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Abstract: Wearable inertial measurement units (IMUs) are used in gait analysis due to their discrete 
wearable attachment and long data recording possibilities within indoor and outdoor environ-
ments. Previously, lower back and shin/shank-based IMU algorithms detecting initial and final con-
tact events (ICs-FCs) were developed and validated on a limited number of healthy young adults 
(YA), reporting that both IMU wear locations are suitable to use during indoor and outdoor gait 
analysis. However, the impact of age (e.g., older adults, OA), pathology (e.g., Parkinson′s Disease, 
PD) and/or environment (e.g., indoor vs. outdoor) on algorithm accuracy have not been fully inves-
tigated. Here, we examined IMU gait data from 128 participants (72-YA, 20-OA, and 36-PD) to thor-
oughly investigate the suitability of ICs-FCs detection algorithms (1 × lower back and 1 × shin/shank-
based) for quantifying temporal gait characteristics depending on IMU wear location and walking 
environment. The level of agreement between algorithms was investigated for different cohorts and 
walking environments. Although mean temporal characteristics from both algorithms were signif-
icantly correlated for all groups and environments, subtle but characteristically nuanced differences 
were observed between cohorts and environments. The lowest absolute agreement level was ob-
served in PD (ICC2,1 = 0.979, 0.806, 0.730, 0.980) whereas highest in YA (ICC2,1 = 0.987, 0.936, 0.909, 
0.989) for mean stride, stance, swing, and step times, respectively. Absolute agreement during tread-
mill walking (ICC2,1 = 0.975, 0.914, 0.684, 0.945), indoor walking (ICC2,1 = 0.987, 0.936, 0.909, 0.989) 
and outdoor walking (ICC2,1 = 0.998, 0.940, 0.856, 0.998) was found for mean stride, stance, swing, 
and step times, respectively. Findings of this study suggest that agreements between algorithms are 
sensitive to the target cohort and environment. Therefore, researchers/clinicians should be cautious 
while interpreting temporal parameters that are extracted from inertial sensors-based algorithms 
especially for those with a neurological condition. 

Keywords: gait analysis; wearable electronic devices; computing methodologies;  
patient outcome assessment 
 

1. Introduction 
Human gait is a complex cyclic pattern that relies on individuals′ kinetic, kinematic 

and muscle characteristics. Neurodegenerative disorders (e.g., Parkinson’s disease, PD) 
and other factors like age and lifestyle can altering an individual’s gait pattern [1]. Typi-
cally, people with PD walk slowly with short fast shuffling steps [2,3]. Additionally, those 
with PD may present with additional conditions due to poor gait such as pain arising poor 
foot health and reduced quality of life [4] leading to increased depression scores [5]. Alt-
hough most neurological conditions share similar gait deficits such as reduced gait speed 
and poor balance, there are also characteristically distinctive patterns (e.g., increased step 
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time) that help differentiate particular neurological conditions [6]. Therefore, investigat-
ing discrete gait cycles may provide nuanced and even personalized assessments for those 
with gait disturbances. 

Wearable inertial measurement units (IMUs) are now commonly used for gait anal-
ysis due to their small form factor and long data recording possibilities, in indoor and 
outdoor environments [7,8]. The vertical acceleration of the pelvis and sagittal plane an-
gular velocity of the shins are commonly used inertial signals to detect initial contact (IC) 
and final contact (FC) within the gait cycle [9–11]. In general, methods to quantify ICs and 
FCs are dependent upon inertial signal quality as well as IMU location (e.g., lower-back, 
shin/shank, foot) and computational methodology (e.g., wavelet transform)[6,9–11]. 

Research demonstrates that either linear acceleration or angular velocity sensors at-
tached to various body locations/segments can be used to detect ICs-FCs as accurately as 
a reference system (e.g., footswitches, instrumented walkway) for both normal and patho-
logical gait footfalls [12–21]. However, accuracy of IMU algorithm also varies depending 
on walking terrain (environment) and target population. Previous studies investigated 
performance of IMU algorithms that provide accurate and repeatability valid ICs-FCs. For 
example, lower-back algorithms that use acceleration signals were compared in healthy 
[22,23] and neurological populations during indoor walking [24]. Wrist, waist and shank 
accelerometer signal-based algorithms were compared during various walking settings 
(e.g., indoor, outdoor) in a healthy young population [25]. Performances of foot and shank 
angular velocity with foot acceleration signal-based algorithms were compared in spinal-
cord injured individuals [19]. Other studies investigated optimal IMU locations (lower-
back, shank, foot) and algorithms that provide accurate ICs-FCs moments for healthy 
young adults only [9,11]. Each study reported various levels of accuracy, where inconsist-
encies could be associated with the fluctuations in performances of IMU algorithms e.g., 
better detecting ICs than FCs [25] due to the higher variance of generated signals by each 
cohort during walking on different terrains [11]. 

