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Abstract—With the increasing deployment of the electric 
vehicles, the study of advanced battery charging strategy has 
become of great significance to improve charging performance 
with reduced loss. This paper presents an optimized adaptive 
charging strategy for EV battery packs based on a developed 
system loss model. An electrical model integrated with thermal 
properties for the lithium-ion battery with cooling as well as a 
full loss model for the power converter have been included in 
this complete model. To reduce the overall loss of the charging 
system, the influence of temperature and varying internal 
resistance at different state of charge (SOC) have been 
considered to obtain an objective function. Moreover, an 
enhanced particle swarm optimization (PSO) algorithm is 
proposed and applied to speed up convergence time as well as 
enhance the precision of the solution. The results show that this 
proposed strategy can reduce the total loss by 4.01% and a 7.48% 
decrease of the charging time compared with the classical 
approach without applying this optimization. 

Keywords—lithium-ion battery, charging strategy, loss 
minimization, particle swarm optimization 

I. INTRODUCTION 

In recent years, lithium-ion batteries have become main 
energy storage media in portable equipment, industrial 
electronics, aerospace and other fields because of their high 
energy density, low self-discharge rate, long cycle life, and 
minor pollution [1]. Due to market booming in electric 
vehicles (EVs), the demand on increasing the batteries’ 
charging rate and efficiency has become a widespread concern 
[2, 3], which puts forward higher requirements on the charging 
strategy. Generally, an accurate system model and an 
advantageous charging strategy are critical to the performance 
of the battery, which should be the result of a comprehensive 
weighing between the charging time, energy loss, battery 
aging, and hardware cost.  

Many studies have contributed to the models of the 
lithium-ion batteries as well as the power converters in the 
battery charging system to perform optimizations from 
different perspectives such as temperature rise and internal 
resistance with state of charge (SOC) [4-8]. From the 
standpoint of efficiency, the commonly used constant current 
(CC) charging, constant voltage (CV) charging, constant 

power (CP) charging, and an optimized charging considering 
temperature rise have been compared and discussed in [9], 
whereas the study assumes that all the internal resistances of 
the lithium-ion batteries are not related to the state of charge 
(SOC) which cannot reflect the real relationship of the 
parameters in the battery. In [10], the fluctuation of battery 
internal resistance with SOC is considered, however, the 
change of internal resistance with temperature is ignored. To 
take the thermal issues into account, a constant-temperature 
constant-voltage charging technique is proposed that aims to 
prevent battery ageing process caused by overheating, 
whereas the research neglects the damage to the battery caused 
by the high charging current in the low state of charge (SOC) 
region [11]. 

Many optimization methods have been applied to solve the 
optimal charging problems, for instance, genetic algorithm 
[12], dynamic programming [9], Taguchi method [13], etc. 
However, limited by their search mechanism, these methods 
are not the most efficient algorithms for solving problems in 
continuous solution spaces. Moreover, the traditional particle 
swarm optimization (PSO) algorithm also shows 
unsatisfactory results on problems with a vast solution space 
[14]. 

Therefore, this paper proposes an optimized adaptive 
charging strategy for EV battery packs, which aims to further 
enhance the charging performance by employing a more 
comprehensive system loss model. Specifically, to analyze the 
loss of the system close to the real-world settings, an electrical 
model including thermal properties for the lithium-ion battery 
with cooling is developed. As a result, a system loss model 
with the optimized objective function is obtained to make a 
tradeoff between the battery internal loss and the loss of power 
conversion stage. Furthermore, an enhanced PSO algorithm 
with a large-scale optimization is proposed to achieve fast 
solving of the optimal solution as well as to enhance precision 
of the results. 

II. SYSTEM MODELLING 

The battery charging system is presented in Fig. 1, which 
is composed of a dual active bridge (DAB) DC-DC converter 
and an EV battery pack with built-in cooling device. 



