleh
& Teich, 1991). By analogy, a thin lens for atoms should put a phase of the type kPx2/ 2 fP
in the atomic beam, where kP mvz/h̄ is the atomic wave number and fP the corresponding
focal distance. If we compare this phase with the phase in the Equation (107), we get

fP
2 g mv2

z

Lch̄k2 2
0

. (108)

This expression is the focal distance for a thin classical lens. Different from Equation (82) to
thin quantum lens, this expression does not have a explicit dependence with photon number
of the field mode.
The Rayleigh range zr and the beam waist w0 of the focused atomic beam also can be
calculated using the analogy with the action of lenses in electromagnetic beams considering
that the incident beam has plane wavefronts (Saleh & Teich, 1991)

zr
1

1 zr/ fP 2 zr , w0
1

1 zr/ fP 2 w0 , (109)

where zr and w0 are the Rayleigh range and the beam waist of the incident beam, respectively,
and fP is the focal distance of the atomic lens.
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5.2 Ramsey interferometry with focused atomic beam and Gouy phase
In order to experimentally observe this effect we propose an experiment with a focused
Gaussian atomic beam. We will use a cylindrical focusing in the x direction, without changing
the beam wavefunction in the y direction, what makes the total Gouy phase be /2. By
the analogy of the Schrödinger equation with the paraxial Helmholtz equation (Yariv, 1991;
Snyder & Love, 1991; Berman, 1997; Marte & Stenholm, 1997; da Paz et al., 2007), we see
that the cavities act on the g component of the atomic beam as cylindrical lenses with focal
distance fP. If we have fP d/2, where d is the distance between the cavities C1 and C2,
the system will behave like the illustration in Figure 9. The cavity C1 will transform the
g component of the wavefunction in a converging beam with the waist on a distance d/2

(represented by solid lines). After its waist, the beam will diverge until the cavity C2. The
g component of the wavefunction on the position of cavity C2 will have the same width and

the opposite quadratic phase of the state cm x above, so the cavity C2 will transform the
divergent beam in a plane-wave beam again. The i component of the wavefunction, on the
other hand, propagates as a plane-wave beam all the time (represented by dashed lines), as its
interaction with the field of the cavities C1 and C2 is considered to be very small.

Fig. 9. Illustration of the operation of the cavities C1 and C2 as thin lenses for the atomic
beam. The dashed lines represent the waist of the atomic beam if the cavities are empty. If a
field is present, the solid lines represent the waist of a beam composed by atoms in the state
g . F denotes the focus region. On the other hand, if the beam is composed by atoms in the

state i , the waist does not change significatively.

By virtue of the g component acquires a /2 Gouy phase due to the cylindrical focusing that
is not shared by the i component, the interference pattern will be (da Paz et al., 2011)

P cos2
r gi t /2 . (110)

The difference on the positions of the minimums and maximums of the patterns, one
constructed when the field that forms the atomic lenses is present on the cavities C1 and C2
and other when the field is removed, should attest the existence of the Gouy phase for matter
waves.

5.3 Experimental parameters and discussion
As experimental parameters, we propose the velocity of the atoms vz 50 m/s and a slit
that generates an approximately Gaussian wavefunction for the atoms 0 x e x2/w2

0 with
w0 10 m. The mass of Rubidium is m 1.44 10 25 kg. With these parameters, the
Rayleigh range of the atomic beam will be zr kPw2

0/2 3.5 m, much larger than the
length of the experimental apparatus, what justifies the plane-wave approximation. On the
cavities C1 and C2, we consider an interaction time between the atoms and the atomic lenses
tL 0.2 ms, that corresponds to a width vztL 1 cm for the field on the cavities. The
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wavelength of the field of the cavities C1 and C2 must be 5.8 mm (Raimond et al., 2001),
with frequency near but strongly detuned from the resonance of the transition g e . The
Rabi frequency is about 0/ 2 47 kHz (Raimond et al., 2001) and the detuning chosen
is g/ 2 30 MHz, what makes i/ 2 3.2 GHz, such that with n̄ 3 106

photons, an effectively classical field, the focal distance for the atomic lenses is 10.5 cm for the
g component and 11 m for the i component of the wavefunction. These parameters are

consistent with a separation of d 21 cm between C1 and C2. All the proposed parameters
can be experimentally achieved (Raimond et al., 2001; Nogues et al., 1999; Gleyzes et al., 2007).
Using the proposed parameters, we have zr 3 mm and w0 0.3 m. The fact that d zr
justifies our consideration that the g component of the beam acquires a /2 Gouy phase.
The interaction between the atomic beam and the field in the cavities C1 and C2 depends on
the position x, according to Equation (103). If we do not want that photons be absorbed by the
atoms, it is important that n̄ 2

0k2x2/ 2
g 1 for the entire beam (Scully & Zubairy, 1997).

We have n̄ 2
0k2w2

0/ 2
g 8 10 4 for the proposed parameters, where w0 is the beam width,

showing that the absorption of photons can be disregarded.
The phase difference between the electronic levels is given by

2 i g gi
g

2

2
min

4 g
tL, (111)

where the last term is a dispersive phase that occurs because the intensity of the electric field
is not exactly zero in the node x /2 for real cavities. In this case is important that the
cavities C1 and C2 have a large quality factor Q. In fact, the ratio between the maximum
and the minimum of intensity in a cavity should roughly be the quality factor Q. So the g
component of the beam also acquires a phase n̄ 2

0tL/ gQ on the passage in each cavity, and
this phase will be added to the accumulated Gouy phase. If we want that this undesired phase
be smaller than Gouy phase, we need Q 106 for our proposed parameters. This can also be
experimentally achieved (Raimond et al., 2001; Nogues et al., 1999; Gleyzes et al., 2007).

6. Conclusion

From the strict theoretical point of view we have used the formal analogy between matter
and light waves to show that the well known Gouy phase in the context of classical optics,
besides its geometrical character, reflects correlations of the same sort a free particle obeying a
matter wave equation. Conversely we have seen that matter waves may also present the exact
analogous to the Gouy phase of quantum optics and elaborated an experiment to measure
it. We hope this work might encourage the groups with the appropriate facilities to realize
the experiment and, who knows, find important applications for this matter phase. The
verification of the Gouy phase in matter waves has the possibility to generate a great amount
of development in atomic optics, in the same way as the electromagnetic counterpart Gouy
phase had contributed to electromagnetic optics. For instance, it can be used to construct
mode converters for atomic beams and trapped atoms, with potential applications in quantum
information.
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5.2 Ramsey interferometry with focused atomic beam and Gouy phase
In order to experimentally observe this effect we propose an experiment with a focused
Gaussian atomic beam. We will use a cylindrical focusing in the x direction, without changing
the beam wavefunction in the y direction, what makes the total Gouy phase be /2. By
the analogy of the Schrödinger equation with the paraxial Helmholtz equation (Yariv, 1991;
Snyder & Love, 1991; Berman, 1997; Marte & Stenholm, 1997; da Paz et al., 2007), we see
that the cavities act on the g component of the atomic beam as cylindrical lenses with focal
distance fP. If we have fP d/2, where d is the distance between the cavities C1 and C2,
the system will behave like the illustration in Figure 9. The cavity C1 will transform the
g component of the wavefunction in a converging beam with the waist on a distance d/2

(represented by solid lines). After its waist, the beam will diverge until the cavity C2. The
g component of the wavefunction on the position of cavity C2 will have the same width and

the opposite quadratic phase of the state cm x above, so the cavity C2 will transform the
divergent beam in a plane-wave beam again. The i component of the wavefunction, on the
other hand, propagates as a plane-wave beam all the time (represented by dashed lines), as its
interaction with the field of the cavities C1 and C2 is considered to be very small.

Fig. 9. Illustration of the operation of the cavities C1 and C2 as thin lenses for the atomic
beam. The dashed lines represent the waist of the atomic beam if the cavities are empty. If a
field is present, the solid lines represent the waist of a beam composed by atoms in the state
g . F denotes the focus region. On the other hand, if the beam is composed by atoms in the

state i , the waist does not change significatively.

By virtue of the g component acquires a /2 Gouy phase due to the cylindrical focusing that
is not shared by the i component, the interference pattern will be (da Paz et al., 2011)

P cos2
r gi t /2 . (110)

The difference on the positions of the minimums and maximums of the patterns, one
constructed when the field that forms the atomic lenses is present on the cavities C1 and C2
and other when the field is removed, should attest the existence of the Gouy phase for matter
waves.

5.3 Experimental parameters and discussion
As experimental parameters, we propose the velocity of the atoms vz 50 m/s and a slit
that generates an approximately Gaussian wavefunction for the atoms 0 x e x2/w2

0 with
w0 10 m. The mass of Rubidium is m 1.44 10 25 kg. With these parameters, the
Rayleigh range of the atomic beam will be zr kPw2

0/2 3.5 m, much larger than the
length of the experimental apparatus, what justifies the plane-wave approximation. On the
cavities C1 and C2, we consider an interaction time between the atoms and the atomic lenses
tL 0.2 ms, that corresponds to a width vztL 1 cm for the field on the cavities. The
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wavelength of the field of the cavities C1 and C2 must be 5.8 mm (Raimond et al., 2001),
with frequency near but strongly detuned from the resonance of the transition g e . The
Rabi frequency is about 0/ 2 47 kHz (Raimond et al., 2001) and the detuning chosen
is g/ 2 30 MHz, what makes i/ 2 3.2 GHz, such that with n̄ 3 106

photons, an effectively classical field, the focal distance for the atomic lenses is 10.5 cm for the
g component and 11 m for the i component of the wavefunction. These parameters are

consistent with a separation of d 21 cm between C1 and C2. All the proposed parameters
can be experimentally achieved (Raimond et al., 2001; Nogues et al., 1999; Gleyzes et al., 2007).
Using the proposed parameters, we have zr 3 mm and w0 0.3 m. The fact that d zr
justifies our consideration that the g component of the beam acquires a /2 Gouy phase.
The interaction between the atomic beam and the field in the cavities C1 and C2 depends on
the position x, according to Equation (103). If we do not want that photons be absorbed by the
atoms, it is important that n̄ 2
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g 1 for the entire beam (Scully & Zubairy, 1997).

We have n̄ 2
0k2w2
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showing that the absorption of photons can be disregarded.
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where the last term is a dispersive phase that occurs because the intensity of the electric field
is not exactly zero in the node x /2 for real cavities. In this case is important that the
cavities C1 and C2 have a large quality factor Q. In fact, the ratio between the maximum
and the minimum of intensity in a cavity should roughly be the quality factor Q. So the g
component of the beam also acquires a phase n̄ 2

0tL/ gQ on the passage in each cavity, and
this phase will be added to the accumulated Gouy phase. If we want that this undesired phase
be smaller than Gouy phase, we need Q 106 for our proposed parameters. This can also be
experimentally achieved (Raimond et al., 2001; Nogues et al., 1999; Gleyzes et al., 2007).

6. Conclusion

From the strict theoretical point of view we have used the formal analogy between matter
and light waves to show that the well known Gouy phase in the context of classical optics,
besides its geometrical character, reflects correlations of the same sort a free particle obeying a
matter wave equation. Conversely we have seen that matter waves may also present the exact
analogous to the Gouy phase of quantum optics and elaborated an experiment to measure
it. We hope this work might encourage the groups with the appropriate facilities to realize
the experiment and, who knows, find important applications for this matter phase. The
verification of the Gouy phase in matter waves has the possibility to generate a great amount
of development in atomic optics, in the same way as the electromagnetic counterpart Gouy
phase had contributed to electromagnetic optics. For instance, it can be used to construct
mode converters for atomic beams and trapped atoms, with potential applications in quantum
information.
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1. Introduction 
Present day methodologies for mathematical simulation and computational experiment are 
generally implemented in electromagnetics through the solution of boundary-value 
(frequency domain) problems and initial boundary-value (time domain) problems for 
Maxwell’s equations. Most of the results of this theory concerning open resonators have 
been obtained by the frequency-domain methods. At the same time, a rich variety of applied 
problems (analysis of complex electrodynamic structures for the devices of vacuum and 
solid-state electronics, model synthesis of open dispersive structures for resonant quasi-
optics, antenna engineering, and high-power electronics, etc.) can be efficiently solved with 
the help of more universal time-domain algorithms. 
The fact that frequency domain approaches are somewhat limited in such problems is the 
motivation for this study. Moreover, presently known remedies to the various theoretical 
difficulties in the theory of non-stationary electromagnetic fields are not always 
satisfactory for practitioners. Such remedies affect the quality of some model problems 
and limit the capability of time-domain methods for studying transient and stationary 
processes. One such difficulty is the appropriate and efficient truncation of the 
computational domain in so-called open problems, i.e. problems where the computational 
domain is infinite along one or more spatial coordinates. Also, a number of questions 
occur when solving far-field problems, and problems involving extended sources or 
sources located in the far-zone. 
In the present work, we address these difficulties for the case of 0TE n - and 0TM n -waves in 
axially-symmetrical open compact resonators with waveguide feed lines. Sections 2 and 3 
are devoted to problem definition. In Sections 4 and 5, we derive exact absorbing conditions 
for outgoing pulsed waves that enable the replacement of an open problem with an 
equivalent closed one. In Section 6, we obtain the analytical representation for operators that 
link the near- and far-field impulsive fields for compact axially-symmetrical structures and 
consider solutions that allow the use of extended or distant sources. In Section 7, we place 
some accessory results required for numerical implementation of the approach under 
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consideration. All analytical results are presented in a form that is suitable for using in the 
finite-difference method on a finite-sized grid and thus is amenable for software 
implementation. We develop here the approach initiated in the works by Maikov et 
al. (1986) and Sirenko et al. (2007) and based on the construction of the exact conditions 
allowing one to reduce an open problem to an equivalent closed one with a bounded 
domain of analysis. The derived closed problem can then be solved numerically using the 
standard finite-difference method (Taflove & Hagness, 2000). 
In contrast to other well-known approximate methods involving truncation of the 
computational domain (using, for example, Absorbing Boundary Conditions or Perfectly 
Matched Layers), our constructed solution is exact, and may be computationally 
implemented in a way that avoids the problem of unpredictable behavior of computational 
errors for large observation times. The impact of this approach is most significant in cases of 
resonant wave scattering, where it results in reliable numerical data. 

2. Formulation of the initial boundary-value problem 

In Fig. 1, the cross-section of a model for an open axially-symmetrical (    0 ) resonant 
structure is shown, where   , ,z  are cylindrical and    , ,  are spherical coordinates. By 

    = 0,2  we denote perfectly conducting surfaces obtained by rotating the curve   

about the z -axis;     
   , ,= 0,2  is a similarly defined surface across which the relative  

 

 
Fig. 1. Geometry of the problem in the half-plane 2   . 
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permittivity   g  and specific conductivity       10 0g g  change step-wise; these 
quantities are piecewise constant inside int  and take free space values outside. Here, 

  ,g z ;      1 2
0 0 0  is the impedance of free space; 0 , and 0  are the electric and 

magnetic constants of vacuum. 
The two-dimensional initial boundary-value problem describing the pulsed axially-
symmetrical 0TE n - (     0zE E H ) and 0TM n - (     0zH H E ) wave distribution in 
open structures of this kind is given by 
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where   


, , zE E E E  and   


, , zH H H H  are the electric and magnetic field vectors; 
   , ,U g t E g t  for 0TE n -waves and    , ,U g t H g t  for 0TM n -waves (Sirenko et al., 

2007). The SI system of units is used. The variable t  which being the product of the real time 
by the velocity of light in free space has the dimension of length. The operators 1D , 2D  will 
be described in Section 2 and provide an ideal model for fields emitted and absorbed by the 
waveguides. 
The domain of analysis   is the part of the half-plane    2  bounded by the contours   
together with the artificial boundaries  j  (input and output ports) in the virtual 
waveguides  j ,  1,2j . The regions        int , :g r r L  and ext  (free space), 
such that     int ext , are separated by the virtual boundary 

       , :g r r L .  
The functions  ,F g t ,   g ,   g ,   g , and    1g  which are finite in the closure   of 
  are supposed to satisfy the hypotheses of the theorem on the unique solvability of 
problem (1) in the Sobolev space  W1

2
T ,     0;T T  where  T  is the observation 

time (Ladyzhenskaya, 1985). The ‘current’ and ‘instantaneous’ sources given by the 
functions  ,F g t  and   g ,   g  as well as all scattering elements given by the functions 
  g ,   g  and by the contours   and  


,  are located in the region int . In axially-

symmetrical problems, at points g  such that   0 , only zH  or zE  fields components are 
nonzero. Hence it follows that   0, , 0U z t ;  z ,  0t  in (1). 

3. Exact absorbing conditions for virtual boundaries in input-output 
waveguides 

Equations 
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 (2) 

in (1) give the exact absorbing conditions for the outgoing pulsed waves 
          1 1, , ,s iU g t U g t U g t  and      2 , ,sU g t U g t  traveling into the virtual 

waveguides 1  and 2 , respectively (Sirenko et al., 2007).    1 ,iU g t  is the pulsed wave 
that excites the axially-symmetrical structure from the circular or coaxial circular waveguide 
1 . It is assumed that by the time  0t  this wave has not yet reached the boundary 1 .  
By using conditions (2), we simplify substantially the model simulating an actual 
electrodynamic structure: the  j -domains are excluded from consideration while the 
operators jD  describe wave transformation on the boundaries  j  that separate regular 
feeding waveguides from the radiating unit. The operators jD  are constructed such that a 
wave incident on  j  from the region int  passes into the virtual domain  j  as if into a 
regular waveguide – without deformations or reflections. In other words, it is absorbed 
completely by the boundary  j . Therefore, we call the boundary conditions (2) as well as 
the other conditions of this kind ‘exact absorbing conditions’. 
In the book (Sirenko et al., 2007), one can find six possible versions of the operators jD  for 
virtual boundaries in the cross-sections of circular or coaxial-circular waveguides. We pick 
out two of them (one for the nonlocal conditions and one for the local conditions) and, 
taking into consideration the location of the boundaries  j  in our problem (in the plane 
  1z L  for the boundary 1  and in the plane  2z L  for 2 ) as well as the traveling 

direction for the waves outgoing through these boundaries (towards  z  for 1  and 
towards  z  for 2 ), write (2) in the form: 
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(local absorbing conditions). The initial boundary-value problems involved in (5) and (6) 
with respect to the auxiliary functions   , ,jW t  must be supplemented with the following 
boundary conditions for all times  0t : 
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(on the boundaries   0  and   ja  of the region  j  for a circular waveguide) and 
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(on the boundaries   jb  and   ja  of the region  j  for a coaxial waveguide). 
In (3) to (8) the following designations are used:  0J x  is the Bessel function, ja  and jb  are 
the radii of the waveguide  j  and of its inner conductor respectively (evidently,  0jb  if 
only  j  is a coaxial waveguide),    nj  and  nj  are the sets of transverse functions and 
transverse eigenvalues for the waveguide  j .  
Analytical representations for   nj  and nj  are well-known and for 0TE n -waves take the 
form: 
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(on the boundaries   jb  and   ja  of the region  j  for a coaxial waveguide). 
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For 0TM n -waves we have: 
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Here  qN x  are the Neumann functions. The basis functions   nj  satisfy boundary 
conditions at the ends of the appropriate intervals (   ja  or   j jb a ) and the following 
equalities hold 
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in the circular or coaxial waveguide, respectively. 

4. Exact radiation conditions for outgoing spherical waves and exact 
absorbing conditions for the artificial boundary in free space 
When constructing the exact absorbing condition for the wave  ,U g t  crossing the artificial 
spherical boundary  , we will follow the sequence of transformations widely used in the 
theory of hyperbolic equations (e.g., Borisov, 1996) – incomplete separation of variables in 
initial boundary-value problems for telegraph or wave equations, integral transformations 
in the problems for one-dimensional Klein-Gordon equations, solution of the auxiliary 
boundary-value problems for ordinary differential equations, and inverse integral 
transforms. 
In the domain      ext int\ , where the field  ,U g t  propagates freely up to infinity 
as t , the 2-D initial boundary-value problem (1) in spherical coordinates takes the form 
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Let us represent the solution  , ,U r t  as         , , ,U r t u r t . Separation of variables in 
(14) results in a homogeneous Sturm-Liouville problem with respect to the function 
        cos  
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and the following initial boundary-value problem for  ,u r t : 
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Let us solve the Sturm-Liouville problem (15) with respect to    cos  and  . Change of 
variables  cosx ,         cosx  yields the following boundary-value problem for   x : 
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With      2 2 1n n n  for each  1,2,3,n  equation (17) has two nontrivial linearly 
independent solutions in the form of the associated Legendre functions  1

nP x  and  1
nQ x . 

Taking into account the behavior of these functions in the vicinity of their singular points 
 1x  (Bateman & Erdelyi, 1953), we obtain 

         12 1 2 1cos cos .n nn n n P      (18) 

Here    
  


1,2,cosn n  is a complete orthonormal (with weight function sin ) system of 
functions in the space        L2 0  and provides nontrivial solutions to (15). Therefore, 
the solution of initial boundary-value problem (14) can be represented as 
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where the space-time amplitudes  ,nu r t  are the solutions to problems (16) for   2 2
n . 

Our goal now is to derive the exact radiation conditions for space-time amplitudes  ,nu r t  
of the outgoing wave (19). By defining    , ,n nw r t ru r t  and taking into account that 

   2 1n n n , we rewrite equation (16) as 
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where the space-time amplitudes  ,nu r t  are the solutions to problems (16) for   2 2
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Now subject it to the integral transform 
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f f r Z r dr  
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where the kernel                     , aZ r r J r N r  satisfies the equation (Korn & 

Korn, 1961) 
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Here       ,  are arbitrary functions independent of r , and a  is a fixed real constant. 
Applying to (20) the transform (21) with  1 2a  and    1 2n , we arrive at 
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Since the ‘signal’  ,nw r t  propagates with a finite velocity, for any t  we can always point a 
distance r  such that the signal has not yet reached it, that is, for these t  and r  we have 

 , 0nw r t  . Then we can rewrite equation (23) in the form 
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From (24) the simple differential equation for the transforms  ,nw t  of the functions 

 ,nw r t  follows: 
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In this equation, the values     and     entering into   ,Z r  are not defined yet. With 

    1  and     0 , we have 

       ,Z r rJ r  (26) 

and 
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f f r r J r dr 


   (27) 

The last integral is the Hankel transform (Korn & Korn, 1961), which is inverse to itself, 
and 
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and the symbol ‘  ’ denotes derivatives with respect to the whole argument L . 
If G  is a fundamental solution of the operator  B G  (i.e.,       B G t t , where   t  is the 
Dirac delta function), then the solution to the equation      B U t g t  can be written as a 
convolution   U G g  (Vladimirov, 1971). For           
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Applying the inverse transform (28) to equation (32), we can write 
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Let us denote 
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Then from (Gradshteyn & Ryzhik, 2000) we have for   0r L  
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where  P x  and  Q x  are the Legendre functions of the first and second kind, 
respectively. For    1 2n , we can rewrite this formula as 
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Finally, taking into account the relation    , ,n nw r t ru r t , we have from (33) 
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By using (19), we arrive at the desired radiation condition: 
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By passing to the limit r L  in (40), we obtain 
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Formula (41) represents the exact absorbing condition on the artificial boundary  . This 
condition is spoken of as exact because any outgoing wave described by the initial problem 
(1) satisfies this condition. Every outgoing wave  ,U g t  passes through the boundary   
without distortions, as if it is absorbed by the domain ext  or its boundary  . That is why 
this condition is said to be absorbing. 

5. On the equivalence of the initial problem and the problem with a bounded 
domain of analysis 
We have constructed the following closed initial boundary-value problem 
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where the operator D  is given by (41). It is equivalent to the open initial problem (1). This 
statement can be proved by following the technique developed in (Ladyzhenskaya, 1985). 
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By passing to the limit r L  in (40), we obtain 
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Formula (41) represents the exact absorbing condition on the artificial boundary  . This 
condition is spoken of as exact because any outgoing wave described by the initial problem 
(1) satisfies this condition. Every outgoing wave  ,U g t  passes through the boundary   
without distortions, as if it is absorbed by the domain ext  or its boundary  . That is why 
this condition is said to be absorbing. 

5. On the equivalence of the initial problem and the problem with a bounded 
domain of analysis 
We have constructed the following closed initial boundary-value problem 
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where the operator D  is given by (41). It is equivalent to the open initial problem (1). This 
statement can be proved by following the technique developed in (Ladyzhenskaya, 1985). 
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The initial and the modified problems are equivalent if and only if any solution of the initial 
problem is a solution to problem (42) and at the same time, any solution of the modified 
problem is the solution to problem (1). (In the ext -domain, the solution to the modified 
problem is constructed with the help of (40).) The solution of the initial problem is unique 
and it is evidently the solution to the modified problem according construction. In this case, 
if the solution of (42) is unique, it will be a solution to (1). Assume that problem (42) has two 
different solutions  1 ,U g t  and  2 ,U g t . Then the function       1 2, , ,u g t U g t U g t  is 
also the generalized solution to (42) for               1, , 0iF g t U g t g g . This means 
that for any function      W1

2, Tg t  that is zero at t T , the following equality holds: 
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Here,     int int 0,T T  and int
T  are the space-time cylinder over the domain int  and its 

lateral surface;  cos ,n 
   and  cos ,n z   are the cosines of the angles between the outer 

normal n  to the surface int
T  and  - and z -axes, respectively; the element dg  of the end 

surface of the cylinder int
T  equals  d dz .  

By making the following suitable choice of function, 
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it is possible to show that every term in (43) is nonnegative (Mikhailov, 1976) and therefore 
 ,u g t  is equal to zero for all intg  and  0 t T , which means that the solution to the 

problem (42) is unique. This proves the equivalency of the two problems. 

6. Far-field zone problem. Extended and remote sources 
As we have already mentioned, in contrast to approximate methods based on the use of the 
Absorbing Boundary Conditions or Perfectly Matched Layers, our approach to the effective 
truncation of the computational domain is rigorous, which is to say that the original open 
problem and the modified closed problem are equivalent. This allows one, in particular, to 
monitor a computational error and obtain reliable information about resonant wave 
scattering. It is noteworthy that within the limits of this rigorous approach we also obtain, 
without any additional effort, the solution to the far-field zone problem, namely, of finding 
the field  ,U g t  at arbitrary point in ext  from the magnitudes of  ,U g t on any arc 
r M L  , 0     , lying entirely in int  and retaining all characteristics of the arc  . 
Thus in the case considered here, equation (39) defines the diagonal operator  L rS t  such 
that it operates on the space of amplitudes     , ,nu r t u r t  of the outgoing wave (19) 
according the rule 
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and allows one to follow all variations of these amplitudes in an arbitrary region of ext . 
The operator 
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given by (40) , in turn, enables the variations of the field  ,U g t , extg , to be followed. 
It is obvious that the efficiency of the numerical algorithm based on (42) reduces if the 
support of the function   ,F g t  and/or the functions  g  and  g  is extended 
substantially or removed far from the region where the scatterers are located. The arising 
problem (the far-field zone problem or the problem of extended and remote sources) can be 
resolved by the following straightforward way. 
Let us consider the problem 
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which differs from the problem (1) only in that the sources  ,F g t and  g ,  g  are 
located out of the domain int  enveloping all the scatterers (Fig. 1). The supports of the 
functions  ,F g t ,  g , and  g  can be arbitrary large (and even unbounded) and are 
located in ext  at any finite distance from the domain int . 
Let the relevant sources generate a field  ,iU g t  in the half-plane       0 : 0,g z . In 
other words, let the function  ,iU g t  be a solution of the following Cauchy problem: 
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It follows from (47), (48) that in the domain ext  the function      , , ,s iU g t U g t U g t   
satisfies the equations 
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and allows one to follow all variations of these amplitudes in an arbitrary region of ext . 
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given by (40) , in turn, enables the variations of the field  ,U g t , extg , to be followed. 
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It follows from (47), (48) that in the domain ext  the function      , , ,s iU g t U g t U g t   
satisfies the equations 
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and determines there the pulsed electromagnetic wave crossing the artificial boundary   in 
one direction only, namely, from  int  into ext . 
The problems (49) and (14) are qualitatively the same. Therefore, by repeating the 
transformations of Section 4, we obtain 
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7. Determination of the incident fields 
To implement the algorithms based on the solution of the closed problems (42), (51), the 
values of the functions    1 ,iU g t  and  ,iU g t  as well as their normal derivatives on the 
boundaries 1  and   are required (see formulas (3), (5), (50)).  Let us start from the 
function    1 ,iU g t . In the feeding waveguide 1 , the field    1 ,iU g t  incoming on the 
boundary 1  can be represented (Sirenko et al., 2007) as 

            1 1
1 1 1 1 1, , , ; , .i i

n n n
n n

U g t U g t v z t b a z L          (52) 

Here (see also Section 3), 0,1,2,...n   only in the case of 0TM n -waves and only for a coaxial 
waveguide 1 . In all other cases 1,2,3,...n  . On the boundary 1 , the wave    1 ,iU g t  
can be given by a set of its amplitudes   1 1 ,n n

v L t . The choice of the functions  1 1 ,nv L t , 
which are nonzero on the finite interval 1 20 T t T T    , is arbitrary to a large degree and 
depends generally upon the conditions of a numerical experiment. As for the set 

  11 ,n z L n
v z t z


  , which determines the derivative of the functiоn    1 ,iU g t  on 1 , it 

should be selected with consideration for the causality principle. Each pair 
           11 1 1 1 1 1, , ; ,n n n n nz LV t v L t v z t z


         is determined by the pulsed 

eigenmode    1 ,i
nU g t  propagating in the waveguide 1  in the sense of increasing z . This 

condition is met if the functions  1 1 ,nv L t  and   
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The function  ,iU g t  generated by the sources  ,F g t ,  g , and  g  is the solution to 
the Cauchy problem (48). Let us separate the transverse variable   in this problem and 
represent its solution in the form (Korn & Korn, 1961): 
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In order to find the functions  ,v z t , one has to invert the following Cauchy problems for 
one-dimensional Klein-Gordon equations:  
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Here,  ,F z t ,  z  и  ,z t  are the amplitude coefficients in the integral presentations 
(54) for the functions  ,F g t ,  g , and  g . 
Now, by extending the functions   ,F z t  and   ,v z t  with zero on the interval 0t , we 
pass on to a generalized version of problems (56) (Vladimirov, 1971) 

 
                  

2 2
12

2 2 , , , ,

,

B v v z t F z t t z t z f z t
t z

t z

     
  

              
  

   

 (57) 

(    1 t  is the generalized derivative of the function  t ). Their solutions can be written by 
using the fundamental solution        1 22 2

0, , 1 2G z t t z J t z         
 of the operator 

 B   as follows: 
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, , , , , , , .v z t G z t f z t G z z t f z d dz      
 



              (58) 

Equations (54) and (58) completely determine the desired function  ,iU g t . 

8. Conclusion 
In this paper, a problem of efficient truncation of the computational domain in finite-
difference methods is discussed for axially-symmetrical open electrodynamic structures. 
The original problem describing electromagnetic wave scattering on a compact axially-
symmetric structure with feeding waveguides is an initial boundary-value problem 
formulated in an unbounded domain. The exact absorbing conditions have been derived for 
a spherical artificial boundary enveloping all sources and scatterers in order to truncate the 
computational domain and replace the original open problem by an equivalent closed one. 
The constructed solution has been generalized to the case of extended and remote field 
sources. The analytical representation for the operators converting the near-zone fields into 
the far-zone fields has been also derived. 
We would like to make the following observation about our approach. 
 In our description, the waveguide 1  serves as a feeding waveguide. However, both of 

the waveguides can be feeding or serve to withdraw the energy; also both of them may 
be absent in the structure.  

 The choice of the parameters     and     determining  ,Z r   (see Section 4) 
affects substantially the final analytical expression for the exact absorbing condition on 
the spherical boundary  . When constructing boundary conditions (41), (50), we 
assumed that     1  and     0 . In (Sirenko et al., 2007), for a similar situation, the 
exact absorbing conditions for outgoing pulsed waves were constructed with the 
assumption that    N L      and    J L    . With such     and    , 
equation (21) is the Weber-Orr transform (Bateman & Erdelyi, 1953). However, the final 
formulas corresponding to (39), (40) for this case turn into identities as r L , which 
present a considerable challenge for using them as absorbing conditions. In addition, 
the analytical expressions with the use of Weber-Orr transform are rather complicated 
to implement numerically. 
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 The function  ,iU g t  (see Section 7) can be found in spherical coordinates as well. In 
this situation, we arrive (see Section 4) at the expansions like (19) with the amplitude 
coefficients  ,nv r t  determined by the Cauchy problems  
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where  ,nF r t ,  n r , and  n r  are the amplitude coefficients for the functions 
 ,F g t ,  g , and  g . 

 The standard discretization of the closed problems (42), (51) by the finite difference 
method using a uniform rectangular mesh attached to coordinates  ,g z   leads to 
explicit computational schemes with uniquely defined mesh functions 
   , , , ,j k mU j k m U z t  . The approximation error is  2O h , where h  is the mesh 

width in spatial coordinates, 2l h  for  
int

max 2
g

g


       or 2l h  for 2   is the 
mesh width in time variable t ; j jh  , kz kh , and mt ml . The range of the integers 

0,1,...,j J , 0,1,...k K , and 0,1,...m M  depends both on the size of the int  
domains and on the length of the interval  0,T  of the observation time t . The 
condition providing uniform boundedness of the approximate solutions  , ,U j k m  
with decreasing h  and l  is met (see, for example, formula (1.50) in (Sirenko et 
al., 2007)). Hence the finite-difference computational schemes are stable, and the mesh 
functions  , ,U j k m  converge to the solutions  , ,j k mU z t  of the original problems 
(42), (51). 

As opposed to the well-known approximate boundary conditions standardly utilized by 
finite-difference methods, the conditions derived in this paper are exact by construction and 
do not introduce an additional error into the finite-difference algorithm. This advantage is 
especially valuable in resonant situations, where numerical simulation requires large 
running time and the computational errors may grow unpredictably if an open problem is 
replaced by an insufficiently accurate closed problem. 
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Here,  ,F z t ,  z  и  ,z t  are the amplitude coefficients in the integral presentations 
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(    1 t  is the generalized derivative of the function  t ). Their solutions can be written by 
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Equations (54) and (58) completely determine the desired function  ,iU g t . 

8. Conclusion 
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1. Introduction 
Tools of fractional calculus including fractional operators and transforms have been utilized 
in physics by many authors (Hilfer, 2000). Fractional operators defined as fractionalizations 
of some commonly used operators allow describing of intermediate states. For example, 
fractional derivatives and integrals (Oldham & Spanier, 1974; Samko et al., 1993) are 
generalizations of derivative and integral. Fractional curl operator defined in (Engheta, 
1998) is a fractionalized analogue of conventional curl operator used in many equations of 
mathematical physics. A fractionalized operator generalizes the original operator. The idea 
to use fractional operators in electromagnetic problems was formulated by N. Engheta 
(Engheta, 2000) and named “fractional paradigm in electromagnetic theory”. 
Our purpose is to find possible applications of the use of fractional operators in the 
problems of electromagnetic wave diffraction. In this paper two-dimensional problems of 
diffraction by infinitely thin surfaces are considered: a strip, a half-plane and a strip 
resonator (Fig.1). Assume that an incident field is an E-polarized plane wave, described by 
the function  

 ( cos sin )( , ) ik x yi i
zE zE x y ze    

   , (1) 

 

 
       a)              b)          c) 

Fig. 1. Geometry of the diffraction problems: a) strip, b) half-plane, c) two parallel strips. 
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 ( cos sin )( , ) ik x yi i
zE zE x y ze    
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       a)              b)          c) 

Fig. 1. Geometry of the diffraction problems: a) strip, b) half-plane, c) two parallel strips. 
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where   is the incidence angle, 2k 


  is the wavenumber. Here, the time dependence is 

assumed to be i te   and omitted throughout the paper. There are three structures 
considered in this paper: 
- a strip located in the plane 0y   ( [ , ]x a a  ) infinite along the axis z (Fig. 1a); 
- a half-plane ( 0y  , 0x  ) (Fig. 1b); 
- two parallel strips infinite along the axis z (a strip resonator). The first strip is located at 

y l , [ , ]x a a  , and the second one is at y l  , [ , ]x a a   (Fig. 1c). 
One may ask what new features are that the fractional operators can bring to the theory of 
diffraction. The concept of intermediate states, obtained with the aid of fractional 
 

derivatives and integrals, yields to various generalizations of commonly used models in 
electrodynamics such as: 
 Intermediate waves. For instance, intermediate waves between plane and cylindrical 

waves (Engheta, 1996, 1999) can be obtained using fractional integral of scalar Green’s 
function: 

2 2
1( , ; ) ( ( , ; ) ( , ; ))
2 y yG x y k D G x y k D G x y k   

    , 0 1  , 

where G2 is two-dimensional Green’s function of the free space. G describes an 
intermediate case between one- and two-dimensional Green’s functions and have the 
following behavior in the far-zone (Engheta, 1999): 

| |
/4

1
2~ cos ( sin| |) ( )

4 2 2 | |

ik x
ik ii i eG k e

k k k y
   

 
  

 
 


    
 

 ,  2 2k k x y    , 0  . 

This function consists of two waves: a cylindrical wave and a non-uniform plane wave 
propagating in the x  direction and behaving with y  as 1| |y  . 
 Fractional Green’s function G  defined as a fractional derivative (integral) of the 

ordinary Green’s function of the free space - kyG D G 
 .  denotes the fractional 

order and varies from 0 to 1 ( 0 1  ). In two-dimensional case G  is expressed as 

 (1) 2 2
0( ', ') ( ( ') ( ')

4
)ky

iG x x y y D H k x x y y        .  (2) 

 Fractional Green’s theorem which involves fractional derivatives of ordinary Green’s 
function and fractional derivatives of the considered function on a boundary of a 
domain (Veliev & Engheta, 2003). The corresponding equations will be presented later 
in this paper. 

 Fractional boundary conditions (FBC) defined via fractional derivatives of the 
tangential electric field components ( , )U x y . For an infinitely thin boundary S  located 
in the plane y d , FBC are defined as 

( , )| 0y y SD U x y
  , y d  . 
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The order of the fractional derivative   is assumed to be between 0 and 1. Fractional 
derivative D  is applied along the direction normal to the surface S . Fractional boundary 
conditions describe an intermediate boundary between the perfect electric conductor (PEC) 
and the perfect magnetic conductor (PMC), obtained from FBC if the fractional order equals 
to 0 and 1, respectively.  
We will use the symbol yD f  to denote operator of fractional derivative or integral yD f

 , 
which is defined by the integral of Riemann-Liouville on semi-infinite interval (Samko et al., 
1993): 

( )1( )( )
(1 ) ( )

x

x
f t dtdD f x

dx x t






   ,    0 1  , 

where (1 )   is Gamma function. 
This paper is devoted to the problems of diffraction by a strip, a strip resonator and a half-
plane characterized with fractional boundary conditions with 0 1   expressed as 

( , ) 0ky zD E x y  , 0y   ,   x L ,     

where ( , )L a a   for a strip and (0, )L    for a half-plane. For convenience, fractional 
derivative is applied with respect to dimensionless variable ky . The function ( , )zE x y  
denotes z-component of the total electric field, ( , ) i s

z z zE x y E E  , that is the sum of the 
incident plane wave ( , )i

zE x y  and the scattered wave ( , )s
zE x y . 

In case of a strip resonator we have two equations to impose fractional boundary conditions: 

( , ) 0ky zD E x y  , 0y l  ,   ( , )x a a  ,     

( , ) 0ky zD E x y  , 0y l   ,   ( , )x a a  . 

From the one hand, introduction of new boundary conditions should describe a new 
physical boundary world, and from the other hand they must allow to build an effective 
computational algorithm to solve the stated problems with a desired accuracy. Simple 
mathematical description of the scattering properties of surfaces is a common problem in 
modeling in diffraction theory.  
One of the well-studied boundaries, which can be treated as an intermediate state between 
PEC and PMC, is an impedance boundary defined by the equation 

( ) ( ( ))n E r n n H r   
      , r S

 , 

where n  is the normal to the surface S . The value of the impedance   varies from 0 for 
PEC to i  for PMC. 
There are many papers devoted to diffraction by impedance boundaries. Impedance 
boundary conditions (IBC) have been used for the modeling of the scattering properties of 
good conductors, gratings, etc. In each case there are formulas to define the value of the 
impedance as a function of material parameters. IBC are approximate BC and therefore they 
have limitations in usage and cannot describe all diversity of boundaries. 
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where (1 )   is Gamma function. 
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From the one hand, introduction of new boundary conditions should describe a new 
physical boundary world, and from the other hand they must allow to build an effective 
computational algorithm to solve the stated problems with a desired accuracy. Simple 
mathematical description of the scattering properties of surfaces is a common problem in 
modeling in diffraction theory.  
One of the well-studied boundaries, which can be treated as an intermediate state between 
PEC and PMC, is an impedance boundary defined by the equation 

( ) ( ( ))n E r n n H r   
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 , 

where n  is the normal to the surface S . The value of the impedance   varies from 0 for 
PEC to i  for PMC. 
There are many papers devoted to diffraction by impedance boundaries. Impedance 
boundary conditions (IBC) have been used for the modeling of the scattering properties of 
good conductors, gratings, etc. In each case there are formulas to define the value of the 
impedance as a function of material parameters. IBC are approximate BC and therefore they 
have limitations in usage and cannot describe all diversity of boundaries. 
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Further approximation of IBC can be made with the aid of derivatives of higher but integer 
orders or generalized boundary conditions (Hope & Rahmat-Samii, 1995; Senior & Volakis, 
1995). A general methodology to obtain exact IBC of higher order in spectral domain is 
presented in (Hope & Rahmat-Samii, 1995), where flat covers (and also surfaces with 
curvature) consisting of homogeneous materials with an arbitrary (linear, bi-anisotropic) 
constitutive equations. It is possible to obtain exact IBC in the spectral domain that can be 
often done in an analytical form very often. However, it is not always possible to get IBC in 
the spatial domain in an exact form. That is why it is necessary to approximate IBC in the 
spectral domain in order to apply inverse Fourier transform. 
Another boundary condition that generalizes the perfect boundaries like PEC and PMC was 
introduced in (Lindell & Sihvola, 2005a). The corresponding surface was named perfect 
electromagnetic conductor (PEMC) and the mentioned condition is defined as 

0H ME 
 

. 

For 0M  , PEMC defines a PEC boundary and for M    we get a PMC. The physical 
model of PEMC boundary was proposed in (Lindell & Sihvola, 2005b) where it was shown 
that the PEMC condition can simulate reflection from an anisotropic layer for the normal 
incidence of the plane wave. Diffraction by a PEMC boundary has not been considered yet. 
Further generalization of PEMC can be made using concept of the generalized soft-and-hard 
surface (GSHS) (Haninnen et al., 2006): 

0a E 
 , 0b H 

 
, 

where a , b


 are complex vectors that satisfy equations 0n a n b   
    and 1a b 

 . GSHS 
can transform an incident plane wave with any given polarization into any other 
polarization of the reflected plane wave if the vectors a , b


 are chosen appropriately 

(Haninnen et al., 2006). 
Fractional boundary conditions (FBC) can be compared with impedance boundary 
conditions (IBC). First of all FBC are intermediate between PEC and PMC as well as IBC. 
The value of fractional order 0   ( 1  ) corresponds to the value of impedance 0   
( i   ), respectively. For other values of 0 1   the deeper analysis is needed. 
Physical analysis of the strip with FBC shows that the induced surface currents behave 
similarly to the currents on an impedance strip. Due to specific properties the strip with FBC 
is compared with the well-known impedance strip. It can be shown that for a wide range of 
input parameters the “fractional strip” behaves similarly to the impedance strip if the 
fractional order is chosen appropriately (Veliev et al., 2008b). The proposed method used for 
a “fractional strip” has some advantages over the known methods applied to the analysis of 
the wave scattering by an impedance strip. 
The purpose of this work is to build an effective analytic-numerical method to solve two-
dimensional diffraction problems for the boundaries described by fractional boundary 
conditions with   [0,1]. The method will be applied to two canonical scattering objects: a 
strip and a half plane. The method is based on presenting the scattered field via fractional 
Green’s function, 

1( , ) ( ') ( ', ) '
L

s
zE x y f x G x x y dx    , 
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where 1 ( )f x  is the unknown function and (1) 2 2
0( ', ) ( ( ')

4
)ky

iG x x y D H k x x y       is 

the fractional derivative of the Green’s function defined by equation (2). This presentation 
leads to the following dual integral equations (DIE) with respect to the Fourier transform 
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where Ld a  for ( , )L a a  , 1Ld   for (0, )L   . 
In the case of a strip resonator, we obtain more complicated set of integral equations which 
will be presented later in this paper. 
The method generalizes the known method used for the PEC and PMC strip and half plane. 
As will be shown later, this method allows obtaining a solution for the value 0.5   in the 
explicit analytical form. For other values of [0,1]   the scattering problems are reduced to 
solving of the infinite systems of linear algebraic equations (SLAE). In order to discretize the 
DIE the function 1 ( )f x  is represented as a series in terms of orthogonal polynomials: 
Gegenbauer polynomials for the strip and Laguerre polynomials for the half-plane. These 
representations result in a special kind of the edge conditions for the fractional current 
density function 1 ( )f x . The physical characteristics of the considered scattering objects 
can be found with any desired accuracy by solving SLAE. 

2. Diffraction by a strip with fractional boundary conditions 

Assume that an E-polarized plane wave is characterized with the function 
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   must satisfy fractional boundary 
conditions 
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  is applied with 

respect to a dimensionless variable ky . The function ( , )zE x y denotes the z-component of the 
total electric field ( , ) i s
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the scattered field ( , )s
zE x y . Solution to the diffraction by the screen 

{( , ) : 0, }S x y y a x a      is to be sought under the following conditions: 
- The total field E


 must satisfy the Helmholtz equation everywhere outside the screen 
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- The scattered field ( , )s
zE x y must satisfy Sommerfeld radiation condition at the infinity 
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Further approximation of IBC can be made with the aid of derivatives of higher but integer 
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where 1 ( )f x  is the unknown function and (1) 2 2
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, 2 2r x y    (5) 

- The total field E


 must satisfy the edge condition, i.e. the finiteness of energy in every 
local area near the edges of the screen (Honl et al., 1961). 

- The total field ( , )zE x y  must satisfy the boundary conditions (3). 
The method is based on representation of the scattered field with the aid of the fractional 
derivative of the Green’s function: 

 1 ( ') ( ', ) '( , )
L

s
z f x G x x y dxE x y     .    (6)  

In (6), the function 1 ( )f x  is the unknown function called the density of the fractional 
potential, and G  is the fractional derivative of two-dimensional the Green’s function of the 
free space defined by equation (2). 
For the limit cases of the fractional order with 0   and 1   representation (6) 
corresponds to the single-layer and double-layer potentials commonly used to present the 
scattered fields in diffraction problems: 
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More general representations (6) can be derived from the fractional Green’s theorem (Veliev 
& Engheta, 2003) which generalizes the ordinary Green’s theorem. 

2.1 Fractional Green’s theorem 
Consider a function ( )r  , which satisfies inhomogeneous scalar Helmholtz equation with 
the source density given by the function ( )r  : 

 2( ) ( ) 4 ( )r k r r     
   .  (7) 

Besides, define 0( , )G r r   as the Green’s function of the Helmholtz equation: 

 2
0 0 0( , ) ( , ) 4 ( )G r r k G r r r r    

      .  (8) 

Here, 0( )r r 
   is the three-dimensional Dirac delta function, r  and  0r

  are the position 

vectors for the observation and source points, respectively, 
2 2 2

2 2 2x y z
  

   
  

is the 

Laplacian, and k  is a scalar constant. After applying fractional derivatives to equations (7) 
and (8) with respect to the x  variable, multiplying the first equation with 0( , )xD G r r


  , and 

the second with ( )xD r
 , subtracting one from another, integrating this over all source 
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coordinates 0 0 0, ,x y z  inside S , and finally using the Green’s theorem, we obtain the 
following representation: 
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  (9) 

where     . Operator 0  denotes the operator of gradient in respect of variable 

0 0 0 0( , , )r x y z . Here it was used the property of the fractional derivative of the Dirac delta 
function: 
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We use the uniform symbol xD
  (or xD ) to denote both fractional derivatives and 

fractional integrals, and it defines a fractional derivative for 0 1   and a fractional 
integral for 0  . 
Equation (9) is a generalization of well-known Green’s theorem for the case of fractional 
derivatives. 
Consider some important particular cases, which can be obtained from (9). 
In the case of excitation in a free space so that the volume V  is the whole space, the surface 
integrals in (9) vanish, and we have: 
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    .  (11) 

Originally function ( )r   characterizes the field excited by the source with the volume 
density ( )r  . From the other hand, for 0   representation (11) means that the field ( )r   
is expressed through the distribution of fractional sources with density 0( )D r    inside the 
volume V  and by using fractional integral of conventional Green’s function 0( , )D G r r . 
Assuming ( ) 0r 

 , we can obtain some other important representations: 
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 (12) 

From this representation we see that the fractional derivative of function ( )r   is expressed 
either via the value of the function and its first derivative at the boundary and the fractional 
derivatives of Green’s function, or by the fractional derivatives of the function at the 
boundary and the usual Green’s function. 
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- The total field E


 must satisfy the edge condition, i.e. the finiteness of energy in every 
local area near the edges of the screen (Honl et al., 1961). 
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derivative of the Green’s function: 
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More general representations (6) can be derived from the fractional Green’s theorem (Veliev 
& Engheta, 2003) which generalizes the ordinary Green’s theorem. 

2.1 Fractional Green’s theorem 
Consider a function ( )r  , which satisfies inhomogeneous scalar Helmholtz equation with 
the source density given by the function ( )r  : 
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  are the position 
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2 2 2

2 2 2x y z
  

   
  

is the 

Laplacian, and k  is a scalar constant. After applying fractional derivatives to equations (7) 
and (8) with respect to the x  variable, multiplying the first equation with 0( , )xD G r r
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coordinates 0 0 0, ,x y z  inside S , and finally using the Green’s theorem, we obtain the 
following representation: 
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where     . Operator 0  denotes the operator of gradient in respect of variable 

0 0 0 0( , , )r x y z . Here it was used the property of the fractional derivative of the Dirac delta 
function: 
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fractional integrals, and it defines a fractional derivative for 0 1   and a fractional 
integral for 0  . 
Equation (9) is a generalization of well-known Green’s theorem for the case of fractional 
derivatives. 
Consider some important particular cases, which can be obtained from (9). 
In the case of excitation in a free space so that the volume V  is the whole space, the surface 
integrals in (9) vanish, and we have: 
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From this representation we see that the fractional derivative of function ( )r   is expressed 
either via the value of the function and its first derivative at the boundary and the fractional 
derivatives of Green’s function, or by the fractional derivatives of the function at the 
boundary and the usual Green’s function. 
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If    , i.e. 0  , we obtain a representation for the function ( )r   itself: 
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        . (13) 

This expression means that the function ( )r   is represented through its fractional derivatives 
at the boundary and the fractional derivatives of Green's function. The equation (13) can be 
useful in scattering problems. If we have boundary conditions for the function ( )r   on the 

surface S  as 
000 0( )| 0r SxD r    (or 

00 0( )| 0r SxD r   ) then one of the surface integrals in 

(13) vanishes and we get a simple presentation for ( )r  . This fact will be used to present the 
scattered field in all diffraction problems considered in this paper (6). Equations (12), (13) 
generalize the Huygens principle in such a sense that the fractional derivative of the function 

( )r  , which characterizes a wave process, is presented as a superposition of waves radiated 
by elementary "fractional" sources distributed on the given surface. “Fractional” potentials, 
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D r D G r r ds  
 

    , 
0 00 0 0 0( , ) ( )x x

S

D G r r D r ds  
 

    , can be treated as a 

generalization of well-known single and double layer potentials. 

2.2 Solution to integral equations 
Substituting the expression (6) for ( , )zE x y  into fractional boundary conditions (3) we get 
the equation 
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   ,                 (14) 

It is convenient to use the Fourier transform of the fractional potential density 1 ( )f x  
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   , 

where a new function 1 ( )f    is introduced: 

1 1( ) ( )f af a     ,    | | 1  , 

1 ( ) 0f     ,    | | 1  . 

Then the scattered field is expressed via the Fourier transform 1 ( )F q  as 
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   ,  (15) 

where the upper (lower) sign is chosen for y>0 (y<0). Here, in (15), the following 
representation for the fractional Green’s function was used: 
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It can be shown that the equation (14) can be reduced to dual integral equations (DIE)  
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         (17) 

For the limit cases of the fractional order  = 0 and  = 1 the equations (17) are reduced to 
the well known integral equations used for PEC and PMC strips (Honl et al., 1961; Veliev & 
Veremey, 1993; Veliev & Shestopalov, 1988; Uflyand, 1977), respectively. In this paper the 
method to solve DIE (17)  is proposed for arbitrary value of  [0,1]. 
DIE (17) can be solved analytically for one special case of  = 0.5. In this case we get the 
solutions for any value of k as 

 0.5 1/2 cos /4( ) 2 sin ikx if x ik e      ,  (18) 

 0.5 /4 1/2 sin ( cos )( ) 4 sin
cos

i ka qF q ie
q

 





 


.  (19) 

In the case of arbitrary   the solutions can be obtained numerically. First, we modify the 
equations (17). After multiplying by ikae   and integrating in   from -1 to 1, the first 
equation in (17) can be rewritten in the following form: 

 /2(1 )1 2 1/2sin ( ) sin ( cos )( ) (1 ) 4 sin
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ika q kaF q q dq e
q

      
  

  


 
  

  .  (20) 

In order to discretize this equation, we present the unknown function 1 ( )f    as a 
uniformly convergent series in terms of the orthogonal polynomials with corresponding 
weight functions which allow satisfying the edge conditions: 
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   , (21) 

where ( )nC x  are the Gegenbauer polynomials and nf
  are the unknown coefficients. 

Gegenbauer polynomials can be treated as intermediate polynomials between Chebyshev 
polynomials of the first and second kind: 
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The Fourier transform 1 ( )F q  is expressed as the series 
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where ( )nJ kaq  is the Bessel function. 
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If    , i.e. 0  , we obtain a representation for the function ( )r   itself: 
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It can be shown that the equation (14) can be reduced to dual integral equations (DIE)  
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where ( )nC x  are the Gegenbauer polynomials and nf
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The Fourier transform 1 ( )F q  is expressed as the series 
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where ( )nJ kaq  is the Bessel function. 
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It must be noted that the edge conditions are chosen in the following form 

  1 2 1/2( ) (1 )f O     , 1   .  (23) 

For special cases of 0   and  1    the edge conditions have the form as 
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 ,     1       (24) 

These are well-known Meixner edge conditions in diffraction problems (Honl et al., 1961). 
Substituting (22) into (17) and taking into account the properties of discontinuous integrals 
of Weber-Shafheitlin (Bateman & Erdelyi, 1953) and the following formula (Prudnikov et al., 
1986) 
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qq

 
 
   

  
  





 ,  (25) 

one can show that the homogenous equation in the set (17) is satisfied identically.  
The first equation of (17) written in the form (20) can be reduced to an infinite system of 
linear algebraic equations (SLAE) with respect to the unknown coefficients nf

 : 
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where the matrix coefficients are expressed as 
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It can be shown that the SLAE (26) can be reduced to SLAE of the Fredholm type of the 
second kind (Veliev et al., 2008a). Then the coefficients nf

  can be found with any desired 
accuracy (within the machine precision) using the truncation of SLAE. The fractional density 

1 ( )f x  is computed by using (21) and the scattered field (6) and other physical 
characteristics can be obtained as series in terms of the found coefficients nf

 . 
In order to solve the diffraction problem on a plane screen with fractional boundary conditions 
and obtain a convenient SLAE we applied several techniques. First of all, the fractional Green’s 
theorem presented above allowed searching the unknown scattered field as a potential with 
the fractional Green’s function. The order of the fractional Green’s function is defined from the 
fractional order of the boundary conditions. In general, the fractional derivative of Green’s 
function may have a complicated form, but we used the Fourier transform where application 
of the fractional derivative maps to a simple multiplication by ( )iq  . Finally, utilization of the 
orthogonal Gegenbauer polynomials along with the specific form of the edge conditions 
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allowed to reduce integral equations to SLAE in a convenient form. One can compare the 
method presented for fractional boundary conditions with the known methods applied to 
solve diffraction by an impedance strip. The impedance strip requires to consider two 
unknown densities in presentation of the scattered field as a sum of single- and double-layer 
potentials. The usage of two unknown functions leads to more complicated SLAE in spite of 
the SLAE obtained for fractional boundary conditions.  

2.3 Physical characteristics 
We consider such electrodynamic characteristics of the scattered field as the radiation 
pattern (RP), monostatic radar cross-section (MRCS) and surface current densities 
depending on the coefficients nf

 . The scattered field  ,s
zE x y  in the far-zone kr   in the 

cylindrical coordinate system  ,r  , cos , sinx r y r    ,  is expressed as 

       1 cos sin, cos
4

ikrs
z

iE r i F e d       







   , 

where the upper sign is chosen for  0,  , and the lower one when  ,2   . Using the 
stationary phase method for kr   we present  ,s

zE x y  as 
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where 
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The function     describes RP and can be expressed via the coefficients nf
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In physical optics (PO) approximation ( 1ka )     has a simpler form. Using the 
following formula 
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in IE (20)  we get the following expressions for  F q  and    : 
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In the special case of 0.5   and arbitrary value of ka  we get an analytical expression for 
the RP 
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Bi-static radar cross section (BRCS) is expressed from RP ( )  as     22 2d
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We have the following representations in PO approximation 
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It must be noted that the density function 1 ( )f x  in the integral (6) does not describe the 
density of physical surface currents on the strip for 0 1  . The function 1 ( )f x  is 
defined as the discontinuity of fractional derivatives of E-field at the plane 0y  : 

 1 1 1
0 0( )  ( , )| ( , )|ky z y ky z yf x D E x y D E x y    

     , ( , )x a a  . (29) 

For the limit cases of 0   and 1   the equation (29) is reduced to well-known 
presentations for electric and magnetic surface currents, respectively, i.e. 
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In order to obtain physical surface currents from 1 ( )f x  we have to apply additional 
integration. In case of E-polarized incident plane wave we have the following induced 
currents on a strip: electric current ( ) ( )e e

zj zj 
   and magnetic current ( ) ( )m m

xj xj 
   

expressed from 1 ( )f x  as 
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The detailed analysis of the scattering properties of the strip with fractional boundary 
conditions one can find in papers (Veliev et al., 2008a; Veliev et al., 2008b). 

2.4 H-polarization 
In the case of the H -polarized incident plane wave  0,0,i i

zH H


, where 
   cos sin, ik x yi

zH x y e    , the method proposed above can be applied as well. We define 
fractional boundary conditions as  

     1 1
0 0, , ,| | 0ky z y ky y

i s
z zH x y x y x yD D H H  

      ,   ,x a a  . 

The case of 0   corresponds to diffraction of the H -polarized plane wave on a PEC strip, 
while the case of 1   describes diffraction of the H -polarized plane wave on a PMC strip. 
As before, we represent the scattered field via the fractional Green’s function 

     1, ,
a

s
z

a
H x y f x G x x y dx 



    . 

After substituting (18) into fractional boundary conditions (19) we get the equation 

     11 1
0 0

lim , lim ,
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i
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ky kyy y

D f x G x x y dx D H x y  



 

 
     . 

This equation can be solved by repeating all steps of the E -polarization case after changing 
  to 1  . 

3. Diffraction by a half-plane with fractional boundary conditions 

Another problem studied in this paper is the diffraction by a half-plane with fractional 
boundary conditions. The method introduced to solve the dual integral equation (DIE) for a 
finite object (a strip) will be modified to solve DIE for semi-infinite scatterers such as half-
plane. There are many papers devoted to the classical problem of diffraction by a half-plane. 
The method to solve the scattering problem for a perfectly conducting half-plane is 
presented in (Honl et al., 1961). Usually, it is solved using Wiener-Hopf method. The first 
application of the method to a PEC half-plane can be referred to the papers of Copson 
(Copson, 1946) and independently to papers of Carlson and Heins (Carlson & Heins, 1947). 
In 1952 Senior first applied Wiener-Hopf method to the diffraction by an impedance half-
plane (Senior, 1952) and later oblique incidence was considered (Senior, 1959). Diffraction by 
a resistive and conductive half-plane and also by various types of junctions is analyzed in 
details in (Senior & Volakis, 1995). We propose a new approach for the rigorous analysis of 
the considered problem which generalizes the results of (Veliev, 1999) obtained for the PEC 
boundaries and includes them as special cases. 
Let an E -polarized plane wave    cos sin, ik x yi

zE x y e     (1) be scattered by a half-plane 
( 0 , 0y x  ). The total field i s

z z zE E E   must satisfy fractional boundary conditions 

    , 0ky zD E x y  , 0 , 0y x   ,      (30) 

and Meixner’s edge conditions must be satisfied for 0x  . 
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Following the idea used for the analysis of diffraction by a strip we represent the scattered 
field using the fractional Green’s function 

      1

0

, ,s
zE x y f x G x x y dx 


     ,   (31) 

where  1f x  is the unknown function, G  is the fractional Green’s function (2).  
After substituting the representation  (31) into fractional boundary conditions (30) we get 
the equation 
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The Fourier transform of  1f x  is defined as 
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where    1 1f f     for 0   and  1 0f     for 0   .  
Then the scattered field will be expressed via the Fourier transform 1 ( )F q  as 
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Using the Fourier transform the equation (32) is reduced to the DIE with respect to 1 ( )F q : 
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The kernels in integrals (34) are similar to the ones in DIE (17) obtained for a strip if the 
constant Ld  is equal to 1 ( (0, )L    in the case of a half-plane). 
For the limit cases of the fractional order 0   and 1   these equations are reduced to 
well known integral equations used for the PEC and PMC half-planes (Veliev, 1999), 
respectively.  In this paper the method to solve DIE (5) is proposed for arbitrary values of 

[0,1]  . 
DIE allows an analytical solution in the special case of 0.5   in the same manner as for a 
strip with fractional boundary conditions. Indeed, for 0.5   we obtain the solution for any 
value of k  as 

   0.5 1/2 /42 sin cosiF q e q
k

      , 
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 0.5 1/2 /4 cos2sin i ikxf x e e    . 

The scattered field can be found in the following form: 

   cos sin/2 /4 1/2, sin , 0.5
2

ik x ys i i
z

iE x y e e e
k

         ,   for 0   ( 0)y y  . 

In the general case of 0 1   the equations (34) can be reduced to SLAE. To do this we 
represent the unknown function  1f    as a series in terms of the Laguerre polynomials 
with coefficients nf

 : 

    1 1/2 1/2

0
2x

n n
n

f x e x f L x   


   



  .   (35) 

Laguerre polynomials are orthogonal polynomials on the interval (0, )L    with the 
appropriate weight functions used in (35) . It can be shown from (35) that  1f    satisfies 
the following edge condition: 

    1 1/2f O    , 0  .              (36) 

For the special cases  of  = 0 and  = 1, the edge conditions are reduced to the well-known 
equations (Honl et al., 1961) used for a perfectly conducting half-plane. 
After substituting (35) into the first equation of (34) we get an integral equation (IE) 
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where    /2 1 cos4 sini ikR e e          is known.  
Using the representation for Fourier transform of Laguerre polynomials (Prudnikov et al., 
1986) we can evaluate the integral over dt  as 
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After some transformations IE (37) is reduced to  
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Then we integrate both sides of equation (38) with appropriate weight functions, as 

   1/2 1/2

0

2me L d    


   . Using orthogonality of Laguerre polynomials we get the 

following SLAE: 
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It can be shown that the coefficients nf
  can be found with any desired accuracy by using 

the truncation of SLAE. Then the function  1f x  is found from (35) that allows obtaining 
the scattered field (33). 

4. Diffraction by two parallel strips with fractional boundary conditions 

The proposed method to solve diffraction problems on surfaces described by fractional 
boundary conditions can be applied to more complicated structures. The interest to such 
structures is related to the resonance properties of scattering if the distance between the strips 
varies. Two strips of the width 2a infinite along the axis z are located in the planes y l  and 
y l  . Let the E -polarized plane wave    cos sin, ik x yi

zE x y e     (1) be the incident field. The 
total field i s

z z zE E E   satisfies fractional boundary conditions on each strip: 

    , 0ky zD E x y  , 0y l  ,     ( , )x a a  ,              (39) 

and Meixner’s edge conditions must be satisfied on the edges of both strips ( y l  , 
x a  ). 
The scattered field ( , )s

zE x y  consists of two parts 

 1 2( , ) ( , ) ( , )s s s
z z zE x y E x y E x y  ,       

where 

 1( , ) ( ') ( ', ) '
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E x y f x G x x y dx 


  , 1,2j  .  (40) 

Here, G is the fractional Green’s function defined in (2). y1,2 are the coordinates in the 
corresponding coordinate systems related to each strip, 

1y y l  , 1x x , 

2y y l  , 2x x . 

Using Fourier transforms, defined as 
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Fractional boundary conditions (30) correspond to two equations 
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Multiplying both equations with e–ikx and integrating them in  on the interval [–a,a], the 
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Similarly to the method described for the diffraction by one strip, the set (47) can be reduced 
to a SLAE by presenting the unknown functions 1 ( )jf x  as a series in terms of the 
orthogonal polynomials. We represent the unknown functions 1 ( )jf    as series in terms of 
the Gegenbauer polynomials: 
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Multiplying both equations with e–ikx and integrating them in  on the interval [–a,a], the 
system (45), (46) leads to 
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Similarly to the method described for the diffraction by one strip, the set (47) can be reduced 
to a SLAE by presenting the unknown functions 1 ( )jf x  as a series in terms of the 
orthogonal polynomials. We represent the unknown functions 1 ( )jf    as series in terms of 
the Gegenbauer polynomials: 
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For the Fourier transforms 1 ( )jF q  we have the representations (22). Substituting the 

representations for 1 ( )jF q  into the (47), using the formula (25), then integrating 

( )(.) mJ ka d
m





 
  for 0,1,2,..m  , we obtain the following SLAE: 
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where the matrix coefficients are defined as 
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       . 

Consider the case of the physical optics approximation, where 1ka . In this case we can 
obtain the solution of (47) in the explicit form. Indeed, using the formula (28) we get 
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Finally, we obtain the solution as 
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Having expressions for 1 ( )jF q  we can obtain the physical characteristics. The radiation 
pattern of the scattered field in the far zone (27) is expressed as 
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1 2( ) ( ) ( )        , 

where 

/2 1 cos
1 1( ) (cos )sin

4
i ikli e F e            , 

/2 1 cos
2 2( ) (cos )sin

4
i ikli e F e           . 

5. Conclusion 

The problems of diffraction by flat screens characterized by the fractional boundary 
conditions have been considered. Fractional boundary conditions involve fractional 
derivative of tangential field components. The order of fractional derivative is chosen 
between 0 and 1. Fractional boundary conditions can be treated as intermediate case 
between well known boundary conditions for the perfect electric conductor (PEC) and 
perfect magnetic conductor (PMC). A method to solve two-dimensional problems of 
scattering of the E-polarized plane wave by a strip and a half-plane with fractional 
boundary conditions has been proposed. The considered problems have been reduced to 
dual integral equations discretized using orthogonal polynomials. The method allowed 
obtaining the physical characteristics with a desired accuracy. One important feature of the 
considered integral equations has been noted: these equations can be solved analytically for 
one special value of the fractional order equal to 0.5 for any value of frequency. In that case 
the solution to diffraction problem has an analytical form. The developed method has been 
also applied to the analysis of a more complicated structure: two parallel strips. Introducing 
of fractional derivative in boundary conditions and the developed method of solving such 
diffraction problems can be a promising technique in modeling of scattering properties of 
complicated surfaces when the order of fractional derivative is defined from physical 
parameters of a surface. 
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1. Introduction 
Influence of atmospheric refraction on the propagation of electromagnetic waves has been 
studied from the beginnings of radio wave technology (Kerr, 1987). It has been proved that 
the path bending of electromagnetic waves due to inhomogeneous spatial distribution of the 
refractive index of air causes adverse effects such as multipath fading and interference, 
attenuation due to diffraction on the terrain obstacles or so called radio holes (Lavergnat & 
Sylvain, 2000). These effects significantly impair radio communication, navigation and radar 
systems. Atmospheric refractivity is dependent on physical parameters of air such as 
pressure, temperature and water content. It varies in space and time due the physical 
processes in atmosphere that are often difficult to describe in a deterministic way and have 
to be, to some extent, considered as random with its probabilistic characteristics. 
Current research of refractivity effects utilizes both the experimental results obtained from 
in situ measurements of atmospheric refractivity and the computational methods to 
simulate the refractivity related propagation effects. The two following areas are mainly 
addressed. First, a more complete statistical description of refractivity distribution is sought 
using the finer space and time scales in order to get data not only for typical current 
applications such as radio path planning, but also to describe adverse propagation in detail. 
For example, multipath propagation can be caused by atmospheric layers of width of 
several meters. During severe multipath propagation conditions, received signal changes on 
time scales of minutes or seconds. Therefore, for example, the vertical profiles of 
meteorological parameters measured every 6 hours by radiosondes are not sufficient for all 
modelling purposes. The second main topic of an ongoing research is a development and 
application of inverse propagation methods that are intended to obtain refractivity fields 
from electromagnetic measurements. 
In the chapter, recent experimental and modelling results are presented that are related to 
atmospheric refractivity effects on the propagation of microwaves in the lowest troposphere. 
The chapter is organized as follows. Basic facts about atmospheric refractivity are 
introduced in the Section 2. The current experimental measurement of the vertical 
distribution of refractivity is described in the Section 3. Long term statistics of atmospheric 
refractivity parameters are presented in the Section 4. Finally, the methods of propagation 
modelling of EM waves in the lowest troposphere with inhomogeneous refractivity are 
discussed in the Section 5.  
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2. Atmospheric refractivity 
2.1 Physical parameters of air and refractivity formula 
The refractive index of air n is related to the dielectric constants of the gas constituents of an 
air mixture. Its numerical value is only slightly larger than one. Therefore, a more 
convenient atmospheric refractivity N (N-units) is usually introduced as: 

   61 10N n    (1) 

It can be simply demonstrated, based on the Debye theory of polar molecules, that refractivity 
can be calculated from pressure p (hPa) and temperature T (K) as (Brussaard, 1996): 

 77.6 4810 eN p
T T

   
 

 (2) 

where e (hPa) stands for a water vapour pressure that is related to the relative humidity 
H (%) by a relation: 

  100 sH e e t  (3) 

where es (hPa) is a saturation vapour pressure. The saturation pressure es depends on 
temperature t (°C) according to the following empirical equation: 

     expse t a bt t c   (4) 

where for the saturation vapour above liquid water a = 6.1121 hPa, b = 17.502 and 
c = 240.97 °C and above ice a = 6.1115 hPa, b = 22.452 and c = 272.55 °C.    
It is seen in Fig.1a where the dependence of the refractivity on temperature and relative 
humidity is depicted that refractivity generally increases with humidity. Its dependence on 
temperature is not generally monotonic however. For humidity values larger than about 
40%, refractivity also increases with temperature. 
 

 
(a)     (b) 

Fig. 1. The radio refractivity dependence on temperature and relative humidity of air for 
pressure p = 1000 hPa (a), refractivity sensitivity dependence on temperature and relative 
humidity of air (b). 
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The sensitivity of refractivity on temperature and relative humidity of air is shown in Fig. 1b. 
For t = 10°C (cca average near ground temperature in the Czech Republic), H = 70% (cca 
average near ground relative humidity) and p = 1000 hPa, the sensitivities are 
dN/dt = 1.43 N-unit/°C, dN/dH = 0.57 N-unit/% and dN/dp = 0.27 N-unit/hPa. The 
refractivity variation is usually most significantly influenced by the changes of relative 
humidity as a water vapour content often changes rapidly (both in space and time) and it is 
least sensitive to pressure variation. However a decrease in pressure with altitude is mainly 
responsible for a standard vertical gradient of the atmospheric refractivity. 
During standard atmospheric conditions, the temperature and pressure are decreasing with 
the height above the ground with lapse rates of about 6 °C/km and 125 hPa/km (near 
ground gradients). Assuming that relative humidity is approximately constant with height, 
a standard value of the lapse rate of refractivity with a height h can be obtained using 
pressure and temperature sensitivities and their standard lapse rates. Such an estimated 
standard vertical gradient of refractivity is about dN/dh ≈ -42 N-units/km. It will be seen 
that such value is very close to the observed long term median of the vertical gradient of 
refractivity. 

2.2 EM wave propagation basics 
Ray approximation of EM wave propagation is convenient to see the basic propagation 
characteristics in real atmosphere. The ray equation can be written in a vector form as: 

 d d
d d

n n
s s
    
 

r  (5) 

where a position vector r is associated with each point along a ray and s is the curvilinear 
abscissa along this ray. Since the atmosphere is dominantly horizontally stratified, the 
gradient n has its main component in vertical direction. Considering nearly horizontal 
propagation, the refractive index close to one and only vertical component of the 
gradient n , one can derive from (5) that the inverse of the radius of ray curvature, ρ,  is 
approximately equal to the negative height derivative of the refractive index, –dn/dh. Using 
the conservation of a relative curvature: 1/R - 1/ρ = const. = 1/Ref - 1/∞ one can transform 
the curvilinear ray to a straight line propagating above an Earth surface with the effective 
Earth radius Ref given by: 

 6d1 1 10
def

R NR R R R
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 (6) 

where R stands for the Earth radius and dN/dh denotes a vertical gradient of refractivity. 
Three typical propagation conditions are observed depending on the numerical value of the 
gradient. If dN/dh ≈ -40 N-units/km, than from (6): Ref ≈ 4/3 R and standard atmospheric 
conditions take place. The standard value of the vertical refractivity gradient is 
approximately equal to the long term median of the gradient observed in mild climate areas. 
The median gradients observed in other climate regions may be slightly different, see the 
world maps of refractivity statistics in (Rec. ITU-R P.453-9, 2009). 
Sub-refractive atmospheric conditions occur when the refractivity gradient has a significantly 
larger value, super-refractive conditions occur when the refractivity gradient is well below the 
standard value of -40 N-units/km. During sub-refractive atmospheric conditions, the effective 
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Earth radius Ref decreases, terrain obstacles are relatively higher and the received signal may 
by attenuated due to diffraction loss appearing if the obstacle interfere more than 60% of the 
radius of the 1st Fresnel ellipsoid on the line between the transmitter and receiver. During 
super-refractive conditions, on the other hand, the effective Earth radius is lower than the 
Earth radius R or it is even negative when dN/dh < -157 N-units/km. It means a radio path is 
more “open” in the sense that terrain obstacles are relatively lower. Super-refractive conditions 
are often associated with multipath propagation when the received signal fluctuates due to 
constructive and destructive interference of EM waves coming to the receiver antenna with 
different phase shifts or time delays. 
In principle, the EM wave propagation characteristics during clear-air conditions are 
straightforwardly determined by the state of atmospheric refractivity. Nevertheless, 
atmospheric refractivity varies in time and space more or less randomly and full details of it 
are out of reach in practice. Therefore the statistics of atmospheric refractivity and related 
propagation effects are of main interest. The statistical data important for the design of 
terrestrial radio systems have to be obtained from the experiments, an example of which is 
described further. 

3. Measurement of refractivity and propagation 
3.1 Measurement setup 
A propagation experiment focussed on the atmospheric refractivity related effects has been 
carried out in the Czech Republic since November 2007. First, the combined experiment 
consists of the measurement of a received power level fluctuations on the microwave 
terrestrial path operating in the 10.7 GHz band with 5 receiving antennas located in different 
heights above the ground. Second, atmospheric refractivity is determined in the several 
heights (19 heights from May, 2010) at the receiver site from pressure, temperature and 
relative humidity that are simultaneously measured by a meteo-sensors located on the 150 
meters tall mast. Refractivity is calculated using (2) – (4). Figure 2a shows the terrain profile 
of the microwave path. 
 

  
    (a)                                                    (b) 
Fig. 2. (a) The terrain profile of an experimental microwave path, TV Tower Prague – 
Podebrady mast, with the first Fresnel ellipsoids of the lowest and the highest paths for 
k = Ref/R = 4/3, (b) the parabolic receiver antennas placed on the 150 m high mast 
(Podebrady site). 
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The distance between the transmitter and receivers is 49.8 km. It can be seen in Fig. 2a a 
terrain obstacle located about 33 km from the transmitter site. The height of the obstacle is 
such that about 0% of the first Fresnel ellipsoid radius of the lowest path (between the 
transmitter antenna and the lowest receiver antenna) is free. It follows that under standard 
atmospheric conditions (k = Ref/R = 4/3) the lowest path is attenuated due to the diffraction 
loss of about 6 dB. Tables 1a and 1b show the parameters of the measurement setup. 
 
Heights of meteorological 
sensors 

5.1 m, 27.6 m, 50.3 m, 75.9 m, 98.3 m, 123.9 m,       19 sensors 
approx. every 7 m (from May 2010) 

Pressure sensor height 1.4 m 
Temperature/humidity 
sensor Vaisala HMP45D, accuracy ±0.2°C, ±2% rel. hum.  

Pressure sensor Vaisala PTB100A, accuracy ±0.2 hPa 

Table 1a. The parameters of a measurement system (meteorology). 
 

TX tower ground altitude 258.4 m above sea level 
TX antenna height 126.3 m 
Frequency 10.671 GHz 
Polarization Horizontal 
TX output power 20.0 dBm 
Path length 49.82 km 
Parabolic antennas diameter 0.65 m,  gain 33.6 dBi 
RX dynamical range > 40 dB 
RX tower ground altitude 188.0 m above sea level 
RX antennas heights 51.5 m, 61.1 m, 90.0 m, 119.9 m, 145.5 m 
Est. uncertainty of received level ±1 dB 

Table 1b. The parameters of a measurement system (radio, TX = transmitter, RX = receiver). 

3.2 Examples of refractivity effects 
In order to get a better insight into atmospheric refractivity impairments occurring in real 
atmosphere, several examples of measured vertical profiles of temperature, relative 
humidity, modified refractivity and of received signal levels are given. The modified 
refractivity M is calculated from refractivity N as: 

     157M h N h h   (7) 

where h(km) stands for the height above the ground. The reason of using M instead of N 
here is to clearly point out the possible ducting conditions (dN/dh < -157 N-units/km) 
when dM/dh < 0 M-units/km. 
Figure 3 shows the example of radio-meteorological data obtained during a very calm day 
in autumn 2010. The relative received signal levels measured at 51.5 m (floor 0), 90.0 m 
(floor 2) and at 145.5 m (floor 4) are depicted. The lowest path (floor 0) is attenuated of about 
6 dB due to diffraction on a path obstacle. The situation is atypical since the received signal 
level is very steady and does not fluctuate practically. The vertical gradient of modified 
refractivity has approximately the same value (≈ 110 M-units/km or -47 N-units/km) 
during the whole day, the propagation conditions correspond to standard atmosphere. 
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A more typical example of measured data is shown in Fig. 4. Temperature and relative 
humidity change appreciably with height and in time. Specifically, temperature inversion 
is seen before 4:00 and after 20:00, the standard gradient takes place in the middle of the 
day. The received signal level recorded on the lowest path shows a typical enhancement 
at the beginning and at the end of the day which is caused by super-refractive 
propagation conditions. On the other hand the signal received at the higher antennas 
fluctuates mildly around 0 dB with more pronounced variations of the signal in the 
morning and at night. 
Sub-refractive propagation conditions were observed between 2:00 and 4:00 on 14 October 
2010 as shown in Fig. 5. One can see that increased attenuation due to diffraction on the path 
obstacle appears on the lowest path (floor 0) at that time. This well corresponds with the 
sub-refractive gradient of modified refractivity observed; see the lower value of dM/dh near 
the ground between 2:00 and 4:00 which is caused by strong temperature inversion together 
with no compensating humidity effect. The received signal measured on the higher 
antennas that are not affected by diffraction stays around the nominal value with some 
smaller fluctuations probably due to multipath and focusing/defocusing effects. 
A typical example of multipath propagation is shown in Fig. 6. In the middle of the day 
from about 7:00 to 18:00, the received signal is steady at all heights and the atmosphere 
seems to be well mixed. On the other hand, multipath propagation occurring in the morning 
and at night is characterized by relatively fast fluctuations of the received signal. It is seen 
that all the receivers are impaired in the particular multipath events. Deep fading 
(attenuation > 20 dB) is quite regularly changing place with significant enhancement of the 
received signal level.   
 

 
Fig. 3. The vertical profiles of temperature T, relative humidity H, modified refractivity M 
and received signal levels relative to free-space level observed on 17 November 2010  

 
Atmospheric Refraction and Propagation in Lower Troposphere 

 

145 

 
Fig. 4. The vertical profiles of temperature T, relative humidity H, modified refractivity M 
and received signal levels relative to free-space level observed on 26 June 2010  
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Fig. 6. The vertical profiles of temperature T, relative humidity H, modified refractivity M 
and received signal levels relative to free-space level observed on 12 September 2010 

4. Refractivity statistics 
As already mentioned, the physical processes in troposphere are complex enough to allow 
only statistical description of spatial and temporal characteristics of atmospheric refractivity. 
Nevertheless the statistics of important refractivity parameters such as an average vertical 
gradient are extremely useful in practical design of terrestrial radio paths when the long 
term statistics of the received signal have to be estimated, see (Rec. ITU-R P.530-12, 2009). 

4.1 Average vertical gradient of refractivity 
The prevailing vertical gradient of refractivity can be regarded as the single most important 
characteristics of atmospheric refractivity. According to (6), it is related to the effective Earth 
radius discussed above and it specifically determines the influence of terrain obstacles on 
terrestrial radio propagation paths. The examples of measured vertical profiles presented in 
the previous section show that the near-ground refractivity profile evolution is complex 
enough to not be described by only a single value of the gradient. The question arises what 
should be considered as a prevailing vertical gradient at a particular time. The gradient value 
is usually obtained from the refractivity difference at fixed heights, e.g. at 0 and 65 meters 
above the ground (Rec. ITU-R P.453-9, 2009). If more accurate data is available, the prevailing 
vertical gradient of refractivity can be calculated using a linear regression approach. 
Two year data (2008-2009) of measured vertical profiles were analysed by means of linear 
regression of refractivity in the heights (0 – 120 m) and the statistics of the vertical gradient 
so obtained were calculated. The results are in Fig. 7a where the annual cumulative 
distribution functions of the gradient are depicted. The quantiles provided by ITU-R 
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datasets are also shown for comparison. It is clear that extreme gradients are less probable in 
reality than predicted by ITU-R. Linear regression tends to filter out the extreme gradients 
(otherwise obtained from two-point measurements) which do not fully represent the vertical 
distribution as a whole. 
 

  
                  (a)                                                                       (b) 
Fig. 7. Annual cumulative distributions of the vertical gradient of atmospheric refractivity 
obtained in 2008, 2009 (a), cumulative distribution obtained from the whole season (2 years) 
and fitted model (b).  

Taking into account the importance of the gradient statistics for the design of terrestrial 
radio path, it seems desirable to have a suitable model. Several models of the gradient 
statistics were proposed, see (Brussaard, 1996), that can be fitted to measured data. Since 
they are often discontinuous in the probability density, they can be thought to be little 
unnatural. One can see in Fig. 7b where the two-year cumulative distribution is shown that 
the distribution consists of three parts: the part around the standard (median) gradient and 
two other parts – tails. Therefore the following model of the probability density f(x) and of 
the cumulative distribution function F(x) is proposed:      
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where the pi, μi and σi are the relative probabilities, the mean values and the standard 
deviations of the Gaussian distributions forming the three parts of the whole distribution. 
Fitted model parameters (see Fig. 7b) are summarized in Table 2.   
 

i pi μi σi 
1 0.086 -128.0 75.1 
2 0.793 -46.1 11.8 
3 0.121 -99.6 24.8 

Table 2. Vertical refractivity gradient distribution parameters 
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Fig. 6. The vertical profiles of temperature T, relative humidity H, modified refractivity M 
and received signal levels relative to free-space level observed on 12 September 2010 
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4.2 Ducting layers 
Although the ducting layers appearing in the first several tens or hundreds meters above the 
ground have significant impact on the propagation of EM waves on nearly horizontal paths, 
surprisingly little is known about their occurrence probabilities or about their 
spatial/temporal properties (Ikegami et al., 1966). This is true especially in the lowest 
troposphere where the usual radio-sounding data suffers from insufficient spatial and also 
time resolution. In the following, the parameters of ducting layers observed during the 
experiment are analysed by means of the modified Webster duct model. 
An analytic approach to the modelling of refractivity profiles was proposed in (Webster, 
1982). The refractivity profile with the height h (m) was to be approximated by the formula 
similar to the following modified model: 

    0
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where the refractivity N0 (N-units), the gradient GN (N-units/m), the duct depth dN (N-
units), the duct height h0 (m) and the duct width dh (m) are model parameters. A hyperbolic 
tangent is used in (10) instead of arctangent in the original Webster model because the 
“tanh” function converges faster to a constant value for increasing arguments than the 
“arctan” does.  As a consequence, there is a sharper transition between the layer and the 
ambient gradient in the modified model and so the duct width values dh are more clearly 
recognizable in profiles. Figure 8 shows the meaning of the model parameters by an 
example where the modified refractivity profile is also included. It is seen from (7) and (10) 
that the model for modified refractivity profiles differs only in the value of the gradient: 
G = GN + 0.157 (N-units/m). 
 

 
Fig. 8. Duct model parameter definition with the values of parameters: N0 = 300 N-units, 
GN = -40 N-units/km, dN = -20 N-units, h0 = 80 m, dh = 40 m.  

The above model was fitted to the refractivity profiles measured in between May and 
November 2010. More than 3· 105 profiles were analysed and related model parameters 
were obtained. Figure 9 shows two examples of 1-hour measured data and fitted models. 
Significant dynamics is clearly seen in the evolving elevated ducting layers. It is also clear 
from the examples in Fig. 9 that the model is not able to capture all the fine details of 
measured profiles but it serves very well to describe the most important features relevant 
for radio propagation studies. Sometimes, the part or the whole ducting layer is located 

 
Atmospheric Refraction and Propagation in Lower Troposphere 

 

149 

above the measurement range and so it is out of reach of modelling despite its effect on the 
propagation might be serious. This should be kept in mind while studying the statistical 
results presented below. 
 

 
(a)     (b) 

Fig. 9. The examples of time evolution of elevated ducting layers observed on the 1st of 
August 2010 at 00:00-00:50 (a) and on the 14th of July 2010 at 22:00-22:50 (b), measured data 
with points, fitted profiles with lines. 

Figure 10 shows the empirical cumulative distributions of duct model parameters obtained 
from the fitting procedure. The medians (50% of time) of duct parameters can be read as 
N0 = 320 N-units, G = 116 N-units/km, dN = -2.2 N-units, h0 = 61 m, dh = 73 m. The 
probability distributions of N0 and G are almost symmetric around the median. On the other 
hand, the depth dN and width dh distributions are clearly asymmetric showing that the 
smaller negative values of the depth and the smaller values of width are observed more 
frequently. Almost linear cumulative distribution of the duct height h0 between 50 and 100 
m above the ground suggests that there is no preferred duct height here. 
 

 
Fig. 10. The cumulative distribution functions of duct parameters obtained from measured 
profiles of atmospheric refractivity at Podebrady, 05/2010 – 11/2010. 

Important interrelations between duct parameters are revealed by empirical joint probability 
density functions (PDF) presented in Fig. 11 – 15. The 2D maps show the logarithm of joint 
PDFs of all combinations of 5 parameters of the duct model (10). In these plots, dark areas 
mean the high probability values and light areas mean the low probability values. It is 
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generally observed that there are certain preferred areas in the parameter space where the 
combinations of duct parameters usually fall in. For example, it is seen in Fig. 13a that the 
absolute value of the negative duct depth is likely to increase with the increasing gradient G. 
On the other hand, there are empty areas in the parameter space where the combinations of 
parameters are not likely to appear. One may find this information helpful when analysing 
terrestrial propagation using random ducts generated by the Monte Carlo method. 
 
 
 
 

(a)  (b)  
 

Fig. 11. The logarithm of the joint probability density function of duct parameters, obtained 
from measured profiles of atmospheric refractivity at Podebrady, 05/2010 – 11/2010. 

 
 
 
 

(a)    (b)  
 

Fig. 12. The logarithm of the joint probability density function of duct parameters, obtained 
from measured profiles of atmospheric refractivity at Podebrady, 05/2010 – 11/2010. 
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 (a)  (b)  

Fig. 13. The logarithm of the joint probability density function of duct parameters, obtained 
from measured profiles of atmospheric refractivity at Podebrady, 05/2010 – 11/2010. 

 

(a)  (b)  

Fig. 14. The logarithm of the joint probability density function of duct parameters, obtained 
from measured profiles of atmospheric refractivity at Podebrady, 05/2010 – 11/2010. 

 

 (a)  (b)  

Fig. 15. The logarithm of the joint probability density function of duct parameters, obtained 
from measured profiles of atmospheric refractivity at Podebrady, 05/2010 – 11/2010. 
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5. Modelling of EM waves in the troposphere 
Several numerical methods have been used in order to assess the effects of atmospheric 
refractivity on the propagation of electromagnetic waves in the troposphere. They can be 
roughly divided into two categories - ray tracing methods based on geometrical optics and 
full-wave methods. The ray tracing methods numerically solve the ray equation (5) in order 
to get the ray trajectories of the electromagnetic wave within inhomogeneous refractivity 
medium. The ray tracing provides a useful qualitative insight into refraction phenomena 
such as bending of electromagnetic waves. Its utilization for quantitative modelling is 
limited to conditions where the electromagnetic waves of sufficiently large frequency may 
be approximated by rays. Geometrical optics description is known to fail at focal points and 
caustics where the full-wave methods provide more accurate results. 
The full-wave numerical methods solve the wave equation that is a partial differential 
equation. Among time domain techniques, finite difference time domain (FDTD) based 
approaches were proposed (Akleman & Sevgi, 2000) that implement sliding rectangular 
window where 2D FDTD algorithm is applied. Nevertheless, tropospheric propagation 
simulation in frequency domain is more often. In particular , there is a computationally 
efficient approach based on the paraxial approximation of Helmholtz wave equation, so 
called Parabolic Equation Method (PEM), which is the most often used full-wave method in 
tropospheric propagation.   

5.1 Split step parabolic equation method 
We start the brief summary of PEM (Levy, 2000) with the scalar wave equation for an 
electric or magnetic field component ψ: 

 2 2 2 0k n     (11) 

where k = 2π/λ is the wave number in the vacuum and n(r,θ,φ) is the refractive index. 
Spherical coordinates with the origin at the center of the Earth are used here. Further, we 
assume the azimuthal symmetry of the field, ψ(r,θ,φ) = ψ(r,θ), and express the wave 
equation in cylindrical coordinates: 
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where: 

 ( , ) ( , ) /m x z n x z z R   (13) 

is the modified refractive index which takes account of the Earth’s radius R and where x = rθ 
is a horizontal range and z = r – R refers to an altitude over the Earth’s surface. We are 
interested in the variations of the field on scales larger than a wavelength. For near 
horizontal propagation we can separate “phase” and “amplitude” functions by the 
substitution of: 
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in equation (12) to obtain: 
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Paraxial approximation is made now. The field u(x,z) depends only little on z, because main 
dependence of ψ(x,z) is covered in the exp(jkx) factor in (14). Then it is assumed that: 
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and the 1/(2kx)2 term can be removed from (15) since kx >> 1 when the field is calculated far 
enough from a source. We obtain the following parabolic equation: 
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An elliptic wave equation is therefore simplified to a parabolic equation where near 
horizontal propagation is assumed. This equation can be solved by the efficient iterative 
methods such as the Fourier split-step method. Let us assume the modified refractivity m is 
constant. Then we can apply Fourier transform on the equation (17) to get: 
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where Fourier transform is defined as: 
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From (18), we obtain:      
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and we get the formula for step-by-step solution: 

  2 2j ( /(2 )) j ( ( 1)/2)( , ) e e ( , )x p k x k mU x x p U x p        (22) 

The field in the next layer u(x+Δx,z) is computed using the field in the previous layer u(x,z): 

  2 2j ( ( 1)/2) j ( /(2 ))1( , ) e F ( , )ex k m x p ku x x z U x p        (23) 

Fourier transformation is applied in z-direction and the variable p represents the “spatial 
frequency” (wave number) of this direction: p = kz = ksin(ξ) and ξ is the angle of propagation. 
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The assumption that m is constant is not fulfilled, but equation (23) is used anyway. The 
resulting error is proportional to Δx and to horizontal and vertical gradients of refractivity. 
In practice, the value of Δx can be of several hundred wavelengths.  

5.2 Application example and comparison with measured data 
The parabolic equation method outlined above has been applied frequently to investigate 
the propagation characteristics on terrestrial (and also on Earth - space) paths under the 
influence of different refractivity conditions (Barrios, 1992, 1994; Levy, 2000) including the 
ducting layers described in the section 4.2. Users agree the method gives reliable results 
provided all the relevant details of terrain profile and of refractivity distribution are known 
and modelled correctly. This is however not always the case in practice. It is believed that 
the modelling results have to be compared with real world data whenever possible in order 
to validate the method under different propagation conditions and to know more about the 
expected errors due to incomplete knowledge of propagation medium.  
Let us illustrate the particular example of conditions where the parabolic equation method 
performs successfully regardless the fact that refractivity profile along the propagation path 
is only roughly estimated. Figures 16a and 16b show the results of PEM propagation 
simulation performed using refractivity gradients measured during the 4th of November, 
2008 at the receiver site. Sub-refractive conditions that occurred early morning caused a 
significant diffraction fading of more than 20 dB on the two lowest paths see Fig. 16b. On the 
other hand, the higher paths (receiving antennas located at 90 m and above) were not 
affected by diffraction effects. 
 

    
(a)     (b) 

Fig. 16. Spatial distribution of received power loss during sub-refractive condition on the 
path TV Tower Prague – Podebrady calculated by PEM (a), received signal levels measured 
in 5 receivers located in different heights and received signal levels modelled by PEM using 
time dependent vertical gradient of refractivity (b). 

The results shown in Fig. 16b confirm that a very good agreement between PEM simulation 
and measurement can be achieved if the diffraction fading due to sub-refractive conditions 
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(see time about 2:00) is the most important effect influencing the received power. It suggests 
that sub-refractive gradients are likely to be approximately the same along the whole 
propagation path and the approximation of horizontally independent refractivity, which is 
usually applied in PEM, is reasonable in this case. On the other hand, similar conclusion 
cannot be reached when multipath propagation occurs because only slight change in a 
refractivity profile along the propagation path may vary the received power distribution 
profoundly. These facts have to be kept in mind when the simulation results are interpreted.  

6. Conclusion 
Some results of the ongoing studies focussed on the propagation impairments of the 
atmospheric refractivity in the lowest troposphere were presented. Concurrent 
measurements of the vertical distribution of atmospheric refractivity together with the 
multi-receiver microwave propagation experiment were described. A new statistical model 
of vertical refractivity gradient was introduced. The unique joint statistics of ducting layers 
parameters were presented. The application of parabolic equation method was 
demonstrated on the example of a diffraction fading event. Simulated and measured time 
series were compared. A good agreement between simulation and measured data has been 
witnessed. 
Future works in the area of the atmospheric refractivity related propagation effects should, 
for example, investigate the relations between the time evolution of duct parameters and 
multipath propagation characteristics, which is the area where only little is known at this 
moment.  
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(a)     (b) 
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1. Introduction 
Humidity remains in the atmosphere even on bright days. Water of all three states can be 
found naturally in the atmosphere: liquid (rain, fog, and clouds), solid (snowflakes, ice 
crystals), and gas (water vapour). Water in any state is an obstacle in the link of the 
electromagnetic wave. When the wave passes through the water particles, a part of its 
energy is absorbed and a part is scattered. Therefore the electromagnetic wave is attenuated. 
Prediction of the influence of these factors is very important in radio system design. 
Attenuation due to rain, fog, and clouds can lead to the perturbations of the wireless, 
mobile, satellite and other communications. Another problem is the refractive index of the 
atmosphere, which affects the curvature of the electromagnetic wave path and gives some 
insight into the fading phenomenon. The anomalous electromagnetic wave propagation can 
cause disturbances to radar work, because variation of the refractive index of the 
atmosphere can induce loss of radar coverage. Accurate prediction of losses due to these 
factors can ensure a reliability of the radio system, decrease an equipment cost, furthermore, 
the radio systems can become less injurious to health of people. 
When there are no possibilities to gather data for calculations of the specific attenuation due 
to rain, clouds and fog, and atmospheric refractive index, the values recommended by the 
International Communication Union’s Radiocommunication sector (ITU-R) can be used. But 
the recommended values are not always exact. In design of the radio links, the most 
desirable operating frequencies are below 10 GHz, because in such cases atmospheric 
absorption and rainfall loss may generally be neglected (Freeman, 2007). However, in most 
countries, the frequency-band below 10 GHz is highly congested. In addition, high 
frequencies provide larger bandwidth, narrower beam width, good resolution and smaller 
component size (Bhattacharyya et al., 2000). Therefore, the operating frequencies of 10 GHz 
and above are often used in design of radio systems. The higher the operating frequency, the 
greater attenuation due to hydrometeors (rain, cloud, fog, snow, and etc.) is observed 
(Tamošiūnaitė et al., 2010a). 
In (Ishimaru, 1978), it was mentioned that the electromagnetic wave attenuation due to snow 
is less than attenuation due to rain, and that the attenuation due to dry snow may be neglected 
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the recommended values are not always exact. In design of the radio links, the most 
desirable operating frequencies are below 10 GHz, because in such cases atmospheric 
absorption and rainfall loss may generally be neglected (Freeman, 2007). However, in most 
countries, the frequency-band below 10 GHz is highly congested. In addition, high 
frequencies provide larger bandwidth, narrower beam width, good resolution and smaller 
component size (Bhattacharyya et al., 2000). Therefore, the operating frequencies of 10 GHz 
and above are often used in design of radio systems. The higher the operating frequency, the 
greater attenuation due to hydrometeors (rain, cloud, fog, snow, and etc.) is observed 
(Tamošiūnaitė et al., 2010a). 
In (Ishimaru, 1978), it was mentioned that the electromagnetic wave attenuation due to snow 
is less than attenuation due to rain, and that the attenuation due to dry snow may be neglected 
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in microwave band. However, the attenuation due to wet snow is higher. Some results of 
attenuation due to hail are presented in (Ishimaru, 1978). In this chapter, our attention would 
be concentrated on the attenuation due to rain, clouds, and fog. The variation of the radio 
refractivity will be the object of our investigation presented there as well. 

2. Attenuation due to rain 
The electromagnetic wave attenuation due to rain (the rain attenuation) is one of the most 
noticeable components of excess losses, especially at frequencies of 10 GHz and above 
(Freeman, 2007). The methods of prediction of the rain attenuation can be grouped into two 
groups: the physical (exact) models and the empirical models. The physical models attempt 
to reproduce the physical behaviour involved in the attenuation processes while the 
empirical methodologies are based on measurement databases from stations in different 
climatic zones within a given region. The empirical methods are used widely and frequently 
with the best success (Emiliani et al., 2004). Two main causes of attenuation are scattering 
and absorption. When the wavelength is large compared to the size of raindrop, scattering is 
predominant. Conversely, when the wavelength is small compared to the raindrop’s size, 
attenuation due to absorption is predominant (Ivanovs & Serdega 2006). Water molecules 
are dipoles. The raindrop’s dipoles have the same time variation as the electromagnetic 
waves and therefore act as an antenna, which re-radiates the electromagnetic wave energy. 
Hence, a raindrop becomes an “antenna” with low directivity. Consequently, some energy is 
reradiated in arbitrary directions giving a net loss of energy in the direction towards the 
receiver (Ivanovs & Serdega 2006). Water is a loss-making dielectric medium. The relative 
dielectric constant of water is high, compared to the dielectric constant of the surrounding 
air. It depends on temperature and the operating frequency of the radio system. The specific 
heat of the water is high. Therefore, water absorbs a large amount of warmth, while warms 
itself. The surface tension of water is high. This is the reason why the molecules of water are 
holding together. One of the problems in prediction of electromagnetic wave power losses is 
description of shape of the raindrop. It depends on the size of droplet. It is known, that only 
very small droplets are like spheres. Such droplets form in clouds, as water vapour 
condenses on the nuclei of condensation. Further, these droplets grow by coalescence.  
Shape of the raindrops, that are larger than 1 mm in diameter, is no more spherical. They are 
not tear-shaped, as it commonly presented in pictures. The shape of falling large raindrops 
is more like a hamburger shape. Therefore, horizontally polarized waves suffer greater 
attenuation than vertically polarized waves (Freeman, 2007). 
As mentioned above, the water molecules are polar ones. Those molecules rotate in such 
way that positive part of one molecule would be as near as possible to the negative part of 
another molecule. Therefore, molecules are rotating, hammering one on another and heating 
(Tamošiūnaitė et al., 2010a). The water molecule also rotates when a negative charge is 
brought near to it. The fields of electromagnetic wave vary up as time goes and force the 
water molecules to rotate respectively to the variation of fields. 

2.1 Specific rain attenuation 
One of the most widely used rain attenuation prediction methods is an empirical 
relationship between the specific rain attenuation  [dB·km-1] and the rain rate R [mm·h-1] 
(Freeman, 2007, Rec. ITU-R P.838-3, 2005): 
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 baR    (1) 

where a and b are functions of operating frequency f and rain temperature t; the value of R 
[mm·h-1] is for an exceedance of 0.01% of the time for point rainfall rates with an integration 
time of one minute. The coefficients a and b (coefficients ah and bh to be used for horizontal 
polarized waves; coefficients av and bv to be used for vertical polarized waves) are presented 
in (Freeman, 2007; Recommendation ITU-R P.  838-3, 2005). 

2.1.1 Rain rate 
In determination of the rain attenuation, the main parameter is rain rate R, which is 
expressed in [mm·h-1]. Gauges at the surface measure the accumulation of rain–water (flux) 
in a known time interval and report the result as a rain rate (accumulation per unit time) 
averaged over some measurement or aggregation interval (Crane, 1996).  The rain rate can 
be described as the thickness of the precipitation layer, which felled down over the time 
period of one hour in the case when the precipitation is not evaporated, not soaked into the 
soil, and is not blown away by the wind (Tamošiūnaitė et al., 2010a). The evaluation of R–
value is the first step in the rain attenuation prediction. The rain attenuation depends on the 
meteorological conditions in the considered localities. This is the reason to analyze the rain 
attenuation in particular locations (eg. country, city, climatic region). 
First attempts to predict the rain attenuation under Baltic region climate conditions are 
described in (Tamošiūnas et al., 2005, 2006; Ivanovs & Serdega, 2006; Zilinskas et al., 2006, 
2008). It was mentioned in (Ivanovs & Serdega, 2006), that rain events produce 
unavailability of microwave link, which sometimes lead operators to economical losses or 
even license loosing. 
The significant differences in annual, seasonal, monthly, and daily amounts of rainfall are 
observed in localities of Lithuania. The noticeable local differences of rainfall amounts are 
characteristic of Lithuania as well. The precipitation amount is probably the most 
changeable meteorological index on Lithuania’s territory. It varies from 901 mm in Šilalė 
district to 520 mm in Pakruojis district (Bukantis, 2001). No month of a year could be 
described as “an average month” in Lithuania. This is the reason to revise the suitability of 
the models that derived under climatic conditions other than Lithuanian ones. The models 
using only annual amount of rainfall was analyzed in (Tamošiūnas et al., 2005). Considering 
the peculiarities of Lithuania’s climate, the change in (Chebil et al., 1999) model was made. 
This new model for the electromagnetic wave attenuation due to rain medium in 
atmosphere for the first time has been presented in (Tamošiūnas et al., 2006). Calculation of 
radio wave attenuation due to rain using annual precipitation and heavy rainfall data is 
described in (Zilinskas et al., 2006). The heavy rainfall events and showers with 
thunderstorms occur during the warm season (from May to September) in Lithuania.  

2.1.2 Integration time 
As was mentioned above, the R-values are expressed in [mm·h-1]. However, time intervals 
between the readings of rainfall amount in many cases must be much shorter. Those 
intervals are called the integration time τ. In (Ivanovs & Serdega, 2006; Tamošiūnas et al, 
2007; Tamošiūnaitė et al., 2010a) it was mentioned, that the period of time between the 
readings of the rainfall amount values is a very important parameter, because it can 
significantly change the R-value. High R-values “hides” when τ is long. 
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Consider an example. There were raining. The duration of the rain was 5 minutes. The total 
amount of the precipitation was 5 mm. It did not rain during remaining 55 minutes of one 
hour. Thereby, if we would count the average R-value for that hour ( 60  min.), it would 
be equal to 5 mm·h-1. But if we would count the R-value for every minute of that hour, we 
would find that R-values are much higher. Consider that in every of those 5 rainy minutes 
the amount of the precipitation was 1 mm. Consequently, for each of those 5 minutes the R-
value would be 60 mm·h-1. That is why the average R-values are unreliable. 
In Lithuania, the τ values must be as small as possible (Tamošiūnaitė et al., 2010a). 

2.1.3 “One-minute” rain rate 
Almost all rain attenuation methods require “one–minute” rain rate value. The “one-
minute” rain rate value R(1 min.) is expressed in [mm·h-1]. R(1 min.)-value can be defined as the 
R–value for 0.01% of time of the year, obtained using the rainfall amount value, which was 
measured in 1   min and multiplied by 60 (Karasawa & Matsudo, 1991). 
However, in many instances data collection is oriented toward agricultural and hydrological 
purposes, for which annual, monthly, daily, and less commonly, 3– and 6–hourly totals are 
collected. Therefore the models for conversion of R( min.)-values into R(1 min.)-values are used. 
A review of models for estimation of 1 min rainfall rates for microwave attenuation 
calculations are presented in (Tattelman & Grantham, 1985). 
One of such conversion models was presented in (Moupfouma &Martin, 1995): 

 (1 min.) (  min.)( )dR R   (2) 

 0.0610.987d   (3) 

where (1 min.)R  is the “one-minute“ rain rate value, (  min.)R   is the rain rate value measured 
in   minutes ( 1   min.). 
In (Zilinskas et al, 2008) another model (4) for calculation of the (1 min.)R -value was 
presented. That model was derived on the basis of model presented in (Rice & Holmberg, 
1973) in accordance with the peculiarities of Lithuanian climate. 

 (1 min.)

ln 0.0144

0.03

V IXM
tR

 
 
   (4) 

where V IXM   is amount of rainfall which precipitated in May-September, t is the number of 
hours in a year when the value of rain rate could be equal or exceed the (1 min.)R -value. 
According to data that was collected in Lithuanian weather stations and (4) formula, the 
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model is a supplement of the “One-minute” models, which were explained above. In “One-
minute” models a lot of precipitation data must be collected and calculated. Furthermore, 
majority of those models are appropriate only in cases when the reliability of the radio wave 
system must be equal 99.99%. The main advantage of the “Worst-month” model is that only 
the worst-month statistics must be collected. Furthermore, the “Worst-month” model is 
appropriate in cases when the required reliability of the radio system is other than 99.99%. 
The worst-month is the month (or 30 days period) from a year (or twelve consecutive 
calendar months), during which the threshold is exceeded for the longest time. This month 
is not necessarily the same month in different year. The fraction of time when the threshold 
value of rain rate (so, and rain attenuation value) was exceeded is identical to probability 
that the threshold value of rain rate would be exceeded (Crane, 1996). 
The average annual worst-month time percentage of excess, pm, is proportional to the 
average annual time percentage of excess, p, in such relation: 
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where Q is the conversion factor; pm [%] and p [%] must refer to the same threshold levels 
(the same rain rate value). 
The conversion factor Q is a two-parameters (Q1, β) function of p. In most cases a high 
reliability of the radio system is required ( 3p  %). Then Q can be expressed as (Rec. ITU-R 
P.481-4, 2005): 
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Consider an example. There were raining. The duration of the rain was 5 minutes. The total 
amount of the precipitation was 5 mm. It did not rain during remaining 55 minutes of one 
hour. Thereby, if we would count the average R-value for that hour ( 60  min.), it would 
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value would be 60 mm·h-1. That is why the average R-values are unreliable. 
In Lithuania, the τ values must be as small as possible (Tamošiūnaitė et al., 2010a). 

2.1.3 “One-minute” rain rate 
Almost all rain attenuation methods require “one–minute” rain rate value. The “one-
minute” rain rate value R(1 min.) is expressed in [mm·h-1]. R(1 min.)-value can be defined as the 
R–value for 0.01% of time of the year, obtained using the rainfall amount value, which was 
measured in 1   min and multiplied by 60 (Karasawa & Matsudo, 1991). 
However, in many instances data collection is oriented toward agricultural and hydrological 
purposes, for which annual, monthly, daily, and less commonly, 3– and 6–hourly totals are 
collected. Therefore the models for conversion of R( min.)-values into R(1 min.)-values are used. 
A review of models for estimation of 1 min rainfall rates for microwave attenuation 
calculations are presented in (Tattelman & Grantham, 1985). 
One of such conversion models was presented in (Moupfouma &Martin, 1995): 

 (1 min.) (  min.)( )dR R   (2) 

 0.0610.987d   (3) 

where (1 min.)R  is the “one-minute“ rain rate value, (  min.)R   is the rain rate value measured 
in   minutes ( 1   min.). 
In (Zilinskas et al, 2008) another model (4) for calculation of the (1 min.)R -value was 
presented. That model was derived on the basis of model presented in (Rice & Holmberg, 
1973) in accordance with the peculiarities of Lithuanian climate. 

 (1 min.)

ln 0.0144

0.03

V IXM
tR

 
 
   (4) 

where V IXM   is amount of rainfall which precipitated in May-September, t is the number of 
hours in a year when the value of rain rate could be equal or exceed the (1 min.)R -value. 
According to data that was collected in Lithuanian weather stations and (4) formula, the 
average (1 min.)R -value for Lithuanian territory was calculated. That value is 60.23 mm·h-1. 
This value is double the value, which is suggested by ITU-R (Tamošiūnaitė et al., 2010a). 
According to (1) formula, the values of coefficients a and b (presented in Freeman, 2007), and 
the value of (1 min.)R = 60.23 mm·h-1, the dependency of the average specific electromagnetic 

wave attenuation due to rain,  on the operating frequency f was estimated. The results are 
shown in Fig. 1. 

 
Atmospheric Attenuation due to Humidity 

 

161 

 
Fig. 1. The dependency of the average specific electromagnetic wave attenuation due to rain 
 on the operating frequency f, in Lithuania. 

2.1.4 Worst month statistics 
The “Worst-month” model was proposed by ITU-R in (Rec. ITU-R P.481-4, 2005). This 
model is a supplement of the “One-minute” models, which were explained above. In “One-
minute” models a lot of precipitation data must be collected and calculated. Furthermore, 
majority of those models are appropriate only in cases when the reliability of the radio wave 
system must be equal 99.99%. The main advantage of the “Worst-month” model is that only 
the worst-month statistics must be collected. Furthermore, the “Worst-month” model is 
appropriate in cases when the required reliability of the radio system is other than 99.99%. 
The worst-month is the month (or 30 days period) from a year (or twelve consecutive 
calendar months), during which the threshold is exceeded for the longest time. This month 
is not necessarily the same month in different year. The fraction of time when the threshold 
value of rain rate (so, and rain attenuation value) was exceeded is identical to probability 
that the threshold value of rain rate would be exceeded (Crane, 1996). 
The average annual worst-month time percentage of excess, pm, is proportional to the 
average annual time percentage of excess, p, in such relation: 

 mp Qp   (5) 

where Q is the conversion factor; pm [%] and p [%] must refer to the same threshold levels 
(the same rain rate value). 
The conversion factor Q is a two-parameters (Q1, β) function of p. In most cases a high 
reliability of the radio system is required ( 3p  %). Then Q can be expressed as (Rec. ITU-R 
P.481-4, 2005): 

 1Q Q p   (6) 



 
Electromagnetic Waves 

 

162 

For global planning purposes the following values of the parameters Q1 and β may be used: 
1 2.85Q   and 0.13   (Rec. ITU-R P.481-4, 2005). 

For global rain rate applications, the following values for the parameters Q1 and β should be 
used: 1 2.82Q   and 0.15  , for tropical, subtropical and temperate climate regions with 
frequent rain; 1 4.48Q   and 0.11  , for dry temperate, polar and desert regions. Yet ITU-
R recommends that more precise values of Q1 and β should be used where possible. 
Since 
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According to (2), (3) and annual data, the relation between p  and (1 min.)R  can be found. 
This relation could be compared to the relation calculated according to (8) and ITU-R 
suggested Q1 and  values. According to Lithuanian climate, the values 1 2.82Q   and 

0.15   should be appropriate. 
For example, we evaluated the “Worst-month” model in Vilnius, the capital of Lithuania. 
The results are shown in Fig. 2. As can be seen, the values 1 2.82Q   and 0.15   are  
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Fig. 2. The correlation between the real, calculated and corrected values of p (in Vilnius). 
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appropriate only in cases when (1 min.) 38R   mm·h-1. When (1 min.) 38R   mm·h-1, the 
calculated values are apparently distant from the real values. Therefore, the values of Q1 and 
β must be corrected. The best correlation is when in (6) there are 0.5q   and 1.03  . 
Consequently, the corrected Q1 and β values should be 1 2Q   and 0.03  . But still, as can 
be seen in Fig. 2, the corrected values are only correct when (1 min.) 30R  mm·h-1. 
Furthermore, when (1 min.) 34R   mm·h-1, the values 1 2.82Q   and 0.15   are more 
proper than 1 2Q   and 0.03  . As a result, in cases when (1 min.) 34R  , the values 1 2Q   
and 0.03   should be used, and in cases when (1 min.) 34R   mm·h-1, the ITU-R suggested 
values 1 2.82Q   and 0.15   may be used. 

3. Attenuation due to clouds 
The effect of rain attenuation is greater than that of clouds in many cases, but clouds occur 
more often than rain. In clouds, water droplets are generally less than 0.01 cm in diameter 
(Freeman, 2007). In (Altshuler & Mart, 1989), it was mentioned that cloud attenuation was 
primarily due to absorption by the cloud droplets, and scattering losses were secondary. 
With increase in operating frequency the attenuation due to clouds also increases, but as the 
temperature of the clouds decreases the attenuation value increases (Sarkar et. al., 2005). 
On average, the clouds cover more than 50% of the territory of Lithuania. According to the 
data of its weather stations, November and December are the cloudiest months. The clearest 
sky is in May and June. There are about 100 overcast days in the year. 

3.1 Liquid water content 
The liquid water content M is one of the most important parameters of the clouds. M 
describes the mass of water drops in the volume units of the cloud. It has been mentioned in 
(Freeman, 2007) that the specific cloud attenuation C  [dB/km] is a function of the liquid 
water content M [g/m3], the frequency f, and the temperature within the cloud T. The 
measurements of M at a point in space or averaged over a radio wave path are very 
complicated. Direct methods for measuring M consists of extracting a known volume 
through a cotton pad or of rotating cups in an impeller apparatus, both to be weighed; also, 
resistance changes can be measured with a hot wire probe attached to an aircraft flying 
through clouds (Liebe et al., 1989). The liquid water content in the cloud varies in a wide 
range. In most of the cloud attenuation models, it is required to know the value of M. 
The climate conditions (humidity, temperature, etc.) and cloud morphology are different 
over various localities of several regions; accordingly, the liquid water contents differ within 
the clouds as well. This factor must be considered when analyzing rain attenuation and 
cloud attenuation. Our first attempt to determine the specific cloud attenuation under the 
Lithuanian climatic conditions is presented in (Tamošiūnaitė et al., 2008; Zilinskas et al., 
2008). The humid weather predominates over the year in Lithuania.  

3.2 Calculation of the specific cloud attenuation 
The specific cloud attenuation is a function of clouds’ liquid water content and a coefficient, 
which is a function of frequency and temperature. In this case, the main problem is the value 
of clouds’ water content, because the direct measurements at a point in space are 
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appropriate only in cases when (1 min.) 38R   mm·h-1. When (1 min.) 38R   mm·h-1, the 
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proper than 1 2Q   and 0.03  . As a result, in cases when (1 min.) 34R  , the values 1 2Q   
and 0.03   should be used, and in cases when (1 min.) 34R   mm·h-1, the ITU-R suggested 
values 1 2.82Q   and 0.15   may be used. 
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The effect of rain attenuation is greater than that of clouds in many cases, but clouds occur 
more often than rain. In clouds, water droplets are generally less than 0.01 cm in diameter 
(Freeman, 2007). In (Altshuler & Mart, 1989), it was mentioned that cloud attenuation was 
primarily due to absorption by the cloud droplets, and scattering losses were secondary. 
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On average, the clouds cover more than 50% of the territory of Lithuania. According to the 
data of its weather stations, November and December are the cloudiest months. The clearest 
sky is in May and June. There are about 100 overcast days in the year. 
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The specific cloud attenuation is a function of clouds’ liquid water content and a coefficient, 
which is a function of frequency and temperature. In this case, the main problem is the value 
of clouds’ water content, because the direct measurements at a point in space are 
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problematic. In cases when such data is unavailable, models that require only the 
meteorological parameters, measured at ground level, can be used. These models are based 
on the fact that the condensation is possible when the water vapour concentration exceeds 
the saturation density at the temperature, which is prevailing at that height. The water 
vapour density can be estimated from the humidity measurements carried out at ground 
level. The cloud’s water content value can be estimated as the difference between water 
vapour concentration and saturation density at cloud temperature. The specific cloud 
attenuation is, unlike the case of rain, independent of drop–size distribution (Freeman, 
2007). Several cloud attenuation models were developed. In (Freeman, 2007), the specific 
cloud attenuation was expressed as the function of liquid water content M: 

 C CK M   (10) 

where KC is the attenuation constant. 
The attenuation constant KC is the function of frequency f and temperature T. The values of 
KC for pure water droplets are presented in (Freeman, 2007). The values of KC for salt-water 
droplets (over the sea and ocean surfaces) are higher. The necessity to know M value is 
limiting the direct use of relationship (10).  
Often there are no possibility to measure the liquid water content and temperature within 
the clouds. In such cases the methods that require only meteorological parameters measured 
at the ground level may be used. The basic idea of such models (Dintelmann &Ortgies, 1989) 
is that the water vapour in the atmosphere would lead to the formation of clouds whenever 
there would be a possibility for condensation at some height h above ground level. There is 
also mentioned that the condensation is possible when the water vapour density ρ exceeds 
the saturation density ρs at temperature T prevailing at that height. It is assumed that the 
water vapour density  can be estimated from humidity measurements carried out at 
ground level. 
The height at which cloud exists is very important for accurate determination of results of 
attenuation due to clouds (Sarkar et al., 2005). It was assumed in (Ito, 1989, as cited in 
Dintelmann &Ortgies, 1989) that clouds are created starting in the vicinity of the height h, 
and h [km] follows ground temperature T0 [K] as: 

 00.89 0.165( 273)h T   .  (11) 

Relation (11) is based on analysis of temperature profiles in rain and on the Aerological Data 
of Japan and we have specified the applicability of this relation in the territory of Lithuania. 
The condensed water content M is estimated as the difference between ρ and saturation 
density ρs at cloud temperature (Dintelmann & Ortgies, 1989): 

 sM     (12) 

where ρs [g/m3] is the saturated vapour density. 
It is assumed that clouds are formed when M >0. As mentioned above, the determination of 
the water content value M is complicated. Its values differ in each group of the clouds (the 
clouds are grouped according to their shape, height, and structure). In our calculations, the 
main problem was determination of M. According to (Dintelmann & Ortgies, 1989), the 
values of water vapour density ρ at the height h can be estimated from the equation of state, 
assuming an adiabatic process: 
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where ρ0 is the water vapour density at the ground level, T0 is the ground level temperature, 
T is the absolute temperature in the vicinity of h, denotes the specific heat ratio which is 4/3 
for the water vapour molecule, μ is the water molar mass, g is the acceleration due to 
gravity, h is the height, and R is the fundamental gas constant. The values of ρ0 can be 
determined by using known relations (Freeman, 2007). 
We assume that the clouds are created starting in the vicinity of the height h. We determine 
the values of h by using relation (11) or the data of the dew point temperature, temperature 
at the ground level, and the temperature gradient of 6.5C/km (Rec. ITU-R P. P.835-3, 2004).  
The values of h obtained here we compared to the cloud base height values measured at the 
weather stations (see Table 1). The analysis of the cloud cover over the localities of Lithuania 
data shows that the relationship (11) can be used only in the cases when the middle or high 
clouds are formed over those localities. 
 

