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Zusammenfassung

Kohärente Strukturen sind zusammenhängende Bereiche in einem

Fluid, in denen Variablen wie die Komponenten des Windfeldes oder

die Temperatur eine hohe Korrelation mit sich oder anderen Variablen

aufweisen. Diese Gebiete, welche deutlich größer sind als die klein-

sten Skalen der Turbulenz, sind als regelmäßige Muster im Windfeld der

atmosphärischen Grenzschicht erkennbar. Die Strukturen tragen im ho-

hem Maße zu turbulenten Flüssen bei und beeinflussen so Transport

und Durchmischung in der Grenzschicht. Nahe der Erdoberfläche kön-

nen kohärente Strukturen mit Längenskalen von 100 m bis zu wenigen

Kilometern beobachtet werden.

Doppler-Lidare sind aktive Fernerkundungsinstrumente, die besonders

für die Untersuchung atmosphärischer Windfelder in der Grenzschicht

geeignet sind. Der Einsatz zweier synchron gesteuerter Lidare ermög-

licht die Vermessung des horizontalen Windfeldes in Bodennähe auf Ge-

bieten von der Größe mehrerer Quadratkilometer mit hoher räumlicher

und zeitlicher Auflösung. Obwohl Doppler-Lidare damit für die Unter-

suchung kohärenter Strukturen optimal geeignet scheinen, wird ihre De-

tektion durch die im Messverfahren inhärenten räumlichen und zeitlichen

Mittelungsprozesse erschwert. Es ergibt sich die Frage: Wie gut können

kohärente Strukturen mit dem Dual-Doppler Lidar Verfahren detektiert

und vermessen werden?

Um diese Frage zu beantworten werden hochaufgelöste Grobstruktur-

simulationen der Grenzschicht als Grundlage für virtuelle Lidar-Messun-

gen verwendet: mit Hilfe mathematischer Modelle für Lidar-Messungen



wird berechnet, was ein Doppler-Lidar in durch die Grobstruktursimula-

tion vorgegebenen Windfeldern messen würde. Damit ist es möglich,

die Effekte des Lidar-Messverfahrens auf die detektierte Struktur des

Windfeldes direkt sichtbar zu machen und zu analysieren. Auf die Grob-

struktursimulationsdaten und die virtuellen Doppler-Lidar-Daten werden

bekannte Strukturdetektionstechniken angewandt: die Bestimmung der

räumlichen integralen Längenskala, eine Wavelet-Analyse sowie die

Gruppierung zusammenhängender Bereiche geringer Windgeschwin-

digkeit. Mittels theoretischer Betrachtungen und einer Fehleranalyse

werden außerdem Techniken zur Optimierung von Dual-Doppler Lidar

Verfahren und zur Bewertung und Korrektur der gemessenen Struktur-

Längenskalen entwickelt.

Qualitativ ergibt sich, dass große Strukturen (> 10∆xy) zuverlässig de-

tektiert werden können, die Größe kleinerer Strukturen (< 1 bis 5∆xy)

jedoch überschätzt wird, wobei die Strukturgröße im Verhältis zur Lidar-

Auflösung ∆xy zu betrachten ist.

Die quantitative Analyse zeigte, dass die integrale Längenskala nach Ko-

rrektur ein geeignetes Maß zur Bestimmung der räumlichen Korrelation-

slänge aus Lidar-Daten darstellt. Die Wavelet-Analyse eignet sich zur

Untersuchung einzelner Strukturen nur dann, wenn diese eine Mindest-

größe von 5 bis 10 ∆xy überschreiten welche durch die Lidar-Auflösung

festgelegt wird. Die Gruppierungsmethode ist für die vorliegenden Lidar-

Daten ungeeignet.

Die hier erarbeiteten theoretischen Ergebnisse werden in der Durch-

führung und Auswertung des HOPE-Experiments im Frühjahr 2013 mit

den KIT Lidar-Systemen angewandt.



Abstract

Coherent structures are connected regions in a fluid in which variables

like wind speed or temperature exhibit a high correlation with themselves

or other variables. These regions, which are much larger than the small-

est scales of turbulence, appear as regular patterns in the wind field of

the atmospheric boundary layer. The structures account for a large pro-

portion of turbulent fluxes and thereby influence atmospheric boundary

layer mixing and transport. Close to the earth’s surface the structures

on length scales of 100 m to few kilometers can be observed.

Doppler lidars are active remote-sensing instruments for atmospheric

wind measurements in the boundary layer. The deployment of two syn-

chronously scanning ground-based lidars facilitates the measurements

of the horizontal wind field close to the surface on an area of several

square kilometers with unprecedented time and spatial resolution.

Although Doppler lidars appear ideally suited to investigate these struc-

tures, the inherent averaging processes involved in lidar measurements

complicate the structure detection. The question arises: How well do

Doppler-lidars perform in the detection and measurement of coherent

structures?

To answer this question high-resolution large-eddy simulations of the

boundary layer are used as a basis for virtual dual-lidar measurements.

This way it becomes possible to directly visualize and analyze the effects

of the lidar measurement technique on the detected wind field structure.

Three common structure detection techniques are applied to both the



large-eddy simulation data and the virtual lidar scan data: the compu-

tation of spatial integral length scales, a wavelet-analysis, and the clus-

tering of low wind-speed regions. Based on theoretical investigations

and an error discussion techniques are developed to optimize dual-lidar

scans and to assess and correct the measured coherent structure length

scales.

The qualitative evaluation reveals that large structures (> 10∆xy) can be

detected reliably, whereas the size of smaller structures (< 1 to 5∆xy) is

overestimated. Structures are seen as large or small relative to the lidar

resolution ∆xy. The quantitative analysis shows that the integral length

scales derived from lidar-data are after a correction suitable to determine

spatial correlations lengths. The wavelet-analysis is best suited for the

investigation of single structures, provided that these exceed a length

scale of 5 to 10 ∆xy determined by the lidar resolution. The clustering

algorithm is unsuitable for the application on the present dual-lidar data.

The theoretical results developed in this study were applied during the

KIT dual-lidar system deployment and the subsequent data analysis in

the HOPE-experiment in spring 2013.
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1. Introduction

Atmospheric turbulence describes the random and chaotic motion of

air in elements (‘eddies’) of different scales over several orders of

magnitude, which form, interact, and decay. Hinze (1959) defines: “Tur-

bulent fluid motion is an irregular condition of flow in which the various

quantities show a random variation with time and space coordinates,

so that statistically distinct average values can be discerned.” It is

created through wind shear and buoyancy, which become particularly

relevant near the earth’s surface. Turbulent mixing is the most important

transport process in the atmospheric boundary layer, i.e. the part of the

atmosphere which is influenced by the earth’s surface, with a height

of up to 3 km. Although it is generally agreed that the Navier-Stokes-

Equations describe turbulent motions, the mathematical problems they

pose, which are caused by their non-linearity, remain unsolved. In fact,

a proof of the existence and smoothness of a solution has been posed

as one of the seven ‘Millennium Problems’ (Carlson et al., 2006).

The stochastic nature of turbulence in fluids has been studied for more

then 100 years under laboratory and free atmospheric and oceanic

conditions.

Recurrent coherent structures are rather regular patterns in fully

developed turbulent flow fields, such as in the atmospheric boundary

1



1. Introduction

layer.1 In the surface layer, which is the boundary layer region close to

the ground, these structures are responsible for a large, possibly the

dominant, part of the fluxes of momentum and heat. In the shear-driven

surface layer, they appear as elongated streaks of alternatingly low- and

high-speed fluid which coincide with up- and downdrafts, respectively,

and which become the starting points for horizontal convective rolls

in the sheared convective boundary layer. Under conditions of free

convection, the updraft regions arrange in regular, hexagonal patterns.

The surface layer structures occur on length scales from less than

100 meters to a few kilometers. Although they approach the resolution

of mesoscale forecast models like COSMO-DE, these structures are

not considered in the sub-filter-scale parameterization. During several

decades of research, these structures have been investigated with

atmospheric measurements, wind tunnel measurements, and numerical

models. However, there is still no conclusive knowledge about their

scales, intensities, and contributions to fluxes and turbulent kinetic

energy, which have been found to depend on shear, stability, boundary

layer height, surface roughness, and heterogeneity.

A main difficulty is the challenge of capturing the large-scale structures

with meteorological instruments: For years, point measurements from

towers and aircrafts were the sole source of data on coherent structures

in the atmospheric boundary layer. Recently, remote sensing instru-

ments have become available for coherent structure research: Doppler

lidars are, depending on their specifications, able to measure the wind

component in beam direction with a resolution of about 50 to 100

meters over a range of ten to fifteen kilometers. Compared to Doppler

radars, which only detect liquid water content, Doppler lidar pulses have

1Various more detailed definitions of the term ‘coherent structures’ can be found in Chap. 2.2.

2



a wavelength in the infrared which is back-scattered by atmospheric

aerosols moving with the wind. Lidars are therefore well suited for wind

speed measurement in the boundary layer.

Two Doppler lidars scanning the surface layer synchronously are able

to retrieve the complete horizontal wind field on an area of several

square kilometers. This approach has first been applied by Rothermel

et al. (1985). Using this method, the structures in the surface layer can

been detected. However, the scanning time and the spatial averaging

involved in lidar measurements are important error sources whose

influence on structure detection has not yet been investigated. This ad-

vanced measurement technique therefore requires an assessment of its

accuracy. Comparative measurements are complicated by the fact that

no other instruments provide data with comparable range and resolution.

Increasing computational power has lead to a considerable improvement

in boundary layer modeling. Large-eddy simulations (LES) are able to

resolve turbulence down to scales of a few meters and have been widely

used to investigate boundary layer structures. However, LES analyses

must be accompanied by measurements since the smallest scales of

turbulence and the region close to the surface, which are particularly

important for the structure generation, have to be parameterized.

This study has the objective to determine the quality of coherent struc-

ture detection techniques in dual-Doppler surface layer scan data. To

this effect, surface layer wind fields from LES are employed which exhibit

coherent structures. Virtual dual-Doppler lidar scans and retrievals are

performed based on the LES fields with a lidar simulation tool developed

as a part of this work. The lidar simulator yields the radial wind velocities

that a real lidar would ‘see’ in the LES atmosphere. By comparing the

3



1. Introduction

structures determined with different techniques from the ‘real’ LES,

including virtual tower measurements, and the ‘measured’ virtual lidar

data, the quality of the techniques are assessed. Where possible,

correction techniques are developed based on the mathematical model

of lidar measurements.

With these results, real dual-Doppler lidar measurements can be

interpreted and the present coherent structures can be characterized

including error estimates.

In the HOPE experiment (HD(CP)2 Observational Prototype Experi-

ment), which was part of the HD(CP)2 campaign in Jülich in spring

2013 (High Definition Clouds and Precipitation for Advancing Climate

Prediction)2, the KIT dual-Doppler lidar system performed low-elevation

surface-layer scans, using a synchronized control system and an opti-

mized scanning pattern developed as a part of this study. The analyses

of this work will be used to evaluate and correct the structure scale of

the experimental results. An outlook on is given in the conclusion.

This work is organized as follows:

In Chap. 2, the concept of coherent structures in turbulent fluids is intro-

duced, and the current state of research about atmospheric structures

from both tower and remote sensing data as well as LES is summarized.

Chap. 3 gives an overview of single and dual-Doppler lidar measure-

ments in the boundary layer, as well as the lidar simulation tool used for

virtual measurements based on LES data. Data from real and virtual

dual-lidar measurements are reassembled using a retrieval algorithm

also introduced here.
2Until January 2014 no articles on the HD(CP)2 experiment were published, but an overview of the

experiment could be found at the website http://hdcp2.zmaw.de .

4



In Chap. 4 the various error sources and their influence on dual-Doppler

measurements are discussed, which leads to an optimization algorithm

for scanning patterns. This optimization is applied in Chap. 5, where

virtual dual-Doppler measurements and retrievals are performed on four

LES data sets with varying shear and convective forcings.

In Chaps. 7 and 6, the high-resolution LES data and the virtual dual-lidar

retrieval data are both evaluated with the same four coherent structure

detection techniques. While in Chap. 6 length scales in the horizontal

wind field are investigated using correlation lengths, a wavelet algorithm

and a clustering approach, in Chap. 7 structures in the vertical wind

are detected using a Lagrangian Coherent Structure algorithm. The

various methods are compared with respect to their applicability with

dual-Doppler data and where possible correction methods are devel-

oped and tested.

Finally, Chap. 8 summarizes the results and gives recommendations

for dual-Doppler lidar scan and evaluation techniques for coherent

structure detection. Additionally, first results from the HOPE experiment

are presented.

5





2. Coherent Structures in the Atmospheric Boundary Layer

This chapter gives an overview of coherent structure research, reaching

from their discovery and visualization in low Reynolds number flows of

wind tunnels to their investigation in atmospheric boundary layers.

The current knowledge about atmospheric coherent structures and their

relation to boundary layer scaling parameters was shaped by numerical

simulations using LES, and measurements with meteorological towers

and remote sensing instruments.

2.1. Scaling Parameters in the Atmospheric Boundary Layer

The atmospheric boundary layer is a turbulent fluid in which turbulent

kinetic energy (TKE) is generated from buoyant and shear forcing. This

is expressed by the first two terms on the right hand side of the TKE-

equation (Stull, 1988):

∂e
∂ t

+u j
∂e
∂x j

= δi3
g

θ v

(
u′iθ
′
v

)
−u′iu

′
j
∂ui

∂x j
−

∂u′je

∂x j
− 1

ρ

∂u′ip
′

∂xi
− ε , [2.1]

where e = 1
2u′i

2 is the turbulent kinetic energy, ui the ith wind field

component {u1,u2,u3} = {u,v,w}, g the gravitational constant, θv the

virtual potential temperature, ρ the density of air, p the pressure and ε

the dissipation. Summation over repeated indices is assumed, δi j is the

7



2. Coherent Structures in the Atmospheric Boundary Layer

Kronecker symbol. Here, x denotes the average of a variable x, and x′

its deviation from the average: x′ = x− x.

To estimate the relative influence of shear and buoyancy, the friction

velocity u∗ and the convective velocity scale w∗ are introduced as scaling

parameters (Deardorff, 1972; Stull, 1988):

u∗ =
(

u′w′
2
0 + v′w′

2
0

)1/4
, [2.2a]

w∗ =
g

θ v

(
w′θ ′v0 · zi

)1/3
. [2.2b]

Here, zi is the boundary layer height, and the index 0 denotes the

values at the surface.

The scaling parameters are used as the relevant scales for the dimen-

sionless groups in similarity theory (Buckingham, 1914).

In the lower part of the boundary layer, about the lowest 10%, the fluxes

are approximately constant. In this part, called the surface layer, Monin-

Obukhov similarity is assumed when considerable shear is available.

The relevant scales for length and wind speed given are by the Obukhov-

length L∗, u∗, and the roughness length z0. It is assumed that the bound-

ary layer height does not affect the surface layer.

On the other hand, in the mixed layer with calm or light winds, shear be-

comes irrelevant and mixed-layer similarity is assumed, where lengths

and wind speeds scale with zi and w∗ (Stull, 1988).

The Obukhov-length L∗ is defined as

L∗ =−

(
u′w′

2
0 + v′w′

2
0

)3/4

g
θ v

w′θ ′v0 ·κ
, [2.3]

8



2.1. Scaling Parameters in the Atmospheric Boundary Layer

where κ ≈ 0.4 is the von Kármán constant. One physical interpretation of

L∗ is that it is a measure for the height above ground at which buoyancy

first dominates of shear (Stull, 1988).

As a measure for stability, the ratio

− zi

L∗
= κ

w3
∗

u3∗
[2.4]

is commonly used. When − zi
L∗

> 0, buoyant production exceeds buoyant

consumption at the surface and the boundary layer is convective and

unstable. When − zi
L∗

> 1, buoyant production exceeds shear production.

For larger −zi/L∗ the flow becomes increasingly unstable. On the other

hand, negative −zi/L∗ means an excess of buoyant consumption, and

the stratification becomes stable.

In comparisons with laboratory experiments, the Reynolds number be-

comes another important scaling parameter:

Re =
U L
ν

. [2.5]

Here, U and L are the velocity and length scale of the flow, respectively,

and ν is the kinematic viscosity.

The Reynolds number is a measure for the range of scales between the

largest and the smallest turbulent elements (‘eddies’) (Fröhlich, 2006,

Chap. 2):
L
η
= Re3/4 , [2.6]

where L is the largest scale of turbulence, and η =
(
ν3/ε

)1/4 is the

Kolmogorov microscale which denotes the size of the smallest eddies.

Turbulence spectra show that the large eddies carry the largest pro-

portion of energy. This energy is transported down across the inertial

range to the smallest scales of the spectrum, where it is finally dissi-

pated into heat. While in laboratory settings low Reynolds numbers

9
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x [m]

y
[m

]

 

 

0 1000 2000 3000 4000
0

1000

2000

3000

4000

u
′[m

/
s]

−2

−1

0

1

2

Figure 2.1: The streamwise turbu-

lent wind field component u′ in the

horizontal plane (x is the mean-wind

direction) at z = 10 m from an LES

with the PALM model at−zi/L∗= 1.9.

can be achieved (Re < 1000), the atmospheric boundary layer exhibits

Re > 107, meaning that five orders of magnitude lie between the smallest

and largest turbulent scales. This is a challenge for turbulence research

in the atmospheric boundary layer, which can only partly be overcome

by the application of similarity theories.

2.2. Organized Motions in Wall-Bounded Turbulent Flows

Several decades ago it was discovered in laboratory experiments with

low-Reynolds number flows that turbulent shear flows close to the

surface exhibit ordered structures in the wind field and other variables

(Grant, 1958; Kline et al., 1967): The streamwise turbulent wind com-

ponent, u′, showed spatially coherent regions with u′ < 0, which were

elongated in the direction of the mean wind and which alternated in

spanwise direction with regions of enhanced wind velocity, u′ > 0. These

regions were denoted as ‘streaks’ or ‘streaky structures’. They appear

also in high-Reynolds-number fluids like the atmospheric surface layer,

as shown in the large-eddy simulation of Fig. 2.1. The streaks feature

10



2.2. Organized Motions in Wall-Bounded Turbulent Flows

Figure 2.2: Correlation of u′ and

w′ at z = 10 m for the situation in

Fig. 2.1. u′ [m/s]

w
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m
/
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an anticorrelation between u′ and w′ (cf. Fig. 2.2), therefore the regions

with u′ > 0 and w′ < 0 are commonly called sweeps, whereas regions

with u′ < 0 and w′ > 0 are called ejections.

Streaks are only one manifestation of what is generally called ‘coher-

ent structures’ or ‘coherent motions’. These terms are used to describe

repetitive patterns in the boundary layer variables, although the scientific

community has not yet agreed on what exactly constitutes a coherent

structure and the vortices often associated with the structures (Robin-

son, 1991; Mathieu and Scott, 2000, Chap. 5.5). Common definitions are

either too vague to allow comparable quantitative analyses, inextricably

linked with a certain detection method, or require highly resolved infor-

mation on one or more variable of the fluid over a certain volume. Below,

some exemplary definitions are summarized. Furthermore, Chakraborty

et al. (2005) compare various local vortex identification schemes which

are used for the definition of structures.
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2. Coherent Structures in the Atmospheric Boundary Layer

Hussain (1983) “A coherent structure is a connected, large-scale tur-

bulent fluid mass with a phase-correlated vorticity over its spatial

extent. [. . . ] The largest spatial extent over which there is coherent

vorticity denotes the extent of the coherent structure.”

Robinson (1991) “[. . . ] a coherent motion is defined as a three-

dimensional region of the flow over which at least one fundamental

flow variable (velocity component, density, temperature, etc.) ex-

hibits significant correlation with itself or with another variable over

a range of space and/or time that is significantly larger than the

smallest local scales of the flow.”

Jeong and Hussain (1995) “Turbulent shear flows have been found to

be dominated by spatially coherent, temporally evolving vortical

motions, popularly called coherent structures. [. . . ]

S and ΩΩΩ are the symmetric and antisymmetric components of ∇u;

i.e. Si, j =
1
2

(
ui, j +u j,i

)
and Ωi, j =

1
2

(
ui, j−u j,i

)
. [. . . ] Thus, we [. . . ]

define a vortex core as a connected region with two negative eigen-

values of S2 +ΩΩΩ2.”

Lin et al. (1996) “[. . . ] ‘coherent structures’ [. . . ] are recurrent, spatially

local flow patterns which are long-lived in a Lagrangian reference

frame (i.e., moving with the local fluid velocity) and which have

deterministic, chaotic, intermittently dissipative dynamics.”

Adrian (2007) “One of the principal schools of thought in the study of

turbulence seeks to break the complex, multiscaled, random fields

of turbulent motion down into more elementary organized motions

that are variously called eddies or coherent structures. These mo-

tions can be thought of as individual entities if they persist for long

times, i.e., if they possess temporal coherence. By virtue of fluid
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2.2. Organized Motions in Wall-Bounded Turbulent Flows

continuity, all motions possess some degree of spatial coherence,

so coherence in space is not sufficient to define an organized mo-

tion. Only motions that live long enough to catch our eye in a flow

visualization movie and/or contribute significantly to time- averaged

statistics of the flow merit the study and attention we apply to or-

ganized structures.”

Zhang et al. (2011) “In ABL, coherent structures are usually defined as

low-frequency, large-scale phase-related organized motions that

interact with well-known high-frequency, small-scale turbulence.”

Zeeman et al. (2013) “It is generally accepted that vertical transport

near the surface exhibits forms of organized motion. These are

termed ‘coherent structures’ and contribute to momentum trans-

fer and transport from within canopies through intermittent, shear-

induced gusts or ‘sweeps’ that in turn cause upward bursts or ‘ejec-

tions’ from the canopy.”

Coherent motions manifest as streaks, quasi-streamwise and hairpin-

shaped vortices in the surface layer which can move and grow through

the mixed layer, as large-scale horizontal roll vortices or hexagonal

spoke-patterns in the vertical wind. The latter two examples appear to

require convective conditions for their development. Robinson (1991)

and Adrian (2007) give reviews on coherent structures in low-Reynolds

number wall-bounded flows, streaks and rolls in the atmospheric

boundary layer are reviewed in Young et al. (2002).

The ambiguity about coherent structure definitions exacerbates the

comparability of quantitative results. It also underlines the fact that

the different research fields and groups have different objectives in

13



2. Coherent Structures in the Atmospheric Boundary Layer

investigating coherent structures, which reach from the characterization

of single vortical elements in shear flows (e.g. Adrian et al., 2000) to

the statistical contributions of coherent motions to large-scale turbulent

fluxes in the atmosphere (e.g. Kim and Park, 2003).

2.3. Structure Characteristics in Low-Reynolds-Number Flows

Laboratory experiments on fluid dynamics usually study low-Reynolds-

number flow in a flat-plate boundary layer without surface heat-flux.

Early flow visualizations in laboratory settings reported low-speed

streaks in the near-wall region with an approximate spanwise spacing

of 100 viscous wall units δν = ν/u∗ (Kline et al., 1967), and turbulent

bulges in the outer layer with length scales of 2-3 zi (Falco, 1977).

Using conditional sampling techniques, Willmarth and Lu (1972) showed

that in the near-wall low-speed regions ‘bursting’ processes occur, which

are intermittent and strong events in which the fluid is ejected away from

the wall. These ejections are the dominant source of Reynolds-stress

and TKE production in the wall region (z/δν ≤ 100), followed by the

contribution of the reversed motions of sweeps.

Increasing evidence suggested that the near-wall structures are asso-

ciated with vortical motions, variably called arches, quasi-streamwise

vortices, horseshoe-vortices, hairpin-vortices and similar (cf. Robinson,

1991).

When the evolution of computational power allowed large-eddy simu-

lations (LES) and Direct Numerical Simulations (DNS) of the flow, the

existence of hairpin-shaped vortices was confirmed in these models
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2.3. Structure Characteristics in Low-Reynolds-Number Flows

(Moin and Kim, 1985; Kim and Moin, 1986).

Adrian and Liu (2002) used DNS to extract the shape of a ‘conditional

eddy’, which is an ensemble-average of the flow-field around strong

ejections. This approach to define a coherent structure has the ad-

vantage of being oriented towards determination of large contributions

to the Reynolds-stress. The shape of the structure closely resembles

a hairpin-vortex with a lifted arch-shaped ‘head’ and trailing ‘legs’

consisting of two counter-rotating streamwise vortices. Strong ejections

occur inside the hairpin, whereas downstream the vortex induces a less

intense sweep motion.

Based on research results up to that point, Adrian, Meinhart, and

Tomkins (2000) developed a conceptual model to explain coherent

structures in the flat-plate boundary layer:

When a spanwise vortex filament close to the wall is lifted by a random

disturbance, the strong shear will lead to a stretching in the mean-flow

direction, which then leads to the evolution of the hairpin-shape. This

intensifies the ejection, leading to further lifting and stretching. One

structure can produce secondary structures up- and downstream

through vortex roll-up of the ejected or sweeped fluid, respectively. This

autogeneration process was confirmed by DNS studies (Zhou et al.,

1999). The streamwise alignment of hairpins leads to zones of uniform

momentum, i.e. elongated regions of u′ < 0, which form a packet of

structures which evolve and grow through the boundary layer as their

are advected downstream. Further secondary structures are created

in the wall region through roll-up of the downwashed fluid outside the

wall-attached hairpin-legs (Brooke and Hanratty, 1993).

Adrian, Meinhart, and Tomkins (2000) summarize the length scales of

hairpin vortices and packets as derived from particle-image-velocimetry
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2. Coherent Structures in the Atmospheric Boundary Layer

for flows with different low Reynolds numbers: Near-wall hairpin struc-

tures have an approximate streamwise length of 200 viscous wall units

δν with a distance of 50 δν between their legs, and the vortex heads are

lifted at an angle of about 45◦ from the wall. They occur at a distance

of several hundred δν in streamwise and about 100 δν in spanwise

direction. The packets grow at a mean angle of 12◦ from the wall

throughout the boundary layer. They can reach lengths of up to 2 zi,

which is also the length of the streaks induced by the packets’ zones of

uniform momentum.

Even though the descriptive model integrates earlier findings, it allows

neither quantitative conclusions nor does it explain the complete

spanwise coverage and regularity of the structures. Additionally, it is

restricted to shear-flow without the influence of buoyancy.

An interesting aspect of the physical model is its contradiction of the

common knowledge about the energy cascade in boundary layer flows,

in which turbulent kinetic energy is transferred from larger to smaller

eddies (cf. Chap. 2.1). Therefore, the bottom-up mechanism of the

structure-packet evolution cannot be the only turbulence-generating

mechanism (Adrian, 2007). Hunt and Morrison (2000) propose that,

while dominant for small Reynolds numbers, the bottom-up mechanism

is no longer valid for very high Re, where streaky structures are an effect

of larger eddies impinging on the ground.

Young et al. (2002) notes two major competing mathematical theories for

the creation and maintenance of streaks. According to Hamilton et al.

(1995), streaks are created from streamwise vortices, which strengthen

and become unstable, creating new vortices in their decay process. On

the other hand, Foster (1997) showed that transient non-normal mode
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optimal perturbations can occur, which agree with the time and spatial

scales of streaks. None of the theories has been verified or falsified yet

(Young et al., 2002).

2.4. Detection and Characterization of Coherent Structures in the

Atmospheric Boundary Layer

Atmospheric boundary layers flows are characterized by high Reynolds

numbers and, apart from neutral stratification, by an important influence

of buoyancy in the turbulence production.

The Reynolds number is a measure for the relation between the largest

and smallest scales of turbulence (Eq. 2.6), therefore the wall region

(z/δν ≤ 100) takes up a considerably smaller portion in high-Reynolds

number flows compared to smaller Re. As an example, u∗ = 0.3 m/s and

the kinematic viscosity of air, ν = 1.5 ·10−5 m2/s, result in δν = 5 ·10−5 m,

so the wall region only covers the lowest half centimeter of the boundary

layer.

It is still unclear if the structure generation mechanisms of the hairpin-

packet model are valid in the shear-driven atmospheric boundary layer

(Adrian, 2007; Lin et al., 1996).

In the atmospheric boundary layer, three types of structures have been

reported (Agee, 1984; Young et al., 2002): streaks and local vortical

motions comparable to the hairpin vortices in shear-driven boundary

layers (Hommema and Adrian, 2003; Newsom et al., 2008), horizontal

convective rolls in moderately convective situations with shear (Etling

and Brown, 1993; Hartmann et al., 1997), and polygonal spoke patterns

in buoyancy-driven boundary layers without shear (Feingold et al.,

2010).
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The largest obstacle in atmospheric turbulence research is the long

range of turbulent scales, which exacerbates measurements as well as

simulations: no meteorological instrument captures all scales between

the Kolmogorov microscale (O(1 mm)) and the largest scales (O(zi)).

Likewise, the number of grid points required renders DNS modeling im-

practical with the currently available computational powers. Large-eddy

simulations provide an intermediate solution: the turbulence is resolved

down to a filter scale on the order of meters or tens of meters, and

the smallest turbulence scales are parameterized (cf. Chaps. 3.2.1 and

3.2.2).

Scientific interest in the atmospheric boundary layer structures is

founded in their contribution to the Reynolds stress tensor. In weather

forecast models, the Reynolds stress appears as a variable which has

to be parameterized using closure techniques. Up to now, organized

motions are not considered in the sub-filter-scale parameterizations,

which usually assume homogeneous and isotropic turbulence on the

smaller scales (Doms et al., 2011). It can be expected that their

influence becomes apparent when the forecast model grid resolution

approaches typical structure length scales in the atmosphere. A

parameterization which includes structures could therefore enhance

mesoscale numerical models. Technically, this could be reached

through a triple-decompositions of the flow-fields into the mean flow,

the organized turbulence represented by the coherent structures, and

the random turbulence (Hussain, 1983; Lykossov and Wamser, 1995;

Hellsten and Zilitinkevich, 2013). The inhomogeneity apparent in the

structured wind fields is also a candidate to explain the energy-balance

closure problem, since it was shown that spatially averaged heat flux

measurements yield higher fluxes than those detected with the eddy

covariance method (Foken, 2008).
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Apart from the phenomenology, understanding the formation and

evolution of these surface layer structures could enhance insight in

turbulent processes in general, including the initiation of convection.

2.4.1. Large-Eddy Simulations

Throughout the last years, several LES studies investigated coherent

structures in boundary layers for varying magnitudes of shear and buoy-

ant forcings.

Moeng and Sullivan (1994) and Lin et al. (1996) found the streaky

ejection-sweep patterns in neutrally stratified boundary layers (w∗ = 0).

The anisotropy becomes less pronounced and the streaks become

broader and fewer farther away from the surface. Using ensemble av-

erages of strong ejections, Lin et al. (1996) showed that these condi-

tional eddies in the surface layer are elongated in the mean-wind direc-

tion, with length scales of about 0.2 zi, and become more circular in

the mixed layer. The investigation of Khanna and Brasseur (1998) of

horizontal integral length scales in the vertical wind component showed

that the aspect ratio between the streamwise and spanwise component

is Lwx/Lwy ≈ 9−12 at the top of the surface layer and decreases linearly

with z/zi down to unity at the top of the boundary layer. Tracing the struc-

tures in time, Lin et al. (1996) showed that most eddies are generated in

the surface layer and move upwards, always aligned with the local mean

wind. During the process, most conditional eddies decay and only some

reach and traverse the mixed layer. Remarkably, isosurfaces of vorticity

around the conditional eddies resemble the hairpin-shapes found in low-

Reynolds number simulations (Adrian, 2007), albeit at a larger scale. Lin

19



2. Coherent Structures in the Atmospheric Boundary Layer

et al. (1997) derived an equation for the streak-spacing λ in the neutral

boundary layer:
z
zi
= a + b · λ

zi
, [2.7]

with a =−0.24±2.3 ·10−2 and b = 0.56±3.38 ·10−2.

Results from Khanna and Brasseur (1998) confirm the linear increase

from λ/zi ≈ 0.5 close to the ground for stabilities −zi/L∗ ≤ 8, with b

becoming smaller for larger −zi/L∗.

For increasingly convective situations, the surface layer structures are

tilted away from the ground (Kim and Park, 2003) and they begin to ex-

tend higher into the boundary layer (Khanna and Brasseur, 1998). Kim

and Park (2003) showed for −zi/L∗ = 1.95 that ejections contribute 75%

to the upward momentum flux at the bottom of the mixed layer.

In the stability regime 1.5≤−zi/L∗ ≤ 9.5 some streaks develop into hori-

zontal rolls which reach from the surface to the top of the boundary layer

(Sykes and Henn, 1989; Moeng and Sullivan, 1994) with a spanwise

spacing of 2 to 3 zi (Khanna and Brasseur, 1998; Moeng and Sullivan,

1994). An example from LES is shown in Fig. 2.3. Meanwhile, the sur-

face layer remains populated with low-rise streaks, the vertical growth

of which is suppressed by the roll-induced downdrafts. The aspect ratio

between streamwise and spanwise scales remains unchanged by the

onset of roll convection (Khanna and Brasseur, 1998).