A. Battery electrothermal model 

The external electrical characteristics of the lithium-ion 
battery can be modelled by a universal equivalent model [15]. 
Typically, a second-order Thevenin equivalent model is 
shown in Fig. 1(b), which is composed of an open-circuit 
voltage (OCV) source, an ohmic resistance, and a resistance-
capacitance network that reflects the polarization 
phenomenon. The full battery electrothermal model can be 
expressed in (1) to (5). Equation (1) and (2) draw the dynamic 
characteristics of the battery, and (3), (4), and (5) describe the 
battery's voltage, internal loss, and SOC during the charging 
process, respectively. 
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In the expressions above, tmlU  is the terminal voltage of 

the battery, OCU  is the battery internal potential OCV, U  is 
the ohmic internal potential which is proportional to the 
charge and discharge current, and pU  represents the 
polarization potential that has a gradual decay process after 
the removal of charge and discharge current; R , p1R , p1C , 

p2R , and p2C  are the equivalent parameters of the battery; toti , 

lossp , and Ah  denote the total charge or discharge current, 
the total power loss on the internal resistance of the battery, 
and the capacity of the battery, respectively. 

The time domain expression of the polarization voltage is 
suitable for both RC pairs that can be obtained by solving (1), 
as is shown in (6). This equation will be used in the simulation 
to mimic the dynamic characteristics of the battery. 
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The liquid cooling system is widely applied in EVs, which 
should also be taken into account in the battery charging 
process. According to the heat transfer theory, the heat 
conduction between the battery and the environment via the 
coolant is modelled in this study. The heat generation can be 
expressed as (7), which is caused by the battery internal 
resistance and the rise of the internal voltage with temperature. 
The heat transfer can be expressed as (8) and (9), which shows 
a close relationship between the amount of heat exchange and 
the thermal conductivity as well as the area of the heat 
exchange interface. 

 OC
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In the equations above, createQ  , transQ  , and outQ  are the 
heat generated by the battery, the heat transferred from the 
battery to the coolant, and the heat transferred from the coolant 
to the ambient; batT  , coolT  , and ambT  are the temperatures of 

the battery, the coolant, and the ambient; bath  and coolh  are the 

convection coefficient of the battery and the coolant; batA  and 

coolA  are the thermal convection area of the battery and the 

coolant; sT  is the sample time. 

The temperature can be calculated by (10) and (11) in 
accordance to the temperature rise characteristics of 
electrolyte and coolant. 

 create trans bat bat bat=Q Q m c T    (10) 

 trans amb cool cool cool=Q Q m c T    (11) 

In the expressions above, batm  and coolm  refer to the mass 

of the battery and the coolant respectively; batc  and coolc  refer 
to the specific heat coefficients. 

B. Charger loss model 

The major components that cause the loss of the converter 
include MOSFETs, a high-frequency transformer, a resonant 
inductor, the wire resistance, and diodes due to the backward 
power flow [16]. 

The loss of MOSFET includes the switching loss, 
conduction loss, cut-off loss, and driver loss. Among them, 
switching loss is related to the state of the power switch (hard 
switching or soft switching), which can be determined by (12) 

 
         (a)      (b) 

Fig. 1. Schematic of the battery charging system. (a) power converter. (b) EV battery model. 



and (13) [17]. The power switches on the power supply side 
and the battery side are operated in the soft-switching state 
under the phase-shift control if they meet (12) and (13), 
respectively.  

 2 + 1 0D K     (12) 

 (1 2 ) 1 0K D     (13) 

where K  is the actual voltage ratio of the transformer, and 
D  is the phase shift. Then, the switching losses of hard 
switching and soft switching can be calculated according to 
(14) and (15) respectively. And the conduction loss can be 
obtained using (16) 
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In the expressions above, DSV , DI , and onR  refer to the 
drain to source voltage when the power switch is off, the drain 
current when the power switch is on, and the conductive drain-
to-source resistance; off to ont , on to offt ,  ont , and sf  denote the 
total turn-on time, total turn-off time, conduction time, and the 
switching frequency. The cut-off loss and the driver loss are 
ignored in this paper.  

