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Abstract: Running gait assessment for shoe type recommendation to avoid injury often takes place within commercial premises. That is not 

representative of a natural running environment and may influence normal/usual running characteristics. Typically, assessments are costly 

and performed by an untrained biomechanist or physiotherapist. Thus, use of a low-cost assessment of running gait to recommend shoe type 

is warranted. Indeed, the recent impact of COVID has heightened the need for a shift toward remote assessment in general due to social-

distancing guidelines and restriction of movement to bespoke assessment facilities. Mymo is a Bluetooth-enabled, inertial measurement unit 

(IMU) wearable worn on the foot. The wearable transmits inertial data via a smartphone application to the Cloud, where algorithms work to 

recommend a running shoe based upon the users/runner’s pronation and foot-strike location/pattern. Here, an additional algorithm is presented 

to quantify ground contact time and swing/flight time within the Mymo platform to further inform the assessment of a runner’s gait. A large 

cohort of healthy adult and adolescents (n=203, 91M:112F) were recruited to run on a treadmill while wearing the Mymo wearable. Validity 

of the inertial-based algorithm to quantify ground contact time was established through manual labelling of reference standard ground truth 

video data, with a presented accuracy between 96.6-98.7% across the two classes with respect to each foot. 

 
Clinical Relevance: This establishes the validity of a ground contact and swing times for runner with a low-cost IoT wearable. 

 

Introduction 

Recreational and competitive running is popular, due to its low-cost accessibility, social community and significant health 

benefits [1]. As a runner looks to improve, multiple factors must be considered to maximize their running performance. For 

example, a runner could adopt High Intensity Interval Training (HIIT)-based exercises for endurance and muscle strengthening 

[2]. A runner could also optimize their ground contact time (GCT, time the foot is in contact with the ground) to minimize the 

metabolic cost of running [3] and/or decrease the rate of stiffness experienced over long periods of running [4], which can 

reduce risk of injury [5]. However, there are few methods of measuring intricate running gait characteristics such as GCT 

outside of a controlled setting, where supervision and observation with expensive equipment is often required. Moreover, 

traditional running gait assessment methods typically require manual visual analysis of a runner’s kinematics, which can be 

subject to bias or adoption of inadequate techniques [6].  

Wearable technology has allowed for a more personalized data-driven approach to running gait analysis, beyond the confines 

of specialist environments [7]. Consumer-grade products show promise in quantifying various running gait features, including 

step rate and vertical ground reaction force [8]. Wearable devices can take shape in many forms, with common technologies 

such as Pressure-Sensitive Resistors (PSR) [9, 10] and Inertial Measurement Units (IMU) [11, 12] often found within. 

Furthermore, the proliferation and integration of Cloud-computing [13] through the ubiquity of smartphones, enables complex, 

computationally expensive data-analysis in any environment. This is exemplified through the Internet of Things (IoT), ensuring 

feasibility of remote running gait assessment to everyone, everywhere. 

This study implements a low-cost, Cloud-based solution to quantify GCT and swing time (ST) of runners with a foot-

mounted IMU tethered to a smartphone application via Bluetooth. This work extends the functionality of a commercial device 

(Mymo) by proposing an algorithm and validating it with a large dataset gathered from a synchronized gold/reference standard. 

The work will enable consumers to better understand their running gait characteristics from their habitual environment. 

 

Related work 

A.  IMU-based gait analysis 

Use of IMUs in healthcare and bioinformatic applications are becoming more common as a result of the quality of data produced 

in comparison to their PSR counterpart. Their increasingly small form factor and low-cost allows for easily scalable and remote 

deployment [14, 15]. Despite their low-cost, studies have shown them to perform in equivalent accuracy to their respective 

gold-standards in running gait assessment [16, 17]. 

IMUs are well suited to running analysis due to their typical inclusion of both accelerometer and gyroscope units. For 

instance, accelerometers excel at the detection of initial contact (IC) and final contact (FC, or toe-off, TO) events through 

observation of acceleration in multiple planes, segmenting gait events for quantification of spatial and temporal characteristics 
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[18]. Equally, gyroscopes provide 3D-angular velocity, allowing for the understanding of the rotational kinematics a runner 

may exhibit [19]. 

B. Ground contact time (GCT) 

GCT has been shown to be critical in improving a runner’s biomechanical economy [4, 20]. In general, GCT is defined through 

the distance between identified points of IC (the point where the foot first strikes the ground during a stride) and TO, the point 

where the foot leaves the ground [3]. Quantifying GCT from an IMU, therefore, must rely upon known gait segmentation 

methods for the identification of IC and TO events. 

It is shown that different levels of support-cushioning technology within a running shoe can adversely affect an individual’s 

GCT [21]. For example, shoes utilizing Air® chamber technology often increase GCT, whereas ‘barefoot’ style shoes exhibit 

a shorter GCT.  