The horizontal integral length scales studied by Khanna and Brasseur

(1998) showed an increase in structure length scale up to z/zi ≤ 0.5

and a subsequent decrease for both the convective and the shear-

dominated simulations. The aspect ratio between streamwise and

spanwise integral scales was found to be Lwx/Lwy ≤ 2 for −zi/L∗ ≥ 10.
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Figure 2.3: Vertical wind field

(color) in a spanwise vertical

plane from LES with −zi/L∗ = 7.2

(cf. Tab. 5.2). The vectors show the

projection of the wind field on the

plane. y [m]
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For buoyancy-driven boundary layers with very small u∗, Khanna

and Brasseur (1998, with u∗ = 0.16,−zi/L∗ = 841) find that hexago-

nal structures develop with narrow updraft regions enclosing larger

downdraft-cells. Those structures are associated with Rayleigh-Bénard

cell convection (Lord Rayleigh, 1916). Hellsten and Zilitinkevich (2013)

find that these structures contribute more than 90% to the momentum

flux in the mixed layer. The cells disappear quickly as soon as the shear

gains influence (Moeng and Sullivan, 1994, with u∗ = 0.56,−zi/L∗ = 19).

These structures show a similar behavior to the convective streaks

and rolls, i.e. the updraft regions become broader and less intense

with height, summarizing smaller-scale structures from below and

suppressing low-rise structures in the downdraft regions.

Although LES have proven to be reliable boundary layer models,

small-scale turbulence close to the wall cannot be resolved, which

consequently makes the properties of surface layer structures sensitive

to the subgrid-scale model (Khanna and Brasseur, 1998). Additionally,

the lowest grid-level is often parameterized using Monin-Obukhov
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similarity (Raasch and Etling, 1991). However, shear-generated vortical

structures appear to have their source near the surface before they

grow through or traverse the boundary layer. It is therefore necessary to

supplement the LES results with measurements to validate the model

results.

2.4.2. Atmospheric Boundary Layer Observations

Large-scale convective structures can become apparent in the cloud

structure on top of the boundary layer. Cloud streets of several kilo-

meter length have been observed atop cold-air outbreaks over oceans,

indicating the formation of counter-rotating horizontal convective rolls

(Hartmann et al., 1997; Brümmer, 1999). However, Etling and Brown

(1993) note that the observation of clouds alone is not sufficient to

quantify the roll scales and spanwise spacing.

Hexagonal patterns have been observed in the cloud tops of convection

driven boundary layers (Feingold et al., 2010). Here, open cells form

with narrow updraft bands enclosing larger downdraft areas when the

convection is driven by heating from the bottom boundary, whereas

cooling at the top leads to a closed cell structure with narrow downdrafts

enclosing larger updraft areas.

Hairpin-like surface layer structures and packets were visualized by

Hommema and Adrian (2003) using smoke as a passive marker over a

desert floor in the nighttime. The observed packet growth angles agreed

with the hairpin-packet model of Adrian, Meinhart, and Tomkins (2000).

As discussed above, quantitative atmospheric turbulence research

faces the challenge of having to simultaneously capture data from a
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Traditionally, meteorological towers were used for high-resolution point

measurements while assuming Taylor’s hypothesis of frozen fields to

infer the spatial structure (Stull, 1988). In this manner, the streamwise

wind field can be investigated. The most notable coherent structure

detection technique used on tower time series of wind field and temper-

ature data in recent years is the wavelet analysis (Collineau and Brunet,

1993a). With this technique the expected ejection-sweep-patterns

can be detected, and their contribution to TKE and turbulent fluxes on

different length scales can be determined.

The method has been extensively used in recent years on time series

from tower data at various heights in the surface layer (Lykossov and

Wamser, 1995), and especially to investigate the flow structure in and

atop forest canopies (Collineau and Brunet, 1993a,b; Thomas and

Foken, 2007; Segalini and Alfredsson, 2012; Zeeman et al., 2013).

Depending on stability, measurement and canopy height and the par-

ticular detection technique the length scales of structures vary between

few tens of meters and almost one kilometer (Barthlott et al., 2007).

Likewise, their relative contribution to the turbulent fluxes is determined

to lie between 10% (Zhang et al., 2011) and 100% (Feigenwinter and

Vogt, 2005). Barthlott et al. (2007) give a summary over the studies

before 2007.

In general, the structures become more elongated as the stratification

becomes more unstable, and shorter again for very unstable situations

(Thomas and Foken, 2005; Barthlott et al., 2007). The characteristic

ejection-sweep-patterns are observed in the time series of the wind

components u′ and w′, as well as those of temperature T ′ and humidity

q′. For u′ and w′, the structure intensity is approximately proportional

to u∗ (Zhang et al., 2011). Attempts have been made to retrieve the

structure shape in the x-z-plane from simultaneous measurements at
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different heights, but the spanwise component remains unretrievable

from tower data.

Lenschow and Stankov (1986) studied the horizontal autocorrelation of

the wind field in the convective boundary layer (10 ≤ −zi/L∗ ≤ 62) with

aircraft measurements, and found for the mean streamwise horizontal

integral length scales Lα for the wind component α, that

Lw

zi
= 0.28

(
z
zi

)1/2

, [2.8a]

Lu +Lv

2zi
= 0.53

(
z
zi

)1/2

. [2.8b]

The results reflect the structure growth through the boundary layer and

agree well for the vertical wind at z/zi ≤ 0.5 in the two most convective

cases of Khanna and Brasseur (1998), and even approximately for

the shear-dominated case. The aspect ratio between streamwise and

spanwise integral scales was found to be Lwx/Lwy ≤ 2 for −zi/L∗ ≥ 10.

Inagaki and Kanda (2010) used 40 sonic anemometers to characterize

the surface-layer flow and were able to visualize the streaky structures.

However, the setup is rather impractical for high-resolution measure-

ments of large-scale structures.

To overcome these issues, remote sensing instruments have increas-

ingly been used for atmospheric flow measurements, since they provide

a high time and spatial resolution over long ranges. Kropfli and Kohn

(1978) detected horizontal convective rolls with Doppler radar. The

smaller-scale surface-layer streaks are best investigated using high-

resolution Doppler lidars. Drobinski et al. (1998) furthermore used a

Doppler lidar and a sodar to investigate horizontal convective rolls.
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When deployed in dual-lidar mode, the complete horizontal wind field

can be retrieved in an area of several square kilometers. Newsom et al.

(2008) used this method to detect surface layer streaks and measure

the streamwise and spanwise correlation length of the wind field. They

found that the integral length scales of the streamwise wind component

became maximal for neutral conditions, with Lx ≈ zi, and Lx ≈ 0.5zi for

weakly stable and unstable conditions.

Tang et al. (2011a,b) analyzed the horizontal wind field from lidar mea-

surements in terms of Lagrangian coherent structures (Shadden et al.,

2005) to detect vertical gusts and even footprints of hairpin structures on

airport runways. Lagrangian coherent structures are persistent barriers

in two-dimensional flow derived from the flow-field trajectories and

which are observed frequently in ocean currents (Lekien et al., 2005).

Close to the atmospheric boundary layer surface, flow barriers coincide

with updrafts, so Lagrangian coherent structures can be indicative of

positive vertical wind velocities and thereby used to measure convective

cell patterns.

Dual-lidar deployments can also be used for volume measurements as

in Iwai et al. (2008), who showed that the surface-layer streaks are the

starting points for horizontal convective rolls with a spanwise spacing of

approximately 2 zi.

As a goal, the research of boundary layer coherent structures

should lead to a parameterization of their scales and contribution to

the Reynolds stress to improve sub-filter-scale parameterizations in

mesoscale models and thereby enhance their accuracy. The evidence

shows that their length scales, spacings and intensity are influenced

by shear, stability, and boundary layer height. The surface roughness

length may play a role as well (Lin et al., 1997). However, no consistent

parameterization is available up to now.
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The focus lies here on the detection of recurring patterns in the flow field,

without too much emphasis on the question of what exactly constitutes a

coherent structure. The exact separation of the flow field in a structured

and an unstructured part should be motivated by practical considerations

concerning parameterization, respective contributions to the fluxes, and

their coupling terms. This can only take place after a reliable detection

method is established.
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3. Dual-Doppler Lidar: Measurements and Simulations for
Coherent Structure Detection

In this chapter, the lidar measurement principle is introduced and, based

on its mathematical description, a pulsed Doppler lidar simulation tool is

developed which operates on LES simulations with the PALM model.

Subsequently, a retrieval algorithm is discussed which allows to re-

assemble the two-dimensional wind field from either virtual or real dual

lidar planar scans.

3.1. Pulsed Doppler Lidar Measurements

3.1.1. Measurement Principle of Pulsed Doppler Lidars

The acronym lidar stands for LIght Detection And Ranging and was

created based on the word radar (RAdiowave Detection And Ranging,

Middleton and Spilhaus, 1953). A lidar emits laser radiation into the

atmosphere and detects the scattered return signals. For pulsed lidars,

the time lapse between laser emission and detection of the scattered

light can be used to determine the position of the scatterers along the

lidar beam.
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A laser consists in general of an active medium, an energy pump and an

optical resonator (Demtröder, 2009). In thermal equilibrium, the energy

states Ek and Ei with Ek < Ei in the active medium have a population Nk >

Ni. The pump is used to create a population inversion, i.e. it stimulates

transitions into the higher state Ei, until Ni is large enough compared to

Nk that an incoming photon hν =Ei−Ek will not lead to an excitation Ek→
Ei, but rather lead to a stimulated emission of another photon: Ei→ Ek.

The multiplication of photons, reflected back and forth in the resonator,

leads to a cascade of stimulated emissions: a pulse of high-intensity,

coherent, monochromatic light.

The power of the backscattered lidar return signal P is related to the

power of the outgoing laser pulse P0 via the lidar equation (Klett, 1981):

P(r,λ ) = P0
cτ

2
A
r2 β (r,λ )e

−2
r∫

0
dr′α(r′,λ )

, [3.1]

where r is the signal origin along the beam, λ the pulse wavelength,

τ the temporal pulse width, A the detector area, β the backscatter

coefficient related to the scatterer concentration and their scattering

cross section, and α the atmospheric extinction coefficient.

Common types of lidar are (Wandinger, 2005):

• The elastic-backscatter lidar, which measures properties of

aerosols and clouds from their elastic scattering properties in the

return signal (Spuler and Mayor, 2005),

• The differential-absorption lidar (DIAL), which is used to measure

the concentration of atmospheric trace gases, e.g. ozone and wa-

ter vapor, from their different absorption coefficients for different

wavelengths (Wulfmeyer and Bösenberg, 1998),
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• The Raman lidar, which detects gases, especially water vapor,

from the Raman scattering return signals and can be used for tem-

perature profiles (Radlach et al., 2008),

• The resonance scattering lidar, which detects molecules and ions

from resonant fluorescent scattering at known energy transitions

(Alpers et al., 2004),

• The Doppler lidar, which is used to measure the velocity of

aerosols and molecules from the Doppler shift in the return signal.

This work is focus pulsed coherent or heterodyne-detection Doppler li-

dars. The heterodyne technique mixes the monochromatic lidar pulses

with frequency f0, which are emitted into the atmosphere, and the return

signal with the Doppler shift ∆ f with the signal of a local oscillator (LO)

of known frequency fLO. The intensity of the resulting signal is given by

(Werner, 2005)

I ∝ cos(2π [ fLO− (∆ f + f0)])+ cos(2π [ fLO +(∆ f + f0)]) . [3.2]

The high-frequency part of the signal is filtered out, whereas the first

part, the so-called beat signal, has a low frequency which can be ana-

lyzed with high accuracy using a Fast Fourier Transform (FFT).

The Doppler shift

∆ f =− f0 ·2
vr

c
, [3.3]

where vr is the local wind vector projected on the lidar beam direction

(the so-called radial or line-of-sight wind speed) and c is the speed of

light (Werner, 2005). For v = 1 m/s this results in a shift of only 1 MHz

for f0 = 1.5 ·1014 Hz.

The lidars usually operate with frequencies f0 in the infrared for

which Mie-scattering by aerosols exceeds Rayleigh-scattering by air
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molecules. All particles exhibit random motion with a kinetic energy

proportional to their temperature superimposed on their mean motion,

but since aerosols have a higher mass their velocity fluctuations are

smaller, which in turn leads to less spectral broadening in the return

signal (Werner, 2005). The Doppler lidar therefore detects the radial

velocity of aerosols, which is assumed to equal the wind velocity.

Pulsed Doppler lidars emit laser pulses at a given pulse repetition fre-

quency (PRF) and record the return signals with a certain sampling rate

(SR). The number of samples (SpG) used for the FFT corresponds to a

segment of the lidar beam, the so-called range gate, with length

∆p =
SpG · c
2 ·SR

. [3.4]

For some instruments, the user can define the lengths of the range

gates and their distribution along the beam. The detected Doppler shift

is a weighted average produced by the radial velocities of all particles

illuminated by the pulse moving through the range gate. An estimate

of the measured radial velocity rv(R0) for a range gate centered around

R0 is usually computed from the average spectra of several consecutive

pulses to decrease the random error (Frehlich, 1997).

A mathematical model for solid-state pulsed Doppler lidar velocity esti-

mation was given by Frehlich et al. (1998):

rv(R0, t) =
∞∫
−∞

dxvr(x, t)W∆p(x−R0) , [3.5]

with the normalized weighting function

W∆p(x) =
∞∫
−∞

dr In(x− r)θ∆p(r) , [3.6]
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defined by a range gate indicator function θ∆p,

θ∆p(x) =

{
1/∆p ,x ∈ [−∆p/2,∆p/2]

0 ,otherwise
, [3.7]

which is unity on the range gate and zero otherwise, and the Gaussian

pulse envelope of the beam:

In(x) =
2√

πστc
e
− 4x2

σ2
τ c2 , [3.8]

where στ is the standard deviation of the pulse in time domain.

Depending on the velocity estimator of the lidar system, it is also pos-

sible to have a tapered gate window and thereby a non-uniform range

gate indicator function θ∆p (Kristensen et al., 2010).

Eqs. 3.6 - 3.8 show that the weighting function is only a function of ∆p, στ

and the distance x from the range gate center, therefore according to

similarity theory (Buckingham, 1914) the dimensionless weighting func-

tion W∆p ·∆p can be written as a function of the dimensionless groups

x/∆p and ∆p/(στc):

W∆p(x) ·∆p = W̃
(

x
∆p

,
∆p
στc

)
, [3.9a]

with W̃ (a,b) =

1/2∫
−1/2

da′
2b√

π
e−4b2(a−a′)2

. [3.9b]

Consequently, the relative weight at a distance x/∆p from the range gate

center only depends on the relation of range gate length to pulse with,

which is shown in Fig. 3.1: For ∆p� στc, the weighting function ap-

proaches the range gate indicator function θ∆p (Eq. 3.7), whereas for

∆p� στc it approaches the pulse envelope In (Eq. 3.8). The lidar reso-

lution is therefore naturally limited by the pulse width. For a laser pulse
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Figure 3.1: The lidar weighting func-

tion in relative coordinates according to

Eqs. 3.9 as a function of x
∆p for ∆p

στ c =

{0.5,1,1.5,2,2.5,3,3.5,4} (darker shades

mean smaller values).

to be considered monochromatic its width in the frequency domain must

be very small. Since the width of a Gaussian in frequency and time

domain are inversely proportional, στ cannot become smaller without a

loss in wavelength accuracy. This inherent spatial averaging means that

Doppler lidars can never perform point measurements.

For scanning or moving lidars, producing a velocity estimate from several

consecutive pulses means that the beam movement must be included in

the weighting function. This can be accomplished with a linear average

in the direction of the beam movement (Frehlich, 2001):

rv(R0, t) =

y2∫
y1

dy
∞∫
−∞

dxvr(x,y, t)W∆p(x−R0) , [3.10]

when during one velocity estimate the range gate center moves from y1

to y2 on the y-axis, which is defined by the range gate center trajectory.

The resulting relative weights for a scanning beam are shown in Fig. 3.6.

In recent years, long-range high-resolution Doppler lidars have become

increasingly stable and affordable. As an ideal remote-sensing instru-

ment for boundary layer wind-field research, they have been used to
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study the convective boundary layer (Lothon et al., 2006), convective roll

vortices (Drobinski et al., 1998), entrainment processes on the top of the

mixed layer (Träumner et al., 2011), the nocturnal low-level jet (Banta

et al., 2002) and the cloud-topped boundary layer (Lottman et al., 2001).

They also play a role in engineering application, measuring wake vor-

tices behind wind turbines (Krishnamurthy et al., 2013; Käsler et al.,

2010). Their deployment in dual- or even multi-Doppler mode is dis-

cussed in Chap. 3.1.3.

3.1.2. The KIT Doppler-Lidar Systems

At Karlsruhe Institute of Technology (KIT), the Institute for Meteorol-

ogy and Climate Research (IMK-TRO) operates two coherent pulsed

Doppler lidars of the ‘WindTracer’-type. The instruments were man-

ufactured by Lockheed Martin Coherent Technologies, Inc.(LMCT),

Louisville, Colorado, USA.

The sensitive systems are encased in containers with heat and hu-

midity control, which in turn are mounted on swap body structures for

easy transportation with trailers. The instruments have been used in

several international measurements campaigns, e.g., the Convective

and Orographically-induced Precipitation Study (COPS, Kottmeier

et al., 2008; Wulfmeyer et al., 2008), the HYdrolocial cycle in the

Mediterranean EXperiment (HyMeX, Kalthoff et al., 2013), and the

HOPE experiment as a part of HD(CP)2 (High Definition Clouds and

Precipidation for advancing Climate Prediction).

Tab. 3.1 gives an overview of the technical specifications of the lidar

systems. Both systems have solid-state lasers (thulium-doped lutetium
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‘WindTracer’ 1 2

year of construction 2004 2009

type of laser Tm:LuAG Er:YAG

wavelength 2023nm 1617nm

pulse length 370ns 300ns

pulse energy 2.0mJ 2.7mJ

pulse repetition frequency 500Hz 750Hz

sampling rate 250MHz 250MHz

Table 3.1.: Technical specification of the KIT ‘WindTracer’ systems.

aluminum garnet in WindTracer 1, and erbium-doped yttrium aluminum

garnet in WindTracer 2). The emitted pulses conform to the Gaussian

approximation (Eq. 3.8) with a standard deviation of στ = 370 ns and

300 ns, which correspond to a full width at half maximum (FWHM) of

92 m and 75 m, respectively (Frehlich et al., 1998). The high pulse

repetition frequency (500 Hz and 750 Hz) facilitates highly accurate

radial velocity estimations with a measurement frequency of up to

10 Hz. With wavelengths larger than 1.4 µm, the lasers are considered

eye-safe (Henderson et al., 1993).

The instruments have a range of up to 12 km under clear conditions

and a pulse width of approximately 70-90 m. An almost identically

constructed lidar system was described in detail by Grund et al. (2001).

Because of their equality, the systems can be operated in dual-Doppler

mode, i.e. they can be steered synchronously in coordinated measure-

ments.

A common challenge in many dual-Doppler measurements is the time-

synchronization (Calhoun et al., 2006): for scanning lidars, a high time-

resolution in the measurements requires an agreement of the systems
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clocks over the duration of the measurement, as well as scanning pat-

terns which do not accumulate relative phases shifts. This issue com-

monly prevents measurements from being conducted with the highest

achievable time resolution (cf. Newsom et al., 2008). Often this problem

arises from restrictions in the beam-steering software: many lidar sys-

tems only allow pre-defined PPI (plan-position indicator, e.g. fixed eleva-

tion angles el) and RHI (range-height indicator, i.e. fixed azimuth angles

az) scans, but no free beam-steering (cf., e.g., Grund et al., 2001).

The KIT dual-Doppler lidar system can be operated by a unique control

software, which was developed as a part of this work. This software runs

on an external PC, the Remote Operating Station (ROS), which is con-

nected to both lidars and receives their status updates every second. It

is based on a C-library of basic control functions for the single lidar sys-

tems supplied by the manufacturer, which can be used to set the lidar

control parameters and steer the beams. By combining the single lidar

controls in dual-lidar steering functions in a C++-based library, it became

possible to program complex scanning patterns which synchronize au-

tomatically without relying on the single lidar clocks. Important functions

in the control software are:

• Setting lidar control parameters like range gate length, measure-

ment frequency, position of range gate centers, recorded data

types and others,

• Beams steering from one (az,el)-position to another with a constant

angular velocity for each angle,

• Dual-lidar synchronization by including waiting intervals until each

lidar is at the desired position,

• Real-time adaptability of scan patterns to external parameters, line

wind direction and boundary layer height.
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WindTracer 1 WindTracer 2

ROS

SES I SES II

measurement datasystem status

atmospheric
parameters

scanner
control

DD scanning program

Figure 3.2.: Stawiarski et al. (2013): Schematic overview of the dual-Doppler control system. ‘Wind-

Tracer 1’ and ‘WindTracer 2’ are the two control computers of the individual instruments, ROS is the

remote operation station, SES are storage and evaluation stations. c©2013 American Meteorological

Society. Used with permission.

With this software, repetitive complex scanning patterns can easily be

realized, e.g. the synchronized scan of a plane alternating with RHI or

velocity-azimuth-display scans for vertical profiles (VAD, cf. Browning

and Wexler, 1968).

Each lidar stores its measurement data on a Storage-and-Evaluation

Station (SES). On these computers, MATLAB-based programs evaluate

the data in real time: vertical wind profiles (from VAD and RHI scans)

and the boundary layer height (from vertical stares) are computed when-

ever suitable scans were performed. The SES send the results to the

ROS, thus enabling users to program scans which adapt to the current

atmospheric conditions. Possible applications for this feedback-loop are

coplanar-scan optimization with respect to the horizontal wind speed

(Chap. 4.2) and virtual tower measurements where the tower height

adapts to the boundary layer height (Röhner and Träumner, 2013).

The local network is sketched in Fig. 3.2.
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3.1.3. Dual-Doppler Measurements

Operating two lidars in dual-Doppler mode means that velocity esti-

mates are obtained simultaneously from two lidars at (approximately)

the same point in space. Thereby two linearly independent components

of the wind fields are measured as long as the beams are not paral-

lel, from which the two-dimensional wind vector at the crossing point

in the lidar plane (i.e., the plane spanned by the beams) can be deduced.

Two examples for dual-lidar set-ups are the intersecting beams tech-

nique, which is used e.g. in virtual tower measurements, and the planar

scan technique.

In the former, the wind field is only retrieved on the trajectory of the beam

intersection, which yields a point measurement with a high frequency.

During the planar scan technique, both lidars scan the same area to ob-

tain the wind field in the full overlap region, albeit with a decreased time

resolution.

Dual-Doppler Intersecting Beam Techniques

Assume two lidars with current azimuth and elevation angles {azi,eli}, i=

1,2. The unit vectors of their beam directions in Cartesian coordinates

are then given by

r̂i =


sin(azi) cos(eli)

cos(azi) cos(eli)

sin(eli)

 , i = 1,2 . [3.11]
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If the beams intersect at a point x, at each point in time the velocity

estimates {rv1,rv2} measured by the lidars in the range gates closest to

x can be used to derive the wind vector:(
rv1(t)
rv2(t)

)
=

(
r̂T

1
r̂T

2

)
·u(x, t) . [3.12]

The system of equations 3.12 is underdetermined for a wind vector with

three components. In long-time averages, it is often assumed that the

vertical wind component is zero, thereby reducing the system to two

equations and rendering it solvable (cf. Calhoun et al., 2006). However,

to reap the full advantage of the high time resolution, no such assump-

tion can be made in the turbulent boundary layer, and only the two-

dimensional projection uH of the wind vector u on the lidar plane can

be retrieved:

uH = u− (u · n̂n) n̂n , [3.13]

where n̂n = r̂1× r̂2/ ‖ r̂1× r̂2 ‖ is the normal vector of the plane spanned

by the lidar beams.

Usually, a local coordinate system is defined in the lidar plane. The

component u j of uH on the axis determined by the direction of the nor-

malized vector ê j can be derived from the unique linear combination of

the r̂i which forms ê j:

ê j = q1 r̂1 +q2 r̂2 [3.14a]

⇒ u j = u · ê j = q1 rv1 +q2 rv2 [3.14b]

Note that u · ê j = uH · ê j, since ê j⊥n̂n.

Fig. 3.3 shows the lidar plane. The intersecting beam angle ∆χ, the an-

gle α j between ê j and the mean lidar beam direction rm, and the angle

γuH between the wind vector uH and the direction of evaluation ê j deter-

mine the relative position of these four vectors. The pre-factors q1, q2 in
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a) b)

Figure 3.3.: Stawiarski et al. (2013): Relevant vectors and angles in the lidar plane. The squares

denote the lidar positions. a) Lidar beam vectors r̂1, r̂2 spanning the lidar plane (shaded area). n̂n is the

plane normal vector, k̂ points in the vertical direction. The plane is tilted away from the horizontal by an

angle γz. The wind vector u is projected on the plane to give uH , the retrievable wind vector. b) View on

the lidar plane with beams r̂1, r̂2, planar wind vector uH , direction of evaluation ê j and mean lidar beam

direction r̂m. The three angles suffice to fix the relative vector positions. All angles are measured in the

positive sense, i.e. counter-clockwise. The dotted lines indicate the projections of uH on r̂1, r̂2 and ê j

with lengths rv1,−rv2 and u j, respectively (note that rv2 < 0). c©2013 American Meteorological Society.

Used with permission.

Eq. 3.14b can be expressed in these angles, which yields (Stawiarski

et al., 2013):

u j = u · ê j =
rv1 sin(α j +

∆χ

2 )− rv2 sin(α j− ∆χ

2 )

sin(∆χ)
. [3.15]

The intersecting beam technique with a high time resolution in the li-

dar plane was used by Collier et al. (2005) in the Invest-to-Save Budget

project 52 (ISB52) for the validation of dispersion models in the bound-

ary layer. In this measurement, a time resolution of 5 s was achieved.

On the other hand, Calhoun et al. (2006) used the technique for longer

averaging times, so that the assumption w = 0 became valid. Further-

more, the averaging allowed them to scan along the height range of

virtual towers without synchronization, since the time shifts become ir-

relevant compared to the averaging interval. This method is referred to

as the ‘virtual tower’ technique.
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Dual-Doppler Planar Scan Techniques

In planar scanning patterns, the wind field is retrieved not only at the

beam intersection point, but on a larger area which is scanned by the

two lidars. Geometrically, any such plane is fixed by the position of the

two lidars and a slope, which determines the azimuth and elevation

angles during the scan. Except for horizontal and vertical planes,

which can be realized with fixed elevation an azimuth angle scans,

respectively, this requires a lidar steering software in which azimuth and

elevation can both vary smoothly during a scan.

To retrieve the two-dimensional wind field in the lidar plane one has

to assume that the variation of the radial wind velocity is negligible

during the time of a beam sweep, since the lidar beams do not traverse

each point of the plane at the same time. Consequently, the time

resolution of the retrieved wind field is determined by the duration of

the beam sweeps. The spatial resolution in the plane depends on the

range gate length and lidar pulse width. However, to account for the

uneven distribution of measurement points in the plane, the area is

usually divided into grid cells which contain several velocity estimates,

the weighted average of which is used to retrieve the velocity using

Eq. 3.15. One possible retrieval algorithm is described in Chap. 3.3.

Planar scan patterns have been used by Newsom et al. (2008) and Iwai

et al. (2008) (low-elevation sector PPI scans to retrieve the horizontal

wind field), as well as Hill et al. (2010) (RHI scans to retrieve the vertical

wind and the horizontal wind in the direction of the lidar connection line).

Iwai et al. (2008) furthermore extended the measurement to higher ele-

vations for a three-dimensional retrieval of u and v, the horizontal wind

components.
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Towards a retrieval of the three-dimensional wind field

In principle, the three-dimensional wind field can be retrieved from the

velocity estimates of three Doppler lidars (Mann et al., 2009). However,

research in this area is rare, which is probably due to the high acquisition

and maintenance costs of Doppler lidars. Instead, attempts have been

made to retrieve the three-dimensional wind field from single and dual

lidar data. This requires further assumptions about the wind field. Less

computationally expensive models retrieve volume data of the horizontal

wind field from volume scans and deduce the vertical wind component

from the integration of the continuity equation between horizontal layers

(Drechsel et al., 2009; Iwai et al., 2008). Newsom et al. (2005) point

out that this method has shortcomings for rapidly evolving structures in

the fields. Therefore, a more complex four-dimensional variational data

assimilation technique (4DVAR) is used often, where the output from

single (Chai et al., 2004) and dual lidar data (Newsom et al., 2005; Xia

et al., 2008) is fitted to a dynamical model to retrieve the complete wind

field. The disadvantage lies here in high computational costs and the

underlying assumptions in the model.

The general disadvantage of volume scans is the poor time resolution

(e.g., 172 s for Lin et al., 2008). A higher resolution can be achieved

with planar scans and a one-step integration of the continuity equation

from the ground to the observation height, which is attempted in Chap. 7.

3.2. Simulations of Doppler-Lidar Measurements

The ability to retrieve horizontal wind fields with a resolution of the

order of tens of meters is a unique feature of planar dual-Doppler lidar
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measurements. As a consequence, the whole data set cannot be

compared with other instruments. The theory of Chap. 3.1.1 implies that

the dual-lidar measurement acts like a low-pass filter in time and both

spatial directions and on both components, with a spatial filter length

given by the range gate length and/or the pulse width, although the

exact filter function remains unknown.

A Doppler lidar simulator in combination with a realistic turbulence-

resolving atmospheric model can help to transfer the theoretical knowl-

edge about single lidar measurements to predictions about the per-

formance of dual-lidar retrieval data in coherent structure detection

schemes: Detection algorithms can be applied to the high-resolution

boundary layer model data and to the simulated dual-lidar measure-

ments in the model, and a comparison can be used to assess the agree-

ment of results and potentially to correct the lidar results.

For realistic comparisons, it is essential that the lidar simulator produces

velocity estimates which are in accordance with the theoretical model.

Drechsel et al. (2010) developed a dual-lidar simulation scheme to op-

timize volume scans, which was based on analytical mesoscale model

wind fields with 100 m resolution, in which the virtual lidar performed

point measurements of the radial velocity while the field was kept sta-

tionary. The rapidly evolving small-scale structures of the surface layer

however impose stronger demands on the time and spatial resolution.

Therefore, a lidar simulator was developed (Chap. 3.2.3) which is applied

to large-eddy simulations (Secs. 3.2.1, 3.2.2) with a grid spacing much

smaller than the lidar averaging scale, which allows all lidar-relevant tur-

bulent scales to be resolved in the model. The simulator is based solely

on the mathematical description (Chap. 3.1.1), and thereby includes the

important aspects of lidar measurements: the averaging in beam direc-
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tion as determined by pulse shape and range gate length, the cross-

beam linear averaging for scanning beams, and the full time resolution.

3.2.1. Large Eddy Simulations

The atmospheric boundary layer is a fluid with a high Reynolds number

which exhibits turbulent flow. Conservation of momentum is described

by the Navier-Stokes equations (e.g. Etling, 2008),

∂ui

∂ t
=−u j

∂ui

∂x j
−gδi3− εi jk f juk−

1
ρ

∂ p
∂xi

+ν

(
∂ 2ui

∂x2
j
+

1
3

∂ 2u j

∂xi ∂x j

)
, [3.16]

with the wind vector components ui, i = 1,2,3, the pressure p, the den-

sity of air ρ, the molecular kinematic viscosity ν , the coriolis parameter

f = (0,2Ωcosϕ,2Ωsinϕ) at latitude ϕ and angular frequency Ω of the

earth rotation, and the gravitational acceleration g. Summation over re-

peated indices is implied.

In combination with the conservation of mass, described by the continu-

ity equation,
∂ρ

∂ t
+

∂ (ρu j)

∂x j
= 0 , [3.17]

the conservation of energy, which is the first law of thermodynamics,

∂θ

∂ t
=−u j

∂θ

∂x j
+νθ

∂ 2θ

∂x2
j
+Qθ , [3.18]

with the potential temperature θ , thermal diffusivity νθ and the source

term Qθ , and the ideal gas law,

p = ρ RL T , [3.19]

with the gas constant RL of air, one obtains a set of six governing

equations for the dry atmosphere (cf., e.g., Etling, 2008; Stull, 1988).
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These are the equations of motion of the atmospheric state variables u,

p, ρ, and θ (the potential temperature). Moisture content or other scalar

quantities can be included with further equations of conservation.

Atmospheric turbulence can be regarded as a superposition of inter-

acting vortices (‘eddies’) on different scales (Breuer, 2002, Chap. 3).

Turbulent kinetic energy is generated on the largest scales (on the order

of the correlation length or boundary layer height) and is transferred

down to the smallest eddies on the Kolmogorov scale η =
(
ν3/ε

)1/4,

where the energy is dissipated with a rate ε into heat through viscous

forcing (Stull, 1988).

