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Methylammonium lead trihalide perovskites (MAPbX3, X: Cl, Br or I) feature fascinating 

chemical and physical properties, including tunable bandgap, large light absorption 

coefficient in the UV-Vis spectral region, long carrier diffusion length, and solution 

processability.
[1-5]

 As such, this class of materials has been intensively exploited for 

developing optoelectronic devices such as solar cells, light-emitting diodes, photodetectors, 

and phototransistors.
[6-20]

 Thus far, solution processing is the most widely used technique to 

synthesize perovskite films due to its low cost and simplicity. Furthermore, a recent transient 

THz spectroscopy study showed that bi-molecular recombination rates are much lower than 

the fundamental Langevin limit in such perovskite films, leading to high carrier mobilities.
[3]

 

However, solution-processed pristine polycrystalline films still suffer from structural 

imperfections such as grain boundaries, trapping defects and drifting cations.
[21,22]

 Perovskite 

single crystals have shown exceptionally good structural and physical properties,
[23-25]

 but 

their bulk form impedes practical device applications. In order to improve the performance of 

perovskite-based devices, particularly photodetectors, a few works have been devoted to 

interfacing perovskite films with other functional materials.
[18,26]

 In fact, such an interface-

based approach has been applied to a wide range of optoelectronic devices in achieving 

optimal performance because of the synergistic effect of individual building blocks.
[27-32]

 

Inspired by the extraordinary physical properties of semiconducting single-walled carbon 

nanotubes (CNTs),
[33-37]

 particularly their ultrahigh charge carrier mobility, we reasoned that 

marrying halide perovskites with CNTs in composite films could be a viable approach toward 

high-performance optoelectronics. However, CNTs tend to aggregate into bundles due to the 

strong intra-tube van der Waals attraction, which is a severe obstacle for its integration with 

other materials through solution processing.
[38]

 Surprisingly, we found that the perovskite 

precursor in N,N-dimethylformamide (DMF) solution is an excellent stabilizer for the 

homogeneous dispersion of semiconducting CNTs with a (7,6) chirality. This composite 
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material combines the light-absorbing characteristics of perovskites with the high-mobility 

property of semiconducting CNTs. 

Our design principle for the CH3NH3PbI3−xClx/CNTs composites is illustrated in Figure 1a. 

On light illumination, an efficient transfer of the photo-excited holes from the perovskite 

matrix to semiconducting CNTs is likely to occur, resulting in a significant reduction in 

charge recombination and hence enhanced carrier transport. The CNTs were characterized by 

transmission electron microscopy (TEM, Figure S1) and Raman spectroscopy (see Figure S2), 

and they are approximately 0.5-2 µm in length and 1.2-1.4 nm in diameter. Subsequently, we 

dispersed the CNTs in a DMF solution of CH3NH3I and PbCl2. Intriguingly, a homogeneous, 

dark dispersion formed and remained stable for more than 24 h without any noticeable 

precipitation. In contrast, the pristine CNTs quickly precipitated out in DMF solution under 

identical conditions (see Figure S3). This excellent dispersibility is of significant importance 

for device fabrication as CNTs usually agglomerate into bundles during preparation because 

of the intra-tube van der Waals intra-tube interactions. The much-improved dispersion of 

CNTs in the CH3NH3PbI3−xClx/DMF solution could be attributed to the strong electrostatic 

repulsion between CNTs that are attached with charged CH3NH3
+
 units in the perovskite 

precursor solution. 

TEM images of the perovskite/CNT composite film (see Figure S4) further confirmed that 

crystalline perovskite closely interface with CNTs. Furthermore, the hybrid layer composed of 

interpenetrating networks of CNTs in CH3NH3PbI3−xClx matrix exhibited a uniform and 

continuous surface, as observed in the scanning electron microscopy (SEM, Figure S5a) 

experiment. In comparison, the reference CH3NH3PbI3−xClx film suffered from poor surface 

coverage and pinholes (Figure S5b). Furthermore, atomic force microscopy (AFM) image 

shown in Figure S6a confirms the smooth morphology of the composite film, whereas the 

pristine perovskite film is rougher with grains up to hundreds of nanometers in size (Figure 

S6b). The improved morphology of the composite films can be ascribed to the excellent 
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compatibility of CH3NH3PbI3−xClx and CNTs. Finally, the X-ray diffraction (XRD) pattern of 

the perovskite/SWNTs composite film in Figure S7 revealed that CH3NH3PbI3−xClx in the 

channel layer remains highly crystalline.  