Performances of lower-back IMU algorithms are typically poorer/lower in neurolog-
ical cohorts compared to healthy cohorts, due to occasional failed detection of accelera-
tion-based ICs-FCs [24]. This could be attributed to the development of the algorithms 
within controlled environments only [9]. Moreover, previous studies reported certain dif-
ferences between indoor and outdoor temporal parameters [2,26–28] and this was associ-
ated with the fluctuation in performances of inertial algorithms along with many other 
factors such as the white coat effect [29]. Indeed, previous papers investigated and com-
pared IMU algorithms based on sensor location and target signal used by using a refer-
ence system in healthy populations [9–11], but the margin of error between algorithms (or 
absolute agreement) has not been fully investigated in different groups and environment. 
Furthermore, the population size of validation and comparison studies were generally 
limited/low. Consequently, optimal algorithms, IMU locations for a specific cohort and 
environment to inform how cautious researchers should be while interpreting temporal 
parameters remain unclear. 

The aim of this study is to investigate the level of agreement between established 
lower-back and shank IMU algorithms in young adults (YA), older adults (OA) and PD 
cohorts during different walking protocols in various environments. Our hypothesis is 
that existing inertial algorithms may be sensitive to sensor wear location, target cohort 
and walking environments limiting the widespread use of wearable IMU algorithms dur-
ing indoor and outdoor gait assessment. Discovering the effects of cohort and environ-
ment could help better understanding the difference between indoor and outdoor walk-
ing. Unlike previous studies, this study directly investigates agreement between algo-
rithms rather than agreement with a reference system in large healthy and PD popula-
tions. Accordingly, we aim to make a judgement about how confidently researchers can 
use one algorithm over the other. The results of this study will add to the current 
knowledge by providing details about how similar the results of two common IMU algo-
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rithms are in various environments. To the author′s knowledge, this is the first compara-
tive study that investigates the level of agreement between lower-back and shank sensor-
based algorithms on adults and PD along with a large YA population. The main contribu-
tions are to: 
(i) Investigate agreement between algorithms across different groups (YA-OA-PD), 
(ii) Investigate impact of walking environment (treadmill-indoor-outdoor) on agree-

ment between algorithms, 
(iii) Provide recommendations when deciding optimal IMU location and gait algorithms. 

2. Materials and Methods 
A total of 128 participant’s gait data were analyzed from previously created datasets. 

Public dataset 1 (DS1 http://gaitanalysis.th-brandenburg.de/ accessed 5 October 2020) con-
tained 72 healthy young adults (YA) [30]. Additional dataset 2 (DS2) comprises 20 (age 
matched) healthy older adults (OA) and 36 PD participants, a sample from a previous 
study [31]. See Table 1 for participant information and demographics and associated ref-
erences for in-depth details Here, datasets are described briefly. 

Table 1. Participant information/experimental protocols. 

 DS1 DS2 
Environment 

Cohort-Number 
Treadmill  
(YA-16) 

Indoor  
(YA-31) 

Outdoor  
(YA-25) 

Indoor  
(OA-20) 

Indoor  
(PD-36) 

Male/Female (n) 10/6 22/9 16/9 10/10 18/18 
Age(years) 
Mean ± SD 

32.6 ± 11.9 26.6 ± 11.0 26.28 ± 12.2 69.76 ± 7.82 69.20 ± 6.64 

Sampling Fre-
quency 

60 Hz 60 Hz 75–100 Hz 128 Hz 128 Hz 

Disease Dura-
tion (years) 

-- -- -- -- 7.82 ± 5.62 

UPDRS III -- -- -- -- 32.51 ± 4.12 
NFOGQ -- -- -- -- 7.44 ± 8.62 
LEDD -- -- -- -- 786.68 ± 416.88 

OA: Older Adults, YA: Young Adults, PD: Parkinson’s Disease, UPDRS: Unified Parkinson’s Dis-
ease Rating Scale, NFOGQ: The New Freezing of Gait Questionnaire, LEDD: L-dopa equivalent 
daily dose. 

