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Abstract: 

Organic-inorganic perovskites have arrived at the forefront of solar technology due to their 

impressive carrier lifetimes and superior optoelectronic properties. By having the cm-sized 

perovskite single crystal and employing device patterning techniques, and the transfer length 

method (TLM), we are able to get the insight into the metal contact and carrier transport 

behaviors, which is necessary for maximizing device performance and efficiency. In addition to 

the metal work function, we found that the image force and interface charge pinning effects also 

affect the metal contact, and the studied single crystal CH3NH3PbBr3 features Schottky barriers 

of 0.17 eV, 0.38 eV, and 0.47 eV for Au, Pt, and Ti electrodes, respectively. Furthermore, the 

surface charges lead to the thermally activated transport from 207 K to 300 K near the perovskite 

surface. In contrast, from 120 K to 207 K, the material exhibited three-dimensional (3D) variable 

range hopping (VRH) carrier transport behavior. Understanding these fundamental contact and 

transport properties of perovskite will enable future electronic and optoelectronic applications. 

Graphical abstract 
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1. Introduction 

Organic-inorganic hybrid perovskite-based (MAPbX3, MA = CH3NH3
+
; X = Cl

-
, Br

-
 or I

-
) 

photovoltaics are rapidly challenging established solar technologies. In just a few years, 

researchers have found ways to increase the power efficiency of planar heterojunction perovskite 

solar cells to over 20%, making it the fastest-advancing photovoltaic technology to date [1-5]. 

Moreover, these solar cells have low production costs, which could make perovskite modules 

competitive in the marketplace [6]. With superior optoelectronic properties, perovskites also 

demonstrate strong prospects in other applications, such as light emission and lasing [7-9].  

However, due to grain boundary defects, the electron-hole diffusion lengths in amorphous 

and polycrystalline perovskite thin films are small, limiting the efficiency of photo-generated 

charge collection [10]. Furthermore, several key obstacles currently prevent commercialization of 

perovskite electronics and optoelectronic technologies. For example, the performance of 

perovskite solar cells tends to vary, with an average efficiency that is typically 4–10% lower than 

the highest efficiency reported [11]. Additionally, the appearance of hysteresis effects in I-V 
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measurements suggests perovskites suffer from reproducibility and stability issues that must be 

overcome to move the technology forward [12,13]. However, the use and study of polycrystalline 

perovskites inhibit the full understanding on these materials as the low crystal quality obscures 

intrinsic electrical and optoelectronic properties.  

 In response, researchers have devoted considerable efforts to synthesizing mm-scale single 

crystal perovskites that are free of grain boundary defects [14-17]
 
to enable a variety of 

high-performance applications, including photodetection, gas sensing, and photovoltaics [18-20]. 

These kinds of high quality perovskites mitigate hysteresis effects owing to the lower density of 

defects, which reduces charge trapping during device operation and leads to higher carrier 

mobilities and diffusion lengths [16]. In fact, ultra-long electron-hole diffusion lengths >175 μm 

have been reported in single crystal CH3NH3PbI3, which is significantly larger than the diffusion 

lengths in amorphous or polycrystalline thin films (several hundred nanometers) [15]. Single 

crystal perovskites also provide an ideal platform to gain insights into the materials’ fundamental 

properties, which would enable us to explore the limits of device performance. 

In addition to using single crystal perovskites, the key to achieving better device 

performance is to control charge carrier flow, including by means of charge injection and carrier 

transport. Beginning with charge injection, the electrical contact between the electrode and the 



5 

active material is known to play a decisive role in determining device performance [21]. 

Perovskite-based solar cells commonly use organic hole transport layers, such as 

2,2’,7,7’-tetrakis(N,N’-di-p-methoxyphenylamine)-9,9’-spirobifluorene (spiro-OMeTAD) and 

poly (3-hexylthiophene) (P3HT). However, these materials are unstable in moisture [22,23], 

which means additional device protection or sealing is necessary for practical use. Since no 

encapsulation system is perfect, the degradation of such compounds over time may contribute to 

the reproducibility issues associated with perovskites. Furthermore, the price of spiro-OMeTAD 

and P3HT is almost ten times higher than that of Au [24,25].  

