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Rectified Linear Postsynaptic Potential Function for
Backpropagation in Deep Spiking Neural Networks

Malu Zhang, Jiadong Wang, Jibin Wu, Ammar Belatreche, Burin Amornpaisannon, Zhixuan Zhang, V. P. K.
Miriyala, Hong Qu, Yansong Chua, Trevor E. Carlson and Haizhou Li, Fellow, IEEE

Abstract—Spiking Neural Networks (SNNs) use spatio-
temporal spike patterns to represent and transmit information,
which are not only biologically realistic but also suitable for ultra-
low-power event-driven neuromorphic implementation. Just like
other deep learning techniques, Deep Spiking Neural Networks
(DeepSNNs) benefit from the deep architecture. However, the
training of DeepSNNs is not straightforward because the well-
studied error back-propagation (BP) algorithm is not directly
applicable. In this paper, we first establish an understanding as
to why error back-propagation does not work well in DeepSNNs.
We then propose a simple yet efficient Rectified Linear Post-
synaptic Potential function (ReL-PSP) for spiking neurons and
a Spike-Timing-Dependent Back-Propagation (STDBP) learning
algorithm for DeepSNNs where the timing of individual spikes
is used to convey information (temporal coding), and learning
(back-propagation) is performed based on spike timing in an
event-driven manner. We show that DeepSNNs trained with
the proposed single spike time-based learning algorithm can
achieve state-of-the-art classification accuracy. Furthermore, by
utilizing the trained model parameters obtained from the pro-
posed STDBP learning algorithm, we demonstrate ultra-low-
power inference operations on a recently proposed neuromorphic
inference accelerator. The experimental results also show that
the neuromorphic hardware consumes 0.751 mW of the total
power consumption and achieves a low latency of 47.71 ms
to classify an image from the MNIST dataset. Overall, this
work investigates the contribution of spike timing dynamics for
information encoding, synaptic plasticity and decision making,
providing a new perspective to the design of future DeepSNNs
and neuromorphic hardware.
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I. INTRODUCTION

THE success of Deep Neural Networks (DNNs) is attributed
to their underlying deep hierarchical structure that is

capable of learning representations of big data with multiple
levels of abstraction [1]. Recent advances in DNNs have
witnessed an increasing attention both from academia and
industry with widespread applications in various areas such as
image recognition [2], speech recognition [3], natural language
processing [4], [5], and medical diagnosis [6]. However,
training DNNs generally requires high-performance computing
hardware (e.g., GPUs and computing clusters). Therefore, in
power-critical computing platforms, such as edge computing,
the deployment of DNNs remains drastically limited [7], [8].
Motivated by the principles of brain computing, Spiking Neural
Networks (SNNs) offer a low-power alternative for neural
network implementation and provide great computing potential
equivalent to that of DNNs on an ultra-low-power spike-driven
neuromorphic hardware [9]–[14].

However, due to the complex temporal dynamics of spiking
neuronal models and the non-differentiable nature of their
spiking activity, the well-known error back-propagation (BP)
learning algorithm cannot not be directly applied to deep SNNs
[15]. As such, SNNs have yet to match the performance of
their DNN counterparts in pattern classification tasks [16]. To
address the aforementioned problems, many solutions have
been proposed recently [17]–[23], which can be grouped into
the following three categories.

The first category includes ANN-to-SNN conversion methods
where we first train an ANN, and subsequently map the pre-
trained ANN weights to an SNN equivalent [24]–[34]. By
carefully designing the hyperparameters of the SNN, e.g.,
spiking neuron model, firing threshold, we can approximate
well the neural representation of the pre-trained ANN. Such
ANN-to-SNN conversion benefits from the state-of-the-art ANN
training algorithms. However, the conversion often leads to
loss of accuracy due to approximation. A number of studies
attempted to mitigate such approximation effect. For instance,
the weight normalization [29]–[31] technique rescales the pre-
trained weights to prevent the approximation errors from either
becoming excessive or resulting in too little firing of the
spiking neurons. In addition, existing studies show that training
ANNs with noise-augmented data can improve the robustness
and accuracy of the converted SNNs [27], [28]. Yet, despite
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considerable progress in improving SNN training and their
applicability, their performance is still lags behind their ANN
counterparts. As the firing rate of spiking neurons is typically
used to encode the activation value of artificial neurons, the
spike timing information is not effectively exploited and the
run-time computation is also energy-intensive when deployed
on neuromorphic hardware [15], [35], [36].

The second category consists of membrane potential-driven
learning algorithms, which treat the neuron’s membrane
potential as a differentiable signal. The discontinuities of
the membrane potential at spike timings are addressed with
continuous surrogate derivatives [15]. In [37]–[39], the errors
are back-propagated based on the membrane potential at a
single time step, which totally ignores the temporal dependency.
To address this problem, SLAYER [8] and STBP [40], [41]
train DeepSNNs with surrogate derivatives based on the idea
of Back-propagation Through Time (BPTT) algorithm. While
competitive accuracies are reported on the MNIST and CIFAR-
10 datasets [41], the computational and memory requirements of
BPTT-based approaches remain high because the intermediate
activation values must be stored for the gradient computation.

