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ABSTRACT

We address the dynamic design of supply chain networks in which the moments of
demand distribution function are uncertain and facilities’ availability is stochastic be-
cause of possible disruptions. To incorporate the existing stochasticity in our dynamic
problem, we develop a multi-stage stochastic program to specify the optimal location,
capacity, inventory, and allocation decisions. Further, a data-driven rolling horizon ap-
proach is developed to use observations of the random parameters in the stochastic op-
timization problem. In contrast to traditional stochastic programming approaches that
are valid only for a limited number of scenarios, the rolling horizon approach makes the
determined decisions by the stochastic program implementable in practice and evalu-
ates them. The stochastic program is presented as a quadratic conic optimization, and
to generate an efficient scenario tree, a forward scenario tree construction technique is
employed. An extensive numerical study is carried out to investigate the applicability of
the presented model and rolling horizon procedure, the efficiency of risk-measurement
policies, and the performance of the scenario tree construction technique. Several key
practical and managerial insights related to the dynamic supply chain network design
under uncertainty are gained based on the computational results. [Submitted: April 15,
2019. Revised: April 20, 2020. Accepted: June 17, 2020.]
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INTRODUCTION

In supply chain (SC) management, a main planning problem is the SC design that
includes long-term strategic decisions. These decisions should be practical for a
long time under uncertain and complex business environments. Over time, when a
SC has been influenced by strategic decisions, many parameters, such as demand,
supply, and SC costs, have inherent uncertainty and it is impossible to have accu-
rate forecasts for them. Further, disruption events such as earthquakes, economic
crises, strikes, and terrorist attacks have significant impacts on a SC’s functional-
ity and affect the performance of the SC’s components within an undefined time.
As reported by the Business Continuity Institute (Alcantara, Riglietti, & Aguada,
2017), in 2017, one-third of 408 surveyed companies were faced with at least one
disruption occurrence in their SC network, and one in every five disrupted SCs
stated cumulative losses of at least 1,000,000 € due to disruption events. Several
companies, such as IBM and Ford Motor Company, used quantitative models to
achieve optimal planning and design decisions under uncertain parameters and dis-
ruption events (Simchi-Levi, Schmidt, & Wei, 2014; Lu, Ran, & Shen, 2015).

On the other hand, to capture the changing environment in which a SC will
operate, the supply chain network design (SCND) problem with multiple periods,
called dynamic SCND, has been more attractive (see, e.g., Alonso-Ayuso, Escud-
ero, Garìn, Ortuño, & Pérez, 2003; Nickel, Saldanha-da-Gama, & Ziegler, 2012;
Krægpøth, Stentoft, & Jensen, 2017; Shen, Liang, Shen, & Teo, 2019). In the dy-
namic SCND, opportunities for future adjustments may be considered in the de-
sign and strategic decisions, which are applicable for dealing with unstable target
markets, expanding the SC for new emerging markets, and handling budget lim-
itations for the large investment on the network design. This study addresses the
dynamic SCND under stochastic demand and disruption events, which is scarcely
addressed in the literature based on the existing surveys (e.g., Govindan, Fattahi, &
Keyvanshokooh, 2017). Such a problem setting can lead to a multi-stage stochastic
programming model.

There is a wealth of works in the SCND under uncertainty (Govindan et al.,
2017; Darbari et al., 2019) and multi-stage stochastic programs (MSSP) are em-
ployed by some studies (Nickel et al., 2012; Fattahi & Govindan, 2018; Fattahi,
Govindan, & Keyvanshokooh, 2018). However, using multi-stage stochastic pro-
gramming approach has twomain drawbacks in the practice: (i) the obtained math-
ematical models from this approach are computationally expensive and, in the
SCND phase, the existing data regarding stochastic parameters are not sufficient to
approximate their true probability distribution, (ii) many decisions obtained from
them are scenario dependent and they are not readily implementable in practice.
Although robust optimization methods are presented to address the first draw-
back, they are criticized because of their over-conservative solutions in accordance
with the worst-case scenario that neglects the probabilistic nature of stochastic
parameters (Fattahi, Govindan, & Maihami, 2020). In addition to the mentioned
drawbacks of the multi-stage stochastic programming, we lack answers to this key
question in the practice: How can the dynamic design of a SC network be ad-
justed based on the realization of stochastic parameters, such as the target market’s



Fattahi and Govindan 3

changes and long-run demand rates, and the occurrence of disruption events over
time to reduce SC loss performance and operational risks?

In this study, an MSSP is developed that optimizes strategic and tactical de-
cisions, including location, capacity, inventory, and allocation decisions, simulta-
neously. Methodologically, this paper is the first to formulate the corresponding
MSSP as a conic quadratic mixed-integer programming (CQMIP) model, which is
solvable for large-sized instances in a reasonable time. The lack of historical infor-
mation related to customers’ demands in the design phase motivates us to consider
the moment uncertainty related to demands’ distribution function over multiple
periods. This work constitutes the first consideration of this issue in the dynamic
SCND literature to our knowledge. Furthermore, because of disruption events, fa-
cilities’ availability is stochastic over the planning horizon. To efficiently capture
the existing uncertainties in the MSSP, we generate stochastic parameters by us-
ing a simulation approach, and then the generated random samples are reduced
and converted to a scenario tree by a forward scenario tree construction technique
that is initially proposed by Heitsch and Römisch (2009). Finally, we obtain the
risk-averse decisions by employing the conditional value at risk (CVaR) as the
problem’s objective function.

To address the second mentioned drawback of the multi-stage stochastic pro-
gramming and the research question, we propose a data-driven rolling horizon pro-
cedure as an innovative way of using data that is realized as time progresses and
of adjusting the decisions in practice for stochastic optimization problems. By this
approach, we use observations of the stochastic parameters over time as direct in-
puts to the dynamic SCND problem. The data related to moments of demands’
distribution function can be correlated over the time horizon, and by observing the
data related to demands in one planning period, we can update our scenario tree in
solving the MSSP for the next periods in a rolling horizon manner.

Generally, there are a number of strategies to mitigate the impacts of uncer-
tainty in the SC design phase (see Tang, 2006; Tomlin, 2006; Craighead, Black-
hurst, Rungtusanatham, & Handfield, 2007; Yildiz, Yoon, Talluri, & Ho, 2016;
Govindan et al., 2017; Azadegan,Mellat Parast, Lucianetti, Nishant, & Blackhurst,
2019. One of the well-known strategies to reduce the effects of stochastic demand
is risk pooling (Eppen, 1979) that aggregates demands over various areas. On the
other hand, the risk diversification can be employed under the disruption risks
(Mak & Shen, 2012). By consideration of the demand uncertainty and disruption
risk, our study optimizes the design decisions and makes a trade-off between
these two opposing strategies. Furthermore, we adjust the allocation decisions as
a contingency strategy after disruption events to return the SC to its original state.