In contrast, metals typically have high resistance when exposed to humidity, and therefore 

single crystal perovskites contacted to metal electrodes are more stable in air, preventing 

degradation of device performance and retaining the material’s electrical properties for as long as 

25 days at 50% average humidity (Fig. S1). Considering the excellent humidity resistance, 

cost-effectiveness, and precisely controlled electrical/optoelectronic properties, the development 

of metal contacts for single crystal perovskites is crucial. The investigation of the metal contact 

of perovskite can help us to achieve efficient carrier injection from electrode to perovskite, in 

which the contact resistance is minimized in order to prevent significant energy loss or carrier 

scattering at the interface of the metal/semiconductor (MS) junction.   
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Understanding the carrier transport mechanism in perovskites is also important for learning 

how to increase device efficiency. Up to date, due to challenges in large crystal growth method, 

and robust perovskite device patterning technique enabling the measurement of transport 

properties, only indirect experimental characterization techniques have been reported in recent 

years, such as mobility measurements, terahertz, and time-resolved photoluminescence, to 

observe the scattering and carrier recombination in the perovskite crystal [26-29]. Moreover, due 

to the existence of trap states, mobile ions, ferroelectricity, and interface charge in perovskite, the 

carrier transport is complicated and highly depend on the crystal growth method [30]. Briefly 

speaking, the research on the carrier transport in perovskite is still in infancy stage. More direct 

investigation of temperature dependent conductivity of perovskites can help us to gain insights 

into the transport mechanism.             

In this study, we have investigated the metal contact and carrier transport mechanisms of 

single crystal CH3NH3PbBr3, which was grown using the anti-solvent vapor-assisted 

crystallization method (AVC) [16]. We deposited a variety of metals (Au, Pt, and Ti) as the 

electrodes on the surface of the perovskite to study the Schottky contact at the MS junction. The 

ideal Schottky barrier height for CH3NH3PbBr3 contacted with Au, Pt, and Ti should be 0.6 eV, 

0.15 eV, and 1.27 eV, according to the electron affinity model. However, our results show that 

the experimental Schottky barrier height for Au, Pt, and Ti contacts with this perovskite are 0.17 



7 

eV, 0.38 eV, and 0.47 eV, which we attribute to the influence of image forces and interface 

pinning effects. The carrier transport mechanism was investigated on lithography patterned 

perovskite device using the TLM, which can eliminate the influence of contact resistance and 

helpful to measure the conductivity of the perovskite itself [31-34]. By studying the current flows 

near the surface of CH3NH3PbBr3 crystal, our results suggest that the surface charges would 

induce the thermally activated transport in the temperatures ranging from 207 K to 300 K with an 

activation energy around 0.2 eV. On the other hand, a 3D VRH conduction mechanism 

dominates current transport from 120 K to 207 K. We also confirmed the VRH carrier behavior 

with various Mott parameters. This study of the metal contact and carrier transport properties in 

single crystal CH3NH3PbBr3 provides fundamental knowledge that can be used to optimize future 

perovskite-based device performance. 

 

2. Materials and experiments 

2.1 Materials  

The following reagents and materials were purchased from Sigma-Aldrich and used without 

further purification: hydrobromic acid (48 wt% in H2O, ≥99.99%), lead(II) bromide (≥98%), 

methylamine (40 wt% in H2O), ethanol (≥99.8%), diethyl ether (anhydrous, ≥99.0%), 



8 

N,N-dimethylformamide (DMF; anhydrous, 99.8%), dichloromethane (DCM; anhydrous, 

≥99.8%), and 4a molecular sieve. We also purchased hexane (HPLC) from Fisher Chemical. 

2.2 Single crystal CH3NH3PbBr3 synthesis  

First, an equimolar amount of hydrobromic acid and methylamine were mixed together and 

stirred for 2 h at 10 °C to form the precursor, methylammonium bromide (CH3NH3Br), which we 

recrystallized in ethanol. Next, we dissolved an equimolar amount of PbBr2 and the CH3NH3Br 

crystals in DMF. CH3NH3PbBr3 single crystals were then grown by the AVC method [16], in 

which the anti-solvent DCM vapor diffused into the DMF. Note that the perovskite can only 

crystalize when the diffusion rate of the DCM vapor is slow. To achieve the slow diffusion rate, 

we covered the glass sample vial with parafilm featuring a small pinhole. The perovskite crystal 

sizes were highly dependent on the surrounding temperature, as shown in Fig. S2. We removed 

the crystals from the DMF and cleaned them with lens paper soaked in anhydrous hexane (hexane 

and 4a molecular sieve, 1:1 volume). 

2.3 Perovskite crystal grinding and polishing  

We coated diamond paste (mesh 8000, Best Diamond Industrial Co., Ltd.) on an electric 

grinder (Taiwan Po workers PT-5721F) and ground the perovskite crystals for 10 mins (5000 

rpm). Then, the crystal surfaces were polished with lens papers and different diamond grinding 
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pastes in sequence (mesh 8000, mesh 28000, mesh 60000, mesh 200000). We ran each 

paste-polishing step 200 times. After polishing, we cleaned the crystals with lens paper and 

anhydrous hexane. 