The third category includes the spike-driven learning al-
gorithms, which consider the timing of spikes as a relevant
signal for synaptic update [36], [42]–[49]. The typical examples
include SpikeProp [43] and its derivatives [44]–[47]. These
algorithms rely on the assumption that the neuron membrane
potential increases linearly over the infinitesimal time interval
around the spike time. This allows the calculation of derivatives
at each spike time and facilitates the implementation of back-
propagation in multi-layer SNNs. Grounded on the time-to-first-
spike (TTFS) coding, Mostafa [36] applied non-leaky integrate-
and-fire neurons to avoid the problem of the non-differentiable
spike function, and demonstrated competitive performance on
the MNIST dataset. Along the same direction, the performance
of SNNs with spike-driven learning algorithms is further
improved in [48] and [49]. However, the existing spike-driven
learning algorithms face several problems, for example, dead
neurons and gradient exploding [36]. In [36], some constraints
are imposed on the synaptic weights to overcome the dead
neuron problem, and a gradient normalization strategy is used
to overcome the problem of gradient exploding. These complex
training strategies, however, limit the scalability of the learning
algorithm.

Among the existing learning algorithms, only the spike-
driven learning algorithms perform the SNNs training in a
strictly event-driven manner, and are compatible with the tem-
poral coding in which the information is carried by the timing
of individual spikes that has a high level of sparsity. Hence,
spike-driven learning algorithms hold great potentials to enable
efficient training and inference on low-power neuromorphic
devices. Recently, several neuromorphic architectures have been
proposed to accelerate the SNN inference and training [24],
[50]–[57]. Notably, Intel Loihi [50] can support on-chip
learning with a wide range of spike-timing-dependent-plasticity
(STDP) rules. During SNN inference, Loihi is claimed to be
1000× faster than the general-purpose processors such as CPUs
and GPUs, while using much less power. Additionally, Srivatsa
et al. [58] recently proposed a neuromorphic accelerator called

You Only Spike Once (YOSO) that can leverage the sparse
spiking activity to achieve ultra-low-power inferences with
high classification accuracies [58].

In this work, we develop an effective spike-driven learning
algorithm for training high-performance deep SNNs. This paper
makes the following main contributions:

1) A comprehensive study of what makes the BP algorithm
incompatible for training SNNs, including the problems of
non-differentiable spike generation function, exploding gradient
and dead neuron. Building on the insights from this study, we
put forward a Rectified Linear Postsynaptic Potential function
(ReL-PSP) for spiking neurons to resolve these problems.

2) Based on the proposed ReL-PSP, we derive a novel spike-
timing-dependent BP algorithm (STDBP) for DeepSNNs. In
this algorithm, the timing of spikes is used as the information
carrier, and learning happens only at the spike times in a fully
event-driven manner.

3) We demonstrate the effectiveness and scalability of
STDBP with ReL-PSP in convolutional spiking neural networks
(C-SNN), which achieves a classification accuracy of 99.5%
on the MNIST dataset.

4) Lastly, using the SNN trained with the proposed STDBP
learning algorithm, we demonstrate ultra-low-power and rapid
inference on the recently proposed neuromorphic accelerator,
YOSO.

In summary, this work not only provides novel perspectives
on the significance of neuronal dynamics in information coding,
synaptic plasticity, and decision making within a SNN-based
computing paradigm, but also demonstrates the possibility of
realizing ultra-low-power inference with high classification
accuracy on the emerging neuromorphic hardware.

The remainder of this paper is organized as follows. In
section II, we establish an understanding as to why error back-
propagation does not work well in DeepSNNs. Section III
presents a detailed description of the proposed ReL-PSP and
the STDBP learning algorithm. In section IV, we introduce the
recently proposed neuromorphic hardware architecture, YOSO.
Section V presents a comprehensive experimental evaluation of
the proposed ReL-PSP and STDBP learning algorithm. Finally,
section VI discusses the results and draw conclusions.

II. PROBLEM ANALYSIS

Error back-propagation, specifically stochastic gradient de-
scent, is the workhorse of learning in DNNs. However, as shown
in Fig. 1, the dynamics of a typical artificial neuron used in
DNNs differ greatly from their spiking neuron counterparts,
therefore the well-known BP algorithm cannot be directly
applied to DeepSNNs due to the non-differentiable nature
of the neuron spiking activity, exploding gradients and dead
neurons problems. All these issues will be discussed in more
depth in the following.

