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It is probably fair to date loss reserving by means of claim modelling from the late 1960s. For much
of the 50 years since then, the models have either remained algebraically simple, or have incrementally
proceeded to greater algebraic complexity. Much of the limitation on model sophistication has derived
from computing limitations.

As computing power has increased, so has model complexity and sophistication. At some point
on this journey, the modelling of the claim process of individual claims in detail (granular modelling

(GM)) became feasible. More recently, machine learning (ML) has increasingly found its way into the
literature. Again, this may (though not necessarily will) target individual claims.

The two approaches stand in stark contrast with each other in at least one respect. In my own
contribution to the present volume, I refer to them as the Watchmaker (GM) and the Oracle (ML),
the one being concerned with ever more detailed and minute modelling, and the other with incisive
generalizations about data on the basis of reasoning that may be obscure or even impenetrable.

The appearance of two (relatively) new approaches to the estimation of individual claim loss
reserves immediately creates a tension between them, with natural questions about their relative
performances. But the issue is greater than this. There are also questions about the performance of
new versus old models.

I have no doubt that some of these new approaches will prove useful in future, and quite possibly
dominate all others. For the present, however, their status is, in my view, unproven. The research
record contains a number of papers in this field, but some of them consist of an application to a single
dataset with little in the way of general conclusions or indication of the extent to which the results
could be extrapolated to other datasets.

The consequence is a fragmented research record, leaving open questions about the general
applicability of GM and ML. Some of the (to my mind) landmark questions requiring answer are
the following.

1. Modelling of individual claims. This is possible with GM and ML. However, it is a statistical
truism that enlargement of the volume of data used does not necessarily increase predictive
power. Indeed, in Section 8.2 of my own contribution to this volume, I give an example where it
will not. So, can we identify the circumstances in which the use of individual claims is likely to
bring predictive benefit?

2. Complexity. One might reasonably guess that the answer to the previous question will be
somehow related to the complexity of the dataset under analysis. In short, datasets with simple
algebraic structures have simple methods of analysis, and complex datasets have more complex
methods, and possibly individual claims. So, can we design a metric of data complexity (perhaps
based on relative entropy or similar) that could be used to triage datasets?

3. Predictive gain. In cases where some predictive gain is found, say reduced prediction error or
more granular reserving or some other form of GM/ML supremacy, what exactly is the gain
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in quantitative terms, and are there any general indications of the circumstances in which it
might occur?

4. Interpretability. Explainable neural nets (NNs) have entered the literature. These structured
NN outputs so as to increase their interpretability. Even so, the results are not always quite
transparent. Can we define alternative constraints in the form of output so as to enhance
interpretability further?

5. Interpretability (continued). In any case, to what extent is interpretability paramount? Can we
define circumstances in which it is essential, and others where it does not matter?

The present volume commences with two articles on loss reserving at the individual claim level,
in each case using a form of machine learning. De Felice and Moriconi (2019) use CART (Classification
And Regression Trees) together with some granular features, whereas Duval and Pigeon (2019) use
gradient boosting.

These are followed by two articles on neural networks. Kuo (2019) apples deep learning to claim
triangles, but with multi-triangle input and other input features. Then, Poon (2019) is concerned with
the issue of interpretability, applying an unexplainability penalty to the neural network.

Finally, my own contribution (Taylor 2019) discusses the merits and demerits of GM and ML
models, and compares the two families.

Funding: This research received funding assistance from the Australian Research Council, grant
number LP130100723.
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Abstract: We present an approach to individual claims reserving and claim watching in general
insurance based on classification and regression trees (CART). We propose a compound model
consisting of a frequency section, for the prediction of events concerning reported claims, and a severity
section, for the prediction of paid and reserved amounts. The formal structure of the model is based
on a set of probabilistic assumptions which allow the provision of sound statistical meaning to the
results provided by the CART algorithms. The multiperiod predictions required for claims reserving
estimations are obtained by compounding one-period predictions through a simulation procedure.
The resulting dynamic model allows the joint modeling of the case reserves, which usually yields
useful predictive information. The model also allows predictions under a double-claim regime,
i.e., when two different types of compensation can be required by the same claim. Several explicit
numerical examples are provided using motor insurance data. For a large claims portfolio we derive
an aggregate reserve estimate obtained as the sum of individual reserve estimates and we compare
the result with the classical chain-ladder estimate. Backtesting exercises are also proposed concerning
event predictions and claim-reserve estimates.

Keywords: individual claims reserving; claim watching; classification and regression trees;
machine learning

1. Introduction

In the settlement process of a general insurance claims portfolio we denote as claim watching
the insurer’s activityconsisting of monitoring and controlling the cost development at single-claim
level. Claim watching encompasses prediction of specific events regarding individual claims that
can be relevant for cost development and could be influenced by possible appropriate management
actions. Obviously, the estimation of the ultimate cost, hence the individual claims reserving, is also a
typical claim watching activity. Early-warning systems at single-claim or group-of-claims level can be
also included.

In this paper, we propose a machine-learning approach to claim watching, and individual claims
reserving, using a prediction model based on the classification and regression trees (CART). The paper
is largely based on a path-breaking article produced in 2016 by Mario Wüthrich (Wüthrich 2016)
where individual claims reserving is addressed by CART techniques. The method proposed by
Wüthrich was restricted “for pedagogical reasons” to the prediction of events and the estimation of the
number of payments related to individual claims. We extend Wüthrich’s paper providing a so-called
frequency-severity model where claim amounts paid are also considered. Moreover, we enlarge the set of
the response and explanatory variables of the model to allow prediction under a double-claim regime,
i.e., when two different types of compensation can be required by the same claim. This multi-regime
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extension enables us to provide meaningful applications to Italian motor insurance claims data. We also
propose a further enhancement of the CART approach allowing the joint dynamic modeling of the
case reserves, which usually yield useful predictive information.

The claim watching idea and a related frequency-severity model based on CARTs were introduced
and developed in D’Agostino et al. (2018) and large part of the material presented here was already
contained in that paper.

According to a point of view proposed in Hiabu et al. (2015), a possible inclusion of a granular
data approach in claims reserving could be provided by extending classical aggregate methods,
adding more model structure to include underlying effects which are supposed to emerge at an
individual claim level. In Hiabu et al. (2015) this approach is illustrated by referring to a series
of extensions of the Double Chain-Ladder (DCL) model, originated in Verral et al. (2010) and
developed in successive papers, (see e.g., Martínez-Miranda et al. 2011, 2012, 2013). Approaches
to claims reserving recently proposed based on embedding a classical actuarial model in a neural
net (see e.g., Gabrielli et al. 2018; Wüthrich and Merz 2019) could also be interpreted as going in
a similar “top-down” direction. A different path is followed in this paper. We use the large model
flexibility provided by machine-learning methods for directly modeling individual claim histories.
In this approach model assumptions are specified at granular level and are, in some sense, the minimal
required to guarantee a sound statistical meaning to results provided by the powerful algorithms
currently available. This allows implantation of claim watching activities which can be considered
even more general than traditional claims reserving.

This paper, however, has several limitations. In particular, only point estimates of the ultimate
claim cost are considered and the important problem of prediction uncertainty is not addressed, yet.
Moreover, these cost estimates do not fully include underwriting year inflation, then an appropriate
model should be added to this aim. Therefore, the present paper should be considered to be only a
starting point in applying CARTs to claims reserving and claims handling. By analogy, one could say
that in introducing machine learning to individual reserving data this paper is playing the same role
as Verral et al. (2010) was playing in DCL: many improvements and developments should follow.

The present paper is composed of two parts. In the first part one-period prediction problems
are considered. Prediction problems typical in claim watching and individual claims reserving are
presented in Section 2 and notation and a basic assumption (i.e., the dependence of the prediction
functions on the observation time-lag) are introduced in Section 3. In Section 4 we describe the general
structure of the frequency-severity approach, providing details on the model assumptions for both
the model components. The structure of the feature space, both for static and dynamic variables,
is described in Section 5 and the organization of data required for the CART calibrations is illustrated
in Section 6. In Section 7 the use of classification trees for the frequency prediction, and regression
trees for (conditional) severity predictions is illustrated. In Section 8 a first extensive example of
one-year predictions for a claims portfolio in Italian motor insurance is presented using the rpart

routine implemented in R. The results of the CART calibration are discussed in detail and a possible
use of event predictions for early warning is illustrated.

The second part of the paper considers multiperiod predictions and includes numerical examples
and backtesting exercises. In Section 9 we consider multiperiod predictions and describe the properties
required for deriving multiyear forecasts by compounding one-year forecasts. In Section 10 a
simulation approach to multiperiod forecasts is also presented and additional assumptions allowing
the joint dynamic modeling of the case reserves are discussed. A first numerical example of multiperiod
prediction of a single-claim cost is also provided. Section 11 is devoted to numerical examples of
applications to a large claims portfolio in motor insurance and to some backtesting exercises providing
insights into the predictive performance of our CART approach. We first illustrate backtesting results
for predictions of one-year event occurrences useful for claim watching. Finally, a typical claim
reserving exercise is provided, composed of two steps. In a first step the individual reserve estimate
is derived by simulation for all the claims in the portfolio and the resulting total reserve, after the
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addition of an IBNYR (incurred but not yet reported) reserve estimate, is compared with the classical
chain-ladder reserve, estimated on aggregate payments at portfolio level (an ancillary model for IBNYR
reserves is outlined in Appendix A). Since we perform these estimates on data deprived of the last
calendar year observations, we analyze the predictive accuracy of the CART approach with respect to
the chain-ladder approach by comparing the realized aggregate payments in the “first next diagonal”
with those predicted by the two methods. Some conclusions are presented in Section 12.

Part I. One-period Predictions

2. A First Look at the Problem and the Model

Let us consider the claim portfolio of a given line of business of a non-life insurer. We are interested
in the individual claim settlement processes of this portfolio. For example, for a given claim C in the
portfolio, we would like to answer questions like these:

(a) What is the probability that C is closed in the next year?
(b) What is the probability that a lawyer will be involved in the settlement of C in two years?
(c) What is the expectation of a payment in respect of C in the next year?
(d) What is the expectation of the total claim payments in respect of C until finalization?

In general, we will refer to the activity of dealing with this kind of questions as claim watching.
In particular, question (b) could be relevant in a possible early-warning system, while questions
as (c) and (d) are more concerned with individual claims reserving. The classical claims reserving, i.e.,
the estimation of the outstanding loss liabilities aggregate over the entire portfolio, could be obtained
by summing all the individual claim reserves with some corrections due to non-modeled effects
(typically, reserve for IBNYR claims).

For a specified claim C in the portfolio, a typical claim watching question at time t can be
formulated as a prediction problem with the form:

E

[
Y(C)

t+τ

∣∣∣Ft

]
= μ
(

x(C)t

)
, τ > 0, (1)

where:

· Ft denotes the information available at time t,
· the vector x(C)t ∈ X is the claim feature (also covariates, explanatory variables, independent variables,

. . . ), which is observed up to time t, i.e., is Ft-measurable,
· μ : X → R is the prediction function,
· Y(C)

t+τ is the response variable (or dependent variable).

Referring to the previous examples, the response in (1) can be specified as follows:

(a) Y(C)
t+τ is the indicator function of the event {C is closed at time t + τ} (with τ = 1),

(b) Y(C)
t+τ is the indicator function of {C will involve a lawyer by the time t + τ} (with τ = 2),

(c) Y(C)
t+τ is the random variable denoting the amount paid in respect of C at time t + τ (with τ = 1),

(d) Y(C)
t+τ is the random variable denoting the cumulated paid amount in respect of C at time t + τ

(with τ → ∞).

The response and the feature can be both quantitative or qualitative variables and we do not
assume for the moment a particular structure for the prediction function μ, which must be estimated
from the data. Usually, the prediction model (1) is referred to as regression model if the response is a
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quantitative variable and classification model if the response is qualitative (categorical). The prediction
function is named, accordingly, as regression or classifier function1.

Questions such as (a) and (b) involve prediction of events while questions such as (c) and (d)
concern prediction of paid amounts. With some abuse of actuarial jargon, we will refer to a prediction
model for event occurrences as a frequency model. Similarly, we will refer to a prediction model for
paid amounts as a severity model. Then, altogether, we need a frequency-severity model. We will
develop a frequency-severity model for claim watching with a conditional severity component that is
the paid amounts are predicted conditionally on the payment is made. This is because the probability
distribution of a paid amount, with a discrete mass in 0, is better modeled by separate recognition of
the mass and the remainder of the distribution (assumed continuous).

Remark 1. A model with such a structure can be also referred to as a cascaded model, see
Taylor (2019) for a discussion of this kind of models. This model structure also bears some resemblance to
Double Chain-Ladder (DCL), see Martínez-Miranda et al. (2012). In DCL a micro-model of the claims
generating process is first introduced to predict the reported number of claims. Future payments are then
predicted through a delay function and a severity model. In DCL, however, individual information is assumed to
be “(in practice often) unobservable” and the micro-model is only aimed to derive a suitable reserving model for
aggregate data. In this paper, instead, extensive individual information is assumed to be always available and
each individual claim is identifiable. Moreover, we are interested in both claim watching and individual claims
reserving, aggregate reserving being a possible byproduct of the approach.

To deal with the prediction problems both in the frequency and the severity component we
shall use the classification and regression trees (CART) techniques, namely classification trees for
the frequency section and regression trees for the severity section. One of the main advantages of
CART methods is the large modeling flexibility (for aggregate claims reserving methods with a good
degree of model flexibility though not using machine learning, see e.g., Pešta and Okhrin 2014).
Carts can deal with any sort of structured and unstructured information, an underlying structural
form of the prediction function μ can be learned from the data, many explanatory variables can be
used, both quantitative and qualitative and observed at different dates. Moreover, the interpretability
of results is generally allowed. As methods for providing expectations, CARTs can also be referred to
as prediction trees.

3. Notation and Basic Assumptions

The notation used in this paper is essentially the same as in Wüthrich (2016). For simplicity sake
we model the claim settlement process using an annual time grid. If allowed by the available data,
a discrete time grid with a shorter time step (semester, quarter, month, . . . ) could be used.

Accident year. For a given line of business in non-life insurance, let us consider a claims portfolio
containing observations at the current date on the claims occurred during the last I accident years (ay).
The accident years are indexed as i = 1, . . . , I. Then we are at time (calendar year) t = I.

Reporting delay. For each accident year i, claims may have been observed with a reporting delay (rd)
j = 0, 1, . . . . A claim with accident year i and reporting delay j will have reporting date i + j. As usual,
we assume that there exists a maximum possible delay J ≥ 0.

1 According to the logical foundations of probability theory, as stated by Bruno de Finetti in the 1930s mainly using the Italian
language, the word corresponding to the English prediction is previsione (prévision in French) and not predizione. As strongly
stated by de Finetti, previsione refers to providing expectation, while predizione refers to providing certainty, which obviously is
possible only in a deterministic framework. A prediction problem can have a very general nature. Formulation (1) is only a
particular, though important, specification. Usually prediction is also referred to as forecast or foresight.
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Claims identification. Each claim is identified by a claim code cc. For each block (i, j) there are Ni,j
claims and we denote by ν = 1, . . . , Ni,j the index numbering the claims in block (i, j); the ν-th claim in

(i, j) is denoted by C(ν)
i,j .

IBNYR claims. Because of the possible reporting delay, at a given date t we can have incurred but
not yet reported (IBNYR) claims. Since there is a maximal delay J, at the current date the IBNYR claims
are those with delay j > (I − i) ∧ J. The maximum observed reporting delay is (I − 1) ∧ J.

Remark 2. At time I, claims with j ≤ I − i can be closed or reported but not settled (RBNS). We can
estimate a reserve required for these claims. For the IBNYR reserve estimate a specific reserving model is needed
(see Appendix A).

Predictions in the claim settlement process. For given i, j, ν, the claim settlement process of C(ν)
i,j is

defined on the calendar dates i + j, i + j + 1, i + j + 2, . . . . Let us denote by:

· X(ν)
i,j|k a generic random variable, possibly multidimensional, involved in the claim settlement

process of C(ν)
i,j and observed at time t = i + j + k, for k ∈ N0,

· � := j + k = t − i the time-lag of X(ν)
i,j|k.

Using this notation, the prediction problem (1) for τ = 1 is reformulated as follows:

E

[
Y (ν)

i, j|t − (i + j) + 1︸ ︷︷ ︸
date t+1

∣∣∣Fi+j+k

]
= μ
(

x(ν)i, j|t − (i + j)︸ ︷︷ ︸
date t

)
, (2)

where the claim feature x(ν)i,j|t−(i+j) ∈ X is Fi+j+k-measurable, μ : X → R, and the response is possibly
multidimensional. In the rest of the paper the prediction function μ will refer solely to one-year forecast
problems. Multiyear prediction problems will be treated compounding one-year predictions.

To give some statistical structure to the prediction model, we make the following basic assumption
on the prediction function:

(H0) At any date t the one-year prediction function μ
(

x(ν)i,j|t−(i+j)

)
depends only on the time-lag � = t − i. i.e.,:

μt−i : X → R, x(ν)i,j|t−(i+j) �→ μt−i

(
x(ν)i,j|t−(i+j)

)
.

Then the μt−i function is independent of ν and is applied to all the features with the same time-lag
� = t − i, providing the expectation of Y (ν)

i,j|t−(i+j)+1 (which has time-lag �+ 1).
Under assumption (H0) we can build statistical samples of observed pairs feature-response which

can be used to derive an estimate of unobserved responses based on observed features.
In what follows it will be often convenient to rewrite the prediction problem using the k index.

Since t = i + j + k expression (2), taking account of assumption (H0), takes the form:

E

[
Y (ν)

i,j|k+1

∣∣∣Fi+j+k

]
= μj+k

(
x(ν)i,j|k

)
. (3)

4. The General Structure of the Frequency-Severity Model

To give a formal characterization of the entire claim settlement process we have to recall that Ni,j
denotes the number of claims occurred in accident year i reported in calendar year i + j. Then in a
general setting we let the relevant indexes vary as follows:

i = 1, . . . , I, j = 0, . . . , J, ν ∈ N1, k ∈ N0 ,

and we consider also Ni,j as a stochastic process.

7
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4.1. Frequency and Severity Response Variables

The peculiarity of the frequency model is that the response variables Y (ν)
i,j|k are defined as a

multi-event, which is a vector of 0–1 random variables. Precisely, for all values of i, j, ν and k we
assume that a frequency-type response at time i + j + k for the claim C(ν)

i,j takes the form:

F(ν)
i,j|k =

(
hF(ν)

i,j|k, h = 1, . . . , d
)′

with hF(ν)
i,j|k ∈ {0, 1}, h = 1, . . . , d .

As concerning severity, we shall assume that in the claim settlement process two different kinds
of claim payments are possible, say type-1 and type-2 payments. Then we shall indicate with S1(ν)i,j|k
and S2(ν)i,j|k the random variable denoting a claim payment of type 1 and type 2, respectively, made at

time i + j + k. For all values of i, j, ν and k, a severity-type response for C(ν)
i,j will be denoted in general

as S(ν)
i,j|k, which will be specified as S1(ν)i,j|k or S2(ν)i,j|k according to a type-1 or type-2 cash flow is to be

predicted. We shall also denote by S̄1(ν)i,j|k and S̄2(ν)i,j|k) the binary variables:

S̄1(ν)i,j|k = 1{S1(ν)
i,j|k 
=0

} , S̄2(ν)i,j|k = 1{S2(ν)
i,j|k 
=0

} ,

i.e., the indicator of the event {A claim payment of type 1 for C(ν)
i,j is made at time i + j + k} and {A claim

payment of type 2 for C(ν)
i,j is made at time i + j + k}, respectively.