2.4 Experiments  

To investigate the Raman and photoluminescence (PL) properties of single crystal 

CH3NH3PbBr3, we employed a confocal Raman/fluorescence microscope system (NTEGRA 

Spectra, NT-MDT) using a laser with an excitation wavelength of 473 nm and a spot size of ~0.5 

μm in diameter. The micro-Raman spectra were measured using a backscattering geometry and 

the incident laser light propagated parallel to the z-axis of the CH3NH3PbBr3 single crystals at 

different polarization angles. The UV-vis absorption spectrum of the perovskite was obtained 

using a Shimadzu UV 3600 spectrophotometer. For single crystal X-ray diffraction (XRD) 

measurement, a small fraction of the crystal (~0.1 × 0.1 × 0.08 mm
3
) was cleaved from the 

as-grown CH3NH3PbBr3, and structural details were confirmed using a Bruker KAPPA APEX 

DUO Diffractometer featuring IμS Cu radiation at 296 K (λ = 0.71073 Å), an APEX II 4K CCD 

detector, and a microfocus X-ray source. Phase purity was investigated with powder XRD using a 

Bruker D8 Advance diffractometer (Bragg–Brentano geometry) equipped with a Cu Ka X-ray 

tube. Thermogravimetric analysis (TGA) of both single crystalline and polycrystalline 

CH3NH3PbBr3 was performed at a heating rate of 2 ºC/min, from 25 ºC up to 600 ºC under 
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nitrogen atmosphere using a NETZSCH TGA/STA-QMS 403 C. For scanning kelvin probe 

microscopy (SKPM) measurement, the surface morphology and surface potential of the sample 

was examined with a multifunction atomic force microscope (Cypher ES - Asylum Research 

Oxford Instruments). Asylum research Ti/Pt-coated silicon cantilevers were used for the 

experiment. The tip curvature radius was ∼28 nm and the resonance frequency was ∼70 kHz. For 

photoelectron spectroscopy in air (PESA) measurement, the ionization potential of the single 

crystal CH3NH3PbBr3 was investigated with a photoelectron spectrometer (Riken Keiki AC-2) in 

air with a UV power setting of 35 nW. For I–V characterization, a Keithley 4200-SCS 

semiconductor characterization system was used to measure the I–V curves of the single crystal 

CH3NH3PbBr3 at various temperature conditions. The temperature control was performed with a 

Lakeshore 336 Temperature Controller in combination with an EverBeing Cryogenic Probe 

Station CG-196-200. 

 

3. Results and Discussion 

We grew high-quality, cm-sized single crystal CH3NH3PbBr3 using the AVC method (Fig. 

1a). This particular perovskite was chosen for study because it is stable in air and has a planar 

surface. In contrast, AVC-synthesized CH3NH3PbI3 is relatively unstable
 
[22] and CH3NH3PbCl3 

is visible-blind [35] because of its wide bandgap (2.88 eV), which precludes its use in solar 
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applications. We characterized the CH3NH3PbBr3 with a variety of techniques, beginning with 

XRD of powders ground from the sample’s large crystals. The XRD spectrum revealed sharp, 

strong peaks that agreed with the calculated results, indicating the high purity of the 

CH3NH3PbBr3 crystal (Fig. 1b). Single crystal XRD analysis (Tables S1 and S2) indicated the 

material featured a cubic lattice structure, as shown in Fig. 1c. We also measured the Raman 

spectra of the CH3NH3PbBr3 crystal rotated around its perpendicular axis to control the relative 

incident polarization angle of the 473 nm laser excitation. The periodic Raman intensity of the 

most intense peak (332 cm
-1

) as a function of the rotation angle indicates that the CH3NH3PbBr3 

is single crystalline according to Raman selection rules (Fig. 1d) [36,37]. Additionally, the 

optical absorption spectra revealed a sharp band edge cut-off that corresponded to the 

perovskite’s bandgap of 2.3 eV (Eg), which we obtained from the PL spectrum (Fig. 1e).  

Another important physical feature of perovskites is their thermal stability [38]. According 

to TGA measurement, the crystal starts to crack at 320 
o
C (Fig. 1f), demonstrating the robustness 

of the single crystal CH3NH3PbBr3 material compared to the polycrystalline version, which 

begins to crack around 210 
o
C (Fig. S3). We also conducted Hall effect measurements at room 

temperature and estimated the carrier concentration of single crystal CH3NH3PbBr3 to be in the 

range of 5x10
10 

cm
-3 

to 3x10
11

 cm
-3

, while the mobility was between 30 cm
2
 V

-1
 s

-1
 and 55 cm

2
 

V
-1

 s
-1

. Moreover, the single crystal CH3NH3PbBr3 displayed p-type behavior in the Hall 
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measurements, indicating that hole transport dominates the perovskite’s electrical properties 

[39,40]. 