T0 [K] 
Cloud base height 
(data of weather 

stations) 

Cloud base height 
(equation 11) 

280.1 0.6-1.0 2.06 
280.1 2.0-2.5 2.06 
280.4 2.0-2.5 2.11 
281.5 2.0-2.5 2.29 
281.6 2.0-2.5 2.31 
282.6 2.0-2.5 2.47 
284.4 2.0-2.5 2.77 

Table 1. Temperature at the ground level and the values of the cloud base heights (data of 
weather station) in Vilnius in April 2007, as well as the height h determined using equation 
(8) (Tamošiūnaitė et al., 2008). 

4. Attenuation due to fog 
The influence of the fog on the attenuation of the electromagnetic waves can to lead to the 
perturbation of the wireless communication. In (Chen et al., 2004), it was mentioned that fog 
may be one of dominant factors in determination of the reliability of millimeter wave 
systems, especially in coastal areas, where dense moist fog with high liquid water content 
happen frequently. Fog results from the condensation of atmospheric water vapour into 
water droplets that remain suspended in air (Freeman, 2007). Moist fog frequently appears 
over the localities of Lithuania (Tamosiunas et al., 2009). There are several meteorological 
mechanisms for determination whether fog will form and of degree of its intensity. The 
physical mechanism of the formation of the fog can be reduced to three processes: cooling, 
moistening, and vertical mixing of air parcels with different temperatures and humidity 
(Duynkerke et al., 1991). All three processes can occur, although one meteorological 
mechanism may dominate. This circumstance leads to the different types of the fog. In 
(Galati et. al., 2006), the fog is classified in four types: strong advection fog, light advection 
fog, strong radiation fog, and light radiation fog. 
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The calculation methods for determination of fog attenuation are used in many cases. The 
propagation properties for microwave and millimeter–wave frequencies at the foggy air 
conditions were examined in (Liebe et. al, 1989). The values of the specific attenuation were 
derived from a complex refractivity based on the Rayleigh absorption approximation of 
Mie’s scattering theory. In (Liebe et. al, 1989), the particle mass content and permittivity, 
which depends on the frequency and the temperature, were key variables. Attenuation due 
to fog is a complex function of the particle size distribution, density, extent, index of 
refraction, and wavelength (Altshuler, 1984). Normalized fog attenuation directly, given 
only the wavelength and fog temperature is presented in (Altshuler, 1984): 

 0
181.347 0.0372 0.022A T


       (14) 

where A is attenuation in [(dB/km)/(g/m3)], λ is wavelength in [mm], t is temperature in 
[°C]; the relation (14) is valid only for 3 mm< λ <3 cm and –8°C< T < 25°C. 
It was mentioned in (Altshuler, 1984], that the total fog attenuation could be obtained by 
multiplying the normalized attenuation by the fog density in [g/m3] and the fog extent in 
[km]. In (Zhao &Wu, 2000), it was mentioned that fog is often characterized by the visibility 
and the visibility is defined as the greatest distance at which it is just possible for an 
observer to see a prominent dark object against the sky at the horizon.  
Attenuation due to fog can be expressed in terms of the water content M, and the 
microstructure of the fog can be ignored (Galati et al., 2000). In (Altshuler, 1984), the 
empirical formula for fog visibility as a function of fog density was derived: 

 0.650.024V M   (15) 

where V is the visibility in [km] and M is the liquid water content in [g/m3]. 
It was mentioned in (Altshuler, 1984), that the empirical formula (15) is valid for drop 
diameter between 0.3 μm and 10 μm. For the case of dense haze or other special type fogs, it 
is recommended to replace the coefficient 0.024 with 0.017 (Altshuler, 1984). If the visibility 
data are available, but the fog density data are not available, the following expression may 
be used (Altshuler, 1984): 

 

1.540.024M
V

   
 

 (16) 

In (Chen et al., 2004; Galati et al., 2006; Recommendation ITU-R PN 840-4, 2009), based on 
the Rayleigh approximation, the specific attenuation due to the fog fog has been written 
as: 

 fog KM  [dB/km],  (17) 

where K is specific attenuation coefficient. 

 
4 27.8087 0.01565 3.0730 104 1.89636.0826 10 f fK f 
       (18) 

where θ =300/T, f is frequency,  and T is temperature [K]. 
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V, km M, g/m3 
0.1 0.111 
0.2 0.038 
0.3 0.020 
0.5 0.010 
1.0 0.003 

Table 2. The values of visibility V measured in the localities of Lithuania and the values of 
fog water content M (Tamosiunas et al., 2009). 

The values of the visibility measured in the localities of Lithuania and the values of fog 
water content M determined using (16) are presented in Table 2. The highest value of the 
specific fog attenuation determined using M-data presented in Table 2 was 0.59 dB/km. 
In (Naveen Kumar Chaudhary et al., 2011), it was concluded, that the link reliability can be 
improved by increasing the transmission power or using high gain directional antennas in 
the cases when the foggy conditions occur and the visibility is less than 500 meters. For the 
same value of visibility, the fog attenuation decreases when the temperature increases 
(Naveen Kumar Chaudhary et al., 2011). 

5. Radio refractive index and its variability 
The atmospheric refractive index is the ratio of the velocity of propagating electromagnetic 
wave in free space and its velocity in a specific medium (Freeman, 2007). The value of the 
atmosphere’s refractive index is very close to the unit. Furthermore, changes of the 
refractive index value are very small in time and space. In the aim to make those changes 
more noticeable, the term of refractivity is used. It is a function of temperature, atmospheric 
pressure and partial vapour pressure. The value of the refractivity is about million times 
greater than the value of refractive index. 
In design of the radio communication networks, it is important to know the atmospheric 
radio refractive index. The path of a radio ray becomes curved when the radio wave 
propagates through the Earth’s atmosphere due to the variations in the atmospheric 
refractivity index along its trajectory (Freeman, 2007). Refractivity of the atmosphere affects 
not only the curvature of the radio ray path but also gives some insight into the fading 
phenomenon. The anomalous electromagnetic wave propagation can be a problem for 
radars because the variation of the refractive index can induce loss of radar coverage 
(Norland, 2006). In practice, the propagation conditions are more complicated in 
comparison with the conditions predictable in design of radio system in most cases. 
The anomalous propagation is due to the variations of the humidity, temperature and 
pressure at the atmosphere that cause variations in the refractive index (Norland, 2006). The 
climatic conditions are very changeable and unstable in Lithuania (Pankauskas & Bukantis, 
2006). The territory of Lithuania belongs to the area where there is the excess of moisture. 
The relative humidity is about 70% in spring and summer while in winter it is as high as 85 
– 90% (Bagdonas & Karalevičienė, 1987). Lithuanian climate is also characterized by large 
temperature fluctuations. Difference between the warmest and coldest months is 21.8°C 
(Pankauskas & Bukantis, 2006). It was noted in (Priestley & Hill, 1985; Kablak, 2007) that 
even small changes of temperature, humidity and partial water vapour pressure lead to 
changes in the atmospheric refractive index. In (Zilinskas et al., 2008), the measurements of 
these meteorological parameters were analyzed in the different time of year and different 
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2006). The territory of Lithuania belongs to the area where there is the excess of moisture. 
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even small changes of temperature, humidity and partial water vapour pressure lead to 
changes in the atmospheric refractive index. In (Zilinskas et al., 2008), the measurements of 
these meteorological parameters were analyzed in the different time of year and different 
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time of day. The values of the refractive index have been determined by using measured 
meteorological data. In (Žilinskas et al., 2010), it was mentioned that seasonal variation of 
refractivity gradient could cause microwave systems unavailability.  

5.1 Calculation of radio refractivity 
As mentioned above, the value of the radio refractive index, n, is very close to the unit and 
changes in this value are very small in the time and in the space. With the aim to make those 
changes more noticeable, the term of radio refractivity, N, is used (Freeman, 2007; Rec. ITU-
R P. 453-9, 2003): 

 
6( 1) 10N n   .  (20) 

According to the recommendation of ITU –R (Rec. ITU-R P. 453-9, 2003): 
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where T [K] is a temperature; p [hPa] is the atmospheric pressure; e [hPa] is partial water 
vapour pressure. The refractivity is expressed in N – units. 
It was mentioned in (Freeman, 2007; Rec. ITU-R P. 453-9, 2003), that expression (21) may be 
used for all radio frequencies; for frequencies up to 100 GHz, the error is less than 0.5%. 
There are two terms (the “dry term” and the “wet term”) in relationship (21). 
The values of the refractivity N in Lithuania were determined by using (21). The data of 
temperature, humidity, and atmospheric pressure were taken from a meteorological data 
website (http://rp5.ru). 
 

 
Fig. 3. The dependences of average N– values on the time of day in cities of Lithuania: 
Vilnius (curve 1), Mažeikiai (curve 2), Kaunas (curve 3), and Klaipėda (curve 4) in July 2008 
(Valma, et al., 2010). 

The dependences of average N–values on the time of day in cities of Lithuania are presented 
in Fig. 3. As can be seen, the behaviours of those dependences at the diurnal time are similar 
in all localities that are situated in the Continental part of Lithuania (Vilnius, Kaunas and 
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Mažeikiai) and slightly different in Seacoast (Klaipėda). The climate of Klaipėda is moderate 
and warm (Pankauskas &Bukantis, 2006; Zilinskas et al., 2008). The climate of Continental 
part of Lithuania is typical climate of the middle part of the Eastern Europe. This may 
explain the difference between the daily variations of N in Klaipėda and in other localities 
analyzed here. In Lithuania, the highest N-values were in July. 

6. Conclusions 
The main models for calculation of electromagnetic wave attenuation due to atmosphere 
humidity were revised. In Lithuania, when the reliability of the radio system of 99,99% is 
required, the (1 min.)R -value is (1 min.) 60.23R  mm/h. It is twice the ITU-R recommended 
value. The dependency of the average specific electromagnetic wave attenuation due to rain 
on the operating frequency (0-100 GHz) was determined. The attenuation of horizontally 
polarized electromagnetic waves is greater than the attenuation of vertically polarized 
electromagnetic waves. In cases when the required reliability of the radio system is other 
than 99,99%, the “Worst-month” model can be used. However, for small (1 min.)R -values the 
parameters of that model should be corrected. In Vilnius, the city of Lithuania, when 

(1 min.) 34R  mm/h, ITU-R recommended values 1 2.82Q   and 0.15   could be used. In 
cases when (1 min.) 34R  mm/h, the corrected values 1 2Q   and 0.03   are more 
appropriate.  
The main problem of models for calculation of electromagnetic wave attenuation due to 
clouds and fog is the required value of liquid water content. In Lithuania it is impossible to 
gather such meteorological information. Therefore, models excluding or calculating the 
liquid water content were revised.  The variations of the atmospheric humidity, temperature 
and pressure can cause the fluctuations of the atmospheric refractive index. In Lithuania, the 
atmosphere refractive index fluctuates most in July. The variations of N in diurnal time are 
similar in all localities that are situated in the Continental part of Lithuania and slightly 
different in Seacoast.  
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1. Introduction 
The majority of natural materials (rocks, soil, wood, etc.) are inhomogeneous and have a 
complex structure. Very often they are conglomerates or aggregates, i.e. made of small 
grains stuck together.  This is especially typical for planetary aerosols and all types of 
cosmic dust (interstellar, circumstellar, interplanetary, cometary, etc.).  Cosmic dust, 
specifically, cometary will be the main test object for this paper. This is related to the fact 
that cosmic dust is usually studied through remote sensing, specifically through the study of 
electromagnetic waves it scatters and emits. Due to this, the field of light scattering by 
cosmic dust has always been at the frontier of the study of interaction of electromagnetic 
waves with non-spherical and inhomogeneous particles. It has inspired publication of the 
scholarly books by van de Hulst (1957), Schuerman (1980), Kokhanovsky (2001), Hovenier et 
al.  (2004), Voshchinnikov (2004), Borghese et al. (2010), and Mishchenko et al. (2000, 2002, 
2010) and numerous book chapters, e.g., Mukai (1989), Lien (1991), Gustafson (1999), 
Gustafson et al. (2001), Kolokolova et al. (2004a, b).   
To consider the scattering of electromagnetic waves by an object of complex structure, we 
will determine this object as a configuration of discrete finite constituents. They will be 
called inclusions in the case of inhomogeneous particles, or monomers in the case when they 
are constituent particles of an aggregate. Their volume is large enough that we may ignore 
their atomic structure and characterize their material by a specified complex refractive 
index, m=n+iκ, whose real part is responsible for the refraction and imaginary part for the 
absorption of the light by the material.  The surrounding medium is assumed to be 
homogeneous, linear, isotropic, and, in the case of aggregates, non-absorbing. Although we 
discuss some approximations, our consideration is based on the Maxwell equations fully 
describing the interaction of the electromagnetic radiation with the material. The non-linear 
optical effects, non-elastic scattering, quickly-changing illumination and morphology of the 
scattering object are beyond the scope of our study. 
As mentioned above, our test example will be cosmic dust that typically can be presented as 
aggregates of submicron monomers. In the optical wavelengths they are good 
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representatives of inhomogeneous particles with inclusions of size comparable with the 
wavelength, more exactly of size parameter x=2πa/λ> 1 where a is the radius of the 
monomers and λ is the wavelength.   The main light scattering characteristics that we use in 
our consideration are intensity (the first Stokes parameter, I) and linear polarization, P. The 
latter we describe as P=Q/I where Q is the second Stokes parameter; P>0 when the scattering 
plane is perpendicular to the polarization plane and P<0 when the scattering plane coincides 
with the polarization plane. We ignore the third Stokes parameter U since in the vast 
majority of the observational data the third Stokes parameter is equal to zero.  We mainly 
consider how electromagnetic scattering affects phase curves, i.e. dependences of I and P on 
the phase angle, α, i.e. the angle source-scatterer-observer. It is related to the scattering angle 
as 180º- α.  The phase curves typical for cosmic dust are presented in Fig. 1.1. Their major 
features that we will discuss later are forward and back scattering enhancements in the 
intensity phase curve and negative polarization at small phase angles. In Section 5 we also 
briefly consider spectral dependence of the intensity and polarization and circular 
polarization defined as V/I where V is the fourth Stokes parameter. All the ideas considered 
below can be easily extended to the case of other complex particles or media with 
inhomogeneities characterized by x>1.   
 

 
Fig. 1.1. Typical phase curves of intensity (left) and polarization (right) for cosmic dust. 
Intensity is normalized to the value at 180º. Notice forward and back scattering 
enhancements in the intensity curve and a negative polarization branch in the polarization 
curve at small phase angles. 

In Sections 2-4 we consider main interactions between constituents of a complex particle 
and describe the conditions and consequences of these interactions. The focus of our 
consideration is how the electromagnetic interactions change as the constituents (e.g. 
monomers in aggregates) become more closely packed.  In Section 5 we discuss the results 
of rigorous computer simulations of the electromagnetic interactions.  The simulations are 
illustrated by the results of computer modeling of light scattering by aggregates. For the 
modeling, we use the T-matrix approach for clusters of spheres by Mackowski & 
Mishchenko (1996) that, being a rigorous solution of the Maxwell equations, allows us to 
account for all physical phenomena that occur at the light scattering by aggregates of 
small particles, including far-field and near-field effects, and diffuse and coherent 
scattering. 
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2. Electrostatic approximation: Effective medium theories 
An extreme case of electromagnetic interaction between constituents of a complex particle 
occurs when this interaction can be considered in the electrostatic approximation. This 
consideration works when a complex particle can be represented as a matrix material that 
contains inclusions and both the size of the inclusions and distances between them are much 
smaller than the wavelength.  This approach implies that the inhomogeneous particle is 
much larger than the inclusions and can be considered as a medium. Such a medium can be 
presented as homogeneous and characterized by some “effective” refractive index whose 
value can be found if refractive indexes of the matrix and inclusion materials are known. 
Such an approach to the complex particles (or media) is called mixing rules or effective 
medium theories. After the effective refractive index is found, it can be used to model the 
material of the particle whose size and shape correspond to the macroscopic particle and 
then consider scattering of radiation by such a macroscopic particle as if it is homogeneous. 
Numerous mixing rules have been developed for a variety of inclusion types (non-Rayleigh, 
non-spherical, layered, anisotropic, chiral) and their distribution within the medium 
including aligned inclusions and fractal structures (see, e.g., Bohren  & Huffman, 1983; 
Sihvola, 1999; Choy, 1999; Chylek et al., 2000). However, still the most popular remain the 
simplest Maxwell Garnett (1904) and Bruggeman (1935) mixing rules. The Maxwell Garnett 
rule represents the medium as inclusions embedded into the matrix material and the result 
depends upon which material is chosen as the matrix. The Bruggeman rule was obtained for 
a conglomerate of particles made of materials with the refractive indexes of inclusions and 
matrix embedded into the material with the effective refractive index.  This formula is 
symmetric with respect to the interchange of materials and can be easily generalized for the 
n-component medium.  
As we mentioned above, the derivation of the mixing rules is based on an assumption that 
the external field is an electrostatic one, which requires the inclusions to be much smaller 
than the wavelength of electromagnetic wave. More exactly, the criterion of the validity of 
effective medium theories is xRe(m)<<1 (Chylek et al., 2000) where x is the size parameter of 
inclusions and Re(m) is the real part of the refractive index for the matrix material. 
Comparison of effective medium theories with more rigorous calculations, e.g. those that 
use Discrete Dipole Approximation, DDA (Lumme & Rahola, 1994; Wolff et al., 1998; 
Voshchinnikov et al., 2007; Shen et al., 2008), and experiments (Kolokolova & Gustafson, 
2001) show that even for xRe(m) ~1 effective medium theories provide reasonable results. 
The best accuracy can be obtained for cross sections and the worst for polarization, 
especially at phase angles smaller than 50° and larger than 120°. 
There were a number of attempts to consider heterogeneous grains using effective-medium 
theories, particularly to treat cosmic aggregates as a mixture of constituent particles 
(inclusions) and voids (matrix material) (e.g. Greenberg & Hage, 1990; Mukai et al., 1992; Li 
& Greenberg, 1998b; Voshchinnikov et al., 2005, 2006). In the visual these aggregates with 
the monomer size parameter of x >1 are, most likely, out of the range of the validity of the 
effective medium theories. However, for the thermal infrared, cosmic aggregates can be 
treated with the effective medium theories if they are sufficiently large; remember, that the 
macroscopic particle should be large enough to allow considering it as a medium.  
If the distance between inclusions becomes larger than the wavelength, the electrostatic 
approximation should be replaced by the far-field light scattering (see Section 3).   If the 
inclusions or monomers in aggregates become comparable or larger than the wavelength i.e. 
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the criterion xRe(m)<1  is violated, cooperative effects in electromagnetic interaction between 
the inhomogeneities become dominating. To account for them one needs to consider 
rigorously the interaction of electromagnetic waves that occurs in such complex objects 
counting on the near-field effects (Section 4). 

3. Far-field light scattering 
The fundamental solution of the Maxwell equations as a harmonic plane wave describes the 
energy transfer from one point to another. The plane electromagnetic wave propagates in 
the infinite nonabsorbing medium with no change in intensity and polarization state.  The 
presence of a finite scattering object results in modification of the field of the incident wave; 
this modification is called the electromagnetic scattering.  
If the scattering object (e.g., particle) is located from the observer at such a distance that the 
scattered field becomes a simple spherical wave with amplitude decreasing in inverse 
proportion to the distance to the scattering object, the equations describing the scattered 
field become much simpler. This is the so-called far-field approximation. There are several 
criteria of this approximation (e.g., Mishchenko et al., 2006, Ch. 3.2): 2π(R-a)/λ >>1, R>>a, 
and R>>πa2/λ, where R is the distance between the object and the observer and a is the 
radius of the object. The first relation means that the distance from any point inside the 
object to the observer must be much larger than the wavelength. Then, the field produced by 
any differential volume of the object (the so-called partial field) becomes an outgoing 
spherical wave. The second relation requires the observer to be at a distance from the object 
much larger than the object size. Then, the spherical partial waves coming to the observer 
propagate almost in the same direction. The third relation can be interpreted as a 
requirement that the observer is sufficiently far from the scatterer so that the constant-phase 
surfaces of the waves generated by differential volumes of the scattering object locally 
coincide in the observation point and form an outgoing spherical wave. 
If the scattering object is an ensemble of particles, it is convenient to present the total 
scattered field as a vector superposition of the fields scattered by individual particles and, 
thus, to introduce the concept of multiple scattering. It is worth noting that at multiple 
scattering the mutual electromagnetic excitations occur simultaneously and are not 
temporally discrete and ordered events (Mishchenko et al., 2010). However, the concept of 
multiple scattering is a useful mathematical abstraction facilitating, in particular, the 
derivation of such important theories as the microphysical theories of radiative transfer and 
coherent backscattering (see below). 
In some cases the scattering by a complex object can be considered in the far-field 
approximation that substantially simplifies the equations that describe the scattering. The 
conditions for this are the following:  (1) the constituent scatterers of the complex object are 
far from each other to allow each constituent to be in the far-field zone of the others, and (2) 
the observer is located in the far fields of all of the constituent scatterers. Natural examples 
of such objects are atmospheric clouds and aerosols.  

3.1 Diffuse light scattering 
The properties of the light that is scattered by an ensemble of scatterers (e.g., small particles) 
only once are fully determined by the properties of the constituents. If the particles are 
much smaller than the wavelength, they scatter light in the Rayleigh regime and produce 
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symmetric photometric phase function with the minimum at 90° and also symmetric, bell-
shaped, polarization phase function with the maximum at 90°. For larger particles, the phase 
curves demonstrate a resonant structure with several, or even numerous, minima and 
maxima in both intensity and polarization depending on the size parameter of particles and 
the refractive index. Nowadays, the single scattering properties can be reliably calculated for 
particles of various types (e.g., Mishchenko et al., 2002). 
If a complex object can be presented as a cluster of sparsely distributed particles, i.e. the far-
field requirements are satisfied, the intensity of light scattered by the object is proportional 
to the number of constituents, N. While the number N and the packing density are 
increasing, the effects of mutual shadowing, multiple scattering, interference, and the 
interaction in the near field may destroy this dependence.  
The evolution of the scattering characteristics of a cluster of separated particles with 
increasing number of the constituent partciels can be illustrated with the results of model 
calculations preformed with the T-matrix method for randomly oriented clusters of spheres 
(Mackowski & Mishchenko, 1996). We consider a restricted spherical volume and randomly 
fill it with small non-intersecting identical spheres (in the same manner as Mishchenko, 
2008; Mishchenko et al., 2009a, b; Petrova & Tishkovets, 2011; see example in Fig.3.1). In Fig. 
3.1 we show the absolute values of intensity and the degree of linear polarization calculated 
for a single small nonabsorbing spherical particle and the volume containing different 
number of such  particles. There we define the intensity as F11QscaXv, where F11 is the first 
element of the scattering matrix normalized in such a way that this quantity integrated over 
all phase angles is equal to unity, Qsca is the scattering efficiency of the cluster, and Xv is the 
size parameter of the cluster calculated from the volume of the constituents as x1N1/3. 
When the number of particles in the cluster grows, the amplitude of the bell-shaped branches 
of polarization decreases, and the curves of intensity in the phase interval from 20° to 150° 
become flatter. If the phase curves for individual particles  contained substantial interference 
features typical for relatively large spheres (larger than the particles considered in the example 
in Fig. 3.1), these features would be continuously smoothed with increasing packing density 
(see, e.g., Mishchenko, 2008). Such a smoothing can be interpreted as a result of the increasing 
contribution of multiple scattering, when many scattering events force light to “forget” the 
initial direction and to contribute equally to all exit directions. This also causes the 
depolarization effect, i.e. the light multiply scattered by an ensemble of particles is 
characterized by smaller values of polarization than the polarization of the light scattered by 
an individual particle of the ensemble. This happens since the position of the scattering plane 
changes at each consequent scattering, thus changing the polarization plane of the scattered 
light. Multiple changes that resulted from multiple scattering by randomly distributed 
particles randomize the polarization plane and, thus, lower the polarization of the resultant 
light. It is remarkable that diffuse multiple scattering is unable to change the state of 
polarization. As a result of this, the polarization always changes its sign at the same phase 
angle as for an individual particle no matter how many particles are in the cluster (Fig 3.1). 
Since the behavior of the diffuse multiple scattering in the sparse media is rather well 
investigated in the framework of the radiative transfer theory, here we only recall the main 
properties of the scattered electromagnetic radiation. It increases, when either the particle 
size, or the number of particles in the medium, or the real part of the refractive index, or the 
packing density grow. If the imaginary part of the refractive index increases, the 
contribution of the radiation scattered twice predominates. The latter is partially polarized 



 
Electromagnetic Waves 

 

176 

the criterion xRe(m)<1  is violated, cooperative effects in electromagnetic interaction between 
the inhomogeneities become dominating. To account for them one needs to consider 
rigorously the interaction of electromagnetic waves that occurs in such complex objects 
counting on the near-field effects (Section 4). 

3. Far-field light scattering 
The fundamental solution of the Maxwell equations as a harmonic plane wave describes the 
energy transfer from one point to another. The plane electromagnetic wave propagates in 
the infinite nonabsorbing medium with no change in intensity and polarization state.  The 
presence of a finite scattering object results in modification of the field of the incident wave; 
this modification is called the electromagnetic scattering.  
If the scattering object (e.g., particle) is located from the observer at such a distance that the 
scattered field becomes a simple spherical wave with amplitude decreasing in inverse 
proportion to the distance to the scattering object, the equations describing the scattered 
field become much simpler. This is the so-called far-field approximation. There are several 
criteria of this approximation (e.g., Mishchenko et al., 2006, Ch. 3.2): 2π(R-a)/λ >>1, R>>a, 
and R>>πa2/λ, where R is the distance between the object and the observer and a is the 
radius of the object. The first relation means that the distance from any point inside the 
object to the observer must be much larger than the wavelength. Then, the field produced by 
any differential volume of the object (the so-called partial field) becomes an outgoing 
spherical wave. The second relation requires the observer to be at a distance from the object 
much larger than the object size. Then, the spherical partial waves coming to the observer 
propagate almost in the same direction. The third relation can be interpreted as a 
requirement that the observer is sufficiently far from the scatterer so that the constant-phase 
surfaces of the waves generated by differential volumes of the scattering object locally 
coincide in the observation point and form an outgoing spherical wave. 
If the scattering object is an ensemble of particles, it is convenient to present the total 
scattered field as a vector superposition of the fields scattered by individual particles and, 
thus, to introduce the concept of multiple scattering. It is worth noting that at multiple 
scattering the mutual electromagnetic excitations occur simultaneously and are not 
temporally discrete and ordered events (Mishchenko et al., 2010). However, the concept of 
multiple scattering is a useful mathematical abstraction facilitating, in particular, the 
derivation of such important theories as the microphysical theories of radiative transfer and 
coherent backscattering (see below). 
In some cases the scattering by a complex object can be considered in the far-field 
approximation that substantially simplifies the equations that describe the scattering. The 
conditions for this are the following:  (1) the constituent scatterers of the complex object are 
far from each other to allow each constituent to be in the far-field zone of the others, and (2) 
the observer is located in the far fields of all of the constituent scatterers. Natural examples 
of such objects are atmospheric clouds and aerosols.  

3.1 Diffuse light scattering 
The properties of the light that is scattered by an ensemble of scatterers (e.g., small particles) 
only once are fully determined by the properties of the constituents. If the particles are 
much smaller than the wavelength, they scatter light in the Rayleigh regime and produce 

 
Effects of Interaction of Electromagnetic Waves in Complex Particles 

 

177 

symmetric photometric phase function with the minimum at 90° and also symmetric, bell-
shaped, polarization phase function with the maximum at 90°. For larger particles, the phase 
curves demonstrate a resonant structure with several, or even numerous, minima and 
maxima in both intensity and polarization depending on the size parameter of particles and 
the refractive index. Nowadays, the single scattering properties can be reliably calculated for 
particles of various types (e.g., Mishchenko et al., 2002). 
If a complex object can be presented as a cluster of sparsely distributed particles, i.e. the far-
field requirements are satisfied, the intensity of light scattered by the object is proportional 
to the number of constituents, N. While the number N and the packing density are 
increasing, the effects of mutual shadowing, multiple scattering, interference, and the 
interaction in the near field may destroy this dependence.  
The evolution of the scattering characteristics of a cluster of separated particles with 
increasing number of the constituent partciels can be illustrated with the results of model 
calculations preformed with the T-matrix method for randomly oriented clusters of spheres 
(Mackowski & Mishchenko, 1996). We consider a restricted spherical volume and randomly 
fill it with small non-intersecting identical spheres (in the same manner as Mishchenko, 
2008; Mishchenko et al., 2009a, b; Petrova & Tishkovets, 2011; see example in Fig.3.1). In Fig. 
3.1 we show the absolute values of intensity and the degree of linear polarization calculated 
for a single small nonabsorbing spherical particle and the volume containing different 
number of such  particles. There we define the intensity as F11QscaXv, where F11 is the first 
element of the scattering matrix normalized in such a way that this quantity integrated over 
all phase angles is equal to unity, Qsca is the scattering efficiency of the cluster, and Xv is the 
size parameter of the cluster calculated from the volume of the constituents as x1N1/3. 
When the number of particles in the cluster grows, the amplitude of the bell-shaped branches 
of polarization decreases, and the curves of intensity in the phase interval from 20° to 150° 
become flatter. If the phase curves for individual particles  contained substantial interference 
features typical for relatively large spheres (larger than the particles considered in the example 
in Fig. 3.1), these features would be continuously smoothed with increasing packing density 
(see, e.g., Mishchenko, 2008). Such a smoothing can be interpreted as a result of the increasing 
contribution of multiple scattering, when many scattering events force light to “forget” the 
initial direction and to contribute equally to all exit directions. This also causes the 
depolarization effect, i.e. the light multiply scattered by an ensemble of particles is 
characterized by smaller values of polarization than the polarization of the light scattered by 
an individual particle of the ensemble. This happens since the position of the scattering plane 
changes at each consequent scattering, thus changing the polarization plane of the scattered 
light. Multiple changes that resulted from multiple scattering by randomly distributed 
particles randomize the polarization plane and, thus, lower the polarization of the resultant 
light. It is remarkable that diffuse multiple scattering is unable to change the state of 
polarization. As a result of this, the polarization always changes its sign at the same phase 
angle as for an individual particle no matter how many particles are in the cluster (Fig 3.1). 
Since the behavior of the diffuse multiple scattering in the sparse media is rather well 
investigated in the framework of the radiative transfer theory, here we only recall the main 
properties of the scattered electromagnetic radiation. It increases, when either the particle 
size, or the number of particles in the medium, or the real part of the refractive index, or the 
packing density grow. If the imaginary part of the refractive index increases, the 
contribution of the radiation scattered twice predominates. The latter is partially polarized 



 
Electromagnetic Waves 

 

178 

and can strongly depend on phase angle. For densely packed clusters or media, a study of 
the scattering based on the diffuse scattering is not relevant as it lacks consideration of such 
effects as shadowing and near-field interaction (see Section 4). 
 

   
Fig. 3.1. The intensity and polarization of light scattered by a single spherical particle 
(dotted curve) and clusters of such particles contained in the volume of the size parameter 
X=20. The values of the size parameter x1 and the refractive index m of the constituent 
particles and the number of particles in the volume are listed in the figure. The packing 
density of the cluster (defined as ρ = N x13/X 3) grows from 0.1% to 10% (for N=1 and 100, 
respectively).  An example of the cluster is shown on the right. 

Numerous computations have shown that the light-scattering  characteristics of aggregates 
substantially differ from those of a cluster of separated monomers and change if the 
structure and porosity of the aggregates change (West, 1991; Lumme & Rahola, 1994; 
Kimura, 2001; Kimura et al., 2003, 2006; Mann et al., 2004; Petrova et al., 2004; Tishkovets et 
al., 2004; Mishchenko & Liu, 2007; Mishchenko et al., 2007; 2009a; 2009b;   Zubko et al., 2008; 
Okada & Kokhanovsky, 2009; and references therein). These changes cannot result from the 
diffuse multiple scattering between the aggregate monomers, which can only suppress the 
resonant features typical for the phase function of constituents and depolarize the scattered 
light.  The specific shape of the phase curves shown in Fig. 1.1 is caused by more complex 
cooperative effects.  
A striking feature in the intensity phase curve in Fig 1.1 is a strong increase of the intensity as 
the phase angles become larger than 160º. Development of such an increase with increasing 
number of the particles in the volume is evident in the plots shown in the left panel of Fig. 3.1. 
This strong forward scattering enhancement is caused by constructive interference of light 
scattered by the particles in the exact forward direction. In this direction, the waves scattered 
once by all the particles are of the same phase (if the particles are identical) irrespective of the 
particle positions (see Bohren &Huffman, 1983; Section 3.3). The oscillating behavior of the 
intensity curves in the forward scattering domain also points to the interference nature of this 
feature. In the absence of multiple scattering, this interference would result in an increase of 
intensity by a factor of N(N −1) as compared to the scattering by a single particle or by a factor 
of N2, if the non-coherent single scattered components are taken into account. Such an increase 
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is really observed, when the packing density is small. However  its development slows down 
with increasing packing density and practically stops, when the packing density exceeds 
approximately 15%. Such a behavior results from the fact that the incident light exciting a 
particle gets attenuated by its neighbors. This effect finally leads to the exponential extinction 
of light considered in the radiative transfer theory. The polarization caused by the single 
scattering interference in the forward scattering region is the same as that for the constituents, 
if they are identical. 
One more interesting feature starts to develop in the intensity phase curve when the number 
of particles in the volume grows. This is the enhancement toward zero phase angle, which 
becomes noticeable at N=50 at phase angles smaller than 15°. It is accompanied by a change in 
the polarization state at small phase angles. These features are a typical manifestation of the 
coherent-backscattering (or weak-localization) effect, which is considered in the next section.  

3.2 Coherent backscattering effect 
The enhancement of intensity that started to emerge in the backscattering domain (Fig. 3.1), 
when the packing density approached 5%, is a frequent feature of the phase curves of many 
scattering objects observed in laboratory (particulate samples) or in nature (regolith 
surfaces). This is the so-called brightness opposition effect. Explanation of its origin is 
illustrated in Fig. 3.2a (see Mishchenko et al., 2006 and references therein). The conjugate 
waves scattered along the same sequence of particles in the medium but in opposite 
directions interfere, and the result depends on the respective phase differences. For any 
observational direction far from the exact backscattering, the average effect of interference is 
negligible, since the particle positions are random. However, at exactly the backscattering 
direction, the phase difference is always zero and, consequently, the interference is always 
constructive, which causes the intensity enhancement to the opposition. This effect is called 
coherent backscattering.  
Interference in the backscattering direction may manifest itself in one more effect: it may 
lead to appearance of a branch of negative polarization at small phase angles (the so-called 
polarization opposition effect). This effect is schematically explained in Fig. 3.2b (also see 
Shkuratov, 1989; Muinonen, 1990; Shkuratov et al., 1994; Mishchenko, 2008). Particles 1-4 are 
in the plane perpendicular to the direction of the incident nonpolarized light. The particles 1 
and 2 are in the scattering plane, while particles 3 and 4 are in the perpendicular plane. Let 
us assume that the particles are small relatively to the wavelength. Then  they scatter light in 
the Rayleigh regime; the radiation scattered by such a Rayleigh particle is positively 
polarized for all phase angles. For the light scattered by the pair of particles 1-2, the 
resultant polarization keeps the polarization plane of the single scattering, i.e. it stays 
positive. However, the light scattering by the pair 3-4 occurs in the plane perpendicular to 
the resultant scattering plane; this makes the light scattered by this pair polarized in the 
scattering plane, i.e. negatively. The phase difference between the waves passing through 
particles 3 and 4 in opposite directions is always zero, while for particles 1 and 2 such phase 
difference is zero only at exactly the backscattering direction and quickly changes with 
changing the phase angle. Consequently, the conditions for negative polarization of the 
scattered light are on average more favorable in a wider range of phase angles than those for 
positive polarization. This forms a branch of negative polarization with the minimum at a 
phase angle whose value is comparable with the width of the brightness peak of coherent 
backscattering. Since only definite configurations of particles contribute to this effect, 
polarization opposition effect is less strong than the opposition effect in intensity.  
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and can strongly depend on phase angle. For densely packed clusters or media, a study of 
the scattering based on the diffuse scattering is not relevant as it lacks consideration of such 
effects as shadowing and near-field interaction (see Section 4). 
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is really observed, when the packing density is small. However  its development slows down 
with increasing packing density and practically stops, when the packing density exceeds 
approximately 15%. Such a behavior results from the fact that the incident light exciting a 
particle gets attenuated by its neighbors. This effect finally leads to the exponential extinction 
of light considered in the radiative transfer theory. The polarization caused by the single 
scattering interference in the forward scattering region is the same as that for the constituents, 
if they are identical. 
One more interesting feature starts to develop in the intensity phase curve when the number 
of particles in the volume grows. This is the enhancement toward zero phase angle, which 
becomes noticeable at N=50 at phase angles smaller than 15°. It is accompanied by a change in 
the polarization state at small phase angles. These features are a typical manifestation of the 
coherent-backscattering (or weak-localization) effect, which is considered in the next section.  

3.2 Coherent backscattering effect 
The enhancement of intensity that started to emerge in the backscattering domain (Fig. 3.1), 
when the packing density approached 5%, is a frequent feature of the phase curves of many 
scattering objects observed in laboratory (particulate samples) or in nature (regolith 
surfaces). This is the so-called brightness opposition effect. Explanation of its origin is 
illustrated in Fig. 3.2a (see Mishchenko et al., 2006 and references therein). The conjugate 
waves scattered along the same sequence of particles in the medium but in opposite 
directions interfere, and the result depends on the respective phase differences. For any 
observational direction far from the exact backscattering, the average effect of interference is 
negligible, since the particle positions are random. However, at exactly the backscattering 
direction, the phase difference is always zero and, consequently, the interference is always 
constructive, which causes the intensity enhancement to the opposition. This effect is called 
coherent backscattering.  
Interference in the backscattering direction may manifest itself in one more effect: it may 
lead to appearance of a branch of negative polarization at small phase angles (the so-called 
polarization opposition effect). This effect is schematically explained in Fig. 3.2b (also see 
Shkuratov, 1989; Muinonen, 1990; Shkuratov et al., 1994; Mishchenko, 2008). Particles 1-4 are 
in the plane perpendicular to the direction of the incident nonpolarized light. The particles 1 
and 2 are in the scattering plane, while particles 3 and 4 are in the perpendicular plane. Let 
us assume that the particles are small relatively to the wavelength. Then  they scatter light in 
the Rayleigh regime; the radiation scattered by such a Rayleigh particle is positively 
polarized for all phase angles. For the light scattered by the pair of particles 1-2, the 
resultant polarization keeps the polarization plane of the single scattering, i.e. it stays 
positive. However, the light scattering by the pair 3-4 occurs in the plane perpendicular to 
the resultant scattering plane; this makes the light scattered by this pair polarized in the 
scattering plane, i.e. negatively. The phase difference between the waves passing through 
particles 3 and 4 in opposite directions is always zero, while for particles 1 and 2 such phase 
difference is zero only at exactly the backscattering direction and quickly changes with 
changing the phase angle. Consequently, the conditions for negative polarization of the 
scattered light are on average more favorable in a wider range of phase angles than those for 
positive polarization. This forms a branch of negative polarization with the minimum at a 
phase angle whose value is comparable with the width of the brightness peak of coherent 
backscattering. Since only definite configurations of particles contribute to this effect, 
polarization opposition effect is less strong than the opposition effect in intensity.  
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Fig. 3.2. Schematic explanation of the coherent backscattering effect (from Mishchenko, 
2009a, b). 

An example of such a behavior is shown in Fig. 3.3. It is seen that the formation of the 
intensity enhancement at small phase angles is accompanied by development of a negative 
polarization branch as the number of particles in the ensemble grows. Notice that the effect 
results from the fact that the polarization of the single-scattered light is positive. If the 
polarization of the single scattered light is negative, the interference results in positive 
polarization. If the polarization of singly scattered light changes its sign at a specific 
scattering angle, the interference leads to a complex angular dependence of polarization for 
the ensemble of scatterers as seen in Fig. 3.1. 
In the interference presentation of the brightness and polarization opposition effects it was 
clearly assumed that the scatterers are in the far-field zones of each other, since some phase 
and polarization are attributed to the wave scattered by one particle and exiting the other 
one. However, recently it has been demonstrated that the conclusion on the interference 
nature of the opposition effects remains also valid for more closely packed media. In Fig. 3.4  
we present some results obtained by Mishchenko et al. (2009a, b). They examined the 
influence of the packing density on the opposition phenomena in order to determine the 
range of applicability of the low-packing density concept of the coherent backscattering 
theory to densely packed media. As in the previous example, the ensemble of varying 
packing density was enclosed in a spherical volume of size parameter X (shown on the right 
of Fig. 3.4). When the number of particles in the volume of X=40 grows (N=500 corresponds 
to the packing density ρ=6.25%), the opposition peak grows, and the branch of negative 
polarization becomes deeper (Fig. 3.4 a-b). At the same time, the angular width of the 
opposition peak (determined as the angular position of the point, where the curve changes 
its slope) and the angular position of the polarization minimum are almost the same and 
remain constant with increasing number of particles. However, as the packing density 
grows (in Fig 3.4c this was achieved by decreasing the volume X) the shape of the negative 
branch transforms. To some value of the packing density, it is asymmetric, and its minimum 
is shifted to opposition as predicted by the theory of coherent backscattering (Mishchenko et 
al., 2006 and references therein). When the packing density grows up to substantial values 
(Fig. 3.4c, N= 300 that correspond to ρ = 30%), the effects related to the interaction of 
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particles in the near field become noticeable. They manifest themselves in the 
transformation of the shape of the negative branch and its widening, which we discuss in 
Section 4.  
 

 
Fig. 3.3. Same as Fig. 3.1, but X=15, x1=1.5, and m=1.55+i0.01. The numbers of particles in the 
volume are listed in the right top corner of the polarization plot. 

 

 
Fig. 3.4 The influence of the coherent backscattering on the intensity (normalized to the 
value at zero phase angle) and polarization of light scattered by ensembles of  nonabsorbing 
spherical monomers of x1=2 and m=1.32. Note that such individual monomers have 
polarization equal to zero in the backscattering domain and positive for the other phase 
angles. The size parameter of the volume X and the smallest and largest numbers of 
particles are shown in the plots. The geometry of the scattering ensemble is shown on the 
right. Adapted from Mischchenko et al. (2009b). 
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3.2.1 Some experimental facts 
The above described opposition phenomena - a nonlinear enhancement of brightness to 
opposition and a negative branch of linear polarization of the scattered light – have been 
observed for cosmic dust in a variety of environments (debris disks, comets, Saturn’s rings, 
asteroids and satellites of planets) as well as for laboratory particulate samples. Numerous 
experimental studies showed that the characteristics of these effects and their phase profiles 
are undoubtedly connected with absorption and microphysical structure of the scattering 
objects. In particular, it was found that a very sharp narrow brightness peak and an 
asymmetric branch of negative polarization with the minimum close to zero phase angle 
(less than 2°) are typical of bright and porous objects (see, e.g., the review by Rosenbush et 
al., 2002). These strongly expressed manifestations of the coherent backscattering  
mechanism appear due to a rather large free path of light in such a sparse particulate 
medium as regolith. Since the width of the coherent peak in intensity is inversely 
proportional to the free path, for extremely sparse media like atmospheric clouds this peak 
should be very narrow and cannot be observed. This peak also cannot be observed for the 
media that have a small restricted volume like small aggregates, especially if they are 
absorbing (e.g., Etemad et al., 1987).  The absence of very sharp opposition features in 
aggregates and other individual particles of complex structure was confirmed by both 
observations of the cosmic dust and laboratory measurements (e.g., Levasseur-Regourd & 
Hadamcik, 2003; Shkuratov et al., 2004). This effect is also seen in Figs. 3.3-3.4 when the 
number of monomers in aggregates is small. These particles demonstrate a moderate 
increase of brightness to opposition and the branch of negative polarization with a shape 
close to symmetric.   
Astronomical observations also revealed that dark or densely packed media demonstrate 
wider, if any, peaks of brightness near opposition and more symmetric branches of negative 
polarization (e.g., Shkuratov et al., 2002; Belskaya et al., 2005).  This contradicts to the theory 
of coherent backscattering, which predicts that the opposition effects in brightness and 
polarization have the same cause and should appear simultaneously. Moreover, since only 
certain particle configurations contribute to polarization opposition effect, it might be less 
pronounced than brightness opposition effect. The shadow hiding, which is usually invoked 
to explain the widening of the opposition brightness peaks in dark surfaces (Lumme & 
Bowell, 1981), cannot induce such a significant negative polarization of the scattered light  
(e.g., Shkuratov & Grynko, 2005). Accurate consideration of the electromagnetic field in the 
particle vicinity, accounting for the presence of neighbor particles in the densely packed 
scattering clusters allows revealing one more scattering effect – the influence of the near 
field, which is considered in the next section. 

4. Near-field effects 
In the case of compact aggregates/media the electromagnetic interaction becomes even 
more complex, because the electromagnetic field in the close vicinity of the scattering 
particle is inhomogeneous due to the lag of the wave within the particle with respect to the 
incident wave. This effect is mostly expressed if the scatterer is comparable in size to the 
wavelength. Direct calculations using the Lorentz–Mie theory for spherical particles show 
that the constant phase surface of the total field is funnel shaped in the particle vicinity (Fig. 
4.1a). Consequently, the field inhomogeneity near the particle causes a rotation of the total 
field vector relatively to the incident field vector. This results in the formation of a Z-
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component of the total field that lies in the scattering plane and, consequently, reduces the 
scattered intensity in the back and forward scattering regions and increases the negative 
polarization (Tishkovets, 1998; Tishkovets et al., 1999; 2004a, b; Petrova et al., 2007). 
To illustrate the influence of the field inhomogeneity in the vicinity of a particle, let us 
consider Rayleigh test particles located on a constant phase surface near a larger particle in 
its inhomogeneous zone (Fig. 4.1b). First, assume that the incident field is polarized in the 
scattering plane (as shown in Fig. 4.1a). If the test particles were far from each other and 
from other particles, i.e., in the homogeneous field, their dipole moments would be parallel 
to the x0 axis. In this case, the intensity of the light scattered by all four test particles-dipoles 
would concentrate in the direction α = 0° and 180° and would be zero in the direction α = 
90°. If the test particles are, however, in the inhomogeneous zone near a wavelength-sized 
particle, the dipole moments induced in particles 1 and 3 have a nonzero component in the 
direction of wave propagation, i.e., along the z0 axis. This results in decreasing intensity of 
the scattered light in the direction α = 0° and 180°, whereas the intensity in the direction α = 
90° becomes nonzero. In both cases, the scattered wave is polarized the same way as the 
incident one, i.e. in the scattering plane (negatively). Now assume that  the incident wave is 
polarized perpendicular to the scattering plane. Then particles 1 and 3 produce the radiation 
that is polarized perpendicular to the scattering plane and does not depend on  phase angle. 
The radiation scattered by particles 2 and 4 has a component parallel to the z0 axis (i.e., 
polarized in the scattering plane) that depends on α.  As a result, the intensity again 
decreases in the directions α = 0° and 180° and increases in side directions, and polarization 
gets a negative component.  So, at any polarization of the incident wave, the field 
inhomogeneity in the vicinity of the scattering particle induces a rotation of the field vector 
and leads to appearance of  Z-component of the total field, which affects the angular 
distribution of the scattered intensity and causes negative polarization (for more details, see 
Tishkovets, 1998; Tishkovets et al., 1999; 2004a, b; Petrova et al., 2007).  
One more type of interaction of particles in the near field is the mutual shielding of particles 
(Tishkovets, 2008; Petrova et al., 2009). The scheme with the test dipoles (Fig. 4.1b) helps to 
estimate qualitatively the result of the shielding.  For the sake of simplicity, let us assume 
that at a given polarization of the incident radiation, the dipole moment of particle 1 is 
oriented exactly opposite to the ksc vector. In this case, particle 1 does not radiate in the ksc 
direction. It does not matter whether we take the shielding into account or not. When the 
incident radiation is polarized in the y0z0 plane, in the case of ignoring the shielding, particle 
1 would radiate like particle 3 or like all the particles in the homogeneous field. However, 
when the large particle shields particle 1, the latter does not radiate in the α direction, i.e., its 
positive polarization does not contribute to the scattered light. Thus, the shielding 
diminishes the positively polarized scattered radiation and diminishes the intensity in the α 
direction. However, in the backscattering direction, dipole 1 contributes to the scattered 
radiation, which induces an increase in the intensity with respect to that in the α direction. 
Contrary to the field inhomogeneity in the near zone, which is most noticeable for the 
wavelength-sized particles, the mutual shielding effect is independent of the size of the 
particles located in the near field.  
Under the above described conditions the wave coming from one particle to another is not 
spherical, and the single-scattering characteristics of individual monomers, such as their 
phase matrix, are not applicable. In other words, in densely packed systems the scatterers 
become highly dependent. The influence of the interaction in the near field on intensity and 
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polarization of the scattered light can be easily demonstrated by the models, where the near-
field contribution is ignored in the calculations of the light-scattering characteristics. The 
example presented in Fig. 4.2 clearly shows that the interaction in the near field substantially 
diminishes the backscattering peak in intensity induced by the coherent backscattering 
effect and changes the shape of the negative polarization branch. 
Contrary to the coherent backscattering mechanism, the near-field effects work in a wide 
angular range. In the backscattering domain they distort the manifestations of the coherent 
backscattering. Their influence on polarization is rather complex and significantly depends 
on the size parameter of monomers, their packing density, and the refractive index. For 
example, with increasing packing density (i.e., when the near-field effects manifest 
themselves more clearly), the negative branch becomes deeper and wider if the aggregate is 
composed of larger monomers, while it may become shallower for smaller constituents. The 
modeling experiments with particles of different properties show that the most permanent 
and noticeable manifestation of the near-field effects in polarization is the shift of the 
polarization minimum out of opposition (Petrova et al., 2007; 2009). In other words, while 
the coherent backscattering mechanism forms the negative branch with the minimum near 
zero phase angle, the interaction in the near field causes the shift of the polarization 
minimum to larger phase angles and makes the negative polarization branch more 
symmetric. 
 

 
Fig. 4.1. (a) The scheme shows the constant phase surfaces and directions of electric field 
vectors (sum of the incident and scattered waves) in the close vicinity of a particle with 
x=4.0 and m = 1.32 + i0.05. The incident wave propagates along the wave vector k0 and is 
polarized in the x0z0 plane.  Adapted from Tishkovets et al. (2004a). (b) The scheme for the 
scattering of inhomogeneous waves by the Rayleigh test particles 1 - 4. Particles 1 and 3 are 
in the x0z0 plane, while particles 2 and 4 are in the y0z0 plane. The incident wave propagates 
along the z0 axis and is polarized in the x0z0 plane. The scattered wave propagates to the 
direction of the phase angle α. The vectors at the Rayleigh particles show the directions of 
the induced dipole moments. Adapted from Petrova et al. (2009). 
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Fig. 4.2. The influence of the interaction in the near field on the intensity (normalized to the 
value at zero phase angle) and polarization in the backscattering domain for the compact 
cluster shown in the insert. Thick and thin curves present the models calculated with and 
without the near-field effects respectively. Dashed curves show intensity and polarization 
for the individual monomer. The parameters x1, m, and N are shown in the figure. The data 
for the figures were kindly provided by V.P. Tishkovets. 

Due to their nature, the manifestations of the near-field effects can be more easily 
observed in absorbing aggregates when the packing density exceeds 10-15%. One of such 
examples is shown in Figs. 4.3 for the whole range of phase angles and separately for the 
backscattering domain. For rather small number of monomers, the conditions for diffuse 
scattering and coherent backscattering are applied. With increasing number of 
monomers, the forward-scattering peak develops, the intensity profile becomes flatter, 
and the polarization maximum gets depressed. Then the opposition peak in intensity 
grows, and the negative branch of polarization appears. However, the opposition 
features do not develop as quickly as in nonabsorbing aggregates (compare Fig. 3.4), 
because the free paths become somewhat shorter when absorbing monomers are added 
into the volume. Partly due to this effect, partly due to the interaction in the near field - 
which becomes more important with increasing packing density - the polarization 
minimum moves out of opposition. Further increase of the packing density makes the 
near-field effects even more decisive. We see that the opposition peak stops to grow, 
while the negative branch continues to develop; it becomes wider and deeper (the curves 
for N=200).     
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Fig. 4.3. Top panel: same as Fig. 3.1-3.3, but for the parameters listed in the plot. The packing 
density varied from 0.1% to 20% (N changes from 1 to 200, respectively). Bottom panel: larger 
scale for the backscattering domain; the intensity is normalized to the value at zero phase angle. 

5. Modeling of light scattering by aggregates 
In this section we explore how the considered above phenomena associated with 
electromagnetic interaction between constituents in a complex medium affect the angular and 
spectral dependence of intensity and  linear polarization of the scattered radiation. We show 
how these results can be applied to the study of cosmic dust and other types of complex 
particles. We also briefly consider how the cooperative effects affect circular polarization of 
aggregates that contain optically active materials, e.g. complex organics of biological origin. 
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To model electromagnetic scattering by complex dispersed systems, several methods are 
now available. They are based on the numerically exact solutions of the Maxwell equations. 
One of them, the so-called superposition T-matrix method (Mishchenko et al., 2002; 
Mackowski & Mishchenko, 1996), was used to obtain the intensity and linear polarization of 
clusters of particles discussed above. Since these computations are time and resource 
consuming, they cannot be presently fulfilled for very large clusters/layers of particles, such 
as regolith. Nevertheless, they allow us to obtain the scattering characteristics of aggregates 
of a restricted number of monomers that are typical for cosmic dust, and to study the 
dependence of the light-scattering characteristics on the size of monomers, their packing 
density and refractive index.  

5.1 Dependence of light scattering characteristics on the physical properties of 
aggregates 
Exploring the light scattering characteristics of aggregates, we continue to focus on the 
dependence of intensity and linear polarization on phase angle, i.e. photometric and 
polarimetric phase curves.  Our goal is to find out how the phase curves depend on such 
characteristics of aggregates as the size and composition of the monomers, their number and 
arrangement in the aggregate. In the previous sections we were mainly interested in the 
models of complex objects that allowed us to better see specific physical phenomena such as 
coherent backscattering or near-field effects. This section is directed to provide a basis for 
the interpretation of experimental data, specifically the observations of cosmic dust. This is 
why in this section we use more realistic models of natural aggregates, namely the 
aggregates grown under ballistic process (Meakin et al. 1984).  There are commonly used 
two types of such aggregates: Ballistic Particle-Cluster Aggregate (BPCA) that grows at 
collision of individual monomers with the aggregate and Ballistic Cluster-Cluster Aggregate 
(BCCA) that grows at collision of clusters of monomers. Examples of such aggregates are 
shown in Fig. 5.1. Notice that BPCAs are usually more compact than BCCAs. The packing 
density of ballistic aggregates is defined as the ratio of the volume taken by their monomers 
to the total volume of the aggregate which is the volume of a sphere of the characteristic 

radius A calculated as A2  = 5/3 
 Nji ,...1,

(ri-rj)2/(2N2) (Kozasa et al., 1992) where ri is location of 

the center of the ith monomer and the total number of the monomers is N. Packing density 
depends on the number of monomers; as this number increases, it decreases significantly for 
BCCAs and slightly for BPCAs (Kolokolova et al., 2007).  
The results of the modeling of the light scattering characteristics of BCCA and BPCA at 
some refractive indexes and monomer size are shown in Figs. 5.2 -5.3; for more results see 
LISA database at https://www.cps-jp.org/~lisa/. There instead of intensity I we use 
albedo, a characteristic that is usually used in astronomical observations to describe the 
reflectivity of an object.  In the case of aggregates, albedo is defined as (I/I0)*(π/G) where I0 is 
the intensity of the incident light and G is the aggregate geometric cross section (Hanner  et 
al., 1981; Kimura et al., 2003). We show spectral dependence of albedo and polarization in 
two filters: 450 nm (blue filter) and 600 nm (red filter). Following astronomical definitions, if 
albedo or polarization have larger values in the red filter we say that they have a red color 
and if the values are larger in the blue filter we say that they have a blue color. 
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Fig. 4.3. Top panel: same as Fig. 3.1-3.3, but for the parameters listed in the plot. The packing 
density varied from 0.1% to 20% (N changes from 1 to 200, respectively). Bottom panel: larger 
scale for the backscattering domain; the intensity is normalized to the value at zero phase angle. 
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Fig. 5.1. Samples of BPCA (left) and BCCA (right) aggregates. These aggregates were used in 
Kimura et al. (2003, 2006) computations to model light-scattering characteristics of cometary 
dust.  

First, notice in Fig. 5.2-5.3 the features of the modeled phase curves described in the 
previous sections, namely: (1) strong forward scattering resulted from the interference of the 
light single-scattered by individual monomers; (2) rather low values of the maximum 
polarization that manifests depolarizing effects of the diffuse scattering and influence of the 
near-field effects; (3)  some, although small, backscattering enhancement; and (4) rather 
small but symmetric branch of negative polarization at small phase angles. The last two 
features indicate a serious influence of the near-field effects.  This is not surprising as the 
monomers in aggregates touch each other, i.e. they do are located in the inhomogeneous 
field produced by their neighbors. As it was shown in Section 4, the near-field effects affect 
the shape of the intensity curve and result in a more pronounced and symmetric negative 
polarization branch and in diminished values of the positive polarization. 
The figures also show a difference between the plots obtained for aggregates of different 
physical properties. The most influential parameter seems to be the monomer size whose 
variations change the shape of the polarization phase curve and the dependence of the 
albedo on the wavelength. The real part of the refractive index mostly affects the maximum 
polarization. The imaginary part of the refractive index affects the spectral dependence of 
photometric phase curve and the values of albedo but does not much affect polarization. 
Notice also that the more compact BPCAs depolarize the light more strongly than the more 
porous BCCAs, although their other characteristics are rather similar. 
Although the curves in Figs 5.2-5.3 resemble the typical observational curves shown in 
Fig.1.1, they have some characteristics that are not typical for cometary dust. Observational 
facts summarized in Kolokolova et al. (2004a, b) indicate that comets usually have red 
photometric and polarimetric colors, i.e. their albedo and polarization have larger values at 
longer wavelengths. Unlike the observational data, the results of the modeling shown in 
Figs. 5.2-5.3 always demonstrate predominantly blue photometric color. In the case of the 
monomers of radius 120 nm and the refractive index equal to 1.4+i0.01, the results of the 
modeling also demonstrate blue polarimetric color for some phase angles. Also, in the 
majority of plots, the value of albedo at zero phase angle is higher than the one observed, 
which is equal to 3 - 5% (Hanner, 2003). 
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Fig. 5.2. Albedo (in %) and polarization as functions of phase angle for aggregates of 
monomer radius equal to 90 nm. Real part of the refractive index, n, and imaginary part of 
the refractive index, κ, are shown in the top left corner of each figure. Results for the 
wavelength 450 nm are shown by thick line (BCCA) and crosses (BPCA) and for 600 by thin 
line (BCCA) and circles (BPCA). All aggregates consisted of 128 monomers. 
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monomer radius equal to 90 nm. Real part of the refractive index, n, and imaginary part of 
the refractive index, κ, are shown in the top left corner of each figure. Results for the 
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Fig. 5.3. The same as Fig. 5.2 but for monomers of radius 120 nm. 

Our computations, summarized in Kimura et al. (2003, 2006) provided characteristics of the 
aggregates that satisfy the observational data for cometary dust.   The best fit was achieved 
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for the monomers of radius 100 nm and the refractive index that was determined based on 
in situ study of comet Halley, which  is equal to 1.88+i0.47 for the wavelength λ=450nm and 
to 1.98+i0.48 for λ=600nm.  It appears that for such a dark material a crucial characteristic is 
the number of monomers in the aggregate. Fig. 5.4 shows that increasing the number of 
monomers in the aggregate results in a more pronounced negative polarization branch and 
in a stronger depolarization of the positive polarization. This allows us to suggest that in the 
case of aggregates of thousands of monomers it is possible to reach the observable values of 
negative (~0.015) and positive (~0.3) polarization.    
 

 
Fig. 5.4. Albedo (in %) and polarization as functions of phase angle depending on the 
aggregate size (number of monomers in the aggregate). The monomer radius is equal to 100 
nm. The refractive index was taken as typical for cometary dust (based on in situ data for 
comet Halley) and is equal to 1.88+i0.47 for the wavelength λ=450nm and 1.98+i0.48 for 
λ=600nm.  The number of monomers in the aggregate is 64 (left panel), 128 (middle panel), 
256 (right panel).  Development of the negative polarization is shown in the inserts. Notice 
also a decrease of the polarization maximum more pronounced for the shorter wavelength. 
The figure was adapted from Mann et al. (2004). 

Figs. 5.2-5.4  also demonstrate that the polarimetric color is often less red in the case of more 
compact BPCAs.  We explain this by a stronger depolarization of light in the case of more 
compact aggregates. Such a depolarization is even more evident from Figs. 3.3 and 4.3 
where aggregates with higher packing density (more particles in the volume) always 
demonstrate smaller polarization maximum. Depolarization of light with increasing packing 
density is consistent with increasing electromagnetic interaction between the monomers 
resulted from both diffuse multiple scattering and near-field effects as considered in 
Sections 3-4 
Kolokolova & Kimura (2010) showed that a measure of the depolarization can be the 
number of monomers covered by a single wavelength; the more monomers the wavelength 
covers, the more depolarized is the scattered light.   It is clear that a single wavelength 
covers more monomers in the case of more compact aggregates. It also covers more 
monomers if the wavelength is longer. Thus, we can expect the scattered light to be more 
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depolarized at longer wavelengths and the color of polarization should be blue. Blue 
polarimetric color is frequently observed. For example, it is typical for asteroid surfaces and 
interplanetary dust. However, as we already mentioned, cometary dust has a red 
polarimetric color.  In our opinion, this is good evidence that cometary aggregates are 
highly porous. For porous aggregates, an increase in the wavelength may not increase the 
number of monomers covered by a single wavelength.  Then the polarimetric color is 
defined by properties of individual monomers. Specifically, the monomer size parameter 
decreases with increasing wavelength that moves it closer to the Rayleigh regime of 
scattering characterized by higher polarization, thus, resulting in the red color of 
polarization.  
An interesting observational result was reported by Kiselev et al. (2008) who summarized 
the observational data of spectral behavior of comet polarization and showed that cometary 
dust  is characterized by a red polarimetric color in the visible (wavelengths of 400-800nm)  
but it changes to a blue polarimetric color in the near infrared (wavelengths of 1000-
3000nm). They also showed that some comets exhibit a blue polarimetric color even in the 
visible.  These observations can be interpreted based on the dependence of electromagnetic 
interaction on the number of monomers covered by a single wavelength. Fig. 5.5 illustrates 
our point. One can see there that in the case of a porous aggregate a small change in the 
wavelength does not change the number of particles it covers. However, at longer 
wavelength even in porous aggregates the number of monomers covered by a single  
 

 
Fig. 5.5. Illustration of the effect of increasing wavelength on the light scattering by an 
aggregate. In a compact aggregate (top part of the aggregate) the longer the wavelength the 
more monomers it covers, so the interaction between the monomers becomes stronger, and 
the light becomes more depolarized. This results in a decrease of polarization with 
wavelength, i.e. blue color of polarization. For a porous aggregate (bottom part of the 
aggregate), the number of monomers covered by a single wavelength does not change much 
as the wavelength increases, i.e. the change in the interaction between the monomers cannot 
overpower the change in the monomer size parameter, and so the polarization color stays 
red. However, as the wavelength reaches some critical value, the number of covered 
monomers in the porous aggregate changes significantly(as shown in the right-hand 
aggregate) and interaction becomes the main factor that defines the polarization color which 
then becomes blue. 
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wavelength increases causing depolarization of the scattered light. This explains the change in 
the observed polarimetric color as the observations move to the near infrared.  In the case of 
more compact aggregates, even a slight change in wavelength increases the number of covered 
monomers resulting in blue polarimetric color even in the visible. Thus, it is likely that the dust 
in the comets with blue polarimetric color, as well as asteroidal and interplanetary dust, is 
characterized by more compact particles. The wavelength where polarimetric color changes 
from red to blue may be used to determine the porosity of aggregate particles. 

5.2 Spectral manifestation of coherent backscattering 
In Section 3.2 we discussed how coherent backscattering affects intensity and polarization 
phase curves producing there brightness and polarization opposition effects. Recently it has 
been found that coherent backscattering also manifests itself in spectral data. It affects the 
depth of the absorption bands and makes it dependent on the phase angle.  The physics of 
this is clear: since coherent backscattering produces brightness opposition effect of different 
steepness at different absorptions, the steepness of the opposition effect is different within 
and outside of the absorption bands and, thus, the absorption bands should have different 
depth and, most likely, shape at different phase angles. This fact was confirmed at 
observations of Saturn’s satellites. Their spectra have distinct ice absorption bands in the 
near infrared and these bands do change with phase angle (Fig. 5.6).  Although this effect 
has been studied so far for regolith surfaces it should also exist for any medium whose light 
scattering is affected by coherent backscattering.  
We modeled spectral manifestation of the coherent backscattering using the T-matrix code 
and presenting the surface of Saturn’s satellites as a large icy aggregate similar to those 
described in Sections 3 and shown in Fig. 3.4. Fig 5.7 presents the results of our simulations 
of the ice absorption band at 2.8 μm at different size of monomers and packing density of 
the aggregate.  One can see that the simulations correctly reproduce the observed 
tendencies.  More so, the variations in the rate of the change of the absorption band depth 
and shape promise that the study of the spectra at several phase angles can serve as a new 
remote sensing tool to reveal properties of monomers and their arrangement in aggregates. 
 

 
Fig. 5.6. Spectrum of Saturn’s icy satellite Rhea at a variety of phase angles (from Kolokolova 
et al., 2010). It is clearly seen that the depth of the absorption bands varies with phase angle 
as it should be in accordance with the coherent backscattering. The red dashed ellipse shows 
the band whose modeling is presented in Fig. 5.7. 
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Fig. 5.7. Simulations of the phase angle variations in the spectra of icy aggregates.  Different 
phase angles (PA) are indicated in the left panel. The  left panel is for the monomer of radius 
1.0 μm and packing 5%, the middle panel is for the same monomers but different packing, 
10%, and the right  panel is for the same packing as the middle one but for  smaller 
monomers, r= 0.85 μm. In all cases the overall size of the aggregate is 14 μm.  Adapted from 
Kolokolova et al. (2011a). 

5.3 Circular polarization of the light scattered by aggregates 
Circular polarization was observed in the light scattered by the dust in comets (Rosenbush 
et al., 2007) and molecular clouds (Hough et al., 2001). It is well known that circular 
polarization manifests violation of mirror symmetry in the medium.  Van de Hulst (1957) 
showed (see his Section 5.22) that circular polarization arises when the medium has unequal 
number of left-handed and right-handed identical but mirror asymmetric particles.  This 
immediately shows  that if we consider light scattering by a single aggregate, let say BPCA 
or BCCA, then even in the case of  random orientation of this aggregate its circular 
polarization  does not vanish as the majority of ballistic aggregates are asymmetric (Fig. 5.1). 
This was repeatedly shown by computer simulations of light scattering by aggregates 
(Kolokolova et al., 2006; Guirado et al., 2007).  However, ensembles of natural aggregates, 
such as cosmic dust, usually do not have domination of particles of a specific handiness. So, 
in the case when some ensemble of natural aggregates demonstrates circular polarization, it 
has another violation of mirror symmetry than that resulted from the asymmetric 
arrangement of the monomers in the aggregates. 
One of the most common violations is alignment of elongated particles (e.g., in magnetic 
field).  This is a very common situation for cosmic dust and numerous papers on alignment 
of aggregates and their circular polarization have been published (see reviews by Lazarian,  
2007; 2009 and reference therein).  One more opportunity for mirror asymmetry of 
aggregates is optical activity of their material. Optical activity is typical for organics of 
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biological origin due to the homochirality of their molecules (i.e. domination of left handed 
amino acids and right handed sugars). Recently the T-matrix code by Mackowski & 
Mishchenko (1996) has been updated to allow accounting for the optical activity of the 
monomer material (Mackowski et al., 2011).  Below we show some results of the computer 
modeling based on this code.  
To avoid the influence of mirror asymmetry of the aggregate itself, described above, we 
performed the calculations for a completely symmetric aggregate like a cube of spheres or 
3D-cross. The optical activity was described by a complex parameter β=βr+iβi that 
demonstrated the difference in the complex refractive index for the light with left-handed 
and right-handed polarization; here βr   described the circular birefringence of the material 
and βi described its circular dichroism. The code correctly predicted the equal but opposite 
sign of the circular polarization in the case of aggregates of the opposite sign of β. The 
modeling by Kolokolova et al. (2011b) showed that the circular polarization quickly 
increased with increasing optical activity, size of monomers, and especially size of the 
aggregate. An interesting result was a strong dependence of the circular polarization on the 
packing density of the aggregates.  Fig. 5.8 shows that the circular polarization is much 
larger and increases more quickly with the size of aggregate in the case when the aggregate 
is more compact. This probably demonstrates an increasing influence of the diffuse multiple 
scattering as the aggregate becomes larger or more compact, and more monomers are 
involved in the light scattering. 
 

  
Fig. 5.8. Dependence of absolute values of circular polarization on the size of a 3D-cross 
aggregate (left) and cubic aggregate (right). The radius of the monomers is 50 nm; the 
wavelength is 650 nm. The dashed line is for a single monomer; solid lines are for the 
aggregates of 9, 125, and 343 monomers (thickness of the line increases with the number of 
monomers).  In the simulations we used m=1.55002+i0.0006002 and β=7.034*10-6 –i*0.8692*10-8 
which were estimated based on the measured excess of left-handed amino acids in some 
meteorites (Pizzarello & Cronin, 2000; Pizzarello & Cooper, 2001). 

It is evident that diffuse multiple scattering can affect circular polarization because at each 
consequent scattering on an optically active monomer circular polarization should increase. 
This effect is opposite to the depolarization of linearly polarized light in a result of multiple 
scattering. Linear polarization depends on the plane in which the scattering happens, and at 
multiple scattering this plane changes randomly thereby randomizing the resultant 
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polarization (see Section 3.1). Orientation of the scattering plane does not affect circular 
polarization, and its formation is determined only by the fact that the light repeatedly 
interacts with optically-active scatterers. Since the cubic aggregate shown in Fig. 5.8 
represents the case of a densely packed aggregate, we expect that its light scattering is also 
affected by near-field effects.  How near-field effects influence circular polarization is a topic 
of a separate study that still needs to be done. 

6. Conclusions 
We have briefly described a progress recently made in the understanding and modeling of a 
variety of physical effects associated with electromagnetic interaction between constituent 
scatterers in a complex object such as an inhomogeneous particle or an aggregate of small 
monomers.  Our test objects were aggregates as a common example of natural particles. In 
the case when such aggregates are made of particles much smaller than wavelength, 
effective medium theories can be applied to study their light scattering. However, natural, 
especially cosmic, particles are aggregates of monomers larger than wavelength when 
observed in the visible spectral range. Their light scattering requires a more sophisticated 
approach. We showed that with increasing packing density of aggregates interaction of their 
monomers becomes more complex and involves diffuse multiple scattering, coherent 
scattering, and, at even larger packing densities, near-field effects. The diffuse multiple 
scattering simplifies dependencies of intensity and polarization on phase angle reducing the 
resonant oscillations typical for single scattering by particles of size larger than wavelength. 
In its turn, coherent scattering complicates the phase curves adding brightness and 
polarization opposition feature in the backscattering domain.  Development of these 
features becomes even more complex when the packing density increases and near-field 
effects become not negligible.  The near-field effects affect all phase angles, changing value 
and location of both the polarization minimum and maximum as well as behavior of the 
intensity. The correct accounting for all these effects is possible by using rigorous solutions 
of the Maxwell equations for  complex objects. In the case of aggregates, such a solution is 
provided by the superposition T-matrix approach (Mackowski & Mishchenko, 1996). We use 
this approach to simulate properties of large aggregates. This allows us not only to study all 
types of interaction separately and find conditions for their realization, but also to interpret 
the observational data for cosmic dust. The T-matrix modeling provides: (1) explanation of 
specifics of phase dependencies of intensity and polarization for cometary and other cosmic 
dust; (2) explanation of spectral dependence of polarization for comets and asteroids and its 
variations with wavelength; (3) explanation of variations in depth of spectral bands 
observed for Saturn’s satellites; (4) study of circular polarization of light scattered by objects 
of biological interest.  This modeling also allows us to reveal the characteristics of dust 
particles in a variety of natural environments thereby validating it as a powerful tool for 
remote sensing applications.   
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1. Introduction 
Models for scattering of electromagnetic waves from random rough surfaces have been 
developed during the last two centuries and the scientific interest in the problem remains 
strong also today due to the importance of this phenomenon in diverse areas of science, such 
as measurements in optics, geophysics, communications and remote sensing of the Earth.  
Such models can be categorised into empirical models, analytical models and a combination 
of the two. Though very simple, empirical models are greatly dependent on the 
experimental conditions. In spite of their complexity, only theoretical models can yield a 
significant understanding of the interaction between the electromagnetic waves and the 
Earth’s surface, although an exact solution of equations governing this interaction may not 
always be available and approximate methods have to be used. The semi-empirical models, 
which are based on both physical considerations and experimental observations, can be set 
between these two kinds of models and can be easily inverted. In this survey, we will focus 
on the analytical models and we study more in detail the Kirchhoff Approximation (KA), the 
Small Perturbation Method (SPM) and the Integral Equation Method (IEM). The Kirchhoff 
Approximation and the Small Perturbation Methods represent early approaches to 
scattering which are still much used, whereas the Integral Equation Method represents a 
newer approach which has a larger domain of validity. These methods have been found to 
be the most common in the literature and many of the other methods are based or have 
much in common with these approaches. In section 2, we begin by giving a brief 
presentation of the scattering problem and introduce some concepts and results from the 
theory of electromagnetic fields which are often used in this context. We will also define the 
bistatic scattering coefficient, due to the importance of this type of measurement in many 
remote sensing applications, and in particular in the retrieval of soil moisture content. In 
section 3, we give a brief presentation on the Kirchhoff Approximation and its close 
variants, the Physical Optics (PO) and the Geometrical Optics (GO). In section 4, we give a 
brief presentation of the Small Perturbation Method and in section 5 we will present the 
Integral Equation Model.  

2. Some concepts of the electromagnetic theory and surface parameters 
In this section we will give a brief presentation of some concepts on theories of 
electromagnetism and statistical characterisation of surfaces, which are often used for 
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modelling scattering of electromagnetic waves from random rough surfaces. We will also 
define the bistatic scattering coefficient due to the importance of this type of measurement in 
many remote sensing applications. 

2.1 The Maxwell’s equations and the wave equation 
The basic laws of the electromagnetism are given by the Maxwell’s equations which, for 
linear, homogeneous, isotropic, stationary and not dispersive media, can be written as 
(Balanis, 1989): 

 
t


  


BE  (2.1.1) 

 c it


   

DH J J  (2.1.2) 

   D  (2.1.3) 

 0  B  (2.1.4) 

where E is the electric field vector, D is the electric flux density, H is the magnetic field 
vector, B is the magnetic flux density, J is the conduction electric current density, Ji is the 
impressed electric current density and  is the electric charge density. Maxwell’s equations 
together with the boundary conditions, give a complete description of the field vectors at 
any points (including discontinuities) and at any time. In rough surface scattering, the 
surface enters in the boundary conditions (see equations (2.2.1)-(2.2.4)), which have to be 
also supplied at infinity. 
If we consider time-harmonic variation of the electromagnetic field, the instantaneous field 
vectors can be related to their complex forms. Thus the Maxwell’s equations can be written 
in a much simpler form: 

 j  E H  (2.1.5) 

   i c ij j       H E J E J  (2.1.6) 

    E  (2.1.7) 

 0  H  (2.1.8) 

where we assumed the region characterised by permeability , permittivity  and 
conductivity  (lossy medium). To obtain the governing equation for the electric field, we 
take the curl of (2.1.5) and then replace (2.1.6). Thus, 

 2
c ij    E E J  (2.1.9) 

which is known as the inhomogeneous Helmholtz vector wave equation. In a free-source 
region,  0  E  and (2.1.9) simplifies to: 
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 2 2 0c   E E  (2.1.10) 

In rectangular coordinates, a simple solution to (2.1.10) has the form: 

   0
je  k rE r E  (2.1.11) 

where E0 is a constant complex vector which determines the polarisation characteristics and 
the complex propagation vector, k , is defined as: 

 ˆ ˆ ˆx y zk k k  k x y z  (2.1.12) 

with the components satisfying  

 2 2 2 2 2
x y z ck k k k      (2.1.13) 

Equation (2.1.11) represents a plane wave and k is the propagation constant. Most analytical 
methods for scattering from rough surfaces assume this kind of incident wave, which if 
linearly polarised can be rewritten as: 

   0ˆ ˆiji iE e E  k rE r p p  (2.1.14) 

where ˆ
i ikk k , p̂  is the unit polarisation vector and E0 is the amplitude. The associated 

magnetic field is given by: 

    ˆi i
i  H r k E r  (2.1.15) 

where c    is the wave impendence in the medium. 

2.2 Integral theorems and other results used in scattering models 
We will present some results for electromagnetic fields which are often used as a starting point 
in the analytical models for scattering from rough surfaces. These equations are approximated 
and simplified using different methods and assumptions in the analytical solutions for 
scattering from rough surfaces. We will not show how the equations in this section are 
derived, but derivation can be found in the references. 
Consider an electromagnetic plane wave incident on a rough surface as shown in figure 2.2.1. 
 

 
Fig. 2.2.1. Scattering of electromagnetic field on surface separating two media. 
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Fig. 2.2.1. Scattering of electromagnetic field on surface separating two media. 
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Across any surface interface, the electromagnetic field should satisfy continuity conditions 
given by (Balanis, 1989): 

  1ˆ 0  n E E  (2.2.1) 

  1ˆ s  n H H J  (2.2.2) 

  1 1ˆ s    n E E  (2.2.3) 

  1 1ˆ 0   n H H  (2.2.4) 

where n̂  is the unit normal vector of the rough surface (pointing in the region 0). The 
electric surface current density, Js, and the charge surface density, s, at the rough interface 
are zero unless the scattering surface (or one of the media) is a perfect conductor. 
Using the fact that the fields satisfy the Helmholtz wave equation (2.1.9), it can be shown 
that in the region 0, the electromagnetic fields E and H, satisfy Huygens’ principle and the 
radiation boundary condition at infinity and E is given by (Ulaby et al, 1982; Tsang et al, 
2000):  
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In (2.2.5) the first term on the right-hand side represents the field generated by a current 
source in an unbounded medium with permittivity  and permeability  and corresponds to 
the incident field. Hence, the electromagnetic field in the region 0 is expressed as the sum of 
two contributions: one is given by the incident field  iE r ; the other contribution is given by 
the surface integrals that involve the tangential components  tE  and tH  of the fields at the 
boundary S1 (note that ˆ ˆ t   n E n E  and ˆ ˆ t   n H n H ) and represents the scattered field 
due to the presence of surface. 
The equation (2.2.5) constitutes the mathematical basis of Huygens’ principle in vector form. 
According to this principle, the electromagnetic field in a source-free region ( 0J ) is 
uniquely determined once its tangential components are assigned on the boundary of the 
region. However, since in the region 0, the existence of the impressed current J has been 
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assumed, the total electric field can be expressed as the sum of two terms, the incident and 
scattering ones: 

      i s E r E r E r  (2.2.8) 

Thus, the scattered field can be written as: 
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If the observation point is in the far field region, the Green function in (2.2.9) can be 
simplified and the scattering field can be written as (Ulaby et al,1982; Tsang et al, 2000): 
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and n̂ , ˆ n , ˆ tn , ˆ tn  are the unit normal vectors to the surface and ˆ ˆt  n n , ˆ ˆt  n n , ˆ n E  
and ˆ n H  are the total tangential fields on the rough surface in the medium above the 



 
Electromagnetic Waves 

 

206 

Across any surface interface, the electromagnetic field should satisfy continuity conditions 
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assumed, the total electric field can be expressed as the sum of two terms, the incident and 
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separating interface; G1 and G2 are the Green’s functions in medium above and below the 
interface, respectively, and 2 1r   , 2 1r   , 2 2 2    and 2 2 2k    . 

2.3 The nature of surface scattering 
When an electromagnetic wave impinges the surface boundary between two semi-infinitive 
media, the scattering process takes place only at the surface boundary if the two media can 
be assumed homogeneous. Under such supposition, the problem at issue is indicated as 
surface scattering problem. On the other hand, if the lower medium is inhomogeneous or is a 
mixture of materials of different dielectric properties, then a portion of the transmitted wave 
scattered backward by the inhomogeneities may cross the boundary surface into the upper 
medium. In this case scattering takes place within the volume of the lower medium and it is 
referred to as volume scattering. In most cases both the scattering processes are involved, 
although only one of them can be dominant. In the case of bare soil, which will be assumed 
to be a homogeneous body, surface scattering is the only process taken into consideration. 
When the surface boundary separating the two semi-infinitive media is perfectly smooth the 
reflection is in the specular direction and is described by the Fresnel reflection laws. On the 
other hand, when the surface boundary becomes rough, the incident wave is partly reflected in 
the specular direction and partly scattered in all directions. Qualitatively, the relationship 
between surface roughness and surface scattering can be illustrated through the example 
shown in Figure 2.3.1. For the specular surface, the angular radiation pattern of the reflected 
wave is a delta function centred about the specular direction as shown in Figure 2.3.1 (a). For 
the slightly rough surface (Figure 2.3.1 (b)), the angular radiation pattern consists of two 
components: a reflected component and a scattered component. The reflected component is 
again in the specular direction, but the magnitude of its power is smaller than that for smooth 
surface. This specular component is often referred to as the coherent scattering component. The 
scattered component, also known as the diffuse or incoherent component, consists of power 
scattered in all directions, but its magnitude is smaller than that of the coherent component. As 
the surface becomes rougher, the coherent component becomes negligible. 
Note that the specular component represents also the mean scattered field (in statistical 
sense), whereas the diffuse component has a stochastic behaviour, associated to the 
randomness of the surface roughness. 
 

   
     (a)          (b)         (c) 

Fig. 2.3.1. Relative contributions of coherent and diffuse scattering components for different 
surface-roughness conditions: (a) specular, (b) slightly rough, (c) very rough. 

2.3.1 Characterisation of soil roughness 
A rough surface can be described by a height function  ,z x y  . There are basically two 
categories of methods which are being used to measure surface roughness. The roughness 
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can be carried out by means of various experimental approaches able to reproduce the 
surface profile by using contact or laser probes, or it can be estimated using some theory 
which relates scattering measurements to surface roughness. In general, the study of 
scattering in remote sensing is performed by using random rough surface models, where the 
elevation of surface, with respect to some mean surface, is assumed to be an ergodic1, and 
hence stationary2, random process with a Gaussian height distribution. 
Accordingly, the degree of roughness, or simply the roughness, of a random surface is 
characterised in terms of statistical parameters that are measured in units of wavelength. For 
this reason, a given surface that may “appear” very rough to an optical wave, may “appear” 
very smooth to a microwave. 
The two fundamental parameters commonly used are the standard deviation of the surface 
height variation (or rms height) and the surface correlation length. Such parameters describe 
the statistical variation of the random component of surface height relative to a reference 
surface, that may be the unperturbed surface of a period pattern, as in the case of a row-
tilled soil surface (Figure 2.3.1.1. (a)), or may be the mean plane surface if only random 
variations exist (Figure 2.3.1.1 (b)). 
 

 
    (a)    (b) 

Fig. 2.3.1.1. Two configurations of height variations: (a) random height variations 
superimposed to a periodic surface; (b) random variations superimposed to a flat surface. 

Let  z x  be a representative realisation of the ergodic and stationary process that describes 
a generic rough surface in a one-dimensional case. The mean value, which throughout this 
chapter will be denoted by angular brackets ... , is equal to the spatial average over a 
statistically representative segment of the surface, of dimensions Lx, centred at the origin: 
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As it can be noted from the above definition, for a stationary surface the average does not 
depend on x. The second moment is: 

    22 2 2
2

1 x

x

L

L
x

z z x dx z x
L 

   (2.3.1.2) 

                                                 
1 A process is ergodic when one realisation is representative of all the process, i.e. the statistical averages 
over an extracted random variable may be replaced by spatial averages over a single realisation. 
2 The stationarity implies that all the statistically properties of a random process are invariant under the 
translation of spatial coordinates. 
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Using the above expressions, the standard deviation of the surface height, , is therefore 
defined as: 

    
1 2 1 22 22z z z x z           

 (2.3.1.3) 

Such quantities characterise the dispersion of the surface height relative to the reference 
plane. Taking into account the stationary properties of the process and considering its mean 
value null, the variance, 2 , is coincident with the second moment and does not depend on 
x. The autocorrelation function of the height random process  z x  is given by: 
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The normalised autocorrelation function (ACF), better known as the correlation coefficient, 
assumes for a process with zero mean value the following expression: 
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 (2.3.1.5) 

It is a measure of the similarity between the height z at point x and at point distant  from x. 
It has the following properties: 
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The spectral density or power spectrum is defined, for an ergodic random process, as the 
Fourier transform of the autocorrelation function  zR x : 

     xjk x
x zW k R x e dx
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where kx is the Fourier transform variable.  
However, taking into account the equation (2.3.1.5), it is common practice in characterising 
the random surface to define the power spectrum of the normalised autocorrelation 
function: 
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The Gaussian distribution plays a central role in modelling scattering from random rough 
surfaces because it is encountered under a great number of different conditions and because 
Gaussian variates have the unique property that the random process is entirely determined 
by the height probability distribution and autocorrelation. All higher order correlations can 
be expressed in terms of the (second order) autocorrelation function, which simplifies 
modelling the surface scattering process. A simple and often used form for the 
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autocorrelation is the Gaussian function but other forms have also been studied (Saillard & 
Sentenac, 2001). 
The roughness spectrum at the n’th power of the autocorrelation function,  nW , which 
often enters into closed form solutions of the scattering problem, is given by the Fourier 
transform: 

       xn jk xn
xW k x e dx




   (2.3.1.8) 

The consideration of a realistic autocorrelation function is in fact a relevant problem for a 
better modelling of the soil scattering. Some often used forms (see for instance (Fung, 1994)) 
of the autocorrelation function are the Gaussian correlation function, the exponential 
correlation function, combinations of the Gaussian and exponential functions and the so 
called 1.5-power correlation function. For all of these, the roughness spectrum at the n’th 
power can be evaluated analytically (see (Fung, 1994)). For instance, for an isotropically 
rough surface, the normalised Gaussian autocorrelation in a single dimension assumes the 
following expression: 
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where l is the correlation length. Such surface parameter is defined as the displacement x for 
which  x  is equal to 1 e  

   1l e   (2.3.1.10) 

The correlation length of a surface provides a reference for estimating the statistical 
independence of two points on the surface; if the two points are separated by a horizontal 
distance greater than l, then their heights may be considered to be (approximately) 
statistically independent of one another. In the extreme case of a perfectly smooth (specular) 
surface, every point on the surface is correlated with every other point with a correlation 
coefficient of unity. Hence, l    in this case. 
Referring to equation (2.3.1.9), the n’th power roughness spectrum is equal to: 
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Beside the height random function  z x , the slope function is another important 
characterisation of the rough surface. It is defined as: 
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Considering the stationary random process  z x  as normally distributed with zero mean 
and variance 2 , being Zx the first derivative, its distribution is again normal with zero 
mean and variance related to the second derivative of the autocorrelation function of  z x  
at the origin (Beckman & Spizzichino, 1963): 
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  2 2 2 0s xZ      (2.3.1.13) 

The rms slope is subsequently indicated as m: 

   1 22 0m     (2.3.1.14) 

When the normalised autocorrelation function is Gaussian (equation (2.3.1.9)), the rms slope 
is equal to: 

 2m
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2.4 Bistatic scattering coefficient 
A quantity often used in models and measurements of scattering in the microwave region is 
the bistatic scattering coefficient  , , , ,o

q p i i s s     . It describes the target’s scattering properties 
at a given frequency, polarisation, incidence and observing directions, being independent on 
the specific measurement system used. It is possible to define ,

o
q p  directly in terms of the 

incident and scattering field i
pE  and s

qE  as follows (Ulaby et al, 1982): 
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where the ensemble average must be considered in case the scattered field is the fluctuating 
zero mean component (i.e., the diffuse or incoherent component mentioned before) 
generated by a natural target or random rough surface. Such equation shows ,

o
q p  as the 

ratio of the total power scattered by an equivalent isotropic scatterer in direction ( , )s s   to 
the product of the incident power density in direction ( , )i i   and the illuminated area. 
The backscattering coefficient  ,

o
q p i   is a special case of  , , , ,o

q p i i s s     ; it is defined for 
s i   and s i     (Figure 2.4.1), which corresponds to the incident and scattered 

direction being the same except for a reversal in sense. 
 

 
Fig. 2.4.1. Geometry of the scattering problem. 
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3. The Kirchhoff approximation 
In this section we shall consider the Kirchhoff (also sometimes referred to as the tangent 
plane approximation) approach to describe the scattering from rough surfaces, which was 
one of the first methods applied. We will consider surfaces with random surface profiles (i.e. 
not period surfaces) and within the context of the vector theory we will discuss the 
Kirchhoff Approximation. We will consider here the case of scattering from 2-dimensional 
dielectric surfaces. We will present results for the case of a surface which can be 
characterised as a Gaussian random process. We will also mention some extensions of the 
Kirchhoff approximation and will give references to further reading about the Kirchhoff 
approach. The reference list is by no means complete, since the literature on the Kirchhoff 
approximation is vast. A good representation of the Kirchhoff method can be found for 
instance in (Tsang et al, 2000, Tsang & Kong, 2001, Ulaby et al, 1982). 

3.1 Formulation of the scattering problem 
The geometry of the scattering problem we consider is shown in figure 2.4.1. We consider a 
monochromatic, linearly polarised incident plane wave with electric and magnetic field 
given by the equations (2.1.14) and (2.1.15), respectively. 
It can be shown, similarly to equation (2.2.10), that the far zone scattering field, s

qpE , can be 
written in terms of the tangential surface fields in the medium above the separating surface 
as (Stratton-Chu integral) (Ulaby et al, 1982): 

       ˆˆ ˆ ˆ sjs
qp s p pE K e ds         k rq k n E n H  (3.1.1) 

where 

  ˆ ˆ ˆˆ ˆ ˆ ˆsin cos sin sin coss s s s s s s sx sy szk k k k k          k k x y z x y z  (3.1.2) 

What needs to be calculated are the tangential surface fields in equation (3.1.1). In equations 
(2.2.11) - (2.2.12) and (2.2.15) - (2.2.16) we presented integral equations for the tangential 
surface fields in the medium above the scattering dielectric surface. It should be noted that 
these expressions are exact. However, they cannot in general be solved analytically and 
therefore approximations have to be introduced. Below we will show that by introducing an 
approximation called the tangent plane approximation (or the Kirchhoff approximation), closed 
analytical solutions can be obtained to the scattering problem. 

3.2 The tangent plane approximation and the Kirchhoff fields 
In the Kirchhoff approach, the total fields at any point of the surface (i.e., the incident plus 
the scattered one, to be considered inside the integral (3.1.1)) are approximated by the fields 
that would be present on an infinitely extended tangent plane at that particular point on the 
surface. The reflection is therefore considered to be locally specular. It is due to this fact that 
the Kirchhoff approximation is also referred to as the tangent plane approximation. The 
Kirchhoff approach requires to be valid that every point on the surface has a large radius of 
curvature relative to the wavelength of the incident field. 
Thus, under the tangent-plane approximation, the total field at a point on the surface is 
assumed equal to the incident field plus the field reflected by an infinite plane tangent to the 
point. Hence, the tangential surface fields are (Ulaby et al, 1982): 
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  2 2 2 0s xZ      (2.3.1.13) 

The rms slope is subsequently indicated as m: 

   1 22 0m     (2.3.1.14) 

When the normalised autocorrelation function is Gaussian (equation (2.3.1.9)), the rms slope 
is equal to: 

 2m
l


  (2.3.1.15) 

2.4 Bistatic scattering coefficient 
A quantity often used in models and measurements of scattering in the microwave region is 
the bistatic scattering coefficient  , , , ,o

q p i i s s     . It describes the target’s scattering properties 
at a given frequency, polarisation, incidence and observing directions, being independent on 
the specific measurement system used. It is possible to define ,
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q p  directly in terms of the 

incident and scattering field i
pE  and s

qE  as follows (Ulaby et al, 1982): 
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where the ensemble average must be considered in case the scattered field is the fluctuating 
zero mean component (i.e., the diffuse or incoherent component mentioned before) 
generated by a natural target or random rough surface. Such equation shows ,

o
q p  as the 

ratio of the total power scattered by an equivalent isotropic scatterer in direction ( , )s s   to 
the product of the incident power density in direction ( , )i i   and the illuminated area. 
The backscattering coefficient  ,

o
q p i   is a special case of  , , , ,o

q p i i s s     ; it is defined for 
s i   and s i     (Figure 2.4.1), which corresponds to the incident and scattered 

direction being the same except for a reversal in sense. 
 

 
Fig. 2.4.1. Geometry of the scattering problem. 

 
Models for Scattering from Rough Surfaces 

 

213 

3. The Kirchhoff approximation 
In this section we shall consider the Kirchhoff (also sometimes referred to as the tangent 
plane approximation) approach to describe the scattering from rough surfaces, which was 
one of the first methods applied. We will consider surfaces with random surface profiles (i.e. 
not period surfaces) and within the context of the vector theory we will discuss the 
Kirchhoff Approximation. We will consider here the case of scattering from 2-dimensional 
dielectric surfaces. We will present results for the case of a surface which can be 
characterised as a Gaussian random process. We will also mention some extensions of the 
Kirchhoff approximation and will give references to further reading about the Kirchhoff 
approach. The reference list is by no means complete, since the literature on the Kirchhoff 
approximation is vast. A good representation of the Kirchhoff method can be found for 
instance in (Tsang et al, 2000, Tsang & Kong, 2001, Ulaby et al, 1982). 

3.1 Formulation of the scattering problem 
The geometry of the scattering problem we consider is shown in figure 2.4.1. We consider a 
monochromatic, linearly polarised incident plane wave with electric and magnetic field 
given by the equations (2.1.14) and (2.1.15), respectively. 
It can be shown, similarly to equation (2.2.10), that the far zone scattering field, s

qpE , can be 
written in terms of the tangential surface fields in the medium above the separating surface 
as (Stratton-Chu integral) (Ulaby et al, 1982): 

       ˆˆ ˆ ˆ sjs
qp s p pE K e ds         k rq k n E n H  (3.1.1) 

where 

  ˆ ˆ ˆˆ ˆ ˆ ˆsin cos sin sin coss s s s s s s sx sy szk k k k k          k k x y z x y z  (3.1.2) 

What needs to be calculated are the tangential surface fields in equation (3.1.1). In equations 
(2.2.11) - (2.2.12) and (2.2.15) - (2.2.16) we presented integral equations for the tangential 
surface fields in the medium above the scattering dielectric surface. It should be noted that 
these expressions are exact. However, they cannot in general be solved analytically and 
therefore approximations have to be introduced. Below we will show that by introducing an 
approximation called the tangent plane approximation (or the Kirchhoff approximation), closed 
analytical solutions can be obtained to the scattering problem. 

3.2 The tangent plane approximation and the Kirchhoff fields 
In the Kirchhoff approach, the total fields at any point of the surface (i.e., the incident plus 
the scattered one, to be considered inside the integral (3.1.1)) are approximated by the fields 
that would be present on an infinitely extended tangent plane at that particular point on the 
surface. The reflection is therefore considered to be locally specular. It is due to this fact that 
the Kirchhoff approximation is also referred to as the tangent plane approximation. The 
Kirchhoff approach requires to be valid that every point on the surface has a large radius of 
curvature relative to the wavelength of the incident field. 
Thus, under the tangent-plane approximation, the total field at a point on the surface is 
assumed equal to the incident field plus the field reflected by an infinite plane tangent to the 
point. Hence, the tangential surface fields are (Ulaby et al, 1982): 
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    ˆ ˆ ˆ i r
k     n E n E n E E  (3.2.1) 

    ˆ ˆ ˆ i r
k     n H n H n H H  (3.2.2) 

Here the subscript k stands for the Kirchhoff approximation.  
The way to proceed from here, in most presentations of the Kirchhoff method, consists in 
expressing the tangential fields under the Kirchhoff approximation in terms of the incident 
electric field components and the local Fresnel reflection coefficients, which depend on the 
local angles of incidence. This results in the following expressions: 

             ˆ
0

ˆ ˆˆ ˆ ˆˆ ˆ ˆ ˆ ˆ1 1 ijk
h v iR R E e           

k rn E p t n t n k p d t  (3.2.3) 

               ˆ
0

ˆ ˆˆ ˆ ˆˆ ˆ ˆ ˆ ˆ1 1 ijk
h i vR R E e             

k rn H n k p t t p d n t  (3.2.4) 

where the unit vectors t̂ , d̂ , ˆ
ik  define the local reference coordinate system (see (Fung, 

1994)) and n̂  is the unit normal vector to the interface in the above medium. Rv and Rh are 
the Fresnel reflection coefficients for vertical and horizontal polarisation respectively. 
Upon substituting (3.2.3) and (3.2.4) in (3.1.1), the scattered field is: 

       ˆˆ ˆ ˆ s ijs
qp s p pE K e ds          k k rq k n E n H  (3.2.5) 

where the phase factor,  ˆexp ijk k r , of the incident wave has been pointed out from the 

equations (3.2.3) and (3.2.4). Such equation represents the scattered field formulated under 
the tangent-plane, or Kirchhoff approximation. As it stands the expression is a complicated 
function of the surface function and its partial derivatives. No analytic solution has been 
obtained from (3.2.5) without additional simplifying assumptions. Here we will show the 
results presented in (Ulaby et al, 1982): for surface with large (with respect to wavelength) 
standard deviation of surface heights, for which the stationary-phase approximation 
(Geometric Optics, GO) will be used, and for surfaces with small slopes and a medium or 
small standard deviation of surface heights, for which a scalar approximation (Physical 
Optics, PO) will be used. 

3.2.1 The scattered field under the stationary-phase approximation (Geometric Optic, 
GO) 
Under the stationary-phase approximation the local tangent plane on a surface point can be 
considered infinitely wide and, as consequence, the angular re-irradiation pattern 
originating from that specific point can be represented by a delta function centred in the 
specular direction. This means that scattering can occur only along directions for which 
there are specular points on the surface. Hence local diffraction effects are excluded. The 
approximating relations are obtained from the phase Q of (3.2.5), that is: 

  ˆ ˆ
s i x y zQ k q x q y q z       k k r q r  (3.2.1.1) 
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where 

 ˆ ˆ ˆ ˆsin cos sin sin coss s s s s s      k x y z  (3.2.1.2) 

 ˆ ˆ ˆ ˆsin cos sin sin cosi i i i i i      k x y z  (3.2.1.3) 

  sin cos sin cosx s s i iq k       (3.2.1.4) 

  sin sin sin siny s s i iq k       (3.2.1.5) 

  cos cosz s iq k     (3.2.1.6) 

The phase Q is said to be stationary at a point if its rate of change is zero at the point, that is: 

0 x z
zQ q q

x x


  
 

 

0 y z
zQ q q

y y


  
 

 

Hence, the partial derivatives of the surface slopes can be replaced by the components of the 
phase as: 

 x
x

z

z qZ
x q


  


 (3.2.1.7) 

 y
y

z

qzZ
y q


  


 (3.2.1.8) 

Since, the local unit vector n̂  is a function of the surface derivatives: 

 
2 2

ˆ ˆ ˆ
ˆ

1
x y

x y

Z Z

Z Z

  


 

x y z
n  (3.1.1.9) 

the use of (3.2.1.7) and (3.2.1.8) makes ˆ n E  and ˆ n H  independent on the integration 
variables. Thus, the expression for sE  can be rewritten as: 

     1
ˆ ˆˆ ˆs

s sK I       E k n E k n H  (3.2.1.10) 

where 

 
 ˆ ˆ

1
s ijk

I e ds
 

 
k k r

 (3.2.1.11) 

The scattering field corresponding to transmission of p̂  polarisation and reception of q̂  
polarisation can be written as (Ulaby et al, 1982): 



 
Electromagnetic Waves 

 

214 

    ˆ ˆ ˆ i r
k     n E n E n E E  (3.2.1) 

    ˆ ˆ ˆ i r
k     n H n H n H H  (3.2.2) 

Here the subscript k stands for the Kirchhoff approximation.  
The way to proceed from here, in most presentations of the Kirchhoff method, consists in 
expressing the tangential fields under the Kirchhoff approximation in terms of the incident 
electric field components and the local Fresnel reflection coefficients, which depend on the 
local angles of incidence. This results in the following expressions: 
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where the unit vectors t̂ , d̂ , ˆ
ik  define the local reference coordinate system (see (Fung, 

1994)) and n̂  is the unit normal vector to the interface in the above medium. Rv and Rh are 
the Fresnel reflection coefficients for vertical and horizontal polarisation respectively. 
Upon substituting (3.2.3) and (3.2.4) in (3.1.1), the scattered field is: 

       ˆˆ ˆ ˆ s ijs
qp s p pE K e ds          k k rq k n E n H  (3.2.5) 

where the phase factor,  ˆexp ijk k r , of the incident wave has been pointed out from the 

equations (3.2.3) and (3.2.4). Such equation represents the scattered field formulated under 
the tangent-plane, or Kirchhoff approximation. As it stands the expression is a complicated 
function of the surface function and its partial derivatives. No analytic solution has been 
obtained from (3.2.5) without additional simplifying assumptions. Here we will show the 
results presented in (Ulaby et al, 1982): for surface with large (with respect to wavelength) 
standard deviation of surface heights, for which the stationary-phase approximation 
(Geometric Optics, GO) will be used, and for surfaces with small slopes and a medium or 
small standard deviation of surface heights, for which a scalar approximation (Physical 
Optics, PO) will be used. 

3.2.1 The scattered field under the stationary-phase approximation (Geometric Optic, 
GO) 
Under the stationary-phase approximation the local tangent plane on a surface point can be 
considered infinitely wide and, as consequence, the angular re-irradiation pattern 
originating from that specific point can be represented by a delta function centred in the 
specular direction. This means that scattering can occur only along directions for which 
there are specular points on the surface. Hence local diffraction effects are excluded. The 
approximating relations are obtained from the phase Q of (3.2.5), that is: 
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where 

 ˆ ˆ ˆ ˆsin cos sin sin coss s s s s s      k x y z  (3.2.1.2) 

 ˆ ˆ ˆ ˆsin cos sin sin cosi i i i i i      k x y z  (3.2.1.3) 

  sin cos sin cosx s s i iq k       (3.2.1.4) 

  sin sin sin siny s s i iq k       (3.2.1.5) 

  cos cosz s iq k     (3.2.1.6) 

The phase Q is said to be stationary at a point if its rate of change is zero at the point, that is: 
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Hence, the partial derivatives of the surface slopes can be replaced by the components of the 
phase as: 
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Since, the local unit vector n̂  is a function of the surface derivatives: 
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the use of (3.2.1.7) and (3.2.1.8) makes ˆ n E  and ˆ n H  independent on the integration 
variables. Thus, the expression for sE  can be rewritten as: 

     1
ˆ ˆˆ ˆs

s sK I       E k n E k n H  (3.2.1.10) 

where 
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I e ds
 

 
k k r

 (3.2.1.11) 

The scattering field corresponding to transmission of p̂  polarisation and reception of q̂  
polarisation can be written as (Ulaby et al, 1982): 
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 1 0ˆs s
qp qpE K I E U  q E  (3.2.1.12) 

where 

    
0

1 ˆ ˆˆ ˆ ˆqp s sU
E

        q k n E k n H  (3.2.1.13) 

To compute the scattering coefficient, defined in (2.4.1), for different polarisation states, it is 

necessary to calculate the ensemble average of 2
1I : 

    ˆ ˆ2
1

s ijk
I e dsds

  
  

k k r r
 (3.2.1.14) 

By assuming the surface roughness as a stationary and isotropic Gaussian random process, 
with zero mean, variance 2 , and correlation coefficient , and in the assumption that the 

standard deviation of surface heights is large (that is,  2zq   large) the integral can be 
solved. The result is (Ulaby et al, 1982): 

 
   

2 22
2 0

1 4 2 2 2
2 exp

0 2 0
x y

z z

q qA qI
q q


   

 
  

   
 (3.2.1.15) 

where the illuminated area A0 is  22L ,  0  is the second derivatives of  evaluated at the 

origin and  2 0   corresponds to the mean-squared slope of the surface (Ulaby et al, 
1982) (Section 2.3.1). 
Upon substituting (3.2.1.15) into the product in the scattered-field expression, it follows: 

 
2 2

0 1
s s
qp qp qpE E KE U I   (3.2.1.16) 

Substituting (3.2.1.16) in the definition of the scattering coefficient given by equation (2.4.1), 
it assumes the following expression: 

    

2
2 2

4 2 2 2exp
2 0 2 0

qp x yo
qp

z z

kq U q q
q q


   

 
       

   
 (3.2.1.17) 

In the derivation of o
qp , the effects of shadowing and multiple scattering have been ignored.  

It is important to underline that (3.2.1.17) is valid only for surface with sufficiently large 

standard deviation of surface heights. Under such assumption, that is  2zq   large, the 

scattering is purely incoherent. As  2zq   decreases, some scattered energy begins to appear 
in the coherent component. To examine such situation, a different approximation to the 

tangential fields is needed to permit small  2zq  . This is discussed in the next section. 
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3.2.2 The scattered field under the scalar approximation (Physical Optics, PO) 
A different Kirchhoff approach is the Physical Optics solution to (3.1.1). The Physical Optics 
approach involves the integration of the Kirchhoff scattered field over the entire rough 
surface, not just the portions of surface which contribute specularly to the scattered 
direction. Unlike the Geometric Optics solution, the Physical Optics solution predicts a 
coherent component.  
The power in the incoherent reflected field can be found by expanding the Stratton-Chu 
equation in a Taylor series in surface slope distribution. In (Ulaby et al, 1982) the Physical 
Optics solution is called scalar approximation because slopes are ignored in the surface 
coordinate system, leading to a decoupling of polarisation in the vector scattering equations. 
Accordingly, the basic scattered-field expression can be rewritten in the form: 

  0
ˆ ˆexps

qpqp s iE KE U jk ds     k k r  (3.2.2.1) 

where qpU  are given in (Ulaby et al, 1982). To find s s
qp qpE E   for the scattering-coefficient 

computation, the following integral needs to be computed: 

    ˆ ˆexpqp qp s iI U U jk dsds
         k k r r  (3.2.2.2) 

Since all qpU  are expressed in a Taylor series in surface slope distribution, Zx and Zy: 

 0 1 2qp x yU a a Z a Z    (3.2.2.3) 

where ai are polarisation-dependent coefficients, the product qp qpU U


 can be written up to 
the first order in slope as: 

 0 0 0 1 0 1 0 2 0 2qp qp x x y yU U a a a a Z a a Z a a Z a a Z
           (3.2.2.4) 

Since  2zq   is no longer required to be large and assuming the size of the illuminated area 
equal to 2 2L L , the ensemble average of the first term in (3.2.2.4) can be expressed as (for 
more details see (Ulaby et al, 1982)) 

 
     2 2

2 2
2 22

0 0 2 2
0

2 2
!

x yz

n
L Lz jq u jq vq n
L L

n

q
I a e L u L v e dudv

n








 


      (3.2.2.5) 

where the n = 0 term corresponds to coherent scattering. It can be shown that this coherent-
scattering coefficient can be expressed as: 

     2 222
0

zqo c
qp x yk a q q e       (3.2.2.6) 

which shows that coherent scattering is important only when qz is small. The rest of the 
series in (3.2.2.5) represents incoherent scattering. The integral I0 for 1n   can be rewritten 
in the following manner pointing out the illuminated area  20 2A L : 
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 1 0ˆs s
qp qpE K I E U  q E  (3.2.1.12) 

where 

    
0

1 ˆ ˆˆ ˆ ˆqp s sU
E

        q k n E k n H  (3.2.1.13) 

To compute the scattering coefficient, defined in (2.4.1), for different polarisation states, it is 

necessary to calculate the ensemble average of 2
1I : 

    ˆ ˆ2
1

s ijk
I e dsds

  
  

k k r r
 (3.2.1.14) 

By assuming the surface roughness as a stationary and isotropic Gaussian random process, 
with zero mean, variance 2 , and correlation coefficient , and in the assumption that the 

standard deviation of surface heights is large (that is,  2zq   large) the integral can be 
solved. The result is (Ulaby et al, 1982): 
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2 0

1 4 2 2 2
2 exp

0 2 0
x y

z z

q qA qI
q q


   

 
  

   
 (3.2.1.15) 

where the illuminated area A0 is  22L ,  0  is the second derivatives of  evaluated at the 

origin and  2 0   corresponds to the mean-squared slope of the surface (Ulaby et al, 
1982) (Section 2.3.1). 
Upon substituting (3.2.1.15) into the product in the scattered-field expression, it follows: 

 
2 2

0 1
s s
qp qp qpE E KE U I   (3.2.1.16) 

Substituting (3.2.1.16) in the definition of the scattering coefficient given by equation (2.4.1), 
it assumes the following expression: 
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4 2 2 2exp
2 0 2 0

qp x yo
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z z

kq U q q
q q


   

 
       

   
 (3.2.1.17) 

In the derivation of o
qp , the effects of shadowing and multiple scattering have been ignored.  

It is important to underline that (3.2.1.17) is valid only for surface with sufficiently large 

standard deviation of surface heights. Under such assumption, that is  2zq   large, the 

scattering is purely incoherent. As  2zq   decreases, some scattered energy begins to appear 
in the coherent component. To examine such situation, a different approximation to the 

tangential fields is needed to permit small  2zq  . This is discussed in the next section. 
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3.2.2 The scattered field under the scalar approximation (Physical Optics, PO) 
A different Kirchhoff approach is the Physical Optics solution to (3.1.1). The Physical Optics 
approach involves the integration of the Kirchhoff scattered field over the entire rough 
surface, not just the portions of surface which contribute specularly to the scattered 
direction. Unlike the Geometric Optics solution, the Physical Optics solution predicts a 
coherent component.  
The power in the incoherent reflected field can be found by expanding the Stratton-Chu 
equation in a Taylor series in surface slope distribution. In (Ulaby et al, 1982) the Physical 
Optics solution is called scalar approximation because slopes are ignored in the surface 
coordinate system, leading to a decoupling of polarisation in the vector scattering equations. 
Accordingly, the basic scattered-field expression can be rewritten in the form: 

  0
ˆ ˆexps

qpqp s iE KE U jk ds     k k r  (3.2.2.1) 

where qpU  are given in (Ulaby et al, 1982). To find s s
qp qpE E   for the scattering-coefficient 

computation, the following integral needs to be computed: 

    ˆ ˆexpqp qp s iI U U jk dsds
         k k r r  (3.2.2.2) 

Since all qpU  are expressed in a Taylor series in surface slope distribution, Zx and Zy: 

 0 1 2qp x yU a a Z a Z    (3.2.2.3) 

where ai are polarisation-dependent coefficients, the product qp qpU U


 can be written up to 
the first order in slope as: 

 0 0 0 1 0 1 0 2 0 2qp qp x x y yU U a a a a Z a a Z a a Z a a Z
           (3.2.2.4) 

Since  2zq   is no longer required to be large and assuming the size of the illuminated area 
equal to 2 2L L , the ensemble average of the first term in (3.2.2.4) can be expressed as (for 
more details see (Ulaby et al, 1982)) 
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      (3.2.2.5) 

where the n = 0 term corresponds to coherent scattering. It can be shown that this coherent-
scattering coefficient can be expressed as: 

     2 222
0

zqo c
qp x yk a q q e       (3.2.2.6) 

which shows that coherent scattering is important only when qz is small. The rest of the 
series in (3.2.2.5) represents incoherent scattering. The integral I0 for 1n   can be rewritten 
in the following manner pointing out the illuminated area  20 2A L : 
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For an isotropically rough surface with correlation length l and Gaussian normalised 
autocorrelation function, 2 2exp l     , the integral (3.2.2.7) can be shown to be: 
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It is clear that different solutions may be obtained for the integral if the normalised surface 
autocorrelation function is assumed to take some other functional forms. Upon substituting 
(3.2.2.7) and (3.2.2.8) into the factor s s

qp qpE E  , the scattering coefficient for the incoherent 

part of the 2
0a  term has the following expression: 
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If the normalised surface autocorrelation is not known, o inc
qp  can be written as: 
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An additional contribution to the total scattering coefficient comes from the slope terms in 
(3.2.2.4). It can be computed taking into account in the ensemble average s s

qp qpE E   the 
integrals of the slope terms in the x- and y-direction. The results of such integrals for a 
Gaussian normalised autocorrelation function are reported in (Ulaby et al, 1982). Also the 
expressions of the polarisation-dependent coefficients ai can be found in the same reference. 
However, the expressions of the coefficient a0 for each polarisation are reported below for 
the two particular cases of backscattering and scattering in the specular direction. 
In the backscattering: 
HH polarisation:   0 2 cosh i ia R    
VH polarisation:  0 0a   
VV polarisation:   0 2 cosv i ia R     
HV polarisation:  0 0a   
Conversely, in the specular direction case: 
HH polarisation:   0 2 cosh i ia R     
VH polarisation:  0 0a   
VV polarisation:   0 2 cosv i ia R    
HV polarisation:  0 0a   
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The quantity qx,y,z are defined in the previous section. 

3.3 On the range of validity of the Kirchhoff method and shadowing effects 
The basic assumption of the Kirchhoff method is that plane-boundary reflection occurs at 
every point on the surface. Thus, when statistical surfaces are considered, their horizontal-
scale roughness, the correlation length l, must be larger than the electromagnetic 
wavelength, while their vertical-scale roughness, the standard deviation  of surface 
heights, must be small enough so that the average radius of curvature is larger than the 
electromagnetic wavelength. Mathematically, for stationary isotropic Gaussian surface the 
above-stated restriction are (Ulaby et al, 1982): 

 6kl   (3.3.1) 

 
2

2.76
l


  (3.3.2) 

where k is the wave number and  is the electromagnetic wavelength. Note that the surface 
standard deviation should be small relative to the correlation length, but it can be 
comparable to or even larger than the electromagnetic wavelength. This means that large 
standard deviations can be tolerated if the correlation length is large enough to preserve an 
acceptable average radius of curvature. The conditions reported above are for the Kirchhoff 
approximation. The scattering models described in section 3.2.1 and 3.2.2 require additional 
approximations reported in the following table: 
 

Validity limits of Kirchhoff Approximation (KA) 
(Gaussian surface) 

        l2 > 2.76                            and                        kl > 6 
Stationary Phase Aproximation (GO) Scalar Approximation (PO) 

k > 2 k < 1 and rmsslope < 0.25 

Table 3.3.1. Validity of GO and PO for stationary isotropic Gaussian surfaces with standard 
deviation  and correlation length l. 

3.4 Some concluding remarks on the Kirchhoff method 
As was mentioned in the previous paragraph, the Kirchhoff method does neither in itself 
account for shadowing and nor does it (in the form described here) account for multiple 
scattering on the surface. Due to the lack of these two effects energy conservation is not 
satisfied. However, in (Ulaby et al, 1982) this conservation is demonstrating with the 
inclusion of these two effects. 
In the literature, the surface height distribution is in most cases assumed to be Gaussian. The 
reason for this is, as mentioned previously, that the surface roughness rms height and the 
autocorrelation function entirely determine the random process, and therefore the bistatic 
scattering coefficient can be expressed in terms of these two quantities. 
The Kirchhoff method has been applied to surfaces described by fractal geometry. As an 
example we can mention that in (Franceschetti et al, 1999) a fractional Brownian motion model 
was used for modelling the scattering from natural rough surface. In combination with the 
Kirchhoff method an analytical solution for the bistatic scattering coefficient was obtained. 
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As was mentioned in the previous paragraph, the Kirchhoff method does neither in itself 
account for shadowing and nor does it (in the form described here) account for multiple 
scattering on the surface. Due to the lack of these two effects energy conservation is not 
satisfied. However, in (Ulaby et al, 1982) this conservation is demonstrating with the 
inclusion of these two effects. 
In the literature, the surface height distribution is in most cases assumed to be Gaussian. The 
reason for this is, as mentioned previously, that the surface roughness rms height and the 
autocorrelation function entirely determine the random process, and therefore the bistatic 
scattering coefficient can be expressed in terms of these two quantities. 
The Kirchhoff method has been applied to surfaces described by fractal geometry. As an 
example we can mention that in (Franceschetti et al, 1999) a fractional Brownian motion model 
was used for modelling the scattering from natural rough surface. In combination with the 
Kirchhoff method an analytical solution for the bistatic scattering coefficient was obtained. 
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4. The small perturbation method 
The Small Perturbation Method (SPM) belongs to a large family of perturbation expansion 
solutions to the wave equation. The approach is based on formulating the scattering as a 
partial differential equation boundary value problem. The basic idea is to find a solution in 
terms of plane waves that matches the surface boundary conditions, which state that the 
tangential component of the field must be continuous across the boundary. The surface 
fields are expanded in a perturbation series with respect to surface height, e.g., 

0 1 ...  E E E . In the expansion 0E  would be the surface field if the surface was flat. The 
philosophy behind this approach is that small effective surface currents on a mean surface 
replace the role of a small-scale roughness. So this method applies to surfaces with small 
surface height variations and small surface slopes compared with the wavelength but 
independently of the radius of curvature of the surface. Therefore, the surface needs no 
longer to be approximated by planes. The small-scale roughness is expanded in a Fourier 
series and the contribution to the field is therefore analysed in terms of different wavelength 
components. 
Here we will report only the expressions of the bistatic scattering coefficient. A more 
detailed description of their computation process can be found in (Ulaby et al, 1982). 