Remark 3. The assumption of multiple payment types will be necessary in our applications to Italian Motor
Third Party Liability (MTPL) data. Essentially, in Italian MTPL incurred claims can be handled, according to
their characteristics, under (at least) two different regimes: direct compensation ("CARD" regime) and indirect
compensation ("NoCARD" regime). Case reserves in the two regimes are different and a claim can activate
one or both, as well as can change regime. In our numerical examples we shall denote NoCARD and CARD
payments/reserves as type-1 and type-2 payments/reserves, respectively.

The following model assumptions extend the set of assumptions used in Wüthrich (2016).

4.2. Model Assumptions

Let (Ω,F ,P,F) be a filtered probability space with filtration F = (Ft)t∈N0 such that for i =

1, . . . , I, j = 0, . . . , J, ν = 1, . . . , Ni,j, k ∈ N0, the process (Ni,j)i,j is F-adapted for t = i + j and all the
processes:

(F(ν)
i,j|k)i,j,k,ν , (S1(ν)i,j|k)i,j,k,ν , (S2(ν)i,j|k)i,j,k,ν ,

are F-adapted for t = i + j + k. We make the following assumptions:

(H1) The processes (Ni,j)i,j, (F(ν)
i,j|k)i,j,k,ν, (S1(ν)i,j|k)i,j,k,ν and (S2(ν)i,j|k)i,j,k,ν are independent.

(H2) The random variables in (Ni,j)i,j, (F(ν)
i,j|k)i,j,k,ν, (S1(ν)i,j|k)i,j,k,ν and (S2(ν)i,j|k)i,j,k,ν for different accident years

are independent.
(H3) The processes (F(ν)

i,j|k)k, (S1(ν)i,j|k)i,j,k,ν and (S2(ν)i,j|k)i,j,k,ν for different reporting delays j and different claims
ν are independent.

(H4) The conditional distribution of F(ν)
i,j|k is the d-dimensional Bernoulli:

F(ν)
i,j|k+1

∣∣Fi+j+k ∼ d-Bernoulli
(

p( f )
j+k
(

x(ν)i,j|k
))

,

8
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with f = ( f1, . . . , fd), f1, . . . , fd ∈ {0, 1} and where x(ν)i,j|k ∈ X is the Fi+j+k-measurable frequency

feature of C(ν)
i,j|k and p( f )

j+k : X �→ [0, 1]2
d

is a probability function, i.e.:

∑
f1,..., fd∈{0,1}

p( f )
j+k
(
x(ν)i,j|k
)
= 1 .

(H5) For the conditional distribution of S1(ν)i,j|k|(S̄1(ν)i,j|k = 1) and S2(ν)i,j|k|(S̄2(ν)i,j|k = 1) one has:

S1(ν)i,j|k+1

∣∣∣ (S̄1(ν)i,j|k+1 = 1
)
∼ N

(
μ̃
(1)
j+k
(

x̃(ν)i,j|k
)
, σ2

1

)
,

S2(ν)i,j|k+1

∣∣∣ (S̄2(ν)i,j|k+1 = 1
)
∼ N

(
μ̃
(2)
j+k
(

x̃(ν)i,j|k
)
, σ2

2

)
,

(4)

where x̃(ν)i,j|k ∈ X is the Fi+j+k-measurable severity feature of C(ν)
i,j|k .

Assumption (H4) implies that for every claims C(ν)
i,j|k reported at time i + j + k:

P

[
1F(ν)

i,j|k+1 = f1, . . . , dF(ν)
i,j|k+1 = fd

∣∣∣Fi+j+k

]
= p( f )

j+k

(
x(ν)i,j|k

)
≥ 0 , (5)

and:

∑
f1,..., fd∈{0,1}

p( f )
j+k

(
x(ν)i,j|k

)
= 1 .

Therefore, there exists an Fi+j+k-measurable frequency feature x(ν)i,j|k which determines the
conditional probability of each (binary) component of the response variable. Expression (5) provides
the specification of the prediction problem (3) for the frequency model.

Similarly, assumption (4) implies that for every claims C(ν)
i,j|k reported at time i + j + k:

E

[
S1(ν)i,j|k+1

∣∣∣Fi+j+k,
(

S̄1(ν)i,j|k+1 = 1
)]

= μ̃
(1)
j+k

(
x̃(ν)i,j|k

)
,

E

[
S2(ν)i,j|k+1

∣∣∣Fi+j+k,
(

S̄2(ν)i,j|k+1 = 1
)]

= μ̃
(2)
j+k

(
x̃(ν)i,j|k

)
.

(6)

Then there exists an Fi+j+k-measurable severity feature x̃(ν)i,j|k which determines the conditional

expectation of the cash flows S1(ν)i,j|k and S2(ν)i,j|k. The previous assumptions specify a compound
frequency-severity model. From (6):

E

[
S1(ν)i,j|k+1

∣∣∣Fi+j+k

]
= μ̃

(1)
j+k

(
x̃(ν)i,j|k

)
P

[
S̄1(ν)i,j|k+1 = 1

∣∣∣Fi+j+k

]
,

E

[
S2(ν)i,j|k+1

∣∣∣Fi+j+k

]
= μ̃

(2)
j+k

(
x̃(ν)i,j|k

)
P

[
S̄2(ν)i,j|k+1 = 1

∣∣∣Fi+j+k

]
.

(7)

If the indicators S̄1(ν)i,j|k+1 and S̄2(ν)i,j|k+1 have been included in the response vector for the frequency
model, the corresponding probabilities are provided by (5) and the severity expectations are then
obtained by this compound model. Expression (7) provides the specification of the prediction
problem (3) for the (two types of) severity model in the framework of this compound model.

Remark 4. As regards model assumptions:

• The independence assumptions (H1), (H2) and (H3) were taken to receive a not too much complex model.
In particular, assumptions in (H1) are necessary to obtain compound distributions, assumptions in (H3)
allow the modeling of variables of individual claims independently for different ν.

9
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• However, the specified model is rather general as regarding the prediction functions p and μ̃ in (5) and (6).
These functions at the moment are fully non-parametric and can have any form. In the following sections
we will show how these functions can be calibrated with machine-learning methods provided by CARTs.

• The value of the variance parameters σ2
1 , σ2

2 in (4) is irrelevant since the normality assumption is used in
this paper only to support the sum of squared errors (SSE) minimization for the calibration of the regression
trees. The value of the variance is irrelevant in this minimization.

• Our model assumptions concern only one-year forecasting (from time t to t + 1). Under proper conditions
multiyear predictions can be obtained by compounding one-period predictions. This will be illustrated in
Section 9.

4.3. Equivalent One-Dimensional Formulation of Frequency Responses

The frequency prediction problem can be reformulated equivalently by replacing the
d-dimensional binary random variables F(ν)

i,j|k+1 by the one-dimensional random variable:

W(ν)
i,j|k+1 =

d

∑
h=1

2h−1
hF(ν)

i,j|k+1 ∈ {0, . . . , 2d − 1} . (8)

In this case, assumption (H4) is replaced by:

(H4’) For the conditional distribution of W(ν)
i,j|k one has:

W(ν)
i,j|k+1

∣∣Fi+j+k ∼ Categorical
(

p(w)
j+k
(
x(ν)i,j|k
))

,

where p(w)
j+k : X �→ [0, 1]2

d
is a probability function, i.e.:

2d−1

∑
w=0

p(w)
j+k
(

x(ν)i,j|k
)
= 1 .

Expression (5) is then rewritten accordingly:

P

[
W(ν)

i,j|k+1 = w
∣∣∣Fi+j+k

]
= p(w)

j+k

(
x(ν)i,j|k

)
≥ 0 , w = 0, . . . , 2d − 1 . (9)

In the numerical examples presented in this paper we shall use formulation (8) for the frequency
response since the R package rpart we use in these examples, multidimensional responses are
not supported.

5. Characterizing the Feature Space

Given the high modeling flexibility of CARTs, the feature space X in our applications can be very
large and with rather general characteristics. In the following discussion we refer to the frequency
features x(ν)i,j|k ; the same properties hold for the severity features x̃(ν)i,j|k. Typically, for all i, j, ν, k the

feature x(ν)i,j|k is a vector with a large number of components. The feature components can be categorical,
ordered or numerical. As pointed out by Taylor et al. (2008) the concept of static and dynamic variable
is also important when considering the feature components.

Static variables. These are components of x(ν)i,j|k which remain unchanged during the life of the claim

C(ν)
i,j . Typical static variables are the claim code cc (categorical), the accident year i and the reporting

delay j (ordered).
Dynamic variables. These feature components may randomly change over time. This implies that in

general we have to understand x(ν)i,j|k as containing information on C(ν)
i,j up to time i + j + k. For example,

10
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the entire payment history of the claim up to time i + j + k may be included in x(ν)i,j|k. Therefore, when

time passes more and more information is collected and the dimension of x(ν)i,j|k increases.

Typical examples of dynamic feature components are the categorical variable S̄1(ν)i,j|k which can

take different 0-1 values for k ∈ N0, or the numerical variable S2(ν)i,j|k which can take different values in
R for k ∈ N0. The categorical variable:

Z(ν)
i,j|k = 1{C(ν)i,j is closed at time i + j + k

} ,

is better modeled as a dynamic variable, since we observe that a closed claim can be reopened.
At time i + j + k the structure of feature x(ν)i,j|k of C(ν)

i,j can be expressed as:

x(ν)i,j|k =
(

A(ν)
i,j , B(ν)

i,j|0, . . . , B(ν)
i,j|k

)′
, (10)

where:

· A(ν)
i,j is a column vector of static variables,

· B(ν)
i,j|h, h = 0, . . . , k, is a column vector of dynamic variables observed in year i + j + h.

Following Wüthrich (2016), if j > 0 for each variable in B(ν)
i,j|0 the observed value is preceded by a

sequence of j zeros. An alternative choice could be to insert “NA” instead of zeros, provided that we
are able to control how the CART routine used for calibration handles missing values in predictors.

From (10) one can say that x(ν)i,j|k provides the feature history of C(ν)
i,j up to time i + j + k, while the

vector B(ν)
i,j|k+1 provides its development in the next year i + j + k + 1.

For example, for claim C(ν)
i,1 the feature at time i + 2 could be specified as:

x(ν)i,1|1 =
(

A(ν)
i,1 , B(ν)

i,1|0 , B(ν)
i,1|1

)′
,

where:

· A(ν)
i,1 = (cc, i, j)′,

· B(ν)
i,1|0 =

(
0, Z(ν)

i,1|0, 0, S̄1(ν)i,1|0, 0, S̄2(ν)i,1|0,
)′

,

· B(ν)
i,1|1 =

(
Z(ν)

i,1|1, S̄1(ν)i,1|1, S̄2(ν)i,1|1, S1(ν)i,1|1, S2(ν)i,1|1,
)′

.

In this example the covariates S1(ν)i,1 , S2(ν)i,1 are observed only on the current date i + 2 and the

covariates Z(ν)
i,1 , S̄1(ν)i,1 , S̄2(ν)i,1 are observed on dates i + 1 and i + 2. Then it is implicitly assumed

a Markov property of order 1 for the processes (S1(ν)i,j|k)k∈N0 and (S2(ν)i,j|k)k∈N0 and of order 2 for the

processes (Z(ν)
i,j|k)k∈N0 , (S̄1(ν)i,j|k)k∈N0 and (S̄2(ν)i,j|k)k∈N0 . In this respect it is useful to introduce the following

definition. Let b(ν)i,j|k be a dynamic variable included in the feature x(ν)i,j|k. We denote by historical depth

of b(ν)i,j|k the maximum θ ∈ {1, . . . , k} for which b(ν)i,j|k−(θ−1) is included in x(ν)i,j|k. Generalizing the previous

example, we can say that if b(ν)i,j|k has historical depth θ, then a Markov property of order θ is implicitly

assumed for the process (b(ν)i,j|k)k∈N0 .
As previously mentioned, in Section 9 we shall consider multiyear predictions. It is important to

observe that in this case a dynamic variable can play the role of both an explanatory and a response
variable. This is typical in dynamic modeling. For example, in a prediction from t to t + 2, the variable
S̄1(ν)i,j|t−(i+j)+1 could be chosen as a component of the frequency response variable F(ν)

i,j|t−(i+j)+1 in the

11
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prediction from t to t + 1 and as a component of the feature x(ν)i,j|t−(i+j)+1 in the next prediction from
t + 1 to t + 2.

As is also clearly recognized in Taylor et al. (2008), an important issue in multiperiod prediction
concerns the use of the case reserves. The amount of the type-1 and type-2 case reserve R1(ν)i,j|k and R2(ν)i,j|k
should provide useful information for the claim settlement process. A correct use of this information
will typically require a joint dynamic modeling of the claim payment and the case reserve processes.
A set of additional model assumptions useful to this aim is provided in Section 10.3.

6. Organization of Data for the Estimation

Since the considerations we present in this section apply to both the frequency and the severity
model, we use here the more general notation of problem (2), where (x, Y) is used to denote the
feature-response pairs. The exposition can be specified for the frequency or the severity model by
skipping to the (x, F) or (x̃, S) notation, respectively.

Since the regression functions in (2) depend on the lag �, in order to make predictions at time I
we need the I − 1 estimates:

μ̂�, � = 0, 1, . . . , I − 2 .

Each of these estimates is based on historical observations, which are given by the relevant
pairs feature-response of claims reported at time t = I. Precisely, the estimate μ̂� at time t = I,
for � = 0, 1, . . . , I − 2, is based on the set of lag observations:

D� := DC
� ∪DP

� ,

where:

DC
� :=

{(
x(ν)i,j|�−j, Y (ν)

i,j|�−j+1

)
; 1 ≤ i ≤ I − �− 1, j

i
≤ j ≤ �, 1 ≤ ν ≤ Ni,j

}
: calibration set ,

DP
� :=

{(
x(ν)I−�,j|�−j, ·

)
; j

I−�
≤ j ≤ �, 1 ≤ ν ≤ NI−�,j

}
: prediction set ,

with j
i
≥ 0 the minimum reporting delay observed for accident year i2. Given the model assumptions

the pairs
(

x(ν)i,j|�−j, Y (ν)
i,j|�−j+1

)
in the calibration set can be considered independent observations of the

random variables feature-response for lag � and can be used for the estimation of the corresponding
prediction function in the prediction set. Therefore, we calibrate using CARTs the prediction function
μ� on DC

� , where the pairs feature-response are observed, and apply the resulting calibrated function
μ̂� to the features in DP

� in order to forecast the corresponding, not yet observed, response variables

Y (ν)
I−�,j|�−j+1. These are predicted as:

Ŷ
(ν)
I−�,j|�−j+1 := Ê

[
Y (ν)

I−�,j|�−j+1

∣∣∣FI

]
= μ̂�

(
x(ν)I−�,j|�−j

)
, j

I−�
≤ j ≤ �, 1 ≤ ν ≤ NI−�,j .

In Table 1 the data structure is illustrated for a very simplified portfolio with I = 4 accident years,
j
i
≡ 0 and only one claim for each block (i, j), i.e., Ni,j ≡ 1. Columns refer to calendar years t = 1, . . . , 4.

Cells with “·” refer to dates where the claims are not yet occurred. Cells with “no” (not observed) refer
to dates where the claims are occurred, but their feature is not yet observed because of reporting delay
(these features would have k < 0). Observations in the last column cannot be used because at date I the
responses with k > I − (i + j) are not yet observed. Cells with observations useful for the calibration
are highlighted in pink color.

2 It can happen, for example, that only claims reported from calendar year y onwards are observed, which implies i + j ≥ y,
i.e., j

i
= (y − i) ∨ 0.
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Table 1. Pairs feature-response observed at time I = 4 for a claims portfolio with Ni,j ≡ 1. In cells
with “no” features are not observed because of reporting delay. Responses on the last column are not
yet observed.

Feature-response Pairs at Calendar Years t = i + j + k, t′ = t + 1

cc ay: i rd: j ν t = 1 t = 2 t = 3 t = 4 = I

1 1 0 1
(

x(1)1,0|0, Y (1)
1,0|1

) (
x(1)1,0|1, Y (1)

1,0|2

) (
x(1)1,0|2, Y (1)

1,0|3

) (
x(1)1,0|3, ·

)
2 1 1 1 no

(
x(1)1,1|0, Y (1)

1,1|1

) (
x(1)1,1|1, Y (1)

1,1|2

) (
x(1)1,1|2, ·

)
3 1 2 1 no no

(
x(1)1,2|0, Y (1)

1,2|1

) (
x(1)1,2|1, ·

)
4 1 3 1 no no no

(
x(1)1,3|0, ·

)
5 2 0 1 .

(
x(1)2,0|0, Y (1)

2,0|1

) (
x(1)2,0|1, Y (1)

2,0|2

) (
x(1)2,0|2, ·

)
6 2 1 1 . no

(
x(1)2,1|0, Y (1)

2,1|1

) (
x(1)2,1|1, ·

)
7 2 2 1 . no no

(
x(1)2,2|0, ·

)
8 3 0 1 . .

(
x(1)3,0|0, Y (1)

3,0|1

) (
x(1)3,0|1, ·

)
9 3 1 1 . . no

(
x(1)3,1|0, ·

)
10 4 0 1 . . .

(
x(1)4,0|0, ·

)

A more convenient presentation of data is provided in Table 2 where the observations are
organized by lag, i.e., with columns corresponding to lags � = 0, . . . , I − 1 = 3. Intuitively, the feature
x(ν)i,j|k can be thought of as being allocated on the row (i, j, ν) of the table from column j + k back to the
first column. Data on the last column � = 3 can be dropped, since responses have never been observed
at time I for this lag. Similarly, row 4, corresponding to claims C(ν)

1,3 , can also be dropped.

Table 2. Pairs feature-response observed at time I = 4 organized by lag. Data on last column and row
4 cannot be used for prediction.

Feature-response Pairs Reorganized by Lag (� = j + k)

cc ay: i rd: j ν � = 0 � = 1 � = 2 � = 3

1 1 0 1
(

x(1)1,0|0, Y (1)
1,0|1

) (
x(1)1,0|1, Y (1)

1,0|2

) (
x(1)1,0|2, Y (1)

1,0|3

) (
x(1)1,0|3, ·

)
2 1 1 1 no

(
x(1)1,1|0, Y (1)

1,1|1

) (
x(1)1,1|1, Y (1)

1,1|2

) (
x(1)1,1|2, ·

)
3 1 2 1 no no

(
x(1)1,2|0, Y (1)

1,2|1

) (
x(1)1,2|1, ·

)
4 1 3 1 no no no

(
x(1)1,3|0, ·

)
5 2 0 1

(
x(1)2,0|0, Y (1)

2,0|1

) (
x(1)2,0|1, Y (1)

2,0|2

) (
x(1)2,0|2, ·

)
.

6 2 1 1 no
(

x(1)2,1|0, Y (1)
2,1|1

) (
x(1)2,1|1, ·

)
.

7 2 2 1 no no
(

x(1)2,2|0, ·
)

.

8 3 0 1
(

x(1)3,0|0, Y (1)
3,0|1

) (
x(1)3,0|1, ·

)
( · , · ) .

9 3 1 1 no
(

x(1)3,1|0, ·
)

( · , · ) .

10 4 0 1
(

x(1)4,0|0, ·
)

( · , · ) ( · , · ) .

We are then led to the representation in Table 3, which shows a “triangular” structure resembling
the data structure typically used in classical claims reserving. In this table observations highlighted in
pink color in column � (where the response is observed) provide the dataset DC

� used for the calibration
of μ̂�. For example, for � = 1 data refers to claims with identification number cc = 1, 2, 5, 6. The feature
of claims 1 and 2, belonging to accident year 1, is observed up to time t = i + � = 4, but only features
observed up to time t = 3 can be used for the estimation. For claims 2, 3, which are reported with a
one-year delay, historical data is missing for calendar year 1, 2, respectively. Cells highlighted in green
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color correspond to the data sets DP
� , � = 0, 1, 2, used for the estimates Ŷ

(ν)
I−�,j|�−j+1 of the responses,

which replace the missing values in Table 2.