The paper is organized as follows: the corresponding literature is briefly pre-
sented in section Literature Review. The problem description and formulation are
presented in section Problem Description and Formulation. The explanation re-
garding the scenario tree construction technique is presented in section Scenario
Tree Construction. The data-driven rolling horizon procedure is explained in sec-
tion Data-Driven Rolling Horizon Approach. We present experimental results and
sensitivity analyses in section Computational Study. Section Managerial Implica-
tions contains managerial implications. In section Conclusions, we conclude this
study.
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LITERATURE REVIEW

In today’s complex and uncertain business environment, it is crucial to integrate
the strategic and design decisions with operational/tactical ones in the SC design
phase to obtain an efficient SC system. In a facility location problem, Daskin,
Coullard, and Shen (2002) assume retailers’ demand follows a normal distribution
function with known mean and variance. In this study, distribution centers follow
a continuous (r, Q) policy to control their inventory, and a mixed-integer nonlin-
ear programming (MINLP) model is presented. The modeling approach developed
by Daskin et al. (2002) is taken into account in several studies such as Atamtürk,
Berenguer, and Shen (2012), Qi, Shen, and Snyder (2010), Shen and Qi (2007),
Shen, Coullard, and Daskin (2003), Snyder, Daskin, and Teo (2007), and Fattahi
et al. (2020). These single-period studies fail to consider the possible adjustments
in the strategic decisions of a SC over time. Further, by assuming the stationary
of the demand distribution function, they cannot consider the violate environment
in which the SC operates. To address these issues, we develop a dynamic SCND
and, by using the stochastic programming approach, we capture the uncertainty
of moments, including mean and variance, in the customers’ demand distribution
function through finite discrete scenarios.

By using the stochastic programming approach, various uncertainty types
are investigated in the SCND problem (see Snyder, 2006; Govindan et al., 2017).
Sheppard (1974) studied a facility location problem with a scenario approach, and
scenario-based stochastic programming models have been gradually exploited that
may be categorized into two-stage and multi-stage stochastic programs. Two-stage
stochastic programming is popular for the SCND because of the two-stage na-
ture of this problem. Indeed, long-term strategic decisions, as first-stage decisions,
have to be made before the uncertainty observation, and operational/tactical deci-
sions should be made as second-stage decisions. In this approach, it is supposed
that in a single moment, the uncertain parameters become disclosed. However,
in many applications, the uncertain parameters have been progressively observed
over a multi-period planning horizon in more than one time, and the multi-stage
stochastic programming would be a more suitable approach for such a setting. We
employ a multi-stage decision-making framework, which optimizes the decisions
at each stage as a function of the observed outcomes and uncertainties up to that
stage. The MSSPs are used for the SCND in a limited number of studies (see,
e.g., Nickel et al., 2012; Fattahi et al., 2018; Fattahi & Govindan, 2018). As men-
tioned before, in these studies, the optimal decisions from solving the MSSPs are
not implementable in practice due to their dependency on considered scenarios.
We address this issue for the first time by proposing a data-driven rolling horizon
framework.

Recently, the SCND under disruption events has received significant atten-
tion in both practice and academia (see survey studies associated with this area,
such as Klibi, Martel, & Guitouni, 2010; Snyder et al., 2016; Govindan et al.,
2017). A large percentage of papers related to the SCND under disruptions con-
sider a pre-specified probability disruption related to a facility and/or transportation
link, and the developed models are called "reliable SCND" (e.g., Berman, Krass, &
Menezes, 2007; Cui, Ouyang, & Shen, 2010; Qi et al., 2010). This approach is not
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suitable for addressing time aspects of disruption events, and most of these studies
are single period without consideration of facilities’ return after disruptions. On the
other hand, stochastic programing approaches are widely employed in this area in
which the uncertainty fromman-made or natural disruptions are considered by dis-
crete scenarios (e.g., Peng, Snyder, Lim, & Liu, 2011; Klibi & Martel, 2012; Mak
& Shen, 2012; Klibi &Martel, 2013; Fattahi, Govindan, &Keyvanshokooh, 2017).
Although using the multi-stage stochastic programming is still scarce for dealing
with disruption events over multiple periods, this technique can adjust design and
allocation decisions based on the occurrence of disruptions as contingency strate-
gies to recover a disrupted SC. In addition, weighted mean-risk objectives can be
used to hedge against the disruption risks, and we also examine the risk-averse
decisions by employing CVaR as the objective function of the MSSP.

Literature Gaps

Based on Govindan et al. (2017), as the latest published survey paper in the area of
SCND under uncertainty, most studies from recent years contribute to the literature
by addressing new paradigms in SC management such as considering perishable
products, sustainability aspects (Govindan, Rajeev, Padhi, & Pati, 2020; Govindan,
Shankar & Kannan, 2020; Kannan, Mina, Nosrati-Abarghooee, & Khosrojerdi,
2020), and disruption risks. In accordance with our literature review, in spite of
enormous advancements in the area of data analytics, we could not find any study to
use the observed data, especially the realization of stochastic parameters, over time
in dynamic design of SC networks.We deal with this issue by integrating the rolling
horizon approach and multi-stage stochastic programming. As a consequence, a
data-driven rolling horizon framework is proposed to: (i) make the decisions of the
MSSP implementable in real practices, (ii) empirically evaluate the performance
of the design decisions obtained by the MSSP, and (iii) use the observed stochastic
parameters for future planning.

MSSPs for the SCND are scarcely developed, and addressing their computa-
tional tractability in solving large-sized real-world problems is a main challenge.
Another significant aspect of using MSSPs is to construct an efficient scenario tree
that properly captures the existing uncertainties. In this study, we formulate the
MSSP as a computationally tractable CQMIP model and employ a forward sce-
nario tree construction approach for our problem.

PROBLEM DESCRIPTION AND FORMULATION

Here, a multi-period SCND problem is considered. In the SC network, distribu-
tion centers (DCs) send final products to geographically dispersed customer zones.
Based on Javid and Azad (2010), the handling capacity is considered for DCs,
which limits the total products that can be processed and forwarded from each DC
to customer zones in each time period.

Two types of uncertainty are considered in this study. Customers’ demand has
a normal distribution and its moments, including mean and variance, are assumed
to be stochastic and time-variable. The uncertainty of parameters related to de-
mands’ distribution function is introduced in a location-inventory model proposed
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by Snyder et al. (2007) in which location decisions have to be determined before
observing the stochastic parameters, and inventory decisions are determined after
the uncertainty realization. As emphasized by Mak and Shen (2012), it is a favor-
able assumption that allows inventory decisions, as tactical decisions, to be made
after observation of stochastic parameters. To capture time-variable parameters and
the change of long-run demand rates, we consider multiple strategic time periods
and propose a dynamic SCND problem (e.g., Aghezzaf, 2005;Mak& Shen, 2012).

We consider that each DC may be disrupted according to Mak and Shen
(2012) and Snyder, Scaparra, Daskin, and Church (2006). When a disruption hap-
pens for a DC in a time period, it cannot provide any product to customers in the
corresponding period. In our dynamic SCND, for the SC recovery, the disrupted
DCwill be activated again in the next period by paying the corresponding recovery
cost. This assumption is practical because of the long time of strategic periods in
the dynamic SCND.

In the problem, (i) the capacity and location of DCs, (ii) the inventory pol-
icy in DCs, and (iii) allocation decisions have to be determined to minimize the
expected of total SC cost. The location and capacity decisions for DCs should be
determined at each period before uncertainty realization. In this paper, to have a
dynamic SC design (see, e.g.,Melo, Nickel, &DaGama, 2006; Hinojosa, Kalcsics,
Nickel, Puerto, & Velten, 2008; Thanh, Bostel, & Péton, 2008), we can change the
location and capacity of DCs over the planning horizon. The inventory policy of
DCs and allocation decisions are considered scenario-dependent as tactical level
decisions. Other key assumptions of our optimization model are:

i. A set of potential locations is considered for the activation of DCs, and
their locations should be determined in each period.

ii. A set of capacity levels is taken into account for the activation of DCs,
and a fixed location cost for opening a DC with a capacity level is con-
sidered.

iii. An inventory policy (Qi, ri) is followed by each DC. In this policy, when-
ever the inventory level in DC i drops below or to a reorder level ri, the
DC places an order for Qi units from a manufacturer/supplier.

iv. In each period, each customer zone should be assigned to only one ac-
tive DC. It is worth noting that we consider a virtual uncapacitated DC,
indexed by i0, and in the case of not serving a customer, the SC must
allocate the customer to it.

v. In each period, opening a new DC, closing an existing DC, and changing
the capacity level of an existing DC are possible actions.