 

Figure 1. Design and characterizations of the perovskite/CNTs hybrids. (a) Schematic 

illustrating the mechanism of fast carrier transport in the perovskite/CNTs composites. Photo-

generated holes are injected into the CNTs, while electrons are mainly transported by the 

hybrid perovskite. (b) Energy-level alignment between perovskite and CNTs. CB, conduction 

band; VB, valence band. (c) Schematic of the perovskite/CNT phototransistor. (d) Absorption 

spectra of the perovskite/CNT composite, the CH3NH3PbI3−xClx and the CNTs samples. (e) 

Transient absorption spectra of the composite film measured with light excitation at 480 nm. 

(f) Normalized kinetic traces for ground-state bleach of the perovskite and the composite 

films probed at 760 nm and 755 nm, respectively. 

 

Besides the structural compatibility, halide perovskite and semiconducting CNTs form a 

type-II heterojunction, as revealed by a recent photoemission spectroscopy study.
[39]

 As 

shown in Figure 1b, the valence band (VB) of CNTs aligns well with the VB of 

CH3NH3PbI3−xClx, which facilitates the injection of photo-excited holes from perovskite into 

CNTs. In fact, CNT composites have recently been used as hole transporting materials in 
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perovskite solar cells.
[40]

 In the hybrid channel, hole-electron pairs are first generated in the 

hybrid film, and then the holes are injected into CNTs and transported along the CNTs under 

an applied electric field. The photo-excited electrons predominantly remain and migrate in the 

perovskite matrix. Importantly, such excited state charge transfer at the CNT/perovskite 

interface is expected to enhance the transport of both photo-excited electrons and holes via 

reduced charge recombination. 

As a prototypical demonstration of optoelectronic devices, phototransistors, which find a 

broad range of applications in communication, security, lighting, imaging, and data storage 

technologies,
[41]

 were fabricated using the perovskite/CNTs hybrid as the active channel. The 

schematic diagram of our phototransistors is illustrated in Figure 1c. A heavily n-doped Si 

wafer with a 300-nm SiO2 surface layer (capacitance Ci: 15 nF cm
-2

) was employed as the 

substrate. The perovskites are employed as the light absorber, while CNTs are used to 

facilitate the transportation of photo-excited carriers. In our devices, the thickness of active 

films is optimized as 400 nm. It should be noted that a thicker film is likely to result in the 

screening of gate bias, degrading the device performance.
[16] 

 

The wavelength-dependent absorbance of the hybrid perovskite/CNTs thin film is shown 

in Figure 1d. The optical absorbance of the pure perovskite and pure CNTs layers was also 

characterized as references. The light absorption in the hybrid film was substantially enhanced 

in the long-wavelength region as compared to the reference CH3NH3PbI3-xClx film. The 

observed enhancement could be attributed to the strong light absorption of CNTs.
[36]

 The 

improvement of light absorption in the hybrid active layer is beneficial in improving the 

photosensitivity and detectivity of the hybrid phototransistor. Overall, the strong and 

broadband light absorption in the ultraviolet and visible-light regimes underscored the hybrid 

perovskite/CNTs films as an excellent light absorber, promising for high-performance light-

harvesting and optoelectronic applications. 
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Transient absorption spectroscopy can provide direct information regarding the carrier 

dynamics and excited-state deactivation pathways.
[42]

 As shown in Figure 1e, sharp negative 

absorption peaks at around 760 nm and broad positive spectra above the bandgap in both 

perovskite and composite films were observed, which may be attributed to the ground-state 

bleach and quasi-equilibrium carrier distribution, respectively. In a recent report, a sub-

bandgap transient absorption was observed and explained by the interplay of bandgap 

renormalization and hot-carrier distribution.
[43]

 More importantly, the ground-state bleach 

recovery, which mainly reflects the charge recombination, is slower in the composite film 

compared to the pristine CH3NH3PbI3−xClx. This is in line with the expected charge separation 

at the perovskite/CNT interfaces (see Figure 1a). Furthermore, as shown in Figure 1f, The 

increase in the bulk charge recombination time constant (τ2) of the composite channel is 

expected to enhance the performance of such phototransistors.
[16,35]