Using a shadow mask, we fabricated different metal-semiconductor-metal (MSM) structures 

on the surface of the CH3NH3PbBr3 crystals by sputtering 100 nm thick Pt, Au, and Ti electrodes 

with a spacing of 100 m, which feature a wide range of metal work functions (Pt = 5.65 eV, Au 

= 5.1 eV, Ti = 4.33 eV) [41]. In this study, we treated the perovskite as a semiconductor, which is 

assumed to form a Schottky barrier at the MS interface. The equivalent circuit consists of a 

resistor and two back-to-back Schottky diodes (Fig. 2a) [42]. Then we surveyed the I-V 

characteristics of the samples made with Pt, Au, and Ti electrodes using a Keithley 4200 

semiconductor characterization system (Fig. 2b). For all three metals, the I-V curves show 

exponential increase in current with voltage, demonstrating the perovskite displays Schottky 

behavior rather than Ohmic [43], which is in agreement with our previous assumption that the 

single crystal CH3NH3PbBr3 can form a Schottky barrier at the MS interface. Furthermore, the 

normalized I-V curves demonstrate that the Au contact has the smallest turn-on voltage, implying 

the Schottky barrier height at the interface of the Au/perovskite junction is lower than that for the 

Pt and Ti/perovskite junctions. Here, the AVC-synthesized perovskite single crystal shows 

insignificant hysteresis effect in I-V measurements under different scan rates as shown in Fig. S4, 

which helps us to study the Schottky barrier height more precisely.  
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We next explored charge injection through the Schottky contacts using 

temperature-dependent I-V measurements. The two-probe I-V measurements, performed on the 

perovskite with Au electrodes at temperatures ranging from 200 K to 275 K, show that resistivity 

decreased with temperature, indicating the insulating behavior of the CH3NH3PbBr3 (Fig. 2c). 

We can explain the perovskite’s insulating behavior by the fact that its Fermi energy level lies in 

the region of the localized states that are below the lowest level of its conduction band, leading to 

a shortage of free carriers. When temperature increases, more thermally excited carriers jump to 

the conduction band, resulting in decreasing resistivity. 

The total resistance (Rt) of the MSM system can be treated as a series of the forward-biased 

junction resistance (Rf), the resistance of the perovskite (Rp), and the reverse-biased junction 

resistance (Rr). At low bias (we applied a bias lower than 1 V for measuring the metal/perovskite 

Schottky contact), the charges will meet a much greater resistance on the reverse-biased side, and 

therefore the relatively small Rf and Rp values can be neglected [44,45]. As a result, the 

reverse-biased Schottky junction dominates the total voltage drop, which we can analyze using 

different charge injection models. Single crystal perovskites with ultra-long carrier diffusion 

lengths are more appropriately described by thermionic emission theory, which assumes that no 

collision occurs between carriers in the depletion region [46]. According to thermionic emission, 

phonon thermal energy excites the charge carriers and emits them over the barrier, resulting in a 
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current flow that depends exponentially on temperature. The saturation current density in the 

reverse-biased junction can be described as
 
[21,47] 

   
2 e x p BE

B

q
J A T

K T

   
  

 
,                           (1) 

in which A
**

 is the equivalent Richardson constant, q is the electron charge, ΦBE is the effective 

Schottky barrier height, and KB is the Boltzmann constant. Based on Equation 1, the 

bias-dependent ΦBE can be determined from the slope of ln (J/T
2
) versus 1/T, which is shown in 

Fig. 2d-f for the Au, Pt, and Ti contacts, respectively. From these results, we found that ΦBE 

decreased as the bias increased. For example, for the Au contact, the ΦBE was 153 meV at 0.5 V 

bias and 144 meV at 1 V bias. The lowering of the effective barrier height with increasing bias 

voltage suggests that the image force plays an important role in the Schottky junction. Due to 

image force lowering of the Schottky barrier [48], the effective barrier height becomes lower than 

the ideal value. When the carriers approach the junction interface from the metal side, the 

corresponding image charges are built up at the perovskite surface due to the change of electric 

field. Then, the attracting image force between the carrier and its image charge is generated, 

which reduces the Schottky barrier height at the junction interface. In addition, the potential of 

the image charges grows simultaneously when the applied voltage increases, leading to a 
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voltage-dependent lowering of the barrier. This Schottky barrier lowering is described by two 

equations in image force theory, including
 
[21] 

   
0

4
B E B

p

qE


                                (2) 

and 

    
2

VD B
bi

p

qN

q

K T
E



 
  

 
,                         (3) 

in which ΦB0 is the barrier height in the absence of the image force, E is the maximum electric 

field at the junction, p is the dielectric constant, ND is the doping concentration of the single 

crystal perovskite, and Φbi is the built-in potential. To simplify the equation, the thermal energy 

(KBT) can be neglected compared to Φbi and V. By combining 0 0ln C
bi B B B

D

N
K T

N

 
   

 
   

with Equation 2 and 3, where NC is the effective conduction band density of states, we can obtain 

ΦBE as 

    0 0

2
V

4

D
BE B B

p p

q Nq

 
    .                    (4) 

According to Equation 4, the ΦB0 and ΦE0 can be determined by least squares fitting of ΦBE 

versus (V+ΦB0)
1/4

, in which ΦE0 is the effective barrier height when the applied voltage is zero, as 
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shown in Fig. 2g. As a result, we calculated ΦE0 values of 0.17 eV, 0.38 eV, and 0.47 eV for the 

Au, Pt, and Ti contacts, respectively, and the corresponding ΦB0 values were 0.22 eV, 0.55 eV, 

and 0.74 eV. 