Consider a fully connected DeepSNN. For simplicity, each
neuron is assumed to emit at most one spike. In general,
the membrane potential V l

j of neuron j in layer l with N
presynaptic connections can be expressed as,

V l
j (t) =

N∑
i

ωl
ijε(t− tl−1

i )− η(t− tlj) (1)
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Fig. 1: Neuron models in DNNs and SNNs. (a) A typical DNN neuron model, in which the information from previous layer
arrives in the form of real values in the spatial domain. x, ω, b, and Y are input activation, synaptic weights, bias and output
activation, respectively. Output Y is produced by the differentiable activation function f(·). (b) A typical spiking neuron model,
in which information from previous layer arrives in the form of spatial-temporally distributed spike events. si(t), ω, and so(t)
are input spikes, synaptic weights and output spikes, respectively. The non-differentiable function F(·) generates output spikes
so(t) from the membrane potential V (t).

where tl−1
i is the spike of the ith neuron in layer l-1, and

ωl
ij is the synaptic weight of the connection from neuron i

(in l-1 layer) to neuron j (in l layer). Each incoming spike
from neuron i will induce a postsynaptic potential (PSP) at
neuron j, and the kernel ε(t−tl−1

i ) is used to describe the PSP
generated by the spike tl−1

i . Hence each input spike makes
a contribution to the membrane potential of the neuron as
described by ωl

ijε(t− t
l−1
i ) in Eq. 1. There are several PSP

functions, and a commonly used one is alpha function which
is defined as

ε(t) =
t

τ
exp
(
1− t

τ

)
t > 0 (2)

Fig. 2(a) shows the alpha-PSP response function. As shown
in Fig. 2(b), integrating the weighted PSPs gives the dynamics
of the membrane potential V l

j (t). The neuron j will emit a
spike when its membrane potential V l

j (t) reaches the firing
threshold ϑ, as mathematically defined in the spike generation
function F :

tlj = F
{
t|V l

j (t) = ϑ, t ≥ 0
}

(3)

Once a spike is emitted, the refractory kernel η(t− tlj) is used
to reset the membrane potential to resting.

To train SNNs using BP, we need to compute the derivative
of the postsynaptic spike time tlj with respect to a presynaptic
spike time tl−1

i and synaptic weight ωl
ij of the corresponding

connection:

∂tlj
∂ωl

ij

=
∂tlj

∂V l
j (t

l
j)

∂V l
j (t

l
j)

∂ωl
ij

if tlj > tl−1
i (4)

∂tlj

∂tl−1
i

=
∂tlj

∂V l
j (t

l
j)

∂V l
j (t

l
j)

∂tl−1
i

if tlj > tl−1
i (5)

Due to the discrete nature of the spike generation function
(Eq. 3), we face a challenge in solving the partial derivative
∂tlj/∂V

l
j (t

l
j) in Eq. 4, which we refer to as the problem of non-

differentiable spike function. Existing spike-driven learning
algorithms [43], [59] assume that the membrane potential V l

j (t)

increases linearly in the infinitesimal time interval before spike
time tj . Then, ∂tj/Vj(t) can be expressed as

∂tlj
∂V l

j (t
l
j)

=
−1

∂V l
j (t

l
j)/∂t

l
j

=
−1∑N

i ωl
ij

∂ε(tlj−tl−1
i )

∂tlj

(6)

with

∂ε(tlj − t
l−1
i )

∂tlj
=

exp(1− (tlj − t
l−1
i )/τ)

τ2
(τ + tl−1

i − tlj) (7)

The exploding gradient problem occurs when
∂V l

j (t
l
j)/∂t

l
j ≈ 0 i.e. the membrane potential is reaching the

firing threshold, emitting a spike (Fig. 2b). Since ∂Vj(tj)/∂tj
is the denominator in Eq. 6, this causes Eq. 6 to explode with
large weight updates. Despite the progress made to address
this problem such as adaptive learning rate [60] and dynamic
firing threshold [47], the problem has not been fully resolved.

It is shown from Eq. 4 and Eq. 5 that when the presynaptic
neuron does not emit a spike, the error cannot be back-
propagated through ∂V l

j (t
l
j)/∂t

l−1
i , which then results in dead

neurons. This problem also exists with analog neurons with
ReLU activation function in DNNs. However, due to the leaky
nature of the PSP kernel and the spike generation mechanism,
spiking neurons encounter a more serious dead neuron problem.
As shown in Fig. 2(c), there are three input spikes, and the
neuron emits a spike with large synaptic weights (blue curve).
With slightly reduced synaptic weights, the membrane potential
stays below the threshold hence becoming a dead neuron (green
curve). When the neuron does not spike, no errors can back-
propagate through it. The dead neuron problem is fatal in
spike-driven learning algorithms.

III. SPIKING NEURON MODEL AND LEARNING ALGORITHM

In this section, we describe how the above challenges may be
overcome, thereby a DeepSNN may still be trained using BP. To
this end, we introduce Rectified Linear Postsynaptic Potential
function (ReL-PSP) as a new spiking neuron model, and present
a spike-timing-dependent back propagation (STDBP) learning
algorithm that is based on ReL-PSP.
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Figure 1: (a) Alpha shape PSP function. (b) The neuron’s membrane potential barely reaches the firing threshold, and
the problem of gradient exploding happens. (c) Spiking neurons suffer from the problem of dead neuron.
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Fig. 2: (a) Alpha shape PSP function. (b) The membrane potential barely reaches the firing threshold, and exploding gradient
occurs. (c) The alpha-PSP neuron with weak synaptic weights is susceptible to be a dead neuron .