 The steady-state 

photoluminescence (PL) was also performed to corroborate the scenario of charge transfer at 

the perovskite/CNT interface. A strong quenching of the perovskite PL was observed upon 

the addition of CNTs (see Figure S8), further evidencing the excited state interaction at the 

perovskite/CNTs interface, in line with previous reports on such composites.
[18,26]

 

We now turn to the electrical properties of the hybrid phototransistor and propose an 

operating mechanism. To obtain the transfer characteristics (IDS-VGS) of the hybrid 

phototransistor in dark (Figure 2a) and under light illumination (Figure 2b), we swept the 

backgate voltage VGS while keeping the source–drain bias VDS across the hybrid channel at 

fixed values. It should be noted that our device, no matter in the dark or under light, shows 

clear ambipolar behaviors, i.e., IDS increases with VGS on both polarities. In the absence of 

light (Figure 2a), the source-drain current was found to remain below 10 µA in the 

measurement range of VGS. In contrast, when the device was illuminated with a white light-

emitting diode (LED) at a photoexcitation intensity (Elight) of 10 mW cm
-2

, the channel current 

reached the level of 10 mA (Figure 2b), indicating a very high photosensitivity. 
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The field-effect mobility (μ) and threshold voltage (VTH) can be extracted from the linear 

regimes of the transfer curves according to:
[44]

 

DS i GS TH DS( )
W

I C V V V
L

                                                                                                          (1) 

where W and L are are the width and length of the channel, respectively, and Ci is the gate 

dielectric capacitance per unit area. By fitting the experimental data to equation (1), the field-

effect hole and electron mobilities in the dark were estimated as 0.175 and 0.058 cm
2
 V

-1
 s

-1
, 

respectively (Figure 2a). More importantly, in the presence of light illumination, the obtained 

mobilities of photo-generated holes and electrons are as high as 595.3 and 108.7 cm
2
 V

-1
 s

-1
, 

respectively (Figure 2b), which are more than two orders of magnitude higher than the values 

previously reported for pristine perovskite films (see a comparison in Table S1). The 

significant increase in hole/electron mobilities upon illumination with respect to the dark 

measurements suggests that the mobility of photo-induced carriers is much higher than that of 

intrinsic carriers, which is in line with our previous work on phototransistors with pure 

perovskite channels.
[16]

 Furthermore, the ultrahigh room-temperature carrier mobility obtained 

here is comparable to the values of high-quality crystalline silicon,
[45]

 which unambiguously 

showcases the suitability of the hybrid perovskite/CNTs films for high-mobility 

optoelectronic applications. 

In line with our previous report,
[16]

 for perovskite phototransistors without CNTs, the field-

effect hole/electron mobilites are only 1.62 × 10
-4

/1.17 × 10
-4

 cm
2
 V

-1
 s

-1
 under the dark 

condition and 1.37/0.87 cm
2
 V

-1
 s

-1
 under light illumination (Figure S9). It is obvious that the 

addition of CNTs significantly improves charge transport in the phototransistor channel. Even 

in dark, adding CNTs increased the channel current from the nA to the µA level. This also 

indicates that the channel/electrode interfaces are quite transparent in the hybrid devices, 

allowing high current to flow through. The high-mobility CNTs embedded in the perovskite 
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matrix provide fast tracks for carriers to transport with less scattering, which benefits from the 

good interface and effective charge transfer between perovskites and CNTs.  

Generally, various scattering mechanisms, particularly Coulomb scatterings from trapped 

charges, have a detrimental effect on the mobility of mobile charges in transistor channels.
[46]

 

There are several reasons why scatterings in our composite transistor channels are 

significantly reduced, which accounts for the observed high carrier mobility. First, in the 

perovskite/CNT composite channel, electrons and holes are separated as a result of type-II 

interface band alignment,
[39]

 so that the Coulomb scatterings between the photo-carriers are 

significantly suppressed, which is probably the main factor underlying the observed superior 

transport. Second, SEM and AFM measurements showed that the hybrid perovskite/CNT film 

is free from pinholes and much smoother than the pure perovskite film (Figure S5b and Figure 

S6b). Thus, the deleterious scattering effect from surface roughness will be suppressed. 