The equations of motion 3.16-3.19 can only be solved numerically

if all scales of turbulence are resolved. With L/η ∼ Re3/4 orders of

magnitude between the smallest and largest turbulent scale (cf. Eq. 2.6),

such a direct numerical simulation (DNS) is extremely computationally

expensive for large Reynolds numbers that are usual in the atmospheric

boundary layer (cf. Chap. 2). It can therefore be useful to divide the

full range of scales into two parts: the large scales, which describe the

large scale flow, and the small scales. Splitting up each variable in

Eqs. 3.16-3.19 in this way leads to governing equations for the large

scale flow. Since the small and large scales are not independent, those

equations are coupled to the small-scale flow via flux terms, which have

to be parameterized with approximations using the large scale variables.

This is known as the closure problem.

The exact position of the spectral separation depends on the scale of

the atmospheric phenomena to be studied. Synoptic-scale weather

forecast models use the Reynolds-Averaged Navier-Stokes-Equations

(RANS), in which the scale separation is set to the atmospheric
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spectral gap (i.e., scales corresponding to a duration of one half

to one hour, cf. Stull, 1988), to distinguish mean flow and turbulent

flow. The average effect of turbulence on the mean flow is then pa-

rameterized, the structure of turbulence however cannot be investigated.

Large-eddy simulations attempt to bridge the gap between fully-resolved

turbulence in DNS and unresolved turbulence in RANS-models by set-

ting the spectral division inside the turbulent part of the spectrum. In

this way, the energetically dominant turbulent scales can be resolved

with computational costs considerably lower than for DNS. The smallest

scales of turbulence still have to be parameterized with a subgrid-scale

(SGS) model.

The separation of a variable φ into grid-scale part φ and subgrid-scale

part φ ′ is given by Breuer (2002):

φ(r, t) = φ(r, t)+φ
′(r, t) , [3.20a]

φ(r, t) =
∫

d3r′ G(r,r′;∆)φ(r′, t) , [3.20b]

where G is the filter kernel with characteristic filter width ∆.

The filter width is not necessarily given by the spacing of the numer-

ical grid (cf. Breuer, 2002, Chap. 3.2). However, the present model

(cf. Chap. 3.2.2) uses an implicit filtering technique by Deardorff (1970)

and Schumann (1975): the spatial differentials are approximated by fi-

nite differences over the respective grid cell, which essentially means

that G is constant on the grid cell and zero otherwise, i.e., G is a top-hat

filter (Breuer, 2002) with ∆ given by the grid spacing. This method has

the advantage that it evolves naturally from the numerical method, no ex-

plicit filtering is necessary. Furthermore, φ = φ , i.e. the filtered variable

is not changed by further filtering, which leads to less coupling terms.

LES models have been widely used to investigate boundary layer struc-

tures. An overview is given in Chap. 2.4.
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3.2.2. The PALM Model

The model PALM (“A PArallelized LES Model”) is a large-eddy simulation

model which was developed by Raasch and Etling (1991) at the Institute

for Meteorology and Climatology at Leibniz Universität Hannover,

Germany, and has since been expanded and parallelized (Raasch and

Schröter, 2001). Throughout the last years, several studies have proven

the ability of PALM to model turbulent boundary layers. An overview of

the model and published numerical studies can be found at the website

of the PALM group (Raasch, 2014). The simulations used for this study

were created using PALM version 3.9.

The governing equations in PALM are derived from Eqs. 3.16-3.19, us-

ing the Boussinesq-approximation (Etling, 2008), which also implies in-

compressibility but allows for density variations in the buoyancy term of

the vertical component of the momentum equation, and a subgrid-scale

parameterization according to Deardorff et al. (1980) . The governing

equations for the gridscale-variables in a dry atmosphere are (Heinze,

2013):

∂ui

∂ t
=−∂ (uiu j)

∂x j
+g

θ −〈θ〉
θ0

δi,3− εi jk f juk + εi3k f3UGk−
1
ρ0

∂π

∂xi
−

∂τr
i j

∂x j

[3.21a]
∂ui

∂xi
= 0 [3.21b]

∂θ

∂ t
=−∂ (u jθ)

∂x j
− ∂τθ j

∂x j
+Qθ [3.21c]

∂e
∂ t

=−∂ (u je)
∂x j

− τi j
∂ui

∂x j
+

g
θ0

τθ3−
∂

∂x j

[
u′j

(
e′+

p′

ρ0

)]
− ε [3.21d]

p = π− 2
3

ρ0 e [3.21e]
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3.2. Simulations of Doppler-Lidar Measurements

where e = 1
2 u′2i is the subgrid-scale turbulent kinetic energy, π is the

modified pressure including the contributions from the diagonal of the

subgrid-scale momentum flux tensor τi j = u′iu
′
j , τr

i j = τi j − 2
3eδi j is the

traceless subgrid-scale momentum flux tensor, τθ j = θ ′u′j is the subgrid-

scale flux of potential temperature, UG is the geostrophic wind vector,

and ε is the diffusion rate. The ground states are ρ0 = 1 kg/m3 and θ0

the initial temperature profile. The higher-order moments to be parame-

terized in a subgrid-scale model are therefore

τ
r
i j, τθ j, and u′j

(
e′+

p′

ρ0

)
. [3.22]

PALM uses a gradient transport approach to parameterize these mo-

ments and the dissipation ε (Raasch and Etling, 1991; Heinze, 2013).

Since the moments in 3.22 are of second and third order, this method is

called a one-and-a-half order closure technique (Stull, 1988).

The set of equations 3.21 is complemented by equations and terms

for moisture and large scale subsidence, which are neglected here

because they do not contribute to the present study.

The equations 3.21 are solved numerically on a staggered Arakawa-C

grid (Fig. 3.4 Arakawa and Lamb, 1977) for improved spatial res-

olution. Spatial differentials are approximated by finite differences

(i.e., ∂

∂xi
→ ∆

∆xi
) for terms linear in prognostic variables, and a Wicker-

Skamarock-scheme (Wicker and Skamarock, 2002) for the flux-terms.

Time integration is executed with a third order Runge-Kutta scheme (cf.

Baldauf, 2008). Numerically, the incompressibility condition Eq. 3.21b

is preserved by a predictor-corrector method (Steinfeld, 2009): The

Navier-Stokes equations 3.21a are integrated without the pressure term

to obtain a preliminary solution for the ui, which in combination with

the time-integrated pressure term must yield the incompressible real
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3. Dual-Doppler Lidar: Measurements and Simulations of Coherent Structures

Figure 3.4.: Illustration of the staggered Arakawa-C grid used in PALM for a grid spacing ∆= 10 m: The

horizontal layers of u, v and scalars (left) and of w (center) are stacked alternately in vertical direction at

∆z/2-intervals. The right panel shows one grid cell.

wind field. With this condition, the wind field can be determined from

a Poisson-equation for the pressure, with is solved with an FFT (Fast

Fourier Transform) algorithm.

To be solvable, the system of differential equations requires boundary

conditions. At the start time of the simulations, all variables are pre-

scribed by vertical profiles, assuming horizontal homogeneity. Laterally,

cyclic boundary conditions are assumed. The boundary conditions at

the top and bottom of the simulated region for the LES in this study

are listed in Tab. 5.1. Between the bottom at z = 0 and the first layer of

resolved wind field components at zp, a Prandtl-layer is defined (Stein-

feld, 2009), which allows to derive the bottom boundary values at zp for

the subgrid-scale momentum flux terms u′w′ and v′w′ by integrating the

Businger-Dyer equations (e.g. Stull, 1988) from the roughness length

z0 to zp. Furthermore, a constant surface heat flux is prescribed at the

bottom. If the simulation is carried out over a homogeneous surface, no

turbulence will develop naturally. Therefore, random disturbances with

small amplitudes are superimposed on the wind fields at constant time

intervals, until a steady turbulent state has developed.
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3.2. Simulations of Doppler-Lidar Measurements

Figure 3.5.: Stawiarski et al. (2013): Geometry of the lidar simulation: The position and orientation

of each range gate in the LES data grid (red) is determined from the virtual lidar position at (x0,y0,z0)

in the LES axes and the azimuth and elevation angles (az,el) at the time of measurement. The green

cylinders with height ∆peff indicates the approximate region of LES data points used for averaging with

a fixed beam. c©2013 American Meteorological Society. Used with permission.

The scope of PALM reaches beyond the dry boundary layers with flat

surfaces described above: the model allows to simulate moisture and

clouds (Riechelmann et al., 2012), Lagrangian movement of particles

(Steinfeld et al., 2008) and oceanic turbulence (Raasch and Etling,

1998). Depending on computational power, the grid spacing can reach

down to 2 m (Raasch and Franke, 2011), and it is possible to include

heterogeneous surfaces (Letzel et al., 2008).

In this study, PALM simulations are used for a comparison of ‘real’ LES

boundary layer wind fields with those derived from virtual lidar measure-

ments in the LES fields. The model set-up is described in Chap. 5.

3.2.3. Doppler Lidar Simulations based on LES

To perform virtual Doppler lidar measurements inside an LES boundary

layer, a lidar simulation software package was developed.
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3. Dual-Doppler Lidar: Measurements and Simulations of Coherent Structures

The simulator is controlled via a text file, in which the crucial input

parameters are specified: the LES data set, range gate lengths, number

and positions along the lidar beam, laser pulse width, measurement

frequency, lidar position and scan pattern (cf. App. B). The scan

patterns are defined for a certain time interval on the LES time axes, i.e.

different scan types can be performed consecutively in the same virtual

lidar measurement.

The geometric information contained in the scan pattern, the range gate

positions and the lidar position are combined to compute the spatial

position of each range gate along the beam at each time step during the

scan in the LES grid (cf. Fig. 3.5). The time axis for the velocity estima-

tion is defined by the measurement frequency f : At time tk = k/ f + tstart,

a velocity estimate is computed for each range gate using the beam

position in the time interval ∆t(k) = [tk−1/(2 f ), tk+1/(2 f )]. As discussed

in Chap. 3.1.1, the mathematical model for the velocity estimate in one

range gate is given by a weighted average over the radial velocity along

the beam, with an additional linear average over all beam positions

during ∆t(k) in the case of scanning lidars.

Numerically, the velocity estimator is implemented as follows: For

range gate n at distance r0(n) along the beam, the radial weighting

function around the range gate center is computed (Eq. 3.6). Since

the mathematical model for the weighting function is always positive, a

cutoff has to be chosen: Here only the beam segment is considered

on which the weighting function is larger than 20% of its maximum

value at r0(n), resulting in an effective range gate length ∆peff. Here-

after the area is computed which is covered by the beam segment

[r0(n)−∆peff/2,r0(n)+∆peff/2] during the time ∆t(k). This area is filled

with a grid of points (cf. Fig. 3.6), to which each of the three 3D wind

field components of the LES is interpolated using MATLAB built-in
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Figure 3.6.: Velocity estimation in the lidar simulator: A virtual lidar at x = 5000 m and y= 2500 m scans

the horizontal plane with ω = 6.9◦/s. For a measurement frequency of f =1 Hz, the beam covers an

angle ω/ f per velocity estimate (gray area). Of this section, a part of length ∆peff is considered around

each range gate center (blue area). The LES wind field components are interpolated to the local grid

with relative weights according to Eq. 3.10 (inset).

cubic spline interpolation. The grid point spacing equals the LES grid

constant to make full use of the LES resolution. An average value is

computed for each wind field component after assigning relative weights

to the interpolation points according to Eq. 3.10. The radial velocity

estimate is subsequently computed as the projection of the average

wind vector on the lidar beam direction. Note that averaging and

projecting are independent linear operations and can be interchanged,

therefore performing the wind vector component averages before

the projection on the radial direction is not a source of error. This

single velocity estimation is repeated for all range gates centered at

r0(n), n = 1, . . . , range gate number , and all points on the time axis tk.

The accuracy of the lidar simulator, i.e. its ability to produce realistic

virtual lidar measurements in an LES boundary layer given that the
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3. Dual-Doppler Lidar: Measurements and Simulations of Coherent Structures

mathematical models for beam averaging are correct, depends of the

relation of lidar averaging length scales to the LES grid spacing LG:

When ∆p� LG, the average along the beam can be assumed to be

realistic. Here, typical values are ∆p ≥ 60 m and LG = 10 m. However,

the real lidar beam width of approximately 10 cm means insufficient

resolution in both directions perpendicular to the beam. The scanning

patterns described in Chap. 5 only use fast-scanning beams, therefore

only the direction normal to the scanning plane remains poorly resolved.

In the following it will be assumed that the large-scale averaging in the

two lidar plane directions, as well as the time-averaging involved, will

smooth out all small-scale processes. Furthermore, the comparative

LES data are interpolated to the scanning plane using the same

technique (Chap. 5.4), thereby restoring the comparability of the results.

The lidar simulator only performs single lidar measurements. Therefore,

for synchronized dual-Doppler measurements, the scan patterns of both

lidars have to be planned to perform synchronized scans on the same

LES data. After the two single lidar simulations are completed, both are

reassembled in the dual-lidar retrieval algorithm, which works equally for

both simulated and measured lidar data.

3.3. Dual-Doppler Retrieval of the Horizontal Wind Field

The data from dual-lidar scans can be used to retrieve the projection of

the wind vector in the two-dimensional lidar plane.

For unsynchronized scans which take T1 and T2 for a full back-and-forth

sector sweep, respectively, the best achievable time resolution of

the retrieval is T0 = max{T1,T2}. To obtain the highest possible time
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3.3. Dual-Doppler Retrieval of the Horizontal Wind Field

resolution, the scan should be synchronized, i.e. the beams arrive at

their turning points simultaneously, thereby T1 = T2. Since no phase shift

is accumulated, T0 = T1/2 in this case, which means the duration of one

beam sweep is sufficient to gather dual-lidar data in the whole overlap

area.

A retrieval algorithm was developed based on Newsom et al. (2008) for

zero- or low-elevation scans, i.e. the retrieval plane is the horizontal

plane at lidar height. A detailed description can also be found in Staw-

iarski et al. (2013).

The retrieval accepts real lidar measurement data or virtual lidar data

created by the simulation tool (Chap. 3.2.3). Before the retrieval, real

data are filtered from erroneous velocity estimates using a hard target

filter (removing data points with high SNR and low absolute wind speed),

an SNR filter (removing data points with low SNR) and a velocity jump

filter (eliminating outliers in the time series of each range gate velocity

estimate). The threshold values for the respective filters can be specified

by the user.

The retrieval algorithm starts by subdividing the dual-lidar measurement

time axis into time intervals of length T0. The horizontal overlap area is

then covered by a Cartesian grid with lattice constant ∆xy = ∆p.1 Each

grid point is surrounded by a circular grid cell, and all radial velocities

are associated with this cell if their range gate center falls into the cell

at some point during the T0 interval. The radius of the circles is set to

R = ∆xy/
√

2, i.e. the smallest value to cover the whole grid (Fig. 3.7).

1Full area coverage could also be obtained by setting ∆xy = range gate center distance, but the lidar

resolution remains limited by ∆p.
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3. Dual-Doppler Lidar: Measurements and Simulations of Coherent Structures

Figure 3.7: Dual lidar retrieval: A

scanning lidar beam (dashed lines)

with range gate centers (black bullets)

moving through three exemplary grid

cells. The velocity estimates are asso-

ciated with the grid cells and weighted

with the length of the beam chord in-

side the cells, indicated by the colored

beam segments. Figure adapted from

Stawiarski et al. (2013).

This leads to smoother results with less errors compared to a nearest-

neighbor approach, since the retrieval is computed from more data.

For each grid cell around the point r0 and each time interval, the most

probable horizontal wind vector uH is then given as the minimum of the

cost function (Stawiarski et al., 2013)

J = ∑
n

gn (rvn−uH(r0) · r̂n)
2 [3.23]

with the radial velocities rvn accumulated in the cell, and their associated

normalized lidar beam direction vectors r̂n. The relative contribution

of the deviation of rvn from the ‘true’ radial wind in this direction is

additionally weighted with a factor gn, which was not used in the

original algorithm by Newsom et al. (2008). Here, gn is set to the

length of the beam segment which lies inside the cell. Thereby, the

importance of data from range gate centers close to the edge of the

cell is suppressed compared to those which are closer to the center of

the cell. This reflects the fact that, the shorter the beam chord inside

the cell, the more information from outside the cell is contained in the

velocity estimate, which should not contribute to the cell result for uH(r0).
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3.3. Dual-Doppler Retrieval of the Horizontal Wind Field

The minimization of Eq. 3.23 with δJ = 0 yields (Stawiarski et al., 2013):

M ·uH(r0) = b , [3.24]

with

M= ∑
n

gn r̂n r̂T
n and [3.25a]

b = ∑
n

gn rvnr̂n , [3.25b]

where r̂n is to be understood as a two-component column vector on the

basis formed by the Cartesian horizontal axes:

r̂n =

(
sin(azn)cos(eln)
cos(azn)cos(eln)

)
. [3.26]

Eq. 3.24 is solved for each grid cell in each time interval, thereby

the horizontal wind field is obtained for the whole overlap region and

measurement time. Note that the matrix M is not invertible if all r̂n are

equal save for a scalar factor, i.e. the lidar beams must not be collinear

in the grid cells.

Newsom et al. (2008) used a similar retrieval algorithm for the in-

vestigation of surface layer coherent structures in dual-Doppler lidar

measurements during the Joint Urban 2003 (JU2003) field campaign.

They achieved a time resolution of T0 =30 s and a spatial resolution of

∆xy= 100 m with the unsynchronized lidars. Hill et al. (2010) adapted the

algorithm for the retrieval in vertical planes during the Terrain-Induced

Rotor Experiment (T-REX) with T0 =40-50 s and ∆xy = 130 m.

Iwai et al. (2008) attempted a three-dimensional retrieval of the wind

field, which required PPI-scans at different elevation angles for each

retrieval interval. Therefore, they only realized a time resolution of

T0 =12 min and ∆xy = 100 m.
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During the HOPE-experiment (cf. Chap. 8 for an overview), the KIT

dual-Doppler lidar system achieved a time resolution of T0 =12 s and a

spatial resolution of ∆xy = 60 m for horizontal scans.

In realistic lidar set-ups, it is hardly ever possible to perform zero-

elevation coplanar scans: hard targets such as houses, trees or even

transmission towers can block the beam path. The former can often be

avoided using a small elevation, which leads to slightly tilted lidar planes.

The consequences, as well as error contributions from angles, random

noise, time undersampling etc. are discussed in Chap. 4, where an op-

timization scheme is developed for error reduction.
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The following error analysis of dual-Doppler lidar measurements, as

well as the associated appendix chapter (App. A), are an excerpt from

the publication

Stawiarski, Träumner, Knigge, and Calhoun, 2013: Scopes and Chal-

lenges of Dual-Doppler Lidar Wind Measurements - An Error Analysis.

J. Atmos. Ocean. Tech., 30(9), 2044-2062. c©2013 American Meteoro-

logical Society. Used with permission.

4.1. Error Sources in Dual-Doppler Lidar Measurements

The usage of dual-Doppler system accounts for several errors. In this

section, we discuss the errors listed in Tab. 4.1 and their relative influ-

ence for the different scan types of Chap. 3.1.3. App. A contains the

detailed error propagation of single lidar errors to dual-Doppler results.

As a convention, we write 〈ξ 〉n for the nth moment of any variable ξ , i.e.

〈ξ 〉1 is the expectation value and 〈ξ 〉2 the variance.

4.1.1. Single Lidar Random Errors

The measured radial velocity of a Doppler lidar is typically described as

follows (Frehlich, 2001; Davies et al., 2005):

rvM
i (R0, t) = rvi(R0, t)+ εi(R0, t)+brv

i (R0, t) [4.1]
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4. Errors in Dual-Doppler Lidar Measurements

Error Symbol Source

Single Lidar Errors

Single lidar uncorrelated

noise (random error)

σ
rv,rnd
i Random measurement inaccuracy

due to speckle effect, detector noise

(Frehlich, 2001).

Single lidar bias

(systematic error)

biasrv,est
i Measurement bias due to frequency

drift of the laser, nonlinear amplifiers,

digitization errors, non-ideal noise

statistics

(Frehlich et al., 1994).

Direction errors σ
az
i , σ el

i ,

biasaz
i ,

biasel
i

The azimuth and elevation angles are

slightly imprecise, due to an imperfect

adjustment of the lidar systems and/or

the moving of the scanner.

Derived Single Lidar

Errors

In-plane error σ
rv,ip
i ,

biasrv,ip
i

Direction errors, projected on lidar

plane, lead to line-of-sight velocity es-

timation errors.

Out-of-Plane error σ
rv,oop
i ,

biasrv,oop
i

Direction errors perpendicular to lidar

plane lead to errors in rv that scale

with perpendicular wind speed.

Dual Lidar Errors

Single Lidar Propagated

Error

σ
single
DD ,

biassingle
DD

Propagation of single lidar errors to

dual-Doppler result.

Time Averaging Error σT
DD Data from both lidars is not syn-

chronous or does not cover full/same

retrieval time.

Volume Error σV
DD Both lidar beams cover different/large

volumes of air, due to scan/beam sep-

aration/beam direction.

Table 4.1.: Overview of the occurring errors in dual-Doppler lidar measurements

for a range gate centered around R0. brv
i (R0, t) is a systematic error with

the assumptions 〈|brv
i |〉1 = |biasrv,est

i |, and 〈biasrv
i 〉2 = 0 and εi(R0, t) is a

random error with 〈εi〉1 = 0 and 〈εi〉2 = σ
rv,rnd
i (see Tab. 4.1 for sources).
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For the error analysis of the single lidar systems, measurements against

the 200 m tower (Barthlott et al., 2003) at KIT, Campus North, were

performed. Both data sets were obtained when the lidar systems first

became operational, i.e. for ‘WindTracer 1’ (2 µm) from January 19 to

24, 2005 and for ‘WindTracer 2’ (1.6 µm, cf. Tab. 3.1) from January 26 to

31, 2011. The laser beams were arranged in a way that the centers of

the 10th range gates were located near sonic anemometers located in

100 m and 200 m height at the tower.

The local morphology shows low-rise buildings in the first 1.5 km along

the laser beam and a forest area behind. During the test measurements

in 2005 a 50 pulse average was applied (resulting in a measurement

rate of 10 Hz), during 2011 a 75 pulse average was used from 24 to 27

January (10 Hz measurement rate) and a 750 pulse average afterwards

(1 Hz measurement rate).

To evaluate the systematic error the line-of-sight velocity measured by

the lidar was compared with the line-of-sight projection of the wind vector

measured by the sonic anemometer. However, the bias between the

two measured wind velocities depends strongly on the wind direction,

i.e. there seem to be strong effects by the tower which render the used

method inapplicable. From the unperturbed areas we derive biasrv,est
i ≤

0.2 m/s, i = (1,2).

To estimate the uncorrelated noise, the technique based on the differ-

ence between lag zero and and lag one of the autocorrelation function

was used (Lenschow et al., 2000). This procedure leads to a slight over-

estimation of the uncorrelated noise but is more robust than fitting tech-

niques or the use of the spectra. The autocorrelation function was cal-

culated for 30 min time intervals. Fig. 4.1 shows the results for both lidar

systems. The used SNR has a 6 MHz bandwidth. A strong increase in
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Figure 4.1: Uncorrelated

noise of the two KIT lidar

systems as a function of

signal-to-noise ratio. At the top,

the results for ‘WindTracer 1’

and at the bottom, the results

for ‘WindTracer 2’ are shown.

Light and dark gray dots denote

10 Hz and 1 Hz measurement

frequency, respectively. The

black dots and error bars are

SNR bin means and standard

deviations. The dashed lines

are linear fits to the bin means.

the uncorrelated noise is visible at around -2 dB for the ‘WindTracer 1’

and ‘WindTracer 2’ when averaging 50 and 75 pulses, respectively. If

750 pulses were averaged the noise increases at about -8 dB. For SNR

higher than the given thresholds, the uncorrelated noise σ
rv,rnd
i is below

0.2 m/s.

4.1.2. Single Lidar Direction Error

Systematic direction errors occur if the lidar systems are not set-up

properly. We mostly estimate that the azimuth and elevation direction

are precise up to a bias of about 0.2◦, denoted here as biasaz/el
i . The

scanner is aligned by detecting hard-target backscatter signals from far-

away objects, and estimates of the biases can be derived from known
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accuracies of lidar and object positions and the statistical accuracy of

the scanner. Measurements using repeated scanner movements to this

alignment position show that the scanner does not accumulate further

bias when scanning, and that the statistical errors σ
az/el
i in both angular

directions are smaller than 0.1◦.

Depending on the measurement, the movement of the scanner during

the velocity estimation can be seen as either a desired feature, or an

additional source for statistical errors. For a sampling frequency of

10 Hz and a scan velocity of 5◦ per second, the angle is never better

located than 0.5◦, which corresponds to a spatial interval of about 17

m in a distance of 2 km. Some scan patterns make it necessary to tilt

the lidar beam away from the desired direction, e.g. to avoid obstacles.

Both tilted and inaccurate lidar beams lead to faulty velocity estimations,

since even if the LOS velocity estimator were free of errors, an incorrect

wind field component is sampled. To estimate the magnitude of these

errors, we define an evaluation plane as the plane in which we want to

retrieve the two-dimensional wind field, regardless of the actual lidar

plane. The radial velocities in the evaluation plane are then perturbed

by statistical errors and biases due to instrument errors and beam tilt in

or away from this evaluation plane.

For convenience, the angular errors are split into two parts, the in-plane

and out-of-plane error. This splitting is advisable, since the in-plane

errors scale with the in-plane wind velocity, which can be retrieved

from measurement data, whereas the out-of-plane errors scale with

the plane-normal part of the wind vector, and therefore their estima-

tion requires additional measurements with other equipment (cf. App. A).
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Using this, the errors in Eq. 4.1 become

(σ rv
i )2 =

(
σ

rv,rnd
i

)2
+
(

σ
rv,ip
i

)2
+
(
σ

rv,oop
i

)2
+cov(ip,oop) [4.2]

and

|biasrv
i |=

∣∣biasrv,est
i

∣∣+ ∣∣∣biasrv,ip
i

∣∣∣+ ∣∣biasrv,oop
i

∣∣ . [4.3]

In App. A, formulae for the statistical errors and biases are derived. They

are functions of the wind speed (in-plane and out-of-plane), wind direc-

tion, plane orientation and angle between lidar beams. The symbols

for these parameters are introduced in Chap. 3.1.3 and summarized in

Fig. 3.3.

To estimate the magnitude of the in-plane error, we consider as an

example the configuration of a ground-parallel plane, k̂× n̂n = 0, with

γz ∈ {0◦,180◦}, and el1 = el2 = 0. In App. A, the upper bounds of the

variance and bias were derived:(
σ

rv,ip
i

)2
= u2

H sin2
(

α j∓
∆χ

2
− γuH

)(
σ

az
i
)2

≤ u2
H
(
σ

az
i
)2 [4.4a]∣∣∣biasrv,ip

i

∣∣∣= |uH |
∣∣∣∣sin

(
α j∓

∆χ

2
− γuH

)∣∣∣∣ ∣∣biasaz
i

∣∣
≤ |uH |

∣∣biasaz
i

∣∣ . [4.4b]

For a wind speed of uH = 5 m/s and the direction error estimations above,

the statistical error therefore has an upper bound of 0.01 m/s and the

bias has an upper bound of 0.02 m/s. Both are one order of magnitude

smaller than the statistical error in rv due to instrument noise and can

thus be neglected. However, the in-plane errors becomes relevant if

higher wind speeds, in-plane angular biases or statistical errors occur.
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The out-of-plane error is the counterpart to the in-plane error and arises

if the desired lidar plane is not the actual retrieval plane given by the

span of the two lidar beams. This occurs if one of the lidar beams is tilted

slightly away from the plane, which leads to an undesired contribution of

the perpendicular wind component. The results are given in the App. A.

Analogous to the in-plane case, we give an example for a a horizontal

planar scan: (
σ

rv,oop
i

)2
= w2

(
σ

el
i

)2
[4.5a]∣∣biasrv,oop

i

∣∣= |w| ∣∣∣biasel
i

∣∣∣ . [4.5b]

Since 〈w〉 is approximately zero (depending on the measurement time

scale), a horizontal planar measurement is only influenced by an ad-

ditional statistical variance which scales with w2. According to Kaimal

and Finnigan (1994), the vertical wind velocity standard deviation in the

surface layer follows Monin-Obukhov similarity with

φw =

√
w′2

u∗
, [4.6a]

φw =

{
1.25(1+3|z/L|)1/3,−2≤ z/L≤ 0

1.25(1+0.2|z/L|) , 0≤ z/L≤ 1
, [4.6b]

with u∗ the friction velocity and L the Obukhov length. The horizontal

planar scans in the JU2003 study (Newsom et al., 2008) used elevations

of 0.5◦ and 1.2◦, and the stability conditions lead to out-of-plane error

contributions of σ rv,oop = 0.01 m/s to 0.05 m/s, which is small compared to

the random instrument error. The out-of-plane error should be computed

nevertheless for every scan to assure its negligibility, since it depends on

atmospheric conditions. The covariance between the in-plane and the

out-of-plane error, cov(ip,oop), is zero for the given example (cf. App. A).

This contribution to the error becomes only relevant for evaluation planes

which lie neither parallel nor perpendicular to the ground.

63



4. Errors in Dual-Doppler Lidar Measurements

4.1.3. Dual Lidar Propagation Errors

In the most general case, we are interested in the wind field component

u j = ê j · u in a certain direction ê j in the evaluation plane. The errors

of the individual lidar instruments will sum according to Eqs. 4.2 and

4.3. The total errors propagate to the retrieved u j (see Eq. 3.15), using

Gaussian error propagation (Hill et al., 2010):(
σ

single
DD (u j)

)2
=

(
∂u j

∂ rv1
σ

rv
1

)2

+

(
∂u j

∂ rv2
σ

rv
2

)2

=
sin2(α j +

∆χ

2 )

sin2(∆χ)
(σ rv

1 )2 +
sin2(α j− ∆χ

2 )

sin2(∆χ)
(σ rv

2 )2 . [4.7]

Using the simplification σ rv
1 = σ rv

2 = σ rv , which holds for identically con-

structed Doppler lidar systems, this simplifies to(
σ

single
DD (u j)

)2
=

sin2(α j +
∆χ

2 )+ sin2(α j− ∆χ

2 )

sin2(∆χ)
(σ rv)2 . [4.8]

The pre-factor in Eq. 4.8 is illustrated in Fig. 4.2. While it is obvious that

collinear beams can only resolve the wind direction in which they both

point, it should be noted that a twenty degree angle ∆χ between the

lidar beams will still lead to four times the single radial velocity error for

a wind field direction orthogonal to the lidar beams (α j = 90◦). Only very

few angular combinations can lead to a decrease in error (white regions

in Fig. 4.2). The best achievable result for one wind field component is

an error halving, but it is accompanied by a high error increase in the

orthogonal component. An optimal result for two orthogonal wind field

components is given for a ninety-degree angle between lidar beams, in

this case the factor for both components is one.

For two perpendicular velocity components, we find that(
σ

single
DD (u)

)2
+
(

σ
single
DD (v)

)2
=

(
σ rv

1
)2

+
(
σ rv

2
)2

sin2(∆χ)
, [4.9]
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4.1. Error Sources in Dual-Doppler Lidar Measurements

Figure 4.2: Logarithm of error-

magnifying pre-factor of Eq. 4.8,

i.e. log((sin2(α j +
∆χ

2 ) + sin2(α j −
∆χ

2 ))1/2/|sin(∆χ)|) , as a function of

the angle ∆χ between lidar beams

and the angle α j between the desired

retrieved wind component direction ei

and the mean lidar beam direction.

The pre-factor diverges in the black

areas.
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which also holds for σ rv
1 6= σ rv

2 . This is equivalent to the results for the

dual-Doppler radar application in Davies-Jones (1979). The crucial

pre-factor 1/|sin(∆χ)| is mapped in Fig. 4.3. We find that this pre-factor

can lead to extremely high errors on the retrieval results. Fig. 4.3 can

help to plan scan patterns where the expected errors on the retrieval

results are reasonably small. App. A shows that the propagated bias

also scales with this pre-factor.

It is important to note that planar scan patterns, which use N > 1 velocity

estimates per lidar for one grid cell retrieval, exhibit a reduced statistical

variance by the factor N/2 compared to the intersecting beam case. This

is due to the higher statistical certainty (Bronstein et al., 2001).

4.1.4. Dual Lidar Time Averaging Error

Time averaging errors are defined as errors that occur if both lidars do

not provide data at the same time interval, or not for the full time interval

of one retrieval.
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Figure 4.3: Logarithm of the error-

magnifying factor, log(1/|sin(∆χ)|),
for two lidars positioned at (x,y) =

(1,0) and (−1,0). The pre-factor di-

verges in the black areas.

For measurements in dual-Doppler mode with high time resolution

(cf. Chap. 3.1.3) it is recommended that the time standard does not

differ between the two instruments, i.e. the system clocks have to be

synchronized. Time shifts become a problem when regarding turbu-

lence, and the correlation terms between the two measured radial wind

velocities become apparent. The importance of synchronization errors

in the intersecting beam case decreases if the time interval considered

becomes longer. In the planar scan method (Chap. 3.1.3), where data

is aggregated in one grid cell during time T0, synchronization is much

less crucial. However, in this method appears a different time averaging

error: the temporal undersampling error.