A. ReL-PSP based spiking neuron model

As discussed earlier in Section II, BP cannot be directly ap-
plied in DeepSNNs due to problems of non-differentiable spike
function, exploding gradient and dead neuron. To overcome
these problems, we propose a simple yet efficient Rectified
Linear Postsynaptic Potential (ReL-PSP) based spiking neuron
model, whose dynamics is defined as follows,

V l
j (t) =

N∑
i

ωl
ijK(t− tl−1

i ) (8)

whereby K(t− tl−1
i ) is the kernel of the PSP function, which

is defined as

K(t− tl−1
i ) =

{
t− tl−1

i if t > tl−1
i

0 otherwise
(9)

As shown in Fig. 3(a), given an input spike at tl−1
i , the

membrane potential after tl−1
i is a linear function of time

t. Since the shape of the proposed PSP function resembles that
of a rectified linear function, we name it the ReL-PSP function.
In the following, we will analyze how the proposed neuron
model solves the above-mentioned problems.

1) Non-differentiable spike function: As shown in Fig. 3b,
due to the linearity of the ReL-PSP, the membrane potential
V l
j (t) increases linearly prior to spike time tlj . The linearity is

a much desired property from a postsynaptic potential function.
We can now directly use Eq. 10 to compute ∂tlj/∂V

l
j (t

l
j). This

resolves the issue of non-differentiable spike generation.

∂tlj
∂V l

j (t
l
j)

= − 1

∂V l
j (t

l
j)/∂t

l
j

=
−1∑N

i ωl
ij

∂K(tlj−tl−1
i )

∂tlj

=
−1∑N
i ωl

ij

if tlj > tl−1
i

(10)

The precise gradients in BP provide the necessary infor-
mation for network optimization, which is the key to the
performance of DNNs. Without having to assume linearity, we
use the precise value of ∂tlj/∂V

l
j (t

l
j) instead of approximating

it, and avoid accumulating errors across multiple layers.
2) Gradient explosion: Exploding gradient occurs when the

denominator in Eq. 6 approaches 0. In this case, the membrane
potential just reaches the firing threshold at spike time, and
is caused by the combined effect of ωl

ij and partial derivative

of the PSP function. As
∑N

i ωl
ij may still be close to 0, the

exploding gradient problem may not be completely solved.
However, from Eqs. 3 and 8, we obtain the spike time tlj as
a function of input spikes and synaptic weights ωl

ij , and the
spike time tlj can be calculated as,

tlj =
ϑ+

∑N
i ωl

ijt
l−1
i∑N

i ωl
ij

if tlj > tl−1
i (11)

Should the
∑N

i ωl
ij be close to 0, the spike tlj will be emitted

late, and may not contribute to the spike tl+1
j in the next layer.

Therefore, the neuron j in the l layer does not participate in
error BP, and does not result in exploding gradient.

3) Dead neuron: In neural networks, sparse representa-
tion (few activated neurons) has many advantages, such as
information disentangling, efficient variable-size representation,
linear separability etc. However, sparsity may also adversely
affect the predictive performance. Given the same number of
neurons, sparsity reduces the effective capacity of the model
[61]. Unfortunately, as shown in Fig. 2(c), due to the leaky
nature of the alpha-PSP and the spike generation mechanism,
such a spiking neuron is more likely to suffer from the dead
neuron problem.

As shown in Fig. 3(c), with the ReL-PSP kernel, the PSP
increases over time within the simulation window Tmax until
the postsynaptic neuron fires a spike . Hence the neuron with
a more positive sum of weights fires earlier than one with a
less positive sum, with lower probability of becoming a dead
neuron. Overall, the proposed ReL-PSP greatly alleviates the
dead neuron problem as the PSP does not decay over time,
while maintaining a sparse representation to the same extent
of the ReLU activation function.

B. Error backpropagation

Given a classification task with n categories, each neuron
in the output layer is assigned to a category. When a training
sample is presented to the neural network, the corresponding
output neuron should fire the earliest. Several loss functions
can be constructed to achieve this goal [36], [48], [49]. In this
work, the cross-entropy loss function is used. To minimise the
spike time of the target neuron, at the same time, maximise the
spike time of non-target neurons, we use the softmax function
on the negative values of the spike times in the output layer:
pj = exp(−tj)/

∑n
i exp(−ti). The loss function is given by,

L(g, to) = −ln
exp(−to[g]))∑n
i exp(−to[i])

(12)
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Figure 1: (a) Alpha shape PSP function. (b) The neuron’s membrane potential barely reaches the firing threshold, and
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Fig. 3: There are three input spikes denoted as t1, t2, t3. The blue and green lines show the membrane potential with large
and small synaptic weights, respectively. (a) ReL-PSP function. (b) Trace of the neuron membrane potential during threshold
crossing. (c) The ReL-PSP neuron generates spikes at t1o and t2o with large and small synaptic weights, respectively (t1o < t2o).

where to is the vector of the spike times in the output layer
and g is the target class index [36].