2.1. Datasets 
2.1.1. Datasets-1 (DS1) 

Data capture took place in different countries (Austria, Finland, Kenya) and testing 
environments (treadmill, indoor and outdoor). All volunteers provided informed consent 
about the experiments, data storage and the future use of data before participating. Com-
prehensive information on protocols, data collection, etc., is provided elsewhere [30]. In 
short, each subject wore three IMUs (Xsens MTw, Enschede, Netherlands) on right shank 
(SR), left shank (SL) and the lower back (fifth lumbar vertebrae, L5), Figure 1a. Each syn-
chronized Xsens IMU was configured for different protocols (acceleration ±16 g, angular 
velocity ±2000 deg/s and different sampling rates: 60 Hz, 75 Hz, 100 Hz) prior to data 
collection. 
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Figure 1. Data processing: (a) Sensor placement, (b) raw acceleration and rotation data of two dif-
ferent location, (c) IC-FC detection with Algorithm S1 (in Supplementary material) process, (d) IC-
FC detection with Algorithm S2 (in Supplementary material), ICs and FCs are represented with red 
and green dots, respectively. 

During treadmill walking, participants were asked to walk between 7–9 min (approx. 
700 m). The speed was incremented every minute from 2–8 km/h with a step of 1 km/h. 
During repetitive indoor walking, participants walked 10–20 m four times at self-selected 
normal, slow, and fast speeds. The outdoor walking experiments consisted of two 40–80 
m walks at a self-selected speed. 

2.1.2. Datasets-2 (DS2) 
Each subject wore three synchronized IMUs (Opal, V2 APDM Inc., Portland, OR, 

USA) located on the SR, SL and the L5 via a belt strap, Figure 1a. Each recorded tri-axial 
acceleration (±2 g or 6 g, 128 Hz) and tri-axial angular velocity (±1500 deg/s). Gait assess-
ment and instrumentation were carried out by a physiotherapist and trained researchers, 
respectively. Ethical consent was granted by the Oregon Health & Science University in-
stitutional review board (REF: 9903). All participants gave informed written consent be-
fore participating. Repetitive indoor/lab gait tasks included: walking back and forth over 
10 m for 2 min at normal/self-selected speed. 

2.2. Methodology 
Two previously validated algorithms A1 and A2 [23,32] were used for IC-FC detec-

tion. Both use a wavelet approach to process IMU signals but have fundamental differ-
ences such as signal (acceleration vs. angular velocity) and locations (waist vs. shank). 
Each anatomical segment of the human body has a characteristic movement pattern and 
thus produces distinct acceleration and angular velocity signals. Consequently, selection 
of an appropriate mother wavelet is appropriate to best interpret and quantify character-
istics from an IMU signal produced by the movement of a particular body segment. Cus-
tom programs (MATLAB® 2019, MathWorks Inc., Natick, US) analyzed raw (sample level) 
IMU data for ICs-FCs detection and temporal analysis. 
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2.2.1. Algorithm S1 (A1): Lower Back 
A1 (see supplementary material) uses the vertical acceleration signal generated with 

the movement of the hip during walking. First, the tri-axial accelerometer signals were 
transformed to the horizontal-vertical coordinate system from sensor reference frame us-
ing an approximation algorithm [33] and low-pass filtered (4th order Butterworth, cut-off 
frequency 20 Hz). Then, wavelet transform: (i) numerically integrated (cumtrapz) and then 
differentiated vertical acceleration using a first order Gaussian (gaus1) continuous wavelet 
transform at scale 10 were used to detect the IC events (the local minima) (ii) further dif-
ferentiated to find the FC events (local maxima), Figure 1c. 

2.2.2. Algorithm S2 (A2): Shanks (Right and Left) 
A2 (see supplementary material) uses the sagittal plane rotation of shin during walk-

ing. First, wavelet decomposition 5th order Coiflets (coif) at 10 scales split the angular ve-
locity signal into low and high frequency components. Then, drift and high-frequency 
movement artefacts were removed with an initial approximation. Afterwards, two new 
approximations (a1 and a2) were obtained to enhance the detection of IC/FC events. For 
each approximation, the time corresponding to the global maximum (tms, mid-swing) 
was detected. Finally, IC/FC events (negative peaks) were searched in predetermined in-
tervals [a1: IC (tms + 0.25 s, tms + 2 s), a2: FC (tms − 2 s, tms − 0.05 s)], Figure 1d. 

2.2.3. Temporal Parameter and Statistical Calculations 
From IC-FC moments, temporal gait characteristics were calculated. Among all tem-

poral characteristics, only step time calculation requires both right and left foot ICs-FCs 
moments. Therefore, right, and left foot’s step times were calculated using time stamp 
information. Temporal calculation formulas are presented in Supplementary Materials 
(Table S1) for the left side only as the same approach is used for the right side. Temporal 
characteristics of both sides are then used to calculate mean, variability, and asymmetry 
results. 