Multi-stage Stochastic Programming

Generally, an MSSP with M-stage contains sequential stochastic parameters
ξ1, ξ2, . . . , ξM−1, and the realization of them can be shown by a scenario tree, dis-
cretely. However, it is possible to consider the stochastic parameters in stage M,
ξM , that can typically affect the problem’s objective function (Dupačová, 1995). In
this paper, a scenario tree is taken into account as a set of scenarios that is denoted
by S and the scenarios’ number is presented by |S|. Further, π1, π2, . . . , and π |S|
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Figure 1: A scenario tree example: the corresponding scenario fan is shown in the
right-hand side, and nodes with the same realization of uncertainty are highlighted.

represent the corresponding probability of scenarios. Here, a realization related to
stochastic parameters in scenario s ∈ S is denoted as (ξ s1, ξ

s
2, . . . , ξ

s
M−1).

In MSSPs, the optimal decisions must be non-anticipative, meaning that at
each stage, the decisions must not be made based on the observation of stochastic
parameters in the next stages. In this study, to formulate an MSSP for the problem,
a set of non-anticipativity constraints is explicitly modeled. In optimization prob-
lem (1), a general formulation is presented for the MSSPs with non-anticipativity
constraints in which xsm is the decisions vector in stage m and scenario s, and these
decisions have to be determined before the uncertainty realization in each stage as
here-and-now decisions. χ s

m is the feasible region for xsm. As shown in optimization
problem (1), in the first stage, xs1 = xs

′
1 for each pair of scenarios s and s′ ∈ S. Fur-

ther, form > 1 and s, s′ ∈ S such that (ξ s1, ξ
s
2, . . . , ξ

s
m−1) = (ξ s

′
1 , ξ s

′
2 , . . . , ξ s

′
m−1), we

have xsm = xs
′
m. Figure 1 illustrates an example scenario tree for stochastic param-

eters in three periods related to a four-stage stochastic program, and in Figure 1,
the nodes of scenarios with the same realization of uncertainty in each stage are
shown.

It should be mentioned that non-anticipativity constraints in our optimization
model should be considered for strategic design decisions, including location and
capacity decisions, at each stage as here-and-now decisions.

Min
|S|∑
s=1

πs f
(
xs1, x

s
2, . . . , x

s
M

∣∣ξ s1, ξ s2, . . . , ξ sM−1

)
,

s.t:
xsm ∈ χ s

m m = 1, ..,M, ∀ s ∈ S,

xs1 = xs
′
1 ∀ s, s′ ∈ S,

xsm = xs
′
m m= 2, ..,M, ∀ s, s′ ∈ S: (ξ s1, ξ s2, . . . , ξ sm−1

) = (
ξ s

′
1 , ξ s

′
2 , . . . , ξ s

′
m−1

)
.

(1)
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Table 1: The notations.

Sets
J Customer zones set ( j ∈ J),
I Candidate DCs set (i ∈ I),
N Capacity levels set for the activation of DCs (n, n′ ∈ N ). Capacity level 0 is

considered in set N meaning that the DC is not activated,
S Scenarios set (s, s′ ∈ S),
T Time periods set (t ∈ T ).
Parameters
fi,n The fixed cost for the activation of DC i with capacity option n at the first period.

The selection of level n = 0 means that the DC is not activated,
ci,n,n′ The fixed cost of increasing the capacity level of DC i from n to n’. By this

parameter, the cost of opening DCs in each period can also be defined, and if
n ≥ n′, this parameter value would be zero,

rci,n The cost of recovering DC i with capacity option n after disruption,
oi,n The fixed cost for the operation of DC i with capacity option n during one period,
vi, j The cost of transporting one unit product from DC i to customer zone j,
l The cost of lost sale regarding per unit of product,
bi,n The amount of handling capacity option n for DC i, over one period,
hi The cost of holding inventory for one unit product over each period at DC i,
pi The fixed cost of placing an order at DC i,
Lti The lead time, as a fraction of one time period, of DC i,
gi The fixed cost related to per shipment from the supplier to DC i,
ai The transportation cost related to per unit of product from the supplier to DC i,
μs
j,t Mean of demand at customer j in period t and scenario s,

σ s
j,t Demand’s standard deviation of customer j in period t and scenario s,

ϕsi,t ϕsi,t equals 1 if DC i is disrupted in period t and scenario s and 0 otherwise,
α Desired service level for the satisfaction of customer orders,
zα Standard normal deviation related to the service level α, i.e., Z is the standard

normal distribution function and p(Z ≤ zα ) = α,
π s The probability of scenario s.
Variables
Xs
i,n,t 1 if DC i with capacity option n is activated in period t under scenario s,

Y si, j,t 1 if customer j is allocated to DC i in period t and scenario s,
Qs
i,t The order size at DC i in period t and scenario s,

Rsi,t The cost of opening/capacity increase of DC i, in period t and scenario s.

Problem Formulation

The employed notations for making the mathematical model are reported in
Table 1.

The objective function of the problem under each scenario contains the fol-
lowing costs:

i. The fixed cost of activation and capacity increase of DCs over the plan-
ning horizon, given as

∑
i∈I

∑
t∈T R

s
i,t ,

ii. The operating cost of DCs over the planning horizon, given as∑
i∈I

∑
n∈N

∑
t∈T oi,nX

s
i,n,t ,

iii. The operational cost at each DC contains the holding cost of working
inventory, the safety stock cost, the fixed cost of ordering products, and
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the shipment cost from suppliers to the DC. Where Qs
i,t represents the

order size at DC i in period t and scenario s, pi
∑

j∈J μs
j,tY

s
i, j,t

Qs
i,t

is the fixed cost

of ordering products, and hi
Qs
i,t

2 captures the holding cost associated with
the working inventory in period t. Further, in period t, the safety stock

cost is hizα
√
Lti

∑
j∈J (σ

s
j,t )

2Y si, j,t . Since the shipment cost of an order of

size R from the supplier to DC i is equal to the fixed shipment cost plus
the variable cost as gi + Rai, we can obtain the total cost of shipment

from the supplier to DC i as gi
∑

j∈J μs
j,tY

s
i, j,t

Qs
i,t

+ ai
∑

j∈J μs
j,tY

s
i, j,t .

iv. Under each scenario, the lost sale cost is equal to l ×∑
t∈T

∑
j∈J μs

j,tY
s
i0, j,t

,

v. The transportation cost from DCs to customers, given as∑
i∈I

∑
j∈J

∑
t∈T vi, jμ

s
j,tY

s
i, j,t .