Finally, the high quality of the perovskite/CNT film indicates that charge traps and ionic 

defects located in the transistor channel are reduced. Charged defects such as 

methylammonium cations in hybrid perovskites are highly mobile and can drift under the 

influence of an electrical field. This has been proposed as the origin of notable hysteresis 

reported for a wide range of perovskite-based optoelectronic devices.
[12,16]

 In contrast, in our 

hybrid perovskite/CNTs films, the suppressed Coulomb scatterings between the trapped 

charges and the mobile charges, which is reflected by the ignorable hysteresis in the electrical 

measurements (Figure 2), lead to conductivity and mobility enhancement.  

As shown in Figure 2c,d, the typical output characteristics (that is, the dependence of IDS 

on VDS at different VGS) of the hybrid phototransistor are ambipolar, which are consistent with 

the transfer curves. As expected, both the incident light illumination and the gate voltages can 

substantially modulate the channel transport. Without the gate voltages, the output curves of 

the hybrid channel, in the absence and presence of light illumination, appear almost 

symmetric. However, with a high negative VGS, the channel transport exhibits the 
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characteristics of a diode with good rectification ratios, while a high positive VGS reverses the 

rectification of the diode. Furthermore, these data indicate that p-type conduction is slightly 

favored, i.e., higher current is consistently achieved with a negative gate bias. As expected, 

without any gate bias, the channel transport showed a symmetric behavior without any current 

rectification (Figure S10). 

 

Figure 2. Ambipolar transport of the hybrid perovskite/CNTs phototransistor. (a, b) Transfer 

characteristics (IDS-VGS) of the hybrid perovskite/CNTs phototransistor operating in the 

absence and presence of light, respectively. (c, d) Output characteristics (IDS-VDS) of the 

hybrid phototransistor operating in dark and under light illumination, respectively. In (a-d), 

the solid lines are data taken with voltage scanning from -5 V to + 5 V, while the dashed lines 

represent the reverse voltage scans. 

 

Photoresponsivity, R, which defines how efficiently the optoelectronic device responds to 

an optical signal, is an important figure-of-merit for evaluating the performance of 

phototransistors. It is given by: R = (Ilight-Idark)/Elight, where Ilight and Idark are the channel 

currents under light illumination and in dark, respectively. R as a function of VGS measured on 

our phototransistors is shown in Figure 3a, with a  maximum of approximately 1.17 × 10
4
 A 



   Submitted to  

 10 

W
-1

. Note that this R value is among the largest values reported for photodetectors.
[14,16,18-20,47-

50]
 In contrast, the maximum R of a CH3NH3PbI3−xClx-based phototransistor is about 13 A W

-1
 

(see Figure S11a). The four orders of magnitude enhancement obtained from the hybrid 

phototransistors indicates the synergic effect of combined halide perovskite and CNTs in the 

hybrid channel. 

 

Figure 3. Performance of the hybrid perovskite/CNTs phototransistor. (a) Responsivity (R) of 

the phototransistor as a function of back-gate voltage. The maximum responsivity reaches 

approximately 1.17 × 10
4
 A W

-1
. (b) Noise current of the hybrid phototransistor. Measured 

noise current of the hybrid perovskite/CNTs phototransistor at different frequencies. The 

calculated shot noise limit is also plotted for comparison. (c) Responsivity (R) and Detectivity 

(D*) of the hybrid phototransistor measured at different wavelengths with the light intensity 

of 10 mW cm
-2

. (d) Effect of the CNTs concentration on the performance of the hybrid 

perovskite/CNTs phototransistor. µh, µe, R and D* denote hole mobility, electron mobility, 

responsivity and detectivity, respectively. 