At the MS junction, the Schottky barrier is the comprehensive result of the metal work 

function, image force, and interface states. The ideal Schottky barrier height (ΦBi) between a 

metal and p-type semiconductor can be predicted by the electron affinity model: [43] 

                                 pBi mIP  ,                              (5) 

in which IPp is the ionization potential of a p-type semiconductor and Φm is the work function of 

the contact metal. Fig. 3a,b illustrate the band diagrams of ΦBi and ΦB0 for the Au contact. We 

determined the work function (Φ) and electron affinity () of single crystal CH3NH3PbBr3 from 

SKPM and PESA measurements, as shown in Fig. S5 and S6. According to Equation 5, the ΦBi 

between CH3NH3PbBr3 and the Au electrodes is 0.6 eV, whereas the barrier height in the absence 

of the image force from Fig. 2f was 0.22 eV. The difference in these values indicates that the 

surface pinning effect occurs at the Au/perovskite junction interface.  

For a defect-free interface, the Schottky barrier is determined by the charge neutrality level 

of metal-induced gap states. However, in a real case, the defects at the perovskite surface tend to 

capture electrons and form the interface dipoles, which give rise to charge rearrangement upon 
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the formation of the MS interface. Although all electronic measurements were taken under 

vacuum, we did fabricate the device in air, thus exposing the materials to moisture. It has been 

reported that water molecules in air will adsorb on the surface of single crystal CH3NH3PbBr3, 

leading to the formation of a polycrystalline-like structure that forms surface states
 
[49] (unlike 

polycrystalline CH3NH3PbBr3, in which water molecules can damage the whole crystal along the 

grain boundary). Additionally, although we used low-voltage sputtering for contact electrode 

deposition, the sputtering damage may still exist, leading to the surface states at junction 

interface. As a result, the Fermi level near the interface is pinned by these surface states, which 

lowers the Schottky barrier height, as shown in Fig. 3b. We observed similar behavior with Pt 

and Ti electrodes on the perovskite, in which the surface defect trapped electrons form interface 

dipoles, resulting in a dipole-induced shift in the Schottky barrier height, as shown in Fig. S7 (ΦBi 

for CH3NH3PbBr3 contacted with Pt and Ti electrodes are 0.15 eV and 1.27 eV, whereas ΦB0 are 

0.55 eV and 0.74 eV, respectively). One can see that the pinning effect at perovskite/Ti interface 

is stronger than the other two samples, which implies the Ti electrode is more sensitive to the 

oxygen than Au and Pt electrodes. 

    Due to the fast development of perovskite solar cells, today, most of perovskite contact 

studies focus on the charge transport materials to improve the current injection and extraction in 

solar cells. Several nonmetal materials have shown the potential to achieve efficient 
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charge-collecting contact with perovskite, including electron transport materials (PCBM, PEHT, 

ICBA, TiO2, ZnO, SnO2, WOx, etc.) and hole transport materials (spiro-OMeTAD, P3HT, 

PEDOT:PSS, PTAA, NiO, Cu2O, CuI, CuSCN, etc.) [50,51]. Besides the proper use of 

materials, gate-induced band alignment is also proposed recently to achieve the perovskite Ohmic 

contact [52]. Our study focuses on the perovskite metal Schottky contact, which is very important 

for the applications other than solar cells. This fundamental understanding of Schottky barrier 

height can help us further develop the perovskite electronics, including diodes, transistors and 

other electronic components, since these devices involve the proper design of the barrier height of 

their active materials. As a proof-of-concept demonstration, we have fabricated a Schottky diode 

using Au and Ti contacts where the junction is formed between Ti and perovskite, creating a 

Schottky barrier. Fig. 4 shows the I-V characteristics of the perovskite Schottky diode. Without 

extensive optimization of Schottky diode parameters, the obtained ON/OFF current ratio can be 

greater than 10 when the voltage changes from +5 to -5 V. The turn-on voltage of Schottky diode 

is around 0.2 V, demonstrating close agreement with the Schottky barrier height of Au/perovskite 

contact. 