Table 3. Pairs feature-response organized by lag relevant for prediction at time I = 4. Responses on the
“last diagonal” (green cells) are not yet observed and require one-year forecasts, which are denoted by
Ŷ . In the two remaining “diagonals” neither the responses nor the features are yet observed; two-year
and three-year forecasts are required in these cases.

Calibration Set and Prediction Set, by Lag

cc ay: i rd: j ν � = 0 � = 1 � = 2

1 1 0 1
(

x(1)1,0|0, Y (1)
1,0|1

) (
x(1)1,0|1, Y (1)

1,0|2

) (
x(1)1,0|2, Y (1)

1,0|3

)
2 1 1 1 no

(
x(1)1,1|0, Y (1)

1,1|1

) (
x(1)1,1|1, Y (1)

1,1|2

)
3 1 2 1 no no

(
x(1)1,2|0, Y (1)

1,2|1

)
5 2 0 1

(
x(1)2,0|0, Y (1)

2,0|1

) (
x(1)2,0|1, Y (1)

2,0|2

) (
x(1)2,0|2, Ŷ

(1)
2,0|3

)
6 2 1 1 no

(
x(1)2,1|0, Y (1)

2,1|1

) (
x(1)2,1|1, Ŷ

(1)
2,1|2

)
7 2 2 1 no no

(
x(1)2,2|0, Ŷ

(1)
2,2|1

)
8 3 0 1

(
x(1)3,0|0, Y (1)

3,0|1

) (
x(1)3,0|1, Ŷ

(1)
3,0|2

)
·

9 3 1 1 no

(
x(1)3,1|0, Ŷ

(1)
3,1|1

)
·

10 4 0 1
(

x(1)4,0|0, Ŷ
(1)
4,0|1

)
· ·

7. Using CARTs for Calibration

7.1. Basic Concepts of CART Techniques

As we have seen, the general form of our one-year prediction problems at time I can be given by:

E

[
Y (ν)

I−�,j|�−j+1

∣∣∣FI

]
= μ�

(
x(ν)I−�,j|�−j

)
, � = 0, . . . , I − 2 , (11)

which will be specified as a frequency or a severity model according to the specific application. For each
lag we calibrate the prediction function μ� in (11) with CART techniques. Classical references for CART
methods are the work Breiman et al. (1998) and Section 9.2 in Hastie et al. (2008). In a CART approach
to the prediction problem (11) the μ̂� function is piece-wise constant on a specified partition:

P� :=
{
R(1)

� , . . . ,R(R�)
�

}
, (12)

of the feature space X , where the elements (regions) R(r)
� , r = 1, . . . , R�, of P� are (hyper)rectangles,

i.e., for given � there exist R� constants μ̄
(r)
� , r = 1, . . . , R�, such that:

μ̂�

(
x(ν)I−�,j|�−j

)
=

R�

∑
r=1

μ̄
(r)
� 1{x(ν)

I−�,j|�−j∈R
(r)
�

} . (13)

The peculiarity of CART techniques consists of the method of choice of partition P�. This is
determined on the calibration set DC

� by assigning to the same rectangle observations (x, Y) which are in

some sense more similar. The region R(r)
� is the r-th leaf of a binary tree which is grown by successively

partitioning DC
� through the solution of standardized binary split questions (see Section 5.1.2 in

Wüthrich and Buser (2019) for definition). According to the method chosen for the recursive splitting,
a loss function, or impurity measure, L is specified, and at each step, the split which reduces L most is the
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one chosen for the next binary split. The rule by which μ̄
(r)
� is computed depends on the method chosen.

For example, μ̄
(r)
� can be the empirical mean of the response variables if these are quantitative or it can

be the category with maximal empirical frequency (maximal class) if the responses are categorical.
In a first stage a binary tree is grown with a large size, i.e., many leaves. In a second stage

the initial tree is pruned using K-fold cross-validation techniques. Using the cross-validation error
a cost-complexity parameter is computed as a function of the tree size and the optimal size is that
corresponding to a cost-complexity value sufficiently low, according to a given criterion (usually we
use the one-standard-error rule). The leaves of this optimally pruned tree are the elements R(r)

� of the
partition P� in (12). The expectations in (11) are then estimated by applying the optimal partition P� to
the prediction set DP

� , i.e.,:

Ŷ
(ν)
I−�,j|�−j+1 = Ê

[
Y (ν)

I−�,j|�−j+1

∣∣∣FI

]
= μ̂�

(
x(ν)I−�,j|�−j

)
, � = 0, . . . , I − 2 ,

where μ̂� is given by (13). In D’Agostino et al. (2018) regions R(r)
� and partition P� are also referred to,

respectively, as explanatory classes and explanatory structure (for lag �).
In our applications of CARTs, we shall use the rpart routine implemented in R, see e.g.,

Therneau et al. (2015).

7.2. Applying CARTs in the Frequency Model

In the frequency section of our frequency-severity model the responses are categorical, then we
use classification trees for calibration. In rpart this is obtained with the option method=‘class’, which
also implies that the Gini index is used as impurity measure. As previously pointed out, since the
rpart routine supports only one-dimensional response variables, instead of using the d-dimensional
variables F we formulate the classification problem using the one-dimensional variables defined in (8).
From (9) we have:

P

[
W(ν)

I−�,j|�−j+1 = w
∣∣∣FI

]
= p(w)

�

(
x(ν)I−�,j|�−j

)
, w = 0, . . . , 2d − 1 . (14)

Therefore, the calibration of the prediction function for lag � is performed by determining the
optimal partition P� of the calibration set:

DC
� :=

{(
x(ν)i,j|�−j, W(ν)

i,j|�−j+1

)
; 1 ≤ i ≤ I − �− 1, j

i
≤ j ≤ �, 1 ≤ ν ≤ Ni,j

}
,

where the calibration of the prediction function reduces to the estimation of the probability distribution
{p(w)

� (·); w = 0, . . . , 2d − 1} on each leaf R(r)
� of the optimal partition P�. Formally, for each

r = 1, . . . , R�, the rpart routine provides the probabilities:

p̂(w,r)
�

(
x(ν)i,j|�−j

)
= P

[
W(ν)

i,j|�−j+1 = w
∣∣∣x(ν)i,j|�−j ∈ R(r)

�

]
, w = 0, . . . , 2d − 1 , (15)

which are estimated as the empirical frequencies on each leaf of the partition P� of DC
� . The estimates

P̂
[
W(ν)

I−�,j|�−j+1 = w
∣∣FI
]

required in (14) are finally obtained by applying P� to the prediction set DP
� .

7.3. Applying CARTs in the Severity Model

In the severity section the prediction problem takes the form, from (6):

E

[
S(ν)

I−�,j|�−j+1

∣∣∣FI , (S̄
(ν)
I−�,j|�−j+1 = 1)

]
= μ̃�

(
x̃(ν)I−�,j|�−j

)
, (16)

where we use the generic notations S for S1, S2, and S̄ for S̄1, S̄2. Since the severity is a quantitative
variable we use regression trees, which are obtained in rpart with the option method=‘anova’. In this
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case, the loss function used is the sum of squared errors (SSE). Given the normality assumption (H5) the
SSE minimization performed by the binary splitting algorithm provides a log-likelihood minimization
in this non-parametric setting.

The important point here is that since (16) is a conditional model, the set of observed
feature-response pairs where the prediction function is calibrated must include only claims for which
a payment was made at the response date. Therefore, the calibration set is formally specified as:

DC
� :=

{(
x̃(ν)i,j|�−j, S(ν)

i,j|�−j+1

) ∣∣∣( S̄(ν)
i,j|�−j+1 = 1

)
; 1 ≤ i ≤ I − �− 1, j

i
≤ j ≤ �, 1 ≤ ν ≤ Ni,j

}
.

Similarly, the prediction set is given by:

DP
� :=

{(
x̃(ν)I−�,j|�−j, ·

) ∣∣∣( S̄(ν)
I−�,j|�−j+1 = 1

)
; j

i
≤ j ≤ �, 1 ≤ ν ≤ Ni,j

}
.

This corresponds to the fact that the severity calibration, as being a conditional calibration, must
be run after the corresponding frequency calibration has been made, and must be performed on the
leaves of the frequency model where a claim payment was made at time i + �+ 1. From the function̂̃μ� calibrated in this way one obtains:

Ê

[
S(ν)

I−�,j|�−j+1

∣∣∣FI ,
(

S̄(ν)
I−�,j|�−j+1 = 1

)]
= μ̃

(r)
�

(
x̃(ν)I−�,j|�−j

)
, x̃(ν)I−�,j|�−j ∈ R(r)

� , r = 1, . . . , R� .

As in (7) the estimate of the payment-unconditional expectations is then given by:

Ŝ(ν)
I−�,j|�−j+1 = Ê

[
S(ν)

I−�,j|�−j+1

∣∣∣FI

]
= ̂̃μ�

(
x̃(ν)I−�,j|�−j

)
P̂

[
S̄(ν)

I−�,j|�−j+1 = 1
∣∣∣FI

]
.

The final probability estimate in this expression is given by the frequency model, provided that
the binary variable S̄(ν)

I−�,j|�−j+1 has been included in the response W(ν)
I−�,j|�−j+1 .

8. Examples of One-Year Predictions in Motor Insurance

In these first examples we consider one-year predictions based on data from the Italian MTPL line
at the observation date 2015. As previously mentioned, we denote by S1 NoCARD payments and by
S2 CARD payments (for details on CARD and NoCARD regime see D’Agostino et al. 2018). We have:

· Observed accident years: from 2010 to 2015. Then i = 1, . . . , I with I = 6.
· Only claims reported from 2013 onwards are observed, hence for accident year i, one has

j = j
i
, . . . , 6 − i, with j

i
= (4 − i) ∨ 0.

· The pairs feature-response are observed for lags � = 0, . . . , I − 2 = 4 (5 estimation steps).

The total number of reported claims in this portfolio is ∑i,j Ni,j = 468, 108. The “triangular”
structure of the data is illustrated in Table 4, where the number Ni,j of claims in each block (i, j) is
also reported. In each column, i.e., for each lag, the cells in the calibration set DC

� are highlighted in
pink and those in the prediction set DP

� in green color. A rather short claim history (“last 3 diagonals”)
is observed in this portfolio. This data however is interesting because the information on lawyer
involved is available, which can be useful to illustrate early-warning applications of claim watching.
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Table 4. Pairs feature-response organized by lag relevant for prediction at time I = 6 in the considered
claims portfolio.

Feature-response at Lag �

ay: i rd: j ν � = 0 � = 1 � = 2 � = 3 � = 4

1 3 1, . . . , 130 no no no
(

x(ν)1,3|0, F(ν)
1,3|1

) (
x(ν)1,3|1, F(ν)

1,3|2

)
1 4 1, . . . , 68 no no no no

(
x(ν)1,4|0, F(ν)

1,4|1

)
2 2 1, . . . , 871 no no

(
x(ν)2,2|0, F(ν)

2,2|1

) (
x(ν)2,2|1, F(ν)

2,2|2

) (
x(ν)2,2|2, ·

)
2 3 1, . . . , 119 no no no

(
x(ν)2,3|0, F(ν)

2,3|1

) (
x(ν)2,3|1, ·

)
2 4 1, . . . , 30 no no no no

(
x(ν)2,4|0, ·

)
3 1 1, . . . , 10, 778 no

(
x(ν)3,1|0, F(ν)

3,1|1

) (
x(ν)3,1|1, F(ν)

3,1|2

) (
x(ν)3,1|2, ·

)
.

3 2 1, . . . , 623 no no
(

x(ν)3,2|0, F(ν)
3,2|1

) (
x(ν)3,2|1, ·

)
.

3 3 1, . . . , 97 no no no
(

x(ν)3,3|0, ·
)

.

4 0 1, . . . , 144, 820
(

x(ν)4,0|0, F(ν)
4,0|1

) (
x(ν)4,0|1, F(ν)

4,0|2

) (
x(ν)4,0|2, ·

)
. .

4 1 1, . . . , 10, 767 no
(

x(ν)4,1|0, F(ν)
4,1|1

) (
x(ν)4,1|1, ·

)
. .

4 2 1, . . . , 519 no no
(

x(ν)4,2|0, ·
)

. .

5 0 1, . . . , 140, 256
(

x(ν)5,0|0, F(ν)
5,0|1

) (
x(ν)5,0|1, ·

)
. . .

5 1 1, . . . , 10, 112 no
(

x(ν)5,1|0, ·
)

. . .

6 0 1, . . . , 148, 918
(

x(ν)6,0|0, ·
)

. . . .

8.1. Prediction of Events Using the Frequency Model

In this section, we consider the prediction problem of event occurrences in the next year I + 1
and, for illustration, we present a frequency model for the lag � = 1, thus considering for prediction
only the claims of accident year I − 1 = 5, i.e., the claims C(ν)

5,j , j = 0, 1, ν = 1, . . . , N5,j. In our data

N5,0 = 140, 256 and N5,1 = 10, 112, therefore
∣∣DP

1

∣∣ = 150, 368. The observations in the calibration set
are
∣∣DC

1

∣∣ = N3,1 + N4,0 + N4,1 = 166, 365. Let us suppose we want to make prediction of the following
indicators at time I + 1 = 7, j = 0, 1:

S̄1(ν)5,j|2−j = 1{C(ν)5,j has a type-1 payment at time 7
} ,

S̄2(ν)5,j|2−j = 1{C(ν)5,j has a type-2 payment at time 7
} ,

Z(ν)
5,j|2−j = 1{C(ν)5,j is closed at time 7

} ,

L(ν)
5,j|2−j = 1{C(ν)5,j will involve a lawyer at time 7

} .

This choice produces the 4-dimensional response:

F(ν)
5,j|2−j =

(
S̄1(ν)5,j|2−j, S̄2(ν)5,j|2−j, Z(ν)

5,j|2−j, L(ν)
5,j|2−j

)′
.

We work however with the variable:

W(ν)
5,j|2−j = S̄1(ν)5,j|2−j + 2 S̄2(ν)5,j|2−j + 4 Z(ν)

5,j|2−j + 8 L(ν)
5,j|2−j ,

which is a scalar with the 16 possible values 0, . . . , 15. These values correspond to 16 “states” of the
response, as illustrated in Table 5.
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Table 5. Structure of the response variables W(ν)
I−1,j|2−j.

S̄1 S̄2 Z L W State of the Response

0 0 0 0 0 ONN0: open without payments and without lawyer

1 0 0 0 1 OYN0: open with S1 payment and without lawyer

0 1 0 0 2 ONY0: open with S2 payment and without lawyer

1 1 0 0 3 OYY0: open with S1 and S2 payment and without lawyer

0 0 1 0 4 CNN0: closed without payments and without lawyer

1 0 1 0 5 CYN0: closed with S1 payment and without lawyer

0 1 1 0 6 CNY0: closed with S2 payment and without lawyer

1 1 1 0 7 CYY0: closed with S1 and S2 payment and without lawyer

0 0 0 1 8 ONNL: open without payments and with lawyer

1 0 0 1 9 OYNL: open with S1 payment and with lawyer

0 1 0 1 10 ONYL: open with S2 payment and with lawyer

1 1 0 1 11 OYYL: open with S1 and S2 payment and with lawyer

0 0 1 1 12 CNNL: closed without payments and with lawyer

1 0 1 1 13 CYNL: closed with S1 payment and with lawyer

0 1 1 1 14 CNYL: closed with S2 payment and with lawyer

1 1 1 1 15 CYYL: closed with S1 and S2 payment and with lawyer

For the feature components of x(ν)i,j|2−j, i = 1, . . . , 5, j = 0, 1, we choose the following variables:

S̄1(ν)i,j|1−j = 1{C(ν)i,j has a type-1 payment at time i + 1
} ,

S̄2(ν)i,j|1−j = 1{C(ν)i,j has a type-2 payment at time i + 1
} ,

Z(ν)
i,j|1−j = 1{C(ν)i,j is closed at time i + 1

} ,

L(ν)
i,j|1−j = 1{C(ν)i,j involves a lawyer at time i + 1

} ,

R̄1(ν)i,j|1−j = 1{C(ν)i,j has a type-1 case reserve at time i + 1
} ,

R̄2(ν)i,j|1−j = 1{C(ν)i,j has a type-2 case reserve at time i + 1
} .

All these variables are of 0-1 type; however, frequency features need not be of this kind.
For example also the case reserve amounts R1(ν)i,j|1−j and R2(ν)i,j|1−j could be considered.

With this choice for the response variable and the feature components the prediction problem (14)
takes the form:

P

[
W(ν)

5,j|2−j = w
]
= p(w)

1

(
x(ν)5,j|1−j

)
≥ 0 , w = 0, . . . , 15 ,

where the probability function p(w)
1 : X �→ [0, 1]16 is estimated on DC

1 .

As already mentioned, we estimate the probability function p(w)
1 under side constraint

∑15
w=0 p(w)

1 = 1 using the routine rpart implemented in R. The input data in DC
1 is organized as

a table (a data frame) where each row corresponds to a claim and in each column the value of the
response and of all the feature components observed at different historical dates is reported.
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The following R command is used for the calibration, see Therneau et al. (2015) for details3:

freqtree1 <- rpart(W ∼ rd + Z_0 + Z_1 + L_0 + L_1 + P1_0 + P1_1 + P2_0 + P2_1 +

T1_0 + T1_1 + T2_0 + T2_1, data=dt_freq1,

method=‘class’, control=rpart.control(cp=0.01))

where dt_freq1 is the calibration set DC
1 , and the variables are relabeled as follows:

W(ν)
i,j|2−j = W, Z(ν)

i,j|1−j = Z_1, L(ν)
i,j|1−j = L_1, S̄1(ν)i,j|1−j = P1_1, S̄2(ν)i,j|1−j = P2_1,

R̄1(ν)i,j|1−j = T1_1, R̄2(ν)i,j|1−j = T2_1 , j
i
≤ j ≤ 1 ,

and:

Z(ν)
i,0|0 = Z_0, L(ν)

i,0|0 = L_0, S̄1(ν)i,0|0 = P1_0, S̄2(ν)i,0|0 = P2_0, R̄1(ν)i,0|0 = T1_0, R̄2(ν)i,0|0 = T2_0 .

The rationale of this labelling is that variables with subscript _h, h = 0, . . . , �, are observed at time
i + h i.e., have historical depth θ = �− h+ 1. Therefore for � = 1 variables with _1 have θ = 1 and
variables with _0 have θ = 2.

With the previous command a large binary tree, freqtree1, was grown by rpart. In a second
step freqtree1 has been pruned using 10-fold cross-validation and applying the one-standard-error
rule. The resulting pruned tree is reported in Figure 1, which is obtained by the package rpart.plot.

Figure 1. Frequency model: pruned classification tree for lag � = 1.

The tree has R1 = 5 leaves. In the “palette” associated with each node of the tree the corresponding
frequency distribution of the response variable W observed in the calibration set DC

1 is reported.