Agreements between two algorithms on the temporal parameters were evaluated us-
ing Pearson’s (r), Spearman’s (rho) and interclass correlation coefficients (ICC2,1) with up-
per and lower bounds and calculated using a two-factor mixed model to assess the level 
of absolute agreement (between A1 and A2) [34]. A coefficient value of ≤0.30 indicates no 
agreement, 0.31 to 0.50 reflects fair, 0.51 to 0.70 moderate, 0.71 to 0.90 substantial, and 
≥0.91 indicates very good agreement [35,36]. Graphical analysis was performed using 
Bland and Altman plots [37]. Absolute differences were calculated as AD = A1- A 2 ). All 
statistical analyses were performed using IBM® SPSS® Statistics 26. 

3. Results 
Generally, algorithms provided similar results for mean temporal characteristics but 

with small AD. Higher agreement was found on mean compared to variability and asym-
metry characteristics in all cohorts and environments. 

3.1. A1 vs. A2: Treadmill 
Agreement was substantial to very good for mean: stride time, step time and stance 

time, shown in Table 2. Agreement was moderate for mean swing time. Agreement for 
stride and step times variability was substantial to very good but fair to moderate for 
stance time variability and poor for swing time variability. Asymmetry parameters did 
not show any significant correlation except for stride time (r-rho > 0.40, ICC2,1 > 0.50), 
shown in Table 1. There were small ADs for mean stride time (0.004 s), stance time (0.001 
s), swing time (0.003 s) and step time (0.004 s). Comparing overall AD and correlation 
coefficients between stride-step parameters and stance-swing parameters revealed that 
latter parameters experience larger AD and lower correlation coefficients. The AD of 
standard deviation in mean temporal parameters did not show any significant values. 
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Table 2. Extracted temporal parameters and agreements for treadmill walking. 

(YA) 
Treadmill 
 
DS1 
n = 16 

 A1-Lower Back  A2-Shank Pearson’s R Spearman’s Rho 95% CI Bounds 
Mean time (s) Average SD Average SD   ICC2,1 Lower Upper p  
Stride 1.156 0.065 1.152 0.054 0.965 ** 0.988 ** 0.975 0.929 0.991 0.000 
Stance 0.733 0.042 0.732 0.042 0.832 ** 0.753 ** 0.914 0.750 0.970 0.000 
Swing 0.423 0.023 0.420 0.033 0.537 * 0.547 * 0.684 0.073 0.890 0.019 
Step 0.578 0.033 0.578 0.027 0.907 ** 0.865 ** 0.945 0.841 0.981 0.000 
Variability Time (s)           
Stride 0.068 0.029 0.075 0.028 0.918 ** 0.956 ** 0.946 0.814 0.982 0.000 
Stance 0.045 0.018 0.084 0.021 0.630 ** 0.632 ** 0.441 −0,228 0.804 0.005 
Swing 0.026 0.010 0.027 0.006 0.116 −0.300 0.132 −1.666 0.704 0.398 
Step 0.036 0.014 0.040 0.017 0.885 ** 0.886 ** 0.915 0.735 0.971 0.000 
Asymmetry Time (s)           
Stride 0.000 0.000 0.003 0.010 0.436 0.455 0.564 −0.150 0.847 0.049 
Stance 0.004 0.004 0.016 0.013 0.019 0.176 0.019 −0.633 0.552 0.476 
Swing 0.004 0.004 0.013 0.008 −0.050 0.037 −0.050 −0.698 0.408 0.563 
Step 0.005 0.005 0.019 0.009 −0.085 0.046 −0.069 −0.509 0.428 0.612 
**. Correlation is significant at the 0.01 level (2-tailed). *. Correlation is significant at the 0.05 level (2-tailed). 

3.2. A1 vs. A2: Indoor 
Absolute agreements between temporal characteristics extracted using A1 and A2 

during indoor walking varied for YA, OA and PD, shown in Table 3. Agreement was very 
good for YA, OA and PD mean stride and step times. There was substantial to very good 
(YA), moderate to substantial (OA and PD) agreements for mean stance and swing times. 

Agreements between A1 and A2 for variability and asymmetry temporal parameters 
were poor. There were small ADs in mean stride, stance, swing, and step times for YA 
(0.017 s, 0.029 s, 0.014 s, 0.010 s), OA (0.002 s, 0.009 s, 0.003 s, 0.009 s) and PD (0.015 s, 0.022 
s, 0.004 s, 0.010 s), respectively. Absolute agreement for temporal characteristics during 
indoor walking were highest in YA and lowest in PD. Comparing overall AD and corre-
lation coefficients between stride-step parameters and stance-swing parameters revealed 
larger differences and lower correlation coefficients in the latter. 

Table 3. Extracted temporal parameters and agreements for indoor walking. 

