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Abstract
The key challenge in free space optical (FSO) communications is combating turbulence‐
induced fading. As the channel fading in FSO is quasi‐static, the transmission parameters
such as the code rates, transmit power and modulation schemes can be modified with
respect to the channel state information transmitted via the feedback path. As a result,
adaptive channel coding is considered as one of the practical approaches to improve the
FSO link performance. In this study, the FSO system with polar codes is investigated and
its performance is analysed by determining the optimum code‐rate required to achieve a
bit error rate of 10−9 under weak turbulence. It is shown that, using Monte‐Carlo sim-
ulations for the scintillation indices of 0.12 and 0.2, the successive cancelation list (SCL)
decoder offers coding gains of 2.5 and 0.3 dB, respectively, as compared with SC decoder,
and for the scintillation index of 0.31, the SC decoder offers a coding gain of 2.5 dB
compared to that of the SCL decoder for the code rate.
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error correction codes, optical communication

1 | INTRODUCTION

The explosive growth in the use of hand‐held computing devices
has led to a surge in network bandwidth demand, which in turn is
putting increasing pressure on the bandwidth usage of current
available radio frequency (RF)‐based wireless networks. In
recent years, free space optical (FSO) communications, as part of
the optical wireless system, have emerged as a popular alternative
to the RF wireless technologies to overcome the network ca-
pacity bottleneck in certain applications, where RF‐based link
cannot be used, by offering higher data rates, high capacity,
inherent security, fast and easy deployment, and a licence free
spectrum [1]. These important features make FSO links highly
desirable for the provision of high‐speed links in the next gen-
eration wireless network, including broadcasting, security,
wireless front‐and back‐haul access networks at data rates up to a

few 19 Gbps, fibre backup, etc. [1]. However, in outdoor envi-
ronments, one of the key issues in the intensity modulated/direct
detection FSO communication system is the degradation of the
links' performance due to the atmospheric conditions such as
fog, snow, smoke, and turbulence. The latter, which is due to the
inhomogeneity of the temperature and pressure in the atmo-
sphere, results in local variations of the refractive index along the
propagation path, leads to the intensity and phase fluctuations of
the propagating optical bean, thus leading to fading and beam
spreading, and ultimately the link failure [1]. It is to be noted that
deep fading can result in severe communication outages.
Therefore, to address the limitations of FSO links, several
mitigation techniques have been proposed in the literature, such
as the aperture averaging [2–4], spatial diversity [5, 6], relay
assisted communications [7, 8], adaptive optics [9], and coding
[10]. The requirements of synchronisation, high processing
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complexity and costly implementation are some of the down-
sides of the proposed mitigation techniques as outlined in [11].

In FSO systems, the channel is assumed to be slowly time
variant (i.e., slow fading), where the transmission parameters
can be adjusted using the channel state information (CSI). This
is provided via a feedback link at the transmitter to improve
the quality of the link. In addition, to mitigate turbulence‐
induced fading and, therefore, improve the links' bit error
rate (BER) performance, various error control coding schemes
have been proposed and investigated. FSO links with space‐
time, repetition, and rate‐less coding schemes have been re-
ported in the literature [12–14]. A practical scheme of adaptive
transmission has been considered to mitigate turbulence‐
induced fading in FSO links to adjust parameters such as the
transmit power, code rates and modulation schemes using the
CSI received via the feedback path [11]. Variable and adaptive
transmission schemes have been reported in literature [15–19].
In [10], a power allocation scheme in a wavelength division
multiplexing (WDM) FSO link was proposed to mitigate at-
mospheric attenuation. In [16], an adaptive modulation and
coding scheme for FSO was proposed where the CSI was
estimated at the receiver (Rx) and it relays back to the trans-
mitter (Tx) via an RF feedback path. In [17], a rate adaptive on‐
off keying FSO link was practically demonstrated using an
optimised punctured low‐density parity check (LDPC) codes.
In [18], a delay and quality‐of‐service aware adaptive modula-
tion scheme was proposed for a coherent dual‐channel optical
wireless communication system under Gamma‐Gamma (GG)
turbulence. In [19], an adaptive transmission system for optical
wireless communication using computer‐vision techniques is
proposed. The computer vision‐based multi‐domain coopera-
tive adjustment (CV‐MDCA) captures on‐line images of the
communication channel. Features from the processed images
are extracted and compared with the standard sample attributes
to measure the channel quality index (CQI). The cooperative
controller then adjusts various transmission parameters such as
encoding, modulation, equalisation, power allocation and in-
formation format based on the CQI.