The MINLP model of the problem is as follows:

Min:
∑
s∈S

π s

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
i∈I

∑
t∈T

Rsi,t +
∑
i∈I

∑
n∈N

∑
t∈T

rci,nϕ
s
i,tX

s
i,n,t +

∑
i∈I

∑
n∈N

∑
t∈T

oi,nX
s
i,n,t

+
∑
i∈I

∑
j∈J

∑
t∈T

vi, jμ
s
j,tY

s
i, j,t +

∑
i∈I

∑
t∈T

ai

⎛
⎝∑

j∈J
μs
j,tY

s
i, j,t

⎞
⎠

+ l
∑
t∈T

∑
j∈J

μs
j,tY

s
i0, j,t +

∑
i∈I

∑
t∈T

(pi + gi)

∑
j∈J

μs
j,tY

s
i, j,t

Qs
i,t

+
∑
i∈I

∑
t∈T

hi
Qs
i,t

2
+

∑
i∈I

∑
t∈T

hizα

√√√√Lti
∑
j∈J

(
σ s
j,t

)2
Y si, j,t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(2)∑
n∈N

Xs
i,n,t = 1, ∀i ∈ I, ∀t ∈ T, ∀s ∈ S, (3)

∑
n∈N

fi,nX
s
i,n,t ≤ Rsi,t, ∀i ∈ I, ∀t = 1, ∀s ∈ S, (4)

ci,n,n′
(
Xs
i,n′,t + Xs

i,n,t−1 − 1
) ≤ Rsi,t, ∀i ∈ I, ∀t ∈ T\ {1} , ∀s ∈ S, ∀n, n′ ∈ N (5)∑

i∈(I∪{i0})
Y si, j,t = 1, ∀ j ∈ J, ∀t ∈ T, ∀s ∈ S, (6)

∑
j∈J

μs
j,tY

s
i, j,t ≤ (

1 − ϕsi,t
) (∑

n∈N
bi,nX

s
i,n,t

)
, ∀i ∈ I, ∀t ∈ T, ∀s ∈ S, (7)

Xs
i,n,t = Xs′

i,n,t, ∀i ∈ I, ∀t = 1, ∀n ∈ N, ∀s, s′ ∈ S, (8)

Xs
i,n,t = Xs′

i,n,t, ∀i ∈ I, ∀t ∈ T, ∀n ∈ N, ∀s, s′ ∈ S :
(
ξ s1, ξ

s
2, . . . , ξ

s
t−1

)
=

(
ξ s

′
1 , ξ s

′
2 , . . . , ξ s

′
t−1

)
, (9)
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X,Y ∈ {0, 1} , (10)

Q,R ≥ 0. (11)

The objective of our problem, presented bymathematical expression (2), is to
minimize the expected total SC cost over the planning horizon. In each period and
scenario, constraints (3) determine the status of DCs. Based on these constraints,
for each DC, only one capacity level must be chosen and assigning capacity level
0 to a DC means that the DC is not activated. In the first period, if capacity level n
is assigned to DC i, constraints (4) impose variable Rsi,t to be greater than fi,n under
each scenario. Therefore, as the problem’s objective function minimizes the total
cost of the SC, Rsi,t becomes equal to fi,n. Constraints (5), same as constraints (4),
are to compute the cost of activation/capacity increase of each DC in each period
and scenario. Constraints (6) guarantees that each customer should be assigned to
only one DC. It should be noted that assigning a customer to DC i0 means that
the corresponding customer is not served. Constraints (7) assure that the amount
of products that can be handled by a DC during each period is less than or equal
to the DC’s handling capacity, if the DC is not disrupted. The non-anticipativity
constraints are formulated as constraints (8) and (9). Based on constraints (10), the
corresponding variables are binary, and finally constraints (11) enforce the corre-
sponding variables to not take negative values. The decision variables’ indices are
eliminated for convenience in constraints (10) and (11).

Conic Quadratic Mixed Integer Programming Formulation

We reformulate the optimization model as a CQMIP in this sub-section. The main
advantage of this reformulation is that the obtained formulation is solvable by stan-
dard optimization software packages such as CPLEX.

Decision variable Qs
i,t in MINLP model (2–11) only appears in objective

function (2), which is convex inQs
i,t > 0. First, the optimal value ofQs

i,t is achieved
by the derivative of the objective function with respect to Qs

i,t . Therefore, the opti-

mal value for Qs
i,t is as: Q

s
i,t

∗ =
√
2(pi + gi)

∑
j∈J μs

j,tY
s
i, j,t

hi
.

As a consequence, the objective function is:

Min:
∑
s∈S

π s

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
i∈I

∑
t∈T

Rsi,t +
∑
i∈I

∑
n∈N

∑
t∈T

rci,nϕ
s
i,tX

s
i,n,t +

∑
i∈I

∑
n∈N

∑
t∈T

oi,nX
s
i,n,t

+
∑
i∈I

∑
j∈J

∑
t∈T

vi, jμ
s
j,tY

s
i, j,t +

∑
i∈I

∑
t∈T

ai

⎛
⎝∑

j∈J
μs
j,tY

s
i, j,t

⎞
⎠

l
∑
t∈T

∑
j∈J

μs
j,tY

s
i0, j,t +

∑
i∈I

∑
t∈T

√
2 (pi + gi) hi

∑
j∈J

μs
j,tY

s
i, j,t

+
∑
i∈I

∑
t∈T

hizα

√√√√Lti
∑
j∈J

(
σ s
j,t

)2
Y si, j,t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(12)
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In accordance with Atamtürk et al. (2012), auxiliary variables Ks
i,t and L

s
i,t

are introduced to present the objective’s nonlinear terms and based on the fact that
(Y si, j,t )

2 = Y si, j,t , we present the CQMIP formulation as follows:

Min:
∑
s∈S

π s

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
i∈I

∑
t∈T

Rsi,t +
∑
i∈I

∑
n∈N

∑
t∈T

rci,nϕ
s
i,tX

s
i,n,t +

∑
i∈I

∑
n∈N

∑
t∈T

oi,nX
s
i,n,t

+
∑
i∈I

∑
j∈J

∑
t∈T

vi, jμ
s
j,tY

s
i, j,t +

∑
i∈I

∑
t∈T

ai

⎛
⎝∑

j∈J
μs
j,tY

s
i, j,t

⎞
⎠

+ l
∑
t∈T

∑
j∈J

μs
j,tY

s
i0, j,t +

∑
i∈I

∑
t∈T

√
2 (pi + gi) hiK

s
i,t

+
∑
i∈I

∑
t∈T

hizα
√
LtiL

s
i,t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(13)

Subject to: (3)–(11).∑
j∈J

μs
j,t

(
Y si, j,t

)2 ≤ (
Ks
i,t

)2 ∀i ∈ I, ∀t ∈ T, ∀s ∈ S, (14)

∑
j∈J

(
σ s
j,t

)2(
Y si, j,t

)2 ≤ (
Lsi,t

)2 ∀i ∈ I, ∀t ∈ T, ∀s ∈ S, (15)

Ks
i,t ≥ 0 ∀i ∈ I, ∀t ∈ T, ∀s ∈ S, (16)

Lsi,t ≥ 0 ∀i ∈ I, ∀t ∈ T, ∀s ∈ S. (17)

At the present formulation, in the CQMIP model, the constraints are either
linear or conic quadratic, and the objective function is linear.

SCENARIO TREE CONSTRUCTION

A key issue in MSSPs is to generate a scenario tree that efficiently captures the
stochasticity of time-variable parameters. In this paper, at the first step, we generate
the corresponding multivariate stochastic parameters, including mean and variance
of customers’ demand and parameter ϕsi,t corresponding to the DCs’ availability,
as a scenario fan by using a sampling method (Helton & Davis, 2003). Then, in the
second step, to obtain a scenario tree from this scenario fan, we apply the forward
scenario tree generation approach.

A first order autoregressive (AR) model is considered for generating the de-
mands’ mean and SD that are given by the formula μs

j,t = α
(μ)
j + β

(μ)
j × μs

j,t−1 +
ε
(μ)
j,t,s and σ s

j,t = α
(σ )
j + β

(σ )
j × σ s

j,t−1 + ε
(σ )
j,t,s, respectively. For each customer, ε is

the error term that has the normal distribution function with mean zero and a prede-
termined SD. For the scenario fan generation, these error terms should be simulated
based on their time-independent and continuous distributions, discretely. By using
parameter β, we can capture the long-run rate of mean and variance of the demand.