 

Specific detectivity D*, which characterizes the ability of the devices to detect the incident 

light signal is another critical parameter for evaluating the photodetector’s performance. The 
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noise current is the main factor that limits the specific detectivity of a photodetector. The total 

noise current of our phototransistor was directly measured with a lock-in amplifier. As shown 

in Figure 3b, the measured noise current was dominated by the shot noise, and accordingly, 

the specific detectivity of a photodetector is given by
[14]

 

 
1/2

n

( )
*

( / )

Af
D

i R
                                                                                                                                               (2)     

where A, f and in are the effective area of the device, the electrical bandwidth and the noise 

current, respectively. The detectivity, together with the photoresponsivity, of our hybrid 

phototransistor as a function of wavelength is plotted in Figure 3c. At an illumination light 

intensity of 10 mW cm
-2

, the maximum D* of 3.68 × 10
14

 Jones at about 400 nm was obtained 

from the hybrid device, whereas the phototransistor based on the pristine perovskite showed a 

much lower D* of 4.0 × 10
12

 Jones (see Figure S11b). We note here that the obtained D* is 

comparable to the highest values reported for perovskite-based photodetectors (a comparison 

with some typical works on perovskite-based photodetectors is given in Table S2),
[14,16,18-20,26]

 

making the hybrid phototransistor attractive for high-sensitivity optoelectronics.  

To further examine the role of CNTs in hybrid films, we investigated a series of 

perovskite-based phototransistors comprising different concentrations of CNTs. As shown in 

Figure 3d, the highest mobility and the optimal device performance were obtained at a 

concentration of 1 wt.%. We should note that the hole mobility of nearly 600 cm
2
 V

-1
 s

-1
 is the 

highest among the values reported for perovskite-based materials, including perovskite single 

crystals.
[23-25]

 In our hybrid films, CNTs play an important role in interacting with the 

perovskite and transporting charges, thereby significantly improving the overall mobility. 

However, at a high concentration of CNTs (3 wt.%), the resulting device showed a high 

conductance but a weak p-type field effect (Figure S12). This suggested the formation of a 

percolation network of CNTs, which dominated the charge transport. Since photocurrent is 

proportional to mobility, the optimal photoresponsivity and detectivity of the phototransistors 
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were also achieved with 1 wt.% of CNTs (Figure 3d). Moreover, we measured 20 plus hybrid 

phototransistors with 1 wt.% of CNTs and the statistics of their performance were 

summarized in Figure S13. Such hybrid devices exhibited high sensitivity toward moisture, 

light and other factors in ambient conditions. 

 

Figure 4. Photocurrent response of the hybrid perovskite/CNTs phototransistor. (a) Temporal 

Photocurrent responsive characteristic of the hybrid perovskite/CNTs phototransistor 

measured at VGS = -3 V and VDS = -3 V, respectively. (b) Temporal photocurrent response, 

indicating a rise time of 738 µs and a decay time of 912 µs. 

 

Another important parameter of optoelectronic devices is their response speed. The 

temporal response of the hybrid phototransistor was characterized using chopper-generated 

light pulses with a time interval of 1.0 s and an intensity of 10 mW cm
-2

. The device was 

measured under biases of VDS = -3 V and VGS = -3 V. As shown in Figure 4a, the dynamic 

photoresponse of the hybrid phototransistor is stable and reproducible, indicating that the 

device can function as a good light switch. The temporal photocurrent response of the hybrid 

phototransistor is presented in Figure 4b. The switching times for the rise (output signal 

changing from 0 to 90% of the peak output value) and the decay (IDS decreasing from peak 

value to 10%) of the photocurrent are about 738 µs and 912 µs, respectively, which can also 

be taken as the carrier lifetime τlife. It is noted that the response speed of our hybrid 

phototransistor is faster than most of organic, quantum dot and hybrid photodetectors 

(typically on the order of milliseconds),
[18,27,28,31,48-50]

 which arise from good carrier transport 
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in the hybrid films. The photoconductive gain (G) is the ratio between τlife and the transit time 

(τtran, which is the time during which holes sweep through the CNTs to the electrodes), and 

given by
[16,27,29,31]

 

life life

2

tran DS/
G

L V

 

 
 


                                                                                                                (3) 

Based on the measured carrier recombination time and the carrier mobility, the gain of our 

hybrid devices was estimated to be approximately 8000, which further underscores the hybrid 

perovskite/CNT films as a promising material candidate for photoelectronic applications. 