Therefore the palettes associated with the leaves provide the probability estimates p̂(w,r)
1 associated with

3 The value 0.01 of the complexity parameter cp used in this example is rather high. It has been used here to simplify the
illustration, since the pruned tree finally obtained with this choice is not too much large. For this reason, this pruned tree
is slightly suboptimal. Using a more appropriate value of cp, however, does not change substantially the results that are
discussed here.
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the regions R(r)
1 , r = 1, . . . , 5, of the optimal partition P1, as shown by expression (15). Frequencies

in the palettes are expressed in percent and are rounded to the nearest whole number. The rpart

numerical output provides more precise figures.
To illustrate Figure 1 we order the leaves in sequence from left to right, so that the r-th leaf

from the left corresponds to the region R(r)
1 of P1. Let us consider, for example, the claims in the

fifth leaf R(5)
1 , which have Z_1 = 1. These are the claims in the calibration set that were closed

at time 4 and 5 (then with Z(ν)
i,j|1−j = 1, i = 3, 4); these claims are the 94% of all claims in the

calibration set. Since, under model assumptions, the observed frequencies provide the estimate of
the corresponding probabilities at the current time I for event occurrences at time I + 1, one can
observe that for claims closed at time I there is (about) a 99% probability that they will be closed
without payments at time I + 1, while there is (about) a 1% probability that they will reopened with
a payment. Leaf 4 in the tree contains the claims with Z_1 = 0 and T1_1 = 1. These are the claims
in the calibration set (3% of the total) which were open with a type-1 reserve placed on at time 4
and 5, i.e., (Z(ν)

i,j|1−j = 0) ∩ (R̄1(ν)i,j|1−j = 1), i = 3, 4. From the frequency table reported in the palette,
we conclude that for the claims open with type-1 reserve at time I the most probable state at time I + 1
(33% probability) is CYN0, i.e., the state with a type-1 payment and claim closing (W(ν)

5,j|2−j = 5). In leaf 3
we find the claims in the calibration set which at time 4 and 5 were open without type-1 reserve and
with a lawyer involved, i.e., (Z(ν)

i,j|1−j = 0) ∩ (R̄1(ν)i,j|1−j = 0) ∩ (L(ν)
i,j|1−j = 1), i = 3, 4. These claims are

0.2% of the total. From the frequency table we conclude that for claims that at time I have the same
feature the most probable state at time I + 1 (36% probability) is CNY0, i.e., the state with a type-2
payment and claim closing (W(ν)

5,j|2−j = 6). In the fourth binary split, which produces the first two
leaves in the tree, the splitting criterion is the existence of a type-2 payment (indicator P2_1) for claims
which at time 4 and 5 were open without type-1 reserve and without a lawyer. From the frequency
tables in the second and the first leaf (referring to about 1% and 2% of the claims of the calibration
set, respectively), one finds that if at time I the claim has a type-2 payment, the most probable state at
time I + 1 (33%) is CNY0; otherwise the most probable state (40%) is ONN0, i.e., it remains open without
payments and without involving a lawyer.

It is interesting to note that although we included in the model also explanatory variables observed
with historical depth θ = 2 (i.e., feature variables with subscript _0), none of these variables has been
considered useful for prediction by the algorithm (after pruning). Only explanatory variables with
θ = 1 (subscript _1) has been used for the splits in the pruned tree.

8.2. Possible Use for Early Warnings

For a given claim with � = 1 let us consider questions as those of type (b) presented
in Section 2 (with τ = 1). Formally, for a given claim C(ν)

5,j in DP
1 let us consider the event{

C(ν)
5,j will involve a lawyer at time 7

}
, with indicator L(ν)

5,j|2−j. This corresponds to the events W(ν)
5,j|2−j ∈

{8, . . . , 15} hence:

P

[
L(ν)

5,j|2−j = 1
]
=

15

∑
w=8

P

[
W(ν)

5,j|2−j = w
]

.

This probability is different in different leaves of the classification tree, then we write:

λ(r) := P̂

[
L(ν)

5,j|2−j = 1
∣∣∣C(ν)

5,j ∈ R(r)
1

]
=

15

∑
w=8

p̂(w,r)
1 , r = 1, . . . R1 .

If n(r) denotes the number of claims C(ν)
5,j belonging to leaf r, the expected number of claims with

lag 1 that will involve a lawyer in the next year is given by Λ := ∑R1
r=1 λ(r) n(r).

The values of λ(r) and n(r) are reported in Table 6, where the leaves are ordered by decreasing
value of the probability λ(r). It results that the expected number is Λ = 920. Since |DP

1 | = ∑5
r=1 n(r) =
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150, 368, only 0.6% of the claims in DP
1 is expected to involve a lawyer in one year. This data could also

be useful for providing information to an early-warning system. For example, a list could be provided
of the first 323 claims in the table, i.e., the claims in DP

1 for which λ(r) > 40%.

Table 6. Expectations of involving a lawyer in different leaves.

r λ(r) n(r)

3 40.50% 323
4 16.46% 3204
2 5.89% 1495
1 1.63% 1878
5 0.10% 143,468

In Section 11.2 we will present a backtesting exercise for this kind of predictions.

8.3. Prediction of Claim Payments Using the Conditional Severity Model

Once the optimal classification tree in Figure 1 has been obtained for the frequency, for each leaf
in this tree two regression functions must be calibrated for the severity, one for type-1 and one for
type-2 payments. For the sake of brevity, we illustrate two cases:

1. The estimate of a type-1 (i.e., NoCARD) payment for open claims with type-1 reserve placed on,
for which we consider the claims in leaf 4 in the frequency tree in Figure 1.

2. The estimate of a type-2 (i.e., CARD) payment for open claims without type-1 reserve placed on
and with lawyer involved, for which we consider the claims in leaf 3 in Figure 1.

Case 1. As pointed out in Section 7.3, since the severity model is a conditional model, for the
calibration of the regression function μ̃

(1)
� only the claims for which a type-1 payment is made at

the response date are considered. Hence the calibration set for this regression estimate is the subset
of claims in leaf 4 of the frequency tree for which a type-1 payment was observed in the response.
It results in this calibration set consisting of 2564 claims. For the calibration of this regression tree the
following R command is used:

sevtree4 <- rpart( S1_2 ∼ rd + L_0 + L_1 + S1_0 + S1_1 + S2_0 + S2_1 +

R1_0 + R1_1 + R2_0 + R2_1, data=dt_sev4,

method=‘anova’, control=rpart.control(cp=0.001))

where dt_sev4 is the calibration set and the relabeling is used:

S1(ν)i,j|2−j = S1_2, L(ν)
i,j|1−j = L_1, S1(ν)i,j|1−j = S1_1, S2(ν)i,j|1−j = S2_1,

R1(ν)i,j|1−j = R1_1, R2(ν)i,j|1−j = R2_1 , j
i
≤ j ≤ 1 ;

L(ν)
i,0|0 = L_0, S1(ν)i,0|0 = S1_0, S2(ν)i,0|0 = S2_0, R1(ν)i,0|0 = R1_0, R2(ν)i,0|0 = R2_0 .

As for the frequency case, after the large binary tree sevtree4 was grown by rpart, this was
pruned using 10-fold cross-validation and applying the one-standard-error rule. The pruned tree thus
obtained is illustrated in Figure 2, provided by rpart.plot.

The feature variable and its critical value used for the binary split are indicated on each node.
On the palette attached to the node the empirical mean of payments and the percentage number of
observations is reported. The partition provided by the pruned tree consists of 7 leaves. Under model
assumptions, the average payment reported in the palette provides the expected value at time I = 6 of
the type-1 payment at time I + 1 = 7.
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Figure 2. Severity model: pruned regression tree for claims in leaf 4 of the frequency tree.

Case 2. In this case, the calibration set for the severity tree is the subset of claims in leaf 3 of the
frequency tree for which a type-2 payment was observed in the response. This calibration set consists
of 281 claims. The R command used for this regression tree is similar to that for Case 1. The tree
pruned with the usual method is reported in Figure 3.

Figure 3. Severity model: pruned regression tree for claims in leaf 3 of the frequency tree.

The partition provided by this tree consists now of 3 leaves. The average payment reported
in the palette of each leaf provides the expected value at time 6 of the type-2 payment at time 7 for
these claims.
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Part II. Multiperiod Predictions and Backtesting

9. Multiperiod Predictions

9.1. The Shift-Forward Procedure and the Self-Sustaining Property

The basic idea underlying the extension of a one-period prediction to a multiperiod prediction
in the frequency model can be illustrated as follows. At time i + j + k = I, let us consider the claims
referring to two contiguous prediction sets DP

� ,DP
�′ with �′ = � + 1, � = 0, . . . , I − 3, that is the

claims classes:

H =
(
C(ν)

i,j : i = I − � , j
I−�

≤ j ≤ � , 1 ≤ ν ≤ NI−�,j

)
,

H′ =
(
C(ν′)

i,j : i = I − �′ , j
I−�′

≤ j ≤ �′ , 1 ≤ ν′ ≤ NI−�′ ,j

)
.

For these two classes the corresponding one-year prediction problem in the frequency model is
given by:

E

[
F(ν)

I−�,j|�−j+1

∣∣∣FI

]
= p( f )

�

(
x(ν)I−�,j|�−j

)
,

E

[
F(ν′)

I−�′ ,j|�′−j+1

∣∣∣FI

]
= p( f )

�′

(
x(ν

′)
I−�′ ,j|�′−j

)
.

Assume that the prediction functions of the two problems have been calibrated on the sets DC
�

and DC
�′ , respectively, with the resulting estimates for time I + 1:

F̂
(ν)
I−�,j|�−j+1 = p̂( f )

�

(
x(ν)I−�,j|�−j

)
,

F̂
(ν′)
I−�′ ,j|�′−j+1 = p̂( f )

�′

(
x(ν

′)
I−�′ ,j|�′−j

)
.

Our aim is to derive an estimate of the two-year response F(ν)
I−�,j|�−j+2 for the claims C(ν)

i,j in class
H, i.e., with accident year I − �.

Assume that the feature and the response for claims in class H are specified so that:

F̂
(ν)
I−�,j|�−j+1 ⊇ B̂

(ν)
I−�,j|�−j+1 , (17)

i.e., the estimated response variable for claims in class H contains an estimate of the next year
dynamic component of the feature x(ν)I−�,j|�−j+1 of these claims, see expression (10). Following
D’Agostino et al. (2018) a property such as (17) is referred to as self-sustaining property. Then we
can estimate the response at time I + 2 as:

F̂
(ν)
I−�,j|�−j+2 = p̂( f )

�+1

(
x̂(ν)I−�,j|�−j+1

)
,

where x̂(ν)i,j|I−i−j+1 =
(

x(ν)i,j|I−i−j, B̂
(ν)
i,j|I−i−j+1

)′
is the one-year updated feature of C(ν)

i,j ∈ H. In this
procedure the two-year response estimate for claims in class H (whose one-year response has been
estimated using the μ̂� prediction function) is obtained by the μ̂�′ prediction function, which has been
estimated for claims in class H′ but is now applied to the claim feature updated using μ̂�.

The previous shift-forward procedure applied for all lags � = 0, . . . , I − 3 provides all the two-year
predictions, i.e., the entire “second new diagonal” of estimates in the “data triangle”, provided that
property (17) holds for each lag.
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As an example, let us consider in Table 7 the time I estimates for claims of accident year I = 6
(class H) and of accident year I − 1 = 5 (class H′), with corresponding lags � = 0 and �′ = 1. We have
the problems:

E

[
F(ν)

6,0|1

∣∣∣F6

]
= p̂( f )

0

(
x(ν)6,0|0

)
, E

[
F(ν)

5,0/1|1/0+1

∣∣∣F6

]
= p̂( f )

1

(
x(ν)5,0/1|1/0

)
,

which, after calibration at time 6 on DC
0 and DC

1 , respectively, provide the estimates for time 7:

F̂
(ν)
6,0|1 = p̂( f )

0

(
x(ν)6,0|0

)
, F̂

(ν)
5,0/1|1/0+1 = p̂( f )

1

(
x(ν)5,0/1|1/0

)
.

Table 7. Creating “future diagonals” by multiyear predictions.

Feature-response at Lag �

ay: i rd: j ν � = 0 � = 1 � = 2 � = 3 � = 4

1 3 1, . . . , N1,3 no no no
(

x(ν)1,3|0, F(ν)
1,3|1

) (
x(ν)1,3|1, F(ν)

1,3|2

)
1 4 1, . . . , N1,4 no no no no

(
x(ν)1,4|0, F(ν)

1,4|1

)
2 2 1, . . . , N2,2 no no

(
x(ν)2,2|0, F(ν)

2,2|1

) (
x(ν)2,2|1, F(ν)

2,2|2

) (
x(ν)2,2|2, F̂

(ν)
2,2|3
)

2 3 1, . . . , N2,3 no no no
(

x(ν)2,3|0, F(ν)
2,3|1

) (
x(ν)2,3|1, F̂

(ν)
2,3|2
)

2 4 1, . . . , N2,4 no no no no
(

x(ν)2,4|0, F̂
(ν)
2,4|1
)

3 1 1, . . . , N3,1 no
(

x(ν)3,1|0, F(ν)
3,1|1

) (
x(ν)3,1|1, F(ν)

3,1|2

) (
x(ν)3,1|2, F̂

(ν)
3,1|3
) (

x̂(ν)3,1|3, F̂
(ν)
3,1|4
)

3 2 1, . . . , N3,2 no no
(

x(ν)3,2|0, F(ν)
3,2|1

) (
x(ν)3,2|1, F̂

(ν)
3,2|2
) (

x̂(ν)3,2|2, F̂
(ν)
3,2|3
)

3 3 1, . . . , N3,3 no no no
(

x(ν)3,3|0, F̂
(ν)
3,3|1
) (

x̂(ν)3,3|1, F̂
(ν)
3,3|2
)

4 0 1, . . . , N4,0

(
x(ν)4,0|0, F(ν)

4,0|1

) (
x(ν)4,0|1, F(ν)

4,0|2

) (
x(ν)4,0|2, F̂

(ν)
4,0|3
) (

x̂(ν)4,0|3, F̂
(ν)
4,0|4
)

.

4 1 1, . . . , N4,1 no
(

x(ν)4,1|0, F(ν)
4,1|1

) (
x(ν)4,1|1, F̂

(ν)
4,1|2
) (

x̂(ν)4,1|2, F̂
(ν)
4,1|3
)

.

4 2 1, . . . , N4,2 no no
(

x(ν)4,2|0, F̂
(ν)
4,2|1
) (

x̂(ν)4,2|1, F̂
(ν)
4,2|2
)

.

5 0 1, . . . , N5,0

(
x(ν)5,0|0, F(ν)

5,0|1

) (
x(ν)5,0|1, F̂

(ν)
5,0|2
) (

x̂(ν)5,0|2, F̂
(ν)
5,0|3
)

. .

5 1 1, . . . , N5,1 no
(

x(ν)5,1|0, F̂
(ν)
5,1|1
) (

x̂(ν)5,1|1, F̂
(ν)
5,1|2
)

. .

6 0 1, . . . , N6,0

(
x(ν)6,0|0, F̂

(ν)
6,0|1
) (

x̂(ν)6,0|1, F̂
(ν)
6,0|2
) (

x̂(ν)6,0|2, F̂
(ν)
6,0|3
)

. .

We want to derive an estimate of the two-year response F(ν)
6,0|2 for the claims with accident year 6.

If F̂
(ν)
6,0|1 ⊇ B̂

(ν)
6,0|1, i.e., if the one-year response variable for claims of accident year 6 includes an

estimate of the next-year updating component of the features x(ν)6,0|0, then we can estimate the response
at time 8 as:

F̂
(ν)
6,0|2 = p̂( f )

1

(
x̂(ν)6,0|1

)
,

where x̂(ν)6,0|1 =
(

x(ν)6,0|0, B̂
(ν)
6,0|1
)′

. This shift-forward procedure allowed by the self-sustaining property is
represented in Table 7 by the first red arrow on the bottom. The same procedure applied for all lags
� = 0, . . . , I − 3 provides the entire “second new diagonal” of estimates i.e., the cells in light blue color
in Table 7.

To derive the third new diagonal of estimates, i.e., the three-year predictions for lags � = 0, . . . , I −
3, we can repeat the previous procedure, provided that the self-sustaining properties hold:

F̂
(ν)
I−�,j|�−j+2 ⊇ B̂

(ν)
I−�,j|�−j+2 , � = 0, . . . , I − 3 .

In the example of Table 7 the second shift-forward procedure providing the lowest element of the
second new diagonal (darker blue cells) is represented by a blue arrow.
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In general, for the h-th new diagonal, the required properties are:

F̂
(ν)
I−�,j|�−j+h ⊇ B̂

(ν)
I−�,j|�−j+h , h = 1, . . . , I − 1 , � = 0, . . . , I − 1 − h .

It should be noted that in all these multiyear prediction procedures only the calibrations for lags
� = 0, . . . , I − 3 made at time I are used.

9.2. Illustration in Terms of Partitions

The multiperiod prediction can be also illustrated in terms of partitions of X . We refer here to the
one-dimensional formulation of the frequency response. Following D’Agostino et al. (2018), in terms
of the partition elements provided by the classification trees, the self-sustaining property requires that:

For i = 1, . . . , I, j = 0, . . . , J, ν = 1, . . . , Ni,j, k ∈ N0, the response W(ν)
i,j|k+1 and the features xi,j|k,

xi,j|k+1 are such that for u = 1, . . . , Rj+k and w = 0, 1, . . . , 2d − 1 it is always possible to calculate the function
φj+k+1(u, w) defined as:

φj+k+1(u, w) = r :
(

x(ν)i,j|k+1 ∈ R(r)
j+k+1

)∣∣∣((x(ν)i,j|k ∈ R(u)
j+k
)
∩
(
W(ν)

i,j|k+1 = w
))

, r = 1, . . . Rj+k+1 .

That is for all i, j, ν, k the features x(ν)i,j|k, x(ν)i,j|k+1 and the response W(ν)
i,j|k+1 are specified so that any

element of the partition Pj+k is mapped by φj+k+1 into a unique element of the partition Pj+k+1.
In principle, this could lead to formulate the multiyear prediction in terms of transition probabilities
π�(u, w), i.e., the probability of transitioning from one state u of the response W(ν)

I−�,j|�−j to one state w

of the response W(ν)
I−�,j|�−j+1 .

9.3. Illustration in Terms of Conditional Expectations

As in Wüthrich (2016) the multiperiod prediction can also be expressed in terms of conditional
expectations. For the two-year prediction we have:

E

[
F(ν)

I−�,j|�−j+2

∣∣∣FI

]
= E

[
E

[
F(ν)

I−�,j|�−j+2

∣∣FI+1

]∣∣∣FI

]
= E

[
∑

f1,..., fd

f ′ p( f )
�+1

(
x(ν)I−�,j|�−j+1

) ∣∣∣∣∣FI

]

= ∑
f1,..., fd

f ′ E
[

p( f )
�+1

(
x(ν)I−�,j|�−j+1

) ∣∣∣FI

]
= ∑

f1,..., fd

f ′ p̂( f )
�+1

(
x̂(ν)I−�,j|�−j+1

)
,

where in the last equality we replaced the probabilities p( f )
�+1 with their FI-measurable expectations

provided by the CART calibration.

10. The Simulation Approach

The analytical calculations involved in both the transition matrix approach and the conditional
expectation approach can be very burdensome from a computational point of view. The computational
cost depends on the number of dynamic variables to be modeled. For example, with 4 dynamic
variables and I = 10 the number of possible states of the response W for a claim of accident year I is
given by is 42I−1

= 429
= 68, 719, 476, 736. To avoid these difficulties, we take a simulation approach

for multiperiod forecasting.
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10.1. A Typical Multiperiod Prediction Problem

To illustrate this approach, we consider one of the most important multiperiod prediction
problems, which is the basis for individual claims reserving. In the outstanding portfolio, let us
consider a specified claim C(ν)

i,j occurred in accident year i and reported with delay j. The claims
portfolio has been observed up to the current date I and we want to predict on this date the total cost
(of type 1 and type 2) in the next τ ∈ N1 years. Let us define the cumulated costs:

K1(ν)i,j|I−(i+j)+τ
=

τ

∑
h=1

S1(ν)i,j|I−(i+j)+h , τ ∈ N0 ,

K2(ν)i,j|I−(i+j)+τ
=

τ

∑
h=1

S2(ν)i,j|I−(i+j)+h , τ ∈ N0 ,

where, obviously, K1(ν)i,j|I−(i+j)+0 = K2(ν)i,j|I−(i+j)+0 = 0. We can say that (K1(ν)i,j|I−(i+j)+τ
)τ∈N0 and

(K2(ν)i,j|I−(i+j)+τ
)τ∈N0 provide the cumulated cost development path, of type 1 and type 2 respectively,

of the claim in the future, i.e., on the dates I + 1, I + 2, . . . . We want to predict these paths, i.e., we want
to derive, using prediction trees, the estimates:

K̂1
(ν)
i,j|I−(i+j)+τ = Ê

[
K1(ν)i,j|I−(i+j)+τ

∣∣∣FI

]
, τ ∈ N1 ,

K̂2
(ν)
i,j|I−(i+j)+τ = Ê

[
K2(ν)i,j|I−(i+j)+τ

∣∣∣FI

]
, τ ∈ N1 .