The loss of the high frequency transformer mainly 
includes the copper winding loss, iron hysteresis loss, and iron 
eddy current loss, which can be calculated separately 
according to (17), (18), and (19) [18]. 

 2
TRANS, Cu AC DCP I R   (17) 

where I , AC , and DCR  are the rms value of the winding 
current, the AC resistivity coefficient due to the skin effect, 
and the winding DC resistance. 
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where hK ,  , and   are the parameters from the 

experiment; coreV , core , and core  denotes the volume, the 

resistivity, and the density of the iron core; sf  refers to the 

switching frequency, and mB  refers to the maximum 
magnetic induction intensity. 

The losses of resonant inductance, diode and wire 
resistance are similar to the aforementioned loss calculations, 
which are not detailed in this paper. 

C. System model 

The system model with thermal effect is presented in Fig. 
2, which includes the battery's electrical characteristics, heat 
and power converter losses. In this model, to link up with the 
PSO algorithm, the refined simulation interface realizes the 
conversion of low time-density current commands to step-
level dense current signals. Other models are constructed as 
illustrated above. In the simulation, the real-time battery 
voltage and loss is calculated through the electrical proportion 
of the battery model, and the corresponding parameters are 
transmitted to the thermal model of the battery to calculate the 
amount of the heat transfer and temperature. The temperature 
is used in the next iteration to determine the parameters of the 
battery electrothermal model. 

The fluctuation of the total internal resistance with SOC 
and cell temperature provides the opportunity for adaptive 
optimization of the whole charging process. This paper 
focuses on optimizing the loss of the CC charging because of 
its dominance in charging time and loss in most of the 
charging profiles. Within the same charging time, the CC 
stage can be subdivided into many small CC segments (the 
number is set to M) to form an adaptive variable current 
charging. The goal is to minimize the charging loss of the 
whole charging system, and the constraints of the battery and 
the converter need to be satisfied. Therefore, the optimized 
objective function can be written as (20). The compromise of 
optimization target between the battery internal loss and 
power charger loss can be determined by adjusting the 
parameters 1  and 2  in the equation. 
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This function is not differentiable and requires numerical 
iteration in the calculation process. Hence, a PSO algorithm is 
introduced and developed to achieve an optimized charging 
process to reduce the loss, which is shown in the following 
section. 

 
Fig. 2. System loss model with thermal effect 



III. OPTIMIZED CHARGING STRATEGY 

A. Enhanced PSO algorithm 

1) Operation principles 
 The PSO algorithm iteratively obtain the optimal 

solution utilizing the historical optimal value of the group 
and the individuals. The flowchart of this iteration-driven 
algorithm is shown as Fig. 3. The collective cooperation 
between the particles enables the group to traverse most of 
the solution space and achieve the optimal goal with 
convergence. During the iterations, each particle records its 
historic optimal location (which is called as individual 
optimal), track the group’s optimal location (which is called 
as group optimal), and update its velocity and position using 
(21) and (22) as follows, which is for particle i  during the 
k th iteration. 

1 1 iopt 2 2 gopt[ 1] [ ] ( [ ] [ ]) ( [ ] [ ])i i i i i iv k wv k c r x k x k c r x k x k       

 (21) 

 [ 1] [ ] [ 1]i i ix k x k v k      (22) 

In the expressions above, 1c  and 2c  are acceleration 
factors, w  is the inertia weight which is normally in the range 
of [0.9, 1.2], and 1r  and 2r  are random numbers distributed in 
[0,1]. 