As part of linear codes, polar codes, which are defined
using a generator matrix in a recursive manner, offer lower
encoding and decoding complexity (i.e., O(N log2(N )), where
N is the code length [20] and O is the big‐O notation indi-
cating the performance of the algorithm, and have been used
in several applications including relay transmission, multiple
access channels, quantum key distributions [20, 21], etc. In the
context of FSO communications, the performance of polar
codes over the turbulence channel was analysed in [22]. The
authors have proposed a CSI evaluation scheme that is utilised
to calculate the log‐likelihood ratio (LLR) using a 2000‐bit pilot
sequence, which is the soft‐input to the polar decoder. It was
experimentally determined that, under weak turbulence, polar
codes performed better than LDPC codes; under moderate
and strong turbulence using Monte‐Carlo simulations, polar
codes outperformed LDPC. In [23], the performance of a deep
learning‐based neural network is investigated under the tur-
bulence regime. Under fixed turbulence conditions, the
decoder performance is reported to be stable. In [24], the

concept of the polar coded multiple input multiple output
(MIMO) FSO communications system is introduced to combat
turbulence‐induced fading. The MIMO‐polar coded system
using a successive cancelation list decoder (SCL) offered an
improved net coding gain when compared with LDPC with
and without spatially correlated fading scenarios.

For finite code lengths, LDPC and turbo codes perform
better than those of polar codes, for which several decoding
schemes [25, 26] have been proposed to improve the error
correcting performance at the cost of increased complexity. In
this study, we determine the optimum code‐rate R for the
scintillation indices σ2

I of 0.12, 0.2, and 0.31 for the SC decoder
and compare its performance with the SCL decoder under weak
turbulence in terms of the BER with the assumption that the
channel state information at the Rx is not known. We show that
for σ2

I of 0.12 and 0.2, the SCL decoder offers coding gains of 2.5
and 0.3 dB, respectively, for the same R over SC decoder, and for
σ2
I of 0.31, the SC decoder demonstrates improved performance

with a coding gain of 2.5 dB for the same R over SCL decoder.

2 | SIGNAL MODEL

In the context of OWC, the received signal is given as follows:

yðtÞ ¼ hðtÞ ∗ xðtÞ þ nðtÞ; ð1Þ

where h(t) is the attenuation due to atmospheric turbulence,
x(t) ∈ {0, 1}is the transmitted signal, n(t) is the additive
white Gaussian noise (AWGN) with zero mean and variance
σ2
n, and * is the convolution operator. A wave traversing in a

turbulent channel experiences fading with normalised vari-
ance termed as scintillation index, which is given by [27]

σ2
I ¼

〈I2〉 −〈I〉2

〈I〉2 ; ð2Þ

where 〈 ⋅ 〉 denotes the ensemble average equivalent to long‐
time averaging with the assumption of an ergodic process, and
I is the optical intensity of the propagating wave. From (2), at-
mospheric turbulence is classified as weak ðσ2

I < 1Þ; moderate
(σ2

I ≌ 1), and strong (σ2
I > 1) [28].