In this study, the disruption occurrence is modeled via Bernoulli random vari-
able such as demonstrated in Peng et al. (2011), Mak and Shen (2012), and Fattahi



12 Data-Driven Rolling Horizon Approach for Dynamic Design of Supply Chain Networks

Figure 2: The scenario tree construction process.

et al. (2017). The disruption incidence in each period and at each DC does not
influence on the disruption incidence’s probability in other DCs and next periods.
We consider Bernoulli distribution with parameter pri,t that represents the disrup-
tion occurrence probability in period t at DC i. As a consequence, parameter ϕsi,t
is defined as a binary indicator that is equal to 1, if in period t and scenario s, a
disruption event happens at DC i.

A huge number of scenarios makes the MSSP computationally intractable,
and it is crucial to reduce the scenarios’ number efficiently. In our approach, the
scenarios are first generated in the form of a scenario fan and a scenario tree con-
struction approach, developed by Heitsch and Römisch (2009), is exploited to re-
duce the scenarios’ number and achieve a scenario tree. This method is also used
by Fattahi et al. (2017), Fattahi et al. (2018), and Fattahi and Govindan (2018). A
brief explanation regarding the used scenario tree construction technique is pro-
vided in Appendix A. In this approach, we alter the scenario fan by bundling sce-
narios, which produces scenario trees with fewer scenarios in comparison with the
initial scenario fans. The number of final scenarios in the corresponding approach
depends on a constant parameter ζp, 0 ≤ ζp ≤ 1, which demonstrates a reduction
scale in comparison with the initial scenario fan. If the value of ζp increases, the
final scenarios’ number will decrease, relatively. Figure 2 shows the scenario tree
construction process in which we obtain a scenario tree with 17 scenarios from a
scenario fan with 100 scenarios.

DATA-DRIVEN ROLLING HORIZON APPROACH

Here, we present a rolling horizon framework for decision-making in practice
based on the developed MSSP. As the main advantage of this framework, it en-
ables data-driven decisions by using the observed data over the past time horizon.
In other words, by the realization of stochastic parameters in one period, we can
adopt their time series for the next period(s) and update the scenario tree to capture
any possible seasonality or trend in the data.

Furthermore, the presented framework resolves a critical limitation of tra-
ditional multi-stage stochastic programming decisions, which are valid only for
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a limited number of scenarios and approximates the truth objective from imple-
menting the obtained decisions from the MSSP in reality (Chand, Hsu, & Sethi,
2002).

Here, realized stochastic parameters are presented as a data set in the form of
sample paths. Each sample path and the set of all paths are illustrated by ω and �,
respectively. Further, the optimal implementable decisions related to period t are
the given optimal here-and-now decisions at this period, which are achieved by
solving the MSSP comprising t, t + 1, . . . , t + |T | − 1 periods.

To evaluate implementable decisions in time period t and obtain the problem
status at period t+1, the MSSP with t, t + 1, . . . , t + |T | − 1 periods should be
solved in which at period t, the here-and-now decisions are fixed based on their op-
timal value, and stochastic parameters are known according to path ω. To achieve
data-driven decisions, in the implementation phase, we will use an updated sce-
nario tree with |T | − 1 periods that is based on the observed stochastic parameters
at period t.

At the first period, we solve the MSSP with |T | periods. Then, in implemen-
tation of the obtained decisions at t = 1 by realized path ω, variables Xi,n,t=1 and
Ri,t=1 are fixed in the stochastic model, denoted by X̄i,n,t=1 and R̄i,t=1, and the first
period objective function is:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
i∈I

R̄i,t=1 +
∑
i∈I

∑
n∈N

rci,nϕ
(ω)
i,t=1X̄i,n,t=1 +

∑
i∈I

∑
n∈N

oi,nX̄i,n,t=1

+
∑
i∈I

∑
j∈J

vi, jμ
(ω)
j,t=1Y

(ω)
i, j,t=1 +

∑
i∈I

ai

⎛
⎝∑

j∈J
μ

(ω)
j,t=1Y

(ω)
i, j,t=1

⎞
⎠

+ l
∑
j∈J

μ
(ω)
j,t=1Y

(ω)
i0, j,t=1 +

∑
i∈I

√
2 (pi + gi) hiK

(ω)
i,t=1 +

∑
i∈I

hizα
√
LtiL

(ω)
i,t=1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Then, in the next time period, we solve the MSSP corresponding to the new
state of the problem after implementation of the optimal decisions in previous peri-
ods, called as "rolling horizon model." In our stochastic problem, the rolling hori-
zon model for time t, t > 1, is similar to our MSSP after some adjustments.

Consider TH and SH are the set of periods and scenarios in the rolling hori-
zon model, respectively. Then to obtain the rolling horizon model based on the
presented MSSP, we change sets T and S by TH and SH , successively. In addition,
X∗
i,n presents a binary indicator that equals 1 if DC i with capacity level n has been

activated in the previous time period, and hence constraints (4) are removed in the
rolling horizon model and constraints (5) are modified as follows:

ci,n,n′
(
Xs
i,n′,t + X∗

i,n − 1
) ≤ Rsi,t ∀i ∈ I, ∀t ∈ TH, ∀s ∈ SH, ∀n, n′ ∈ N. (18)

As previously explained, in period t, to evaluate the problem’s true objective
value related to implementable decisions in this time period (obtained from solv-
ing rolling horizon model), the MSSP should be solved in which period t is the
first period, the implementable decisions are fixed based on their optimal value in
period t, stochastic parameters in the period t are known according to path ω, and
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Figure 3: The rolling horizon procedure.

an updated scenario tree is employed. The corresponding objective function is as
follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
i∈I

R̄i,t +
∑
i∈I

∑
n∈N

rci,nϕ
(ω)
i,t X̄i,n,t +

∑
i∈I

∑
n∈N

oi,nX̄i,n,t +
∑
i∈I

∑
j∈J

vi, jμ
(ω)
j,t Y

(ω)
i, j,t

+
∑
i∈I

ai

⎛
⎝∑

j∈J
μ

(ω)
j,t Y

(ω)
i, j,t

⎞
⎠ + l

∑
j∈J

μ
(ω)
j,t Y

(ω)
i0, j,t

+
∑
i∈I

√
2 (pi + gi) hiK

(ω)
i,t

+
∑
i∈I

hizα
√
LtiL

(ω)
i,t

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

The above-mentioned process should be iterated until we obtain the prob-
lem’s final state at the end of sample path ω and approximate the true objective
function of the problem related to path ω. The rolling horizon approach is pre-
sented as a pseudo code in Figure 3. Further, Figure 4 shows how the proposed
approach works for solving the MSSP in a rolling horizon manner for our problem
with |T | = 4.

COMPUTATIONAL STUDY

In this section, we use GAMS 24.1 by CPLEX solver to solve theMSSP, and for all
implementations, a personal computer with Intel Core i7-640 M CPU (2.8 GHz),
with 4.00 GB of RAM, is used.

Assessment of the CQMIP Model Performance

Several instances are used to investigate the CQMIP model’s applicability. The
main parameters of the CQMIPmodel are based on Appendix B. It should be men-
tioned that in the problem instances, we consider four capacity levels in which the
first capacity level is 0 and the length of each time period is equal to 6months. Here,
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Figure 4: The data-driven rolling horizon procedure.

100 scenarios in the form of a scenario fan are generated to capture the stochasticity
of parameters, and next, we employ the forward scenario tree generation method
in which the value of ζp is set to 0.7 or 0.8. Table 2 illustrates the CPU time and op-
timal objective value from solving instances. The main characteristics of instances
are also reported in Table 2.