4.1 A small presentation of the SPM 
The zero order solution of the SPM is the same as for a plane interface, while the first order 
solution gives the incoherent scattered field due to single scattering. For the latter case, the 
bistatic scattering coefficient for either a horizontally or vertically polarised incident wave is 
(Ulaby et al, 1982): 

  228 cos cos sin ,o
qp i s qp x i yk W k k k        (4.1.1) 

where 

sin cosx s sk k     

sin siny s sk k     

   1, ,
2

x yjk u jk v
x yW k k u v e dudv


   

 
    

 and  ,u v  are, respectively, the variance of surface heights and the surface correlation 
coefficient; qp are coefficients that depend on polarisation, incidence and scattering angle, 
and on complex relative dielectric constant c of the homogeneous medium below the 
interface. The detailed expressions of qp are reported in (Ulaby et al, 1982). 

4.2 Some remarks on the region of validity of the SPM 
The Small Perturbation Method is applied to surfaces with a surface height standard 
deviation much less than the incident wavelength (5 percent or less) and an average surface 
slope comparable to or less than the surface standard deviation times the wave number. For 
a surface with Gaussian correlation function, such two conditions can be expressed 
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analytically as follows, but they should be viewed only as a guideline for applying the SPM 
scattering model: 

0.3k   

2 0.3l   

The SPM has been compared to more accurate numerical simulations in (Thorsos & Jackson, 
1989; 1991) for one-dimensional rough surfaces with a Gaussian roughness spectrum. Under 
these conditions the authors show that the first-order SPM gives accurate results for k << 1 
and 1kl  . The results also show that for k << 1 and kl > 6, the sum of the first three orders 
of the SPM is required to obtain accurate results. 
It has been argued that the SPM does account for multiple scattering up to the order of the 
perturbative expansion. This means that the first order perturbative solution does not 
account for multiple scattering but that some multiple scattering effects can be observed in 
the higher order solutions. 
 

Validity limits of Small Perturbation Method (SPM) 
(Gaussian surface) 

       k < 0.3             and             rmsslope < 0.3 
 

Table 4.2.1. Validity of SPM for stationary isotropic Gaussian surfaces with standard 
deviation  and root mean square slope rmsslope. 

5. The Integral Equation Method (IEM) 
A relatively new method for calculating scattering of electromagnetic waves from rough 
surfaces is the Integral Equation Method (IEM). The IEM has been used extensively in the 
microwave region in recent years and it has proved to provide good predictions for a wide 
range of surface profiles. The method can be viewed as an extension of the Kirchhoff 
method and the Small Perturbation Method since it has been shown to reproduce results of 
these two methods in appropriate limits. The IEM is a relatively complicated method in its 
general form (including multiple scattering) and it is beyond the scope of the present 
overview to give a full presentation of the method. A more detailed presentation of the IEM 
can be found in (Fung, 1994). 

5.1 On the formulation of the IEM 
The starting point of the IEM is the Stratton-Chu integral for the scattered field, equation 
(3.1.1). The tangential surface fields which enter the Stratton-Chu integral are given in 
equations (2.2.11) - (2.2.12) and (2.2.15) - (2.2.16). In the Kirchhoff approach, the tangential 
fields are approximated using the tangent plane approximation, replacing the complete 
tangential surface fields with the Kirchhoff tangential surface fields of equations (3.2.1) and 
(3.2.2). It is clear that the Kirchhoff tangential surface fields cannot provide alone a good 
estimate of the surface fields since the integral form in equations (2.2.11) - (2.2.12) are not 
accounted for in the Kirchhoff approach. In the IEM, a complementary term is included in 
equations (3.2.1) and (3.2.2) to correct for this: 
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    ˆ ˆ ˆ
k c    n H n H n H  (5.1.2) 

In these equations, the first terms on the right hand side are the tangential fields under 
Kirchhoff approximation and the complementary fields are given by: 
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rE  and rH  being the reflected electric and magnetic fields propagating along the reflected 
direction. To use (5.1.1) and (5.1.2) for estimating the tangential field, both the Kirchhoff 
field and the complementary field need to be expressed in terms of the incident field 
components and the surface reflectivity properties. Using the local coordinate system 
defined by the unit vectors t̂ , d̂ , ˆ

ik  (for their expressions refer to (Fung, 1994)), the 
incident electric and magnetic field can be expressed into locally horizontally and vertically 
polarised components. Accordingly, after some manipulations (see (Fung, 1994) for more 
details), the Kirchhoff and complementary tangential fields can be rewritten as: 
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 (5.1.8) 

It can be noted that, while (5.1.5) and (5.1.6) are expressed in terms of known quantities, that 
is the incident electric or magnetic fields, the local Fresnel reflection coefficient and the local 
incident angle, (5.1.7) and (5.1.8) are integral equations. In order to obtain estimates of (5.1.7) 
and (5.1.8), IEM substitutes the unknown expressions of the tangential fields in the right-
hand side of (5.1.7) and (5.1.8), that is the  ˆ  n E  and  ˆ  n H  terms which appear in e , 

te ,   and t , with the Kirchhoff tangential fields,  ˆ
k

 n E  and  ˆ
k

 n H , respectively. 

This is the fundamental approximation adopted by IEM model. However, even with this 
simplification the obtained integral expressions remain too complex for practical use. 
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Much simpler approximate expressions of the tangential Kirchhoff and complementary 
fields can be obtained differentiating them for each linear incident and scattered 
polarisation. The resulting approximated equations (electric and magnetic surface field 
equations for horizontal, vertical and cross polarisation) can be found in (Fung, 1994). 
Then, the simplified tangential surface fields can be inserted in the Stratton-Chu integral. 
The far field scattered from the rough surface can be expressed as a combination of the 
Kirchhoff and the complementary term: 

 s k c
qp qp qpE E E   (5.1.9) 

where 
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The quantities fqp and qpF , respectively the Kirchhoff and complementary field coefficients, 
that appear in the above equations are defined as follows: 

     1ˆ ˆ ˆ ˆqp s p p ik k
f D E         

q k n E q n H  (5.1.12) 

    2
1ˆ ˆ ˆ ˆ8qp s p pc c

F D          
q k n E q n H  (5.1.13) 

where 2 2
1 1 x yD Z Z    and Ei is the complex amplitude of the incident electric field. 

In general, both fqp and qpF  are dimensionless, complicated expressions and depended on 
spatial variables. Therefore several approximations are made to make these functions 
independent of spatial variables (Fung, 1994).  
In particular, the fqp coefficients depend on the Fresnel reflection coefficients, and hence on 
the local angle, and on the slope terms, Zx and Zy. The first dependency is removed by 
approximating the local incidence angle in the Fresnel reflection coefficients by the incident 
angle, i, for surface with small scale roughness and by the specular angle, sp, ˆˆcos sp i   n k , 

for surface with large scale roughness. The rule that defines the bound between the two 
regions is reported here assuming a Gaussian autocorrelation function: 
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 (5.1.14) 

In order to remove the dependence on the slope terms, the integral (5.1.10) is solved by parts 
and the edge terms were discarded. 
To obtain the expressions of the complementary coefficients qpF , the computation is rather 
lengthy and complicated. When the equations (2.2.15) - (2.2.18) are substituted in the 
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It can be noted that, while (5.1.5) and (5.1.6) are expressed in terms of known quantities, that 
is the incident electric or magnetic fields, the local Fresnel reflection coefficient and the local 
incident angle, (5.1.7) and (5.1.8) are integral equations. In order to obtain estimates of (5.1.7) 
and (5.1.8), IEM substitutes the unknown expressions of the tangential fields in the right-
hand side of (5.1.7) and (5.1.8), that is the  ˆ  n E  and  ˆ  n H  terms which appear in e , 

te ,   and t , with the Kirchhoff tangential fields,  ˆ
k

 n E  and  ˆ
k

 n H , respectively. 

This is the fundamental approximation adopted by IEM model. However, even with this 
simplification the obtained integral expressions remain too complex for practical use. 
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Much simpler approximate expressions of the tangential Kirchhoff and complementary 
fields can be obtained differentiating them for each linear incident and scattered 
polarisation. The resulting approximated equations (electric and magnetic surface field 
equations for horizontal, vertical and cross polarisation) can be found in (Fung, 1994). 
Then, the simplified tangential surface fields can be inserted in the Stratton-Chu integral. 
The far field scattered from the rough surface can be expressed as a combination of the 
Kirchhoff and the complementary term: 
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The quantities fqp and qpF , respectively the Kirchhoff and complementary field coefficients, 
that appear in the above equations are defined as follows: 
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where 2 2
1 1 x yD Z Z    and Ei is the complex amplitude of the incident electric field. 

In general, both fqp and qpF  are dimensionless, complicated expressions and depended on 
spatial variables. Therefore several approximations are made to make these functions 
independent of spatial variables (Fung, 1994).  
In particular, the fqp coefficients depend on the Fresnel reflection coefficients, and hence on 
the local angle, and on the slope terms, Zx and Zy. The first dependency is removed by 
approximating the local incidence angle in the Fresnel reflection coefficients by the incident 
angle, i, for surface with small scale roughness and by the specular angle, sp, ˆˆcos sp i   n k , 

for surface with large scale roughness. The rule that defines the bound between the two 
regions is reported here assuming a Gaussian autocorrelation function: 
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In order to remove the dependence on the slope terms, the integral (5.1.10) is solved by parts 
and the edge terms were discarded. 
To obtain the expressions of the complementary coefficients qpF , the computation is rather 
lengthy and complicated. When the equations (2.2.15) - (2.2.18) are substituted in the 
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approximated expressions of tangential complementary fields, the spectral representations 
of Green’s function and of its gradient are introduced, assuming however the same Green’s 
functions for both the medium: 
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ˆ ˆ ˆu v q g x y z  and 2 2 2q k u v    are the propagation vector and its z-component of the 
generic plane wave that appears in the plane waves expansion of the field, whereas z and z  
are the random variables representing the surface heights at different locations on the 
random surface. In (Fung, 1994), the z z  terms and the term with the   are dropped in 
the equations (5.1.15) and (5.1.16) in order to simplify the calculation. However, in an 
improved version of the IEM (see (Chen et al, 2000)) these terms are kept in the analysis. In 
addition, as was the case for the Kirchhoff coefficients, fqp, the dependence through the slope 
terms is removed by integrating by parts and discarding the edge terms. Instead, as regard 
the Fresnel reflection coefficients, the local angle is always replaced by incident angle (Fung, 
1994; Wu et al, 2001).  
Moreover, it is important to underline that the tangential and normal field components that 
appear in the expressions of the qpF  coefficients through equations (2.2.15) - (2.2.18) can be 
approximated by the tangential Kirchhoff fields. The complimentary field coefficients Fqp 
that appear in the right term of the equation (5.1.11) are obtained from the definition of the 

qpF  after the Green’s function and its gradient are replaced by the simplified spectral 
representation, above mentioned, and after the phase factor of the Green function and u, v, 
x’, y’ integrations are factored out. The expressions of such coefficients together with the 
expressions of the Kirchhoff ones are reported in (Brogioni et al, 2010).  
Once the field coefficients, fqp and Fqp, are made independent of spatial variables, it is 
possible to provide the expression of the incoherent scattered power:  
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and from this the bistatic scattering coefficient: 

 o k kc c
qp qp qp qp       (5.1.18) 

From the above expression it follows that the scattering coefficient is given by the sum of 
three terms: the Kirchhoff, the complementary and the cross term. The first is originated by 
Kirchhoff fields, the second by the interaction between Kirchhoff and complementary fields, 
whereas the last is due only to complementary fields.  
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To carry out the average operation an assumption about the type of surface height 
distribution is necessary. In order to simplify the calculation of the incoherent power terms 
the rough surface is assumed characterised by a Gaussian height distribution. Accordingly, 
the terms in (5.1.18) assume the following expressions, reported in (Fung, 1994): 
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The above expressions consist of multiple integrals which are too complex and hence not 
practical to use. In order to evaluate these integrals, the model is approximated in two 
different forms depending upon whether the surface height is moderate or large in terms of 
the incident wavelength (k). The first case is referred to as low frequency approximation, 
whilst the other is referred to as high frequency approximation. An indicative threshold 
value of k < 2 is reported in (Fung, 1994). The detailed expressions of k

qp , kc
qp , c

qp  valid 

separately when k < 2 and for large k are given in (Fung, 1994) and are not reported here. 
For both the approximations, in the expression of the bistatic scattering coefficient two types 
of terms can be distinguished: one representing single-scattering and the other representing 
multiple-scattering. The latter may be viewed as a correction to the single term for both the 
high- and the low-frequency regions. This division is important to identify weather single or 
multiple scattering is significant for applications. For completeness we report here the total 
single scattering coefficient obtained by selecting the single scattering contributions in the 
expressions of k

qp , kc
qp , c

qp  valid when k < 2 (for the detailed explanation refer to (Fung, 

1994)): 
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and from this the bistatic scattering coefficient: 
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From the above expression it follows that the scattering coefficient is given by the sum of 
three terms: the Kirchhoff, the complementary and the cross term. The first is originated by 
Kirchhoff fields, the second by the interaction between Kirchhoff and complementary fields, 
whereas the last is due only to complementary fields.  
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To carry out the average operation an assumption about the type of surface height 
distribution is necessary. In order to simplify the calculation of the incoherent power terms 
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The above expressions consist of multiple integrals which are too complex and hence not 
practical to use. In order to evaluate these integrals, the model is approximated in two 
different forms depending upon whether the surface height is moderate or large in terms of 
the incident wavelength (k). The first case is referred to as low frequency approximation, 
whilst the other is referred to as high frequency approximation. An indicative threshold 
value of k < 2 is reported in (Fung, 1994). The detailed expressions of k

qp , kc
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qp  valid 

separately when k < 2 and for large k are given in (Fung, 1994) and are not reported here. 
For both the approximations, in the expression of the bistatic scattering coefficient two types 
of terms can be distinguished: one representing single-scattering and the other representing 
multiple-scattering. The latter may be viewed as a correction to the single term for both the 
high- and the low-frequency regions. This division is important to identify weather single or 
multiple scattering is significant for applications. For completeness we report here the total 
single scattering coefficient obtained by selecting the single scattering contributions in the 
expressions of k
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qp  valid when k < 2 (for the detailed explanation refer to (Fung, 
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6. Conclusions 
We have presented the results from a literature search of models for scattering of 
electromagnetic waves from random rough surfaces. In particular we have focused on the 
calculation of the bistatic scattering coefficient in three different classes of methods: the 
Kirchhoff Approximation, the Method of Small Perturbation and the Integral Equation Method. Of 
these, the first two, are amongst the early approaches which however are still much used. 
The latter is an example of more recent approaches which have been developed as an 
attempt to extend the validity of the former methods. 
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1. Introduction 
The problem of guided wave propagation in a wave guide with imperfectly reflecting 
boundaries arises in several applications, such as propagation in mine tunnels and in 
screened surface wave guides. In recent years, many studies have been carried out on the 
propagation characteristic of radio waves in tunnels in UHF band [1-2]. From the theoretical 
point of view, tunnels can be regarded as hollow waveguides surrounded by a lossy 
dielectric medium, such as concrete, ground, and so on. The problem of radio 
communication in tunnels has found solutions using leaky transmission lines as supports 
for propagation of transverse electromagnetic modes [3-4]. These modes are characterized 
by the fact that there is no cutoff frequency, and by an attenuation which increases with 
increasing frequency. However, when the frequency is high enough, natural propagation 
modes, which are transverse electric or transverse magnetic, can appear and interfere with 
the transmission line supported transverse electromagnetic modes [5]. 
Natural propagation can be helpful to solve some specific problems, such as radio 
communications in mines with rooms and pillars which cannot be solved easily with the 
help of transmission lines. Natural propagation modes are also useful for short range 
communications, for example, in some road tunnels. For distances shorter than 200m, these 
modes can be more suitable the transmission line supported modes [6]. 
In order to maximize the performance attainable feeding in the interior of tunnels with 
antenna systems, it is important to estimate the value and the attenuation of the 
electromagnetic strength inside the tunnel. Investigations concerning radiowave 
propagation in railways tunnels have been performed [7] and the results confirm the 
existence of a waveguide effect strongly related to the antenna positions. Recently, Abo-
Seida et al. [8] and Abo-Seida [9] studied the electromagnetic field due to vertical magnetic 
dipole buried in stratified media. Also, Abo-Seida [10] computed the attenuation below and 
above the cutoff frequency in a rectangular tunnel. 
It might be thought that waveguides with circular cross sections would be preferred to guides 
with rectangular cross sections, just as circular pipes are commonly used for carrying water 
and fluids in preference to rectangular pipes. However, circular waveguides have the 
disadvantage that there is only a very narrow range between the cutoff wavelength of the 
dominant mode and the cutoff wavelength of the next higher mode. As with rectangular 
guides, the modes may be classified as transverse electric ( TE ) or transverse magnetic ( TM ), 
according to whether it is the electric or magnetic lines of force that lie in planes perpendicular 
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6. Conclusions 
We have presented the results from a literature search of models for scattering of 
electromagnetic waves from random rough surfaces. In particular we have focused on the 
calculation of the bistatic scattering coefficient in three different classes of methods: the 
Kirchhoff Approximation, the Method of Small Perturbation and the Integral Equation Method. Of 
these, the first two, are amongst the early approaches which however are still much used. 
The latter is an example of more recent approaches which have been developed as an 
attempt to extend the validity of the former methods. 
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1. Introduction 
The problem of guided wave propagation in a wave guide with imperfectly reflecting 
boundaries arises in several applications, such as propagation in mine tunnels and in 
screened surface wave guides. In recent years, many studies have been carried out on the 
propagation characteristic of radio waves in tunnels in UHF band [1-2]. From the theoretical 
point of view, tunnels can be regarded as hollow waveguides surrounded by a lossy 
dielectric medium, such as concrete, ground, and so on. The problem of radio 
communication in tunnels has found solutions using leaky transmission lines as supports 
for propagation of transverse electromagnetic modes [3-4]. These modes are characterized 
by the fact that there is no cutoff frequency, and by an attenuation which increases with 
increasing frequency. However, when the frequency is high enough, natural propagation 
modes, which are transverse electric or transverse magnetic, can appear and interfere with 
the transmission line supported transverse electromagnetic modes [5]. 
Natural propagation can be helpful to solve some specific problems, such as radio 
communications in mines with rooms and pillars which cannot be solved easily with the 
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modes can be more suitable the transmission line supported modes [6]. 
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propagation in railways tunnels have been performed [7] and the results confirm the 
existence of a waveguide effect strongly related to the antenna positions. Recently, Abo-
Seida et al. [8] and Abo-Seida [9] studied the electromagnetic field due to vertical magnetic 
dipole buried in stratified media. Also, Abo-Seida [10] computed the attenuation below and 
above the cutoff frequency in a rectangular tunnel. 
It might be thought that waveguides with circular cross sections would be preferred to guides 
with rectangular cross sections, just as circular pipes are commonly used for carrying water 
and fluids in preference to rectangular pipes. However, circular waveguides have the 
disadvantage that there is only a very narrow range between the cutoff wavelength of the 
dominant mode and the cutoff wavelength of the next higher mode. As with rectangular 
guides, the modes may be classified as transverse electric ( TE ) or transverse magnetic ( TM ), 
according to whether it is the electric or magnetic lines of force that lie in planes perpendicular 
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to the axis of the guide. The different modes are designated by a double subscript system 
analogous to that for rectangular guides. 

2. Geometrical structure and basic equations 
The concrete tunnel is practically of finite thickness. At low frequencies, below cutoff 
frequencies, the skin depth may exceed this thickness and thus the field penetrates to the 
outside. However, our aim is to check the possibilities of radio communication in tunnels 
and to replace the tunnel by a circular waveguide. It is possible to make this replacement in 
practical problems involving conducting walls. 
A uniform waveguide of circular cross section is most conveniently described by polar 
coordinate system ( , , )r z , and divide the possible solutions for circular guides into 
transverse magnetic and transverse electric waves. For the TM waves zH  is identically zero 
and the wave equation for zE is used. Also, TE  waves zE is identically zero and zH is used. 
The modes are further labeled by a two-dimensional order number ( , )m n . 
For a circular waveguide with a radius r the critical frequencies are given by  
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where 0 , mnm Y and '
mnY  are the nth zero of Bessel function mJ and of its derivative, 

respectively, and 8 13 10C ms   is the speed of light. 
The cutoff wavelengths are given for a circular waveguide by [11]  
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where ,m n  are equal to 1,2 ,3 ,........  for the mnTM  modes, and equal to       
0 ,1,2 ,3 ,........  for the mnTE  modes. 
Below the lowest cutoff frequency, propagation is not possible. The attenuation   is 
independent of the electrical properties of the wall and have the form equation 
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where c  is the longest cutoff wavelength of the waveguide and the value 8.69 is the 
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where   is the intrinsic impedance of the propagation medium and equal to 1
3 72( / ) , 10.88 10 (10 / )(1 / )R        ohms,    is the conductivity of the guide walls in 

mho/m,   is the permeability of the propagation medium in henry/m,   is the 
permittivity of the propagation medium in farad/m. 

3. Determination of the attenuation constant 

We consider the circular –waveguide model of the tunnel. In practice, the concrete tunnel 
wall is of finite thickness. This tunnel is considered to have a radius 4.08r  m. Its 
conductivity is taken as 110  and 210  mho/m as in [10]. 
The cutoff frequency is 20 MHz corresponding to approximately a tunnel shaped as a 
circular cylinder, inside it a wave is propagating in the  

11TE  mode. Taking account of the conductivity of the walls, the attenuation constants of the 

11TE  and 01TE  modes have been determined and the results plotted in Figs (1) and (2), 
respectively, for both values of   and for frequencies in the range 20-300 MHz.  
As in the case of mnTE  modes, the attenuation of the electromagnetic waves is calculated for 
both the 11TM and 01TM  modes. The obtained results are plotted in Figs (3) and (4), 
respectively, as a function of the frequency.   
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to the axis of the guide. The different modes are designated by a double subscript system 
analogous to that for rectangular guides. 
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Fig. 4. Frequency and attenuation in a circular tunnel 

4. Conclusion 
The propagation of electromagnetic waves in a circular tunnel have been performed and the 
results confirm the existence of a waveguide effect strongly related to the antenna positions. 
The cutoff frequency was calculated and three different types of frequency ranges were 
characterized. The numerical results presented here indicate that the different values of m 
and n modes. 
This work enable us to distinguish three different ranges of frequency, characterized by 
three different propagation mechanisms. 
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Propagation of Electromagnetic Waves  
in Thin Dielectric and Metallic Films 

Luc Lévesque 
Royal Military College of Canada  

Canada 

1. Introduction 
Matrix formalism is a very systematic method to find the reflectance or transmittance in a 
stratified medium consisting of a pile of thin homogeneous films. Fitting experimental 
values of reflectance curve to expressions obtained from the matrix formalism method is an 
efficient method to estimate the refractive index (n) of a dielectric and/or the real and 
imaginary parts of a metal permittivity (). In the next section, the method of matrix 
formalism is briefly reviewed with some examples to show how it can be applied in curve 
fitting to determine refractive indices or the metal permittivity. Applications to more 
complex structures such as planar waveguides and periodic grating are presented in 
sections 2 and 3, respectively. 

1.1 Matrix formalism for the transverse electric and magnetic waves in stratified thin 
films 
Maxwell equations will be applied at each interface between two homogeneous media to 
find the characteristic matrix defining a thin film. Let us consider figure 1 for a transverse 
electric (TE) wave with the E-field vector perpendicular to the plane of incidence for one 
thin homogeneous film. 
 

 
Fig. 1. Electric field (E) and magnetic field (H) in each medium of refractive index n1, n2 and n3. 



 12 

Propagation of Electromagnetic Waves  
in Thin Dielectric and Metallic Films 

Luc Lévesque 
Royal Military College of Canada  

Canada 

1. Introduction 
Matrix formalism is a very systematic method to find the reflectance or transmittance in a 
stratified medium consisting of a pile of thin homogeneous films. Fitting experimental 
values of reflectance curve to expressions obtained from the matrix formalism method is an 
efficient method to estimate the refractive index (n) of a dielectric and/or the real and 
imaginary parts of a metal permittivity (). In the next section, the method of matrix 
formalism is briefly reviewed with some examples to show how it can be applied in curve 
fitting to determine refractive indices or the metal permittivity. Applications to more 
complex structures such as planar waveguides and periodic grating are presented in 
sections 2 and 3, respectively. 

1.1 Matrix formalism for the transverse electric and magnetic waves in stratified thin 
films 
Maxwell equations will be applied at each interface between two homogeneous media to 
find the characteristic matrix defining a thin film. Let us consider figure 1 for a transverse 
electric (TE) wave with the E-field vector perpendicular to the plane of incidence for one 
thin homogeneous film. 
 

 
Fig. 1. Electric field (E) and magnetic field (H) in each medium of refractive index n1, n2 and n3. 



  
Electromagnetic Waves 

 

236 

In figure 1, the H-field is related to the E-field using: 

 , , , , , ,
o

i r t i r t i r t
o

H n E


  (1) 

where o and o are referred to as the electric permittivity and the magnetic permeability, 
respectively. Letters i , r and t stand for incident, reflected and transmitted rays, respectively 
and the homogeneous medium is identified using numbers 1, 2 or 3.  
As both the E and H fields are continuous at boundary 1, one may write E1 and H1 as: 

 '
1 1 1 2t rE E E E    (2) 

 ' '
1 1 2 1 2 2 2 1 2( )cos ( )o

x x t r t r
o

H H n E E Y E E



      (3) 

where                                                   2 2 2coso

o
Y n 




                                                                  (4) 

The system of equations (2) and (3) can be written under the matrix form as: 

 11
'

1 2 2 2

1 1 t

x r

EE
H Y Y E

    
            

 (5) 

At interface 2, we merely write 

 2 2 2 2i rE E E E    (6) 

By making use of the E-field amplitude phase shift, it can be shown that Ei2 and E’r2 can be 
expressed as: 

 2 2
2 1

jk h
i tE E e  (7) 

and  

 2 2'
2 2

jk h
r rE E e  (8)  

respectively, with  

 2 2 2cosh d   (9) 

where d2 is the thickness of the homogenous thin film and i2 is the angle defined as shown 
in figure 1. k2 is the wave-vector in the thin homogeneous film (medium 2) , which is given 
as  

 2 2
2k n


  (10) 

where  is the wavelength of the monochromatic incident light when propagating in a 
vacuum.  
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Equations (7) and (8) are used to express the tangential component of the H-field vector at 
interface 2 as: 

 2 2 2 2'
2 2 1 2( )jk h jk h

x t rH Y E e E e   (11) 

Using Equations (7) and (8), Equations (6) and (11) are expressed under the matrix form and 
by matrix inversion one can show that: 

 
2 2 2 2

2 2 2 2

1 22
'

22
2

2 2

22

jk h jk h

t

jk h jk h xr

e eE EY
HE e e Y

 

 
        
       

 (12) 

Lastly, substituting Equation (12) into Equation (5) the E and H field components at 
interface 1 are related to those at interface 2 by: 

 1 2 2 2 2 2 2 2
2

1 2 2 2 2 2 2 2

cos( ) sin( ) /
sin( ) cos( )x x x

E k h j k h Y E E
M

H jY k h k h H H
       

        
       

 (13)  

The 2x2 matrix in equation (13) is the characteristic matrix (M2) of the homogenous thin film. 
Note that M2 is unimodular as its determinant is equal to 1.  Assuming another film lying 
just underneath the thin film shown in figure 1, from Equation (13) we imply that field 
components E and H at interface 2 will be related to those at interface 3 by the matrix 
equation: 

 2 3 3 3 3 3 3 3
3

2 3 3 3 3 3 3 3

cos( ) sin( ) /
sin( ) cos( )x x x

E k h j k h Y E E
M

H jY k h k h H H
       

        
       

 (14) 

Substituting Equation (14) into Equation (13) one finds: 

 1 3
2 3

1 3x x

E E
M M

H H
   

   
   

 (15) 

By applying this method repeatedly for a stratified system of N thin homogeneous thin 
films we can write: 

 1
2 3

1
... N N

N
x Nx Nx

E E E
M M M M

H E E
     

      
     

 (16) 

where 
0

coso
l l lY n




  , 2
l lk n


 and cosl l lh d  for interfaces l = 2,3, … , N. (Born & 

Wolf, 1980) show that the reflection and transmission coefficient amplitudes for a system of 
N-1 layers ( l = 2 to N) lying on a substrate of refractive index ns can be expressed from the 
matrix entries of the system matrix M as:  

 1 1 11 12 21 22

1 1 11 12 21 22

i o s s

r o s s

E Y m Y Y m m Y mr
E Y m Y Y m m Y m

  
 

  
 (17)   
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where r  is referred to as the reflection coefficient for the TE wave. Admittances Y1 and Ys 
for the incident medium and the substrate hosting the system of N-1 homogeneous thin 
films are given by: 

 1 1 1coso

o
Y n




  (18) 

and  

 coso
s s N

o
Y n




  (19)  

For the case where the H-field is perpendicular to the plane of incidence (TM wave), the 
impedances Y1,Yl and Ys  must be replaced by Z1 , Zl and Zs , which are given by  

 1
1

1

coso

o
Z

n
 


  (20) 

 coso l
l

o l
Z

n
 


  for l = 2,3,…, N-1 (21) 

and 

 coso N
s

o s
Z

n
 


  (22) 

1.2 Examples with dielectrics and metal thin films with some experimental results 
Expressions derived in the previous section can be applied to find the reflectance curve of 
thin dielectric or metal films. They can be applied to fit experimental reflectivity data points 
to determine refractive indices of a dielectric film or metal film relative permittivity and 
even their thickness. Before we illustrate how it is used, let us apply Equation (17) for the 
simple case of Fresnel reflection coefficient amplitude for an interface between two semi-
infinite media. 

1.2.1 Interface between two semi-infinite media (Fresnel reflection coefficient)   
This situation can be mimicked by setting d2 = 0 into Equation (13). In other words, 
interfaces 1 and 2 in Figure 1 collapse into one single interface separating two semi-infinite 
media of refractive index n1 and n2. 
Characteristic matrix in Equation (13) can be used to find the matrix system for two semi-
infinite media. Setting for d2 = 0, the matrix system for the two semi-infinite media becomes 
the identity matrix as h2 equals 0. This means that m11 = m22 = 1 and m12 = m21 = 0. 
Substituting the matrix entries into Equation (17) one obtains: 
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In the previous equation we use ns = n2 and N = 2 for this single interface system.  For the 
TM wave, it can be shown that: 
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We then retrieve the results for the Fresnel reflection coefficients. Results for the 
transmission coefficient amplitude (t) can be obtained in the same manner. 

1.2.2 Reflectance curve for a thin metallic film of silver or gold (surface plasmons) 
A matrix approach is used to compute the reflectance of a thin film coupled to the 
hypotenuse of a right angle prism. The system shown in Figure 2 can be modeled by using 
three characteristic matrices for the matching fluid, the glass slide, the metal film and then 
accounting for the various Fresnel reflection losses at both the entrance and output face of 
the prism.  
 
 

 
 

Fig. 2. Path of a laser beam propagating through all interfaces bounded by two given media. 
For a one way trip the media are (1) air, (2) glass, (3) matching fluid (greatly exaggerated), 
(4) glass (slide), (5) metal film (Au of Ag) and (6) air. 
(Lévesque, 2011) expressed the characteristic matrix M of the sub-system of three layers in 
Figure 2 as 

 3 4 5M M M M  (25) 

where M3, M4 and M5 are the characteristic matrices for the index matching fluid layer, the 
glass slide and the metal thin film, respectively. Each of these matrices is given by 
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where i =3, 4 or 5. ßi and qi for p-polarized light are expressed as 
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where r  is referred to as the reflection coefficient for the TE wave. Admittances Y1 and Ys 
for the incident medium and the substrate hosting the system of N-1 homogeneous thin 
films are given by: 
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Y n
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For the case where the H-field is perpendicular to the plane of incidence (TM wave), the 
impedances Y1,Yl and Ys  must be replaced by Z1 , Zl and Zs , which are given by  
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1.2 Examples with dielectrics and metal thin films with some experimental results 
Expressions derived in the previous section can be applied to find the reflectance curve of 
thin dielectric or metal films. They can be applied to fit experimental reflectivity data points 
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the identity matrix as h2 equals 0. This means that m11 = m22 = 1 and m12 = m21 = 0. 
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In the previous equation we use ns = n2 and N = 2 for this single interface system.  For the 
TM wave, it can be shown that: 
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We then retrieve the results for the Fresnel reflection coefficients. Results for the 
transmission coefficient amplitude (t) can be obtained in the same manner. 
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three characteristic matrices for the matching fluid, the glass slide, the metal film and then 
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where i =3, 4 or 5. ßi and qi for p-polarized light are expressed as 
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respectively, where I ( = ni2) is the relative permittivity of the material. Using Snell’s law, 
note that  
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We are assuming all media to be non-magnetic and d3, d4 and d5 are the thicknesses of the 
matching fluid, glass slide and the metal film, respectively. 3, 4 and 5 (= ’5 +i5’’) are the 
relative permittivity for the matching fluid, the glass slide and the metal film, respectively. 
5’ and 5’’ are respectively, the real and imaginary parts of the metal film relative 
permittivity. By taking into account the Fresnel reflection losses F1 at the input and output 
faces of the glass prism, the reflectance for the p-polarized light RDet is given by: 
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where mij are the entries of matrix M and F1 is given by 
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In previous equation n2 is the refractive index of the prism.  Investigations on optical 
reflectivity were done on glass slides which were sputtered with gold or silver. These glass 
slides were pressed against a right angle prism long face and a physical contact was then 
established with a refractive index matching fluid. The prism is positioned on a rotary stage 
and a detector is measuring the signal of the reflected beam after minute prism rotations of 
roughly 0.03º. The p-polarized light at  = 632.8 nm is incident from one side of a glass 
prism and reflects upon thin metal films as shown in figure 3. As exp (-jt) was assumed in 
previous sections, all complex permittivity  must be expressed as  = ’ + j’’. 
 
 

 
Fig. 3. Experimental set-up to obtain reflectivity data points. 
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If no film is coating the glass slide, a very sharp increase in reflectivity is expected when 4 
approaches the critical angle. This sudden increase would occur at c = sin-1(1/n2) ~ 41.3º. 
The main feature of the sharp increase in the reflectivity curve is still obvious in the case of a 
metalized film. This is so as the penetration of the evanescent field is large enough to feel the 
presence of air bounding the thin metal film. As silver or gold relative permittivity (optical 
constant) is complex, cos5 becomes complex in general and as a result 5 is not represented 
in Fig. 2. This means physically that the field penetrates into the metal film and decays 
exponentially through the film thickness. At an optimum thickness, the evanescent field 
excites charge oscillations collectively at the metal-film-air surface (c.f.fig.2), which is often 
used to probe the metal surface. This phenomenon known as Surface Plasmon Resonance 
(Raether, 1988; Robertson & Fullerton, 1989; Welford, 1991) is occurring at an angle of 2 that 
is a few degrees greater than c. For a He-Ne laser beam at  = 632.8 nm, that is incident 
from the prism’s side (c.f.fig.2) and then reflecting on silver or gold metal films, surface 
plasmons (SP) are excited at 2 near 43º and 44º, respectively. At these angles, the incident 
light wave vector matches that of the SP wave vector. At this matching condition, the 
incident energy delivered by the laser beam excites SP and as a result of energy conservation 
the reflected beam reaches a very low value. At an optimal thickness, the reflectance curve 
displays a very sharp reflectivity dip. Figure 4 shows the sudden increase at the critical 
angle followed by a sharp dip in the reflectance curve in the case of a gold film of various 
thicknesses, which is overlaying the glass slide.    
 

 
Fig. 4. Reflectance curves for gold films of various thicknesses d5 obtained from Eq.(30).  
We used d3 = 10000 nm and d4 = 1000000 nm (1mm), n2 =1.515, n3 =1.51, n4 =1.515 and 5 = -
11.3+3j. 

Reflectance curves for gold films sputtered on glass slides show a sudden rise at the critical 
angle c followed by a sharp drop reaching a minimum near 44º. For all film thicknesses, a 
sudden rise occurs at the critical angle. Note that the reflectance curve for a bare glass slide 
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where mij are the entries of matrix M and F1 is given by 
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In previous equation n2 is the refractive index of the prism.  Investigations on optical 
reflectivity were done on glass slides which were sputtered with gold or silver. These glass 
slides were pressed against a right angle prism long face and a physical contact was then 
established with a refractive index matching fluid. The prism is positioned on a rotary stage 
and a detector is measuring the signal of the reflected beam after minute prism rotations of 
roughly 0.03º. The p-polarized light at  = 632.8 nm is incident from one side of a glass 
prism and reflects upon thin metal films as shown in figure 3. As exp (-jt) was assumed in 
previous sections, all complex permittivity  must be expressed as  = ’ + j’’. 
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If no film is coating the glass slide, a very sharp increase in reflectivity is expected when 4 
approaches the critical angle. This sudden increase would occur at c = sin-1(1/n2) ~ 41.3º. 
The main feature of the sharp increase in the reflectivity curve is still obvious in the case of a 
metalized film. This is so as the penetration of the evanescent field is large enough to feel the 
presence of air bounding the thin metal film. As silver or gold relative permittivity (optical 
constant) is complex, cos5 becomes complex in general and as a result 5 is not represented 
in Fig. 2. This means physically that the field penetrates into the metal film and decays 
exponentially through the film thickness. At an optimum thickness, the evanescent field 
excites charge oscillations collectively at the metal-film-air surface (c.f.fig.2), which is often 
used to probe the metal surface. This phenomenon known as Surface Plasmon Resonance 
(Raether, 1988; Robertson & Fullerton, 1989; Welford, 1991) is occurring at an angle of 2 that 
is a few degrees greater than c. For a He-Ne laser beam at  = 632.8 nm, that is incident 
from the prism’s side (c.f.fig.2) and then reflecting on silver or gold metal films, surface 
plasmons (SP) are excited at 2 near 43º and 44º, respectively. At these angles, the incident 
light wave vector matches that of the SP wave vector. At this matching condition, the 
incident energy delivered by the laser beam excites SP and as a result of energy conservation 
the reflected beam reaches a very low value. At an optimal thickness, the reflectance curve 
displays a very sharp reflectivity dip. Figure 4 shows the sudden increase at the critical 
angle followed by a sharp dip in the reflectance curve in the case of a gold film of various 
thicknesses, which is overlaying the glass slide.    
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(d5 = 0 nm) is also shown in figure 4. At smaller thicknesses, the electromagnetic field is less 
confined within the metallic film and does penetrate much more into the air. The 
penetration depth of the electromagnetic field just before reaching the critical angle ( < 
41.3º)  is indicated by a lower reflectance as d5 gets closer to zero, as shown  in Fig.4. The 
reflectivity drop beyond c is known as Surface Plasmon Resonance (SPR). SPR is discussed 
extensively in the literature and is also used in many applications. Good fitting of both 
regions displaying large optical intensity change is also useful in chemical sensing devices. 
As a result fitting of both regions is attempted using the exact function curve without any 
approximations given by Eq. (30). Eq. (30) is only valid for incident plane wave. Therefore, 
the reflectivity data points were obtained for a very well-collimated incident laser beam. A 
beam that is slightly converging would cause more discrepancy between the curve 
produced from Eq. (30) and the reflectivity data points. Although the Fresnel loss at the 
transparent matching fluid-glass slide interface is very small, it was taken into account in 
Eq. (30), using d3=10 000nm (10 µm) in matrix M3. The theoretical reflectance curve is not 
affected much by the matching fluid thickness d3. It was found that d3 exceeding 50 µm 
produces larger oscillations in the reflectance curve predicted by Eq.(30). As the oscillations 
are not noticeable amongst the experimental data points, the value of d3 = 10 µm was 
deemed to be reasonable. A function curve from Eq. (30) is generated by changing three 
output parameters 5’, 5’’ and d5. The sum of the squared differences (SSQ) between RDet and 
the experimental data points Ri is calculated. The best fit is determined when the SSQ is 
reaching a minimum. The SSQ is defined as:  
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i Det
i

SSQ R R
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where i is a subscript for each of the N data points from the data acquisition.  Each sample 
was placed on a rotary stage as shown in Figure 3 and a moving Si-pin diode is rotating to 
track down the reflected beam to measure a DC signal as a function of 2. The reflectivity 
data points and typical fits are shown in Figure 5. 
In the fit in Fig. 5a, we used n2 =n4 = 1.515, n3 = 1.47(glycerol) for red light, d3 = 10 000 nm, 5 
=-11.55+3.132j and d5 =43.34 nm. 
In the fit in Fig. 5b, we used n2 =n4 = 1.515, n3 = 1.47(glycerol) for red light, d3 = 10 000 nm, 5 
= -10.38+2.22j and d5 = 53.8 nm. The three output parameters ( 5’, 5” and d5) minimizing the 
SSQ determine the best fit. Plotting the SSQ in 3D as a function of 5’ and d5 at 5” = 3.132 
shows there is indeed a minimum in the SSQ for the fit shown in Fig.5a. Figure 6 shows a 3D 
plot of the SSQ near the output parameters that produced (Lévesque, 2011) the best fit in 
Fig. 5a. 3D plots at values slightly different from 5” = 3.132 yield larger values for the 
minimum. 

2. Wave propagation in a dielectric waveguide 
In this section, we apply the matrix formalism to a dielectric waveguide. We will describe 
how the reflectance curve changes for a system such as the one depicted in Fig. 2 if a 
dielectric film is overlaying the metal film. It will be shown that waveguide modes can be 
excited in a dielectric thin film overlaying a metal such as silver or gold and that waveguide 
modes supported by the dielectric film depend upon its thickness. 
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                                           a)                                                                              b) 

Fig. 5. Reflectivity data points (+) and a fit (solid line) produced from Eq.(30) for two 
different gold films. 

 

 
Fig. 6. 3D plot of SSQ as a function of two output parameters at a given value of 5’’(= 3.132). 
We assumed the glycerol layer (d3) to be 10 µm and the thickness of the glass slide is 1 mm 
(d4). The SSQ reaches a minimum of 0.01298 for 5’ =-11.55, 5” = 3.132 and d5 =43.34 nm. 
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(d5 = 0 nm) is also shown in figure 4. At smaller thicknesses, the electromagnetic field is less 
confined within the metallic film and does penetrate much more into the air. The 
penetration depth of the electromagnetic field just before reaching the critical angle ( < 
41.3º)  is indicated by a lower reflectance as d5 gets closer to zero, as shown  in Fig.4. The 
reflectivity drop beyond c is known as Surface Plasmon Resonance (SPR). SPR is discussed 
extensively in the literature and is also used in many applications. Good fitting of both 
regions displaying large optical intensity change is also useful in chemical sensing devices. 
As a result fitting of both regions is attempted using the exact function curve without any 
approximations given by Eq. (30). Eq. (30) is only valid for incident plane wave. Therefore, 
the reflectivity data points were obtained for a very well-collimated incident laser beam. A 
beam that is slightly converging would cause more discrepancy between the curve 
produced from Eq. (30) and the reflectivity data points. Although the Fresnel loss at the 
transparent matching fluid-glass slide interface is very small, it was taken into account in 
Eq. (30), using d3=10 000nm (10 µm) in matrix M3. The theoretical reflectance curve is not 
affected much by the matching fluid thickness d3. It was found that d3 exceeding 50 µm 
produces larger oscillations in the reflectance curve predicted by Eq.(30). As the oscillations 
are not noticeable amongst the experimental data points, the value of d3 = 10 µm was 
deemed to be reasonable. A function curve from Eq. (30) is generated by changing three 
output parameters 5’, 5’’ and d5. The sum of the squared differences (SSQ) between RDet and 
the experimental data points Ri is calculated. The best fit is determined when the SSQ is 
reaching a minimum. The SSQ is defined as:  
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where i is a subscript for each of the N data points from the data acquisition.  Each sample 
was placed on a rotary stage as shown in Figure 3 and a moving Si-pin diode is rotating to 
track down the reflected beam to measure a DC signal as a function of 2. The reflectivity 
data points and typical fits are shown in Figure 5. 
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shows there is indeed a minimum in the SSQ for the fit shown in Fig.5a. Figure 6 shows a 3D 
plot of the SSQ near the output parameters that produced (Lévesque, 2011) the best fit in 
Fig. 5a. 3D plots at values slightly different from 5” = 3.132 yield larger values for the 
minimum. 

2. Wave propagation in a dielectric waveguide 
In this section, we apply the matrix formalism to a dielectric waveguide. We will describe 
how the reflectance curve changes for a system such as the one depicted in Fig. 2 if a 
dielectric film is overlaying the metal film. It will be shown that waveguide modes can be 
excited in a dielectric thin film overlaying a metal such as silver or gold and that waveguide 
modes supported by the dielectric film depend upon its thickness. 
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Fig. 5. Reflectivity data points (+) and a fit (solid line) produced from Eq.(30) for two 
different gold films. 
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2.1 Wave propagation in dielectric films 
Let us consider a dielectric film of thickness d6 overlaying the metal film in Figure 2. We will 
be assuming that the top surface of the overlaying dielectric is bounded by the semi-infinite 
air medium. The characteristic matrix M for the sub-system of four layers can be expressed 
as: 

 3 4 5 6M M M M M  (33) 

where M3, M4, M5 and M6 are the characteristic matrices for the index matching fluid layer, 
the glass slide, the metal thin film and the thin dielectric film, respectively. Each matrix in 
Eq.(33) is given by Eq.(26) for i = 3,4,5 and 6 and the reflectance for the p-polarized wave is 
given by Eq.(30). For this four layer system, q6’ in Eq.(30) should be replaced by q7’ (air) and 
m11, m12, m21 and m22 are the entries of the system matrix given by Eq.(33). The expression 
for q6 is given by Eq.(28) and is used in the computation of M6 for the dielectric film 
characteristic matrix. 

2.1.1 Computation of reflectance with a thin dielectric film and experimental results 
Eq. (30) can be used with the minor modifications discussed in section 2.1 to find the 
reflectance of the system in Fig. 2 with an extra dielectric film processed on the metal film. The 
dielectric film can support waveguide modes if the laser beam is directed at very precise 
incident angle 2. Let us consider a transparent polymer film with a real permittivity 6 = 2.30 
processed on a silver film. The computation is done for a silver film that is 50 nm thick. Silver 
permittivity is assumed to be 5 = -18.0 +0.6i and the prism refractive index to be 2.15 (ZrO2) 
for He-Ne laser at  = 632.8 nm. We also assume that the metal film is directly coated on the 
prism long face and as a result we set d3 =d4 = 0. In other words M3 and M4 are expressed by 
identity matrices. Figure 7 is showing the reflectance curve for a dielectric film of different 
thickness that is overlaying the silver film coated on the high refractive index ZrO2 prism.  
  

 
a)                                                                                                  b) 

Fig. 7. a) Reflectance curve for a lossless dielectric film of 1.7 µm overlaying a thin silver film  
            b) Reflectance curve for a lossless dielectric film of 2.5 µm overlaying a thin silver film 
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In figure 7a, a series of very sharp reflectivity drops occur in the reflectance curve for 2 
within the range 35º-45º. These sharp reflectivity drops with small full width at half 
maximum (FWHM) are waveguide modes supported by the dielectric film. The last 
reflectivity dip with a larger FWHM near 2 ~ 50º is due to surface plasmon resonance (SPR) 
and is mostly depending upon the metal film properties and its thickness as discussed in 
section 1.2.2.  A thicker dielectric film (c.f. fig. 7b) can support more waveguide modes and 
as a result the number of sharp reflectivity dip for 2 within the range 35º to 45º is expected 
to be greater. Note that the FWHM of the SPR dip remains at the same position as the metal 
film thickness was not changed. These waveguide modes do not propagate a very large 
distance as light is slightly attenuated when reflecting at the metal-dielectric film interface. 
Therefore, at precise angle 2 the incident light is probing the dielectric film locally before 
being reflected by the thin metal film. Nevertheless, the laser beam is simultaneously 
probing the metal and the dielectric films because it creates SPR on the thin metal film and 
waveguide modes are being supported by the dielectric film. In practice, dielectric films are 
not lossless (Podgorsek & Franke, 2002) and their permittivity should be expressed using a 
small imaginary part. Let us assume that each dielectric films in Fig. 7 have a permittivity of 
6 = 2.30 +0.005j. 
 

 
              a)                                                                                     b) 

Fig. 8. a) Reflectance curve for a dielectric film (6 = 2.30 +0.005j, d6 =1.7 µm) overlaying the 
metal film. b) Reflectance curve for a dielectric film (6 = 2.30 +0.005j, d6 =2.5 µm) overlaying 
the metal film. 

Note from figures 7 and 8 that the waveguide mode dips are greatly attenuated when a 
small imaginary part is assumed in the dielectric film permittivity. The dips at larger angles 
(near 45º) are getting smaller as the propagation distance into in the dielectric film is larger 
as 2 increases. Note that the SPR dip is not much affected by the imaginary part of 6. 
Essentially, the whole 4-layer system of prism material-silver film- dielectric film-air can be 
mounted on a rotary stage and the angle 2 can be varied using a set-up similar to that 
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2.1 Wave propagation in dielectric films 
Let us consider a dielectric film of thickness d6 overlaying the metal film in Figure 2. We will 
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as: 

 3 4 5 6M M M M M  (33) 
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2.1.1 Computation of reflectance with a thin dielectric film and experimental results 
Eq. (30) can be used with the minor modifications discussed in section 2.1 to find the 
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prism long face and as a result we set d3 =d4 = 0. In other words M3 and M4 are expressed by 
identity matrices. Figure 7 is showing the reflectance curve for a dielectric film of different 
thickness that is overlaying the silver film coated on the high refractive index ZrO2 prism.  
  

 
a)                                                                                                  b) 

Fig. 7. a) Reflectance curve for a lossless dielectric film of 1.7 µm overlaying a thin silver film  
            b) Reflectance curve for a lossless dielectric film of 2.5 µm overlaying a thin silver film 
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In figure 7a, a series of very sharp reflectivity drops occur in the reflectance curve for 2 
within the range 35º-45º. These sharp reflectivity drops with small full width at half 
maximum (FWHM) are waveguide modes supported by the dielectric film. The last 
reflectivity dip with a larger FWHM near 2 ~ 50º is due to surface plasmon resonance (SPR) 
and is mostly depending upon the metal film properties and its thickness as discussed in 
section 1.2.2.  A thicker dielectric film (c.f. fig. 7b) can support more waveguide modes and 
as a result the number of sharp reflectivity dip for 2 within the range 35º to 45º is expected 
to be greater. Note that the FWHM of the SPR dip remains at the same position as the metal 
film thickness was not changed. These waveguide modes do not propagate a very large 
distance as light is slightly attenuated when reflecting at the metal-dielectric film interface. 
Therefore, at precise angle 2 the incident light is probing the dielectric film locally before 
being reflected by the thin metal film. Nevertheless, the laser beam is simultaneously 
probing the metal and the dielectric films because it creates SPR on the thin metal film and 
waveguide modes are being supported by the dielectric film. In practice, dielectric films are 
not lossless (Podgorsek & Franke, 2002) and their permittivity should be expressed using a 
small imaginary part. Let us assume that each dielectric films in Fig. 7 have a permittivity of 
6 = 2.30 +0.005j. 
 

 
              a)                                                                                     b) 

Fig. 8. a) Reflectance curve for a dielectric film (6 = 2.30 +0.005j, d6 =1.7 µm) overlaying the 
metal film. b) Reflectance curve for a dielectric film (6 = 2.30 +0.005j, d6 =2.5 µm) overlaying 
the metal film. 

Note from figures 7 and 8 that the waveguide mode dips are greatly attenuated when a 
small imaginary part is assumed in the dielectric film permittivity. The dips at larger angles 
(near 45º) are getting smaller as the propagation distance into in the dielectric film is larger 
as 2 increases. Note that the SPR dip is not much affected by the imaginary part of 6. 
Essentially, the whole 4-layer system of prism material-silver film- dielectric film-air can be 
mounted on a rotary stage and the angle 2 can be varied using a set-up similar to that 
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shown in figure 3. As it is difficult to obtain a large dynamic range in the measurements of 
reflectivity data points, scans must be done successively to cover a long range of incident 
angle. Figure 9 shows reflectance curves for a transparent layer of polyimide processed 
directly on silver films. Ranges of incident angle 2 where no noticeable change in 
reflectivity were observed are not shown. Only the dips in the reflectivity data points are 
fitted by Eq. (30).   
 

 
a)      b) 

Fig. 9. Reflectivity data points of the 4-layer system and fits (solid lines) from Eq. (30) for  
              a) ZrO2 prism-Ag-polyimide film             b) glass prism-Ag-polyimide film  

Using a method based on the optimization of the sum of square (SSQ) as presented in 
section 1.2.2, thicknesses and the complex permittivities of both films can be estimated. 
Values obtained from the minimization of the SSQ are given in table 1. Uncertainties are 
estimated from a method described by (Lévesque et al., 1994).  
 

Prism ZrO2 Glass

 5’ (Ag) 
5’’ (Ag) 

d5 

-17.41±0.10 
  0.2 ±0.1 

  615 ±15Å 

-18.1 ±0.1 
 1.36 ±0.08 
 146 ±5Å 

’   ( Pi) 
6’’  (Pi) 

d6 

2.495±0.001 
0.011±0.003 

1.488±0.004µm 

2.230±0.002 
0.0017±0.0002 
1.723±0.003µm 

Table 1. Thicknesses and permittivities of the silver (Ag) and polyimide (Pi) films. 

3. Diffraction efficiency (DE) in dielectric periodic grating structures 
Abrupt changes in reflectivity or transmission were first observed in gratings as early as 
1902 (Wood, 1902). These so-called anomalies in diffraction efficiency (DE) occurring over 
an angle range or a wavelength spectrum are very different from the normally smooth 
diffraction curves. These abrupt changes in DE led researchers to design and investigate 
resonant filters for applications in many devices including gratings. 
Rigorous coupled wave analysis (RCWA) has been used extensively (Moharam et al., 1995; 
Lalanne & Morris, 1996; Lenaerts et al., 2005) to calculate diffraction efficiencies (DE) in 
waveguide structures. The application of RCWA to resonant-grating systems has been 
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investigated mostly for both the TE and TM polarization. In this section, the basic binary 
dielectric rectangular-groove grating is treated with careful considerations on the 
computation of DE. The results obtained for binary dielectric rectangular-groove grating are 
also applied to metallic grating. Introduction to photonic bandgap systems are discussed 
and some examples are presented at the end of this section.  

3.1 Theory of coupled wave analysis 
As the numerical RCWA method is introduced extensively in the literature, only the basics 
equations will be presented in this section. Computation will be done for the TM wave on 
ridge binary grating bounded by two semi-infinite dielectric media of real permittivities 1 
and 3. The type of structures presented in this section is depicted in figure 10. 
 

 
Fig. 10. Basic structure of the binary rectangular-groove grating bounded by two semi-
infinite dielectrics. 

The relative permittivity (x) of the modulated region shown in figure 10 is varying 
periodically along the x-direction and is defined as: 

 ( ) exp( 2 / )s
s

x jsx      (34)   

where s is the sth Fourier component of the relative permittivity in the grating region (0< z 
<h), which can be complex in the case of metallic gratings. The incident normalized 
magnetic field that is normal to the plane of incidence (cf. fig.10) is given by: 

 , 1exp[ (sin cos )]inc y o i iH jk n x z     (35) 

where ko = 2 / .  i is the incident angle with respect to the z-axis as shown in figure 10.  
The normalized solutions in regions 1 (z < 0) and 3 (z > h) are expressed as: 
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1902 (Wood, 1902). These so-called anomalies in diffraction efficiency (DE) occurring over 
an angle range or a wavelength spectrum are very different from the normally smooth 
diffraction curves. These abrupt changes in DE led researchers to design and investigate 
resonant filters for applications in many devices including gratings. 
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Lalanne & Morris, 1996; Lenaerts et al., 2005) to calculate diffraction efficiencies (DE) in 
waveguide structures. The application of RCWA to resonant-grating systems has been 
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investigated mostly for both the TE and TM polarization. In this section, the basic binary 
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computation of DE. The results obtained for binary dielectric rectangular-groove grating are 
also applied to metallic grating. Introduction to photonic bandgap systems are discussed 
and some examples are presented at the end of this section.  

3.1 Theory of coupled wave analysis 
As the numerical RCWA method is introduced extensively in the literature, only the basics 
equations will be presented in this section. Computation will be done for the TM wave on 
ridge binary grating bounded by two semi-infinite dielectric media of real permittivities 1 
and 3. The type of structures presented in this section is depicted in figure 10. 
 

 
Fig. 10. Basic structure of the binary rectangular-groove grating bounded by two semi-
infinite dielectrics. 

The relative permittivity (x) of the modulated region shown in figure 10 is varying 
periodically along the x-direction and is defined as: 

 ( ) exp( 2 / )s
s

x jsx      (34)   

where s is the sth Fourier component of the relative permittivity in the grating region (0< z 
<h), which can be complex in the case of metallic gratings. The incident normalized 
magnetic field that is normal to the plane of incidence (cf. fig.10) is given by: 

 , 1exp[ (sin cos )]inc y o i iH jk n x z     (35) 

where ko = 2 / .  i is the incident angle with respect to the z-axis as shown in figure 10.  
The normalized solutions in regions 1 (z < 0) and 3 (z > h) are expressed as: 

 1, , 1,exp[ ( )]y inc y i xi zi
i

H H R j k x k z     (36) 

 3, 3,exp[ ( ( ))]y i xi zi
i

H T j k x k z h     (37) 

z

x

1

3



h

i

E

H



  
Electromagnetic Waves 

 

248 

where kxi is defined by the Floquet condition, i.e., 

 1( sin ( / ))xi o ik k n i     (38). 

In previous equations,  is the grating spacing, n1 ( 1 ) is the refractive index of medium 
1 and  
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with l = 1,3. n3 ( 3 ) is the refractive index of medium 3.  
Ri and Ti are the normalized electric-field amplitudes of the ith diffracted wave in media 1 
and 3, respectively. In the grating region (0 < z < h) the tangential magnetic (y-component) 
and electric (x-component) fields of the TM wave may be expressed as a Fourier expansion: 
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where Uyi (z) and Sxi (z) are the normalized amplitudes of the ith space-harmonic which 
satisfy Maxwell’s equations, i.e.,   
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where a temporal dependence of exp ( jt ) is assumed (j2 = -1) and  is the angular optical 
frequency. o and o are respectively the permittivity and permeability of free space. As the 
exp (jt) is used, all complex permittivity must be expressed under = ’ – j’’.   
Substituting the set of equations (40) into Maxwell’s equations and eliminating Ez, the 
coupled-wave equations can be expressed in the matrix form as: 

 
/ ' 0

0/ '
y y

x x

U z UE
BS z S

     
          

 (42) 

where z’ equals koz. 
Previous equations under the matrix form can be reduced to  

  2 2/ 'y yU z EB U          (43) 
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where B = KxE-1Kx - I . E is the matrix formed by the permittivity elements, Kx is a diagonal 
matrix, with their diagonal entries being equal to kxm / ko and I is the identity matrix. The 
solutions of Eq. (43) and the set of Eq. (42) for the space harmonics of the tangential 
magnetic and electric fields in the grating region are expressed as: 

 
,

1

,
1

( ) ( exp[ ] exp[ ( )])

( ) ( exp[ ] exp[ ( )])

n

yi i m m o m m o m
m
n

xi i m m o m m o m
m

U z w c jk q z c jk q z h

S z v c jk q z c jk q z h

 



 



   

    




 (44) 

where, w,i,,m and qm are the elements of the eigenvector matrix W and the positive square 
root of the eigenvalues of matrix G (=-EB), respectively. The quantities cm+ and cm – are 
unknown constants (vectors) to be determined from the boundary conditions. The 
amplitudes of the diffracted fields Ri and Ti are calculated by matching the tangential 
electric and magnetic field components at the two boundaries. Using Eqs. (35) , (36), (44) and 
the previously defined matrices, the boundary conditions at the input boundary (z = 0)  are: 

 ,0i iR Wc WXc      (45) 
and  

 ,0 1
1

cos
i i

j jZ R Vc VXc
n


      (46) 

where X and Z1 are diagonal matrices with diagonal elements exp(-jkoqmh) and  k1zi/(n12 ko), 
respectively.  c+ and c- are vectors of the diffracted amplitude in the ith order. From (42) and 
(44), it can be shown that  

 1V jE WQ  (47) 

where vm,l are the elements of the product matrix  with Q being a diagonal matrix with 
diagonal entries ql.   
At z = h, the boundary conditions are: 

 iWXc Wc T    (48) 

and  

 3 iVXc Vc jZ T    (49) 

where Z3 is the diagonal matrix with diagonal elements k3zi/ (n32 ko). Multiplying each 
member of Eq. (48) by –jZ3 and using Eq.  (49) to eliminate Ti  vectors c- and c+ are related 
by: 

 1
3 3( ) ( )c jZ W V jZ W V Xc       (50) 

Multiplying each member of Eq. (45) by jZ1 and using Eq.  (46) to eliminate Ri  a numerical 
computation can be found for c+ by making use of Eq.(50), that is:  
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with l = 1,3. n3 ( 3 ) is the refractive index of medium 3.  
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where  

 1
1 1 3 3[( ) ( ) ( ) ( ) ]C jZ W V jZ W V X jZ W V jZ W V X        (52) 

Note in Eq. (51) that i,0 is a column vector. In the case of a solution truncated to the first 
negative and positive orders, 
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assuming the incident wave to be a plane wave. In this particular case  
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where Z1(2,2) is the element on line 2 and column 2 of matrix Z1.  Finally, the vector on the 
right-hand side of Eq.(54) is applied to the inverse matrix of C to find the column vector for 
the diffracted amplitude c+ from Eq. (51). Then c- is found from Eq. (50) and the normalized 
electric field amplitudes for Ri and Ti can be found from Eqs. (48) and (49).  
Substituting Eq. (34) and Eq.(44) into Maxwell’s equations  and eliminating Ez , it can be 
shown that  

 1
' ( )xm xm xm

i p yp yi
o op

S k kj U U
k kz

 


 


  ( 55 )  

 Eq. (55) is one of the two coupled-wave equations involving the inverse permittivity for the 
case of TM polarization only. In the conventional formulation (Wang et al., 1990; Magnusson 
& Wang, 1992; Tibuleac & Magnusson, 1997)   the term 1

i p  is treated by taking the inverse 

of the matrix E defined by the permittivity components (Moharam & Gaylord, 1981), with 
the i, p elements being equal to (i-p). In the reformulation of the eigenvalue problem (Lalanne 
& Morris, 1996), the term 1

i p  is considered in a different manner by forming a matrix A of 

the inverse-permittivity coefficient harmonics for the two regions inside the modulated 
region. Fourier expansion in Eq.(34) is modified to:   

  1 1 exp( 2 / )( ) ss
jsxx      (56) 

where (1/)s is the sth Fourier component of the relative permittivity in the grating region. 
Since the coupled-wave equations do not involve the inverse of the permittivity in the 
coupled-wave equations for the TE wave, matrix A is not needed in numerical computations 
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and the eigenvalue problem is greatly simplified in this case. As a result, solutions for the TE 
wave are more stable in metallic lamellar gratings. 
Only the DE in reflection and transmission for zeroth order are computed in the examples 
that will be discussed throughout this section. The diffraction efficiencies in both reflection 
(DER) and transmission (DET) are defined as:  

 0 0 1, 0 1Re( /( cos ))R z o iDE R R k k n   (57) 
and  

 3, 0
0 0 2

13

cosRe( ) /( )z o
T

k kDE T T
nn

  (58) 

3.1.1 Examples with binary dielectric periodic gratings 
Let us consider a binary rectangular-groove grating with real permittivity L and H as 
shown in figure 10. In the case of notch filters the higher permittivity value H (< x < ) 
is greater than L (< x < ). Figure 11 shows the numerical computation for DE from the 
RCWA formulation for the TM wave when only three orders (m = -1, 0, 1) are retained in the 
computation. 
 

 
Fig. 11. DER and DET for a binary dielectric periodic grating for L =4.00, H = 4.41,  =314 
nm, n1 =1.00 (air), n3 =1.52 (glass) and h = 134 nm.  

From the principle of energy conservation, the sum of DER and DET must be equal to unity. 
This principle is useful to decide if the number of orders retained in the computation is 
sufficient. As no deviation from unity is seen in the sum of DER and DET in figure 11, three 
orders is deemed to be enough to describe the diffraction efficiencies within this narrow 
wavelength spectrum. At a wavelength of roughly 511.3 nm all the optical energy is 
reflected back in the opposite direction from that of the incident light. As a result, DET is 
reaching a zero value as destructive interferences occur within the grating at this precise 
wavelength value of 511.3 nm.  

3.1.2 Examples with metallic periodic gratings 
The theory presented in section 3.1 can be applied to metallic periodic gratings. For the TM 
wave many terms need to be retained in the calculation to reach convergence (Li & 
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where Z1(2,2) is the element on line 2 and column 2 of matrix Z1.  Finally, the vector on the 
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3.1.1 Examples with binary dielectric periodic gratings 
Let us consider a binary rectangular-groove grating with real permittivity L and H as 
shown in figure 10. In the case of notch filters the higher permittivity value H (< x < ) 
is greater than L (< x < ). Figure 11 shows the numerical computation for DE from the 
RCWA formulation for the TM wave when only three orders (m = -1, 0, 1) are retained in the 
computation. 
 

 
Fig. 11. DER and DET for a binary dielectric periodic grating for L =4.00, H = 4.41,  =314 
nm, n1 =1.00 (air), n3 =1.52 (glass) and h = 134 nm.  

From the principle of energy conservation, the sum of DER and DET must be equal to unity. 
This principle is useful to decide if the number of orders retained in the computation is 
sufficient. As no deviation from unity is seen in the sum of DER and DET in figure 11, three 
orders is deemed to be enough to describe the diffraction efficiencies within this narrow 
wavelength spectrum. At a wavelength of roughly 511.3 nm all the optical energy is 
reflected back in the opposite direction from that of the incident light. As a result, DET is 
reaching a zero value as destructive interferences occur within the grating at this precise 
wavelength value of 511.3 nm.  

3.1.2 Examples with metallic periodic gratings 
The theory presented in section 3.1 can be applied to metallic periodic gratings. For the TM 
wave many terms need to be retained in the calculation to reach convergence (Li & 



  
Electromagnetic Waves 

 

252 

Haggans, 1993). For the sake of saving time, a fairly accurate computation is reached after 
retaining ten orders when using the reformulated eigenvalue problem (Lalanne & Morris, 
1996). Figure 12 shows DER for a metallic periodic grating using a 3D plot. Metallic periodic 
grating are used to excite surface plasmons (SP) to improve Surface-enhanced-Raman-
Scattering (SERS) sensor performances (Sheng et al., 1982). At a given wavelength  the 
reflectivity of the metallic grating should be symmetric with the incident angle .  If a 
reflectivity drop occurs due to SP at , the metallic periodic grating should display a similar 
drop at -. Note that two minima occur on either side of normal incidence ( = 0º) and one 
single minimum is displayed at normal incidence for  ~ 630 nm. Basically each minimum in 
DER forms two valleys which crisscross at normal incidence and  ~ 630 nm. This point will 
become important in the next section where photonic band gap is discussed. 
 

 
Fig. 12. 3D plot of DER for a periodic metallic grating. In the calculation, we used n1 = 1, 
3 = -17.75 -0.7j,  = 600nm, L = -17.75 - 0.7j, H =1, and h = 10.5 nm. 

3.2 Photonic bandgap in metallic periodic gratings 
Resonant surface plasmon (SP) coupling involving metallic periodic gratings has been 
extensively studied over the past years and more recently in work looking at photonic 
devices (Park et al., 2003; Barnes et al. 2003; Ebbesen et al., 1998; Ye & Zhang, 2004) surface-
enhanced Raman scattering (Sheng et al., 1982) and photonic bandgaps (Barnes et al., 1996). 
Corrugated surfaces are commonly produced by direct exposure of a photoresist film to a 
holographic interference pattern. There is some experimental evidence that owing to 
nonlinear response of the photoresist, this technique leads to the presence of higher 
harmonics in addition to the fundamental pattern that is inscribed (Gallatin, 1987; Pai & 
Awada, 1991). The higher harmonics can then influence the propagation of the SP on the 
metallic periodic grating and, in particular, can generate a bandgap in the plasmon 
dispersion curve.  

3.2.1 Generating a photonic bandgap with two metallic periodic gratings 
Let us consider two metallic sinusoidal gratings with vectors K1 (= 2/1) and K2 (=2/2)  
inscribed at the same location on the film surface. One grating acts as a coupler that allows light 
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to generate SPs while the second grating creates a bandgap in the dispersion curve for the SP 
propagation.  Herein, we consider the case K2 = 2K1. More complicated cases such as K2 < 2K1 
have also been investigated and may be found in the literature (Lévesque & Rochon , 2005). 
The SP dispersion curve for a uniform silver or gold film in the absence of a gap is shown in 
Figure 13a and is described by: 

 1/2( )m d
SP

m d
k

c
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where kSP is the wave vector of the SP modes coupled at the surface and m and d are the 
permittivities of the metal and dielectric material (air). The dispersion line for light incident 
at an angle  and scattered by a vector K1 is given by: 

 1 1sinlightk m K
c
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Fig. 13. a) SP dispersion curves for one periodic grating of Bragg vector K1 b) Normalized 
reflectance (Rp/Rs) curve for a single metallic grating with  ~ 755 nm. 

Note from Figure 13a that at normal incidence ( = 0º) SPs will be excited at a single 
wavelength from a loss or gain of light momentum by the grating Bragg vector K1 = 2/. 
Scattering of incident light from the metallic grating at a given incident angle can fulfill the 
phase-matching condition (kSP = klight) for SP excitation. As  increases from zero SPs can be 
generated if light scatters by a Bragg vector  K1, i.e., two valleys will form for  > 0º and  < 
0º as shown in Figure 13b. Experimentally, a fairly sharp dip in the reflectivity curve (Rp) 
was observed for the p-polarized light but not for the s-polarized light (Rs).  To emphasize 
the SP contribution, the Rp reflectance curves were normalized to Rs in the range 600-900 nm 
spectral range. Curves shown in Figure 13b were predicted by DER computations shown in 
Figure 12. 
The SP dispersion curves for the doubly corrugated surfaces and light lines are shown in 
Figure 14a. 
It can be seen from Figure 14a) that two SPs can be generated at normal incidence as a 
bandgap is being created by the grating of Bragg vector K2. As a result, SPs can be generated 
at  = 1 and  = 2. This means the band will open as shown in Figure 14b, where two 
minima are shown in the experimental data points for all incident angles (Lévesque & 
Rochon , 2005). Each of these minima corresponds to SP excitation at the air-metal grating 
surface when light is scattered by Bragg vector K1.  
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Figure 12. 
The SP dispersion curves for the doubly corrugated surfaces and light lines are shown in 
Figure 14a. 
It can be seen from Figure 14a) that two SPs can be generated at normal incidence as a 
bandgap is being created by the grating of Bragg vector K2. As a result, SPs can be generated 
at  = 1 and  = 2. This means the band will open as shown in Figure 14b, where two 
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                                                  a)                                                                             b) 

Fig. 14. a) SP dispersion curves for two superimposed periodic grating of Bragg vector K1 

and K2  b) Normalized reflectance curve for a doubly corrugated surface with  ~ 755 nm 
and  ~ 375 nm. 

3.2.2 Processing of the single and double metallic corrugated surfaces  
Surface corrugations with selected pitches (Bragg vectors) can be produced on azopolymer 
films by direct exposure of an interference pattern from two coherent light beams at  = 532 
nm, as shown in Figure 15a. The two desired spacing are obtained by adjusting the angle 
(c. f fig.15a)  between the writing beams, and their depth is determined by their exposure 
time. The films under investigation have two superimposed sinusoidal gratings with vectors 
K1 and K2. These azopolymer films were prepared on glass slides and then coated with a 50  
 

           
a)             b) 

Fig. 15. a) Experimental set-up to produce corrugated metallic grating. b) Atomic force 
microscope image of a double metallic grating. Pitches here are 700 and 375 nm with their 
respective depths of 19 1 nm and 7.00.5 nm.  
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nm thick gold film by sputter. The surface profile s(x) shown in the atomic force microscope 
image in Figure 15b can be represented as  

 1 1 2 2 2( ) sin( ) sin( )s x h K x h K x     (61) 

where x is the spatial coordinate, h1 and h2 are the amplitudes of the two harmonic 
components, and 2 is their relative phase. 

4. Conclusion 
The matrix formalism was shown to be efficient to predict the reflectance curves of both 
uniform films and periodic corrugated surfaces. It was shown in this chapter that the 
reflectance derived from the matrix formalism allows precise determinations of refractive 
indices and thickness when it is fitted to experimental data points. The principle to 
determine a good fit from the minimization of the sum of squares was presented in some 
details. The application of the sum of squares in more complex structures involving 
transparent overlaying films were also introduced along with waveguide modes.  It was 
also shown that the matrix formalism can be used in numerical techniques and can be 
applied to periodic gratings to predict diffraction efficiencies. Systems of metallic periodic 
gratings were discussed and it was shown that photonic bandgap can be produced by 
superposition of two inscribed corrugated surface on an azopolymer film. The modulated 
films were made by holographic technique to write surface relief structures. One grating is 
written to have a spacing vector K2 to generate a bandgap in the SP dispersion curve. A 
second grating with grating spacing vector K1 is superimposed and allows the coupling of 
the incident light to generate the SP itself.  
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nm thick gold film by sputter. The surface profile s(x) shown in the atomic force microscope 
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1. Introduction 
Open resonators and open waveguides are widely used in millimeter and submillimeter 
wave electronics because they provide lower loss and higher Q-factor in comparison to the 
standard closed structures [Valitov et al., 1969; Shestopalov, 1985; Weinstein, 1966, 1995] . 
Examples of high performance measurement equipment employing open resonators (based 
on spherical or semispherical mirrors) include resonant wave meters, reference oscillators, 
systems for measurement of intrinsic electromagnetic properties of dielectric materials, and 
others [Valitov et al, 1969; Milovanov and Sobenin, 1980; Valitov and Makarenko, 1984]. 
Semispherical and spherocylindrical open resonators in combination with reflective 
diffraction gratings are used in various diffraction radiation oscillators [Shestopalov, 
1976, 1985, 1991] providing higher frequency stability and output power in comparison to 
the standard devices  such as traveling-wave tubes, klystrons, and magnetrons. Open 
resonators with echelette-type corner mirrors have been chosen as the basis for highly 
efficient Gunn and IMPATT diode oscillators. Quasi-optical resonators of such devices 
adopt reactive reflection and transmission-type schemes [Sukhoruchko et al., 2003]. Open 
resonators has found a wide practical application in relativistic electronics. Several types of 
oscillators and amplifiers have been created on their basis [Balakirev et al., 1993]. It has been 
demonstrated by [Weinstein and Solntsev, 1973] that Smith-Purcell effect (diffraction 
radiation) can be used to build an amplifier based on an open waveguide. 
The constantly growing interest in the implementation of millimeter and submillimeter 
wave radiation in different areas of science and technology puts forward demands for 
components with high performance and flexible functionality. One of the most promising 
strategies for the development of such components is to modify their electromagnetic 
structure in order to increase operating frequency band and improve efficiency of 
interaction between the electron beam and electromagnetic wave. Following this strategy, 
several new approaches have been proposed based on modification of open coupled 
electromagnetic structures such as coupled open resonators [Shestopalov, 1991], open 
waveguides [Weinstein, 1995; Weinstein and Solntsev, 1973], open resonators with 
dispersion elements [Marshall et al., 1998], as well as the metal-dielectric structures 
[Shestopalov, 1991] which are particularly useful for electromagnetic wave excitation 
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1. Introduction 
Open resonators and open waveguides are widely used in millimeter and submillimeter 
wave electronics because they provide lower loss and higher Q-factor in comparison to the 
standard closed structures [Valitov et al., 1969; Shestopalov, 1985; Weinstein, 1966, 1995] . 
Examples of high performance measurement equipment employing open resonators (based 
on spherical or semispherical mirrors) include resonant wave meters, reference oscillators, 
systems for measurement of intrinsic electromagnetic properties of dielectric materials, and 
others [Valitov et al, 1969; Milovanov and Sobenin, 1980; Valitov and Makarenko, 1984]. 
Semispherical and spherocylindrical open resonators in combination with reflective 
diffraction gratings are used in various diffraction radiation oscillators [Shestopalov, 
1976, 1985, 1991] providing higher frequency stability and output power in comparison to 
the standard devices  such as traveling-wave tubes, klystrons, and magnetrons. Open 
resonators with echelette-type corner mirrors have been chosen as the basis for highly 
efficient Gunn and IMPATT diode oscillators. Quasi-optical resonators of such devices 
adopt reactive reflection and transmission-type schemes [Sukhoruchko et al., 2003]. Open 
resonators has found a wide practical application in relativistic electronics. Several types of 
oscillators and amplifiers have been created on their basis [Balakirev et al., 1993]. It has been 
demonstrated by [Weinstein and Solntsev, 1973] that Smith-Purcell effect (diffraction 
radiation) can be used to build an amplifier based on an open waveguide. 
The constantly growing interest in the implementation of millimeter and submillimeter 
wave radiation in different areas of science and technology puts forward demands for 
components with high performance and flexible functionality. One of the most promising 
strategies for the development of such components is to modify their electromagnetic 
structure in order to increase operating frequency band and improve efficiency of 
interaction between the electron beam and electromagnetic wave. Following this strategy, 
several new approaches have been proposed based on modification of open coupled 
electromagnetic structures such as coupled open resonators [Shestopalov, 1991], open 
waveguides [Weinstein, 1995; Weinstein and Solntsev, 1973], open resonators with 
dispersion elements [Marshall et al., 1998], as well as the metal-dielectric structures 
[Shestopalov, 1991] which are particularly useful for electromagnetic wave excitation 
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employing Cherenkov effect. Unfortunately, the practical realization of the proposed 
structures is a rather difficult task because of complicated electromagnetic analysis and a 
lack of systematic approach. 
The objective of this chapter is to perform a comparative analysis of classical quasi-optical 
structures and their new modifications. The strategies for further development of these 
structures will be discussed based on the performed analysis. 
The chapter starts with a description of basic properties of a classical regular open resonator 
as a basis for new modified millimeter and submillimeter wave coupled resonant structures. 
The properties of open resonators and open waveguides based on periodic metal and metal-
dielectric discontinuities excited by both the electron beam and the surface wave of the 
dielectric waveguide are considered. 

2. The coupled quasi-optical systems based on open resonators 
This section is dedicated to the analysis of simple (regular) resonant systems and coupled 
quasi-optical systems based on periodic metal and metal-dielectric structures such as open 
resonators with diffraction grating, coupled open resonators and resonators with layered 
metal-dielectric structures. 

2.1 The main properties of classical quasi-optical resonators 
A classical quasi-optical resonator consists of two-mirrors. In the simplest case considered 
here, the open resonator contains two opposing flat infinitely thin parallel aligned disks. 
This system of mirrors is referred as plane-parallel resonator and known from optics as the 
main part of Fabry-Perot interferometer. 
The plane-parallel resonators exhibit a number of valuable properties: sparse spectrum 
of resonant frequencies, homogeneous field along the symmetry axis of the resonator 
and the wavelength in the resonator is slightly different from the wavelength in the free 
space. 
While simple, this arrangement is rarely used in practice due to the difficulty of alignment, 
comparatively large size, and insufficient mode separation. Therefore the resonators based 
on the reflectors with quadratic phase correction are more promising in the millimeter and 
submillimeter wave range. These type of resonators are referred as confocal resonators and 
contain spherical mirrors. Тhese resonators exhibit a better spectral resolution in comparison 
to the plane-parallel resonators. Besides, confocal resonators are less sensitive to 
misalignment. The resonator with spherical reflectors typically exhibits lower power loss 
per one propagation in comparison to the open resonator with plane mirrors having the 
same aperture. The other important advantage is the large separation between the 
fundamental and the higher order modes mnqTEM , where m, n 0, 1, 2,...=  is the number of 
half-waves in  transverse direction and q is the longitudinal index which corresponds to the 
number of half-waves in the direction of propagation. For the resonator with spherical 
mirrors the resonance distances or the resonance wavelengths of the oscillation modes 
should comply with the following condition: 

 ( ) 1 2
2 1 2 1 arccosH q m n g g
λ π

= + + + , (1) 
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where H is the distance between the mirrors; λ  is the wavelength in the open resonator; 

1
1

1 Hg
R
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= − ; 1 2,R R  are the curvature radii of the mirrors. 

Limiting the size of resonator's apertures results in radiation loss and has negligible effect on 
the field distribution in the open resonator. Therefore the field must be concentrated close to 
the center of the mirror in order to reduce the losses. This, in turn, restricts the choice of 
ratio between the radius of the curved mirrors and the distance between them. In order to 
construct resonators with the field concentrated close to the center of the mirror, the 
distance between the mirrors must be selected within the following intervals: 

 1 20 1g g< < . (2) 

This expression is known as the condition of stability of the resonator with quadratic 
correction; 1 2,g g  are the  parameters that depend on geometry of the resonator. 
The behavior of oscillations in plane-parallel and spherical-mirror resonators is quite 
different. The field distribution in the plane-parallel resonator mostly depends on the 
dimensions of the plane plates, while field distribution in the resonator with spherical 
mirrors is mostly determined by their radius and the ratio of the distance between mirrors 

and the radius, H
R

 . 

The semi-spherical resonators which consist of a plane and a spherical mirror have also 
received a great deal of interest in microwave and millimeter-wave applications. It is known 
that the fundamental modes of the semi-spherical resonator are represented by the 
azimuthal oscillations 0m qTEM . If the field spot on the plane mirror is considerably smaller 
than its diameter then the semi-spherical resonators can be substituted by the equivalent 
resonators with two spherical mirrors having doubled distance between them. The 
distribution of amplitudes in both cases is identical to a high degree of accuracy. The Q-
factor of the semi-spherical resonator depends on diffraction losses at the edges of the plane 
and the spherical mirrors, ohmic losses in the mirrors, the coupling losses and the losses 
related to attenuation in the medium. 

2.2 Resonators with periodic metal grating  
The plane-parallel mirror of the semi-spherical resonator can be substituted by a diffraction 
grating as it is shown in Fig. 1. Such an electrodynamic structure is often used in diffraction 
radiation oscillators - orotrons [Shestopalov, 1976, 1991; Marshall et al., 1998; 
Ginzburg et al., 2000;  Bratman et al., 2002; Rusin et al., 2002]. 
The orotron's operation principle is based on the diffraction radiation effect caused by the 
electron beam propagating above the diffraction grating of the open resonator. The electron 
beam interacts with the incident field diffracted from the grating which results in oscillation 
and amplification of the electromagnetic signal. Therefore, the orotron's output 
characteristics are strictly defined by the properties of the implemented open resonator. The 
periodic structure in the open resonator of the orotron considerably changes the 
characteristics of the previously described classical resonant quasi-optical structures. The 
substitution of the plane mirror by a diffraction grating considerably increases the total loss 
resulting in the Q-factor degradation by almost four times. The decrease of the Q-factor 
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occurs as the result of additional losses, which are originated from a power leakage of the 
waveguide waves propagating along the grooves to the edges of the mirror where the 
reflection coefficient is not equal to one. 
 

 
Fig. 1. Semispherical open resonator with diffraction grating 

To overcome this drawback, a semi-spherical resonator where only the central part of the 
plane mirror was covered with the diffraction grating, has been proposed [Shestopalov, 
1976, 1991]. This resonator has a wider distance between the oscillation frequencies. The 
achieved radiation loss depends on the parameters and the position of the grating. The 
width of the grating defines the number of the oscillation modes excited in the open 
resonator and the frequency of the higher order resonances. Losses in the open resonator are 
greatly dependent on the ratio between the period of the grating and the wavelength. The 
maximally achieved Q-factor of the resonator also greatly depends on the groove depths of 
the reflective grating oscillations could be varied by several times. 
The fundamental mode of the semi-spherical resonator with a local diffraction grating is 

20qTEM . The research in [Shestopalov, 1976, 1991] proved that the perturbation caused by 
the grating is insignificant in such a system if the minimum of the field distribution is above 
the boundary between the grating and the mirror. This is the case when the width of the 
diffraction grating is larger or equal than the width of the main lobe in 20qTEM  oscillation 
mode. 
Corner-echelette open resonators are widely used for realization of semiconductor sources 
in the microwave and millimeter-wave range. For example, modifications of quasi-optical 
reflection and transmission-type solid-state pump oscillators with spherical-corner-echelette 
open resonator have been shown in [Belous et al., 2003]. As shown in [Sukhoruchko et al., 
2003], the corner-echelette resonator has the following properties: the degree of sparseness 
of the spectrum is lower than for the resonator with plane echelette mirror; however, the 
spectrum contains the oscillation modes with extremely high Q-factor, which are known as 
the quasi-fundamental oscillation modes; the field of the quasi-fundamental oscillation 
modes is concentrated around the axis of the open resonator resulting in a larger power 
density in comparison to the fundamental and higher order oscillation modes; the field 
distribution close to the surface of the corner-echelette mirror transforms and near the center 
of the resonator becomes similar to the field in a rectangular waveguide; corner-echelette 
mirror can be considered as a multi-step impedance transformer. 
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2.3 Coupled open resonators 
The work by [Shestopalov, 1991] is dedicated to the diffraction radiation devices employing 
coupled open resonators. The coupled resonators have an advantage of providing a wider 
operating frequency range in comparison to the single resonator structures. The coupling 
between open resonators can be realized either by means of the field diffracted at the edges 
of the mirrors using series positioning of the resonators (Fig. 2а) or the field diffracted on a 
metal-strip grating using parallel connection of open resonators (Fig. 2b) with respect to the 
axis of the distributed excitation source. In the electron devices, the electron beam is such a 
source. In case of experimental modeling of diffraction radiation it is the surface wave of the 
single-mode dielectric waveguide. 
 

 
Fig. 2. Electrodynamic systems based on coupled open resonators: а – series connection of 
open resonators; b – parallel connection of open resonators 

The system of series open resonators is, in the case shown in Fig. 2а, consists of two semi-
spherical resonators with the common plane mirror realized as a reflective diffraction 
grating. In the parallel coupling case (Fig. 2b), a two-layer metal-strip diffraction grating is 
placed between the spherical mirrors. 
Systems of coupled open resonators consist of spherical mirrors 1 with the radius R=60 mm 
and aperture A=55 mm reduced to 35 mm along the axis of the dielectric waveguide 2. The 
lower plane mirror 3 of the system shown in Fig. 2a is either a reflective or semitransparent 
diffraction grating and serves as a common mirror for the first and the second open 
resonator. In the system with parallel open resonators, plane mirrors 4 with semitransparent 
diffraction gratings in their central sections were placed between spherical mirrors 1. 
Parameters of the gratings are chosen to ensure the operation at a frequency f0 = 46 GHz. 
These gratings transform the surface wave of the dielectric waveguide into a free space 
wave propagating normal to the surface of the grating [Shestopalov, 1976]. The energy is 
coupled out from the system through the coupling slots in the spherical mirrors. The signals 
are then fed to a detector and measured using a standard measurement equipment 
[Shestopalov, 1976, 1991]. 
The described coupled resonators have been analyzed with regard to their spectra and 
resonance characteristics of oscillation. The measured characteristics of the equivalent single 
hemispherical and spherical open resonators have been used as a reference. 
Fig. 3 shows the resonant frequencies versus the distance between the mirrors (H) in the 
system with coupling through the diffraction field (Fig. 2a) and in a reference hemispherical 
open resonator. The data presented in Fig. 3 characterizes the capability of the considered 
resonance system to support a limited number of TEMmnq oscillation modes. 
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Fig. 3. Spectra of resonant frequencies of (a) a hemispherical resonator and (b, c) a 
diffraction-coupled  resonators with (b) reflective and (c) strip diffraction gratings. 

The data in Fig. 3a shows that for the hemispherical open resonator, the fundamental 
00qTEM  modes exist in the entire frequency range 45 47f GHz= −  while changing the 

distance between the mirrors. The implementation of a dispersive element such as the 
reflective diffraction grating in the open resonator allows for the modes with transverse 
indices m and n. The 20qTEM  oscillation mode is usually a fundamental mode for such 
resonators [Shestopalov, 1991]. In addition to the fundamental modes, depending on the 
parameters of the open resonator and the diffraction grating, the other types of higher order 
oscillations (e.g., 02qTEM ) occur influencing the coupling between the two open resonators 
through the diffraction fields. 
Figure 3b shows the resonances of two coupled open resonators tuned to a frequency 
f=46 GHz. As can be seen from these spectra, the second hemispherical open resonator is 
excited at the edge points of the frequency band in the interval H=27–33 mm. There are no 
oscillations around the resonance frequency of the open resonator, which is due to the 
minimum amplitude of the diffraction field in a case when the diffraction-grating–dielectric-
waveguide system emits radiation along the normal. Detuning from the frequency 0f  in the 
interval 1f GHzΔ ≈ ± leads to the deviation of the main lobe direction from the normal, 
which increases the intensity of the diffraction field and, consequently, leads to the 
excitation of the second resonator at the edges of the frequency range. As the distance H 
increases, the coupling between the resonators becomes stronger reaching its maximum 
magnitude when the distances between the mirrors are equal to each other. In this case, 
oscillations in the second open resonator arise even at a frequency 46f GHz≈ . 
Coupled open resonators with a strip grating at the center of the common plane mirror 
(Fig. 2b) exhibit similar properties. The decrease in the number of oscillation modes in such 
a system (Fig. 3c) is due to the selective properties of the employed diffraction grating 
[Shestopalov, 1991]: the intensity of radiation emitted from the volume of the open resonator 
to free space through the diffraction grating reaches its maximum at ( )( )H 4 2 1Nλ≈ + , 
while the accumulation of energy inside the volume of the open resonator appears at values 

( ) 2H Nλ≈ , where λ  is the radiated wavelength, N = 1, 2, … . The coupling in open 
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resonators reaches its maximum when the distances between the resonators are 
approximately equal to each other, i.e., when the resonators are tuned to close frequencies. 
The typical response of the previously described coupled open resonators is presented in 
Fig. 4. Here maxP P  is the power in the open resonators normalized to the maximum power 

maxP . The resonance curve of a hemispherical open resonator is shown for comparison 
(curve 1) in the same figure. As can be seen from the presented data, the transmission band 
of coupled open resonators measured at the level of max0,5P  increases by a factor of nearly 
two, resulting in 250f MHzΔ ≈ . The resonance curves corresponding to coupled open 
resonators with reflective and strip diffraction gratings virtually coincide with each other 
under these conditions, which indicates the existence of efficient coupling in these systems 
through the diffraction of the fields at the periphery of the mirrors. 
 

 
Fig. 4. Response of (1) a hemispherical open resonator and (2, 3) coupled open resonators 
with (2) metal-strip and (3) reflective diffraction gratings 

The open resonator with spherical mirrors, which is a basis for the second scheme of 
coupled resonators (Fig. 2b) supports similar to the case of the hemispherical open 
resonators fundamental TEM00q modes. This follows from the analysis of the achieved 
resonance frequencies. The field distribution in an open resonator with spherical mirrors is 
the same as in the hemispherical open resonator [Shestopalov, 1976]. However, the distance 
between the resonance frequencies in the open resonator with spherical mirrors is two times 
smaller than in a hemispherical open resonator. Inserting an additional plane mirror with a 
strip diffraction grating in a spherical open resonator will result in the spectrum of the 
coupled system similar to the spectrum of the hemispherical open resonator (Fig. 3a). The 
metal-strip diffraction gratings couple two hemi-spherical open resonators simultaneously 
filtering out the angular spectrum of plane waves excited in the system. Consequently, the 
variation of the position of these diffraction gratings in the volume of the resonator with 
respect to the spherical mirrors changes the spatial distribution of the fields corresponding 
to the oscillation modes excited in the considered system of coupled open resonators. 
Similar to the hemispherical open resonator with a reflective diffraction grating, TEM20q and  
TEM02q oscillation modes, as well as the higher order oscillation modes arise due to 
introducing a coupling element such as a double-layer diffraction grating.  
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Fig. 3. Spectra of resonant frequencies of (a) a hemispherical resonator and (b, c) a 
diffraction-coupled  resonators with (b) reflective and (c) strip diffraction gratings. 
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00qTEM  modes exist in the entire frequency range 45 47f GHz= −  while changing the 

distance between the mirrors. The implementation of a dispersive element such as the 
reflective diffraction grating in the open resonator allows for the modes with transverse 
indices m and n. The 20qTEM  oscillation mode is usually a fundamental mode for such 
resonators [Shestopalov, 1991]. In addition to the fundamental modes, depending on the 
parameters of the open resonator and the diffraction grating, the other types of higher order 
oscillations (e.g., 02qTEM ) occur influencing the coupling between the two open resonators 
through the diffraction fields. 
Figure 3b shows the resonances of two coupled open resonators tuned to a frequency 
f=46 GHz. As can be seen from these spectra, the second hemispherical open resonator is 
excited at the edge points of the frequency band in the interval H=27–33 mm. There are no 
oscillations around the resonance frequency of the open resonator, which is due to the 
minimum amplitude of the diffraction field in a case when the diffraction-grating–dielectric-
waveguide system emits radiation along the normal. Detuning from the frequency 0f  in the 
interval 1f GHzΔ ≈ ± leads to the deviation of the main lobe direction from the normal, 
which increases the intensity of the diffraction field and, consequently, leads to the 
excitation of the second resonator at the edges of the frequency range. As the distance H 
increases, the coupling between the resonators becomes stronger reaching its maximum 
magnitude when the distances between the mirrors are equal to each other. In this case, 
oscillations in the second open resonator arise even at a frequency 46f GHz≈ . 
Coupled open resonators with a strip grating at the center of the common plane mirror 
(Fig. 2b) exhibit similar properties. The decrease in the number of oscillation modes in such 
a system (Fig. 3c) is due to the selective properties of the employed diffraction grating 
[Shestopalov, 1991]: the intensity of radiation emitted from the volume of the open resonator 
to free space through the diffraction grating reaches its maximum at ( )( )H 4 2 1Nλ≈ + , 
while the accumulation of energy inside the volume of the open resonator appears at values 

( ) 2H Nλ≈ , where λ  is the radiated wavelength, N = 1, 2, … . The coupling in open 
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resonators reaches its maximum when the distances between the resonators are 
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Fig. 4. Response of (1) a hemispherical open resonator and (2, 3) coupled open resonators 
with (2) metal-strip and (3) reflective diffraction gratings 
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filtering out the angular spectrum of plane waves excited in the system. Consequently, the 
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respect to the spherical mirrors changes the spatial distribution of the fields corresponding 
to the oscillation modes excited in the considered system of coupled open resonators. 
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The measured data for the resonance curves of coupled open resonators indicates that the 
achieved bandwidth of the system becomes much broader when the open resonators are 
tuned to close frequencies rather than in the case when the resonators are coupled through 
the diffracted fields. Fig. 5 presents the response of the open resonators coupled through a 
strip diffraction grating and for the open resonator with spherical mirrors. The achieved 
bandwidth of the coupled system was observed within the range 44,5 49,5f GHz= ÷  for 
equal distances of spherical mirrors from the planes of the coupling element with a total 
distance between the spherical mirrors equal to H=31 mm. The achieved bandwidth 
measured at the max0,5P power level is equal to 1,3f GHzΔ ≈ . The narrowing of the 
transmission band of coupled open resonators observed in the higher frequency band 
(f=48,5 GHz) is due to the deviation of the radiation pattern for the diffraction grating–
dielectric waveguide system from the normal and, consequently, the decrease in the 
coupling coefficient between the resonators. 
 

 
Fig. 5. Response of (1) the spherical open resonator and (2) the system of resonators coupled 
through  semitransparent diffraction gratings. 

Analysis of the achieved bandwidth fΔ  for the single resonator and coupled systems shows 
that the maximum bandwidth in systems with comparable H can be achieved when two 
open resonators are coupled through a strip diffraction grating. The bandwidth of the 
system with parallel open resonators is almost five times wider than the bandwidth of the 
system with series open resonators. It should be noted that the Q-factor of the coupled open 
resonators is of the same order as the Q-factor of the single open resonators. Therefore the 
open resonators coupled through the strip diffraction grating are preferable for systems 
requiring wideband operation. Such resonators also provide a reduced size of the system 
along the electron beam propagation axis. 

2.4 Open resonators with metal-dielectric structures 
Coupled systems based on open resonators and open waveguides with metal-dielectric 
structures allow to realize different modes of energy transformation depending on 
parameters of the electromagnetic system [Shestopalov, 1991].  
The simplest open resonator employing a metal-dielectric slab is shown in Fig. 6а. It consists 
of a metal plane and a dielectric slab with a planar metallic diffraction grating on its surface. 
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ε  is the permittivity of the dielectric. The source of electromagnetic energy is distributed 
along the grating. It excites various spatial harmonics of Cherenkov diffraction radiation of 
order 0, 1, 2,...n = ± ±  and the power density nS , which depends on the parameters of the 
structure. Fig. 6а demonstrates the excitation of Cherenkov ( 0S ε ) and minus first diffraction 
( 1S ε− ) harmonics in the dielectric as well as minus first diffraction harmonic ( 1vS− ) in open 
volume, which can be reflected back by a metal plane and fed to the metal-dielectric 
channel. A number of numerical and experimental methods for simulation of different 
excitation modes of Cherenkov diffraction radiation has been developed [Vorobyov et al., 
1997, 2007]. They allow to determine the quantitative relation between the power densities 
of spatial harmonics in the structure as well as to optimize and tune their parameters. 
 

 
Fig. 6. Quasi-optical resonators based on metal-dielectric slabs 

A more complicated case of the open resonator with a metal-dielectric structure is shown in 
Fig. 6b. The resonator consists of a spherical mirror, a plane mirror such as a reflecting 
diffraction grating, and a layered metal-dielectric structure between the two mirrors. Such 
an electromagnetic structure is often used in Cherenkov diffraction oscillators. Fig. 6b 
demonstrates possible modes of Cherenkov diffraction radiation excited by a source of 
electromagnetic energy distributed between the metal-dielectric grating and plane mirror.  
The metal-dielectric slab (Fig. 6b) of the open resonator introduces qualitatively new 
electromagnetic properties in such a system.  It is possible to attenuate the power in the 
open resonator, increase the amplitude of the oscillating wave and the value of Q-factor as 
well as to improve selectivity by choosing parameters of the metal-dielectric slab. 

3. Coupled open waveguides employing periodic structures 
This section describes the main properties of quasi-optical open waveguides with periodic 
metal-dielectric structures excited by distributed sources of electromagnetic energy such as 
electron beam or surface wave of a dielectric waveguide. Such structures are promising for 
the design of low-voltage amplifiers based on Smith-Purcell effect [Weinstein and Solntsev, 
1973; Smith and Parcell, 1953] and other microwave and millimeter wave electron devices 
[Joe et al., 1994, 1997]. 

3.1 Amplifiers based on Smith-Purcell effect 
Fig. 7 shows the structure of the amplifier using a planar layered metal-dielectric stack and 
based on Smith-Purcell effect. The open waveguide of the considered system consists of the 
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ε  is the permittivity of the dielectric. The source of electromagnetic energy is distributed 
along the grating. It excites various spatial harmonics of Cherenkov diffraction radiation of 
order 0, 1, 2,...n = ± ±  and the power density nS , which depends on the parameters of the 
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periodic rectangular grating structure 1 with the period of 2l, width 2d and grating depth of 
h; the planar layered metal-dielectric structure 2 with the thickness H sΔ = −  which is 
positioned in parallel to the grating at a distance s . A non-relativistic sheet electron beam 3 
with the finite thickness (r-b) is propagating along the axis 0y at a distance b above the 
grating. The entire structure is considered to be infinite within the plane x0y. 
The electromagnetic problem is solved using the method of partial domains. The field in 
each domain is determined from the Maxwell equations, equation for the electron beam 
propagation, and corresponding boundary conditions. In order to obtain the dispersion 
equation, we have to perform the following operations: determine the linear approximation 
of the equation for the variable component of the convectional current intensity and the field 
in the beam, and transform it into a homogeneous form; determine the electromagnetic field 
in the interaction region in hot (with electron beam) and cold (without electron beam) 
regime. 
 

 
Fig. 7. The amplifier with the metal-dielectric layer based on the Smith-Purcell effect: 1 - 
periodic metal structure, 2 - planar layered metal-dielectric structure, 3 - electron beam 

To this end, the electric field E, the beam velocity 0ν , and the charge density 0ρ  are 
expressed as a sum of constant and small harmonically time-dependent variable quantities 
[Shmatko, 2008]. The charge density constant 0ρ  of the beam is considered to be 
compensated by external sources. The solution of the problem in such a way leads to the 
following dispersion: 

 
( )( ) ( )( )( )

( )( )
2

2

cos sinsin1 tan 0
sin

n n n n nn

n nn n

b r b rdk kh
ld b r

ξ ξα
ξα

∞

=−∞

 Γ Γ − − Γ − Π
 + =

Π + Γ −  
 , (3) 

where 
( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

cos tan sin

cos tan sin

n
n n n n

n

n
n n n

n

r s s H r s

r s s H r s

σξ ς ξ
εξ
σξ ς ξ
εξ

Γ − − + −
Π =

− − − −
; k

c
ω=  - is the wave number; 

ω  - is the frequency; c - is the speed of light; ε  - is the relative permittivity of the dielectric 

layer; 0n
n
l

πα α= +  - is the propagation constant of the electromagnetic wave propagating 

 
Quasi-optical Systems Based on Periodic Structures   

 

267 

along the axis 0y; 0, 1, 2n = ± ±  - is the spatial harmonic number; 
2 2 2 2,n n n nξ κ α σ εκ α= − = −  - are the transverse wave numbers; 
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beam (e and em  - are the charge and the mass of the electron, 0ε  - is the electric constant). 
The following analysis of equation (3) concerns defining the propagation constant nα , 
which is generally a complex number. The imaginary part niα−  is responsible for the 
solutions increasing along the axis 0y and specifies the electromagnetic wave amplification 
in the system. The analysis of the given dispersion equation would be difficult without 
simplifications. If we separate this equation in three terms, which correspond to zeroth 
order harmonic, first harmonic, and the sum of the rest harmonics, and then use an 
approximation of the maximum interaction between the electron beam the fields of the slow 
wave structures (b = 0, s = r), it is possible to reformulate (3) into the following: 
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The solution to the dispersion equation is found by using Newton iterative method for the 
range of electron velocities 0,05 0,2β = ÷  and various values of the electromagnetic 
parameters of the system , ,κ χ ζ  and 1 210ε = ÷ . The lower ε  limit corresponds to the 
case where there is no dielectric between the grating and the metal mirror; the upper limit 
corresponds to the case when it is possible to excite Cherenkov radiation at non-relativistic 
electron beam velocities ( 0,07β ≈ ). 
The numerical analysis of the dispersion equation for an open waveguide with no dielectric 
layer shows that there are two direct waves and two waves traveling in the backward 
direction exist in the system without the presence of an electron beam. They have different 
wave numbers and corresponding phase velocities. In addition to the previously described 
electromagnetic waves in the open waveguide, there are also two electron beam waves: a 
fast space-charge wave and a slow space-charge wave. All four electromagnetic waves in the 
system while synchronized with the electron beam spatial waves have regions with a 
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periodic rectangular grating structure 1 with the period of 2l, width 2d and grating depth of 
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positioned in parallel to the grating at a distance s . A non-relativistic sheet electron beam 3 
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along the axis 0y; 0, 1, 2n = ± ±  - is the spatial harmonic number; 
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solutions increasing along the axis 0y and specifies the electromagnetic wave amplification 
in the system. The analysis of the given dispersion equation would be difficult without 
simplifications. If we separate this equation in three terms, which correspond to zeroth 
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The solution to the dispersion equation is found by using Newton iterative method for the 
range of electron velocities 0,05 0,2β = ÷  and various values of the electromagnetic 
parameters of the system , ,κ χ ζ  and 1 210ε = ÷ . The lower ε  limit corresponds to the 
case where there is no dielectric between the grating and the metal mirror; the upper limit 
corresponds to the case when it is possible to excite Cherenkov radiation at non-relativistic 
electron beam velocities ( 0,07β ≈ ). 
The numerical analysis of the dispersion equation for an open waveguide with no dielectric 
layer shows that there are two direct waves and two waves traveling in the backward 
direction exist in the system without the presence of an electron beam. They have different 
wave numbers and corresponding phase velocities. In addition to the previously described 
electromagnetic waves in the open waveguide, there are also two electron beam waves: a 
fast space-charge wave and a slow space-charge wave. All four electromagnetic waves in the 
system while synchronized with the electron beam spatial waves have regions with a 
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positive amplitude growth that allows for signal amplification and realization of the 
following regimes varying parameter β : surface wave mode with the maximum amplitude 
exists when synchronized with  the slow space-charge wave; the volume waves of the 
diffraction radiation at the angle less than 2π  with respect to the grating plane which 
transfer power from the beam to the field by means of the slow and fast space-charge waves. 
It must be noted that the regime employing fast space-charge wave is observed starting 
from the relative beam thickness 0,6ζ = , and the regime employing slow space-charge 
wave is observed starting from 0,02ζ = . Depending on the excitation region the maximum 
amplitude of the amplified signal is observed at 0,4 0,6ζ = ÷  that corresponds to the 
electron beam thickness 0,1r ≈  mm, which is typical for the microwave tubes. The further 
increase in r has no influence on the amplitude of the amplified signal but results in 
generation of a discrete set of radiated electromagnetic waves the number of which depends 
on thickness of the electron beam and the frequency. This effect can be physically explained 
by the dispersion properties of the electron beam and partial reflection of the 
electromagnetic waves from its boundaries (equivalent of the low reflection coefficient 
resonator). 
Introducing a dielectric layer with small values 3ε ≈  will result in changing the phase 
velocities of the electromagnetic waves in the open resonator and synchronization with the 
electron beam. This also leads to the generation of additional waves with the parameters 
close to those for the case with 1ε = . Transverse wave numbers ,n nσ ξ  (3) determine the 
wave modes classification in the open waveguide: volume waves propagating between the 
periodic structure and the metal plane; the volume waves in the dielectric layer; the surface 
waves above the periodic structure. 
The increase in permittivity ε  of the dielectric layer leads to accumulation of power from 
volume waves that is caused by the improvement of its resonance properties due to 
reflection from the boundaries of the dielectric. Fig. 8 represents graphically the solution of 
the dispersion equation with regard to the real (Re μ ) and imaginary (Im μ ) parts of the 
gain factor versus the parameter β  for 50, 0,083, 10ε κ χ= = = . The presented curves allow 
to analyze the propagation properties for fourteen wave modes in the open waveguide, two 
of which, 7 and 8, are the fast and slow space-charge waves of the electron beam 
respectively. The waves from 1 to 6 are propagating in the same direction as the electron 
beam propagation, while the waves 9 and 10 are propagating in the opposite direction. The 
parameters of the mentioned waves satisfy the condition for their propagation in the 
dielectric layer. Consequently, the increase of the number of wave modes in the open 
waveguide results in distribution of the energy between them and leads to a decrease of the 
amplitude growth factors for some waves as compared to the case when 1ε = . 
Parameter χ  (the distance between the mirrors of the open waveguide normalized to the 
grating period) has a significant influence on the propagation properties of the modes and 
defines the field distribution between the mirrors of the open waveguide. Fig. 9 graphically 
represents the solution of the transcendent equation (4) with regard to the real and 
imaginary parts of the gain factor versus β  for different values of the parameter χ  and the 
direct volume wave of the periodic structure ( 1ε = ). The presented data illustrates that 
changing the distance from 8χ =  to 14χ =  leads to a considerable decrease in the 
amplitude of the signal. The maximum amplitude of the signal is observed at the radiation 
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along the normal direction ( 8χ = , 0μ ≈ ) while the minimum is observed in a tangential 
direction ( 14χ ≈ , 0,073μ ≈ ). However, it is not possible to ensure the excitation of the 
traveling wave mode along the axis of the open waveguide for radiation in the normal 
direction. In practice, this would result in a feedback and instability. This operation mode is 
similar to the operation of the microwave tubes such as orotron and diffraction radiation 
oscillator [Shestopalov, 1991]. 
It should also be noted that increasing the distance between the mirrors results in increase of 
a number of surface waves and decrease of the gain factor for the volume waves. In the 
extreme case when the values χ → ∞ , the volume waves transfer into surface waves and the 
system is similar to the traditional devices such as the backward-wave oscillator and the 
traveling-wave tube. 
 

μ

. 

Fig. 8. Solutions of the dispersion equation (4) for 50ε =  
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positive amplitude growth that allows for signal amplification and realization of the 
following regimes varying parameter β : surface wave mode with the maximum amplitude 
exists when synchronized with  the slow space-charge wave; the volume waves of the 
diffraction radiation at the angle less than 2π  with respect to the grating plane which 
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along the normal direction ( 8χ = , 0μ ≈ ) while the minimum is observed in a tangential 
direction ( 14χ ≈ , 0,073μ ≈ ). However, it is not possible to ensure the excitation of the 
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extreme case when the values χ → ∞ , the volume waves transfer into surface waves and the 
system is similar to the traditional devices such as the backward-wave oscillator and the 
traveling-wave tube. 
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Fig. 9. Influence of the parameter χ  on the solutions of the dispersion equation (4) for 1ε =  

3.2 Experimental modeling of coupled open waveguides 
The experimental modeling is one of the most efficient methods for solving problems of 
diffraction electronics. The radiation of the electron beam is simulated by a surface wave in 
the planar dielectric waveguide placed above the diffraction grating. The modeling 
techniques have been sufficiently developed and summarized in the literature 
[Shestopalov, 1976, 1985, 1991]. Nevertheless, each structure has its own specific features 
which have to be taken into account while developing and realizing the experimental setup. 
There are three components in the previously described electromagnetic system which can 
be considered separately during the experimental modeling of the wave processes in 
amplifiers based on Smith-Purcell effect. They determine the general electromagnetic 
properties of the open waveguide. These components are the dielectric waveguide which 
feeds the surface wave into the system; diffraction grating which transforms the surface 
wave from the dielectric waveguide into the volume wave; the planar layered metal-
dielectric structure which serves for both a transformation of the surface wave into the 
volume wave for the dielectric layer and reflection of the radiation arriving from the 

 
Quasi-optical Systems Based on Periodic Structures   

 

271 

diffraction grating - dielectric waveguide interface. Compared to the system without the 
metal-dielectric layer, the wave processes in the open waveguide with the metal-dielectric 
stack are more complicated in comparison to the systems without such a stack due to the 
presence and superposition of different waves such as the volume wave incident to the 
layered metal-dielectric structure from the diffraction-grating-dielectric-waveguide interface 
and the waves propagating in the dielectric. 
The parameters of the diffraction-grating-dielectric-waveguide system are chosen to 
satisfy the condition of the volume wave existence in the open waveguide [Shestopalov, 
1991]: 

 ( )1 arccos 1 w n kϕ β− = − , (5) 

where 1ϕ−  - is the radiation angle, w w cβ ν=  - is the relative velocity of the wave in the 
waveguide, wν  - is the phase velocity, k l λ=  - is the wave number, λ  - is the wave length. 
The period of the diffraction grating has been chosen such that the main lobe of the 
radiation pattern ( 1n = − ) is at an angle 70ϕ = °  for the wavelength of 9 mm and the 
parameter 0,9wβ ≈  which corresponds to the material of the dielectric waveguide 
implemented in the experiment (polystyrene waveguide with a cross-section 

27,2 3,4 mm× ). The depth of the grating slots was chosen to minimize the influence of their 
resonance properties on the radiation characteristics. The waveguide length L is 150 mm, 
that satisfies the requirement 10L λ ≥ . This ensured the excitation and propagation of 
electromagnetic wave along the open waveguide axis. 
The distance between the dielectric waveguide and the surface of the diffraction grating, a, 
is a very important parameter for the optimization of the system. The diffraction of the 
surface waves on the diffraction grating is nontrivial in this case because the value a is 
chosen to be smaller than the wavelength. However, a strong coupling between the 
waveguide and the diffraction grating effects the field distribution in the waveguide and, 
consequently, the propagation constant βw. The strong coupling results in interference 
between the wave propagating along the waveguide and the wave being scattered by the 
diffraction grating. Such an interference might result in additional propagation modes in the 
waveguide and, consequently, in the parasitic spatial harmonics [Shestopalov, 1991]. 
The behavior of the planar metal-dielectric structure of the open waveguide is similar to the 
behavior of the shielded planar dielectric waveguide. In order to analyze the physical 
phenomena of the electromagnetic wave excitation in the layered metal-dielectric structure, 
the electromagnetic field can be represented as a composition of plane electromagnetic 
waves. Based on this, the metal-dielectric structure can support two types of waves: the one 
excited by the diffraction grating-dielectric waveguide interface (these waves not necessarily 
undergo total internal reflection in the dielectric for certain angles nϕ− ); the second type of 
waves is excited by a guided surface electromagnetic wave in the dielectric waveguide and 
is totally reflected from the boundaries of the layered metal-dielectric structure (the wave 
satisfies the following condition 0cos wcεγ ν ε= )(see Fig. 7). The second wave allows to 
model Cherenkov radiation. However, this concept of wave decomposition does not 
consider the multimode nature of the metal-dielectric wave-guiding structure. The modes 
exist due to the finite layer thickness ∆ comparable to the wavelength. The metal layer on 
the side wall of the dielectric does not prevent the wave propagation but results in increase 
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of the effective thickness of the layer and number of the higher order modes in the metal-
dielectric structure. 
The experiments were performed in the frequency range from 30 GHz to 37 GHz within the 
interval 4λ λΔ ≈ − and using a dielectric with permittivity  2ε = . 
Fig. 10 shows of the normalized radiation pattern in the open waveguide at the center 
frequency 33,4f GHz= . The diagrams in Fig. 10a depicts the radiation from the end of the 
metal-dielectric structure in the mode of Cherenkov radiation for the phase velocities 
satisfying the condition 2 1wεβ > for guiding electromagnetic wave on the homogeneous 
surface of the dielectric. Propagation of the most portion of power in the surrounding 
environment is typical for the dielectric layer with the thickness less than the wavelength 
(Figure 10a - curve 1). This holds when the single-mode condition satisfies the condition of 
synchronization between the phase velocities of waves in dielectric and wave in the 
surrounding environment. The dielectric layer is actually operates as an antenna, which 
radiates the power in the direction close to the axis y. The observed asymmetry in the 
patterns is caused by the technical difficulties to measure the radiation at angles 

0 0 10εϕ ≈ − ° . The side lobes are caused by the mismatch with the open area, multiple 
reflections from the measurement setup, and by a power leakage from the dielectric-
waveguide-to-metallic-waveguide transitions. The observed peaks in the radiation pattern 
are due to the strong coupling between the dielectric waveguide and the dielectric layer at 
the center and critical frequencies. 
 

 
Fig. 10. Radiation patterns of the open waveguide components: a - dielectric layer - dielectric 
waveguide ( λΔ ≈ - curve 1, 4λΔ ≈  - curve 2); b - diffraction-grating-dielectric-waveguide 
(curve 1), diffraction-grating-dielectric-waveguide-dielectric-layer system (curve 2) 
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For dielectric layers with λΔ > , the wave is totally reflected from the boundaries and a 
significant portion of the power is concentrated in the dielectric. The direction of radiation 
from the end changes to a higher angle (Fig. 10a - graph 2) and approach the calculated 
values determined from the geometrical optics ( 0 62εϕ ≈ °  at 0 39εγ ≈ ° , Fig. 7). 
Fig. 10b (curve 1) demonstrates the patterns of the diffraction-grating-dielectric-waveguide 
radiating system. It is clear from the presented data that the main radiation maximum is in 
agreement with the calculated value of 70nϕ− = ° . At such an angle, the beam for 2ε = , 
which incidents side wall of the dielectric layer, is slightly refracted and leaves the dielectric 
from the opposite side at an angle, which is approximately equal to the angle of radiation. 
This fact is illustrated in Figure 10b for the diffraction-grating-dielectric-waveguide-
dielectric-layer system for 4λΔ ≈  (graph 2). 
Covering the dielectric layer with a metal (Fig. 7) results in the fact that the radiation arriving 
from the diffraction-grating-dielectric-waveguide system will be reflected and fed into the 
open waveguide volume exciting the wave along its axis. Correspondingly, there are two 
volume waves propagating in the system: the wave in the layered metal-dielectric structure 
and the wave in the volume of the open waveguide. These waves are coupled to each other by 
means of the surface wave of the common radiation source - the dielectric waveguide. The 
existence of the forward and backward coupled waves in the open waveguide might result in 
parasitic resonances during the modeling. The wave numbers are complex if there is a 
coupling between the direct and the backward waves. This indicates the excitation of complex 
decaying waves. The waves are synchronized and the power of the forward wave is pumped 
into the backward wave and vice versa. Such a power exchange is performed along the 
significant propagation distance if the coupling is weak. The propagation becomes impossible 
and the transmission line turns into a sort of a resonator for certain frequencies. In such a 
system the waveguide characteristics such as the standing wave ratio (SWR) and the 
transmission coefficient (Ktr = Poutput/Pinput, where Poutput and Pinput are the power values at the 
dielectric waveguide output and input respectively) become fundamental. The waveguide 
characteristics of the dielectric-waveguide-dielectric-layer system (curve 1), dielectric-
waveguide-diffraction-grating-dielectric-layer system (curve 2) and the open waveguide 
system in general (curve 3) are represented in Fig. 11 for ∆ ≈ λ. The presented data indicates 
that the SWR of the open waveguide elements and the system in general are within the 
interval 1,05 ÷ 1,4. These reflections are due to the out of band mismatch of the dielectric-
waveguide-metallic-waveguide transitions. The achieved SWR is considerably different from 
SWR for the open waveguide with no dielectric layer which is approximately 2,0 (curve 4) due 
to the resonance nature of the system. Substantial changes in the behavior of the Ktr versus 
frequency are also observed. Curves 1 and 2 indicate an efficient transformation of surface 
waves into the volume waves, while graph 3 indicates the presence of the coupled waves in 
the system and it is substantially different from the behavior of Ktr for the open waveguide 
with no layered metal-dielectric structure in it (curve 4). It can be assumed that for ∆ ≈ λ a large 
amount of power escapes from the dielectric and propagates in the open waveguide. The 
observed maxima and minima of the spectrum of  Ktr can be explained by the fact that the 
waves propagating in the open waveguide are combined in- and out of phase. 
The increase in the thickness of the dielectric layer results in the fact that the most amount of 
power is concentrated in the dielectric which leads to decrease in coupling between the 
layered metal-dielectric structure and the dielectric waveguide, and, in general, increase in 
Ktr for the open waveguide components (Fig. 12, curves 1 and 2) at ∆ ≈ 4λ. 
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At the same time, the behavior of the transmission coefficient in the considered frequency 
band indicates the decrease in the coupling between the waves propagating in the open 
waveguide (Fig. 12, curve 3). 
The analysis described above for the characteristics of the open waveguide and its 
components indicates that it is possible to control the electromagnetic processes in the 
system by varying the thickness of the dielectric layer: adjust the coupling between the 
radiation of the dielectric waveguide and the waves propagating in the open waveguide. 
The increase in coupling is useful for enhancing the efficiency of the interaction between the 
electron beam and the open waveguide fields in the amplifier applications. The decrease in 
the coupling is interesting for realization of power decoupling from the open waveguide 
through the dielectric layer. 
 