 

 

C. Swing time 

Swing time (ST) refers to the period of time the foot spends off  the ground during a stride [22], often described as the opposite 

of GCT. Although not as critical a measure as GCT, understanding a runner’s ST can lead to indirect gains in running 

performance in relation to oxygen-use optimization through increased cadence as a result of less time spent in the air [23]. 

 

D. Running gait analysis and shoe recommendation 

Mymo is a product that uses an IoT-enabled foot-mounted IMU to recommend running shoes based on a runner’s gait 

(www.mymo.co.uk). Informed by a runner’s pronation and foot-strike location extracted through a zero-crossing gradient 

maxima identification algorithm, the system utilizes deep learning to recommend neutral or support cushioned running shoes 

[18]. As an extension of the latter study, providing runners with GCT could better inform the selection of the correct running 

shoe; i.e. a runner with slow GCT may prefer a shoe that allows for faster GCT such as a ‘barefoot’ shoe [21].  

 

Methods 

A. Data capture and labelling 

Healthy adults and adolescents (i.e. those with no physical impairments and who could run for a sustained period of time) were 

recruited from community-based leisure centers and running clubs in the North East of England. Ethical approval was granted 

by Northumbria University Research Ethics Committee (Ref: 21603). All participants gave verbal consent before providing 

data during treadmill-based testing. 

Participants were asked to wear the Mymo wearable as per the manufacturer’s guidelines: on each foot via a neoprene sock 

while they ran on a treadmill, mounting the IMU to the talus joint. Participants lower-extremities were then video recorded 

while running at 5mph/8kmph from three angles (front/side/rear) with a frame rate of 240FPS to allow for a high-resolution 

frame-by-frame analysis of the runner’s GCT and ST. Participants ran for a period of 1 minute/foot, providing >7200 data 

points per runner (IMU polling at 60Hz, 1 minute/foot), Fig 1. 

 Upon completion of data capture, each video was manually labelled by a trained researcher, such that videos were loaded 

into video-processing software (VLC), where the frames between points of IC and TO events were counted and averaged for 

every stride in the footage. Videos were then cross-referenced between each data stream, wherein (i) the timestamp of IC is 

located, (ii) the timestamp of TO is located, (iii) GCT is calculated as the difference between these two points and (iv) ST was 

quantified as the distance from TO to the proceeding IC event. The process was repeated for each stride in the signal and 

averaged to provide a final GCT and ST of the runner in seconds compared video labels. 

 
Figure 1: Example of video capture with Mymo sensor from 

front, side and rear perspectives 

 

http://www.mymo.co.uk/
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B. Gait signal filtering and segmentation 

Inertial signals from the Mymo IMU were filtered by a Butterworth filter performing at 60Hz with a cutoff frequency of 5Hz 

and a sampling period of 3Hz to remove extraneous noise [18]. Once complete, a dynamic signal segmentation method utilizing 

zero-crossing gradient maxima detection was applied to the vertical acceleration (av) of the inertial signal to locate the points 

of IC within the filtered signal, splitting the signal into multiple gait cycles defined between two points of IC. 

 

C. Locating toe-off events 

As the proposed running gait cycle segmentation is focused on points of IC, to calculate GCT and ST, locations of TO events 

proceeding any given IC event are required. Inertial signals were compared to videos and it was identified that a TO event is 

denoted by the first negative gradient sign-change in av after crossing zero, Fig. 2. 

The absolute signal of av is calculated and applied to our zero-crossing gradient maxima method [18] for identification of 

peaks proceeding an IC event. Peaks identified from this approach are then identified as TO events.  During testing, false 

positives were identified within 5Hz (0.083s) from any respective point of IC, causing the calculation of GCT and ST to 

significantly under-perform. In response, a 5Hz threshold was applied from the point of IC to ensure TO events are not 

quantified within. 

 

 

D. Calculating GCT and ST 

Where GCT is defined as the quantified time the foot spends on the ground (i.e., between a point of IC and TO), GCT is 

calculated such that: 

 

𝐺𝐶𝑇𝑛 =  
𝑇𝑂𝑛−𝐼𝐶𝑛

𝑆𝑅
             (1) 

where, 𝐺𝐶𝑇𝑛 is the GCT of any given stride in seconds and SR is the sampling rate of the device (60Hz). By normalising GCT 

into seconds, a direct comparison between the output of the GCT algorithm can be made against labels provided by video data. 