As illustrated by Table 2, by focusing on the results obtained by the presented
CQMIP model, we observe that most of our runs reach to the optimal solution fast,
and we can solve the proposed model by the CPLEX solver. As a consequence,
we can conclude that our approach performs well in the experimental results. Fur-
ther, the number of scenarios is sensitive to ζp, and as we increase the number of
scenarios and the size of the model, the CPU time increases.

The Importance of the Multi-stage Stochastic Program

In this section, the importance of the presented stochastic model is investigated by
comparing the MSSP with the two-stage stochastic programming formulation of
the optimization problem in terms of the value of the objective function. There-
fore, the relative value of the multi-stage stochastic programming (RVMS) is com-
puted for several problem instances as a well-known criterion (Huang & Ahmed,
2009). Let OFTS and OFMS be the optimal value related to the objective of the
two-stage and multi-stage stochastic program, respectively. Then, OFTS ≥ OFMS

and the RVMS is defined as OFTS−OFMS
OFTS × 100%.

In the two-stage stochastic programming model, we assume the capacity and
location decisions have to be determined in all periods before uncertainty real-
ization as the first stage decisions. It should be mentioned that in dynamic two-
stage stochastic models, first stage decisions are made for multiple periods in many
studies (e.g., Aghezzaf, 2005). To obtain the two-stage stochastic program, we re-
lax non-anticipativity constraints from the stochastic model, and enforce decision
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Table 2: The results from solving CQMIP model for instances.

Instance (|I|, |J|, |T |) ζp, |S|
Optimal

objective value CPU time (S)

1 (8,10,4) 0.7, 19 8.77E+05 8
2 (8,10,6) 0.7, 15 1.34E+06 9
3 (10,15, 4) 0.7, 18 1.20E+06 8
4 (10, 15, 6) 0.7, 16 1.90E+06 10
5 (15, 20, 4) 0.7, 14 1.46E+06 8
6 (15, 20, 6) 0.7, 17 2.25E+06 15
7 (20, 25, 4) 0.7, 16 1.60E+06 11
8 (20, 25, 6) 0.7, 15 2.57E+06 22
9 (25, 30, 4) 0.7, 18 2.11E+06 26
10 (25, 30, 6) 0.7, 16 3.02E+06 38
11 (30, 35, 4) 0.7, 18 2.36E+06 34
12 (30, 35, 6) 0.7, 16 3.41E+06 41
13 (40, 50, 4) 0.7, 17 3.16E+06 49
14 (40, 50, 6) 0.7, 19 4.61E+06 83
15 (50, 70, 4) 0.8, 10 4.14E+06 74
16 (60, 75, 4) 0.8, 9 4.47E+06 79
17 (70, 90, 4) 0.8, 11 5.21E+06 129
18 (80, 100, 4) 0.8, 9 5.98E+06 177
19 (90, 110, 4) 0.8, 12 6.33E+06 232
20 (100, 120, 4) 0.8, 10 6.87E+06 329
21 (120, 150, 4) 0.8, 8 7.70E+06 784
22 (130, 170, 4) 0.8, 12 9.12E+06 903
23 (140, 200, 4) 0.8, 9 1.05E+07 1018
24 (150, 220, 4) 0.8, 10 1.21E+07 1442
25 (160, 250, 4) 0.8, 11 1.30E+07 2241
26 (170, 280, 4) 0.8, 10 1.46E+07 2891
27 (180, 300, 4) 0.8, 8 1.56E+07 2919
28 (200, 400, 4) 0.8, 11 – Out of memory

variables X, location, and capacity decisions at each period, to have the identical
values in all scenarios by adding the following constraints:

Xs
i,n,t = Xs′

i,n,t, ∀i ∈ I, ∀t ∈ T, ∀n ∈ N, ∀s, s′ ∈ S. (19)

In Table 3, the RVMS values are calculated for 12 problem instances.
The reported values of RVMS criterion in Table 3 highlights the significance

of using multi-stage stochastic programming in our problem setting. Based on the
results, the average of the RVMS is 3.25%, and we can see that by increasing the
periods’ number in problem instances, the value of the RVMS increases, relatively.

Application of the MSSP

The data related to instances 11 and 12 with |I| = 30 potential locations for
DCs, |J| = 35 customers are generated based on Iran’s geographical network. In
these instances, the transportation costs are achieved by the available data from
Iran’s Road Maintenance and Transportation Organization and the mean value of
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Table 3: Investigation of the RVMS.

Instance
number OFTS OFMS OFTS-OFMS RVMS (%)

1 8.61E+05 8.77E+05 1.56E+04 1.81%
2 1.30E+06 1.34E+06 3.87E+04 2.97%
3 1.17E+06 1.20E+06 2.51E+04 2.14%
4 1.82E+06 1.90E+06 7.59E+04 4.16%
5 1.43E+06 1.46E+06 2.68E+04 1.87%
6 2.20E+06 2.25E+06 4.67E+04 2.12%
7 1.56E+06 1.60E+06 3.58E+04 2.29%
8 2.45E+06 2.57E+06 1.18E+05 4.83%
9 2.03E+06 2.11E+06 7.96E+04 3.92%
10 2.87E+06 3.02E+06 1.52E+05 5.29%
11 2.27E+06 2.36E+06 8.65E+04 3.74%
12 3.04E+06 3.41E+06 1.33E+05 3.93%

demands are generated based on the population of customer zones.We use instance
11 to analyze the optimal solution of the MSSP. The candidate locations of DCs
and customer zones associated with the SC network in instances 11 and 12 are
shown in Figure 5.

By solving the MSSP in the considered problem instance, the optimal objec-
tive value is 2.36E+06. Using the rolling horizon approach, we approximate the
true expected of the SC cost from implementation of the MSSP’s solution through
the planning horizon, and here, 100 realizations related to the random parameters
from the first period until the last one are simulated. The expected value of simula-
tion responses is 2.45E+06. Therefore, the relative difference between theMSSP’s
optimal objective and the mean of rolling horizon responses is 3.8%. In Figure 6a,
the frequency of simulation responses over planning horizon is illustrated and in
Figure 6b, the cumulative of the rolling horizon responses’ mean from the first
period until the end of planning horizon is shown. Further, the minimum and max-
imum of SC costs from simulating different sample paths are shown in Figure 6b.

The impact of transportation and inventory costs: here, we consider two
weight factors λT and λI for transportation and inventory costs, respectively. Next,
for a set of scenarios in problem instance 11, 15, and 20, we solve the MSSP for
different values for these factors. In Table 4, the average number of open DCs in
each time period is reported for these various values of λT and λI .

The reported results in Table 4 highlight an important issue. When the inven-
tory cost in comparison with the transportation cost becomes larger, fewer DCs
are averagely activated in the optimal decisions, and in our optimization problem,
a risk pooling strategy is preferred.

The importance of periods’ duration in dynamic SCND: By using the rolling
horizon approach, we investigate how the considered duration of periods in our
planning process affects the quality of the obtained optimal decisions from solv-
ing our MSSP in terms of the total SC cost. To do so, we assume that there is
not any uncertainty regarding the disruption of DCs. Then, we examine problem
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Figure 5: The considered network for problem instance 11. (a) Frequency analy-
sis, (b) Cumulative amount of the rolling horizon responses’ mean.

Figure 6: The rolling horizon response for problem instance 11.
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Table 4: The sensitivity of optimal decisions to weight factors of transportation
and inventory costs.