Another important concern for efficient current injection is the contact resistance between 

the active material and the metal electrode. To estimate the contact resistance, we performed the 

TLM measurements on the perovskite [31-34]. 100-nm-thick Au, which is expected to have 
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smaller contact resistance due to the fact that it has the lowest Schottky barrier in this case, was 

deposited onto the perovskite surface in the TLM structure [31,53] using e-beam lithography 

method. Note that depositing micron-scale electrodes or smaller patterns on the perovskite 

surface is difficult due to the high surface roughness of the AVC-synthesized crystal. Therefore, 

we polished the perovskite (see Materials and experiments) to smoothen its surface, which 

enables us to successfully deposit the metal electrodes on the sample by e-beam lithography. A 

scanning electron microscopy (SEM) image of the patterned electrodes on the perovskite is 

shown in Fig. 5a. In the MSM structure of the TLM configuration, the total resistance (RT) is 

obtained by a two-terminal measurement that can be described by [43,54] 

      2 +T C iR R R                                (6) 

in which RC is the contact resistance and Ri is the perovskite bulk resistance. Here, the two 

contact resistances of the MSM structure are assumed to be the same when the applied voltage is 

large. Because contact resistance is highly dependent on the contact area, we defined the specific 

contact resistance (ρc) to be c C CR A   , in which AC is the active contact area [55]. 

Substituting ρc and  i

L
R

A
   into Equation 6, where ρ is the resistivity of the perovskite, L is 

the distance between the two electrodes, and A is the cross-sectional area of the current flow, the 

total resistance becomes 



20 

     
2 c

T

C

L
R

A A


  .                             (7) 

 The TLM suggests a way to measure the contact resistance by constructing a series of 

resistors with several different lengths and measuring the RT of each while keeping all other 

conditions the same. According to Equation 7, ρ can be evaluated from the slope of RT against a 

fitting line of L, and ρc can be obtained when L is zero. To calculate ρ and ρc, we performed a 

simulation of current flow distribution in the device to confirm AC and A, as shown in Fig. 5b. 

The simulated result shows that only 1.44 x 10
-7

 cm
2
 of the Au electrodes (18% of the electrode 

areas) were effectively in contact with the perovskite single crystal, and the A was 2.26 x 10
-6

 

cm
2
. Details of the simulation and TLM can be found in Fig. S8 and S9 of the Supporting 

material. 

Fig. 5c shows that ρc decreases with bias, echoing the results of Equation 4, which 

demonstrates that the image force-induced barrier height lowered more as the applied voltage was 

increased. In contrast, the resistivity of the perovskite remained constant as the bias changed from 

2 V to 5V (Fig. 5d). Temperature-dependence is a key way to verify the electrical characteristics 

of a material. Therefore we also measured the ρc of the sample as the temperature ranged from 

100 K to 300 K via the TLM (Fig. 5e). The strong temperature-dependence of ρc signifies that 

more charge carriers have enough thermal energy to overcome the Au/perovskite Schottky barrier 
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height at higher temperatures. The temperature-dependent resistivity shown in Fig. 5f again 

confirms the insulating behavior of the single crystal CH3NH3PbBr3. As temperature increases, 

the charge carriers in the confined region gain sufficient energy to escape to the conduction band, 

enhancing the free carrier concentration and resulting in a reduction of the bulk resistivity. 

To better understand the carrier transport and hopping in bulk CH3NH3PbBr3, we further 

investigated the temperature dependence of the conductivity (, the inverse of resistivity). Fig. 6a 

shows the Arrhenius plots of the conductivity at temperatures ranging from 207 K to 300 K, 

indicating that thermally activated transport dominates this temperature region [56], a process 

that is described by Equation 8: 

    exp a

B

E

K T
C

 
  

 
,                             (8) 

in which C is a constant and Ea is the activation energy. To further study the transport mechanism 

at temperatures lower than 207 K (where the data deviates from the Arrhenius plot), we fit the 

results with multiple carrier transport models and find the best match with 3D VRH transport 

(Fig. 6b), which suggests that  

      

1 4

0
0 exp

T

T
 

  
   

  
,                          (9) 
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in which 0 is a constant at certain temperatures, and T0 is the degree of disorder (T0 = 288 x 10
4
 

K in this case) [57]. A schematic of thermally activated transport and the 3D VRH mechanism is 

shown in Fig. 6c.  

    Because the mobile ionic carriers exist (including ions MA
+
, Pb

2+
, X

-
 and vacancies VMA, 

VPb, VX), ionic carriers and charge carriers are believed to form the joint transport in hybrid 

perovskite [52,58,59]. The ionic carriers are expected to follow thermally activated transport 

while charge transport is determined by the charge-carrier−phonon scattering [26,27,60,61]. 

Thus, the growth and quality of crystal can significantly interfere with the transport. In the 

high-temperature region from 207 K to 300 K, our experiment result shows the thermally 

activated conduction dominates in perovskite. However, the ionic transport cannot dominate the 

transport in this study, since the high quality of perovskite was confirmed by single crystal XRD 

and angular dependent Raman, and the hysteresis effect is not obvious during measurements. 