2) Enhancements 
a) Reinitialization 

As the iteration progresses, all particles will gather to the 
global optimal position, which results in a large quantity of 
calculations with little contribution to the search of the global 
optimal solution. In particular, the vast solution space of this 
problem puts forward higher requirements on the global 
optimization ability of the algorithm. The number of solutions 
reaches 10^19 even if the entire CC stage is only divided into 
10 sub CC charging stages and only integer solutions are 
considered. By reinitializing a proportion of particles close to 
the global optimal location, the number of initial particles is 
equivalently increased and more paths are searched along, 

thereby significantly enlarging the probability of obtaining the 
global optimal solution. Reinitialization can be expressed as 
follows. 

 min max 2
randp( , )    { 0.3}x I I x x rand      (23) 

where randp( , )a b  is the initialization function, and rand  
is a random number. 

b) Hybridization 
During the iterations, it is noticed that although the fitness 

of the particles can drop rapidly within 10 iterations, there is 
still a high probability of noise in the current solution 
waveform caused by random initialization. Given that it is 
essentially identical in this problem on the physical 
implication of each dimension of each particle, hybridization 
can be implemented by swapping the elements of the particles 
with best fitness. The hybridized particles are within a 
reasonable range and tend to aggregate because the 
hybridization is only performed on the particles with the best 
fitness, thus accelerating the approach to the global optimum. 
The criterion for hybridization is shown as (24). The fitness of 
each particle equals to the descendent ratio of the particle's 

 
Fig. 4. Scheme of the PC-AC-CV charging strategy 

 
Fig. 3. Flowchart of the enhanced PSO algorithm 



objective function value compared with the objective function 
value of CC charging.  
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B. Charging Strategy 

The full scheme of the proposed adaptive charging 
strategy is shown as Fig. 4, which consists of a pre-charging 
stage, an adaptive current stage, and a constant voltage stage 
(PC-AC-CV). In this figure, batU , 2U , and refU  refer to the 
terminal voltage of the battery pack, the battery side voltage 
of the power converter, and the variable reference voltage of 
the controller; totI , refI , and stdI  refer to the total charging 
current, the variable reference current of the controller, and the 
standard acceptable charging current of the battery; bat_ser

and bat_par  refer to the numbers of the battery cells in series 
and in parallel, respectively. 

This control strategy has luring potential benefits in 
practice because of its simplicity and reliability. With regard 
to the second charging stage, the traditional CC charging is 
substituted with the adaptive current charging by utilizing the 
proposed enhanced PSO algorithm on the optimization of the 
battery charging system model. Due to its dominance in 
charging time and loss, the optimization of CC charging could 
bring considerable improvements to the entire charging 
process. For battery safety concerns, it is not recommendable 
to optimize the charging current in the entire SOC range since 
the battery can only bear with current within a designed range, 
especially in the low and high SOC regions. The PC stage 
applies a small charging current to smoothly rise the battery 
internal potential OCV, and the CV stage decays the charging 
current gradually to fully charge the battery while inhibiting 
voltage overshoot. 

IV. SIMULATION EVALUATION 

A. Simulation setup 

The battery charging system consists of a 25 kW DAB 
DC-DC converter and a 15 kWh battery pack with 1225 
NCR18650B cells. The parameters are shown in TABLE 1. 
Fig. 5 shows the battery's internal voltage, internal resistance, 
and internal capacitance at different SOC and temperature, 
which are obtained by hybrid pulse power characteristic 
(HPPC) test. It can be noticed that the internal resistance 

 
(a) 

 
(b) 

 
(c) 

Fig. 5. Parameters of the NCR18650B with SOC and temperature. (a) 
battery internal voltage. (b) internal resistance. (c) internal capacitance. 

 
(a) 

 
(b) 

Fig. 6. Loss model of the battery charger. (a) component loss. (b) 
efficiency map of the power converter. 

TABLE I.  PARAMETERS OF THE BATTERY CHARGING SYSTEM 

Parameters Value 

Battery prototype NCR18605B (3.6 V, 3350 mAh) 

Number of batteries in series 35 

Number of batteries in parallel 35 

Initial SOC 10% 

Supply side voltage of the converter 200 V 

Battery side voltage of the converter 150 V 

Rated power of the converter 25 kW 

Leakage inductance 10 uH 



fluctuates with the SOC, and that the internal resistance 
decreases with the increase of temperature. As an illustration 
of the converter loss model, the components’ losses and the 
efficiency of the whole charger are shown in Fig. 6. The power 
converter shows a higher efficiency in heavier load region 
because of soft switching operation. 