During the time interval T0 (cf. Chap. 3.3), each lidar beam passes a

grid cell only once for synchronized systems, and the velocity estimates

recorded are supposed to represent the complete time interval. The

temporal undersampling error arises because of the deviation of the

T0-mean of the measured radial velocities from the desired T0-mean.

Since we do not have continuous wind speed measurements in the grid

cells, we measure the fluctuation by the change in rv in each range gate
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Figure 4.4.: rv time series during a sector PPI scan performed with ‘WindTracer 2’ on 24 Sep, 2011

in Hatzenbühl, Germany. The depicted data shows rv as a function of the azimuth angle az during three

consecutive scans of the angle sector (1st scan: black, 2nd scan: dark gray, 3rd scan: light gray). The

scan was performed with T0 = 10.5 s, ∆p = 30 m and a constant elevation of 2◦.

and each angle from one beam sweep to the next.

Fig. 4.4 shows the time series of three range gates for three consecutive

sweeps as a function of the azimuth angle (elevation was kept at

2◦). The data was recorded with ‘WindTracer 2’ on Sep 24, 2011. It is

obvious that the contribution of small scale processes leads to variations

of the radial wind velocity and thus considerable time undersampling

errors in the grid cells. Indeed, the average over all absolute rv-changes

is 0.35 m/s for these three sweeps, which makes it the highest error

contribution to planar scans.

In Chap. 4.2, we will investigate the dependence of this error on

the mean wind and the range gate length, and develop a method to

decrease it.

4.1.5. Dual Lidar Volume Error

Volume errors arise because radial velocity estimates used for retrievals

are always averages over a certain volume of air, which is not the same
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4. Errors in Dual-Doppler Lidar Measurements

volume for both lidars or not an average over the desired volume. In

situations with strong tilt or strong shear this may become a problem for

the dual-Doppler application, because the velocity field changes quickly

and the volumes of the two lidars see may contain different turbulent

structures.

In many dual-Doppler scan scenarios there are displacements between

the range gate centers whose radial velocities are used for retrieval.

These may arise from non-perfect synchronization but also to avoid hard

targets, as discussed in Chap. 3.3. Often the wind field is considered

horizontally homogeneous (Stull, 1988), i.e. we can neglect effects due

to horizontal shifts. To estimate the effects in the vertical, the current

wind profile may give a reference point. In general, we assume the

displacement effect to be negligible if the beam displacement is much

smaller than the range gate length, so that turbulence structures of the

displacement scale can be assumed to average out. The error cannot

be quantified without additional measurements.

For intersecting beams, the inherent spatial averaging property of the

lidar becomes the source of a volume error: While the desired retrieval

result is the wind field at the beam intersection point, the range gates

stretch much further. This deviation from a point measurement can be

estimated by the velocity fluctuations inside the range gate. Frehlich

(1997) finds that, for homogeneous and isotropic flow and the Kol-

mogorov model structure function, these fluctuations are given by(
σ

V
i
)2

=
9
40

Cv ε
2/3(∆p)2/3 [4.10]

where Cv ≈ 2 is the Kolmogorov constant and ε the dissipation rate,

leading to σV ≈ 0.3 m/s for ε = 10−3 m2/s3 and ∆p= 100 m. The influence
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of this error is most important for high time resolutions, whereas it can

become negligible if the time scale is long enough to average out all

scales up to the range gate length.

Even though the spatial averaging does not lead to a bias in the velocity

estimation, the suppression of the small scales in the turbulence spectra

means that momentum fluxes and variances computed from lidar

measurements will usually underestimate the real value (Mann et al.,

2010).

In contrast, the spatial average contained in the velocity estimates is a

desired feature of planar scans. Here, the intended result is, for each

grid point, to measure the wind speed in the evaluation plane, averaged

over the grid cell with radius R = ∆p/
√

2 and averaged over the time

interval T0. Volume errors arise from uneven line averaging weights

inside and non-zero weights outside of the grid cells.

In the retrieval method in Chap. 3.3, data from both lidars is aggregated

and evaluated at the same time. Note that this method is similar to

first producing one average radial velocity for each lidar with the help

of weights gn, and subsequently minimizing Eq. 3.23 with only these

two mean radial velocity entries. We will take this point of view here to

simplify the error analysis.

The grid cell mean radial velocity from one lidar is the result of spatial

averaging of the real radial velocity field in and around the grid cell

centered at xc with a weighting function W (x;xc).

If a range gate center transverses the grid cell during scanning, each

velocity estimate is a product of the radial averaging process given by

Eq. 3.5. This implies that velocities outside the grid cell are taken into

account. This effect intensifies if the overlap the lidar beam has with the
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4. Errors in Dual-Doppler Lidar Measurements

grid cell decreases. Therefore, individual weights gn are chosen as the

length of the lidar beam line segment that lies within the circle of radius

R: gn = 2(R2− s2
x;xc

)
1
2 (cf. Fig. 4.5).

For a grid cell with center xc, which is passed through by a range gate

center in an approximately straight line at distance D from the center, the

overall weight function at point x in the plane is then given by

W (x;xc) =

 W∆p(rx;xc) ·gn(sx;xc) ,
sx;xc√
R2−D2 ≤ 1

0 ,
sx;xc√
R2−D2 > 1

[4.11]

with the single lidar weighting function W∆p as given in Eq. 3.6.

W is furthermore a function of R, ∆p and D. rx;xc is defined as the dis-

tance of x from the range gate center in lidar beam direction r̂i, whereas

sx;xc is the corresponding distance in direction perpendicular to the lidar

beam as shown in Fig. 4.5:

rx;xc = (x− (xc +D r̂i)) · r̂i [4.12a]

sx;xc = |(x−xc)× r̂i| . [4.12b]

For comparison with the ideal weighting function, W must be normalized:

Wn(x;xc) =W (x;xc)/
∫

cell

d2xW (x;xc) . [4.13]

The ideal weighting function for the velocity estimate of a grid cell is

W0(x;xc),

W0(x;xc) =

{
1/(πR2) , |x−xc| ≤ R

0 , |x−xc|> R
, [4.14]
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Figure 4.5: Modeled weighting of

data at grid cell point x. The lidar

range gate center moves through the

cell along the dotted line, at a displace-

ment D from the grid cell center. The

weights have a radial part depending

on rx,xc and a cross-radial part depend-

ing on sx,xc , where rx,xc is the displace-

ment from the center in beam direction

and sx,xc is the displacement in cross-

beam direction (see text).

beam 

which is a solely function of R. The influence of the spatial averaging

error can therefore be estimated as

(
σ

V,sa
DD

)2
=

∫
cell

d2x(Wn(x;xc)−W0(x;xc)) rv(x)

2

[4.15]

where rv(x) is the real radial wind velocity.

To estimate this error, we produce random test fields with normal

distribution centered around means of −20 m/s to 20 m/s, and with

standard deviations of 0.5 m/s to 5.5 m/s. Using these, W and W0

were computed for range gate lengths between 30 m and 140 m and

randomly distributed distances D = 0.05 R to D = 0.95 R, with R = ∆p/
√

2

and στ = 300 ns. Fig. 4.6 shows the maximum value of σ
V,sa
DD for all

test wind fields as a function of ∆p. It is obvious that the volume error

increases, i.e. the real weighting function exhibits stronger deviations

from the desired averaging, for smaller range gates. This is a result

of the beam weighting function W∆p approaching the Gaussian pulse

envelope for range gate lengths much smaller than the pulse width στc.

This leads to non-negligible contributions from outside the cell and to an

uneven weighting of data inside the cell.
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Figure 4.6: The mean error in radial

velocity estimation in one grid cell due

to non-optimal weighting.

The spatial error contribution is still on the order of the random error in

the realms of realistic range gate lengths. For shorter range gate lengths

it is advisable to choose the grid cell radius R larger to achieve a smaller

spatial averaging error.

4.1.6. Summary

The relevant error processes are threefold: (i) the single lidar errors, i.e.

the lidar random error and the in-plane and out-of-plane error, which in-

fluence every line-of-sight velocity estimate, and (ii) the spatial and (iii)

temporal averaging errors, which arise from inaccurate spatial and tem-

poral averaging depending on time- and length scales of the scan.

During planar scans, the single lidar errors are often negligible since

the number of samples N which are used for one retrieval leads to a

decrease in the standard deviations by the factor 1/
√

N. The dominant

errors contributions here come from the time and spatial averaging er-

rors, although the latter only becomes important for very small ∆p.

On the other hand, the intersecting beam case is dominated by prop-

agated single lidar errors and spatial averaging errors. The latter arise
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because the averaging volume for each velocity estimate is much larger

than beam intersection volume. Time averaging errors can also become

important if the lidars are not properly synchronized.

All errors have to be propagated to the retrieval result in the lidar plane

using Eq. 4.8 with the appropriate value for ∆χ for each grid cell or inter-

section point. Figs. 4.2 and 4.3 can be used to estimate the error mag-

nification for certain retrieved wind field components in the lidar overlap

area. Scan patterns should be planned accordingly.

4.2. Optimization of Horizontal Scan Patterns

Chap. 4.1.4 showed that the dominant error process in planar scans is

the undersampling of the radial velocity inside each grid cell during the

time interval T0, i.e., the few velocity estimates in each grid cell cannot

reliably reproduce the mean velocity. Indeed, for Gaussian random vari-

able with mean µ and variance σ2, the mean computed from N samples

will be Gaussian as well, with mean µ and a variance of σ2/N (Bron-

stein et al., 2001). It is not possible to significantly increase the number

of rv samples in the grid cells, since the time during which the velocity

is sampled in one grid cell always remains only a small fraction of T0.

Consequently, we have to decrease the variance of the radial velocities

in the T0-interval. To do so, we assume a cartesian grid covering the

evaluation plane with a lattice constant of ∆l = ∆p for highest possible

spatial resolution, and accordingly a radius of influence of R = ∆p/
√

2

(cf. Chap. 3.3). By Taylor’s hypothesis the turbulence elements can be

regarded to be frozen in space and advected with the mean wind. The

characteristic length scale of the measurement is the distance the wind

field is transported in T0: λ = u ·T0, where u is the mean wind velocity. If

λ � ∆p, major turbulence elements will not be averaged out by the lidar
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averaging process, which only covers scales up to ∆p. Therefore the

wind speed variance of those elements will be visible in the rv time se-

ries. On the other hand, if λ � ∆p the variance will be small, because all

turbulence elements of the scale λ are averaged out by the radial veloc-

ity measurement process. We can therefore minimize the time sampling

error by minimizing T0 (and consequently the length scale λ ) with respect

to ∆p.

As a cutoff, we demand

First Optimization Condition: Small Sampling Error

T0 ·u≤ ∆p . [4.16]

A very high angular scan velocity could therefore theoretically solve this

time sampling problem, if it were not connected with decreasing data

density: If we attempt to cover an area with maximum distance d from

the lidar, the distance between two consecutive velocity estimates in the

outermost range gate centers must still be smaller or equal to ∆l = ∆p,

to ensure at least one velocity estimate from each lidar in each grid cell.

For a fixed measurement frequency f and the full angle β covered in T0

(i.e., twice the angle sector for a back-and-forth sweep scan), this can

be summed up in the

Second Optimization Condition: Sufficient Data Density

T0 ·∆p≥Cs with Cs =
2πβd
f 360◦

. [4.17]

A dual-Doppler lidar scan pattern is optimized if T0 and ∆p are chosen

from all parameter pairs that fulfill both conditions in a way that minimizes

∆p. From the above equations we deduce the optimized values, keep-

ing in mind that ∆p has an effective lower bound of ∆pmin =
√

log2στc,

which is the full width at half maximum for the spatial pulse envelope In

(Eq. 3.8):
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Ideal Scan Parameters

If
√

uCs ≥ ∆pmin : ∆popt =
√

uCs

T0opt =
√

Cs/u

If
√

uCs < ∆pmin : ∆popt = ∆pmin

T0opt = Cs/∆pmin

[4.18]

In the following, we will demonstrate the effect of optimization on the time

sampling error.

4.2.1. Lidar Data Results

Lidar measurements were performed by the KIT ‘WindTracer 2’ with

a wavelength of λ = 1.6 µm (cf. Chap. 3.1.2). We used 75 pulses

to average for each velocity estimate, which means a measurement

frequency of 10 Hz. Data was recorded on 8 days in fall 2011 and spring

2012, on which the lidar was positioned on farmland in Hatzenbühl,

Germany. The scanning area mainly covered fields with different

crops, interspersed with few bushes and trees, therefore an elevation

of two or three degrees had to be used. The scanned area spans an

azimuthal range of around 100◦ around the west/northwest direction.

Additional wind speed data was retrieved as 10 min averages from a

20 m-tower anemometer, located approximately 10 m next to the lidar.

This measured wind speed can be seen as representative for the mean

wind speed in the scanning area over this mostly homogeneous terrain.

We define T0 as the full back-and-forth scan time. Since T0 and ∆p were

kept relatively constant for all measurements while the mean wind u var-

ied, we introduce the relative optimization parameters:

fp = ∆p/∆popt , [4.19a]

fT = T0/T0opt . [4.19b]
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Figure 4.7.: Time undersampling error: Mean radial velocity changes in ‘WindTracer 1’ lidar data

from one sweep to the next, averaged over all grid cells of the ∆p-spaced grid and three minutes, as a

function of the relative optimization parameters fT and fp. u was taken from nearby tower measurements

in height of 20 m. The curves denote borders of the optimization region. The inset shows a histogram of

the errors for parameter pairs in the optimized region.

The optimization conditions Eqs. 4.16 and 4.17 can then be summarized

as

fT ≤ fp , [4.20a]

fT ≥ 1/ fp . [4.20b]

and the optimal parameters are reached for fT = fp = 1.1

For the analysis, all lidar data was cut into time slices of 3 minutes

during which u can be seen as constant. Velocity estimates with low

SNR were rejected. The variability in each grid cell was computed as

the mean absolute velocity change from one sweep to the next, the grid

cell variability of the complete 3 minute time slice is the average over the

1Eq. 4.20a is valid only when
√

Csu≤ ∆pmin. Otherwise, it should read fT ≤ fp ·∆p2
opt/(Csu).
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results in all grid cells. The final results are shown in Fig. 4.7. An inset

in the figure shows an error histogram for all data inside the optimization

region (i.e., data points with fp ≥ 1 which lie in between the two curves).

In general, the computed errors show the same qualitative behavior

as those retrieved from lidar simulations, and it is clearly visible that

optimizing the scan parameters leads to the desired error reductions.

For the present lidar, an average time undersampling error in the

optimized region would be about 0.25 m/s.

In application, the real time undersampling error can always be com-

puted from the present data, and overview plots like Fig. 4.7 can help in

adjusting an optimized scan pattern to the desired error limits.

For highly synchronized dual-Doppler systems, data from one lidar scan

are sufficient for the retrieval, which means halving T0 and β in Eqs. 4.16

and 4.17 (cf. Chap. 3.3). We see from Eq. 4.18, that this leads to a

reduction of the optimized range gate length and time constant each by

a factor
√

2, and therefore a much better spatial and temporal resolution

in the realms of ∆popt > ∆pmin. For such applications, a synchronous

control system as described in Chap. 3.1.2 is necessary.
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In this chapter, the large-eddy simulation data sets are described which

are the basis for the virtual dual-Doppler lidar measurements, includ-

ing the boundary conditions used in the PALM model (cf. Chap. 3.2.2).

Furthermore, the parameters for simulation and retrieval of the dual lidar

data are discussed, followed by a quality analysis of the virtual measure-

ments based on the error discussion in Chap. 4.

The LES were provided by Dr. Christoph Knigge and Carolin Helmke,

PALM group, Institute of Meteorology and Climatology at Leibniz Univer-

sität Hannover.

5.1. Large-Eddy Simulation Data

The analyses of Chaps. 7 and 6 are based on four 30 min data sets of

LES data, generated by the PALM model. The main difference between

the four data sets is the pre-defined geostrophic wind of {0 m/s, 5

m/s, 10 m/s, 15 m/s} in x-direction, respectively. All simulations were

computed on a grid of 5 km length in each direction, with a resolution

of ∆x = ∆y = ∆z = 10 m below z = 1800 m, and a slightly larger ∆z for

higher z. The time resolution was 1 s. All simulations were carried

out for dry atmospheres over a flat surface and driven by a constant

kinematic heat flux w′θ ′s at the surface and the geostrophic wind. In all
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Variable Bottom Boundary Top Boundary

Pressure ∂ p
∂ z = 0 hPa/m p = 0 hPa

Horizontal Wind u = v = 0 m/s u = uG, v = vG

Vertical Wind w = 0 m/s w = 0 m/s

Potential Temperature ∂θ

∂ z = 0 K/m ∂θ

∂ z = ∂θ

∂ z initial
TKE ∂e

∂ z = 0 m/s2 ∂e
∂ z = 0 m/s2

Table 5.1.: Top and bottom boundary conditions of atmospheric variables in the simulated boundary

layers.

simulations with background wind the kinematic surface heat flux was

0.03 K m/s. In the calm situation it was set to 0.23 K m/s to induce

strong convection. All simulations started with a pre-defined vertical

potential temperature profile indicating a stable boundary layer, with a

lapse rate of dθ/dz = 0.08 K/m below z = 1200 m and dθ/dz = 0.74 K/m

above.

The time interval of the data output followed the simulation spin-up,

consisting of a 1D-model pre-run (except in the calm situation) and one

hour of 3D-simulation. In this simulation random impulses of 0.25 m/s

amplitude were imposed on the wind field in 100 s intervals to initiate

turbulence despite the flat boundary.

The top and bottom boundary conditions for the atmospheric variables

are summarized in Tab. 5.1. Laterally, periodic boundary conditions

were applied for all variables. Furthermore, a Prandtl-layer was as-

sumed between the roughness length z0 = 0.15 m (corresponding to a

vegetation of hedges and few trees, cf. Stull, 1988) and the first grid

points at 5 m height. The integration of the governing equations was

carried out using the numerical schemes described in Chap. 3.2.2.

Note that, in the LES, u is the wind field component aligned with the

geostrophic wind, and v is the corresponding perpendicular compo-
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5.1. Large-Eddy Simulation Data

uG [m/s] u∗ [m/s] w∗ [m/s] L∗ [m] zi (θ ) [m] zi (w′θ ′) [m] −zi/L∗ stability

0 0.04 2.09 -0.02 1330 1208 57000 very unstable

5 0.32 0.84 -80 1142 602 7.2 very unstable

10 0.51 0.85 -330 1114 613 1.9 unstable

15 0.68 0.87 -778 1152 665 0.8 unstable

Table 5.2.: Atmospheric scaling Parameters in the LES data sets.

nent. Only after simulation and retrieval the wind fields at evaluation

height were rotated in the mean wind direction for further evaluation

(cf. Eq. 5.1).

The data output consisted of the three-dimensional wind field with 1 s

time resolution, as well as 10 min averages of temperature and flux

profiles. The boundary layer height was computed from the height at

the minimum of the vertical heat flux (Deardorff et al., 1980) as well

as from the bottom of the lowest temperature inversion (Kaimal et al.,

1976). From the profiles, the friction velocity u∗ and convective velocity

w∗ were computed with Eq.2.2, using the flux time and spatial averages

at the lowest grid points (cf. Tab. 5.2) and zi(w′θ ′). The resulting

Obukhov-length L∗ (Eq. 2.3) and the stability parameter −zi/L∗ indicate

unstable stratification for all simulated boundary layers.1 This result

agrees with the lapse rate of the temperature profiles in Fig. 5.1. This

figure also shows the profiles of the kinematic sensible heat flux and

mean wind throughout the simulated boundary layers. In comparison

with the stability regimes of earlier studies (cf. Chap. 2), the development

of streaks can expected here for uG > 0, whereas the simulation with

uG = 0 has ideal conditions for the development of hexagonal convective

structures.

1Although it is disputable considering the profiles in Fig. 5.1 which method for boundary layer height

estimation should be favored, the choice has no effect on L∗ and the overall stability classification.
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Figure 5.1.: Profiles of the potential temperature θ (left), the kinematic sensible vertical heat flux w′θ ′

(center), and the mean wind u (right) for the four LES data sets (darker blue means higher uG). w′θ ′

includes the heat flux on the sub-grid scale.

To obtain reliable results from the LES independent of the subgrid-scale

model, it must be ensured that the resolved-scale energy (EGS) is much

larger than the subgrid-scale energy (ESGS). The intended virtual lidar

measurements (see below) evaluate the LES at 10 m height. Fig. 5.2

shows that the average TKE profiles yield a ratio (EGS + ESGS)/EGS

between three and ten, which shows that a this height, the LES are only

just reliable.

It should be noted that Maronga (2013) discussed that the LES is not ac-

curate in the lowest six resolved layers. However, the goal of this work is

to assess the performance of dual-Doppler lidar measurements in coher-

ent structure detection. For this study, it is sufficient that the LES used

for comparison exhibit structures comparable to those detected in real

surface layers. The present LES are the best approximations of virtual

boundary layers that could be obtained with manageable computational

cost for simulation and retrieval.
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0 0.5 1 1.5 2
0

20

40

60

80

EGS and ESGS [m2/s2]

z
[m

]

0 10 20
0

20

40

60

80

E/ESGS

Figure 5.2.: Mean profiles of grid scale (EGS) and sub-grid scale (ESGS) turbulent kinetic energies in

the LES data sets (left), as well as the relation of full TKE, E = EGS +ESGS, to the sub-grid scale TKE.

Darker shades correspond to higher uG.

5.2. Single Lidar Simulations

For optimal dual-Doppler retrieval results, the virtual lidar measurements

were performed with the lidar simulation tool (Chap. 3.2.3) according to

the error reduction technique developed in Chap. 4.2. The LES data

sets covered a horizontal area of 5000 m by 5000 m, in which the lidars

were positioned at (x1, y1, z1) = (5000 m, 2500 m, 10 m) and (x2, y2, z2)

= (2500 m, 0 m, 10 m), respectively (cf. Fig. 5.3). Each lidar scanned at

a constant elevation of 0◦. The azimuth sectors spanned 90◦ each, i.e.

az1 = 315◦− 45◦ and az2 = 225◦− 315◦. Fig. 5.3 shows that the overlap

region is chosen such that the lidar beams are almost perpendicular in

the center and the error multiplying pre-factor (Eq. 4.9 and Fig. 4.3) is

thus relatively small.

For realistic results, the lidar parameters were, wherever possible,

chosen as those typical of the KIT Doppler lidars: measurements are

performed with a frequency of 10 Hz with 110 range gates, starting

at an offset distance of 350 m from the lidars and up to a maximal

distance of 5520 m to cover the full data area. The pulse width was set
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5. The Virtual Dual-Doppler Lidar Data Set

Figure 5.3.: Horizontal scanning areas on the LES data sets for the first (left) and second (center) vir-

tual lidar. The right panel shows the overlap region with contour lines at constant lidar beam intersection

angles ∆χ [◦].

to 300 nm and 370 nm for Lidar 1 and Lidar 2, respectively. The minimal

range gate length in the optimization algorithm (Eqs. 4.18) is set to

60 m, which is slightly smaller than the pulse width, to allow for the

highest possible resolution. From these parameters and the wind speed

at measurement height, the range gate lengths ∆p and the scanning

time T0 were derived via the optimization algorithm, as summarized in

Tab. 5.3. The full set of simulation parameters can be found in Tab. B.1.

Since the lidar scans were synchronized, i.e. the beams reach the

turning points of the scan simultaneously, the beam angle β = 90◦ and

T0 equaled the duration of one sweep.

uG [m/s] 0 5 10 15

Wind Speed at 10 m Level [m/s] 0.0 3.0 5.1 6.8

Range Gate Length ∆p [m] 60.0 60.0 66.0 76.8

Scan Time T0 [s] 14.6 14.6 13.1 11.4

Angular Scan Velocity ω0 [s−1] 6.2 6.2 6.9 7.9

Table 5.3.: Optimized lidar simulation parameters for the four LES data sets.
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5.3. Dual-Doppler Retrieval

5.3. Dual-Doppler Retrieval

The dual lidar data were retrieved using the software described in

Chap. 3.3. Owing to synchronization, the retrieval was operated in

‘one sweep mode’, i.e. the horizontal wind field was computed for time

intervals with the length of one beam sweep. The grid constant ∆xy

was chosen as the range gate length ∆p which determines the highest

achievable resolution (even though the range gate center distance was

smaller). The grid cell radius of influence R was set to the smallest

possible value, R = ∆xy/
√

2. The retrieval parameters are summarized

in Tab. 5.4.

The retrieval was performed on axes aligned with the Cartesian grid of

the LES, and consequently the wind field components ũ, ṽ were the pro-

jections of the wind vector on the respective axes. After the retrieval,

they were converted to the wind field component in mean wind direction,

uRET, and the associated component in crosswind direction, vRET, and

the fields were rotated to align the x-axis with the mean wind direction.

The mean wind used for this conversion was derived from the original

LES data for better comparison, with the mean wind direction and the

crosswind direction unit vectors, ex and ey, defined in the LES axes by

ex =
1√

〈ũ〉2 + 〈ṽ〉2

(
〈ũ〉
〈ṽ〉

)
, [5.1a]

ey =

(
0 −1

1 0

)
ex , [5.1b]

where ũ, ṽ are the time and spatial means of the original horizontal LES

wind field components at height 10 m.
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5. The Virtual Dual-Doppler Lidar Data Set

Parameter uG = 0 m/s uG = 5 m/s uG = 10 m/s uG = 15 m/s

Time Constant T0 [s] 14.6 14.6 13.1 11.4

Grid Resolution ∆xy [m] 60.0 60.0 66.0 76.8

Grid Cell Radius R [m] 42.4 42.4 46.6 54.3

Table 5.4.: Retrieval parameters for the virtual dual lidar measurements in the four LES data sets.

5.4. LES Data Sets for Comparison

The original LES data are stored on a staggered grid (Fig. 3.4), where

u and v are given at 5 m and 15 m height and w at 10 m height. For the

comparative analysis in Chaps. 7 and 6, u and v had to be interpolated

to the measurement height of 10 m using cubic splines (Bronstein et al.,

2001). Even though this method implies a certain amount of smoothing,

it outperforms linear or nearest-neighbor interpolation in capturing the

strong curvature of the wind profile this close to the ground. Additionally,

u and v were interpolated to the x- and y-axes of w to achieve an

evaluation at the same grid points. Subsequently, the fields were

converted into streamwise and spanwise component. Additionally, they

were rotated in mean wind direction in the same manner as the retrieval

fields and using the same ex and ey (Eq. 5.1). All comparative LES

results in the following chapters were produced from these interpolated

and rotated fields, uLES and vLES, unless specifically stated otherwise.

To estimate the influence of the temporal averaging process involved in

the dual-lidar simulation and retrieval, the interpolated horizontal LES

data were averaged over the retrieval time intervals T0, resulting in a

data set with full spatial LES resolution and a time resolution of the

retrieval. This data set is called the time averaged LES data set.

All analyses in the following chapters are applied to the retrieval data

(abbreviated as RET), the high-resolution LES data (LES) and the time-

averaged LES data (LESAVG).
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Figure 5.4.: Comparison of the wind-parallel field u from LES (top), LESAVG (center) and RET (bot-

tom) for uG = {0,5,10,15} m/s (left to right) at a random retrieval time step. The LES data shown corre-

spond to the center of the retrieval time interval. The axes are the original LES axes without rotation in

the mean wind direction. Note the difference in color scale between the columns.

A comparison between the three data sets is shown in Fig. 5.4. The

time-averaging has only a small effect on the visible turbulence struc-

tures, whereas the dual-lidar retrieval data show considerable spatial

smoothing and a much less structured field.

5.5. Quality of the Horizontal Wind Field Retrieval

The errors in the virtual lidar measurements can be analyzed in the

framework presented in Chap. 4. The lidar simulator exhibits neither
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Figure 5.5.: Virtual lidar time undersampling error as a function of range gate length ∆p and sweep

time T0 (relative to their optimized values) as derived from one back-and-forth sweep of Lidar 1 for

uG = {0, 5, 10, 15} m/s (left to right). 〈∆rv〉 is the absolute change of mean radial velocities in a grid

cell from one sweep to the next, averaged over all grid cells. The black lines denote the optimization

boundaries and ∆pmin. Optimized values are circled. Cf. Fig. 4.7 for real lidar data.

instrumental noise nor biases in the angles or the velocity estimator.

However, certain errors in the velocity estimation occur since the LES

grid data has to be interpolated to the virtual lidar beam. This error can

be treated as a random error on the velocity estimate, σ
rv,rnd
i . All other

single lidar errors, as listed in Tab. 4.1, are zero. Thus the single lidar

propagated error results solely from σ
rv,rnd
i . To limit the influence of

this random noise, the retrieval area was reduced to include only beam

intersection angles ∆χ beween 30◦ and 150◦, thus limiting the error

magnifying factor to |sin(∆χ)|−1 ≤ 2 (Eq. 4.9 and Fig. 4.3).

Spatial and time averaging errors are as relevant in virtual lidar data as

they are in real measurements. The time averaging error was minimized

by the optimized scan, however, the required data density limits the

achievable accuracy. Its magnitude can be estimated from Fig. 5.5,

where the time sampling error was computed for the present LES data

sets around their respective optimization point: the change of mean

radial velocity in a grid cell from one sweep to the next, averaged over all

grid cells, is 〈rv〉 = {0.10, 0.12, 0.19, 0.25} m/s for uG = {0, 510, 15} m/s.

Note that for uG = 0 m/s and uG = 5 m/s the minimal range gate length
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Figure 5.6.: Distribution of discrepancies between the horizontal wind fields components from the

retrieval and the time averaged LES (interpolated to retrieval axes).

determines the optimization, for uG = 0 m/s the error limit curve is too

steep to even be displayed. In general, the time undersampling errors

exhibit the expected variability with the range gate length and the time

constant: the error decreases with increasing ∆p and increases with

increasing T0.

Fig. 5.6 shows a comparison between the retrieval and the time-

averaged LES wind fields. For the comparison, the time-averaged LES

fields were interpolated linearly to the retrieval axes.

All errors are well described by a Gaussian distribution, the fit results are

shown in Tab. 5.5. As expected, the standard deviation of u increases

with the mean wind speed. The increase is smaller in the crosswind

component due to the shifting wind direction and increased small scale

shear turbulence. The larger surface heat flux in the calm situation has

the same effect of increasing small scale turbulence. In comparison,
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Figure 5.7.: Comparison of the horizontal means of wind speed (top) and wind direction (bottom) as

obtained from the retrieval data (red) and the LES data (black) for all four LES data sets (uG increasing

from left to right).

the bias is for both components on the scale of few cm/s and therefore

negligible.

Naturally, the difference between the spatial means of the retrieval and

LES data are smaller than the errors in the point-by-point comparison

above. Fig. 5.7 shows that the spatial mean wind is captured by the

retrieval with errors smaller than 0.1 m/s. The wind direction, in the

presence of background wind, exhibits errors smaller then 1◦. However,

the strong differences in the absence of geostrophic wind are a result of

the negligible absolute values.

0 m/s 5 m/s 10 m/s 15 m/s

Wind Field σ
[m

s

]
µ
[m

s

]
σ
[m

s

]
µ
[m

s

]
σ
[m

s

]
µ
[m

s

]
σ
[m

s

]
µ
[m

s

]
u 0.56 -0.08 0.33 -0.04 0.68 -0.05 1.02 -0.06

v 0.49 -0.07 0.26 -0.04 0.39 -0.02 0.56 -0.00

Table 5.5.: Standard deviations σ and means µ as obtained by a least-squares fit of a Gaussian

function to the distributions in Fig. 5.6
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Figure 5.8.: Comparative spectral density of the u-component along (left) and across (right) the mean

wind direction for the four data sets (uG increasing from top to bottom). The spectra are shown for the

retrieval results (red), the time-averaged LES results (blue) and the LES results (black). The dashed line

indicates the slope of k−5/3. The pale red lines show a random choice of ten retrieval spectra. The red

mark on the k-axis indicates the effective resolution of the simulation and retrieval.
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Fig. 5.8 shows the comparative spectral density of the u-component

of the retrieval data, the time-averaged LES data and the original LES

data. The spectra were computed from all time steps of the retrieval

and the time-averaged LES, as well as from 100 random time steps in

the LES. For better resolution, the wind fields at each time step were

zero-padded to 1024 grid points before performing the Fourier trans-

form. The LES-spectra agree well with the time-averaged LES results,

with deviations only for high wave numbers k and, caused by advection,

increasingly for higher wind speeds. Both show approximately the

expected decay with k−5/3 in the inertial range (Stull, 1988). The slight

increase around the highest wave number can result from interpolation

effects. This is also visible in the retrieval data.

It is obvious that the virtual lidar results fail to resolve the full spectral

energy already on scales much larger than the effective retrieval scale

(cf. Chap. 3). For small wave numbers, the agreement is very accurate

for the calm situation and the spectra in y-direction. However, with

increasing background geostrophic wind the scales up to which the

spectra deviate becomes considerably larger, up to half an order of

magnitude loss of spectral density at 1/k = 1 km for uG =15 m/s. This

effect is visible neither in the y-spectra of the u nor in the v-component

(cf. the v-spectra in App. C), and only very slight in the x-spectra of

v. The sole occurrence of the large-scale spectral underestimation for

x-spectra, its dependency on the background wind, and the stronger

deviation in the streamwise component indicate that this effect is caused

by advection.