 
Fig. 11. Waveguide characteristics of the open waveguide components at λΔ ≈ - dielectric-
layer–diffraction-grating system; 2 - diffraction-grating-dielectric-waveguide-dielectric-layer 
system; 3 - open waveguide with the dielectric layer; 4 - open waveguide without the 
dielectric layer 
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Fig. 12. Characteristics of the open waveguide components at 4λΔ ≈ : 1 - dielectric-layer–
dielectric-waveguide system; 2 - diffraction-grating-dielectric waveguide-dielectric-layer 
system; 3 - open wavegude with the dielectric layer 

4. The implementation of coupled quasi-optical systems in vacuum electron 
devices 

A two-stage diffraction radiation oscillator has been realized using the structure shown in 
Fig. 2а in the frequency range 43 98f GHz= ÷ . The system consists of two short-focus 
spherical mirrors [Shestopalov, 1991] and the common cylindrical mirror with a diffraction 
grating along its longitudinal axis. The electron beam generated by the electron gun and 
focused by the static magnetic field propagates above the diffraction grating exciting 
electromagnetic oscillations in the coupled open resonators. In case of weak coupling 
between the open resonators, the device operates as a multifrequency oscillator at specific 
frequencies. In case of optimal coupling, the device operates as a broadband diffraction 
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radiation oscillator with coupled resonators. The operating frequency band in this case is 
more than 1,5 times wider compared to the single resonator diffraction radiation oscillator. 
The device operates as an amplifier if the microwave signal is applied to the input of the 
first (with respect to the gun) resonator and the beam current J is less than the starting 
current nJ . These regimes have been tested in the millimeter wave range ( 43 98f GHz= ÷ ). 
Figure 13 shows the data when the device operates as an oscillator in case of optimal 
coupling between the open resonators. The power of such a diffraction radiation oscillator at 

0 84f GHz=  was measured to be 0,4 W with the beam current ( )1,5 30n nJ J J mA= ≈ . The 
range of electron frequency tuning at these conditions was 1,5 times wider than in the case 
of a single-resonator oscillator, which is comparable with the results obtained by the 
previously described modeling (Fig. 4). A similar behavior has been also observed in the 
regime of amplification at 0,8 0,9 nJ J≈ ÷ , which confirms the possibility to build a 
regenerative amplifier based on coupled open resonators with a broader transmission band 
than just using a single-resonator amplifier [Shestopalov, 1991]. 
 

 
Fig. 13. The bandwidth and a tuning range of the diffraction radiation oscillator based on 
two coupled resonators 

Figure 14 presents the diagrams of a vacuum electron devices with open resonators 
connected in series with respect to the axis of the electron beam. An orotron shown in 
Fig. 14a consists of two coupled open resonators 1. Each of these resonators consists of two 
mirrors 2 and 3. Energy is coupled out through a waveguide in mirror 2. Mirror 3 has a 
parabolic cylinder shape. Metal-strip diffraction gratings 4 located in the center of the 
adjacent parabolic mirrors 3 are made of metal bars. The electron gun 5 generates a focused 
electron beam 6 and is placed between the parabolic mirrors 3. A collector 7 is positioned at 
the end of the interaction region. 
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The operation of the orotron can be described in the following way: the electron gun 
generates a focused electron beam which than experiences a bunching within the small 
interaction length due to the spatial charge in the interaction zone formed by the open 
resonators and gratings. The diffraction radiation is produced in the open resonators as 
electrons propagate through the gap between the diffraction gratings. The electrons are than 
striking a collector at the other end of the interaction region. The orotron operates as an 
oscillator if the electron beam current is much higher than the starting current. The orotron 
operates as an amplifier if the condition of self-excitation is not satisfied and a signal from 
an external microwave source is fed to the input of one of the resonators. It should also be 
noted that the orotron may function as a frequency multiplier if using two coupled open 
resonators. This device is a low-power oscillator. The increase of the electron beam current 
density is limited due to overheating of the strip diffraction grating. 
 
 

 
Fig. 14. Vacuum electron devices based on parallel connection of open resonators: a - an 
orotron with coupling through the strip diffraction gratings and b - diffraction radiation 
oscillator with coupling through the reflective diffraction gratings 

A higher power level can be achieved in diffraction radiation oscillators based on coupled 
open resonators schematically shown in Fig. 14b. The design and the principle of operation of 
such a device are similar to the design and the principle of operation of the previously 
described orotron. The coupling of resonators 1 is achieved through the slots in the identical 
reflective diffraction gratings 4 placed in the center of the adjacent mirrors 3 and 
perpendicularly oriented with regard to the planes of these mirrors. The electron beam is 
focused with a magnetic field. The use of bulky gratings attached to the mirrors simplifies the 
temperature dissipation and, consequently, allows for higher electron beam currents. 
Furthermore, one of the resonators in such a system may be realized with an option for 
mechanical tuning where a moving short-circuit plunger located on the opposite side of the 
coupling slot. Figure 15 shows the oscillation bandwidth and frequency tuning characteristic 
for different distances h of the plunger for the case when the open resonator is centered at   
f0 = 36 GHz.  
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radiation oscillator with coupled resonators. The operating frequency band in this case is 
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Fig. 13. The bandwidth and a tuning range of the diffraction radiation oscillator based on 
two coupled resonators 
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electron beam 6 and is placed between the parabolic mirrors 3. A collector 7 is positioned at 
the end of the interaction region. 
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Fig. 15. The output power and the frequency tuning range of the diffraction radiation 
oscillator with a tunable resonator coupled to the open resonator 

The presented data shows that, one can smoothly tune the oscillation frequency within a 
sufficiently broad frequency range by mechanically tuning the volume resonator with a 
fixed value of H for the mirrors in the open resonator. The variation of the output power in 
the considered frequency band does not exceed 3 dB. This characteristic of the considered 
device indicates the possibility for improving the vibration stability of the system in 
comparison to the vibration stability of systems with mechanical tuning of mirrors. The 
grating-coupled open resonators could also be used to build reflection type diffraction 
radiation oscillators [Shestopalov, 1991]. In this case, the collector should be replaced by an 
electron reflector, producing a backward electron beam. Such devices exhibit low starting 
currents and able to operate in the regime of stochastic oscillations [Korneenkov et al., 1982]. 
The wide functionality of open resonators with layered metal-dielectric structures allowed 
to build several types of diffraction based devices with complex resonant structures such as 
Cherenkov diffraction oscillator and Cherenkov backward-wave tube. Fig. 16 shows the 
example of Cherenkov backward-wave tube and Cherenkov diffraction oscillator. 
The electron beam 1 of the backward-wave tube is generated by the electron gun 2. The 
beam propagates through the channel 3 formed by the adjacent surfaces of the resonator 4 to 
the slow-wave structure 5. The electron beam interacts with the field of the slow-wave 
structure 5 resulting in modulation of charge density. Simultaneously, Cherenkov radiation 
occurs when the electrons velocity exceed the phase velocity of the electromagnetic wave in 
the dielectric. The radiation is directed into the dielectric. The resonator 4 has a field 
distribution allowing a feedback (solid lines with arrows). Oscillations occur in the resonator 
effectively extracting power from the modulated electron beam via the strip grating 6 when 
the frequency is synchronized with the eigen frequency of the resonator. The power is 
coupled from the resonator 4 via the waveguide 7 with ε1 > ε. The synchronization between 
the electron beam and the wave in the dielectric is achieved by choosing the proper value 
for ε and adjusting the accelerating voltage for the electron beam. 
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Fig. 16. Realization of Cherenkov backward-wave tube and Cherenkov diffraction oscillator 

The similar electron optics is used for excitation of Cherenkov diffraction radiation. The 
slow-wave structure (diffraction grating) 5 is positioned in the central part of the fixed 
mirror. The moving mirror 8 with a coupling slot 9 is used for coupling the power out of the 
device. In contrast to the backward-wave oscillator, the geometrical parameters of the 
gratings 5, 6 are optimized for efficient excitation of radiation in the normal direction with 
respect to the axis of the electron gun 2 (dotted oscillation pattern in Fig. 16) and for 
maximum power density of Cherenkov radiation within the dielectric resonator 4.  
Recently, significant attention is drawn to amplifiers based on Smith-Purcell effect, which 
has been described in section 3. An amplifier employing sheet electron beam is shown in 
Figure 17. 
 

 
Fig. 17. Travelling wave tube based on the Smith-Purcell effect 
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has been described in section 3. An amplifier employing sheet electron beam is shown in 
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Fig. 17. Travelling wave tube based on the Smith-Purcell effect 
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The open waveguide with length L is formed by the surfaces of parallel passive 1 and active 
2 mirrors realized as reflecting diffraction gratings with the periods 1l  and 2l  and a distance 
H between them. The sheet electron beam 3 propagates above the surface of the active 
mirror 2. The dielectric waveguide 4 is placed close to the surface of the passive mirror 1, 
and the matched absorption loads 5 are positioned at the ends of the waveguide. The 
periods 1l  and 2l  of the diffraction gratings comply with the relations that follow from the 
conditions of the in-phase mode of radiation (shown with arrows) from the active and the 
passive mirrors of the open waveguide: 
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voltage of the electron beam, V; K=505 1/V. 
The range of angle 2γ  and the length L of the waveguide are chosen to minimize diffraction 
loss into the free space. A high-frequency signal of power 1P  with a wavelength λ  is fed to 
the dielectric waveguide 4. The transformation of the surface wave into the volume wave 
radiated in the direction of angle ( )1 1arccos wc lγ ν λ= +  occurs on the diffraction grating of 
the passive mirror 1. The non-reflected portion of the volume wave excites the spectrum of 
the spatial harmonics having different phase velocities when the volume wave of the 
transformed input signal incidents the grating of the active mirror 2. The electron beam 
velocity eν  synchronizes with one of the surface waves which results in bunching of 
electrons radiating at a frequency of input signal in the direction of angle 

( )2 2arccos ec lγ ν λ= + . The reverse transformation of the volume wave into the surface 
wave, which is followed by a radiation into the open waveguide, occurs at the grating of the 
passive mirror. The signal 2P  is amplified in the case of the in-phase radiation from the 
mirrors. The periodic re-emission results in increase of amplitude of the volume wave 
propagated along the open waveguide and the amplitude of the surface wave propagating 
in the same direction along the dielectric waveguide which is used to couple the amplified 
signal 2P  out to the load. The matched loads 5 and the dielectric waveguide 4 decrease the 
probability of regeneration effects that might occur in the amplifier both due to the 
reflections from the open waveguide ends and due to the parasitic oscillations due to 
multiple reflections between the active and the passive mirrors in direction of angles 1γ  and 

2γ  close to 2π . 
The prototype of the suggested travelling wave tube has been realized in the V band. The 
open waveguide was formed by two cylinder-shaped mirrors (the passive mirror with the 
curve radius 20curvR mm=  and the active mirror with 110curvR mm= ). The grating periods 

1l  and 2l  were chosen according to (6) resulting in 1 2γ γ= . High-frequency signal was fed 
into the amplifier from the resonance carcinotron in the frequency band 68 72f GHz= ÷  
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using a quartz dielectric waveguide and a sheet beam with a cross-section 25 0,2 mm× . The 
electron beam was propagating along the active mirror with accelerating voltages in the 
range 0 2200 2500U V= ÷ . The system was built in the vacuum shell between the poles of 
the electromagnet that limited the open waveguide length to L=40 mm and allowed to 
ensure about a double transformation of the surface wave into the diffraction radiation. The 
achieved experimental results show that amplification of rather broadband signals (up to 
2 GHz) along with increase in gain is possible if increase the beam current. At the same time, 
the limited length of the open waveguide did not allow a sufficient number of 
transformations of the surface waves into the volume waves, which limited the increase of 
the gain К. 
A further improvement of the output parameters of the amplifier could be achieved by 
increasing the interaction region and the electron beam current. This could be achieved, for 
instance, by means of using axial-symmetric electromagnetic systems and a better electron 
focusing optics. 

5. Conclusion 
The chapter provides a summary of results on both the classical quasi-optical systems 
forming a basis for development of new modifications of oscillation systems of the 
microwave and millimeter-wave band devices and more advanced coupled electromagnetic 
systems with complex periodic structures such as coupled open resonators, open resonators 
and waveguides with layered metal-dielectric structures. It is demonstrated that the coupled 
open resonators exhibit wider frequency tuning range while preserving high values of Q-
factor. Coupled systems such as open resonators and waveguides with layered metal-
dielectric structures have qualitatively new properties: by varying the parameters of metal-
dielectric structure one could achieve attenuation or amplification of the oscillations and 
their selection. New modifications of Cherenkov traveling wave tube such as Cherenkov 
diffraction oscillator and amplifier based on the Smith-Purcell effect are suggested and 
realized. 
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1. Introduction 
Metallic waveguides have major advantages, such as low propagation loss and high power 
transmission in the microwave frequency range. However, one disadvantage is that the 
usable frequency range is restricted to fc < f < 2fc, because the TE20 mode is possible in a 
frequency region higher than 2fc for rectangular metallic waveguides. A ridge waveguide 
(Cohn, 1947) (or double-ridge waveguide) has an advantage in that it can spread the 
propagating frequency range as a result of reduction in the cutoff frequency for the TE10 
mode. However, one disadvantage is that the attenuation constant becomes large. 
Power sources, such as watt class IMPATT diodes or Gunn diodes, are readily available, and 
for high frequency use, power sources are sometimes combined, due to their low power 
rating. However, power combiners consisting of cavity resonators usually have narrow 
bandwidths (For example, Matsumura et al., 1987). Power dividers and power combiners 
may be easily setup using mode converters. For example, a TE10–TE30 mode converter easily 
offers a three-port power divider, and a three-way power combiner can be composed by 
reversal. A power combiner is useful for application to Gunn diodes in a waveguide array 
(Bae et al., 2000), because it converts the TE30 mode to the TE10 mode. 

2. Design method of the mode converters 
We have reported that single-mode propagation is available for a metallic waveguide with 
dielectric rods arrayed at the center of the waveguide in the frequency under twice the 
cutoff frequency region using the TE10 mode, and in the frequency over twice the cutoff 
frequency region using the TE20 mode, because of restrictions of the TE10 mode (Kokubo, 
2007; Kokubo & Kawai, 2009). However, a TE20-like mode, which is propagated in the 
second band, is an odd mode, and generation systems for odd modes have seldom been 
reported. In this investigation, a mode converter is proposed which passes through the TE10 
mode for the low frequency range and efficiently converts TE10 to TE20 mode for the high 
frequency range.  

2.1 Design method of the TE10-to-TE20 mode converter 
The frequency eigenvalues of a conventional metallic waveguide in a given k wavevector are 
shown in Fig. 1. In this figure, the wavevector k and frequency ω are normalized using the 
width of the waveguide w. The electromagnetic wave propagates the TE10 mode only for 
0.5<ωw/2πc<1, and can propagate TE10 and TE20 modes for 1<ωw/2πc<1.5. If these two 
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1. Introduction 
Metallic waveguides have major advantages, such as low propagation loss and high power 
transmission in the microwave frequency range. However, one disadvantage is that the 
usable frequency range is restricted to fc < f < 2fc, because the TE20 mode is possible in a 
frequency region higher than 2fc for rectangular metallic waveguides. A ridge waveguide 
(Cohn, 1947) (or double-ridge waveguide) has an advantage in that it can spread the 
propagating frequency range as a result of reduction in the cutoff frequency for the TE10 
mode. However, one disadvantage is that the attenuation constant becomes large. 
Power sources, such as watt class IMPATT diodes or Gunn diodes, are readily available, and 
for high frequency use, power sources are sometimes combined, due to their low power 
rating. However, power combiners consisting of cavity resonators usually have narrow 
bandwidths (For example, Matsumura et al., 1987). Power dividers and power combiners 
may be easily setup using mode converters. For example, a TE10–TE30 mode converter easily 
offers a three-port power divider, and a three-way power combiner can be composed by 
reversal. A power combiner is useful for application to Gunn diodes in a waveguide array 
(Bae et al., 2000), because it converts the TE30 mode to the TE10 mode. 

2. Design method of the mode converters 
We have reported that single-mode propagation is available for a metallic waveguide with 
dielectric rods arrayed at the center of the waveguide in the frequency under twice the 
cutoff frequency region using the TE10 mode, and in the frequency over twice the cutoff 
frequency region using the TE20 mode, because of restrictions of the TE10 mode (Kokubo, 
2007; Kokubo & Kawai, 2009). However, a TE20-like mode, which is propagated in the 
second band, is an odd mode, and generation systems for odd modes have seldom been 
reported. In this investigation, a mode converter is proposed which passes through the TE10 
mode for the low frequency range and efficiently converts TE10 to TE20 mode for the high 
frequency range.  

2.1 Design method of the TE10-to-TE20 mode converter 
The frequency eigenvalues of a conventional metallic waveguide in a given k wavevector are 
shown in Fig. 1. In this figure, the wavevector k and frequency ω are normalized using the 
width of the waveguide w. The electromagnetic wave propagates the TE10 mode only for 
0.5<ωw/2πc<1, and can propagate TE10 and TE20 modes for 1<ωw/2πc<1.5. If these two 
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modes are excited by only the TE10 mode, the group velocity of TE10 (A) must be changed to 
that of TE20 (B) for 1<ωw/2πc<1.5. On the other hand, the group velocity (C) is not changed 
for 0.5<ωw/2πc<1, because this remains in the TE10 mode. If the distribution of the 
transverse electromagnetic field is gradually changed from TE10 to TE20, and group velocity 
(A) is also gradually changed to (B), then the reflection may be reduced for 1<ωw/2πc<1.5. 
On the other hand, if the group velocity (C) is not significantly changed, the reflection may 
also be suppressed for 0.5<ωw/2πc<1. Since the mode profile gradually shifts from TE10 to 
TE20, the dielectric rods are replaced from near the sidewall to the center of the waveguide. 
In other words, the basic setup is shown in Fig. 2.  
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Fig. 1. The frequency eigenvalues of a conventional metallic waveguide in a given k 
wavevector. 
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Fig. 2. The proposed structure of the TE10 to TE20 mode converter. 
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Fig. 3. The group velocity in a metallic waveguide with a periodic array of dielectric rods for 
various distances from the sidewall, d, and various radii of the rods, r, at 15 and 9 GHz. 
(Kokubo, 2010) 

The group velocity is given by ( )
1

gv
dk

dω
= . However, it is not simple to determine the 

group velocity in the waveguide shown in Fig. 2. The propagation modes in a waveguide 
having in-line dielectric rods with period a are calculated using a supercell approach 
(Benisty, 1996) by application of appropriate periodic Bloch conditions at the boundary of 
the unit cell (Boroditsky et al.; Kokubo & Kawai, 2008). When the location of the dielectric 
rods is fixed at a distance d from the sidewall, the group velocity vg at both of the first and 
the second bands is changed by varying the radius r. However, the group velocities are also 
changed at the same time and cannot be changed individually. 
If the group velocity is normalized using light velocity in a vacuum, vg/c is the same as the 
gradient of the characteristic curve. Therefore, when d and r are fixed to certain values, vg/c 
is calculated for the periodic structure of the dielectric rods at a specific frequency. If group 
velocity (A) is gradually changed to (B) for 1<ωw/2πc<1.5 when d is varied, and group 
velocity (C) is not changed for 0.5<ωw/2πc<1, then one unit of each pair of d and r connects 
to its respective pair to form a structure shown in Fig. 2.  
The metallic waveguide is assumed to be a WR-90 (22.9×10.2 mm, cutoff frequency fc ≈ 
6.55GHz) and period a is fixed at 9.54 mm. Fig. 3 shows a sample of calculated results of 
normalized velocity along the axis of the waveguide at 15 GHz and 9 GHz for dielectric rods 
(LaAlO3: εr= 24, radius r [mm]) aligned at a distance from the sidewall d [mm] (Kokubo, 
2010). It is desirable that the normalized velocity (A) (TE10: vg/c =0.900) monotonically 
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(A) is also gradually changed to (B), then the reflection may be reduced for 1<ωw/2πc<1.5. 
On the other hand, if the group velocity (C) is not significantly changed, the reflection may 
also be suppressed for 0.5<ωw/2πc<1. Since the mode profile gradually shifts from TE10 to 
TE20, the dielectric rods are replaced from near the sidewall to the center of the waveguide. 
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various distances from the sidewall, d, and various radii of the rods, r, at 15 and 9 GHz. 
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The group velocity is given by ( )
1
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dω
= . However, it is not simple to determine the 

group velocity in the waveguide shown in Fig. 2. The propagation modes in a waveguide 
having in-line dielectric rods with period a are calculated using a supercell approach 
(Benisty, 1996) by application of appropriate periodic Bloch conditions at the boundary of 
the unit cell (Boroditsky et al.; Kokubo & Kawai, 2008). When the location of the dielectric 
rods is fixed at a distance d from the sidewall, the group velocity vg at both of the first and 
the second bands is changed by varying the radius r. However, the group velocities are also 
changed at the same time and cannot be changed individually. 
If the group velocity is normalized using light velocity in a vacuum, vg/c is the same as the 
gradient of the characteristic curve. Therefore, when d and r are fixed to certain values, vg/c 
is calculated for the periodic structure of the dielectric rods at a specific frequency. If group 
velocity (A) is gradually changed to (B) for 1<ωw/2πc<1.5 when d is varied, and group 
velocity (C) is not changed for 0.5<ωw/2πc<1, then one unit of each pair of d and r connects 
to its respective pair to form a structure shown in Fig. 2.  
The metallic waveguide is assumed to be a WR-90 (22.9×10.2 mm, cutoff frequency fc ≈ 
6.55GHz) and period a is fixed at 9.54 mm. Fig. 3 shows a sample of calculated results of 
normalized velocity along the axis of the waveguide at 15 GHz and 9 GHz for dielectric rods 
(LaAlO3: εr= 24, radius r [mm]) aligned at a distance from the sidewall d [mm] (Kokubo, 
2010). It is desirable that the normalized velocity (A) (TE10: vg/c =0.900) monotonically 
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decreases to (B) (TE20: vg/c =0.487) at 15 GHz and normalized velocity (C) (TE10: vg/c =0.686) 
is not changed at 9 GHz. However, at 15 GHz, such a condition is not found around d=10 
mm, because the placement of the dielectric rod at the center of the waveguide is the same 
as that where the electric field becomes a minimum. On the other hand, placement of the 
dielectric rod near the sidewall of the waveguide is the same as that where the electric field 
becomes a maximum. At the transition region, around d=10 mm, the characteristics are 
complex. The design takes priority, in order to not vary the group velocity at 9 GHz. Since 
the group velocity must become slow with dielectric material at 9 GHz and becomes slowest 
at d=5 mm, the design takes priority at 15 GHz for mode conversion, because both 15 GHz 
and 9 GHz conditions cannot be satisfied at the same time. The final design of the mode 
converter is shown in Fig. 2. Three dielectric rods are located at the center of the waveguide. 
Two of these have r = 0.515 mm and the remainder have a half cross-section radius of 0.36 
mm in order to decrease electromagnetic reflection. Nine dielectric rods are placed from the 
center of the waveguide to near the sidewall with increasing radius of the rods r and with 
constant a = 9.54 mm. Table 1 shows the relation between the distance d and radius r 
(Kokubo, 2010). The S parameters between the input port (Port 1) and output. port (Port 2) 
are calculated using the HFSS software by Ansys Inc. and the results are shown as solid 
lines in Figs. 4(a) and (b). The electromagnetic waves pass through as the TE10 mode for 7-
11.2 GHz and are converted to the TE20 mode for 14.1-16.1 GHz under a condition of over 
95% efficiency. However, as the TE20 mode is not sufficiently small under -15 dB, 
optimization of the design is necessary for reduction of reflections. Though reflection as TE20 
is not small at high frequency, if a coaxial-waveguide converter is used for the introduction 
of electromagnetic waves to a waveguide, odd mode may not have a strong influence on 
even symmetry structure. 
 

Rod 
Number i 

Distance di from 
the Sidewall [mm] 

Radius ri of the 
dielectric rod [mm] 

1 11.45 0.36 
2 11.45 0.515 
3 11.45 0.515 
4 10.45 0.52 
5 9 0.57 
6 7 0.64 
7 5 0.69 
8 3 0.76 
9 1.3 1.0 

Table 1. Location and radii of the dielectric rods 

2.2 Simple fabrication method 
For the fabrication of a mode converter, such as the Type A illustrated in Fig. 5(a), it is 
necessary to locate the dielectric rods in the waveguide without a gap at top and bottom. 
Such a structure may be difficult to fabricate. As a solution, holes with diameters 0.2 mm 
larger than the rods were fabricated at the top of the waveguide and the dielectric rods were 
inserted (Type B, Fig. 5(b)). The S parameters were calculated using the HFSS software and 
the results are shown as dotted lines in Figs. 4(a) and (b). The results for these different 
structural conditions (solid lines and dotted lines) are almost same. 
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Fig. 4. S parameter for the mode converter; (a) |S21| and (b) |S11|.(Kokubo, 2010) 
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95% efficiency. However, as the TE20 mode is not sufficiently small under -15 dB, 
optimization of the design is necessary for reduction of reflections. Though reflection as TE20 
is not small at high frequency, if a coaxial-waveguide converter is used for the introduction 
of electromagnetic waves to a waveguide, odd mode may not have a strong influence on 
even symmetry structure. 
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Fig. 4. S parameter for the mode converter; (a) |S21| and (b) |S11|.(Kokubo, 2010) 
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Fig. 5. (a) Dielectric rod located in a waveguide without gaps at top and bottom.  
(b) Dielectric rod inserted in a hole made at the top of the waveguide with a diameter 0.2 
mm larger than the diameter of the rod. (Kokubo, 2010) 

2.3 Reduction of reflection for TE20 mode 
As shown in Fig. 4(b), reflection as TE20 mode is not small enough. This reason is dielectric 
rods are asymmetric arrangement for electromagnetic wave. Fig. 6 shows an improved 
structure of the TE10 to TE20 mode converter. 
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Fig. 6. An improved structure of the TE10 to TE20 mode converter. 

Rod 
Number i 

Distance di from 
the Sidewall [mm] 

Radius ri of the 
dielectric rod [mm] 

1 11.45 0.38 
2 11.45 0.55 
3 11.45 0.55 
4 11.45 0.55 
5 10.45 0.515 
6 9 0.57 
7 7 0.64 
8 5 0.69 
9 3 0.76 
10 1.25 0.92 
11 21.65 0.96 

Table 2. Location and radii of the dielectric rods 
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Fig. 7. S parameter for the mode converter; (a) |S21| and (b) |S11|. 
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Fig. 7. S parameter for the mode converter; (a) |S21| and (b) |S11|. 
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2.4 Design method of the TE10-to-TE40 mode converter 
A TE10 to TE40 mode converter can be considered by combination of TE10 to TE20 mode 
converters. Another structure of the TE10-to-TE20 mode converter is proposed and is shown 
in Fig. 8. The locations of the dielectric rods are indicated in Table 1. The structure of the 
proposed TE10-to-TE40 mode converter, which is composed of three TE10-to-TE20 mode 
converters, is shown in Fig. 9. The S parameters between the input port (port 1) and output 
port (port 2) calculated using HFSS are shown in Figs. 10(a), (b) and (c). 
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Fig. 8. Structure of the proposed TE10-to-TE20 mode converter. 
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Fig. 9. Structure of the proposed TE10-to-TE40 mode converter. (Kokubo, 2011a) 
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Fig. 10. S parameters for the TE10-to-TE40 mode converter. (a) |S21|, (b) |S11|, and (c) |S22|. 
(Kokubo, 2011a) 
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converters. Another structure of the TE10-to-TE20 mode converter is proposed and is shown 
in Fig. 8. The locations of the dielectric rods are indicated in Table 1. The structure of the 
proposed TE10-to-TE40 mode converter, which is composed of three TE10-to-TE20 mode 
converters, is shown in Fig. 9. The S parameters between the input port (port 1) and output 
port (port 2) calculated using HFSS are shown in Figs. 10(a), (b) and (c). 
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Fig. 8. Structure of the proposed TE10-to-TE20 mode converter. 
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Fig. 9. Structure of the proposed TE10-to-TE40 mode converter. (Kokubo, 2011a) 
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2.5 Design method of the TE30-to-TE10 mode converter 
A structure that contains two arrays of dielectric rods can convert the TE30 mode into the 
TE10 mode (Kokubo, 2009). The TE30 mode electromagnetic waves in this type of waveguide 
are converted to the TE10 mode for 7.1–8.9 GHz with over 95% efficiency. However, this 
structure cannot pass through electromagnetic waves around 2.5–3 GHz without high 
reflection even if the waveguide is straight. Therefore, a mode converter is proposed that 
passes the TE10 mode at low frequencies and efficiently converts the TE30 mode into the TE10 
mode at high frequencies. 
A metallic waveguide that contains two in-line dielectric rods can propagate single modes in 
two frequency regions (Shibano et al., 2006). The propagation modes in a waveguide with 
two in-line dielectric rods with period a are calculated using a supercell approach (Benisty, 
1996) by applying appropriate periodic Bloch conditions at the boundary of the unit cell 
(Boroditsky et al., 1998; Kokubo & Kawai, 2008).  
The metallic waveguide width is assumed to be w1 = 21.4 mm, which is 3 times wider than 
the WR-28 waveguide (7.11× 3.56 mm; fc ≈ 21.1 GHz), and period a is fixed at 5 mm. Fig. 11 
shows a sample of the calculated normalized velocity along the waveguide axis at 9 and 27 
GHz for dielectric rods (LaAlO3: εr = 24; radius r [mm]) aligned at a distance w2 [mm] 
between two arrays. The waveguide must be designed so as not to vary the group velocity 
(C) (TE10: vg/c = 0.627) at 9 GHz. After calculating vg for pairs of w2i and ri, if group velocity 
(A) (TE30: vg/c = 0.627) is gradually changed to (B) (TE10: vg/c = 0.966) at 27GHz, then each 
pair of w2i and ri are combined (see Fig. 12). 
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Fig. 11. Group velocity (dotted lines) in a metallic waveguide containing a periodic array of 
dielectric rods with various distances w2i between the rods and corresponding radii ri (solid 
line) of the rods, at 9 and 27 GHz. (Kokubo, 2011b) 
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Fig. 12. Proposed structure of the TE30-to-TE10 mode converter. (Kokubo, 2011b) 

 
Rod 

Number i 
Distance w2i between 

a pair of the rods 
[mm] 

Radius ri of the 
dielectric rod [mm] 

1 7.13 0.22 

2 7.13 0.32 

3 7.13 0.32 

4 7.13 0.32 

5 8.3 0.32 

6 10.2 0.36 

7 12.7 0.43 

8 15.2 0.51 

9 17.7 0.62 

10 19.5 0.78 

Table 3. Location and radius of the dielectric rods 

The first pair of rods has r1 = 0.22 mm to reduce electromagnetic reflection at low 
frequencies. If the first pair of rods is absent, then reflections will be above −10 dB at low 
frequencies. Twenty dielectric rods are placed from one third of the width of the waveguide 
to near the sidewall with increasing rod radius ri and constant a (= 5 mm). Table 3 shows the 
relation between the distance w2i and radius ri. The S parameters between the input port 
(port 1) and output port (port 2) are calculated using HFSS software by Ansys Inc., and the 
results are shown in Figs. 13(a-c). Electromagnetic waves propagate as the TE10 mode for 
8.2–14.8 GHz and the TE30 mode is converted into the TE10 mode for 22.2–28.4 GHz at an 
efficiency of over 95%. 
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Fig. 13. S parameters for the mode converter; (a) |S21|, (b) |S11|, and (c) |S22|. (Kokubo, 
2011b) 

3. Conclusion 
We have previously reported that single-mode propagation is available for a metallic 
waveguide with dielectric rods arrayed at the center of a waveguide using the TE10 mode, 
and the TE20 mode. However, a TE20-like mode, which is propagated in the second band, is 
an odd mode, and generation is not easy. In this investigation, a mode converter is proposed 
which passes through the TE10 mode for the low frequency range and converts TE10 to the 
TE20 mode for the high frequency range by small variation of the group velocity. It was 
shown that the electromagnetic waves pass through as the TE10 mode for 7-11.2 GHz and are 
converted to the TE20 mode for 14.1-16.1 GHz under a condition of over 95% efficiency. 
It was shown that electromagnetic waves propagate as the TE10 mode around 8 GHz and 
that the TE40 mode is converted into the TE10 mode around 16 GHz. 
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1. Introduction

In this paper we investigate the problem of scattering and generation of waves on an isotropic,
non-magnetic, linearly polarised (E-polarisation), non-linear, layered, cubically polarisable,
dielectric structure, which is excited by a packet of plane waves, in the range of resonant
frequencies. We consider wave packets consisting of both strong electromagnetic fields at the
excitation frequency, leading to the generation of waves, and of weak fields at the multiple
frequencies, which do not lead to the generation of harmonics but influence on the process of
scattering and generation of waves. The analysis of the quasi-homogeneous electromagnetic
fields of the non-linear dielectric layered structure made it possible to derive a condition
of phase synchronism of waves. If the classical formulation of the mathematical model is
supplemented by this condition of phase synchronism, we arrive at a rigorous formulation
of a system of boundary-value problems with respect to the components of the scattered and
generated fields (see Angermann & Yatsyk (2011)). This system is transformed to equivalent
systems of non-linear problems, namely a system of one-dimensional non-linear Fredholm
integral equations of the second kind and a system of non-linear boundary-value problems
of Sturm-Liouville type. The numerical algorithms of the solution of the non-linear problems
are based on iterative procedures which require the solution of a linearised system in each
step. In this way the approximate solution of the non-linear problems is described by means
of solutions of linearised problems with an induced dielectric permeability. The analytical
continuation of these problems into the region of complex values of the frequency parameter
allows us to switch to the analysis of spectral problems. The corresponding eigen-frequencies
form a discrete, countable set of points, with the only possible accumulation point at infinity,
and lie on a complex two-sheeted Riemann surface. In the frequency domain, the resonant
scattering and generation properties of non-linear structures are determined by the proximity
of the excitation frequencies of the non-linear structures to the complex eigen-frequencies
of the corresponding homogeneous linear spectral problems with the induced non-linear
dielectric permeability of the medium.
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2

Results of calculations of characteristics of the scattered field of a plane wave are presented,
taking into account the third harmonic generated by non-linear cubically polarisable layers
with both negative as well as positive values of the cubic susceptibility of the medium.
Within the framework of the closed system, which is given by a system of self-consistent
boundary-value problems, we show the following. The variation of the imaginary part of the
permittivity of the layer at the excitation frequency can take both positive and negative values
along the height of the non-linear layer. It is induced by the non-linear part of the permittivity
and is caused by the loss of energy in the non-linear medium (at the frequency of the incident
field), which is spent for the generation of the electromagnetic field of the third harmonic (at
the triple frequency). The magnitude of this variation is determined by the amplitude and
phase characteristics of the fields which are scattered and generated by the non-linear layer.
It is shown that layers with negative and positive values of the coefficient of cubic
susceptibility of the non-linear medium have fundamentally different scattering and
generation properties in the range of resonance. For instance, in the case of negative values
of the susceptibility, a decanalisation of the electromagnetic field can be detected. With
the increase of intensity of the incident field, the maximal variations of the reflection and
transmission coefficients can be observed in the vicinity of the normal incidence of the plane
wave. A previously transparent structure becomes semi-transparent, and the reflection and
transmission coefficients become comparable. For the layer considered here, the maximal
portion of the total energy generated in the third harmonic is observed in the direction normal
to the structure and amounts to 3.9% of the total dissipated energy. For a layer with a positive
value of the susceptibility an effect of energy canalisation is observed. The increase of intensity
of the incident field leads to an increase of the angle of transparancy which increasingly
deviates from the direction normal to the layer and which is responsible for a reflection
coefficient close to zero. In this case, the maximal portion of energy generated in the third
harmonic is observed near the angle of transparency of the non-linear layer. In the numerical
experiments there have been reached intensities of the excitation field of the layer such that
the relative portion of the total energy generated in the third harmonic is 36%. The paper also
presents results of numerical calculations that describe properties of the non-linear dielectric
permeabilities of the layers as well as their scattering and generation characteristics. The
tests are illustrated by figures showing the dependence on the amplitudes and the angles of
incidence of the plane wave for layers with negative and positive values of the coefficient of
the cubic susceptibility of the non-linear medium.

2. Maxwell equations and wave propagation in non-linear media with cubic
polarisability

In this section we give a short overview on the derivation of the mathematical model. A more
detailed explanation can be found in Angermann & Yatsyk (2011). Electrodynamical wave
phenomena in charge- and current-free media can be described by the Maxwell equations

∇× E = −1
c

∂B
∂t

, ∇× H =
1
c

∂D
∂t

, ∇ · D = 0, ∇ · B = 0. (1)

Here E = E(r, t), H = H(r, t), D = D(r, t) and B = B(r, t) denote the vectors of electric
and magnetic field intensities, electric displacement, and magnetic induction, respectively,
and (r, t) ∈ R3 × (0, ∞). The symbol ∇ represents the formal vector of partial derivatives
w.r.t. the spatial variables, i.e. ∇ := (∂/∂x, ∂/∂y, ∂/∂z)� , where the symbol ·� denotes the
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transposition. In addition, the system (1) is completed by the material equations

D = E + 4πP, B = H + 4πM, (2)

where P and M are the vectors of the polarisation and magnetic moment, respectively.
In the present paper, the non-linear medium under consideration is located in an infinite plate
of thickness 4πδ, where δ > 0 is a given parameter: {r = (x, y, z)� ∈ R3 : |z| ≤ 2πδ}.
As in the books Akhmediev & Ankevich (2003), Kivshar & Agrawal (2005) and Miloslavsky
(2008), the investigations will be restricted to non-linear media without dispersion (cf.
Agranovich & Ginzburg (1966)), i.e. we use the following expansion of the polarisation vector
in terms of the electric field intensity:

P = χ(1)E + (χ(2)E)E + ((χ(3)E)E)E + . . . , (3)

where χ(1), χ(2), χ(3) are the media susceptibility tensors of rank one, two and three, with

components {χ
(1)
ij }3

i,j=1, {χ
(2)
ijk }3

i,j,k=1 and {χ
(3)
ijkl}3

i,j,k,l=1, respectively (see Butcher (1965)). In
the case of media which are invariant under the operations of inversion, reflection and
rotation, in particular of isotropic media, the quadratic term disappears.
It is convenient to split P into its linear and non-linear parts as P = P(L) + P(NL) := χ(1)E +

P(NL). Similarly, with ε := I + 4πχ(1) and D(L) := εE, where I denotes the identity in C3, the
displacement field in (2) can be decomposed as

D = D(L) + 4πP(NL). (4)

ε is the linear term of the permittivity tensor. Furthermore we assume that the media are
non-magnetic, i.e M = 0, so that

B = H (5)

by (2). Resolving the equations (1), (4) and (5) w.r.t. H, a single vector-valued equation results:

∇2E −∇(∇ · E)− 1
c2

∂2

∂t2 D(L) − 4π

c2
∂2

∂t2 P(NL) = 0. (6)

In addition, if the media under consideration are isotropic and transversely inhomogeneous
w.r.t. z, i.e. ε = ε(L)I with a scalar, possibly complex-valued function ε(L) = ε(L)(z), if the
wave is linearly E-polarised, i.e. E = (E1, 0, 0)�, H = (0, H2, H3)

�, and if the electric field
E is homogeneous w.r.t. the coordinate x, i.e. E(r, t) = (E1(t; y, z), 0, 0)�, then equation (6)
simplifies to

∇2E − ε(L)

c2
∂2

∂t2 E − 4π

c2
∂2

∂t2 P(NL) = 0, (7)

where ∇2 reduces to the Laplacian w.r.t. y and z, i.e. ∇2 := ∂2/∂y2 + ∂2/∂z2.
The stationary problem of the diffraction of a plane electromagnetic wave (with oscillation
frequency ω > 0) on a transversely inhomogeneous, isotropic, non-magnetic, linearly
polarised, dielectric layer filled with a cubically polarisable medium (see Fig. 1) is studied in
the frequency domain (i.e. in the space of the Fourier amplitudes of the electromagnetic field),
taking into account the multiple frequencies sω, s ∈ N, of the excitation frequency generated
by non-linear structure, where a time-dependence of the form exp(−isωt) is assumed. The
transition between the time domain and the frequency domain is performed by means of
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Fig. 1. The non-linear dielectric layered structure

direct and inverse Fourier transforms:

F̂(r, ω̂) =
∫

R
F(r, t)eiω̂tdt, F(r, t) =

1
2π

∫

R
F̂(r, ω̂)e−iω̂tdω̂,

where F is one of the vector fields E or P(NL). Applying formally the Fourier transform to
equation (7), we obtain the following representation in the frequency domain:

∇2Ê(r, ω̂) +
ε(L)ω̂2

c2 Ê(r, ω̂) +
4πω̂2

c2 P̂(NL)(r, ω̂) = 0. (8)

A stationary (i.e. ∼ exp(−iω̂t)) electromagnetic wave propagating in a weakly non-linear
dielectric structure gives rise to a field containing all frequency harmonics (see Sukhorukov
(1988), Vinogradova et al. (1990)). Therefore, the quantities describing the electromagnetic
field in the time domain subject to equation (7) can be represented by means of the Fourier
series

F(r, t) =
1
2 ∑

n∈Z

F(r, nω)e−inωt, F ∈ {E, P(NL)}. (9)

Applying to (9) the Fourier transform, we obtain

F̂(r, ω̂) =
1
2

∫

R
∑

n∈Z

F(r, nω)e−inωteiω̂tdt =
√

2π

2
F(r, nω)δ(ω̂, nω), F ∈ {E, P(NL)}, (10)

where δ(s, s0) := 1√
2π

∫
R

ei(s−s0)tdt is the Dirac delta-function located at s = s0.
Substituting (10) into (8), we obtain an infinite system of coupled equations w.r.t. the Fourier
amplitudes of the electric field intensities of the non-linear structure in the frequency domain:

∇2E(r, sω) +
ε(L)(sω)2

c2 E(r, sω) +
4π(sω)2

c2 P(NL)(r, sω) = 0, s ∈ Z. (11)

In the case of a three-component E-polarised electromagnetic field

E(r, sω) = (E1(sω; y, z), 0, 0)�, H(r, sω) = (0; H2(sω; y, z), H3(sω; y, z))�, (12)

the system (11) reduces to a system of scalar equations w.r.t. E1:

∇2E1(r, sω) +
ε(L) (sω)2

c2 E1(r, sω) +
4π (sω)2

c2 P(NL)
1 (r, sω) = 0, s ∈ N. (13)
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In writing equation (13), the property E1(r; jω) = E1(r;−jω) of the Fourier coefficients and
the lack of influence of the static electric field E1(r, sω)|s=0 = 0 on the non-linear structure
were taken into consideration.
We assume that the main contribution to the non-linearity is introduced by the term
P(NL)(r, sω) (cf. Yatsyk (2007), Shestopalov & Yatsyk (2007), Kravchenko & Yatsyk (2007),
Angermann & Yatsyk (2008), Yatsyk (2006), Schürmann et al. (2001), Smirnov et al. (2005),
Serov et al. (2004)), and we take only the lowest-order terms in the Taylor series expansion

of the non-linear part P(NL)(r, sω) =
�

P(NL)
1 (r, sω), 0, 0

��
of the polarisation vector in the

vicinity of the zero value of the electric field intensity, cf. (3). In this case, the only non-trivial
component of the polarisation vector is determined by susceptibility tensor of the third order
χ(3). In the time domain, this component can be represented in the form (cf. (3) and (9)):

P(NL)
1 (r, t) ·

=
1
8 ∑�

n,m,p,s∈Z\{0}
n+m+p=s

χ
(3)
1111(sω; nω, mω, pω)E1(r, nω)E1(r, mω)E1(r, pω)e−isωt,

(14)
where the symbol ·

= means that higher-order terms are neglected. Applying to (14) the Fourier
transform w.r.t. time, we obtain an expansion in the frequency domain:

P(NL)
1 (r, sω) =

1
4 ∑

j∈N

3χ
(3)
1111(sω; jω,−jω, sω)|E1(r, jω)|2E1(r, sω)

+
1
4 ∑⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n,m,p∈Z\{0}
n �=−m, p=s
m �=−p, n=s
n �=−p, m=s
n+m+p=s

χ
(3)
1111(sω; nω, mω, pω)E1(r, nω)E1(r, mω)E1(r, pω).

(15)

We see that, under the above assumptions, the electromagnetic waves in a non-linear
medium with a cubic polarisability are described by an infinite system (13)&(15) of coupled
non-linear equations (Yatsyk (2007), Shestopalov & Yatsyk (2007), Kravchenko & Yatsyk
(2007), Angermann & Yatsyk (2010)). In what follows we will consider the equations in the
frequency space taking into account the relation κ = ω

c .
Here we study non-linear effects involving the waves at the first three frequency components
of E1 only. That is, we further neglect the influence of harmonics of order higher than 3.
Then it is possible to restrict the examination of the system (13)&(15) to three equations, and
also to leave particular terms in the representation of the polarisation coefficients. Taking
into account only the non-trivial terms in the expansion of the polarisation coefficients and

using the so-called Kleinman’s rule (i.e. the equality of all the coefficients χ
(3)
1111 at the multiple

frequencies, Kleinman (1962), Miloslavsky (2008)), we arrive at the following system:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇2E1(r, κ) + ε(L)κ2E1(r, κ) + 4πκ2
�

P(PSM)
1 (r, κ) + P(GC)

1 (r, κ)
�
= −4πκ2P(G)

1 (r, κ),

∇2E1(r, 2κ) + ε(L)(2κ)2E1(r, 2κ) + 4π(2κ)2
�

P(PSM)
1 (r, 2κ) + P(GC)

1 (r, 2κ)
�
= 0,

∇2E1(r, 3κ) + ε(L)(3κ)2E1(r, 3κ) + 4π(3κ)2P(PSM)
1 (r, 3κ) = −4π(3κ)2P(G)

1 (r, 3κ),
(16)
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Fig. 1. The non-linear dielectric layered structure
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where F is one of the vector fields E or P(NL). Applying formally the Fourier transform to
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c2 P̂(NL)(r, ω̂) = 0. (8)

A stationary (i.e. ∼ exp(−iω̂t)) electromagnetic wave propagating in a weakly non-linear
dielectric structure gives rise to a field containing all frequency harmonics (see Sukhorukov
(1988), Vinogradova et al. (1990)). Therefore, the quantities describing the electromagnetic
field in the time domain subject to equation (7) can be represented by means of the Fourier
series
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1
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1
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where δ(s, s0) := 1√
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∫
R

ei(s−s0)tdt is the Dirac delta-function located at s = s0.
Substituting (10) into (8), we obtain an infinite system of coupled equations w.r.t. the Fourier
amplitudes of the electric field intensities of the non-linear structure in the frequency domain:

∇2E(r, sω) +
ε(L)(sω)2

c2 E(r, sω) +
4π(sω)2

c2 P(NL)(r, sω) = 0, s ∈ Z. (11)

In the case of a three-component E-polarised electromagnetic field

E(r, sω) = (E1(sω; y, z), 0, 0)�, H(r, sω) = (0; H2(sω; y, z), H3(sω; y, z))�, (12)

the system (11) reduces to a system of scalar equations w.r.t. E1:

∇2E1(r, sω) +
ε(L) (sω)2

c2 E1(r, sω) +
4π (sω)2

c2 P(NL)
1 (r, sω) = 0, s ∈ N. (13)
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In writing equation (13), the property E1(r; jω) = E1(r;−jω) of the Fourier coefficients and
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where

P(PSM)
1 (r, nκ) :=

3
4

χ
(3)
1111(|E1(r, κ)|2 + |E1(r, 2κ)|2 + |E1(r, 3κ)|2)E1(r, nκ), n = 1, 2, 3,

P(GC)
1 (r, κ) :=

3
4

χ
(3)
1111

[
E1(r, κ)

]2

E1(r, κ)
E1(r, 3κ)E1(r, κ), P(G)

1 (r, κ) :=
3
4

χ
(3)
1111E2

1(r, 2κ)E1(r, 3κ),

P(GC)
1 (r, 2κ) :=

3
4

χ
(3)
1111

E1(r, 2κ)

E1(r, 2κ)
E1(r, κ)E1(r, 3κ)E1(r, 2κ),

P(G)
1 (r, 3κ) :=

3
4

χ
(3)
1111

{
1
3

E3
1(r, κ) + E2

1(r, 2κ)E1(r, κ)

}
.

The terms P(PSM)
1 (r, nω) are usually called phase self-modulation (PSM) terms (cf. Akhmediev

& Ankevich (2003)). The permittivity of the non-linear medium filling a layer (see Fig. 1) can
be represented as

εnκ = ε(L) + ε
(NL)
nκ for |z| ≤ 2πδ . (17)

Outside the layer, i.e. for |z| > 2πδ, εnκ = 1. The linear and non-linear terms of the permittivity
of the layer are given by the coefficients at (nκ)2E1(r, nκ) in the second and third addends in

each of the equations of the system, respectively. Thus ε(L) = D(L)
1 (r, nκ)/E1(r, nκ) = 1 +

4πχ
(1)
11 , where the representations for the linear part of the complex components of the electric

displacement D(L)
1 (r, nκ) = E1(r, nκ) + 4πP(L)

1 (r, nκ) = ε(L)E1(r, nκ) and the polarisation

P(L)
1 (r, nκ) = χ

(1)
11 E1(r, nκ) are taken into account. Similarly, the third term of each equation

of the system makes it possible to write the non-linear component of εnκ in the form

ε
(NL)
nκ = α(z)

[|E1(r, κ)|2 + |E1(r, 2κ)|2 + |E1(r, 3κ)|2

+ δn1

[
E1(r, κ)

]2

E1(r, κ)
E1(r, 3κ) + δn2

E1(r, 2κ)

E1(r, 2κ)
E1(r, κ)E1(r, 3κ)

]
,

(18)

where α(z) := 3πχ
(3)
1111(z) is the so-called function of cubic susceptibility. For transversely

inhomogeneous media (a layer or a layered structure), the linear part ε(L) = ε(L)(z) = 1 +

4πχ
(1)
11 (z) of the permittivity is described by a piecewise smooth or even a piecewise constant

function. Similarly, the function of the cubic susceptibility α = α(z) is also a piecewise smooth
or even a piecewise constant function. This assumption allows us to investigate the diffraction
characteristics of a non-linear layer and of a layered structure (consisting of a finite number of
non-linear dielectric layers) within one and the same mathematical model.
Here and in what follows we use the following notation: (r, t) are dimensionless
spatial-temporal coordinates such that the thickness of the layer is equal to 4πδ. The
time-dependence is determined by the factors exp(−inωt), where ω := κc is the
dimensionless circular frequency and κ is a dimensionless frequency parameter such that
κ = ω/c := 2π/λ. This parameter characterises the ratio of the true thickness h of the layer
to the free-space wavelength λ, i.e. h/λ = 2κδ. c = (ε0μ0)

−1/2 denotes a dimensionless
parameter, equal to the absolute value of the speed of light in the medium containing the
layer (Im c = 0). ε0 and μ0 are the material parameters of the medium. The absolute values of
the true variables r�, t�, ω� are given by the formulas r� = hr/4πδ, t� = th/4πδ, ω� = ω4πδ/h.
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3. Quasi-homogeneous electromagnetic fields in a transversely inhomogeneous
non-linear dielectric layered structure and the excitation by wave packets

The scattered and generated field in a transversely inhomogeneous, non-linear dielectric
layer excited by a plane wave is quasi-homogeneous along the coordinate y, hence it can be
represented as

(C1) E1(r, nκ) =: E1(nκ; y, z) := U(nκ; z) exp(iφnκy), n = 1, 2, 3.

Here U(nκ; z) and φnκ := nκ sin ϕnκ denote the complex-valued transverse component of the
Fourier amplitude of the electric field and the value of the longitudinal propagation constant
(longitudinal wave-number) at the frequency nκ, respectively, where ϕnκ is the given angle of
incidence of the exciting field of frequency nκ (cf. Fig. 1).
Furthermore we require that the following condition of the phase synchronism of waves is satisfied:

(C2) φnκ = nφκ , n = 1, 2, 3.

Then the permittivity of the non-linear layer can be expressed as

εnκ(z, α(z), E1(r, κ), E1(r, 2κ), E1(r, 3κ))
= εnκ(z, α(z), U(κ; z), U(2κ; z), U(3κ; z))
= ε(L)(z) + α(z)

[|U(κ; z)|2 + |U(2κ; z)|2 + |U(3κ; z)|2
+ δn1|U(κ; z)||U(3κ; z)| exp {i [−3arg(U(κ; z)) + arg(U(3κ; z))]}
+ δn2|U(κ; z)||U(3κ; z)| exp {i [−2arg(U(2κ; z)) + arg(U(κ; z)) + arg(U(3κ; z))]} ],

n = 1, 2, 3.

(19)

For the the components of the non-linear polarisation P(G)
1 (r, nκ) (playing the role of the

sources generating radiation in the right-hand sides of the system (16)) we have that

−4πκ2P(G)
1 (r, κ) = −α(z)κ2U2(2κ; z)U(3κ; z) exp(iφκy),

−4π(3κ)2P(G)
1 (r, 3κ) = −α(z)(3κ)2

{
1
3

U3(κ; z) + U2(2κ; z)U(κ; z)
}

exp(iφ3κy).

A more detailed explanation of the condition (C2) can be found in (Angermann & Yatsyk,
2011, Sect. 3). In the considered case of spatially quasi-homogeneous (along the coordinate y)
electromagnetic fields (C1), the condition of the phase synchronism of waves (C2) reads as

sin ϕnκ = sin ϕκ , n = 1, 2, 3.

Consequently, the given angle of incidence of a plane wave at the frequency κ coincides with
the possible directions of the angles of incidence of plane waves at the multiple frequencies
nκ. The angles of the wave scattered by the layer are equal to ϕscat

nκ = −ϕnκ in the zone of
reflection z > 2πδ and ϕscat

nκ = π + ϕnκ and in the zone of transmission of the non-linear layer
z < −2πδ, where all angles are measured counter-clockwise in the (y, z)-plane from the z-axis
(cf. Fig. 1).
The conditions (C1), (C2) allow a further simplification of the system (16). Before we do so,
we want to make a few comments on specific cases which have already been discussed in the
literature. First we mention that the effect of a weak quasi-homogeneous electromagnetic field
(C1) on the non-linear dielectric structure such that harmonics at multiple frequencies are not
generated, i.e. E1(r, 2κ) = 0 and E1(r, 3κ) = 0, reduces to find the electric field component
E1(r, κ) determined by the first equation of the system (16). In this case, a diffraction problem
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where

P(PSM)
1 (r, nκ) :=

3
4

χ
(3)
1111(|E1(r, κ)|2 + |E1(r, 2κ)|2 + |E1(r, 3κ)|2)E1(r, nκ), n = 1, 2, 3,

P(GC)
1 (r, κ) :=

3
4

χ
(3)
1111

[
E1(r, κ)

]2

E1(r, κ)
E1(r, 3κ)E1(r, κ), P(G)

1 (r, κ) :=
3
4

χ
(3)
1111E2

1(r, 2κ)E1(r, 3κ),

P(GC)
1 (r, 2κ) :=

3
4

χ
(3)
1111

E1(r, 2κ)

E1(r, 2κ)
E1(r, κ)E1(r, 3κ)E1(r, 2κ),

P(G)
1 (r, 3κ) :=

3
4

χ
(3)
1111

{
1
3

E3
1(r, κ) + E2

1(r, 2κ)E1(r, κ)

}
.

The terms P(PSM)
1 (r, nω) are usually called phase self-modulation (PSM) terms (cf. Akhmediev

& Ankevich (2003)). The permittivity of the non-linear medium filling a layer (see Fig. 1) can
be represented as

εnκ = ε(L) + ε
(NL)
nκ for |z| ≤ 2πδ . (17)

Outside the layer, i.e. for |z| > 2πδ, εnκ = 1. The linear and non-linear terms of the permittivity
of the layer are given by the coefficients at (nκ)2E1(r, nκ) in the second and third addends in

each of the equations of the system, respectively. Thus ε(L) = D(L)
1 (r, nκ)/E1(r, nκ) = 1 +

4πχ
(1)
11 , where the representations for the linear part of the complex components of the electric

displacement D(L)
1 (r, nκ) = E1(r, nκ) + 4πP(L)

1 (r, nκ) = ε(L)E1(r, nκ) and the polarisation

P(L)
1 (r, nκ) = χ

(1)
11 E1(r, nκ) are taken into account. Similarly, the third term of each equation

of the system makes it possible to write the non-linear component of εnκ in the form

ε
(NL)
nκ = α(z)

[|E1(r, κ)|2 + |E1(r, 2κ)|2 + |E1(r, 3κ)|2

+ δn1

[
E1(r, κ)

]2

E1(r, κ)
E1(r, 3κ) + δn2

E1(r, 2κ)

E1(r, 2κ)
E1(r, κ)E1(r, 3κ)

]
,

(18)

where α(z) := 3πχ
(3)
1111(z) is the so-called function of cubic susceptibility. For transversely

inhomogeneous media (a layer or a layered structure), the linear part ε(L) = ε(L)(z) = 1 +

4πχ
(1)
11 (z) of the permittivity is described by a piecewise smooth or even a piecewise constant

function. Similarly, the function of the cubic susceptibility α = α(z) is also a piecewise smooth
or even a piecewise constant function. This assumption allows us to investigate the diffraction
characteristics of a non-linear layer and of a layered structure (consisting of a finite number of
non-linear dielectric layers) within one and the same mathematical model.
Here and in what follows we use the following notation: (r, t) are dimensionless
spatial-temporal coordinates such that the thickness of the layer is equal to 4πδ. The
time-dependence is determined by the factors exp(−inωt), where ω := κc is the
dimensionless circular frequency and κ is a dimensionless frequency parameter such that
κ = ω/c := 2π/λ. This parameter characterises the ratio of the true thickness h of the layer
to the free-space wavelength λ, i.e. h/λ = 2κδ. c = (ε0μ0)

−1/2 denotes a dimensionless
parameter, equal to the absolute value of the speed of light in the medium containing the
layer (Im c = 0). ε0 and μ0 are the material parameters of the medium. The absolute values of
the true variables r�, t�, ω� are given by the formulas r� = hr/4πδ, t� = th/4πδ, ω� = ω4πδ/h.

304 Electromagnetic Waves Resonance Properties of Scattering and Generation of Waves on Cubically Polarisable Dielectric Layers 7

3. Quasi-homogeneous electromagnetic fields in a transversely inhomogeneous
non-linear dielectric layered structure and the excitation by wave packets

The scattered and generated field in a transversely inhomogeneous, non-linear dielectric
layer excited by a plane wave is quasi-homogeneous along the coordinate y, hence it can be
represented as

(C1) E1(r, nκ) =: E1(nκ; y, z) := U(nκ; z) exp(iφnκy), n = 1, 2, 3.

Here U(nκ; z) and φnκ := nκ sin ϕnκ denote the complex-valued transverse component of the
Fourier amplitude of the electric field and the value of the longitudinal propagation constant
(longitudinal wave-number) at the frequency nκ, respectively, where ϕnκ is the given angle of
incidence of the exciting field of frequency nκ (cf. Fig. 1).
Furthermore we require that the following condition of the phase synchronism of waves is satisfied:

(C2) φnκ = nφκ , n = 1, 2, 3.

Then the permittivity of the non-linear layer can be expressed as

εnκ(z, α(z), E1(r, κ), E1(r, 2κ), E1(r, 3κ))
= εnκ(z, α(z), U(κ; z), U(2κ; z), U(3κ; z))
= ε(L)(z) + α(z)

[|U(κ; z)|2 + |U(2κ; z)|2 + |U(3κ; z)|2
+ δn1|U(κ; z)||U(3κ; z)| exp {i [−3arg(U(κ; z)) + arg(U(3κ; z))]}
+ δn2|U(κ; z)||U(3κ; z)| exp {i [−2arg(U(2κ; z)) + arg(U(κ; z)) + arg(U(3κ; z))]} ],

n = 1, 2, 3.

(19)

For the the components of the non-linear polarisation P(G)
1 (r, nκ) (playing the role of the

sources generating radiation in the right-hand sides of the system (16)) we have that

−4πκ2P(G)
1 (r, κ) = −α(z)κ2U2(2κ; z)U(3κ; z) exp(iφκy),

−4π(3κ)2P(G)
1 (r, 3κ) = −α(z)(3κ)2

{
1
3

U3(κ; z) + U2(2κ; z)U(κ; z)
}

exp(iφ3κy).

A more detailed explanation of the condition (C2) can be found in (Angermann & Yatsyk,
2011, Sect. 3). In the considered case of spatially quasi-homogeneous (along the coordinate y)
electromagnetic fields (C1), the condition of the phase synchronism of waves (C2) reads as

sin ϕnκ = sin ϕκ , n = 1, 2, 3.

Consequently, the given angle of incidence of a plane wave at the frequency κ coincides with
the possible directions of the angles of incidence of plane waves at the multiple frequencies
nκ. The angles of the wave scattered by the layer are equal to ϕscat

nκ = −ϕnκ in the zone of
reflection z > 2πδ and ϕscat

nκ = π + ϕnκ and in the zone of transmission of the non-linear layer
z < −2πδ, where all angles are measured counter-clockwise in the (y, z)-plane from the z-axis
(cf. Fig. 1).
The conditions (C1), (C2) allow a further simplification of the system (16). Before we do so,
we want to make a few comments on specific cases which have already been discussed in the
literature. First we mention that the effect of a weak quasi-homogeneous electromagnetic field
(C1) on the non-linear dielectric structure such that harmonics at multiple frequencies are not
generated, i.e. E1(r, 2κ) = 0 and E1(r, 3κ) = 0, reduces to find the electric field component
E1(r, κ) determined by the first equation of the system (16). In this case, a diffraction problem
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for a plane wave on a non-linear dielectric layer with a Kerr-type non-linearity εnκ = ε(L)(z) +
α(z)|E1(r, κ)|2 and a vanishing right-hand side is to be solved, see Angermann & Yatsyk
(2008); Kravchenko & Yatsyk (2007); Serov et al. (2004); Shestopalov & Yatsyk (2007); Smirnov
et al. (2005); Yatsyk (2006; 2007). The generation process of a field at the triple frequency 3κ by
the non-linear dielectric structure is caused by a strong incident electromagnetic field at the
frequency κ and can be described by the first and third equations of the system (16) only. Since
the right-hand side of the second equation in (16) is equal to zero, we may set E1(r, 2κ) = 0
corresponding to the homogeneous boundary condition w.r.t. E1(r, 2κ). Therefore the second
equation in (16) can be completely omitted, see Angermann & Yatsyk (2010).
A further interesting problem consists in the investigation of the influence of a packet of waves
on the generation of the third harmonic, if a strong incident field at the basic frequency κ and,
in addition, weak incident quasi-homogeneous electromagnetic fields at the double and triple
frequencies 2κ, 3κ (which alone do not generate harmonics at multiple frequencies) excite the
non-linear structure. The system (16) allows to describe the corresponding process of the
third harmonics generation. Namely, if such a wave packet consists of a strong field at the
basic frequency κ and of a weak field at the triple frequency 3κ, then we arrive, as in the
situation described above, at the system (16) with E1(r, 2κ) = 0, i.e. it is sufficient to consider
the first and third equations of (16) only. For wave packets consisting of a strong field at
the basic frequency κ and of a weak field at the frequency 2κ, (or of two weak fields at the
frequencies 2κ and 3κ) we have to take into account all three equations of system (16). This
is caused by the inhomogeneity of the corresponding problem, where a weak incident field at
the double frequency 2κ (or two weak fields at the frequencies 2κ and 3κ) excites (resp. excite)
the dielectric medium.
So we consider the problem of scattering and generation of waves on a non-linear, layered,
cubically polarisable structure, which is excited by a packet of plane waves consisting of
a strong field at the frequency κ (which generates a field at the triple frequency 3κ) and of
weak fields at the frequencies 2κ and 3κ (having an impact on the process of third harmonic
generation due to the contribution of weak electromagnetic fields)

{
Einc

1 (r, nκ) := Einc
1 (nκ; y, z) := ainc

nκ exp
(

i
(
φnκy − Γnκ(z − 2πδ)

))}3

n=1
, z > 2πδ , (20)

with amplitudes ainc
nκ and angles of incidence ϕnκ , |ϕ| < π/2 (cf. Fig. 1), where φnκ :=

nκ sin ϕnκ are the longitudinal propagation constants (longitudinal wave-numbers) and

Γnκ :=
√
(nκ)2 − φ2

nκ are the transverse propagation constants (transverse wave-numbers).
In this setting, if a packet of plane waves excites a non-magnetic, isotropic, linearly polarised
(i.e.

E(r, nκ) = (E1(nκ; y, z), 0, 0)� , H(r, nκ) =

(
0,

1
inωμ0

∂E1(nκ; y, z)
∂z

,− 1
inωμ0

∂E1(nκ; y, z)
∂y

)�

(E-polarisation)), transversely inhomogeneous ε(L) = ε(L)(z) = 1 + 4πχ
(1)
11 (z) dielectric layer

(see Fig. 1) with a cubic polarisability P(NL)(r, nκ) = (P(NL)
1 (nκ; y, z), 0, 0)� of the medium,

the complex amplitudes of the total fields

E1(r, nκ) =: E1(nκ; y, z) := U(nκ; z) exp(iφnκy) := Einc
1 (nκ; y, z) + Escat

1 (nκ; y, z)

306 Electromagnetic Waves Resonance Properties of Scattering and Generation of Waves on Cubically Polarisable Dielectric Layers 9

satisfy the system of equations (cf. (16) – (18))
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∇2E1(r, κ) + κ2εκ(z, α(z), E1(r, κ), E1(r, 2κ), E1(r, 3κ))E1(r, κ)
= −α(z)κ2E2

1(r, 2κ)E1(r, 3κ),

∇2E1(r, 2κ) + (2κ)2ε2κ(z, α(z), E1(r, κ), E1(r, 2κ), E1(r, 3κ))E1(r, 2κ) = 0,

∇2E1(r, 3κ) + (3κ)2ε3κ(z, α(z), E1(r, κ), E1(r, 2κ), E1(r, 3κ))E1(r, 3κ)

= −α(z)(3κ)2
�1

3
E3

1(r, κ) + E2
1(r, 2κ)E1(r, κ)

�
(21)

together with the following conditions, where Etg(nκ; y, z) and Htg (nκ; y, z) denote
the tangential components of the intensity vectors of the full electromagnetic field
{E(nκ; y, z)}n=1,2,3 , {H(nκ; y, z)}n=1,2,3:

(C1) E1(nκ; y, z) = U(nκ; z) exp(iφnκy), n = 1, 2, 3
(the quasi-homogeneity condition w.r.t. the spatial variable y introduced above),

(C2) φnκ = nφκ , n = 1, 2, 3,
(the condition of phase synchronism of waves introduced above),

(C3) Etg(nκ; y, z) and Htg(nκ; y, z) (i.e. E1(nκ; y, z) and H2(nκ; y, z)) are continuous at the
boundary layers of the non-linear structure,

(C4) Escat
1 (nκ; y, z) =

�
ascat

nκ

bscat
nκ

�
exp (i (φnκy ± Γnκ(z ∓ 2πδ))) , z><± 2πδ , n = 1, 2, 3

(the radiation condition w.r.t. the scattered field).

The condition (C4) provides a physically consistent behaviour of the energy characteristics
of scattering and guarantees the absence of waves coming from infinity (i.e. z = ±∞), see
Shestopalov & Sirenko (1989). We study the scattering properties of the non-linear layer,
where in (C4) we always have

Im Γnκ = 0, Re Γnκ > 0. (22)

Note that (C4) is also applicable for the analysis of the wave-guide properties of the layer,
where Im Γnκ > 0, Re Γnκ = 0. The desired solution of the scattering and generation problem
(21) under the conditions (C1) – (C4) can be represented as follows:

E1(nκ; y, z) = U(nκ; z) exp(iφnκy)

=

⎧⎨
⎩

ainc
nκ exp(i(φnκy − Γnκ(z − 2πδ))) + ascat

nκ exp(i(φnκy + Γnκ(z − 2πδ))), z > 2πδ,
U(nκ; z) exp(iφnκy), |z| ≤ 2πδ,
bscat

nκ exp(i(φnκy − Γnκ(z + 2πδ))), z < −2πδ,
n = 1, 2, 3.

(23)

Substituting this representation into the system (21), the following system of non-linear
ordinary differential equations results, where “ � ” denotes the differentiation w.r.t. z:

U��(nκ; z) +
�

Γ2
nκ − (nκ)2 [1 − εnκ(z, α(z), U(κ; z), U(2κ; z), U(3κ; z))]

�
U(nκ; z)

= −(nκ)2α(z)
�

δn1U2(2κ; z)U(3κ; z) + δn3

�
1
3

U3(κ; z) + U2(2κ; z)U(κ; z)
��

,

|z| ≤ 2πδ, n = 1, 2, 3.

(24)

307
Resonance Properties of Scattering and
Generation of Waves on Cubically Polarisable Dielectric Layers



8

for a plane wave on a non-linear dielectric layer with a Kerr-type non-linearity εnκ = ε(L)(z) +
α(z)|E1(r, κ)|2 and a vanishing right-hand side is to be solved, see Angermann & Yatsyk
(2008); Kravchenko & Yatsyk (2007); Serov et al. (2004); Shestopalov & Yatsyk (2007); Smirnov
et al. (2005); Yatsyk (2006; 2007). The generation process of a field at the triple frequency 3κ by
the non-linear dielectric structure is caused by a strong incident electromagnetic field at the
frequency κ and can be described by the first and third equations of the system (16) only. Since
the right-hand side of the second equation in (16) is equal to zero, we may set E1(r, 2κ) = 0
corresponding to the homogeneous boundary condition w.r.t. E1(r, 2κ). Therefore the second
equation in (16) can be completely omitted, see Angermann & Yatsyk (2010).
A further interesting problem consists in the investigation of the influence of a packet of waves
on the generation of the third harmonic, if a strong incident field at the basic frequency κ and,
in addition, weak incident quasi-homogeneous electromagnetic fields at the double and triple
frequencies 2κ, 3κ (which alone do not generate harmonics at multiple frequencies) excite the
non-linear structure. The system (16) allows to describe the corresponding process of the
third harmonics generation. Namely, if such a wave packet consists of a strong field at the
basic frequency κ and of a weak field at the triple frequency 3κ, then we arrive, as in the
situation described above, at the system (16) with E1(r, 2κ) = 0, i.e. it is sufficient to consider
the first and third equations of (16) only. For wave packets consisting of a strong field at
the basic frequency κ and of a weak field at the frequency 2κ, (or of two weak fields at the
frequencies 2κ and 3κ) we have to take into account all three equations of system (16). This
is caused by the inhomogeneity of the corresponding problem, where a weak incident field at
the double frequency 2κ (or two weak fields at the frequencies 2κ and 3κ) excites (resp. excite)
the dielectric medium.
So we consider the problem of scattering and generation of waves on a non-linear, layered,
cubically polarisable structure, which is excited by a packet of plane waves consisting of
a strong field at the frequency κ (which generates a field at the triple frequency 3κ) and of
weak fields at the frequencies 2κ and 3κ (having an impact on the process of third harmonic
generation due to the contribution of weak electromagnetic fields)

{
Einc

1 (r, nκ) := Einc
1 (nκ; y, z) := ainc

nκ exp
(

i
(
φnκy − Γnκ(z − 2πδ)

))}3

n=1
, z > 2πδ , (20)

with amplitudes ainc
nκ and angles of incidence ϕnκ , |ϕ| < π/2 (cf. Fig. 1), where φnκ :=

nκ sin ϕnκ are the longitudinal propagation constants (longitudinal wave-numbers) and

Γnκ :=
√
(nκ)2 − φ2

nκ are the transverse propagation constants (transverse wave-numbers).
In this setting, if a packet of plane waves excites a non-magnetic, isotropic, linearly polarised
(i.e.

E(r, nκ) = (E1(nκ; y, z), 0, 0)� , H(r, nκ) =

(
0,

1
inωμ0

∂E1(nκ; y, z)
∂z

,− 1
inωμ0

∂E1(nκ; y, z)
∂y

)�

(E-polarisation)), transversely inhomogeneous ε(L) = ε(L)(z) = 1 + 4πχ
(1)
11 (z) dielectric layer

(see Fig. 1) with a cubic polarisability P(NL)(r, nκ) = (P(NL)
1 (nκ; y, z), 0, 0)� of the medium,

the complex amplitudes of the total fields

E1(r, nκ) =: E1(nκ; y, z) := U(nκ; z) exp(iφnκy) := Einc
1 (nκ; y, z) + Escat

1 (nκ; y, z)
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satisfy the system of equations (cf. (16) – (18))
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∇2E1(r, κ) + κ2εκ(z, α(z), E1(r, κ), E1(r, 2κ), E1(r, 3κ))E1(r, κ)
= −α(z)κ2E2

1(r, 2κ)E1(r, 3κ),

∇2E1(r, 2κ) + (2κ)2ε2κ(z, α(z), E1(r, κ), E1(r, 2κ), E1(r, 3κ))E1(r, 2κ) = 0,

∇2E1(r, 3κ) + (3κ)2ε3κ(z, α(z), E1(r, κ), E1(r, 2κ), E1(r, 3κ))E1(r, 3κ)

= −α(z)(3κ)2
�1

3
E3

1(r, κ) + E2
1(r, 2κ)E1(r, κ)

�
(21)

together with the following conditions, where Etg(nκ; y, z) and Htg (nκ; y, z) denote
the tangential components of the intensity vectors of the full electromagnetic field
{E(nκ; y, z)}n=1,2,3 , {H(nκ; y, z)}n=1,2,3:

(C1) E1(nκ; y, z) = U(nκ; z) exp(iφnκy), n = 1, 2, 3
(the quasi-homogeneity condition w.r.t. the spatial variable y introduced above),

(C2) φnκ = nφκ , n = 1, 2, 3,
(the condition of phase synchronism of waves introduced above),

(C3) Etg(nκ; y, z) and Htg(nκ; y, z) (i.e. E1(nκ; y, z) and H2(nκ; y, z)) are continuous at the
boundary layers of the non-linear structure,

(C4) Escat
1 (nκ; y, z) =

�
ascat

nκ

bscat
nκ

�
exp (i (φnκy ± Γnκ(z ∓ 2πδ))) , z><± 2πδ , n = 1, 2, 3

(the radiation condition w.r.t. the scattered field).

The condition (C4) provides a physically consistent behaviour of the energy characteristics
of scattering and guarantees the absence of waves coming from infinity (i.e. z = ±∞), see
Shestopalov & Sirenko (1989). We study the scattering properties of the non-linear layer,
where in (C4) we always have

Im Γnκ = 0, Re Γnκ > 0. (22)

Note that (C4) is also applicable for the analysis of the wave-guide properties of the layer,
where Im Γnκ > 0, Re Γnκ = 0. The desired solution of the scattering and generation problem
(21) under the conditions (C1) – (C4) can be represented as follows:

E1(nκ; y, z) = U(nκ; z) exp(iφnκy)

=

⎧⎨
⎩

ainc
nκ exp(i(φnκy − Γnκ(z − 2πδ))) + ascat

nκ exp(i(φnκy + Γnκ(z − 2πδ))), z > 2πδ,
U(nκ; z) exp(iφnκy), |z| ≤ 2πδ,
bscat

nκ exp(i(φnκy − Γnκ(z + 2πδ))), z < −2πδ,
n = 1, 2, 3.

(23)

Substituting this representation into the system (21), the following system of non-linear
ordinary differential equations results, where “ � ” denotes the differentiation w.r.t. z:

U��(nκ; z) +
�

Γ2
nκ − (nκ)2 [1 − εnκ(z, α(z), U(κ; z), U(2κ; z), U(3κ; z))]

�
U(nκ; z)

= −(nκ)2α(z)
�

δn1U2(2κ; z)U(3κ; z) + δn3

�
1
3

U3(κ; z) + U2(2κ; z)U(κ; z)
��

,

|z| ≤ 2πδ, n = 1, 2, 3.

(24)
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The boundary conditions follow from the continuity of the tangential components of the full
fields of diffraction

�
Etg(nκ; y, z)

�
n=1,2,3

�
Htg(nκ; y, z)

�
n=1,2,3 at the boundary z = 2πδ and

z = −2πδ of the non-linear layer (cf. (C3)). According to (C3) and the representation of the
electrical components of the electromagnetic field (23), at the boundary of the non-linear layer
we obtain:

U(nκ; 2πδ) = ascat
nκ + ainc

nκ , U�(nκ; 2πδ) = iΓnκ
�
ascat

nκ − ainc
nκ

�
,

U(nκ;−2πδ) = bscat
nκ , U�(nκ;−2πδ) = −iΓnκbscat

nκ , n = 1, 2, 3.
(25)

Eliminating in (25) the unknown values of the complex amplitudes
�

ascat
nκ

�
n=1,2,3 ,�

bscat
nκ

�
n=1,2,3 of the scattered field and taking into consideration that ainc

nκ = Uinc(nκ; 2πδ),
we arrive at the desired boundary conditions for the problem (21), (C1) – (C4):

iΓnκU(nκ;−2πδ) + U�(nκ;−2πδ) = 0,
iΓnκU(nκ; 2πδ) − U�(nκ; 2πδ) = 2iΓnκ ainc

nκ , n = 1, 2, 3.
(26)

The system of ordinary differential equations (24) and the boundary conditions (26) form a
semi-linear boundary-value problem of Sturm-Liouville type, see also Angermann & Yatsyk
(2010); Shestopalov & Yatsyk (2007; 2010); Yatsyk (2007).

4. Existence and uniqueness of a weak solution of the non-linear boundary-value
problem

Denote by u = u(z) :=
�
u1(z), u2(z), u3(z)

�� :=
�
U(κ; z), U(2κ; z), U(3κ; z)

�� the (formal)
solution of (24)&(26) and let, for w = (w1, w2, w3)

� ∈ C3,

F (z, w) :=

⎛
⎜⎝

�
Γ2

κ − κ2 [1 − εκ(z, α(z), w1, w2, w3)]
�

w1 + α(z)κ2w2
2w3�

Γ2
2κ − (2κ)2 [1 − ε2κ(z, α(z), w1, w2, w3)]

�
w2�

Γ2
3κ − (3κ)2 [1 − ε3κ(z, α(z), w1, w2, w3)]

�
w3 + α(z)(3κ)2

�
1
3 w3

1 + w1w2
1

�

⎞
⎟⎠ .

Then the system of differential equations (24) takes the form

− u��(z) = F (z, u(z)) , z ∈ I := (−2πδ, 2πδ) . (27)

The boundary conditions (26) can be written as

u� (−2πδ) + iGu (−2πδ) = 0, u�(2πδ)− iGu(2πδ) = −2iGainc, (28)

where G := diag(Γκ , Γ2κ , Γ3κ) and ainc :=
�
ainc

κ , ainc
2κ , ainc

3κ

�� . Taking an arbitrary
complex-valued vector function v : Icl := [−2πδ, 2πδ] → C3, v = (v1, v2, v3)

� , multiplying
the vector differential equation (27) by the complex conjugate v and integrating w.r.t. z over
the interval I , we arrive at the equation

−
�

I
u�� · v dz =

�

I
F (z, u) · v dz .
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Integrating formally by parts and using the boundary conditions (28), we obtain:

− ∫
I u�� · v dz =

∫
I u� · v dz − (u� · v) (2πδ) + (u� · v) (−2πδ)

=
∫
I u� · v�dz − i [((Gu) · v) (2πδ) + ((Gu) · v) (−2πδ)] + 2i(Gainc) · v(2πδ).

(29)

Now we take into consideration the complex Sobolev space H1(I) consisting of functions
with values in C, which together with their weak derivatives belong to L2(I). According to
(29) it is natural to introduce the follwing forms for w, v ∈ V :=

[
H1(I)]3:

a (w, v) :=
∫
I w� · v�dz − i [((Gw) · v) (2πδ) + ((Gw) · v) (−2πδ)] ,

b (w, v) :=
∫
I F (z, w) · vdz − 2i(Gainc) · v(2πδ).

So we arrive at the following weak formulation of boundary-value problem (24):

Find u ∈ V such that a (u, v) = b (u, v) ∀v ∈ V. (30)

The space V is equipped with the usual norm and seminorm, resp.:

�v�2
1,2,I :=

3

∑
n=1

[
�vn�2

0,2,I + �v�n�2
0,2,I

]
, |v|21,2,I :=

3

∑
n=1

�v�n�2
0,2,I ,

where �v�0,2,I , for v ∈ L2(I), denotes the usual L2(I)-norm. If v ∈ [L2(I)]3, we will use the

same notation, i.e. �v�2
0,2,I :=

3

∑
n=1

�vn�2
0,2,I . Then the above norm and seminorm in V can be

written in short as

�v�2
1,2,I := �v�2

0,2,I + �v��2
0,2,I , |v|1,2,I := �v��0,2,I . (31)

Analogously, we will not make any notational difference between the absolute value | · | of a
(scalar) element of C and the norm | · | of a (vectorial) element of C3.
On V, the following norm can be introduced:

�v�2
V :=

3

∑
n=1

[
|vn(−2 π δ)|2 + |vn(2 π δ)|2 + �v�n�2

0,2,I
]
= |v(−2 π δ)|2 + |v(2 π δ)|2 + |v|21,2,I .

(32)

Corollary 1. The norms defined in (31) and (32) are equivalent on V, i.e.

C−�v�1,2,I ≤ �v�V ≤ C+�v�1,2,I ∀v ∈ V

with C− := 1/
√

16 π2δ2 + 1, C+ :=
√

max
{

1
2 π δ + 1; 2

}
.

Proof. It is not difficult to verify the following inequality for any (scalar) element v ∈ H1(I)
(see, e.g., (Angermann & Yatsyk, 2008, Cor. 4)):

�v�2
0,2,I ≤ 4 π δ[|v(−2 π δ)|2 + |v(2 π δ)|2] + 16 π2δ2�v��2

0,2,I . (33)
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The boundary conditions follow from the continuity of the tangential components of the full
fields of diffraction

�
Etg(nκ; y, z)

�
n=1,2,3

�
Htg(nκ; y, z)

�
n=1,2,3 at the boundary z = 2πδ and

z = −2πδ of the non-linear layer (cf. (C3)). According to (C3) and the representation of the
electrical components of the electromagnetic field (23), at the boundary of the non-linear layer
we obtain:

U(nκ; 2πδ) = ascat
nκ + ainc

nκ , U�(nκ; 2πδ) = iΓnκ
�
ascat

nκ − ainc
nκ

�
,

U(nκ;−2πδ) = bscat
nκ , U�(nκ;−2πδ) = −iΓnκbscat

nκ , n = 1, 2, 3.
(25)

Eliminating in (25) the unknown values of the complex amplitudes
�

ascat
nκ

�
n=1,2,3 ,�

bscat
nκ

�
n=1,2,3 of the scattered field and taking into consideration that ainc

nκ = Uinc(nκ; 2πδ),
we arrive at the desired boundary conditions for the problem (21), (C1) – (C4):

iΓnκU(nκ;−2πδ) + U�(nκ;−2πδ) = 0,
iΓnκU(nκ; 2πδ) − U�(nκ; 2πδ) = 2iΓnκ ainc

nκ , n = 1, 2, 3.
(26)

The system of ordinary differential equations (24) and the boundary conditions (26) form a
semi-linear boundary-value problem of Sturm-Liouville type, see also Angermann & Yatsyk
(2010); Shestopalov & Yatsyk (2007; 2010); Yatsyk (2007).

4. Existence and uniqueness of a weak solution of the non-linear boundary-value
problem

Denote by u = u(z) :=
�
u1(z), u2(z), u3(z)

�� :=
�
U(κ; z), U(2κ; z), U(3κ; z)

�� the (formal)
solution of (24)&(26) and let, for w = (w1, w2, w3)

� ∈ C3,

F (z, w) :=

⎛
⎜⎝

�
Γ2

κ − κ2 [1 − εκ(z, α(z), w1, w2, w3)]
�

w1 + α(z)κ2w2
2w3�

Γ2
2κ − (2κ)2 [1 − ε2κ(z, α(z), w1, w2, w3)]

�
w2�

Γ2
3κ − (3κ)2 [1 − ε3κ(z, α(z), w1, w2, w3)]

�
w3 + α(z)(3κ)2

�
1
3 w3

1 + w1w2
1

�

⎞
⎟⎠ .

Then the system of differential equations (24) takes the form

− u��(z) = F (z, u(z)) , z ∈ I := (−2πδ, 2πδ) . (27)

The boundary conditions (26) can be written as

u� (−2πδ) + iGu (−2πδ) = 0, u�(2πδ)− iGu(2πδ) = −2iGainc, (28)

where G := diag(Γκ , Γ2κ , Γ3κ) and ainc :=
�
ainc

κ , ainc
2κ , ainc

3κ

�� . Taking an arbitrary
complex-valued vector function v : Icl := [−2πδ, 2πδ] → C3, v = (v1, v2, v3)

� , multiplying
the vector differential equation (27) by the complex conjugate v and integrating w.r.t. z over
the interval I , we arrive at the equation

−
�

I
u�� · v dz =

�

I
F (z, u) · v dz .
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Integrating formally by parts and using the boundary conditions (28), we obtain:

− ∫
I u�� · v dz =

∫
I u� · v dz − (u� · v) (2πδ) + (u� · v) (−2πδ)

=
∫
I u� · v�dz − i [((Gu) · v) (2πδ) + ((Gu) · v) (−2πδ)] + 2i(Gainc) · v(2πδ).

(29)

Now we take into consideration the complex Sobolev space H1(I) consisting of functions
with values in C, which together with their weak derivatives belong to L2(I). According to
(29) it is natural to introduce the follwing forms for w, v ∈ V :=

[
H1(I)]3:

a (w, v) :=
∫
I w� · v�dz − i [((Gw) · v) (2πδ) + ((Gw) · v) (−2πδ)] ,

b (w, v) :=
∫
I F (z, w) · vdz − 2i(Gainc) · v(2πδ).

So we arrive at the following weak formulation of boundary-value problem (24):

Find u ∈ V such that a (u, v) = b (u, v) ∀v ∈ V. (30)

The space V is equipped with the usual norm and seminorm, resp.:

�v�2
1,2,I :=

3

∑
n=1

[
�vn�2

0,2,I + �v�n�2
0,2,I

]
, |v|21,2,I :=

3

∑
n=1

�v�n�2
0,2,I ,

where �v�0,2,I , for v ∈ L2(I), denotes the usual L2(I)-norm. If v ∈ [L2(I)]3, we will use the

same notation, i.e. �v�2
0,2,I :=

3

∑
n=1

�vn�2
0,2,I . Then the above norm and seminorm in V can be

written in short as

�v�2
1,2,I := �v�2

0,2,I + �v��2
0,2,I , |v|1,2,I := �v��0,2,I . (31)

Analogously, we will not make any notational difference between the absolute value | · | of a
(scalar) element of C and the norm | · | of a (vectorial) element of C3.
On V, the following norm can be introduced:

�v�2
V :=

3

∑
n=1

[
|vn(−2 π δ)|2 + |vn(2 π δ)|2 + �v�n�2

0,2,I
]
= |v(−2 π δ)|2 + |v(2 π δ)|2 + |v|21,2,I .

(32)

Corollary 1. The norms defined in (31) and (32) are equivalent on V, i.e.

C−�v�1,2,I ≤ �v�V ≤ C+�v�1,2,I ∀v ∈ V

with C− := 1/
√

16 π2δ2 + 1, C+ :=
√

max
{

1
2 π δ + 1; 2

}
.

Proof. It is not difficult to verify the following inequality for any (scalar) element v ∈ H1(I)
(see, e.g., (Angermann & Yatsyk, 2008, Cor. 4)):

�v�2
0,2,I ≤ 4 π δ[|v(−2 π δ)|2 + |v(2 π δ)|2] + 16 π2δ2�v��2

0,2,I . (33)
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Consequently, by (31), �v�2
1,2,I ≤ 4 π δ[|v(−2 π δ)|2 + |v(2 π δ)|2] + (16 π2δ2 + 1)�v��2

0,2,I .
Since 4 π δ < 16 π2δ2 + 1, we immediately obtain the left-hand side of the desired estimate:

�v�2
1,2,I ≤ (16 π2δ2 + 1)�v�2

V.

On the other hand, a trace inequality (see, e.g., (Angermann & Yatsyk, 2008, Cor. 5)) says that
we have the following estimate for any element v ∈ H1(I):

|v(−2 π δ)|2 + |v(2 π δ)|2 ≤
(

1
2 π δ

+ 1
)
�v�2

0,2,I + �v��2
0,2,I .

Thus �v�2
V ≤

(
1

2 π δ + 1
)
�v�2

0,2,I + 2�v��2
0,2,I , that is C2

+ := max
{

1
2 π δ + 1; 2

}
. �

Lemma 1. If the matrix G is positively definite, then the form a is coercive and bounded on V, i.e.

CK�v�2
1,2,I ≤ |a(v, v)|, |a(w, v)| ≤ Cb�w�1,2,I�v�1,2,I

for all w, v ∈ V with CK :=
√

2
2 min{1; Γκ ; Γ2κ ; Γ3κ}C2−, Cb := max{1; Γκ ; Γ2κ ; Γ3κ}C2

+.

Remark 1. Due to (22), the assumption of the lemma is satisfied.

Proof of the lemma: Obviously,

|a(v, v)| =
√
|Re a(v, v)|2 + |Im a(v, v)|2 ≥

√
2

2
[|Re a(v, v)|+ |Im a(v, v)|]

=

√
2

2

3

∑
n=1

[
�v�n�2

0,2,I + Γnκ |vn(−2 π δ)|2 + Γnκ |vn(2 π δ)|2
]
≥

√
2

2
min{1; Γκ ; Γ2κ ; Γ3κ}�v�2

V,

(34)
where we have used the convention Γ1κ := Γκ . By Corollary 1, this estimate implies the
coercivity of a on V. The proof of the continuity runs in a similar way:

|a(w, v)| ≤ max{1; Γκ ; Γ2κ ; Γ3κ}
3

∑
n=1

[�w�
n�0,2,I�v�n�0,2,I

+ |wn(−2 π δ)||vn(−2 π δ)|+ |wn(2 π δ)||vn(2 π δ)|]
≤ max{1; Γκ ; Γ2κ ; Γ3κ}�w�V�v�V,

where the last estimate is a consequence of the Cauchy-Schwarz inequality for finite sums.
From Corollary 1 we obtain the above expression for Cb. �
Corollary 2. Under the assumption of Lemma 1, given an antilinear continuous functional � : V →
C, the problem to find an element u ∈ V such that

a(u, v) = �(v) ∀v ∈ V (35)

is uniquely solvable and the following estimate holds:

�u�1,2,I ≤ C−1
K ���∗, where ���∗ := sup

v∈V

|�(v)|
�v�1,2,I

.

310 Electromagnetic Waves Resonance Properties of Scattering and Generation of Waves on Cubically Polarisable Dielectric Layers 13

Proof. This general result is well-known (see, e.g., (Showalter, 1994, Thm. 2.1)). �
Corollary 3. If the antilinear continuous functional � : V → C has the particular structure

�(v) :=
∫

I
f · v dz + γ− · v(−2 π δ) + γ+ · v(2 π δ),

where f ∈ [L2(I)]3 and γ−, γ+ ∈ C3 are given, then

���∗ ≤ C+

√
max {4 π δ + 1; 16 π2δ2}

{
�f�2

0,2,I + |γ−|2 + |γ+|2
}1/2

.

Proof. By the Cauchy-Schwarz inequality for finite sums, we see that

|�(v)| ≤ �f�0,2,I�v�0,2,I + |γ−||v(−2 π δ)|+ |γ+||v(2 π δ)|
≤

{
�f�2

0,2,I + |γ−|2 + |γ+|2
}1/2 {�v�2

0,2,I + |v(−2 π δ)|2 + |v(2 π δ)|2
}1/2

.

Using the estimate (33), it follows

|�(v)| ≤
√

max {4 π δ + 1; 16 π2δ2}
{
�f�2

0,2,I + |γ−|2 + |γ+|2
}1/2 �v�V. (36)

It remains to apply Corollary 1. �
Remark 2. Combining Corollary 2 and Corollary 3, we obtain the following estimate for the solution
u of (35):

�u�1,2,I ≤ C+

√
2 max {4 π δ + 1; 16 π2δ2}

C2− min{1; Γκ ; Γ2κ ; Γ3κ}
{
�f�2

0,2,I + |γ−|2 + |γ+|2
}1/2

.

The obtained constant suffers from the twice use of the norm equivalence in the proofs of Lemma 1 and
Corollary 3, respectively. It can be improved if we start from the estimate (34). Namely, setting v := u
in (35), we obtain from (34) and (36):

√
2

2
min{1; Γκ ; Γ2κ ; Γ3κ}�v�2

V ≤ |a(u, u)| = |�(u)|

≤
√

max {4 π δ + 1; 16 π2δ2}
{
�f�2

0,2,I + |γ−|2 + |γ+|2
}1/2 �u�V.

Therefore, by Corollary 1,

�u�1,2,I ≤ CN

{
�f�2

0,2,I + |γ−|2 + |γ+|2
}1/2

with CN :=

√
2 max {4 π δ + 1; 16 π2δ2}
C− min{1; Γκ ; Γ2κ ; Γ3κ} . (37)

The identity
Aw(v) := a(w, v) ∀w, v ∈ V

defines a linear operator A : V → V∗, where V∗ is the dual space of V consisting of all
antilinear continuous functionals acting from V to C. By Lemma 1 and Corollary 2, A is a
bounded operator with a bounded inverse A−1 : V∗ → V:

�w�1,2,I ≤ C−1
K �Aw�∗ ∀w ∈ V.
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Consequently, by (31), �v�2
1,2,I ≤ 4 π δ[|v(−2 π δ)|2 + |v(2 π δ)|2] + (16 π2δ2 + 1)�v��2

0,2,I .
Since 4 π δ < 16 π2δ2 + 1, we immediately obtain the left-hand side of the desired estimate:

�v�2
1,2,I ≤ (16 π2δ2 + 1)�v�2

V.

On the other hand, a trace inequality (see, e.g., (Angermann & Yatsyk, 2008, Cor. 5)) says that
we have the following estimate for any element v ∈ H1(I):

|v(−2 π δ)|2 + |v(2 π δ)|2 ≤
(

1
2 π δ

+ 1
)
�v�2

0,2,I + �v��2
0,2,I .

Thus �v�2
V ≤

(
1

2 π δ + 1
)
�v�2

0,2,I + 2�v��2
0,2,I , that is C2

+ := max
{

1
2 π δ + 1; 2

}
. �

Lemma 1. If the matrix G is positively definite, then the form a is coercive and bounded on V, i.e.

CK�v�2
1,2,I ≤ |a(v, v)|, |a(w, v)| ≤ Cb�w�1,2,I�v�1,2,I

for all w, v ∈ V with CK :=
√

2
2 min{1; Γκ ; Γ2κ ; Γ3κ}C2−, Cb := max{1; Γκ ; Γ2κ ; Γ3κ}C2

+.

Remark 1. Due to (22), the assumption of the lemma is satisfied.

Proof of the lemma: Obviously,

|a(v, v)| =
√
|Re a(v, v)|2 + |Im a(v, v)|2 ≥

√
2

2
[|Re a(v, v)|+ |Im a(v, v)|]

=

√
2

2

3

∑
n=1

[
�v�n�2

0,2,I + Γnκ |vn(−2 π δ)|2 + Γnκ |vn(2 π δ)|2
]
≥

√
2

2
min{1; Γκ ; Γ2κ ; Γ3κ}�v�2

V,

(34)
where we have used the convention Γ1κ := Γκ . By Corollary 1, this estimate implies the
coercivity of a on V. The proof of the continuity runs in a similar way:

|a(w, v)| ≤ max{1; Γκ ; Γ2κ ; Γ3κ}
3

∑
n=1

[�w�
n�0,2,I�v�n�0,2,I

+ |wn(−2 π δ)||vn(−2 π δ)|+ |wn(2 π δ)||vn(2 π δ)|]
≤ max{1; Γκ ; Γ2κ ; Γ3κ}�w�V�v�V,

where the last estimate is a consequence of the Cauchy-Schwarz inequality for finite sums.
From Corollary 1 we obtain the above expression for Cb. �
Corollary 2. Under the assumption of Lemma 1, given an antilinear continuous functional � : V →
C, the problem to find an element u ∈ V such that

a(u, v) = �(v) ∀v ∈ V (35)

is uniquely solvable and the following estimate holds:

�u�1,2,I ≤ C−1
K ���∗, where ���∗ := sup

v∈V

|�(v)|
�v�1,2,I

.
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Proof. This general result is well-known (see, e.g., (Showalter, 1994, Thm. 2.1)). �
Corollary 3. If the antilinear continuous functional � : V → C has the particular structure

�(v) :=
∫

I
f · v dz + γ− · v(−2 π δ) + γ+ · v(2 π δ),

where f ∈ [L2(I)]3 and γ−, γ+ ∈ C3 are given, then

���∗ ≤ C+

√
max {4 π δ + 1; 16 π2δ2}

{
�f�2

0,2,I + |γ−|2 + |γ+|2
}1/2

.

Proof. By the Cauchy-Schwarz inequality for finite sums, we see that

|�(v)| ≤ �f�0,2,I�v�0,2,I + |γ−||v(−2 π δ)|+ |γ+||v(2 π δ)|
≤

{
�f�2

0,2,I + |γ−|2 + |γ+|2
}1/2 {�v�2

0,2,I + |v(−2 π δ)|2 + |v(2 π δ)|2
}1/2

.

Using the estimate (33), it follows

|�(v)| ≤
√

max {4 π δ + 1; 16 π2δ2}
{
�f�2

0,2,I + |γ−|2 + |γ+|2
}1/2 �v�V. (36)

It remains to apply Corollary 1. �
Remark 2. Combining Corollary 2 and Corollary 3, we obtain the following estimate for the solution
u of (35):

�u�1,2,I ≤ C+

√
2 max {4 π δ + 1; 16 π2δ2}

C2− min{1; Γκ ; Γ2κ ; Γ3κ}
{
�f�2

0,2,I + |γ−|2 + |γ+|2
}1/2

.

The obtained constant suffers from the twice use of the norm equivalence in the proofs of Lemma 1 and
Corollary 3, respectively. It can be improved if we start from the estimate (34). Namely, setting v := u
in (35), we obtain from (34) and (36):

√
2

2
min{1; Γκ ; Γ2κ ; Γ3κ}�v�2

V ≤ |a(u, u)| = |�(u)|

≤
√

max {4 π δ + 1; 16 π2δ2}
{
�f�2

0,2,I + |γ−|2 + |γ+|2
}1/2 �u�V.

Therefore, by Corollary 1,

�u�1,2,I ≤ CN

{
�f�2

0,2,I + |γ−|2 + |γ+|2
}1/2

with CN :=

√
2 max {4 π δ + 1; 16 π2δ2}
C− min{1; Γκ ; Γ2κ ; Γ3κ} . (37)

The identity
Aw(v) := a(w, v) ∀w, v ∈ V

defines a linear operator A : V → V∗, where V∗ is the dual space of V consisting of all
antilinear continuous functionals acting from V to C. By Lemma 1 and Corollary 2, A is a
bounded operator with a bounded inverse A−1 : V∗ → V:

�w�1,2,I ≤ C−1
K �Aw�∗ ∀w ∈ V.
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Lemma 2. If ε(L), α ∈ L∞(I), then the formal substitution N (w)(z) := F(z, w(z)) defines a
Nemyckii operator N : V → [L2(I)]3, and there is a constant CS > 0 such that

�N (w)�0,2,I ≤ κ2
�
9�ε(L) − sin2 ϕκ�0,∞,I +

√
170 C2

S�α�0,∞,I�w�2
1,2,I

�
�w�0,2,I .

Proof. It is sufficient to verify the estimate. According to the decomposition
F(z, w) := F(L)(z, w) + F(NL)(z, w) with

F(L)(z, w) :=

⎛
⎜⎜⎜⎝

{Γ2
κ − κ2

�
1 − ε(L)(z)

�
}w1

{Γ2
2κ − (2κ)2

�
1 − ε(L)(z)

�
}w2

{Γ2
3κ − (3κ)2

�
1 − ε(L)(z)

�
}w3

⎞
⎟⎟⎟⎠ ,

F(NL)(z, w) :=

⎛
⎜⎜⎝

F(NL)
1 (z, w)

F(NL)
2 (z, w)

F(NL)
3 (z, w)

⎞
⎟⎟⎠ := α(z)

⎛
⎜⎜⎝

κ2 �|w|2w1 + w2
1w3 + w2

2w3
�

(2κ)2 �|w|2w2 + w1w2w3
�

(3κ)2
�
|w|2w3 +

1
3 w3

1 + w1w2
2

�

⎞
⎟⎟⎠

(cf. (19), (24)), it is convinient to split N into a linear and a non-linear part as N (w)(z) :=
N (L)(w)(z) + N (NL)(w)(z), where N (L)(w)(z) := F(L)(z, w(z)) and N (NL)(w)(z) :=
F(NL)(z, w(z)). Now, by the definition of the wave-numbers (see Section 3),

Γ2
nκ − (nκ)2

�
1 − ε(L)(z)

�
= (nκ)2

�
ε(L)(z)− sin2 ϕnκ

�
= (nκ)2

�
ε(L)(z)− sin2 ϕκ

�
, n = 1, 2, 3,

where the last relation is a consequence of the condition (C2). Therefore,

�N (L)(w)�0,2,I ≤ (3κ)2�ε(L) − sin2 ϕκ�0,∞,I�w�0,2,I . (38)

Next, since H1(I) is continuously embedded into C(Icl) by Sobolev’s embedding theorem
(see, e.g., (Adams, 1975, Thm. 5.4)), there exists a constant CS > 0 such that

�w�0,∞,I := sup
z∈I

|w(z)| = sup
z∈I

�
3

∑
n=1

|wn(z)|2
�1/2

≤ CS�w�1,2,I . (39)

Using this fact we easily obtain the following triple of estimates:

�F(NL)
1 (·, w)�0,2,I ≤ κ2�α�0,∞,I

�
�|w|2w1�0,2,I + �w2

1w3�0,2,I + �w2
2w3�0,2,I

�

≤ κ2�α�0,∞,I
�
�w�2

0,∞,I�w1�0,2,I

+ �w1�2
0,∞,I�w3�0,2,I + �w2�0,∞,I�w3�0,∞,I�w2�0,2,I

�

≤ κ2�α�0,∞,I�w�2
0,∞,I [�w1�0,2,I + �w2�0,2,I + �w3�0,2,I ]

≤
√

3 κ2C2
S�α�0,∞,I�w�2

1,2,I�w�0,2,I ,
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�F(NL)
2 (·, w)�0,2,I ≤ (2κ)2�α�0,∞,I

[
�|w|2w2�0,2,I + �w1w2w3�0,2,I

]

≤ (2κ)2�α�0,∞,I�w�2
0,∞,I [�w2�0,2,I + �w3�0,2,I ]

≤
√

2 (2κ)2C2
S�α�0,∞,I�w�2

1,2,I�w�0,2,I ,

�F(NL)
3 (·, w)�0,2,I ≤ (3κ)2�α�0,∞,I

[
�|w|2w3�0,2,I +

1
3
�w3

1�0,2,I + �w1w2
2�0,2,I

]

≤ (3κ)2�α�0,∞,I�w�2
0,∞,I

[
1
3
�w1�0,2,I + �w2�0,2,I + �w3�0,2,I

]

≤
√

5
3
(3κ)2C2

S�α�0,∞,I�w�2
1,2,I�w�0,2,I .

These estimates immediately imply that

�N (NL)(w)�2
0,2,I =

3

∑
n=1

�F(NL)
n (·, w)�2

0,2,I ≤ 170κ4C4
S�α�2

0,∞,I�w�4
1,2,I�w�2

0,2,I . (40)

Putting the estimates (38) and (40) together, we obtain the desired estimate. �
As a consequence of Lemma 2, the following non-linear operator F : V → V∗ can be
introduced:

F (w)(v) := b (w, v) =
∫

I
N (w) · vdz − 2i(Gainc) · v(2πδ) ∀w, v ∈ V.

Then the problem (30) is equivalent to the operator equation Au = F (u) in V∗. Furthermore,
by Lemma 1, this equation is equivalent to the fixed-point problem

u = A−1F (u) in V. (41)

Theorem 1. Assume there is a number � > 0 such that

CNκ2
[
9�ε(L) − sin2 ϕκ�0,∞,I + 3

√
514 C2

S�α�0,∞,I�2
]
≤

√
2

2
and CN |Gainc| ≤

√
2

4
� .

Then the problem (41) has a unique solution u ∈ Kcl
� := {v ∈ V : �v�1,2,I ≤ �}.

Proof. Obviously, Kcl
� is a closed nonempty subset of V. We show that A−1F (Kcl

� ) ⊂ Kcl
� . By

(37) with the particular choice f := N (w), γ− := 0, γ+ := −2iGainc, for w ∈ Kcl
� we have that

�A−1F (w)�1,2,I ≤ CN

{
�N (w)�2

0,2,I + 4|Gainc|2
}1/2

≤ CN

{
κ4

[
9�ε(L) − sin2 ϕκ�0,∞,I +

√
170 C2

S�α�0,∞,I�w�2
1,2,I

]2 �w�2
0,2,I + 4|Gainc|2

}1/2

≤ CN

{
κ4

[
9�ε(L) − sin2 ϕκ�0,∞,I +

√
170 C2

S�α�0,∞,I�2
]2

�2 + 4|Gainc|2
}1/2

≤ � .
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Lemma 2. If ε(L), α ∈ L∞(I), then the formal substitution N (w)(z) := F(z, w(z)) defines a
Nemyckii operator N : V → [L2(I)]3, and there is a constant CS > 0 such that

�N (w)�0,2,I ≤ κ2
�
9�ε(L) − sin2 ϕκ�0,∞,I +

√
170 C2

S�α�0,∞,I�w�2
1,2,I

�
�w�0,2,I .

Proof. It is sufficient to verify the estimate. According to the decomposition
F(z, w) := F(L)(z, w) + F(NL)(z, w) with

F(L)(z, w) :=

⎛
⎜⎜⎜⎝

{Γ2
κ − κ2

�
1 − ε(L)(z)

�
}w1

{Γ2
2κ − (2κ)2

�
1 − ε(L)(z)

�
}w2

{Γ2
3κ − (3κ)2

�
1 − ε(L)(z)

�
}w3

⎞
⎟⎟⎟⎠ ,

F(NL)(z, w) :=

⎛
⎜⎜⎝

F(NL)
1 (z, w)

F(NL)
2 (z, w)

F(NL)
3 (z, w)

⎞
⎟⎟⎠ := α(z)

⎛
⎜⎜⎝

κ2 �|w|2w1 + w2
1w3 + w2

2w3
�

(2κ)2 �|w|2w2 + w1w2w3
�

(3κ)2
�
|w|2w3 +

1
3 w3

1 + w1w2
2

�

⎞
⎟⎟⎠

(cf. (19), (24)), it is convinient to split N into a linear and a non-linear part as N (w)(z) :=
N (L)(w)(z) + N (NL)(w)(z), where N (L)(w)(z) := F(L)(z, w(z)) and N (NL)(w)(z) :=
F(NL)(z, w(z)). Now, by the definition of the wave-numbers (see Section 3),

Γ2
nκ − (nκ)2

�
1 − ε(L)(z)

�
= (nκ)2

�
ε(L)(z)− sin2 ϕnκ

�
= (nκ)2

�
ε(L)(z)− sin2 ϕκ

�
, n = 1, 2, 3,

where the last relation is a consequence of the condition (C2). Therefore,

�N (L)(w)�0,2,I ≤ (3κ)2�ε(L) − sin2 ϕκ�0,∞,I�w�0,2,I . (38)

Next, since H1(I) is continuously embedded into C(Icl) by Sobolev’s embedding theorem
(see, e.g., (Adams, 1975, Thm. 5.4)), there exists a constant CS > 0 such that

�w�0,∞,I := sup
z∈I

|w(z)| = sup
z∈I

�
3

∑
n=1

|wn(z)|2
�1/2

≤ CS�w�1,2,I . (39)

Using this fact we easily obtain the following triple of estimates:

�F(NL)
1 (·, w)�0,2,I ≤ κ2�α�0,∞,I

�
�|w|2w1�0,2,I + �w2

1w3�0,2,I + �w2
2w3�0,2,I

�

≤ κ2�α�0,∞,I
�
�w�2

0,∞,I�w1�0,2,I

+ �w1�2
0,∞,I�w3�0,2,I + �w2�0,∞,I�w3�0,∞,I�w2�0,2,I

�

≤ κ2�α�0,∞,I�w�2
0,∞,I [�w1�0,2,I + �w2�0,2,I + �w3�0,2,I ]

≤
√

3 κ2C2
S�α�0,∞,I�w�2

1,2,I�w�0,2,I ,
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�F(NL)
2 (·, w)�0,2,I ≤ (2κ)2�α�0,∞,I

[
�|w|2w2�0,2,I + �w1w2w3�0,2,I

]

≤ (2κ)2�α�0,∞,I�w�2
0,∞,I [�w2�0,2,I + �w3�0,2,I ]

≤
√

2 (2κ)2C2
S�α�0,∞,I�w�2

1,2,I�w�0,2,I ,

�F(NL)
3 (·, w)�0,2,I ≤ (3κ)2�α�0,∞,I

[
�|w|2w3�0,2,I +

1
3
�w3

1�0,2,I + �w1w2
2�0,2,I

]

≤ (3κ)2�α�0,∞,I�w�2
0,∞,I

[
1
3
�w1�0,2,I + �w2�0,2,I + �w3�0,2,I

]

≤
√

5
3
(3κ)2C2

S�α�0,∞,I�w�2
1,2,I�w�0,2,I .

These estimates immediately imply that

�N (NL)(w)�2
0,2,I =

3

∑
n=1

�F(NL)
n (·, w)�2

0,2,I ≤ 170κ4C4
S�α�2

0,∞,I�w�4
1,2,I�w�2

0,2,I . (40)

Putting the estimates (38) and (40) together, we obtain the desired estimate. �
As a consequence of Lemma 2, the following non-linear operator F : V → V∗ can be
introduced:

F (w)(v) := b (w, v) =
∫

I
N (w) · vdz − 2i(Gainc) · v(2πδ) ∀w, v ∈ V.

Then the problem (30) is equivalent to the operator equation Au = F (u) in V∗. Furthermore,
by Lemma 1, this equation is equivalent to the fixed-point problem

u = A−1F (u) in V. (41)

Theorem 1. Assume there is a number � > 0 such that

CNκ2
[
9�ε(L) − sin2 ϕκ�0,∞,I + 3

√
514 C2

S�α�0,∞,I�2
]
≤

√
2

2
and CN |Gainc| ≤

√
2

4
� .

Then the problem (41) has a unique solution u ∈ Kcl
� := {v ∈ V : �v�1,2,I ≤ �}.

Proof. Obviously, Kcl
� is a closed nonempty subset of V. We show that A−1F (Kcl

� ) ⊂ Kcl
� . By

(37) with the particular choice f := N (w), γ− := 0, γ+ := −2iGainc, for w ∈ Kcl
� we have that

�A−1F (w)�1,2,I ≤ CN

{
�N (w)�2

0,2,I + 4|Gainc|2
}1/2

≤ CN

{
κ4

[
9�ε(L) − sin2 ϕκ�0,∞,I +

√
170 C2

S�α�0,∞,I�w�2
1,2,I

]2 �w�2
0,2,I + 4|Gainc|2

}1/2

≤ CN

{
κ4

[
9�ε(L) − sin2 ϕκ�0,∞,I +

√
170 C2

S�α�0,∞,I�2
]2

�2 + 4|Gainc|2
}1/2

≤ � .
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Next, from (37) with the choice f := N (w)−N (v), γ− := γ+ := 0 we conclude that

�A−1F (w)−A−1F (v)�1,2,I ≤ CN�N (w)−N (v)�0,2,I
≤ CN

{
�N (L)(w)−N (L)(v)�0,2,I + �N (NL)(w)−N (NL)(v)�0,2,I

}
.

The linear term can be estimated as in the proof of Lemma 2 (cf. (38)):

�N (L)(w)−N (L)(v)�0,2,I = �N (L)(w − v)�0,2,I
≤ (3κ)2�ε(L) − sin2 ϕκ�0,∞,I�w − v�0,2,I .

To treat the non-linear term, we start with the following estimates:

�F(NL)
1 (·, w)− F(NL)

1 (·, v)�0,2,I
≤ κ2�α�0,∞,I

[
�|w|2w1 − |v|2v1�0,2,I + �w2

1w3 − v2
1v3�0,2,I + �w2

2w3 − v2
2v3�0,2,I

]
,

�F(NL)
2 (·, w)− F(NL)

2 (·, v)�0,2,I
≤ (2κ)2�α�0,∞,I

[
�|w|2w2 − |v|2v2�0,2,I + �w1w2w3 − v1v2v3�0,2,I

]
,

�F(NL)
3 (·, w)− F(NL)

3 (·, v)�0,2,I

≤ (3κ)2�α�0,∞,I
[
�|w|2w3 − |v|2v3�0,2,I +

1
3
�w3

1 − v3
1�0,2,I + �w1w2

2 − v1v2
2�0,2,I

]
.

The subsequent collection of simple estimates shows that the absolute value of all terms
appearing in the L2(I)-terms of the right-hand sides above can be bounded by one and the
same upper bound. Namely, since

|w|2wn − |v|2vn = |w|2(wn − vn) + vn(|w|2 − |v|2)
= |w|2(wn − vn) + vn(|w|+ |v|)(|w| − |v|)

and ∣∣|w| − |v|∣∣ ≤ |w − v|,
we obtain ∣∣|w|2wn − |v|2vn

∣∣ ≤
[
|w|2 + |w||v|+ |v|2

]
|w − v|, n = 1, 2, 3.

Similarly,

|w2
1w3 − v2

1v3| ≤
[
|w|2 + |w||v|+ |v|2

]
|w − v|,

|w1w2w3 − v1v2v3| ≤
[
|w|2 + |w||v|+ |v|2

]
|w − v|,

|w3
1 − v3

1| ≤
[
|w|2 + |w||v|+ |v|2

]
|w − v|.
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Therefore

�F(NL)
1 (·, w)− F(NL)

1 (·, v)�0,2,I
≤ 3κ2�α�0,∞,I

[
�w�2

0,∞,I + �w�0,∞,I�v�0,∞,I + �v�2
0,∞,I

]
�w − v�0,2,I

≤ 3κ2�α�0,∞,IC2
S

[
�w�2

1,2,I + �w�1,2,I�v�1,2,I + �v�2
1,2,I

]
�w − v�0,2,I ,

�F(NL)
2 (·, w)− F(NL)

2 (·, v)�0,2,I
≤ 2(2κ)2�α�0,∞,IC2

S

[
�w�2

1,2,I + �w�1,2,I�v�1,2,I + �v�2
1,2,I

]
�w − v�0,2,I

�F(NL)
3 (·, w)− F(NL)

3 (·, v)�0,2,I

≤ 7
3
(3κ)2�α�0,∞,IC2

S

[
�w�2

1,2,I + �w�1,2,I�v�1,2,I + �v�2
1,2,I

]
�w − v�0,2,I .

It follows that

�N (NL)(w)−N (NL)(v)�2
0,2,I =

3

∑
n=1

�F(NL)
n (·, w)− F(NL)

n (·, v)�2
0,2,I

≤ 514κ4�α�2
0,∞,IC4

S

[
�w�2

1,2,I + �w�1,2,I�v�1,2,I + �v�2
1,2,I

]2 �w − v�2
0,2,I .

Hence, for w, v ∈ Kcl
� : �N (NL)(w)−N (NL)(v)�0,2,I ≤ 3

√
514κ2C2

S�α�0,∞,I�2�w − v�0,2,I .
In summary, by assumption we arrive at the estimate

�A−1F (w)−A−1F (v)�1,2,I

≤CNκ2
[
9�ε(L) − sin2 ϕκ�0,∞,I + 3

√
514C2

S�α�0,∞,I�2
]
�w − v�0,2,I ≤

√
2

2
�w − v�1,2,I .

By Banach’s fixed-point theorem, the problem (41) has a unique solution u ∈ Kcl
� . �

5. The non-linear problem and the equivalent system of non-linear integral
equations

The problem (21), (C1) – (C4) can be reduced to finding solutions of one-dimensional
non-linear integral equations w.r.t. the components U(nκ; z), n = 1, 2, 3, z ∈ [−2πδ, 2πδ] ,
of the fields scattered and generated in the non-linear layer. Similar to the results of the
papers Angermann & Yatsyk (2011), Angermann & Yatsyk (2010), Shestopalov & Yatsyk
(2010), Yatsyk (2007), Shestopalov & Yatsyk (2007), Kravchenko & Yatsyk (2007), Shestopalov
& Sirenko (1989), we give the derivation of these equations for the case of excitation of the
non-linear structure by a plane-wave packet (20).
Taking into account the representation (23), the solution of (21), (C1) – (C4) in the whole space
Q := {q = (y, z) : |y| < ∞, |z| < ∞} is obtained using the properties of the canonical Green’s
function of the problem (21), (C1) – (C4) (for the special case εnκ ≡ 1) which is defined, for
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Next, from (37) with the choice f := N (w)−N (v), γ− := γ+ := 0 we conclude that

�A−1F (w)−A−1F (v)�1,2,I ≤ CN�N (w)−N (v)�0,2,I
≤ CN

{
�N (L)(w)−N (L)(v)�0,2,I + �N (NL)(w)−N (NL)(v)�0,2,I

}
.