With the assumption of plane wave propagation, σ2
I is

expressed as [29]

σ2
I ðDÞ ¼ exp
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where d = D
2

ffiffiffiffi
k
l

q

is the circular aperture scaled by Fresnel

zone provided, k is the wavenumber, l is the link length in m,
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and D is the Rx's aperture diameter. σ2
R is the Rytov variance

and is expressed as follows:

σ2
R ¼ 1:23C2

nk
7=6l11=6

; ð4Þ

The refractive index parameter C2
n has typical values of

10−17 and 10−13 m−2/3 for the weak and strong turbulence
regimes, respectively [29].

For weak turbulence, we consider the log‐normal distri-
bution model. The probability density function (PDF) is given
as [30]:

f I r
ðI rÞ ¼

1
I rσ2

I ðDÞ
ffiffiffiffiffiffi
2π
p exp

"
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lnðIÞ þ σ2
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2σ2
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#

; ð5Þ

where I r is the normalised irradiance at the receiver. Log‐
normal distribution serves as a good approximation for tur-
bulence regimes where σ2

I < 0:3 and the average BER for log‐
normal turbulence is approximately given by [31]

Pe ≈
1
ffiffiffi
π
p
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wiQ

 
ηI0e−2σ2

xþzi
ffiffiffiffiffi
8σ2

x

p

ffiffiffiffiffiffiffiffiffi
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; ð6Þ

where g is the order of approximation, zi [i = 1,…, g] is the
zero of the gth order Hermite polynomial, wi is the weight
factor for the gth‐order approximation, I0 is the optical in-
tensity of the signal devoid of turbulence, σ2

x ≈ σ2
I=4 is the log‐

amplitude fluctuation variance, η is the optical‐to‐electrical
conversion coefficient, and N0 is the noise power density.
For σ2

I > 0:3, the GG turbulence regime is considered and its
PDF is given by [30]
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where Kn(.) is the nth order Bessel function of the second
kind, and α and β are given by
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2.1 | Polar code encoding

Polar codes are capacity achieving codes introduced by Arikan
[32]. It provides a low‐complexity method to construct polarised
channels, where a fraction of noiseless channels tends to the
capacity of binary‐input discrete memoryless channel (B‐DMC).
The channel polarisation concept discussed in [32] consists of a
transformation, which produces N synthetic bit‐channels from

N independent copies of B‐DMC. The synthetic channels are
polarised meaning that bits with different probability of
decoding are transmitted. The design of (N, K) polar codes in-
volves the generation of input vector u = [u0, u1, u2, …uN‐1] by
assigning K information bits to the K most reliable channels.
The remaining N‐K bits form the frozen set and do not carry
any information [33]. The codeword d = [d0, d1, d2, …, dN−1]
is computed as follows:

d¼ u � GN ; ð10Þ

where GN is the N � N channel transformation matrix given
by

GN ¼ G ⊗ n
2 ; ð11Þ

where G2 =
�

1 0
1 1

�

is the transform kernel for 2‐bit,

n = log2(N) = 1, 2, 3 …, N is the code length, and ⊗ is the
Kronecker product.

Figure 1a depicts the encoding mechanism of (8,4) polar
code, where the frozen bit set belongs to the bit positions 0, 1, 2,
and 4 ofu. The message bits are placed in bit positions 3, 5, 6, and
7 of u. Using (7) and (8), u is encoded to obtain the codeword d.

2.2 | SC and SCL decoders

The SC decoder, which is the most common in polar code,
operates as a depth‐first binary tree search, see Figure 1b,
where each sub‐tree is represented as a constituent node. The
white and black nodes represent the information and frozen
bits, respectively, whereas the grey nodes represent a concat-
enation of two constituent nodes. More specifically, the Rx
observes y and estimates the elements of u. The decoder finds
a sub‐optimal solution by maximising the likelihood via a
greedy one‐time‐pass through the tree. The LLR α of each
received codeword is passed down from the parent node to the
child node, as shown in Figure 1b. Hard‐decision estimated β
are sent from the child nodes to the parent node. The left
branch messages αl are computed according to the F function
using the min‐sum approximation as given by [34]