In summary, we have demonstrated a novel type of hybrid thin films by combining light-

absorbing perovskite and carrier-transporting CNTs. In DMF solutions, halide perovskite and 

CNTs are found to possess excellent material compatibility and can be processed into high-

quality composite films. Furthermore, detrimental Coulomb scatterings are effectively 

suppressed as a result of the type-II band alignment at the interfaces and the high quality of 

the perovskite/CNT composite films. The ambipolar phototransistors made from such 

perovskite/CNTs films exhibit excellent figures of merit, including an remarkable hole 

mobility of 595.3 cm
2
 V

-1
 s

-1
, an ultrahigh specific detectivity of 3.68 × 10

14
 Jones, and a fast 

response time of several hundred µs. From a general perspective, these perovskite/CNTs 

composite films open up a new door toward developing high-performance optoelectronic 

devices, and the strategy may help advance other hybrid-based technologies. 

Experimental Section  

    Perovskite/CNTs solution preparation: Semiconducting CNTs with (7,6) chirality (Sigma-

Aldrich, > 98 wt.%) were purified via refluxing in 3M HNO3 for 12 h. Then, the CNTs were 

separated by ultracentrifugation, washed with excess of water several times and freeze-dried. 

Methylammonium iodide (MAI) and lead(II) chloride (PbCl2, Sigma-Aldrich, 98%) were 

dissolved in DMF (Sigma-Aldrich, 99.8%) with a molar ratio 3:1 to form the perovskite 

precursor solution. To form the perovskite/CNTs solution, the purified CNTs was mixed into 
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the perovskite solution upon sonication for 2 h., with the CNTs/perovskite weight 

concentration ranging from 0 and 3%. The precursor solution must be stored in glove box and 

used quickly after mixing to avoid degradation. 

    Device fabrication: Si/SiO2 (300 nm) substrates were cleaned by sonication in acetone, 

ethanol and deionized water, respectively. After drying in flowing nitrogen, we treated the 

substrates with oxygen plasma. The hybrid solution was spin-coated on substrates at 2000 

rpm for 20 seconds and annealed at 100 °C for 60 minutes in a glove box. For comparison, 

pristine perovskite films were prepared without CNTs following the same protocol. Ti/Au (5 

nm/80 nm) source (S) and drain (D) electrodes were deposited via thermal evaporation 

through a shadow mask, defining phototransistor channels with length of 50 µm and width of 

1000 µm. Finally, the fabricated devices were annealed to reduce the charge traps and to 

improve the contacts between the active layer and the S/D electrodes. 

    Measurements: XRD was performed on a Bruker D8-Advance diffractometer using Cu Kα 

radiation (λ = 1.5406 Å). The surface morphology of the films was measured using SEM (FEI 

Nova Nano 630). TEM experiments were carried out using a Titan ST instrument operated at 

300 kV. The absorption and steady-state PL were recorded using Cary 6000i 

spectrophotometer with an Edinburgh Instrument spectrofluorometer. Helios UV-NIR 

femtosecond transient absorption spectroscopy system (Ultrafast Systems, LLC) was used to 

characterize the samples. Transport measurements were conducted using a Signotone 

Micromanipulator S-1160 probe station equipped with LED and Keithley 4200 SCS. Noise 

current was measured with a lock-in amplifier SR830. 
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A simple and straightforward synthetic strategy to enhance the carrier mobility of 

photo-responsive hybrid perovskite films is realized via coupling with single-walled 

carbon nanotubes. Hole and electron mobilities of the composite films reach record-high 

values of 595.3 and 108.7 cm
2
 V

-1
 s

-1
, respectively, and ambipolar phototransistors exhibit an 

ultrahigh detectivity of 3.7 × 10
14

 Jones and a responsivity of 1 × 10
4
 A W

-1
. Such 

perovskite/carbon nanotube composite films provide a versatile platform for diverse fields of 

optoelectronics, solar energy conversion, and molecular sensing.  

 

Keywords: photodetector, phototransistor, perovskite, carbon nanotubes, mobility 
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Figure S1. High-resolution transmission electron microscopy (HRTEM) image of a SWNT 

used to fabricate the perovskite/SWNTs hybrids. The diameter of SWNT is about 1.4 nm.  
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Figure S2. Raman spectrum of SWNTs used to fabricate perovskite/SWNTs hybrids.  