The loss function is minimised by updating the synaptic
weights across the network. This has the effect of delaying or
advancing spike times across the network. The derivatives of
the first spike time tlj with respect to synaptic weights ωl

ij and
input spike times tl−1

i are given by

∂tlj
∂ωl

ij

=
∂tlj

∂V l
j (t

l
j)

∂V l
j (t

l
j)

∂ωl
ij

=
tl−1
i − tlj∑N

i ωl
ij

if tlj > tl−1
i (13)

∂tlj

∂tl−1
i

=
∂tlj

∂V l
j (t

l
j)

∂V l
j (t

l
j)

∂tl−1
i

=
ωl
ij∑N

i ωl
ij

if tlj > tl−1
i (14)

Following Eq. 13 and Eq. 14, a standard BP can be applied
for DeepSNNs training.

IV. HARDWARE MODEL

To put the proposed spiking neuron model and STDBP
learning algorithm into action, we evaluate their deployment
on a hardware architecture for pattern classification tasks. We
first implement them in spiking neural networks for inference
operations on YOSO platform [58] which is specifically de-
signed for accelerating temporal coding based SNN models with
sparse spiking activity. It was shown that YOSO facilitates ultra-
low-power inference operations (< 1 mW) as a neuromorphic
accelerator with state-of-the-art performance.

In this section, we will describe the hardware architecture
of YOSO, the technique that maps SNNs on YOSO, and the
simulation methodology that evaluates the YOSO performance
during inference operations.

A. Hardware Architecture

As shown in Fig. 4 (a), YOSO is a Network-On-Chip (NoC)
architecture with multiple processing elements (PEs) connected
in a mesh topology. Each PE has a router, which facilitates the
propagation of spikes from one PE to another. As shown in
Fig. 4 (b), each PE in the NoC consists of four static random-
access memories (SRAMs), a memory interface, a core, a
router interface, first-in-first-out (FIFO) buffers to facilitate
communication between router and router interface. The router
sends or receives the spikes to or from other PEs in the NoC.
During the initialization phase, i.e. when the accelerator is
downloading the model to be run, the router sends the spikes

to SRAMs directly via router and memory interfaces. During
the inference phase, the router sends the spikes to the core,
where all the computations take place. Note that YOSO [58]
can only accelerate inference operations and training needs to
be performed offline.

The SRAMs are used to store all the information required for
processing the incoming spikes and for generating the output
spikes. As shown in Fig. 4 (b), the SRAMs can communicate
with the core and router interface via a memory interface. The
accumulated weight, neuron, weight, and spike address SRAMs
store accumulated weights, neuron potentials, weights between
two layers, and the spike addresses of the neurons allocated
for that PE, respectively.

As shown in Fig. 4 (c), the core consists of three modules–
load, compute, and store. The load module is responsible for
decoding the information encoded in incoming spikes. A spike
processing algorithm introduced in [58] is used to encode the
information in spike packets that can read by the load module.
After decoding the information in incoming spikes, the load
module generates read requests to different SRAM blocks.
After sending the read requests generated by one incoming
spike, it transits to the idle state and waits for the next input
spike. The compute module receives the data requested by
the load module from the SRAMs, updates the data using the
saturated adder, and sends the results to the FIFO connected
to the store module. The store module receives addresses of
the loaded data from the load module and the results from
the compute module. Using the data and addresses received, it
writes the data back to the SRAMs. It also generates spikes
when a condition, depending on the chosen techniques, TTFS
or softmax, is met to be sent to the next layer. In addition,
the core is designed based on the decoupled access-execute
model [62], which enables it to hide memory access latency
by performing different computations parallelly.

B. Mapping

In this work, we plan to accelerate our trained SNN models
on YOSO [58]. To map a m× n fully connected SNN layer
on YOSO [58], a minimum of C =MAX( n

N ,
m×n
W ) PEs are

needed where N is the maximum number of neurons that can
be mapped to a single core and W is the maximum number of
weights that the core can contain. The PEs are placed within
a
√
C by

√
C grid. Each PE in the grid will be allocated to a

layer or a part of layer for processing received by that layer.
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Fig. 4: (a) The YOSO accelerator with network-on-chip (NoC) architecture, (b) the architecture of each processing element
(PE) in YOSO, and (c) the computational core in each PE [58].

C. Hardware Simulation Methodology

We implemented the YOSO’s NoC architecture using the
OpenSMART NoC generator [63]. The X-Y routing mechanism
is used to send the spike packets from one PE to another. In
addition, we designed the PEs in such a way that each PE can
meet the memory and computational requirements of at least
256 neurons [58]. To evaluate the performance of YOSO [58],
we synthesized the hardware architecture shown in Fig. 4 using
Synopsys Design Compiler version P-2019.03-SP5 targeting a
22nm technology node with a 6× 7 PE configuration. Gate-
level simulations are performed using the Synopsys VCS-MX
K-2015.09-SP2-9 and power analysis is performed using the
Synopsys PrimePower version P-2019.03-SP5.

V. EXPERIMENTS

In this section, we evaluate both fully connected SNNs
and convolutional SNNs on the image classification task
based on the MNIST [64], Fashion-MNIST [65] and Caltech
101 face/motorbike datasets1. We benchmark their learning
capabilities against existing spike-driven learning algorithms. In
addition, we evaluate the inference speed and energy efficiency
of our fully connected SNN on the YOSO neuromorphic
accelerator.