The effect is investigated in more detail in Fig. 5.9, where the time-

averaged LES spectra are reproduced alongside spectra of the

time-averaged LES wind fields which were spatially smoothed in x-

direction, y-direction and both x- and y-direction using a moving average.
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Figure 5.9.: Effect of spatial smoothing on the spectral density of the u-component along (left) and

across (right) the mean wind direction for the four data sets (uG increasing from top to bottom). The

mean spectra are shown for the time-averaged LES results after applying a moving average filter with

the span (∆x, ∆y) in x- and y-direction, respectively: (∆x,∆y) = (0 m,0 m) (blue), (∆x,∆y) = (∆,0 m) (dark

purple), (∆x,∆y) = (0 m,∆) (light purple), and (∆x,∆y) = (∆,∆) (red). ∆ = {70 m,70 m,70 m,90 m} for

uG = {0 m/s,5 m/s,10 m/s,15 m/s}.
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The corresponding results for the v-component are shown in App. D.

Averaging over lengths ∆ in the direction of spectral analysis leads, as

expected, to a loss in spectral density at high wave numbers k, i.e. at

k ≥ 1/(2∆). Furthermore, it becomes obvious that the spatial averaging

across the direction of spectral analysis has a substantial influence as

well: it leads to a decrease in spectral density which is approximately

constant over the full range of wave numbers. As in Fig. 5.8, this

underprediction becomes apparent only when the direction of spectral

evaluation coincides with the mean wind direction, and it increases with

uG. Averaging in both directions yields both types of loss-effects.

Qualitatively, this result can be expected when streaky structures are en-

ergetically dominant: when the structure widths becomes smaller than

∆, the averaging process in y-direction levels the wind field significantly,

thereby reducing the spectral content in x-direction as well. On the

other hand, when the streak-length in x-direction is larger than ∆, the x-

directional averaging will not have a large effect on the y-spectra. There-

fore, the large-scale spectral loss is caused by advection in the sense

that shear shapes the streaky structure of the surface layer wind fields.
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6. Assessment of Dual-Doppler Lidar Capability to Detect and
Quantify Aspects of Coherent Structures

This chapter presents the results from comparative coherent structure

length scale analysis on the LES and the virtual lidar data. Three meth-

ods were used for coherent structure detection: measurement of spatial

integral length scales, wavelet analysis, and structure clustering. The

influence of the lidar averaging processes is furthermore investigated

theoretically, leading to quality control and correction techniques for the

methods.

6.1. Spatial Correlation and Integral Length Scales

Integral length scales are a common tool to investigate the length scale

up to which fields are correlated (cf. Chap. 2). In this way, the streamwise

elongation of streaks and the resulting anisotropy can be analyzed. With

this method only the mean correlation length can be derived, the single

structures and their positions remain unknown.

6.1.1. Correlation Length Definitions

The autocorrelation function of a scalar field f at lag x is defined as

r f (x) =
1

σ2
f
〈 f ′(x+ x′) f ′(x′)〉x′ , [6.1]
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where

f ′ = f −〈 f 〉 [6.2]

is the turbulent component and

σ
2
f = 〈 f ′

2〉 [6.3]

is the variance.

Here, 〈·〉 denotes the average over all arguments in the function, typically

space and time variables, and 〈·〉x means an average over the argument

x of the function.

The spatial autocovariance ρ f (x) is defined as the non-normalized auto-

correlation:

ρ f (x) = σ
2
f r f (x) . [6.4]

For fields with a finite number of data points f = { f1, f2, . . . , fN}, the defi-

nition becomes

r f , i =
1

σ2
f

1
N− i

N−i

∑
k=1

f ′i+k f ′k , i = 0,1, . . . ,N−1 , [6.5]

where i is the relative shift.

Accordingly,

σ
2
f =

1
N

N

∑
j=1

f ′j
2
. [6.6]

If f is a scalar function on the 2D plane, the autocorrelation function can

be computed in two dimensions,

r f (x) =
1

σ2
f
〈 f ′(x+x′) f ′(x)〉x′ , [6.7]

where x is a vector in the plane.

For discrete fields f = { f(1,1), f(1,2), f(2,1) . . . , f(N1,N2)},

r f ,(i, j) =
1

σ2
f

1
(N1− i)(N2− j)

N1−i

∑
k=0

N2− j

∑
l=0

f ′(i+k, j+l) f ′(k,l) , [6.8]
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with

σ
2
f =

1
N1N2

∑
k

∑
l

f ′
2

(k,l) . [6.9]

These definitions can easily be extended to three spatial dimensions

and the time dimension.

The integral scales are length scales which measure the distance up to

which the wind field can be seen as correlated with itself. The integral

scale for a function f on R1 is defined as

L f =

∞∫
0

dxr f (x) , [6.10]

where r f is the spatial autocorrelation a defined above. A common ap-

proximation (Lenschow and Stankov, 1986) is to integrate only up to the

first zero-crossing of the autocorrelation:

L f ≈
r≡0∫
0

dxr f (x) , [6.11]

which is to the first maximum of the integral. This approximation is used

here since the computed autocorrelation becomes increasingly noisy for

higher lags x.

For functions f on R2, the integral scale is furthermore a function of the

direction in which the correlation is analyzed. For the horizontal plane,

the x-axis is defined as usual as the direction of the mean wind, and the

y-axis as the right-handed axis perpendicular to the x-axis. L f ,x and L f ,y
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are defined as the integral length scales in x- and y-direction, respec-

tively. Using Eq. 6.11,

L f ,x =

r≡0∫
0

dxr f (x · ex) [6.12a]

and L f ,y =

r≡0∫
0

dyr f (y · ey) . [6.12b]

For discrete wind fields, the spacings ∆x and ∆y between adjacent com-

ponents of f must be taken into account:

L f ,x =
r≡0

∑
i=0

r f ,(i,0)∆x , [6.13a]

L f , =
r≡0

∑
j=0

r f ,(0, j)∆y . [6.13b]

The anisotropy or aspect-ratio of the wind field can be measured using

A f =
L f ,x

L f ,y
. [6.14]

6.1.2. Theoretical Considerations

Integral length scales from dual-lidar data

A theoretical prediction about the ability of the lidar to estimate corre-

lation lengths accurately can be derived from the averaging processes

that influence the dual-lidar retrieval data:

From the mathematical models for single lidar velocity estimation

(Eqs. 3.5-3.8) and the dual-lidar retrieval techniques (Chap. 3.3) it is

known that the dual-lidar retrieved wind field at a certain grid point can
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be described as a weighted average of the real wind field in the vicinity

of the grid point. Frehlich (1997) investigated the effect of single-lidar

pulse averaging on velocity variance measurements and developed a

method to correct the results using the single lidar weighting function.

However, no analytic expression for the weighting function can be given

in the dual-Doppler case, since not only spatial parameters, but also the

time shift between the two scanning lidars and the wind field evolution

during this time shift are factored into the final result. However, it can be

safely assumed that this weighting function is approximately constant on

the grid cell, zero for points far away from the grid cell and decreasing

noticeably around distances from the grid cell center of the order of the

lidar resolution.

This view is supported by the comparison of LES and retrieval spectra

(cf. Fig. 5.8): A drop-off in spectral energy occurs in the lidar spectra

as compared to the LES spectra at scales of three to four times the

estimated lidar resolution. The smaller the scales become, the less

spectral energy can be ‘seen’ by the lidar. However, on larger scales,

the instrument is mostly able to resolve the full spectral content of the

LES, the cases where an underestimation occurs on large scales as

well can be explained by the cross-directional averaging (Fig. 5.9).

Let f be one of the fully resolved wind field components, and f̃ the same

component as retrieved from the dual-lidar measurement. Under the

assumption that the weighting is the same for all points in the plane, the

retrieved field can be written

f̃ (x) =
∫

dx′ f (x′)w(x−x′) , [6.15]
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where w stands for the appropriate weighting function. Using Eq. 6.15,

the autocorrelation function r f̃ for the dual-lidar wind fields yields

r f̃ (x) =
1

σ2
f̃

∫
dx′ f̃ ′(x+x′) f̃ ′(x′) [6.16a]

=
∫

dx′ r f (x+x′)W (x′) , [6.16b]

with

W (x) =
σ2

f

σ2
f̃

∫
dx′w(x′)w(x′+x) . [6.17]

This means that the lidar autocorrelation function is a smoothed version

of the fully resolved autocorrelation. With our assumptions about the li-

dar spatial averaging function, w, the autocorrelation smoothing should

occur on scales of the order of the scales in w. Note that W is not nor-

malized, so that on average r f̃ is larger than r f by a factor σ2
f /σ2

f̃ .

Autocorrelations r which decrease slowly can appear almost linear to the

smoothing function, so the autocorrelation functions from the LES and

from the lidar data should nearly coincide. On the other hand, if the fully

resolved autocorrelation decreases rapidly to zero, the positive curva-

ture is noticeable in the smoothing. The effect on the correlation length

can be estimated using the example of an exponential autocorrelation

function (Lothon et al., 2006): Let r(x) = exp(−|x|/L) represent the fully

resolved 1D-autocorrelation with integral scale L, and let w be given by

a constant average over a 2x0 interval (cf. Fig. 6.1):

wx0(x) =

{
1

2x0
, −x0 ≤ x≤ x0

0 , otherwise
. [6.18]

The smoothed autocorrelation can be computed from Eq. 6.16b, from

which the integral scale L̃ is derived using Eq. 6.10:

L̃
L
=

σ2
f

σ2
f̃

=

1
2

(
2x0
L

)2

2x0
L + exp(−2x0

L )−1
. [6.19]
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Figure 6.1.: Left: The one-dimensional weighting function wx0 , Eq. 6.18. Right: The overestimation

factor L̃/L from Eq. 6.19.

This relation, shown in Fig. 6.1 predicts the overestimation simply as the

relation of variances, which in turn is a function of the ratio between aver-

aging scale and integral length scale. As a result, the lidar should over-

estimate the correlation lengths if they are of the order of or shorter than

the lidar averaging scales. The overestimation effect should increase the

shorter the correlation lengths become. Correlation lengths much larger

than the lidar averaging scales should be accurately estimated by the

lidar. If the 1D-model approach (Eq. 6.19) is valid, the overestimation

factor can be computed as the relation of LES and retrieval variances.

Integral length scales from tower data

As noted in the introduction, coherent structure detection is usually

based on time series from tower measurements. It is therefore nec-

essary to discuss the accuracy of correlation length computations from

point measurements.
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Figure 6.2.: Standard deviation of mean values of the u (light) and v (dark) fields used for the correla-

tion length computation. The squares and circles mark the results for temporal and spatial correlations,

respectively, i.e., σ2
〈 f (x′,t ′)〉t′

and σ2
〈 f (x′,t ′)〉x′

. Cf. Eq. 6.23

Using Taylor’s hypothesis, the one-dimensional autocorrelation function

of the field f in mean wind direction is given by

r f ,Taylor(x) =
1

σ2
f

〈
f ′
(
x′, t ′

)
f ′
(

x′, t ′− x
〈u〉

)〉
t ′

[6.20]

for a tower positioned at x′, with the mean and variance of f computed

using 〈·〉t ′.
It is important to note that, in the present LES data set, the ergodic

condition (Stull, 1988) is not fulfilled: the temporal 30 min means vary

considerably depending on the position of the virtual tower, and the stan-

dard deviation of the temporal means is about one order of magnitude

larger than the temporal variation of the spatial means (cf. Fig. 6.2). This

variability has a crucial effect on the autocorrelation computation and, as

a result, on the integral scales:

Let ρ f (t) denote the temporal autocovariance of a function f (x, t) on the

time interval [0,T ] with time-shift t, computed from the full data set (i.e.,
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using averages 〈·〉), and let ρ̃ f (t) be the average of all time series auto-

covariances (Eq. 6.20), measured at fixed points x′:

ρ f (t) =
1

NxNt
∑
x′,t ′

(
f (x′, t ′+ t)−〈 f (x′, t ′)〉

)(
f (x′, t ′)−〈 f (x′, t ′)〉

)
, [6.21a]

ρ̃ f (t) =
1

NxNt
∑
x′,t ′

(
f (x′, t ′+ t)−〈 f (x′, t ′)〉t ′

)(
f (x′, t ′)−〈 f (x′, t ′)〉t ′

)
,

[6.21b]

where Nx is the number of spatial grid points and Nt the number of time

steps in the overlap time interval (T − t). If the temporal shift t is small

compared to the full length of the time series,

1
Nt

∑
t ′

f (x′, t ′+ t)≈ 1
Nt

∑
t ′

f (x′, t ′)≈ 〈 f (x′, t ′)〉t ′ , [6.22]

which yields

ρ f (t)− ρ̃ f (t)≈
1

Nx
∑
x′

(
〈 f (x′, t ′)〉t ′−〈 f (x′, t ′)〉

)2
= σ

2
〈 f (x′,t ′)〉t′ . [6.23]

This shows that the averaged autocovariance from smaller subsets of

the full data set is given by the full autocovariance minus the variance

of the averages from the subsets. Lenschow et al. (1994) show that

σ2
〈 f (x′,t ′)〉t′ ≈ 2ρ f (0)Lτ/T , if T is much larger than the temporal integral

length scale Lτ . Consequently,

r f (t) =
ρ f (t)
ρ f (0)

≈
ρ̃ f (t)+σ2

〈 f (x′,t ′)〉t′
ρ̃ f (0)+σ2

〈 f (x′,t ′)〉t′
> r̃ f (t) ∀ t : ρ̃ f (t)< ρ̃ f (0) [6.24]

if t is sufficiently small. Therefore, the integral length scales computed

from the time series will be shorter than the length scales computed from

spatial data.

One can attempt to correct this by subtracting the full mean of the data

set from the time series instead of the time series mean, and normalizing

with the full variance instead of the series-wise variance. However, this
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approach may not be possible with real data, where therefore the valid-

ity of the ergodic condition has to be ascertained before comparisons

between temporal and spatial data are possible.

6.1.3. Results

For u and v of all three data sets, i.e. the LES, time-averaged LES and

the retrieval data, the autocorrelation function was computed using the

algorithm given in Eq. 6.8 for each time step. The mean and variance

in this equation were taken from the respective time step only. From

the autocorrelation the integral scales were obtained for each time step

using Eq. 6.13a, where multiplication with the respective grid resolution

led to results in metric units. The anisotropy follows from Eq. 6.14.

Furthermore, correlation lengths were computed from 2700 time se-

ries, taken from virtual towers1 equally distributed across the area in

100 m intervals. Time series yield only correlation length of u and v

in x-direction (i.e., mean wind direction), therefore neither Ly nor the

anisotropy could be computed.

Due to the known effects of the missing ergodicity in the data set

(Eq. 6.24), the time series results were computed in two ways: firstly,

under the assumption that the ergodic condition holds, autocorrelations

were computed using the mean and variance of each time series

(Eq. 6.20), and secondly, to remove errors due to fluctuations in the

means of the time series, the autocorrelations were computed using the

overall mean wind speed and mean spatial variance. The results from

the second method will hereafter be called the corrected results.

In App. E, Tab. E.1 gives an overview of the data set size. Data loss
1The virtual towers described here, i.e. time series at fixed grid points in the LES data, should not be

confused with dual-lidar virtual towers (Chap. 3.1.3)
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Figure 6.3.: Development of the spatial autocorrelation in the LES u wind fields with the background

wind, uG = {0, 5, 10, 15} m/s from left to right.
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Figure 6.4.: Development of the spatial autocorrelation in the retrieved u wind fields with the back-

ground wind, uG = {0, 5, 10, 15} m/s from left to right.

occurred whenever the autocorrelation function had no zero-crossing in

a certain direction.

App. F shows the time averages of the spatial autocorrelation for the

three data sets in the x > 0 half plane. (Note that Eq. 6.7 shows that

r(x) = r(−x), therefore, one half plane contains all information). It is

evident from Figs. F.3 and F.4 that the dual lidar data are qualitatively

capable of capturing the repetitive structure on the shear-driven wind

fields.

The development of the u autocorrelation with increasing wind speed for

the LES and retrieval data is shown in more detail in Figs. 6.3 and 6.4.

The LES results (Fig. 6.3) show that, as expected, the correlation in-

creases for lags in mean wind direction with increasing background wind,

whereas the correlation in cross-wind direction y appears to decrease
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Figure 6.5.: Integral length scales: Scales Lx of the u (left) and v (right) wind fields in mean wind

direction for all data sets: the retrieval results (red), the averaged LES fields (blue), the LES fields

(black), and the time series (green). The bars cover the range between the 25th and 75th percentile, the

circles mark the median.

slightly. The retrieval results (Fig. 6.4) appear qualitatively similar, how-

ever, the autocorrelation is clearly overestimated.

Fig. 6.5 shows the resulting distributions of integral correlation lengths of

u and y in x- direction as box plots with the centers indicating the median

and the bars ranging from 25th to 75th percentile. The figure includes

the corrected results from the time series. The difference between the

corrected and the uncorrected time series results is shown in Fig. 6.6.

Fig. 6.7 shows the integral length scales in y-direction, and the

anisotropy of both wind field components is shown in Fig. 6.8.

The LES data show that the correlation length in wind direction for u

increases with wind speed, whereas it decreases with wind speed for

v. Both u and v show a decrease of correlation length in y-direction.

Both fields exhibit considerable anisotropy, which increases with the

mean wind but appears to level at higher wind speeds. The correlation
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Figure 6.6.: Integral length scales: Scales Lx of the u (left) and v (right) wind fields in mean wind

direction for the time series, computed with the full mean and variance of the data set (light green) and

the mean and variance of the respective series (dark green). The black bars show the comparative LES

results. The bars cover the range between the 25th and 75th percentile, the circles mark the median.

length perpendicular to the wind direction is extremely small for all wind

speeds apart from zero, and approaches the lower bound, i.e. 10 m for

the LES data. The time averaged LES data show nearly no difference

from the LES data, albeit a noticeable slight deviation for higher wind

speeds. The small overestimation of correlation lengths conforms to

the theory of expected overestimation in the retrieval data when time

averaging is regarded as another form of spatial averaging.

The corrected time series results in Fig. 6.5, as well as the comparison

of corrected and uncorrected time series results in Fig. 6.6 behave as

expected from the theoretical considerations: whereas the corrected

results approximately match the LES results apart from a slight under-

estimation, the uncorrected results severely underestimate the integral

scales although they exhibit a much more localized distribution.

The correlation lengths measured by the lidar simulator show the same

qualitative development for each data set and component as the LES
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Figure 6.7.: Integral length scales: Scales Ly of the u (left) and v (right) wind fields in cross-wind

direction for all data sets. Colors and range as in Fig. 6.5.

length scales. However, for all wind fields, the virtual lidar data exhibit a

considerable overestimation of correlation lengths.

The lidar overestimation of length scales is more pronounced in the

y direction, since there the correlation lengths are of the order of

the lidar resolution. This leads to the effect that the lidar generally

underestimates the anisotropy (cf. Fig. 6.8), an effect that becomes

more pronounced the smaller the length scales in y direction become.

This was to be expected from theoretical consideration for shorter

correlation lengths, but the effect should be decreasing for larger length

scales.

Fig. 6.9 investigates the validity of the theoretical model (shown in the

left panel): The overestimation factor is expected to approach unity

if the median integral scales become several times larger than the

lidar resolution. Qualitatively, the effect is clearly visible. However, the

overestimation factor only goes down to ≈1.2, even for length scales

eight times as large as the lidar resolution. This suggests that the

approximate linearity of rLES, which is a sufficient condition for accurate
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Figure 6.8.: Integral length scales: Anisotropy Lx/Ly of the u (left) and v (right) wind fields for all data

sets. Colors and range as in Fig. 6.5.

length scale estimation, is not necessarily fulfilled even for large integral

length scales. Comparing the data points with the simple theoretical

model shows that the model describes the qualitative behavior well, but

that the effective averaging length 2x0 is larger than the lidar resolution

by a factor of approximately seven.

According to the 1D-model (Eq. 6.19), the overestimation factor can be

predicted from the quotient of LES and lidar variances in the fields.

Fig. 6.10 shows that the equation is a good approximation. Even though

variances computed from time series provide less precise results,

especially for the calm situation, it is most likely that real measurement

campaigns will use time series to estimate the real wind field variance.

Therefore, the retrieval data shown in Fig. 6.11 were corrected by

division with the overestimation factor computed from the time series

variances. The factor was computed as the quotient of median vari-

ances for each wind field.
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Figure 6.9.: Integral length scales: Overestimation factor LRET/LLES as a function of LLES/∆xy from

theory (Eq. 6.19, left) and data (right). The theoretical curves result from Eq. 6.19 with L = LLES and

L̃ = LRET for different relations 2x0/∆xy of lidar averaging scales to retrieval resolution. The error bars

of the data results are based on the 25th and 75th percentile of the distributions, i.e. they range from

p25(LRET)/p75(LLES) to p75(LRET)/p25(LLES) on the ordinate and from p25(LLES)/∆xy to p75(LLES)/∆xy on

the abscissa. The data points in the right panel were computed accordingly using the medians of the

distributions. Their colors indicate wind speeds, darker blue means higher uG.
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theoretical identity, cf. Eq. 6.19. The colors indicate wind speeds as in Fig. 6.9.
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The correction method reduces the error notably. Except for the calm

wind fields, the bias nearly vanishes. The remaining errors lead to a sub-

stantial, albeit smaller bias in the anisotropy. An important exception are

the calm wind fields, where the correction increased the bias. Fig. 6.10

shows that time series in the calm situation are unable to accurately es-

timate the spatial variances. The correction method can therefore be

applied whenever it is possible to measure spatial variances, or when

ergodicity can be assumed.
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Figure 6.11.: Integral length scales: The results from Figs. 6.5, 6.7, and 6.8, computed with the

corrected retrieval results, i.e. LRET,corr = σ2
RET/σ2

LES ·LRET, with σ2
LES from virtual tower time series and

σ2
RET from the mean spatial variance in the respective fields.
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6.2. Wavelet Analysis

Throughout the last years, wavelet analysis has become a common tool

for coherent structure detection in time series data (cf. Chap. 2). The

analyses differ in certain aspects, e.g. in the wavelets used for structure

detection, the determination of structure lengths and the type of time se-

ries used. What they have in common is the application of the wavelet

transform to a time series of data and the analysis of the transforms with

respect to maxima, minima, zero crossings, and energy distributions to

detect signatures of structures.

Wavelet analysis allows to detect single structures in the wind field in-

stead of only characterizing mean length scales. Usually, only the ener-

getically dominant structures are investigated, which leads to a certain

amount of smoothing.

6.2.1. The Wavelet Transform

Dirac-Notation of States in Hilbert Spaces

The function space L2(R) is the set of all complex-valued functions on

the real numbers R for which

f ·g =

∞∫
−∞

dt f ∗(t)g(t) ∀ f ,g ∈ L2(R) , [6.25]

defines a scalar product between two functions and the norm ‖ f ‖ of

each function f is finite:

‖ f ‖2=

∞∫
−∞

dt f ∗(t) f (t)< ∞ . [6.26]
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Normed vector spaces in which the norm is given by a scalar product,

like L2(R) or the Euclidean vector space, are called Hilbert spaces

(Bronstein et al., 2001). Functions f ∈ L2(R) are called square-

integrable.

For each Hilbert space H over a field C, there is a dual space

H ∗, which is defined as the set of all linear mappings from

H to C. A subset of L2(R)∗ is the set of bilinear forms{
f∗ : L2(R) 7→ C, f∗(h) = f ·h| f ∈ L2(R)

}
. This means that for each func-

tion f in the Hilbert space, there is a mapping f∗ in the dual space, which

maps any function h of the Hilbert space to the field C by taking its scalar

product with f . The scalar product f ·g on the Hilbert space can therefore

be understood not only as an operation on two functions of the Hilbert

space, but also as the mapping of g on the field C via the linear mapping

associated with f :

f ·g = f∗(g) = g∗( f )∗ ∀ f ,g ∈ L2(R) . [6.27]

Here, the exponential ∗ denotes the complex conjugate.

A subset of a Hilbert space is called a basis if every element of the

Hilbert space can be written as a unique linear combination of the ele-

ments of the subset. The description of elements of L2(R) in different

bases is used frequently, e.g. when a function is described by its Fourier

series: The functions
{

t 7→ 1√
2π

eiωt |ω ∈R
}

are the basis functions, and

the unique coefficients for the linear combination of these basis func-
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tions are given by their the scalar product with the respective function

f ∈ L2(R):

F : L2(R) 7→ L2(R) , [6.28a]

F{ f}(ω) = f̂ (ω) =

∞∫
−∞

dt f (t)
1√
2π

e−iωt , [6.28b]

F−1{ f̂}(t) = f (t) =
∞∫
−∞

dω f̂ (ω)
1√
2π

eiωt . [6.28c]

The function f̂ is called the Fourier transform of f .

The Wavelet transform is conceptually similar to the Fourier transform,

the only difference being the choice of basis functions: where the

Fourier transform uses plane waves, the Wavelet transform uses

wavelet functions (see below).

A useful notation for the description of scalar products and changes of

bases is the Dirac notation (Cohen-Tannoudji et al., 1977).

Let H be a Hilbert space and an isometric isomorphism (Bronstein et al.,

2001) to L2(R): For each element in f ∈ L2(R), define an element | f 〉 ∈H

in a way that the mapping L2(R)→ H is linear and preserves the scalar

product:

|α f +g〉= α| f 〉+ |g〉 f ,g ∈ L2(R); α ∈ C , [6.29a]

〈 f |g〉 := | f 〉 · |g〉= f ·g f ,g ∈ L2(R) . [6.29b]

It follows that

〈 f |g〉= 〈g| f 〉∗ f ,g ∈ L2(R) . [6.30]

The notation 〈 f |g〉 := | f 〉 · |g〉 implies that 〈 f | is a linear operator mapping

from H to C that maps each element |g〉 of H onto the scalar product of

f and g. Therefore, 〈 f | is an element of the Dual space H∗ of H.
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The structures |·〉 and 〈·| are called ‘ket’ and ‘bra’, respectively, which

makes the scalar product a ‘bra-ket’ or bracket. The notation 〈 f |g〉 pro-

vides a convenient short form of the scalar product between functions.

Let {|ω〉|ω ∈R} be the subset of H that corresponds to the Fourier basis

function subset
{

t 7→ 1√
2π

eiωt |ω ∈R
}

of L2(R). It is easy to validate that

〈ω| f 〉= f̂ (ω) ∀ω ∈R, f ∈ L2(R) . [6.31]

Therefore, | f 〉 can be interpreted as the function f in general, and 〈ω|
as the linear operator which leads to an evaluation of f at the angular

frequency ω. Extending this interpretation, the function value f (t) is just

the abstract function f , evaluated at some t (also called the time-domain

representation of f ):

〈t| f 〉= f (t) , t ∈R, f ∈ L2(R) . [6.32]

The elements |t〉 ∈ H need some corresponding functions in L2(R), and

it can be shown that those ‘functions’ are δt , the Dirac delta distributions

centered at t, which in a scalar product with f give the function value

f (t).

The Fourier transform can thus be written

f (t) = 〈t| f 〉=
∞∫
−∞

dω 〈t|ω〉〈ω| f 〉=
∞∫
−∞

dω
1√
2π

eiωt f̂ (ω) , [6.33a]

f̂ (ω) = 〈ω| f 〉=
∞∫
−∞

dt 〈ω|t〉〈t| f 〉=
∞∫
−∞

dt
1√
2π

e−iωt f (t) . [6.33b]

The sets of elements |ω〉 and |t〉 are bases of H since they are complete,

∞∫
−∞

dω |ω〉〈ω|=
∞∫
−∞

dt |t〉〈t|= 1H , [6.34]
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6.2. Wavelet Analysis

where 1H is the unit operator on H. Each single operator |ω〉〈ω| is a

projector on the state |ω〉, because the states are normalized:

〈ω|ω ′〉dω = δ (ω−ω
′)dω , [6.35]

where δ is the Dirac-distribution (Cohen-Tannoudji et al., 1977).

In this case, the states are also orthogonal, which means that the scalar

product between different states is zero. Such bases are called orthonor-

mal bases. However, bases do not have to be orthogonal or normalized,

completeness is the only defining condition for a basis.

Wavelet Bases

A wavelet is a function ϕ ∈ L2(R) that fulfills the admissibility condition

for wavelets (Louis et al., 1998):

cϕ = 2π

∞∫
−∞

dω
|ϕ̂(ω)|2
|ω| < ∞ . [6.36]

A set of basis functions in L2(R) can be constructed from a single so-

called mother wavelet ϕ by shifting the function on the real axis by an

offset b ∈R, and by scaling it with a factor a ∈R\{0}:{
t 7→ 1
√cϕ

1√
|a|

ϕ

(
t−b

a

)
|b ∈R,a ∈R\{0}

}
. [6.37]

The mappings

U(a,b) : L2(R) 7→ L2(R2,dµ) , [6.38a]

U(a,b){ f}(t) = 1√
|a|

f
(

t−b
a

)
∀b ∈R,a ∈R\{0} , [6.38b]
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which induce the shifting and scaling are a representation of the affine

group on L2(R) (Louis et al., 1998), where every group element is de-

fined by a distinct set (a,b). The elements of the Hilbert space H asso-

ciated with the wavelet basis functions [6.37] are |a,b〉, given by

〈t|a,b〉= 1
√cϕ

U(a,b){ϕ}(t) . [6.39]

This set of states in H is not necessarily orthogonal, but normalized if

ϕ is a normalized function. It can be shown (Louis et al., 1998) that the

states fulfill the necessary property of completeness:∫
dµ(a,b) |a,b〉〈a,b| :=

∞∫
−∞

da
a2

∞∫
−∞

db |a,b〉〈a,b|= 1H [6.40]

where dµ(a,b) = dadb
a2 is a so-called Haar measure on the space of

wavelet transforms L2(R2,dµ), and 1H is the identity operator on the

Hilbert space.

The wavelet transform can now be defined in analogy to the Fourier

transform, Eqs. 6.28:

Wϕ : L2(R) 7→ L2(R2,dµ) , [6.41a]

(Wϕ f )(a,b) = f̃ϕ(a,b) =
1
√cϕ

1√
|a|

∞∫
−∞

dt ϕ
∗
(

t−b
a

)
f (t) , [6.41b]

(W−1
ϕ f̃ϕ)(t) = f (t) =

1
√cϕ

1√
|a|

∫
dµ(a,b)ϕ

(
t−b

a

)
f̃ϕ(a,b) . [6.41c]

The shorthand Dirac notation makes the derivation of the formulas more

clear:

f̃ϕ(a,b) = 〈a,b| f 〉=
∞∫
−∞

dt 〈a,b|t〉〈t| f 〉 , [6.42a]

f (t) = 〈t| f 〉=
∫

dµ(a,b)〈t|a,b〉〈a,b| f 〉 . [6.42b]
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With the help of Fourier basis states of L2(R), a representation of wavelet

coefficients in Fourier space can also be found:

f̃ϕ(a,b) =

√
|a|
√cϕ

∞∫
−∞

dω eiωb
ϕ̂
∗(aω) f̂ (ω) , [6.43a]

f̂ (ω) =
1
√cϕ

∫
dµ(a,b)

a√
|a|

e−iωb
ϕ̂(ωa) f̃ϕ(a,b) . [6.43b]

These wavelet transforms are called continuous wavelet transforms

(CWT), which means that the group elements of G vary continuously

with their parameters (a,b), creating an uncountable set of basis func-

tions.

Properties of Wavelet Transforms

Wavelet functions are well localized in direct and Fourier space (Louis

et al., 1998). The localization on the time axis means that only a small

portion of the signal f around the wavelet position b is used to compute

the wavelet coefficient. Consequently, the positions of certain events in

the signal can be detected. This is in contrast to Fourier analysis, where

plane waves are used that extend infinitely on the time axis.

The short-time Fourier transform (STFT), also called the windowed

Fourier transform, in which the signal is transformed with a windowed

part of the plane wave, has a similar advantage of localization. However,

the STFT data window is of fixed width, whereas it scales inversely

proportional to the frequency in the wavelet transform. This property of

the wavelet transform allows for the detection of small-scale structures

at high frequencies.
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To interpret wavelet transforms, several techniques have been proposed.

Using Eq. 6.42b, ∫
dt | f (t)|2 =

∫
daẼ f (a) [6.44]

with

Ẽ f (a) =
1
a2

∫
db
∣∣ f̃φ (a,b)

∣∣2 . [6.45]

Thereby, when f represents a wind field component, Ẽ f (a) is the distri-

bution of energy per mass over different wavelet scales.

However, shorter wavelets can occur more often than longer ones, there-

fore a high energy contribution on small scales does not necessarily

mean a high contribution for each occurrence. Ẽ f (a) is normalized with

a factor 1/a, which scales with the maximum event occurrence, to arrive

at a different energy scale:

Ẽ f ,1(a) =
1
a

∫
db
∣∣ f̃ϕ(a,b)

∣∣2 . [6.46]

The function Ẽ f ,1(a) gives us the average energy per (possible) event.