In our data we have not observations to make predictions beyond the date 2 I − 1, i.e., for τ > I − 1.
If one assumes that the claims are finalized at this date, then we can take the expected cumulated cost
at time 2 I − 1 as an estimate of the individual reserve estimate, i.e.:

E1(ν)i,j = K̂1
(ν)
i,j|2 I−(i+j)−1 = Ê

[
K1(ν)i,j|2 I−(i+j)−1

∣∣∣FI

]
,

E2(ν)i,j = K̂2
(ν)
i,j|2 I−(i+j)−1 = Ê

[
K2(ν)i,j|2 I−(i+j)−1

∣∣∣FI

]
,

(18)

where E1(ν)i,j and E2(ν)i,j denote the type-1 and type-2, respectively, reserve estimate at time I of the claim

C(ν)
i,j . The total reserve is obviously obtained as E(ν)

i,j = E1(ν)i,j + E2(ν)i,j .
It is worth noting that if the case reserves are dynamically modeled, one could also obtain

the estimates:

T1(ν)i,j := R̂1
(ν)
i,j|2 I−(i+j)−1 = Ê

[
R1(ν)i,j|2 I−(i+j)−1

∣∣∣FI

]
,

T2(ν)i,j := R̂2
(ν)
i,j|2 I−(i+j)−1 = Ê

[
R2(ν)i,j|2 I−(i+j)−1

∣∣∣FI

]
.

(19)

If these estimates are different from zero the assumption of claims finalization at time 2 I − 1
can be relaxed and the final case reserve estimates T1(ν)i,j and T2(ν)i,j can be used as type-1 and type-2,
respectively, tail reserve estimates. In this case, one obtains comprehensive reserve estimates by adding
the tail reserves in (19) to the estimates in (18).

10.2. Simulation of Sample Paths and Reserve Estimates

In the simulation approach the expected cumulated costs of the claim C(ν)
i,j , and as a byproduct the

reserve estimates, are obtained by simulating a number N of possible paths of the cost development
and then computing the average path, which is obtained as the sample mean of the costs on each date
of the paths. We give some details of this procedure. It is convenient to skip again to the “by lag”
language in this exposition.
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Let us suppose, as usual, that at time I the historical observations on the claims portfolio are
sufficient for calibrating the classification tree for the frequency and the regression trees for the
conditional severity (of type 1 and 2) for all lags � = 0, . . . , I − 2. Therefore, at time I all the
optimal frequency partitions P� of the feature space X and the optimal severity partitions Q(1)

� ,Q(2)
�

corresponding to each leaf of P� have been derived for � = 0, . . . , I − 2.
Let C(ν)

i,j be a given claim in the portfolio, with at time I frequency feature x(ν)i,j|�−j and severity

feature x̃(ν)i,j|�−j, with � = I − i. The simulation procedure for the development cost of this claim is based
on the following steps.

0. Initialization. Set:

�0 = � , K2(ν)i,j|�0−j = 0 , K2(ν)i,j|�0−j = 0 , x̂(ν)i,j|�0−j = x(ν)i,j|�0−j , ̂̃x(ν)i,j|�0−j = x̃(ν)i,j|�0−j .

1. Find the index r of the leaf of P�0 to which the feature x̂(ν)i,j|�0−j belongs.

2. Simulate the state w of the frequency response Ŵ(ν)
i,j|�0−j+1 at time �0 + i + 1 using the probability

distribution corresponding to the r-th leaf of P�0 .
3. If w implies:

a. a type-1 payment (i.e., a NoCARD payment) at time �0 + i + 1, then assume as the expected

paid amount at time �0 + i + 1 the estimate Ŝ1
(ν)
i,j|�0−j+1 corresponding to the leaf of Q(1)

�0
to

which the feature ̂̃x(ν)i,j|�0−j belongs.

b. a type-2 payment (i.e., a CARD payment) at time �0 + i + 1, then assume as the expected

paid amount at time �0 + i + 1 the estimate Ŝ2
(ν)
i,j|�0−j+1 corresponding to the leaf of Q(2)

�0
to

which the feature ̂̃x(ν)i,j|�0−j belongs.

c. no payments at time �0 + i + 1, then all payments at time �0 + i + 1 are set to 0.

4. Set:
K1(ν)i,j|�0−j+1 = K1(ν)i,j|�0−j + Ŝ1

(ν)
i,j|�0−j+1, K2(ν)i,j|�0−j+1 = K2(ν)i,j|�0−j + Ŝ2

(ν)
i,j|�0−j+1 .

5. If �0 < I − 2 then:

5.1. The features x(ν)i,j|�0−j and x̃(ν)i,j|�0−j are updated with the new information provided by

the responses Ŵ(ν)
i,j|�0−j+1, Ŝ1

(ν)
i,j|�0−j+1 and Ŝ2

(ν)
i,j|�0−j+1, and the new features x̂(ν)i,j|�0−j+1 and̂̃x(ν)i,j|�0−j+1 are then obtained (this requires that the self-sustaining property holds).

5.2. Set �0 = �0 + 1 and return to step 1.

With this procedure the two sample paths:(
K1(ν)i,j|�−j+τ

)
τ=0,...,I−1−�

,
(

K2(ν)i,j|�−j+τ

)
τ=0,...,I−1−�

,
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of the type-1 and type-2 cumulated cost are simulated for the chosen claim C(ν)
i,j with lag � = I − i.

A simulation set of appropriate size is obtained with N independent iterations h = 1, . . . , N of this
procedure. The cost estimates are then obtained as the costs on the average path, i.e.,:

K̂1
(ν)
i,j|�−j+τ =

1
N

N

∑
h=1

hK1(ν)i,j|�−j+τ
,

K̂2
(ν)
i,j|�−j+τ =

1
N

N

∑
h=1

hK2(ν)i,j|�−j+τ
,

τ = 0, . . . , I − 1 − � .

On the terminal date, i.e., for τ = I − 1 − �, these sample averages provide the reserve estimates
E1(ν)i,j and E2(ν)i,j in (18).

Once the CART approach has been extended to multiperiod predictions via simulation, it is
convenient to make a further extension of the model to allow a joint dynamic modeling of the case
reserves. Indeed, as anticipated in Section 5, to make the best use of the case reserve information in
multiperiod predictions also the changes in the case reserve itself must be predicted by a specific model.

10.3. Including Dynamic Modeling of the Case Reserve

To dynamically model the case reserves, we extend the model assumptions in Section 4.2. Also,
for the case reserve the conditional model is preferred, for the usual reason of a discrete probability
mass typically present in 0 in the reserve distributions. Our additional assumptions are described
as follows.

• The filtered probability space (Ω,F ,P,F) must include also the two reserve processes:

(R1(ν)i,j|k)i,j,k,ν , (R2(ν)i,j|k)i,j,k,ν ,

which are F-adapted for t = i + j + k and for which the independency assumptions (H1), (H2),
(H3) also hold.

• For the distribution of the case reserves a property similar to assumption (H5) holds, i.e.,:

(HR5) For the conditional distribution of R1(ν)i,j|k|(R̄1(ν)i,j|k = 1) and R2(ν)i,j|k|(R̄2(ν)i,j|k = 1) one has:

R1(ν)i,j|k+1

∣∣∣ (R̄1(ν)i,j|k+1 = 1
)
∼ N

(
μ̇
(1)
j+k
(
ẋ(ν)i,j|k
)
, σ̇2

1

)
,

R2(ν)i,j|k+1

∣∣∣ (R̄2(ν)i,j|k+1 = 1
)
∼ N

(
μ̇
(2)
j+k
(
ẋ(ν)i,j|k
)
, σ̇2

2

)
,

(20)

where ẋ(ν)i,j|k ∈ X is a Fi+j+k-measurable feature of C(ν)
i,j|k .

As for the payment variables, these assumptions imply:

E

[
R1(ν)i,j|k+1

∣∣∣Fi+j+k,
(

R̄1(ν)i,j|k+1 = 1
)]

= μ̇
(1)
j+k

(
ẋ(ν)i,j|k

)
,

E

[
R2(ν)i,j|k+1

∣∣∣Fi+j+k,
(

R̄2(ν)i,j|k+1 = 1
)]

= μ̇
(2)
j+k

(
ẋ(ν)i,j|k

)
,

where the conditional expectations can be calibrated by regression trees. Then there exists an
Fi+j+k-measurable severity feature x̃(ν)i,j|k which determines the conditional expectation of the cash

flows S1(ν)i,j|k and S2(ν)i,j|k. The unconditional reserve expectations are then given by:

E

[
R1(ν)i,j|k+1

∣∣∣Fi+j+k

]
= μ̇

(1)
j+k

(
ẋ(ν)i,j|k

)
P

[
R̄1(ν)i,j|k+1 = 1

∣∣∣Fi+j+k

]
,

E

[
R2(ν)i,j|k+1

∣∣∣Fi+j+k

]
= μ̇

(2)
j+k

(
ẋ(ν)i,j|k

)
P

[
R̄2(ν)i,j|k+1 = 1

∣∣∣Fi+j+k

]
.
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• To further improve the predictive performance, an assumption similar to assumption (H4) or
(H4’) can be added, which we express here in the one-dimensional form (8):

(HR4’) For the conditional distribution of:

Ẇ(ν)
i,j|k = R̄1(ν)i,j|k + 2 R̄2(ν)i,j|k ,

one has:
Ẇ(ν)

i,j|k+1 = w
∣∣Fi+j+k,

(
Z(ν)

i,j|k+1 = 0
)
∼ Categorical

(
ṗ(w)

j+k

(
x(ν)i,j|k

))
, (21)

where ṗ(w)
j+k : X �→ [0, 1]4 is a probability function, i.e.:

3

∑
w=0

ṗ(w)
j+k

(
x(ν)i,j|k

)
= 1 .

This assumption implies:

P

[
Ẇ(ν)

i,j|k+1 = w
∣∣Fi+j+k,

(
Z(ν)

i,j|k+1 = 0
)]

= ṗ(w)
j+k

(
x(ν)i,j|k

)
≥ 0 , w = 0, . . . , 3 .

Assumption (HR4’) is not required if there is only one type of payment, since if we have, say, only
type-1 payments, then R̄1(ν)i,j|k+1 = 1 − Z(ν)

i,j|k+1.
We can consider additional conditioning in expression (20) and/or (21) in order to better modeling

particular effects. For example, one could condition on the state of the indicator Z(ν)
i,j|k at the previous

date in order to distinguish predictions concerning open claims and reopened claims. All these
enhancements of the model have been applied in the following examples.

10.4. Example of Simulated Cost Development Paths

Using the simulation procedure illustrated in Section 10.2 and the additional assumptions
presented in the previous section we can provide examples of multiperiod predictions including
the joint dynamic modeling of case reserves. We provide here an example of cost development path
simulation for an individual claim, using the data on the same claims portfolio of examples in Section 8.
Before considering a specific claim, we derived all the frequency and the severity partitions for all
lags � = 0, . . . , 4 by calibrating prediction trees on the entire claims portfolio. The run time of all these
calibrations is roughly 3 min on a workstation with one 8-core Intel processor@3.60 GHz (4.30 GHz
max turbo) and 32 GB RAM. We then considered an individual claim with the following characteristics:

· accident year: i = I = 6;
· reporting delay: j = 0, hence we denote the claim as C(ν)

6,0 ;

· the claim is open at time I: Z(ν)
6,0|0 = 0;

· the claim does not involve a lawyer at time I: L(ν)
6,0|0 = 0;

· no type-1 (NoCARD) payment made at time I: S̄1(ν)6,0|0 = 0;

· no type-2 (CARD) payment made at time I: S̄2(ν)6,0|0 = 0;

· type-1 reserve at time I: R1(ν)6,0|0 = 31, 460 euros;

· type-2 reserve at time I: R2(ν)6,0|0 = 13, 820 euros.

Since i = I we start with �0 = 0 in the simulation procedure, which provides the maximum
length sample paths

(
K1(ν)6,0|0, K1(ν)6,0|1, . . . , K1(ν)6,0|5

)
and
(

K2(ν)6,0|0, K2(ν)6,0|1, . . . , K2(ν)6,0|5

)
. In each simulation

an execution of the predict.rpart function was invoked for each lag. The computation time required
for simulating all sample paths (for the type-1 and type-2 cost) is roughly 4 min. In Figures 4 and 5
N = 5000 simulated sample paths for the type-1 and type-2 cumulated cost, respectively, of C(ν)

6,0 are
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reported. Since many paths overlap, the simulated paths are shown in blue with the color depth being
proportional to the number of overlaps. The average paths in the two figures are shown in red: their

final point corresponds to K̂1
(ν)
6,0|5 = 17, 069 euros and K̂2

(ν)
6,0|5 = 4314 euros. If we assume that the

claims are finalized at time 11, i.e., after τ = 5 years for this claim, then these amounts can be taken as
an estimate of the individual claim reserves E1(ν)6,0 and E2(ν)6,0 to be placed at the current date on C(ν)

6,0 .
This suggests significant decreases in both the outstanding case reserves, namely a decrease of 14, 391
euros for R1(ν)6,0|0 and a decrease of 7406 euros for R2(ν)6,0|0.

It is interesting to note that with this dynamic approach we also have an estimate of the tail

reserves T1(ν)6,0 and T2(ν)6,0 which are obtained as the average of the 5000 simulated values of R̂1
(ν)
6,0|5

and R̂2
(ν)
6,0|5. These estimates result in being T1(ν)6,0 = 386 euros and T2(ν)6,0 = 248 euros, which should

be added to the corresponding expected cumulated costs, thus giving E1(ν)6,0 = 17, 455 euros and

E2(ν)6,0 = 4562 euros.
The variation coefficient in the simulated sample is 63.6% for type-1 reserve and 91.6% for type-2

reserve. The relative standard error of the mean is 0.9% and 1.3%, respectively.
Whether the reserve adjustments indicated by the model are actually done could depend on a

specific decision. However, these findings should suggest putting the claim under scrutiny.

Figure 4. Representation of N = 5000 simulated paths for the type-1 cost development of the chosen

claim C(ν)6,0 . In red the average path is reported.
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Figure 5. Representation of N = 5000 simulated paths for the type-2 cost development of the chosen

claim C(ν)6,0 . The average path is in red.

11. Testing Predictive Performance of CART Approach

In this section, we propose some backtesting exercises in order to get some insight into the
predictive performance of our CART approach. We first illustrate backtesting results for predictions of
one-year event occurrences useful for claim watching. Multiperiod occurrence predictions could be
similarly tested. Finally, we perform a typical claim reserving exercise, which is composed of two steps.
In a first step the individual reserve estimate is derived by simulation for all the claims in the portfolio
and the resulting total reserve (after the addition of an IBNYR reserve estimate) is compared with the
classical chain-ladder reserve, which is estimated on aggregate payments at portfolio level. We perform
these estimates on data deprived of the last calendar year observations. Then in a second step we can
assess the predictive performance of the CART approach with respect to the chain-ladder approach by
comparing the realized aggregate payments in the “first next diagonal” with those predicted by the
two methods.

11.1. The Data

In these predictive efficiency tests, we need to calibrate the CART models assuming time I − 1 as
the current date, since observations at time I are used to measure the forecast error. For this reason,
data on claims portfolio used in the previous section has not sufficient historical depth. We then use in
this section a different dataset containing a smaller variety of claim features (in particular, the variables
L(ν)

i,j|k are not present) but a longer observed claims history. We have:

· Observed accident years: from 2007 to 2016. Then i = 1, . . . , 10.
· All claims reported are observed, hence for accident year i one has j = 0, . . . , 10 − i (i.e., j

i
≡ 0).

Then there are 55 blocks (i, j) in the original dataset. The total number of reported claims is
1,337,329. However, since we use claims observed in year 2016 (i.e., responses with i + j + k = 10) for
testing predictions, we assume I = 9 as the current date and we drop from the original dataset all
claims with i + j = 10 and all observations with i + j + k = 10. This reduces the data for the calibration
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to 9 observed accident years (45 (i, j) blocks). In this data the pairs feature-response are observed for
lags � = 0, . . . , I − 3 = 7. The total number of reported claims in this portfolio observed at time I = 9
is ∑i,j Ni,j = 1, 211, 392. The number of observations in the calibration set and the prediction set of each
lag is reported in Table 8.

Table 8. Number of observations in the calibration and the prediction set of each lag in the claims
portfolio observed at time I = 9.

� |DC
� | |DP

� |
0 1,012,099 121,633
1 964,302 119,075
2 852,271 116,207
3 732,116 121,885
4 592,538 139,828
5 445,686 146,965
6 296,880 148,895
7 144,310 152,593

11.2. Prediction of One-Year Event Occurrences

We test the predictive efficiency of some one-year event predictions considering the indicators of
type-1 payment, type-2 payment and closure for lag � = 0, i.e., we consider the predicted responses

Ẑ(ν)
9,0|1, ̂̄S1

(ν)

9,0|1, ̂̄S2
(ν)

9,0|1 for ν = 1, . . . , N9,0 , i.e., for all the |DP
0 | = N9,0 = 121, 633 claims in block (9, 0).

These response estimates were provided by the classification tree for the frequency calibrated on DC
0

(1, 012, 099 observations). Since these responses are actually observed at time 10, we can assess the
predictive performance of the model by comparing predicted and realized values. To this aim, we refer
to a specific forecasting exercise.

For a given indicator, let us denote as positive, or negative, a claim in the sample DP
0 for which

the indicator will be 1, or 0, respectively. Our forecasting exercise consists of predicting not only how
many claims in the sample will be positive, but also which of them will be positive. i.e., we want to
provide the claim code cc of the Λ claims in the sample we predict as positive, where Λ is the number
of claims we expect to be positive. Our prediction strategy is very intuitive. Let R(r)

0 , r = 1, . . . , R0,
the r-th leaf of the partition P0 provided by the calibrated frequency tree. Using notations introduced
in Section 8.2, we denote by n(r) the number of claims belonging to R(r)

0 and by λ(r) the probability to
be positive for each of these claims. We assume that the leaves are ordered by decreasing value of λ(r)

and define r∗ = min{r : N(r) ≤ Λ}, where N(r) = ∑r
h=1 n(h). Our forecasting strategy consists then in

predicting as positive all the N(r∗) claims in the first r∗ leaves and, in addition, Λ − N(r∗) claims which
are randomly chosen among those in leaf r∗ + 1.

The accuracy of our prediction could be measured by introducing an appropriate gain/loss
function giving a specified (positive) score to claims correctly classified and a specified (negative) score
to claims incorrectly classified. The choice of such a function, however, depends on the specific use one
makes of the prediction, then in order to illustrate the results we prefer to resort here to the so-called
confusion matrices, which we present in Figure 6. In these matrices blue (brown) cells refer to predicted
(realized) values, green (red) cells refer to claims correctly (incorrectly) classified.