The linear term can be estimated as in the proof of Lemma 2 (cf. (38)):

�N (L)(w)−N (L)(v)�0,2,I = �N (L)(w − v)�0,2,I
≤ (3κ)2�ε(L) − sin2 ϕκ�0,∞,I�w − v�0,2,I .

To treat the non-linear term, we start with the following estimates:

�F(NL)
1 (·, w)− F(NL)

1 (·, v)�0,2,I
≤ κ2�α�0,∞,I

[
�|w|2w1 − |v|2v1�0,2,I + �w2

1w3 − v2
1v3�0,2,I + �w2

2w3 − v2
2v3�0,2,I

]
,

�F(NL)
2 (·, w)− F(NL)

2 (·, v)�0,2,I
≤ (2κ)2�α�0,∞,I

[
�|w|2w2 − |v|2v2�0,2,I + �w1w2w3 − v1v2v3�0,2,I

]
,

�F(NL)
3 (·, w)− F(NL)

3 (·, v)�0,2,I

≤ (3κ)2�α�0,∞,I
[
�|w|2w3 − |v|2v3�0,2,I +

1
3
�w3

1 − v3
1�0,2,I + �w1w2

2 − v1v2
2�0,2,I

]
.

The subsequent collection of simple estimates shows that the absolute value of all terms
appearing in the L2(I)-terms of the right-hand sides above can be bounded by one and the
same upper bound. Namely, since

|w|2wn − |v|2vn = |w|2(wn − vn) + vn(|w|2 − |v|2)
= |w|2(wn − vn) + vn(|w|+ |v|)(|w| − |v|)

and ∣∣|w| − |v|∣∣ ≤ |w − v|,
we obtain ∣∣|w|2wn − |v|2vn

∣∣ ≤
[
|w|2 + |w||v|+ |v|2

]
|w − v|, n = 1, 2, 3.

Similarly,

|w2
1w3 − v2

1v3| ≤
[
|w|2 + |w||v|+ |v|2

]
|w − v|,

|w1w2w3 − v1v2v3| ≤
[
|w|2 + |w||v|+ |v|2

]
|w − v|,

|w3
1 − v3

1| ≤
[
|w|2 + |w||v|+ |v|2

]
|w − v|.
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Therefore

�F(NL)
1 (·, w)− F(NL)

1 (·, v)�0,2,I
≤ 3κ2�α�0,∞,I

[
�w�2

0,∞,I + �w�0,∞,I�v�0,∞,I + �v�2
0,∞,I

]
�w − v�0,2,I

≤ 3κ2�α�0,∞,IC2
S

[
�w�2

1,2,I + �w�1,2,I�v�1,2,I + �v�2
1,2,I

]
�w − v�0,2,I ,

�F(NL)
2 (·, w)− F(NL)

2 (·, v)�0,2,I
≤ 2(2κ)2�α�0,∞,IC2

S

[
�w�2

1,2,I + �w�1,2,I�v�1,2,I + �v�2
1,2,I

]
�w − v�0,2,I

�F(NL)
3 (·, w)− F(NL)

3 (·, v)�0,2,I

≤ 7
3
(3κ)2�α�0,∞,IC2

S

[
�w�2

1,2,I + �w�1,2,I�v�1,2,I + �v�2
1,2,I

]
�w − v�0,2,I .

It follows that

�N (NL)(w)−N (NL)(v)�2
0,2,I =

3

∑
n=1

�F(NL)
n (·, w)− F(NL)

n (·, v)�2
0,2,I

≤ 514κ4�α�2
0,∞,IC4

S

[
�w�2

1,2,I + �w�1,2,I�v�1,2,I + �v�2
1,2,I

]2 �w − v�2
0,2,I .

Hence, for w, v ∈ Kcl
� : �N (NL)(w)−N (NL)(v)�0,2,I ≤ 3

√
514κ2C2

S�α�0,∞,I�2�w − v�0,2,I .
In summary, by assumption we arrive at the estimate

�A−1F (w)−A−1F (v)�1,2,I

≤CNκ2
[
9�ε(L) − sin2 ϕκ�0,∞,I + 3

√
514C2

S�α�0,∞,I�2
]
�w − v�0,2,I ≤

√
2

2
�w − v�1,2,I .

By Banach’s fixed-point theorem, the problem (41) has a unique solution u ∈ Kcl
� . �

5. The non-linear problem and the equivalent system of non-linear integral
equations

The problem (21), (C1) – (C4) can be reduced to finding solutions of one-dimensional
non-linear integral equations w.r.t. the components U(nκ; z), n = 1, 2, 3, z ∈ [−2πδ, 2πδ] ,
of the fields scattered and generated in the non-linear layer. Similar to the results of the
papers Angermann & Yatsyk (2011), Angermann & Yatsyk (2010), Shestopalov & Yatsyk
(2010), Yatsyk (2007), Shestopalov & Yatsyk (2007), Kravchenko & Yatsyk (2007), Shestopalov
& Sirenko (1989), we give the derivation of these equations for the case of excitation of the
non-linear structure by a plane-wave packet (20).
Taking into account the representation (23), the solution of (21), (C1) – (C4) in the whole space
Q := {q = (y, z) : |y| < ∞, |z| < ∞} is obtained using the properties of the canonical Green’s
function of the problem (21), (C1) – (C4) (for the special case εnκ ≡ 1) which is defined, for
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Y > 0, in the strip Q{Y,∞} := {q = (y, z) : |y| < Y, |z| < ∞} ⊂ Q by

G0(nκ; q, q0) :=
i

4Y
exp {i [φnκ (y − y0) + Γnκ |z − z0|]} /Γnκ

= exp (±iφnκy)
iπ
4Y

∫ ∞

−∞
H(1)

0

(
nκ

√
(y̆ − y0)

2 + (z − z0)2
)

exp (∓iφnκ y̆) dy̆, n = 1, 2, 3,

(42)
where H(1)

0 as usual denotes the Hankel function of the first kind of order zero (cf. Shestopalov
& Sirenko (1989); Sirenko et al. (1985)).
The system of non-linear integral equations is obtained by means of an iterative approach
Angermann & Yatsyk (2011), Yatsyk (2007), Shestopalov & Yatsyk (2007), Shestopalov &
Sirenko (1989), Titchmarsh (1961). Denote both the scattered and the generated full fields
of diffraction at each frequency nκ, n = 1, 2, 3, i.e. the solution of the problem (21), (C1) – (C4),

by E1

(
nκ; q|q=(y,z)

)
= U(nκ; z) exp (iφnκy) (cf. (23)), and write the system (21) in the form

(∇2 + (nκ)2) E1(nκ; q) = [1 − εnκ (q, α(q), E1(κ; q), E1(2κ; q), E1(3κ; q))] (nκ)2E1(nκ; q)

− δn1α(q)(nκ)2E2
1(2κ; q)E1(3κ; q)

−δn3α(q)(nκ)2
{

1
3

E3
1(κ; q) + E2

1(2κ; q)E1(κ; q)
}

, n = 1, 2, 3.

(43)
At the right-hand side of the system (43), the first term outside the layer vanishes, since, by
assumption, the permittivity of the medium in which the non-linear layer is situated is equal
to one, i.e. 1 − εnκ (q, α(q), E1(κ; q), E1(2κ; q), E1(3κ; q)) ≡ 0 for |z| > 2πδ.
The excitation field of the non-linear structure can be represented in the form of a packet of
incident plane waves

{
Einc

1 (nκ; q)
}

n=1,2,3 satisfying the condition of phase synchronism (C2),
where

Einc
1 (nκ; q) = ainc

nκ exp {i [φnκy − Γnκ(z − 2πδ)]} , n = 1, 2, 3. (44)

Furthermore, in the present situation described by the system (43), we assume that the
excitation field Einc

1 (κ; q) of the non-linear structure at the frequency κ is sufficiently strong
(i.e. the amplitude ainc

κ is sufficiently large such that the third harmonic generation is possible),
whereas the amplitudes ainc

2κ , ainc
3κ corresponding to excitation fields Einc

1 (2κ; q), Einc
1 (3κ; q) at

the frequencies 2κ, 3κ, respectively, are selected sufficiently weak such that no generation of
multiple harmonics occurs.
In the whole space Q, for each frequency nκ, n = 1, 2, 3, the fields

{
Einc

1 (nκ; q)
}

n=1,2,3 of
incident plane waves satisfy a system of homogeneous Helmholtz equations:

(
∇2 + (nκ)2

)
Einc

1 (nκ; q) = 0, q ∈ Q, n = 1, 2, 3. (45)

For z > 2πδ, the incident fields
{

Einc
1 (nκ; q)

}
n=1,2,3 are fields of plane waves approaching the

layer, while, for z < 2πδ, they move away from the layer and satisfy the radiation condition
(since, in the representation of the fields Einc

1 (nκ; q), n = 1, 2, 3, the transverse propagation
constants Γnκ > 0, n = 1, 2, 3 are positive).
Following Angermann & Yatsyk (2011), we construct a sequence {E1,s(nκ; q)}∞

s=0 , n = 1, 2, 3,
of functions in the region Q (where each function, starting with the index p = 1, satisfies
the conditions (C1) – (C4)) such that the limit functions E1(nκ; q) = lim

s→∞
E1,s(nκ; q) at the
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frequencies nκ, n = 1, 2, 3, satisfy (21), (C1) – (C4), i.e.
(∇2 + (nκ)2) E1,0(nκ; q) = 0 ,(∇2 + (nκ)2) E1,1(nκ; q) = [1 − εnκ (q, α(q), E1,0(κ; q), E1,0(2κ; q), E1,0(3κ; q))]

× (nκ)2E1,0(nκ; q)− δn1α(q)(nκ)2E2
1,0(2κ; q)E1,0(3κ; q)

− δn3α(q)(nκ)2
{

1
3 E3

1,0(κ; q) + E2
1,0(2κ; q)E1,0(κ; q)

}
, . . . ,(∇2 + (nκ)2) E1,s+1(nκ; q) = [1 − εnκ (q, α(q), E1,s(κ; q), E1,s(2κ; q), E1,s(3κ; q))]

× (nκ)2E1,s(nκ; q)− δn1α(q)(nκ)2E2
1,s(2κ; q)E1,s(3κ; q)

− δn3α(q)(nκ)2
{

1
3 E3

1,s(κ; q) + E2
1,s(2κ; q)E1,s(κ; q)

}
, . . . ,

n = 1, 2, 3.

(46)

The system of equations (46) is formally equivalent to the following one:

E1,0(nκ; q) := Einc
1 (nκ; q),

E1,1(nκ; q) = −(nκ)2
∫∫

Qδ

G0(nκ; q, q0)×
× [1 − εnκ (q0, α(q0), E1,0(κ; q0), E1,0(2κ; q0), E1,0(3κ; q0))] E1,0(nκ; q0)dq0

+ δn1(nκ)2
∫∫

Qδ

G0(nκ; q, q0)α(q0)E2
1,0(2κ; q0)E1,0(3κ; q0)dq0

+ δn3(nκ)2
∫∫

Qδ

G0(nκ; q, q0)α(q0)

{
1
3

E3
1,0(κ; q0) + E2

1,0(2κ; q0)E1,0(κ; q0)

}
dq0

+ E1,0(nκ; q), . . . ,

E1,s+1(nκ; q) = −(nκ)2
∫∫

Qδ

G0(nκ; q, q0)×
× [1 − εnκ (q0, α(q0), E1,s(κ; q0), E1,s(2κ; q0), E1,s(3κ; q0))] E1,s(nκ; q0)dq0

+ δn1(nκ)2
∫∫

Qδ

G0(nκ; q, q0)α(q0)E2
1,s(2κ; q0)E1,s(3κ; q0)dq0

+ δn3(nκ)2
∫∫

Qδ

G0(nκ; q, q0)α(q0)

{
1
3

E3
1,s(κ; q0) + E2

1,s(2κ; q0)E1,s(κ; q0)

}
dq0

+ E1,0(nκ; q), . . . , q ∈ Q, n = 1, 2, 3.
(47)

Here Qδ := {q = (y, z) : |y| < ∞, |z| ≤ 2πδ} denotes the strip filled by the non-linear
dielectric layer. The extension of the permitted values q ∈ Q{Y,∞} ⊂ Q from the strip Q{Y,∞}
(where the Green’s function (42) is defined) to the whole space Q is realised by passing to the
limit Y → ∞ (where this procedure is admissible because of the free choice of the parameter
Y and the asymptotic behaviour of the integrands as O (

Y−1) , see (42)). Letting s tend to
infinity in (47), we obtain the integral representations of the unknown diffraction fields in the
region Q:

E1(nκ; q) = −(nκ)2
∫∫

Qδ

G0(nκ; q, q0)×
× [1 − εnκ (q0, α(q0), E1(κ; q0), E1(2κ; q0), E1(3κ; q0))] E1(nκ; q0)dq0

+ δn1(nκ)2
∫∫

Qδ

G0(nκ; q, q0)α(q0)E2
1(2κ; q0)E1(3κ; q0)dq0

+ δn3(nκ)2
∫∫

Qδ

G0(nκ; q, q0)α(q0)

{
1
3

E3
1(κ; q0) + E2

1(2κ; q0)E1(κ; q0)

}
dq0

+ Einc
1 (nκ; q), q ∈ Q, n = 1, 2, 3.

(48)
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Y > 0, in the strip Q{Y,∞} := {q = (y, z) : |y| < Y, |z| < ∞} ⊂ Q by

G0(nκ; q, q0) :=
i

4Y
exp {i [φnκ (y − y0) + Γnκ |z − z0|]} /Γnκ

= exp (±iφnκy)
iπ
4Y

∫ ∞

−∞
H(1)

0

(
nκ

√
(y̆ − y0)

2 + (z − z0)2
)

exp (∓iφnκ y̆) dy̆, n = 1, 2, 3,

(42)
where H(1)

0 as usual denotes the Hankel function of the first kind of order zero (cf. Shestopalov
& Sirenko (1989); Sirenko et al. (1985)).
The system of non-linear integral equations is obtained by means of an iterative approach
Angermann & Yatsyk (2011), Yatsyk (2007), Shestopalov & Yatsyk (2007), Shestopalov &
Sirenko (1989), Titchmarsh (1961). Denote both the scattered and the generated full fields
of diffraction at each frequency nκ, n = 1, 2, 3, i.e. the solution of the problem (21), (C1) – (C4),

by E1

(
nκ; q|q=(y,z)

)
= U(nκ; z) exp (iφnκy) (cf. (23)), and write the system (21) in the form

(∇2 + (nκ)2) E1(nκ; q) = [1 − εnκ (q, α(q), E1(κ; q), E1(2κ; q), E1(3κ; q))] (nκ)2E1(nκ; q)

− δn1α(q)(nκ)2E2
1(2κ; q)E1(3κ; q)

−δn3α(q)(nκ)2
{

1
3

E3
1(κ; q) + E2

1(2κ; q)E1(κ; q)
}

, n = 1, 2, 3.

(43)
At the right-hand side of the system (43), the first term outside the layer vanishes, since, by
assumption, the permittivity of the medium in which the non-linear layer is situated is equal
to one, i.e. 1 − εnκ (q, α(q), E1(κ; q), E1(2κ; q), E1(3κ; q)) ≡ 0 for |z| > 2πδ.
The excitation field of the non-linear structure can be represented in the form of a packet of
incident plane waves

{
Einc

1 (nκ; q)
}

n=1,2,3 satisfying the condition of phase synchronism (C2),
where

Einc
1 (nκ; q) = ainc

nκ exp {i [φnκy − Γnκ(z − 2πδ)]} , n = 1, 2, 3. (44)

Furthermore, in the present situation described by the system (43), we assume that the
excitation field Einc

1 (κ; q) of the non-linear structure at the frequency κ is sufficiently strong
(i.e. the amplitude ainc

κ is sufficiently large such that the third harmonic generation is possible),
whereas the amplitudes ainc

2κ , ainc
3κ corresponding to excitation fields Einc

1 (2κ; q), Einc
1 (3κ; q) at

the frequencies 2κ, 3κ, respectively, are selected sufficiently weak such that no generation of
multiple harmonics occurs.
In the whole space Q, for each frequency nκ, n = 1, 2, 3, the fields

{
Einc

1 (nκ; q)
}

n=1,2,3 of
incident plane waves satisfy a system of homogeneous Helmholtz equations:

(
∇2 + (nκ)2

)
Einc

1 (nκ; q) = 0, q ∈ Q, n = 1, 2, 3. (45)

For z > 2πδ, the incident fields
{

Einc
1 (nκ; q)

}
n=1,2,3 are fields of plane waves approaching the

layer, while, for z < 2πδ, they move away from the layer and satisfy the radiation condition
(since, in the representation of the fields Einc

1 (nκ; q), n = 1, 2, 3, the transverse propagation
constants Γnκ > 0, n = 1, 2, 3 are positive).
Following Angermann & Yatsyk (2011), we construct a sequence {E1,s(nκ; q)}∞

s=0 , n = 1, 2, 3,
of functions in the region Q (where each function, starting with the index p = 1, satisfies
the conditions (C1) – (C4)) such that the limit functions E1(nκ; q) = lim

s→∞
E1,s(nκ; q) at the
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frequencies nκ, n = 1, 2, 3, satisfy (21), (C1) – (C4), i.e.
(∇2 + (nκ)2) E1,0(nκ; q) = 0 ,(∇2 + (nκ)2) E1,1(nκ; q) = [1 − εnκ (q, α(q), E1,0(κ; q), E1,0(2κ; q), E1,0(3κ; q))]

× (nκ)2E1,0(nκ; q)− δn1α(q)(nκ)2E2
1,0(2κ; q)E1,0(3κ; q)

− δn3α(q)(nκ)2
{

1
3 E3

1,0(κ; q) + E2
1,0(2κ; q)E1,0(κ; q)

}
, . . . ,(∇2 + (nκ)2) E1,s+1(nκ; q) = [1 − εnκ (q, α(q), E1,s(κ; q), E1,s(2κ; q), E1,s(3κ; q))]

× (nκ)2E1,s(nκ; q)− δn1α(q)(nκ)2E2
1,s(2κ; q)E1,s(3κ; q)

− δn3α(q)(nκ)2
{

1
3 E3

1,s(κ; q) + E2
1,s(2κ; q)E1,s(κ; q)

}
, . . . ,

n = 1, 2, 3.

(46)

The system of equations (46) is formally equivalent to the following one:

E1,0(nκ; q) := Einc
1 (nκ; q),

E1,1(nκ; q) = −(nκ)2
∫∫

Qδ

G0(nκ; q, q0)×
× [1 − εnκ (q0, α(q0), E1,0(κ; q0), E1,0(2κ; q0), E1,0(3κ; q0))] E1,0(nκ; q0)dq0

+ δn1(nκ)2
∫∫

Qδ

G0(nκ; q, q0)α(q0)E2
1,0(2κ; q0)E1,0(3κ; q0)dq0

+ δn3(nκ)2
∫∫

Qδ

G0(nκ; q, q0)α(q0)

{
1
3

E3
1,0(κ; q0) + E2

1,0(2κ; q0)E1,0(κ; q0)

}
dq0

+ E1,0(nκ; q), . . . ,

E1,s+1(nκ; q) = −(nκ)2
∫∫

Qδ

G0(nκ; q, q0)×
× [1 − εnκ (q0, α(q0), E1,s(κ; q0), E1,s(2κ; q0), E1,s(3κ; q0))] E1,s(nκ; q0)dq0

+ δn1(nκ)2
∫∫

Qδ

G0(nκ; q, q0)α(q0)E2
1,s(2κ; q0)E1,s(3κ; q0)dq0

+ δn3(nκ)2
∫∫

Qδ

G0(nκ; q, q0)α(q0)

{
1
3

E3
1,s(κ; q0) + E2

1,s(2κ; q0)E1,s(κ; q0)

}
dq0

+ E1,0(nκ; q), . . . , q ∈ Q, n = 1, 2, 3.
(47)

Here Qδ := {q = (y, z) : |y| < ∞, |z| ≤ 2πδ} denotes the strip filled by the non-linear
dielectric layer. The extension of the permitted values q ∈ Q{Y,∞} ⊂ Q from the strip Q{Y,∞}
(where the Green’s function (42) is defined) to the whole space Q is realised by passing to the
limit Y → ∞ (where this procedure is admissible because of the free choice of the parameter
Y and the asymptotic behaviour of the integrands as O (

Y−1) , see (42)). Letting s tend to
infinity in (47), we obtain the integral representations of the unknown diffraction fields in the
region Q:

E1(nκ; q) = −(nκ)2
∫∫

Qδ

G0(nκ; q, q0)×
× [1 − εnκ (q0, α(q0), E1(κ; q0), E1(2κ; q0), E1(3κ; q0))] E1(nκ; q0)dq0

+ δn1(nκ)2
∫∫

Qδ

G0(nκ; q, q0)α(q0)E2
1(2κ; q0)E1(3κ; q0)dq0

+ δn3(nκ)2
∫∫

Qδ

G0(nκ; q, q0)α(q0)

{
1
3

E3
1(κ; q0) + E2

1(2κ; q0)E1(κ; q0)

}
dq0

+ Einc
1 (nκ; q), q ∈ Q, n = 1, 2, 3.

(48)
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Now, substituting the representation (42) for the canonical Green’s function G0 into the system
(48) and taking into consideration the expressions for the permittivity

εnκ (q0, α(q0), E1(κ; q0), E1(2κ; q0), E1(3κ; q0)) = εnκ (z0, α(z0), U(κ; z0), U(2κ; z0), U(3κ; z0)) ,

we get the following system w.r.t. the unknown quasi-homogeneous fields

E1

(
nκ; q|q≡(y,z)

)
= U(nκ; z) exp (iφnκy) , n = 1, 2, 3, |z| ≤ 2πδ:

U(nκ; z) exp (iφnκy)

= − lim
Y→∞

(
i(nκ)2

4YΓnκ
exp(iφnκy)

∫ 2πδ

−2πδ

∫ Y

−Y
exp(iΓnκ |z − z0|) ×

× [1 − εnκ (z0, α(z0), U (κ; z0) , U (2κ; z0) , U (3κ; z0))]U (nκ; z0) dy0dz0)

+ lim
Y→∞

(
δn1

i(nκ)2

4YΓnκ
exp(iφnκy) ×

×
∫ 2πδ

−2πδ

∫ Y

−Y
exp(iΓnκ |z − z0|)α(z0)U2(2κ; z0)U(3κ; z0)dy0dz0

)

+ lim
Y→∞

(
δn3

i(nκ)2

4YΓnκ
exp(iφnκy) ×

×
∫ 2πδ

−2πδ

∫ Y

−Y
exp(iΓnκ |z − z0|)α(z0)

{
1
3

U3(κ; z0)+U2(2κ; z0)U(κ; z0)

}
dy0dz0

)

+ Uinc(nκ; z) exp(iφnκy), |z| ≤ 2πδ, n = 1, 2, 3.

Integrating in the region Qδ w.r.t. the variable y0, we arrive at a system of non-linear Fredholm
integral equations of the second kind w.r.t. the unknown functions U(nκ; ·) ∈ L2(−2πδ, 2πδ):

U(nκ; z) +
i(nκ)2

2Γnκ

∫ 2πδ

−2πδ
exp(iΓnκ |z − z0|)×

× [1 − εnκ (z0, α(z0), U(κ; z0) , U(2κ; z0) , U(3κ; z0))]U(nκ; z0)dz0

= δn1
i(nκ)2

2Γnκ

∫ 2πδ

−2πδ
exp(iΓnκ |z − z0|)α(z0)U2(2κ; z0)U(3κ; z0)dz0

+ δn3
i(nκ)2

2Γnκ

∫ 2πδ

−2πδ
exp(iΓnκ |z − z0|)α(z0)

{
1
3

U3(κ; z0) + U2(2κ; z0)U(κ; z0)

}
dz0

+ Uinc(nκ; z), |z| ≤ 2πδ, n = 1, 2, 3.

(49)

Here Uinc(nκ; z) = ainc
nκ exp [−iΓnκ(z − 2πδ)] , n = 1, 2, 3.

The solution of the original problem (21), (C1) – (C4), represented as (23), can be obtained
from (49) using the formulas

U(nκ; 2πδ) = ainc
nκ + ascat

nκ , U(nκ;−2πδ) = bscat
nκ , n = 1, 2, 3, (50)

(cf. (C3)). The derivation of the system of non-linear integral equations (49) shows that (49)
can be regarded as an integral representation of the desired solution of (21), (C1) – (C4)
(i.e. solutions of the form E1 (nκ; y, z) = U(nκ; z) exp (iφnκy), n = 1, 2, 3, see (23)) for points
located outside the non-linear layer: {(y, z) : |y| < ∞, |z| > 2πδ} . Indeed, given the solution
of non-linear integral equations (49) in the region |z| ≤ 2πδ, the substitution into the integrals
of (49) leads to explicit expressions of the desired solutions U(nκ; z) for points |z| > 2πδ
outside the non-linear layer at each frequency nκ, n = 1, 2, 3.
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6. A sufficient condition for the existence of solutions of the system of non-linear
equations

In the case of a linear system (49), i.e. if α ≡ 0, the problem of existence and uniqueness of
solutions has been investigated in Sirenko et al. (1985), Shestopalov & Sirenko (1989). In the
general situation, the system of non-linear integral equations can have a unique solution, no
solution or several solutions, depending on the properties of the kernel and the right-hand
side.
We start with the derivation of sufficient conditions for the existence of solutions of the
system (49) (cf. Shestopalov & Yatsyk (2010), Shestopalov & Yatsyk (2007), Kravchenko &
Yatsyk (2007)). To do so, in the region |z| ≤ 2πδ we consider two sequences of solutions
{Us(nκ; z), n = 1, 2, 3}∞

s=0 and {Ψs(nκ; z), n = 1, 2, 3}∞
s=0 of the following systems of integral

equations:

Us+1(nκ; z) +
i(nκ)2

2Γnκ

∫ 2πδ

−2πδ
exp(iΓnκ |z − z0|)

× [1 − εnκ(z0, α(z0), Us(κ; z0), Us(2κ; z0), Us(3κ; z0))]Us(nκ; z0)dz0

= δn1
i(nκ)2

2Γnκ

∫ 2πδ

−2πδ
exp(iΓnκ |z − z0|)α(z0)U2

s (2κ; z0)Us(3κ; z0)dz0

+ δn3
i(nκ)2

2Γnκ

∫ 2πδ

−2πδ
exp(iΓnκ |z − z0|)

× α(z0)

{
1
3

U3
s (κ; z0) + U2

s (2κ; z0)Us(κ; z0)

}
dz0 + Uinc(nκ; z), |z| ≤ 2πδ, n = 1, 2, 3,

Ψs(nκ; z) +
i(nκ)2

2Γnκ

∫ 2πδ

−2πδ
exp(iΓnκ |z − z0|)

× [1 − εnκ(z0, α(z0), Us(κ; z0), Us(2κ; z0), Us(3κ; z0))]Ψs(nκ; z0)dz0

= δn1
i(nκ)2

2Γnκ

∫ 2πδ

−2πδ
exp(iΓnκ |z − z0|)α(z0)U2

s (2κ; z0)Us(3κ; z0)dz0

+ δn3
i(nκ)2

2Γnκ

∫ 2πδ

−2πδ
exp(iΓnκ |z − z0|)

× α(z0)

{
1
3

U3
s (κ; z0) + U2

s (2κ; z0)Us(κ; z0)

}
dz0 + Uinc(nκ; z), |z| ≤ 2πδ, n = 1, 2, 3.

(51)
The first system of equations (51) coincides with the iterative scheme (47) for the solution of
the non-linear system (49). The second system w.r.t. Ψs(nκ; z), n = 1, 2, 3, is nothing else than
the linearisation of the non-linear system (49) around Us(nκ; z), n = 1, 2, 3.
In the case that the functions Ψs(nκ; z), n = 1, 2, 3, are not eigen-functions of the linearised
problem under consideration with the induced permittivity of the layer (cf. 19))

εnκ(z, α(z), Us(κ; z), Us(2κ; z), Us(3κ; z))
= ε(L)(z) + ε

(NL)
nκ (α(z), Us(κ; z), Us(2κ; z), Us(3κ; z))

= ε(L)(z) + α(z){|Us(κ; z)|2 + |Us(2κ; z)|2 + |Us(3κ; z)|2
+ δn1|Us(κ; z)| |Us(3κ; z)| exp[i{−3argUs(κ; z) + argUs(3κ; z)}]
+ δn2|Us(κ; z)| |Us(3κ; z)| exp[i{−2argUs(2κ; z) + argUs(κ; z) + argUs(3κ; z)}]},

|z| ≤ 2πδ, n = 1, 2, 3,

(52)
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Now, substituting the representation (42) for the canonical Green’s function G0 into the system
(48) and taking into consideration the expressions for the permittivity

εnκ (q0, α(q0), E1(κ; q0), E1(2κ; q0), E1(3κ; q0)) = εnκ (z0, α(z0), U(κ; z0), U(2κ; z0), U(3κ; z0)) ,

we get the following system w.r.t. the unknown quasi-homogeneous fields

E1

(
nκ; q|q≡(y,z)

)
= U(nκ; z) exp (iφnκy) , n = 1, 2, 3, |z| ≤ 2πδ:

U(nκ; z) exp (iφnκy)

= − lim
Y→∞

(
i(nκ)2

4YΓnκ
exp(iφnκy)

∫ 2πδ

−2πδ

∫ Y

−Y
exp(iΓnκ |z − z0|) ×

× [1 − εnκ (z0, α(z0), U (κ; z0) , U (2κ; z0) , U (3κ; z0))]U (nκ; z0) dy0dz0)

+ lim
Y→∞

(
δn1

i(nκ)2

4YΓnκ
exp(iφnκy) ×

×
∫ 2πδ

−2πδ

∫ Y

−Y
exp(iΓnκ |z − z0|)α(z0)U2(2κ; z0)U(3κ; z0)dy0dz0

)

+ lim
Y→∞

(
δn3

i(nκ)2

4YΓnκ
exp(iφnκy) ×

×
∫ 2πδ

−2πδ

∫ Y

−Y
exp(iΓnκ |z − z0|)α(z0)

{
1
3

U3(κ; z0)+U2(2κ; z0)U(κ; z0)

}
dy0dz0

)

+ Uinc(nκ; z) exp(iφnκy), |z| ≤ 2πδ, n = 1, 2, 3.

Integrating in the region Qδ w.r.t. the variable y0, we arrive at a system of non-linear Fredholm
integral equations of the second kind w.r.t. the unknown functions U(nκ; ·) ∈ L2(−2πδ, 2πδ):

U(nκ; z) +
i(nκ)2

2Γnκ

∫ 2πδ

−2πδ
exp(iΓnκ |z − z0|)×

× [1 − εnκ (z0, α(z0), U(κ; z0) , U(2κ; z0) , U(3κ; z0))]U(nκ; z0)dz0

= δn1
i(nκ)2

2Γnκ

∫ 2πδ

−2πδ
exp(iΓnκ |z − z0|)α(z0)U2(2κ; z0)U(3κ; z0)dz0

+ δn3
i(nκ)2

2Γnκ

∫ 2πδ

−2πδ
exp(iΓnκ |z − z0|)α(z0)

{
1
3

U3(κ; z0) + U2(2κ; z0)U(κ; z0)

}
dz0

+ Uinc(nκ; z), |z| ≤ 2πδ, n = 1, 2, 3.

(49)

Here Uinc(nκ; z) = ainc
nκ exp [−iΓnκ(z − 2πδ)] , n = 1, 2, 3.

The solution of the original problem (21), (C1) – (C4), represented as (23), can be obtained
from (49) using the formulas

U(nκ; 2πδ) = ainc
nκ + ascat

nκ , U(nκ;−2πδ) = bscat
nκ , n = 1, 2, 3, (50)

(cf. (C3)). The derivation of the system of non-linear integral equations (49) shows that (49)
can be regarded as an integral representation of the desired solution of (21), (C1) – (C4)
(i.e. solutions of the form E1 (nκ; y, z) = U(nκ; z) exp (iφnκy), n = 1, 2, 3, see (23)) for points
located outside the non-linear layer: {(y, z) : |y| < ∞, |z| > 2πδ} . Indeed, given the solution
of non-linear integral equations (49) in the region |z| ≤ 2πδ, the substitution into the integrals
of (49) leads to explicit expressions of the desired solutions U(nκ; z) for points |z| > 2πδ
outside the non-linear layer at each frequency nκ, n = 1, 2, 3.
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6. A sufficient condition for the existence of solutions of the system of non-linear
equations

In the case of a linear system (49), i.e. if α ≡ 0, the problem of existence and uniqueness of
solutions has been investigated in Sirenko et al. (1985), Shestopalov & Sirenko (1989). In the
general situation, the system of non-linear integral equations can have a unique solution, no
solution or several solutions, depending on the properties of the kernel and the right-hand
side.
We start with the derivation of sufficient conditions for the existence of solutions of the
system (49) (cf. Shestopalov & Yatsyk (2010), Shestopalov & Yatsyk (2007), Kravchenko &
Yatsyk (2007)). To do so, in the region |z| ≤ 2πδ we consider two sequences of solutions
{Us(nκ; z), n = 1, 2, 3}∞

s=0 and {Ψs(nκ; z), n = 1, 2, 3}∞
s=0 of the following systems of integral

equations:

Us+1(nκ; z) +
i(nκ)2

2Γnκ

∫ 2πδ

−2πδ
exp(iΓnκ |z − z0|)

× [1 − εnκ(z0, α(z0), Us(κ; z0), Us(2κ; z0), Us(3κ; z0))]Us(nκ; z0)dz0

= δn1
i(nκ)2

2Γnκ

∫ 2πδ

−2πδ
exp(iΓnκ |z − z0|)α(z0)U2

s (2κ; z0)Us(3κ; z0)dz0

+ δn3
i(nκ)2

2Γnκ

∫ 2πδ

−2πδ
exp(iΓnκ |z − z0|)

× α(z0)

{
1
3

U3
s (κ; z0) + U2

s (2κ; z0)Us(κ; z0)

}
dz0 + Uinc(nκ; z), |z| ≤ 2πδ, n = 1, 2, 3,

Ψs(nκ; z) +
i(nκ)2

2Γnκ

∫ 2πδ

−2πδ
exp(iΓnκ |z − z0|)

× [1 − εnκ(z0, α(z0), Us(κ; z0), Us(2κ; z0), Us(3κ; z0))]Ψs(nκ; z0)dz0

= δn1
i(nκ)2

2Γnκ

∫ 2πδ

−2πδ
exp(iΓnκ |z − z0|)α(z0)U2

s (2κ; z0)Us(3κ; z0)dz0

+ δn3
i(nκ)2

2Γnκ

∫ 2πδ

−2πδ
exp(iΓnκ |z − z0|)

× α(z0)

{
1
3

U3
s (κ; z0) + U2

s (2κ; z0)Us(κ; z0)

}
dz0 + Uinc(nκ; z), |z| ≤ 2πδ, n = 1, 2, 3.

(51)
The first system of equations (51) coincides with the iterative scheme (47) for the solution of
the non-linear system (49). The second system w.r.t. Ψs(nκ; z), n = 1, 2, 3, is nothing else than
the linearisation of the non-linear system (49) around Us(nκ; z), n = 1, 2, 3.
In the case that the functions Ψs(nκ; z), n = 1, 2, 3, are not eigen-functions of the linearised
problem under consideration with the induced permittivity of the layer (cf. 19))

εnκ(z, α(z), Us(κ; z), Us(2κ; z), Us(3κ; z))
= ε(L)(z) + ε

(NL)
nκ (α(z), Us(κ; z), Us(2κ; z), Us(3κ; z))

= ε(L)(z) + α(z){|Us(κ; z)|2 + |Us(2κ; z)|2 + |Us(3κ; z)|2
+ δn1|Us(κ; z)| |Us(3κ; z)| exp[i{−3argUs(κ; z) + argUs(3κ; z)}]
+ δn2|Us(κ; z)| |Us(3κ; z)| exp[i{−2argUs(2κ; z) + argUs(κ; z) + argUs(3κ; z)}]},

|z| ≤ 2πδ, n = 1, 2, 3,

(52)
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a solution of the second system in (51) exists uniquely (Sirenko et al. (1985), Shestopalov &
Sirenko (1989)) and can be represented as

Ψs(nκ; z) = Ψ(nκ; z, α(z), Us(κ; z), Us(2κ; z), Us(3κ; z)), n = 1, 2, 3. (53)

Moreover, at each iteration step (i.e. for any iteration parameter s ∈ {0, 1, 2, . . .}) the solution
(53) which is caused by the exciting wave packet {|Uinc(nκ; z)| = ainc

nκ }3
n=1, satisfies the

estimate

|Ψs(nκ; z)| 2 ≤
3

∑
m=1

(ainc
mκ)

2, ∀s ∈ {0, 1, 2, . . .}, n = 1, 2, 3 (54)

due to energy relations. In particular,

|εnκ(z, α(z), Us(κ; z), Us(2κ; z), Us(3κ; z))|
≤ |ε(L)(z)|+ |α(z)|(3 + δn1 + δn2)

3

∑
m=1

(ainc
mκ)

2, ∀s ∈ {0, 1, 2, . . .}, n = 1, 2, 3.
(55)

The analysis of appropriate convergence criteria for the sequences {Us(nκ; z), n = 1, 2, 3}∞
s=0

and {Ψs(nκ; z), n = 1, 2, 3}∞
s=0 given by (51) provides a sufficient condition for the existence

and uniqueness of solutions of the non-linear integral equations (49). Since the kernels of the
integral equations (51) are identical, it is easy to estimate the distance between the elements
Us+1(nκ; z) and Ψs(nκ; z):

�(Us+1(nκ; z), Ψs(nκ; z)) =
[ ∫ 2πδ

−2πδ
|Us+1(nκ; z)− Ψs(nκ; z)|2dz

]1/2

=
∣∣∣ i(nκ)2

2Γnκ

∣∣∣
[ ∫ 2πδ

−2πδ

∣∣∣
∫ 2πδ

−2πδ
exp(iΓnκ |z − z0|)

× [1 − εnκ(z0, α(z0), Us(κ; z0), Us(2κ; z0), Us(3κ; z0))](Us(nκ; z0)− Ψs(nκ; z0))dz0

∣∣∣
2
dz
]1/2

=
(nκ)2

2Γnκ

[ ∫ 2πδ

−2πδ

∣∣∣
∫ 2πδ

−2πδ
[1 − εnκ(z0, α(z0), Us(κ; z0), Us(2κ; z0), Us(3κ; z0))]

× (Us(nκ; z0)− Ψs(nκ; z0))dz0

∣∣∣
2
dz
]1/2

≤ (nκ)2

2Γnκ

[ ∫ 2πδ

−2πδ

∫ 2πδ

−2πδ
|1 − εnκ(z0, α(z0), Us(κ; z0), Us(2κ; z0), Us(3κ; z0))|2dz0dz

]1/2

×
[ ∫ 2πδ

−2πδ
|Us(nκ; z0)− Ψs(nκ; z0)|2dz0

]1/2

≤ (nκ)2

2Γnκ
4πδ max

z∈[−2πδ,2πδ]

(
|1 − ε(L)(z)|+ |εnκ(z, α(z), Us(κ; z), Us(2κ; z), Us(3κ; z))|

)

× �(Us(nκ; z), Ψs(nκ; z))

≤ (nκ)2

2Γnκ
4πδ max

z∈[−2πδ,2πδ]

(
|1 − ε(L)(z)|+ 4|α(z)|

3

∑
m=1

(ainc
mκ)

2
)

�(Us(nκ; z), Ψs(nκ; z)), (56)

n = 1, 2, 3.
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The last inequality in (56) is a consequence of (55). The estimate (56) shows that the
iterative process defined by the first system of equations (51) converges to a unique solution
determined by the second system of equations (51) if in (56) the factor in front of
�(Us(nκ; z), Ψs(nκ; z)) satisfies the condition

(nκ)2

2Γnκ
4πδ max

z∈[−2πδ,2πδ]

�
|1 − ε(L)(z)|+ 4|α(z)|

3

∑
m=1

(ainc
mκ)

2
�
< 1, n = 1, 2, 3.

Taking into account the expressions for the transverse propagation constants Γnκ = ((nκ)2 −
φ2

nκ)
1/2 = ((nκ)2 − (nκ sin ϕnκ)2)1/2 = nκ cos ϕnκ , n = 1, 2, 3, and the condition of phase

synchronism (C2) ϕκ = ϕnκ , n = 1, 2, 3, these inequalities can be represented as

nκ 2πδ max
z∈[−2πδ,2πδ]

�
|1 − ε(L)(z)|+ 4|α(z)|

3

∑
m=1

(ainc
mκ)

2
�
< cos ϕκ , n = 1, 2, 3. (57)

In summary, we have proved the following result.

Theorem 2. The condition (57) is a sufficient condition for the existence of solutions of the non-linear
integral equations (49). Such a solution can be obtained by using the iterative process given the first
system of equations in (51), or by using the equivalent iterative process that can be built on the basis of
the second system of equations in (51). The solution Ψs(nκ; z), n = 1, 2, 3, should be regarded as an
(s + 1)st approximation Us+1(nκ; z) := Ψs(nκ; z) to the desired solution U(nκ; z), n = 1, 2, 3:

Us+1(nκ; z) +
i(nκ)2

2Γnκ

� 2πδ

−2πδ
exp(iΓnκ |z − z0|)

× [1 − εnκ(z0, α(z0), Us(κ; z0), Us(2κ; z0), Us(3κ; z0))]Us+1(nκ; z0)dz0

= δn1
i(nκ)2

2Γnκ

� 2πδ

−2πδ
exp(iΓnκ |z − z0|)α(z0)U2

s (2κ; z0)Us(3κ; z0)dz0

+ δn3
i(nκ)2

2Γnκ

� 2πδ

−2πδ
exp(iΓnκ |z − z0|)

× α(z0){1
3

U3
s (κ; z0) + U2

s (2κ; z0)Us(κ; z0)}dz0 + Uinc(nκ; z), |z| ≤ 2πδ, n = 1, 2, 3.

(58)
Moreover, if the elements Ψs(nκ; z) ≡ Us+1(nκ; z), n = 1, 2, 3, are not eigen-functions of the
linearised problem (49) with the induced permittivity of the layer (52) (i.e. solutions of the homogeneous
system (58)), then this solution is unique.

7. A self-consistent approach to the numerical analysis of the non-linear integral
equations

According to Angermann & Yatsyk (2011), Angermann & Yatsyk (2010), the application of
suitable quadrature rules to the system of non-linear integral equations (49) leads to a system
of complex-valued non-linear algebraic equations of the second kind:

⎧⎨
⎩

(I − Bκ(Uκ , U2κ , U3κ))Uκ = Cκ(U2κ , U3κ) + Uinc
κ ,

(I − B2κ(Uκ , U2κ , U3κ))U2κ = Uinc
2κ ,

(I − B3κ(Uκ , U2κ , U3κ))U3κ = C3κ(Uκ , U2κ) + Uinc
3κ ,

(59)
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a solution of the second system in (51) exists uniquely (Sirenko et al. (1985), Shestopalov &
Sirenko (1989)) and can be represented as

Ψs(nκ; z) = Ψ(nκ; z, α(z), Us(κ; z), Us(2κ; z), Us(3κ; z)), n = 1, 2, 3. (53)

Moreover, at each iteration step (i.e. for any iteration parameter s ∈ {0, 1, 2, . . .}) the solution
(53) which is caused by the exciting wave packet {|Uinc(nκ; z)| = ainc

nκ }3
n=1, satisfies the

estimate

|Ψs(nκ; z)| 2 ≤
3

∑
m=1

(ainc
mκ)

2, ∀s ∈ {0, 1, 2, . . .}, n = 1, 2, 3 (54)

due to energy relations. In particular,

|εnκ(z, α(z), Us(κ; z), Us(2κ; z), Us(3κ; z))|
≤ |ε(L)(z)|+ |α(z)|(3 + δn1 + δn2)

3

∑
m=1

(ainc
mκ)

2, ∀s ∈ {0, 1, 2, . . .}, n = 1, 2, 3.
(55)

The analysis of appropriate convergence criteria for the sequences {Us(nκ; z), n = 1, 2, 3}∞
s=0

and {Ψs(nκ; z), n = 1, 2, 3}∞
s=0 given by (51) provides a sufficient condition for the existence

and uniqueness of solutions of the non-linear integral equations (49). Since the kernels of the
integral equations (51) are identical, it is easy to estimate the distance between the elements
Us+1(nκ; z) and Ψs(nκ; z):

�(Us+1(nκ; z), Ψs(nκ; z)) =
[ ∫ 2πδ

−2πδ
|Us+1(nκ; z)− Ψs(nκ; z)|2dz

]1/2

=
∣∣∣ i(nκ)2

2Γnκ

∣∣∣
[ ∫ 2πδ

−2πδ

∣∣∣
∫ 2πδ

−2πδ
exp(iΓnκ |z − z0|)

× [1 − εnκ(z0, α(z0), Us(κ; z0), Us(2κ; z0), Us(3κ; z0))](Us(nκ; z0)− Ψs(nκ; z0))dz0

∣∣∣
2
dz
]1/2

=
(nκ)2

2Γnκ

[ ∫ 2πδ

−2πδ

∣∣∣
∫ 2πδ

−2πδ
[1 − εnκ(z0, α(z0), Us(κ; z0), Us(2κ; z0), Us(3κ; z0))]

× (Us(nκ; z0)− Ψs(nκ; z0))dz0

∣∣∣
2
dz
]1/2

≤ (nκ)2

2Γnκ

[ ∫ 2πδ

−2πδ

∫ 2πδ

−2πδ
|1 − εnκ(z0, α(z0), Us(κ; z0), Us(2κ; z0), Us(3κ; z0))|2dz0dz

]1/2

×
[ ∫ 2πδ

−2πδ
|Us(nκ; z0)− Ψs(nκ; z0)|2dz0

]1/2

≤ (nκ)2

2Γnκ
4πδ max

z∈[−2πδ,2πδ]

(
|1 − ε(L)(z)|+ |εnκ(z, α(z), Us(κ; z), Us(2κ; z), Us(3κ; z))|

)

× �(Us(nκ; z), Ψs(nκ; z))

≤ (nκ)2

2Γnκ
4πδ max

z∈[−2πδ,2πδ]

(
|1 − ε(L)(z)|+ 4|α(z)|

3

∑
m=1

(ainc
mκ)

2
)

�(Us(nκ; z), Ψs(nκ; z)), (56)

n = 1, 2, 3.
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The last inequality in (56) is a consequence of (55). The estimate (56) shows that the
iterative process defined by the first system of equations (51) converges to a unique solution
determined by the second system of equations (51) if in (56) the factor in front of
�(Us(nκ; z), Ψs(nκ; z)) satisfies the condition

(nκ)2

2Γnκ
4πδ max

z∈[−2πδ,2πδ]

�
|1 − ε(L)(z)|+ 4|α(z)|

3

∑
m=1

(ainc
mκ)

2
�
< 1, n = 1, 2, 3.

Taking into account the expressions for the transverse propagation constants Γnκ = ((nκ)2 −
φ2

nκ)
1/2 = ((nκ)2 − (nκ sin ϕnκ)2)1/2 = nκ cos ϕnκ , n = 1, 2, 3, and the condition of phase

synchronism (C2) ϕκ = ϕnκ , n = 1, 2, 3, these inequalities can be represented as

nκ 2πδ max
z∈[−2πδ,2πδ]

�
|1 − ε(L)(z)|+ 4|α(z)|

3

∑
m=1

(ainc
mκ)

2
�
< cos ϕκ , n = 1, 2, 3. (57)

In summary, we have proved the following result.

Theorem 2. The condition (57) is a sufficient condition for the existence of solutions of the non-linear
integral equations (49). Such a solution can be obtained by using the iterative process given the first
system of equations in (51), or by using the equivalent iterative process that can be built on the basis of
the second system of equations in (51). The solution Ψs(nκ; z), n = 1, 2, 3, should be regarded as an
(s + 1)st approximation Us+1(nκ; z) := Ψs(nκ; z) to the desired solution U(nκ; z), n = 1, 2, 3:

Us+1(nκ; z) +
i(nκ)2

2Γnκ

� 2πδ

−2πδ
exp(iΓnκ |z − z0|)

× [1 − εnκ(z0, α(z0), Us(κ; z0), Us(2κ; z0), Us(3κ; z0))]Us+1(nκ; z0)dz0

= δn1
i(nκ)2

2Γnκ

� 2πδ

−2πδ
exp(iΓnκ |z − z0|)α(z0)U2

s (2κ; z0)Us(3κ; z0)dz0

+ δn3
i(nκ)2

2Γnκ

� 2πδ

−2πδ
exp(iΓnκ |z − z0|)

× α(z0){1
3

U3
s (κ; z0) + U2

s (2κ; z0)Us(κ; z0)}dz0 + Uinc(nκ; z), |z| ≤ 2πδ, n = 1, 2, 3.

(58)
Moreover, if the elements Ψs(nκ; z) ≡ Us+1(nκ; z), n = 1, 2, 3, are not eigen-functions of the
linearised problem (49) with the induced permittivity of the layer (52) (i.e. solutions of the homogeneous
system (58)), then this solution is unique.

7. A self-consistent approach to the numerical analysis of the non-linear integral
equations

According to Angermann & Yatsyk (2011), Angermann & Yatsyk (2010), the application of
suitable quadrature rules to the system of non-linear integral equations (49) leads to a system
of complex-valued non-linear algebraic equations of the second kind:

⎧⎨
⎩

(I − Bκ(Uκ , U2κ , U3κ))Uκ = Cκ(U2κ , U3κ) + Uinc
κ ,

(I − B2κ(Uκ , U2κ , U3κ))U2κ = Uinc
2κ ,

(I − B3κ(Uκ , U2κ , U3κ))U3κ = C3κ(Uκ , U2κ) + Uinc
3κ ,

(59)
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where {zl}N
l=1 is a discrete set of nodes such that −2πδ =: z1 < z2 < ... < zl < ... < zN =:

2πδ.
Unκ := {Ul(nκ)}N

l=1 ≈ {U (nκ; zl)}N
l=1 denotes the vector of the unknown approximate

solution values corresponding to the frequencies nκ, n = 1, 2, 3. The matrices are of the form

Bnκ(Uκ , U2κ , U3κ) = {AmKlm(nκ, Uκ , U2κ , U3κ)}N
l,m=1

with entries

Klm(nκ, Uκ , U2κ , U3κ) := − i(nκ)2

2Γnκ
exp (iΓnκ |zl − zm|)

�
1 −

�
ε(L)(zm)

+ α(zm)
�
|Um(κ)|2 + |Um(2κ)|2 + |Um(3κ)|2

+ δn1 |Um(κ)| |Um(3κ)| exp {i [−3arg Um(κ) + arg Um(3κ)]}
+ δn2 |Um(κ)| |Um(3κ)| exp {i [−2arg Um(2κ) + arg Um(κ) + arg Um(3κ)]}

���
.

(60)

The numbers Am are the coefficients determined by the quadrature rule, I := {δlm}N
l,m=1 is the

identity matrix, and δlm is Kronecker’s symbol.
The right-hand side of (59) is defined by

Uinc
nκ := {ainc

nκ exp[−iΓnκ(zl − 2πδ)]}N
l=1,

Cκ(U2κ , U3κ) :=
� iκ2

2Γκ

N

∑
m=1

Am exp(iΓκ |zl − zm|)α(zm)U2
m(2κ)Um(3κ)

�N

l=1
,

C3κ(Uκ , U2κ) :=
� i(3κ)2

2Γ3κ

N

∑
m=1

Am exp(iΓ3κ |zl − zm|)α(zm)
�1

3
U3

m(κ) + U2
m(2κ)Um(κ)

��N

l=1
.

The solution of (59) is approximated by means of the following iterative method:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

��
I − Bκ

�
U(s−1)

κ , U(S2(q))
2κ , U(S3(q))

3κ

� �
U(s)

κ

= Cκ

�
U(S2(q))

2κ , U(S3(q))
3κ

�
+ Uinc

κ

�S1(q): �U(S1(q))
κ −U(S1(q)−1)

κ �/�U(S1(q))
κ �<ξ

s=1��
I − B2κ

�
U(S1(q))

κ , U(s−1)
2κ , U(S3(q))

3κ

� �
U(s)

2κ

= Uinc
2κ

�S2(q): �U(S2(q))
2κ −U(S2(q)−1)

2κ �/�U
(S2q )
2κ �<ξ

s=1��
I − B3κ

�
U(S1(q))

κ , U(S2(q))
2κ , U(s−1)

3κ

� �
U(s)

3κ

= C3κ

�
U(S1(q))

κ , U(S2(q))
2κ

�
+ Uinc

3κ

�S3(q): �U(S3(q))
3κ −U(S3(q)−1)

3κ �/�U
(S3q )
3κ �<ξ

s=1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Q

q=1

, (61)

where, for a given relative error tolerance ξ > 0, the terminating index Q ∈ N is defined by
the requirement

max
�
�U(Q)

κ − U(Q−1)
κ �/�U(Q)

κ �, �U(Q)
2κ − U(Q−1)

2κ �/�U(Q)
2κ �, �U(Q)

3κ − U(Q−1)
3κ �/�U(Q)

3κ �
�
< ξ .
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8. Eigen-modes of the linearised problems of scattering and generation of waves
on the cubically polarisable layer

The solution of the system of non-linear equations (49) is approximated by the solution of
the linearised system of non-linear equations (58), for given values of the induced dielectric
permittivity and of the source functions at the right-hand side of the system. The solution can
be found by the help of algorithm (61), where at each step a system of linearised non-linear
complex-valued algebraic equations of the second kind is solved iteratively. The analytic
continuation of the linearised non-linear problems into the region of complex values of the
frequency parameter allows us to switch to the analysis of spectral problems. That is, the
eigen-frequencies and the corresponding eigen-fields of the homogeneous linear problems
with an induced non-linear permittivity are to be determined. The results of the development
of a spectral theory of linear problems for structures with non-compact boundaries can be
found in Yatsyk (2000), Shestopalov & Yatsyk (1997), Sirenko et al. (1985), Shestopalov &
Sirenko (1989), Sirenko et al. (2007), Sirenko & Ström (2010).
As mentioned above, the classical formulation of the problem of scattering and generation
of waves, described by the system of boundary value problems (21), (C1) – (C4), can be
reformulated as a set of independent spectral problems in the following way:
Find the eigen-frequencies κn and the corresponding eigen-functions E1(r, κn) (i.e.

�
κn ∈

Ωnκ ⊂ Hnκ , E1(r, κn)
�3

n=1, where Ωnκ are the sets of eigen-frequencies lying on the
two-sheeted Riemann surfaces Hnκ , see Fig. 2 and the more detailed explanations below)
satisfying the equations

∇2E1(r, κn) + κ2
nεnκ (z, α(z), E1(r, κ), E1(r, 2κ), E1(r, 3κ)) E1(r, κn) = 0, n = 1, 2, 3, (62)

together with the following conditions:
(CS1) E1(κn; y, z) = U(κn; z) exp(iφnκy), n = 1, 2, 3

(the quasi-homogeneity condition w.r.t. the spatial variable y),
(CS2) φnκ = nφκ , n = 1, 2, 3 (the condition of phase synchronism of waves),
(CS3) Etg(κn; y, z) and Htg(κn; y, z) (i.e. E1(κn; y, z) and H2(κn; y, z)) are continuous at the

boundary layers of the structure with the induced permittivity εnκ for κ := κinc, n = 1, 2, 3,

(CS4) E1(κn; y, z)=
�

aκn

bκn

�
exp (i (φnκy ± Γκn (κn, φnκ)(z ∓ 2πδ))) , z><± 2πδ , n = 1, 2, 3

(the radiation condition w.r.t. the eigen-field).
For real values of the parameters κn and φnκ , the condition (CS4) meets the physically
reasonable requirement of the absence of radiation fields of waves coming from infinity
z = ±∞:

Im Γκn (κn, φnκ) ≥ 0, Re Γκn (κn, φnκ)Re κn ≥ 0 for Im φnκ = 0, Im κn = 0, n = 1, 2, 3.
(63)

The non-trivial solutions (eigen-fields) of problem (62), (CS1) – (CS4) can be represented as

E1(κn; y, z) = U(κn; z) exp(iφnκy) =

⎧⎨
⎩

aκn exp(i(φnκy + Γκn (κn, φnκ)(z − 2πδ))), z > 2πδ,
U(κn; z) exp(iφnκy), |z| ≤ 2πδ,
bκn exp(i(φnκy − Γκn (κn, φnκ)(z + 2πδ))), z < −2πδ,

κn ∈ Ωnκ ⊂ Hnκ , n = 1, 2, 3,
(64)
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where {zl}N
l=1 is a discrete set of nodes such that −2πδ =: z1 < z2 < ... < zl < ... < zN =:

2πδ.
Unκ := {Ul(nκ)}N

l=1 ≈ {U (nκ; zl)}N
l=1 denotes the vector of the unknown approximate

solution values corresponding to the frequencies nκ, n = 1, 2, 3. The matrices are of the form

Bnκ(Uκ , U2κ , U3κ) = {AmKlm(nκ, Uκ , U2κ , U3κ)}N
l,m=1

with entries

Klm(nκ, Uκ , U2κ , U3κ) := − i(nκ)2

2Γnκ
exp (iΓnκ |zl − zm|)

�
1 −

�
ε(L)(zm)

+ α(zm)
�
|Um(κ)|2 + |Um(2κ)|2 + |Um(3κ)|2

+ δn1 |Um(κ)| |Um(3κ)| exp {i [−3arg Um(κ) + arg Um(3κ)]}
+ δn2 |Um(κ)| |Um(3κ)| exp {i [−2arg Um(2κ) + arg Um(κ) + arg Um(3κ)]}

���
.

(60)

The numbers Am are the coefficients determined by the quadrature rule, I := {δlm}N
l,m=1 is the

identity matrix, and δlm is Kronecker’s symbol.
The right-hand side of (59) is defined by

Uinc
nκ := {ainc

nκ exp[−iΓnκ(zl − 2πδ)]}N
l=1,

Cκ(U2κ , U3κ) :=
� iκ2

2Γκ

N

∑
m=1

Am exp(iΓκ |zl − zm|)α(zm)U2
m(2κ)Um(3κ)

�N

l=1
,

C3κ(Uκ , U2κ) :=
� i(3κ)2

2Γ3κ

N

∑
m=1

Am exp(iΓ3κ |zl − zm|)α(zm)
�1

3
U3

m(κ) + U2
m(2κ)Um(κ)

��N

l=1
.

The solution of (59) is approximated by means of the following iterative method:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

��
I − Bκ

�
U(s−1)

κ , U(S2(q))
2κ , U(S3(q))

3κ

� �
U(s)

κ

= Cκ

�
U(S2(q))

2κ , U(S3(q))
3κ

�
+ Uinc

κ

�S1(q): �U(S1(q))
κ −U(S1(q)−1)

κ �/�U(S1(q))
κ �<ξ

s=1��
I − B2κ

�
U(S1(q))

κ , U(s−1)
2κ , U(S3(q))

3κ

� �
U(s)

2κ

= Uinc
2κ

�S2(q): �U(S2(q))
2κ −U(S2(q)−1)

2κ �/�U
(S2q )
2κ �<ξ

s=1��
I − B3κ

�
U(S1(q))

κ , U(S2(q))
2κ , U(s−1)

3κ

� �
U(s)

3κ

= C3κ

�
U(S1(q))

κ , U(S2(q))
2κ

�
+ Uinc

3κ

�S3(q): �U(S3(q))
3κ −U(S3(q)−1)

3κ �/�U
(S3q )
3κ �<ξ

s=1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Q

q=1

, (61)

where, for a given relative error tolerance ξ > 0, the terminating index Q ∈ N is defined by
the requirement

max
�
�U(Q)

κ − U(Q−1)
κ �/�U(Q)

κ �, �U(Q)
2κ − U(Q−1)

2κ �/�U(Q)
2κ �, �U(Q)

3κ − U(Q−1)
3κ �/�U(Q)

3κ �
�
< ξ .
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8. Eigen-modes of the linearised problems of scattering and generation of waves
on the cubically polarisable layer

The solution of the system of non-linear equations (49) is approximated by the solution of
the linearised system of non-linear equations (58), for given values of the induced dielectric
permittivity and of the source functions at the right-hand side of the system. The solution can
be found by the help of algorithm (61), where at each step a system of linearised non-linear
complex-valued algebraic equations of the second kind is solved iteratively. The analytic
continuation of the linearised non-linear problems into the region of complex values of the
frequency parameter allows us to switch to the analysis of spectral problems. That is, the
eigen-frequencies and the corresponding eigen-fields of the homogeneous linear problems
with an induced non-linear permittivity are to be determined. The results of the development
of a spectral theory of linear problems for structures with non-compact boundaries can be
found in Yatsyk (2000), Shestopalov & Yatsyk (1997), Sirenko et al. (1985), Shestopalov &
Sirenko (1989), Sirenko et al. (2007), Sirenko & Ström (2010).
As mentioned above, the classical formulation of the problem of scattering and generation
of waves, described by the system of boundary value problems (21), (C1) – (C4), can be
reformulated as a set of independent spectral problems in the following way:
Find the eigen-frequencies κn and the corresponding eigen-functions E1(r, κn) (i.e.

�
κn ∈

Ωnκ ⊂ Hnκ , E1(r, κn)
�3

n=1, where Ωnκ are the sets of eigen-frequencies lying on the
two-sheeted Riemann surfaces Hnκ , see Fig. 2 and the more detailed explanations below)
satisfying the equations

∇2E1(r, κn) + κ2
nεnκ (z, α(z), E1(r, κ), E1(r, 2κ), E1(r, 3κ)) E1(r, κn) = 0, n = 1, 2, 3, (62)

together with the following conditions:
(CS1) E1(κn; y, z) = U(κn; z) exp(iφnκy), n = 1, 2, 3

(the quasi-homogeneity condition w.r.t. the spatial variable y),
(CS2) φnκ = nφκ , n = 1, 2, 3 (the condition of phase synchronism of waves),
(CS3) Etg(κn; y, z) and Htg(κn; y, z) (i.e. E1(κn; y, z) and H2(κn; y, z)) are continuous at the

boundary layers of the structure with the induced permittivity εnκ for κ := κinc, n = 1, 2, 3,

(CS4) E1(κn; y, z)=
�

aκn

bκn

�
exp (i (φnκy ± Γκn (κn, φnκ)(z ∓ 2πδ))) , z><± 2πδ , n = 1, 2, 3

(the radiation condition w.r.t. the eigen-field).
For real values of the parameters κn and φnκ , the condition (CS4) meets the physically
reasonable requirement of the absence of radiation fields of waves coming from infinity
z = ±∞:

Im Γκn (κn, φnκ) ≥ 0, Re Γκn (κn, φnκ)Re κn ≥ 0 for Im φnκ = 0, Im κn = 0, n = 1, 2, 3.
(63)

The non-trivial solutions (eigen-fields) of problem (62), (CS1) – (CS4) can be represented as

E1(κn; y, z) = U(κn; z) exp(iφnκy) =

⎧⎨
⎩

aκn exp(i(φnκy + Γκn (κn, φnκ)(z − 2πδ))), z > 2πδ,
U(κn; z) exp(iφnκy), |z| ≤ 2πδ,
bκn exp(i(φnκy − Γκn (κn, φnκ)(z + 2πδ))), z < −2πδ,

κn ∈ Ωnκ ⊂ Hnκ , n = 1, 2, 3,
(64)
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Fig. 2. The geometry of the two-sheeted Riemann surfaces Hnκ

where κ := κinc is a given constant equal to the value of the excitation frequency of the
non-linear structure, Γκn (κn, φnκ) := (κ2

n − φ2
nκ)

1/2 are the transverse propagation functions
depending on the complex frequency spectral variables κn, φnκ := nκ sin(ϕnκ) denote the
given real values of the longitudinal propagation constants,
εnκ = εnκ(z, α(z), E1(r, κ), E1(r, 2κ), E1(r, 3κ)) are the induced dielectric permittivities at the
frequencies nκ corresponding to the parameter κ := κinc, Ωnκ are the sets of eigen-frequencies
and Hnκ are two-sheeted Riemann surfaces (cf. Fig. 2), n = 1, 2, 3. The range of the spectral
parameters κn ∈ Ωnκ is completely determined by the boundaries of those regions in
which the analytic continuation (consistent with the condition (63)) of the canonical Green’s
functions

G0(κn; q, q0) =
i

4Y
exp {i [φnκ (y − y0) + Γκn (κn, φnκ) |z − z0|]} /Γκn (κn, φnκ), n = 1, 2, 3,

(cf. (42)) into the complex space of the spectral parameters κn of the unperturbed problems
(62), (CS1) – (CS4) (i.e. for the special case εnκ ≡ 1, n = 1, 2, 3) is possible. These complex
spaces are two-sheeted Riemann surfaces Hnκ (see Fig. 2) with real algebraic branch points of
second order κ±n : Γκn (κ

±
n , φnκ) = 0 (i.e. κ±n = ±|φnκ |, n = 1, 2, 3) and with cuts starting at

these points and extending along the lines

(Re κn)
2 − (Im κn)

2 − φ2
nκ = 0, Im κn ≤ 0, n = 1, 2, 3 . (65)

The first, “physical” sheets (i.e. the pair of values {κn, Γκn (κn, φnκ)}) on each of the surfaces
Hnκ , n = 1, 2, 3, are completely determined by the condition (63) and the cuts (65). At the first
sheets of Hnκ the signs of the pairs {κn,Re Γκn} and {κn, Im Γκn} are distributed as follows:
Im Γκn > 0 for 0 < arg κn < π, Re Γκn ≥ 0 for 0 < arg κn < π/2 and Re Γκn ≤ 0 for
π/2 ≤ arg κn < π. For points κn with 3π/2 ≤ arg κn ≤ 2π, the function values (where
(Re κn)2 − (Im κn)2 − φnκ2 > 0) are determined by the condition Im Γκn < 0, Re Γκn > 0, for
the remaining points κn the function Γκn (κn, φnκ) is determined by the condition Im Γκn > 0,
Re Γκn ≤ 0. In the region π < arg κn < 3π/2 the situation is similar to the previous one
up to the change of the sign of Re Γκn . The second, “unphysical” sheets of the surfaces Hnκ ,
n = 1, 2, 3 are different from the “physical” ones in that, for each κn, the signs of both Re Γκn

and Im Γκn are reversed.
The qualitative analysis of the eigen-modes of the linearised problems (62), (CS1) – (CS4) is
carried out using the equivalent formulation of spectral problems for the linearised non-linear
integral equations (49). It is based on the analytic continuation of (49) (see also (58)) into the
space of spectral values κn ∈ Ωnκ ⊂ Hnκ , n = 1, 2, 3.
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The spectral problem reduces to finding non-trivial solutions U(κn; z) of a set of homogeneous
(i.e. with vanishing right-hand sides), linear (i.e. linearised equations (49)) integral equations
with the induced dielectric permittivity at the frequencies nκ of excitation and generation:

U(κn; z) +
iκ2

n
2Γκn (κn, φnκ)

∫ 2πδ

−2πδ
exp(iΓκn (κn, φnκ)|z − z0|)

× [1 − εnκ(z0, α(z0), U(κ; z0), U(2κ; z0), U(3κ; z0))]U(κn; z0)dz0 = 0;
|z| ≤ 2πδ, κ := κinc, κn ∈ Ωnκ ⊂ Hnκ , n = 1, 2, 3.

(66)

The solution of the problem (62), (CS1) – (CS4) can be obtained from the solution of the
equivalent problem (66), where – according to (CS3) – in the representation of the eigen-fields
(64) the following formulas are used:

U(κn; 2πδ) = aκn , U(κn;−2πδ) = bκn , n = 1, 2, 3. (67)

The analyticity w.r.t. the argument κn ∈ Hnκ , n = 1, 2, 3, and the compactness of the operator
functions (cf. (66)) Bnκ(κn) [U(κn; ·)] : L2(−2πδ, 2πδ) → L2(−2πδ, 2πδ), n = 1, 2, 3, where

Bnκ(κn) [U(κn; z)] = − iκ2
n

2Γκn (κn, φnκ)

∫ 2πδ

−2πδ
exp(iΓκn (κn, φnκ)|z − z0|)

× [1 − εnκ(z0, α(z0), U(κ; z0), U(2κ; z0), U(3κ; z0))]U(κn; z0)dz0, κ := κinc, n = 1, 2, 3,
(68)

are necessary conditions in the analytic Fredholm theorem (see (Reed & Simon, 1980, Thm.
VI.14)). Taking into account that the resolvent set of (66) is non-empty in Hnκ , the theorem
implies that the resolvent operator (I − Bnκ(κn))−1 (where I is the identity operator) exists
and is a holomorphic operator function of the parameters κn ∈ Hnκ , with the exception of not
more than countable sets of isolated points Ωnκ , n = 1, 2, 3 (i.e. sets that have no acumulation
points in the finite part of each of the surfaces Hnκ , n = 1, 2, 3). In this case (I − Bnκ(κn))−1 is
meromorphic in Hnκ , the residues at the poles are operators of finite rank and, if κn ∈ Ωnκ , then
the equation (66) Bnκ(κn)U = U has a non-trivial solution in Hnκ , n = 1, 2, 3. Summarizing the
above discussion, we obtain the following result.

Theorem 3. The spectra Ωnκ of the problem (62), (CS1) – (CS4), and also of the equivalent problem
(66) for the dielectric layer with the induced piecewise continuous permittivity at the frequencies
nκ of excitation and generation, consist of not more than countable sets of isolated points, without
accumulation points in the finite part of each of the surfaces Hnκ , n = 1, 2, 3. The resolvents of the
spectral problems at these points are poles of finite order.

9. Algorithm for the numerical analysis of the eigen-modes of the linearised
problems

The qualitative analysis of the spectral characteristics allows to develop algorithms for solving
the spectral problems (62), (CS1) – (CS4) by reducing them to the equivalent spectral problem
of finding non-trivial solutions of the integral equations (66), see Shestopalov & Yatsyk
(1997), Yatsyk (2000). The solvability of (66) follows from an analysis of the basic qualitative
characteristics of the spectra. Applying to the integral equations (66) appropriate quadrature
formulas, we obtain a set of independent systems of linear algebraic equations of second kind
depending non-linearly on the spectral parameter: (I − Bnκ(κn))Uκn = 0, where κn ∈ Hnκ ,
κ := κinc, n = 1, 2, 3. Consequently, the spectral problem of finding the eigen-frequencies
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Fig. 2. The geometry of the two-sheeted Riemann surfaces Hnκ
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nκ)
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4Y
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π/2 ≤ arg κn < π. For points κn with 3π/2 ≤ arg κn ≤ 2π, the function values (where
(Re κn)2 − (Im κn)2 − φnκ2 > 0) are determined by the condition Im Γκn < 0, Re Γκn > 0, for
the remaining points κn the function Γκn (κn, φnκ) is determined by the condition Im Γκn > 0,
Re Γκn ≤ 0. In the region π < arg κn < 3π/2 the situation is similar to the previous one
up to the change of the sign of Re Γκn . The second, “unphysical” sheets of the surfaces Hnκ ,
n = 1, 2, 3 are different from the “physical” ones in that, for each κn, the signs of both Re Γκn

and Im Γκn are reversed.
The qualitative analysis of the eigen-modes of the linearised problems (62), (CS1) – (CS4) is
carried out using the equivalent formulation of spectral problems for the linearised non-linear
integral equations (49). It is based on the analytic continuation of (49) (see also (58)) into the
space of spectral values κn ∈ Ωnκ ⊂ Hnκ , n = 1, 2, 3.
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The spectral problem reduces to finding non-trivial solutions U(κn; z) of a set of homogeneous
(i.e. with vanishing right-hand sides), linear (i.e. linearised equations (49)) integral equations
with the induced dielectric permittivity at the frequencies nκ of excitation and generation:
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× [1 − εnκ(z0, α(z0), U(κ; z0), U(2κ; z0), U(3κ; z0))]U(κn; z0)dz0 = 0;
|z| ≤ 2πδ, κ := κinc, κn ∈ Ωnκ ⊂ Hnκ , n = 1, 2, 3.

(66)

The solution of the problem (62), (CS1) – (CS4) can be obtained from the solution of the
equivalent problem (66), where – according to (CS3) – in the representation of the eigen-fields
(64) the following formulas are used:

U(κn; 2πδ) = aκn , U(κn;−2πδ) = bκn , n = 1, 2, 3. (67)

The analyticity w.r.t. the argument κn ∈ Hnκ , n = 1, 2, 3, and the compactness of the operator
functions (cf. (66)) Bnκ(κn) [U(κn; ·)] : L2(−2πδ, 2πδ) → L2(−2πδ, 2πδ), n = 1, 2, 3, where
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× [1 − εnκ(z0, α(z0), U(κ; z0), U(2κ; z0), U(3κ; z0))]U(κn; z0)dz0, κ := κinc, n = 1, 2, 3,
(68)

are necessary conditions in the analytic Fredholm theorem (see (Reed & Simon, 1980, Thm.
VI.14)). Taking into account that the resolvent set of (66) is non-empty in Hnκ , the theorem
implies that the resolvent operator (I − Bnκ(κn))−1 (where I is the identity operator) exists
and is a holomorphic operator function of the parameters κn ∈ Hnκ , with the exception of not
more than countable sets of isolated points Ωnκ , n = 1, 2, 3 (i.e. sets that have no acumulation
points in the finite part of each of the surfaces Hnκ , n = 1, 2, 3). In this case (I − Bnκ(κn))−1 is
meromorphic in Hnκ , the residues at the poles are operators of finite rank and, if κn ∈ Ωnκ , then
the equation (66) Bnκ(κn)U = U has a non-trivial solution in Hnκ , n = 1, 2, 3. Summarizing the
above discussion, we obtain the following result.

Theorem 3. The spectra Ωnκ of the problem (62), (CS1) – (CS4), and also of the equivalent problem
(66) for the dielectric layer with the induced piecewise continuous permittivity at the frequencies
nκ of excitation and generation, consist of not more than countable sets of isolated points, without
accumulation points in the finite part of each of the surfaces Hnκ , n = 1, 2, 3. The resolvents of the
spectral problems at these points are poles of finite order.

9. Algorithm for the numerical analysis of the eigen-modes of the linearised
problems

The qualitative analysis of the spectral characteristics allows to develop algorithms for solving
the spectral problems (62), (CS1) – (CS4) by reducing them to the equivalent spectral problem
of finding non-trivial solutions of the integral equations (66), see Shestopalov & Yatsyk
(1997), Yatsyk (2000). The solvability of (66) follows from an analysis of the basic qualitative
characteristics of the spectra. Applying to the integral equations (66) appropriate quadrature
formulas, we obtain a set of independent systems of linear algebraic equations of second kind
depending non-linearly on the spectral parameter: (I − Bnκ(κn))Uκn = 0, where κn ∈ Hnκ ,
κ := κinc, n = 1, 2, 3. Consequently, the spectral problem of finding the eigen-frequencies
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κn ∈ Ωnκ ⊂ Hnκ and the corresponding eigen-fields (i.e. the non-trivial solutions of the
integral equations (66)) reduces to the following algorithm:

⎧⎨
⎩

fnκ(κn) := det(I − Bnκ(κn)) = 0,
(I − Bnκ(κn))Uκn = 0,

κ := κinc, κn ∈ Ωnκ ⊂ Hnκ , n = 1, 2, 3.
(69)

Here we use a similar notation to that in Section 7. κn are the desired eigen-frequencies, and
Uκn = {U(κn; zl)}N

l=1 := {Ul(κn)}N
l=1 are the vectors of the unknown approximate solution

values corresponding to the frequencies κn. The matrices are of the form

Bnκ(κn) := Bnκ(κn; Uκ , U2κ , U3κ) = {AmKlm(κn, Uκ , U2κ , U3κ)}N
l,m=1 (70)

with given values of the vectors of the scattered and generated fields Unκ = {U(nκ; zl)}N
l=1 :=

{Ul(nκ)}N
l=1 , n = 1, 2, 3. The numbers Am are the coefficients determined by the quadrature

rule, and the entries Klm(κn, Uκ , U2κ , U3κ) are calculated by means of (60), where the first
argument nκ is replaced by κn. The eigen-frequencies κn ∈ Ωnκ ⊂ Hnκ , n = 1, 2, 3, i.e.
the characteristic numbers of the dispersion equations of the problem (69), are obtained by
solving the corresponding dispersion equations fnκ(κn) := det(I − Bnκ(κn)) = 0 by the help
of Newton’s method or its modifications. The non-trivial solutions Uκn of the homogeneous
systems of linear algebraic equations (69) corresponding to these characteristic numbers are
the eigen-fields (64) of the linearised non-linear layered structures with an induced dielectric
constant (52). Since the solutions Uκn are unique up to multiplication by an arbitrary constant,
we require U(κn; 2πδ) = aκn := 1 (cf. (64)). According to (70), the matrix entries in (69)
depend on the dielectric permittivities. The latter are defined by the scattered and generated
fields Uκ , U2κ , U3κ of the problem (49) by means of the algorithm (61). This defines the basic
design of the implemented numerical algorithm. The investigation of the eigen-modes of
the linearised non-linear structures (69) should always precede the solution of the non-linear
scattering and generation problem in the self-consistent formulation (61). Note that, in the
analysis of the linear structures, the problem of excitation (scattering) and the spectral problem
can be solved independently.
In physical applications, a very useful theorem (see (Sánchez-Palencia, 1980, Thm. 7.2)) asserts
the continuous dependence of the operator (68) (or (70)) of the spectral problem on some
non-spectral parameter τ of the problem under consideration, i.e. Bnκ(κn, τ) (or Bnκ(κn, τ)).
In particular, this theorem implies that the characteristic numbers κn(τ), i.e. the poles of
(I − Bnκ(κn, τ))−1 (or (I − Bnκ(κn, τ))−1) continuously depend on τ and, therefore, they may
appear or disappear only at the boundary of any given open, connected region D ⊂ Hnκ ,
n = 1, 2, 3. Further, we interpret κn(τ) ∈ Ωnκ(τ) ⊂ Hnκ as a branch of the dispersion curves in
the eigen-fields U(κn(τ), z) of the problem under investigation. Finally we mention that the
classification of scattered, generated or eigen-fields of the dielectric layer by the Hm,l,p-type
adopted in our paper is identical to that given in Shestopalov & Sirenko (1989), Shestopalov &
Yatsyk (1997), Yatsyk (2000). In the case of E-polarisation, see (12), Hm,l,p (or TEm,l,p) denotes
the type of polarisation of the wave field under investigation. The subscripts indicate the
number of local maxima of |E1| (or |U|, as |E1| = |U|, see (23), (64)) along the coordinate axes
x, y and z (see Fig. 1). Since the considered waves are homogeneous along the x-axis and
quasi-homogeneous along the y-axis, we study actually fields of the type H0,0,p (or TE0,0,p),
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where the subscript p is equal to the number of local maxima of the function |U| of the
argument z ∈ [−2πδ, 2πδ].

10. Numerical analysis. Third-harmonic generation by resonant scattering of a
wave on a layer with negative and positive values of the cubic susceptibility

Consider the excitation of the non-linear structure by a strong electromagnetic field at the
basic frequency only (see (20)), i.e.

{Einc
1 (κ; q) �= 0, Einc

1 (2κ; q) = 0, Einc
1 (3κ; q) = 0}, where {ainc

κ �= 0, ainc
2κ = ainc

3κ = 0}. (71)

In this case, the number of equations in the systems can be reduced. The second equations
in all the systems (21), (24) and (49), corresponding to a problem at the double frequency 2κ
with a trivial right-hand side, can be eliminated by setting E1(r, 2κ) := 0 (cf. Angermann &
Yatsyk (2010), Angermann & Yatsyk (2011)). The dielectric permittivity of the non-linear layer
(cf. (19)) in the case (71) simplifies to

εnκ (z, α(z), E1(r, κ), 0, E1(r, 3κ)) = εnκ (z, α(z), U(κ; z), U(3κ; z))
=: ε(L)(z) + ε

(NL
nκ (α(z), U(κ; z), U(3κ; z))

= ε(L)(z) + α(z)
�|U(κ; z)|2 + |U(3κ; z)|2�

+ δn,1α(z)|U(κ; z)||U(3κ; z)| exp [i {−3arg U(κ; z) + arg U(3κ; z)}] , n = 1, 3.

(72)

The desired solution of the scattering and generation problem (21), (C1) – (C4) (or of the
equivalent problems (24) and (49)) can be represented as follows (cf. (23)):

E1(nκ; y, z) = U(nκ; z) exp(iφnκy)

=

⎧⎨
⎩

δn1ainc
nκ exp(i(φnκy − Γnκ(z − 2πδ))) + ascat

nκ exp(i(φnκy + Γnκ(z − 2πδ))), z > 2πδ,
U(nκ; z) exp(iφnκy), |z| ≤ 2πδ,
bscat

nκ exp(i(φnκy − Γnκ(z + 2πδ))), z < −2πδ,
n = 1, 3,

(73)
where U(κ; z), U(3κ; z), |z| ≤ 2πδ, are the solutions of the reduced systems (24) or (49).
According to (25) we determine the values of complex amplitudes

�
ascat

nκ , bscat
nκ : n = 1, 3

�
in

(73) for the scattered and generated fields by means of the formulas

U(nκ; 2πδ) = δn1ainc
nκ + ascat

nκ , U(nκ;−2πδ) = bscat
nκ , n = 1, 3. (74)

According to the results of Section 7,the solution of (21), (C1) – (C4) reduces in the case of (71)
to the following system (cf. (59)):

�
(I − Bκ(Uκ , U3κ))Uκ = Uinc

κ ,
(I − B3κ(Uκ , U3κ))U3κ = C3κ (Uκ) .

(75)

The system (75) is written taking into account (71), i.e. Uinc
2κ = 0, Uinc

3κ = 0, U2κ = 0. Here (cf.
(59)) Bnκ(Uκ , U3κ) = Bnκ(Uκ , 0, U3κ), n = 1, 3, denote the matrices of the complex-valued
non-linear algebraic equations, and Uinc

κ , C3κ (Uκ) = C3κ (Uκ , 0) , Cκ (0, Uκ) = 0 are
the right-hand side vectors. The solution of (75) is obtained by means of successive
approximations using the self-consistent approach based on the iterative algorithm (61).
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κn ∈ Ωnκ ⊂ Hnκ and the corresponding eigen-fields (i.e. the non-trivial solutions of the
integral equations (66)) reduces to the following algorithm:

⎧⎨
⎩

fnκ(κn) := det(I − Bnκ(κn)) = 0,
(I − Bnκ(κn))Uκn = 0,

κ := κinc, κn ∈ Ωnκ ⊂ Hnκ , n = 1, 2, 3.
(69)

Here we use a similar notation to that in Section 7. κn are the desired eigen-frequencies, and
Uκn = {U(κn; zl)}N

l=1 := {Ul(κn)}N
l=1 are the vectors of the unknown approximate solution

values corresponding to the frequencies κn. The matrices are of the form

Bnκ(κn) := Bnκ(κn; Uκ , U2κ , U3κ) = {AmKlm(κn, Uκ , U2κ , U3κ)}N
l,m=1 (70)

with given values of the vectors of the scattered and generated fields Unκ = {U(nκ; zl)}N
l=1 :=

{Ul(nκ)}N
l=1 , n = 1, 2, 3. The numbers Am are the coefficients determined by the quadrature

rule, and the entries Klm(κn, Uκ , U2κ , U3κ) are calculated by means of (60), where the first
argument nκ is replaced by κn. The eigen-frequencies κn ∈ Ωnκ ⊂ Hnκ , n = 1, 2, 3, i.e.
the characteristic numbers of the dispersion equations of the problem (69), are obtained by
solving the corresponding dispersion equations fnκ(κn) := det(I − Bnκ(κn)) = 0 by the help
of Newton’s method or its modifications. The non-trivial solutions Uκn of the homogeneous
systems of linear algebraic equations (69) corresponding to these characteristic numbers are
the eigen-fields (64) of the linearised non-linear layered structures with an induced dielectric
constant (52). Since the solutions Uκn are unique up to multiplication by an arbitrary constant,
we require U(κn; 2πδ) = aκn := 1 (cf. (64)). According to (70), the matrix entries in (69)
depend on the dielectric permittivities. The latter are defined by the scattered and generated
fields Uκ , U2κ , U3κ of the problem (49) by means of the algorithm (61). This defines the basic
design of the implemented numerical algorithm. The investigation of the eigen-modes of
the linearised non-linear structures (69) should always precede the solution of the non-linear
scattering and generation problem in the self-consistent formulation (61). Note that, in the
analysis of the linear structures, the problem of excitation (scattering) and the spectral problem
can be solved independently.
In physical applications, a very useful theorem (see (Sánchez-Palencia, 1980, Thm. 7.2)) asserts
the continuous dependence of the operator (68) (or (70)) of the spectral problem on some
non-spectral parameter τ of the problem under consideration, i.e. Bnκ(κn, τ) (or Bnκ(κn, τ)).
In particular, this theorem implies that the characteristic numbers κn(τ), i.e. the poles of
(I − Bnκ(κn, τ))−1 (or (I − Bnκ(κn, τ))−1) continuously depend on τ and, therefore, they may
appear or disappear only at the boundary of any given open, connected region D ⊂ Hnκ ,
n = 1, 2, 3. Further, we interpret κn(τ) ∈ Ωnκ(τ) ⊂ Hnκ as a branch of the dispersion curves in
the eigen-fields U(κn(τ), z) of the problem under investigation. Finally we mention that the
classification of scattered, generated or eigen-fields of the dielectric layer by the Hm,l,p-type
adopted in our paper is identical to that given in Shestopalov & Sirenko (1989), Shestopalov &
Yatsyk (1997), Yatsyk (2000). In the case of E-polarisation, see (12), Hm,l,p (or TEm,l,p) denotes
the type of polarisation of the wave field under investigation. The subscripts indicate the
number of local maxima of |E1| (or |U|, as |E1| = |U|, see (23), (64)) along the coordinate axes
x, y and z (see Fig. 1). Since the considered waves are homogeneous along the x-axis and
quasi-homogeneous along the y-axis, we study actually fields of the type H0,0,p (or TE0,0,p),
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where the subscript p is equal to the number of local maxima of the function |U| of the
argument z ∈ [−2πδ, 2πδ].

10. Numerical analysis. Third-harmonic generation by resonant scattering of a
wave on a layer with negative and positive values of the cubic susceptibility

Consider the excitation of the non-linear structure by a strong electromagnetic field at the
basic frequency only (see (20)), i.e.

{Einc
1 (κ; q) �= 0, Einc

1 (2κ; q) = 0, Einc
1 (3κ; q) = 0}, where {ainc

κ �= 0, ainc
2κ = ainc

3κ = 0}. (71)

In this case, the number of equations in the systems can be reduced. The second equations
in all the systems (21), (24) and (49), corresponding to a problem at the double frequency 2κ
with a trivial right-hand side, can be eliminated by setting E1(r, 2κ) := 0 (cf. Angermann &
Yatsyk (2010), Angermann & Yatsyk (2011)). The dielectric permittivity of the non-linear layer
(cf. (19)) in the case (71) simplifies to

εnκ (z, α(z), E1(r, κ), 0, E1(r, 3κ)) = εnκ (z, α(z), U(κ; z), U(3κ; z))
=: ε(L)(z) + ε

(NL
nκ (α(z), U(κ; z), U(3κ; z))

= ε(L)(z) + α(z)
�|U(κ; z)|2 + |U(3κ; z)|2�

+ δn,1α(z)|U(κ; z)||U(3κ; z)| exp [i {−3arg U(κ; z) + arg U(3κ; z)}] , n = 1, 3.

(72)

The desired solution of the scattering and generation problem (21), (C1) – (C4) (or of the
equivalent problems (24) and (49)) can be represented as follows (cf. (23)):

E1(nκ; y, z) = U(nκ; z) exp(iφnκy)

=

⎧⎨
⎩

δn1ainc
nκ exp(i(φnκy − Γnκ(z − 2πδ))) + ascat

nκ exp(i(φnκy + Γnκ(z − 2πδ))), z > 2πδ,
U(nκ; z) exp(iφnκy), |z| ≤ 2πδ,
bscat

nκ exp(i(φnκy − Γnκ(z + 2πδ))), z < −2πδ,
n = 1, 3,

(73)
where U(κ; z), U(3κ; z), |z| ≤ 2πδ, are the solutions of the reduced systems (24) or (49).
According to (25) we determine the values of complex amplitudes

�
ascat

nκ , bscat
nκ : n = 1, 3

�
in

(73) for the scattered and generated fields by means of the formulas

U(nκ; 2πδ) = δn1ainc
nκ + ascat

nκ , U(nκ;−2πδ) = bscat
nκ , n = 1, 3. (74)

According to the results of Section 7,the solution of (21), (C1) – (C4) reduces in the case of (71)
to the following system (cf. (59)):

�
(I − Bκ(Uκ , U3κ))Uκ = Uinc

κ ,
(I − B3κ(Uκ , U3κ))U3κ = C3κ (Uκ) .

(75)

The system (75) is written taking into account (71), i.e. Uinc
2κ = 0, Uinc

3κ = 0, U2κ = 0. Here (cf.
(59)) Bnκ(Uκ , U3κ) = Bnκ(Uκ , 0, U3κ), n = 1, 3, denote the matrices of the complex-valued
non-linear algebraic equations, and Uinc

κ , C3κ (Uκ) = C3κ (Uκ , 0) , Cκ (0, Uκ) = 0 are
the right-hand side vectors. The solution of (75) is obtained by means of successive
approximations using the self-consistent approach based on the iterative algorithm (61).
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In order to describe the scattering and generation properties of the non-linear structure in the
zones of reflection z > 2πδ and transmission z < −2πδ, we introduce the following notation:

Rnκ := |ascat
nκ |2/|ainc

κ |2 and Tnκ := |bscat
nκ |2/|ainc

κ |2.

The quantities Rnκ , Tnκ are called reflection, transmission or generation coefficients of the waves
w.r.t. the intensity of the excitation field.
We note that in the considered case of the excitation {ainc

κ �= 0, ainc
2κ = 0, ainc

3κ = 0} and for

non-absorbing media with Im
[
ε(L)(z)

]
= 0, the energy balance equation Rκ + Tκ + R3κ +

T3κ = 1 is satisfied. This equation represents the law of conservation of energy (Shestopalov
& Sirenko (1989), Vainstein (1988)). The quantity W3κ/Wκ , which characterises the portion of
energy generated in the third harmonic in comparison to the energy scattered in the non-linear
layer, is of particular interest. Here by Wnκ = |ascat

nκ |2 + |bscat
nκ |2 we denote the total energy of

the scattered and generated fields at the frequencies nκ, n = 1, 3.
The spectral characteristics of the linearised non-linear problems (62), (CS1) – (CS4) with the
induced dielectric permittivity (72) at the frequency κ of excitation and the frequency 3κ of
generation were calculated by means of the algorithm (69). In the graphical illustration of the
eigen-fields Uκn in the representation (64) we have set aκn := 1 for κn ∈ Ωnκ ⊂ Hnκ , n = 1, 3.
In what follows we want to discuss some results of the numerical analysis of scattering and
generation properties of cubic non-linear polarisable layers with both negative and positive
values of the cubic susceptibility of the medium. We consider non-linear dielectric layers (see

Fig. 1) with a dielectric permittivity εnκ (z, α(z), U(κ; z), U(3κ; z)) = ε(L)(z) + ε
(NL
nκ of the form

(72), where {
ε(L)(z), α(z)

}
=

{
ε(L) = 16, α = ∓0.01, z ∈ [−2πδ, 2πδ]

}

with the parameter δ := 0.5, the excitation frequency κinc := κ := 0.375, the generation
frequency of the third harmonic field κgen := 3κ := 1.125, and the angle of incidence of the
plane wave ϕκ ∈ [0◦, 90◦).

10.1 A non-linear layer with a negative value of the cubic susceptibility of the medium
The results of the numerical analysis of scattering and generation properties as well as the
eigen-modes of the dielectric layer with a negative value of the cubic susceptibility of the
medium (α = −0.01) are presented in Fig. 3 – Fig. 9.

Fig. 3. The portion of energy generated in the third harmonic (left) and some graphs
describing the properties of the non-linear layer at ainc

κ = 24 and ϕκ = 0◦ (right): #1 . . . ε(L),
#2 . . . |U(κ; z)|, #3 . . . |U(3κ; z)|, #4 . . . Re(εκ), #5 . . . Im(εκ), #6 . . . Re(ε3κ), #7 . . . Im(ε3κ) ≡ 0
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Fig. 3 (left) shows the dependence of W3κ/Wκ on the angle of incidence ϕκ and on the
amplitude ainc

κ of the incident field. It describes the portion of energy generated in the
third harmonic by the non-linear layer when a plane wave at the excitation frequency κ and
with the amplitude ainc

κ is passing the layer under the angle of incidence ϕκ . In particular,
W3κ/Wκ = 0.039 at ainc

κ = 24 and ϕκ = 0◦, i.e. W3κ amounts to 3.9% of the total energy Wκ

scattered at the frequency of excitation κ. Fig. 3 (right) displays some graphs characterising the
scattering and generation properties of the non-linear structure. Graphs #4 and #5 show the
real and imaginary parts of the permittivity at the frequency of excitation, while graphs #6 and
#7 display the corresponding values at the generation frequency. The figure also shows the
absolute values |U(κ; z)| of the amplitudes of the full scattered field H0,0,4 at the frequency of
excitation κ (graph #2) and |U(3κ; z)| of the generated field of the H0,0,9-type at the frequency
3κ (graph #3). The values |U(κ; z)| and |U(3κ; z)| are given in the non-linear layered structure
(|z| ≤ 2πδ) and outside it (i.e. in the zones of reflection z > 2πδ and transmission z < −2πδ).

Fig. 4. Graphs of the scattered and generated fields in the non-linear layered structure for
ϕκ = 0◦:

∣∣Uκ
[
ainc

κ , z
]∣∣ (left),

∣∣U3κ

[
ainc

κ , z
]∣∣ (right)

Figs. 4 and 5 show the numerical results obtained for the scattered and the generated fields in
the non-linear structure and for the non-linear dielectric permittivity of the layered structure
in dependence on the amplitude ainc

κ at normal incidence ϕκ = 0◦ of the plane wave.
Fig. 4 shows the graphs of

∣∣Uκ
[
ainc

κ , z
]∣∣ and

∣∣U3κ

[
ainc

κ , z
]∣∣ demonstrating the dynamic

behaviour of the scattered and the generated fields |U(κ; z)| and |U(3κ; z)| in the non-linear
layered structure in dependence on an increasing amplitude ainc

κ at normal incidence ϕκ = 0◦
of the plane wave of the frequency κ. We mention that, in the range of amplitudes ainc

κ ∈ (0, 24]
under consideration, the scattered field is of the type H0,0,4, see Fig. 4 (left). The generation of
the third harmonic field can be observed within the range ainc

κ ∈ [4, 24], see Fig. 4 (right). The
generated field has the type H0,0,10 for ainc

κ ∈ [4, 23), and H0,0,9 for ainc
κ ∈ [23, 24]. The change of

type of the generated field from H0,0,10 to H0,0,9 for an increasing amplitude ainc
κ is due to the

loss of one local maximum of the function |U(3κ; z)|, z ∈ [−2πδ, 2πδ], at ainc
κ = 23 (see the

point with coordinates (ainc
κ = 23, z = 1.15, |U3κ | = 1.61) in Fig. 4 (right)).

The non-linear parts ε
(NL)
nκ of the dielectric permittivity at each frequency κ and 3κ depend

on the values Uκ := U(κ; z) and U3κ := U(3κ; z) of the fields, see (72). The variation of
the non-linear parts ε

(NL)
nκ of the dielectric permittivity for an increasing amplitude ainc

κ of
the incident field are illustrated by the behaviour of Re

(
εκ

[
ainc

κ , z
])

(Fig. 5 (top left)) and
Im

(
εκ

[
ainc

κ , z
])

(Fig. 5 (top right)) at the frequency κ, and by ε3κ

[
ainc

κ , z
]

at the triple frequency
3κ (Fig. 5 (bottom left)). In Fig. 5 (top right) the graph of Im

(
εκ

[
ainc

κ , z
])

for a given amplitude
ainc

κ characterises the loss of energy in the non-linear medium (at the frequency of excitation κ)
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In order to describe the scattering and generation properties of the non-linear structure in the
zones of reflection z > 2πδ and transmission z < −2πδ, we introduce the following notation:

Rnκ := |ascat
nκ |2/|ainc

κ |2 and Tnκ := |bscat
nκ |2/|ainc

κ |2.

The quantities Rnκ , Tnκ are called reflection, transmission or generation coefficients of the waves
w.r.t. the intensity of the excitation field.
We note that in the considered case of the excitation {ainc

κ �= 0, ainc
2κ = 0, ainc

3κ = 0} and for

non-absorbing media with Im
[
ε(L)(z)

]
= 0, the energy balance equation Rκ + Tκ + R3κ +

T3κ = 1 is satisfied. This equation represents the law of conservation of energy (Shestopalov
& Sirenko (1989), Vainstein (1988)). The quantity W3κ/Wκ , which characterises the portion of
energy generated in the third harmonic in comparison to the energy scattered in the non-linear
layer, is of particular interest. Here by Wnκ = |ascat

nκ |2 + |bscat
nκ |2 we denote the total energy of

the scattered and generated fields at the frequencies nκ, n = 1, 3.
The spectral characteristics of the linearised non-linear problems (62), (CS1) – (CS4) with the
induced dielectric permittivity (72) at the frequency κ of excitation and the frequency 3κ of
generation were calculated by means of the algorithm (69). In the graphical illustration of the
eigen-fields Uκn in the representation (64) we have set aκn := 1 for κn ∈ Ωnκ ⊂ Hnκ , n = 1, 3.
In what follows we want to discuss some results of the numerical analysis of scattering and
generation properties of cubic non-linear polarisable layers with both negative and positive
values of the cubic susceptibility of the medium. We consider non-linear dielectric layers (see

Fig. 1) with a dielectric permittivity εnκ (z, α(z), U(κ; z), U(3κ; z)) = ε(L)(z) + ε
(NL
nκ of the form

(72), where {
ε(L)(z), α(z)

}
=

{
ε(L) = 16, α = ∓0.01, z ∈ [−2πδ, 2πδ]

}

with the parameter δ := 0.5, the excitation frequency κinc := κ := 0.375, the generation
frequency of the third harmonic field κgen := 3κ := 1.125, and the angle of incidence of the
plane wave ϕκ ∈ [0◦, 90◦).

10.1 A non-linear layer with a negative value of the cubic susceptibility of the medium
The results of the numerical analysis of scattering and generation properties as well as the
eigen-modes of the dielectric layer with a negative value of the cubic susceptibility of the
medium (α = −0.01) are presented in Fig. 3 – Fig. 9.

Fig. 3. The portion of energy generated in the third harmonic (left) and some graphs
describing the properties of the non-linear layer at ainc

κ = 24 and ϕκ = 0◦ (right): #1 . . . ε(L),
#2 . . . |U(κ; z)|, #3 . . . |U(3κ; z)|, #4 . . . Re(εκ), #5 . . . Im(εκ), #6 . . . Re(ε3κ), #7 . . . Im(ε3κ) ≡ 0
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Fig. 3 (left) shows the dependence of W3κ/Wκ on the angle of incidence ϕκ and on the
amplitude ainc

κ of the incident field. It describes the portion of energy generated in the
third harmonic by the non-linear layer when a plane wave at the excitation frequency κ and
with the amplitude ainc

κ is passing the layer under the angle of incidence ϕκ . In particular,
W3κ/Wκ = 0.039 at ainc

κ = 24 and ϕκ = 0◦, i.e. W3κ amounts to 3.9% of the total energy Wκ

scattered at the frequency of excitation κ. Fig. 3 (right) displays some graphs characterising the
scattering and generation properties of the non-linear structure. Graphs #4 and #5 show the
real and imaginary parts of the permittivity at the frequency of excitation, while graphs #6 and
#7 display the corresponding values at the generation frequency. The figure also shows the
absolute values |U(κ; z)| of the amplitudes of the full scattered field H0,0,4 at the frequency of
excitation κ (graph #2) and |U(3κ; z)| of the generated field of the H0,0,9-type at the frequency
3κ (graph #3). The values |U(κ; z)| and |U(3κ; z)| are given in the non-linear layered structure
(|z| ≤ 2πδ) and outside it (i.e. in the zones of reflection z > 2πδ and transmission z < −2πδ).

Fig. 4. Graphs of the scattered and generated fields in the non-linear layered structure for
ϕκ = 0◦:

∣∣Uκ
[
ainc

κ , z
]∣∣ (left),

∣∣U3κ

[
ainc

κ , z
]∣∣ (right)

Figs. 4 and 5 show the numerical results obtained for the scattered and the generated fields in
the non-linear structure and for the non-linear dielectric permittivity of the layered structure
in dependence on the amplitude ainc

κ at normal incidence ϕκ = 0◦ of the plane wave.
Fig. 4 shows the graphs of

∣∣Uκ
[
ainc

κ , z
]∣∣ and

∣∣U3κ

[
ainc

κ , z
]∣∣ demonstrating the dynamic

behaviour of the scattered and the generated fields |U(κ; z)| and |U(3κ; z)| in the non-linear
layered structure in dependence on an increasing amplitude ainc

κ at normal incidence ϕκ = 0◦
of the plane wave of the frequency κ. We mention that, in the range of amplitudes ainc

κ ∈ (0, 24]
under consideration, the scattered field is of the type H0,0,4, see Fig. 4 (left). The generation of
the third harmonic field can be observed within the range ainc

κ ∈ [4, 24], see Fig. 4 (right). The
generated field has the type H0,0,10 for ainc

κ ∈ [4, 23), and H0,0,9 for ainc
κ ∈ [23, 24]. The change of

type of the generated field from H0,0,10 to H0,0,9 for an increasing amplitude ainc
κ is due to the

loss of one local maximum of the function |U(3κ; z)|, z ∈ [−2πδ, 2πδ], at ainc
κ = 23 (see the

point with coordinates (ainc
κ = 23, z = 1.15, |U3κ | = 1.61) in Fig. 4 (right)).

The non-linear parts ε
(NL)
nκ of the dielectric permittivity at each frequency κ and 3κ depend

on the values Uκ := U(κ; z) and U3κ := U(3κ; z) of the fields, see (72). The variation of
the non-linear parts ε

(NL)
nκ of the dielectric permittivity for an increasing amplitude ainc

κ of
the incident field are illustrated by the behaviour of Re

(
εκ

[
ainc

κ , z
])

(Fig. 5 (top left)) and
Im

(
εκ

[
ainc

κ , z
])

(Fig. 5 (top right)) at the frequency κ, and by ε3κ

[
ainc

κ , z
]

at the triple frequency
3κ (Fig. 5 (bottom left)). In Fig. 5 (top right) the graph of Im

(
εκ

[
ainc

κ , z
])

for a given amplitude
ainc

κ characterises the loss of energy in the non-linear medium (at the frequency of excitation κ)
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Fig. 5. Graphs characterising the non-linear dielectric permittivity at normal incidence of the
plane wave ϕκ = 0◦: Re

(
εκ

[
ainc

κ , z
])

(top left), Im
(
εκ

[
ainc

κ , z
])

(top right), ε3κ

[
ainc

κ , z
]

(bottom left), Re
(
εκ

[
ainc

κ , z
])− ε3κ

[
ainc

κ , z
]

(bottom right)

caused by the generation of the electromagnetic field of the third harmonic (at the frequency

3κ). In our case Im
[
ε(L) (z)

]
= 0 and Im [α (z)] = 0, therefore, according to (72),

Im(εκ) = α(z)|U(κ; z)||U(3κ; z)|Im (exp [i {−3argU(κ; z) + argU(3κ; z)}]) . (76)

From Fig. 5 (top right) we see that a small value of ainc
κ induces a small amplitude of the

function Im(εκ), i.e. |Im(εκ)| ≈ 0. The increase of ainc
κ corresponds to a strong field excitation

and leads to the generation of a third harmonic field U(3κ; z). Fig. 5 (top right) shows the
dynamic behaviour of Im(εκ). It can be seen that the values of Im(εκ) may be positive
or negative along the height of the non-linear layer, i.e. in the interval z ∈ [−2πδ, 2πδ].
The zero values of Im(εκ) are determined by the phase relation between the scattered
and the generated fields U(κ; z), U(3κ; z) in the non-linear layer, see (76), −3argU(κ; z) +
argU(3κ; z) = pπ, p = 0,±1, . . . We mention that the behaviour of both the quantities
Im(εκ) and

Re(εκ)− ε3κ = α(z)|U(κ; z)||U(3κ; z)|Re (exp [i {−3argU(κ; z) + argU(3κ; z)}])
plays an essential role in the process of third harmonic generation because of the presence
of the last term in (72). Fig. 5 (bottom right) shows the graph describing the behaviour of
Re

(
εκ

[
ainc

κ , z
])− ε3κ

[
ainc

κ , z
]

.
The scattering and generation properties of the non-linear structure in the range ϕκ ∈ [0◦, 90◦),
ainc

κ ∈ [1, 24] of the parameters of the excitation field are presented in Figs. 6 – 7. The
graphs show the dynamics of the scattering (Rκ

[
ϕκ , ainc

κ

]
, Tκ

[
ϕκ , ainc

κ

]
, see Fig. 6 (top)) and

generation (R3κ

[
ϕκ , ainc

κ

]
, T3κ

[
ϕκ , ainc

κ

]
, see Fig. 6 (bottom)) properties of the structure. Fig. 7
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Fig. 6. The scattering and generation properties of the non-linear structure: Rκ
[
ϕκ , ainc

κ

]
(top

left), Tκ
[
ϕκ , ainc

κ

]
(top right), R3κ

[
ϕκ , ainc

κ

]
(bottom left), T3κ

[
ϕκ , ainc

κ

]
(bottom right)

shows cross sections of the graphs depicted in Figs. 6 and 3 by the planes ϕκ = 0◦ and
ainc

κ = 20.
In the resonant range of wave scattering and generation frequencies, i.e. κscat := κinc = κ
and κgen = 3κ, resp., the dynamic behaviour of the characteristic quantities depicted in
Figs. 6 – 7 has the following causes. The scattering and generation frequencies are close to
the corresponding eigen-frequencies of the linear (α = 0) and linearised non-linear (α �= 0)
spectral problems (62), (CS1) – (CS4). Furthermore, the distance between the corresponding
eigen-frequencies of the spectral problems with α = 0 and α �= 0 is small. Thus, the graphs in
Fig. 7 can be compared with the dynamic behaviour of the branches of the eigen-frequencies
of the spectral problems presented in Fig. 8. The graphs of the eigen-fields corresponding to
the branches of the considered eigen-frequencies are shown in Fig. 9.

Fig. 7. The curves Rκ (#1), Tκ (#2), R3κ (#3), T3κ (#4), W3κ/Wκ (#5) for ϕκ = 0◦ (left) and
ainc

κ = 20 (right)
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Fig. 5. Graphs characterising the non-linear dielectric permittivity at normal incidence of the
plane wave ϕκ = 0◦: Re
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ainc
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])
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(
εκ
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ainc

κ , z
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(top right), ε3κ

[
ainc

κ , z
]

(bottom left), Re
(
εκ

[
ainc

κ , z
])− ε3κ

[
ainc

κ , z
]

(bottom right)

caused by the generation of the electromagnetic field of the third harmonic (at the frequency

3κ). In our case Im
[
ε(L) (z)

]
= 0 and Im [α (z)] = 0, therefore, according to (72),

Im(εκ) = α(z)|U(κ; z)||U(3κ; z)|Im (exp [i {−3argU(κ; z) + argU(3κ; z)}]) . (76)

From Fig. 5 (top right) we see that a small value of ainc
κ induces a small amplitude of the

function Im(εκ), i.e. |Im(εκ)| ≈ 0. The increase of ainc
κ corresponds to a strong field excitation

and leads to the generation of a third harmonic field U(3κ; z). Fig. 5 (top right) shows the
dynamic behaviour of Im(εκ). It can be seen that the values of Im(εκ) may be positive
or negative along the height of the non-linear layer, i.e. in the interval z ∈ [−2πδ, 2πδ].
The zero values of Im(εκ) are determined by the phase relation between the scattered
and the generated fields U(κ; z), U(3κ; z) in the non-linear layer, see (76), −3argU(κ; z) +
argU(3κ; z) = pπ, p = 0,±1, . . . We mention that the behaviour of both the quantities
Im(εκ) and

Re(εκ)− ε3κ = α(z)|U(κ; z)||U(3κ; z)|Re (exp [i {−3argU(κ; z) + argU(3κ; z)}])
plays an essential role in the process of third harmonic generation because of the presence
of the last term in (72). Fig. 5 (bottom right) shows the graph describing the behaviour of
Re

(
εκ

[
ainc

κ , z
])− ε3κ

[
ainc

κ , z
]

.
The scattering and generation properties of the non-linear structure in the range ϕκ ∈ [0◦, 90◦),
ainc

κ ∈ [1, 24] of the parameters of the excitation field are presented in Figs. 6 – 7. The
graphs show the dynamics of the scattering (Rκ

[
ϕκ , ainc

κ

]
, Tκ
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ϕκ , ainc

κ

]
, see Fig. 6 (top)) and

generation (R3κ
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Fig. 6. The scattering and generation properties of the non-linear structure: Rκ
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(bottom left), T3κ
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shows cross sections of the graphs depicted in Figs. 6 and 3 by the planes ϕκ = 0◦ and
ainc

κ = 20.
In the resonant range of wave scattering and generation frequencies, i.e. κscat := κinc = κ
and κgen = 3κ, resp., the dynamic behaviour of the characteristic quantities depicted in
Figs. 6 – 7 has the following causes. The scattering and generation frequencies are close to
the corresponding eigen-frequencies of the linear (α = 0) and linearised non-linear (α �= 0)
spectral problems (62), (CS1) – (CS4). Furthermore, the distance between the corresponding
eigen-frequencies of the spectral problems with α = 0 and α �= 0 is small. Thus, the graphs in
Fig. 7 can be compared with the dynamic behaviour of the branches of the eigen-frequencies
of the spectral problems presented in Fig. 8. The graphs of the eigen-fields corresponding to
the branches of the considered eigen-frequencies are shown in Fig. 9.

Fig. 7. The curves Rκ (#1), Tκ (#2), R3κ (#3), T3κ (#4), W3κ/Wκ (#5) for ϕκ = 0◦ (left) and
ainc

κ = 20 (right)
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Fig. 8. The curves κ := κinc := 0.375 (#1), 3κ = κgen = 3κinc = 1.125 (#2), the complex

eigen-frequencies Re(κ
(L)
1 ) (#3.1), Im(κ

(L)
1 ) (#3.2), Re(κ

(L)
3 ) (#4.1), Im(κ

(L)
3 ) (#4.2) of the linear

problem (α = 0) and Re(κ
(NL)
1 ) (#5.1), Im(κ

(NL)
1 ) (#5.2), Re(κ

(NL)
3 ) (#6.1), Im(κ

(NL)
3 ) (#6.2) of

the linearised non-linear problem (α = −0.01) for ϕκ = 0◦ (left) and ainc
κ = 20 (right)

Fig. 8 illustrates the dispersion characteristics of the linear (α = 0) and the linearised

non-linear (α = −0.01) layer εnκ = ε(L) + ε
(NL
nκ , n = 1, 3, see (72). The non-linear components

of the permittivity at the scattering (excitation) frequencies κscat := κinc = κ and the
generation frequencies κgen := κ depend on the amplitude ainc

κ and the angle of incidence ϕκ

of the incident field. This is reflected in the dynamics of the behaviour of the complex-valued
eigen-frequencies of the linear and the linearised non-linear layer. Comparing the results
shown in Fig. 8 and Fig. 7, we note the following. The dynamics of the change of the scattering
properties Rκ , Tκ of the non-linear layer (compare the behaviour of curves #1 and #2 in
Fig. 7) depends on the magnitude of the distance between the curves #3.1 and #5.1 in Fig.
8. Decanelising properties of the layer occur when α < 0. A previously transparent (Fig. 7
(left)) or reflective (Fig. 7 (right)) structure loses its properties. It becomes transparent and the
reflection and transmission coefficients become comparable. The greater the distance between
the curves #4.1 and #6.1 (see Fig. 8), the greater the values of R3κ , T3κ , W3κ/Wκ , characterising
the generating properties of the non-linear layer, see Fig. 7. The magnitudes of the absolute

Fig. 9. The graphs of the eigen-fields of the layer for ϕκ = 0◦, ainc
κ = 20. The linear problem

(α = 0, left figure): |U(κ
(L)
1 ; z)| with κ

(L)
1 = 0.3749822 − i 0.02032115 (#1), |U(κ

(L)
3 ; z)| with

κ
(L)
3 = 1.124512 − i 0.02028934 (#2), the linearised non-linear problem (α = −0.01, right

figure): |U(κ
(NL)
1 ; z)| with κ

(NL)
1 = 0.3949147 − i 0.02278218 (#1), |U(κ

(NL)
3 ; z)| with

κ
(NL)
3 = 1.168264 − i 0.02262382 (#2)
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values of the eigen-fields shown in Fig. 9 correspond to the branches of the eigen-frequencies
of the linear and the linearised non-linear spectral problems, see Fig. 8. The curves in Fig. 9
are labeled by #1 for an eigen-field of type H0,0,4 and by #2 for an eigen-field of type H0,0,10.
The loss of symmetry in the eigen-fields with respect to the z-axis in Fig. 9 (right) is due to the
violation of the symmetry (w.r.t. the axis z = 0) in the induced dielectric permittivity at both
the scattering (excitation) and the oscillation frequencies, see Fig. 5.

10.2 A non-linear layer with a positive value of the cubic susceptibility of the medium
The results of the numerical analysis of scattering and generation properties as well as the
eigen-modes of the dielectric layer with a positive value of the cubic susceptibility of the
medium (α = +0.01) are presented in Fig. 10 – Fig. 16.

Fig. 10. The portion of energy generated in the third harmonic (top left/right and bottom
left): #1 . . . ainc

κ = 1, #2 . . . ainc
κ = 9.93, #3 . . . ainc

κ = 14, #4 . . . ainc
κ = 19, and some graphs

describing the properties of the non-linear layer for ainc
κ = 14 and ϕκ = 66◦ (bottom right): #1

. . . ε(L), #2 . . . |U(κ; z)|, #3 . . . |U(3κ; z)|, #4 . . . Re(εκ), #5 . . . Im(εκ), #6 . . . Re(ε3κ), #7 . . .
Im(ε3κ) ≡ 0

The results shown in Fig. 10 (top left/right and bottom left) allow us to track the dynamic
behaviour of the quantity W3κ/Wκ characterising the ratio of the generated and scattered
energies. In particular, the value W3κ/Wκ = 0.3558 for ainc

κ = 14 and ϕκ = 66◦ (see the
graph #3 in Fig. 10 (bottom left)) indicates that W3κ is 35.58% of Wκ . This is the maximal value
of W3κ/Wκ that has been achieved. The numerical analysis of the processes displayed by the
curves #3 in the range of angles ϕκ ∈ (66◦, 79◦) and #4 in the range of angles ϕκ ∈ (62◦, 82◦)
did not lead to the convergence of the computational algorithm. Among the results shown in
Fig. 10 (bottom right) we mention that the curve #2 describes the scattered field of type H0,0,4,
and the curve #3 the generated field of type H0,0,10.
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Fig. 8. The curves κ := κinc := 0.375 (#1), 3κ = κgen = 3κinc = 1.125 (#2), the complex
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(NL
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Fig. 7) depends on the magnitude of the distance between the curves #3.1 and #5.1 in Fig.
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the generating properties of the non-linear layer, see Fig. 7. The magnitudes of the absolute
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values of the eigen-fields shown in Fig. 9 correspond to the branches of the eigen-frequencies
of the linear and the linearised non-linear spectral problems, see Fig. 8. The curves in Fig. 9
are labeled by #1 for an eigen-field of type H0,0,4 and by #2 for an eigen-field of type H0,0,10.
The loss of symmetry in the eigen-fields with respect to the z-axis in Fig. 9 (right) is due to the
violation of the symmetry (w.r.t. the axis z = 0) in the induced dielectric permittivity at both
the scattering (excitation) and the oscillation frequencies, see Fig. 5.

10.2 A non-linear layer with a positive value of the cubic susceptibility of the medium
The results of the numerical analysis of scattering and generation properties as well as the
eigen-modes of the dielectric layer with a positive value of the cubic susceptibility of the
medium (α = +0.01) are presented in Fig. 10 – Fig. 16.

Fig. 10. The portion of energy generated in the third harmonic (top left/right and bottom
left): #1 . . . ainc

κ = 1, #2 . . . ainc
κ = 9.93, #3 . . . ainc

κ = 14, #4 . . . ainc
κ = 19, and some graphs

describing the properties of the non-linear layer for ainc
κ = 14 and ϕκ = 66◦ (bottom right): #1

. . . ε(L), #2 . . . |U(κ; z)|, #3 . . . |U(3κ; z)|, #4 . . . Re(εκ), #5 . . . Im(εκ), #6 . . . Re(ε3κ), #7 . . .
Im(ε3κ) ≡ 0

The results shown in Fig. 10 (top left/right and bottom left) allow us to track the dynamic
behaviour of the quantity W3κ/Wκ characterising the ratio of the generated and scattered
energies. In particular, the value W3κ/Wκ = 0.3558 for ainc

κ = 14 and ϕκ = 66◦ (see the
graph #3 in Fig. 10 (bottom left)) indicates that W3κ is 35.58% of Wκ . This is the maximal value
of W3κ/Wκ that has been achieved. The numerical analysis of the processes displayed by the
curves #3 in the range of angles ϕκ ∈ (66◦, 79◦) and #4 in the range of angles ϕκ ∈ (62◦, 82◦)
did not lead to the convergence of the computational algorithm. Among the results shown in
Fig. 10 (bottom right) we mention that the curve #2 describes the scattered field of type H0,0,4,
and the curve #3 the generated field of type H0,0,10.
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The results of Fig. 11 (left) show that, in the range ainc
κ ∈ (0, 22] of the amplitude of the incident

field and for an incident angle ϕκ = 60◦ of the plane wave, the scattered field has the type
H0,0,4. The generated field, observed in the range ainc

κ ∈ [5, 22], is of the type H0,0,10, see Fig.
11 (right). The surfaces presented in Fig. 12 characterise the non-linear dielectric permittivity
of the layer (72) induced by the scattered and generated fields shown in Fig. 11. Here, as in
Subsection 10.1, the quantity Im (εκ) takes both positive and negative values along the height
of the non-linear layer (i.e. in the interval z ∈ [−2πδ, 2πδ]), see Fig. 12 (top right). For a given
amplitude ainc

κ , the graph of Im
(
εκ

[
ainc

κ , z
])

characterises the loss of energy in the non-linear
layer at the excitation frequency caused by the generation of the electromagnetic field of the
third harmonic.