(YA) 
Indoor 

 
DS1 

n = 31 

 A1-Lower Back  A2-Shank Pearson’s R Spearman’s Rho 95% CI Bounds 
Mean Time (s) Average SD Average SD   ICC2,1 Lower Upper p 

Stride  1.096 0.138 1.079 0.138 0.982 ** 0.974 ** 0.987 0.965 0.994 0.000 
Stance  0.692 0.084 0.663 0.092 0.931 ** 0.892 ** 0.936 0.716 0.974 0.000 
Swing  0.402 0.052 0.416 0.058 0.863 ** 0.797 ** 0.909 0.842 0.942 0.000 
Step  0.548 0.069 0.537 0.070 0.989 ** 0.984 ** 0.989 0.916 0.996 0.000 

Variability Time (s)           
Stride  0.040 0.037 0.032 0.018 0.040 0.221 ** 0.600 −0.176 0.251 0.294 
Stance  0.026 0.020 0.024 0.015 0.025 0.122 * 0.047 −0.204 0.246 0.343 
Swing  0.019 0.020 0.032 0.011 0.054 0.301 ** 0.070 −0.116 0.231 0.217 
Step  0.024 0.021 0.023 0.016 −0.025 −0.016 −0.049 −0.325 0.169 0.656 

Asymmetry Time (s)           
Stride  0.005 0.006 0.007 0.010 −0.034 0.000 −0.060 −0.338 0.159 0.690 
Stance  0.009 0.008 0.016 0.019 0.013 0.800 0.017 −0.214 0.207 0.437 
Swing  0.009 0.009 0.017 0.015 0.130 * 0.155 ** 0.184 −0.011 0.344 0.025 
Step  0.011 0.010 0.032 0.036 0.081 0.097 0.062 −0.122 0.223 0.241 

(OA) 
Indoor 

 
DS2 

Mean Time (s)           
Stride  1.162 0.077 1.164 0.0866 0.962 ** 0.974 ** 0.979 0.947 0.992 0.000 
Stance  0.707 0.0404 0.716 0.0630 0.816 ** 0.811 ** 0.851 0.631 0.941 0.000 
Swing  0.447 0.05 0.444 0.0442 0.699 ** 0.657 ** 0.824 0.551 0.930 0.000 
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n = 20 Step  0.579 0.043 0.570 0.0452 0.989 ** 0.991 ** 0.985 0.766 0.996 0.000 
Variability Time (s)           

Stride  0.086 0.034 0.162 0.106 0.130 0.316 0.124 −0.639 0.603 0.356 
Stance  0.041 0.008 0.151 0.108 −0.153 −0.041 −0.025 −0.494 0.428 0.542 
Swing  0.046 0.012 0.043 0.004 −0.109 −0.039 −0.155 −1.991 0.547 0.621 
Step  0.042 0.010 0.033 0.009 0.061 0.108 0.083 −0.609 0.561 0.396 

Asymmetry Time (s)           
Stride  0.001 0.002 0.016 0.012 0.147 0.278 0.042 −0.319 0.441 0.418 
Stance  0.000 0.000 0.020 0.016 0.226 0.199 0.013 −0.338 0.406 0.475 
Swing  0.001 0.002 0.012 0.011 −0.028 −0.017 −0.011 −0.549 0.462 0.516 
Step  0.000 0.000 0.016 0.011 0.050 0.068 0.004 −0.177 0.308 0.488 

(PD) 
Indoor 

 
DS2 

n = 36 

Mean Time (s)           
Stride  1.168 0.096 1.183 0.106 0.973 ** 0.960 ** 0.979 0.940 0.991 0.000 
Stance  0.704 0.051 0.727 0.087 0.804 ** 0.750 ** 0.806 0.608 0.903 0.000 
Swing  0.458 0.052 0.454 0.052 0.570 ** 0.545 ** 0.730 0.469 0.863 0.000 
Step  0.584 0.049 0.574 0.049 0.979 ** 0.949 ** 0.980 0.849 0.993 0.000 

Variability Time (s)           
Stride  0.083 0.044 0.237 0.161 0.033 0.082 0.018 −0.350 0.360 0.461 
Stance  0.058 0.038 0.231 0.163 0.057 0.315 0.025 −0.295 0.343 0.441 
Swing  0.054 0.023 0.045 0.007 0.316 0.361 * 0.284 −0.299 0.620 0.140 
Step  0.059 0.038 0.038 0.023 0.069 0.525 ** 0.097 0.528 0.499 0.359 

Asymmetry Time (s)           
Stride  0.002 0.006 0.023 0.021 −0.161 0.136 −0.158 −0.699 0.777 0.760 
Stance  0.001 0.005 0.032 0.024 −0.165 −0.075 −0.062 −0.354 0.256 0.664 
Swing  0.002 0.003 0.026 0.018 −0.309 −0.211 −0.076 −0.343 0.236 0.723 
Step  0.002 0.005 0.033 0.026 −0.200 −0.021 −0.073 −0.391 0.262 0.682 