Since the measured current flows along the surface of perovskite as shown in Fig. S8b, the 

carrier scattering should be affected by the surface charges, which we have mentioned previously 

in the metal contact pinning effect. The surface charges can result in the carrier−defect scattering 

and thus the current transport turns into thermally activated transport in the perovskite surface 

region. Furthermore, from the linear part of the curve in Fig. 6a, we determined that Ea of the 
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thermal activation was approximately 0.2 eV. This small Ea value confirms that the thermally 

activated transport is caused by the defect level.       

 Conversely, in the low-temperature region below 207 K, the effect of the surface charge 

induced thermal activation decays and the VRH transport dominates the carrier conduction. 

Owing to the eliminated contact barrier by the TLM and the high quality of CH3NH3PbBr3 single 

crystal, we can evaluate the VRH by 3D mode transport and verify the related Mott parameters. 

Mott’s 3D VRH transport model [57] suggests that electric transport takes place due to hopping 

of the carriers between the localized states. Note that charge carrier hopping is not restricted to 

the neighboring states as long as the thermal energy matches the energy difference between the 

hopping states by a comparable order of a few KBT. Furthermore, the temperature dependent PL 

measurement (Fig. S10) shows a peak-wavelength shift around 120 K, which can be attributed to 

the tetragonal-to-orthorhombic phase transition of single crystal CH3NH3PbBr3 [62,63]. In the 

tetragonal phase and the temperature region from 120 K to 207 K, the charge carriers in 

perovskite follow 3D mode VRH transport. However, for the transport in orthorhombic phase 

below 120 K, although it is reported that the VRH occurs in the orthorhombic phase perovskite 

[52], we cannot conclude a specific mode of VRH here due to insufficient data below 100 K.   
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To investigate the individual 3D VRH Mott parameters of the single crystal CH3NH3PbBr3 

(such as hopping distance and energy), 0 and T0 in Equation 9 can be expressed as 

     
 

1 2

2

0 3
8 B

FN E
e

K T
 



 
  

 
                         (10) 

and 

    
 

3
1/4

0

B F

T
K N E


 ,                            (11) 

in which  is the phonon frequency at the Debye temperature (about 10
13

 s
-1

), N(EF) is the density 

of localized states at the Fermi level, α is the inverse localization length of the wave function for 

the localized state, and λ is a dimensionless constant of about 18 [57]. Using Equation 10 and 11 

for the temperature range of 120 K to 207 K at known 0 and T0 (based on fitting the results 

shown in Fig. 6b with Equation 9), we determined that N(EF) and α were 2.61 x 10
16

 eV
-1 

cm
-3

 

and 7.12 x 10
5
 cm

-1
, respectively. The other two Mott parameters, namely the average hopping 

distance (R) and the hopping energy (W), can also be evaluated by [64,65] 

    
 

1/4

9

8 FB

R
K N ET

 
   
 

                         (12) 

and 
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 3

3

4 F

W
R N E

 .                            (13) 

Generally, W is the energy required for the inelastic tunneling transfer of a charge carrier between 

two localized states with the assistance of phonons. In VRH conduction, as proposed by Mott 

[65], the value of W should be on the order of a few KBT while αR should be approximately unity. 

In our study, according to the calculated values of the Mott parameters for the temperature range 

of 120 K to 207 K (Table 1), R decreased with temperature, while W increased. The values of αR 

were also on the order of unity, demonstrating close agreement with the 3D mode of the VRH 

model. Understanding this carrier transport mechanism provides insight for improving 

perovskite-based devices for future applications. 

 

4. Conclusions 

In summary, we have investigated the metal contact and carrier transport behavior of 

perovskite by employing device patterning fabrication, and the TLM on the cm-sized single 

crystalline CH3NH3PbBr3. The current injection at the contact interface follows thermionic 

emission theory, and we deduced the experimental Schottky barriers as 0.17 eV, 0.38 eV, and 

0.47 eV for the Au, Pt, and Ti electrode contacts, respectively. We attributed the difference in the 

Schottky barriers of the three metals to their different work functions, imaging forces, and 
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interface pinning effects. We also discussed the image force-induced barrier height lowering 

effect and found that the height of the Schottky barriers in the absence of the image force were 

0.22 eV (Au), 0.55 eV (Pt), and 0.74 eV (Ti). The Fermi level pinning effect was also observed 

near the interface, owing to electrons trapped by the surface states, which leads to charge 

rearrangement near the interface of the metal electrode and the CH3NH3PbBr3. The temperature 

dependence of the sample’s conductivity shows that the single crystal perovskite falls in an 

interface state induced thermally activated transport for the temperatures between 207 K to 300 

K, though we observed 3D VRH conduction in the low temperature region of 120 K to 207 K. 