Fig. 11. Graphs of the scattered and generated fields in the non-linear layered structure for
ϕκ = 60◦:
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]∣∣ (left),
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]∣∣ (right)

Fig. 12. Graphs characterising the non-linear dielectric permittivity for ϕκ = 60◦:
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Fig. 13. The scattering and generation properties of the non-linear structure: Rκ
[
ϕκ , ainc

κ

]
(top

left, second to the last left), Tκ
[
ϕκ , ainc

κ

]
(top right, second to the last right), R3κ

[
ϕκ , ainc

κ

]
(second from top left, bottom left), T3κ

[
ϕκ , ainc

κ

]
(second from top right, bottom right)

The scattering and generation properties of the non-linear structure in the ranges ϕκ ∈
[0◦, 90◦), ainc

κ ∈ [1, 9.93] and ϕκ ∈ [0◦, 60◦], ainc
κ ∈ [1, 19] of the parameters of the excitation

field are presented in Fig. 13 (top 4) and (last 4), respectively. Fig. 14 shows cross sections of
the surfaces depicted in Fig. 13 and of the graph of W3κ/Wκ

[
ϕκ , ainc

κ

]
(see Fig. 10 (top)) by
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Fig. 14. The curves Rκ (#1), Tκ (#2), R3κ (#3), T3κ (#4), W3κ/Wκ (#5) for ϕκ = 60◦ (left) and
ainc

κ = 9.93 (right)

the planes ϕκ = 60◦ and ainc
κ = 9.93. The dynamic behaviour of the characteristic quantities

depicted in Figs. 13 and 14 is caused by the fact that the corresponding eigen-frequencies of
the problems (62), (CS1) – (CS4) with α = 0 and with α �= 0 are close together. They also
depend on the proximity of the corresponding eigen-frequencies to the scattering (excitation)
and generation frequencies κscat := κinc = κ and κgen := 3κ of the waves.
We start the analysis of the results of our calculations with the comparison of the dispersion
relations given by the branches of the eigen-frequencies (curves #3.1, #3.2 and #5.1, #5.2) near
the scattering frequency (curve #1, corresponding to the excitation frequency) and (curves
#4.1, #4.2, #6.1, #6.2) near the oscillation frequency (line #2) in the situations presented in Fig.
8 (where α < 0) and Fig. 15 (where α > 0). We point out that the situations shown in Fig. 8
and Fig. 15 are fundamentally different. In the case of Fig. 8 (α < 0), the graph #5.1 lies above
the graph #3.1 and the graph #6.1 above the graph #4.1 in the vicinity of the lines #1 and #2,
respectively. This is the typical for the case of decanalisation, see Subsection 10.1.
In the situation of Fig. 15 (α > 0) we observe a different behaviour. Here, near the lines #1 and
#2, respectively, the graph #5.1 lies below the graph #3.1 and the graph #6.1 below the graph
#4.1. That is, canalising properties (properties of transparency) of the non-linear layer occur if
α > 0. This case is characterised by the increase of the angle of transparency of the non-linear
structure at the excitation frequency with an increasing amplitude of the incident field (see

Fig. 15. The curves κ := κinc := 0.375 (#1), 3κ = κgen = 3κinc = 1.125 (#2), the complex

eigen-frequencies Re(κ
(L)
1 ) (#3.1), Im(κ

(L)
1 ) (#3.2), Re(κ

(L)
3 ) (#4.1), Im(κ

(L)
3 ) (#4.2) of the linear

problem (α = 0) and Re(κ
(NL)
1 ) (#5.1), Im(κ

(NL)
1 ) (#5.2), Re(κ

(NL)
3 ) (#6.1), Im(κ

(NL)
3 ) (#6.2) of

the linearised non-linear problem (α = +0.01) for ϕκ = 60◦ (left) and ainc
κ = 9.93 (right)
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Fig. 13 (top left), (second to the last left), there where the reflection coefficient is close to zero).
The analysis of the eigen-modes of Fig. 15 (α > 0) allows us to explain the mechanisms of the
canalisation phenomena (transparency) (see Fig. 13 (top left), (second to the last left), Fig. 14)
and wave generation (see Fig. 13 (second from top), (bottom), Fig. 14).
Comparing the results shown in Fig. 14 and Fig. 15 we note the following. The intersection
of the curves #1 and #5.1 in Fig. 15 defines certain parameters, in the neighborhood of which
the canalisation effect (transparency) of the non-linear structure can be observed in Fig. 14.
For example, in Fig. 15 (left) the curves #1 and #5.1 intersect at ainc

κ = 9.5, also here the curve
#5.2 achieves a local maximum. Near this value, we see the phenomenon of canalisation
(transparency) of the layer in Fig. 14 (left). If we compare the Figs. 14 (right) and 15 (right),
we detect a similar situation. The intersection of the curves #1 and #5.1 defines the parameter
ϕκ = 64◦, near which we observe the canalisation effect in Fig. 15 (right). The same is true – to
some extent – for the description of the wave generation processes. For example, for similar
values of the imaginary parts of the branches of the eigen-frequencies #5.2 and #6.2 in Fig.
15 (right), the intersection of the curves #2 and #6.1 defines the parameter ϕκ = 45◦. Near
this value, stronger generation properties of the layer can be observed, see Fig. 14 and Fig. 13
(second from top), at ϕκ = 45◦. Let us also consider the situation in Fig. 15 (left). Here, at the
point of intersection of the curves #2 and #6.1, the graph #5.2 starts to decrease monotonically
in some interval. The intersection of the curves #2 and #6.1 defines the parameter ainc

κ = 12.6,
which falls into the range [9.5, 13.6] of values of the amplitudes at which the curve #5.2 is
monotonically decreasing. This leads to a shift in the imaginary part of the eigen-frequency
of the scattering structure (graph #5.2) with respect to the eigen-frequency of the generating
structure (graph #6.2). The magnitude of the shift depends on the distance between the curves
of #6.2 and #5.2 at the given value ainc

κ . The maximal distance between the graphs #6.2 and #5.2
is achieved at the local minimum of the graph #5.2 at ainc

κ = 13.6. Right from this point, i.e.
with an increasing amplitude ainc

κ , the distance between the graphs #6.2 and #5.2 shows no
significant change. The maximum value of the generation is achieved at an amplitude close
to the intersection of curves #2 and #6.1, but shifted to the point of the local minimum of the
curve #5.2, see R3κ , T3κ , W3κ/Wκ in Fig. 14 (left), Fig. 13 (bottom) and Fig. 10 (top right).

Fig. 16. The graphs of the eigen-fields of the layer for ϕκ = 60◦, ainc
κ = 14. The linear problem

(α = 0, left figure): |U(κ
(L)
1 ; z)| with κ

(L)
1 = 0.3829155 − i 0.01066148 (#1), |U(κ

(L)
3 ; z)| with

κ
(L)
3 = 1.150293 − i 0.01062912 (#2), the linearised non-linear problem (α = +0.01, right

figure): |U(κ
(NL)
1 ; z)| with κ

(NL)
1 = 0.3705110 − i 0.01049613 (#1), |U(κ

(NL)
3 ; z)| with

κ
(NL)
3 = 1.121473 − i 0.009194824 (#2)
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Fig. 14. The curves Rκ (#1), Tκ (#2), R3κ (#3), T3κ (#4), W3κ/Wκ (#5) for ϕκ = 60◦ (left) and
ainc

κ = 9.93 (right)

the planes ϕκ = 60◦ and ainc
κ = 9.93. The dynamic behaviour of the characteristic quantities

depicted in Figs. 13 and 14 is caused by the fact that the corresponding eigen-frequencies of
the problems (62), (CS1) – (CS4) with α = 0 and with α �= 0 are close together. They also
depend on the proximity of the corresponding eigen-frequencies to the scattering (excitation)
and generation frequencies κscat := κinc = κ and κgen := 3κ of the waves.
We start the analysis of the results of our calculations with the comparison of the dispersion
relations given by the branches of the eigen-frequencies (curves #3.1, #3.2 and #5.1, #5.2) near
the scattering frequency (curve #1, corresponding to the excitation frequency) and (curves
#4.1, #4.2, #6.1, #6.2) near the oscillation frequency (line #2) in the situations presented in Fig.
8 (where α < 0) and Fig. 15 (where α > 0). We point out that the situations shown in Fig. 8
and Fig. 15 are fundamentally different. In the case of Fig. 8 (α < 0), the graph #5.1 lies above
the graph #3.1 and the graph #6.1 above the graph #4.1 in the vicinity of the lines #1 and #2,
respectively. This is the typical for the case of decanalisation, see Subsection 10.1.
In the situation of Fig. 15 (α > 0) we observe a different behaviour. Here, near the lines #1 and
#2, respectively, the graph #5.1 lies below the graph #3.1 and the graph #6.1 below the graph
#4.1. That is, canalising properties (properties of transparency) of the non-linear layer occur if
α > 0. This case is characterised by the increase of the angle of transparency of the non-linear
structure at the excitation frequency with an increasing amplitude of the incident field (see

Fig. 15. The curves κ := κinc := 0.375 (#1), 3κ = κgen = 3κinc = 1.125 (#2), the complex
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Fig. 13 (top left), (second to the last left), there where the reflection coefficient is close to zero).
The analysis of the eigen-modes of Fig. 15 (α > 0) allows us to explain the mechanisms of the
canalisation phenomena (transparency) (see Fig. 13 (top left), (second to the last left), Fig. 14)
and wave generation (see Fig. 13 (second from top), (bottom), Fig. 14).
Comparing the results shown in Fig. 14 and Fig. 15 we note the following. The intersection
of the curves #1 and #5.1 in Fig. 15 defines certain parameters, in the neighborhood of which
the canalisation effect (transparency) of the non-linear structure can be observed in Fig. 14.
For example, in Fig. 15 (left) the curves #1 and #5.1 intersect at ainc

κ = 9.5, also here the curve
#5.2 achieves a local maximum. Near this value, we see the phenomenon of canalisation
(transparency) of the layer in Fig. 14 (left). If we compare the Figs. 14 (right) and 15 (right),
we detect a similar situation. The intersection of the curves #1 and #5.1 defines the parameter
ϕκ = 64◦, near which we observe the canalisation effect in Fig. 15 (right). The same is true – to
some extent – for the description of the wave generation processes. For example, for similar
values of the imaginary parts of the branches of the eigen-frequencies #5.2 and #6.2 in Fig.
15 (right), the intersection of the curves #2 and #6.1 defines the parameter ϕκ = 45◦. Near
this value, stronger generation properties of the layer can be observed, see Fig. 14 and Fig. 13
(second from top), at ϕκ = 45◦. Let us also consider the situation in Fig. 15 (left). Here, at the
point of intersection of the curves #2 and #6.1, the graph #5.2 starts to decrease monotonically
in some interval. The intersection of the curves #2 and #6.1 defines the parameter ainc

κ = 12.6,
which falls into the range [9.5, 13.6] of values of the amplitudes at which the curve #5.2 is
monotonically decreasing. This leads to a shift in the imaginary part of the eigen-frequency
of the scattering structure (graph #5.2) with respect to the eigen-frequency of the generating
structure (graph #6.2). The magnitude of the shift depends on the distance between the curves
of #6.2 and #5.2 at the given value ainc

κ . The maximal distance between the graphs #6.2 and #5.2
is achieved at the local minimum of the graph #5.2 at ainc

κ = 13.6. Right from this point, i.e.
with an increasing amplitude ainc

κ , the distance between the graphs #6.2 and #5.2 shows no
significant change. The maximum value of the generation is achieved at an amplitude close
to the intersection of curves #2 and #6.1, but shifted to the point of the local minimum of the
curve #5.2, see R3κ , T3κ , W3κ/Wκ in Fig. 14 (left), Fig. 13 (bottom) and Fig. 10 (top right).
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Fig. 16 presents the characteristic distribution of the eigen-fields corresponding to the
branches of the eigen-frequencies under consideration. The graphs of the eigen-fields of type
H0,0,4 are labeled by #1, the graphs of the eigen-fields of type H0,0,10 by #2.
The numerical results presented in this paper were obtained using an approach based on
the description of the wave scattering and generation processes in a non-linear, cubically
polarisable layer by a system of non-linear integral equations (49), and of the corresponding
spectral problems by the non-trivial solutions of the integral equations (66). We have
considered an excitation of the non-linear layer defined by the condition (71). For this case
we passed from (49) to (75) and from (66) to (69) by the help of Simpson’s quadrature rule.
The numerical solution of (75) was obtained using the self-consistent iterative algorithm (61).
The problem (69) was solved by means of Newton’s method. In the investigated range of
parameters, the dimension of the resulting systems of algebraic equations was N = 301, and
the relative error of calculations did not exceed ξ = 10−7.

11. Conclusion

We have investigated the problem of scattering and generation of waves on a non-linear,
layered, cubically polarisable structure, which is excited by a packet of waves, in the range
of resonant frequencies. The theoretical and numerical results complement the previously
presented investigations from Angermann & Yatsyk (2011), Angermann & Yatsyk (2010),
Shestopalov & Yatsyk (2010). The mathematical description of the wave scattering and
generation processes on a non-linear, layered, cubically polarisable structure reduces to a
system of non-linear boundary-value problems. This classical formulation of the problem is
equivalent to a system of boundary-value problems of Sturm-Liouville type and to a system of
one-dimensional non-linear Fredholm integral equations of the second kind. In this paper, for
each of these problems we have obtained sufficient conditions for existence and uniqueness
of the solution and we have developed self-consistent algorithms for the numerical analysis.
Within the framework of the self-consistent approach we could show that the variation of
the imaginary part of the permittivity of the layer at the excitation frequency can take both
positive and negative values along the height of the non-linear layer. This effect is caused by
the energy consumption in the non-linear medium at the frequency of the incident field which
is spent for the generation of the electromagnetic field of the third harmonic. It was shown
that layers with negative and positive values of the coefficient of cubic susceptibility of the
non-linear medium have fundamentally different scattering and generation properties in the
range of resonance. So, for the considered here layer with a negative value of the susceptibility,
the maximal portion of the total energy generated in the third harmonic was observed in the
direction normal to the structure and amounted to 3.9% of the total dissipated energy. For
a layer with a positive value of the susceptibility it was possible to reach such intensities of
the excitation field under which the maximum of the relative portion of the total energy was
36% and was observed near the angle of transparency which increasingly deviates from the
direction normal to the layer with increasing intensity of the incident field.
The approximate solution of the non-linear problems was obtained by means of solutions
of linear problems with an induced non-linear dielectric permeability. The analytical
continuation of these linear problems into the region of complex values of the frequency
parameter allowed us to switch to the analysis of spectral problems. In the frequency domain,
the resonant scattering and generation properties of non-linear structures are determined
by the proximity of the excitation frequencies of the non-linear structures to the complex
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eigen-frequencies of the corresponding homogeneous linear spectral problems with the
induced non-linear dielectric permeability of the medium.
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1. Introduction 
Elastomers are elastic media which mixes as no one, also, they have three important 
properties: orientational order of large range in amorphous soft materials, macroscopic 
susceptibility to the molecular shape, and quenching to the topological constraints. Classical 
liquid crystals are fluids typically composed by rigid molecules, which with a continuous 
model, are represented by bars and exhibit an orientational order of large range. The 
simplest order displayed by these systems is the nematic, for which, all the molecules are 
aligned in average. Complementary, the polymeric long chains embodying anisotropic rigid 
units can be nematically aligned and may form polymeric liquid crystals. 
However, the long chains are elongated when their rigid monomeric components are 
oriented, giving rise to an anisotropic material. If additionally, the polymeric chains are joint 
to a backbone in such way that their topology is restrained, hence the melt condenses in a 
very elastic solid or rubber. It is convenient to mention that in general, within the rubbers, 
the nematic monomeric molecules retain the same mobility as in a liquid phase. 
These soft constrictions make the resulting material, which is then a solid very extensible. 
Rubbers resist mechanic deformations since the polymeric chains reach their maximum 
entropy when they stay in their natural state without deformation. The polymerization of 
these compounds creates links between the chains which joint to the backbone formed 
collectively among themselves. 
It is to be expected that in this process, the anisotropic rigid units of nematic character, for 
instance (nematogens) which lie in the inner of the medium, form spontaneously domains 
distributed in all the rubber, whose preferred orientation is to be in different directions. This 
variety of domains causes light scattering giving rise to a macroscopic turbid appearance to the 
material. One very important advance in the design of these materials was managed by 
Finkelman, by developing a procedure for obtaining samples which form a single domain. The 
basic idea consists in applied electric field to the melt substance in order to align the 
anisotropic monomeric units while the polimerization is taking place and/or the temperature 
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is decreased to maintain the orientational order of the oriented nematic elements and in turn 
attain a monodomain. 
A material prepared in this way is called as a liquid crystal elastomer and has the amazing 
property of being deformable, within certain interval of elongations, investing in this a 
practically negligible amount of energy. This is caused essentially by the reorientation and 
accommodation of the anisotropic structure formed by the rigid nematic monomers or other 
mesophases in the inner of long polymeric chains while the material is distorted in such way 
that the energy utilized is minimized when the mentioned structure turns.  
Nowadays the liquid crystal elastomers are synthesized to generate phases of the same variety 
obtained with classical liquid crystals. It can be created nematics, smectic and chiral liquid 
crystals. Similarly to any polymeric rubber, the materials are very deformable since their 
dimensions can be changed under the influence of external stresses as much as 300% of their 
original sizes. They can be easily oriented by electrical fields as the ordinary liquid crystals. 
Both features make of these new materials excellent candidates to design artificial muscles. On 
the other hand, their transparency in the monodomain phase and the fact that as solids do not 
require a container make them excellent candidates to be used as electro optic devices. 

2. Polymers 

2.1 Polymer configuration 
A polymer is a very long chain formed by many repeated molecular units, as much as 
thousands, called monomers. All polymeric chains possess a characteristic length l, at which 
the chains can be bended. This length can contain various monomers when the total number 
of monomers in the chain N is much larger than the number of monomers per length l and 
then we can affirm that there exist various possible spatial configurations for the polymer. 
Thus, it is possible to employ a Gaussian distribution to describe adequately the system. 
Here we shall assume that this is the case. 
 

 
Fig. 1. A chain composed by N bar of length a freely joint is statistically equivalent to the 
path of a random walk with fixed step a. 

A chain composed by N bar of length a freely joint like the one shown in Fig. 1 is statistically 
equivalent to the path of a random walk with fixed step a. The average mean square of the 
end to end vector ul formed after this walk of N steps (Warner & Terentjev, 2003) 

 2 2 2 2 21 1 1 ,
3 3 3x y z a N aL            R R R R  (1.1) 

where L Na is the total length of the chain. In terms of the end to end vector which joint the 
monomers ui of length a, the distance between the two edges of the chain is given by the 
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magnitude of the vector: i i R u . This quantity is very important since provides a notion of 
the spatial configuration of the polymer chains and from the polymer chain distribution we 
can derive the free energy characterizing the system. The vectors ui are not correlated each 
other so that 2

i j ija  u u which is consistent with Eq. (1.1). 
A polymer is a thermodynamical system in equilibrium interacting with its surrounding at 
volume and temperature constants. Hence, the total number of possible conformations of 
one given chain NZ (or the number of possible random walk without restrictions) must be 
equal to the partition function of the chain: /H kT

N configZ e  , where H is the energy of the 
configuration, k is the Boltzmann constant and T is the temperature. If we take a random 
walk for which the two ends of the walks are fixed, we expect that the number of possible 
configurations is to be smaller than that of the system just mentioned. Thus the number of 
configurations for fixed boundary conditions is given by 

 ( ) ( )N N NZ p ZR R , (1.2) 

where ( )Np R  is the probability of having a configuration with an end to end vector R . Since 
NZ  is the partition function of the system, the probability of distribution must be Gaussian 

and as a consequence its explicit normalized expression is given by (Kac et al., 1976): 

 
2 2

3/2
3 /2

2
3( )

2
oR

N
o

p e
R

 
   
 

RR , (1.3) 

Where oR  is the variance of the system and from Eq. (1.1) we get 2
oR aL . 

The fact that the polymer chain is kept at volume and temperature constants allow us to use 
the Helmholtz free energy to describe the system which in agreement with the statistical 
physics is given by ( )B NF k TlnZ  R ; substitution of Eqs. (1.2) and (1.3) in this expression, 
yields 
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where Fo = kBTlnZN is the free energy of the polymeric chain without restrictions in their 
ends and C is the constant coming from the normalization of the distribution PN,.Fo and C 
are constants independent of R, which only determine the reference point, thus their values 
are irrelevant to find the minimum of the free energy of the system. We remark that the 
energy given in Eq. (1.4) is purely entropic since only depends on the number of possible 
configuration of the systems. To obtain this expression we assume that all the possible 
configurations contribute with the same energy and we neglect the chemical energy caused 
by the electromagnetic repulsion between the molecules. If we take into account the internal 
energy associated with chemical processes, U(R), the free energy of the system is given by 

 ( ) ( ) ( )F U TS R R R , (1.5) 

where the entropy per molecule is represented ( )S R . Strictly speaking, this term should be 
considered however it has been shown that the entropy (Warner & Terentjev, 2003) 
dominates the free energy and then we can neglect it, 2 2( ) 3 / 2B oS R k R  R . 
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where L Na is the total length of the chain. In terms of the end to end vector which joint the 
monomers ui of length a, the distance between the two edges of the chain is given by the 
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magnitude of the vector: i i R u . This quantity is very important since provides a notion of 
the spatial configuration of the polymer chains and from the polymer chain distribution we 
can derive the free energy characterizing the system. The vectors ui are not correlated each 
other so that 2

i j ija  u u which is consistent with Eq. (1.1). 
A polymer is a thermodynamical system in equilibrium interacting with its surrounding at 
volume and temperature constants. Hence, the total number of possible conformations of 
one given chain NZ (or the number of possible random walk without restrictions) must be 
equal to the partition function of the chain: /H kT

N configZ e  , where H is the energy of the 
configuration, k is the Boltzmann constant and T is the temperature. If we take a random 
walk for which the two ends of the walks are fixed, we expect that the number of possible 
configurations is to be smaller than that of the system just mentioned. Thus the number of 
configurations for fixed boundary conditions is given by 

 ( ) ( )N N NZ p ZR R , (1.2) 

where ( )Np R  is the probability of having a configuration with an end to end vector R . Since 
NZ  is the partition function of the system, the probability of distribution must be Gaussian 

and as a consequence its explicit normalized expression is given by (Kac et al., 1976): 
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Where oR  is the variance of the system and from Eq. (1.1) we get 2
oR aL . 

The fact that the polymer chain is kept at volume and temperature constants allow us to use 
the Helmholtz free energy to describe the system which in agreement with the statistical 
physics is given by ( )B NF k TlnZ  R ; substitution of Eqs. (1.2) and (1.3) in this expression, 
yields 
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where Fo = kBTlnZN is the free energy of the polymeric chain without restrictions in their 
ends and C is the constant coming from the normalization of the distribution PN,.Fo and C 
are constants independent of R, which only determine the reference point, thus their values 
are irrelevant to find the minimum of the free energy of the system. We remark that the 
energy given in Eq. (1.4) is purely entropic since only depends on the number of possible 
configuration of the systems. To obtain this expression we assume that all the possible 
configurations contribute with the same energy and we neglect the chemical energy caused 
by the electromagnetic repulsion between the molecules. If we take into account the internal 
energy associated with chemical processes, U(R), the free energy of the system is given by 

 ( ) ( ) ( )F U TS R R R , (1.5) 

where the entropy per molecule is represented ( )S R . Strictly speaking, this term should be 
considered however it has been shown that the entropy (Warner & Terentjev, 2003) 
dominates the free energy and then we can neglect it, 2 2( ) 3 / 2B oS R k R  R . 
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2.2 Polymeric liquid crystals 
A polymeric liquid crystal combines the spontaneous orientation of the liquid crystals with 
the elasticity governed by entropy discussed above. It is necessary a delicate balance in these 
properties to create a polymeric liquid crystal. 

2.2.1 Polymeric liquid crystals shape 
The average shape of the polymeric main chain is crucial since this is responsible of the 
equilibrium elastic response of the network it belongs. Some ordinary polymers are isotropic 
or spheric so that only one dimension is enough to characterize these materials. In contrast, 
the nematic polymers may adopt diverse shapes due to the fact that the average backbone is 
distorted by the reorientation suffered by the molecular bars guided by the director n , that 
is, the nematic order modifies the backbone form of the polymer. Hence, nematic polymers 
require more than one direction to describe their anisotropic form. 
To characterize the chain form and its probability distribution the quadratic mean square of 
shape is given by 

 1 ,
3i j ijR R l L    (1.6) 

where we have defined ijl as the effective length steps in distinct directions. For uniaxial 
polymers i jR R  ,  is the same for every perpendicular direction to n . Thus, if n is along the 
z-axis, where Rx = Ry = R and the tensor l for this case is 
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where l and l are the length steps in the directions parallel and perpendicular to n , 
respectively. In general, when n is not necessarily aligned with one of the axes of our 
reference system, the matrix l is not necessarily diagonal but uniaxial and has the form: 

 1 1( [ 1] )     and     ( [ 1] )o ol r l
r


      l δ nn l δ nn , (1.8) 

where we have defined the radius r, as the ratio between parallel and perpendicular 
effective length steps as /r l l  . 
If 1r  , means that we have a prolate backbone, which is larger along the direction n ; 
Instead for 1r  , we have an oblate, whose backbone is larger in perpendicular plane to n . 
The probability of find a configuration with end to end vector: R , Eq. (1.3). On the other 
hand the probability of find certain configuration for the anisotropic case, is obtained by 
using Eq. (1.1) from which it can be derived 2

o ijR l L and 2
i jR RR . By substituting these 

expressions in Eq.  (1.3), we get the probability for the anisotropic case: 
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3. Nematic rubber elasticity 

Nematic elastomer systems can be quite elastic, that is they can be extended or compressed 
for large proportions. The difference between nematic and isotropic rubbers is the molecular 
shape anisotropy induced by liquid crystal order. The simplest description of nematic 
rubbers is arising from extension of the molecular theory of rubbers just discussed in the 
foregoing section and is known as the neoclassic theory. 
The number of configurations in one thread connecting two crosslinkings separated by a 
distance R in one nematic rubber is proportional to the anisotropic Gaussian distribution 
given by Eq. (1.9). 
The step length vector l reflexes the actual nematic order in the rubber. In contrast, in the 
formation state the end to end vector is fR and the shape of the chains in that state is 
similarly described by Gaussian distribution whose form is the same as Eq. (1.9) but with 
step length vector ol . One reason for having a different distribution is that the temperature 
changes and thus the nematic order as well. If the starting state is nematic, then an 
orientation change can also modified the distribution. As before, let us consider that a total 
deformation tη affine leads from the formation state fR to the actual situation ·tR η R . The 
free energy, is obtained by averaging over a ensemble of initial condition whose energy of 
formation are the same 
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the term in [ ]Det l is due to the normalization factor containing the information of the 
nematic order by means of the step length tensor l . The free energy can be rewritten as 
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The average over the set of formation states can be performed directly using the 
relation
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f
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R R l , so that the average energy per thread is finally 
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This expression is a generalization of the classical free energy for the elasticity for a thread 
for which is known as the neoclassic free energy. To obtain the whole free energy of the 
rubber we need to count the number of threads per volume sn , that is sF n  and since the 
linear shear modulus of a rubber is s Bn k T  . The free energy density is given by 

  1· · ·
2

T
oF Tr  l η l η  (1.13) 

This expression is valid for all the deformation, including the larger ones, but it cannot 
describe those deformations which can stretch totally the polymeric chains. This expression 
involves the orientational information about the initial state 0n and actual state n of the 
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elastomer by means of ol and l . By contrary the free energy of ordinary nematic liquid 
crystal only depends on the actual state of distortion. Eq. (1.13) exhibits a complex structure 
since the distortions appear expressed in terms of the combination 1· ·T η l η . 
 

 
Fig. 2. A cholesteric elastomer submitted to distortion along its chiral axis, which in this case 
we chose to be the z  axis. 

4. Chiral elastomer under an axial deformation 

Let us consider a cholesteric elastomer submitted to distortion along its chiral axis, which in 
this case we chose to be the z-axis, as shown in Fig. 2. 
The deformation tensor, in its simplest, can be expressed as (Warner & Terentjev, 2003): 
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η , (1.14) 

where we have simplified the notation by the convention zz  , as we discussed above, to 
keep the volume fixed , it is necessary to ask for 1Det η , which is straightforwardly fulfil 

by this expression since 1 1 1Det 
 

 η . The terms xz and yz , are coming from the fact 

that we allow the director to rotate in the plane x-y which will be modified by expanding the 
elastomer along the z-axis. 
The initial elastomer vector without deformation is given by: {cos ,sin ,0}o o oq z q zn , 
where 2 /oq p is the helix wave number and p is the spatial periodicity or pitch. After the 

deformation, the director will be rotated by the angle
2
   , in such way that it lies over 

the surface of a cone Fig. 2; the new vector after deformation can be expressed 
as {sin cos ,sin sin ,cos }qz qz  n , where 0 /q q  is the new helix wave number scaled 
by the strain ; the initial step length vector without deformation, ol , is defined in 
agreement with Eq. (1.8) in terms of on and the inverse tensor is similar to Eq. (1.8) by 
replacing the vectors n by on . 

The Helmholtz free energy of the system is given by Eq. (1.13) in terms of ol and 1l of  
Eq. (1.8). Upon expansion of the Helmholtz free energy we can express this as 
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where 

2 2

2 2

1 3 ( 1)cos2 2( 1)cos2 sin ( 1)sin 2 sin
4 2 ,

( 1)sin 2 sin 1 3 ( 1)cos2 2( 1)cos2 sin
2 4

r r r qz r qz
r r

r qz r r r qz
r r

  

  

      
 

 
      
 
 

A  

 ( 1) cos sin 2 ( 1) sin sin 2{ , }r qz r qz
r r

    
 b , 

 
3 3 3(3 ) ( 1)( )cos2

2
r r r rc

r
   


     

  

and x = {xz, yz}. Eq. (1.15) represents the free energy of our system; it contains the 
information of the deformation. To find the state of deformation after a relaxation it is 
necessary to find the minimum of the free energy. When we extend an elastomer, first the 
strains are relaxed and after that the molecules will reorient. The minimum of energy is 
found by searching the values xz and yz which minimize the energy and then the optimum 
value of . 
To this purpose, we find the minimum with respect to xz and yz by diagonalizing the 
matrix A and translating to the principal axes system of the deformation (where we have 
denoted the strains by: 'xz and 'yz ). Using the fact the minimum of system's energy is the 
same in any frame. Once doing this we find 

 2 2 2 2 22 1 1 ([ 1 ( 1)cos2 ]( ) 2( 1) sin 2 2
2yz xz xz

rF r r r
r

       
  

              ,(1.16) 

This free energy depends on the strains and the angle. These variables used to be coupled to 
keep constant the free energy and cause a soft elasticity for which the elastomer is to be 
deformed at no energy cost. For this reason we minimize the energy by using two steps.  
We first find the minimum of Eq. (1.16) with respect to the strains and then minimize  
the resulting expression with respect to the angle. Performing the first step, we get from 
(1.16): 
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Notice that this expression allows to write the strains in terms of the orientation angle. Thus, 
after substitution of this expression in Eq. (1.16) we obtain the following expression which 
only depends on the angle : 
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It remains to know the value of  that minimizes the latter expression. The director vector n 
will incline towards the z-direction with an angle ω (see Fig. 2) after the deformation, to find 
the value of ω, we minimize the free energy Eq. (1.18) we respect to ω, we get: 
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1 1
r
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The latter equation indicates which is the degree of reorientation of the cholesteric, the 
maximum deformation is reached when the director vector aligns totally parallel to the z-
axis, that is, when / 2  , we find that 2/3r  ; when there is no deformation 1  and 

0  . 

5. Propagation of waves in a layered medium 

Optical propagation in layered media can be studied by conveniently writing Maxwell's 
equations in a 4 4 matrix. First, we show that in this matrix representation the boundary 
conditions of waves impinging on material can be imposed in a simpler way in such a way 
the transfer and scattering matrix formalism can be used in a natural way to obtain the 
transmittances and reflectances (Chuang, 2009; Hecht & Zajac, 1986). Next, we analytically 
solve the problem of axial propagation of an electromagnetic wave through a cholesteric 
elastomer by solidly rotating the laboratory reference system along the axial direction in the 
same way as the director n . Finally, we compute the optical spectra of a cholesteric 
elastomer under the influence of an externally induced mechanical strain.  

5.1 4 x 4 Matrix representation 
The transversality of electromagnetic waves suggest to rewrite the well known Maxwell 
equations in a representation which permits to analyze, at the same time, the behaviour of 
the four transversal components (2 components for electric field E and 2 components for 
magnetic field H ). This formalism is frequently referred to as Marcuvitz-Schwinger 
representation (Marcuvitz & Schwinger, 1951). If we define the four-vector 
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with ω the angular frequency of the propagating wave and xk , yk the transversal 
components of wavevector. Maxwell’s equations, inside a non-magnetic medium, can be 
written as: 
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where the 4 4 matrix ( )zA has the particular elements 
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ij , with , , ,i j x y z the elements of dielectric tensor and 0 02 /k   the wavenumber in free 
space. It is worth to mention that, in writing expressions (1.20), we have defined the 
dimensionless electric e and magnetic h  fields related to E and H fields as follows: 
 

 1/2 1/2 1/2 1/2
0 0 0 0 0 0       , , , ,  Z Z Z Z    e E d D h H b B  (1.23) 

with 0 0 0/Z   the free space impedance and 0 and 0 the permittivity and permeability 
of free space, respectively. 

5.2 Boundary condition 
Let us consider a cholesteric elastomer confined between two planes at z = 0 and z = d where 
the optical properties continuously depend on z and the surrounding medium is air. This 
implies that the elements of dielectric tensor ij depend only on the z coordinate. An 
incident electromagnetic wave, having wavevector kt = (kx, ky), impinges from the left side of 
the cholesteric elastomer. This electromagnetic wave propagates through the sample and it 
is transmitted and reflected outside the medium having the structure 

 ( , , ) ( )exp[ ]x yx y z z k x k y   , (1.24) 

because the phase matching condition implies the continuity of the tangential components 
of k. 
The general solution of the differential equation (1.21) for electromagnetic waves 
propagating in homogeneous media is the superposition of four plane waves, two left-going 
and two right-going waves. With this in mind, we state the procedure to find the amplitudes 
of the transmitted (at z = d) and reflected waves in terms of incident waves at z=0. This 
implies the definition of the following quantities (Altman & Sucky, 1991): 
i. The propagation matrix U(0, z), that is implicitly defined by the equations 

 ( ) (0, ). (0), (0,0) ,z z U U  1I  (1.25) 
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It remains to know the value of  that minimizes the latter expression. The director vector n 
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conditions of waves impinging on material can be imposed in a simpler way in such a way 
the transfer and scattering matrix formalism can be used in a natural way to obtain the 
transmittances and reflectances (Chuang, 2009; Hecht & Zajac, 1986). Next, we analytically 
solve the problem of axial propagation of an electromagnetic wave through a cholesteric 
elastomer by solidly rotating the laboratory reference system along the axial direction in the 
same way as the director n . Finally, we compute the optical spectra of a cholesteric 
elastomer under the influence of an externally induced mechanical strain.  

5.1 4 x 4 Matrix representation 
The transversality of electromagnetic waves suggest to rewrite the well known Maxwell 
equations in a representation which permits to analyze, at the same time, the behaviour of 
the four transversal components (2 components for electric field E and 2 components for 
magnetic field H ). This formalism is frequently referred to as Marcuvitz-Schwinger 
representation (Marcuvitz & Schwinger, 1951). If we define the four-vector 
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with ω the angular frequency of the propagating wave and xk , yk the transversal 
components of wavevector. Maxwell’s equations, inside a non-magnetic medium, can be 
written as: 
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where the 4 4 matrix ( )zA has the particular elements 
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  (1.22) 
 

ij , with , , ,i j x y z the elements of dielectric tensor and 0 02 /k   the wavenumber in free 
space. It is worth to mention that, in writing expressions (1.20), we have defined the 
dimensionless electric e and magnetic h  fields related to E and H fields as follows: 
 

 1/2 1/2 1/2 1/2
0 0 0 0 0 0       , , , ,  Z Z Z Z    e E d D h H b B  (1.23) 

with 0 0 0/Z   the free space impedance and 0 and 0 the permittivity and permeability 
of free space, respectively. 

5.2 Boundary condition 
Let us consider a cholesteric elastomer confined between two planes at z = 0 and z = d where 
the optical properties continuously depend on z and the surrounding medium is air. This 
implies that the elements of dielectric tensor ij depend only on the z coordinate. An 
incident electromagnetic wave, having wavevector kt = (kx, ky), impinges from the left side of 
the cholesteric elastomer. This electromagnetic wave propagates through the sample and it 
is transmitted and reflected outside the medium having the structure 

 ( , , ) ( )exp[ ]x yx y z z k x k y   , (1.24) 

because the phase matching condition implies the continuity of the tangential components 
of k. 
The general solution of the differential equation (1.21) for electromagnetic waves 
propagating in homogeneous media is the superposition of four plane waves, two left-going 
and two right-going waves. With this in mind, we state the procedure to find the amplitudes 
of the transmitted (at z = d) and reflected waves in terms of incident waves at z=0. This 
implies the definition of the following quantities (Altman & Sucky, 1991): 
i. The propagation matrix U(0, z), that is implicitly defined by the equations 

 ( ) (0, ). (0), (0,0) ,z z U U  1I  (1.25) 
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where1I is the identity matrix and (0, )zU satisfies the same propagation equation (1.21) 
found for  : 

 (0, ) ( ). (0, )z z i z z U A U ; (1.26) 

the propagation matrix gives the right-side field amplitudes of the cholesteric elastomer as 
function of the left-side ones. 
ii. For a specific value d , the transfer matrix is defined as (0, )zU . 
iii. The scattering matrix S , that gives the output field as function of the incident one. The 

matrix S is defined as: 

 out in S.   (1.27) 

where in and out are the amplitudes of the in-going and out-going waves. 
To find out S , we must express the field, in any one of the external media, as a superposition 
of planes waves, by setting: 

 1; (0, ) (0, ). ,d d ααT. U .T U T  (1.28) 

where 

 1 2 1 2( , , , )Ta a a a   α . (1.29) 

The relation  αT. can be interpreted as a basis change in the four dimensional space of the 
state vectors  . The columns of T are the  vectors representing the four plane waves 
generated by the incident waves in the two external medium (here we assume as identical). 
The elements of vectorα are the amplitudes of the four plane wave. The choice of the new 
basis could be different depending on the particular problem. By setting 
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fb bb
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the scattering matrix writes: 
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ff bf bb fb bf bb

bb fb bb
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U U U
. (1.31) 

In equations (1.29) and (1.30) the symbols + and f (- and b) mean forward (backward) 
propagating waves. 
We point out that the methods of transfer and scattering matrices are very useful in 
studying the plane wave transmission and reflection from surfaces or a multilayered 
medium. 
Eq. (1.21) can be formally integrated over a certain distance d of the cholesteric 
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and by straight comparison of Eqs. (1.25) and (1.32), the transfer matrix (0, )zU is defined as: 

 0
( )(0, )

d
i z dzd e

 
AU , (1.33) 

where plane waves are incident and reflected in the half-space 0z  and a plane waves are 
transmitted on the half-space z d . 
It can be seen immediately that the problem of finding (0, )zU is reduced to find a method to 
integrate expression (1.33) on the whole cholesteric elastomer. Because of the non-
homogeneity of the medium proposed here, we consider it as broken up into many thin 
parallel layers and treating each as if it had homogeneous anisotropic optical parameters 
(Berreman & Scheffer, 1970). In this way, (0, )zU  is obtained by multiplying iteratively the 
matrix for each sublayer from 0z  to z d . 
In next section, we will show that for axial propagation in a cholesteric elastomer, and by 
choosing appropriately a reference system, the system (1.21) and the transfer matrix U have 
completely analytical solutions. 
Now, we proceed to give the explicit form of the four-vector  for the surrounding medium 
(free space). As said above, the general solution of the differential equation (1.21) for 
electromagnetic waves propagating in homogeneous media is the superposition of forward 
and backward propagating waves. We consider an incident wave from left-half space with 
wavevector, 0( , , ) (sin cos ,sin sin ,cos )x y z dk k k k n      k , where dn is the refractive index 
of surrounding medium, is the angle made between k and z axis and is the angle made 
between k and x axis in the xy plane . For an arbitrary polarization state the solutions of 
(1.21) can be expressed as (Lakhtakia & Reyes, 2006; Espinosa-Ortega & Reyes, 2008): 
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  (1.34) 

where La , Ra represent the amplitude of incident propagating waves and Lr , Rr denote the 
reflection amplitude of propagating waves. The subscript indexes R and L correspond to 
right- and left-circularly polarized wave, respectively. The unit vectors û and v̂ are defined 
as 

  ˆ ˆ ˆ ˆ ˆ ˆ ˆsin cos       and      cos sin cos sin ,          u x y v x y z  (1.35) 

with x̂ , ŷ , ẑ the unit vectors parallel to the , ,x y z axis   , respectively. In the region z d , 
we write the transmitted field as 
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where1I is the identity matrix and (0, )zU satisfies the same propagation equation (1.21) 
found for  : 

 (0, ) ( ). (0, )z z i z z U A U ; (1.26) 

the propagation matrix gives the right-side field amplitudes of the cholesteric elastomer as 
function of the left-side ones. 
ii. For a specific value d , the transfer matrix is defined as (0, )zU . 
iii. The scattering matrix S , that gives the output field as function of the incident one. The 

matrix S is defined as: 

 out in S.   (1.27) 

where in and out are the amplitudes of the in-going and out-going waves. 
To find out S , we must express the field, in any one of the external media, as a superposition 
of planes waves, by setting: 

 1; (0, ) (0, ). ,d d ααT. U .T U T  (1.28) 

where 

 1 2 1 2( , , , )Ta a a a   α . (1.29) 

The relation  αT. can be interpreted as a basis change in the four dimensional space of the 
state vectors  . The columns of T are the  vectors representing the four plane waves 
generated by the incident waves in the two external medium (here we assume as identical). 
The elements of vectorα are the amplitudes of the four plane wave. The choice of the new 
basis could be different depending on the particular problem. By setting 

 ( )
ff bf

fb bb

 
   
 

α
U U

U
U U , (1.30) 

the scattering matrix writes: 
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In equations (1.29) and (1.30) the symbols + and f (- and b) mean forward (backward) 
propagating waves. 
We point out that the methods of transfer and scattering matrices are very useful in 
studying the plane wave transmission and reflection from surfaces or a multilayered 
medium. 
Eq. (1.21) can be formally integrated over a certain distance d of the cholesteric 
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and by straight comparison of Eqs. (1.25) and (1.32), the transfer matrix (0, )zU is defined as: 
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where plane waves are incident and reflected in the half-space 0z  and a plane waves are 
transmitted on the half-space z d . 
It can be seen immediately that the problem of finding (0, )zU is reduced to find a method to 
integrate expression (1.33) on the whole cholesteric elastomer. Because of the non-
homogeneity of the medium proposed here, we consider it as broken up into many thin 
parallel layers and treating each as if it had homogeneous anisotropic optical parameters 
(Berreman & Scheffer, 1970). In this way, (0, )zU  is obtained by multiplying iteratively the 
matrix for each sublayer from 0z  to z d . 
In next section, we will show that for axial propagation in a cholesteric elastomer, and by 
choosing appropriately a reference system, the system (1.21) and the transfer matrix U have 
completely analytical solutions. 
Now, we proceed to give the explicit form of the four-vector  for the surrounding medium 
(free space). As said above, the general solution of the differential equation (1.21) for 
electromagnetic waves propagating in homogeneous media is the superposition of forward 
and backward propagating waves. We consider an incident wave from left-half space with 
wavevector, 0( , , ) (sin cos ,sin sin ,cos )x y z dk k k k n      k , where dn is the refractive index 
of surrounding medium, is the angle made between k and z axis and is the angle made 
between k and x axis in the xy plane . For an arbitrary polarization state the solutions of 
(1.21) can be expressed as (Lakhtakia & Reyes, 2006; Espinosa-Ortega & Reyes, 2008): 
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where La , Ra represent the amplitude of incident propagating waves and Lr , Rr denote the 
reflection amplitude of propagating waves. The subscript indexes R and L correspond to 
right- and left-circularly polarized wave, respectively. The unit vectors û and v̂ are defined 
as 

  ˆ ˆ ˆ ˆ ˆ ˆ ˆsin cos       and      cos sin cos sin ,          u x y v x y z  (1.35) 

with x̂ , ŷ , ẑ the unit vectors parallel to the , ,x y z axis   , respectively. In the region z d , 
we write the transmitted field as 
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At the tangential components of e and h must be continuous across the planes 0z   and 
z d , the boundary values (0) and ( )d can be fixed as: 
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. (1.38) 

If we restrict our analysis to the case when the electromagnetic wave is incident parallel 
to z axis , the angles and equal zero and expression for Q is reduced to 
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Using Eqs. (1.32), (1.33) and (1.37) the problem of reflection-transmission can be established 
as follows 
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M·  (1.40) 

where 1· (0, )·dM Q U Q and (0, )U d are defined in (1.33). Notice that the matrix equation 
(1.40) gives a set of coupled equations relating amplitudes  n, a  , dL R L Ra a r r (from 0z  ) to 
transmitted amplitudes ,L Rt t  (for z d ). 
The scattering matrix S relates amplitudes  n, a  , dL R L Rt t r r with the incident amplitudes ,L Ra a . 
This relation can be expressed in terms of matrix M as follows (Avendaño et al., 2005) 
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         with        

R RR RL

L R LR LL

R L RR RL

L LR LL

t t t
t a t t
r a r r
r r r

   
   

                
   

S S· , (1.41) 

Co-polarized coefficients have both subscripts identical, and cross-polarized have different 
subscripts. The square of the amplitudes of t and r is the corresponding transmittance and 
reflectance; thus, 2

RR RRT t is the transmittance corresponding to the transmission 
coefficient RRt , and so on. In the absence of dissipation of energy inside the sample, the 
principle of conservation of energy must be satisfied, this means that 

 1        and        1  RR LR RR LR RL LL RL LLT T R R T T R R        . (1.42) 

Before ending this section, we mention that an alternative to find the transmission and 
reflection coefficients is using the expressions given by (1.30) and (1.31). Also, the system of 
equations (1.40) can be solved numerically to find the scattering matrix. 

5.3 The Oseen transformation 
Using a numerical procedure the set of coupled differential equations (1.21) can be solved in 
a straight way. Nevertheless, the intrinsic helical symmetry of a cholesteric elastomer allows 
to suggest the possibility of finding a reference system, for normally incident wave, for 
which the solution can be obtained analytically. For this aim, it is convenient to write the 
coupled equations in a frame of reference in which the matrix A is diagonal and not 
dependent on z propagation coordinate. This can be realized by rotating solidly and 
uniformly the four-vector  around z  axis, with the principal axes of ij making constant 
angles with z . The required transformation can be realized by setting: 

 ( ).         and        ( ) ( ). ( )

x

y

x

y

e
e

qz qz z qz
h
h

 
 
 

     
 
 
 









H  .A    (1.43) 

with ( )qz the rotation matrix defined as 

        

0 1 0 0
1 0 0 0
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R R R1I , (1.44) 

/oq q  and 1I the 4 4 identity matrix. This transformation is known as Oseen's 
transformation (Oseen, 1933). For axial propagation and by considering the explicit form of 
dielectric tensor ij for the cholesteric elastomer, the Eqs. (1.21) are reduced to 

 d i
dz


 H.  , (1.45) 



  
Electromagnetic Waves 

 

352 

At the tangential components of e and h must be continuous across the planes 0z   and 
z d , the boundary values (0) and ( )d can be fixed as: 
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If we restrict our analysis to the case when the electromagnetic wave is incident parallel 
to z axis , the angles and equal zero and expression for Q is reduced to 
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the matrix H is given by 
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and 

 2 2( )
sin ( ) cos ( )


   






 




 
 (1.47) 

 is the wavelength in free space. Here  and  represent the principal values of  and  in 
the rotating frame with axes 1 2, ,x x z . In what follows, and to simplify notation, we omit the 
symbol ( ~ ) of four-vector  , e and h . Unless we say the contrary, by writing  , e and h , 
we will always mean the fields in the rotating frame and z the dimensionless variable. 
Since the system matrix H is z  independent, the propagation equation (1.45) admits four 
solutions having the form of plane waves 

 ( ) exp( )j j
jz in z t , (1.48) 

where , j
jn t are the eigenvalues and eigenvectors of H , respectively. They are given by: 
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where 

  

2 2 2 2
1,2

1/22 2 2

2 , 2 ,

4 ( ) 2 (2 ) , ( 1,2)

( ) ( )
,         

        

   

.
2

 

2

 

c m c

k k k m m k

c m

u a q u a u

c n u q u k

a

  

    

 



 

  

   

 
 



 



   

     


 (1.50) 

As shows (1.48) the internal field can be represented as a superposition of the four 
eigenwaves (amplitude representation), by setting 

 ( ) exp( ) ( )j
j jz a in z z  αt T. , (1.51) 

where T is the matrix whose j th column coincides with jt and ( )zα is the 4-vector with 
components exp( )j ja in z . Obviously,α and  αT. represent the same state in two different 
sets of basis vectors. The metrization of the state space is obtained by defining a metric 
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tensor G and a scalar product 1 2
†

2
†
1  α. .G G    , where βG and †

α .G T G .T are the 
matrices representing G in the two sets of basis vectors. Setting 

 

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0



 
    
  
 

G , (1.52) 

the norm of the state vector represents the time average of the z  component of the 
Poynting vector, and the tensor G satisfies the relation † 1. G G G  
In lossless media the z  derivative of the norm is identically zero and the matrix G .Hβ is self-
adjoint: † †( )  β.H .HG G H G.β β . This property and the fact that the eigenvalue equation 
for H is biquadratic imply that the eigenvalues are 1 2 3 1 4 2, , ,n n n n n n    , with jn real or 
purely imaginary. It is worth mentioning that the normalization constants 1 2,c c were obtained 
using the metric tensor G ; this means that 

1/2
k k kc t Gt

 with 1,2k  , and kt  is the 
conjugated complex of eigenvectors kt . 
Only the modes 1n show a band gap for  within the interval defined for the positive roots of 
equation 1 0n  . Band edges are given by 1 2 / oq    and 2 2 ( ) / oq     . Here, the 
modes 1n are pure imaginary and their corresponding eigenvectors 1 define evanescent and 
linearly polarized standing waves. The central wavelength of the bandgap is   
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where Eqs. (1.19) and (1.47) were substituted in the last equation. This equation 
demonstrates clearly that for a positively anisotropic elastomer, the reflected wavelength 

c increases by stretching the sample along the helix axis.  This behaviour is in qualitative 
agreement with the biaxial extension experiments performed by Finkelmann et al. 
(Finkelmann et al., 2001) in which c decreases due to an effective compression along the 
helix axis. We finally observe that within the gap the polarization of the propagating 
eigenwaves 2 is nearly circular and, in general, they are elliptically polarized. 

6. Reflection bands of distorted elastomers with and without defects 

It is a known fact that structural chiral materials presents the circular Bragg phenomenon in 
a wavelength regime (Hirota et al., 2008), where normal incident electromagnetic plane 
waves of left- and right-circular polarization states are reflected and transmitted differently, 
i. e., light of right handedness is highly reflected in a right helical structure whereas a similar 
plane wave but of the reverse handedness is not. Thus, structural chiral materials are 
circular-polarization rejection filters in optics (Avendaño et al., 2005; de Gennes & Prost, 
1993; Macleod, 2001). In addition, cholesteric elastomers are very sensitive to external 
stimuli as electric fields, temperature and mechanical stress. Therefore, it is possible to 
control the Bragg regime with these sorts of stimuli. Cholesteric elastomers are formed by 
monomers of liquid crystals cross-linked to polymeric chains that produces a flexible 
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the matrix H is given by 
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As shows (1.48) the internal field can be represented as a superposition of the four 
eigenwaves (amplitude representation), by setting 

 ( ) exp( ) ( )j
j jz a in z z  αt T. , (1.51) 

where T is the matrix whose j th column coincides with jt and ( )zα is the 4-vector with 
components exp( )j ja in z . Obviously,α and  αT. represent the same state in two different 
sets of basis vectors. The metrization of the state space is obtained by defining a metric 
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tensor G and a scalar product 1 2
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where Eqs. (1.19) and (1.47) were substituted in the last equation. This equation 
demonstrates clearly that for a positively anisotropic elastomer, the reflected wavelength 

c increases by stretching the sample along the helix axis.  This behaviour is in qualitative 
agreement with the biaxial extension experiments performed by Finkelmann et al. 
(Finkelmann et al., 2001) in which c decreases due to an effective compression along the 
helix axis. We finally observe that within the gap the polarization of the propagating 
eigenwaves 2 is nearly circular and, in general, they are elliptically polarized. 

6. Reflection bands of distorted elastomers with and without defects 

It is a known fact that structural chiral materials presents the circular Bragg phenomenon in 
a wavelength regime (Hirota et al., 2008), where normal incident electromagnetic plane 
waves of left- and right-circular polarization states are reflected and transmitted differently, 
i. e., light of right handedness is highly reflected in a right helical structure whereas a similar 
plane wave but of the reverse handedness is not. Thus, structural chiral materials are 
circular-polarization rejection filters in optics (Avendaño et al., 2005; de Gennes & Prost, 
1993; Macleod, 2001). In addition, cholesteric elastomers are very sensitive to external 
stimuli as electric fields, temperature and mechanical stress. Therefore, it is possible to 
control the Bragg regime with these sorts of stimuli. Cholesteric elastomers are formed by 
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material whose molecular order is similar to cholesteric liquid crystals with the advantage 
that in this new material it is feasible to change the optical properties by means of 
macroscopic deformations. In this section we focus in the control of circular Bragg 
phenomenon under the influence of an externally induced mechanical strain applied 
parallel to the helical axis of a slab of cholesteric elastomer. 
One or more defects in a periodic structure may give rise to resonant modes inside the 
photonic band gaps, namely standing waves with huge energy density localized in the 
proximity of the defects (defect modes). A conventional 1D structure with only one defect 
can be considered as a Fabry-Perot interferometer in which the reflecting layers at the two 
sides of the cavity are constituted by 1D crystals whose thickness is comparable with the 
attenuation length of the standing waves within the gap, which are exponentially 
attenuated. The cavity acts here as a defect in the periodic structure. Very interesting optical 
properties are obtained by considering: 1) anisotropic periodic structures, which display two 
different sets of band gaps for light with different polarization states, and 2) samples with 
more than one defect. 
In this section we also consider theoretically light propagation along the helix axis of 
samples in which the periodic structures are cholesteric elastomers and the thickness of the 
cavities goes to zero. Any defect reduces therefore to a simple discontinuity plane within the 
periodic structure. Such samples can be obtained as follows: 1) we consider first an 
cholesteric elastomer without defects between planes orthogonal to the helix axis; 2) then we 
cut the sample in such a way to obtain two or more layers between parallel planes; and 3) 
we finally rotate any layer with respect to the preceding one around their common helix axis 
by a given angle (twist angle) (Lakhtakia, 2000; Schmidtke et al., 2003; Ozaki et al., 2003; 
Song et al., 2004). 
Some interesting numerical results have already been found recently for helical photonic 
crystals with only one twist defect (Becchi et al., 2004; Hodgkinson et al., 2000; Kopp & 
Genack, 2002; Schimdtke & Stille, 2003; Wang & Lakhtakia, 2003; Oldano, 2003; Kopp & 
Genack, 2003). Here we present a theoretical and analytical approach for samples with any 
number of twist defects under the action of axial strain. 

6.1 Mechanical control of optical spectra in a cholesteric elastomer without defects 
The reflectances and transmittances obtained from the scattering matrix or the transfer 
matrix are in terms of the elongation , the wavelength  and the incidence angles of light, 
 (angle between the light direction and the helical axis) and (angle between the light 
direction and the x  axis). By numerically solving the set of equations (1.40) for oblique 
incidence we obtained these optical spectra for a sample of siloxane backbone chain reacting 
with 90% mol and 10% of the flexible difunctional cross-linking groups (di-11UB). The rod 
like mesogenic groups are present in the proportion 4:1 between the nematic 4-
pentylphenyl-4'-(4-buteneoxy) benzoate (PBB) and the derivative of chiral cholesterol 
penteonate (ChP) (Cicuta et al., 2002).  The behaviour of the optical spectra for another 
material is expected to be qualitatively similar to the presented here; the material 
parameters are: 1.16,  10.7 ,  p/2 214 ,  1.91,  2.22, 1r L m nm        . 
The optical spectra show a circular Bragg regime in the RRR co-polarized transmittances and 
reflectances, which depends on the axial elongation of the cholesteric and the incidence angles 
of light. These spectra are consistent with the circular Bragg phenomenon for which the right 
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circularly polarized wave impinging a right-handed elastomer, is highly reflected, while the 
left circularly polarized wave is transmitted, as we can see in Fig. 3, for reflectances 
We see in this figure that the center of the bandgap blue-shifts as the incidence angle 
increases,  as  it  occurs  in  the  absence  of  stress.  We  also  observe  that  by  increasing the 
elongation, the band width decreases as can be seen by comparing the right and the left 
hand columns of this figure, that correspond to  = 1 (elastomer under no deformation) and 
m = 1 + (M - 1) / 2 = 1.052 (elastomer submitted to half of its critical elongation). Moreover, 
when the strain is the critical M = 1.1622/3 = 1.1040, the bandgap disappears due to the fact 
the cholesteric director is completely aligned with the helical axis as can be observed in Fig. 
4. This effect opens up the door for proposing novel devices to mechanically control the 
light flow, since it allows to switch off a bandgap by applying a mechanical stress to the 
elastomer. This is clearly illustrated in Fig. 4 where the bandwidth diminishes as a function 
of the deformation for normal incidence. Further results confirm the displacement of the 
band reflection for RRR for larger incidence angles as  get larger (Espinosa-Ortega & Reyes, 
2008). Therefore, these results show the possibility of mechanically control the circular 
Bragg phenomenon for tuning and switching applications. On the other hand, analytical 
results show that the reflected wavelength at normal incidence red-shifts by stretching the 
elastomer along the helical axis. 

6.2 Optical spectra of elastomers with defects under axial strain 
In the last section the mechanical control of optical spectra in a slab of cholesteric elastomer 
was studied. The light impinges on the slab at normal and oblique incidence. The solutions 
are found performing a numerical integration to find the transmission and reflection 
coefficients as a function of the mechanical elongation and the incidence angles. However 
the strongest results are in normal incidence where an analytical solution of the problem is 
found. Particularly, if a twist defect with / 2  is introduced in the center of the slab, it 
causes a break of the symmetry that gives rise to a peak in transmission, in the middle of the 
Bragg regime. Thus, in the case of normal incidence, the wavelength of this peak, as a 
function of the elongation , is easy to find from the results for a slab without defect. As 
said above the band gap and transmittance of a cholesteric elastomer can be controlled by 
elongating the material along its helix axis, then, the elastically control of the lasing in a 
cholesteric elastomer is deduced. 
A result that was shown in the last section is that the axial elongation in a cholesteric 
elastomer close the band gap when the cholesteric director is fully oriented along the helix 
axes. This effect is a consequence of the presence of optical axis in the locally anisotropic 
material forming the sample, which in turn originates the existence of a pseudoisotropic 
curve. In this section we explore the optical properties around this curve and its effect over 
the dwell time by means of the analytical results for normal incidence. The enhancement of 
the dwell time is desirable for optical application, hence, the conditions in which this occurs 
shall widely explored (Mota et al., 2010). Finally, the mechanical tuning of two or more 
defect modes in the cholesteric elastomer is explored by taking into account the coupling 
and interference among the various defect modes. 

6.2.1 Singlets 
We consider now a sample between the planes z   and z   with only one twist defect 
at 0z  , which divides the sample in two regions referred to as a for 0z  and b for 0z  . Next, 
we approach the problem quantitatively by means of exact equations for normal incidence. 
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Fig. 3. Co-polarized reflectance RRR versus the wavelength  and the incidence angle for 
the elongations 1  and m  . 

 

 
Fig. 4. Co-polarized transmittances RRT and reflectances RRR as a function of the 
wavelength  and the axial elongation for normal incidence. 

6.2.1.1 Thick samples 

Let us first consider an unbounded structure, i.e., the limit l  . Any solution of Maxwell 
equations can be written as          a bz z z z z       , where  z is the Heaviside 
step function and   ( )k k kz z T   ( ,k a b ) is a linear combination of the eigenwaves 

exp( )j
jk in zt defined above in Eq. (1.48). Again, we mention that the choice of vector k is the 

same as expressed in (1.29). The eigenvectors j
at and j

bt are given by Eq. (1.49) in two different 
frames a and b whose axes 2 2,a bx x make an angle  . In a frame having as axis 2x the bisector 
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of 2 2,a bx x , such vectors are obtained by applying the rotation matrices  ( / 2)  and 
( / 2) to the vectors jt defined by Eq. (1.49). The corresponding matrices aT and bT are 

therefore given by 
 
 

        ( / 2). , ( / 2 . )a b   T T T T  . (1.54) 

 
 
In the limit  the exponential factors of the first component of 1

a a a
 T  and of the 

third component of 1
b b b

 T   (corresponding to the eigenwaves 1 in the region a and 1 in 
the region b ), diverge for z going to  and  , respectively. Their amplitude must 
therefore be zero. The tangential continuity of the vectors e and h at 0z  , give four 
homogeneous equations for the other six components. It is found that the amplitude of the 
evanescent modes is much larger than that of the propagating ones at the defect 
frequency d and the defect mode has approximately the profile exp( / )dz l whose line 
width is 11 / ( )d dl n   (Becchi et al., 2004). 
Particularly, if the twist angle is / 2 , the frequency of the peak created by this defect in the 

middle of the circular Bragg regime is: 1 2
2d

  
 whose band width is 1 2d     . 

Also, the angle ( )em d  between the electric and magnetic field of the evanescent modes at 
the defect frequency, may be obtained from the components of their corresponding 
eigenvectors given by expressions (1.49). 
Thus, the defect frequency depends on the axial elongation and the fractional shape 
anisotropy r as 
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, (1.55) 

 
where c is the speed of light in vacuum and ( , )r is given by Eq. (1.47), and the defect 
wavelength 2 /c dc   at the center of the bandgap is given by Eq. (1.53). Fig. 5 
shows c versus the axial elongation and fractional shape anisotropy r . It shows 
that c redshifts by enlarging both and r for oblate (a) and prolate materials (b) which 
allows the possibility of mechanically tune the defect mode. 
In Fig. 6 the inverse line width 1

dl
 , band width d , angle between the electric and magnetic 

field of the evanescent modes at the defect frequency ( )em d  are plotted in different scales 
versus and r . In this figure we observe a locus where 1,  M dl    ( dl diverges), d  and 

( )em d  vanish.  In this locus the attenuation for the defect mode is null since 1 0dl
  , the 

circular Bragg regime closes 0d  , and the Poynting vector is null since ( ) 0em d   . We 
shall call this curve in the r  space the pseudoisotropic curve. 
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Fig. 5. Defect wavelength d versus and r for a) oblate ( 0 1r  ) and b) ( 1r  ) prolate    
cholesteric elastomers axially elongated. Other parameters are, / 2 214 p nm , 1.91  , 

2.22 . These correspond to a typical cholesteric elastomer. 
 

 
Fig. 6. Line width 1( )d dl  , band width  and angle between magnetic and electric field 

( )em d  for the evanescent mode versus and r . a) Oblate and b) prolate cholesteric 
elastomers. For the same system as Fig. 3. 
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This slab of cholesteric elastomer with a twist defect has potential optical applications as, for 
instance, Fabry-Perot resonators in lasers, hence, the enhancement of the photonic dwell 
time is very attractive. On the other hand, Kopp and Genack have shown that the photonic 
dwell time saturates versus thickness of the slab after a certain crossover thickness. It has 
been shown (Espinosa-Ortega & Reyes, 2008) that the deformation of the elastomer may 
close the band gap when the cholesteric director is fully oriented along the helix axis. This 
effect is a consequence of the presence of optical axis in the locally anisotropic material 
forming the elastomer, which in turn originates the existence of a pseudoisotropic curve 
(Abdulhalim, 1999). We carefully review the implications of the existence of a 
pseudoisotropic curve in the physical system and its effect over the photonic dwell time. 
Above, it was shown that the cholesteric elastomer with a twist defect presents a 
pseudoisotropic curve where M  , the line width ( dl ) diverges and the band width ( d ) 
and angle between the electric and magnetic field ( ( )em d  ), at the frequency defect, are 
null. 
Therefore, for values of the axial elongation and the fractional shape anisotropy r on the 
pseudoisotropic curve the following facts are found (Mota et al., 2010): 
i. the transport of waves within the sample having the defect frequency is much more 

efficient since the attenuation for the defect mode is null, 1 0dl
  , 

ii. the circular Bragg regime closes since 0d  , 
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whose asymptotic value for a very large sample is 

 2( ) ( /(4 sin ( / 2))) (2 ) / 3d eml c       . (1.57) 

If, however, the CE is tuned on the pseudo-isotropic curve, ( )l reduces to 

 ( ) ( / 2 ) (2 ) / 3l l c     , (1.58) 

which now depends proportionally on the sample thickness and hence never gets bounded 
as it occurs for a point outside of the mentioned curve. Hence, the photon dwell time can be 
prolonged without limit by enlarging the sample thickness l , that opposes the behaviour 
reported by Kopp and Genak for cholesteric liquid crystals (Kopp & Genack, 2002). 
In Fig. 7 it is depicted the inverse relative line width d at the defect frequency 
(dimensionless dwell time) which is proportional to the dwell time , versus the sample 
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Fig. 5. Defect wavelength d versus and r for a) oblate ( 0 1r  ) and b) ( 1r  ) prolate    
cholesteric elastomers axially elongated. Other parameters are, / 2 214 p nm , 1.91  , 

2.22 . These correspond to a typical cholesteric elastomer. 
 

 
Fig. 6. Line width 1( )d dl  , band width  and angle between magnetic and electric field 

( )em d  for the evanescent mode versus and r . a) Oblate and b) prolate cholesteric 
elastomers. For the same system as Fig. 3. 
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This slab of cholesteric elastomer with a twist defect has potential optical applications as, for 
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thickness l and for a) an oblate, 0.5r  , and b) a prolate, 1.16r  cholesteric elastomer, with 
wave number 9 1

0 /(214 10 ) q m     and shows how a sharp protrusion increases its 
amplitude around the pseudoisotropic curve, whereas the other points in the l  plane 
remains at the smaller value of 7~ 10d . It is worth mentioning that the density of photonic 
states D at the defect frequency (Ashcroft & Mermin, 1976): 1( ) ( ) /d dD l n      can be 
analytically obtained from Eq. (1.49). It is easy to show that ( )dD  diverges at the pseudo-
isotropic curve. Moreover, a similar behaviour in the dwell time, around the 
pseudoisotropic curve, is found when it is plotted versus the axial elongation and the wave 
number for an oblate and a prolate cholesteric elastomer (Mota et al., 2010). 
Therefore, a slab of cholesteric elastomer presents a pseudoisotropic curve where the 
propagation of waves in the sample with the defect frequency is extremely efficient since the 
attenuation for the defect mode is quite small, and the energy loses in the sample are 
negligible due to an almost vanishing Poynting vector. These facts support the following 
main results: around a pseudoisotropic curve the behaviour of the photonic dwell time has a 
tremendous variation and the density of photonic states diverges there. 
 

 
Fig. 7. d versus ( )l m and . For a) an oblate ( 0.5r  ) and b) a prolate ( 1.16r  ) cholesteric 
elastomer. For the same system as Fig. 3. 

 
Cholesteric Elastomers with Mechanical Control of Optical Spectra 

 

363 

6.2.1.2 Thin samples 

When the thickness 2l  of the sample is comparable with the attenuation length dl of the 
modes 1 , all the eigenwaves can reach the defect plane. According to the transfer matrix 
method seen above, we consider first the transfer matrix U , which is, implicitly defined by 
the equation (0 ) ). (0b a

 U  . Taking into account Eq. (1.54), the relation  T.  , and the 
continuity of ( )z at the defect site 0z  , one obtains: 

   10 ,0 exp. ( ). cos sin S        T RU T RU 1I , (1.59) 

where 1
S

R T .R.T . Straightforward calculations give 
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where the quantities jr  ( 1,...,5j  ) are 
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 (1.61) 

It is convenient to write the 4 4 matrix U in the form (1.30) and to consider also the 
matrix 1 cos sin S   U R1I . The 2 2 submatrix bbS is the inverse of 1( )bb

U , that is given 
by 

 2 51

5 1

cos sin sin
( )

sin cos sinbb
ir r

ir r
  
  

   
   

U . (1.62) 

As mentioned above, four eigenmodes from region a  (or b ) reach the defect plane. Thus, the 
scattering matrix bbS it relates the amplitudes of backward waves in region a  (the 
transmitted ones) to the backward waves from region b  (the incident ones). 
It is found numerically that, for d  the eigenwave 2 impinging from region b is totally 
reflected at the defect plane. This means that the element (2,2) of bbS is equal to zero. 
Therefore, the quantity d is implicitly defined by the equation 

  1
1cot ( )dr   , (1.63) 

which is completely equivalent to expression (1.55) for the particular case / 2  . 
On the other hand, it is found that, for d  the eigenwave 1 in region b generates at the 

other side of the layer an eigenwave 1 with a huge amplitude. 
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Fig. 8. Square amplitudes of the elements (3,3) and (4,4) of the scattering matrix S . Here, 

/ 2  , 2.22,  1.91,  428 ,  1 and 1.16.p nm r       

6.2.2 Doublets 
Now, we consider an unbounded sample with two identical twist defects at 0z  and 1z z . 
The transfer matrix relating the  vectors at 0z  and 1z z is given by 

     1 1 1 1,0 expz i z  U U U UN , (1.64) 

where 1U is the transfer matrix for each one of the defect planes, given by (1.59), and N is the 
diagonal matrix with diagonal elements equal to jn . The matrix  1exp i zN is the transfer 
matrix  1 ,0z U of the layer between the two twist defects. 
The analysis presented in previous section is also valid for obtaining the transmittances and 
reflectances. The curves giving these quantities are quite similar to the corresponding for a 
single twist defect, except for the fact that they have the structure of a doublet with two 
defect frequencies 1 2,d d  . The curves (3,3) and (4,4) giving the transmittance for the 
eigenmodes 1 and 2 are plotted in Fig. 8. 
As show the plot 8 there exist two defect frequencies 1 2,d d  for which the eigenwave 
2 impinging from right side is totally reflected at the defect planes. This means that the 
element (2,2) of bbS is equal to zero. Therefore, the quantity d is implicitly defined by  

 1 1 2 1 22 / ( 1/ ) ( 1/ )1 2 2 2
3 5 5 1cot d d dz l z in l z in lr e ir e ir e r             

. (1.65) 

Notice that the square root terms act here as perturbing terms whose asymptotic values 
vanish   for 1 dz l  and   expression  (1.65)  becomes   identical  to  (1.63).  When  1 dz l   the 
components peaked at 0z  and 1z z do not have “interaction” between them and they act 
independently. Thus, the defect modes become degenerated, since 2 1d d d   .  By solving 
the Eq. (1.65) we can obtain a 3D plot of the difference 2 1d d d     as function of shear 
strain and fractional shape anisotropy r for three values of defect separation 1z . In Fig. 9 it 
can be seen that the difference d of the defect frequencies vanish along the 
pseudoisotropic curve for any value of dl and goes to zero as 1z  gets much bigger than dl ; 
under this conditions 2 1d d d   . On the other side, notice how, at a fixed value r , 

 
Cholesteric Elastomers with Mechanical Control of Optical Spectra 

 

365 

d reaches its maximum value at 1  and its minimum one at the pseudoisotropic locus; 
this fact suggests the possibility of mechanically tune the two defect modes and the 
interaction between them by controlling . 
Before ending this section we mention that for both, oblate and prolate cholesteric 
elastomers, the defect frequencies redshift as and r augment (curves are not shown). 
 

 
 

 
 

Fig. 9. Plot of the difference 2 1d d d     as function of shear strain and fractional shape 
anisotropy r for a) oblate and b) prolate cholesteric elastomers. The parameter values are the 
same as Fig. 8. 
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Fig. 10. Square amplitudes of the elements (3,3) and (4,4) of the scattering matrix S . Here, 

/ 2  , 2.22,  1.91,  428 ,  1 and 1.16.p nm r        

6.2.3 Multiplets 
The equation giving the transfer matrix for 0n identical and equidistant twist defects 
at 1z nz , where 00,1,2,..., 1n n  , can be written as 

      0 1
0 1 1 1 1( 1) ,0 exp .

n
n z i z

       UNU U U  (1.66) 

For 0 2n  , Eq. (1.66) becomes identical to equation (1.64). The square amplitudes of the 
elements (3,3) and (4,4) of the scattering matrix are plotted in Fig. 10 for 3N  , /2   and 

1 dz l .  
The figure shows three different twist defects at the wavelengths 1 2 3,,d d d   , where 2d is 
nearly equal to the average value of 1 3,d d  . At the defect frequencies, the structure reflects 
totally the eigenwave 2. Also, it is shown that, at the defect frequencies, the eigenwave 1 in 
region b generates at the other side of the layer an eigenwave 1 with a huge amplitude. 
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1. Introduction  
The purpose of this study is to determine the temperature influence on the soil bulk 
dielectric permittivity,  b, calculated from the measurement of the electromagnetic wave 
velocity of propagation along the parallel waveguide in a TDR probe, i.e. a probe working in 
Time Domain Reflectometry technique. The experimental evidence shows that the existing 
models do not completely describe the temperature effect. However, it has been confirmed 
that the observed temperature effect is the result of two competing phenomena;  b increases 
with temperature following the release of bound water from soil solid particles and  b 
decreases with temperature increase following the temperature effect of free water 
molecules. It has been found that there is a soil type characteristic moisture value,  eq, 
named the equilibrium water content, having the specific temperature property. The 
temperature effect for this moisture is not present, which means that for soils with the 
moisture value equal to  eq the both competing phenomena mentioned earlier compensate 
each other. The equilibrium water content,  eq, decrease is correlated with the soil specific 
surface area. The temperature correction formula adjusting the soil moisture determined by 
TDR, TDR, at various temperatures to the corresponding value at 25°C, based on knowledge 
of  eq, decreases the standard deviation of the absolute measurement error of soil moisture 
TDR by the factor of two as compared to the uncorrected values. 
The majority of measurements of physical, chemical and biological properties of porous 
materials including soil should be accompanied with the measurement of soil water content 
and temperature. These parameters determine almost all processes in natural environment. 
It seems obvious to accompany the sensors for the measurement of soil salinity, 
oxygenation, content of nutrients, soil water potential, and others with the temperature and 
moisture sensors having the same measurement volume and performing measurements at 
the same time. Temperature sensors of various accuracy and size are easily available and 
together with the necessary electronics they can fit into the desired sensor enclosure. More 
problems are encountered with moisture sensors of porous materials because they do not 
measure water content directly, but use other parameters of the measured matter that 
indirectly and selectively determine its moisture. Such a property of porous materials 
accompanied with moisture is dielectric permittivity.  
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Measurement of soil moisture using time domain reflectometry (TDR) has become 
increasingly popular because of simplicity of operation, satisfactory accuracy and fast result 
available, the process of measurement is non-destructive, portable systems are available and 
the method gives ability for measurement automation and probes multiplexing (Dirksen & 
Dasberg, 1993; Malicki et al., 1996; Topp et al., 1980). Beside above advantages there are 
some drawbacks of this measurement technique including the requirement of excellent 
contact of the probe to soil and the dependence of dielectric permittivity of soil on 
temperature affecting the TDR soil moisture readout. 
In first applications of the TDR technique for soil moisture determination, the influence of 
temperature on the TDR determined soil bulk dielectric permittivity, b, was neglected. The 
significant fluctuation of measured data, which was obviously correlated with soil 
temperature, was noticed with the introduction of soil moisture field monitoring systems 
based on reflectometric meters. Also, it was found (Pepin et al., 1995; Halbertsma et al., 
1995) that b decreased with temperature increase for sandy, silt and peat soils and it did not 
change for the tested clay soil.  
The text below uses two terms that need explanation: (i) soil free water – composed from 
water particles that rotation in the electric filed is not hampered, and (ii) soil bound water – 
composed from water particles so close to solid phase that their rotation in the electric field 
is hampered by surface charge on the solids. The real part of the complex dielectric 
permittivity of free water is about 80 at room temperature and is much smaller for bound 
water (Boyarskii et al., 2002) reaching the minimal value of ice (about 3.2) for the first layer 
of water particles adsorbed on the clay soil surface. 

2. Basics of TDR technique 
Time Domain Reflectometry (TDR) technique for the measurement of water content of 
isotropic and homogenous media becomes popular for the simplicity of operation, accuracy 
and the non-destructive, as compared to other methods, way of measurement (Malicki, 
1999; O’Connor & Dowding, 1999). This measurement technique takes advantage of four 
physical phenomena characteristic to the porous materials including soil:  
- for soils with negligible magnetic properties and electrical conductivity, which is true 

for the majority of arable soils, and in the frequency range of about 1 GHz, the complex 
dielectric permittivity of the soil can be approximated by its real value and the 
electromagnetic wave propagation velocity, v, in the soil can be calculated from: 
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where: c is a velocity of light in free space,  ( )  is a real part of the complex dielectric 
permittivity dependent on its water content,  ;  n = [ ( )]1/2 is the medium refractive 
index; L is the length of TDR probe rods inserted into the soil; t is the time distance 
between the reflections of TDR pulse from the beginning and the end of the probe rods, 
inserted into the medium, 

- the dielectric permittivity of the medium liquid phase has much higher value than the 
other medium phases, i.e. about 80 against 24 for the solid and 1 for the gas phase, 
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- the relation between the water content of the medium and its dielectric permittivity is 
highly correlated for the majority of the porous media (Davis et al, 1977; Malicki & 
Skierucha, 1989; Topp et al., 1980), 

- the attenuation of the amplitude of electromagnetic wave traveling along the parallel 
transmission line inserted into the medium, measured from the amplitudes of the pulse 
before (Uin) and after (Uout) attenuation caused by the pulse travel twice a distance of the 
probe length, L (Fig. 1) depends on its bulk electrical conductivity, ECb (Dalton et al., 
1984): 
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Therefore, water content of the soil, which is assumed to be an isotropic and homogenous 
medium, is the main reason determining its bulk dielectric permittivity.  
The simplified formula (1) for the determination of the electric pulse propagation velocity in 
porous medium is derived from more general one: 
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where: c is the light velocity of propagation in free space,   is the real value of the complex 
dielectric permittivity of the medium, tg is the dielectric loss defined as: 
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The complex dielectric permittivity of the medium, , is: 
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where:  represents dielectric loss connected with the dielectric polarization of soil 
particles, EC is the medium electrical conductivity, f is the frequency of the electromagnetic 
field,  0 is dielectric permittivity of free space, j jest equal to (-1)1/2. 
The idea of simultaneous measurement soil water content and electrical conductivity as well 
as the respective hardware setup are presented in Fig. 1. 
The TDR probe consists of two waveguides connected together: a coaxial one, called the 
feeder, and a parallel one, called the sensor, made of two or more parallel metal rods, one of 
which is connected to the cable hot wire the others to the shield. The sensor should be fully 
inserted into the measured medium, that by definition should be homogeneous. The initial 
needle pulse travels from the generator by the feeder towards the sensor. A fast sampling 
oscilloscope registers this pulse in time. In the junction between the feeder and the sensor, 
there is a rapid change in geometry of the electromagnetic wave travel path. At this point 
some energy of the pulse is reflected back to the generator, like in radar, and the remaining 
travels along the parallel waveguide to be reflected completely from the rods ending. The  
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Fig. 1. Hardware setup for simultaneous measurement of soil water content and electrical 
conductivity using Time Domain Reflectometry technique 
successive reflections are recorded for the calculation of the time distance between the two 
reflections (a) and (b). Three reflectograms representing pictures from the oscilloscope screen 
(voltage as a function of time at the chosen point in the feeder) are drawn in Fig. 1. They 
represent cases when the sensor was placed in dry, wet and water saturated soil. The time  
 ti necessary for the pulse to cover the distance equal to the double length of the metal rods 
in the soil increases with the soil dielectric permittivity, thus water content. The reason for 
that is the change of electromagnetic propagation velocity in media of different dielectric 
permittivity, according to (1). Also, the amplitude of the pulse at the point (b) decreases with 
the increase of soil electrical conductivity, according to (2). 

2.1 Temperature effect of soil free water and electrical conductivity 
Corrections of the TDR determined moisture data related to the temperature effect of dielectric 
permittivity of free water was examined by Pepin et al. (1995) and Halbertsma et al.  (1995) 
and the influence of soil texture on the observed temperature effect was reported. Temperature 
dependence of dielectric permittivity of free water can be described as (Wheast, 1979):  

      8.851fw fwn T n d T d T     (6) 

      22 2 71 0.4536 10 25 0.9319 10 25d T T T             (7) 

where nfw = ( fw)1/2 = 8.851 is free water refractive index at 25ºC for the frequency in the 
range of 108 Hz, fw is dielectric permittivity of free water at 25ºC, and T is the temperature 
in ºC. 
If bulk soil dielectric permittivity had a temperature dependence related solely to free water, 
measurements of soil  b would show a negative correlation with temperature that would 
increase with water content. Results from Pepin et al. (1995) show this negative correlation, 
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but the overall changes are smaller than predicted from a dielectric mixing model that 
integrated the temperature change in dielectric permittivity of water. The same was 
observed by Halbertsma et al. (1995) who made measurements of sand and silt soil samples. 
Also, he reported the lack of the discussed temperature effect for clay soil. It was obvious 
that the physical processes involving other soil phases beside the liquid phase should be 
taken into account when interpreting the temperature effect on the soil  b. 
Literature reports (Nadler et al., 1999; Or & Wraith, 1999) show that soil electrical 
conductivity does not influence the TDR determined soil bulk dielectric permittivity,  b, in 
the soil salinity range where the majority of plants are growing, i.e. up to the corresponding 
values of soil solution from 1600 to 2600 mSm-1. Following the discussion in Or & Wraith 
(1999) it is possible to present the frequency dependence of the real and imaginary parts of a 
salt-water mixture’s dielectric permittivity, ’ and ”, as well as the velocity of propagation, 
v, of electromagnetic wave along the TDR probe rods inserted in this mixture for different 
temperatures and electrical conductivities, dc. The increase of temperature of the salt-water 
mixture increases the frequency range around the frequency 1 GHz, where the velocity of 
propagation of an electromagnetic wave along the waveguide, used in TDR technique, does 
not change. Therefore the temperature effect on the electrical conductivity of soil, resulting 
mainly from ionic conductivity of soil electrolyte should not influence the bulk temperature 
effect of soil dielectric permittivity. 

2.2 Temperature effect of soil bound water 
The discussion of the release of bound water from the solids with the temperature is 
presented by Or & Wraith (1999), where the authors applied the Debye model for polar 
liquids and liquid viscosity dependence on temperature, T, for bound water molecules at the 
distance x from the solid surface to describe their relaxation frequency. They reported that b 
increased with temperature for a silt loam soil for all soil moisture, however another silt 
loam soil showed the increase of b for relatively low water contents, whereas it decreased 
with temperature at higher water contents. The change of b with temperature is not fully 
explained yet but they discuss its two reasons: b decreases with temperature because the 
real part of soil complex dielectric permittivity decreases following the temperature effect of 
soil free water and b increases with temperature following the release of bound water 
molecules. 
Water molecules that are adsorbed to the solid surface are less mobile in the imposed EM 
(electromagnetic) field as the not adsorbed ones. For a given temperature, the more distant 
the water molecules are from the solids, the higher is their relaxation frequency. The 
increase of temperature increases their kinetic energy that raises the relaxation frequency 
and they become more mobile in the imposed EM field. Bound water molecules released 
from the solid surface become now free with higher value of the real part of the complex 
dielectric permittivity.  
The release of water molecules from the solids results in the increase of the real part of the 
soil dielectric permittivity and decreases its imaginary part describing the loss tangent of 
dielectric material. This phenomenon leads to a new equilibrium with more free water 
molecules and less bound water ones.  
According to recent studies (Or and Wraith, 1999; Boyarskii et al., 2002), only a few layers of 
water covering soil particles are subjected to the change of relaxation time in relation to 
relaxation time of free water. The analysis of nuclear resonance spectra of bound water films 
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the water molecules are from the solids, the higher is their relaxation frequency. The 
increase of temperature increases their kinetic energy that raises the relaxation frequency 
and they become more mobile in the imposed EM field. Bound water molecules released 
from the solid surface become now free with higher value of the real part of the complex 
dielectric permittivity.  
The release of water molecules from the solids results in the increase of the real part of the 
soil dielectric permittivity and decreases its imaginary part describing the loss tangent of 
dielectric material. This phenomenon leads to a new equilibrium with more free water 
molecules and less bound water ones.  
According to recent studies (Or and Wraith, 1999; Boyarskii et al., 2002), only a few layers of 
water covering soil particles are subjected to the change of relaxation time in relation to 
relaxation time of free water. The analysis of nuclear resonance spectra of bound water films 
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in clay shows the approximated relation between relaxation time of bound water, and 
thickness of the film covering soil particles (Boyarskii et al., 2002). The resonant frequency of 
hydrogen in water particles, measured by NMR, is different for various layers of water films 
on the solids and consequently different frequency response of their dielectric permittivity. 
The relaxation time of bound water drops rapidly with the number of layers covering the 
particles and it seems that only one or two layers have significantly longer relaxation times 
than that of free water.  
On the base of Debye model (Debye, 1929; Hasted, 1973) for polar liquids and using 
relations showing dependence of viscosity of liquid molecules on temperature T and 
distance x from the solid phase, the relaxation frequency frel of water molecules can be 
expressed as (Or & Wraith, 1999):  
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where: k is Boltzman constant (1.38·10-23 JK-1), T is temperature in Kelvin degrees, 
a = 1621·10-10 mK, d = 2.047·103 K and c = 9.510-7 Pas are constants as the consequences of 
applied simplifications, r = 1.8÷2.5 10-10 m is the radius of water molecule. 
The equation (8) shows that moving closer to solid phase, water particles are increasingly 
hampered to rotate in the electromagnetic field of high frequency, which is manifested by 
decreasing relaxation frequency for these molecules. Also, the temperature of water particles 
will have some effect on the frel, which is simulated in Fig. 2A.  
The dependence of dielectric permittivity (real part) for free and bound water particles on 
the frequency can be described by Cole-Cole formula (9), where =2 f is the angular 
frequency of the external electrical field, low= 81 and hi= 4.23 are relative dielectric 
permittivity values for free and bound water particles in the frequency values lower 
and higher, respectively, from 18 GHz (relaxation frequency of free water particles), 
 =1/(2 f rel) is the relaxation time of water particles, h=0.013 is a parameter describing 
interaction of water dipoles (Hasted, 1973).  
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Three curves in Fig. 2B represent water particles located at various distances from solid 
phase and the highest one relates to free water with relaxation frequency of 18 GHz, while 
the lowest to bound water  particles close to solid phase. 
The frequency range of an electric field, for which the values of determined from equation 
(9) are fixed at about 81, is the largest for free water. Adsorbed water molecules, by virtue of 
proximity to the solid phase are characterized by lower relaxation frequency and are less 
mobile in an external electric field. Consequently, according to the formula of Cole-Cole (9), 
the value of for frequencies below the relaxation frequencies are lower than for free water. 
The decreasing number of adsorbed water molecules, due to increasing temperature, 
increases the amount of free water molecules. Fig. 2A shows that moist soil temperature 

 
Time Domain Reflectometry: Temperature-dependent Measurements of Soil Dielectric Permittivity 

 

375 

increase from 278 K to 338 K increases the relaxation frequency of water molecules located 
210-10 m away from the solid phase from 0.1 GHz to 0.7 GHz. As a result, this temperature 
increase also increases the effective value of the dielectric permittivity of adsorbed water. Or 
and Wraith (1999) recognized the frequency limit of 1 GHz of the TDR method as the cut-off 
frequency, f*, that distinguishes water molecules between free and bound. Water layers 
having dielectric relaxation frequencies lower than the cut-off frequency were considered as 
bound water having smaller dielectric permittivity than for free water. It was shown 
(Dirksen & Dasberg, 1993) that the quantity of bound water increases with the volume of 
clay fraction in the soil due to large specific surface area of clay. 
 

 
Fig. 2. A - relaxation frequency for water particles bound to solids according to (8) and 
related to its distance x from the solid phase; B - example relation between dielectric 
permittivity of water molecules and relaxation frequency for bound and free water particles 

3. Materials and methods 
TDR measurements were performed in the laboratory on mineral soils with negligible 
organic content, collected from Lublin region, Poland (Table 1) mainly from the topsoil 
layer. The soils were spread in layers of about 1 cm thickness on a flat surface in laboratory 
for drying at room temperature and then they were grinded to destroy big aggregates and 
passed through 2 mm sieve.  
Dry soils were mixed with appropriate amount of distilled water to obtain five soil samples 
for each analyzed soil, with moisture values from air dry to saturation with regular 
differences in moisture content, taking care to get homogeneous distribution of water in the 
soil samples. Eight containers with soil samples covered with plastic foil to minimize 
evaporation were placed in a specially constructed rack. The volume of the soil containers 
was 0.5 dm2 and their shape assured that the TDR probes sphere of influence was in the 
measured soil samples. The gravimetric moisture content, g, and bulk density, , were 
determined for each soil sample directly after completion of the TDR measurements. The 
values of in Table 1 are the mean for all applied moistures for each tested soil. Soil texture 
was determined by standard Bouyoucos method (Pansu & Gautheyrou, 2006). The values of 
soil specific surface area, S, were measured by water vapor adsorption method (Oscik, 1983). 
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Three curves in Fig. 2B represent water particles located at various distances from solid 
phase and the highest one relates to free water with relaxation frequency of 18 GHz, while 
the lowest to bound water  particles close to solid phase. 
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soil samples. Eight containers with soil samples covered with plastic foil to minimize 
evaporation were placed in a specially constructed rack. The volume of the soil containers 
was 0.5 dm2 and their shape assured that the TDR probes sphere of influence was in the 
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soil specific surface area, S, were measured by water vapor adsorption method (Oscik, 1983). 
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Soil No. Soil type Specific 
surface S 
 103 m2kg-1

Bulk 
density  
 103 kgm-3 

ISSS soil texture 
sand silt clay 
2-0.02  
mm 

0.02-0.002 
mm 

< 0.002  
mm 

611 brown soil 9 1.59 94 5 1 
566 rendsina 10 1.45 92 7 1 
589 soil lessive 10 1.70 88 11 1 
605 brown soil 10 1.69 95 4 1 
597 soil lessive 11 1.53 94 5 1 
604 brown soil 12 1.65 97 2 1 
593 brown soil 19 1.35 77 20 3 
560 rendsina 20 1.46 87 11 2 
569 brown soil 21 1.33 73 23 4 
606 muck soil 23 1.42 97 2 1 
591 brown soil 25 1.40 70 27 3 
601 chernozem 31 1.38 64 31 5 
568 brown soil 34 1.35 60 30 10 
570 brown soil 35 1.40 63 26 11 
623 chernozem 36 1.39 62 25 13 
622 chernozem 37 1.40 61 33 6 
621 chernozem 42 1.33 60 34 6 
562 rendsina 65 1.44 52 35 13 
619 chernozem 69 1.16 87 12 1 
565 rendsina 83 1.04 77 18 5 

Table 1. Selected physical parameters of the tested soils 
The applied TDR probes had two parallel metal rods of 10 cm length and they were 
enhanced with the electronics (microcontroller, digital output temperature sensor, analog-
to-digital converter and serial interface) for independent measurement of the probe 
temperature and soil electrical conductivity. The construction of such a “smart sensor” is 
presented in Fig. 3.  
The electrical conductivity of the soil sample, ECb, is measured from the voltage drop on the 
reference resistor R1 connected in series with the soil equivalent resistor R2. Low frequency 
conductivity, ECb, of the soil samples were determined from the formula: ECb =C/R2, where 
C is a calibration constant determined individually for each TDR probe by the measurement 
in NaCl solution of known conductivities. 
The source voltage for electrical conductivity measurement was a square wave, generated by 
the microcontroller, of 100 kHz frequency that does not polarize the electrode-soil system, the 
inductance L is for separation of high frequency TDR signal from much lower frequencies.  
Reflectometric measurements for determination of the change of soil samples bulk dielectric 
permittivity with temperature, moisture and electrical conductivity were performed using 
the setup that is shortly described below as well as in Fig. 4 and Fig. 5. 
It consists of three functional modules controlled by a program running on a PC compatible 
computer: (i) oscilloscope frame HP54120B with the TDR test set HP54121A, (ii) self-
designed and manufactured interface connecting TDR probes (two wire waveguide, 10 cm 
long and spaced 1.5 cm) to the TDR unit by eight position 0.01 - 2.4 GHz multiplexer and 
reading selected temperature sensors and controlling the temperature chamber, (iii) 
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temperature chamber consisting of a freezer, a fan-heater inside it and an additional fan to 
minimize temperature gradients inside the chamber. 
 

 
Fig. 3. Block diagram of the TDR probe with the electronics for soil electrical conductivity 
and temperature measurements 

 

 
Fig. 4. Laboratory setup for the determination of the temperature variability of the soil 
dielectric permittivity 
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temperature chamber consisting of a freezer, a fan-heater inside it and an additional fan to 
minimize temperature gradients inside the chamber. 
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and temperature measurements 
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Fig. 5. Block diagram of the laboratory setup for the determination of temperature effect on 
soil dielectric permittivity 

PC compatible computer controlling the dedicated interface by means of the serial RS232C 
interface and the oscilloscope by universal GPIB link, was connected to Internet to monitor 
remotely the performance of the experiment. The application software provides a user 
friendly interface for the operator. Temperature of the soil samples was controlled by 
switching on and off the fan-heater located at the bottom of the temperature chamber and 
the freezer, only one working at a time. For security reasons, an independent temperature 
sensor connected to the main security switch was applied to disconnect all power devices in 
the system in case of reaching upper limit temperature, Tz=65ºC, inside the chamber. 
The complete measurement cycle at six temperature values, from 5 ºC to 55 ºC in 10 ºC 
(±1°C) increments, for the set of eight soil samples took about 12 hours. Starting from the 4th 
cycle, the measurable decrease of TDR moisture values of soil samples was noticed, which 
was attributed to the loss of water evaporating from the not perfectly sealed holes of plastic 
foil where the TDR probe rods entered the soil samples.  
The collected data in ASCII format representing reflectograms were processed by 
proprietary software to calculate travel times along the TDR probe rods, and soil bulk 
dielectric permittivity,  b, according to the “flat tangent” approach (Fig. 6) described by 
Wraith & Or (1999). 
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The bound water volume fraction of the soil  bw is the product of solid phase specific surface 
S, temperature dependent thickness of bound water layer x(T) and bulk density : 

    bw T x T S   (10) 

and x(T ) can be presented after Or & Wraith (1999) from reorganizing (8) as: 
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where f * = 1 GHz is the cut-off frequency, that distinguishes water molecules between free 
and bound. Having determined the dependence of bound water volume fraction of soil, 
 bw(T), on temperature using (10), it was possible to find the overall temperature 
dependence of bulk soil dielectric permittivity,  b, by application of dielectric mixing 
models. Among many dielectric mixing models describing soil as the mixture of solids, 
liquid, gas and also bound water phase, there are two applied in the presented study: alpha 
model (Birchak et al., 1974) and the model of de Loor (1990), given by the (12) and (13), 
respectively: 
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where:  b – bulk dielectric permittivity determined by TDR method; - soil porosity (m3m-3); 
 s,  a,  fw and  bw are dielectric permittivity of dry soil, air, free water and bound water, 
respectively;  bw and  a(m3m-3) are volume fractions of water in the soil (free and bound 
water), only bound water, and air, respectively.  
To perform analysis of the models (12) and (13) the following values were assumed: 
 bw = 3.2 (the same as for ice),  s = 5 as used by Or & Wraith (1999),  a = 1. 

4. Results and discussion 
The experimental setup described earlier produced reflectograms like in Fig. 6 – upper 
curves, which after processing by dedicated software were converted to data pairs ( b,T ) 
representing bulk dielectric permittivity and temperature of respective soil samples. Lower 
curve in Fig. 6 is produced by analysing software application software and it represents one 
differentiated curve, which local maxima localize inclination points in reflectograms for 
application the “flat tangent” algorithm. 
All tested soils were divided into three groups with the soil specific surface areas below 
12·103 m2kg-1, between 20 and 35·103 m2kg-1 and above 37·103 m2kg-1. The calibration curves 
taken for the tested soils are trend lines of 2nd degree polynomials fitted to the data pairs (, 
 b(T)) collected experimentally at six applied temperature values. The first group of soils 
had TDR calibration curves close to the equation given by Topp et al. (1980).  
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With the increase of the soil specific surface area, S, as well as the decrease of bulk density, 
, the bulk dielectric permittivity values,  b, were below the Topp’s calibration. This is in 
agreement with other reports (Dirksen & Dasberg, 1983) showing the influence of S and  on 
the calibration of the TDR method for soil moisture determination. The biggest temperature 
effect on  b was observed for the soil 569 at its highest moisture content; with the 
temperature increase of 50ºC its value decreased by 3.49. This temperature change of the 
TDR determined bulk dielectric permittivity corresponds to a decrease of the calculated soil 
moisture of 0.037 m3m-3, using the calibration from Topp et al. (1980). 
 

 
Fig. 6. Set of reflectograms registered by the measurement setup for the same soil sample in 
different temperatures 
The calibration curves for each soil taken for different soil temperatures meet at a 
characteristic moisture content value eq, where the physical phenomena responsible for the 
temperature effect of soil dielectric permittivity equalize (Fig. 7). This moisture content is 
named the "equilibrium water content" in this study. For water contents below eq, soil bulk 
dielectric permittivity b measured at 5°C is smaller than the one measured at 55°C and for 
water contents above eq the change of b with temperature is opposite. The observed 
temperature effect of soil dielectric permittivity confirms the theory of Or & Wraith (1999), 
which explains it by the temperature caused exchange of water particles between free and 
bound phases. 
The value of  b for air-dry soils does not depend on temperature. With the increase of soil 
moisture from air dry, there is an increase of  b with temperature. All soils except one (soil 
562) have higher values of  b for 5°C than 55°C at high water contents, and the biggest 
difference is observed for the soils having medium values of S (Table 1). For the soil 562, 
there was no equilibrium water content observed in the analysed temperature range, 
although this soil does not have the highest value of specific surface area from all the tested 
soils. The bulk dielectric permittivity for this soil is higher at 55°C than for 5°C in the whole 
range of moisture from air dry state to almost saturation. The soil bulk electrical 
conductivity in low frequency range,  dc, for the soil 562 and for example the soil 565 at 
different temperatures and high moisture was compared.  
Bulk electrical conductivity for the soil 562 ranged from 47 mSm-1 at 5°C to 192 mSm-1 at 
55°C for  = 0.3 m3m-3, while for the soil 565 the respective values were even bigger, i.e. they 
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ranged from 50 mSm-1 at 5°C to 221 mSm-1 at 55°C for  = 0.4 m3m-3, and still the 
temperature behaviour of the soil 565 dielectric permittivity was typical. This confirms the 
literature reports (Nadler et al., 1999; Or & Wraith, 1999) that the increase of soil bulk 
electric conductivity does not increase the TDR readout of  b in the presented variability 
range of  dc. Further studies are needed to diagnose the temperature effect of the soil 562. 
 

 
Fig. 7. TDR calibration curves for three tested soils at different temperatures,  S is the soil 
specific surface area, eq is the equilibrium moisture where the temperature effect caused by 
the described two competing physical phenomena is compensated 

The value of soil moisture at the equilibrium point,  eq, depends on the amount of bound 
water attracted by the soil, which is described by equation (10). The relation between the 
equilibrium water content,  eq, and the specific surface for the tested 19 soils, except the soil 
562, is presented in Fig. 8. 
 

 
Fig. 8. Empirical relation between the equilibrium water content, eq, and soil specific 
surface, S, for the tested soils 
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the calibration of the TDR method for soil moisture determination. The biggest temperature 
effect on  b was observed for the soil 569 at its highest moisture content; with the 
temperature increase of 50ºC its value decreased by 3.49. This temperature change of the 
TDR determined bulk dielectric permittivity corresponds to a decrease of the calculated soil 
moisture of 0.037 m3m-3, using the calibration from Topp et al. (1980). 
 

 
Fig. 6. Set of reflectograms registered by the measurement setup for the same soil sample in 
different temperatures 
The calibration curves for each soil taken for different soil temperatures meet at a 
characteristic moisture content value eq, where the physical phenomena responsible for the 
temperature effect of soil dielectric permittivity equalize (Fig. 7). This moisture content is 
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water contents above eq the change of b with temperature is opposite. The observed 
temperature effect of soil dielectric permittivity confirms the theory of Or & Wraith (1999), 
which explains it by the temperature caused exchange of water particles between free and 
bound phases. 
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moisture from air dry, there is an increase of  b with temperature. All soils except one (soil 
562) have higher values of  b for 5°C than 55°C at high water contents, and the biggest 
difference is observed for the soils having medium values of S (Table 1). For the soil 562, 
there was no equilibrium water content observed in the analysed temperature range, 
although this soil does not have the highest value of specific surface area from all the tested 
soils. The bulk dielectric permittivity for this soil is higher at 55°C than for 5°C in the whole 
range of moisture from air dry state to almost saturation. The soil bulk electrical 
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different temperatures and high moisture was compared.  
Bulk electrical conductivity for the soil 562 ranged from 47 mSm-1 at 5°C to 192 mSm-1 at 
55°C for  = 0.3 m3m-3, while for the soil 565 the respective values were even bigger, i.e. they 
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ranged from 50 mSm-1 at 5°C to 221 mSm-1 at 55°C for  = 0.4 m3m-3, and still the 
temperature behaviour of the soil 565 dielectric permittivity was typical. This confirms the 
literature reports (Nadler et al., 1999; Or & Wraith, 1999) that the increase of soil bulk 
electric conductivity does not increase the TDR readout of  b in the presented variability 
range of  dc. Further studies are needed to diagnose the temperature effect of the soil 562. 
 

 
Fig. 7. TDR calibration curves for three tested soils at different temperatures,  S is the soil 
specific surface area, eq is the equilibrium moisture where the temperature effect caused by 
the described two competing physical phenomena is compensated 

The value of soil moisture at the equilibrium point,  eq, depends on the amount of bound 
water attracted by the soil, which is described by equation (10). The relation between the 
equilibrium water content,  eq, and the specific surface for the tested 19 soils, except the soil 
562, is presented in Fig. 8. 
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The good correlation between the soil specific surface S and  eq confirms the assumed 
physical description of the processes involving the temperature effect of soil dielectric 
permittivity. 
The temperature dependence of the soil bulk dielectric permittivity,  b, of the selected soils 
is presented in Fig. 9. The majority of tested soils show similar trends that confirm other 
experimental data (Pepin et al., 1995; Or & Wraith, 1999).  For small and medium moisture 
values there is a negligible temperature effect and the linear trend lines in Fig. 9 are almost 
in parallel to the horizontal axis representing no or a small positive temperature change. 
This is especially evident for the two trend lines representing the lowest moisture values in 
 b(T) relations for all soils in Fig. 9. For higher moisture values there is a tendency to 
decrease  b with temperature proving that the dominant reason for this behaviour is the 
decrease of free water dielectric permittivity with the temperature increase. However, as 
expected for the soils with large specific surface area this tendency is much smaller or has 
the opposite direction, as for the soil no. 562. 
 

 
Fig. 9. Bulk dielectric permittivity temperature dependence of selected soils bulk dielectric 
permittivity for different soil volumetric water contents ( g stands for thermo-
gravimetrically determined soil water content) 

Other soils from the same group as the soil no. 562, i.e. no. 619 and no. 565 having larger 
values of soil specific surface area, 69·103 m2·kg-1 and 83·103 m2·kg-1 respectively, show 
typical temperature effect of soil dielectric permittivity, i.e. for moisture below eq,  b 
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increases with increasing temperature, and for moisture above eq,  b decreases with 
increasing temperature. For all tested soils, except the soil no. 562, the slope was small and 
positive for low and negative for high soil moisture. 
The applied models: 4-phase alpha and de Loor models do not follow the measured data 
 b(T) for all soils and for all moisture values. The examples of the performance of these 
models are presented in Fig. 10, for the soil no. 562 (S = 65·103 m2kg-1). 
 

 
Fig. 10. Performance of applied 4-phase soil dielectric mixing models for the soil no. 562. The 
assumed values for dielectric permittivity for soil solid phase  s=5 and bound water  bw=3.2 

The alpha model has a fitting parameter representing the geometry of modelled medium 
(Roth et al., 1990) and enabling to adjust model data to the measured ones, as it was done in 
Fig. 10. The values of  b from the model data are generally higher than the TDR determined 
from the measurement. Therefore the applied correction of the temperature effect on the soil 
dielectric permittivity is based on empirical data and it accounts for the observed property 
of eq. The applied correction turns the slope of the linear trend lines of the measured values 
of  b(T) to zero. The turning centre is the soil temperature of 25ºC (Fig. 9).  
For each soil sample the temperature dependent value of soil moisture TDR(T) was 
determined basing on the individual TDR soil calibration function giving the bulk dielectric 
permittivity values at different temperatures. Temperature corrected values of volumetric 
water content corr

TDR , were determined from the relationship between ( )TDR T  and  eq, as 
follows: 

 For  TDR eqT  :        1 25corr
TDR TDR eq TDRT A T T             (14) 
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where:  n = ( b)1/2 is the soil refractive index, n25 is its value at 25ºC, ∂θTDR/∂n is the slope of 
TDR calibration, for example the one taken from Topp et al. (1980) is 0.127.  
Formula (14) refers to TDR determined soil moisture values not exceeding equilibrium 
water content,  eq, for which the temperature effect of the soil bulk dielectric permittivity 
increases its value, which is due to release of water molecules adsorbed by the surface of the 
soil solid phase. Formula (15) applies TDR determined soil moisture values exceeding 
equilibrium water content,  eq, when the temperature effect of the soil bulk dielectric 
permittivity is mainly from the temperature effect on free water, resulting in declining soil 
bulk dielectric permittivity with increasing temperature. 
Parameters A = 0.008 and B = 0.55 are empirically adjusted to minimize the slope  b/T for 
all examined soils. Because of good correlation  between soil specific surface, S, and eq (Fig. 
8), the former can be applied from the fitted line. 
 

 
Fig. 11. Errors of TDR determined soil moisture at various temperature values referenced to 
the respective values at 25°C: A - without temperature corrections, B -  with temperature 
corrections based on (14) and (15) 

The comparison of mean values and standard deviations of absolute errors for measured 
data, TDR , and temperature corrected data, corr

TDR , according to the temperature 

corrections (14) and (15) is presented in Fig. 11. The mean values for the both errors are 
calculated for 20 tested soils at six values of temperature from 5°C to 55°C with 10°C steps 
between. 
The mean values of TDR determined soil moistures at tested soil temperatures are below the 
respective values at 25°C. The absolute measurement error of soil moisture measured by 
TDR, defined as double the standard deviation from the mean value does not exceed 1.5% of 
measured value. After applying the empirical correction given by (14) and (15) the absolute 
measurement error decreased almost three times to the value not exceeding 0.54%. 

5. Summary  
The temperature effect of the examined mineral soils’ bulk dielectric permittivity,  b, 
determined by TDR method, confirms the theory presented by Or and Wraith (1999), 
describing it as the result of two competing phenomena;  b increases with temperature  
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increase following the release of bound water from soil solid particles and  b decreases with 
temperature increase following the temperature effect of free water molecules. 
It has been found that there is a soil type characteristic moisture value,  eq, named the 
equilibrium water content, having the specific temperature property. The temperature effect 
for this soil water content value is not present, which means that at  eq the both competing 
phenomena mentioned earlier compensate each other. The equilibrium water content,  eq, is 
correlated with the soil specific surface area. For soils with water content below  eq, the 
temperature effect of soil dielectric permittivity is positive, i.e. it increases with temperature, 
and for soils with water content above  eq, the temperature effect of soil dielectric 
permittivity is negative, i.e. it decreases with temperature.  
The temperature correction formula adjusting the soil moisture determined by TDR at 
various temperature values to the corresponding value at 25°C, based on knowledge of  eq, 
decreases the standard deviation almost three times as compared to uncorrected values of 
TDR. The electrical conductivity of the examined soils does not show any influence on the 
observed temperature effect of soil dielectric permittivity. 
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1. Introduction 
The magnetic response of Ni-Zn ferrites at microwave frequencies has been recently 
investigated by means of resonance techniques, by several authors. In this chapter, we 
present a review of recent results obtained on the resonant microwave absorption (electron 
paramagnetic resonance, EPR, and ferromagnetic resonance, FMR) in the X-band (9.5 GHz), 
of polycrystalline Ni-Zn ferrites (ZnxNi1-xFe2O4) for several temperature ranges. We begin at 
high temperatures in the paramagnetic state (T > TC, where TC is the Curie point); as 
temperature decreases, the onset of magnetic ordering is investigated, with its effects on the 
main FMR parameters. When experiments are carefully carried out, magnetic transitions can 
be detected as critical points in plots of the thermal behavior of the resonance line width.  
We investigate also the behavior of nonresonant properties by means of the low-field 
microwave absorption (LFMA). This absorption, which occurs at applied fields of the 
same order of magnitude than the anisotropy field, HK, of the sample, is providing 
valuable information concerning the magnetization processes. LFMA is typically 
measured in the -1 kOe < HDC < +1 kOe field range.  LFMA is associated with the 
nonresonant microwave absorption occurring during the magnetization processes from 
the unmagnetized state up to the approach to saturation. We provide here a short review 
of this particular measuring technique. Then, we propose to begin the study of LFMA in 
Ni-Zn ferrites also by decreasing the measuring temperature from the Curie transition. 
Clearly, LFMA is absent at T > TC since it depends on the magnetization processes in the 
ordered phase. For the 200 K < T < TC temperature range, a direct comparison of the 
anisotropy field calculated from LFMA and a calculation by using results of a direct 
measurement of HK on a ferrite single crystal. A very good agreement is obtained, thus 
confirming that LFMA is strongly dependent of the total anisotropy (magnetocrystalline, 
magnetoelastic and shape anisotropies) of the sample. 
We use as well a novel nonresonant microwave absorption technique known as 
magnetically modulated microwave absorption spectroscopy, MAMMAS. This technique is 
particularly well adapted to detect phase transitions of many types, as it is based on the 
change of microwave absorption regime during a change of crystalline, magnetic or 
electronic structure. MAMMAS is briefly described and applied to Ni-Zn ferrites.   



  
Electromagnetic Waves 

 

386 

O’Connor, K.M. & Dowding C.H. (1999). Geomeasurements by pulsing TDR cables and probes, 
CRC Press, ISBN 0-8493-0586-1, Boca Raton. 

Or, D. & Wraith, J.M. (1999). Temperature effects on soil bulk dielectric permittivity 
measured by time domain reflectometry: A physical model, Water Resources 
Research, 35(2), 371-383. 

Oscik, J. (Ed.) (1983). Adsorption.  PWN. Warszawa. 
Pansu, M. & Gautheyrou, J. (2006). Handbook of soil analysis; mineralogical, organic and 

inorganic methods, Springer-Verlag Berlin Heidelberg. 
Pepin, S.; Livingston, N.J. & Hook, W.R. (1995). Temperature-dependent measurement 

errors in time domain reflectometry determinations of soil water, Soil Science Society 
of America Journal, 59, 38-43. 

Roth, K.; Schulin, R.; Flühler, H. & Attinger W. (1990). Calibration of Time Domain 
Reflectometry for water content measurement using a composite dielectric 
approach, Water Resources Research, 26, 2267-2273. 

Skierucha, W. (2002). Temperature effect on soil dielectric permittivity: description of 
laboratory setup and applied software (in Polish), Acta Agrophysica, 72, 125-133. 

Topp, G.C.; Davis, J.L. & Annan A.P. (1980). Electromagnetic determination of soil water 
content: measurements in coaxial transmission lines, Water Resources Research,  16, 
574-582. 

Wheast, R.C. (Ed.) (1979). CRC handbook of chemistry and physics, CRC Press Inc. Boca Raton. 
Florida, USA.  

Wraith, J.M. & Or, D. (1999). Temperature effects on soil bulk dielectric permittivity 
measured by time domain refiectometry: Experimental evidence and hypothesis 
development, Water Resources Research, 35 (2), 361-369. 

18 

The Temperature Behavior of Resonant and 
Non-resonant Microwave Absorption  

in Ni-Zn Ferrites 
Raúl Valenzuela 

Departamento de Materiales Metálicos y Cerámicos,  
Instituto de Investigaciones en Materiales, 

México 

1. Introduction 
The magnetic response of Ni-Zn ferrites at microwave frequencies has been recently 
investigated by means of resonance techniques, by several authors. In this chapter, we 
present a review of recent results obtained on the resonant microwave absorption (electron 
paramagnetic resonance, EPR, and ferromagnetic resonance, FMR) in the X-band (9.5 GHz), 
of polycrystalline Ni-Zn ferrites (ZnxNi1-xFe2O4) for several temperature ranges. We begin at 
high temperatures in the paramagnetic state (T > TC, where TC is the Curie point); as 
temperature decreases, the onset of magnetic ordering is investigated, with its effects on the 
main FMR parameters. When experiments are carefully carried out, magnetic transitions can 
be detected as critical points in plots of the thermal behavior of the resonance line width.  
We investigate also the behavior of nonresonant properties by means of the low-field 
microwave absorption (LFMA). This absorption, which occurs at applied fields of the 
same order of magnitude than the anisotropy field, HK, of the sample, is providing 
valuable information concerning the magnetization processes. LFMA is typically 
measured in the -1 kOe < HDC < +1 kOe field range.  LFMA is associated with the 
nonresonant microwave absorption occurring during the magnetization processes from 
the unmagnetized state up to the approach to saturation. We provide here a short review 
of this particular measuring technique. Then, we propose to begin the study of LFMA in 
Ni-Zn ferrites also by decreasing the measuring temperature from the Curie transition. 
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2. Ferrites  
Ferrites, also known as magnetic ceramics, are a very well established group of magnetic 
materials (Valenzuela, 2005a). Ferrites possess three different crystal structures: spinels, 
garnets, which belong to cubic systems, and hexagonal, which can be considered as derived 
from magnetoplumbite. In this review, the focus will be on spinel ferrites, and in particular 
on the Ni-Zn “family” which will be taken as an example. A brief review of crystal structure, 
magnetic structure and magnetic properties of these ferrites is given. 

2.1 Spinel structure  
The spinel structure is a cubic structure extremely stable, with a dominant ionic character. In 
addition to charge compensation, the cation/anion ratio is ¾. More than 140 oxides and 80 
sulphides have been systematically studied (Hill & al 1979). Most of the commercially 
important spinels are synthetic, but the most important and probably the oldest one with 
practical applications, magnetite, Fe3O4, is a natural oxide. Magnetite has also the 
remarkable feature of the simultaneous presence of ferrous (Fe2+) and ferric (Fe3+) iron on 
equivalent crystal sites, which provides unusual electrical and magnetic properties. In 
addition to the 2,3 spinels (2,3 refers to divalent and trivalent cations, respectively), formed 
by a combination of one divalent and two trivalent cations to balance the 8 negative charges 
provided by the oxygen  in  the  formula  D+2T+32O-24, there are other combinations with 
spinel structure, which provide 3 cations with a total valency of 8, such as 2,4 (Co2GeO4), 
1,3,4 (LiFeTiO4), 1,3 (Li0.5Fe2.5O4), 1,2,5 (LiNiVO4), and 1,6 (Na2WO4) spinels.  
The crystal structure, belonging to the Fd3m space group, can be described as a close-packed 
(fcc) arrangement of oxygens, which includes tetrahedral and octahedral interstitial sites. One-
half of the interstitial octahedral sites and one-eighth of the tetrahedral sites are occupied by 
cations. They are known also as “A” sites (tetrahedral) and “B” sites (octahedral). 
The unit cell is formed by eight formula units AB2O4, with eight A sites, 16 B sites and 32 
oxygen. This unit cell can be divided into octants of edge a/2 (a = unit cell parameter) for a 
better view of the two sites, Fig. 2.1. In this representation, a tetrahedral cation is taken as 
the origin of the cell. The nearest neighbors of both sites are illustrated in Fig. 2.2.  
When divalent cations occupy the A sites and trivalent cations enter the B sites, the spinel is 
known as having a “normal” cation distribution. This arrangement can be represented as 
(D+2) [T3+2]. A variant of this structure is the “inverse” spinel, where A sites contain a 
trivalent cation, while B sites contain the divalent and the remaining trivalent cation, (T3+) 
[D2+ T3+]. In some cases, an intermediate distribution can be achieved by playing with 
thermal treatments, leading to (D1T)[DT2-], where  is the “degree of inversion”. The 
distribution of cations on the two spinel sites depend on a complex interplay of cation 
radius, electrostatic energy, crystal field energy, and polarization effects (covalency 
contribution, for instance).  
A remarkable feature of stability of spinel structure is that it can form an extremely large 
variety of total solid solutions. Some conditions apply; first, electrical neutrality, i.e., the 
addition of the charge of all cations should balance oxygen total charge (-8 for a formula); 
second, the ratio of cations/oxygen should remain ¾, and finally, there should be relatively 
small differences between cation radii. In solid solutions, composition can be changed on a 
continuous basis, leading also to continuous variations in the physical properties. This 
allows a very precise tailoring of magnetic properties, which is a major advantage for any 
application. Divalent cation in the 2,3 spinel formula can be formed by any combination of 
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Fig. 2.1. Unit cell of the spinel structure. Cations on A sites are represented by small black 
circles, cations on octahedral B sites by small open circles, and large circles are oxygens. The 
unit cell parameter is a.  

 

 
Fig. 2.2. Nearest neighbors of a) A site, b) B site and c) oxygen site. 
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divalent Ni2+, Co2+, Mn2+, Fe2+, Cu2+, Zn2+, Cd2+, Mg2+, Ca2+. Ferric ions can also be 
substituted, or combined with Al3+, V3+, Cr3+, Mn3+, Ga3+, In3+, etc. One of the most 
interesting and representative solid solution is Ni-Zn ferrites, with formula Ni1-xZnxFe2O4, 
with 0 ≤ x ≤ 1.0 (Ravindranathan & Patil, 1987). 