The function Ẽ f ,1(a) is often referred to as the scalogram of a CWT

(Collineau and Brunet, 1993a).

With these two functions of energy, the most energy-dominant wavelets

can be detected: maximizing Ẽ f (a) returns the most important energy

scale, maximizing Ẽ f ,1(a) returns the scale of highest energy per event.

In time series analysis, the wavelet transform is usually only evaluated

at the dominant energy scale a0, defined by

Ẽ f ,1(a0) = max
a
{Ẽ f ,1(a)} . [6.47]

In this way, only the energetically dominant contributions to the signal

are evaluate.
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6.2.2. Wavelet-Algorithm for Coherent Structure Detection

To detect a certain signature pattern in a temporal or spatial series, the

wavelet analysis should be performed with a mother wavelet which has

the general shape of the structure. The wavelet transform will then have

a maximum at the position of the overlap. To detect ejections, this anal-

ysis follows Segalini and Alfredsson (2012) by using the WAVE wavelet

(cf. Fig. 6.14), which is the first derivative of a Gaussian function. The

WAVE wavelet has the appropriate shape of an ejection-sweep-cycle in

the wind field data, as shown by the ensemble averages of structures

measured by Zhang et al. (2011).

The wavelet transform will exhibit a maximum at points where the signal

transitions from positive to negative values, thus denoting the ’start’

of the ejection. However, instead of using the odd WAVE wavelet,

Collineau and Brunet (1993a,b) point out that the detection yields better

results using an even MHAT wavelet (Mexican Hat, cf. Fig. 6.14), which

exhibits a zero-crossing at the position of the sign change (cf. Fig. 6.12).

Therefore, the MHAT is used here to detect structure positions and

lengths, but the WAVE wavelet is used to distinguish the ‘important’ (i.e.,

those having a large WAVE coefficient) from the ‘unimportant’ structures.

The MHAT and WAVE mother wavelets are given by

ϕWAVE(x) =
(

2
π

)1
4

(−2x)e−x2
, [6.48a]

ϕMHAT(x) =
2
√

3π
1
4

e−
1
2 x2

(1− x2) . [6.48b]

To determine the length scales of the single structures, it has been

proposed to use the energetically dominant scales as a measure
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Figure 6.12: Example of a localized

event in an exponentially damped sine

curve (black) with the wavelet coeffi-

cients f̃ϕ(1,x) using the WAVE (red)

and MHAT (blue) wavelet.

(Collineau and Brunet, 1993a). However, Barthlott et al. (2007) point

out that the structure length can best be determined using a ramp

length algorithm, which defines the end point of the structure as the

point in the time series where the MHAT wavelet transform exhibits the

previous maximum. This has the added advantage that the scale on

each structure is detected separately, albeit only at the dominant energy

scale, instead of only a time series mean.

Wavelet analysis can be applied on spatial data just as well as on time

series. Here, the analysis is performed for one-dimensional subsets of

the two-dimensional LES and retrieval data, which are oriented in either

streamwise or spanwise direction.

For coherent structure detection, therefore the following algorithm is

used for the spatial series of wind speed data u and v, which is similar

to the algorithms used by Segalini and Alfredsson (2012) and Barthlott

et al. (2007):

• Perform the wavelet transforms f̃MHAT and f̃WAVE of the signal for

an appropriate range of scales. To suppress border effects, the
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signal has to be detrended and zero-padded at both ends (Thomas

and Foken, 2005).

• Compute the wavelet spectrum ẼWAVE,1(a) using Eq. 6.46 and

identify the scale of maximum energy per structure, a0.

• Evaluate f̃MHAT(a0,b) and detect the structure beginnings bi
0, i =

1, . . . ,N, by identifying the zero-crossings with negative slope. This

indicates transitions from sweep to ejection.

• To eliminate noise, evaluate f̃WAVE(a0,bi
0), and reject all detected

structures for which f̃WAVE(a0,b0) < K ·maxb f̃WAVE(a0,b). K has to

be pre-defined, with 0≤ K ≤ 1

• For all valid structure positions, compute the ramp length L(bi
0), i.e.

the distance from b0 to the consecutive MHAT-maximum.

An example of the results for one 5 km LES streamwise spatial series is

shown in Fig. 6.13.

To evaluate time series data, the algorithm must be adapted for the

inverted direction of the series, i.e. the MHAT-transform has a positive

slope around zero crossings, the WAVE-transform f̃WAVE(a0,b0) has

a minimum at detected structures, and the value must not exceed

K ·minb f̃WAVE(a0,b). Furthermore, the ramp length is defined by the

preceding MHAT maximum. Lengths in time series analyses are

converted to units of length, as usual, by multiplying with the mean wind.
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Figure 6.13.: A 1D series x 7→ u′(x,y0, t0) in uG = 10 m/s LES data for some random y0, t0, normalized

with σu (a), its dimensionless WAVE wavelet coefficient f̃W/
√

∆x as a function of shift x and scale a(b), the

corresponding Ẽ1 spectrum (c), the WAVE (d) and MHAT (e) coefficients on the dominant scale. ∆x is the

distance between adjacent data points in the u′ series. Circles denote the beginnings of structures (zero-

crossing in MHAT coefficient with negative slope), and +-signs denote structure endings (subsequent

maxima in the MHAT coefficients). Normalization with cϕ was neglected for better scaling.

6.2.3. Theoretical Considerations

The influence of the lidar averaging processes on the wavelet coeffi-

cients can be assessed using the 1D averaging model of Eq. 6.15 on

the spatial series data used for the wavelet transform. The lidar wavelet

coefficients for the field f become

f̃ϕ(a,b) =
1
√cϕ

1√
|a|

∞∫
−∞

dxϕ
∗
(

x−b
a

)
fRET(x) [6.49a]

=
1
√cϕ

1√
|a|

∞∫
−∞

dx
∞∫
−∞

dx′ϕ∗
(

x−b
a

)
wx0(x

′− x) fLES(x
′) . [6.49b]
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Figure 6.14: The WAVE and MHAT wavelets

(top panels, WAVE: red, MHAT: blue), and the

resulting effective wavelets (Eq. 6.52) for a = 1

and x0/a = {0.3,2,5} (top to bottom).
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Since x and x′ are independent variables, the x-integral can be executed

first. Thereby, the effect of the averaging function wx0 is shifted from the

field f to the wavelet ϕ, which results in an effective wavelet Φ:

f̃ϕ(a,b) =
1
√cϕ

1√
|a|

∞∫
−∞

dx′Φ∗
(

x′−b
a

,
x0

a

)
fLES(x

′) [6.50]

with

Φ

(
x′−b

a
,
x0

a

)
=

∞∫
−∞

dx ϕ

(
x−b

a

)
wx0(x

′− x) . [6.51]

The effect of the averaging process can now be studied by comparing

the ϕ and Φ wavelets. In the case of WAVE and MHAT wavelets ϕ, Φ

can be computed analytically:

ΦWAVE

(
x−b

a
,
x0

a

)
=

a
2x0

(
2
π

)1
4 [

e−z2
]z= x−b

a +
x0
a

z= x−b
a −

x0
a

, [6.52a]

ΦMHAT

(
x−b

a
,
x0

a

)
=

a
2x0

2
√

3π
1
4

[
ze−

z2
2

]z= x−b
a +

x0
a

z= x−b
a −

x0
a

. [6.52b]
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The effective wavelets are functions of (x−b)/a and x0/a, so the

averaging scale x0 only becomes relevant in relation to the scale a.

ΦWAVE and ΦMHAT are shown in Fig. 6.14 for different x0/a: The effective

wavelets remain similar to the original wavelets for small x0/a, but as

soon as the averaging scale becomes larger than the wavelet scale, the

wavelet begins to split along their central axis. Those split parts move

further apart the larger x0/a becomes (cf. Fig. 6.15).

For the wavelet analysis of lidar data, this effect means that as soon

as the lidar averaging scales are larger than the detected dominant

wavelet scales in the spectrum, the resulting wavelet coefficients no

longer contain information: The wind field is evaluated at two separate

points, so a large overlap with the WAVE-wavelet no longer means an

ejection-sweep cycle, but rather an ejection at one point and a sweep

some distance away, whereas the information in between is lost. It can

therefore be expected that the lidar ramp lengths will match the LES

results for scales larger than the lidar averaging scale 2x0, whereas for

short scales the results will be unreliable.

The ramp length algorithm described above focuses on detected struc-

tures on the energetically dominant wavelet scale a0. However, the

breakdown of the lidar spectrum on the high-frequency end also means

that the energy contribution to smaller wavelet scales is damped. There-

fore, the dominant scale in the retrieval data has an effective lower limit,

which will lead to an overestimation for ramp lengths of the LES which

fall below the lidar averaging scale.

6.2.4. Results

The analysis was performed as described above for a set of randomly

selected spatial series data in x- and y-direction of all u and v wind fields.
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Figure 6.15: Position of the outermost

peaks |xext| in ΦWAVE(x,a,b,x0) (red) and

ΦMHAT(x,a,b,x0) (blue) for b = 0 as a func-

tion of the relation between lidar averag-

ing scale x0 and wavelet scale a.
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For the LES data set, one random position y1 on the y-axis was chosen

at each time step t1, and the wavelet analysis was performed on the

resulting 1D series in mean wind direction x, e.g. x 7→ u(t1,x,y1). The

number of data points varied for different y1 due to the rotation in mean

wind direction, therefore a restriction was imposed which required the

series to have at least 80% of the largest possible number of data

points. The series in cross-wind direction were selected in the same

way.

In the averaged LES and the retrieval data set, five random series in

each direction were choses for wavelet analysis.

Furthermore, the algorithm was applied to time series data from virtual

towers in the LES, positioned every 250 m. The length scale results of

the time series were converted to spatial scales by multiplying with the

mean wind speed.

Ramp lengths L can only be computed when a clear maximum, the

dominant energy scale a0, can be identified in the wavelet spectrum

Ẽ1(a). Tab. E.2 in App. E.2 gives an overview of the data set size

and data loss due to the absence of a maximum a0. When a valid

maximum was detected, the structure detection algorithm was applied

for cutoff-levels K = {0,0.2,0.4,0.6,0.8}.
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Figure 6.16.: Median ramp lengths in meters calculated from the wavelet algorithm as a function of

dominant scales from all data sets (left). The same median ramp lengths in pixels, linear fit: slope = 2.81

px, intercept= 3.13 px (center). The same ramp length in meters after removing the ordinate-intercept

from the pixel-data (right). Colors as in Fig. 6.5.

After the analysis, a rescaling algorithm was applied to the ramp length

data. The ramp lengths are defined above as the distances between

structure starts b0 and the following maxima of MHAT. However, this def-

inition allows for a certain inaccuracy, since the position of the maximum

is only defined with the accuracy of the data series used. If a bias is

introduced here, the length scale over- or underestimation will affect the

retrieval data more strongly, since here a ‘one-pixel-error’ corresponds

to scales six or seven times as large as in the LES case. To remove

such a bias, the assumption can be made that the mean ramp lengths

at scale a are proportional to a,

〈ramp lengths(a)〉 ∝ a , [6.53]

since a appears as a linear scaling factor in the wavelet functions.

Fig. 6.16 shows the relation between dominant scales a0 and the mean

ramp lengths, which supports the assumption in Eq. 6.53. A linear fit,

〈ramp lengths(a0)〉= m ·a0 +b ⇒ m = 2.81, b = 3.13 , [6.54]

reveals that the length scales in pixel units are over-estimated. The bias

of b = 3.13 pixels, converted into the metric unit equivalent, is removed

from all ramp length data.
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Figure 6.17.: Wavelet analysis: Ramp lengths Lx of the u (left) and v (right) wind fields in mean wind

direction for all data sets at cutoff K = 0. Colors and range as in Fig. 6.5.
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Figure 6.18.: Wavelet analysis: Ramp lengths Ly of the u (left) and v (right) wind fields in cross-wind

direction for all data sets at cutoff K = 0. Colors and range as in Fig. 6.5.
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The comparison of LES and retrieval results of length scales is depicted

in box plots as in Chap. 6.1, shown in Figs. 6.17 and 6.18. App. G

shows the ramp length distributions for the different cutoff levels. Here

only the results for K = 0 are shown, since the accuracy of the retrieval

results is not sensitive to the cutoff value.

The general behavior of the LES wavelet analysis results differs con-

siderably from the integral length scale computations, Figs. 6.5-6.8.

Whereas the integral scale of the u fields in x-direction increases with the

mean wind, the energetically dominant wavelet scale remains practically

constant. The length scale values themselves are higher and have a

larger spread. The spread results from the fact that each structure in

the series is analyzed, in contrast to the single fixed mean length scale

value resulting from the integral length scale algorithm for each time

step. The structures are only recorded for the energetically dominant

wavelet scales a0, and the low-pass filtering property of wavelets puts a

lower bound on the resulting ramp lengths, which therefore have higher

values than the integral scales.

In contrast to the correlation length algorithm, Chap. 6.1, and the cluster-

ing algorithm, Chap. 6.3, the Lx and Ly scales are not obtained in pairs

for each time step or structure, as in the former and latter case, respec-

tively. Therefore, the anisotropy cannot be measured, but must rather

be estimated. Fig. 6.19 shows the range between p25(Lx)/p75(Ly) and

p75(Lx)/p25(Ly), where pn denotes the nth percentile. The centers mark

the quotient of median values.

As in the former analysis, the difference between the averaged and fully-

resolved LES ramp lengths is negligibly small compared to the data
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Figure 6.19.: Wavelet analysis: Anisotropy Lx/Ly of the u (left) and v (right) wind fields for all data sets

at cutoff K = 0. Colors as in Fig. 6.5. The bars range from p25(Lx)/p75(Ly) to p75(Lx)/p25(Ly), the centers

mark the relation of median values.

spread. The time series data show similarly good results - their high

resolution facilitates neither wavelet overestimation nor splitting effects,

and the sole analysis of local ramp length neglects possible problems

with the ergodic condition.

However, the retrieval results match the LES only for the largest scales,

and clearly overestimate for smaller scales, leading again to an under-

estimation of anisotropy. Furthermore, the length scale spread in the re-

trieval data becomes larger in comparison for smaller LES ramp lengths.

Both observations agree with the theoretical considerations above: the

spread can be explained with the unreliable results due to the wavelet

splitting, and the overestimation can be explained by the damped spec-

trum in high-frequency regions for the LES data. No explanation can be

given here why the splitting leads to a strong overestimation.

Fig.6.20 shows the overestimation factor LRET/LLES for all data sets of

u and v for the different background winds, directions of analysis and

cutoff levels. The length scales agree very well for the largest scales. A
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Figure 6.20.: Wavelet analysis: Overestimation factor LRET/LLES as a function of LLES/∆xy for all

wind fields at different wind speeds and cutoff levels K. The colors mark wind speed (darker blue means

higher uG) in the left panel and wavelet cut-off levels in the right panel (darker blue means higher absolute

cutoff values). Data points and error bars were computed as in Fig. 6.9.

strong overestimation is visible for LLES smaller than approximately four

times the lidar grid resolution, which is the effective lidar averaging scale

(cf. Fig. 5.8).

The wavelet splitting effect, resulting in more noise, can be expected for

x0/a0 > 1, which means
L

∆xy
> 2.81 · x0

∆xy
, [6.55]

where the numeric factor stems from the linear fit between ramp lengths

and scales, Eq. 6.54. This means that the spread should decrease only

for values LLES/∆xy of 5.5 or larger. Even though the median values

approach unity in this region, the error bars still range from about 0.5 to

2, so large statistics are necessary to estimate ramp lengths correctly.

6.3. Clustering of Low Speed Streaks

The clustering algorithm provides the most descriptive method for struc-

ture analysis: By aggregating those regions in the wind field which fall
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below a certain threshold the typical shapes and scales of structures can

be analyzed. No smoothing is involved in this method, which makes it

particularly objective, but also sensitive to the lidar averaging effects.

6.3.1. The Clustering Algorithm

The clustering algorithm is used to detect all connected areas in the wind

fields in which the wind speed is lower than a certain cutoff level K. The

lengths in x- and y-direction are measured as the distance between the

outermost points in the cluster.

For discrete wind fields f = { f(1,1), f(1,2), f(2,1), . . .}, each clusters is a set

C ⊂ f , and the length scales Lx, Ly and area A are computed using

Lx =

(
max

f (i, j)∈C
(i)− min

f (i, j)∈C
(i)
)
·∆xy , [6.56a]

Ly =

(
max

f (i, j)∈C
( j)− min

f (i, j)∈C
( j)
)
·∆xy , [6.56b]

A = ∑
f (i, j)∈C

(∆xy)2 . [6.56c]

This method allows to measure the actual shapes and lengths of low-

speed structures, using neither a statistical measure like integral length

scales, nor any artificial smoothing like the wavelet algorithms. One ex-

ample for the clustering is shown in Fig. 6.21.

Time series data can also be subjected to clustering. Here, the structure

length is defined as the 1D extent of the cluster, suitably multiplied with

the Taylor scales to give units of length. However, a cluster area cannot

be defined in this way.

In order to determine average cluster shapes, ensemble averages can

be computed: All clusters of one wind field for a certain cutoff level K
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Figure 6.21.: Example of the clustering algorithm: 1.5× 1.5 km region in one time step of LES data,

fields u (left) and v (right). The contours show clustered ejections with cutoff levels of {−2.5,−1.5,−0.5} ·
σu and σv, respectively.

are normalized with respect to its length and width, so that Lx = Ly = 1.

Subsequently, the structures are stacked with the centers on top of each

other. The map M(x̃, ỹ) is used to count the number of normalized struc-

tures which cover a certain point (x̃, ỹ) in the normalized coordinates. A

contour line in M at the level 0.5 ·max(M) then gives the median shape

of the clusters.

6.3.2. Theoretical Considerations

Since the clustering method evaluates the length scales of every sin-

gle structure without further smoothing or averaging, the effects of the

inherent averaging in the retrieval data is expected to be most severe

compared to the two other methods of analysis.

Fig. 6.22 shows the effects that are to be expected in the retrieval data

due to spatial averaging: The smallest scales in the structures disap-

pear, and larger scales can become even larger. The exact position at
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Figure 6.22.: Effect of smoothing on clustering length scales: 30 min time series, smoothed with

moving average over {1,10,30,60} s (left, top to bottom), and the resulting low-speed cluster lengths

below the cutoff-level K =−0.5 ·σu.

which any function crosses a certain cutoff level is determined by an in-

terplay of all its spectral components and can therefore not be described

by a simple mathematical model.

The length scales Lx measured with virtual towers can be expected to

underestimate the LES scales: whereas the spatial analysis measures

the maximal extent of a 2D structure, the time series cuts the same

structure at a random point y, which will, in most cases, not be the point

of largest extent.

6.3.3. Results

The 2D clustering algorithm was applied to all time steps of the u and v

data in the averaged LES and the retrieval data sets. Since the method is

computationally expensive, only 100 randomly selected time steps were

used for the analysis of the LES data. For each selected time step in the

respective fields, the wind speed standard deviations (σu or σv, respec-

tively) were computed, and the clusters aggregated as connected areas
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Figure 6.23.: Median cluster length products Lx ·Ly in meters from the clustering algorithm as a func-

tion of cluster area from all data sets (a), the same data in pixels (b), the same ramp length in pixels

after removing the length scale offset −1.52 px from fit (c), the corrected pixel results converted to m2.

Colors as in Fig. 6.5.

in which the wind speed fell below the cutoff level k ·σ . The analysis was

performed for k = {−3,−2.5,−2,−1.5,−1,−0.5}.
The same method was applied to time series data from 500 virtual tow-

ers in the LES data, evenly distributed across the area. The large num-

ber of towers was possible since 1D-clustering can be executed much

quicker than its 2D counterpart.

An overview of the data set size can be found in Tab. E.4. No further cri-

terion had to be fulfilled by the data sets to make the analysis possible,

so no data loss occurred.

As in the wavelet case, a rescaling algorithm was applied to the length

scales to correct possible pixel errors. Making the assumption that the

product of length scales should be proportional to the area of a structure,

Lx ·Ly ∝ A , [6.57]

and assuming that the error in both x- and y-direction is given by a con-

stant bias ∆ in pixel units, this bias is determined by a least square fit,

A = (Lx−∆) · (Ly−∆) ·m , [6.58]
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Figure 6.24.: Clustering: Structure lengths Lx in mean wind direction of the u (left) and v (right) wind

fields for all data sets. Colors and range as in Fig. 6.5.

where the respective Lx, Ly and A are given by the median values for

each field for all data sets. The fit yields ∆ =−1.52 px, m = 0.48 px. With

these results, all length scales were corrected in pixel units,

Lx→ Lx−∆ , [6.59a]

Ly→ Ly−∆ . [6.59b]

and subsequently converted to metric units. The process is shown in

Fig. 6.23.

Figs. 6.24 and 6.25 show the length scale distribution in x- and y-

direction for a cutoff level −1.5σ . The length scales in the LES data

are much smaller than those detected with the correlation length or

wavelet algorithm, since here no additional smoothing occurs. Most

wind fields exhibit median length scales well below 100 m, which cannot

be expected to be resolved by the lidar. The temporal averaging has,

again, only a very small overestimation effect which increases with the

wind speed. However, the lidar data yield a considerable overestimation.
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Figure 6.25.: Clustering: Structure lengths Ly in cross-wind direction of the u (left) and v (right) wind

fields for all data sets. Colors and range as in Fig. 6.5.

The smallest detectable scales appear to be of the order of 150 m. The

qualitative development of length scales with the wind speed is hardly

detectable in the lidar data.

App. H shows the results for the other cutoff values. It is evident that

the quality of results is almost independent of the precise value. The

structures become smaller with increasing absolute cutoff, and the data

spread decreases due to the fact that for the strictest cutoff values only

very few structures were detected (cf. Tab. E.5). Since the overestima-

tion is again most pronounced in the cross-wind direction as here the

scales are smallest, the anisotropy is underestimated (Fig. 6.26).

Fig. 6.27 shows a summary of the overestimation factors. Their values

as well as their error bars are much larger than the results from any other

method, even though the median values almost collapse on a curve. The

values become exceedingly large for LLES < ∆xy, which can be expected

from the lidar.

Apart from a tendency towards smaller structures for larger cutoff values,

the quality of the lidar results does not depend on the cutoff value.
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Although the method is capable to determine the precise shape and size

of structures, the present scales are much too small to be adequately

detected using dual-lidar measurements.
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Figure 6.26.: Clustering: Structure anisotropy Lx/Ly of the u (left) and v (right) wind fields for all data

sets. Colors and range as in Fig. 6.5.
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Figure 6.27.: Clustering: Overestimation factor LRET/LLES as a function of LLES/∆xy from cluster

lengths. The colors in the left panel mark wind speed (darker blue means higher uG) and wavelet cut-off

levels in the right panel (darker blue means higher absolute cutoff values). Data points and error bars

were computed as in Fig. 6.9.
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Figure 6.28.: Clustering: Overlay of structure shapes (median contours) in retrieval u data for the

different cutoff levels k, with uG increasing from left to right panel. The shapes are stretched to the

median length scales for the respective set. Structures from larger absolute cutoff values are shown in

darker colors.
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Figure 6.29.: Clustering: Overlay of structure shapes in LES u data for the different cutoff levels k,

with uG increasing from left to right panel. Method and colors as in Fig.6.28.
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Figure 6.30.: Clustering: Overlay of structure shapes in averaged LES u data for the different cutoff

levels k, with uG increasing from left to right panel. Method and colors as in Fig.6.28.

Figs. 6.28-6.30 show the median contours for the different data sets and

wind speeds. As expected, the structures are stretched in mean wind

direction as the wind speed increases. In the LES and averaged LES

data, the median structure scales are largest at an intermediate cutoff

value, which is possible when the number of small-scale structures

increases rapidly for the cutoff value approaching zero.

Although the length scales are inadequately represented by the lidar re-

sults, the general shape and elongation of the structures is qualitatively

140



6.4. Comparative Results

visible. The shapes at the largest retrieval cutoff values appear uneven

due to the very few structures that could be used for ensemble averag-

ing.

6.4. Comparative Results

The spatial averaging in dual-Doppler lidar data necessarily leads to an

overestimation in all methods of analysis. Fig. 6.31 shows the compar-

ative overestimation factors. The length scale and resulting anisotropy

estimations from dual-lidar data vary considerably in their performance.

The best agreement between LES and virtual lidar results is shown by

the correlation length algorithm, especially considering that it is possible

to derive the real integral length scales from the lidar data when the

spatial averaging processes in the lidar are known, or when further

measurements provide a reliable method to measure spatial wind field

variances. However, its disadvantage lies in its inability to describe

single structures, it is only a statistical measure for the complete time

step.

The wavelet algorithm can detect single structures, if only in one dimen-

sion, which explains its larger data spread. The performance is very

accurate for scales larger than 5 to 6 times the retrieval grid spacing,

with median overestimation factors below 1.5. It is mathematically

impossible to reliably detect structures with smaller scales or to correct

the results.

The clustering algorithm is a theoretically valuable approach since

is detects structure features without further smoothing or averaging.

However, the detected structures are too small to be accurately detected

by the lidar. The spatial averaging on a scale of the structure size leads
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Figure 6.31.: Comparative length scale results:

Integral length scales (top): Overestimation factor LRET/LLES as a function of LLES/∆xy from uncorrected

(left) and corrected data (right). Method and colors as in Fig. 6.9. Wavelet analysis (center): Over-

estimation factor LRET/LLES as a function of LLES/∆xy. Method and colors as in Fig. 6.20. Clustering

(bottom): Overestimation factor LRET/LLES as a function of LLES/∆xy. Method and colors as in Fig. 6.27.

For better visibility, the y-axis was truncated.
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to very large overestimation factors and errors. At the moment, no

method is available to correct the results.

For the scan times T0, time averaging has for all methods only a minor

contribution to the overestimation.

Time series analyses only yield mean wind direction length scales. The

results are generally very accurate, although possible problems due to

a lack of ergodicity have to be taken into account for the integral length

scales. Time series have the additional disadvantage of providing no

spatial data for calm situations, and no information can be obtained

about the wind field in spanwise direction.

Both spatial autocorrelation and clustering show a slight tilt of the struc-

tures away from the axis of mean wind speed under a small positive

angle. Since the LES data used was interpolated to only 10 m height

this effect does not have to be significant for surface layers in general.

However, it should be noted that the retrieval is able to qualitatively cap-

ture this tilt.
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Horizontal lidar scans reproduce only the horizontal wind field compo-

nents. The estimation of vertical momentum fluxes requires further mea-

surements of the vertical wind fields. In this chapter, the Finite Time Lya-

punov Exponent is applied to the virtual lidar data, a method which iden-

tifies regions of convergence and divergence in two-dimensional data.

Its applicability for the prediction of near-surface vertical winds is inves-

tigated.

7.1. Finite Time Lyapunov Exponents and Lagrangian Coherent

Structures

The following methods and definitions for the Finite Time Lyapunov

Exponent and the Lagrangian Coherent structures were developed by

Shadden et al. (2005), based on earlier works by Haller (2001). A thor-

ough introduction can be found in Shadden (2012).

7.1.1. Lagrangian Coherent Structures

Lagrangian coherent structures (LCS) can be defined for a two-

dimensional vector field (here, the horizontal wind field) over an area
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D⊂R2 and a time interval [t0, t0 +T ]. The wind field determines the tra-

jectory of any particle over the time interval T , always assuming that it

moves freely with the wind. Keeping T and t0 constant, a vector valued

mapping φ can be defined, where φ
t0+T
t0 (x) is the position of a particle in

D at the time t0 +T , which started from x at t0:

x 7→ φ
t0+T
t0 (x) . [7.1]

For better readability, the indices t0 and t0 +T are omitted in the follow-

ing.

To obtain a measure for convergence of the vector field, the distance

between φ(x) and the displacement of a particle starting from an in-

finitesimal distance δx =
(

δx1
δx2

)
away from x is considered:

δφ = φ(x+δx)−φ(x) =
∂φ

∂xi
(x)δxi . [7.2]

Here and hereafter, summation over repeated indices is implied.

The absolute value of this displacement is then given by

‖ δφ ‖2 = δx†
∆δx , [7.3a]

with ∆ =

(
dφ

dx

)†

·
(

dφ

dx

)
, i.e., ∆i, j =

∂φ∗k
∂xi

∂φk

∂x j
. [7.3b]

For constant ‖ δx ‖, the displacement is only a function of the direc-

tion of δx. Among all possible directions, that one is selected which

is aligned with the eigenvector of ∆ which has the highest eigenvalue,

λ = max{λ1,λ2}.
Consequently,

‖ δφ ‖2= λ ‖ δx ‖2 . [7.4]

The Finite Time Lyapunov Exponent (FTLE) is defined as (Shadden

et al., 2005):

σ
T
t0 (x) : =

1
|T | ln

(√
λ

t0+T
t0 (x)

)
, [7.5]
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Figure 7.1: Illustration of the FTLE algorithm:

Two infinitesimally spaced particles at time t0 di-

verge over the time interval T .

where λ
t0+T
t0 is the aforementioned highest eigenvalue of the ∆ matrix,

constructed from the φ
t0+T
t0 fields.

Thereby, the FTLE is a measure for convergence or divergence of the

trajectories of a vector field. σ < 0 indicates areas of convergence,

while σ > 0 indicates areas of divergence (cf. Fig. 7.1). If backwards

trajectories are computed (i.e., T < 0), the meaning of the FTLE-field is

reversed, with positive values indicating areas of convergence.

A Lagrangian coherent structure (LCS) is now defined as a ridge in the

FTLE-field. A ridge is an injective curve in the 2D plane which fulfills the

conditions that (1) the gradient of the FTLE-field is zero perpendicular to

the curve, and that (2) the curvature in the same direction is negative,

indicating a local maximum.

This means a curve c : s 7→ D⊂R2,s ∈ (a,b)⊂R, is called a Lagrangian

coherent structure of the field σ : D 7→R if and only if all of the following

conditions apply (Shadden et al., 2005):

• ∀s ∈ (a,b) : ∇σ(c(s)) 6= 0⇒ c′(s) ‖ ∇σ(c(s)) , [7.6a]

• ∀s ∈ (a,b) : ~n(c(s))T
Σ(c(s))~n(c(s))< 0, with [7.6b]

Σ : D 7→R2×2, Σi, j(x) =
∂ 2σ

∂xi∂x j
(x) the Hessian of σ and

~n(c(s)) · c′(s) = 0, i.e. ~n points in cross-ridge direction.
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Shadden et al. (2005) additionally derived a formula to estimate the flux

through the Lagrangian Structures and point out that “for well-defined

ridges or ones that rotate at a rate comparable to the local Eulerian field

and are computed from a FTLE field which has a sufficiently long inte-

gration time, the flux across the LCS is expected to be small”. There-

fore, LCS can be viewed as barriers in the horizontal flow that shift as

the wind field evolves. The lines of convergence denote regions where

horizontal air movements are converted to vertical movements, and ac-

cordingly lines of divergence denote regions of conversion from vertical

to horizontal flow.

7.1.2. The Finite Domain Finite Time Lyapunov Exponent

Tang et al. (2010) point out that the borders of available horizontal wind

velocity data regions appear as attractors in the FTLE algorithm, since

trajectories stop at the boundaries. To reduce this effect, they proposed

a smoothing algorithm, which is also applied here. This algorithm em-

beds the region of valid data into a larger structure-free background wind

field: Let D be the region of valid data, and D⊂G⊂R2, where the region

G is much larger than D. For each time step t, a linear background wind

field vL : G 7→ R2 is defined as the divergence-free wind field which as-

sumes the minimal distance in functional sense from the available wind

field u on the subset D:

vL(x, t) =

(
a11 a12

a21 a11

)
·x+

(
b1

b2

)
, [7.7]

where vL can be determined by minimizing the functional

J[v] = ∑
x∈D
‖ v(x, t)−u(x, t) ‖2 , [7.8]
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hence

min
v
{J[v]}= J[vL] . [7.9]

The field vL is by definition free of LCS.

The smoothing function S is designed to allow the data field u to fade out

into the background linear field around the edges of the data region. Let

dist(x) : D 7→R be the distance of each point in D from the edges of the

data region, and ∆ the cutoff-distance, then

S : G 7→R,S(x) =


0, x /∈ D

−2(x/∆)3 +3(x/∆)2, x ∈ D,dist(x)≤ ∆

1, x ∈ D,dist(x)> ∆

[7.10]

is the lowest order continuously differentiable function that performs the

increase from 0 to 1 over the transition region of thickness ∆. The

smoothed wind field is then given by

usmooth(x, t) = vL(x, t)+S(x)(u(x, t)−vL(x, t)) . [7.11]

The resulting FTLE-fields are also called the ‘Finite Domain Finite Time

Lyapunov Exponents’ (Tang et al., 2010).