Let us consider, for example, the first matrix, concerning the indicator ̂̄S1
(ν)

9,0|1, i.e., {A type-1 payment
is made in the next year}. We observe that 6581 claims of the 121, 633 in the prediction set, i.e., the 5.4%,
were predicted by the model to have a type-1 payment, while type-1 payments actually realized were
6966 (5.7%). Of the 6581 claims predicted as positive, 5209 resulted in being true positive (TP, green cell)
and the remaining 1372 were false positive (FP, red cell). Considering the 115, 052 claims predicted to
have not a type-1 payment, i.e., to be negative, 1757 resulted in being false negative (FN, red cell) and
the remaining 113, 295 were true negative (TN, green cell). Then, globally, 118, 504 claims were correctly
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predicted (97.4% of all the predicted claims) and the remaining 6966 were incorrectly predicted. Ratios
typically used are also reported, as:

· True positive ratio, also known as sensitivity: TPR = TP/(TP+FN)= 74.8%;
· True negative ratio, or specificity: TNR = TN/(TN+FP)= 98.8%;
· False negative ratio: FNR = 1− TPR= 25.2%;
· False positive ratio: FPR = 1− TNR= 1.2%.

The other two matrices have the same structure.

121.633 121.633 121.633
100% 100% 100%

5.209 1.372 6.581 21.253 3.585 24.838 109.555 3.659 113.214
74,8% 1,2% 5,4% 80,1% 3,8% 20,4% 94,8% 60,1% 93,1%
1.757 113.295 115.052 5.295 91.500 96.795 5.985 2.434 8.419
25,2% 98,8% 94,6% 19,9% 96,2% 79,6% 5,2% 39,9% 6,9%

3.129 6.966 114.667 118.504 8.880 26.548 95.085 112.753 9.644 115.540 6.093 111.989
2,6% 5,7% 94,3% 97,4% 7,3% 21,8% 78,2% 92,7% 7,9% 95,0% 5,0% 92,1%

NO

Predicted
YES

NO
Predicted

YES
Predicted

YES

NO NO

YES NO YES NO

Type-2 payment made Claim closed

Realized Realized

Type-1 payment made

Realized

YES

Figure 6. Confusion matrices for prediction of payment and closure indicators for claims with � = 0.

11.3. Prediction of Aggregate Claims Costs

11.3.1. Aggregate RBNS Reserve as Sum of Individual Reserves

We performed the CART calibration for the frequency-severity model extended with the dynamic
case reserve model for all the 8 lags in the time-9 dataset. Given the large number of claims in this
portfolio these calibrations required 73 min for computations. After the model calibration, for each of
the 1,211,392 claims reported at time 9 we simulated N = 50 cost development paths for the type-1 and
type-2 payments using the procedure illustrated in Section 10 and we computed the corresponding
average paths. In each simulation and for each lag the predict.rpart function can be invoked only
one time for all claims with the same lag. With respect to the simulation of a single claim, this provides,
proportionally, a substantial reduction of computation time. The run time for all the simulations was
roughly 120 min.

By computing the incremental payments of each average path and summing over the entire
portfolio we obtained a CART reserve estimate for the reported but not settled (RBNS) claims. If these
total payments are organized by accident year (on the rows) and payment date (on the column) we
obtain a “lower triangle” of estimated future payments with the same structure of the usual lower
triangles in classical claims reserving.

By the simulation procedure the individual reserve estimates are provided:

K̂1
(ν)
i,j|8−j =

1
N

N

∑
h=1

hK1(ν)i,j|8−j ,

K̂2
(ν)
i,j|8−j =

1
N

N

∑
h=1

hK2(ν)i,j|8−j ,

K̂(ν)
i,j|8−j = K̂1

(ν)
i,j|8−j + K̂2

(ν)
i,j|8−j ,

i = 2, . . . , 9, j = 0, . . . 9 − i, ν = 1, . . . , Ni,j .

Assuming claims finalization at time 2 I − 1 = 17, one obtains from these cost estimates the
corresponding RBNS reserves, at different levels of aggregation:
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E1RBNS
i :=

9−i

∑
j=0

Ni,j

∑
ν=1

K̂1
(ν)
i,j|8−j , i = 2, . . . , I; E1RBNS =

9

∑
i=2

E1RBNS
i ;

E2RBNS
i :=

9−i

∑
j=0

Ni,j

∑
ν=1

K̂2
(ν)
i,j|8−j , i = 2, . . . , I; E2RBNS =

9

∑
i=2

E2RBNS
i ;

ERBNS = E1RBNS + E1RBNS .

(22)

The simulation procedure also provides the individual tail reserve estimates:

R̂1
(ν)
i,j|8−j =

1
N

N

∑
h=1

hR̂1
(ν)
i,j|8−j ,

R̂2
(ν)
i,j|8−j =

1
N

N

∑
h=1

hR̂2
(ν)
i,j|8−j ,

R̂(ν)
i,j|8−j = R̂1

(ν)
i,j|8−j + R̂2

(ν)
i,j|8−j ,

i = 1, . . . , 9, j = 0, . . . 9 − i, ν = 1, . . . , Ni,j ,

which can be aggregated as:

T1i =
9−i

∑
j=0

Ni,j

∑
ν=1

R̂1
(ν)
i,j|8−j , i = 1, . . . , I; T1 =

9

∑
i=1

T1i ;

T2i =
9−i

∑
j=0

Ni,j

∑
ν=1

R̂2
(ν)
i,j|8−j , i = 1, . . . , I; T2 =

9

∑
i=1

T2i ;

T = T1 + T2 .

These estimates can be added to the corresponding estimates in (22) in order to provide an
adjustment of the reserves computed under the assumption of finalization at time 2 I − 1.

As usual, the aggregate claim cost estimates can be organized by accident year and by development
year (dy), indexed as h = 0, . . . , I − 1, where in the CART model “development year” is a new wording
for the “lag” I + τ − i. With this representation we obtain the “lower triangle” for the total costs (type 1
+ type 2) reported in Table 9 in green color.

Table 9. Aggregate lower triangle of the incremental RBNS cost estimates and corresponding RBNS
reserves. In the last two rows the adjustments for IBNYR claims are reported.

ay i dy = 1 dy = 2 dy = 3 dy = 4 dy = 5 dy = 6 dy = 7 dy = 8 reserve: ERBNS
i CoVai

1 · · · · · · · · 0 0.00%
2 · · · · · · · 548,939 548,939 5.51%
3 · · · · · · 841,939 660,135 1,502,074 9.12%
4 · · · · · 1,336,090 989,338 679,961 3,005,388 5.50%
5 · · · · 1,989,568 1,352,147 1,026,083 663,033 5,030,831 6.18%
6 · · · 2,652,175 1,842,702 1,266,884 799,521 595,623 7,156,905 3.63%
7 · · 4,658,838 2,609,709 1,584,964 1,170,623 725,353 569,174 11,318,662 2.97%
8 · 10,672,731 4,061,362 2,479,849 1,849,869 1,104,580 693,130 543,766 21,405,288 1.66%
9 32,184,296 7,479,426 3,467,081 2,644,659 1,819,141 1,158,269 685,487 593,554 50,031,913 1.11%

RBNS diagonal 54,884,575 18,994,820 10,504,823 7,127,705 4,244,697 2,420,573 1,229,253 593,554 100,000,000 0.79%
IBNYR 5,393,583 1,416,003 688,614 518,063 341,608 220,980 126,677 95,314 8,800,841

RBNS+IBNYR 60,278,158 20,410,822 11,193,436 7,645,768 4,586,305 2,641,554 1,355,930 688,868 108,800,841

Figures in the aggregate “upper triangle” (pink color) are not reported in order to point out
that this kind of data were not used for the prediction. Total estimated costs summed by diagonal
(highlighted by different green intensity) as well as summed by accident year (second last column) are
also reported. For confidentiality reasons all paid amounts in this numerical example were rescaled so
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as to obtain a total reserve ERBNS = 100, 000, 000 euros. For each accident year reserve estimate and
for the total estimate the coefficient of variation on the simulated sample was computed. These figures,
reported in the last column of the table, are rather low. This should be explained by the fact that
each aggregate reserve simulation is the sum of a very large number of individual claim costs and
the correlation among these individual costs is very low. Obviously, this weak correlation is also a
consequence of the independence assumptions in the model.

11.3.2. Inclusion of the IBNYR Reserve Estimate

We are interested in comparing the CART reserve estimates with the classical chain-ladder reserve
estimates. To allow this comparison a cost estimate for IBNYR claims must be added to the aggregate
RBNS reserve derived in the previous section. Therefore, we complemented the RBNS reserve model
with an ancillary model for the IBNYR reserve, which is outlined in Appendix A. This model is a
“severity extension” of the “frequency approach” proposed in Wüthrich (2016) for estimating the
expected number of IBNYR claims. The results of the ancillary model estimates are summarized
(after rescaling) in the second last row of Table 9, where the IBNYR reserves, by diagonal and overall,
are reported. Figures in the last row provide the corresponding RBNS claim reserves adjusted for
IBNYR claims.

Remark 5. This separation between RBNS and IBNYR claims is in some respect similar to that obtained in
Verral et al. (2010).

11.3.3. Comparison with Chain-Ladder Estimates

In the chain-ladder approach to classical claims reserving the sums of all the individual claim
payments in the portfolio observed up to time I are organized by accident year and development year
and an upper triangle of observed paid losses, cumulated along development in each accident year,
is obtained. The reserve estimates are then derived by the cumulated paid losses in the lower triangle,
which is obtained by applying to the upper triangle the well-known chain-ladder algorithm. This is
shown in Table 10 where, to allow comparison with Table 9, incremental payments are reported.

Table 10. Chain-ladder reserve estimates on aggregate payments (type-1+type-2, incremental figures).
The differences with the CARTs estimates are also reported.

ay i dy = 0 dy = 1 dy = 2 dy = 3 dy = 4 dy = 5 dy = 6 dy = 7 dy = 8 Reserve ECL
i

1 35,699,311 37,879,857 12,003,345 6,478,312 3,033,793 1,895,577 1,026,086 922,252 497,792 0
2 41,730,803 36,146,954 14,363,454 4,928,858 3,051,338 2,913,180 1,237,083 899,977 529,656 529,656
3 40,033,745 31,396,571 13,499,535 5,668,671 2,719,742 2,314,666 856,136 868,753 489,839 1,358,592
4 39,027,439 38,571,568 12,499,545 6,084,483 2,903,344 2,930,986 1,075,959 928,216 523,367 2,527,541
5 39,143,444 37,227,132 11,612,033 4,676,458 2,897,767 2,477,989 1,033,956 891,980 502,936 4,906,860
6 33,900,305 33,987,815 11,872,716 5,088,186 2,644,290 2,268,885 946,706 816,711 460,496 7,137,087
7 31,820,892 33,590,427 10,841,703 4,822,608 2,526,694 2,167,983 904,604 780,390 440,016 11,642,296
8 33,667,137 32,084,528 11,173,371 4,865,109 2,548,961 2,187,090 912,576 787,268 443,894 22,918,269
9 39,151,374 37,275,145 12,987,380 5,654,965 2,962,788 2,542,166 1,060,734 915,081 515,961 63,914,221

CL diagonal · 60,867,772 25,100,078 12,733,962 7,374,128 4,695,628 2,288,018 1,358,976 515,961 114,934,523

CL—CARTs · 589,614 4,689,256 1,540,526 −271,640 109,323 −353,535 3,046 −172,907 6,133,683

% · 1.0% 23.0% 13.8% −3.6% 2.4% −13.4% 0.2% −25.1% 5.6%

As in Table 9 the upper triangle is highlighted in pink and the lower triangle in green, and the
chain-ladder reserves at different aggregation levels—by diagonal, by accident year, overall—are
computed. In the last two rows of the table the differences with the CART estimates in the
last row of Table 9 are shown. In some diagonals, i.e., in some future calendar years, there are
substantial differences between the chain-ladder and the CART claims cost predictions. However,
the overall chain-ladder reserve estimate is 5.6% higher than the corresponding CART estimate.
When the results provided by the two methods are compared, one should take into account that the
chain-ladder estimates do include an underwriting year inflation forecast, since an estimate of historical
underwriting year inflation is implicitly projected on future dates by the algorithm. In the CART
approach, instead, some degree of expected inflation might be implicitly included in the predicted costs
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only through the case reserves. An additional component of expected inflation must however be added
to the reserve estimates. A similar problem is found in DCL model, see Martínez-Miranda et al. (2013)
for an estimation method of the underwriting year inflation based on incurred data.

11.3.4. Backtesting the Two Methods on the Next Diagonal

Since we deliberately made the reserve estimates for a claims portfolio observed at time 10
(i.e., 2016) using only data observed up to time 9 (2015), we are now able to perform a backtest on
the “first next diagonal” since next-year realized payments (of both type 1 and type 2) are actually
known. In Table 11 the realized payments and the prediction errors (i.e., realized − predicted) of the two
methods are reported for accident years 2 ≤ i ≤ 9.

Table 11. Forecast errors of CARTs and chain-ladder method on the next-year claim payments.

ay: i Realized Chain-ladder
(%)

CART
(%)

Payments Error Error

2 (2008) 586,099 −56, 443 −9.63 −37, 109 −6.33
3 (2009) 1,145,117 −276, 364 −24.13 −284, 528 −24.85
4 (2010) 2,272,564 −1, 196, 605 −52.65 −916, 852 −40.34
5 (2011) 1,734,932 743, 057 42.83 279, 561 16.11
6 (2012) 3,129,167 −484, 877 −15.50 −445, 027 −14.22
7 (2013) 3,902,228 920, 380 23.59 872, 408 22.36
8 (2014) 10,637,406 535, 965 5.04 394, 152 3.71
9 (2015) 38,117,533 −842, 388 −2.21 −1, 109, 494 −2.91

total 61,525,046 −657, 275 −1.07 −1, 246, 889 −2.03

The backtest exercise shows important errors in some accident years for both the methods.
The overall predictions, however, are rather good for the two methods, showing an under-estimate
of 1.07% by chain-ladder and 2.03% by CARTs. Considering possible adjustments for the expected
inflation of CART prediction, we can say that in this case the predictive accuracy of the two methods is
roughly similar.

Remark 6. In this backtesting exercise the chain-ladder method has good predictive performance on the total
reserve and is not easy to improve. A better assessment of the predictive efficiency of the CART approach in
providing estimates of the aggregate reserve as sum of individual reserves could be obtained in cases where the
chain-ladder approach poorly performs. For example, repeating the same exercise on different claims data (which
for the moment are not authorized for disclosure), we observed on the total reserve estimate a forecast error of
18.64% with the chain-ladder and −5.10% with the CART approach.

12. Conclusions

The CART approach illustrated in this paper seems promising for claims reserving and, more
generally, for the claim watching activity. The large model flexibility of CARTs allows inclusion in the
model of effects in the claims development process, which are difficult to study with classical methods.
CARTs are rather efficient also in variable selection. However, the role of expert opinions in the choice
of the explanatory variables to be included in the model is still important. Also, in this respect the
interpretability of the results provided by CARTs can be very helpful.

Prediction and claims handling methods provided by the CART approach can also have an impact
on business organization, in so far as they suggest and promote a closer connection into the insurance
firm between the actuarial and the claims settlement activity.

As usual, the reliability of the results depends crucially on the quality of data available. In the
proposed CART applications, it is also true, however, that enlarging the richness of data can also
extend the scope and the significance of the results. For example, if information at individual
policy level is included in the dataset, our CART approach could also provide indications useful
for non-life-insurance pricing.
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As is well known, a main disadvantage of CARTs is that they are not very robust towards changes
in the data, since a small change in the observations may lead to a largely different optimal tree.
Also, the sensitivity of the optimal tree to changes of the calibration parameters should be carefully
analyzed. Random forests are proposed as the natural answer to the instability problem; however,
the interpretability of the results is an important property which should not be lost. Backtesting
exercises as those presented in this paper could help to get the instability effects under control.
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Appendix A. An Ancillary Model for the Estimation of IBNYR Reserve

For the sake of brevity, we formulate the model for the IBNYR reserve referring only to type-1
payments. By the model assumptions presented in Section 4.2 the aggregate RBNS reserve estimate is
given by:

E1RBNS =
I

∑
i=2

I−i

∑
j=0

∑
k>I−(i+j)

Ni,j

∑
ν=1

E

[
S1(ν)i,j|k

∣∣∣FI

]
.

If the process (Ni,j)i,j were deterministic, the aggregate IBNYR reserve estimate could be
written as:

E1IBNYR =
I

∑
i=2

J

∑
j=I−i+1

Ni,j

∑
ν=1

∑
k≥0

E

[
S1(ν)i,j|k

∣∣∣FI

]
.

The process (Ni,j)i,j, however, is F-adapted at time i + j, therefore the values of Nij in the sum by
j are not known at time I. Under proper assumptions (see Wüthrich 2016; Verrall and Wüthrich 2016)
the IBNYR reserve can be estimated as:

E1IBNYR =
I

∑
i=2

J

∑
j=I−i+1

E

[
Ni,j

∣∣∣FI

]
E

[
∑
k≥0

S1(ν)i,j|k

]
,

where:

• the conditional expectation E

[
Ni,j
∣∣FI

]
is given by an estimate N̂CL

i,j obtained by chain-ladder
techniques applied to the aggregate number of reported claims;

• the expectation E

[
∑k≥0 S(ν)

i,j|k

]
of the total cost for claims with reporting delay j is given by an

estimate ĉj obtained with the CART approach for the RBNS claims. Assuming that claims in
different accident years are identically distributed one has:

ĉj =
1

I − j

I−j

∑
i=1

1
Ni,j

Ni,j

∑
ν=1

Ŝ1
(ν)
i,j ,

where:

Ŝ1
(ν)
i,j =

I−(i+j)

∑
k=0

S1(ν)i,j|k + ∑
k>I−(i+j)

Ê

[
S1(ν)i,j|k

∣∣FI

]
,

is the total cost estimated for claim C(ν)
i,j .
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The (type-1) IBNYR reserve estimate is then obtained as:

E1IBNYR =
I

∑
i=2

J

∑
j=I−i+1

N̂CL
i,j ĉj .
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Abstract: In this paper, we propose models for non-life loss reserving combining traditional
approaches such as Mack’s or generalized linear models and gradient boosting algorithm in an
individual framework. These claim-level models use information about each of the payments made
for each of the claims in the portfolio, as well as characteristics of the insured. We provide an example
based on a detailed dataset from a property and casualty insurance company. We contrast some
traditional aggregate techniques, at the portfolio-level, with our individual-level approach and we
discuss some points related to practical applications.

Keywords: loss reserving; predictive modeling; individual models; gradient boosting

1. Introduction and Motivation

In its daily practice, a non-life insurance company is subject to a number of solvency constraints,
e.g., ORSA guidelines in North America and Solvency II in Europe. More specifically, an actuary must
predict, with the highest accuracy, future claims based on past observations. The difference between
the total predicted amount and the total of all amounts already paid represents a reserve that the
company must set aside. Much of the actuarial literature is devoted to the modeling, evaluation and
management of this risk, see Wüthrich and Merz (2008) for an overview of existing methods.

Almost all existing models can be divided into two categories depending on the granularity of
the underlying dataset: individual (or micro-level) approaches, when most information on contracts,
claims, payments, etc. has been preserved, and collective (or macro-level) approaches involving some
form of aggregation (often on an annual basis). The latter have been widely developed by researchers
and successfully applied by practitioners for several decades. In contrast, individual approaches have
been studied for decades but are currently used rarely despite the many advantages of these methods.

The idea of using an individual model for claims dates back to the early 1980s with, among others,
Bühlmann et al. (1980), Hachemeister (1980) and Norberg (1986). The latter author has proposed
an individual model describing the occurrence, the reporting delay and the severity of each claim
separately. The idea was followed by the work of Arjas (1989), Norberg (1993, 1999), Hesselager (1994),
Jewell (1989) and Haastrup and Arjas (1996). This period was characterized by very limited computing
and memory resources as well as by the lack of usable data on individual claims. However, we can
find some applications in Haastrup and Arjas (1996) and in some more technical documents.