**. Correlation is significant at the 0.01 level (2-tailed). *. Correlation is significant at the 0.05 level (2-tailed). 

3.3. A1 vs. A2: Outdoor 
Agreement was very good for mean stride, stance, and step times and substantial for 

mean swing time. Agreement between A1 and A2 for variability of stride times was mod-
erate and fair for stance times. Remaining variability and asymmetry characteristics did 
not show any significant correlation. AD found 0.004 s, 0.001 s, 0.003 s, 0.004 s for mean 
stride, stance, swing, and step times, respectively. Differences are larger and correlation 
coefficients are lower in mean stance-swing times compared to mean stride-step times 
during outdoor walking. The data was showed in Table 4. 

Table 4. Extracted temporal parameters and agreements for outdoor walking. 

 
 
 
 

(YA) 
Outdoor 

 
DS1 

 
n = 25 

 

 A1-Lower Back  A2-Shank Pearson’s R Spearman’s Rho  95% CI Bounds  
Mean Time (s) Average SD Average SD   ICC2,1 Lower Upper p 

Stride  1.084 0.152 1.084 0.153 0.996 ** 0.997 ** 0.998 0.997 0.998 0.000 
Stance  0.680 0.085 0.668 0.111 0.924 ** 0.936 ** 0.940 0.913 0.958 0.000 
Swing  0.403 0.068 0.416 0.055 0.779 ** 0.835 ** 0.856 0.790 0.900 0.000 
Step  0.541 0.076 0.539 0.076 0.996 ** 0.993 ** 0.998 0.997 0.999 0.000 

Variability Time (s)           
Stride  0.025 0.018 0.040 0.030 0.563 ** 0.434 ** 0.605 0.314 0.757 0.000 
Stance  0.018 0.011 0.033 0.026 0.445 ** 0.346 ** 0.413 0.102 0.607 0.000 
Swing  0.016 0.014 0.035 0.011 0.226 ** 0.257 ** 0.195 −0.123 0.436 0.004 
Step  0.017 0.011 0.025 0.018 0.044 0.025 0.068 −0.234 0.305 0.314 

Asymmetry Time (s)           
Stride  0.003 0.003 0.006 0.010 0.104 0.202 * 0.109 −0.2013 0.350 0.234 
Stance  0.014 0.014 0.022 0.028 0.079 0.066 0.113 −0.210 0.353 0.226 
Swing  0.014 0.014 0.023 0.024 0.008 −0.026 0.013 −0.337 0.277 0.466 
Step  0.014 0.014 0.040 0.054 0.030 −0.013 0.025 −0.271 0.264 0.429 

**. Correlation is significant at the 0.01 level (2-tailed). *. Correlation is significant at the 0.05 level (2-tailed). 
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4. Discussion 
To the author’s best knowledge, this is the first study to comprehensively investigate 

agreement levels between lower back and shank IMU algorithms. This study aimed to 
reveal the suitability of lower back and shank inertial algorithms on various experimental 
walking protocols, with different cohorts and walking environments. The alterations in 
the performances of lower back and shank inertial algorithms in various cohorts, espe-
cially PD, has not been previously investigated. Moreover, the impacts of treadmill, in-
door and outdoor walking on the agreement of both algorithms have not been revealed. 
Therefore, the implications of this study will contribute to the current knowledge by 
providing information about the similarity of lower back and shank inertial algorithm 
under different conditions. The statistical results presented in this study will also shed 
light on future studies regarding how cautious researchers should be while interpreting 
results belonging to a particular environment (e.g., indoor-outdoor), cohort (e.g., PD) or 
temporal parameter (e.g., stance time). 

Overall, location and algorithm pairs provided highly correlated mean temporal re-
sults for all cohorts during treadmill, indoor and outdoor walking. However, this is not 
true for variability and asymmetry characteristics. These findings attest to the common 
knowledge that variability and asymmetry values extracted from inertial algorithms dif-
fer across wear location [38]. This could be associated with the fact that errors or system-
atic delays in ICs-FCs detection affect variability measures more than mean values [39]. 
Our findings also suggest that agreement between location/algorithm are sensitive to age, 
neurological condition, and walking environment. Our results are deemed suitable for 
exploratory investigation as they are derived from previously validated algorithms. 