To calculate ST, the time spent off the ground, an inverse of the calculation was performed by evaluating the time between 

a TO event and the proceeding IC: 

 

𝑆𝑇𝑛 =  
𝐼𝐶𝑛+1−𝑇𝑂𝑛

𝑆𝑅
             (2) 

 
Figure 2: Visualization of contact and swing time calculation with 

both IC/TO identification (green and red markers respectively)  

 

Table 1: Algorithm output vs. with (ground-truth) video 

Left Foot 

Gait Feature Algorithm (s) Video (s) p ICC(2,1) 

GCT 0.306 0.302 0.951 0.974 

ST 0.429 0.424 0.912 0.952 

Right Foot 

Gait Feature Algorithm (s) Video (s) p ICC(2,1) 

GCT 0.327 0.316 0.818 0.894 

ST 0.431 0.426 0.924 0.96 

Algorithm Output and Video Reference refer to mean values of 
respective outputs, GCT=Ground Contact Time, ST=Swing Time. 

p refers to Pearson's Correlation 
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 GCT and ST are calculated for every stride in a runner’s signal, the mean GCT and ST is then provided to account for any 

anomalous strides within the signal. 

 

E. Statistical analysis 

Validating the performance of the proposed algorithms and their respective videos was conducted in SPSS v26. Shapiro-Wilks 

tests indicated a normal distribution of all data (p>0.105). Consequently, Pearson’s correlation and intra-class correlation 

(𝐼𝐶𝐶(2,1)) models examined absolute agreement between algorithms and video. As defined by Koo and Mae, 2016 [24], ICC 

performance was rated as poor (< 0.5), moderate (0.5-0.75), good (0.75-0.9) or excellent (>0.9). Mean differences were 

calculated between algorithms and video for descriptive purposes. 

 

Results 

203 participants were recruited and undertook the protocol described. No data loss occurred across the cohort of participants. 

IMU and video-recorded running data were gathered while participants were on a treadmill for one minute per-foot (2mins 

total) whilst wearing the Mymo wearable. Results of the proposed algorithm were compared against the manually labelled data 

to assess the overall performance of the algorithms. 

 A. GCT and ST 

Our approach to quantify GCT and ST with a foot-mounted IMU performs exceptional compared to ground-truth (video) 

reference (ICC(2,1) ≥0.894), Table 1. Figure 3 illustrates the algorithm performance across the cohort of participants, displaying 

results within close boundaries of their respective video reference range, while procuring few outliers. 

Correlation and 𝐼𝐶𝐶(2,1) were excellent across left-foot GCT, ST and right-foot ST (≥0.952), with right-foot GCT classed as 

good (0.894), showing that the approach performs within low-variance of their respective video reference. Equally, observing 

the mean difference between algorithm output and video reference respective to class, our accuracy ranges from 96.6%-98.7% 

across all classes. 

 

 
 

Discussion 

Our approach to the quantification of GCT and ST from a single foot-mounted IMU from Mymo, uses a zero-gradient 

crossing approach to the location and comparison of IC and TO events of a runner’s stride. Deployed as part of an IoT 

system, Mymo aims to provide the need for transition from observer-based running gait assessment, to analysis beyond 

controlled settings, i.e. natural running situations [25]. 

Our segmentation algorithms as described in previous work [18] effectively identify and split inertial signals into their 

respective gait cycles through the use of  standardized zero-crossing gradient maxima peak detection methods; providing an 

accurate basis for the quantification of GCT and ST. 

Figure 3: Boxplots of gait parameters for left/right foot, compared 

between algorithm and ground truth, video 
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The approach presented here can accurately assess both GCT and ST of runners as compared to their corresponding video 

reference data, Table 1. Our findings are concurrent with similar approaches in the field utilizing the gold-standard approach 

of pressure-sensitive technology for gait analysis [26, 27]. 

A. Limitations and future work 

Participants were asked to run at a pace of 5mph/8kmph for 1 minute/foot. The study is limited in its accuracy across different 

running speeds/abilities, due to the relationship between running speed and impact forces [28]. Future work will require 

research into a variation of runner levels (i.e., beginner/amateur/elite) at their respective comfortable speeds to ensure the 

approaches validity in a diverse cohort of runners displaying a wide range of impact forces. Equally, testing within a range of 

locations (i.e., off the treadmill) is necessary to assess the validity of running gait assessment over ground. 

Video data were captured in different low-resource environments, exhibiting a range of brightness levels and running 

orientations (i.e., running left to right/right to left). As such, it is speculated that findings for right-foot GCT are slightly lower 

in accuracy because of reduced clarity pertaining to the exact identification of IC in darker environments when the right foot is 

behind the left. Even lighting across video capture settings in future work will help to improve identification of gait events 

from video streams. 

 

Conclusion 

Presented is a novel approach to the quantification of GCT and ST of runners from a single foot mounted commercial IMU 

wearable. Our approach works to improve the overall functionality of the system (Mymo), an IoT device to help runners choose 

the correct running shoe by providing a real-world running gait assessment. The proposed method exhibits a high accuracy of 

GCT and ST across a large cohort of runners upon a treadmill. 
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