Since the beginning of the 2000s, several studies have been done including, among others, the
modeling of dependence using copulas Zhao and Zhou (2010), the use of generalized linear models
Larsen (2007), the semi-parametric modeling of certain components Antonio and Plat (2014) and
Zhao et al. (2009), the use of skew-symmetric distributions Pigeon et al. (2014), the inclusion of
additional information Taylor et al. (2008), etc. Finally, some researchers have done comparisons
between individual and collective approaches, often attempting to answer the question “what is the

Risks 2019, 7, 79; doi:10.3390/risks7030079 www.mdpi.com/journal/risks39
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best approach?” (see Hiabu et al. (2016); Huang et al. (2015) or Charpentier and Pigeon (2016) for
some examples).

Today, statistical learning techniques are widely used in the field of data analytics and may
offer non-parametric solutions to claim reserving. These methods give the model more freedom
and often outperform the accuracy of their parametric counterparts. However, only few approaches
have been developed using micro-level information. One of them is presented in Wüthrich (2018),
where the number of payments is modeled using regression trees in a discrete time framework.
The occurrence of a claim payment is assumed to have a Bernoulli distribution, and the probability is
then computed using a regression tree as well as all available characteristics. Other researchers,
see Baudry and Robert (2017), have also developed a non-parametric approach using a machine
learning algorithm known as extra-trees, an ensemble of many unpruned regression trees, for loss
reserving. Finally, some researchers consider neural networks to improve classical loss reserving
models (see Gabrielli et al. (2019)).

In this paper, we propose and analyze an individual model for loss reserving based on an
application of a gradient boosting algorithm. Gradient boosting is a machine learning technique, that
combines many “simple” models called weak learners to form a stronger predictor by optimizing some
objective function. We apply an algorithm called XGBoost, see Chen and Guestrin (2016), but other
machine learning techniques, such as an Extra-Trees algorithm, could also be considered.

Our strategy is to directly predict the ultimate claim amount of a file using all available information
at a given time. Our approach is different from the one proposed in Wüthrich (2018) where regression
trees (CART) are used to model the total number of payments per claim and/or the total amount
paid per claim for each of the development periods. It is also different from the model proposed in
Baudry and Robert (2017), which works recursively to build the full development of a claim, period
after period.

We also present and analyze micro-level models belonging to the class of generalized linear
models (GLM). Based on a detailed dataset from a property and casualty insurance company, we study
some properties and we compare results obtained from various approaches. More specifically, we show
that the approach combining the XGBoost algorithm and a classical collective model such as Mack’s
model, has high predictive power and stability. We also propose a method for dealing with censored
data and discuss the presence of dynamic covariates. We believe that the gradient boosting algorithm
could be an interesting addition to the range of tools available for actuaries to evaluate the solvency
of a portfolio. This case study also enriches the too short list of analyzes based on datasets from
insurance companies.

In Section 2, we introduce the notation and we present the context of loss reserving from both
collective and individual point of view. In Section 3, we define models based on both, generalized
linear models and gradient boosting algorithm. A case study and some numerical analyses on a
detailed dataset are performed in Section 4, and finally, we conclude and present some promising
generalizations in Section 5.

2. Loss Reserving

In non-life insurance, a claim always starts with an accident experienced by a policyholder that
may lead to financial damages covered by an insurance contract. We call the date on which the
accident happens the occurrence point (T1). For some situations (bodily injury liability coverage,
accident benefits, third-party responsibility liability, etc.), a reporting delay is observed between the
occurrence point and the notification to the insurer at the reporting point (T2). From T2, the insurer
could observe details about the accident, as well as some information about the insured, and record a
first estimation of the final amount, called case estimate. Once the accident is reported to the insurance
company, the claim is usually not settled immediately, e.g., the insurer has to investigate the case
or to wait for bills or court judgments. At the reporting point T2, a series of M random payments
Pt1 , . . . , PtM made respectively at times t1 < . . . < tM is therefore triggered, until the claim is closed at
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the settlement point (T3). To simplify the presentation, all dates are expressed in number of years from
an ad hoc starting point denoted by τ. Finally, we need a unique index k, k = 1, . . . , K, to distinguish
the accidents. For instance, T(k)

1 is the occurrence date of the accident k, and t(k)m is the date of the mth
payment of this claim. Figure 1 illustrates the development of a claim.

The evaluation date t∗ is the moment on which the insurance company wants to evaluate its
solvency and calculate its reserves. At this point, a claim can be classified in three categories:

1. If T(k)
1 < t∗ < T(k)

2 , the accident has happened but has not yet been reported to the insurer. It is
therefore called an “incurred but not reported” (IBNR), claim. For one of those claims, the insurer
does not have specific information about the accident, but can use policyholder and external
information to estimate the reserve.

2. If T(k)
2 < t∗ < T(k)

3 , the accident has been reported to the insurer but is still not settled, which
means the insurer expects to make additional payments to the insured. It is therefore called a
“reported but not settled” (RBNS), claim. For one such claim, the historical information as well as
policyholder and external information can be used to estimate the reserve.

3. If t∗ > T(k)
3 , the claim is classified as settled, or S, and the insurer does not expect to make

more payments.

Finally, it is always possible for a claim to reopen after its settlement point T3.
Let C(k)

t be a random variable representing the cumulative paid amount at date t for claim k:

C(k)
t =

⎧⎨⎩0, t < T(k)
2

∑{m:t(k)m ≤t} P
t(k)m

, t ≥ T(k)
2 .

At any evaluation date T(k)
1 < t∗ < T(k)

3 and for an accident k, an insurer wants to predict the

cumulative paid amount at the settlement C(k)
T3

, called total paid amount, by Ĉ(k)
T3

using all information

available at t∗ and denoted by D(k)
t∗ . The individual reserve for a claim evaluated at t∗ is then given

by R̂(k)
t∗ = Ĉ(k)

T3
− C(k)

t∗ . For the whole portfolio, the total reserve is the aggregation of all individual
reserves and is given by

R̂t∗ =
K

∑
k=1

R̂(k)
t∗ .

Traditionally, insurance companies aggregate information by accident year and by development
year. Claims with accident year i, i = 1, . . . , I, are all the claims that occurred in the ith year after
τ, which means all claims k for which i − 1 < T(k)

1 < i is verified. For a claim k, a payment made

in development year j, j = 1, . . . , J = I is a payment made in the jth year after the occurrence T(k)
1 ,

namely a payment P
t(k)m

for which j − 1 < t(k)m − T(k)
1 < j. For development years j = 1, . . . , I, we define

Y(k)
j = ∑

m∈S (k)
j

P
t(k)m

,

where S (k)
j = {m : j − 1 < t(k)m − T(k)

1 < j}, as the total paid amount for claim k during year j and we
define the corresponding cumulative paid amount as

C(k)
j =

j

∑
s=1

Y(k)
s .
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The collective group approaches every claim in the same accident year to form the aggregate
incremental payment

Yij = ∑
k∈Ki

Y(k)
j , i, j = 1, . . . , I,

where Ki is the set of all claims with accident year i. For portfolio-level models, a prediction of the
reserve at time t∗ is obtained by

R̂t∗ =
I

∑
i=2

I

∑
j=I+2−i

Ŷij, (1)

where the Ŷij are usually predicted using only the accident year and the development year.
Each cell contains a series of payments, information about the claims and some information

about policyholders. These payments can also be modeled within an individual framework. Hence,
a prediction of the total reserve amount is given by

R̂t∗ =
I

∑
i=2

I

∑
j=I+2−i

∑
k∈Ki

Ŷ(k)
j︸ ︷︷ ︸

RBNS reserve

+
I

∑
i=2

I

∑
j=I+2−i

∑
k∈Kunobs.

i

Ŷ(k)
j︸ ︷︷ ︸

IBNR reserve

, (2)

where Kunobs.
i is the set of IBNR claims with occurrence year i and the Ŷ(k)

j can now be predicted using
all available information. It should be noted that in Equations (1) and (2), we assume that all claims are
paid for the earliest occurrence period (i = 1). In this paper, we adopt this point of view and we mainly
focus on estimating the RBNS reserve, which is the first part on the right-hand side of Equation (2).

T(k)
1 T(k)

2 t(k)1 t(k)2 t(k)M T(k)
3

Occurrence Reporting SettlementPayments

P
t(k)1

P
t(k)2

P
t(k)M

Reporting delay Settlement period

Figure 1. Development of claim k.

3. Models for Loss Reserving

3.1. Bootstrap Mack’s Model and Generalized Linear Models for Loss Reserving

In Section 4, we compare our micro-level approach with three different types of models
for loss reserving: a bootstrapped Mack’s model England and Verrall (2002), a collective GLM
Wüthrich and Merz (2008) and an individual version of the latter. In order to enrich the discussion
that will be done in the analysis, we briefly present in this subsection these three different approaches.

Mack’s model Mack (1993) is a distribution-free stochastic loss reserving method built for a
cumulative run-off triangle. This collective model is among the most popular for loss reserving and as
a result, the literature is more than substantial about it. One of the main drawbacks of this technique is
that the predictive distribution of the total reserve cannot be computed directly due to the absence
of a distribution assumption. In order to compare with our gradient boosting approach, we thus use
a bootstrapped version of Mack’s model which allows to compute a predictive distribution. In the
interest to be concise, we will not discuss more about this model, and we invite the reader to take a
look at Mack (1993) and England and Verrall (2002) for more details.
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In the collective GLM framework, we assume that the incremental aggregate payments Yij are
independent and follow a distribution falling into the exponential family with expected value given
by g

(
E
[
Yij
])

= β0 + αi + β j, where g() is the link function, αi, i = 2, 3, . . . , N is the accident year
effect, β j, j = 2, 3, . . . , N is the development year effect and β0 is the intercept. Variance is given
by Var

[
Yij
]
= ϕV

(
E
[
Yij
])

, where V() is the variance function and ϕ is the dispersion parameter
(see De Jong and Heller (2008) for an introduction to GLM). The prediction for Yij is then given by

Ŷij = g−1(β̂0 + α̂i + β̂ j),

where estimates of the parameters β̂0, {α̂i}N
i=2 and {β̂ j}N

j=2 are usually found by maximizing likelihood.
The reserve at time t∗ can thereafter be computed using Equation (1), and the predictive distribution of
the total reserve can be calculated using simulations. A complete description of this model is done in
Wüthrich and Merz (2008).

The individual GLM for loss reserving which we present here represents a micro-level version
of the collective GLM described in the last paragraph. A major advantage of this model over the
collective version comes from the use of covariates in addition to the accident and development year.
Adaptations, minor or not, of our chosen approach could be studied as well, but this is not the main
purpose of this paper. We assume that Y(k)

j follows a distribution falling into the exponential family

with expected value given by g
(

E
[
Y(k)

j

])
= x(k)j β and variance given by Var

[
Y(k)

j

]
= ϕV

(
E
[
Y(k)

j

])
,

where x(k)j is the vector of covariates for claim k and development period j and β is the usual vector of

parameters. The prediction for Y(k)
j is obtained with

Ŷ(k)
j = g−1

(
x(k)j β̂

)
,

where β̂ is the maximum likelihood estimator of β. For a claim from occurrence period i in the portfolio,
the individual reserve, evaluated at t∗, is given by R̂(k)

t∗ = ∑I
j=I+2−i Ŷ(k)

j , and the total RBNS reserve

is given by R̂t∗ = ∑k R̂(k)
t∗ . Some remarks should be made concerning the implementation of this

model. First, the distribution of the random variable Y(k)
j has a mass at 0 because we did not separate

occurrence and severity in our modeling. It may also be possible to consider a two-part GLM. Secondly,
this model assumes that the covariates remain identical after the valuation date, which is not exactly
accurate in the presence of dynamic variables such as the number of healthcare providers. We discuss
this issue in more detail in the next subsection. Third, the status of a file (open or closed) is used as
an explanatory variable in the model, which implicitly allows for reopening. Finally, obtaining the
IBNR reserve also requires a model for the occurrence of a claim and the delay of its declaration to the
insurer in addition to more assumptions about the composition of the portfolio.

3.2. Gradient Boosting for Loss Reserving

In order to train gradient boosting models, we use an algorithm called XGBoost developed
by Chen and Guestrin (2016), and regression trees are chosen as weak learners. For more detail
about XGBoost algorithm and regression trees, see Breiman et al. (1984); Chen and Guestrin (2016),
respectively. The loss function used is the squared loss L(y, f (x)) = (y − f (x))2 but other options
such as residual deviance for gamma regression were considered without significantly altering the
conclusions. A more detailed analysis of the impact of the choice of this function is deferred to a
subsequent case study. Models were built using R programming language in conjunction with caret

and xgboost libraries. caret is a powerful package used to train and to validate a wide range of
statistical models including XGBoost algorithm.
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Let us say we have a portfolio S on which we want to train an XGBoost model for loss reserving.
This portfolio contains both, open and closed claims. At this stage, several options are available:

1. The simplest solution is to train the model on data DT where only settled claims (or non-censored
claims) are included. Hence, the response is known for all claims. However, this leads to a
selection bias because claims that are already settled at t∗ tend to have shorter developments,
and claims with shorter development tend to have lower total paid amounts. Consequently,
the model is almost exclusively trained on simple claims with low training responses, which
leads to underestimation of the total paid amounts for new claims. Furthermore, a significant
proportion of the claims are removed from the analysis, which causes a loss of information.
We will analyze this bias further in Section 4 (see model B).

2. In Lopez et al. (2016), a different and interesting approach is proposed: in order to correct the
selection bias induced by the presence of censored data, a strategy called “inverse probability of
censoring weighting” (IPCW) is implemented, which involves assigning weights to observations
to offset the lack of complete observations in the sample. The weights are determined using the
Kaplan-Meier estimator of the censoring distribution, and a modified CART algorithm is used to
make the predictions.

3. A third approach is to develop claims that are still open at t∗ using parameters from a classical
approach such as Mack’s or the GLM model. We discuss this idea in more detail in Section 4
(see model C and model D).

In order to predict total paid amount for a claim k, we use information we have about the case at
evaluation date t∗, denoted by x(k)t∗ .

Some of the covariates, such as the accident year, are static, which means their value do not
change over time. These covariates are quite easy to handle because their final value is known since the
reporting of the claims. However, some of the available information is expected to develop between t∗

and the closure date, for example, the claimant’s health status or the number of healthcare providers
in the file. To handle those dynamic covariates, we have, at least, the following two options:

• we can assume that they are static, which can lead to a bias in the predictions obtained
(see model E in Section 4); or

• we can, for each of these variables, (1) adjust a dynamic model, (2) obtain a prediction
of the complete trajectory, and (3) use the algorithm conditionally to the realization of this
trajectory. Moreover, there may be dependence between these variables, which would warrant a
multivariate approach.

These two points will be discussed in Section 4 (see model E). The XGBoost algorithm therefore
learns a prediction function f̂XGB on the adjusted dataset, depending on the selected option 1., 2. or 3.
and how dynamic covariates are handled. Then, the predicted total paid amount for claim k is given
by Ĉ(k)

T3
= f̂XGB

(
x(k)t∗

)
. Reserve for claim k is R̂(k)

t∗ = Ĉ(k)
T3

− C(k)
t∗ , and the RBNS reserve for the whole

portfolio is computed with R̂t∗ = ∑k∈S R̂(k)
t∗ . Gradient boosting is a non-parametric algorithm and no

distribution is assumed for the response variable. Therefore, in order to compute the variance of the
reserve and some risk measures, we use a non-parametric bootstrap procedure.

4. Analyses

In this section, we present an extended case study based on a detailed dataset from a property
and casualty insurance company. In Section 4.1, we describe the dataset, in Section 4.2 we explain how
we construct and train our models, and in Section 4.4 we present our numerical results and analyses.

44



Risks 2019, 7, 79

4.1. Data

We analyzed a North American database consisting of 67.203 claims occurred from 1 Januar
2004 to 31 December 2016. We therefore let τ, the starting point, be 1 January 2004 meaning that all
dates are expressed in number of years from this date. These claims are related to 60.075 general
liability insurance policies for private individuals. We focus only on the accident benefits coverage
that provides compensation if the insured is injured or killed in an auto accident. It also includes
coverage for passengers and pedestrians involved in the accident. Claims involve one (83%), two (13%)
or 3+ parties (4%) resulting in a total of 82.520 files in the database. Consequently, there is a possibility
of dependence between some payments in the database. Nevertheless, we assume in this paper that
all files are independent claims, and we postpone the analysis of this dependence. Thus, we analyze a
portfolio of 82.520 independent claims that we denote by S . An example of the structure of the dataset
is given in Table A1 in Appendix A.

The data are longitudinal, and each row of the database corresponds to a snapshot of a file.
For each element in S , a snapshot is taken at the end of every quarter, and we have information from
the reporting date until 31 December 2016. Therefore, a claim is represented by a maximum of 52 rows.
A line is added in the database even if there is no new information, i.e., it could be possible that two
consecutive lines provide precisely the same information. During the training of our models, we do
not consider these replicate rows because they do not provide any relevant information for the model.

The information vector for claim k, k = 1, . . . , 82.520 at time t is given by D(k)
t = (x(k)t , C(k)

t ).

Therefore, the information matrix about the whole portfolio at time t is given by D(S)
t = {D(k)

t }k∈S .

Because of the discrete nature of our dataset, it contains information {D(S)
t }{0.25t: t∈N, t≤52}, where t is

the number of years since τ.
In order to validate models, we need to know how much has actually been paid for each claim.

In portfolio S , the total paid amount CT3 is still unknown for 19% of the cases because they are related
to claims that were open on 31 December 2016 (see Figure 2). To overcome this issue, we use a subset
S7 = {k ∈ S : T(k)

1 < 7} of S , i.e., we consider only accident years from 2004 to 2010 for both training
and validation. This subset contains 36.286 files related to 32.260 claims of which 22% are still open on
31 December 2010. Further, only 0.67% of the files are associated with claims that are still open as of
the end of 2016, so we know the exact total paid amount for 99.33% of them, assuming no reopening
after 2016. For the small proportion of open claims, we assume that the incurred amount set by experts
is the true total paid amount. Hence, the evaluation date is set at 31 December 2010 and t∗ = 7. This is
the date at which the reserve must be evaluated for files in S7. This implies that the models are not
allowed to use information past this date for their training. Information past the evaluation date is
used only for validation.

For simplicity and for computational purposes, the quarterly database is summarized to form a
yearly database {D(S7)

t }13
t=1, where D(S7)

t = {D(k)
t }k∈S7 . We randomly sampled 70% of the 36.843 claims

to form the training set of indices T ⊂ S7, and the other 30% forms the validation set of indices V ⊂ S7,
which gives the training and validation datasets DT = {D(T )

t }13
t=1 and DV = {D(V)

t }13
t=1.

In partnership with the insurance company, we selected 20 covariates in order to predict total
paid amount for each of the claims. To make all models comparable, we use the same covariates for all
claims. Some covariates are characteristics of the insured, such as age and gender, and some pertain to
the claim such as the accident year, the development year, and the number of healthcare providers in
the file. For privacy reasons, we cannot discuss the selected covariates further in this paper.
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(a)
 

(b)

Figure 2. (a) Status of claims of incurred amounts on 31 December 2016; (b) Means and standard
deviations of incurred amounts on 31 December 2016.

4.2. Training of XGBoost Models

In order to train XGBoost models, we analyze the training dataset DT = {(xt, Ct)}13
t=1. Because

some covariates are dynamic, the design matrix xt changes over time, that is to say xt 
= xt′ for t 
= t′.
Unless otherwise stated, the models are all trained using x7, which is the latest information we have
about files, assuming information after t∗ = 7 is unknown.