4.1. Impact of Pathology and Age 
Lowest agreement with largest AD between algorithms was in PD compared to YA 

and OA during indoor walking for mean, variability, and asymmetry. A previous study 
reported global performances of lower back IMU algorithms decreases when applied to a 
neurological group [24], which supports our similar findings for lower agreement. Among 
underlying reasons for this limitation, missing or detecting extra ICs-FCs is the most likely 
cause [24]. Given gait abnormalities affect the movement patterns of hip and shank seg-
ments to cause disrupted inertial waveforms [6,24], decreases in performance/agreement 
levels are likely. Furthermore, existing IC-FC algorithms were developed and validated 
for healthy populations only [9,23,32]. Disagreement was at its highest level for stance-
swing time characteristics that rely on both ICs-FCs moments, aligning with previous 
findings [24] where A1 [23] returns greater (extra) FCs moments, thereby reducing accu-
racy and repeatability. 

Age also affects algorithm accuracy for ICs-FCs. A study investigated age on mean, 
asymmetry and variability gait characteristics using chest and lower back algorithm and 
reported more accurate results for YA compared to OA [38]. Similarly, comparing mean 
temporal parameters of YA and OA during indoor walking in this study revealed agree-
ment between algorithms are higher on YA than OA, shown in Table 3. 

The above was further investigated with regression analysis, Supplementary Materi-
als, Figure 2. For example, more ordinated regression lines were present in OA than PD. 
Higher agreement was observed in Bland-Altman plots where the difference axis experi-
enced significantly lower values for OA than PD. Similarly, more ordinated regression 
lines were present in YA than OA. Higher agreement was observed in Bland-Altman plots 
where the difference axis experienced lower values for YA than OA, Figures 2 and 3. 
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Figure 2. Scatter and Bland-Altman plots of algorithms 1 and 2 for investigating the agreements in older adults (OA) and 
PD populations by pooling all temporal parameters. OA1, PD1 are scatter plot with regression line (green), respectively. 
OA2, PD2 are Bland-Altman plotting with mean, lower and upper bands (purple), respectively. 

4.2. Impact of Environment 
Various agreement levels were observed in mean, variability and asymmetry charac-

teristics during treadmill, indoor and outdoor walking. Agreement in stride and step 
times is slightly higher during outdoor whereas agreement in stance and swing times is 
slightly higher during indoor walking. Studies have shown differences in characteristics 
between indoor and outdoor using IMU sensors [40,41].There are several factors that 
could explain the differences between extracted temporal parameters during treadmill, 
indoor and outdoor walking. Primarily, treadmills are classed as an external cue; forcing 
the person to walk to the set speed of the device, rather than having the freedom to select 
their own walking pattern/style. Therefore, walking on a treadmill requires additional 
balance skills with respect to overground walking, and harnesses or treadmill bars have 
an impact on patients perception and pro-prioception during walking [42]. Daily life and 
laboratory gait are also different, and this is associated with participants being more con-
scious of measurements being taken during a laboratory walking compared to free-living, 
which reflects more about real-life e.g., with natural dual-tasking [40]. Another factor that 
could explain the difference between indoor and outdoor walking is the walking terrain 
used (e.g., carpet, cobble) [6]. This was further studied and reported that gait adaptations 
strategies to maintain stability are sensitive to different walking surfaces, meaning differ-
ent gait patterns are employed while walking on soft and hard terrains [43]. Given the fact 
that there are characteristic differences between the treadmill, indoor and outdoor walk-
ing, a previous study hypothesized that the environment plays an important role in gen-
erating different walking signals, influencing the accuracy of ICs-FCs detection [11]. 

Based on the findings, we suggest that the instability of IMU algorithm performances 
could also be a prominent reason that accounts for differences between indoor and out-
door mean characteristics. Furthermore, agreement between algorithms for variability of 
temporal parameters during treadmill walking is higher than indoor/outdoor walking. A 
higher agreement between algorithms could be associated with the fact that the treadmill 
as an external cue reduces variability by means of controlling walking belt speed. These 
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results are valid for different walking speeds since treadmill walking and indoor walking 
experiments performed at various walking speeds. Regression and Bland-Altman plots 
belonging to various walking environments suggests that the difference between mean 
temporal parameters is lower during treadmill walking than indoor-outdoor walking, 
supplementary material, Figure 3. 

 

 
Figure 3. Scatter and Bland-Altman plots of algorithms 1 and 2 for investigating the agreements in various walking envi-
ronments by pooling all temporal parameters. TREADMILL.1, INDOOR.1, OUTDOOR.1 are scatter plot with regression 
line (green), respectively. TREADMILL.2, INDOOR.2, OUTDOOR.2 are Bland-Altman plotting with mean, lower and up-
per bands (purple), respectively. 