αl½i� ¼ F
�

α½i�; α
�

iþ
N
2

��

ð12Þ

≈ sgnðα½i�Þsgn
�

α
�
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N
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�
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N
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���
�
�
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The right branch messages αr are calculated using the G
function as follows:

αr½i� ¼ G
�

α½i�; α
�
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For each codeword received, each node in the tree receives
alpha and sends αl (represented as in red arrows) to the suc-
cessive node, receives βl (represented by orange arrows), cal-
culates and sends αr (represented in blue) based on βl. After
receiving βl and βr, β is sent from the node to its parent node.
β is computed as follows:

β½i� ¼

8
>><

>>:

βl½i�⊕ βr½i�; when i <
N
2

βr

�

i −
N
2

�

; otherwise
ð14Þ

where ⊕ refers to XOR operation and in this context is
referred to as combine operation.

When a leaf node is encountered, the estimated bit is given
as follows:

û½i� ¼ 0; if i ∈ F or α½i� ≥ 0;
1; otherwise;

�

ð15Þ

where F represents the frozen bit set. A SC list decoder was
proposed in [35] as an improvement over the SC decoder in
terms of error correction capability.

SCL decoding, which converts the greedy one‐time‐pass
search of SC decoding into a breadth‐first search, follows the
same algorithm as SC decoding until the bit information esti-
mation stage at the leaf nodes. For each estimate at the leaf
node, both 0 and 1 are considered. This results in a list of 2L
candidate codewords out of which L‐codeword is removed
based on the path metric, which is computed for each candi-
date codeword as [36]

PMil ¼

8
><

>:

PMi−1l; if ûil ¼
1
2
�
1 − sgn

�
αil
��

PMi−1l þ
�
�αil

�
� otherwise;

ð16Þ

where l is the path index and ûil is the estimated bit i in l. It is
to be noted that the L‐path with the lowest PM will survive.

2.3 | LLR computation for on‐off keying
(OOK) under additive Gaussian noise channel

For OOK, the transmitted symbol is defined as follows:

xðtÞ ¼
�

0; mðtÞ ¼ 0
1; mðtÞ ¼ 1 ; ð17Þ

where m(t) is the message bits. From Bayes' rule, we have

P½xðtÞ ¼ 0j yðtÞ� ¼
P½yðtÞjxðtÞ ¼ 0�P½ðxðtÞ ¼ 0�

P½yðtÞ�
; ð18Þ

P
�
xðtÞ ¼ 1

�
� yðtÞ

�
¼

P½yðtÞjxðtÞ ¼ 1�PðxðtÞ ¼ 1�
P½yðtÞ�

: ð19Þ

For the AWGN channel, the received signal and the con-
ditional probability are as given by, respectively [37],

yðtÞ ¼
�

1þ nðtÞ; if i xðtÞ ¼ 1
nðtÞ; if i xðtÞ ¼ 0 ; ð20Þ

P½yðtÞjxðtÞ ¼ τ� ¼
1
ffiffiffiffiffiffiffiffi
2πσ
p e

−½yðtÞ−μτ �
2

2στ2 ; ð21Þ

where μτ and στ are the mean and standard deviation for τ = 0,
1. From (17) to (21), α per bit is computed as follows:

α¼ ln
�
P½yðtÞjxðtÞ ¼ 0�
P½yðtÞjxðtÞ ¼ 1�

�

¼
1 − 2:yðtÞ

2σn2 : ð22Þ

From a practical standpoint, the calculation of the exact
LLR following a stochastic model is quite complex [37].
Computation of LLRs could prove to be costly in terms of the
computation complexity, hardware area and memory at
the channel output [38, 39]. In [39–41], computation of the

F I GURE 1 (a) (8,4) polar encoding mechanism with frozen bits highlighted in blue, and (b) its corresponding decoder tree
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approximate LLR methods were proposed. In this work, the
LLRs for the FSO system are approximated as follows:

α ≈ 1 − 2 ⋅ yðtÞ: ð23Þ

Using Monte‐Carlo simulations, the BER performance for
the link with the SC decoder, given that the noise power is
known at the Rx (i.e., true LLR values), and the SC decoder
with the approximated LLR as per (23) for the AWGN channel
is depicted in Figure 2. It is observed that the decoder per-
formance using the LLR approximation is only slightly inferior
to the SC decoder with the true LLR values of 0.2 dB
measured at the BER of 10−5, thus resulting in no significant
deterioration in the BER performance.