B. Effectiveness of the enhanced PSO algorithm 

To investigate the charging optimization in this paper, the 
PSO algorithm is operated under different parameters, i.e., 
9000 particles without enhancement, 3000 particles without 
enhancement, 3000 particles with one and both of the 
enhancement measures, as shown in Fig. 7. Here, the number 
of particles is the result of a compromise between the 
calculation complexity and the convergence of the solution, 
because the time of the solution procedure will increase with 
a higher accuracy as the number of particles increases. 
According to Fig. 7, it is evident that the adaptability of the 
PSO algorithm with 9000 particles decreases the fastest, while 
the optimization result of the PSO algorithm with 3000 
particles is not satisfactory. Both reinitialization and 
hybridization can significantly speed up the convergence of 
the fitness (a comparison between the particles based on the 
improvements of the objective loss function), and 3000 
particles with hybridization even obtains a better fitness than 
9000 particles, which verifies the effectiveness of the 
proposed strategy. Since behavior of reinitialization and 
hybridization may differ on different problems, the 
combination of the two enhancements improves the 
robustness of the algorithm. 

C. Analysis of the proposed charging strategy 

The optimized results for variable current charging 
compared with CC charging is analyzed as follows. The 
adaptive charging current is optimized into three scenarios: 
the optimization of the battery internal loss with the thermal 
effect, the optimization of the converter loss, and the 
optimization of the entire charging system. Taking CC 
charging at 0.5 charging rate as a comparison, the results are 
shown in TABLE 2. When the battery internal resistance loss 
is optimized, the battery internal loss is reduced by 0.51%, but 
the total loss is increased by 1.78% since the loss of the 
converter goes up by 3.50%. Similarly, 12.86% of the 
converter loss is declined when minimized, but the battery 
internal loss is excessively increased by 11.97%, for which the 
total loss is still not optimal. Only when the loss is optimized 
from the systematic perspective, a best solution can be 

obtained (3.16% total loss reduction), which reveals the 
significance of model accuracy and comprehensiveness to the 
optimization results. 

Regarding the proposed PC-AC-CV charging strategy, the 
complete charging waveform is shown in Fig. 8 compared 
with the CC-CV charging method. The adaptive charging 
current is appropriately lifted after the trade-off between 
battery internal loss and the power converter loss. In the 
zoomed-in subplot, the smoothed charging current fluctuates 
in the opposite direction compared with the internal resistance 
curve of the battery, which reduces the battery internal loss. 
The result shows that the loss of the entire charging process is 
reduced by 4.01%, and also shows an 8.5-minute decrease of 
the total charging time, which verifies the performance of the 
adaptive charging strategy 

TABLE I.  RESULTS OF DIFFERENT TARGETS 

Charging strategy 
Energy Loss (Wh) 

Converter 
Battery 

pack 
Total 

CC-CV 770.79a 579.34 1350.13 

Battery internal loss minimized 797.79 576.40 1374.20 

Converter loss minimized 671.68 648.67 1320.35 

System overall loss minimized 684.29 623.17 1307.46 

 

 

 

 

 

 

 

 

 

 

 

V. CONCLUSION 

An optimized adaptive charging strategy for EV battery 
packs is proposed in this paper based on a developed system 
loss model. This full model includes the electrothermal 
properties of the lithium-ion EV battery pack and an accurate 
loss estimation model for the power converter. Moreover, the 
enhanced particle swarm optimization (PSO) algorithm with 
reinitialization and hybridization is proposed to achieve an 
optimal charging process that can solve the large-scale non-
differentiable issue effectively. The simulation verifies the 
effectiveness of the proposed strategy, which achieves a 4.01% 
reduction of the total loss with a 7.48% decrease of the 
charging time. 
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Fig. 7. Convergence of the enhanced PSO algorithm 

 
Fig. 8. Comparison of the proposed charging strategy and CC-CV method 
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