A. Temporal coding

We employ an efficient temporal coding scheme that encodes
information into spike timing, following the assumption that
strongly activated neurons tend to fire early [66]. In practice,
the input pixel intensity value is encoded into spike timing
according to ti = α(−si + 255)/255, where ti is the firing
time of the ith neuron, si is intensity value of the ith pixel
with si ∈ [0, 255], and α is a scaling factor. In this way,
more salient information is encoded into an earlier spike by
the corresponding input neuron. These encoded spikes are
propagated to subsequent layers following the dynamics of the
SNN. Similar to the input layer, the neurons in the hidden and
output layer that are strongly activated will fire first. As such,
the temporal coding is maintained throughout the DeepSNN,
and the output neuron that fires first categorizes the input
sample.

1http: //www.vision.caltech.edu

B. MNIST Dataset

The MNIST dataset comprises of 70,000 28×28 grayscaled
images, with 60,000 and 10,000 for training and testing,
respectively. We first train an ANN model to initialize the the
corresponding SNN. Following the temporal coding in section
V-A., we encode the images into spike patterns, then use them
to train a fully connected and convolutional SNN using the
proposed STDBP algorithm. A complete convolutional SNN
network structure is provided in Fig. 5. During training, we
add jittering noise to the input spike patterns so as to improve
the performance of the trained model. The jitter intervals are
randomly drawn from a Gaussian distribution with zero mean
and variance σj = 0.14. The SNN is trained for 150 epochs
using the Adam optimizer, with a batch size of 128. The
hyperparameters β1 and β2 of the Adam optimizer are set to
0.9 and 0.999, respectively. The learning rate starts at 0.0002
and gradually decreases to 0.00005 by the end of the training.

As the experimental results summarised in Table I, the
proposed STDBP learning algorithm could reach accuracies
of 98.1% and 98.5% with the network structures of 784-400-
10 and 784-800-10, respectively. They outperform previously
reported results of SNNs with the same network structures. For
example, with the structure of 784-400-10, the classification
accuracy of our method is 98.1%, while the accuracy achieved
by Mostafa [36] is 97.5%. Another advantage of our algorithm
is that it does not need additional training strategies, such as
constraints on weights and gradient normalization, which are
widely used in previous works to improve their performance
[36], [48], [49]. This facilitates large-scale implementation
of STDBP, and makes it possible to train more complex
CNN structure. The proposed convolutional SNN achieves an
accuracy of 99.4%, much higher than all the results obtained
by the fully connected SNNs. To our best knowledge, this is
the first implementation of a convolutional SNN structure with
the single-spike-timing-based supervised learning algorithm.

Fig. 6 shows the distribution of spike timing in the hidden
layers and of the earliest spike time in the output layer across
10,000 test images for two SNNs, namely 784-400-10 and
784-800-10. In both cases, the SNN makes a decision after
only a fraction of hidden layer neurons are activated. For
the 784-400-10 topology, an output neuron spikes (a class is
selected) after only 48.6% of the hidden neurons have spiked.
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Fig. 5: The convolutional spiking neural network used in this work.

TABLE I: The classification accuracies of existing spike-driven learning algorithms on the MNIST dataset. We use the following
notation to indicate the SNN architecture. Layers are separated by - and spatial dimensions are separated by ×. The convolution
layer and pooling layer are represented by C and P, respectively.

Model Coding Network Architecture Additional Strategy Acc. (%)
Mostafa [36] Temporal 784-800-10 Weight and Gradient Constraint 97.5
Tavanaei et al [67] Rate 784-1000-10 None 96.6
Comsa et al [49] Temporal 784-340-10 Weight and Gradient Constraint 97.9
Kheradpisheh et al [48] Temporal 784-400-10 Weight Constraint 97.4
ANN Rate 784-800-10 None 98.6
STDBP (This work) Temporal 784-340-10 None 98.0
STDBP (This work) Temporal 784-400-10 None 98.1
STDBP (This work) Temporal 784-800-10 None 98.5
STDBP (This work) Temporal 784-1000-10 None 98.5

CNN Rate
28×28-16C5-P2-32C5

-P2-800-128-10 None 99.5

STDBP (This work) Temporal
28×28-16C5-P2-32C5

-P2-800-128-10 None 99.4

The network is thus able to make rapid decisions about the
input class. In addition, during the simulation time, only 66.3%
of the hidden neurons have spiked. Therefore, the experimental
results suggest that the proposed learning algorithm works in
an accurate, fast and sparse manner.

To investigate whether the proposed ReL-PSP solves the
problems of exploding gradient and dead neuron, we take the
fully connected SNNs as an example and 20 independent
experiments are conducted with different initial synaptic
weights. The data distribution of error gradients, learned
synaptic weights and dead neuron counts are reported in Fig.
7, Fig. 8 and Fig. 9, respectively.

Fig. 7(a) shows the error gradients of the SNN with an
alpha-PSP function, where gradients generally take values that
are much larger than those in ReL-PSP (Fig. 7(b)) and ANNs
(Fig. 7(c)). The results confirm our findings in the problem
analysis in section II, that is, the alpha-PSP function is prone
to the gradient exploding problem. We note that the previous
studies only partly alleviate this problem, for example, the
adaptive learning rate [60] and dynamic firing threshold [47]
methods. We are encouraged to see that the gradients of the
ReL-PSP function follows a normal distribution that is close
to that of ANN, thus ensuring a stable gradient propagation
in DeepSNNs. In addition, as shown in Fig. 8(a), the gradient
exploding problem also leads to skewed weights, which may
adversely affect the performance of the trained model, and is

now addressed by the ReL-PSP function.