2.2 Nickel-zinc ferrites  
In spite of having a large cation radius, Zn2+ has a strong preference for A sites, which are 
smaller than B sites. Ferric ions manifest no preference for A or B sites. Therefore, zinc ferrite 
ZnFe2O4 is a normal spinel. In contrast, divalent nickel shows a strong tendency to occupy B 
sites. This means that nickel ferrite, NiFe2O4 tends to be an inverse spinel. Ni-Zn solid 
solutions (when prepared by solid state reaction with a slow cooling from the sintering 
temperature) exhibit therefore a cation distribution which is normal with respect to Zn, and 
inverse for Ni. This means that Zn will occupy A sites (with ferric ions completing the 
“filling” of A sites), while nickel and the remaining ferric cations share B sites: 

 (ZnxFe1-x) [Ni1-x Fe1+x] 

The cell parameter, Fig. 2.3a, shows a linear dependence with composition x. Since Zn2+ is a 
relatively large cation occupying the small A sites, the cell parameter increases with Zn 
content. The Curie temperature exhibits a strong decrease with zinc concentration, Fig. 2.3b. 
For x = 1, zinc ferrite (ZnFe2O4) manifests an antiferromagnetic behavior with a Néel 
temperature of 9 K. While the increase in cell parameter is quite linear, the decrease in TC is 
more rapid. This fact can be understood by recalling that as Zn content increases, in addition 
to the expansion of the unit cell (and therefore, cations become far apart), there is an effect of 
dilution, since Zn cations are diamagnetic. However, there is also a change in magnetic 
structure, since for the very high content of Zn, the ferrite changes from ferrimagnetic (with 
a high TC = 858 K for x = 0), to an antiferromagnetic arrangement with a very low Néel 
temperature.   This result will be briefly discussed below.   
 
 
 
 
 
 
 
 
 
 
 
 

       (a)                (b) 

Fig. 2.3. Variation in the cell parameter, (a), and the Curie transition, (b), both as a function 
of Zn content x (Adapted from Valenzuela, 2005a).  

The ferrimagnetic order in ferrites is the result of superexchange interactions. The 3d 
unpaired spins of transition metals exhibit an antiparallel arrangement which occurs 
through anions, as schematically shown in Fig. 2.4. This interaction takes place by means of 
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p orbitals of oxygen. Since p orbitals are linear, this interaction sensitively depends not only 
on the distance between cations and anion, but also on the angle between them. It is 
expected to be a maximum for a 180° angle. The first discussion on superexchange 
interactions was proposed by Anderson (1959). 
The main superexchange interactions in spinels are the A-O-B and the B-O-B interactions. 
The former takes place between a cation in an A site, which becomes antiparallel to cations 
on the nearest B site. The latter consists on the antiparallel arrangement between two cations 
on neighboring B sites. The A-O-B interaction is expected to be significantly stronger than 
the B-O-B one, since the angle between these sites is close to 180° (see Fig. 2.2 (c)); the B-O-B 
geometry involves a 90° angle, quite different from the linear geometry of p orbitals.  
 

 
Fig. 2.4. Schematical representation of the superechange interactions in oxides. The spins in 
the unfilled 3d orbitals of transitions metals, on the sides, can interact with cation nearest 
neighbors through the 2p oxygen orbitals, in the center. This interaction can be extremely 
strong, leading to high Curie temperatures. 

For x = 0, the cation distribution is as follows: (Fe)[NiFe]. By assuming that A-O-B 
interaction is dominant, the iron in the A site will be aligned in an antiparallel direction with 
respect to spins of cations on B sites. If we simplify the magnetic structure of Fig. 2.2 (c) and 
represent one A site and two B sites around an oxygen anion (in the basic formula, the ratio 
of A to B sites is ½), and if all of them are assumed to be on the same plane, we can draw a 
cartoon like the one on Fig. 2.3. Nickel ferrite, with one Fe3+ on the A site, the other one on a 
B site and the Ni on the other B site should have a magnetic structure like the one in Fig. 2.5 
(a). The interaction Fe(A)-O-Fe(B) is among the strongest in spinels, as Fe3+ has a 3d orbital 
half-filled and the angle between sites is close to 180°. Accordingly, the Curie temperature is 
maximum for this family (858 K), and it has the same value for most inverse spinels (such as 
CoFe2O4, for instance). 
For zinc ferrite (x = 1), the site occupancy is: (Zn) [Fe2]. The A site contains only Zn ions 
(with no magnetic moment) and therefore the only interaction in the system is B-O-B. Irons 
on both B sites become antiparallel and the ferrite is antiferromagnetic, with a Néel 
temperature of 9 K. This low value of superexchange interaction is explained mostly by the 
angle between interacting cations (90°), and also by the expansion of the unit cell, as a 
consequence of the larger size of Zn cations [Fig. 2.3.(a)]. For compositions in the 0.5 < x < 
0.8 range, with a distribution: (ZnxFe1-x)[Ni1-xFe1+x], where both interactions become 
comparable, the magnetic structure can be represented by a triangular arrangement known 
as the Yafet-Kittel structure, first proposed by these authors (Yafet and Kittel 1952). 
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                (a)       (b)          (c) 

Fig. 2.5. Simplified representation of an A and two B sites around an oxygen. Arrows 
represent the spins as they can be expected for (a) nickel ferrite (x = 0), (b) zinc ferrite (x = 1), 
and (c) a composition rich in Zn (0.5 < x < 0.8). 

A plot of saturation magnetization (at low temperatures) as a function of the composition 
starts at σs ~ 2.33 Bohr magneton/formula unit, since the ferric cations are in opposition 
(Fig. 2.5 (a)) leaving only the nickel magnetic moment as a result, as shown in Fig. 2.6. If the 
A-O-B interaction were dominant on all the composition range, the total magnetic moment 
would exhibit an increase with x up to a value of 10 Bohr magnetons for x = 1 (broken line in 
Fig. 2.6), a condition with all A sites occupied by Zn (with no magnetic moment) and both B 
sites with Fe, and spins in a parallel orientation. But the weakening of this interaction results 
in the competition of B-O-B interaction, leading to the antiparallel arrangement on sites B, 
with the variations in saturation magnetization illustrated in Fig. 2.6.  
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Fig. 2.6. Behavior of saturation magnetization of Ni1-xZnxFe2O4 ferrites at very low 
temperature, as a function of Zn content. 

After many years, NiZn ferrites remain as an excellent system to study magnetic properties 
of solids.  
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3. Microwave absorption 
Microwave absorption has become a very powerful investigation and characterization tool 
in the study of magnetic materials, both in the paramagnetic, disordered state (electron 
paramagnetic resonance, EPR) and the ferri or ferromagnetic, ordered phase (electron 
ferromagnetic resonance, FMR) (see, for instance, Kittel 2005, Pilbrow 1990). The radiation 
emerging from interaction with a solid possesses changes (with respect to the incident 
radiation) that in principle, allow deducing the structural and magnetic properties of the 
material. To simplify, we can consider the interaction of a spin with a constant magnetic 
field. If the magnetic moment is originated only by the spin,  

  = gBS = S  (3.1) 

where g is the gyromagnetic factor (in general depending on L and S, the quantum 
mechanical numbers of orbital and spin momenta),  is the total gyromagnetic ratio. In an 
external field, H0 = H0z, and energy is expressed as:  

 E = - •H = - zH = - msħH (3.2) 

with the spin ms = ± ½ , corresponding to the two orientation of the magnetic moment, i.e., 
parallel (ms = - ½), or antiparallel (ms = + ½) to the magnetic field; the population of both 
levels is given by the Boltzmann statistics,  

 f = N+/N- = exp {-E/kBT}  (3.3) 

where N = N+ + N-  is the total population of atoms with spin parallel (N-) and antiparallel 
(N+) to the magnetic field, kB is the Boltzmann constant, and -E the energy difference 
between the two levels. The net magnetic moment per atom is then: 

 z = (gB/2)[( N+ + N-)/N] = (gB/2)[(1-f)/(1+f)] (3.4) 

A series expansion of (3.4) for not so low temperatures (kBT >> E) leads to the Curie law,  

 z = (gB/3)(E/kBT) = CH/T (3.5) 

with C = gB2 /3kB. It is possible to induce transitions between the two spin states by 
application of electromagnetic radiation of the relevant frequency, which satisfies the Bohr 
condition, 
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This shows the resonance conditions. Equation (3.6) is also known as the Larmor resonance 
condition. 
In the case of magnetic materials with a spontaneous magnetization (ferri and ferromagnetic 
materials), H includes the internal field, in most cases leading to a lower external field 
needed to attain the resonance conditions. Both EPR and FMR have been used to investigate 
a wide variety of materials such as ferrites (Montiel et al 2004, Wu et al 2006) and 
amorphous alloys (Valenzuela et al 2005b, Montiel et al 2006).  
In addition to these methods, nonresonant microwave absorption, or low field microwave 
absorption (LFMA) has been observed in many materials, such as amorphous metallic thin 
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Fig. 2.6. Behavior of saturation magnetization of Ni1-xZnxFe2O4 ferrites at very low 
temperature, as a function of Zn content. 
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with C = gB2 /3kB. It is possible to induce transitions between the two spin states by 
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This shows the resonance conditions. Equation (3.6) is also known as the Larmor resonance 
condition. 
In the case of magnetic materials with a spontaneous magnetization (ferri and ferromagnetic 
materials), H includes the internal field, in most cases leading to a lower external field 
needed to attain the resonance conditions. Both EPR and FMR have been used to investigate 
a wide variety of materials such as ferrites (Montiel et al 2004, Wu et al 2006) and 
amorphous alloys (Valenzuela et al 2005b, Montiel et al 2006).  
In addition to these methods, nonresonant microwave absorption, or low field microwave 
absorption (LFMA) has been observed in many materials, such as amorphous metallic thin 
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films (Rivoire & Suran 1995), amorphous ribbons (Medina et al 1999), glass coated 
amorphous microwires (Chiriac et al 2000), ferrites (Montiel et al 2004), multilayer thin films 
(de Cos et al 2007). LFMA is strongly associated with magnetic order since in all cases it is 
present only below the transition temperature between the paramagnetic-ferrimagnetic (or 
para-ferromagnetic) phases. LFMA has also shown to be sensitive to mechanical stresses 
(Montiel et al 2006). In this chapter, we show that LFMA can also be used to detect changes 
in the magnetic structure. From the experimental point of view, LFMA needs an accurate 
measurement of the magnetic field for low fields, and the possibility to reverse the field, i.e., 
typically in the -1000< H < +1000 Oe. This can be challenging in the case of large 
electromagnets, which tend to keep a non negligible remanent field.   
Another nonresonant method recently proposed for the investigation of magnetic transition 
is the method known as magnetically modulated microwave absorption spectroscopy 
(MAMMAS) (Alvarez & Zamorano 2004, Alvarez et al 2007), which is based on a simple 
idea: the nonresonant microwave absorption regime in a given material changes when a 
phase transition occurs. Since the microwave absorption depends on the wide definition of 
structure (crystalline, electronic, magnetic, etc.), virtually any phase change can be detected, 
with the significant advantage that microwave absorption is extremely sensitive. 
Experimentally, the sample is subjected to a low magnetic field (clearly lower than the 
resonance field in the temperature range), and the microwave absorption is measured as the 
sample temperature is slowly varied. Phase transitions appear typically as a minimum in a 
dP/dH vs T plot. 

4. Microwave absorption in ferrites  
In this Section, we discuss the microwave absorption of polycrystalline Ni-Zn ferrites as a 
function of measuring temperature. The resonant mode is first considered. The description 
and analysis of these properties is quite useful, as NiZn ferrites offer a wide variety of 
magnetic structures and phenomena. The study of non resonant absorption also sheds light 
on magnetic structure phenomena of ferrites.  

4.1 High temperatures (T >TC)  
By “high temperature” we mean a temperature higher than the transition from the ordered 
(ferrimagnetic) phase to the disordered (paramagnetic) phase. This transition is the Curie 
temperature, TC, and it is an intrinsic property, depending entirely on the ferrite composition 
(except for ferrite nanoparticles, where the Curie temperature might depend on the 
nanoparticle size). The effects of temperature are shown in Fig. 4.1 for a polycrystalline NiZn 
ferrite with x = 0.65. Most of spectra exhibit an additional absorption in the low field range (H 
< 0.75 kOe). This non-resonant absorption is the low field microwave absorption (LFMA, 
Section 3) and will be discussed in Section 5. We focus now on the resonance phenomena. 
The reported Curie temperature for this composition is ~ 435 K (Globus et al 1977); the 
spectrum at 460 K corresponds therefore to the paramagnetic state. In these conditions, the 
thermal energy is high enough to overwhelm the internal field that results in the long range 
order of spins, and they are free to interact with the DC field, HDC, and the microwave field, 
hAC. In the Larmor relation (Eq. 3.6),  

  = H (4.1) 
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(where  is the resonance frequency, is the gyromagnetic factor), H is the total field on the 
spins. In the absence of any internal field, H is simply the external applied field Hres. The 
microwave absorption at 460 K, Fig. 4.1, appears as a narrow, symmetric line. This is an EPR 
(electron spin resonance) spectrum.   
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Fig. 4.1. Ferromagnetic resonance as a function of measuring temperature (184 ≤ T ≤ 460 K), on 
a polycrystalline ferrite with composition Ni0.35Zn0.65Fe2O4 (adapted from Montiel et al., 2004). 

4.2 Intermediate temperatures (T < TC)  
As temperature decreases below the Curie transition, several changes are apparent in the 
resonance spectra. First, the resonance field (usually taken as the intercept of the line with 
the field axis) decreases. Second, the lineshape becomes broader as T decreases, especially in 
the H > Hres field region. These changes are due to the rise of the internal field, Hi, leading to 
the long range order of magnetic moments. For T < TC, Hi possesses a larger energy than the 
thermal energy of the ferrite. Accordingly, the total field in the Larmor relation should 
include now the contribution from the internal field, 

 H = Hres + Hi  (4.2) 

The internal field is the combination of all the factors associated with the long range order in 
the ferrite: the exchange field, Hex, the anisotropy field, HK, the demagnetization field, Hd, 
the porosity field, Hp (which is the field due to the appearance of magnetic dipoles on 
pores), etc. An additional source of inhomogeneity in ferrites is associated with differences, 
as well as with disorder, in site occupancy by the cations. As discussed in Section 2, 
transition metal cations have different stabilization energies on sites with diverse symmetry, 
as the tetrahedral and octahedral sites of spinels. While some of them exhibit a clear 
“preference” for one of the sites (i.e., Zn2+ for tetrahedral or A sites, Co2+, Ni2+, and Fe2+ for 
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(where  is the resonance frequency, is the gyromagnetic factor), H is the total field on the 
spins. In the absence of any internal field, H is simply the external applied field Hres. The 
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Fig. 4.1. Ferromagnetic resonance as a function of measuring temperature (184 ≤ T ≤ 460 K), on 
a polycrystalline ferrite with composition Ni0.35Zn0.65Fe2O4 (adapted from Montiel et al., 2004). 
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the ferrite: the exchange field, Hex, the anisotropy field, HK, the demagnetization field, Hd, 
the porosity field, Hp (which is the field due to the appearance of magnetic dipoles on 
pores), etc. An additional source of inhomogeneity in ferrites is associated with differences, 
as well as with disorder, in site occupancy by the cations. As discussed in Section 2, 
transition metal cations have different stabilization energies on sites with diverse symmetry, 
as the tetrahedral and octahedral sites of spinels. While some of them exhibit a clear 
“preference” for one of the sites (i.e., Zn2+ for tetrahedral or A sites, Co2+, Ni2+, and Fe2+ for 
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octahedral or B sites), other cations can be found equally on both sites (Fe3+). To make things 
more complicated, it is possible to change the cation distribution by means of thermal 
treatments. The resonance phenomenon can be therefore slightly different when this 
occupancy of sites is not strictly homogeneous, since some terms of the internal field are not 
exactly the same for all the microwave absorbers.  
The other source of inhomogeneity in the internal field is the disorder in the site occupancy. 
Even if the occupancy of sites is well determined (i.e., in Ni-Zn ferrite, all Zn cations on A 
sites, all Ni cations on B sites), there can be an inhomogeneous distribution of each of them 
on the sites. A simple example could be nickel ferrite, NiFe2O4, with all Ni2+ on B sites (and 
of course, Fe3+ on both sites). An extreme arrangement would be a long range order of Ni2+ 
and Fe3+ on octahedral sites; the cation nearest neighbor of any Ni2+ is then one Ni2+ and two 
Fe3+, and viceversa (see Fig. 2.2). On the other extreme, the “disordered” spinel would be the 
one with Ni2+ and Fe3+ randomly distributed on B sites. Obviously, the cation nearest 
neighbor of a given Ni2+ could be, on equal probability another Ni2+ or a Fe3+. Internal fields 
would not be strictly the same for each situation. These two sources of line broadening in 
FMR in ferrites depending on cation distribution could be written as Hdist. To our 
knowledge, this contribution has not been discussed in literature.  
The internal field can therefore be expressed as: 

 Hi = Hex + HK + Hd + Hp +Hdis (4.3) 

Figure 4.2 shows the behavior of the resonance field, Hres, as a function of temperature. Hres 
increases as temperature increases because the internal field decreases until it is 
overwhelmed by thermal vibrations at TC. For higher temperatures, the magnetic field 
needed to satisfy the Larmor relation has to be supplied entirely by the external field. 
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Fig. 4.2. Variation of the resonance field, Hres, with temperature for Ni0.35Zn0.65Fe2O4 ferrites 
(adapted from Alvarez et al, 2010).  
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The total linewidth, H (taken as the field between the maximum and the minimum in the 
resonance signal), has also an additive character in polycrystalline materials, and can be 
written: 

 H = Hp + HK + Heddy + Hd + Hdist (4.4) 

Where Hp is the linewidth broadening associated with porosity, HK is due to magnetic 
anisotropy, Heddy is related with  eddy currents, Hd is the linewidth broadening produced 
by demagnetizing fields, and Hdist  is the linewidth broadening originated by variations in 
cation distribution on the A and B sites of ferrite. It appears that anisotropy, and in particular 
magnetocrystalline anisotropy has a strong contribution to total linewidth. By measuring 
nickel ferrite with Co2+ substitutions, Sirvetz & Saunders (1956) observed a minimum in 
linewitdth for the composition corresponding to the compensation of anisotropies (x = 0.025 in 
CoxNi1-xFe2O4), since nickel ferrite has a small negative contribution (single-ion contribution to 
anisotropy), while cobalt cations provide a strong positive contribution to the total 
magnetocrystalline anisotropy. More recently, Byun et al (2000) showed that in the case of Co-
substituted NiZnCu ferrites, H increases for a Co composition higher than the 
magnetocrystalline anisotropy compensation point. Another source of linewidth broadening is 
certainly related with the polycrystalline nature of most samples. By modeling one ensemble 
of single domain nanoparticles, Sukhov et al (2008) have shown that the random distribution of 
anisotropy axis is directly associated with the broadening of the FMR signal. 
Figure 4.3 shows the behavior of linewidth with temperature for the same sample than Figs. 
4.2 and 4.1. A clear change in slope can be observed at about 430 K, and a smooth variation 
is also apparent at about 250 K. The former is associated with the Curie transition, which for 
this Ni/Zn ratio is ~ 430 K (Valenzuela, 2005a), and the latter with a change in magnetic 
structure which will be discussed later. By comparison with Fig. 4.2 it appears that 
linewidth, H, is more sensitive to structural changes than the resonance field, Hres.  
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Fig. 4.3. Variations in linewidth with temperature, for Ni0.35Zn0.65Fe2O4 ferrites (adapted 
from Alvarez et al, 2010).  
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octahedral or B sites), other cations can be found equally on both sites (Fe3+). To make things 
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The increase in resonance field as temperature rises is due to the fact that internal field 
decreases (exchange interaction, anisotropy field, and the fields associated with magnetization, 
i.e., demagnetization fields on surfaces including the ones created by porosity). In contrast, 
linewidth decreases with temperature, essentially because one of the major contributions to 
H is originated by magnetocrystalline anisotropy, and this contribution is proportional to this 
parameter (Byun et al 2000). At T > TC, as discussed in Section 4.1, the resonance line becomes 
narrow and symmetrical, as the spectrum for T = 460 K in Fig. 4.1. 

4.3 Low temperatures (T << TC)  
Ni-Zn ferrites present other interesting phenomena at T below room temperature. These 
appear as small “bumps” in the thermal behavior of both the resonance field and the 
linewidth, at about 240 K. These phenomena are more evident in LFMA (Low-Field 
Microwave Absorption). In this absorption mode (see Section 3.), the system is far from the 
resonance conditions as stated in the Larmor relation, and it can be thought as the 
interaction between the microwave field and the ordered spins in the material as the 
magnetization state progresses from the demagnetized state toward magnetic saturation. In 
the simple case, LFMA appears as an antisymmetric signal at both sides of the H = 0, Fig. 
4.4. LFMA also exhibits hysteresis by cycling the application of the magnetic field.  
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Fig. 4.4. LFMA measurements of Ni0.35Zn0.65Fe2O4 ferrites, for selected temperatures. The 
temperature range in the upper graph is 300-430 K, while in the lower  one it is 154-239 K 
(adapted from Alvarez et al 2010). 
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Several features are significant in these plots. Beginning with the high temperatures (upper 
part of Fig. 4.4), it is evident that the amplitude of the signal at both sides of H = 0 decreases as 
T increases, leading to a flat response for T ≥ 430 K, which is the Curie point. It is therefore 
confirmed that LFMA is associated with magnetization processes in the ordered phase.  
Also, it can be observed that the field corresponding to the peak to peak magnetic field 
values, maxima (for negative fields) and the minima (for positive fields) increases as T 
decreases. By comparing with a direct calculation of the anisotropy field, HK, Valenzuela et 
al (2011) were able to show that the amplitude between maxima-minima in LFMA is directly 
associated with HK, upper part of Fig. 4.5. 
By a comparison between the two sets of curves separated by T ~ 250 K, it appears that there is 
a continuous evolution of the antisymmetrical signal, from high T to low T, from a signal with 
the same phase as the FMR signal (Fig. 4.1) for T > 250 K, to the opposite, also antisymmetric, 
but minimum-maximum (Min-Max), or out-of-phase signal, which is clearly reached at T ≤ 150 
K. Both signals are centered on H = 0. The presence of such out-of-phase signal has been 
correlated with the occurrence of a ferromagnetic ordering (Owens 2001, 2005). In fact, an-out-
of phase LFMA signal has been observed in many ferromagnetic systems (Montiel et al 2005, 
2008, de Cos et al 2008). It can be assumed that a parallel, ferromagnetic arrangement of spins 
is related with this signal, while an antiparallel, ferrimagnetic structure leads to the opposite 
result (in phase signal). In the present case, the evolution of the signal when decreasing 
temperature should be associated with the appearance of a parallel arrangement of spins for T 
≤ 150 K. Due to the Yafet-Kittel triangular structure, Fig. 2.5 (c), there is effectively a 
ferromagnetic arrangement simply by considering the components of the canted spins of 
cations on B sites. Figure 4.5 shows the evolution of Curie temperature and Yafet-Kittel 
transition for NiZn ferrites; the latter was determined by neutron diffraction (Satya Murthy et 
al, 1969). The results on Fig. 4.4 were obtained for x = 0.65, leading to a Yafet-Kittel transition, 
TYK, about 250 K, which is in very good agreement with these results.  
The transition from the collinear arrangement to the Yafet-Kittel triangular structure can be 
detected (as temperature decreases) by means of MAMMAS experiments, as shown in Fig. 
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4.7. As explained in Section 3, the sample is subjected to a small magnetic field, and its 
microwave absorption is monitored as temperature is slowly changed. The MAMMAS 
response exhibits, from room temperature, a continuous decrease to a minimum value at 
about 240 K. Then, the absorption increases again as the temperature keeps decreasing. 
These features point to a change in the microwave absorption regime due to a change in the 
material structure. In this case, all evidence is associated with the transition from the 
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collinear ferromagnetic structure with iron in A sites of the spinel coupled by a 
superexchange interaction with iron cations (and nickel cations) on B sites, for T > 240 K, to 
the triangular structure, where spins are no more collinear. Due to the weakening of the A-
O-B interaction (as A sites become increasingly populated by zinc non magnetic ions), it 
becomes comparable to the B-O-B interaction which tends to establish an antiparallel 
geometry on the spins of ions on B sites.   

5. Conclusions 
As a conclusion, we can state that ferrites are complex materials: they offer a crystal 
complexity, with complex magnetic structures and complex magnetic properties. However, 
complexity can always be a rich source of knowledge. In addition to the well known 
ferromagnetic resonance methods, some significant steps can be done by investigating the 
microwave response of ferrites, particularly by using two novel research techniques, based 
on nonresonant absorption: low field and magnetically modulated microwave abosorption, 
which provide an original insight into these materials.  
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1. Introduction  
The microwave dielectrometry of high loss liquids is discussed in the present work. For 
such liquids the ratio of the imaginary to the real complex permittivity parts is of the order 
of one or more. High loss liquids are water and water solutions of organic and non-organic 
substances. Water is the most investigated liquid during long time. The reason for the 
impressive interest to water is due to its ubiquity in our environment. Usually water is used 
as the reference liquid for differential measurement of water-containing liquids under test, 
for instance, grape wines and musts. The present paper is directed to the control of 
naturalness (authenticity) of grape wines and musts by their complex permittivity 
determination. This complex permittivity determination will be performed in the millimeter 
wave band where the frequency dispersion of complex permittivity of water has a 
maximum.  
It is necessary to underline that the wine trade is a multi-million-income industry in which 
frauds can have enormous financial repercussions and the quality of products directly 
impacts on human health. A universal wine and must authenticity identification method 
does not exist.  Each of known methods (the methods of analytical chemistry, wine 
sampling, physical-chemical methods) have own advantages and disadvantages and assume 
a definite area of usage [Оrganisation internationale de la Vigne et du Vin, 2009]. Thus, the 
development of alternative methods of wine product quality determination remains actual. 
One feature of the wine trade in Ukraine and other former Soviet Union countries is the 
increase of fraud. The main types of fraud are unregulated sugar use, substitution of the sort 
of vine, not keeping the ripening terms for the wines, water addition, blending of cheap 
wines instead the best wines, addition of artificial sweeteners, dyes, aromatizers, and fake 
wine production without vine processing. In Europe and USA there is fraud growth by 
bottling inferior wine under a quality label – with the wine originating from a different 
region or even country than that  it is stated. 
Despite the rigor of wine quality demands fake wine production did not decrease due to 
lack of reliable methods for identification and suitable reference data [Ezhov et al., 1999]. 
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such liquids the ratio of the imaginary to the real complex permittivity parts is of the order 
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as the reference liquid for differential measurement of water-containing liquids under test, 
for instance, grape wines and musts. The present paper is directed to the control of 
naturalness (authenticity) of grape wines and musts by their complex permittivity 
determination. This complex permittivity determination will be performed in the millimeter 
wave band where the frequency dispersion of complex permittivity of water has a 
maximum.  
It is necessary to underline that the wine trade is a multi-million-income industry in which 
frauds can have enormous financial repercussions and the quality of products directly 
impacts on human health. A universal wine and must authenticity identification method 
does not exist.  Each of known methods (the methods of analytical chemistry, wine 
sampling, physical-chemical methods) have own advantages and disadvantages and assume 
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development of alternative methods of wine product quality determination remains actual. 
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increase of fraud. The main types of fraud are unregulated sugar use, substitution of the sort 
of vine, not keeping the ripening terms for the wines, water addition, blending of cheap 
wines instead the best wines, addition of artificial sweeteners, dyes, aromatizers, and fake 
wine production without vine processing. In Europe and USA there is fraud growth by 
bottling inferior wine under a quality label – with the wine originating from a different 
region or even country than that  it is stated. 
Despite the rigor of wine quality demands fake wine production did not decrease due to 
lack of reliable methods for identification and suitable reference data [Ezhov et al., 1999]. 
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The main part of fraud (up to 90-95%) is associated with wines that result of the 
fermentation of sugar-water or diluted grape must solution. Organoleptic determination of 
such wines is possible but is not reliable. For reliable examination there are both classical 
analytical methods (the determination of the density, extract, mineral substance and so on) 
and methods based on isotope patterns and nuclear magnetic resonance. The major 
inconvenience of these techniques is that they are generally time-consuming and/or 
expensive and not suitable for continuous monitoring. Therefore, the development of the 
reliable methods of wines and fraud identification is still actual.  
The authenticity control of wine and fruit musts is a quite complicate problem. At present 
the great number of parameters is used for that purpose, such as the alcohol content, sugar, 
acidity, and extractable substances with and without sugar etc.  Additional parameters used 
are the number of anions (Cl-, SO42-) and cations (K+, Na+, Ca++, Mg++), organic acids 
(tartaric, malic, lactic, citric), pH etc.  In grape, fruit must, and wine production the 
measurement of density, pH, buffer capacity, conductivity, viscosity, and optical density are 
used to manage the quality as well. 
The great number of parameters required determining the authenticity and the time for their 
determination make the testing of wine production during the technological process is really 
complicated. European scientists have known for almost a decade that analysis of various 
chemical elements in wine can help to identify roughly the geographic origin of wines, but 
the tests have been too complex and not conclusive enough to be used on a large scale. 
The necessity to measure small changes of complex permittivity of high loss liquids at 
millimeter wave band arises at biophysical research of native albuminous molecule 
conformation. At the preparation of calibration data during distance sounding of water 
surfaces and interpretation of sounding results, at physical-chemical study of properties of 
water solutions and so on. One of the important practical usages of dielectrometry of high 
loss liquids is the identification of wines and musts and their authenticity.  Differential 
complex permittivity measurement has an advantage towards to absolute complex 
permittivity measurement when it is necessary to measure small complex permittivity 
changes in liquids under study.  

2. Techniques for high loss liquid complex permittivity measurement 
Numerous techniques for complex permittivity determination of high loss liquids are 
applied at microwave frequencies [Sato & Buchner, 2004; Masaki at al., 2007; Agilent 85070E, 
2008; Buckmaster et al., 1985; Hu, et al., 1994; Cherpak et al., 2004]. Among of them it is well 
known that both resonator [Afsar & Ding, 2001] and waveguide [Afsar & Suwanvisan, 2005] 
methods are used for the complex permittivity measurement of high loss liquids.  
The resonator methods use the complex resonant frequency of a resonator to obtain complex 
permittivity of liquid. And the waveguide methods use the complex wave propagation 
factor in a waveguide segment under study. The significant limitation of the above-
mentioned methods is a high attenuation observed in the high loss liquid measurements. 
Moreover, the high loss liquid has large real and imaginary complex permittivity parts 
(much greater than 1, specifically, for water) and these values are of the same order. 
Therefore, measured parameters (the resonant frequency and Q-factor in a resonator or the 
wave phase and wave attenuation in a waveguide) depend simultaneously both on real and 
imaginary complex permittivity parts of high loss liquids. Owing to this fact the complex 
permittivity determination becomes considerably complicated while using measured 
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parameters. For the resonator method, the Q-factor is usually rather small (it is 
approximately 10-100 for enough complex permittivity measurement sensitivity) and as a 
result it is difficult to determine the resonant frequency with needed accuracy. Concerning 
to the waveguide method, the wave attenuation is high at the propagation of the wave even 
via a small length (compare to skin layer in liquid) waveguide section at presence of high 
loss liquid like water or water solutions. 
There are a number of papers where the complex permittivity determination of high loss 
liquids was studied using different resonator methods. For example, in Cherpak’s papers 
whispering-gallery modes in cylindrically shaped dielectric resonators were studied to 
obtain complex permittivity of high loss liquids. A resonator as a radially two-layered 
dielectric disc placed between conducting endplates with an internal layer filled with air or 
loss liquid such as water, ethyl alcohol, benzene and aqueous solutions of ethyl alcohol was 
studied [Barannik et al., 2007]. In the paper [Shaforost, 2009] it was described a novel 
approach of high sensitivity liquid analysis for volumes in the nanolitre range with 
challenging perspectives for practical sensor applications in chemistry, biology and 
medicine. Whispering-gallery modes in cylindrically shaped dielectric disks machined from 
low-loss single crystalline materials such as sapphire or quartz allow having very high 
quality factors. The interaction of extremely small volumes of the liquid under test with the 
evanescent field located in the vicinity of the dielectric disk surface at micro-to-millimeter 
wave frequencies was employed for the investigation of aqueous solutions with relevance to 
biological applications. Based on this resonator type, three different liquid sensing 
approaches were developed and analyzed at 10, 35 and 170 GHz with emphasis on the 
determination of the complex permittivity of liquids of nanolitre volumes. In [Cherpak, 
2006] electrodynamics’ properties of quasi-optical dielectric resonators of two types with 
liquid-filled small cavities have been studied. One of the quasi-optical dielectric resonators 
types is a two semi-disc resonator with a diametrical slot in which a cavity with a thin 
(0.01  0.1 mm) flat liquid layer is placed and the other one is a disc resonator with a small 
diameter (0.3  2 mm) cylindrical capillary. Measurements have been carried out at room 
temperature in Ka-waveband by using the resonators made of Teflon material. The obtained 
results allow to conclude that the given approaches to the development of measuring 
technique for characterization of liquids (for example, water and aqueous solutions) are 
quite perspective. In [Shaforost, 2007] they showed that whispering-gallery mode dielectric 
resonators from 10 GHz to 3 THz are attractive for highly sensitive liquid detection and 
identification of small droplets down to volumes of picolitres. Since droplets are usually 
generated by computer controlled microinjection pipettes being moved on a 2D scanning 
table, free access to the sensitive resonator surface from above is essential. 
To obtain small complex permittivity differences of various substances, in particular, high loss 
liquids differential measurement methods are widely used.  The necessity of small complex 
permittivity difference registration for high loss liquids appears, for instance, during biological 
study of conformation changes of native protein molecules [Pethig, 1992] or reference data 
preparation for the device calibration of water surface remotely sensing [Ellison, 2007]. The 
dielectric properties of free water are well described by the Debye formula of the second order. 
Dissolved molecules in water can change the relaxation time both due to coupling of part of 
free water molecules (hydration) and due to the rebuilding of hydrogen bonds in water 
clusters. The latter mechanism is common for water - ethanol mixtures [Sato & Buchner, 2004]. 
Owing to mentioned reasons of complex permittivity measurement of water solutions is 
sensitive to the variation of their chemical composition at Ka band.  



  
Electromagnetic Waves 

 

404 

The main part of fraud (up to 90-95%) is associated with wines that result of the 
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Known waveguide-differential complex permittivity measurement methods distinguished 
by type of the measurement cell usage due to dielectric properties of liquids and 
measurement conditions. So, the cells based on waveguides completely filled with high loss 
liquid [Buckmaster et al., 1985], and also cells with waveguides with capillary with liquid 
put inside of the waveguide [Masaki et al., 2007] are used. It is known the usage of dielectric 
waveguides for complex permittivity measurement of high loss liquid [Meriakri & 
Parkhomenko, 2000]. In a set of Buckmaster’s papers for the development and improvement 
of complex permittivity measurement technique for light and heavy water at 9.335 GHz it is 
shown the possibility to reach high accuracy of absolute measurements [Buckmaster et 
al.,1985; Hu et al., 1994]. The measurement setup in [Hu et al., 1994] was a microwave bridge 
contained a waveguide cavity with a precise length change of a part of rectangular 
waveguide filled with water. They used thermo stabilization for the cavity with the error of 
the order of 0.005°С and a high sensitivity superheterodyne receiver with double frequency 
transformation. After this transformation the precise measurements carried out at frequency 
1 kHz. As a result they reached the relative measurement error for the real and imaginary 
complex permittivity parts the order of 0.1% and 0.2%, respectively.  The 1  standard 
deviations both for real and for imaginary complex permittivity parts do not exceed 0.02%. 
According to own metrological characteristics the setup in [Hu et al., 1994] can be used for 
study the dielectric properties of wines and musts with needed accuracy. It is necessary to 
have laboratory conditions and the cavity of this device does not correspond to carry out 
mass measurements. 
The upper limit frequency for waveguide methods usage with reasonable errors is 140 GHz 
[Jain & Voss, 1994]. The majority of such methods are based on the impedance measurement 
of waveguide system where a sample under study is placed. Possible study at wide 
frequency band both solid and liquid matter. The most suitable objects are media with 
average dielectric losses ( 0.1   tg    1  , where   is angle of dielectric losses). The 
measurement error real complex permittivity part    is often 0.5%, and tg  - 3-5%. It is 
known several types of waveguide methods. So, completely filling with liquid here the 
waves propagation is studied in waveguide [Brandt, 1963]. If a sample is absent in the line 
there is pure standing wave. In [Van Loon & Finsy, 1974] they used the similar method to 
measure liquid samples at the frequency range from 5 to 40 GHz and from 60 tо 150 GHz. 
At that they underlined the practical difficulties at waveguide usage at the frequencies up 
40 GHz due to not enough mechanical power and attenuation increase in waveguide. The 
authors saw two main obstacles to reach high accuracy: there is undesirable reflection and 
attenuation in waveguide walls and there are inhomogeneities where higher modes are 
excited. In the papers [Afsar et al., 2005] and [Fuchs & Kaatze, 2002] the authors are also 
paid great attention on the analysis of possible errors and recommendations to increase the 
measurement accuracy. For long wave part of millimeter wave band they decreased the 
error of /    and /    up to 0.02. In the paper [Alekseev & Ziskin, 2001] measured 
the reflection, propagation and attenuation of electromagnetic waves at the interaction with 
film samples (water and water-ethanol solutions). At 42.25 GHz and 53.35 GHz it is studied 
the influence of film thickness and the character of attenuation in the cell depending on the 
thickness and design of isolated interlayer as well. The authors found out that optimal 
thickness of a sample when the straight-line attenuation of electromagnetic waves takes 
place is interval of 0.28 - 0.33 mm. 
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Alison and Sheppard [Alison & Sheppard, 2001] designed a dielectrometer where the liquid 
layer was changed using short-cut plunger that moved into the liquid. The layer thickness 
was measured with the step of 0.06 mm. Complex permittivity was obtained at 29 – 44 GHz 
using the measurement the reflection coefficient for two different thicknesses. The liquid 
separated from the empty part of a waveguide by means of windows made of organic glass. 
The appearance of higher modes in transmission section the authors did not observed. With 
the same technique the authors measured complex permittivity of human blood at 29 –
 90 GHz [Alison & Sheppard, 1993]. They found out the existence of the field of additional 
(except Debay’s ones) high frequency dispersion. 
In the paper [Zanfolin, 1983] they described the measurement device that allows to obtain 
complex permittivity of high loss liquid at millimeter wave band. The basis of a 
dielectrometer is waveguide interferometer (bridge) where in measurement shoulder there 
is a cell with liquid that is irradiated from open waveguide end. The thickness of a sample is 
changed using a plunger moving by micrometer screw. As a result, an input signal in the 
bridge is a function of the thickness of liquid. The authors give the results obtained for 
ethanol, methanol and pure water at 20°С and 70 GHz. Later the dielectrometer was 
improved. New variant [Buckmaster et al, 1985] contained two channel superheterodyne 
system with twice frequency transformation. The authors analyzed the origin of errors and 
elaborated the ways of their decrease. For that purpose they carried out maximum exact 
measurement of length of a sample, there was increased the frequency and stability of the 
signal. 
In spite of the various considered methods of high loss liquids complex permittivity measurements, 
the problem now still actual due to the difficulties of measurement accuracy and it must be at least the 
order of 0.01% as our measurement showed to identification of water solutions of chemical and 
biological media and their differences between each others. 
One of the possible practical usages of the dielectrometry of high loss liquids is wine and 
must identification in order to determine their authenticity [Watanabe, 2009].  As it was 
mentioned above, wines and musts are high loss liquids, because of mass fraction of water 
in their content is the order of 75-90%.  It was proposed to use complex permittivity 
measurement data to control the stages of sake fermentation - the main biochemical process 
of wine-alcohol industry [Masaki et al., 2007]. As known the change of quantitative chemical 
wine composition, for example, for dry (table) natural wines in specification standard 
product limit influences on complex permittivity values within the scope the order of some 
percents. Therefore, for the solving of wine identification problem it is necessary to have a 
dielectrometer that has much higher sensitivity in comparison with complex permittivity 
deviation for high loss liquids. It is desirable to have a device with differential sensitivity at 
least the order of 0.1% or higher. Authors in [Watanabe, 2009] could not identify the change 
of different samples of dry wines components except ethanol at Ka waveband just because 
of small differential sensitivity. The experimental tool in [Watanabe, 2009] was standard 
probes for the measurement of complex reflection coefficient in liquids by means of vector 
analyzer [Agilent 85070E, 2008]. 
Our goal is to develop a dielectrometer for carrying out the express wine product analysis at 
industrial chemical laboratories by staff with average technical secondary education level. 
The device must possess enough high differential sensibility (at least the order of 0.1%). 
High accuracy of absolute wines and musts complex permittivity measurement does not 
obligate, because the main requirement is the measurement of wave propagation coefficients 
difference in two measurement liquid-filled cells with similar dielectric properties. We 
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reached the assigned task by the use of a measurement cavity [Ganapolskii et al., 2009] and 
made complete automated measurements. 
There are no restrictions for liquid under test for a volume size during wine and must 
complex permittivity measurement i.e., the cavities of rather big volume can be used and the 
cavity clearing can be made by means of the liquid under test as well. As a result, 
measurement errors caused by a cavity with small size or inhomogeneity of cavity filling are 
minimized. The decrease of accuracy at the measurement in small volume of the liquid is 
common for a set of known cavities, for instance, a capillary with a liquid under test in a 
rectangular waveguide [Masaki et al., 2007] or a thin ring belt cavity with a liquid under test 
in a shielded cylinder dielectric resonator [Eremenko et al., 2009].  
A measurement waveguide type cavity proposed in [Ganapolskii et al., 2009] consists of two 
open measurement cells with a dielectric (quartz) cylinder rod inside of them. These two 
cells are filled with a reference liquid and a liquid under test, respectively. The operating 
principle of these cells is based on the dependence of electromagnetic wave propagation 
coefficients on dielectric properties of a surrounded dielectric rod liquid. The difference 
between the attenuation and phase coefficients of the wave propagation in two 
measurement cells is the measured data. The attenuation coefficient of the wave propagated 
along the quartz rod immersed into water is rather small (the order of 10 dB/cm). The 
influence of the reflection off a cell body can be neglected during the wines and musts 
complex permittivity measurements, if the diameter of the cell is two times more than a rod 
diameter [Ganapolskii et al., 2009]. These reasons create comfortable conditions for the 
measurement open cavity design to carry out precise express complex permittivity 
measurements of high loss liquids.  
The main goal of our measurements is to detect small complex permittivity differences of 
two liquids with similar dielectric properties. For such a goal the knowledge of absolute 
complex permittivity liquid values has reference character only and we can limit ourselves 
by small difference of two wave propagation coefficients values for two cells.  It is 
preferentially to minimize measurement errors. The errors of indirect complex permittivity 
measurements can be calculated if we know the errors of direct measurements of wave 
attenuation and phase coefficients in the measurement cell. For example, relative errors of 
the real and imaginary complex permittivity parts are associated with absolute standard 
deviations of independent measurements of phase and attenuation coefficients h   and, 

h   respectively. So, we obtain for 10% ethanol in water: / 0.31%     and 
/ 0.046%    ; for 30% ethanol solution - / 0.27%     and / 0.097%    . Here the 

indirect complex permittivity measurement errors are in several times higher than direct 
measurement errors of wave propagation coefficients. The errors of indirect complex 
permittivity measurement in [Hu et al., 1994] are also higher than the errors of wave 
propagation during the direct measurement. 
We proposed an original measurement cell with an innovation part as a dielectric rod immersed into 
high loss liquid [Ganapolskii et al., 2009]. The dielectric rod is an open waveguide system where the 
complex electromagnetic wave propagation constant depends on complex permittivity of liquid. The 
electrodynamic waveguide structure similar to the proposed one was studied during the 
electromagnetic wave propagation in tunnels [Holloway et al., 2000]. We elaborated and tested the 
laboratory sample of a waveguide differential dielectrometer where the designed cell was used.  The 
device, analysis of its performance, and measurement results are present in this report. We analyzed 
the influence of different reasons that impact on the measurement errors and we elaborated the 
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conditions to minimize these errors. As a result the error was decreased in ten times in comparison 
with the data presented in [Jain & Voss, 1994]. 

3. High precision computer-aided dielectrometer for high loss liquid 
Fig.1 presents the appearance of the computer-aided dielectrometer. An operator only fills 
in and out liquids in the cavity cells. We designed this instrument in order to make up 
routine high precision measurement for qualitative control of wines and must in 
biochemical laboratories [Eremenko & Skresanov, 2010]. The determination of high loss 
liquid complex permittivity is done by means of a computer program. An initial data for 
computation are the measurement difference of wave attenuation and phase coefficients in 
two dielectrometer cavity cells. These cells filled with a liquid under test and a reference 
liquid, e.g. the distilled water.  
 

 
Fig. 1. The appearance of the differential dielectrometer connected with a notebook. 

For such measurements we proposed the novel differential cavity [Ganapolskii et al., 2009]. 
This cavity consists of two identical cells that are cylinder glasses of diameter 20D  mm 
that are made of a common copper body 1 (Fig.2). Quartz rods 2 were inserted 
perpendicularly to the side walls. The glasses were filled with liquids 3 (the water solution 
under test and its solvent – distilled water) at open thermo isolated covers 4 up to the level 
of overflow holes 5. After measurements liquids were poured out using draining holes 6. 
The temperature sensors 7 placed into covers 4 are for the temperature control in the cells. 
Microwave power comes to measurement cells via standard millimeter wave rectangular 
waveguide 8. The cells are matched with rectangular waveguides by round waveguides 
sections 9 filled with Teflon. The standing-wave ratio does not exceed 1.05 for the cells input 
and output at operating frequency 31.82 GHz. The cavity principle of operation is based on 
the dependence of the wave propagation coefficients in quartz rods on dielectric properties 
of an outer medium [Ganapolski et al., 2009]. The attenuation coefficient of the wave 
propagated along the quartz rods inserted into high loss liquid is rather small (the order of 



  
Electromagnetic Waves 

 

408 

reached the assigned task by the use of a measurement cavity [Ganapolskii et al., 2009] and 
made complete automated measurements. 
There are no restrictions for liquid under test for a volume size during wine and must 
complex permittivity measurement i.e., the cavities of rather big volume can be used and the 
cavity clearing can be made by means of the liquid under test as well. As a result, 
measurement errors caused by a cavity with small size or inhomogeneity of cavity filling are 
minimized. The decrease of accuracy at the measurement in small volume of the liquid is 
common for a set of known cavities, for instance, a capillary with a liquid under test in a 
rectangular waveguide [Masaki et al., 2007] or a thin ring belt cavity with a liquid under test 
in a shielded cylinder dielectric resonator [Eremenko et al., 2009].  
A measurement waveguide type cavity proposed in [Ganapolskii et al., 2009] consists of two 
open measurement cells with a dielectric (quartz) cylinder rod inside of them. These two 
cells are filled with a reference liquid and a liquid under test, respectively. The operating 
principle of these cells is based on the dependence of electromagnetic wave propagation 
coefficients on dielectric properties of a surrounded dielectric rod liquid. The difference 
between the attenuation and phase coefficients of the wave propagation in two 
measurement cells is the measured data. The attenuation coefficient of the wave propagated 
along the quartz rod immersed into water is rather small (the order of 10 dB/cm). The 
influence of the reflection off a cell body can be neglected during the wines and musts 
complex permittivity measurements, if the diameter of the cell is two times more than a rod 
diameter [Ganapolskii et al., 2009]. These reasons create comfortable conditions for the 
measurement open cavity design to carry out precise express complex permittivity 
measurements of high loss liquids.  
The main goal of our measurements is to detect small complex permittivity differences of 
two liquids with similar dielectric properties. For such a goal the knowledge of absolute 
complex permittivity liquid values has reference character only and we can limit ourselves 
by small difference of two wave propagation coefficients values for two cells.  It is 
preferentially to minimize measurement errors. The errors of indirect complex permittivity 
measurements can be calculated if we know the errors of direct measurements of wave 
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h   respectively. So, we obtain for 10% ethanol in water: / 0.31%     and 
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indirect complex permittivity measurement errors are in several times higher than direct 
measurement errors of wave propagation coefficients. The errors of indirect complex 
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high loss liquid [Ganapolskii et al., 2009]. The dielectric rod is an open waveguide system where the 
complex electromagnetic wave propagation constant depends on complex permittivity of liquid. The 
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device, analysis of its performance, and measurement results are present in this report. We analyzed 
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conditions to minimize these errors. As a result the error was decreased in ten times in comparison 
with the data presented in [Jain & Voss, 1994]. 

3. High precision computer-aided dielectrometer for high loss liquid 
Fig.1 presents the appearance of the computer-aided dielectrometer. An operator only fills 
in and out liquids in the cavity cells. We designed this instrument in order to make up 
routine high precision measurement for qualitative control of wines and must in 
biochemical laboratories [Eremenko & Skresanov, 2010]. The determination of high loss 
liquid complex permittivity is done by means of a computer program. An initial data for 
computation are the measurement difference of wave attenuation and phase coefficients in 
two dielectrometer cavity cells. These cells filled with a liquid under test and a reference 
liquid, e.g. the distilled water.  
 

 
Fig. 1. The appearance of the differential dielectrometer connected with a notebook. 

For such measurements we proposed the novel differential cavity [Ganapolskii et al., 2009]. 
This cavity consists of two identical cells that are cylinder glasses of diameter 20D  mm 
that are made of a common copper body 1 (Fig.2). Quartz rods 2 were inserted 
perpendicularly to the side walls. The glasses were filled with liquids 3 (the water solution 
under test and its solvent – distilled water) at open thermo isolated covers 4 up to the level 
of overflow holes 5. After measurements liquids were poured out using draining holes 6. 
The temperature sensors 7 placed into covers 4 are for the temperature control in the cells. 
Microwave power comes to measurement cells via standard millimeter wave rectangular 
waveguide 8. The cells are matched with rectangular waveguides by round waveguides 
sections 9 filled with Teflon. The standing-wave ratio does not exceed 1.05 for the cells input 
and output at operating frequency 31.82 GHz. The cavity principle of operation is based on 
the dependence of the wave propagation coefficients in quartz rods on dielectric properties 
of an outer medium [Ganapolski et al., 2009]. The attenuation coefficient of the wave 
propagated along the quartz rods inserted into high loss liquid is rather small (the order of 
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10 dB/cm). The influence of the glass side faces can be neglected at the distance at least of 
the order of wavelength from the rod surface [Eremenko & Skresanov, 2010]. 
 

  
Fig. 2. The schematic picture of dielectrometer differential measurement cavity:  the cross 
section of the cavity (left) and longitudinal section of one of the cavity cells (right). 1– the 
differential cavity body; 2 – the quartz cylinders; 3 – the liquids; 4 – the covers; 5 – the 
overflow holes; 6 – the drain holes; 7– the temperature sensors; 8 – the rectangular 
waveguide sections; 9 – the round waveguides section filled with Teflon. 

We can obtain the complex permittivity values from the characteristic equation for the 
infinite rod in high loss medium [Ganapolskii et al., 2009] 
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where ( ), ( )m mJ x H x – Bessel and Hankel of the order of m  and of the first kind; 
2 2

1 1 1 ,g k h    2 2
2 2 2g k h   ; k – the wave number in vacuum; h  – the 

longitudinal wave number; 1 1 1 2 2 2,j j             – the complex permittivity of the rod 
and liquid, respectively; a  – the radius of the rod; 1 2, 1   – the permeability of the rod 
and liquid. The typical relations between real and imaginary complex permittivity parts at 
our measurements are the following  

 1 1   , 1 2   ,    1 2   ,   2 2/ 1    .  (2) 

The ratio between the impedance of dielectric material of the rod and the liquid (water 
solutions) 1 2/     is approximately equal to 0.5. We can obtain a set of complex roots 

mnh  at definite operating frequency, complex permittivity of liquid, radius of the rod, and 
its complex permittivity. The azimuth index m  is equal to the number of half-wavelengths 
placed along azimuth coordinate   from 0 to 2 ; the radial index n  is equal to the number 
of half-wavelengths placed along radial coordinate inside the rod from 0 to r a . The 

 
Complex Permittivity Measurement of High Loss Liquids and its Application to Wine Analysis 

 

411 

analysis of electromagnetic field distribution for the corresponding wave number mnh  
shows that a set of four wave types can be excited in the dielectric rod immersed into high 
loss liquid. Two of them are as follows. The transverse-electric waves ( onTE ) and transverse-
magnetic waves ( onTM ) have no z - field component of electric or magnetic field, 
respectively. Two other types have non-zero z - field components and they are quasi- mnTE  
or quasi- mnTM . In general, any of the mentioned above waves can be used for our 
measurement. We used quasi- 11TE  wave type, because it can be easily excited in the rod by 
a rectangular or a round waveguide with the basic wave types 10H  or 11H . 
The technique of complex permittivity determination is as follows.  The wave attenuation 

[dB/cm]rh  and phase [rad/cm]rh  coefficients are calculated from the characteristic 
equation (1) using known complex permittivity of solvent for the cell with solvent (the 
reference liquid). We measure the difference of attenuation coefficients [dB/cm]h and 
phase coefficients [rad/cm]h for the cells with solvent and the liquid under test. The 
attenuation coefficient [dB/cm]th and the phase coefficient [rad/cm]th of the wave in the 
cell with solvent are calculated using formulas: t rh h h      and t rh h h     . And, finally, 
using equation (1) the complex permittivity of the liquid under test ( t t ti     ) is 
calculated with the help of obtained th  and th . 
It is suitable to use the distilled water as the reference liquid at the complex permittivity 
determination of water solutions of wines and wine model liquids. In [Ellison, 2007] there is 
a formula to calculate complex permittivity of water at 0-25 THz and at the temperature 
band 0-100°C. We use this formula for the complex permittivity calculation of the distilled 
water at known room temperature as a liquid in the cavity. 
We use the principle of differential measurement of the difference in wave attenuation 
coefficient (1)

effL h l    and phase shift coefficient (2)
effh l     in the cavity cells as it was 

done in [Ganapolskii et al, 2009]. So-called “cell effective lengths” (1)
effl  and (2)

effl  
approximately equal to glass diameter D  of the cells. The measurement scheme (Fig. 3.) is a 
microwave bridge. The signal splitting between bridge arms is done at an oscillator output 
by means of E-joint, and the signal summation is done at a detector input by means of H-
joint. The local oscillator at 31.82 GHz is a phase-locked loop transistor VCO at the 
frequency 7955 MHz with a reference quartz frequency standard and further multiplication 
by four. A power amplifier on the basis of the chip CHA3093c was implemented. To 
increase a signal to noise ratio, the amplitude modulation of a microwave carrier with 
frequency 100 kHz and a synchronous demodulation were used. 
The amplitude of the signal at one of the bridge arms is controlled by the measurement P-I-
N attenuator. The high precision short-circuiting plunger was designed for the phase shifter. 
This plunger is controlled by a step motor. The discrete step of the plunger motion is 2.5μm 
that corresponds to phase change 0.144º. The tuning of the attenuator and the phase shifter 
in the bridge arms is done in accordance with a microcontroller program. The 
microcontroller block was worked out on the basis of AT90USB1287 chip. Its main function 
is amplitude and phase level control in the microwave bridge arms. Besides, we measure the 
signal level at the receiver output, the temperature of the liquids in the cells and the 
temperature of the P-I-N attenuator body. We also control the level of output oscillator 
signal by the controller. The microcontroller block provides a user interface in manual mode 
and the data exchange with PC. 
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10 dB/cm). The influence of the glass side faces can be neglected at the distance at least of 
the order of wavelength from the rod surface [Eremenko & Skresanov, 2010]. 
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longitudinal wave number; 1 1 1 2 2 2,j j             – the complex permittivity of the rod 
and liquid, respectively; a  – the radius of the rod; 1 2, 1   – the permeability of the rod 
and liquid. The typical relations between real and imaginary complex permittivity parts at 
our measurements are the following  
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The ratio between the impedance of dielectric material of the rod and the liquid (water 
solutions) 1 2/     is approximately equal to 0.5. We can obtain a set of complex roots 

mnh  at definite operating frequency, complex permittivity of liquid, radius of the rod, and 
its complex permittivity. The azimuth index m  is equal to the number of half-wavelengths 
placed along azimuth coordinate   from 0 to 2 ; the radial index n  is equal to the number 
of half-wavelengths placed along radial coordinate inside the rod from 0 to r a . The 
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analysis of electromagnetic field distribution for the corresponding wave number mnh  
shows that a set of four wave types can be excited in the dielectric rod immersed into high 
loss liquid. Two of them are as follows. The transverse-electric waves ( onTE ) and transverse-
magnetic waves ( onTM ) have no z - field component of electric or magnetic field, 
respectively. Two other types have non-zero z - field components and they are quasi- mnTE  
or quasi- mnTM . In general, any of the mentioned above waves can be used for our 
measurement. We used quasi- 11TE  wave type, because it can be easily excited in the rod by 
a rectangular or a round waveguide with the basic wave types 10H  or 11H . 
The technique of complex permittivity determination is as follows.  The wave attenuation 

[dB/cm]rh  and phase [rad/cm]rh  coefficients are calculated from the characteristic 
equation (1) using known complex permittivity of solvent for the cell with solvent (the 
reference liquid). We measure the difference of attenuation coefficients [dB/cm]h and 
phase coefficients [rad/cm]h for the cells with solvent and the liquid under test. The 
attenuation coefficient [dB/cm]th and the phase coefficient [rad/cm]th of the wave in the 
cell with solvent are calculated using formulas: t rh h h      and t rh h h     . And, finally, 
using equation (1) the complex permittivity of the liquid under test ( t t ti     ) is 
calculated with the help of obtained th  and th . 
It is suitable to use the distilled water as the reference liquid at the complex permittivity 
determination of water solutions of wines and wine model liquids. In [Ellison, 2007] there is 
a formula to calculate complex permittivity of water at 0-25 THz and at the temperature 
band 0-100°C. We use this formula for the complex permittivity calculation of the distilled 
water at known room temperature as a liquid in the cavity. 
We use the principle of differential measurement of the difference in wave attenuation 
coefficient (1)

effL h l    and phase shift coefficient (2)
effh l     in the cavity cells as it was 

done in [Ganapolskii et al, 2009]. So-called “cell effective lengths” (1)
effl  and (2)

effl  
approximately equal to glass diameter D  of the cells. The measurement scheme (Fig. 3.) is a 
microwave bridge. The signal splitting between bridge arms is done at an oscillator output 
by means of E-joint, and the signal summation is done at a detector input by means of H-
joint. The local oscillator at 31.82 GHz is a phase-locked loop transistor VCO at the 
frequency 7955 MHz with a reference quartz frequency standard and further multiplication 
by four. A power amplifier on the basis of the chip CHA3093c was implemented. To 
increase a signal to noise ratio, the amplitude modulation of a microwave carrier with 
frequency 100 kHz and a synchronous demodulation were used. 
The amplitude of the signal at one of the bridge arms is controlled by the measurement P-I-
N attenuator. The high precision short-circuiting plunger was designed for the phase shifter. 
This plunger is controlled by a step motor. The discrete step of the plunger motion is 2.5μm 
that corresponds to phase change 0.144º. The tuning of the attenuator and the phase shifter 
in the bridge arms is done in accordance with a microcontroller program. The 
microcontroller block was worked out on the basis of AT90USB1287 chip. Its main function 
is amplitude and phase level control in the microwave bridge arms. Besides, we measure the 
signal level at the receiver output, the temperature of the liquids in the cells and the 
temperature of the P-I-N attenuator body. We also control the level of output oscillator 
signal by the controller. The microcontroller block provides a user interface in manual mode 
and the data exchange with PC. 
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Fig. 3. The structural scheme of the differential dielectrometer. 
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Fig.4. The amplitude (left) and phase (right) dielectrometer functions for the distilled water 
in two cavity cells (1) for  the distilled water and (2) for the table wine in the different cells. 
The vertical line is the position of a minimum using “bracket” technique. 

The readings  ,F L  of an analog-to-digital converter of the receiver in logarithmic units 
as functions of the differences in amplitude [dB]L  and phase  grad  at the bridge arms 
can be written  
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where 0L  and 0  are the attenuation and phase in the arms of the balanced bridge. 
The PC program algorithm for the recording AF  and F  functions is as follows. During the 
first iteration the phase scanning is carried out at arbitrary fixed amplitude; the phase 
function minimum F  is calculated; the phase shifter is returned to a minimum position; the 
amplitude scanning is carried out; the amplitude function minimum AF  is calculated; the 
attenuator is returned to a minimum position. That is the end of the first iteration. Our 
testing showed that in order to reach maximum accuracy of the bridge balancing it is 
necessary to do three iterations. In Fig.4 we present the amplitude and phase functions of 
the dielectrometer. These plots are displayed on PC screen in a real time scale. After curves 
registration the digital low frequency data filtration is made and the minimum position is 
calculated according to the "bracket" technique. The minimum position is the average 
attenuation (phase shift) at the instrumental function slopes where the signal-to-noise ratio 
is of the order of 10 dB. In Fig.4 the calculated minimum position for a dry table wine with 
respect to the distilled water is shown by vertical lines. 
We carried out the detail analysis of origins and values of random and systematic 
measurement errors of attenuation and phase coefficients h   and h  for the designed 
dielectrometer. The random errors determine so-called differential sensitivity of our device 
i.e., the ability to recognize minimal possible differences of phase  2h      or 

attenuation  2h L   coefficients of two liquids with close complex permittivity values. 

The systematic errors determine the absolute complex permittivity measurement errors.  
In the designed dielectrometer we have made a number of schematic and design 
improvements in order to minimize random measurement errors. They are as follows: 1) the 
usage of the high power signal oscillator (of the order of 100 mW); 2) the usage of a high 
modulation frequency (100 kHz); 3) the usage of synchronous detection at the modulation 
frequency; 4) the usage of a low noise current controller of a P-I-N attenuator; 5) the 
realization of play-free mechanism of the short-circuiting plunger moving by the small 
discrete step. The dynamic technique of the minimum position determination of the 
instrumental functions of the dielectrometer leads to the minimization of random 
measurement errors as well. The mentioned above steps provide root-mean-square random 
measurement errors of attenuation L  and phase shift   that are of the order of 

  0.001L dB     and   0.05     , respectively. This error values were estimated by 

recoverable measurements with the same liquid at stable ambient conditions. As a result 
these random errors determine the limit of differential sensibility hR  of our dielectrometer. 
For the liquid with dielectric properties close to the distilled water ( 11.1 rad/cmh   and 

8.8 dB/cmh  ) the differential sensibility  2 / 100% 0.02%hR h       for the phase 

shift values and  2 / 100% 0.02%hR L h      for the attenuation ones. 

Another origin of random errors is random temperature deviation for liquids in the cells. 
The measured mean-square temperature difference in the cells during entire measurement 
cycle does not exceed 0.1°C after thermal balance achievement. The entire measurement 
cycle consists of the microwave bridge balancing with the solvent in two cells, the 
replacement of the solvent in one of the cell by the liquid under test, thermal equality 
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where 0L  and 0  are the attenuation and phase in the arms of the balanced bridge. 
The PC program algorithm for the recording AF  and F  functions is as follows. During the 
first iteration the phase scanning is carried out at arbitrary fixed amplitude; the phase 
function minimum F  is calculated; the phase shifter is returned to a minimum position; the 
amplitude scanning is carried out; the amplitude function minimum AF  is calculated; the 
attenuator is returned to a minimum position. That is the end of the first iteration. Our 
testing showed that in order to reach maximum accuracy of the bridge balancing it is 
necessary to do three iterations. In Fig.4 we present the amplitude and phase functions of 
the dielectrometer. These plots are displayed on PC screen in a real time scale. After curves 
registration the digital low frequency data filtration is made and the minimum position is 
calculated according to the "bracket" technique. The minimum position is the average 
attenuation (phase shift) at the instrumental function slopes where the signal-to-noise ratio 
is of the order of 10 dB. In Fig.4 the calculated minimum position for a dry table wine with 
respect to the distilled water is shown by vertical lines. 
We carried out the detail analysis of origins and values of random and systematic 
measurement errors of attenuation and phase coefficients h   and h  for the designed 
dielectrometer. The random errors determine so-called differential sensitivity of our device 
i.e., the ability to recognize minimal possible differences of phase  2h      or 

attenuation  2h L   coefficients of two liquids with close complex permittivity values. 

The systematic errors determine the absolute complex permittivity measurement errors.  
In the designed dielectrometer we have made a number of schematic and design 
improvements in order to minimize random measurement errors. They are as follows: 1) the 
usage of the high power signal oscillator (of the order of 100 mW); 2) the usage of a high 
modulation frequency (100 kHz); 3) the usage of synchronous detection at the modulation 
frequency; 4) the usage of a low noise current controller of a P-I-N attenuator; 5) the 
realization of play-free mechanism of the short-circuiting plunger moving by the small 
discrete step. The dynamic technique of the minimum position determination of the 
instrumental functions of the dielectrometer leads to the minimization of random 
measurement errors as well. The mentioned above steps provide root-mean-square random 
measurement errors of attenuation L  and phase shift   that are of the order of 

  0.001L dB     and   0.05     , respectively. This error values were estimated by 

recoverable measurements with the same liquid at stable ambient conditions. As a result 
these random errors determine the limit of differential sensibility hR  of our dielectrometer. 
For the liquid with dielectric properties close to the distilled water ( 11.1 rad/cmh   and 

8.8 dB/cmh  ) the differential sensibility  2 / 100% 0.02%hR h       for the phase 

shift values and  2 / 100% 0.02%hR L h      for the attenuation ones. 

Another origin of random errors is random temperature deviation for liquids in the cells. 
The measured mean-square temperature difference in the cells during entire measurement 
cycle does not exceed 0.1°C after thermal balance achievement. The entire measurement 
cycle consists of the microwave bridge balancing with the solvent in two cells, the 
replacement of the solvent in one of the cell by the liquid under test, thermal equality 
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reaching, and one more microwave bridge balancing. The approximate time of entire cycle 
is about 3 minutes. The direct calculation of temperature coefficients of real and imaginary 
parts of the complex wave propagation coefficient h  was made. It gives 

0/ 0.00566(rad/cm)/ Ch T     and 0/ 0.0462(dB/cm) / Ch T     in the cell with 
distilled water at the operating frequency. Thus, the differential sensibility caused by the 
temperature fluctuation in the cells will be 0.01%hR    for the phase coefficient and 

0.09%hR    for the attenuation coefficient. Several measurement sets of the wave 
propagation coefficients in the cells with water and with 10% ethanol solutions in water 
were made. Each measurement was made according to the entire measurement cycle. We 
found out that 1  standard deviations both for h  and h  does not exceed 0.06 grad/cm 
and 0.02 dB/cm, respectively, in absolute units or 0.05%hR    and 0.2%hR    in relative 
units. Obtained measurement data approximately correspond to the given theoretical 
estimation. If we use a cavity thermostat for the temperature of liquid stabilization, for 
example, with the accuracy of the order of ±0.01º, then the differential measurement 
sensitivity will be of the order of 0.01% both for real and imaginary parts of complex wave 
propagation coefficient. 
The absolute complex permittivity measurement error consists of mean-square random 
errors mentioned above and a number of systematic errors. We analyzed the following 
systematic errors: 1) a method error 1( )h  due to uncertainty of effective length of the 
cavity. This error exists owing to diffraction effects at excitation of the quartz cylinder in the 
liquid by the waveguide; 2) an error of absolute calibration 2( )h  of the attenuator and the 
phase shifter; 3) an error 3( )h  due to ambient space temperature deviation; 4) an error 

4( )h  due to parasite phase (attenuation) deviations at attenuation (phase) turning in the 
microwave bridge arms. One more origin of a method error 5( )h does not have direct 
connection to quality of measurements. This is the statistical complex permittivity 
uncertainty of the reference liquid (the distilled water). 
The key contribution in absolute measurement accuracy is the error of the uncertainty of the 
effective length of the cell, which was estimated numerically by ‘CST Microwave Studio’. 
We obtained 1( ) / 1%h h     for the phase coefficient and 1( ) / 0.5%h h     for the 
attenuation coefficient at whole measurement range of any table wines and musts. But this 
error does not impact on the differential sensibility of our device for the liquids under test 
with complex permittivity values difference is less than 5 units. The measured value of the 
temperature attenuation coefficient of the P-I-N attenuator does not exceed 0.03 dB/ºC. In 
order to minimize 3( )h  we inserted a temperature numerical correction by the PC program 
based on a measured temperature deviation of the attenuator body. The final calibration P-I-N 
attenuator error does not exceed 0.1% at the total attenuation deviation range and the ambient 
temperature. The most essential origins of the systematic error of phase shift measurement 
are parasite deviation of the wave phase passed via the P-I-N attenuator at the attenuation 
control. It is minimized by our PC program as well. According to our estimations the 
maximal phase shift measurement error due to all reasons does not exceed 0.4º or 0.06%. 
Summing up all systematic errors ( )ih , 1,2,3,4i   we obtain the total absolute phase 
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coefficient measurement error 0( ) 6.2h    or 1.1% and the total absolute attenuation 
coefficient measurement error ( ) 0.05 dBh    or 0.6%. 

4. Results of complex permittivity measurement of wine and wine model 
liquids 
All results presented in this section were obtained by means of our designed dielectrometer.   
We carried out a set of complex permittivity measurement wines and musts (some results 
were published in [Eremenko, 2009, Anikina, 2010]. More than 100 dry table wines samples 
were under test. As an example, the measurement results are presented in Fig.5. We 
obtained histograms for the increment of real h and imaginary h parts of complex wave 
propagation in the cell with dry table wines and musts relative to the wave propagation in 
the cell with the distilled water. In Fig.5 the calculation results of absolute complex 
permittivity values for the same wine and must samples are presented as well. All wines 
satisfying to the nowadays quality standard for the dry natural wines were made of musts-
self-flowing using the following types of grapes: Chardonnay, Aligote, Riesling Rhine and 
Rkatsiteli of 2007 harvest that were obtained using microvinification technique. 
We observed small but valid distinctions in the complex permittivity and the complex wave 
propagation coefficients for various sample wines (musts). We also obtained 100 % correlation 
of the complex permittivity and the wave propagation coefficients of wine samples and 
corresponding samples of musts. It is interesting to note, that we can recognize distinctions in 
the complex permittivity and the wave propagation coefficients for wines and musts of the 
same sort of grapes (Riesling Rhine) with different vintage dates. The additional study has 
been shown that it can be explained by different sugar content in these musts. 
We carried out quantitative analysis of wines and musts chemical content. The essential 
correlation between the complex permittivity and wines (musts) chemical content was 
obtained. The possibility to identify wines according to grapes growing regions or a wine 
sample with wrong production technology was shown. For complex permittivity 
measurement method it is necessary to have the data of complex permittivity of model 
liquids: water solution of chemical wine composition elements that are combined in 
different proportions. The complex permittivity measurement of model liquids allows 
establishing cause-and-effect relations between concentrations of the solution components 
and complex permittivity of solutions. 
As an example of the complex permittivity of model liquids in Fig.6 we present the 
measurement results of the differences between the complex permittivity of water and water 
solutions of glucose, glycerol, and ethanol at 31.82 GHz at temperature 25°C. We apply the 
complex permittivity of the distilled water (25.24+i31.69) at the same conditions. The 
concentration of solution components is presented in the mole ratio, i.e. the number of 
diluted substance molecules on one molecule of a solvent (water). The confidence 
measurement interval is ±0.007 dB/cm for the attenuation coefficient and is ±0.05 grad/cm 
for the phase coefficient. Errors of substances concentrations in solutions are higher, but 
they do not exceed some tenth of percents. It is necessary to note that we compared with 
other authors complex permittivity data of water-ethanol solutions presented in 
[Ganapolskii et al, 2009].  
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reaching, and one more microwave bridge balancing. The approximate time of entire cycle 
is about 3 minutes. The direct calculation of temperature coefficients of real and imaginary 
parts of the complex wave propagation coefficient h  was made. It gives 

0/ 0.00566(rad/cm)/ Ch T     and 0/ 0.0462(dB/cm) / Ch T     in the cell with 
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coefficient measurement error 0( ) 6.2h    or 1.1% and the total absolute attenuation 
coefficient measurement error ( ) 0.05 dBh    or 0.6%. 

4. Results of complex permittivity measurement of wine and wine model 
liquids 
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complex permittivity of the distilled water (25.24+i31.69) at the same conditions. The 
concentration of solution components is presented in the mole ratio, i.e. the number of 
diluted substance molecules on one molecule of a solvent (water). The confidence 
measurement interval is ±0.007 dB/cm for the attenuation coefficient and is ±0.05 grad/cm 
for the phase coefficient. Errors of substances concentrations in solutions are higher, but 
they do not exceed some tenth of percents. It is necessary to note that we compared with 
other authors complex permittivity data of water-ethanol solutions presented in 
[Ganapolskii et al, 2009].  
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Fig. 5. The increment of the wave phase (upper left) and the attenuation (upper rigth) 
coefficients in the cell with water and in the cell with table wines (musts) with respect to the 
distilled water are presented. There are the real (bottom left) and imaginary (bottom rigth) 
complex permittivity parts of wines and musts samples, respectively. In blue there are data for 
musts, in brown there are data for wines. The data of grapes vintage are shown on the vertical 
axis such as 1 - Chardonnay 8 Sept. 07, 2 - Aligote 14 Sept. 07, 3 -  Riesling Rhine12 Sept. 07, 4 - 
Riesling Rhine 19 Sept. 07, 5 - Riesling Rhine 20 Sept. 07, 6 - Rkatsiteli   27 Sept. 07. 
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Fig. 6. The differences of the real (left) and imaginary (right) complex permittivity parts of 
water and water solutions of ethanol, glycerol, and glucose on their concentration in mole 
ratio. 1 x waterP     , 2 x waterP     , x  is one of components of solutions. The numbers 
denote 1- ethanol, 2- glycerol, 3 - glucose.   
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Fig. 7. The influence of wine components on the real (left) and imaginary (right) complex 
permittivity parts of 10% water - ethanol solutions with additive components: 1 – 
saccharose, 2 – glycerol, 3 –saccharose and glycerol mixed.   

The values of the real and imaginary complex permittivity parts of their water solutions are 
reduced at the concentration increase of any of three substances. This reduction is 
approximately linear at small concentrations. Therefore, at mole ratios 0.05r   there is a 
summation of the contributions of different complex permittivity components of wines and 
musts (hypothesis of additivity). In Fig.7 there are dependences of complex permittivity of 
water solutions of saccharose, glycerol, and also their mixture. It validates the hypothesis of 
additivity. The concentration of quantity of substances is in mass percents. 
The water, ethanol, sugars (glucose, saccharose, fructose), and glycerol are chemical 
components that have the strongest impact on complex permittivity of wines and musts at 
8- millimeter wave band in comparison with the other wine components. For instance, in 
Fig.8 there are dependences of complex permittivity of malic, tartaric, and citric acids 
diluted with 10% water - ethanol solutions on mass concentration of acids. It presents that 
the influence of organic acids concentration change on the complex permittivity of wines in 
several times less than the influence of the mentioned above wine components and these 
dependences have non-monotonic behavior.  
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Fig. 8. The dependences of the real (left) and the imaginary (right) complex permittivity parts 
of organic acids diluted with 10% water - ethanol solutions on mass concentration of organic 
acids. The numbers denote: 2 – malic acid, 3 – tartaric acid, 4 – citric acid, 5 – tartaric, and malic 
acids; they are in equal amount. The curve 1 is the dependence of the complex permittivity of 
potassium diluted with 10% water - ethanol solutions on mass potassium concentration (g/l). 
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distilled water are presented. There are the real (bottom left) and imaginary (bottom rigth) 
complex permittivity parts of wines and musts samples, respectively. In blue there are data for 
musts, in brown there are data for wines. The data of grapes vintage are shown on the vertical 
axis such as 1 - Chardonnay 8 Sept. 07, 2 - Aligote 14 Sept. 07, 3 -  Riesling Rhine12 Sept. 07, 4 - 
Riesling Rhine 19 Sept. 07, 5 - Riesling Rhine 20 Sept. 07, 6 - Rkatsiteli   27 Sept. 07. 
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The values of the real and imaginary complex permittivity parts of their water solutions are 
reduced at the concentration increase of any of three substances. This reduction is 
approximately linear at small concentrations. Therefore, at mole ratios 0.05r   there is a 
summation of the contributions of different complex permittivity components of wines and 
musts (hypothesis of additivity). In Fig.7 there are dependences of complex permittivity of 
water solutions of saccharose, glycerol, and also their mixture. It validates the hypothesis of 
additivity. The concentration of quantity of substances is in mass percents. 
The water, ethanol, sugars (glucose, saccharose, fructose), and glycerol are chemical 
components that have the strongest impact on complex permittivity of wines and musts at 
8- millimeter wave band in comparison with the other wine components. For instance, in 
Fig.8 there are dependences of complex permittivity of malic, tartaric, and citric acids 
diluted with 10% water - ethanol solutions on mass concentration of acids. It presents that 
the influence of organic acids concentration change on the complex permittivity of wines in 
several times less than the influence of the mentioned above wine components and these 
dependences have non-monotonic behavior.  
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Fig. 8. The dependences of the real (left) and the imaginary (right) complex permittivity parts 
of organic acids diluted with 10% water - ethanol solutions on mass concentration of organic 
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acids; they are in equal amount. The curve 1 is the dependence of the complex permittivity of 
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The deviation of cations concentration has enough strong influence on the complex 
permittivity of wines (the dependence for potassium cations is in Fig.8). However, their 
absolute quantity in wines and musts is small.  Apparently, the influence of cations on the 
complex permittivity of wines is the reason to have the application possibility of the 
correlations between complex permittivity and a region of wine-growing.  
The results of experimental complex permittivity determination of wines and musts with a 
different quantity of added water are presented as well. Our objects of research were 
samples of the natural and diluted with water musts and wines made of the grapes of the 
following grades: Aligote, Riesling Rhine, Rkatsitely, Cabernet-Sauvignon. It was a crop of 
2007-2008. The modeling samples of wines were received by entering water and sugars in 
the must and squash before the fermentation. Diluted must samples were made by adding 
the water in the must from 10 % up to 50 %. Diluted wine samples were made by adding the 
water in natural wine from 5 % up to 30 %.  
We defined the following parameters of musts and wines samples: the volume fraction of 
ethanol, mass concentration of sugars, the total extract, total acidity, viscosity, conductivity, 
рН, buffer capacity, mass concentration of chlorides, sulfates, potassium, sodium, magnesium, 
calcium, glycerol, glucose, and saccharose. It was done by the methods accepted in 
winemaking. Glycerol and separate sugars were defined by high-performance liquid 
chromatography (HPLC) method on liquid chromatograph Shіmadzu LC-20AD. Cation of 
metals were defined by the method of nuclear absorption on spectrophotometer C115-М1. The 
viscosimetry, densitometry, titrometry, conductimetry, and рН methods were used for other 
parameters.  
The chemical composition of water added in trial samples, and the monitoring samples of 
musts and table wines made of grapes growing in a foothill zone of Crimea are presented in 
Table 1 as well. 
 

Parameters Riesling Rhine 
(must) 

Aligote 
(wine) 

Cabernet-
Sauvignon (wine) Water 

Ethanol, vol. % - 10.9 13 - 
Mass concentration, g/l: 
Sugars 

 
215 

 
0.81 

 
2.5 

 
- 

Total acidity 10.1 8.3 9.8 - 
Total extract 239.0 19.0 28.0 - 
Phenolic substances 0.524 0.174 1.940 - 
Glycerol 0.43 7.4 8.7 - 
Chlorides 0.026 0.011 0.03 0.004 
Sulfates (К2SO4 ) 0.179 0.289 0.283 0.102 
Magnesium 0.136 0.92 0.104 0.007 
Calcium 0.140 0.12 0.063 0.104 
Potassium 1.200 0.400 0.512 0.001 
Sodium 0.066 0.015 0.047 0.008 
Buffer capacity, mg-eq/l 64 38 44 9 
рН 2.9 2.9 3.1 8.1 
Specific  
conductivity, mS/cm 2.32 1.67 1.95 0.38 

Kinematic viscosity, mm2/s 1.94 1.54 1.73 1.06 

Table 1. Physical and chemical parameters of water and natural grape musts and wines. 
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We performed the analysis of interrelationship between the degree of dilution, chemical 
composition, and physic-chemical parameters of the diluted by water musts and wines. 
These results show that the part of bivalent cations grows, and the content of other 
components decreases with the increasing of the amount of added in wine water. 
The change of componential structure in must and wine diluted with water influence on 
their dielectric properties. Fig. 9 shows the dependence of the complex permittivity on the 
water added in a must and table wine at temperature 25 °С (31.82 GHz).  
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Fig. 9. The complex permittivity of the grape table wine (Rkatsitely) and must (from white 
Rkatsitely grape) with different degree of water dilution. The real (left) and the imaginary 
(right) complex permittivity parts. The numbers denote: 1 – must, 2 – wine. 

The increasing of the added water part results in the growth of the real and imaginary parts 
of complex permittivity of wine and must samples under test. The similar effect is observed 
when the addition of water in must or squash before a fermentation takes place. Close 
correlation of the complex permittivity with the part of water, added in must and wine 
indicates the high sensitivity of this parameter to the amount of added water in comparison 
with traditional parameters of wine composition (Table 2).  
 

Sample 
The 
additive of 
water in 

ε’ ε" Ethanol Sugar Total 
extract 

Total 
acidity 

Phenolic 
substan- 
ces 

Must Must 0.999 1.000 - 0.991 0.999 0.997 0.996 

Wine  Wine 0.990 0.995 0.996 0.993 0.968 0.983 0.993 

Wine Must 
(squash) 0.999 0.998 0.990 0.930 0.977 0.918 0.983 

Table 2. Correlation coefficient between the complex permittivity and the basic components 
of must and wine contents with the amount of the added water. 

The differential sensibility of dielectometry method is higher than the sensibility of 
traditional used chemical methods at the determination of the added water (more than 5%.) 
The small dielectometry analysis duration is also attractive. These facts allows using the 
difference in complex permittivity of the wine sample under test relative to the complex 
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viscosimetry, densitometry, titrometry, conductimetry, and рН methods were used for other 
parameters.  
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We performed the analysis of interrelationship between the degree of dilution, chemical 
composition, and physic-chemical parameters of the diluted by water musts and wines. 
These results show that the part of bivalent cations grows, and the content of other 
components decreases with the increasing of the amount of added in wine water. 
The change of componential structure in must and wine diluted with water influence on 
their dielectric properties. Fig. 9 shows the dependence of the complex permittivity on the 
water added in a must and table wine at temperature 25 °С (31.82 GHz).  
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Fig. 9. The complex permittivity of the grape table wine (Rkatsitely) and must (from white 
Rkatsitely grape) with different degree of water dilution. The real (left) and the imaginary 
(right) complex permittivity parts. The numbers denote: 1 – must, 2 – wine. 

The increasing of the added water part results in the growth of the real and imaginary parts 
of complex permittivity of wine and must samples under test. The similar effect is observed 
when the addition of water in must or squash before a fermentation takes place. Close 
correlation of the complex permittivity with the part of water, added in must and wine 
indicates the high sensitivity of this parameter to the amount of added water in comparison 
with traditional parameters of wine composition (Table 2).  
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The 
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extract 

Total 
acidity 
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ces 

Must Must 0.999 1.000 - 0.991 0.999 0.997 0.996 

Wine  Wine 0.990 0.995 0.996 0.993 0.968 0.983 0.993 

Wine Must 
(squash) 0.999 0.998 0.990 0.930 0.977 0.918 0.983 

Table 2. Correlation coefficient between the complex permittivity and the basic components 
of must and wine contents with the amount of the added water. 

The differential sensibility of dielectometry method is higher than the sensibility of 
traditional used chemical methods at the determination of the added water (more than 5%.) 
The small dielectometry analysis duration is also attractive. These facts allows using the 
difference in complex permittivity of the wine sample under test relative to the complex 
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permittivity of the control sample of natural wine or must for identification of its 
authenticity. To solve this problem we started the formation of database of complex 
permittivity for musts and table wines of Crimea.  

5. Conclusion 
We presented the results of the design of the simple in operation differential 8 - millimeter 
wave range dielectrometer for the express analysis of high loss liquids. Our dielectrometer 
has the measurement cavity with two identical cells filled with the reference liquid and the 
liquid under test. The measurements are based on the dependence of wave propagation 
along quarts rod immersed into high loss liquid on its complex permittivity. The complex 
permittivity measurement is computer-aided and the entire measurement cycle does not 
exceed 3 minutes. The differential sensibility is 0.05% for the real complex permittivity part 
of liquid under test and 0.2% – for its imaginary complex permittivity part. In particular, it 
allows solving the natural table wine and must identification problem i.e., fraud detection 
by means of added water of the order of 0.1%. We presented complex permittivity 
measurement data of water and water - ethanol solutions of a number of substances that are 
wine components and selected those of them which have strong impact on the complex 
permittivity of liquid under test value. These data can be in use during the development of 
techniques of dielectrometry usage in wine industry. This device can be used in biochemical 
laboratories. 
Our future research is as follows: The reduction of the measurement errors using 
thermostat, design the cavity with the cells of different lengths to remove uncertainty due to 
cell effective length error determination.  It is necessary to note that other type of wine and 
must frauds can be detected using our dielectrometer, not only the wine dilution by water. 
Our dielectrometer can be used in wine manufacturing process as well. 
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permittivity of the control sample of natural wine or must for identification of its 
authenticity. To solve this problem we started the formation of database of complex 
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of liquid under test and 0.2% – for its imaginary complex permittivity part. In particular, it 
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Our dielectrometer can be used in wine manufacturing process as well. 
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1. Introduction 
Electromagnetic compatibility (EMC), including the engineering of materials used for 
shielding,, is currently one of the most extensively developing field of applications of 
composite materials (Bula et al., 2006; Jaroszewski & Ziaja, 2010; Koprowska et al., 2004, 
2008; Sarto et al. 2003, 2005; Wei et al., 2006; Ziaja et al., 2008, 2009, 2010). The development 
of lightweight, mechanically resistant, shielding materials is possible by using plasma 
technology. Due to rapid increase in the number of sources generating the electromagnetic 
(EM) fields, e.g. radio broadcasting, television, radio communication, cellular networks, 
continuously extending range of applied frequencies, and increasing power generated by 
PEM sources, the shielding design is getting more and more challenging. These challenges 
stem from the fact that complex EM power engineering systems are built of miniaturized 
electronic circuits. The progressing miniaturization reduces the resistance of the electronic 
circuits to electromagnetic exposure. Therefore, the choice of suitable materials for the 
shields and their appropriate arrangement has an essential meaning. 

2. Criteria of selection of materials and fabrication technologies for shielding 
materials 
Materials used in the technique of electromagnetic field shielding must meet following 
conditions:  
- have a suitably high coefficient of the shielding effectiveness SE, 
- be resistant to mechanical impact and easy to handle  (rigidity, elasticity, gravity, the 

way of installation, sealing),  
- be resistant to harmful influence of external environment (oxidation, corrosion), 
- durable,  
- homogenous,  
- easy to form the shield,  
- low costs of production.  
Shields made as metal sheets or foil, and metal mesh are characterised by a good EM field 
shielding effectiveness coefficient. However they are characterised by low resistance to 
environmental impact. Their fundamental disadvantage is weight. They are primarily used 
in low frequency electromagnetic field shielding.  
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The alternative to metal shields is the use of composite shields, that have lately found a wide 
application in the EM field shielding technology (Wojkiewicz et al., 2005; Holloway et al., 
2005; Ziaja et al., 2008a, 2008b), and they are interchangeable equivalents for metals. Main 
advantages these materials are: good mechanical and chemical properties, lower weight, 
higher rigidity and strength, resistance to corrosion, lower costs of treatment and easier 
processing. Based on their structure composite materials are divided into two groups: 
- laminar systems,  
- inclusions in substrate (admixture materials in a form of fibres, flakes or particles).  
The first group is made in the special fabric form (fabrics with entwined conductive fibres 
e.g. Zn, C, Cu, and Ag): nonwoven fabrics with conductive layers deposited or laminates 
with pressed in conductive layers. Conductive layers may be put on by using the following 
methods: silk-screen printing (Wang et al., 2009); vacuum evaporation or magnetron 
sputtering (Ziaja, 2007; Ziaja et al., 2008). They are characterised by easy deposition on 
different kind of surfaces and the shielding efficiency coefficient above 50 dB. However not 
every material is suitable for conductive coating. It is determined by surface properties of 
the substrate material.  
The second group covers conductive glues or dyes.  
While designing composite shielding material, it is necessary to take into account, that 
efficiency of shielding depends on the following factors:  
- volume fraction of inclusions,  
- electrical and magnetic properties, 
- shape and size of inclusions, and the way of their orientation, 
- EM field frequency, 
- number and sequence of layers.   
Choice and optimisation of appropriate composite structure is made on the basis of assumed 
mathematical models (Sarto et al., 2004; Szhulz et al., 1988; Pospieszna, 2006). These models 
must assume effective application of different mechanisms of shielding:  
- effectiveness of the reflection mechanism on interfacial surfaces, which among other 

things depends on their size. In case of composite materials this effect is obtained by 
implementing extenders with expanded specific surfaces, 

- losses caused by multiple reflections are negligibly small, when a distance between 
successive reflection surfaces (interfaces) are big in comparison to the depth of 
penetration,   

- because of the skin effect, for effective use of whole cross section area of the elementary 
unit of extender, its size should be comparable or less than a depth of penetration, 

- effective absorption of radiation ensures material with a high permittivity and / or with 
a high magnetic permeability. 

The distribution of inner field is mainly determined by the orientation of fibres and the 
polarisation of the incident field. In order to achieve a relatively high and constant value of 
the shielding effectiveness SE, it is necessary to use anisotropic materials with certain 
number of layers displaying different orientation of fibres.   
The surface of composite materials, which reflects the EM wave must be electrically 
conductive, although its high conductivity is not required. It means, that in a case of composite 
material, containing conductive extender, a conductive connection between extender units is 
not required, even though such connection improves shielding. Good shielding effectiveness 
values are obtained in polymer composites containing carbon powder (Kim et al., 2004; Wu et 
al., 2003; Huang et al., 2007) or silver powder (Hong et al., 2001). 
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Coating of materials by thin layers (metallic, ceramic and polymer) meets wide use in many 
branches of technique, both in laboratory scale and in industry. The winning of materials 
with unique properties, a possibility of miniaturization, improvement of the lifespan and 
reliability, and a high energetic efficiency of electronic and optoelectronic devices are main 
driving force of thin-layer technique development to produce EM composite shileding. The 
most often used methods of layers winning are: the chemical deposition from the gas phase 
(CVD) and the physical deposition from the gas phase (PVD).   
PVD technologies are based on deposition of a conductive layer on the substrate from the 
gas phase using physical phenomena, such as: metal evaporation (vacuum sputtering), 
sputtering in vacuum, gases and metallic vapour ionisation. For most of them the common 
feature is a process of deposition of a layer from stream of gas containing ionised molecules. 
Any differences between PVD methods are due to the way of winning of ionised metal 
vapours.  
Nowadays, the most often used method of the obtaining different kinds of layers is 
magnetron sputtering (glow discharge, plasmatic). This method is based on bombarding of 
surface of the sputtering electrode (the target) with high energetic ions of working gases. 
Ions knock out atoms or molecules of material from the target, which next are deposited on 
substrates. This way metallic layers, dielectric semiconductor layers and high-melting layers 
can be deposited. Sputtering devices using an electrical and a magnetic field are called 
magnetron or plasmatic guns. In electrical and magnetic fields, ions from working gases 
obtain very high kinetic energy, and to the layers can be deposited at a very high speed,, 
which for metals is a few µm/min and for dielectric layers is in the order of 10-100 nm/min. 
Such high speeds of putting on layers are not available in other methods. The magnetron 
structure differentiates from other atomiser structures by a dominating presence of 
secondary electron ionisation (surface ionisation effect). Thanks to that, current density 
flowing through the target is at least one order of magnitude greater than in other 
structures.  
Additionally during a process of sputtering, plasma cleans and activates surface of 
substrates. Therefore with magnetron methods one can do metallization of materials such 
as: PTFE (polytetrafluoroethylene) or PP (polypropylene), which can not be transformed by 
metallization with other methods, because of their surface properties.   
Universality of magnetron sputtering devices gives opportunity of using them in both 
production lines on an industrial scale and also in small scientific laboratories. The 
placement of the target with regard to substrates being coated is almost optional and the 
deposition area is virtually unlimited. Magnetrons of rectangle shape with targets up to 4000 
mm long are used to cover wide glass sheets with layers with different optical properties. It 
even ensures coating of a layer with the retention of stoichiometry of winning compounds 
and the thickness repeatability of single multilayer structures. The measure of usefulness  of 
magnetron systems, is among other things the ability to realise precise requirements for 
optical coatings (e.g. Ti02, Si02, Si3N4, Sn02, ZnO) for needs of automotive and spacecraft 
industry.  
In the project for winning electrical field shielding layers, on textile carriers, magnetron gun 
WMK-100 was used. The deposition experiment was prepared by the Laboratory of Vacuum 
and Plasma Technology of Wrocław University of Technology. This magnetron gun is 
characterised by a power densities of (~ 300 Wcm-2) striking targets, which are not 
obtainable in standard devices. Additional advantages of the magnetron gun are:  
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Coating of materials by thin layers (metallic, ceramic and polymer) meets wide use in many 
branches of technique, both in laboratory scale and in industry. The winning of materials 
with unique properties, a possibility of miniaturization, improvement of the lifespan and 
reliability, and a high energetic efficiency of electronic and optoelectronic devices are main 
driving force of thin-layer technique development to produce EM composite shileding. The 
most often used methods of layers winning are: the chemical deposition from the gas phase 
(CVD) and the physical deposition from the gas phase (PVD).   
PVD technologies are based on deposition of a conductive layer on the substrate from the 
gas phase using physical phenomena, such as: metal evaporation (vacuum sputtering), 
sputtering in vacuum, gases and metallic vapour ionisation. For most of them the common 
feature is a process of deposition of a layer from stream of gas containing ionised molecules. 
Any differences between PVD methods are due to the way of winning of ionised metal 
vapours.  
Nowadays, the most often used method of the obtaining different kinds of layers is 
magnetron sputtering (glow discharge, plasmatic). This method is based on bombarding of 
surface of the sputtering electrode (the target) with high energetic ions of working gases. 
Ions knock out atoms or molecules of material from the target, which next are deposited on 
substrates. This way metallic layers, dielectric semiconductor layers and high-melting layers 
can be deposited. Sputtering devices using an electrical and a magnetic field are called 
magnetron or plasmatic guns. In electrical and magnetic fields, ions from working gases 
obtain very high kinetic energy, and to the layers can be deposited at a very high speed,, 
which for metals is a few µm/min and for dielectric layers is in the order of 10-100 nm/min. 
Such high speeds of putting on layers are not available in other methods. The magnetron 
structure differentiates from other atomiser structures by a dominating presence of 
secondary electron ionisation (surface ionisation effect). Thanks to that, current density 
flowing through the target is at least one order of magnitude greater than in other 
structures.  
Additionally during a process of sputtering, plasma cleans and activates surface of 
substrates. Therefore with magnetron methods one can do metallization of materials such 
as: PTFE (polytetrafluoroethylene) or PP (polypropylene), which can not be transformed by 
metallization with other methods, because of their surface properties.   
Universality of magnetron sputtering devices gives opportunity of using them in both 
production lines on an industrial scale and also in small scientific laboratories. The 
placement of the target with regard to substrates being coated is almost optional and the 
deposition area is virtually unlimited. Magnetrons of rectangle shape with targets up to 4000 
mm long are used to cover wide glass sheets with layers with different optical properties. It 
even ensures coating of a layer with the retention of stoichiometry of winning compounds 
and the thickness repeatability of single multilayer structures. The measure of usefulness  of 
magnetron systems, is among other things the ability to realise precise requirements for 
optical coatings (e.g. Ti02, Si02, Si3N4, Sn02, ZnO) for needs of automotive and spacecraft 
industry.  
In the project for winning electrical field shielding layers, on textile carriers, magnetron gun 
WMK-100 was used. The deposition experiment was prepared by the Laboratory of Vacuum 
and Plasma Technology of Wrocław University of Technology. This magnetron gun is 
characterised by a power densities of (~ 300 Wcm-2) striking targets, which are not 
obtainable in standard devices. Additional advantages of the magnetron gun are:  



  
Electromagnetic Waves 

 

428 

- the easiness of target exchange,  
- the possibility of target sputtering of thickness from 1 to 6 mm, 
- the possibility of spraying of dielectric target.  
Magnetron guns are powered by direct (DC) and high frequency alternating (AC) current 
sources. DC currents are primarily used for metallic targets. Increasing the supply current 
frequency allows to sputter dielectric materials. Sources with radio frequency (RF) are also 
used; however, they didn't meet broader application in industry.  
In recent years impulse current sources have been developed for magnetron gun power 
supply. In standard systems, the power emitted on a target is controlled by the magnetron 
supplying current value, but in impulse systems the power is controlled by the length of 
impulse time. On Fig. 1 types of power supply modulation of magnetron sputtering devices 
are shown. During the impulse duration t1 sputtered material is accumulated in the plasma 
area.  During the intervals between impulses (t2-t1), the deposition of atoms on the 
substrates surface takes place. Applying uni-polar pulses to metallic targets (Fig.1 b) and 
bipolar ones to dielectric ones (Fig.1 a) is a common practice. The advantage of this type of 
solution is a possibility of making stable reaction processes. This stability stems from 
elimination of non controlled arc discharges. Since in a single impulse, there is always the 
maximum sputtering speed, the impulse modulation lets to increase the ratio of sputtered 
material to impurities.  
Describing the power supplied we use two electrical quantities: the real power P and the 
circulate power Pc. The first defines directly the effectiveness of the layers coating, the 
second is a certain property of the power supply system. It reflects changes of plasma 
parameters (change of impedance) connected with a change of concentration and type of 
charged particles. It is especially seen during sputtering in oxygen.   
 

 
Fig. 1. Types of impulse modulation: a - alternating current (bipolar), b - variable unipolar 
current  

Recent current source solutions let not only to change the length of impulse time t1, but also 
the current bursts repeating frequency 1/t2.  
This solution is useful during executing reactive processes, because the ratio of both times 
t1/t2 is a characteristic for coming into existence of each chemical compound. By changing 
this ratio, one can change chemical composition of emerging compounds. In reactive 
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processes (winning of oxides or nitrides) the dwelling time of atomised material in the 
plasma area plays the key role in a winning of layers with the pre-set chemical composition.  
If times t1 are too short, monoxide layers obtained, may not have the required stoichiometric 
composition. Even when sputtering metallic titanium in pure oxygen, one can obtain 
metallic layers. Therefore the proportion t1/t2 is a very important technological parameter.  
Processes of sputtering titanium (99.9 %) and zinc (99.9%) targets were realised by use of 
magnetron launcher WMK-100 with the magnetic system of diameter f= 75 mm. The argon 
pressure (99.999 %) used as a working gas was changed from 7*10-3 to 3*10-2 Tr. It was 
established, that pressure of 1*10-2 Tr was optimal, because the etching area of the target 
surface is then the widest. It ensures 85 % utilisation of the target area. This technological 
parameter is very important from the industry point of view, because it ensures the most 
advantageous use of target material. In this case, it may be increased using the magnetic 
system of a wider diameter. For this magnetron the optimal diameter of magnetic system is 
100 mm. The distance between the target and nonwoven fabrics has been set to 100 mm.  
The magnetron gun was energized by impulse current source type DPS (DORA POWER 
SYSTEM) which works in AC-M and DC-M modes controlling power up to P= 12 kW. This 
source can control group frequency in the range of fg=50 Hz – 5 kHz.  
 

 
Fig. 2. The zinc target installed on the WMK-100 magnetron 

3. Barrier composites on textile substrates  
When designing of shielding materials in a composite structure polymer-conductive layer, it 
is necessary to take into account not only electrical parameters (resistivity , permittivity ), 
but also the thickness of layers and the morphology of their surface. The layer thickness may 
be controlled by both: the power emitted on atomised electrode and by the time of 
atomisation.  
The appropriate choice of these parameters guarantees obtaining of uniform layers with the 
expanded specific surface and numerous conductive bridges. The volume resistivity v 
plays the significant role in the shielding mechanism, however it is not possible to measure 
this quantity in these type of composites.. Good solution seems to be a measurement of the 
surface resistivity s and its influence on a value of the shielding coefficient SE.  
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The s value of metallic layers is determined by the surface morphology of used nonwoven 
fabric and by the number of conductive bridges.  
Titanium layers were deposited on polypropylene nonwoven fabric of the base weight of 
60 g/m2 and 150 g/m2 , also on nonwoven fabric with consistence of viscose 30%- 
polyester 70 % and the base weight of 70g/m2 (VISC30+PES70). To establish the structure of 
obtained metallic layers, the surface of cross section areas of samples were examined at 
magnification 300x. On Fig. 3 nonwoven fabric surfaces before and after the metallization 
process are shown.  
Nonwoven fabric VIS30%+PES70% is characterised by the non-uniform expanded surface 
with clear seen fibres. Also for propylene, the influence of the basis weight on the 
morphology of nonwoven fabric clearly appears. PP samples of the base weight of 60 g/m2 
still have apparent single fibres. PP of the base weight of 180 g/cm2 has the most uniform 
surface.  
The power P emitted by the gun was varied from 0,5 do 3 kW. Increasing of power above 3 
kW causes heating of nonwoven fabric, which may even lead to melting . Heating of 
nonwoven fabric results in desorption of gases from its volume or chemical dissolution 
causing arising of reactive gases in the magnetron chamber. These gases react chemically 
with atomised titanium and form its compounds, which are characterised by other electrical 
properties than metallic titanium. Time of depositing was varied from 0,5 to 20 min.  
The investigation of the surface morphology was conducted with the use of scanning 
microscope Quanta 200 in the low vacuum mode (without covering of preparation surface 
with a gold layer), The sample surface  was in its natural state. The acceleration voltage 15,0 
kV of an electron bunch and the SSD detector were used.   
 

   a 

   b 
VISC30%-PES70%            PP60        PP150 

Fig. 3. Textiles’ surfaces: a- before deposition of the Ti layer, b- after deposition of the Ti 
layer. 
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The microscope examination (Fig. 4) has shown, that deposited layers are not uniform, what 
is probably caused by penetration of metal into areas between fibres.  
In covering metallic layers, there are few cracks and splits, and their adhesion to substrate is 
very good.  For PP nonwoven fabric, titanium layers also form themselves into areas 
between interleaves. Increasing the base weight of the fabrics causes forming of more solid 
layers and uniform metallic layers. The covering process of layers Ti begins with forming of 
nuclei of crystallization centres (for depositing time less than 10s) on passing holes of 
nonwoven fabric (Fig. 3). X-ray radiography examination shown, that Ti layer is formed by 
crystallites of dimensions from 8 to 13 nm. Increase in the depositing time causes the 
spreading of layers so that a continuous structure can be obtained.  
Interesting part is also building over areas between passing holes of nonwoven fabric and 
deposition of Ti layer on fibres, taking place inside nonwoven fabric (Fig. 4). Such extension 
is characterised by a big specific surface, which increases the reflection and the dispersion of 
the electromagnetic wave effect.  
 

   

   
Fig. 4. Microscopic image of the Ti surface at different magnifications. 

Values of surface resistivity s of titanium layers depend on morphology of the nonwoven 
fabric surface. The precise microscopic analysis has shown obvious differences in the surface 
morphology of either side of the nonwoven fabric PP150 (Fig. 5). The one side of the surface 
is almost smooth, consistent and without any expanded porous structure; whereas the 
second surface is scabrous and porous, with visible micro-fibres forming a spongy 
microstructure. Such a surface makes it impossible to form a nucleus of crystallization 
centres, which form conductive metallic bridges. 
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a    b 

Fig. 5. The surface morphology of each side of polypropylene textile of the base weight of 
g=180gcm-2 , a- smooth surface, b- scabrous surface.  

The process of winning of zinc layers and zinc-bismuth layers on PP onwoven fabric was made 
by sputtering metallic targets with the weight consistence of 0.9Zn-0.1Bi and 0.96Zn-0.04Bi, and 
metallic zinc with the purity of 99.9 %. Metallic layers were deposited on polypropylene 
nonwoven fabric of the different base weight, alumina ceramics,  CORNIG glass covered with 
conductive and transparent layer of ITO  (the solid solution SnO2 and In2O3). 
To identify the structure of the obtained metallic layer the surface of the samples cross section 
was examined at magnifications: 300x, 1000x (Fig. 6). In covered layers Zn there are few cracks 
and splits, and their adhesion to substrate is very good and similar to titanium layers. In 
magnified figures below (Fig.6), one can observe well formed, conducting zinc bridges. 
 

   a 

  b 

Fig. 6. The microscopic pictures of (a) the surface and (b) the cross-section of Zn layer.  

During the deposition of Zn and Zn-Bi target, in contrast to titanium ones, one is not 
allowed to use high values of power. Exceeding the value of power over 2 kW (for magnetic 
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system use), causes uncontrolled arcing discharges on defects and impurities of the target 
surface, which leads to overheating. Further increasing of power heats the target in such a 
way, that process of melting follows it, and then it causes evaporation of the target material. 
This effect leads to damage of the target and eventually to water leak from cooling system 
into vacuum chamber.   
Zinc and zinc-bismuth layers, just like titanium, are half-amorphous. The X-ray analysis 
(Fig. 7) has shown, that the average dimension of crystallites is of the order of 10 nm. Lines 
characteristic for Zn are characterised by a small intensity and a big half-width. 
In Fig. 8 the dependence of group frequency of a magnetron gun power supply and types of 
nonwoven fabric, also their base weight on a surface resistivity s of titanium layers is 
presented. It was determined, that the value of the surface resistivity depends on the 
substrate base weight. PP150 nonwoven fabric is characterised by the lowest value s of the 
order of 103 . It is a big value and according to the expanded surface of nonwoven fabric, 
also numerous of resistance bridges, in spite of that the magnification picture of cross 
section suggests continuity of the layer. For nonwoven fabric PP60 the surface resistivity is 
one level higher. The highest value s was obtained for VISC30+PES70, which is above 107. 
This is the result of lack of the metallic continuity of layers.  
 

 
Fig. 7. X-ray picture of PP textile with covering Zn layer for radiation wavelength Co.  

It was determined, that with increase in group frequency, value of s was increased slightly. 
It is the result of the longer time of sputtering t1 and the longer dwelling time of the 
substrate in the area of plasma.  
Probably a chemical dissolution of substrates occurs as a result of the effect of the higher 
temperature. Substances are released, which react with titanium layer changing its electrical 
properties.  
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Fig. 8. Influence of the group frequency fg on the surface resistivity s of titanium layers,  
PAr =2*10-2, power emitted on the target P=1 kW, the depositing time t=10 min. 
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Fig. 9.  Influence of the group frequency fg on a surface resitivity s of titanium layers, 
PAr=2*10-2,  the depositing time t=3 min. in case of unipolar DC-M supply 
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The surface microstructure has the decisive impact on the value of the surface resistivity s . 
The porous side of PP nonwoven fabric with an extended structure is characterised by a 
very high surface resistivity of the order of 107 Ω (Fig. 9) and it is two levels higher than on 
the smooth side (s =3*104 Ω). With increasing of group frequency of the power supply, s 
gets lower into value 3*105 Ω, but even then it is one level higher than on a smooth side.  
The value of s depends also on the time of depositing metallic layers. Increasing the time, 
the covering layer not only increases its thickness, but it gets more solid and uniform. After 
obtaining the specified thickness, value s does not change.   

4. Shielding properties of PP/Ti and PP/Zn composites 
Measurements of shielding attenuation were realised on the test setup prepared in the 
Institute of Telecommunications, Teleinformatics and Acoustics of Wrocław University of 
Technology in accordance with the method of ASTM D4935-99. The test diagram is 
presented on Fig. 10. The test settup consists of network analyser - model HP 8711A of 
Hewlett-Packard firm and measuring adapter, which is a section of an air concentric line of 
characteristic impedance 50 Ohm. Measuring uncertainty is approximately 2 dB. 
Measurements of attenuation were made using standard sample. Shielding attenuation is 
calculated as a difference between transmittances or between attenuation of a standard and 
an examined sample. 
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Fig. 8. Influence of the group frequency fg on the surface resistivity s of titanium layers,  
PAr =2*10-2, power emitted on the target P=1 kW, the depositing time t=10 min. 
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Fig. 9.  Influence of the group frequency fg on a surface resitivity s of titanium layers, 
PAr=2*10-2,  the depositing time t=3 min. in case of unipolar DC-M supply 
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The surface microstructure has the decisive impact on the value of the surface resistivity s . 
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Examinations performed have shown an influence of types of used substrates on a value of 
shielding attenuation of metallic layers. On Fig. 11, increasing of shielding attenuation Ti 
layers of 10 dB for substrates of smooth surface (CORNIG glass) in comparison to the 
substrate of extended specific surface (nonwoven fabric PP) is observed. This observation 
points to a possibility of obtaining higher values of SE for nonwoven fabrics.  
The highest values of shielding attenuation coefficient (SE>50 dB) are obtained for 
composites PP/Zn (Fig. 12). The value of SE may increase by doping zinc layers with 
bismuth. Increasing bismuth concentration from 4 to 10 % of atomic, causes increase in SE 
by approximately 20 dB (Fig. 13 and 14). Further increase in concentration of Bi does not 
cause any increment of SE. Observed changes of SE value as a function of power released on 
the target, are caused by increase in Zn layer thickness. 
 
 
 
 
 
 

 
 
 
 
 
 

Fig. 11. The coefficient of shielding efficiency SE versus frequency f for PP/Ti and glass/ Ti 
composites. 

5,0x108 1,0x109 1,5x109 2,0x109 2,5x109 3,0x109 3,5x109
0

5

10

15

20

25

 

SE
 [d

B
]

frequency f [Hz]

glass

PP

 

 
EMI Shielding using Composite Materials with Plasma Layers 

 

437 

 
Fig. 12. The coefficient of shielding efficiency SE versus frequency f for PP/Zn composites. 

 

 
Fig. 13. The coefficient of shielding efficiency SE versus frequency f, for different powers 
released on the Zn96%Bi4% target in case of unipolar DC-M supply. 
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Fig. 14. The coefficient of shielding efficiency SE versus frequency f, for different powers 
released on the Zn96%Bi4%target in case of bipolar DC-M supply.  

Despite of the initial assumption, that the surface resistivity may be a good tool for testing 
composites PP/Me (Me- metal) for evaluation of their shielding properties, it has been 
found, that deciding role is played by the thickness of layers. In case of composites PP/Zn 
and PP/Ti, for the same s, different values of shielding coefficient were obtained. On Fig. 
15 , over twofold increase in SE value, for the same values of surface resitivity, was 
observed. In this case, Zn layer is characterised by higher thickness and uniformity than Ti 
layer. Higher uniformity and continuity of Zn layers causes increase in the reflecting effect 
of electromagnetic wave from this surface. 

5. Assessment of barrier shielding materials with plasma layers deposited on 
the fabrics and parameters of technological process with the impedance 
spectroscopy method 
Shielding effectiveness of composite material polymer-metal is not only determined by its 
surface resistivity. There are other physical phenomena occurring both in each composite 
layer and on interphases between them that play very important roles.  
Composite materials working in alternating electrical fields are characterised by a presence, 
beside conductivity, also polarisation phenomena, that is they get a certain electrical 
moment m. The total dielectric polarisation is a superposition of three polarisation 
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Fig. 15 . The coefficient of shielding efficiency SE versus frequency f, for different powers 
released on the Zn96%Bi4%target in case of unipolar DC-M supply. 

- distortion polarisation, which occurs both in dipole dielectrics and in non dipole 
dielectrics, and being a sum of:  
 electron polarisation resulting from a deformation of electron shell, and  
 atomic polarisation resulting from a displacement of atoms from their original 

positions,  
- orientation (dipole) polarisation, which occurs only in dielectrics with permanent 

dipole moments resulting from an alignment of dipole axes along direction of outer 
electric field lines, 

- ion polarisation, which occurs in dielectrics with ion bonds, resulting from 
displacement of ions in relation to each other from the place of balance.   

Generally the polarisation phenomenon is that an arising on a dielectric surface, inserted into 
electric field, induced electric charges, which are bonded charges ρp. We can treat them as 
charges of dipoles chain ends, directed by the outer electric field. If we take into consideration 
the surface charge density for a capacitor not filled with dielectric ρ0, then the total charge 
density for a capacitor with dielectric is a sum of the bounded charge ρp and the free charge ρ0.  
Inserting of dielectric into electric field (flat capacitor configuration) causes increasing of the 
capacitance from value C0 to value C. The ratio of the capacitor capacitance increasing to its 
capacitance C0 is defined as the electric susceptibility of the dielectric χ, but the proportion 
of the capacitor capacitance with a dielectric to its capacitance without a dielectric, as the 
electrical permeability ε. Thus we can define the density of the total capacitor charge as: 

 1)(χ0ρ0χρ0ρpρ0ρρ    (1) 

102 103 104 105
0

10

20

30

40

50

60

Ti

SE
 [d

B
]

surface resistivity s []

Zn

 



  
Electromagnetic Waves 

 

438 

 
Fig. 14. The coefficient of shielding efficiency SE versus frequency f, for different powers 
released on the Zn96%Bi4%target in case of bipolar DC-M supply.  

Despite of the initial assumption, that the surface resistivity may be a good tool for testing 
composites PP/Me (Me- metal) for evaluation of their shielding properties, it has been 
found, that deciding role is played by the thickness of layers. In case of composites PP/Zn 
and PP/Ti, for the same s, different values of shielding coefficient were obtained. On Fig. 
15 , over twofold increase in SE value, for the same values of surface resitivity, was 
observed. In this case, Zn layer is characterised by higher thickness and uniformity than Ti 
layer. Higher uniformity and continuity of Zn layers causes increase in the reflecting effect 
of electromagnetic wave from this surface. 

5. Assessment of barrier shielding materials with plasma layers deposited on 
the fabrics and parameters of technological process with the impedance 
spectroscopy method 
Shielding effectiveness of composite material polymer-metal is not only determined by its 
surface resistivity. There are other physical phenomena occurring both in each composite 
layer and on interphases between them that play very important roles.  
Composite materials working in alternating electrical fields are characterised by a presence, 
beside conductivity, also polarisation phenomena, that is they get a certain electrical 
moment m. The total dielectric polarisation is a superposition of three polarisation 
mechanisms:  

SE
 [d

B
] 

frequency [MHz]

10 2 10 3 
0

5

10 

15 

20 

25 

30 

35 

40 

45 

160 W

400 W

Zn90%Bi10%
t= 4 min

600 W

 
EMI Shielding using Composite Materials with Plasma Layers 

 

439 

 
Fig. 15 . The coefficient of shielding efficiency SE versus frequency f, for different powers 
released on the Zn96%Bi4%target in case of unipolar DC-M supply. 

- distortion polarisation, which occurs both in dipole dielectrics and in non dipole 
dielectrics, and being a sum of:  
 electron polarisation resulting from a deformation of electron shell, and  
 atomic polarisation resulting from a displacement of atoms from their original 

positions,  
- orientation (dipole) polarisation, which occurs only in dielectrics with permanent 

dipole moments resulting from an alignment of dipole axes along direction of outer 
electric field lines, 

- ion polarisation, which occurs in dielectrics with ion bonds, resulting from 
displacement of ions in relation to each other from the place of balance.   