4.3. Considerations: Sensor Location and Algorithms 
Systematic delays, errors and inconsistencies in IC′s-FC′s detection are present even 

between two reference systems such as treadmill and motion analysis [10]. Therefore, it is 
crucial to investigate the level of error (agreement) between two or more IMU algorithms 
and minimize inconsistencies to achieve a reliable and robust methodology. 

Using different IMU systems and processing methods are possible factors accounting 
for inconsistencies [11]. Previous studies investigated the listed factors and their impacts 
on the accuracy of the results on healthy subjects [9–11]. Here, we studied these factors in 
YA, OA and PD and merged with previous findings to provide a guide for future studies. 
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• The first factor needing consideration for IMU gait algorithms is the preferred pre-
processing and post-processing methodologies as it has an impact on the extracted 
mean, variability, and asymmetry of temporal characteristics. For example, using al-
gorithms like A1 [23] requires strict filtering and may affect variability of extracted 
characteristics as the signal is much smoother compared to less strict filters (e.g., A2). 

• Sensor location and sensor signal are other important factors affecting accuracy. Re-
search suggests the shank angular velocity signals provide more accurate and repeat-
able results for IC-FC detection compared to algorithms that use waist acceleration 
[9,10]. However, this has not been fully investigated in neurological cohorts. Here we 
also found that correlation/agreement of lower back and shank algorithms change 
when applied in various walking environments and decrease when applied to those 
with PD. 

• Although findings show that the threshold/rule-based inertial algorithms for ICs-FCs 
detection provide highly correlated mean results, the fact that performances are sen-
sitive to target cohort and environment limits widespread use. 

4.4. Limitations and Future Works 
Despite the algorithms being previously validated against reference standards (e.g., 

instrumented walkways), it remains a limitation that we did not collect and compare ref-
erence data in this study. However, study results are deemed suitable as validated algo-
rithms and high-grade wearable IMUs were used, showing good agreement with previ-
ous studies [7,8,44–46], and the purpose here is to compare between algorithms. However, 
systematic errors (e.g., delays) exist in the algorithms, 0.006 s and −0.029 s were reported 
for ICs and FCs, respectively in the lower back algorithm whereas 0.01 s in IC detection 
was reported for the shank-based algorithm [23,32]. Systematic delays in ICs-FCs detec-
tion may increases in OA and PD populations due to the change of the acceleration and 
angular velocity of the hip and lower limb [11,24]. Given the importance of accurate ICs-
FCs detection in gait analysis, more reliable and robust algorithms are needed, especially 
for gait assessment of neurological conditions. Moreover, wearable sensor-based gait as-
sessment is shifting from supervised environments (e.g., lab) to unsupervised environ-
ments (e.g., free-living) because the latter enable habitual data capture [47]. Therefore, 
there is a need for validated inertial algorithms to be used in unsupervised environments, 
however, the absence of gold/reference standard systems to validate inertial algorithms 
in unsupervised environments bring new challenges as the field matures [29]. Severity of 
gait impairment has an impact on the waveform of acceleration and angular velocity sig-
nals [6]. Therefore, more advanced approaches (e.g., machine learning, deep learning) 
which already have shown promising results [48–50] should be adopted in neurological 
gait studies as they work independently from signal shape and thresholds. Furthermore, 
use of a particular target signal e.g., vertical acceleration of the hip or sagittal plane angu-
lar velocity of the shin makes the orientation of the sensor crucial. In case of inaccurate 
sensor placement, the algorithms provide inaccurate results. Therefore, future studies also 
should aim to develop algorithms that work independently from sensor orientation. 

5. Conclusions 
Investigation of the optimal IMU algorithm for detecting ICs-FCs is a trending topic 

and plays a crucial role in rehabilitation studies. Overall, algorithms provided signifi-
cantly correlated results for mean characteristics only on YA-OA-PD during treadmill, 
indoor and outdoor walking. However, findings show that the level of agreement varies 
in different cohorts and environments. Researchers/clinicians should interpret temporal 
characteristics, especially stance and swing, that are extracted from inertial algorithms 
with caution because algorithm performances and the agreement between algorithms var-
ies/decreases. Furthermore, the levels of agreement in inertial algorithms were lower in 
PD cohorts compared to healthy cohorts, suggesting researchers should be more careful 
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while interpreting PD results. Given differences in absolute agreement between algo-
rithms, more efficient and consistent lower-back and shank based IMU algorithms that 
provide identical results regardless of cohort and environment are needed to use as a 
powerful tool in clinics, which could be achieved through deep learning approaches. 

Supplementary Materials: The following is available online at www.mdpi.com/arti-
cle/10.3390/s21196476/s1, Table S1: Formulas used to calculate temporal parameters along with sta-
tistical results. 
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