For artificial neural networks, typically only a subset of
neurons are activated at the same time [61]. We note that
excessive inactivation will lead to the dead neuron problem,
which reduces the effective capacity of the network and thus
the predictive capability. To assess the severity of the dead
neuron problem, we record the percentage of dead neurons
during the training process, and report both the mean and the
standard deviations across 20 independent runs in Fig. 9. As the
training progresses, the percentage of dead neurons increases
across both SNNs and ANN. After 100 training epochs, the
SNN with ReL-PSP has 30% active neurons and achieves a test
accuracy of 98.5%. In contrast, the SNN with alpha-PSP only
has 5% active neurons with a test accuracy of 92.5%. As we
discussed in section III-A, due to the leaky nature of traditional
alpha-PSP function and the spike generation mechanism, SNNs
with alpha-PSP function are more likely to suffer from the
dead neuron problem. The experimental results corroborate
our hypothesis and suggest that ReL-PSP function effectively
addresses this problem. After 100 training epochs, the ANN has
about 40% active neurons with an accuracy of 98.6%. Overall,
the results show that the SNN model with ReL-PSP achieves
competitive results with sparse neuronal activities.
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(a)

(b)

Fig. 6: Histograms of spike times in the hidden layers and the
output layer across 10,000 test images for the two SNNs: (a)
784-400-10 and (b) 784-800-10.

C. Fashion-MNIST dataset

Fashion-MNIST dataset [65] has same number of train-
ing/testing samples as MNIST, but is more challenging than
MNIST. The samples are associated with 10 different classes
like T-shirt/top, Pullover, Trouser, Dress, Sandal, Coat, Shirt,
Bag, Sneaker and Ankle boot. Here we use Fashion-MNIST
to compare our method with the existing fully-connected
feedforward SNNs and convolutional SNNs.

Table II shows the classification accuracies and character-
istics of different methods on Fashion-MNIST dataset. The
proposed learning algorithm still deliver the best test accuracy
in temporal coding based SNN methods. For example, our
method can achieve accuracies of 88.1% and 90.1% with
the fully-connected SNN and convolutional SNN, respectively.
These results outperforms the best reported result of 88.0%
[48] in temporal coding based SNN models.

D. Caltech face/motorbike dataset

In this experiment, the performance of the proposed STDBP
is evaluated on the face/motobike categories of the Caltech
101 dataset (http://www.vision.caltech.edu). For each category,
the training and validation set consist of 200 and 50 randomly
selected samples, respectively, and the others are regard as
testing samples. Before training, all images are rescaled and
converted to 160× 250 grayscale images. Fig. 10 shows some
samples of the converted images. The converted images are
then encoded into spike patterns by temporal coding.

The classification accuracies of different SNN-based compu-
tational models are shown in Table III. The proposed STDBP
learning algorithm achieves an accuracy of 99.2% with the fully
connected SNN structure and an accuracy of 99.5% with the
convolutional SNN structure. The accuracy obtained by STDBP
outperforms the previously reported SNN-based methods on
this dataset. For example, In Kheradpisheh et al [74], an
convolutional SNN structure with a SVM classifier achieves
an accuracy of 99.1% on the same dataset. Moreover, it is not
a fully spike-based computational model that the membrane
potential is used as the classification signal. Recently, a spike-
based fully connected SNNs model achieves an accuracy of
99.2%. However, the proposed method with convolutional SNN
structure reaches an accuracy of 99.5%, which is the state-of-
the-art performance on this benchmark.

E. Hardware Simulation Results

We will now focus on evaluating the power and energy
efficiency of our SNN models by accelerating their inference
operations on YOSO. As a baseline for comparison with other
neuromorphic accelerators, we considered a fully connected
SNN with network architecture 784-800-10 and trained it on
MNIST data with proposed STDBP learning algorithm. The
learned weights are then transferred to YOSO for accelerating
the inference operations. As shown in Table IV, YOSO
consumes 0.751 mW of total power consumption and 47.71 ms
of latency to classify an image from MNIST dataset. In addition,
YOSO achieves 399×, 159.8×, 143.8×, and 1.67× power
savings as compared to Spinnaker [56], Tianji [57], TrueNorth-
b [24], and Shenjing [55], respectively. Though, TrueNorth-
a consumes less power than YOSO, there is a significant
difference between the classification accuracies of TrueNorth-a
and YOSO (See Table IV). Moreover, YOSO provides 108.7×,
6×, and 3× energy efficiency as compared to Spinnaker [56],
SNNwt [76], and TrueNorth-b [24], respectively.