2.4 | System model

As shown in Figure 3, a random message bit sequence m in the
non‐return to zero OOK format is applied to the polar code
encoder to generate a fixed length codeword d with N of 1024‐
bits for intensity modulation of the optical source. The channel
follows log‐normal and GG distributions for σ2

I ≤ 0.3
and >0.3, respectively. Following transmission over the free
space channel, the codeword y is received at the optical Rx.
Using (20), the LLR of the received signal y is computed and
decoded using the SC/SCL decoder to obtain mest. Although,
narrow transmit beams are preferred in free space optical
(FSO) links, for short‐range FSO links, wide divergence angle
light sources are highly desirable to ease the alignment
requirement and therefore compensate for the pointing loss at
the cost of increased geometric loss [42]. Typically, the beam
divergence is in the range of 2‐10 mrad for the non‐tracking
systems, which translates to a beam spot of 2‐10 m for a
1 km link. In this work, we have assumed a beam with a wide
divergence for ground‐to‐train communications as described in
[43], which is practical, therefore offsetting the pointing loss at
the cost of increased geometric loss [44]. However, for a point‐
to‐point long range FSO link, misalignment must be
considered.

From a practical system's perspective, adaptive coding
could be considered as a prudent approach to mitigate tur-
bulence/scintillation experienced by the FSO link. The prac-
tical implementation of the proposed system can be carried out
using purpose‐built modules or FPGA, which will involve
using the RF link for the feedback signal on channel state
information. Alternatively, the adaptive coding part could be
readily implemented using software defined radio (SDR), see
Figure 4. In the SDR‐based transmitter, the message bits are
encoded using an adaptive Polar encoder, which adjusts the
code rate based on the strength of the turbulence estimated by
the CSI estimate block. The CSI is estimated by determining

F I GURE 2 Bit error rate performance of true log‐likelihood ratio
(LLR) with approximated LLR using the SC decoder

F I GURE 3 A system block diagram for the
proposed scheme

MOHAN ET AL. - 5



the variance (scintillation index) of the fluctuating optical in-
tensity of a modulated red laser transmitted from the receiver
side. The resulting signal from the adaptive encoder is fed to
the USRP transmitter which is modulated onto an RF carrier.
The RF carrier is directly modulated and transmitted across the
FSO channel using a laser driver.

3 | RESULTS AND DISCUSSION

3.1 | Software simulation results

The objective is to determine the optimum code rate for the
weak turbulence regime, which maintains the BER at 10−9 with
the 95% confidence limit for each scintillation index
mentioned in Table 1. The amount the bits required with the
95% confidence limit is given by [45]

Nbits ¼
−lnð1 − Confidence limitÞ

BER
: ð24Þ

The OOK data stream, polar encoder, decoder, and the
turbulence channel are implemented in C++. Using Monte‐
Carlo simulation, the optimum code rate under the weak and
moderate turbulence regimes was determined utilising the
system parameters provided in Table 1, and the results of the
simulation are described in Table 2.

In each iteration, 1024‐bit codewords are generated by the
polar encoder as described in Section 2.1 for a specific R and
transmitted over a LN/GG turbulence channel for a range of
scintillation indices provided in Table 1. The received bit
stream is decoded and the BER is evaluated 3�106

R times to
estimate the BER with a 95% confidence level. To determine
the optimum R for each scenario, an initial R of 0.5 was used.
The simulation was terminated, and R was decremented by
0.1–0.05 once the simulation reached 100 errors. The decre-
ment in R depends on the number of iterations needed to
reach 100 errors. It is to be noted that for each trial‐and‐error
scenario, a total of N encoded bits were generated. If no errors
were detected, R was incremented by 0.05.