Generally the polarisation phenomenon is that an arising on a dielectric surface, inserted into 
electric field, induced electric charges, which are bonded charges ρp. We can treat them as 
charges of dipoles chain ends, directed by the outer electric field. If we take into consideration 
the surface charge density for a capacitor not filled with dielectric ρ0, then the total charge 
density for a capacitor with dielectric is a sum of the bounded charge ρp and the free charge ρ0.  
Inserting of dielectric into electric field (flat capacitor configuration) causes increasing of the 
capacitance from value C0 to value C. The ratio of the capacitor capacitance increasing to its 
capacitance C0 is defined as the electric susceptibility of the dielectric χ, but the proportion 
of the capacitor capacitance with a dielectric to its capacitance without a dielectric, as the 
electrical permeability ε. Thus we can define the density of the total capacitor charge as: 

 1)(χ0ρ0χρ0ρpρ0ρρ    (1) 

102 103 104 105
0

10

20

30

40

50

60

Ti

SE
 [d

B
]

surface resistivity s []

Zn

 



  
Electromagnetic Waves 

 

440 

A measure of this charge is the dielectric displacement vector (the vector of an electrical flux 
density, the induction vector) D: 

 nPnE0ε1)(χ0ρρnD    (2) 

where: 
n - is the normal unit vector directed in the dielectric direction, 
ε 0  - is permittivity of vacuum.  
Polarisation P, directly bonded with ρp surface density of polarisation charge, can be 
therefore presented in the form:  

 E0χεE01)ε(εE0εE0εεE0εE01)ε(χE0εDP    (3) 

A basement of the impedance spectroscopy method (IS) is a measurement of a linear 
electrical answer of an examined material to an excitation with a relatively small voltage 
signal of the sinusoidal form u(t) = Um sin (ω t + ψu), in a wide frequency range f (ω = 2 π f). 
An answer to a sinusoidal voltage signal is a sinusoidal form of current i(t) = Im sin (ω t + 
ψi) with the same angle speed ω. This current is a sum of conductive current and 
polarisation (displacement) current (Walter S. Zaengl, 2003):  

 tP(t)/tE(t)/0εE(t)0ρtD(t)/E(t)0ρi(t)    (4) 

Using the Fourier transform to both sides of equation (6) we get an answer of dielectric in 
the frequency domain (A.K. Jonscher, 1983; A. Bouaïcha et.al, 2009): 
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where: χ’ i χ” are respectively the real and the imaginary component of the complex electric 
susceptibility χ. 
The nature of examination of material electrical answer is a measure of the effective 
current’s value I and its φ phase displacement in relation to forcing voltage (of the effective 
value U), whereby φ= ψu - ψi . 
Based on these measures the T(ω) spectral transmittance is calculated, which characterises 
dependence between the forcing and the answer phase displaced for the same ω pulsation:  
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where:  )(T  is a modulus and ψ (ω) is an argument of the spectral transmittance T(ω).  
In the impedance spectroscopy, the spectral transmittance usually has a form of the Z(ω) 
complex impedance or Y(ω)admittance, which are defined as: 
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where 
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In the IS method we are not limited only to frequency analysis of impedance or admittance 
of examined material (their amplitude and phase characteristics or dependence of real and 
imaginary parts of the complex transmittance upon frequency), but we can also use other 
quantities, such as the complex capacitance C , or the complex permittivity ε. These 
quantities are bonded with the complex admittance by frequency and geometrical 
parameters of sample.  
The complex admittance, which can be associated to a simple equivalent scheme in a 
parallel connection configuration of two ideal elements - resistance R and capacitance C, is 
explained by a formula:  

 CjGCj
R

Y  
1

  (9) 

Transformation of expression (9) allows to introduce a term of the C complex capacitance:  
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If we assume, that examined material of d thickness is placed between two flat parallel 
electrodes of area S, that is the geometrical capacitance of capacitor electrodes configuration 
Co = εo S/d is given, then a knowledge of this parameter allows to define the relative 
permittivity in a complex form:  

      o oC  /  C C  d /  S     ’  j ”           (11) 

The capacitance and the relative permittivity in a complex form are the most often used 
form of the spectral transmittance in the IS method. Their frequency analysis shows multiple 
phenomena, which take place simultaneously in an examined material.   
Below the examinations of an answer of dielectric composite materials made of nonwoven 
fabrics covered by thin plasmatic layers of titanium and titanium monoxide as a 
representative for composites described in this chapter are shown. For these examinations 
the measurement system from the High Voltage Group of Wrocław University of 
Technology was used. Its main elements are the precise impedance analyser Agilent 4294A 
and the measuring cell Agilent 16451B consisting of the three-electrode measuring capacitor.  
Table 1 includes the description of samples made of alternately covered titanium and 
titanium monoxide layers on nonwoven fabric.   
Bode diagrams of examined materials are shown on figure 16.  The frequency spectrum of 
the modulus of impedance does not indicate significant differences between examined 
samples. It varies for all examined samples in the same way, and additionally for samples 
3TiO and Ti overlaps in almost entire spectrum of frequencies. 
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Table 1. Description of samples made of titanium and titanium monoxide layers alternately 
deposited on a textile 

 

1,0E+03

1,0E+04

1,0E+05

1,0E+06

1,0E+07

1,0E+08

1,0E+03 1,0E+04 1,0E+05 1,0E+06 1,0E+07 1,0E+08 1,0E+09

f [Hz]

IZ
I [

O
hm

]

1TiO

2TiO

3TiO

Ti

 
 

-100

-90

-80

-70

-60

-50

-40
1,0E+03 1,0E+04 1,0E+05 1,0E+06 1,0E+07 1,0E+08

f [Hz]

φ
 [d

eg
re

e]

2TiO

3TiO

1TiO

Ti

 
Fig. 16. The Bode diagram of examined composite structures.  
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The Bode diagram analysis suggests a possibility to use the equivalent scheme consisted of a 
parallel connection RC and also a presence of the Maxwell-Wagner polarisation to 
describing the polarisation phenomena. It is possible to find analogies to examinations 
outcomes of some laminar structures (Nitsch, 1999).   
 More pieces of information about dielectric properties may be given by a form analysis of 
the complex capacitance presented as a function of frequency and on the complex plane (the 
Cole-Cole diagram). Figures 17 and 18 present frequency spectrums of examined complex 
capacitance. An incline of real component curves of the complex capacitance for 1TiO and 
2TiO samples can be seen there, what suggests a presence of at least one relaxation 
mechanism in the examined frequency range.  
Diagram forms for Ti and 3TiO samples suggest a possibility of a presence of relaxation 
processes in frequencies above the measuring range. It is confirmed on diagrams of the 
imaginary component of the complex capacitance presented on figure 18. We can observe 
the presence of a relaxation pick for 1TiO sample for frequency under 107 Hz also for 2TiO 
sample for frequency approximately 5x107 Hz. 
The Cole-Cole diagram of the complex capacitance of examined composite structures is 
presented on figure 19. The diagram has a form of deformed semicircles with clearly 
displaced centres. Each of the examined samples distinguishes then with a specific 
relaxation process of different time-constants. Furthermore we can observe a presence of the 
second semicircle for each of examined composites, what clearly suggests the presence of 
another relaxation process at higher frequencies.    
 

 
 

Fig. 17. Frequency spectrums of real component of complex capacitance. 
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Fig. 16. The Bode diagram of examined composite structures.  
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second semicircle for each of examined composites, what clearly suggests the presence of 
another relaxation process at higher frequencies.    
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Fig. 18. Frequency spectrums of imaginary component of complex capacitance. 

 
 

 
Fig. 19. The Cole-Cole diagram of the complex capacitance 
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titanium (Ti), and of composites with the outer layer formed by a titanium monoxide (TiO). 
For composites with outer titanium layer (Ti and 3TiO samples) in the measuring frequency 
range, we observe very little differences in frequency spectrums of measured parameters 
and in the Cole-Cole diagrams independently from a number of layers Ti-TiO.  
In the diagram form of the imaginary component of the complex capacitance as a function of 
frequency, we do not observe a relaxation pick.  At the same time, the diagram form of this 
characteristic suggests the presence of a relaxation pick at frequencies higher than the 
measuring range. Quite a different situation for composites with the outer layer formed by a 
titanium monoxide (1TiO and 2TiO samples) appears. In this case we can observe the strong 
dependence of dielectric composite properties upon a number of formed Ti-TiO layers.  
Frequency diagram forms of the imaginary component of the complex capacitance shows, in 
the examined measuring frequency range, the presence of a relaxation pick and a possibility 
of a presence of the second relaxation phenomenon at higher frequencies. The value and 
frequency of a relaxation pick presence are strictly depended on a number of Ti-TiO layers 
forming a composite. Increasing a number of layers results in reducing of a relaxation pick 
value and in displacement in the lower frequencies direction. It is confirmed by Cole-Cole 
diagrams of the complex capacitance, in which there is a clear presence of a displacement of 
the semicircle centre to the right for 1TiO sample. 
The capability of composite materials to shield electromagnetic fields is coherently 
associated with their dielectric properties in a wide frequency band. The method of 
impedance spectroscopy allows one to connect the measured frequency characteristics with 
the physical structure of tested material and the alternations in the structure. 
The method has been used by the authors to determine the connection between surface 
structure of a fabric being a substrate and dielectric properties of obtained composite fabric 
–carbon (Jaroszewski et al., 2010) and to evaluate the correlation between dielectric response 
of the system and surface resistance of the carbon layer (Pospieszna et al., 2010, Pospieszna 
& Jaroszewski, 2010). The possibilities to design desired electric properties of composite 
materials are also used to improve the shielding properties of the materials. Thus, the 
connection of the impedance spectroscopy method with those properties. 

6. Summary 
It should be noted that the performed studies and collected experience in the field of 
modern technologies of shielding have already solved a lot of actual problems but there is 
still a  challenge for further work to improve the efficiency of shielding and to develop new 
designs of electromagnetic shields. They can also be used in the shielding of power 
engineering systems, where a compatibility with environment in a wide sense of this 
meaning is the main problem (i.e. not only in the aspect of emission and electromagnetic 
disturbances). In the light of the latest experiences  it seems that the future in the area of EM 
field shielding is connected with the application of modern technologies to fabricate thin-
film composite coatings, including nano-composites. The materials are capable to fulfil all 
conditions of effective shielding from EM fields and to eliminate all undesired occurrences 
associated with operation of the shielded systems. The results of our investigations, 
presented above, point out the possibility of industrial fabrication of the composite shielding 
materials with the coefficient of shielding efficiency exceeding 50 dB. Good mechanical 
properties and high resistance to environmental effects are additional advantages of such 
materials.  
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1. Introduction 
Plasma mediums have taken considerable interest in recent studies due to their tunable 
characteristics offering some advantages in radio communications, radio astronomy and 
military stealth applications. Special plasma mediums have been used as electromagnetic 
wave reflectors, absorbers and scatterers. Reflection, absorbtion and transmission of 
electromagnetic waves by a magnetized nonuniform plasma slab are analysed by different 
authors using different methods in literature. It is known that plasma parameters such as 
length, collision frequency and electron density distribution function considerably affect 
plasma response. Among those, especially the electron density distribution considerably 
affects the frequency selectivity of the plasma (Gurel & Oncu, 2009a, 2009b, 2009c). 
Conducting plane covered with plasma layer has been considered and analysed in literature 
for some specific density distribution functions such as exponential and hyperbolic 
distributions (Shi et al., 2001; Su et al., 2003 J. Zhang & Z. Liu, 2007). The effects of external 
magnetic field applied in different directions to the plasma are also important and 
considered in those studies. 
In order to analyze the characteristics of electromagnetic wave propagation in plasma, many 
theoretical methods have been developed. Gregoire et al. have used W.K.B approximate 
method to analyze the electromagnetic wave propagation in unmagnetized plasmas 
(Gregoire et al., 1992) and Cao et al. used the same method to find out the absorbtion 
characteristics of conductive targets coated with plasma (Cao et al., 2002). Hu et al. analyzed 
reflection, absorbtion, and transmission characteristics from nonuniform magnetized plasma 
slab by using scattering matrix method (SMM) (Hu et al., 1999). Zhang et al. and Yang et al. 
used the recursion formula for generalized reflection coefficient to find out electromagnetic 
wave reflection characteristics from nonuniform plasma (Yang et al., 2001; J. Zhang & Z. Liu, 
2007). Liu et al. used the finite difference time  domain method (FDTD) to analyze the 
electromagnetic reflection by conductive plane covered with magnetized inhomogeneous 
plasma (Liu et al., 2002). 
The aim of this study is to determine the effect of plasma covering on the reflection 
characteristics of conducting plane as the function of special electron density distributions 
and plasma parameters. Plasma covered conducting plane is taken to model general 
stealth application and normally incident electromagnetic wave propagation through the 
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plasma  medium is assumed. Special distribution functions are chosen as linearly varying 
electron density distribution having positive or negative slopes and purely sinusoidal 
distribution which have shown to provide wideband frequency selectivity characteristics 
in plasma shielding applications in recent studies (Gurel & Oncu, 2009a, 2009b, 2009c). It 
is shown that linearly varying profile with positive and negative slopes can provide 
adjustable reflection or absorbtion performances in different frequency bands due to 
proper selection of operational parameters. Sinusoidally-varying electron distribution 
with adjustable phase shift is also important to provide tunable plasma response. The 
positions of maximums and minimums of the electron number density along the slab can 
be changed by adjusting the phase of the sinusoid as well as the other plasma parameters. 
Thus plasma layer can be tuned to behave  as a good reflector or as a good absorber. In 
this study, plasma is taken as cold, weakly ionized, steady state, collisional, nonuniform 
while background magnetic field is assumed to be uniform and parallel to the magnetized 
slab.  

2. Physical model and basic theory 
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To match the boundary conditions at mz Z , following  two equations can be written 
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Since mz Z  at the boundary, equation (12) can be  arranged as below 
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where 1md    is the thickness of the  1 thm   subslab. 
By using the following equalities, 
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Equation (13) becomes 

        1 1i r i re m e m A e m B e m         (16) 

By inserting equations (7) and (8) into (11), it is obtained that 

 
             

         
1

1 1
1

1 1exp exp 1 .

1exp 1 1 exp 1

i m r m i
m m

m r m
m

e m jk m z Z e m jk m z Z e m

jk m z Z e m jk m z Z

 





 


         

      
 (17) 

Then  by replacing mz Z  in (17) it is obtained that 
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By relating the intrinsic impedance to permittivity and arranging the equation (18), 
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Now, the  final equation is obtained as  
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where n is the last boundary of the plasma slab which is located  before conductive target.  
For 2m n   
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When we continue to write the field equations iteratively until m=0 which means the 
boundary between free space and the first subslab of plasma, we have  
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Then by inserting equation (28) into equation (27) 
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Then by dividing these two equations side by side, we get (J. Zhang & Z. Liu, 2007) 
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where n is the last boundary of the plasma slab which is located  before conductive target.  
For 2m n   

  
 

 
 2

2 1
2 1

r r
n

i i

e n e n
S

e n e n
    

       
  (25) 

When we continue to write the field equations iteratively until m=0 which means the 
boundary between free space and the first subslab of plasma, we have  

  
 

 
 0 1 2 3 1

0
.........

0
r r

n
i i

e e n
S S S S S

e e n
   

    
   

 (26) 

This can be written in the following compact form, 

  
 

 
 

1

0

0
0

n
r r

m
i im

e e n
S

e e n





     
      

     
  (27) 

Letting  

 
1

0

n

m
m

S




 
  
 
 = 1 2

3 4

M M
M

M M
 

 
 

 (28) 

Then by inserting equation (28) into equation (27) 

  
 

 
 

1 2

3 4

0
0

r r

i i

M Me e n
M Me e n

    
    
    

 (29) 

Hence 

      1 20r r ie M e n M e n   (30) 

      3 40i r ie M e n M e n    (31) 

By dividing the both sides of the equations by  nei  , the following two equations are obtained 

 
 
 

 
 1 2

0r r

i i

e e n
M M

e n e n
    (32) 

 
 
 

 
 3 4

0i r

i i

e e n
M M

e n e n
   (33) 

Then by dividing these two equations side by side, we get (J. Zhang & Z. Liu, 2007) 

 
 
 

 
 

1 2

3 4

0
0

r

i

e M n M
e M n M

 


 
  (34) 



  
Electromagnetic Waves 

 

454 

where   n  is the reflection coefficient of the conductive target. In order to calculate the 
total reflection coefficient, the matrix M is needed to be computed. 

2.2 Wentzel-Kramers-Brillouin (WKB) approximate method 
It is known that WKB method is used for finding the approximate solutions to linear partial 
differential equations that have spatially varying coefficients. This mathematical 
approximate method can be used to solve the wave equation that defines the 
electromagnetic wave propagation in a dielectric plasma medium. 
Let us write the wave equation as 
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2
2 0z z

d E k E
dz

   (35) 

Then WKB method can be applied to derive an approximate solution (Gregoire et al., 1992), 
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exp
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  (36) 

This solution is valid in any region where  
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1 1dk

dzk
  (37) 

The pyhsical meaning of (37) is that the wavenumber of the propagating electromagnetic 
wave changes very little over a distance of one wavelength. 
It is assumed that the electromagnetic wave enters the plasma at 0z z and reflects back at 

1z z . Then total reflected power can be found by WKB approximation (Gregoire et al., 
1992) as 
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0

1exp 4 Im
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  (38) 

where rP  is the normalized total reflected power. 

2.3 Finite-difference time-domain analysis 
Finite-difference time-domain analysis have been extensively used in literature to solve the 
electromagnetic wave propagation in various media (Hunsberger et al., 1992; Young, 1994, 
1996; Cummer, 1997; Lee et al., 2000; M. Liu et al., 2007). When the electromagnetic wave 
propagates in a thin plasma layer, the W.K.B method may not accurately investigate the 
wave propagation (X.W. Hu, 2004; S. Zhang et al., 2006). The reason is the plasma thickness 
is near or less than the wavelength of the plasma exceeds the wavelength of the incident 
wave, the variation of the wave vector with distance cannot be considered as weak (M. Liu 
et al., 2007). 
In the analysis electric field is considered in the x direction and propagation vector is in z 
direction and the electromagnetic wave enters normally into the plasma layer. 
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Lorentz equation (electron momentum equation) and the Maxwell’s equations can be 
written as 
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where E


 is the electric field vector, H


is the magnetic field vector, 0  is the permittivity, 
0 is the magnetic permeability of free space, J


 is the current density, en  is the denstiy of 

electron, em and ev are the mass and velocity vector of the electron, respectively and cl is 
collision frequency. Then FDTD algorithm of equations (39), (40), (41) and (42) can be 
written as (Chen et al., 1999; Jiang et al., 2006; Kousaka & Ono, 2002; M.H. Liu et al., 2006) 
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where z  is the spatial discretization and t  is the time step. By using equations (43) to 
(46), the electromagnetic wave propagation in a plasma slab can be simulated in time 
domain (M. Liu et al., 2007). 

2.4 Scattering matrix method (SMM) analysis 
This analytical technique is the manipulation of the 2x2 matrix approach which was 
presented by Kong (Kong, 1986). SMM analysis gives the partial reflection and transmission 
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where z  is the spatial discretization and t  is the time step. By using equations (43) to 
(46), the electromagnetic wave propagation in a plasma slab can be simulated in time 
domain (M. Liu et al., 2007). 

2.4 Scattering matrix method (SMM) analysis 
This analytical technique is the manipulation of the 2x2 matrix approach which was 
presented by Kong (Kong, 1986). SMM analysis gives the partial reflection and transmission 
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coefficients in the subslabs. This makes it easy to analyze the partial absorbed power in each 
subslab of the plasma (Hu et al., 1999). 
Let us write the incident and reflected fields as follows 

  0
0 expi

y zE E jk z    (47) 

  0
0 expr

y zE AE jk z   (48) 

where 0
zk  is the z component of the free space wave number and A is the reflection 

coefficient for the first subslab. 
The total electric field  in incidence region is 

     0 0 0
0 exp expy z zE E jk z A jk z     (49) 

In the same manner, we can write the total electric field in thm layer as 

     0 exp expm m m
y m z m zE E B jk z C jk z     (50) 

where mB  and mC  are the unknown coefficients. 
After the last subslab there is only transmitted wave that travels in free space. The electric 
field for this region is  

  0 expp p
y zE DE jk z   (51) 

where D is the unknown coefficient. After writing the total electric fields in each subslab,  
boundary conditions can be applied. 
For the first boundary 
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Lastly, for the last boundary 
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By using equations (52) and (54), equation (56) can be written as, 
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where gS  is the global scattering matrix and can be written as, 

  1 2,g g gS S S   (59) 

where 1gS  represents the first column vector and 2gS  represents the last column vector of 
the global scattering matrix. Then equation (58) can be written (Hu et al., 1999) as 
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By using equation (60), A and D coefficients can be computed. The coefficient A represents 
total reflection coefficient and the coefficient B represents total transmission coefficient. 
Absorbed power values for each subslab and the total absorbed power inside the plasma 
can be obtained by the help of  equations (52), (54) and (56). 

2.5 Formulation of reflection from plasma covered conducting plane 
In this chapter another method is presented to analyze the characteristics of electromagnetic 
wave propagation in a plasma slab. This method is simple, accurate and provides less 
computational time as compared to other methods mentioned in previous sections. 
Normally incident electromagnetic wave propagation through a plasma slab  is assumed as 
shown in Fig. 2. In the analysis, inhomogenous plasma is divided into sufficiently thin, 
adjacent subslabs, in each of which plasma parameters are constant. Then starting with 
Maxwell’s equations, reflected, absorbed and transmitted power expressions are derived. 
Here, plasma layer is taken as cold, weakly ionized, steady state and collisional. Background 
magnetic field is assumed to be uniform and parallel to the magnetized slab. 
For a magnetized and source free plasma medium, plasma permittivity is in tensor form. 
This tensor form permittivity can be approximated by a scaler permittivity. Let us give the 
details of this approximation. 
The equation of motion for  an electron of mass  m is 

 2
clmw r mv jwr eE ejwr B    

      (61) 
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     0 exp expm m m
y m z m zE E B jk z C jk z     (50) 

where mB  and mC  are the unknown coefficients. 
After the last subslab there is only transmitted wave that travels in free space. The electric 
field for this region is  

  0 expp p
y zE DE jk z   (51) 

where D is the unknown coefficient. After writing the total electric fields in each subslab,  
boundary conditions can be applied. 
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Lastly, for the last boundary 
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By using equations (52) and (54), equation (56) can be written as, 

 
1g p
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  (58) 

where gS  is the global scattering matrix and can be written as, 

  1 2,g g gS S S   (59) 

where 1gS  represents the first column vector and 2gS  represents the last column vector of 
the global scattering matrix. Then equation (58) can be written (Hu et al., 1999) as 
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  (60) 

By using equation (60), A and D coefficients can be computed. The coefficient A represents 
total reflection coefficient and the coefficient B represents total transmission coefficient. 
Absorbed power values for each subslab and the total absorbed power inside the plasma 
can be obtained by the help of  equations (52), (54) and (56). 

2.5 Formulation of reflection from plasma covered conducting plane 
In this chapter another method is presented to analyze the characteristics of electromagnetic 
wave propagation in a plasma slab. This method is simple, accurate and provides less 
computational time as compared to other methods mentioned in previous sections. 
Normally incident electromagnetic wave propagation through a plasma slab  is assumed as 
shown in Fig. 2. In the analysis, inhomogenous plasma is divided into sufficiently thin, 
adjacent subslabs, in each of which plasma parameters are constant. Then starting with 
Maxwell’s equations, reflected, absorbed and transmitted power expressions are derived. 
Here, plasma layer is taken as cold, weakly ionized, steady state and collisional. Background 
magnetic field is assumed to be uniform and parallel to the magnetized slab. 
For a magnetized and source free plasma medium, plasma permittivity is in tensor form. 
This tensor form permittivity can be approximated by a scaler permittivity. Let us give the 
details of this approximation. 
The equation of motion for  an electron of mass  m is 

 2
clmw r mv jwr eE ejwr B    

      (61) 
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where w  is the angular frequency, r  is the distance vector, cl is the collison frequency and 
B


 is the magnetic field vector. 
 

 
Fig. 2. Electromagnetic wave propagation through a plasma (with subslabs) covered 
conducting plane. 

Then we insert  polarization vector P


into equation (61) and we get, 

 2 2
clw mP jmv wP Ne E jweP B    

    
  (62) 

Now inserting the following terms into equation (62) 

 2 2 2
0/ /( )NX w w Ne mw    (63) 

 eBY
mw
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 Z
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  (65) 

Then, it is obtained that 

 (1 )oXE P jZ jY P    
  

  (66) 

In cartesian coordinates,  equation (66) can be written as 
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In equation (69), xl , yl and zl  are the direction cosines of Y


. We can take the polarization 
matrix by using equation (67) 

  oP M E
 

  (69) 

where  M  is the susceptibility tensor. Then dielectric tensor is obtained as 

     0 1 M    (70) 

If coordinate system is oriented such that Y


 is parallel to the xz plane,  equation (67) becomes 

 0
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-  (71) 

where lY   is the longitudinal component and tY  is the transverse component of Y


. In the 
direction of the electromagnetic wave we have, 

 0 0Z Z ZD E P    (72) 

where zD  is the z component of electric flux density vector. 
By using equation (71) 

 0 Z t Y ZXE jY P UP     (73) 

If ZE is eliminated by using equations (72) and (73), it is obtained that 

 ( ) Z t YU X P jY P    (74) 

By using equation (69) and the following equations 

 OD E P 
  

 (75) 

 Y X Y

X Y X

E H D
E H D

      (76) 

 Y XP P   (77) 

where  is the polarization ratio, we have 

 0 ( )X l XXE U j Y P      (78) 

  2 1
0 ( )Y l t XXE U jY Y U X P          (79) 

When equations (78) and (79) are divided side by side, it is obtained that 

 
12 2 2( ) 1 0t lj Y U X Y 


        (80) 
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The solution of the equation (80) is given by 
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By using equations (72) and (74) 
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By the help of equation (72) 
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Then if it is inserted into equation (78) 
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By using equation (81) 
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By inserting the followings into equation (83) 

 2 2/pX w w  (86) 
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Finally Appleton’s formula (Heald & Wharton, 1978) results as 
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where  
 is the complex permittivity of the plasma, 

p is the plasma frequency, 

 is the angular frequency of the electromagnetic wave, 
env  is the collision frequency, 

ce  is the electron gyrofrequency, 
  is the incident angle of the electromagnetic wave. 
Plasma frequency p  and electron-cyclotron frequency ce are given (Ginzburg, 1970) as 

 2 2

0
p

Nw e
m

   (92) 

 ce
eBw
m

   (93) 

where e is the charge of an electron , N is the electron number density, m is the mass of an 
electron, 0  is the permittivity of free space and B is the external magnetic field strength. 
The presence of the   sign in the Appleton’s formula is due to two separate solutions for 
the refractive index. In the case of propagation parallel to the magnetic field, the '+' sign 
represents a left-hand circularly polarized mode, and the '-' sign represents a right-hand 
circularly polarized mode.  
For an  incident electromagnetic wave (that is 0o  ), complex dielectric constant of the 
plasma can be simply determined  from equation (91) as 

 
2( / )
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en cevj

 
 

 

 
 

   (94) 

Now, in order to analyze electromagnetic wave propagation in a plasma slab in Fig. 2, 
multiple reflections are taken into consideration as shown in Fig. 3. 
Reflection coefficient  (j,z)  at the thj  interface and total reflection coefficient at z d   
interface for normal incidence case can be obtained as (Balanis, 1989) 
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12 21 23
12 2

21 23
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T T ej z d
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  (95) 

The relations between the reflection and transmission coefficients are given as  

 21 12Γ Γ    (96) 

 12 21 121 Γ 1 ΓT      (97) 

 21 121 ΓT    (98) 

When multiple reflections are ignored due to highly lossy plasma, by taking 12Γ 1 and 
23Γ 1, reflection coefficient  on the ( 1)thj   interface is obtained as (Balanis, 1989)            
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Fig. 3. Representation of multiple reflection in a subslab of the plasma layer (Balanis, 1989). 

While the electromagnetic wave propagates through the plasma slab as seen in Fig. 2,  
reflection occurs at each interface of subslabs. The reflected electromagnetic wave  from the 
first interface propagates in free space. Hence, there is no attenuation, reflected wave is 
given as 

  21 1r iP P    (100) 

The power of the transmitted wave can be computed as 

     2 2
1 11 1 1i i t t iP P P P P          (101) 

While reaching the second interface, the wave attenuates inside the slab 

   22 (1)
2 1 1d

t iP e P     (102) 

Some portion of the electromagnetic wave reflects back and some portion continues to 
propagate inside the plasma. 

 2 (1)2 2
2 (1 (1) ) (2) d

r iP P e       (103) 
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The reflected portion of the wave attenuates until it reaches the free space. Hence, the power 
of the reflected wave is, 

 ''
4 (1) 2 2(1 (1) ) (2)d

irP P e       (104) 

The transmitted  portion also attenuates inside the plasma until it reaches the third interface 

 ''
2 (1) 2 (2)2 2(1 (1) ) (1 (2) )d d

itP P e e         (105) 

Some portion reflects from the third interface as 

 '''
2 (1) 2 (2)2 2 2(1 (1) ) (1 (2) ) (3)d d

irP P e e         (106) 

The reflected wave attenuates until it leaves the slab and reaches to the free space. 

 ''''
4 (1) 4 (2)2 2 2(1 (1) ) (1 (2) ) (3)d d

irP P e e         (107) 

The reflected waves from other interfaces can be written in the same manner. Hence, total 
reflected power is written as 

4 (1) 4 (1) 4 (2)2 2 2 2 2 2(1) (1 (1) ) (2) (1 (1) )(1 (2) ) (3) ...d d d
r i i iP P P e P e e                  (108) 

Equation (108) can be arranged as follows  (Tang et al., 2003)  

    
12 2 2

12
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jM
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ij

P P j i d i




 
        

   (109) 

where d is the thickness of each subslabs. 
In order to obtain total transmitted wave power, attenuation inside the plasma slab must be 
considered. The total transmitted power can be computed from 

 2 (1) 2 (2) 2 (3) 2 ( )2 2 2(1 (1) ) (1 (2) ) ..... (1 ( ) )d d d M d
tP e e e e M              (110) 

From equation (110), we get (Tang et al., 2003), 

   2

1
exp 2 ( ) (1 ( ) )

M

t i
i

P P i d i


      (111) 

The absorbed power by the plasma slab can be computed from 

 a i r tP P P P     (112) 

Due to perfect electric conductor after the plasma slab, ( )M =1 and thus equation (112) 
becomes 

 a i rP P P    (113) 

This mentioned model is acceptable as the first approximation under the assumption that the 
plasma properties vary slowly along the wave propagation path (Heald & Wharton, 1978). 
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where d is the thickness of each subslabs. 
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3. Results and discussion 
In this part, reflection of electromagnetic wave power from plasma coated conducting plane 
is analysed by considering three different electron density distribution functions. These 
functions are selected as linear distribution function with positive slope, linear distribution 
function with negative slope and sinusoidal distribution function. 
Linearly varying electron density distribution function with positive and negative slopes is 
defined as 

 
/

( ) /
m

m

N z L
N

N L z L


 
  (114) 

respectively. Sinusoidal electron density distribution function is written as 

  0.505 0.5cos( /12 )mN N pd      (115) 

where mN  is the maximum electron number density value, L is the thickness of the plasma, 
p is the sinusoid frequency parameter taken as 2 and   is the phase shift introduced to the 
sinusoidal distribution. In this part, the plasma length L is taken as 12 cm. In Fig. 4, it is 
shown that linearly increasing distribution reduces the reflected power much more than the 
other two distributions in 1-18 GHz range.  
 

 
Fig. 4. Reflected power for 181 10mN   3m ,  1en GHz  , 0.25B T . 

After 20 GHz, the reflected power increases as the frequency increases due to mismatch 
between the free space and the plasma slab. After 35 GHz the reflected power for linearly 
increasing case is below -10 dB which means that plasma slab behaves as a transparent 
medium for incident electromagnetic wave propagation. For other distribution functions,  
reflection coefficient is nearly equal to 1  for 7.5 - 13 GHz range thus all wave power is 
reflected back. But as the frequency increases, plasma absorbes more wave power. 
Fig. 5. shows the results when maximum electron number density is increased to 5×1018 m-3 

while the other parameters are remained same. 
In this case, linearly increasing distribution reduces the reflected power much more than the 
other distribution functions up to 33 GHz. For 35-50 GHz range, sinusoidal and linearly 
decreasing functions are more useful in terms of small reflection. 
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Fig. 6. shows the results when maximum electron number density is decreased to 5×1017 m-3. 
It is observed that linearly increasing distribution considerably minimizes the reflected 
power in 1-20 GHz range. The other two distributions show nearly no attenuation for 7.5-
11.5 GHz range. It can be seen that the zero attenuation region for sinusoidal and linearly 
decreasing distribution functions become narrower as the maximum electron number 
density decreases.  
As shown in Fig. 7, when maximum electron number density is decreased to 171 10 3m   
small reflection band of the plasma slab becomes narrower for all distribution functions. Up 
to 15 GHz, reflected power is below  -10 dB for all three cases. 
In Fig. 8.  the reflected power characteristics when effective collision frequency is increased 
to 60 GHz while the other parameters are the same with Fig. 4. Considerably reduced 
reflection is observed for all cases with respect to the previous cases. Thus it can be 
concluded that by increasing the effective collision frequency, reflection from plasma 
covered conducting plane can be considerably reduced in critical applications.  
 

 
Fig. 5. Reflected power for 185 10mN   3m ,  1en GHz  , 0.25B T . 

 

 
Fig. 6. Reflected  power for 17 35 10mN m  , 1en GHz  , 0.25B T . 
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Fig. 6. shows the results when maximum electron number density is decreased to 5×1017 m-3. 
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Fig. 5. Reflected power for 185 10mN   3m ,  1en GHz  , 0.25B T . 
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The following two graphs are given to determine the effect of magnetic field on the wave 
propagation in the plasma slab. The magnetic field strength is taken as 0.5 T and 0.75 T in 
Fig.9 and in Fig.10, respectively. Other parameters are the same with Fig. 4. It is seen from 
Fig. 9 and Fig. 10 that the reflected power characteristics shift to right as the magnetic field 
increases. Hence, magnetic field can be used for tuning of the reflection and the passbands 
of the power reflectivity characteristics of the plasma slab. It must also be noted that 
adjustment of magnetic field slightly affects the bandwidth and amplitudes of the power 
reflection characteristics while providing frequency shift. 
In the last figure, Fig.11, the effect of plasma slab thickness on the reflected wave power is 
shown. In this figure, thickness of the plasma slab is doubled and taken as 24 cm. The other 
parameters are the same with Fig.4. The reflected power decreases due to increased plasma 
thickness as seen from the figure. This is an expected result since the absorbtion of the 
electromagnetic wave power increases due to increased propagation path along the plasma. 
 

 
Fig. 7. Reflected power for 171 10mN   3m , 1en GHz  , 0.25B T . 

 

 
Fig. 8. Reflected power  for  181 10mN   3m , 60en GHz  , 0.25B T . 
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Fig. 9. Reflected power  for  181 10mN   3m , 1en GHz  , 0.5B T . 

 

 
Fig. 10. Reflected power  for  181 10mN   3m , 1en GHz  , 0.75B T . 

 

 
Fig. 11.  Reflected power for  L=24 cm, 181 10mN   3m ,  1en GHz  , 0.25B T .  
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4. Conclusion 
In this chapter, some of the methods presented in literature for the analysis of 
electromagnetic wave propagation through the plasma slab is explained briefly and the 
stealth characteristics of the plasma covered conducting plane is analysed for three different 
electron density distribution functions. The selected distributions show tunable stealth 
characteristics in different frequency ranges depending on the adjustment of the plasma 
parameters. It is seen that especially the linearly increasing density distribution function 
shows better stealth characteristics considerably reducing the reflected power for 1-20 GHz 
range. Above 20 GHz, other two functions show better characteristics up to 50 GHz due to 
adjustment of plasma parameters. It must be noted that the maximum value of electron 
density function, effective collision frequency, the length of the plasma slab and the external 
magnetic field strength considerably effect the stealth characteristics of the plasma covered 
conducting plane and must be carefully adjusted in special applications. In the following 
studies other distribution functions for electron density will be analysed to obtain an 
improved performance. 
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1. Introduction 
Electromagnetic waves are produced by the motion of electrically charged particles. These 
waves are also called electromagnetic radiation because they radiate from the electrically 
charged particles. They travel through empty space as well as through air and other 
substances. Electromagnetic waves at low frequencies are referred to as electromagnetic 
fields and those at very high frequencies are called electromagnetic radiations (1,2). 

2. Classification of electromagnetic waves 
According to their frequency and energy, electromagnetic waves can be classified as either 
ionizing radiations or non-ionizing radiations (NIR). 
Ionizing radiations are extremely high frequency electromagnetic waves (X-rays and gamma 
rays), which have enough photon energy to produce ionization by breaking the atomic 
bonds that hold molecules in cells together. 
Non-ionizing (NIR) is a term for that part of the electromagnetic spectrum which has photon 
energies too weak to break atomic bonds. They include ultraviolet radiation, infrared 
radiation, radiofrequency and microwave fields.  
NIR can not cause ionization however have been shown to produce other biological effects, 
for instance by heating, altering chemical reactions or inducing electrical currents in tissues 
and cells. 
There are four subgroups of electromagnetic radiation fields with frequency and intensity. 
This electromagnetic spectrum begins at a frequency of 1 Hertz ( Hz), which is 1 wave per 
second (1,2,3). 

2.1 Static electric 
Stationary electric charge that is built up on the surfaces and materials. Electric fields are 
associated with the presence of electric charge, magnetic fields result from the physical 
movement of electric charge. Human body can not feel less than 2000 volts of static 
discharge. Magnetic fields can exert physical forces on electric charges when charges are in 
motion. The magnetic flux density measured in teslas (T), is accepted as the most relevant 
quantity for relating to magnetic field effects (4). A summary of sources of exposure to static 
fields in Table 2. 
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Type Frequency range Source 

Static   0 Hz   

Natural 
Video 
MRI 
Industrial electrolysis 

Extremely low frequency 
(ELF) (0< f ≤300 Hz), 

Powerlines   
Domestic distribution  
Electric engines in cars,  
train and tramway 

Intermediate frequency (IF) 300 Hz < f≤100 kHz 

Monitors,  
Anti theft devices in shops,  
Hands free access control systems,  
Card readers  
Metal detectors 

Radio frequency (RF) 100 kHz<  f≤ 300 
GHz 

Broadcasting and TV;  
Mobile telephony  
Microwave oven  
Radar 
Portable and stationary radio 
transceivers,  
Personal mobile radio.   

*Adopted from: Possible effects of Electromagnetic Fields (EMF) on Human Health. Scientific 
Committee On Emerging And Newly Identified Health Risks (SCENIHR) 19 July 2006  MRI: Magnetic 
Resonance Imaging 

Table 1. Classification and sources of electromagnetic radiation fields*.  

 

Sources         flux density 

Typical electric fields       

Video Display Unit, Tv  20 kV/m 

Under 500 Kv Transmission Line 30 kV/m 

Atmospher 12-150 V/m 

Typical magnetic fields       

Geomagnetic Field 0,03-0,07 mT 

Magnetic Resonance Imaging (MRI) 2,5 T 

Industrial DC  Equipment 50 mT 

Small Bar Magnets 1-10 mT 

Magnetic Levitation Train 50 mT 

Table 2. Sources of exposure to static fields and their flux densities. 
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2.2 Extremely Low Frequency (ELF) 
Extremely low frequency is a term used to describe radiation frequencies below 300 Hertz 
(Hz). ELF fields are oscillating fields and very important for public health because of the 
widespread use of electrical power at 50-60 Hz in most countries (1,5).   

2.3 Intermediate Frequency (IF) 
Intermediate Frequency is a term to describe radiation frequency between 300 Hz and 100 
kHz. There are experimental and epidemiological data from the IF range. Therefore, 
assessment of acute health risks in the IF range is currently based on known hazards at 
lower frequencies and higher frequencies. Proper evaluation and assessment of possible 
health effects from long term exposure to IF fields are important because human exposure to 
such fields is increasing due to new and emerging technologies. Typical examples are: 
computer and tv screens with use cathode ray tubes, compact fluorescent lamps, as well as 
radio transmitters,  anti theft devices in shops, hands free access control systems, card 
readers and metal detectors. It is also used in electrosurgery (1,2).  

2.4 Radio Frequency (RF) 
RF is includes the frequencies between 100 kHz and 300 GHz of the electromagnetic 
spectrum. RF sources is widespread used in whole world. Majority examples are mobile 
phones, broadcasting,  medical and industrial applications. The RF sources are used in 
different frequency bands and subdivided in different categories: 

2.4.1 Sources operated close to the human body 
Main examples of this type are mobile RF transmitters. One of the examples is mobile 
phones; more than 1.5 billion people are using mobile phones worldwide. In addition to 
mobile phones, other wireless applications like cordless phones, e.g. DECT, or WLAN 
systems are very common. The maximum peak power level of a DECT system is 250 mW, of 
a WLAN system 200 mW.  

2.4.2 Sources operated far away from the human body 
Such sources are fixed installed RF transmitters. An example is base stations that are an 
essential part of mobile communication networks.  

2.4.3 Medical applications 
Some medical applications use electromagnetic fields in the RF range. Therapeutic 
applications such as soft tissue healing appliances, hyperthermia for cancer treatment, or 
diathermy expose the patient well above the recommended limit values to achieve the 
intended biological effects (1,5). 

3. Effects on biological systems of electromagetic fields 
In 1935 Burr and Northrop examined and published the effects of stable voltage gradients 
on various biological systems. They were followed by a lot of scientists who found that 
stable voltage gradients led to many drastic changes in the organism, including growth and 
local injury. Studies have shown that these effects were associated with changes in 
distribution of ions (6).  
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widespread use of electrical power at 50-60 Hz in most countries (1,5).   

2.3 Intermediate Frequency (IF) 
Intermediate Frequency is a term to describe radiation frequency between 300 Hz and 100 
kHz. There are experimental and epidemiological data from the IF range. Therefore, 
assessment of acute health risks in the IF range is currently based on known hazards at 
lower frequencies and higher frequencies. Proper evaluation and assessment of possible 
health effects from long term exposure to IF fields are important because human exposure to 
such fields is increasing due to new and emerging technologies. Typical examples are: 
computer and tv screens with use cathode ray tubes, compact fluorescent lamps, as well as 
radio transmitters,  anti theft devices in shops, hands free access control systems, card 
readers and metal detectors. It is also used in electrosurgery (1,2).  

2.4 Radio Frequency (RF) 
RF is includes the frequencies between 100 kHz and 300 GHz of the electromagnetic 
spectrum. RF sources is widespread used in whole world. Majority examples are mobile 
phones, broadcasting,  medical and industrial applications. The RF sources are used in 
different frequency bands and subdivided in different categories: 

2.4.1 Sources operated close to the human body 
Main examples of this type are mobile RF transmitters. One of the examples is mobile 
phones; more than 1.5 billion people are using mobile phones worldwide. In addition to 
mobile phones, other wireless applications like cordless phones, e.g. DECT, or WLAN 
systems are very common. The maximum peak power level of a DECT system is 250 mW, of 
a WLAN system 200 mW.  

2.4.2 Sources operated far away from the human body 
Such sources are fixed installed RF transmitters. An example is base stations that are an 
essential part of mobile communication networks.  

2.4.3 Medical applications 
Some medical applications use electromagnetic fields in the RF range. Therapeutic 
applications such as soft tissue healing appliances, hyperthermia for cancer treatment, or 
diathermy expose the patient well above the recommended limit values to achieve the 
intended biological effects (1,5). 

3. Effects on biological systems of electromagetic fields 
In 1935 Burr and Northrop examined and published the effects of stable voltage gradients 
on various biological systems. They were followed by a lot of scientists who found that 
stable voltage gradients led to many drastic changes in the organism, including growth and 
local injury. Studies have shown that these effects were associated with changes in 
distribution of ions (6).  
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According to some authors, there is connection with electromagnetic fields and 
disappearance of bees known as colony collapse disorder in Europe and the US, and that it 
could also interfere with bird migration (7,8). 
 

 
Fig. 1. The Electromagnetic waves spectrum. Adopted from Electromagnetic cellular 
interactions Cifra M, Fields JZ, Farhadi A. 

4. Effects of human health 
While the positive aspect of technologic innovation makes the life easier, it may also involve 
components that impair the quality of life via its certain negative effects. A discussion about 
the adverse effects of electromagnetic waves on the biological life has been ongoing since the 
discovery of electricity in the 19th century (6). 
Electromagnetic waves generated by many natural and human-made sources can travel for 
long distances and play a very important role in daily life. In particular, the electromagnetic 
fields in the Radiofrequency (RF) zone are used in communications, radio and television 
broadcasting, cellular networks and indoor wireless systems. Resulting from the 
technological innovations, the use of electromagnetic fields gradually increases and thus 
people are exposed to electromagnetic waves at levels much higher than those present in the 
nature (1,2,5).  Along with the widespread use of technological products in daily life, the 
biological effects of electromagnetic waves started to be discussed. 
Particularly, the dramatically increasing number of mobile phones users rise significant 
concerns due to its potential damage on people exposed by radiofrequency waves. 
Since mobile phones are used in positions very close to the human body and require a large 
number of base station antennas, the public and the scientists have question marks in their 
mind about the impact of mobile phone networks on health (9).  

4.1 Evidence for cellular effects of electromagnetic fields 
The general opinion is that there is no direct evidence of hazardous effects on human health 
incurred by low-frequency radiofrequency waves. Studies at the cellular level, which uses 
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relatively higher frequencies, demonstrate undesirable effects (10-11). Some studies revealed that 
different dimensions of electromagnetic waves have not shown any DNA damage on different 
cell lines.  For example, in a comprehensive review published, Brusick et al have reported no 
evidence regarding the direct mutagenic effect of radiofrequency signals on cells (12).  
On the other hand, there are a lot of contrary study published in recent years. Most of them 
concerned about evidence of biochemical or cellular effects of electromagnetic fields. Marino 
and Becker have shown that static or very low-frequency electromagnetic fields may lead to 
biological effects associated with redistribution of ions. Furthermore, many studies 
demonstrated that biological effects of low-frequency magnetic fields may penetrate into 
deeper tissues (13). 
Foletti et al. showed that ELF-EMF may have an effect on several cellular functions such as 
cell proliferation and differentiation, which was followed by many other researchers such as 
Tian et al. who showed its effect on apoptosis, Takahashi et al. on DNA synthesis, Goodman 
et al. on RNA transcription, Goodman and Henderson on protein expression, Zrimec et al. 
on ATP synthesis, Paksy et al. on hormone production, Kula et al. on antioxidant enyzme 
systems, Milani et al. on metabolic activity, and Wolf et al. on NFkB and cell destruction 
(14,15,16,17,18,19,2021,22,23). 
Giladi et al. demonstrated that EMF of intermediate frequency was effective in arresting the 
growth of cells. Kirson et al. indicated that this direct inhibitory effect on cell growth can be 
used for therapeutic purposes in the treatment of cancer (24,25). 
EMF of very high frequency has thermal and non-thermal effects on the biological systems. 
This thermogenic effect is mainly associated with the intensity of EMF, which is expressed 
as specific absorption rate (SAR). Thermal effect or increased temperature lead to various 
changes in the cellular functions, which may result in cell destruction (26,27,28). Morrissey 
et al. showed that biological effects may occur even at very small temperature changes in in-
vitro experimental models (29).  
There are many papers showing that a weak EMF has no significant effect on biological 
systems. However, it appears that these studies have a poor design in general, and they lack 
appropriate control groups, and they are also accompanied by confounding factors (27,30).  
The fact that no significant evidences were detected in the above epidemiological trials 
supporting the suspicions that exposure to electromagnetic waves could result in cancer is 
in line with the in vitro studies. The effects of electromagnetic fields on different cell lines 
were studied in the last 30 years and no evidence on their direct  or  indirect  DNA  damage  
were  detected. Maes (31) and Vijayalaxmi (32) exposed peripheral blood cells to 935 and 
2450 MHz electromagnetic field and reported no DNA damage in cells after 2-hours periods. 
Malyapa studied the effects of 2450  MHz electromagnetic signals on human gliablastoma 
cells and mouse fibroblast cell lines and detected no DNA damage in cells, including the 24-
hour period (33,34). In a similar study, Tice et al demonstrated that 837 and 1909.8 MHz 
radiofrequency waves did not result in a significant DNA damage in leukocytes as a result 
of 3 and 24 hour exposures (35).  
Atasoy et al. examined the effects of electromagnetic fields on peripheral mononuclear cells 
in-vitro. The primary objective of this study was to analyze the changes in  the cell viability, 
rates of  apoptosis, proliferation indices and cell surface antigenic structures resulting from 
2-, 6- and 24-hour exposure of mononuclear cells isolated from the peripheral blood to 450, 
900 and 1784 MHz electromagnetic waves. Data obtained showed that electromagnetic 
waves didn’t have any effect on cell viability, rates of apoptosis and proliferation index. 
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(14,15,16,17,18,19,2021,22,23). 
Giladi et al. demonstrated that EMF of intermediate frequency was effective in arresting the 
growth of cells. Kirson et al. indicated that this direct inhibitory effect on cell growth can be 
used for therapeutic purposes in the treatment of cancer (24,25). 
EMF of very high frequency has thermal and non-thermal effects on the biological systems. 
This thermogenic effect is mainly associated with the intensity of EMF, which is expressed 
as specific absorption rate (SAR). Thermal effect or increased temperature lead to various 
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systems. However, it appears that these studies have a poor design in general, and they lack 
appropriate control groups, and they are also accompanied by confounding factors (27,30).  
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rates of  apoptosis, proliferation indices and cell surface antigenic structures resulting from 
2-, 6- and 24-hour exposure of mononuclear cells isolated from the peripheral blood to 450, 
900 and 1784 MHz electromagnetic waves. Data obtained showed that electromagnetic 
waves didn’t have any effect on cell viability, rates of apoptosis and proliferation index. 
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Author Year Studied subject Frequencies Results 

Goodman et al. 1983 RNA transciption Pulsed EMF increased activity of mRNA 

Takashi et al. 1986 DNA synthesis 10-100 Hz  DNA synthesis is not 
repressed 

Goodman and 
Henderson 1988 salivary gland cells 1,5-72 Hz 

ELF alters polypeptide synthesis 

Maes et al. 1997 
Peripheral blood 
cells and 
Mitomycin C 

935.2 MHz combined exposure revealed 
weak effect 

Malyapa RS et al. 1997 Human blastoma 
cells 

835,62 and 
847,74 No DNA damaged 

Malyapa RS et al. 1997 cultured 
mammalian cells 

continous 
2450 MHz No DNA damaged 

Brusick et al. 1998 Nucleic acids 800-3000 
mHz 

Not directly mutagenic, 
predominantly hyperthermia 

Vijayalaxmi et al 2000 Peripheral blood 
cells 

pulsed 2450 
mHz No DNA damaged 

Milani et al. 2001 human 
lymphocytes  EMF deviation of metabolic 

activity 

Tian et al. 2002 Apoptosis ELF and X-
Ray suppress apoptosis 

Zyrmec, 
Jerman, 
Lahajnar 

2002 E. Coli ATP 
syntesis 

100 Hz, 
alternate stimulate ATP synthesis 

Tice et al. 2002 Leukocytes 837 and 
1909,8 MHz No DNA damaged 

Wolf et al. 2005 NfkB and cell 
destruction  

50 Hz,0,5-1 
mT ELF-
EMF 

influences cell proliferation 
and DNA damage 

Giladi et al. 2008 Cell growth 10 Mhz IF arrests cell growth 

Kirson ED et al. 2009 human carcinoma 
cell series 

TT Fields + 
chemo increase of chemo efficacy 

Atasoy A et al. 2009 peripheral 
mononuclear cells 

450, 900, 
1784 MHz 

No effect cell viability, effect 
of functional capacity 

Coskun S et al. 2009 plasma liver brain 
specimens of pigs 

50 Hz, 1,5 
mT EMF 

Intermittant EMF effective on 
plasma lipid peroxydation 

Akan A et al. 2010 Monocyt derived 
macrophage 

50 Hz, 1 mT 
ELF-EMF 

supressed caspase 9 
activation 

Martinez-
Samano J et al. 2010 

antioxidant system 
liver kidney and 
plasma 

60 Hz, 2,4 
mT  Decreased SOD and GSH  

Table 3. Some investigations and their results about cellular effects on electromagnetic 
fields. 
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While electromagnetic waves didn’t change HLADR and CD11b expression in the 
peripheral blood mononuclear cells, they decreased the CD11a expression and increased the 
CD49d expression. These data suggest that electromagnetic signals could affect the 
functional capacity of the peripheral blood mononuclear cells by changing their adhesion 
ability. Maybe these alterations are a sign of the immune system modulation (36). 
Akan Z et al. evaluated the immune response of monocyte-derived macrophages to 
pathogenes in extremely low frequency electromagnetic fields. In this study, human 
monocytic leukemia cell line were cultured and 1 mT EMF was applied for 4–6 h to cells 
induced with Staphylococcus aureus or interferon gamma/lipopolysaccharide (IFγ/LPS). 
Alterations in nitric oxide (NO), inducible nitric oxide synthase (iNOS) levels, heat shock 
protein 70 levels (hsp70), cGMP levels, caspase-9 activation, and the growth rate of S. 
aureus were determined. The growth curve of exposed bacteria was found to be lower 
than the control. Field application increased NO levels, and this increase was more 
prominent for S. aureus-induced cells and appeared earlier than the increase in cells 
without field application. A slight decrease was observed in iNOS levels whereas there 
was an increase in cGMP levels. A time-dependent increase was observed in hsp70 levels. 
When cells were induced with S. aureus or IFγ/LPS, field application produced higher 
levels of hsp70, and suppressed the caspase-9 activation. These data showed that ELF-
EMF affect the response of immune system, which suggests that it can be considered for 
beneficial uses (37). 
Another hypothesis of effects related with ELF-EMF is that it changes the free radical levels 
in the organism. Free radicals in the body are eliminated through two pathways. The first 
pathway is the non-enzymatic pathway including glutathione, vitamins, carotenoids and 
flavonoids, while the second pathway relies on the activity of the enzyme, which is the most 
effective pathway. The key enzymes include catalase and superoxide dismutase. ELF-EMF 
convert free radicals into less active molecules and eliminate them (38,39). There is a balance 
between production and elimination of free radicals. An imbalance can promote oxidative 
stress, eventually resulting in cell destruction. One of the markers indicating destruction is 
malondialdehyde, the end product of lipid peroxidation (40). Coskun et al. exposed guinea 
pigs to 50 Hz, 1.5 mT ELF-EMF for 4 days. And, they found that it increases 
malondialdehyde, nitric oxide and myeloperoxidase activity, and decreased Glutation S 
transferase levels (41).  
Martinez et al. evaluated the effects of exposure to ELF-EMF on the antioxidant systems in 
liver, kidney and plasma in Wistar rats. They found that two hours of 60 Hz EMF exposure 
led to early changes in free radical levels, and superoxide dismutase (SOD) activity in 
plasma and glutathione (GSH) content in heart and kidney were decreased, but there was 
no change in the lipid peroxidation (42).  

4.2 Heavy metals exposure and electromagnetic hypersensitivity 
Some people are more susceptible to exposure with electromagnetic fields from others. It is 
referred as Electrohypersensitivy (EHS). The pathophysiology of EHS is unknown. Some 
authors claimed it is concerned with heavy metal exposure. Heavy metals bound the 
proteins within tissues and organs are thought to have low toxicity. Mortazavi and co-
workers have found that static magnetic field as well as microwave radiation emitted from 
mobile phones may induced the mercury vapor release from dental amalgam, increasing 
concentration of dissolved mercury in saliva among amalgam bearers (43,44,45). 
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4.3 Electromagnetic fields and blood-brain barrier 
The blood-brain barrier (BBB) in mammalians is composed of endothelial cells with tight 
junctions including pericytes and extracellular matrix. Transmembrane proteins form a 
physical barrier (43). BBB tightness is provided by the connective tissue cells called pericytes 
and the extracellular matrix of the basement membrane (44). These cells, extracellular 
components and surrounding neurons are all called ‘neurovascular unit’ (45).  BBB is not 
available in certain regions of the brain, which include the median eminence, the area 
postrema and nucleus tractus solitarius in the brain stem, the posterior pituitary, subfornical 
organ in the hypothalamus, organum vasculosum, subcommissural organ and pineal gland 
(45). 

 
Fig. 2. Scheme of the blood brain Barrier. 

4.3.2 Physiology of the blood-brain barrier 
BBB allows for a more restricted Exchange of cells and molecules between the blood and the 
brain parenchyma. Transcellular and paracellular transport can ocur nat only via the blood 
vessel wall, but also via cranial and spinal nevre roots (46). Lipophilic compounds have 
unrestricted Access to the brain by passive diffusion through the endohtelial cell 
membranes. Charged and hydrophilic molecules which are essential for brain metabolism, 
such as ions, amino acids, glucose and nucleic acid constituents pass the BBB through 
specialised channels or carriers. Water molecules can pass the BBB through protein channels 
called aquaporins or carriers  (47). The transport of hydrophilic molecules such as proteins 
and peptides that do nat have a specific transport system (48,49). 

4.3.3 Thermal effects of EMF exposure on permeability 
Environmental heat in excess of the mammalian thermoregulatory capacity can increase the 
permeability of the BBB to macromolecules (50). Neuronal albumin uptake in various brain 
regions was shown to be dose dependently related to brain temperature, with effects 
becoming apparent with temperature increases of 1 ° C or more (51). Thus, albumin 
bounded drugs uptake increases (52,53).  In the study by Moriyama et al exposure of the 
sraque-dawley rats head at microwave frequencies ( at 2,5-3,2 GHz) that leads to a brain 
temperature above 40 ° C can increase BBB permeability (54). The degree of increased 
permeability depend on the degree of temperature rise and hence on the SAR of RF energy, 
on exposure duration and on the rate of heat distribituon. Quock and co-workers assessed 
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permeability of capillary endothel cells after 2.45 GHz microwave irradiation cerebral cortex 
in albino rats (55).  Quock and co-workers also demonstrated some hydrofilic drugs such as 
acetycholine antagonist methylatropine, dopamin antagonist  domperidone, and the 
chemotherapeutic drug methotrexate uptake can be increased with  microwave induced 
hyperthermia (55,56).  
Exposure to microwaves at thermal levels may make the brain more vulnerable for 
infections. Following microwave exposure at 2.5 GHz with SAR between 24-98 W/kg, 
increased BBB permeability to Horse radish proteins (HRP) was accompanied by increased 
lethality of japanase encephalitis virus (57). 

4.4 Effects on nervous system and psycologic disorders 
Due to mobile phones used close the brain tissue, electromagnetic waves affects it the most. 
Numerous studies have investigated the effect of exposure to radiofrequency 
electromagnetic waves from the mobile phone base stations on nervous system and 
behaviours (58). Röösli and co-workers  conducted a systematic review of these studies, 
analysing 17 reports. Five of them were randomized human laboratory trials, and 12 were 
epidemiological studies. Most of these reports evaluated non-specific disease symptoms. 
Most of these studies investigated if there was an association between mobile phone base 
station (MPBS) radiation and development of acute symptoms during or shortly after 
exposure, and none of them found such an association. Consequently, based on these 
randomized, blinded, human laboratory trials, it can be concluded that there is good 
evidence for non-association between MPBS exposure up to 10 volt and development of 
symptoms. However, no sufficient data is available to draw conclusions about health effects 
of long-term low level exposure, which occurs in daily environment (9).   
Ntzouni MP et al. investigated the effect of mobile phone radiation on short-term memory 
in mice. They evaluated the effects of mobile phone electromagnetic fields on non-spatial 
memory task (Object Recognition Task– ORT) that requires entorhinal cortex function. They 
applied the task to three groups of mice Mus musculus C57BL/6 (exposed, sham-exposed 
and control) combined with 3 different radiation exposure protocols. In the first protocol of 
acute exposure, mice 45 days old (postnatal day 45) were exposed to mobile phone radiation 
(SAR value 0.22W/kg) during the habituation, the training and the ORT test sessions 
(except the 10 minute inter-trial interval (ITI) with consolidation of stored object 
information). In the second protocol of chronic exposure-I, the same mice were exposed for 
17 days for 90 minutes per day starting at post-natal day 55 to the same MP radiation. ORT 
recognition memory was only present during the ITI phase, and it was performed at post 
natal day 72 with radiation. In the third protocol of chronic exposure-II, mice received daily 
radiation under the same conditions for 31 days up to post natal day 86. Ona day later, the 
ORT test was performed without any irradiation. A major effect was observed on the 
chronic exposure-I by the ORT-derived discrimination indices in three exposure protocols. It 
suggests a possible serious interaction between EMF and consolidation phase of the 
recognition memory processes. This may imply that the primary EMF target may be the 
information transfer pathway connecting the entorhinal-parahippocampal regions which 
participate in the ORT memory task (59). 
A study by Heinrich S et al. has led to increasing concerns on the fact that increased number 
of mobile phone users, exposure to radiofrequency electromagnetic fields (RF EMF) may 
have potential adverse effects on acute health, particularly in children and adolescents. The 
authors assessed this potential relationship using personal dosimeters (60). 
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junctions including pericytes and extracellular matrix. Transmembrane proteins form a 
physical barrier (43). BBB tightness is provided by the connective tissue cells called pericytes 
and the extracellular matrix of the basement membrane (44). These cells, extracellular 
components and surrounding neurons are all called ‘neurovascular unit’ (45).  BBB is not 
available in certain regions of the brain, which include the median eminence, the area 
postrema and nucleus tractus solitarius in the brain stem, the posterior pituitary, subfornical 
organ in the hypothalamus, organum vasculosum, subcommissural organ and pineal gland 
(45). 

 
Fig. 2. Scheme of the blood brain Barrier. 

4.3.2 Physiology of the blood-brain barrier 
BBB allows for a more restricted Exchange of cells and molecules between the blood and the 
brain parenchyma. Transcellular and paracellular transport can ocur nat only via the blood 
vessel wall, but also via cranial and spinal nevre roots (46). Lipophilic compounds have 
unrestricted Access to the brain by passive diffusion through the endohtelial cell 
membranes. Charged and hydrophilic molecules which are essential for brain metabolism, 
such as ions, amino acids, glucose and nucleic acid constituents pass the BBB through 
specialised channels or carriers. Water molecules can pass the BBB through protein channels 
called aquaporins or carriers  (47). The transport of hydrophilic molecules such as proteins 
and peptides that do nat have a specific transport system (48,49). 

4.3.3 Thermal effects of EMF exposure on permeability 
Environmental heat in excess of the mammalian thermoregulatory capacity can increase the 
permeability of the BBB to macromolecules (50). Neuronal albumin uptake in various brain 
regions was shown to be dose dependently related to brain temperature, with effects 
becoming apparent with temperature increases of 1 ° C or more (51). Thus, albumin 
bounded drugs uptake increases (52,53).  In the study by Moriyama et al exposure of the 
sraque-dawley rats head at microwave frequencies ( at 2,5-3,2 GHz) that leads to a brain 
temperature above 40 ° C can increase BBB permeability (54). The degree of increased 
permeability depend on the degree of temperature rise and hence on the SAR of RF energy, 
on exposure duration and on the rate of heat distribituon. Quock and co-workers assessed 
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permeability of capillary endothel cells after 2.45 GHz microwave irradiation cerebral cortex 
in albino rats (55).  Quock and co-workers also demonstrated some hydrofilic drugs such as 
acetycholine antagonist methylatropine, dopamin antagonist  domperidone, and the 
chemotherapeutic drug methotrexate uptake can be increased with  microwave induced 
hyperthermia (55,56).  
Exposure to microwaves at thermal levels may make the brain more vulnerable for 
infections. Following microwave exposure at 2.5 GHz with SAR between 24-98 W/kg, 
increased BBB permeability to Horse radish proteins (HRP) was accompanied by increased 
lethality of japanase encephalitis virus (57). 

4.4 Effects on nervous system and psycologic disorders 
Due to mobile phones used close the brain tissue, electromagnetic waves affects it the most. 
Numerous studies have investigated the effect of exposure to radiofrequency 
electromagnetic waves from the mobile phone base stations on nervous system and 
behaviours (58). Röösli and co-workers  conducted a systematic review of these studies, 
analysing 17 reports. Five of them were randomized human laboratory trials, and 12 were 
epidemiological studies. Most of these reports evaluated non-specific disease symptoms. 
Most of these studies investigated if there was an association between mobile phone base 
station (MPBS) radiation and development of acute symptoms during or shortly after 
exposure, and none of them found such an association. Consequently, based on these 
randomized, blinded, human laboratory trials, it can be concluded that there is good 
evidence for non-association between MPBS exposure up to 10 volt and development of 
symptoms. However, no sufficient data is available to draw conclusions about health effects 
of long-term low level exposure, which occurs in daily environment (9).   
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(except the 10 minute inter-trial interval (ITI) with consolidation of stored object 
information). In the second protocol of chronic exposure-I, the same mice were exposed for 
17 days for 90 minutes per day starting at post-natal day 55 to the same MP radiation. ORT 
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radiation under the same conditions for 31 days up to post natal day 86. Ona day later, the 
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chronic exposure-I by the ORT-derived discrimination indices in three exposure protocols. It 
suggests a possible serious interaction between EMF and consolidation phase of the 
recognition memory processes. This may imply that the primary EMF target may be the 
information transfer pathway connecting the entorhinal-parahippocampal regions which 
participate in the ORT memory task (59). 
A study by Heinrich S et al. has led to increasing concerns on the fact that increased number 
of mobile phone users, exposure to radiofrequency electromagnetic fields (RF EMF) may 
have potential adverse effects on acute health, particularly in children and adolescents. The 
authors assessed this potential relationship using personal dosimeters (60). 
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This population-based cross-sectional study conducted in Germany between 2006 and 2008, 
a 24-hour exposure profile was generated in 1484 children and 1508 adolescents. Personal 
interview data on socio-demographic characteristics, self-reported exposure and potential 
confounders were collected. Acute symptoms were evaluated twice during the study day 
using a symptom diary.  Only a limited part of many associations assessed were found to be 
statistically significant. During noon time, adolescents with a measured exposure in the 
highest quartile during morning hours reported a statistically significant higher intensity of 
headache. During bedtime, adolescents with a measured exposure in the highest quartile 
during afternoon hours reported a statistically significant higher intensity of irritation in the 
evening while children reported a statistically significant higher intensity of concentration 
problems.  
A limited number of statistically significant results, which were not consistent along the two 
time points, were observed. Furthermore, they couldn’t confirm the significant results of the 
main analysis when 10% of the participants with the highest exposure. Based on the pattern 
of these results, they assumed that the few observed significant associations were not causal, 
but rather occurred by chance (60).   
Sauter C et al. studied the potential effects of long-term exposure to Global System for 
Mobile Communications (GSM) 900 and Wideband Code Division Multiple Access 
(WCDMA) signals on attention and working memory. The results of studies showed the 
potential effects of electromagnetic waves emitted by mobile phones on cognitive functions 
are controversial. The sample consisted of 30 healthy male subjects, who were exposed to 
three exposure conditions in a randomly assigned and balanced order for nine days. All test 
were performed twice a day within a fixed timeframe on each test day. Univariate 
comparisons showed changes only in one parameter in vigilance test, and one parameter in 
divided attention test when subjects were exposed to GSM 900 compared to sham. In the 
WCDMA exposure condition, one parameter in the vigilance and one in the test on divided 
attention were altered compared to sham. Performance in the selective attention test and the 
n-back task was not affected by GSM 900 or WCDMA exposure. Time-of-day effects were 
evident for the tests on divided, selective attention, and working memory. Following the 
correction for multiple tests, only time of day effects remained significant for two tests. The 
authors concluded that results of their study did not provide any evidence of an EMF effect 
on human cognition, but they emphasize the necessity of control for time of day (61). 
Lowden et al. examined the quality of sleep following an exposure to mobile phone in 
people who have symptoms associated with mobile phone use. Various studies showed 
increased activity for certain frequency bands (10-12 Hz) and for visually scored parameters 
during sleep after exposure to radiofrequency electromagnetic waves. Furthermore, 
shortening of REM duration has been reported. They evaluated the effects of a double-blind 
radiofrequency exposure (884 MHz, GSM signaling standard including non-DTX and DTX 
mode, time-averaged 10 g psSAR of 1.4 W/kg) on self-evaluated sleepiness and objective 
EEG measures during sleep. Forty-eight subjects with a mean age 28 years first underwent a 
3 hours of controlled exposure prior to sleep (7:30–10:30 PM; active or sham), followed by a 
full-night polysomnographic recording in a sleep laboratory. The results following exposure 
showed that time in stages 3 and 4 decreased by 9.5 minutes (12%) while time in stage 2 
increased by 8.3 minutes (4%). The latency to Stage 3 sleep was also prolonged by 4.8 min 
after exposure. Power density analysis indicated an enhanced activation in the frequency 
ranges 0.5–1.5 and 5.75–10.5 Hz during the first 30 min of Stage 2 sleep and 7.5–11.75 Hz 
elevation within the first hour of Stage 2 sleep, and bands 4.75–8.25 Hz elevated during the 
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second hour of Stage 2 sleep. No pronounced power changes were observed in SWS or for 
the third hour of scored Stage 2 sleep. No differences were found between controls and 
subjects with prior complaints of mobile phone-related symptoms. The results confirm 
previous findings that RF exposure increased the EEG alpha range in the sleep EEG, and 
indicated moderate impairment of SWS. Furthermore, reported differences in sensitivity to 
mobile phone use were not reflected in sleep parameters (62).  
Valentini et al. published a metanalysis which systematically reviewed the psychomotor 
effects of mobile phone electromagnetic fields. The authors indicate that during the last decade 
there has been increasing concern about the possible behavioral effects. This systematic review 
and meta-analysis focused on studies published since 1999 on the human cognitive and 
performance effects of mobile phone-related electromagnetic fields (EMF) with a search in the 
professional database of Pubmed, Biomed, Medline, Biological Sciences, Psychinfo, 
Psycarticles, Environmental Sciences and Pollution Management, Neurosciences Abstracts and 
Web of Sciences, and selection of 24 studies for metaanalysis. Each study had at least one 
psychomotor measurement result. Data were analysed using standardised mean difference 
(SMD) for measuring the effect size. Only three tasks (2-back, 3-back and simple reaction time 
(SRT)) displayed significant heterogeneity, but it didn’t reach to a statistical significance. They 
concluded that mobile phone-like EMF did not seem to induce cognitive and psychomotor 
effects, and effects following chronic exposures should also be assessed (63).  
Mohler et al. investigated the effect of every day radio frequency electromagnetic field 
exposure on sleep quality in a cross-sectional study. They assessed sleep disturbances and 
daytime sleepiness in a randomly selected population of 1375 subjects in Basel, Switzerland. 
They didn’t observe any relationship between RF EMF exposure and sleep disturbances or 
excessive daytime sleepiness (64).  

4.5 Effects on osteogenesis and chondrogenesis 
Although extremely low electromagnetic fields have been shown to exert beneficial effecets 
on cartilage tissue (65,66),  Lin and Lin investigated the effect of pulsed EMF exposure on 
osteoblast cells, associated with decreased proliferation and mineralization (67). Okudan, 
Suslu and co-workers reported the influences of 50 Hz and 0 Hz (static) electric fields (EF), 
on intact rat bones, as evaluated by dual energy X-ray absorbtion (DEXA) measurements on 
bone content and density when the animals  were continuously exposed in utero and 
neonatally to EFs. Differences between 50 Hz and control groups were found to be 
significant for total bone mineral density (BMD). Differences between static EF and control 
groups were also found to be significant for BMD. These results have shown that both static 
and 50 Hz EFs influence the early development of rat bones. However, the influence of static 
EFs is more pronounced than that of the 50 Hz field (68).  

4.6 Effects on tetsicle and spermatogenesis 
Due to carrying mobile phones in the pockets, exposure of EMF on reproduction system has 
been growing interested. Tenorio showed in wistar rats, there were no change plasma 
testosterone levels but histopathological analyses showed testiculer degeneration after the 
30 minutes a day 60 Hz and 1 mT EMF exposure (69).  In contrast, Ozguner and co-workers 
showed 900 MHz EMF exposure for rats, lends no support to suggestions of adverse effect 
on spermatogenesis, and on germinal epithelium  But there was a significant decrease in 
serum total testosterone level, and plasma LH and FSH levels in EMF group (p<0.05) (70). 
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second hour of Stage 2 sleep. No pronounced power changes were observed in SWS or for 
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indicated moderate impairment of SWS. Furthermore, reported differences in sensitivity to 
mobile phone use were not reflected in sleep parameters (62).  
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there has been increasing concern about the possible behavioral effects. This systematic review 
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Psycarticles, Environmental Sciences and Pollution Management, Neurosciences Abstracts and 
Web of Sciences, and selection of 24 studies for metaanalysis. Each study had at least one 
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(SRT)) displayed significant heterogeneity, but it didn’t reach to a statistical significance. They 
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effects, and effects following chronic exposures should also be assessed (63).  
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4.7 Carcinogenesis and electromagnetic waves  
Since the first observation by Wertheimer and Leeper in 1979, a lot of epidemiologic 
investigations done between magnetic fields exposure and cancer. Speculations that 
electromagnetic waves can be carcinogenic increased the number of relevant 
epidermiological and in vitro studies (71,72).  

4.7.1 Lymphatic and hematopoetic cancers 
Some epidemiological trials have published data stating that the exposure to high-frequency 
electromagnetic fields may be associated with lymphatic and  hematopoetic  cancer. A 
survey conducted in people living around the Vatican radio station reported more 
childhood leukemia cases than expected (73). Similar data  were also obtained from  another 
study performed by Hocking et al in Australia (74). Hocking et al reported a higher 
leukemia incidence among adults and children living 2 km around Television transmitter 
stations. However, in these studies, it s stated that a definite correlation can not be 
established due to the scarcity of leukemia cases and due to the fact that no measurements 
were performed in leukemia patients on exposure to radiofrequency waves. A study by 
Morgan et al conducted on 195 775 subjects working in units related to wireless device 
manufacturing, design and tests detected that mortality associated with brain cancer, 
leukemia and lymphoma is not higher in this population compared to  the normal  
population  (75). In a  study  performed in Denmark, the analysis of 450 085 mobile phone 
users revealed no increase in the brain cancer incidence (76). 
Previous pooled analyses reported an association between magnetic fields and childhood 
leukemia. A pooled analysis was presented based on the primary data from studies on 
residential magnetic fields and childhood leukemia published after 2000. The analysis 
included 7 studies with a total of 10,865 cases and 12,853 controls. The main analysis focused 
on 24-hour magnetic field measurements or calculated fields in residences. In the combined 
results, risk increased with increase in exposure, but the estimates were imprecise. The odds 
ratios for exposure categories of 0.1-0.2 μT, 0.2-0.3 μT and ≥0.3 μT, compared with <0.1 μT, 
were 1.07 (95% CI 0.81-1.41), 1.16 (0.69-1.93) and 1.44 (0.88-2.36), respectively (77). With the 
exception of the most influential Brasil study, the odds ratio somewhat increased. 
Furthermore, a non-parametric analysis using a generalised additive model suggested an 
increasing trend (78).  
According to Elliott et al., epidemiological evidences suggested that extremely low 
frequency magnetic field exposure with a chronic low intensity is associated with increased 
childhood leukemia. The causality of this association is uncertain. They conducted a 
national case control study regarding the relationship between average magnetic fields from 
high voltage overhead power lines in the address at birth and childhoood cancer using the 
National Grid records (79). 
Draper et al observed 28,968 children born in England and Wales between 1962 and 1995, and 
received a diagnosis under 15 years of age. They found that the estimated relative risk for each 
0.2 µT increase in magnetic field was 1.14 (95% confidence interval 0.57 to 2.32) for leukaemia, 
0.80 (0.43-1.51) for CNS/brain tumours, and 1.34 (0.84-2.15) for other cancers. Although not 
statistically significant, their estimate for childhood leukaemia was similar to the results of 
comparable studies. The estimated attributable risk was below one case per year. They 
concluded that magnetic-field exposure during the year of birth was unlikely to be the whole 
cause of the association with distance from overhead power lines as previously reported (80).  
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 Brain tumours Brain tumors short latency Brain tumors longer 
latency   

Authors No. exp cases RR estimate 
(95% CI)

No. exp 
cases

RR estimate 
(95% CI)

No. exp 
cases

RR estimate  
(95% CI) 

Hardell  
et al. 1999  78 1.0 (0.7-1.4) 78 1.0 (0.7-1.4) >1 yr 34  

16 

0.8 (0.5-1.4) >5 yr 
1.2 (0.6-2.6) >10 
yr   

Muscat  
et al. 2000  66 0.8 (0.6-1.2) 28 1.1 (0.6-2.0) 2-3 yr 17 0.7 (0.4-1.4) >4 yr 

Inskip  
et al. 2001  139 0.8 (0.6-1.1) 51 1.0 (0.6-1.6) 0.5-3 

yr  
54  
22 

1.0 (0.6-1.6) > 3 
yr  
0.7 (0.4-1.4) >5 yr 

Johansen 
et al. 2001  154 1.0 (0.8-1.1) 87 1.1 (0.9-1.3) 1-4 yr 24 1.0 (0.7-1.6) >5 yr 

Auvinen  
et al. 2002  

40 analogue  
16 digital 1.3 (0.9-1.8) 

15 
analogue  
11 digital

1.2 (0.7-2.0) 1-2 yr
17 
analogue 
1  digital

1.5 (0.9-2.5) >2 yr 

Hardell  
et al. 2002   

188 analogue 
224 digital   

1.3 (1.0-1.6)  
1.0(0.8-1.2) 

188 
analogue 
224 digital 

1.3 (1.0-1.6) >1 yr
1.0(0.8-1.2) >1 yr 

46 
analogue 
33 digital

1.3 (0.8-2.3) >10 
yr   
0.9 (0.6-1.5) >5 yr 

Lönn  
et al. 2005 

214 glioma 
118 meningioma

0.8 (0.6-1.0)  
0.7 (0.5-0.9) 

112    
64 

0.8 (0.6-1.1) 1-4 yr
0.6 (0.4-0.9) 1-4 yr

25   
12 

0.9 (0.5-1.5) >10 
yr 
0.9 (0.4-1.9) >10 
yr 

Christensen  
et al. 2005 

47 low-grade 
glioma 
59 high-grade 
glioma    
67 meningioma 

1.1 (0.6-2.0)  
0.6 (0.4-0.9)  
0.8 (0.5-1.3)   

19 
24 
35 

0.9 (0.4-1.8) 1-4 yr
0.6 (0.3-1.0) 1-4 yr
0.8 (0.5-1.3) 1-4 yr

6 
8 
6   

1.6 (0.4-6.1) >10 
yr   
0.5 (0.2-1.3) >10 
yr 
1.0 (0.3-3.2) >10 
yr 

Hardell et 
al. 2005a, 
Hardell et 
al. 2005b 

68 malignant, 
analogue 
198 malignant, 
digital  
35meningioma,a
nalogue 
151 meningioma, 
digital

2.6 (1.5-4.3) 
1.9 (1.3-2.7)  
1.7 (1.0-3.0)  
1.3 (0.9-1.9) 

20 
analogue 
100 digital 
1 analogue 
96 digital  

1.8 (0.9-3.5) 6-10 
yr†  
1.6 (1.1-2.4) 1-5 yr 
1.2 (0.1-12)  1-5 yr 
1.2 (0.8-1.8) 1-5 yr 

48 
analogue  
19 digital 
20 
analogue  
 8 digital  

3.5 (2.0-6.4) >10 
yr   
3.6 (1.7-7.5) >10 
yr   
2.1 (1.1-4.3) >10 
yr  
 1.5 (0.6-3.9) >10 
yr  

Hepworth 
et al. 2006 508 glioma 0.9 (0.8-1.1) 271 glioma 0.9 (0.7-1.1) 1.5-

4yr 

170 
glioma  
66 glioma

1.0 (0.8-1.3) 5-9 
yr  
0.9 (0.6-1.3) 
>10yr  

Schüz et 
al. 2006 

138 glioma  
104 meningioma  

1.0 (0.7 - 1.3)  
0.8 (0.6 - 1.1)

82glioma  
73meningi
oma   

0.9 (0.6 – 1.2) 1–4 
yr   
0.9 (0.6 – 1.2) 1–4 
yr  

51 glioma 
12 glioma 
23mening
ioma  
5meningi
oma 

1.1 (0.8–1.7) >5yr  
2.2 (0.9-5.1) 
>10yr  
0.9 (0.5-1.5) >5yr  
1.1 (0.4-3.4) 
>10yr 

Table 4. Results of some epidemiological studies on mobile phone use and brain tumours. 
The table is modified from the report to the Swedish Radiation Protection board: Recent 
Research on EMF and Health Risks. Third annual report from SSI’s Independent Expert 
Group on Electromagnetic Fields (SSI’s Independent Group on Electromagnetic Fields 2005).   
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stations. However, in these studies, it s stated that a definite correlation can not be 
established due to the scarcity of leukemia cases and due to the fact that no measurements 
were performed in leukemia patients on exposure to radiofrequency waves. A study by 
Morgan et al conducted on 195 775 subjects working in units related to wireless device 
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leukemia and lymphoma is not higher in this population compared to  the normal  
population  (75). In a  study  performed in Denmark, the analysis of 450 085 mobile phone 
users revealed no increase in the brain cancer incidence (76). 
Previous pooled analyses reported an association between magnetic fields and childhood 
leukemia. A pooled analysis was presented based on the primary data from studies on 
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 Brain tumours Brain tumors short latency Brain tumors longer 
latency   

Authors No. exp cases RR estimate 
(95% CI)

No. exp 
cases

RR estimate 
(95% CI)

No. exp 
cases

RR estimate  
(95% CI) 

Hardell  
et al. 1999  78 1.0 (0.7-1.4) 78 1.0 (0.7-1.4) >1 yr 34  

16 

0.8 (0.5-1.4) >5 yr 
1.2 (0.6-2.6) >10 
yr   

Muscat  
et al. 2000  66 0.8 (0.6-1.2) 28 1.1 (0.6-2.0) 2-3 yr 17 0.7 (0.4-1.4) >4 yr 

Inskip  
et al. 2001  139 0.8 (0.6-1.1) 51 1.0 (0.6-1.6) 0.5-3 

yr  
54  
22 

1.0 (0.6-1.6) > 3 
yr  
0.7 (0.4-1.4) >5 yr 

Johansen 
et al. 2001  154 1.0 (0.8-1.1) 87 1.1 (0.9-1.3) 1-4 yr 24 1.0 (0.7-1.6) >5 yr 

Auvinen  
et al. 2002  

40 analogue  
16 digital 1.3 (0.9-1.8) 

15 
analogue  
11 digital

1.2 (0.7-2.0) 1-2 yr
17 
analogue 
1  digital

1.5 (0.9-2.5) >2 yr 

Hardell  
et al. 2002   

188 analogue 
224 digital   

1.3 (1.0-1.6)  
1.0(0.8-1.2) 

188 
analogue 
224 digital 

1.3 (1.0-1.6) >1 yr
1.0(0.8-1.2) >1 yr 

46 
analogue 
33 digital

1.3 (0.8-2.3) >10 
yr   
0.9 (0.6-1.5) >5 yr 

Lönn  
et al. 2005 

214 glioma 
118 meningioma

0.8 (0.6-1.0)  
0.7 (0.5-0.9) 

112    
64 

0.8 (0.6-1.1) 1-4 yr
0.6 (0.4-0.9) 1-4 yr

25   
12 

0.9 (0.5-1.5) >10 
yr 
0.9 (0.4-1.9) >10 
yr 

Christensen  
et al. 2005 

47 low-grade 
glioma 
59 high-grade 
glioma    
67 meningioma 

1.1 (0.6-2.0)  
0.6 (0.4-0.9)  
0.8 (0.5-1.3)   

19 
24 
35 

0.9 (0.4-1.8) 1-4 yr
0.6 (0.3-1.0) 1-4 yr
0.8 (0.5-1.3) 1-4 yr

6 
8 
6   

1.6 (0.4-6.1) >10 
yr   
0.5 (0.2-1.3) >10 
yr 
1.0 (0.3-3.2) >10 
yr 

Hardell et 
al. 2005a, 
Hardell et 
al. 2005b 

68 malignant, 
analogue 
198 malignant, 
digital  
35meningioma,a
nalogue 
151 meningioma, 
digital

2.6 (1.5-4.3) 
1.9 (1.3-2.7)  
1.7 (1.0-3.0)  
1.3 (0.9-1.9) 

20 
analogue 
100 digital 
1 analogue 
96 digital  

1.8 (0.9-3.5) 6-10 
yr†  
1.6 (1.1-2.4) 1-5 yr 
1.2 (0.1-12)  1-5 yr 
1.2 (0.8-1.8) 1-5 yr 

48 
analogue  
19 digital 
20 
analogue  
 8 digital  

3.5 (2.0-6.4) >10 
yr   
3.6 (1.7-7.5) >10 
yr   
2.1 (1.1-4.3) >10 
yr  
 1.5 (0.6-3.9) >10 
yr  

Hepworth 
et al. 2006 508 glioma 0.9 (0.8-1.1) 271 glioma 0.9 (0.7-1.1) 1.5-

4yr 

170 
glioma  
66 glioma

1.0 (0.8-1.3) 5-9 
yr  
0.9 (0.6-1.3) 
>10yr  

Schüz et 
al. 2006 

138 glioma  
104 meningioma  

1.0 (0.7 - 1.3)  
0.8 (0.6 - 1.1)

82glioma  
73meningi
oma   

0.9 (0.6 – 1.2) 1–4 
yr   
0.9 (0.6 – 1.2) 1–4 
yr  

51 glioma 
12 glioma 
23mening
ioma  
5meningi
oma 

1.1 (0.8–1.7) >5yr  
2.2 (0.9-5.1) 
>10yr  
0.9 (0.5-1.5) >5yr  
1.1 (0.4-3.4) 
>10yr 

Table 4. Results of some epidemiological studies on mobile phone use and brain tumours. 
The table is modified from the report to the Swedish Radiation Protection board: Recent 
Research on EMF and Health Risks. Third annual report from SSI’s Independent Expert 
Group on Electromagnetic Fields (SSI’s Independent Group on Electromagnetic Fields 2005).   
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In a recent study by Cooke et al., they investigated if there was an increased risk of leukemia 
with mobile phone use. They evaluated a total of 806 leukemia cases with an age range of 18 
to 59 years, who lived in southeastern England between 2003 and 2009 compared with 585 
non-blood relatives as a control group.  They found that mobile phone use for more than 15 
years didn’t statistically increase the risk for leukemia (81).  
In conclusion, their results were consistent with the previous pooled analyses showing an 
association between magnetic fields and childhood leukemia. Generally, the association was 
weaker in the most recently conducted studies, but they were small and lack methodological 
improvements needed to resolve the apparent association. The authors concluded that 
recent studies on magnetic fields and childhood leukaemia did not alter the previous 
assessment that magnetic fields are possibly carcinogenic (79).  

4.7.2 Brain tumors 
Baldi I et al. indicate that the etiology of brain tumors mainly remains unknown, and among 
potential risk factors, electromagnetic field exposure is suspected. They analyzed the 
relationship between brain tumors and occupational or residential exposure in adults. They 
carried out a case control study in southwestern France between May 1999 and April 2001. 
The study included a total of 221 central nervous system tumors and 442 individually age- 
and sex-matched controls selected from the general population. Electromagnetic field 
exposure was assessed in occupational settings through expert judgement based on 
complete job calendar, and at home by assessing the distance to power lines with the help of 
a geographical information system. Confounders such as education, use of home pesticide, 
residency in a rural area and occupational exposure to chemicals were taken into account. 
Separate analyses were performed for gliomas, meningiomas and acoustic neurinomas. A 
nonsignificant increase in risk was found for occupational exposure to electromagnetic 
fields. It was found that the risk for meningioma was higher in subjects living in the vicinity 
of power lines when the increase was considered separately for ELF. These data suggested 
that occupational or residential exposure to ELF may play a role in the occurrence of 
meningioma (82). 
The most recent review by Khurana et al. investigated the relationship of wireless phone use 
for more than 10 years with a risk of brain tumor. This review covering a total of 11 
metaanalyses showed that the brain tumors, namely glioma and acoustic neuroma increased 
2-fold in people using wireless phones for more than 10 years, achieving a statistical 
significance (83).  

5. Conclusions 
Although electronic devices and the development in communications makes the life easier, 
it may also involve negative effects. These negative effects are  particularly important in the 
electromagnetic fields in the Radiofrequency (RF) zone which are used in communications, 
radio and television broadcasting, cellular networks and indoor wireless systems. Along 
with the widespread use of  technological products in daily life, the biological effects of 
electromagnetic waves has began to be more widely discussed. 
The general opinion is that there is no direct evidence of hazardous effects on human health 
incurred by low-frequency radiofrequency waves. Studies at the cellular level, which uses 
relatively higher frequencies, demonstrate undesirable effects. In recent years there are a lot 
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of studies about effects of EMF on cellular leve l;  DNA, RNA molecules,  some proteins, and 
hormones, intracellular free radicals, and ions are shown. 
Particularly, the dramatically increasing number of mobile phones users rise significant 
concerns due to its potential damage on people exposed by radiofrequency waves. There are 
increasing number of in vivo, in vitro, and epidemiologic studies on the effects of mobile 
phones, base stations and other EMF sources in last decade.  
Epidemiologic evidence compiled in  the past ten years starts to indicate an increased risk, 
in particular for brain tumor, from mobile phone use.  Because of mobile phones used close 
the brain tissue, electromagnetic waves affects it the most.The magnitude of the brain tumor 
risk is moderate.   
A literature search on ‘mobile phone use and cancer ‘in Pubmed lists 350 studies. More than 
half of all of these studies is related to brain tumors. At present, evidence for a causal 
relationship between mobile phone use and brain tumors relies predominantly on 
epidemiology, in particular on the large studies on this subject. However, the 
etiopathogenesis of this  causal relationship is not clear. The absence of this clear etiology 
even raise doubts about the cause itself.  Weak evidence in favor of a causal relationship is 
provided by some animal and in vitro studies, but overall, genotoxicity assays, both in vivo 
and in vitro, are inconclusive to date. 
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1. Introduction  
The enhanced permeation and retention (EPR) effect (Matsumura & Maeda, 1986) caused by 
the leakage of internally administered nanoparticles from blood vessels and their 
accumulation in cancerous tissues can be used to diagnose cancer. Gleich and Weizenecker 
proposed the magnetic particle imaging (MPI) approach (Gleich & Weizenecker, 2005), 
whereby the positions of these magnetic nanoparticles (MNPs) accumulated in cancerous 
tissue can be detected by applying a local alternating magnetic field from a source 
positioned outside the body. In basic MPI, the local magnetic field distribution is scanned to 
encode the spatial information, and the magnetization signal with odd-order harmonics is 
detected from MNPs inside a selected region when an alternating magnetic field is applied 
to the MNPs. Furthermore, a fast data acquisition method by scanning spatial data along 
with a Lissajous trajectory was proposed (Gleich et al., 2008; Knopp et al., 2009), and real 
time image-data acquisition was achieved (Weizenecker et al., 2009). However, interference 
from the magnetization signal generated from the MNPs outside the selected region 
degraded the image resolution and signal sensitivity (signal-to-noise ratio). 
We proposed an image reconstruction method for reducing these interference signals 
mainly generated by even harmonics, and a correction method to suppress the interference 
signals (Kusayama & Ishihara, 2007; 2009; Ishihara & Kusayama, 2009). This was achieved 
by taking into account the difference between the saturated waveform of the magnetization 
signal detected from the MNPs outside the selected region and that detected from the MNPs 
inside the region. We performed numerical analyses to prove that the image resolution in 
the molecular imaging technique can be improved by using our proposed image 
reconstruction method, which is based on the abovementioned ideas. Furthermore, a 
fundamental system was constructed and the numerical analyses were experimentally 
validated using MNPs with diameters of 10–50 nm. The detection sensitivity and the 
resolution were improved by the use of methods in the case of locally distributed MNPs. 
However, a reconstructed image with the correct distribution of MNPs may not be obtained 
when the MNPs are distributed continuously. This is because the abovementioned proposed 
method acts as an intense high-pass filter against the reconstructed image (Ishihara & 
Kusayama, 2011). 
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when the MNPs are distributed continuously. This is because the abovementioned proposed 
method acts as an intense high-pass filter against the reconstructed image (Ishihara & 
Kusayama, 2011). 



  
Electromagnetic Waves 

 

494 

These problems in MPI originate from the characteristics of the MNPs and the imperfect 
distribution of the magnetic field applied to the MNPs, as discussed later. Gleich and 
Weizenecker concentrated on the fact that the observational data overlapped the system 
function reflecting the characteristics of the MNP and the applied magnetic field 
distribution, and proposed an image reconstruction method for improving image quality 
(Gleich & Weizenecker, 2005). The abovementioned method involved performing an inverse 
matrix operation (such as singular value decomposition; SVD) (Weizenecker et al., 2007) or 
an iterative operation (algebraic reconstruction technique; ART) (Weizenecker et al., 2009) 
on the obtained data. However, when an image matrix becomes large, the use of this 
method to reconstruct images, which is based on a matrix operation, may result in the 
reconstructed images being underspecified. 
Here, we propose a new image reconstruction method with higher image resolution and 
signal intensity. Our method is based on information regarding the correlation between the 
observed signal and a system function, and it does not use the inverse-matrix method. 

2. Principle 
2.1 Magnetization response generated by a MNP 
The static magnetization (M) of a MNP exposed to a magnetic field is described well by the 
Langevin theory of paramagnetism, which is defined in equation (1). 
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where Ms is the saturation magnetization of a MNP, μ0 is the magnetic permeability of 
vacuum, m is the magnetic moment of a particle 3 6sm D M , H is the applied field, kB is 
Boltzmann’s constant, and T is the absolute temperature (Vekas et al., 2000). 
A magnetization response with higher-order harmonics corresponding to the nonlinear 
magnetization properties of the MNP is generated when an alternating magnetic field is 
applied to a MNP (Fig. 1, [A]). However, such harmonics are not generated when a local 
static magnetic field that is strong enough to saturate the magnetization of the MNPs is 
applied (Fig. 1, [B]). The harmonics can be extracted by Fourier transformation of the 
detected signals; therefore, the positions of the MNPs can be identified and imaged by 
scanning the local distribution of a magnetic field which has approximately zero strength in 
the desired region (the field-free point, FFP) and is strong enough to saturate the 
magnetization in regions other than the FFP (Gleich & Weizenecker, 2005). 

2.2 Fundamental MPI system 
A fundamental MPI model is shown in Fig. 2 (a). A magnetic field distribution with very 
high field strength that surrounds the selected region, in contrast to having a first-order 
gradient at the center, is achieved by applying a DC current IDC to two sets of Maxwell coil 
pairs. Thus, an FFP is formed at the center of these coils (Fig. 2 (b)). The position of this FFP 
is scanned by applying an offset DC current to each coil (Fig. 2 (c)). The MNPs generate a 
magnetization response because of the alternating magnetic field created by the AC current 
IAC in the Maxwell coil pair consisting of the top and bottom coils. The response is detected 
as an electromotive force induced by the receiver coil according to Faraday's law. 
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Fig. 1. Principle of MPI. MPI is based on the nonlinear magnetization properties of MNPs. 
When an alternating magnetic field with a frequency f0 is applied to MNPs placed in a 
region where the static magnetic field strength is almost zero (FFP) [A], the MNPs generate 
a magnetization response with odd-order harmonics. In contrast, very few magnetization 
responses are detected from MNPs placed in a region where the magnetic field is strong 
enough to saturate their magnetization [B]. 
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Fig. 2. Fundamental MPI model and generated magnetic field. Each Maxwell coil pair 
produces a magnetic field gradient along each axis. An FFP is formed at the center of the 
field of view (FOV), as shown in (b), when the DC currents applied to each coil are equal. 
The position of this FFP can be scanned by adjusting the ratio of currents applied to each 
coil (c). An alternating magnetization response is generated when an AC current is applied 
to the Maxwell coil pair consisting of the top and bottom coils. This response from the 
MNPs is recorded using a receiver coil. 
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2.3 Concept of image reconstruction by conventional method 
As mentioned above, in MPI, image reconstruction is performed using the magnetization 
response waveform detected while scanning the FFP. In this approach, the shape of the FFP 
(the magnetic field distribution) applied to the MNPs has a significant influence on the 
resolution of the reconstructed image. For example, if the formed FFP is spatially localized 
by a steep magnetic field distribution as shown in Fig. 3 (a), image resolution comparable to 
the size of the FFP could be obtained. However, the local characteristics of the magnetic field 
distribution formed with the usual magnet are limited and imperfect (Fig. 3(b)). Moreover, 
the magnetizing properties (saturation characteristics) of the MNP also affect the spatial 
resolution. That is, the finite gradient of the magnetization curve limits the spatial resolution 
(Fig. 4). Under the influence of these two factors, an additional signal appears from the 
MNPs that are outside the boundary of the FFP, and interferes with the signal generated 
from the MNPs inside the FFP. This is shown in Fig. 5. When MNPs exist only in the center 
of the FOV, a signal is detected ideally only in the position of the desired FFP (FFP-a, shown 
in Fig. 5). However, when the gradient of the magnetic field distribution which forms the 
FFP is gently-sloping, or when the gradient of the magnetization curve of a MNP is finite, a 
signal is also detected from MNPs that are in a location other than the desired FFP (e. g., 
FFP-b, shown in Fig. 5).  
Therefore, the conventional MPI image reconstruction method uses that the frequency 
spectrum of a magnetization response waveform would ideally consist only of odd 
harmonic components when the FFP is scanned at the point where the MNPs are located. 
Hence, when the FFP is in the two-dimensional plane (x-z plane) of y = 0 on Fig. 2, the signal 
strength in the reconstructed image is expressed by the following equation. 
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       (2) 

U(x, z): reconstructed distribution in x-z plane  
V[x, z, n]: n-th harmonic contained in the waveform at each FFP (x, z) 
Nh: maximum harmonic order for reconstruction 
However, because the amplitude is minute for the higher-order components, the 
information included in the higher-order components is not sufficiently utilized. Moreover, 
it is difficult to remove the interference caused by the imperfection of the two 
abovementioned factors using this method only, resulting in the appearance of a blur and an 
artifact in the reconstructed image. 
In addition, from the MPI viewpoint, a larger MNP diameter is preferable according to the 
magnetization properties expressed in equation (1) (Yavuz et al., 2006), because a 
comparatively small alternating magnetic field is sufficient. On the other hand, because tens 
of nm is an effective distance for acquiring the EPR effect, a strong alternating magnetic field 
is required. This means that the influence of the abovementioned interference signal 
becomes large. Therefore, a method that successfully suppresses artifacts and improves 
detection sensitivity is indispensable. 

3. Proposed methods 
For typical MPI image-reconstruction, Weizenecker et al. (2009) proposed a method that 
performs an inverse-matrix operation on the obtained data by scanning the FFP along with a   
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Fig. 3. Influence of FFP imperfection (magnetic field distribution). (a) Ideal FFP: The magnetic 
field strength is almost zero only in the area selected for acquiring a signal, in contrast to 
sufficient magnetization of MNP to reach saturation in other regions. (b) Actually formed FFP: 
the magnetic field distribution generated with Maxell coil pairs has a murky FPP boundary. 
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Fig. 4. Influence of imperfection in the MNP’s magnetizing properties. (a) Ideal 
magnetization (saturation) property: when an alternating magnetic field is superimposed on 
an offset magnetic field, the AC component is not contained in the magnetization response 
of the MNP. (b) Not ideal magnetization (saturation) property: the AC component contained 
in the magnetization response of the MNP is affected by the offset magnetic field strength 
superimposed on an alternating magnetic field. 
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field strength is almost zero only in the area selected for acquiring a signal, in contrast to 
sufficient magnetization of MNP to reach saturation in other regions. (b) Actually formed FFP: 
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Fig. 5. Harmonic components detected at each FFP. A magnetization response composed of 
only odd harmonics is detected from the MNPs at the center of the FFP (FFP-a). Because the 
local magnetic field distribution that forms the FFP does not have a steep gradient, a 
magnetization response with even harmonics is also detected at a point where the FFP is at a 
certain distance from the MNPs (FFP-b). 

Lissajous trajectory within the FOV, and delivered strong results. However, with this 
method, when the image size becomes large, a huge operation is needed, which raises 
concerns regarding the stability of the reconstructed image. 
In this chapter, in order to reduce the image artifact and blurring, we first introduce the 
proposed method, and explain its efficiency and the problems it raises. Then, we propose an 
image reconstruction method that has excellent stability, image resolution, and detection 
sensitivity without performing inverse-matrix operations. 

3.1 Adjusting the harmonic components 
As explained in Fig. 5, in addition to the odd harmonics, considerable even harmonics are 
also detected in the signal when the FFP is set at a certain distance from a MNP owing to 
imperfections in the magnetic field distribution that forms the FFP. Although conventional 
MPI is reconstructed using only the odd harmonics based on equation (2), in the image 
reconstruction method proposed in this study, the odd harmonics are used, whereas the 
even harmonics are reduced, as defined in equation (3) (Kusayama & Ishihara, 2009). If the 
magnetic field distribution, which is formed as an FFP, and the magnetic characteristics of 
the MNP are known, the necessary components of the odd harmonics and the unnecessary 
component of the even harmonics can be determined. As a result, as shown in Fig. 6, the 
odd harmonics can be emphasized, and the even harmonics can be reduced. 
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            (3) 

U(x, z): corrected distribution in x-z plane  
V[x, z, n]: n-th harmonics contained in the waveform at each FFP (x, z) 
Nh: maximum harmonic order for reconstruction 
, : weighting factors for harmonics 
k: arbitrary constants 
 

 
Fig. 6. Adjustment of harmonic components detected at each FFP. The odd harmonics were 
left unchanged and the even harmonics were reduced, in contrast to conventional image 
reconstruction methods. 

3.2 Differentiating the waveforms obtained from inside and outside the FFP 
Even if we use the method based on equation (3), the image resolution degrades because of 
the interference of the magnetization signals generated from several MNPs located outside 
the FFP boundary. For example, the signals generated from the MNPs located outside the 
FFP, as shown in Fig. 7 (a), may be composed of odd harmonics similar to those obtained 
from the MNPs placed inside the FFP. Because the effect of such interferences cannot be 
suppressed by the abovementioned procedure alone, the image artifact appears in the 
reconstructed image (Fig. 7 (d)), degrading the image resolution.  
Here, a big difference is noticed when the waveforms generated from the MNPs inside the 
FFP region are compared with the interfering waveforms from outside the FFP region (Fig. 7 
(b)). To distinguish between the interference signals, first, the offset component of the 
detected signal is corrected and normalization is performed. Second, the correlation between 
the corrected waveform and a waveform (system function) that is generated from a MNP at 
each FFP is evaluated. These processes are expressed in equation (4), and Fig. 8. Finally, this 
difference in waveforms is defined in terms of the correction factor, and suppression of 
unnecessary interference signals is attempted by multiplying their factors with the data 
determined from equation (3). 
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Ns: number of sampling points 
wn, win: sampled interference and ideal waveform data 
wmax, wimax: maximum value of each waveform 
wmean: mean value of interference waveform 
ca: arbitrary constant 
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Fig. 5. Harmonic components detected at each FFP. A magnetization response composed of 
only odd harmonics is detected from the MNPs at the center of the FFP (FFP-a). Because the 
local magnetic field distribution that forms the FFP does not have a steep gradient, a 
magnetization response with even harmonics is also detected at a point where the FFP is at a 
certain distance from the MNPs (FFP-b). 
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Fig. 7. Interference signal detected from regions outside the FFP. Because the magnetization 
response generated from the MNPs placed outside the FFP consists of odd harmonics at the 
FFP in the halfway point between MNPs, this interference cannot be eliminated by 
correction on the basis of the type of harmonics. 
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Fig. 8. Distinguishing the interference signal by using the correlation coefficient. In order to 
remove the interference of the magnetization signals, the following is performed: (1) 
correction of the offset component, (2) normalization of the waveform, (3) calculation of 
correlation coefficient, and (4) multiplication of correlation coefficient. 
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3.3 Correlating with the system function 
The method proposed above is extremely effective in reducing blurring and artifacts in 
images, as will be shown later. However, this method emphasizes the signal from the 
isolated signal source that exists at the center of each FFP, and assumes that the signal 
generated from that circumference is an unnecessary interference. This is a problem when 
adjacent signal sources (MNPs) exist, as the intrinsic signal generated from these sources is 
recognized as an unnecessary interference to each other. 
In order to overcome this unexpected effect, a method of reconstructing the exact spatial 
distribution of MNPs is proposed. Using the same method proposed by Weizenecker et al. 
(2009), the waveform generated from a MNP at each FFP is measured as a system function, 
but the correlation between this system function and a waveform generated by the 
unknown MNPs’ distribution at each FFP is calculated without any inverse matrix 
operation. More specifically, the estimation of the MNPs’ distribution is based on the 
correlation between the observed signal S(x, z) from the unknown MNPs’ distribution and 
the system function (i.e., point-spread function) G(i, j; x, z), which is a space-variant system 
determined by the interaction of the magnetic field and the MNPs’ distribution. As shown in 
Fig. 9, this system function can be determined by measuring the waveforms at FFP points of 
(x, z) when a MNP is set at each point (i, j) within the FOV, and by connecting all these 
measured waveforms as one-dimensional data, which is sequentially arranged in an array of 
rows and columns (i, j). Consequently, the MNP distribution in the x-z plane is 
reconstructed using equation (5). 
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Fig. 9. Calculation of correlation coefficients: the system function G(i, j; x, z) is defined as a 
space-variant system. It can be determined by measuring the waveforms at FFP points (x, z) 
when a MNP is set at each point (i, j) within the FOV. The MNP distribution is calculated by 
correlation with S(x, z), which is the waveform measured by each FFP of (x, z) and arranged 
in a one-dimensional array. 

4. Numerical simulation 
4.1 Simulation methods 
In order to examine the validity of the proposed method using the higher harmonic 
components appropriately, a numerical analysis using the system model shown in Fig. 2 
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Fig. 7. Interference signal detected from regions outside the FFP. Because the magnetization 
response generated from the MNPs placed outside the FFP consists of odd harmonics at the 
FFP in the halfway point between MNPs, this interference cannot be eliminated by 
correction on the basis of the type of harmonics. 
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Fig. 8. Distinguishing the interference signal by using the correlation coefficient. In order to 
remove the interference of the magnetization signals, the following is performed: (1) 
correction of the offset component, (2) normalization of the waveform, (3) calculation of 
correlation coefficient, and (4) multiplication of correlation coefficient. 
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4. Numerical simulation 
4.1 Simulation methods 
In order to examine the validity of the proposed method using the higher harmonic 
components appropriately, a numerical analysis using the system model shown in Fig. 2 
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was conducted. In this examination, two Maxell coil pairs (diameter: 50 mm, opposite 
distance: 50 mm) and a receiver coil (diameter: 16 mm, number of turns: 200) were used, and 
the FOV was set as 9 × 9 mm2 with a matrix size of 64 × 32. A magnetic field distribution 
with a gradient magnetic field of about 5 T/m formed in the z direction at the MNPs with a 
particle diameter of 20 nm was applied as an FFP using this Maxell coil pair. In addition, an 
alternating magnetic field of 20 mT was applied in the same direction. 

4.2 Simulation results 
Figure 10 shows the reconstructed images of the MNP placed at the center of the FOV using 
the conventional method with equation (2) and the proposed method based on equation (3). 
The magnetic field was distributed over the region where the MNPs were positioned owing 
to the influence of the FFP formed as a result of the imperfection of the local magnetic field 
distribution. Therefore, because the alternating magnetic field was applied only in the z-
direction, image blurring was observed particularly along the z-direction in the image 
reconstructed using the conventional method (Fig. 10(a)). On the other hand, such image 
blurring was reduced by suppressing the even harmonics on the basis of equation (3) and by 
using optimized parameters (Nh = 7, = 0.19, = 0.12, k = 1.39) (Fig. 10(b)).  
Furthermore, it was confirmed that a drastic reduction in the image artifact compared to the 
conventional method could be achieved by using the proposed method shown in Fig. 11 by 
differentiating between the interference of the signal from the MNPs placed outside and 
inside the region on the basis of equation (4) using the optimized parameters (ca = 10).  
Although this proposed method enables us to improve image resolution by suppressing 
the interference signal due to the even harmonic components generated from the MNPs 
and also to improve the sensitivity by emphasizing the odd harmonic components, the 
outer part of the reconstructed image was weighted excessively, as in a high-pass-filter 
effect. For example, the perimeter region is emphasized when the MNPs indicate 
continuous distribution, as shown in Fig. 12 (a) while there are fewer blurring and 
artifacts compared with the conventional method shown in Figs. 10 and 11 when the 
MNPs are separated.  
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Fig. 10. Improvement of image resolution by adjusting the harmonic components based on 
equation (3). Overall image blurring due to the imperfection of the local magnetic field 
distribution formed as FFP is observed on the image reconstructed by the conventional 
method (a). The spread of the distribution along the z-direction was suppressed by using the 
proposed method with equation (3) (b). 
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Fig. 11. Improvement of image resolution by suppressing the interference signals on the 
basis of equation (4). When using the conventional method, an image artifact was formed at 
the FFP between the nanoparticles placed symmetrically on either side of the FFP (a). With 
the proposed method, this image artifact was eliminated, and the spread of the field 
distribution in the z-direction was suppressed on the basis of equation (4) (b). 

Consequently, the efficiency of the reconstruction method based on the newly proposed 
equation (5) was evaluated. Figure 13 illustrated the reconstructed results for the original 
image (Fig. 13(a)) using the conventional method (Fig. 13(b)), the method based on 
equations (3) and (4) (Fig. 13(c)), and the method based on equation (5) (Fig. 13(d)). With 
the conventional method, the reconstructed distribution was spread around the region 
where the MNPs were actually positioned, and an image artifact was observed. On the 
other hand, with the reconstruction method based on equation (5), although some image 
blurring is observed in the peripheral part of the image, a more exact reconstruction 
image with fewer artifacts is obtained, compared to other methods. Furthermore, it is 
confirmed from Fig. 14, which shows the profile of the central section of these images, that 
the sensitivity of this method based on equation (5) was high — about 20% compared 
with other methods. 
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Fig. 12. The reconstruction result for a continuous distribution of MNP. The outer part of the 
reconstructed image is excessively emphasized, as in the effect of a high pass image filter. 
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Fig. 10. Improvement of image resolution by adjusting the harmonic components based on 
equation (3). Overall image blurring due to the imperfection of the local magnetic field 
distribution formed as FFP is observed on the image reconstructed by the conventional 
method (a). The spread of the distribution along the z-direction was suppressed by using the 
proposed method with equation (3) (b). 
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basis of equation (4). When using the conventional method, an image artifact was formed at 
the FFP between the nanoparticles placed symmetrically on either side of the FFP (a). With 
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Fig. 12. The reconstruction result for a continuous distribution of MNP. The outer part of the 
reconstructed image is excessively emphasized, as in the effect of a high pass image filter. 
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(a)                         (b)                        (c)                        (d)  
Fig. 13. Reconstruction results of each method. (a) Original image. (b) With the conventional 
method, significant image blurring and an artifact appear. (c) With the proposed method 
based on equations (3) and (4); although the image is less blurred, the edges are emphasized 
excessively. (d) With the proposed method based on equation (5); although the image is 
somewhat blurred, the original image is reconstructed more accurately than with the other 
methods. 
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Fig. 14. Profile of a reconstructed image. The proposed method based on equation (5) 
reconstructs the MNP distribution more accurately than the other methods. In addition, this 
method has excellent sensitivity. 

5. Experiment 
5.1 Materials and methods 
In order to confirm the validity of the proposed methods and numerical computation, the 
influence of the interference originating from the magnetization response waveform 
generated outside the target region was estimated by a fundamental experiment. The 
prototype Maxell coil pair (diameter: 180 mm, number of turns: 285 each, and opposite 
distance: 30–50 mm) (Toyojiki industry Co. Ltd., Niiza, Japan) used for the experiment is 
shown in Fig. 15. 

5.1.1 Detecting magnetization response 
When an alternating magnetic field was applied, the higher harmonic component contained 
in the magnetization response detected from the MNPs was evaluated, and the validity of 
the numerical analysis was confirmed. In this experiment, an alternating magnetic field with 
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an amplitude of about 90 mT was generated in the center of the coil by applying an 
alternating current (frequency of 35 Hz, and amplitude 10.6 A) in the same direction to each 
coil. As a measuring object, a 2.0-g dry particle of iron oxide (nominal diameter of 10 nm), 
which has polar surface properties (EMG1500, Ferrotec Corp., Chiba, Japan)) was enclosed 
in the container, as shown in Fig. 15 (b). 
The magnetization response waveform generated from the MNPs at the center of the 
Maxwell pair coil was detected using a receiver coil (diameter: 35 mm, number of turns: 40) 
which surrounds the phantoms. Here, in order to reduce a nonlinear error, intrinsic to the 
system, which originates from imperfections in the power supplies and the Maxell coil pair, 
difference processing between the signals observed with and without the existence of the 
measuring object was carried out. 
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Fig. 15. Experimental modules for signal detection. A Maxwell coil pair (diameter: 180 mm, 
turns: 285 each, distance between coils: 30-50 mm) was used in the z-direction for generation 
of an FFP and an alternating magnetic field. The magnetization response from the dry 
particle of iron oxide enclosed within the container (c) was detected by a receiver coil 
(diameter: 35 mm, turns: 40) (b).  

5.1.2 Differentiating the waveforms obtained from inside and outside of the FFP 
Next, it was evaluated by the experiment that the interference of the magnetization response 
signal generated from MNPs outside an FFP can be decreased with the proposed method 
based on equations (3) and (4). In this experiment, an alternating magnetic field with an 
amplitude of about 20 mT was generated in the center of the coil by applying an alternating 
current (frequency of 80 Hz, and amplitude 4.7 A) in the same direction to each coil. At the 
same time, a direct current of 9.4 A was applied to each coil in the opposite direction and a 
gradient magnetic field of about 1.2 T/m was generated, and as a result, an FFP was 
generated around the center of the coil gap.  
A 0.5-cc hydrophilic colloidal solution of superparamagnetic iron oxide (concentration 
about 500 mM/liter), which is coated with carboxydextran (Ferucarbotran, Fujifilm RI 
Pharma Co., Ltd., Tokyo, Japan), enclosed in the container shown in Fig. 16 (c) was used as a 
phantom. The magnetization response waveform generated from the MNPs at the center of 
the Maxwell coil pair was detected using a receiver coil (diameter: 35 mm, number of turns: 
40) (Fig. 16 (a)) that surrounds the phantoms. In order to correspond to the numerical 
analysis (Fig. 11), the two phantoms were coaxially arranged, 20 mm apart, between the 
opposite coils (Fig. 16 (b)). 
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of an FFP and an alternating magnetic field. The magnetization response from the dry 
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Next, it was evaluated by the experiment that the interference of the magnetization response 
signal generated from MNPs outside an FFP can be decreased with the proposed method 
based on equations (3) and (4). In this experiment, an alternating magnetic field with an 
amplitude of about 20 mT was generated in the center of the coil by applying an alternating 
current (frequency of 80 Hz, and amplitude 4.7 A) in the same direction to each coil. At the 
same time, a direct current of 9.4 A was applied to each coil in the opposite direction and a 
gradient magnetic field of about 1.2 T/m was generated, and as a result, an FFP was 
generated around the center of the coil gap.  
A 0.5-cc hydrophilic colloidal solution of superparamagnetic iron oxide (concentration 
about 500 mM/liter), which is coated with carboxydextran (Ferucarbotran, Fujifilm RI 
Pharma Co., Ltd., Tokyo, Japan), enclosed in the container shown in Fig. 16 (c) was used as a 
phantom. The magnetization response waveform generated from the MNPs at the center of 
the Maxwell coil pair was detected using a receiver coil (diameter: 35 mm, number of turns: 
40) (Fig. 16 (a)) that surrounds the phantoms. In order to correspond to the numerical 
analysis (Fig. 11), the two phantoms were coaxially arranged, 20 mm apart, between the 
opposite coils (Fig. 16 (b)). 
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The FFP was set at the center between the coils, at an equal distance from the phantoms, and 
the magnetization response waveform generated from the phantoms was detected using the 
receiver coil (diameter: 23 mm, number of turns: 400) that surrounded the phantoms. The 
ideal waveforms (the system function) were determined by arranging a phantom at the 
center between the coils and measuring the signal, in order to calculate the correlation with 
the detected signal.  
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Fig. 16. Experimental modules for evaluation of the signal interference. The magnetization 
signal from the MNPs (MRI contrast agent: Ferucarbotran) (c), which are placed in two 
containers in order to reproduce the conditions of numerical analysis (b), was observed 
using a receiver coil (diameter: 23 mm, turns: 400) (a).  

5.2 Experimental results 
5.2.1 Detecting magnetization response 
Figure 17 (a) shows the electromotive force induced by the receiver coil when applying the 
alternating magnetic field to the MNPs. By integrating over this electromotive force wave, 
the magnetization response waveform of the particles was obtained (Fig. 17 (b)) and is 
shown in Fig. 17 (c) with the result of the Fourier transform. These experimental results 
confirmed that the method of our numerical analysis is accurate. 

5.2.2 Detecting magnetization response 
The magnetization response waveform detected by the receiver coil and the ideal waveforms 
are shown in Fig. 18 (a). The influence of interference is reflected in the detected magnetization 
response waveform, and a similar wave shape to that shown in Fig. 7 was observed. 
In order to confirm that the interference of the magnetization response waveform generated 
outside the FFP region can be suppressed by using the proposed method, the conventional 
method based on equation (2) and the proposed method based on equations (3) and (4) were 
applied to the magnetization response waveform obtained in the experiment. Here, the 
correction coefficients used in equations (3) and (4) were determined based on the 
characteristics of the ideal waveforms (Nh = 7, = 0.10, = 0.05, k = 1.22, ca = 5.0). 
The signal strength reconstructed by each method is shown in Fig. 18 (c). For the 
conventional method, the signal strength, which reflects the interference of the 
magnetization response waveform generated from outside the FFP, (which corresponds to 
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the interference signal detected at the center of the Maxwell coil pair) was about 79.0% of the 
ideal waveform signal. On the other hand, it was confirmed that this interference signal can 
be suppressed to about 9.0% by our proposed method based on equations (3) and (4).  
The results of this fundamental experiment were well in agreement with the results of the 
numerical analysis, confirming the efficiency of the proposed methods and the 
computational process. 
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Fig. 17. Detected signal from MNPs. The signal from the MNPs is detected as electromotive 
force induced by the receiver coil (a). A magnetization response is obtained by integrating this 
signal (b), and the harmonics are computed by the Fourier transform of this response (c).  
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5.2.2 Detecting magnetization response 
The magnetization response waveform detected by the receiver coil and the ideal waveforms 
are shown in Fig. 18 (a). The influence of interference is reflected in the detected magnetization 
response waveform, and a similar wave shape to that shown in Fig. 7 was observed. 
In order to confirm that the interference of the magnetization response waveform generated 
outside the FFP region can be suppressed by using the proposed method, the conventional 
method based on equation (2) and the proposed method based on equations (3) and (4) were 
applied to the magnetization response waveform obtained in the experiment. Here, the 
correction coefficients used in equations (3) and (4) were determined based on the 
characteristics of the ideal waveforms (Nh = 7, = 0.10, = 0.05, k = 1.22, ca = 5.0). 
The signal strength reconstructed by each method is shown in Fig. 18 (c). For the 
conventional method, the signal strength, which reflects the interference of the 
magnetization response waveform generated from outside the FFP, (which corresponds to 
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the interference signal detected at the center of the Maxwell coil pair) was about 79.0% of the 
ideal waveform signal. On the other hand, it was confirmed that this interference signal can 
be suppressed to about 9.0% by our proposed method based on equations (3) and (4).  
The results of this fundamental experiment were well in agreement with the results of the 
numerical analysis, confirming the efficiency of the proposed methods and the 
computational process. 
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Fig. 17. Detected signal from MNPs. The signal from the MNPs is detected as electromotive 
force induced by the receiver coil (a). A magnetization response is obtained by integrating this 
signal (b), and the harmonics are computed by the Fourier transform of this response (c).  
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Fig. 18. Suppression effect of interference signal. It is confirmed that by using the proposed 
method, the interference signal detected from the center of the Maxwell coil (a) can be 
suppressed to less than 9.0% (c). 

6. Conclusion 
In MPI, interference of the magnetization signal generated from the MNPs outside the 
boundary of an FFP due to the nonlinear responses, results in degradation of the signal 
sensitivity. Although we proposed an image reconstruction method that suppresses the 
interference component while emphasizing the signal component using the property of the 
higher harmonic components generated from the MNPs, the perimeter of the reconstructed 
image was over-emphasized due to the high-pass-filter effect when using this method. We 
therefore proposed a new method based on the correlation information between the 
observed signal and a system function, and performed a numerical analysis. As a result, the 
image blurring was still visible, but we clearly showed that the detection sensitivity can be 
improved without the inverse-matrix operation used by the conventional image 
reconstruction method. In addition, although such proposed methods and numerical 
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analyses could be demonstrated by a basic experiment, the reconstruction of an image by 
means of a phantom experiment should be evaluated in the future. 
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Fig. 18. Suppression effect of interference signal. It is confirmed that by using the proposed 
method, the interference signal detected from the center of the Maxwell coil (a) can be 
suppressed to less than 9.0% (c). 

6. Conclusion 
In MPI, interference of the magnetization signal generated from the MNPs outside the 
boundary of an FFP due to the nonlinear responses, results in degradation of the signal 
sensitivity. Although we proposed an image reconstruction method that suppresses the 
interference component while emphasizing the signal component using the property of the 
higher harmonic components generated from the MNPs, the perimeter of the reconstructed 
image was over-emphasized due to the high-pass-filter effect when using this method. We 
therefore proposed a new method based on the correlation information between the 
observed signal and a system function, and performed a numerical analysis. As a result, the 
image blurring was still visible, but we clearly showed that the detection sensitivity can be 
improved without the inverse-matrix operation used by the conventional image 
reconstruction method. In addition, although such proposed methods and numerical 
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