VI. DISCUSSION AND CONCLUSION

In this work, we analysed the problems that BP faces in a
DeepSNN, namely the non-differentiable spike function, the
exploding gradient, and the dead neuron problems. To address
these issues, we proposed the Rectified Linear Postsynaptic
Potential function (ReL-PSP) for spiking neurons and the
STDBP learning algorithm for DeepSNNs. We evaluated the
proposed method on both a multi-layer fully connected SNN
and a convolutional SNN. The conducted experiments on
MNIST showed an accuracy of 98.5% in the case of the the
fully connected SNN and 99.4% with the convolutional SNN,
which is the state-of-art in spike-driven learning algorithms for
DeepSNNs.

There have been a number of learning algorithms for Deep-
SNNs, such as conversion methods [24]–[33], and surrogate
gradients methods [15], [37]–[41]. These methods are not
compatible with temporal coding and spike-based learning
mechanism. To overcome the non-differentiability of spike
function, many methods have been studied [36], [43]–[49]
to facilitate backpropagation. Two common drawbacks of
these methods are exploding gradients and dead neurons,
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(a) SNN with alpha-PSP function (b) SNN with ReL-PSP function (c) ANN

Fig. 7: Distribution of error gradients of different methods.

(a) SNN with alpha-PSP function (b) SNN with ReL-PSP function (c) Learned weights of ANN

Fig. 8: Distribution of learned weights of different methods.

TABLE II: The classification accuracy (Acc.) of the existing SNN-based computational models on the Fashion-MNIST dataset.

Model Coding Network Architecture Acc. (%)
S4NN [48] Temporal 784-1000-10 88.0
BS4NN [68] Temporal 784-1000-10 87.3
Hao et al. [69] Rate 784-6000-10 85.3
Zhang et al. [70] Rate 784-400-400-10 89.5
STDBP (This work) Temporal 784-1000-10 88.1
Ranjan et al. [71] Rate 28×28-32C3-32C3-P2-128-10 89.0
STDBP (This work) Temporal 28×28-16C5-P2-32C5-P2-800-128-10 90.1

TABLE III: The classification accuracy (Acc.) of existing SNN-based computational models on the Caltech face/motorbike
dataset.

Model Learning method Network Architecture Classifier Acc. (%)
Masquelier et al. [72] Unsupervised STDP HMAX [73] RBF 99.2
Kheradpisheh et al. [74] Unsupervised STDP 28×28-4C5-P7-20C16-P2-10C5 SVM 99.1
Mozafari et al. [75] Reward modulated STDP HMAX [73] Spike-based 98.2
Kheradpisheh et al. [48] Spike-based backpropagation 160×250− 4− 2 Spike-based 99.2
STDBP (This work) Spike-based backpropagation 160×250− 4− 2 Spike-based 99.2
STDBP (This work) Spike-based backpropagation 28×28-16C5-P2-32C5-P2-800-128-10 Spike-based 99.5
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Fig. 9: The percentage of dead neurons during the training
process. The error bars denote the standard deviations across
20 independent experiments.

Fig. 10: Some samples of the converted images from Caltech
101 face/motorbike dataset

which have been partially addressed using techniques such
as constraints on weights and gradient normalization. These
techniques affect learning efficiency, thus limiting the scope of
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TABLE IV: Comparison of a fully connected SNN with various neuromorphic accelerators on the MNIST dataset sorted by the
accuracy. Acc. denotes Top-1 accuracy, frame rate is reported as frames per second (fps), Tech is CMOS technology node in
nm, power in mW.

Accelerator Coding Acc. (%) fps Tech Power uJ/frame
SNNwt [76] Rate 91.82 - 65 - 214.700
TrueNorth-a [24] Rate 92.70 1000 28 0.268 0.268
TrueNorth-b [24] Rate 99.42 1000 28 108.000 108.000
Loihi-a [77] Rate 98.79 120 14 - -
Loihi-b [78] Rate 99.21 150 14 99.248 660
Spinnaker [56] Rate 95.01 77 130 300.000 3896.000
Tianji [57] Rate 96.59 - 120 120.000 -
Shenjing [55] Rate 96.11 40 28 1.260 38.000
STDBP+YOSO (This work) Temp. 98.45 21 22 (0.878*) 0.751 (41.93*) 35.839

**Scaled for 28 nm process (×1.17 for half a generation)

their applications in large-scale networks. The proposed STDBP
learning algorithm with ReL-PSP spiking neuron model can
train DeepSNNs directly without any additional technique,
hence allowing the DeepSNNs to scale, as shown in the high
accuracy of the convolutional SNN.

Other than what is discussed in this paper, the proposed
ReL-PSP neuron model and STDBP have other attributes
that might make it more energy-efficient and (neuromorphic)
hardware friendly. Firstly, the linear ReL-PSP function is
simpler than alpha-PSP for hardware implementation. Secondly,
unlike rate-based encoding methods that require more time to
generate enough output spikes for classification, our method
takes advantage of temporal coding and uses a single spike,
which is more sparse and energy-efficient, given energy is
mainly consumed during spike generation and transmission.
Thirdly, without additional training techniques, on-chip training
in neuromorphic chips would be much easier to realize. Finally,
even if the training is performed offline, inference of our
SNN models can be accelerated with much less power and
energy consumption as compared to other state-of-the-art
neuromorphic accelerators.
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