We also calculated and discussed the Mott parameters of the perovskite for the 3D VRH carrier 

transport model. Understanding these carriers transport mechanism helps us to predict the 

performance of perovskite devices when they operate at different temperatures. The study on the 

metal/perovskite Schottky contact and our analysis of carrier transport behavior in single crystal 

CH3NH3PbBr3 establish a platform for developing further fundamental knowledge and practical 

applications of perovskite-based electronics and optoelectronic devices. 
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Fig. 1. Characterization of single crystal CH3NH3PbBr3. (a) Photographic image of a single cubic 

CH3NH3PbBr3 crystal. The length of one side is 10 mm. (b) The experimental and calculated 

XRD patterns demonstrate the high purity of the CH3NH3PbBr3 perovskite. Single-crystal XRD 
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results are presented in the Supporting material. (c) Atomic model of CH3NH3PbBr3 with cubic 

crystal structure. The CH3NH3
+
 groups are at the corners, Br

–
 at the faces, and Pb

2+
 at the center 

of the cube. (d) The rotational angular dependence of the perovskite’s Raman intensity at 332 

cm
−1

. The inset shows the Raman spectrum at 0º. (e) The photoluminescence (473 nm laser 

excitation) and optical absorption spectra of CH3NH3PbBr3. (f) Thermogravimetric analysis of 

single crystal CH3NH3PbBr3. 
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Fig. 2. I-V characteristics and Schottky barrier height analysis of the CH3NH3PbBr3 perovskite 

contacted with Au, Pt, and Ti electrodes. (a) Equivalent circuit of the single crystal 

CH3NH3PbBr3 contacted with metal. (b) Normalized current as a function of the applied voltage 

for the perovskite with Au, Pt, and Ti electrodes. The turn-on voltages are 0.22 V, 0.39 V, and 

0.45 V for Au, Pt, and Ti contacts, defined by Vt 0.1
I I e , where VtI  is the current at the 

turn-on voltage, 0.1I  is the current at 0.1 V, and e = 2.71828. (c) Two-probe current 

measurement of the perovskite with Au electrodes as a function of the applied voltage at different 
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temperatures. (d-f) Plots of ln(J T
-2

) vs. 1/T at several bias values from 0.5 V to 1 V for the 

perovskite featuring (d) the Au, (e) Pt, and (f) Ti contacts. (g) The plot of ΦBE against (V+ΦB0)
1/4

 

displays a linear relation, which shows the image force affects the Schottky barrier height 

significantly. 

 

 

Fig. 3. A comparison of the band diagrams for the ideal Schottky barrier height and the Schottky 

barrier height in the absence of the image force for the Au/perovskite junction interface. The 

band diagrams of (a) display the ideal barrier height (ΦBi) and (b) the barrier height in the absence 

of the image force (ΦB0) for the Au electrode in contact with the single crystal CH3NH3PbBr3, 

demonstrating the pinning effect at the Schottky interface. 
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Fig. 4. I-V characteristics of Au/perovskite/Ti Schottky diode. The channel length between Au 

and Ti electrodes is around 100 µm.  
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Fig. 5. The contact resistance and resistivity of CH3NH3PbBr3 with a Au electrode, investigated 

using the TLM. (a) SEM image of the CH3NH3PbBr3 perovskite featuring the TLM structure and 

(b) the simulated current flows of that structure. (c) The Au contact resistance (ρc) as a function 

of the applied voltage at 300 K. (d) The resistivity of CH3NH3PbBr3 as a function of the applied 

voltage at 300 K. (e) The ρc of Au and (f) the bulk resistivity of the perovskite as a function of 

temperature from 100 K to 300 K at a bias of 3.5 V. 
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Fig. 6. The investigation of carrier transport mechanism near CH3NH3PbBr3 perovskite surface 

using temperature-dependent conductivity. (a) Conductivity versus T
-1

 in log scale for the 

CH3NH3PbBr3 perovskite. The linear relation in the temperature range from 207 K to 300 K 

suggests the material features thermally activated transport in this region. (b) A plot of T
1/2
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versus T
-1/4

 of CH3NH3PbBr3 in log scale, demonstrating that VRH occurs in the temperature 

range of 120 K to 207 K. (c) A schematic diagram to show the mechanism of thermally activated 

transport and VRH conduction. 

 

Table 1. Mott parameters for 3D VRH transport in the CH3NH3PbBr3 perovskite. 

T (K) R (cm) W (meV) 

(meV) 

αR 

207 5.73 x 10
-6

 48.5 4.08 

200 5.78 x 10
-6

 47.3 4.11 

175 5.98 x 10
-6

 42.8 4.25 

150 6.21 x 10
-6

 38.1 4.42 

125 6.50 x 10
-6

 33.2 4.63 
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