Based on Monte‐Carlo simulation results, a performance
comparison between SC and SCL decoders are demon-
strated for σ2

I = 0.12, 0.2, and 0.31 in Figure 5a–c,
respectively. In all turbulence scenarios, SCL with cyclic
redundancy check (CRC) is adopted with a list size of 4, a
CRC length of 11 [35], and N of 1024. Also, the plots for
the link with no coding and turbulence are shown for
reference. Under the turbulent condition, corruption of
some bits allows for the message bits to be extracted from
other uncorrupted bits. Because of this, FEC works above a
certain SNR level. This tendency is more pronounced in
capacity achieving codes such as Polar codes. Error propa-
gation problem is severe with the occurrence of multiple bit
errors at lower SNR. At higher SNR, as the occurrence of
bit errors are reduced and therefore the performance in
terms of coding is improved, that is, a sharp fall in the BER
plots for the links with coding, which is depicted in
Figure 5. In Figure 5a, for σ2

I = 0.1, the coding gain be-
tween uncoded OOK under turbulence with respect to the

F I GURE 4 System block diagram for adaptive coding using software defined radio

TABLE 1 System parameters

Parameter Value

Codeword length 1024

Iteration 3�106

R

Nbits 3 � 109

BER confidence level 95%

Target BER 10−9

Scintillation index σ2
I 0.12, 0.2, 0.31

TABLE 2 Results of Monte‐Carlo simulation

σ2
I

Message bits
transmitted

Message bits/
frame R

0.12 3 � 109 615 0.6

0.2 3 � 109 345 0.33

0.31 3 � 109 209 0.2

6 - MOHAN ET AL.



SC decoder with R = 0.6 is 7 dB measured at the BER of
10−5. The coding gain for the SC decoder with R = 0.7 is
around 4 dB, which is 3 dB less than R = 0.6. SCL with
R = 0.6 has improved performance with the coding gain of
6 dB, that is, 2.5 dB improvement over the SC decoder for
the same R measured at the BER of 10−5.

For σ2
I = 0.2, see Figure 5b, the coding gain of 10 dB is

observed between uncoded OOK under turbulence and the SC
decoder for R = 0.33. The SC decoder with R = 0.5 shows
deteriorated performance compared with the case with
R = 0.33 with a coding gain of 5 dB with respect to uncoded
OOK under turbulence which is 5 dB worse off than R = 0.33
as measured at the BER of 10−4. The SCL decoder has an
improved performance with a coding gain of 10.3 dB with
respect to uncoded OOK under turbulence, 0.3 dB improve-
ment was observed over the SC decoder for the same R
measured at BER of 10−6.

For the case of σ2
I = 0.31 as shown in Figure 5c, the SC

decoder with R = 0.2 has a coding gain of 13 dB with respect
to the uncoded OOK under turbulence. The coding gain of
9 dB is observed for R of 0.3 with degradation of 4 dB
compared with R = 0.2. Note, the SCL decoder offers lower
performance compared with that of the SC decoder for the
same R with a coding gain of 10 dB, that is, 2.5 dB lower than
the SC decoder.

4 | CONCLUSION

This study investigated the robustness of polar codes in a
FSO link under the weak turbulence regime assuming that
the channel state information is not known at the receiver
end. The log‐likelihood ratio for OOK modulation was
derived and based on the derivation the optimum R required
to attain a confidence limit of 95% for the BER of 10−9 for
scintillation indices 0.12, 0.2, and 0.31 were carried out using
Monte‐Carlo simulations. Comparisons between the SC and
SCL decoders were drawn in which for σ2

I of 0.1 and 0.2, the
SCL decoder offered coding gains of 2.5 and 0.3 dB,
respectively, for the same R; for σ2

I of 0.3, the SC decoder
demonstrated improved performance with a coding gain of
2.5 dB.
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