7.2. Theoretical Considerations

For measurements close to the ground, it is reasonable to assume

a correlation between convergence and upwards movements and

between divergence and downwards movements.
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A Eulerian approach to estimate the vertical wind can be derived from

the incompressibility approximation, ∂ui/∂xi = 0, which is exactly true in

the LES data (cf. Chap. 3.2.2):

w(x,y,z) =−
z∫

0

dz′
∂u
∂x

(x,y,z′)+
∂v
∂y

(x,y,z′) [7.12a]

≈−z ·
(

∂u
∂x

(x,y,z)+
∂v
∂y

(x,y,z)
)

. [7.12b]

This finite difference approach becomes less accurate with increasing

height z, since it neglects changes in the horizontal divergence in the

layers between z and the ground. Furthermore, lidar measurements

provide only limited spatial resolutions, so the accuracy of the horizontal

divergence results will be limited.

The FTLE, on the other hand, provides a Lagrangian view of wind

field convergence. The time integration could improve the estimation

of horizontal divergence compared to the finite difference method.

However, the lidar data also have a limited time resolution, therefore

further errors will be introduced by inaccurate trajectory computations.

A quantitative investigation is needed to determine how accurately the

vertical wind field can be deduced from the FTLE field or the horizontal

divergence and to determine the relative influences of the advantages

and disadvantages of both methods for different integration times T and

background wind speeds.

7.3. Results

The FTLE algorithm, as detailed above, was applied to the retrieval data

sets, the time averages LES data sets and the full resolution LES data

sets. The following steps were executed on the retrieval data sets:
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• Wind field smoothing

For each time step in the four retrieval data sets, the smoothed 2D

wind field uRET,smooth was computed from the retrieved wind uRET,

as described in Chap. 7.1.2, on an area nine times the size of the

original retrieval area. The constant ∆, which determines the length

scales of the transition between the original wind field in the center

and the surrounding linear field vL was set to ∆ = 2 ·∆xy. Fig. 7.2

shows the effect of the smoothing around the edges of the data

region.

• Backward trajectories

Starting from each time frame t0 of the retrieval data, 6 trajec-

tories were computed backwards over time intervals of T = T0 ·
{1,2,3,5,8,13}, where T0 is the time resolution of the retrieval. The

end points of the trajectories starting from grid point x, φ
t0−T
t0 (x) (cf.

Eq. 7.1), were determined using finite difference integration of the

retrieved wind field:

With the starting values for position and horizontal wind field,

x0 = x , [7.13a]

u0 = uRET,smooth(x0, t0) , [7.13b]

the stepwise trajectory values are approximated to

xi = xi−1−ui−1 ·∆t [7.14a]

ui = uRET,smooth(xi, t0− i ·∆t) , i = 1, . . . ,T/∆t , [7.14b]

to obtain the final point

φ
t0−T
t0 (x) = xT/∆t . [7.15]

The integration time step ∆t was T0 for the retrieval data sets, and

uRET,smooth(xi) was determined by linear interpolation of uRET,smooth

to the point xi.
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Figure 7.2.: Wind field smoothing for the FTLE algorithm in finite domains, uG = 0 m/s: original (left)

and smoothed (right) LES u field at the edge of the data region (no data for x< 0 or y< 0). The smoothing

constant is ∆ = 2∆xy = 120 m.

• FTLE

From the displacement fields φ
t0−T
t0 , the Finite Time Lyapunov Ex-

ponent field σT
t0 was computed as detailed in Chap. 7.1.1. To this

effect, the partial differentials in the ∆-matrix (Eq. 7.3b) were ap-

proximated with a finite difference method, i.e.

∂φk

∂x
(n,m)≈ φk(n+1,m)−φk(n−1,m)

2∆xy
[7.16a]

∂φk

∂y
(n,m)≈ φk(n,m+1)−φk(n,m−1)

2∆xy
[7.16b]

where (n,m) are (x,y)-grid-indices and ∆xy is the resolution of the

wind field grid in meters.

The time averaged LES data were treated in the same way. For the full

resolution LES data, the starting times t0 were chosen as the time steps

closest to the retrieval time frames, and the backwards integration was

executed with ∆t =1 s over the same time intervals T , rounded to the full

second due to the 1 s LES time resolution.

Furthermore, for each time step in each data set, an approximation for

the horizontal divergence was computed. For the LES and time aver-
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ages LES data, the relative shift of the u, v and w grids (Fig. 3.4) facili-

tates the computation, using

∇HuLES ≈
u
(
x+ ∆x

2 ,y
)
−u
(
x− ∆x

2 ,y
)

∆x
+

v
(

x,y+ ∆y
2

)
− v
(

x,y− ∆y
2

)
∆y

[7.17]

with ∆x = ∆y = ∆xyLES= 10 m.

The retrieval uses the same grid for u and v components, therefore for-

ward differences were used as an approximation:

∇HuRET ≈
u(x+∆x,y)−u(x,y)

∆x
+

v(x,y+∆y)− v(x,y)
∆y

. [7.18]

From the horizontal divergence, the approximate vertical wind fields

were obtained, using Eq. 7.12:

wDIVH(x) =−10 m ·∇Hu . [7.19]

The results for FTLE and horizontal divergence can be compared with

the appropriate vertical wind fields. For the LES and time averaged

LES, the vertical wind fields chosen for comparison are obviously the full

resolution and time averaged LES w fields, respectively. The retrieval

data were compared with the time averaged LES w fields in two different

ways: firstly, wLESAVG was linearly interpolated on the retrieval axes,

and secondly, wLESAVG was smoothed using a moving average over an

area of Ssmooth× Ssmooth with Ssmooth ≈ ∆xy before interpolating it to the

retrieval axes. The former case corresponds to point measurements

of w (available from towers or vertically staring lidars in measurement

data), whereas in the latter case w is averaged down to the lidar scale.

The smoothing constant Ssmooth was chosen as the shortest length

spanning an odd number of LES grid cells, i.e. Ssmooth = {70, 70, 70,

90} m for uG = {0, 5, 10, 15} m/s. Tab. 7.1 summarizes the data sets

used for comparison.
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Figure 7.3.: uG = 0 m/s: 2D histograms of vertical winds w and FTLE fields for the data sets I - IV, i.

e. the retrieval, the retrieval in comparison with smoothed w, the time averaged LES and full resolution

LES data sets (left to right) in logarithmic units in the range [0,0.8·max{FTLE}]. The solid lines are the

linear fit results.

Since the quantitative relationship between FTLE and the vertical wind

is not obvious, the FTLE is converted into an approximate vertical wind

field wFTLE by fitting it to the real w field.

Figs. 7.3 and 7.4 show the joint FTLE and w distribution with uG = 0m/s

and uG = 10m/s for the three data sets. The histograms indicate that the

relation between FTLE and w is approximately linear. The colored lines

show the results from the linear least squares fit w = m ·σ t0−T
t0 +b. The fit

parameters are summarized in Tabs. I.1 and I.2. The predicted vertical

wind from the FTLE is then defined by

wFTLE(x) = mfit ·σ t0−T
t0 +bfit . [7.20]

# Data Set u,v for FTLE computation w-field Resolution

I RET retrieved wind fields time avg. LES wind field (intp.) ∆xy, ∆t = T0

II RET retrieved wind fields time avg. LES wind field (intp., sm.) ∆xy, ∆t = T0

III LESAVG time avg. LES wind fields time avg. LES wind field ∆xyLES, ∆t = T0

IV LES LES wind fields LES wind field ∆xyLES, ∆t = 1 s

Table 7.1.: Overview of horizontal wind fields used for FTLE computation and the associated vertical

wind fields for the three types of data sets.
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Figure 7.4.: uG = 10 m/s: 2D histograms of vertical winds w and FTLE fields for the data sets I - IV.

Method and colors as in Fig. 7.3

Figs. 7.5 and 7.6 show the comparison between the vertical wind, wDIVH

and wFTLE for an integration time T = T0 for one exemplary time frame in

the uG = 0 m/s and the uG = 10 m/s data sets, respectively. While the

divergence appears to reproduce w best in the LES and time averaged

LES case, the results are less clear in the retrieval case. Both wDIVH

and wFTLE capture the dominant convergence lines of the smoothed

vertical wind field at uG = 0 m/s qualitatively well. Those lines are less

apparent in the unsmoothed w-fields, the agreement of which with the

predicted wind fields is unsurprisingly less good. For uG = 10 m/s, nearly

all structures are averaged out, but wDIVH appears the reproduce the

remaining fluctuations better than wFTLE.

The correlation coefficients rw,FTLE and rw,DIVH between vertical wind

fields and the FTLE fields, which were derived from the full data sets,

are shown in Fig. 7.8. Furthermore, the mean absolute error (MAE) be-

tween the predicted vertical winds and w, normalized with the standard
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Figure 7.5.: uG = 0 m/s: Comparison between w, wDIVH and wFTLE (top to bottom) for the data sets I -

IV, i. e. the retrieval, the retrieval in comparison with smoothed w, time averaged LES and full resolution

LES data sets (left to right) on a 2 km×2 km area for one time frame. The FTLE-fields have an integration

time of T = 1 ·T0.
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Figure 7.6.: uG = 10 m/s: Comparison between w, wDIVH and wFTLE (top to bottom) for the data sets I -

IV, i. e. the retrieval, the retrieval in comparison with smoothed w, time averaged LES and full resolution

LES data sets (left to right) on a 2 km×2 km area for one time frame. The FTLE-fields have an integration

time of T = 1 ·T0.
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deviation of w, is shown in Fig. 7.9. The MAE for two fields w1,w2 on the

same grid with (Ni,N j,Nk) grid points in the (x,y, t) dimensions is given

by

MAEw1,w2 =
1

Ni ·N j ·Nk

Ni,N j,Nk

∑
i, j,k=1

|w1(i, j,k)−w2(i, j,k)| . [7.21]

In a direct comparison of both vertical wind prediction methods, the

FTLE algorithm outperforms the horizontal divergence in the retrieval

case. Therefore one can conclude that the time integration can in part

compensate for the low spatial resolution in determining the horizontal

divergence. The good agreement between wDIVH and the vertical wind

can be seen in the LES results. The deviation can be explained by the

necessary rough approximation of the integral, Eq. 7.17. Small errors

can also occur due to the interpolation of the u and v fields (Chap. 5.4).

In contrast, the LES results show a better performance of the horizontal

divergence method compared to the FTLE. It should be noted that T = T0

is the shortest possible integration interval for the retrieval data, whereas

the LES data with a time resolution of 1 s could allow for a much shorter

integration time.

The LES time averaging appears to have a small positive effect on the

result quality.

It is evident that the best agreement of w with wFTLE is always obtained

for shorter integration times T .

For all data sets, the errors increases and the correlation decreases

for larger uG in the comparison between w and wFTLE. Note that the

theoretical FTLE results (Chap. 7.1.1) are not affected by a constant

background wind, rather the rapid change of the wind field appears to

introduce larger errors during the trajectory computation. The effects

157



7. Techniques for the Derivation of the Vertical Wind Field
y
[m

]

x [m]
1500 2000 2500

2500

3000

3500

x [m]

 

 

1500 2000 2500

w [m/s]

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

x [m]
1500 2000 2500

x [m]
1500 2000 2500

Figure 7.7.: The vertical wind field wLESAVG,intp,sm, overlaid with contours of wRET,FTLE at levels {-0.3,-

0.2,...,0.2,0.3} m/s.

can be seen in a direct comparison between the smoothed time aver-

ages vertical wind field and the T = T0-FTLE-field from the retrieval data

in Fig. 7.7: Even though the structures and their shapes are reproduced

in the FTLE, their location is increasingly displaced from their position in

w. Furthermore, the FTLE fields appear increasingly blurred and unable

to resolve small-scale structures.

The effect is not visible in the comparison with wDIVH, which only uses

the instantaneous wind field so that the advection has no influence on

the results.

Quantitatively, both wFTLE and wDIVH perform rather poorly in predicting

the vertical wind from the retrieval data. The absolute error lies between

0.8 σw and 0.9 σw for the horizontal divergence when comparing with the

vertical point measurements, and even increases for the smoothed ver-

tical wind fields. Additionally, the correlation coefficient is small enough

for the fields to be considered uncorrelated. The horizontal divergence

method is therefore impractical to predict the vertical wind field.

The FTLE results are more promising, with a correlation coefficient of up

to 0.4 for the unsmoothed and up to 0.6 for the smoothed vertical wind
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Figure 7.9.: Mean absolute error between the predicted vertical winds wFTLE, wDIVH and the vertical

wind w, normalized with the standard deviation of the respective vertical wind field. Colors as in Fig. 7.8.

field. The mean absolute errors remain large, with values between 0.7

and 0.8 σw (unsmoothed) and between 0.6 and 0.8 (smoothed), respec-

tively. Nevertheless, the FTLE method proves clearly advantageous for

vertical wind field prediction.

Instead of determining the vertical wind speed, the FTLE field can be

used to predict the sign rather than the magnitude of w. The further

159



7. Techniques for the Derivation of the Vertical Wind Field

0 5 10 15

0.5

0.6

0.7

0.8

0.9

1
h
it

ra
te

uG [m/s]
0 5 10 15

uG [m/s]
0 5 10 15

uG [m/s]
0 5 10 15

uG [m/s]
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advantage lies in the theoretical agreement of sign(w) and sign(FTLE)

(cf. Eq. 7.5), where no further fit of the FTLE to otherwise obtained

vertical wind data is required.

In Fig. 7.10 the performance for this less strict predictand is investigated.

The plots show the hit rate, i.e. the number of data points where sign(w)

and sign(FTLE) coincide, normalized with the total number of data points

(Wilks, 1995). The full contingency tables for the agreement between the

signs can be found in Tab. I.3 for the FTLE fields and in Tab. I.4 for the

horizontal divergence.

The retrieval results accurately predict the sign of w only in 50% to 65%

of all cases (unsmoothed w) and 55% to 70% (smoothed w), respec-

tively. Only for uG = 0 m/s is the hit rate significantly larger than 50%.

Interestingly, the FTLE-performance for uG > 0 m/s is not significantly

better for the LES and time averaged LES data sets. Even though the

visual agreement is better than in the retrieval case (cf. Fig. 7.6), small

displacements introduced though time integration errors lowers the hit

rate significantly.
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7.4. Summary

The Finite Time Lyapunov Exponent is a measure for divergence in two-

dimensional wind fields which uses the spread of trajectories using time

integration. This Lagrangian approach can be seen in contrast to the

Eulerian horizontal divergence computation from a single time step.

The present LES data sets show a good agreement between negative

divergence and the vertical wind. However, neither the FTLE nor the hor-

izontal divergence are accurate predictors for the vertical wind, or even

its sign, when applied to virtual dual-lidar retrieval data.

The best predictor for w from retrieval is the FTLE-field with the shortest

integration time. For the calm situation, it achieves at correlation coeffi-

cient of 0.6, a mean absolute error of 0.65 σw and a hit rate of 70% when

compared to the vertical wind field on the retrieval scale. However, the

quality rapidly deteriorates with increasing background wind speed.

Despite the large errors, the FTLE-field and the vertical wind field agree

qualitatively well and the Lagrangian coherent structures are clearly vis-

ible. The method appears promising for further analyses that do not

rely on the exact position but rather the spatial statistics of convergence

lines like their shape and intensity distribution or the ridge curvature of

the Lagrangian structures. Furthermore, it is conceivable that the struc-

ture localization could be improved with enhanced spatial resolution and

time integration techniques.
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Coherent structures appear as regular patterns in boundary layer wind

fields. They play a significant role in turbulent transport processes

in the boundary layer, but their formation and properties are still too

little understood to include them in parameterizations of mesoscale

atmospheric models.

The applications of Doppler lidars has meant important progress

in coherent structure research. With dual-lidar measurements, the

two-dimensional wind field can be measured with high time and spatial

resolution. However, the measurement results require an independent

quality validation.

The goal of this study was to assess the performance of surface layer

coherent structure detection techniques on dual-Doppler lidar planar

scan data. To this effect, virtual dual-Doppler lidar measurements were

performed in four different LES-generated boundary layers.

Virtual lidar measurements were generated from high-resolution

LES data. The large-eddy simulations were driven by background

geostrophic winds from 0 m/s to 15 m/s and varying surface heat fluxes,

and thereby covered a range from purely convective boundary layers

without shear to shear-dominated boundary layers.

The visual inspection of the LES data agree with the results from earlier

studies: The data show streaks of varying length scales in the sheared
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surface layer streamwise wind fields, and cellular structures in the

vertical wind of the highly convective surface layer.

To perform the virtual measurements, a lidar simulation software

tool was developed which operates on given wind fields on a three-

dimensional grid. After setting the lidar position, pulse and scan

parameters, the software generates radial velocity estimates along

the beam from the underlying model data based on the mathematical

description of Doppler lidar wind estimation. If the grid constant is

small compared to the lidar pulse width, this method yields realistic

virtual measurements. Here, the LES had a spatial resolution of 10 m,

whereas the pulse width was between 70 m and 90 m.

In dual-Doppler lidar measurements, two lidars scan the same area, and

their radial velocity estimates are reassembled to yield two of the three

wind components. These dual-lidar measurements were accomplished

with the simulator by placing two virtual lidars in the same LES data.

To investigate surface layer structures, a promising approach is to study

two-dimensional cross-sections of the wind field. To realize this, the

two lidars were programmed to perform synchronized ground-parallel

scans on a coplanar area at z = 10 m in the LES data sets. The lidar

parameters were chosen to match those of the KIT dual-Doppler lidar

system. The virtual measurements were preceded by a fundamental

error-analysis on dual-Doppler lidar planar scans, which revealed the

lidar spatial averaging and time-undersampling as the dominant error

sources. Based on this analysis, an optimization scheme for scan

patterns was developed which facilitated error-minimization in the

scans. The optimized duration T0 of one planar scan in the given LES

set-ups ranged from 11.4 s for high background wind speeds to 14.6 s

in the calm situation. In total, each virtual measurement covered a

timespan of 30 min and a horizontal area of approximately 15 km2.
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A retrieval algorithm based on a weighted cost function was im-

plemented to convert the virtual dual-lidar data into the horizontal

streamwise and spanwise wind components, u and v, on a two-

dimensional Cartesian grid in the horizontal lidar scanning plane.

Thereby, the ‘real’ horizontal wind fields from high-resolution LES and

the ‘measured’ virtual dual-lidar wind fields could be compared directly,

including results from wind field based algorithms to classify boundary

layer characteristics. This allowed for the first time a quality assessment

of dual-Doppler lidar measurements. For further comparison, two other

data sets were generated: Firstly, the LES data were time-averaged over

the lidar scan intervals to determine the influence of rapidly changing

wind fields, and secondly, virtual towers were placed in the LES data to

compare the spatial results with high-resolution time series analysis.

Since the dual-lidar data yield only the horizontal wind field, the quanti-

tative analysis was divided into two parts: In the first part the structure

length scales in the horizontal wind field were determined, whereas in

the second part a derivation of the vertical wind w was attempted.

The first part, Chap. 6, comprises the application of three different struc-

ture detection techniques on the horizontal wind fields from lidar, LES,

time-averaged LES, and virtual towers. The tower length scales were

converted into units of length by multiplication with the mean wind speed.

The first method used the integral over the two-dimensional spatial au-

tocorrelation function to determine the integral length scales Lx and Ly

of u and v in streamwise and spanwise direction, respectively. This ap-

proach cannot be used to investigate single structures, but rather their
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mean properties at each time step. Theoretical analyses revealed that

the inherent spatial averaging in the dual-lidar data leads to an overesti-

mation of length scales LRET from the lidar compared to the real length

scales LLES. Assuming a simplified model for the lidar averaging pro-

cess, it was found that the length scale overestimation is given by the

ratio of variances of the high-resolution and the lidar averaged field,

LRET
LLES

=
σ2

LES
σ2

RET
, [8.1]

which in turn could be expressed as an analytic function of 2x0/LLES,

where 2x0 is the effective lidar spatial averaging scale. The comparison

between LES and dual-lidar data agreed with these results and the

effective averaging scale was found to be 2x0 ≈ 7∆xy, where ∆xy is the

cell length of the lidar Cartesian data grid. Further analyses showed

that the overestimation factor can be corrected using Eq. 8.1 when σ2
LES

is taken from virtual tower data. An overall value of LRET/LLES < 1.5 was

achieved, even for LLES as small as 0.5 ∆xy. The correction failed, as

expected, for uG = 0 m/s.

This means that integral length scales can be determined accurately for

uG > 0 from dual-Doppler lidar measurements, as long as high resolu-

tion wind field data from a single meteorological tower are available to

perform the scale correction.

The second method used one-dimensional wavelet analysis in both

streamwise and spanwise direction on the lidar and LES wind fields, as

well as the virtual tower data. Ejection-sweep cycles, i.e., rapid changes

from low to high wind speeds, were detected in u with the WAVE and

Mexican Hat wavelet. The same algorithm was applied to v. The

length scale analysis was only performed on the energetically dominant

wavelet scale, where the ramp length was determined for each detected
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structure. For evaluation, the length scale distributions were compared

for the different data sets.

The detected structure lengths LRET in the dual-lidar data again gener-

ally overestimate the real lengths, LLES. The results show LRET/LLES≈ 2

for LLES ≈ 3 ∆xy, which slowly decreases to one at LLES ≈ 9 ∆xy. For

smaller LLES, the overestimation becomes larger and noisier; it is no

longer a monotonous function of LLES/∆xy. Theoretical analysis showed

that for dominant wavelet scales shorter than the lidar averaging scale

the lidar averaging process effectively results in a splitting of the wavelet

function into two separate parts located at the borders of the lidar

averaging region. With these split functions, a wavelet analysis is no

longer meaningful and the results cannot be corrected. On the other

hand, wavelet scales much larger than the lidar averaging scales result

in a low-pass filtering of also the high-resolution LES data, so that the

lidar spatial averaging has no longer any effect on the results.

Consequently, wavelet analysis is a method best suited for the inves-

tigation of single structures, as long as an independent measurement

is available to ensure that the energetically dominant scales are large

enough for the analysis to perform correctly. In all other cases, an inter-

pretation of the wavelet analysis results becomes virtually impossible.

As the third method, a clustering algorithm was applied to the wind

components: All coherent regions with u or v smaller than a certain

cutoff-value were analyzed in terms of lengths in streamwise and

spanwise direction.

The analysis revealed that although the streaky structures appear very

elongated in streamwise direction, they are frequently interrupted by

small-scale high-speed fluid regions. The clustered low-speed regions

are, on average, shorter than 2.5 ∆xy in any direction. Accordingly,

167

8. Conclusion and Outlook



8. Conclusion and Outlook

the dual-lidar cannot resolve these small structures, leading to over-

estimation factors ranging from 2.5 to 12. Therefore, applying this

method of analysis is unsuitable for dual-lidar data under the present

circumstances.

The time series data were able to reproduce the streamwise length

scale results for all three algorithms for uG > 0. The estimated length

scales showed the highest agreement with the LES spatial analysis

in the wavelet analysis. The correlation lengths showed a larger error

and a negative bias due to reduced ergodicity, and the cluster lengths

were underestimated since the tower does not necessarily probe the

structures at the point of their longest spanwise extent.

However, time series cannot provide any data in spanwise direction,

and the analysis inevitably fails at uG = 0. They should therefore mainly

be used to complement spatial analyses.

In the second part, Chap. 7, the Finite Domain Finite Time Lyapunov Ex-

ponent (FDFTLE), which is a measure for convergence of the horizontal

wind field trajectories, was used to predict the vertical wind under the

assumption that updrafts coincide with horizontal wind field convergence

close to the ground. The predicted vertical winds wp showed a high

correlation with the vertical winds w from LES in the convective case

with uG = 0: rw,wp = 0.6 for the dual-lidar data, and rw,wp = 0.8 for the LES

data for a windfield trajectory computation backwards in time over one

scan duration T0. The sign of w was predicted correctly in 70% of all

dual-lidar data points, and in 80% of LES data points.

Generally this Lagrangian method showed better results for vertical wind

prediction in the lidar data than the simple finite difference integration

of the incompressible continuity equation. The prediction quality rapidly

168



decreased with higher uG and longer trajectory integration times. The

FDFTLE is, in summary, a suitable parameter to deduce convective

structures in the horizontal wind field data from dual-Doppler lidar,

albeit the present time and spatial resolutions result in a more accurate

prediction of the sign of w than of the magnitude of w. Therefore,

no further structure analyses on the predicted vertical winds were

performed.

In all analyses, the time-averaged LES fields performed almost as well

as the full-resolution LES. However, the error analysis showed that the

error in the radial velocity estimation increases for larger scan times.

It is therefore not the duration of the scan, but rather the associated

time-undersampling which leads to large errors: In each scan interval

of length T0 the lidar records velocity estimates in each grid cell only for

the duration ∆t� T0.

The good agreement between LES and virtual lidar results after the

correction of spatial averaging errors suggest that those constitute

the dominant contribution to length scale estimation errors from

dual-Doppler lidar. The remaining differences may stem from time

undersampling or inaccuracies of the simplified spatial averaging model.

In summary, the dual-Doppler lidar planar scan technique is well suited

for the investigation of surface layer coherent structures. A dual-Doppler

lidar system, in combination with a single meteorological tower, can be

used to accurately estimate surface layer integral length scales and the

coherent structure statistics on the energetically dominant scale as re-

vealed by wavelet analysis. In calm situations, convective cell structure

can be detected with reasonable accuracy. A more precise measure-

ment of w is needed before momentum fluxes u′w′ can be estimated.
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Although the structure detection techniques are not new, their applicabil-

ity to dual-Doppler lidar data as well as their possible shortcomings and

necessary corrections had not yet been investigated. With the results

shown here, real dual-Doppler lidar measurements in the atmospheric

surface layer can be interpreted reliably.

Several results in this study showed that the main limiting factor for

dual-lidar research is the lidar spatial resolution. Unless lasers with

shorter wavelength are used, the application of which is limited since

they are not eye-safe, the lidar spatial resolution can only be increased

at the expense of velocity estimation accuracy or time resolution. The

highest achievable spatial resolution at the moment is about 30 m at

1 Hz in Doppler lidars by HALO Photonics, UK (Pearson et al., 2009).

This means that Doppler lidars for atmospheric applications will remain

at the limit of resolutions required for coherent structures research.

The development and general implementation of optimized scans and

analyses techniques as shown here is therefore of crucial importance

for research results.

As a recipe for coherent structure detection with dual-Doppler lidar mea-

surements, the most important aspects can be summarized as follows:

• The lidar overlap area should cover several square kilometers.

Since streaks align in the mean wind direction, the extent in the

main wind direction should be at least three kilometers.

• To reduce errors, the lidar intersecting beam angle should be as

close as possible to 90◦ on the lidar overlap area. The lidar eleva-

tion should be as small as possible.
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• The lidars should scan as fast as possible while maintaining suffi-

cient data density in the outermost scanning area. To achieve this,

the optimization method described in Chap. 4.2 can be applied.

• If possible, the lidars should perform synchronized beam sweeps,

which doubles the time resolution.

• The lidar measurement should be supplemented with a high-

frequency tower wind measurement at lidar measuring height,

which can be used for correlation length correction.

• The horizontal wind field retrieval should be performed with a data

grid constant ∆xy according to the lidar range gate length used for

time optimization.

• The correlation length algorithm (Chap. 6.1) can be applied to the

resulting horizontal wind fields, giving average streamwise and

spanwise correlation lengths for each time frame. The results have

to be corrected according to Eq. 6.19. Here, the tower data are

necessary to estimate the wind field variance. After correction, the

resulting scales can be considered accurate for structures larger

than ∆xy. The correction fails for calm situations.

• To analyze single structures, the wavelet algorithm (Chap. 6.2)

can be applied. The derived length scales are only accurate for

structures larger than approximately 5 to 9 times ∆xy. For smaller

scales, the wavelet analysis fails.

In spring 2013 the first opportunity arose to transfer the theoretical re-

sults of this study to real measurements:

The dual-Doppler lidar planar scan technique was implemented during

the HOPE experiment (HD(CP)2 Observational Prototype Experiment)
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Figure 8.1.: Horizontal wind vectors (left) and convergence−∇HuH (right) of the dual-Doppler lidar wind

field around 12:07 UTC on April 7, 2013. The black dots denote the lidar positions. The eddy covariance

station measured w′θ ′ = 0.19 Km/s, u∗ = 0.3 m/s, L∗ = −10 m. The mean wind speed measured by the

lidars was uRET ≈ 0.2 m/s, the lidar detected a boundary layer height of zi = 2130 m.

in Jülich, Germany, as a part of the project “High Definition Clouds and

Precipitation for Advancing Climate Prediction”. The two KIT Doppler

lidars were positioned approximately 2.5 km apart and scanned a copla-

nar area of about 12 km2. The scanning plane was elevated 2◦ due to

obstacles, so the mean measurement height was 60 m on average.

As a part of this study, a dual-lidar control software was developed which

allowed synchronized beam steering and facilitated the implementation

of the optimization algorithm for the scanning patterns. The radial winds

were measured over a total period of 300 hours, and the Cartesian hor-

izontal wind components were retrieved using the algorithm developed

in this work.

The data analysis, which was not part of this thesis, is still in progress.

Figs. 8.1 and 8.2 give an impression of the observed structures: Streaks

are visible in the shear-driven surface layer, whereas under convective

conditions cell structures of narrow convergence lines occur in the
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Figure 8.2.: Streamwise wind field component u′ of the dual-Doppler lidar wind field around 08:25 UTC

on April 17, 2013 (left, w′θ ′ = 0.02 Km/s, u∗ = 0.21 m/s, L∗ = −27 m, uRET = 2.86 m/s, no measurement

for zi was available), and around 09:05 UTC on April 8, 2013 (right, w′θ ′ = 0.14 Km/s, u∗ = 0.58 m/s,

L∗ = −109 m, uRET = 7.45 m/s, zi=1000 m). The notation follows Fig. 8.1. The arrows indicate the wind

direction in the lidar plane.

horizontal wind field. First results show that, in unstable conditions,

the integral length scales derived from the dual-Doppler lidar data vary

with the wind speed in the same way as shown in this study. Detailed

quantitative analyses of the data will be published shortly, including an

integral length scale and wavelet analysis.

The HOPE experiment yielded more than 300 hours of dual-Doppler

lidar data. At the same time, several other instruments were deployed:

energy balance stations, a 30 m meteorological tower, regularly

launched radiosondes, other wind and Raman lidars and a DIAL. The

combined data evaluation can be expected to enhance our understand-

ing of surface layer structure formation and characteristics and how

these influence and are determined by the state of the boundary layer.

Building upon these results the implementation of coherent structure

properties in the subgrid-scale parameterization of mesoscale forecast
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models can be investigated. Since these models usually assume

horizontal homogeneity on the subgrid-scale this will require the de-

velopment of new mathematical and numerical concepts. Considering

the important contribution of structures to the surface layer transport

their integration in subgrid-models can lead to high advancements for

mesoscale modeling.

Since this analysis showed that the horizontal field alone is not sufficient

for vertical wind analysis the experimental dual-Doppler lidar results can

in the future be extended by the deployment of further wind lidars scan-

ning vertically or in RHI scans to enhance the vertical wind and momen-

tum flux measurements. In combination with measurements from ad-

vancing remote-sensing instruments for water-vapor, temperature, and

trace gas detection a quantitative characterization and parameterization

of surface layer transport processes will soon become possible.
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A. Single Lidar Error Propagation to Dual-Lidar

This appendix chapter is an excerpt from

Stawiarski, Träumner, Knigge, and Calhoun, 2013: Scopes and Chal-

lenges of Dual-Doppler Lidar Wind Measurements - An Error Analysis.

J. Atmos. Ocean. Tech., 30(9), 2044-2062. c©2013 American Meteoro-

logical Society. Used with permission.

A.1. Error Sources in Intersecting Beam Retrieval

The retrieved wind field component in direction of ê j in the lidar plane is

given by

u j =
1

sin(∆(χ))

[
rv1 sin(α j +

∆χ

2
)− rv2 sin(α j−

∆χ

2
)

]
, [A.1]

where ∆χ is the mathematically positive angle measured from r̂1 to r̂2

in the plane where r̂1, r̂2 are right-handed, and α j is the detection an-

gle between ê j and (r̂1+ r̂2)/2, likewise measured in the mathematically

positive sense.

Single lidar errors occur, if rvi, azi and eli are biased or have a random

error. We consider the evaluation plane as fixed, and sum up all radial

velocity estimation and angular errors in the variables rv1,rv2.

Ideally, the radial velocities are given by

rv1 = r̂1 ·u = uH cos(α j−
∆χ

2
− γuH) , [A.2a]
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A. Single Lidar Error Propagation to Dual-Lidar

rv2 = r̂2 ·u = uH cos(α j +
∆χ

2
− γuH) , [A.2b]

where γuH is the angle between ê j and the projected wind vector in the

plane (again, measured in the positive sense), and uH is the modulus of

said projected wind vector.

The first error source is the velocity estimation itself, leading to a statis-

tical random error on the velocity estimates and a supposedly negligible

bias. The second error source, the lidar angles, leads to a shift in lidar

beam direction. This shift has a component in the evaluation plane (the

in-plane erorr), and a perpendicular component (the out-of-plane error).

Both can be propagated to the velocity estimates given by Eqs. A.2.

We assume that the statistical errors and biases in azi,eli and rvi are

known and derive their propagation to u j. This is accomplished by first

propagating the angular errors to the rvi, and subsequently propagating

the total rvi errors to u j.