 

 

 

 

 

Figure S3. Digital photographs of (I) the CH3NH3PbI3−xClx/SWNTs precursor and (II) 

SWNTs in N, N-dimethylformamide (DMF) solutions taken 24 h after preparation. A 

homogeneous, dark dispersion of SWNTs in DMF solution of CH3NH3I and PbCl2 was 

prepared, and remarkably, it remained stable for more than 24 h without precipitation, while 

the pristine SWNTs quickly precipitated out in DMF solution. 
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Figure S4. TEM data of the hybrid film. (a) Transmission electron microscopy (TEM) image 

of the hybrid perovskite/CNTs film. Note that the contrast of the curling CNTs is much 

weaker than that of perovskite due to their lower molecular weight. (b) Selected area electron 

diffraction (SAED) pattern. Symmetric diffraction spots and continuous diffraction rings 

displayed in the SAED pattern belong to crystalline perovskite and CNTs, respectively. (c) 

Closer view of an area with perovskite and CNTs in proximity to each other, forming close 

interfaces. 
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Figure S5. SEM images of the films. (a) Scanning electron microscopy (SEM) image of the 

perovskite/SWNTs film on Si/SiO
2
 substrate. The hybrid thin film appears smooth and 

uniform surface morphology. Some SWNTs replace perovskites in the hybrid thin film, and 

the superior tracks are used to achieve carrier transport with less scatter. (b) SEM image of a 

pristine perovskite film on Si/SiO
2
 substrate. The pristine perovskite film suffers from poor 

surface coverage and pinholes. 
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Figure S6. Atomic force microscopy (AFM) characterizations of the hybrid and perovskite 

films. The root-mean square roughness of the hybrid film is approximately 7.83 nm, 

demonstrating a smoother surface compared to that of the perovskite film. Scale bar, 500 mm. 
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Figure S7. XRD pattern of the films. X-ray diffraction (XRD) spectra of the hybrid 

perovskite/SWNTs film on Si/SiO
2
 substrate (black line) and the sole Si/SiO

2
 substrate (red 

line), respectively. The peaks marked with * belong to the Si/SiO
2
 substrate. The main 

diffraction peaks at 14.02°, 28.35°, 37.74°, 43.16° and 58.78° can be assigned to <110>, 

<220>, <310>, <330>, <440> planes of the perovskite, respectively, which the perovskite 

CH3NH3PbI3−xClx composited to hybrid thin film possess the expected orthorhombic crystal 

structure with high crystallinity. 

 

Figure S8. PL spectra. Steady-state photoluminescence (PL) spectra of the hybrid 

perovskite/SWNTs and the pristine perovskite films. A strong quenching of the perovskite PL 

peak at ∼760 nm was observed upon the addition of SWNTs. 
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Figure S9. Performance of a control device employed the pure perovskites in the 

phototransistor channel. (a,b) Transfer characteristics of the perovskite-based phototransistor 

in the dark and under light illumination, respectively. The field-effect hole/electron mobilites, 

calculated from the transconductance using  in the linear regime, 

are just 1.62 × 10
-4

/1.17 × 10
-4

 cm
2 

V
-1

 s
-1

 in the dark condition and 1.37/0.87 cm
2 

V
-1

 s
-1

 

under light illumination, respectively. (c,d) Output characteristic of the perovskite 

phototransistor in dark and under light illumination, respectively.  
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Figure S10. I-V curves for the device without the gate bias. The dependence of IDS on VDS for 

the hybrid phototransistor at VGS = 0 V, measured in the dark and under light illumination, 

showing symmetric behavior without any current rectification. 
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Figure S11. Performance of the perovskite phototransistor. (a) Responsivity (R) of the 

perovskite-based phototransistor operating at V
DS

 = -5 V and V
DS

 = 5 V, respectively. (b) 

Responsivity (R) and specific detectivity (D*) of the perovskite phototransistor at different 

wavelengths with the light intensity of 10 mW cm
-2

. 

 

 

Figure S12. Transfer characteristics of a hybrid phototransistor with the SWNTs 

concentration of 3 wt. %. The hybrid film presents high conductance but a weak p-type field 

effect, indicating that the SWNTs form a fully percolation network, which dominates the 

charge transport. 
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Figure S13. Performance statistics of the hybrid phototransistors. Histograms of the 

performance (a, hole mobility values; b, responsivity values) measured on 20 devices using 

the perovskite/SWNTs hybrid film with the SWNTs concentration of 1 wt. %. We observed 

notable fluctuations of hole mobility (µh) and responsivity (R), which appears to correlate 

with the high sensitivity of devices toward moisture, room light and other factors in ambient 

conditions. Therefore, further experiments are warranted to explore the optimal and 

reproducible fabrication of hybrid phototransistors with embedded SWNTs in halide 

perovskite films. 
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Table S1. A summary of published typical carrier mobility of hybrid perovskites. 