Input parameters Output

Instance number λT λI

# potential
DCs

Average of open DCs
in each period

Problem instance 11 1 1 30 23.6
0.2 2 30 21.5
2 0.2 30 26.9

Problem instance 15 1 1 50 39.9
0.2 2 50 37.4
2 0.2 50 44.5

Problem instance 20 1 1 100 88.7
0.2 2 100 83.8
2 0.2 100 91.2

Figure 7: The impact of duration of periods in the SC costs.

instance 11 for various lengths of time periods including 3, 6, and 12months.When
we change the periods’ duration, we will update the value of some problem’s pa-
rameters such as the mean and variance of demands, holding inventory costs, and
lead time value. In Figure 7, the performance of obtained decisions from solving
problem instance 11 with different durations of periods is illustrated over 3 years.
Further, we have also done this analysis for instances 11, 15, and 20 over 2 years,
and those results are reported in Table 5.

As shown by Figure 7 and Table 5, we observe that as the length of periods
in our planning process decreases, the performance of the decisions get improved
gradually. Such an improvement becomes more highlighted when we roll forward
the optimal planning decisions for more periods (see Figure 7).

Investigating the Disruptions’ Impact on the SC Cost

We consider if a disruption happens at a DC, the DCwould not serve the customers
over one time period. The modeling approach of disruptions in the context of
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Table 5: The rolling horizon response for various durations of planning periods.

Expected of rolling horizon responses over 2 years

Instance number
Duration of
3 months

Duration of
6 months

Duration of
12 months

Problem instance 11 2.05E6 2.18E6 2.32E6
Problem instance 15 3.83E6 4.02E6 4.32E6
Problem instance 20 6.29E6 6.58E6 6.89E6

Figure 8: Analysing different conditions related to DCs’ disruptions.

facility location and SCND has a significant impact on optimal location decisions.
The multi-stage stochastic programming and the possibility of dynamic design can
enhance the ability of a network to respond to customers after disruptions. Here,
we solve several instances under three conditions related to the occurrence of dis-
ruptions that are defined as follows:

Condition 1: The disruption occurrence probability at DCs in the scenario
tree construction approach is generated by uniform distribution function on the
interval [0, 0.5].

Condition 2: The two-stage stochastic programming formulation is used for
the optimization problem (see section The Importance of the Multi-stage Stochas-
tic Program). In other words, the design decisions for all periods must be deter-
mined before the uncertainty realization, and we cannot change the decisions based
on the observation of stochastic parameters over planning periods.

Condition 3: In this condition we consider both conditions (1) and (2), and
the two-stage stochastic program is used in which the disruption occurrence prob-
ability at DCs is generated by uniform distribution function on the interval [0, 0.5].

We solve several instances, including instances 5, 11, 15, 18, 20, and 22,
under these conditions, and Figure 8 illustrates the objective value’s percentage
increase under these conditions for these instances.
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Figure 9: The comparison between static and dynamic decisions.

By using the MSSP, it is possible to respond to the disruption events over the
planning horizon based on the observed disruptions, and Figure 8 shows another
significant feature of our MSSP. Furthermore, it is shown that the impact of dis-
ruptions on the SC cost is meaningful and dependent on the modelling approach.

The Importance of Dynamic Design

To investigate the significance of the dynamic design for our SCND problem, we
develop single-period two-stage stochastic program to design/redesign the SC net-
work at the beginning of each period. Then, by the rolling horizon approach, we
compare the long-term impact of dynamic design with the static one. Figure 9 il-
lustrates the obtained results from simulating the static and dynamic decisions in
problem instance 11 and shows the importance of the dynamic design. Further, the
dynamic design is compared with the static one in problem instances 8, 15, and 20,
and its average relative superiority in the examined instances over 8 time periods
is 12.9%.

The Importance of Data-Driven Decisions

The proposed rolling horizon approach enables data-driven decisions by using the
observed data over the past time horizon and, to do so, in the implementation phase,
we use an updated scenario tree based on the realization of stochastic parameters.
In our problem setting, the significance of data-driven decisions on the SC objective
is mostly dependent on the observed demand over each strategic period. It is worth
noting that in reality, themean and variance of the realized demand in each strategic
period should be calculated based on the demand observation in some considered
tactical/operational time slots over each strategic period.

To examine the importance of data-driven decisions, we have considered
various values for β

(μ)
j (autoregressive parameter of the demand stochastic pro-

cess) and the variance of the error term in its stochastic process. Then, in problem
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Figure 10: The significance of data-driven decisions: the improvement related to
the data-driven decisions, in the red part is more than 7%, in the orange part is
between 2% and 7%, and in the white part is less than 2%. (a) With disruption
events; (b) Without disruption events.

instance 11, we examine the MSSP’s optimal decisions by the rolling horizon
decision-making framework with and without updating the scenario tree based on
the demand observation. As a consequence, the superiority of data-driven deci-
sions are obtained in various values of parameters related to the demand stochastic
process (see Figure 10). In Figure 10a, the results are shown for the SCND under
disruption events and in Figure 10b, we have not considered disruption events in
the SC network.

By focusing on the results presented in Figure 10, we can conclude that by
increasing the dependency of the mean demand to their value in previous peri-
ods (autoregressive parameter) and its variability, the improvement of data-driven
decisions increases meaningfully. Further, the data-driven decisions’ significance
increases under disruption events.

Evaluation of the Scenario Tree Generation Method

In-sample and out-of-sample stability analysis are performed to examine the ef-
ficiency of the scenario tree construction method. In-sample stability guarantees
that if we employ various generated scenario trees from identical input parameters
for solving the MSSP, the obtained optimal objective values are approximately the
same. In Table 6, the optimal values of the objective from solving the MSSP with
various scenario trees are illustrated for several instances. Further, in accordance
with the minimum and maximum objective function’s values of a problem instance
with consideration of various scenario trees, the error of in-sample stability is ob-
tained as:

EIn−Sample = Maximum of objective values − Minimum of objective values

Mean of objective values
.

Further, to examine the out-of-sample stability, we should use a simulation
approach to approximate the problem’s true objective value based on the optimal
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Table 6: In-sample stability analysis.

ζ = 0.7 ζ = 0.8

Problem
instances

# of
scenarios

Objective
function
value

In-sample
stability
error

# of
scenarios

Objective
function
value

In-sample
stability
error

5 14 1.46E6 3.3% 9 1.49E6 4.6%
17 1.49E6 8 1.56E6
18 1.51E6 10 1.55E6

8 15 2.57E6 2.4% 12 2.57E6 3.6%
17 2.51E6 11 2.48E6
16 2.54E6 11 2.54E6

11 18 2.36E6 2.6% 8 2.32E6 3.8%
16 2.42E6 11 2.41E6
16 2.37E6 9 2.40E6

15 15 4.18E6 3.8% 10 4.14E6 4.3%
20 4.26E6 8 4.10E6
18 2.19E6 10 4.28E6

Table 7: The analysis of out-of-sample stability.

Problem
instances

Objective
function value

Rolling horizon
expected response

Out-of-sample
stability error

5 1.46E6 1.51E6 3.42%
8 2.57E6 2.61E6 1.56%
11 2.36E6 2.45E6 3.81%
15 4.14E6 4.32E6 4.35%

decisions. The out-of-sample stability assures that the true objective value is near
the problem’s optimal objective. We use the rolling horizon approach to approxi-
mate the true objective value. If we denote the rolling horizon approach’s expected
response and the MSSP’s objective value as ERRH and OF∗, the error of out-of-
sample stability can be obtained as |ERRH−OF∗|

OF∗ × 100%. In Table 7, the error of
out-of-sample stability is reported for several instances.

Presented results in Tables 6 and 7 show that our scenario tree generation
approach has a good stability performance.