A.2. Propagating Angular Errors to rvi

In contrast to Eqs. A.2, the measured radial velocities are given by

rvM
1 = r̂′1 ·u , [A.3a]

rvM
2 = r̂′2 ·u , [A.3b]

where we define r̂′1, r̂′2 as the actual lidar beam unit vectors, which devi-

ate from the ideal ones due to angular errors.

To first order in the errors, we have

rvM
i = rvi +δ rvi +

∂ rvM
i

∂azi

∣∣∣∣
r̂′i=r̂i

δazi +
∂ rvM

i
∂eli

∣∣∣∣
r̂′i=r̂i

δeli , [A.4]
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A.2. Propagating Angular Errors to rvi

with δazi, δeli denoting the angular deviation from the ideal position and

δ rvi denoting the lidar random error.

In Eq. A.4, r̂′i can be expressed in terms of a right-handed local trihe-

dron (r̂i,m̂i, n̂n): r̂i and m̂i both lie in the evaluation plane, with r̂i be-

ing the ideal lidar beam vector withour errors, m̂i being perpendicular

to r̂i and n̂n being the plane-normal vector on the evaluation plane (cf.

Chap. 4.1.2). For a more formal definition, we use

n̂n =
r̂1× r̂1

‖ r̂1× r̂2 ‖
, [A.5a]

m̂i = n̂n× r̂i . [A.5b]

Decomposing r̂′i into its parts along the axes of this local orthogonal

coordinate system, we find that

rvM
i =

(
r̂′i · r̂i

)
rvi +

(
r̂′i · n̂n

)
(n̂nu)+

(
r̂′i · m̂i

)
(m̂iu) . [A.6]

Careful computation shows that

∂ r̂′i
∂azi

∣∣∣∣
r̂′i=r̂i

= r̂i× k̂ , [A.7a]

∂ r̂′i
∂eli

∣∣∣∣
r̂′i=r̂i

=
1

cos(eli)

(
r̂i× k̂

)
× r̂i =

1
cos(eli)

(
k̂− sin(eli)r̂i

)
, [A.7b]

and from this we derive the expressions for the scalar products:

∂ r̂′i
∂azi

∣∣∣∣
r̂′i=r̂i

· n̂n = m̂i · k̂ , [A.7c]

∂ r̂′i
∂azi

∣∣∣∣
r̂′i=r̂i

· m̂i =−n̂n · k̂ , [A.7d]

∂ r̂′i
∂eli

∣∣∣∣
r̂′i=r̂i

· n̂n =
1

cos(eli)
n̂n · k̂ , [A.7e]

∂ r̂′i
∂eli

∣∣∣∣
r̂′i=r̂i

· m̂i =
1

cos(eli)
m̂i · k̂ . [A.7f]
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A. Single Lidar Error Propagation to Dual-Lidar

With these results, we find from Eq. A.6:

∂ rvM
i

∂azi

∣∣∣∣
r̂′i=r̂i

=
(
m̂i · k̂

)
(n̂n ·u)−

(
n̂n · k̂

)
(m̂i ·u) , [A.8a]

∂ rvM
i

∂eli

∣∣∣∣
r̂′i=r̂i

=

(
n̂n · k̂

)
(n̂n ·u)+

(
m̂i · k̂

)
(m̂i ·u)

cos(eli)
. [A.8b]

We can write down explicit expressions for the scalar products:

n̂n ·u = u⊥ , [A.9a]

m̂i ·u =−uH sin(α j∓
∆χ

2
− γuH) , [A.9b]

n̂n · k̂ = cos(γz) , [A.9c]

m̂i · k̂ =± 1
|sin(∆χ)| [sin(eli′)− sin(eli)cos(∆χ)] . [A.9d]

Here, u⊥ is the wind speed perpendicular to the evaluation plane, γz is

the angle between the plane-normal vector n̂n and the z-axis k̂. The

upper sign applies if the respective lidar i is Lidar 1, the lower sign

applies if it is Lidar 2. The index i′ indicates the other lidar.

It should be noted that the expressions in Eq. A.8 each contain two sum-

mands, one of which scales with the perpendicular wind speed u⊥, and

the other of which scales with the in-plane wind, uH . Those two com-

ponents arise from the angular error contributions to out-of-plane tilt or

in-plane tilt, respectively. In the error propagation below, we will cosider

both contributions separately.
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A.3. Statistical Error Propagation

A.3. Statistical Error Propagation

The random error in the retrieved wind field component is given by

[σ
single
DD (u j)]

2 = ∑
i=1,2

(
∂u j

∂ rvi

)2

(σ rv
i )2

=
sin2(α j +

∆χ

2 )

sin2(∆χ)
(σ rv

1 )2 +
sin2(α j− ∆χ

2 )

sin2(∆χ)
(σ rv

2 )2 . [A.10]

The statistical radial velocity variances consists of the random error of

velocity estimation, the variance due to in-plane angular errors and the

variance due to out-of-plane errors. The latter two are not statistically

independent, because both have contributions from elevation and az-

imuth angles. It is therefore necessary to also consider their covariance.

Nevertheless, the splitting is advisable, since the in-plane error is the

only part that can be estimated with the measurement results alone, i.e.,

the wind speed in the lidar plane. Without the splitting, no quantitative

statement respective the angular errors can be made at all.

(σ rv
i )2 =

(
σ

rv,rnd
i

)2
+
(

σ
rv,ip
i

)2
+
(
σ

rv,oop
i

)2
+cov(ip,oop) . [A.11]

The random part is known. The in-plane and out-of-plane parts and

their covariance can be traced back to the contributing angles using the

results from the previous section:(
σ

rv,ip
i

)2
= u2

H sin2(α j∓
∆χ

2
− γuH) [A.12]

·
{

cos2(γz)
(
σ

az
i
)2

+
(sin(eli′)− sin(eli)cos(∆χ))2

sin2(∆χ)cos2(eli)

(
σ

el
i

)2
}

,

(
σ

rv,oop
i

)2
= u2
⊥ [A.13]

·
{
(sin(eli′)− sin(eli)cos(∆χ))2

sin2(∆χ)

(
σ

az
i
)2

+
cos2(γz)

cos2(eli)

(
σ

el
i

)2
}

,
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A. Single Lidar Error Propagation to Dual-Lidar

cov(ip,oop) = 2u⊥uH sin(α j∓
∆χ

2
− γuH) [A.14]

· ±cos(γz)

sin(∆χ)
(sin(eli′)− sin(eli)cos(∆χ)) ·

{(
σ

az
i
)2−

(
σ el

i
)2

cos2(eli)

}
.

A.4. Bias Error Propagation

We can assume the radial velocity estimator to work bias-free, there-

fore we only have to propagate the angular and out-of-plane biases as

absolute errors to obtain the bias of u j:∣∣∣biassingle
DD (u j)

∣∣∣= ∑
i=1,2

∣∣∣∣ ∂u j

∂ rvi

∣∣∣∣ |biasrv
i | , [A.15]

with

|biasrv
i |=

∣∣∣biasrv,ip
i

∣∣∣+ ∣∣biasrv,oop
i

∣∣ . [A.16]

We find that∣∣∣biasrv,ip
i

∣∣∣= uH

∣∣∣∣sin
(

α j∓
∆χ

2
− γuH

)∣∣∣∣ [A.17]

·
{
|cos(γz)|

∣∣biasaz
i

∣∣+ |sin(eli′)− sin(eli)cos(∆χ)|
|sin(∆χ)cos(eli)|

∣∣∣biasel
i

∣∣∣ } .

Accordingly, the bias or absolute out-of-plane error is given by

∣∣biasrv,oop
i

∣∣= |u⊥| [A.18]

·
{|sin(eli′)− sin(eli)cos(∆χ)|

|sin(∆χ)|
∣∣biasaz

i

∣∣+ |cos(γz)|
|cos(eli)|

∣∣∣biasel
i

∣∣∣} .
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A.5. Generalization to Scanning Beam Retrievals

For scanning beams, a retrieval is made using all radial velocity esti-

mates inside one grid cell of the scanning plane, which were recorded

in the time interval T0. As before, we assume the desired beam angles

to define the lidar plane. Therefore, all single lidar errors appear in the

radial velocity estimates in the vector b of Eq. 3.24.

Inside on grid cell and during time T0, we can assume the single lidar

statistical errors and biases on the velocity estimates to be constant for

each lidar. They can be computed using the formulas given above.

Using the notation from Chap. 3.3, we find for the statistical error in the

u j-component of the wind field in the evaluation plane:

[σ
single
DD (u j)]

2 = ∑
n,L1

g2
n

(
ê j ·M−1 · r̂n

)2
(σ rv

1 )2 + ∑
n,L2

g2
n

(
ê j ·M−1 · r̂n

)2
(σ rv

2 )2 ,

[A.19]

where the L1 and L2 sums stand for sums over data taken at lidars one

or two, respectively.

The absolute error is given by∣∣∣biassingle
DD (u j)

∣∣∣= ∑
n,L1

gn

∣∣∣ê j ·M−1 · r̂n

∣∣∣ |biasrv
1 |+ ∑

n,L2
gn

∣∣∣ê j ·M−1 · r̂n

∣∣∣ |biasrv
2 | .

[A.20]

As a rule of thumb, the statistical variance in the scanning beam method

is approximately given by the statistical variance in the intersecting beam

method, divided be half the number of velocity estimates that enter into

the matrix Eq. 3.24. This is due to the fact that, in the scanning beam

method, one grid cell usually contains more than one velocity estimate

per lidar, which leads to reduced statistical uncertainty. For the approxi-

mation one should use average angle values inside the grid cell.

[σ
single
DD (u j,scanning)]2 ≈ [σ

single
DD (u j, intersect.)]2

N/2
. [A.21]
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On the other hand, the bias can be approximated by the intersecting

beam bias, since it does not scale with the number of data points:∣∣∣biassingle
DD (u j,scanning)

∣∣∣≈ ∣∣∣biassingle
DD (u j, intersect.)

∣∣∣ . [A.22]
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B. Lidar Simulation Parameters

The steering parameters used for lidar simulation match those used

in the set-up of the LMCT Doppler lidars of the WindTracer type

(Chap. 3.1.2). Tab. B.1 summarizes the virtual lidar control parameters.

From those parameters, the position and range of each range gate can

be computed:

The sampling rate (SR) is the frequency with which the detector records

the backscattered signals of the outgoing laser pulses. Each sample has

therefore a duration of 1/SR. The number of samples per gate (SpG)

then determines the full length of one range gate in time domain:

∆pt =
SpG
SR

, [B.1]

which corresponds to a spatial length of

∆p =
SpG
2SR

· c , [B.2]

where c is the speed of light.

The range gates are distributed evenly along the lidar beam, starting

at the offset range (OR) and ending at the maximum distance (MaxD).

Thereby, the distance between range gate centers is given by

RGdist =
MaxD−∆p
RGnum−1

, [B.3]

where RGnum is the range gate number. This means that the position

of the nth range gate centers is located at

r0(n) = OR+
∆p
2

+(n−1) ·RGdist , n = 1, . . . ,RGnum . [B.4]
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B. Lidar Simulation Parameters

Lidar Parameter uG = 0 m/s uG = 5 m/s uG = 10 m/s uG = 15 m/s

Lidar 1 Sampling Rate [Hz] 2.5 ·108 2.5 ·108 2.5 ·108 2.5 ·108

Samples per Gate 100 100 110 128

Offset [m] 350 350 350 350

Maximum Distance [m] 5520 5520 5520 5520

Range Gate Number 110 110 110 110

Pulse Width [s] 3.0 ·10−7 3.0 ·10−7 3.0 ·10−7 3.0 ·10−7

Measurement Frequency [Hz] 10 10 10 10

Pulse Percentile 20 20 20 20

Azimuth Range [◦] [315,45] [315,45] [315,45] [315,45]

Angular Velocity [◦/s] 6.2 6.2 6.9 7.9

Elevation Range [◦] [0,0] [0,0] [0,0] [0,0]

Angular Velocity EL[◦/s] 0 0 0 0

Position (x,y,z) [m] [2500,0,10] [2500,0,10] [2500,0,10] [2500,0,10]

Lidar 2 Sampling Rate [Hz] 2.5 ·108 2.5 ·108 2.5 ·108 2.5 ·108

Samples per Gate 100 100 110 128

Offset [m] 350 350 350 350

Maximum Distance [m] 5520 5520 5520 5520

Range Gate Number 110 110 110 110

Pulse Width [s] 3.7 ·10−7 3.7 ·10−7 3.7 ·10−7 3.7 ·10−7

Measurement Frequency [Hz] 10 10 10 10

Pulse Percentile 20 20 20 20

Azimuth Range [◦] [225,315] [225,315] [225,315] [225,315]

Angular Velocity AZ[◦/s] 6.2 6.2 6.9 7.9

Elevation Range [◦] [0,0] [0,0] [0,0] [0,0]

Angular Velocity EL[◦/s] 0 0 0 0

Position (x,y,z) [m] [5000,2500,10] [5000,2500,10] [5000,2500,10] [5000,2500,10]

Table B.1.: Control parameters of the virtual lidar measurements used in this study.

The overlap (OL) of adjacent range gates is given by

OL = ∆p−RGdist . [B.5]

If the overlap is negative, there are gaps between the range gates.

The angular velocity ω and the measurement frequency determine the

angle ∆β which is scanned by the lidar per mesurement:

∆β =
ω

f
. [B.6]

Depending on the distance r along the beam, this angle translates into

a circular arc of length

∆s =
r ·∆β

180◦
. [B.7]
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C. Comparative LES and Retrieval Spectra of v
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Figure C.1.: Comparative spectral density of the v-component along (left) and across (right) the mean

wind direction for the four data sets (uG increasing from top to bottom). The spectra are shown for the

retrieval results (red), the time-averaged LES results (blue) and the LES results (black). The dashed line

indicates the slope of k−5/3. The pale red lines show a random choice of ten retrieval spectra. The red

mark on the k-axis indicated the effective resolution of the simulation and retrieval.
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D. Effect of Spatial Smoothing on v-Spectra
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Figure D.1.: Effect of spatial smoothing on the spectral density of the v-component along (left) and

across (right) the mean wind direction for the four data sets (uG increasing from top to bottom). The

mean spectra are shown for the time-averaged LES results after applying a moving average filter with

the span (∆x, ∆y) in x- and y-direction, respectively: (∆x,∆y) = (0 m,0 m) (blue), (∆x,∆y) = (∆,0 m) (dark

purple), (∆x,∆y) = (0 m,∆) (light purple), and (∆x,∆y) = (∆,∆) (red). ∆ = {70 m,70 m,70 m,90 m} for

uG = {0 m/s,5 m/s,10 m/s,15 m/s}.
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E. Data Sets for Spatial Scale Analysis

Data Set Field Direction Data Set Size Data Loss Count

at Wind Speed at Wind Speed

0 m/s 5 m/s 10 m/s 15 m/s 0 m/s 5 m/s 10 m/s 15 m/s

LES u x 1800 0 0 4 25

LES u y 1800 0 0 0 0

LES u t 2704 533 9 2 1

LES v x 1800 40 0 10 0

LES v y 1800 0 0 0 0

LES v t 2704 542 23 2 0

LESAVG u x 124 124 138 158 0 0 1 2

LESAVG u y 124 124 138 158 0 0 0 0

LESAVG v x 124 124 138 158 2 0 1 0

LESAVG v y 124 124 138 158 0 0 0 0

RET u x 124 124 138 158 0 1 1 0

RET u y 124 124 138 158 0 0 0 0

RET v x 124 124 138 158 0 0 1 6

RET v y 124 124 138 158 0 0 0 0

Table E.1.: Statistics of the data set used for correlation length computation. In x- and y-direction,

the correlation lengths are computed for each time step. Virtual towers on a 100 m grid were used to

compute the correlation length from time series. Data loss occurred when the autocorrelation function

did not exhibit a zero-crossing in the desired direction.
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E. Data Sets for Spatial Scale Analysis

Data Set Field Direction Data Set Size Data Loss Count

at Wind Speed at Wind Speed

0 m/s 5 m/s 10 m/s 15 m/s 0 m/s 5 m/s 10 m/s 15 m/s

LES u x 1800 0 10 85 134

LES u y 1800 272 0 0 0

LES u t 441 127 30 27 19

LES v x 1800 164 74 116 42

LES v y 1800 0 0 0 0

LES v t 441 110 83 30 19

LESAVG u x 620 620 690 790 0 24 15 15

LESAVG u y 620 620 690 790 106 0 0 0

LESAVG v x 620 620 690 790 74 89 24 5

LESAVG v y 620 620 690 790 17 0 0 0

RET u x 620 620 690 790 82 94 131 142

RET u y 620 620 690 790 154 18 4 11

RET v x 620 620 690 790 206 159 139 101

RET v y 620 620 690 790 50 25 22 22

Table E.2.: Statistics of the data set used for wavelet analysis. For each LES time step, one series

in x-direction at random y-position was analyzed, and vice versa, for each field. For LESAVG and RET

data, five random series were used per time step. Virtual towers positioned on a 250 m grid were used

for the time series analysis. Data loss occurred when a series did not exhibit a Ẽ1 maximum in the scale

range (cf. Chap. 6.2.4).
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Data Set Field Dir Total Structure Count at Wind Speed and Levels

0 m/s 5 m/s

0 -0.2 -0.4 -0.6 -0.8 0 -0.2 -0.4 -0.6 -0.8

LES u x 9933 8765 6994 4984 3111 12190 9995 7153 4591 2726

LES u y 6281 5380 4079 2889 1944 49097 38480 23511 11537 4748

LES u t 1580 1345 988 667 438 3423 2824 1977 1218 698

LES v x 7042 5967 4457 3055 2030 10266 8267 5836 3769 2394

LES v y 10490 9090 7013 4862 2954 13047 11659 9269 6049 3313

LES v t 1759 1514 1169 760 466 2504 2046 1410 904 550

LESAVG u x 3220 2875 2297 1674 1045 3788 3148 2280 1514 928

LESAVG u y 2126 1826 1394 932 633 16586 13082 8079 3902 1650

LESAVG v x 2383 2022 1499 1037 687 3138 2578 1839 1140 748

LESAVG v y 3408 2974 2325 1601 970 4218 3776 3058 1997 1122

RET u x 1290 1164 916 700 507 1596 1381 1072 780 574

RET u y 1105 982 775 572 430 4266 2828 1862 1208 751

RET v x 1009 885 712 551 421 1236 1057 844 654 491

RET v y 1578 1454 1251 997 735 2250 2134 1803 1299 802

10 m/s 15 m/s

0 -0.2 -0.4 -0.6 -0.8 0 -0.2 -0.4 -0.6 -0.8

LES u x 10182 8598 6377 4210 2575 9960 8425 6236 4158 2545

LES u y 50446 42092 28090 14135 5412 49629 41766 28211 14534 5749

LES u t 4822 4010 2776 1645 857 5935 4903 3349 1900 929

LES v x 16097 12783 8377 4993 2768 18998 15375 10185 5810 3112

LES v y 27949 23578 16659 9519 4454 38090 32521 22425 12093 5149

LES v t 7046 5376 3152 1644 809 12717 9728 5631 2641 1109

LESAVG u x 3638 3081 2281 1553 961 4012 3482 2652 1795 1115

LESAVG u y 18818 15749 10861 5548 2154 21121 17928 12258 6418 2529

LESAVG v x 4964 4111 2828 1791 1064 6165 5123 3571 2208 1278

LESAVG v y 8717 7328 5269 3143 1578 14482 12401 8751 4812 2116

RET u x 1498 1277 975 762 593 1584 1328 1042 784 603

RET u y 5969 3636 2150 1329 768 6378 3622 1929 1138 677

RET v x 1802 1540 1187 857 613 2150 1884 1470 1054 729

RET v y 2570 2276 1770 1306 921 3266 2839 2202 1552 1034

Table E.3.: Total number of detected wavelet ramps for the data sets.
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E. Data Sets for Spatial Scale Analysis

Data Set Field Direction Data Set Size

at Wind Speed

0 m/s 5 m/s 10 m/s 15 m/s

LES u x 100

LES u y 100

LES u t 500

LES v x 100

LES v y 100

LES v t 500

LESAVG u x 124 124 138 158

LESAVG u y 124 124 138 158

LESAVG v x 124 124 138 158

LESAVG v y 124 124 138 158

RET u x 124 124 138 158

RET u y 124 124 138 158

RET v x 124 124 138 158

RET v y 124 124 138 158

Table E.4.: Statistics of the data set used for cluster analysis. For 100 random LES time steps, and

all RET and LESAVG time steps, clusters were computed for all fields in 2D. Time series at 500 virtual

towers, evenly distributed across the area, were used to compute 1D clusters in time direction. No data

loss occurred.
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Table E.5.: Total number of detected clusters for the data sets.
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F. Spatial Autocorrelation Results
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Figure F.1.: Zoom into the time-averaged spatial autocorrelations of the u-components of the wind

fields for uG = {0 m/s, 5 m/s, 10 m/s, 15 m/s} (bottom to top) for the three data sets retrieval results (red),

time-averaged LES results (blue), and full-resolution LES results (black).
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0

0

0.2

0

0

0.2

0

0

0.2

0.2

0.4

0
.6

y
-l
a
g
[m

]

−500

0

500

0

0

0.2

0
.4

0

0

0.2

0
.4

0

0

0.2

0.2
0.4

0
.6

y
-l
a
g
[m

]

−500

0

500

0

0

0.20.4

0

0
0.2

0.4

0

0
0.2

0.2

0.40
.6

y
-l
a
g
[m

]

−500

0

500

0

0
.2

0
.4

x-lag [m]
0 500 1000

0

0
.2

0
.40
.6

x-lag [m]
0 500 1000

0

0

0
.20

.40
.6

x-lag [m]

y
-l
a
g
[m

]

0 500 1000

−500

0

500

Figure F.2.: Zoom into time-averaged spatial autocorrelations of the v-components of the wind fields

for uG = {0 m/s, 5 m/s, 10 m/s, 15 m/s} (bottom to top) for the three data sets retrieval results (red),

time-averaged LES results (blue), and full-resolution LES results (black).

222



0
0

0

0
0 0

0
0 0

0
0

0
0

0 00
0

0

0

0

00

0

0

0

0
0

0 0
0

0
0

0

0
0

0

0

0 00
0

0

0

0

0
0

0

0

0

0
0

0
0

0
0

0
0

0

0

00

0

0.2
0.2

y
-l
a
g
[m

]

−2000

0

2000

0 0

0
0

0 0

0 0

0

0
0

0
0

0

0 00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0
0

0 0

0

0

0
0

0
0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

00

0

0

0

0

0

00

0

0

0 0

0

0

0

0

0

0

0

0
0

0

0

0

0.2

y
-l
a
g
[m

]

−2000

0

2000

0

0

00 0

0

0

0 0

0

0
0

00

0

0
0

0

0

0

0

0

0

0

00 0

0

0
0

0
0 0

0
0

00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

y
-l
a
g
[m

]

−2000

0

2000

0

0

0

0

0

0

0

0.2

0.2

x-lag [m]
0 5000

0

0

00

0

0

0

0.2

0.2

x-lag [m]
0 5000

0

0

0

0

0

0
.2

0
.2

0
.2

0
.2

0
.2

0
.2

0
.4

0
.4

x-lag [m]

y
-l
a
g
[m

]

0 5000

−2000

0

2000

Figure F.3.: Full-range time-averaged spatial autocorrelations of the u-components of the wind fields

for uG = {0 m/s, 5 m/s, 10 m/s, 15 m/s} (bottom to top) for the three data sets retrieval results (red),

time-averaged LES results (blue), and full-resolution LES results (black).
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Figure F.4.: Full-range time-averaged spatial autocorrelations of the v-components of the wind fields

for uG = {0 m/s, 5 m/s, 10 m/s, 15 m/s} (bottom to top) for the three data sets retrieval results (red),

time-averaged LES results (blue), and full-resolution LES results (black).
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G. Wavelet Length Scales for Varying Cutoff Values
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Figure G.1.: Wavelet ramp lengths in x direction for varying cutoff values K =

{0,0.2,0.4,0.6,0.8}(bottom to top) for the wind fields components u (left) and v (right). Colors

and range as in Fig 6.17.

225



G. Wavelet Length Scales for Varying Cutoff Values

200

400

600

800

1000

1200

L
y
[m

]

200

400

600

800

1000

1200

L
y
[m

]

200

400

600

800

1000

1200

L
y
[m

]

200

400

600

800

1000

1200

L
y
[m

]

0 5 10 15

uG [m/s]
0 5 10 15

200

400

600

800

1000

1200

uG [m/s]

L
y
[m

]

Figure G.2.: Wavelet ramp lengths in y direction for varying cutoff values K =

{0,0.2,0.4,0.6,0.8}(bottom to top) for the wind fields components u (left) and v (right). Colors

and range as in Fig 6.17.
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H. Clustering Length Scales for Varying Cutoff Values
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Figure H.1.: Cluster lengths in x direction for varying cutoff values σ · {−3,−2.5,−2,−1.5,−1,−0.5}
(bottom to top) for the wind fields components u (left) and v (right). Colors and range as in Fig 6.17.
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Figure H.2.: Cluster lengths in y direction for varying cutoff values σ · {−3,−2.5,−2,−1.5,−1,−0.5}
(bottom to top) for the wind fields components u (left) and v (right). Colors and range as in Fig 6.17.

228



I. Data Sets for Vertical Wind Field Analysis
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Table I.1.: Fit parameters for the linear fit of the FTLE coefficients to the vertical wind field, Part I:

uG = 0 m/s and uG = 5 m/s
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I. Data Sets for Vertical Wind Field Analysis

fit y to w 10 m/s 15 m/s

y = m ·σ +b steps [T0] m [m] b [m/s] m [m] b [m/s]

wLESAVG,intp , σRET 1 5.86 ± 7e-02 -0.04 ± 6e-04 5.43 ± 9e-02 -0.04 ± 9e-04

2 8.25 ± 9e-02 -0.04 ± 6e-04 7.78 ± 1e-01 -0.04 ± 9e-04

3 9.56 ± 1e-01 -0.04 ± 6e-04 8.98 ± 1e-01 -0.04 ± 9e-04

5 10.93 ± 1e-01 -0.04 ± 6e-04 10.04 ± 2e-01 -0.04 ± 9e-04

8 11.89 ± 2e-01 -0.03 ± 6e-04 10.58 ± 2e-01 -0.03 ± 9e-04

13 12.77 ± 2e-01 -0.03 ± 6e-04 11.14 ± 3e-01 -0.03 ± 9e-04

wLESAVG,intp,sm , σRET 1 5.50 ± 4e-02 -0.04 ± 4e-04 4.87 ± 4e-02 -0.04 ± 5e-04

2 7.75 ± 6e-02 -0.04 ± 4e-04 6.95 ± 6e-02 -0.04 ± 5e-04

3 8.99 ± 7e-02 -0.04 ± 4e-04 8.05 ± 7e-02 -0.04 ± 5e-04

5 10.32 ± 8e-02 -0.04 ± 4e-04 9.07 ± 9e-02 -0.04 ± 5e-04

8 11.30 ± 1e-01 -0.03 ± 4e-04 9.61 ± 1e-01 -0.03 ± 5e-04

13 12.22 ± 1e-01 -0.03 ± 4e-04 10.18 ± 1e-01 -0.03 ± 4e-04

wLESAVG , σLESAVG 1 4.29 ± 2e-03 -0.12 ± 8e-05 4.27 ± 2e-03 -0.16 ± 1e-04

2 6.06 ± 3e-03 -0.12 ± 8e-05 6.04 ± 3e-03 -0.15 ± 1e-04

3 7.06 ± 4e-03 -0.11 ± 8e-05 7.01 ± 4e-03 -0.14 ± 1e-04

5 8.16 ± 6e-03 -0.09 ± 9e-05 8.06 ± 6e-03 -0.12 ± 1e-04

8 9.05 ± 8e-03 -0.07 ± 9e-05 8.88 ± 8e-03 -0.09 ± 1e-04

13 10.01 ± 1e-02 -0.06 ± 9e-05 9.77 ± 1e-02 -0.07 ± 1e-04

wLES , σLES 1 92.27 ± 4e-02 -0.12 ± 7e-05 92.32 ± 4e-02 -0.17 ± 9e-05

2 48.93 ± 2e-02 -0.11 ± 7e-05 46.39 ± 2e-02 -0.14 ± 1e-04

3 33.17 ± 2e-02 -0.10 ± 8e-05 31.47 ± 2e-02 -0.13 ± 1e-04

5 20.10 ± 1e-02 -0.08 ± 8e-05 18.65 ± 1e-02 -0.10 ± 1e-04

8 12.82 ± 1e-02 -0.06 ± 8e-05 11.78 ± 1e-02 -0.07 ± 1e-04

13 8.31 ± 1e-02 -0.04 ± 8e-05 7.63 ± 1e-02 -0.05 ± 1e-04

Table I.2.: Fit parameters for the linear fit of the FTLE coefficients to the vertical wind field, Part II:

uG = 10 m/s and uG = 15 m/s
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Contingency Table: 0 m/s 5 m/s 10 m/s 15 m/s

Agreement [%] w w w w

steps [T0 ] ≥ 0 < 0 ≥ 0 < 0 ≥ 0 < 0 ≥ 0 < 0

σRET, wLESAVG,intp ≥ 0 1 41 30 38 45 41 47 44 47

< 0 7 22 3 14 3 9 3 7

≥ 0 2 40 29 38 44 41 47 43 46

< 0 8 23 3 15 3 9 3 7

≥ 0 3 39 28 38 44 41 46 43 46

< 0 9 24 3 15 3 9 3 8

≥ 0 5 37 25 37 43 41 46 43 46

< 0 11 27 4 16 3 10 4 8

≥ 0 8 34 23 37 42 40 45 43 45

< 0 14 29 4 17 4 10 4 8

≥ 0 13 30 19 36 40 40 45 42 45

< 0 18 33 5 19 4 11 4 9

σRET, wLESAVG,intp,sm ≥ 0 1 46 25 41 41 44 45 46 44

< 0 5 24 2 15 2 9 2 8

≥ 0 2 45 24 41 41 44 44 46 43

< 0 6 25 2 16 2 10 2 8

≥ 0 3 44 22 41 40 44 44 46 43

< 0 7 26 2 16 2 10 2 8

≥ 0 5 42 20 41 39 43 44 46 43

< 0 9 29 3 17 3 10 3 9

≥ 0 8 39 18 40 38 43 43 46 42

< 0 12 31 3 18 3 11 3 9

≥ 0 13 35 15 39 37 42 42 45 42

< 0 16 34 4 20 4 12 4 10

σLESAVG, wLESAVG ≥ 0 1 46 18 41 45 44 48 46 47

< 0 2 35 0 14 0 7 0 7

≥ 0 2 43 14 40 44 44 48 46 46

< 0 4 39 0 15 0 8 0 7

≥ 0 3 40 11 40 43 44 47 46 46

< 0 8 42 1 16 0 9 1 8

≥ 0 5 34 7 39 42 43 46 45 44

< 0 13 45 1 18 1 10 1 9

≥ 0 8 27 5 38 39 42 44 44 43

< 0 20 48 2 20 2 11 2 11

≥ 0 13 21 3 37 37 41 43 43 42

< 0 27 50 4 23 3 13 3 11

σLES, wLES ≥ 0 1 46 18 40 45 43 47 45 46

< 0 2 35 0 15 0 10 0 9

≥ 0 2 43 14 39 44 43 47 44 45

< 0 5 39 0 16 1 10 1 10

≥ 0 3 40 11 39 43 42 46 44 45

< 0 8 41 1 17 1 11 2 10

≥ 0 5 34 8 38 41 41 45 43 43

< 0 14 45 2 19 2 12 3 11

≥ 0 8 27 5 37 39 40 43 41 42

< 0 20 48 3 21 3 13 4 13

≥ 0 13 21 3 35 37 39 42 40 41

< 0 26 50 5 24 5 15 5 14

Table I.3.: Contingency table: Agreement and disagreement of signs of the vertical wind w and the

FTLE, using the appropriate vertical wind fields (cf. Chap. 7.3).
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I. Data Sets for Vertical Wind Field Analysis

Contigency Table: 0 m/s 5 m/s 10 m/s 15 m/s

Agreement [%] w w w w

steps [T0] ≥ 0 < 0 ≥ 0 < 0 ≥ 0 < 0 ≥ 0 < 0

DIVRET, wLESAVG,intp ≥ 0 1 27 23 22 24 23 25 24 25

< 0 21 28 18 36 21 31 22 28

DIVRET, wLESAVG,intp,sm ≥ 0 1 31 20 25 21 25 23 26 24

< 0 21 29 19 35 21 31 23 28

DIVLESAVG, wLESAVG ≥ 0 1 42 4 37 6 39 7 41 7

< 0 5 48 4 53 5 49 5 47

DIVLES, wLES ≥ 0 1 41 5 35 8 37 10 39 10

< 0 7 48 5 52 6 47 6 45

Table I.4.: Contingency table: Agreement and disagreement of signs of the vertical wind w and wDIV,

using the appropriate vertical wind fields (cf. Chap. 7.3).
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