Ref. Year Material Carrier mobility 

(cm2 V-1 s-1) 

Condition Mothed 

1 2013 CH3NH3PbI3 film ∼66 RTa Hall-effect measurements 

2 2014 CH3NH3PbI3−xClx film 11.6 RT transient THz spectroscopy 

3 2014 CH3NH3PbI3 film 25 RT Combination of PLb, TAc, TRTSd, 

and TRMCe measurements 

4 2015 CH3NH3PbI3 film 7.2 × 10-2 78 K Light-emitting field-effect 

transistor 

5 2015 CH3NH3PbI3−xClx film 1.24 RT, Under 

illumination 

Phototransistors 

6 2015 CH3NH3PbI3−xClx film 1.3 RT Field-effect transistors 

7 2015 CH3NH3PbI3 film ∼7.5 × 10-3 150 K Field-effect transistors 

8 2015 CH3NH3PbI3 single 

crystal 

2.5 

 

300 K  SCLCf technique 

8 2015 CH3NH3PbBr3 single 

crystal 

115 300 K Time-of-flight 

technique 

9 2015 CH3NH3PbI3 single 

crystal 

164 ± 25 RT SCLC technique 

10 2015 CH3NH3PbI3 single 

crystal 

67.2 ± 7.3 RT SCLC technique 

10 2015 CH3NH3PbBr3 single 

crystal 

24.0 ± 0.3 RT SCLC technique 

11 2015 CH3NH3PbI3 

microplate crystal 

∼2.5 77 K Field-effect transistors 

12 2015 CH3NH3PbCl3 single 

crystal 

42 ± 9 RT SCLC technique 

a
RT: room temperature. 

b
PL: photoluminescence. 

c
TA: transient absorption. 

d
TRTS: time-resolved terahertz 

spectroscopy. 
e
TRMC: time-resolved microwave conductivity. 

f
SCLC: space-charge-limited current. 
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Table S2. Progress in the performance of the photodetectors based on hybrid perovskites. 

Ref. Year Materials Configuration Responsivity  

(A W-1) 

Detectivity 

(Jones) 

Response 

time 

13 2014 CH3NH3PbI3 film solar cell The 

photocurrent 

amplification 

(over 100) 

  

14 2014 CH3NH3PbI3/TiO2 film photodetector 0.49 × 10-6  0.02 s 

15 2014 CH3NH3PbI3 film photodetector 3.49  < 0.2 s 

16 2014 CH3NH3PbI3-xCIx film photodetector  ∼1014 160 ns 

17 2014 CH3NH3PbI3 nanowires phototransistor 5 × 10-3  < 500 μs 

18 2015 CH3NH3PbI3 film phototransistor 14.5   0.2 μs 

19 2015 Graphene-CH3NH3PbI3 

composites 

phototransistor 180 ∼109 87 ms 

20 2015 CH3NH3PbI3 film photodetector 242  5.7 ± 1.0 μs 

21 2015 CH3NH3PbI3 film photodiode  3 × 1012 < 5 μs 

22 2015 CH3NH3PbI3 film photodetector  7.4 × 1012 120 ns 

23 2015 CH3NH3PbI3 film optocoupler 1.0  20 µs 

24 2015 CH3NH3PbI3 nanowires photodetector 1.3 2.5 × 1012 0.3 ms 

5 2015 CH3NH3PbI3/CH3NH3PbI3-

xCIx film 
phototransistor 320/47  5 µs 

25 2015 CH3NH3PbI3 
/nanocrystalline graphite 

film 

photodetector 0.795  < 25 ms 

26 2016 CH3NH3PbI3/MoS2 hybrid 
structure 

photodetector 1.94 × 106 1.29 × 1012 6.2 s 

27 2016 Heterostructured 
WS2/CH3NH3PbI3 

photoconductor 17 2 × 1012 2.7 ms 

10 2016 planar-integrated 
CH3NH3PbBr3 single-crystal 

photodetector 4000  25 µs 
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