The Effect of Risk Consideration

In this section, to obtain risk-averse decisions, we consider CVaR as the objective
function of the problem. CVaR is a well-behaved risk measure and in a stochastic
program, we can formulate it by linear programming techniques (Ahmed, 2006).
If FP(.) denotes the cumulative distribution function of random variable P, Value
at Risk at the confidence level α,VaRα , is:

VaRα (P) = inf {η ∈ R: FP (η) ≥ α} .
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CVaRα , the conditional value at risk at the confidence level α, is defined as:

CVaRα (P) = E ((P|P ≥ VaRα ) .

CVaRα is formulated by Rockafellar and Uryasev (2002) as:

CVaRα (P) = inf
z∈R

{
z+ 1

1 − α
E

[
(P− z)+

]}
.

If we assume OFs as the optimal value of the MSSP’s objective function in
scenario s, we can consider CVaRα as the objective function of the MSSP as:

Min : CVaRα = η + 1

1 − α

(∑
s∈S

πsds

)

Subject to:

Constraints (3–11),

Constraints (14–17),

ds ≥ OFs − η, ∀s ∈ S,

ds ≥ 0, ∀s ∈ S,

η ∈ R,

where the corresponding loss of scenarios s is denoted by ds.
By solving the risk-averse model for problem instance 11, the optimal value

of CVaR at confidence level 0.95 is 2.51E+06 and the expected SC cost is
2.47E+06. Further, to distinguish and evaluate better the optimal decisions from
the expected value objective function and CVaR0.95 in the MSSP, we implement
the decisions in a rolling horizon manner, and Figure 11 illustrates the cumulative
mean response of the rolling horizon approach over eight periods.

In Table 8, we report the mean, standard deviation (SD), and 75% quartile
(QT) of rolling horizon responses from implementing the risk-averse and risk-
neutral decisions over eight periods in some problem instances.

In Table 8, we can see that the implementation of the decisions from the
MSSP with CVaR objective in comparison with the expected value objective leads
to a SC cost distribution with higher mean and lower SD and 75% QT. Further, the
average number of established DCs over the planning horizon relatively increases
in the risk-averse policy.

MANAGERIAL IMPLICATIONS

The presented data-driven rolling horizon approach introduces an innovative way
of using data, which is revealed as time progresses and adjusts the decisions for
MSSPs in practice. Furthermore, the trend and seasonality, which are often ob-
served in stochastic parameters, can be captured over time by this approach. Al-
though this decision-making framework is employed for the dynamic SCND in our
study, other optimization problems with the multi-stage stochastic programming
setting can also apply it.
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Figure 11: The rolling horizon response from CVaR and mean objectives.

Table 8: The simulation responses’ statistics of obtained decisions from the CVaR
and expected value objective.

Problem
instances Statistics

CVaR0.95

objective
Expected value

objective

5 Mean 1.62E+06 1.51E+06
Standard deviation 9.94E+04 2.98E+05
75% QT 1.66E+06 1.69E+06

8 Mean 2.81E+06 2.61E+06
Standard deviation 1.26E+05 3.42E+05
75% QT 2.92E+06 2.98E+06

11 Mean 2.69E+06 2.45E+06
Standard deviation 1.64E+05 4.02E+05
75% QT 2.75E+06 2.86E+06

15 Mean 4.68E+06 4.32E+06
Standard deviation 1.91E+05 4.94E+05
75% QT 4.84E+06 5.01E+06

Generally, it is highlighted in the literature that operational risk management,
induced by various uncertainty types, in the SC system depends on the knowledge
and information-sharing. However, for the dynamic SCND, the research question
of our study is addressed by the proposed data-driven decision making framework
as an action plan for adjusting the SC network based on the realization of uncertain
parameters, such as target market’s changes and long-run demand rates, and the
occurrence of disruption events over time. The corresponding action plan includes
three main steps as follows:
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i. For decision-making in each strategic period, generate a scenario tree for
the stochastic parameters and solve the corresponding MSSP,

ii. Implement the decisions related to the current period and gather the data
related to the realization of stochastic parameters until the next decision-
making period,

iii. Update the input parameters related to the scenario tree generation and
MSSP based on the observed data and optimal decisions in previous pe-
riods, respectively.

Many corporations, such as Toyota, Honda, Intel, and BMW devote a
substantial effort to hedge against SC operational risks by quantitative models
(Simchi-Levi et al., 2014; Lu et al., 2015). By our approach, which can be eas-
ily adopted based on different SC networks, companies are able to use the right
information in real-time and to take proactive actions as early as possible or at
least before the customers suffer from the negative impacts of disruption events
and inherent uncertainties.

In this study, we have found that the dynamic design of SC networks by using
themulti-stage stochastic programmingmakes a SC flexible to change its decisions
in response to various uncertain events that may happen in each time period. In our
problem, the MSSP in comparison with the dynamic two-stage stochastic program
and single period stochastic model improves the SC cost, meaningfully.

In modeling the disruption of SC facilities, we have assumed that a disrupted
facility can be recovered in the next periods, in contrast to most of the previous
studies. Furthermore, by increasing the probability of disruption events, it is shown
that the MSSP is a more powerful optimization tool in comparison with the two-
stage stochastic programming in hedging against disruption risks.

Based on our experimental results, in the case of high transportation cost in
relation to the inventory cost and the existence of the disruption risk, the number
of established DCs increases. On the other hand, the risk pooling strategy deals
efficiently with increasing the inventory cost, and the number of active DCs de-
creases in such a situation. Furthermore, it is highlighted that the significance of
data-driven decisions increases by the presence of disruption events and the in-
crease of mean demand dependency to previous periods and variability.

We develop theMSSP with the CVaR objective for risk-averse decision mak-
ers, and we investigate the risk-neutral and risk-averse SC configuration based on
the SC cost by using the rolling horizon simulation. Our experimental results show
that the risk-averse decisions make the expected of SC cost worse, but the standard
deviation and 75%QT associated with the SC cost distribution decrease about 60%
and 5%, respectively. Therefore, in many practical situations, we can increase the
robustness of the SC cost by employing the CVaR as the objective function.

CONCLUSIONS

We deal with a new dynamic supply chain distribution network design problem
in which the moments of customers’ demands are uncertain and the availability
of distribution centers is stochastic because of disruption events. Under a multi-
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period setting, an MSSP with non-anticipativity constraints is developed to obtain
the optimal design/redesign, capacity, allocation, and inventory decisions.

Methodologically, we first formulate our problem as an MINLP model, and
then by using the special structure of the problem, reformulate it as a CQMIP
model, which is solvable by the CPLEX as a commercial solver. The real-world
applicability of the proposed MSSP is deeply investigated. A new data-driven
decision-making approach is developed to implement the decisions made by the
MSSP in reality. This approach enables decision makers to employ the data that
is realized over time and to adjust the corresponding decisions in a rolling horizon
framework.

In the computational results, we illustrate the validity of our model and its ac-
curacy in practice. The significance of the dynamic design, data-driven decisions,
and the length of planning periods in our decision-making process are also high-
lighted. Furthermore, by using the CVaR as the problem’s objective function, the
risk-averse decisions are obtained and analyzed.

To create a scenario tree that efficiently captures the existing uncertainty in
our optimization problem, a simulation approach is used to generate a scenario
fan. Next, we reduce the scenarios’ number and convert them into a scenario tree
by applying the forward scenario tree construction technique. The in-sample and
out-of-sample stability analysis confirm the efficiency of this method.

There are also many opportunities to consider other operational or tactical
planning level decisions in the problem. Furthermore, our optimization problem
can be extended for decision-making under scarce data conditions by using the
moment-based distributionally robust optimization approach in interesting future
work.
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