Although a model using real responses is not usable in practice, it is possible to train it because
we set the evaluation date to be in the past. Model A acts as a benchmark model in our case study
because it is fit using CT3 as training responses and it is best model we can hope for. Therefore, in order

to train model A, data DA
T = {(x(k)7 , C(k)

T3
)}k∈T is input into the XGBoost algorithm, which learns the

prediction function f̂A.
Model B, which is biased, is fit using C7 as training responses, but only on the set of claims for

which the claim is settled at time t∗ = 7. Hence, model B is trained using DB
T = {(x(k)7 , C(k)

7 )}k∈TB ,

where TB = {k ∈ T : T(k)
3 < 7}, giving the prediction function f̂B. This model allows us to measure

the extent of the selection bias.
In the next models, we develop claims that are still open at t∗, i.e., we predict pseudo-responses

ĈT3 using training set DT , and these ĈT3 are subsequently used to fit the model.
In model C, claims are developed using the Mack’s model. We only develop open files at the

evaluation date, i.e., we assume no reopening for settled claims. More specifically, information from
data {D(T )

t }7
t=1 is aggregated by accident year and by development year to form a cumulative run-off

triangle. Based on this triangle, we use the bootstrap approach described in England and Verrall (2002)
and involving Pearson’s residuals to generate B = 1000 bootstrapped triangles {C(b)}B

b=1. On each of

those triangles, the Mack’s model is applied to obtain vectors of development factors λ̂j = {λ
(b)
j }B

b=1,
j = 1, . . . , 6, with

λ̂
(b)
j =

∑
7−j
i=1 C(b)

i(j+1)

∑
7−j
i=1 C(b)

ij

, b = 1, . . . , B, (3)
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where C(b)
i(j+1) and C(b)

ij are from bootstrapped triangle C(b). From each vector λ̂j, we compute

empirical cumulative distribution function Fj and we set λ̂j = F−1
j (κC), j = 1, . . . , 6 and where

κC is a hyperparameter estimated using cross-validation. Finally, we calculate pseudo-responses
{Ĉ(k)

T3
}k∈T using

Ĉ(k)
T3

= λ̂c
j C

(k)
7 , where λ̂c

j =
6

∏
l=j

λ̂l . (4)

In model D, claims are projected using an individual quasi-Poisson GLM as described in Section 3.1
and including all 20 covariates. We discretize the amounts by rounding in order to be able to use
a counting distribution even if the response variable is theoretically continuous. This approach is
common in the literature associated with loss reserving and does not have a significant impact on
the final results. Unlike in model C, we also develop settled claims at t∗ = 7. This is because
in this model, the status (open or closed) of the file is used, which means the models will be
able to make the difference between open and settled claims. More specifically, model D uses
an individual quasi-Poisson GLM to estimate the training dependent variable. The GLM is fit on
data {(x(T )

t , Y (T )
t )}7

t=1, where x(T )
t = {x(k)t }k∈T , Y (T )

t = {Y(k)
t }k∈T and Y(k)

t is the yearly aggregate
payment at year t for claim k. A logarithm link function is used and coefficients are estimated by
maximizing the Poisson log-likelihood function. Therefore, the estimation of the expected value for a
new observation is given by

μ̂
(k)
t = exp

(
x(k)t β̂

)
,

and a prediction is made according to Ŷ(k)
t = F−1

Y(k)
t

(κD), which is the level κD empirical quantile of the

distribution of Y(k)
t . This quantile can be obtained using simulation or bootstrap procedure. Finally,

for the claim k, the pseudo-response is

Ĉ(k)
T3

= C(k)
7 +

13

∑
t=8

Ŷ(k)
t .

Model E is constructed in the same way as model C but it uses prospective information about
the 4 dynamic stochastic covariates available in the dataset. It is analogous to model A in the sense
that it is not usable in practice. However, fitting this model indicates whether an additional model
that would project censored dynamic covariates would be useful. In Table 1, we summarize the main
specifications of the models.

Table 1. Main specifications of XGBoost models.

Model Response Variable (ĈT3
) Covariates Usable in Practice?

Model A {CT3} x7 No

Model B {C(k)
7 }k∈TB , TB = {k ∈ T : T(k)

3 < 7} x7 Yes

Model C closed: {C7} x7 Yes
open: {λ̂c

j C7} (λ̂ from bootstrap) x7

Model D all: {C7 + ∑13
t=8 Ŷt} (with Ŷt = qYt (κD)) x7 Yes

Model E closed: {C7} x13 No
open: {λ̂c

j C7} (λ̂ from bootstrap) x13

Note: unless otherwise stated, we have k ∈ T .
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4.3. Learning of Prediction Function

In Section 4.2, we showed how to train the XGBoost models having the dataset DT . However, no
details were given on how we obtain the prediction function for each model. In this section, we dive
one abstraction level lower by explaining the general idea behind the algorithm. Our presentation
is closely inspired by the TreeBoost algorithm developed by Friedman (2001), which is based on the
same principles as XGBoost using regression trees as weak learners. The main difference between the
two algorithms is the computation time: XGBoost is usually faster to train. In order to get through this,
we take model A as an example. The explanation is nevertheless easily transferable to all other models
since only the dataset given as input changes.

In the regression framework, a TreeBoost algorithm combines many regression trees together in
order to optimize some objective function and thus learn a prediction function. The prediction function
for model A takes the form of a weighted sum of regression tress

f̂A

(
x(k)7

)
=

M

∑
m=1

βmT
(

x(k)7 ; θm

)
, (5)

where {βm}M
m=1 and {θm}M

m=1 are the weights and the vectors of parameters characterizing the
regression trees, respectively. The vector of parameters associated with the mth tree contains Jm

regions (or leaves) {Rjm}Jm
j=1 as well as the corresponding prediction constants {γjm}Jm

j=1, which means

θm = {Rjm, γjm}Jm
j=1. Notice that a regression tree can be seen as a weighted sum of indicator functions:

T(x; θ) =
J

∑
j=1

γj1(x ∈ Rj).

Ref. Friedman (2001) proposed to slightly modify Equation (5) in order to choose a different
optimal value β jm for each of the tree’s regions. Consequently, each weight β jm can be absorbed into
the prediction constant γjm. Assuming a constant number of regions J in each tree (which is almost
always the case in practice), Equation (5) becomes

f̂A

(
x(k)7

)
=

M

∑
m=1

J

∑
j=1

γjm1
(

x(k)7 ∈ Rjm

)
.

With a loss function L(), we need to solve

{βm, θm}M
m=1 = arg min

{β′m ,θ′m}
∑

k∈T
L
(

C(k)
T3

,
M

∑
m=1

J

∑
j=1

γjm1
(

x(k)7 ∈ Rjm

))
,

which is, most of the time, too expensive computationally. The TreeBoost algorithm overcomes this
issue by building the prediction function iteratively. In order to avoid overfitting, it also adds a learning
rate ν, 0 < ν ≤ 1. The steps needed to obtain the prediction function for model A are detailed in
Algorithm 1.
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Algorithm 1: Obtaining f̂A with least square TreeBoost.

Input: data DA
T =
{(

x(k)7 , C(k)
T3

)}
k∈T

, number of trees M, number of regions in each tree J,

learning rate ν

Initialize: f (0)A

(
x(k)7

)
:= average

k∈T

{
C(k)

T3

}
for m ← 1 to M do

• compute residuals of the current model

r(k)m := C(k)
T3

− f (m−1)
A

(
x(k)7

)
, for k ∈ T ;

• fit a tree to the data
{(

x(k)7 , r(k)m

)}
k∈T

, yielding regions {Rjm}J
j=1;

• compute prediction constant for each region

γjm = average{
k:x(k)7 ∈Rjm

}
{

r(k)m

}
, for j = 1, . . . , J;

• update the model

f (m)
A

(
x(k)7

)
:= f (m−1)

A

(
x(k)7

)
+ ν

J

∑
j=1

γjm1
(

x(k)7 ∈ Rjm

)
;

end

return f̂A := f (M)
A

4.4. Results

From {D(T )
t }7

t=1, which was the training dataset before the evaluation date, it is possible to obtain
a training run-off triangle by aggregating payments by accident and by development year, presented
in Table 2.

Table 2. Training incremental run-off triangle (in $100,000).

Development Year 1 2 3 4 5 6 7

Accident year
2004 79 102 66 49 57 48 37
2005 83 128 84 55 52 41 ·
2006 91 138 69 49 38 · ·
2007 111 155 98 61 · · ·
2008 100 178 99 · · · ·
2009 137 251 · · · · ·
2010 155 · · · · · ·

We can apply the same principle for validation dataset DV , which yields the validation run-off
triangle displayed in Table 3.
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Table 3. Validation incremental run-off triangle (in $100,000).

Development Year 1 2 3 4 5 6 7 8+

Accident year
2004 34 41 23 13 14 14 9 7
2005 37 60 36 29 45 21 20 24
2006 41 64 34 23 21 14 4 21
2007 46 67 40 37 15 18 3 13
2008 46 82 39 42 16 11 15 33
2009 54 109 62 51 31 36 11 2
2010 66 93 47 45 16 16 9 ?

Note: Data used to score models are displayed in black as aggregated payments used for validation are in gray.

Based on the training run-off triangle, it is possible to fit many collective models,
see Wüthrich and Merz (2008) for an extensive overview. Once fitted, we scored them on the validation
triangle. In the validation triangle (Table 3), data used to score models are displayed in black and
aggregated payments observed after the evaluation date are displayed in gray. Payments have been
observed for six years after 2010, but this was not long enough for all claims to be settled. In fact,
on 31 December 2016, 0.67% of files were associated with claims that are still open, mostly from
accident years 2009 and 2010. Therefore, amounts in column “8+” for accident years 2009 and 2010
in Table 3 are in fact too low. Based on available information, the observed RBNS amount was
$67,619,905 (summing all gray entries), but we can reasonably think that this amount would be closer
to $70,000,000 if we could observe more years. The observed IBNR amount was $3,625,983 for a total
amount of $71,245,888.

Results for collective models are presented according to two approaches:

• Mack’s model, for which we present results obtained with the bootstrap approach developed by
England and Verrall (2002), based on both quasi-Poisson and gamma distributions; and

• generalized linear models for which we present results obtained using a logarithmic link
function and a variance function V(μ) = φμp with p = 1 (quasi-Poisson), p = 2 (gamma),
and 1 < p < 2 (Tweedie).

For each model, Table 4 presents the expected value of the reserve, its standard error, and
the 95% and the 99% quantiles of the predictive distribution of the total reserve amount. As is
generally the case, the choice of the distribution used to simulate the process error in the bootstrap
procedure for Mack’s model has no significant impact on the results. Reasonable practices, at
least in North America, generally require a reserve amount given by a high quantile (95%, 99%
or even 99.5%) of the reserve’s predictive distribution. As a result, the reserve amount obtained
by bootstrapping Mack’s model is too high (between $90,000,000 and $100,000,000) compared to
the observed value (approximately $70,000,000). Reserve amounts obtained with generalized linear
models were more reasonable (between $77,000,000 and $83,000,000), regardless of the choice of the
underlying distribution. The predictive distribution for all collective models is shown in Figure 3.

In Table 4, we also present in-sample results, i.e., we used the same dataset to perform both
estimation and validation. The results were very similar, which tends to indicate stability of the results
obtained using these collective approaches.

Individual models were trained on the training set {D(T )
t }7

t=1 and scored on the validation
set {D(V)}13

t=8. In contrast to collective approaches, individual methods used micro-covariates and,
more specifically, the reporting date. This allows us to distinguish between IBNR claims and RBNS
claims and, as previously mentioned, in this project we mainly focus on the modeling of the RBNS
reserve. Nevertheless, in our dataset, we observe very few IBNR claims ($3,625,983) and therefore,
we can reasonably compare the results obtained using both micro- and macro-level models with the
observed amount ($67,619,905).
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Table 4. Prediction results (incurred but not reported (IBNR) + reported but not settled (RBNS)) for
collective approaches.

Model Assessment E[Res.]
√

Var[Res.] q0.95 q0.99

Bootstrap Mack out-of-sample 76,795,136 7,080,826 89,086,213 95,063,184
(quasi-Poisson) in-sample 75,019,768 8,830,631 90,242,398 97,954,554
Bootstrap Mack out-of-sample 76,803,753 7,170,529 89,133,141 95,269,308

(Gamma) in-sample 75,004,053 8,842,412 90,500,323 98,371,607

GLM out-of-sample 75,706,046 2,969,877 80,655,890 82,696,002
(Quasi-Poisson) in-sample 74,778,091 3,084,216 79,922,183 81,996,425

GLM out-of-sample 73,518,411 2,263,714 77,276,416 78,907,812
(Gamma) in-sample 71,277,218 3,595,958 77,343,035 80,204,504

GLM out-of-sample 75,688,916 2,205,003 79,317,520 80,871,729
(Tweedie) in-sample 74,706,050 2,197,659 78,260,722 79,790,056

Note: because 70% of the data was used for training and 30% is used for testing, we used a factor of 7/3 to
correct in-sample predictions and make them comparable with out-of-sample predictions. The observed total
amount was $71,245,888.

Figure 3. Comparison of predictive distributions (incurred but not reported (IBNR) + reported but not
settled (RBNS)) for collective models.

We considered the following approaches:

• individual generalized linear models (see Section 3.1), for which we present results obtained using
a logarithmic link function and three variance functions: V(μ) = μ (Poisson) and V(μ) = φμp

with p = 1 (quasi-Poisson) and V(μ) = φμp with 1 < p < 2 (Tweedie); and
• XGBoost models (models A, B, C, D and E) described in Section 4.2.

Both approaches used the same covariates described in Section 4.1, which makes them comparable.
For many files in both training and validation sets, some covariates are missing. Because generalized
linear models cannot handle missing values, median/mode imputation has been performed for both
training and validation sets. No imputation has been done for XGBoost models because missing values
are processed automatically by the algorithm.

Results for individual GLM are displayed in Table 5, and predictive distributions for both
quasi-Poisson and Tweedie GLM are shown in Figure 4. Predictive distribution for the Poisson
GLM is omitted because it is the same as the quasi-Poisson model, but with a much smaller variance.
Based on our dataset, we observe that the estimated value of the parameter associated to some
covariates is particularly dependent on the database used to train the model, e.g., in the worst case,
for the quasi-Poisson model, we observe β̂ = 0.169 (0.091) with the out-of-sample approach and
β̂ = −1.009 (0.154) with the in-sample approach. This can also be observed for many parameters of the
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model, as shown in Figure 5 for the quasi-Poisson model. These results were obtained by resampling
from the training database and the quasi-Poisson model. Crosses and circles represent the estimated
values of the parameters if the original training database is used, and the estimated values of the
parameters if the validation database is used, respectively. On this graph, we observe that, for most of
the parameters, the values estimated on the validation set are inaccessible when the model is adjusted
on the training set. In Table 5, we display results for both in-sample and out-of-sample approaches.
As the results shown in Figure 4 suggest, there are significant differences between the two approaches.
Particularly, the reserves obtained from the out-of-sample approach are too high compared with the
observed value. Although it is true that in practice, the training/validation set division is less relevant
for an individual generalized linear model because the risk of overfitting is lower, this suggests that
some caution is required in a context of loss reserving.

Figure 4. Predictive distributions (RBNS) for individual GLM with covariates.

Figure 5. Means and 95% confidence intervals for all parameters of the model.
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Table 5. Prediction results (RBNS) for individual generalized linear models using covariates.

Model Assessment E[Res.]
√

Var[Res.] q0.95 q0.99

Poisson out-of-sample 86,411,734 9007 86,426,520 86,431,211
in-sample 75,611,203 8655 75,625,348 75,631,190

Quasi-Poisson out-of-sample 86,379,296 894,853 87,815,685 88,309,697
in-sample 75,606,230 814,608 76,984,768 77,433,248

Tweedie out-of-sample 84,693,529 2,119,280 88,135,187 90,011,542
in-sample 70,906,225 1,994,004 74,098,686 75,851,991

Note: Because 70% of the data is used for training and 30% is used for testing, we use a factor of 7/3 to
correct in-sample predictions and make them comparable with out-of-sample predictions. The observed
RBNS amount is $67,619,905.

Out-of-sample results for XGBoost models are displayed in Table 6. For all models, the learning
rate is around 10%, which means our models are quite robust to overfitting. We use a maximum
depth of 3 for each tree. A higher value would make our model more complex but also less robust
to overfitting. All those hyperparameters are obtained by cross-validation. Parameters κC = 0.8 and
κD = 0.8 are obtained using cross-validation over a grid given by {0.6, 0.7, 0.8, 0.9}.

Table 6. Prediction results (RBNS) for individual approaches (XGBoost) using covariates.

Model E[Res.]
√

Var[Res.] q0.95 q0.99

Model A 73,204,299 3,742,971 79,329,916 82,453,032
Model B 14,339,470 6,723,608 25,757,061 30,643,369
Model C 67,655,960 2,411,739 71,708,313 73,762,242
Model D 68,313,731 4,176,418 75,408,868 78,517,966
Model E 67,772,822 2,387,476 71,722,744 73,540,516

Note: The observed RBNS amount is $67,619,905.

Not surprisingly, we observe that model B is completely off the mark, underestimating the total
reserve by a large amount. This confirms that the selection bias, at least in this example, is real
and substantial.

model C considers a collective model, i.e., without micro-covariates, to create pseudo-responses
and uses all covariates available in order to predict final paid amounts. With a slightly lower
expectation and variance, model C is quite similar to model A. Because the latter model uses
real responses for its training, the method used for claim development appears to be reasonable.
Model D uses an individual model, a quasi-Poisson GLM, using all covariates available to obtain both,
pseudo-responses and final predictions. Again, results are similar to those of model A. In Figure 6 we
compare the predictive distributions of model A, model C and model D.

Figure 6. Predictive distributions (RBNS) for XGBoost models A, C and D.

53



Risks 2019, 7, 79

Model E is identical to model C with the exception of dynamic variables whose value at the
evaluation date was artificially replaced by the ultimate value. At least in this case study, the impact
is negligible (see Figure 7). There would be no real interest in building a hierarchical model that
allows, first, to develop the dynamic variables and, second, to use one XGBoost models to predict final
paid amounts.

Figure 7. Comparison of predictive distributions for models E and C.

5. Conclusions

This paper studies the modeling of loss reserves for a property and casualty insurance company
using micro-level approaches. More specifically, we apply generalized linear models and gradient
boosting models designed to take into account the characteristics of each individual policyholder,
as well as individual claims. We compare those models to classical approaches and show their
performance on a detailed dataset from a Canadian insurance company. The choice of a gradient
boosted decision-tree model is motivated by its strong performance for prediction on structured data.
In addition, this type of algorithm requires very little data preprocessing, which is a notable benefit.
The XGBoost algorithm was chosen for this analysis, mainly for its relatively short calculation time.

Through a case study, we mainly showed that

(1) the censored nature of the data could strongly bias the loss reserving process; and
(2) the use of a micro-level model based solely on generalized linear models could be unstable for

loss reserving but an approach combining a macro-level (or a micro-level) model for the artificial
completion of open claims and a micro-level gradient-boosting model represents an interesting
approach for an insurance company.

The gradient boosting models presented in this paper allow insurers to compute a prediction
for the total paid amount of each claim. Insurers might also be interested in modeling the payment
schedule, namely to predict the date and the amount of each individual payment. Moreover, we know
that payments for parties belonging to the same claim are not independent and are positively correlated.
Therefore, one could extend the model by adding a dependence structure between parties. The same
principle could be applied with the different types of coverage (medical and rehabilitation, income
replacement, etc.). Dynamic covariates can change over time, which makes their future value random.
In this work, we assumed that their value will not change after the evaluation date and we checked
that the impact was not very high. However, for a different database, this could have a significant
impact on the results. A possible refinement would be to build a hierarchical model that first predicts
the ultimate values of dynamic covariates before inputting them in the gradient boosting algorithm.
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In recent years, several new individual approaches have been proposed. It will be interesting,
in a future case study, to compare the results obtained, on the same database, using these different
methods. Finally, in this case study, we always consider predictive distributions to compare models.
One might wonder why we do not use criteria often used in machine learning such as the root mean
squared error (RMSE) or the mean absolute error (MAE). The reason lies, at least in part, in the fact that
the database used in this work contains numerous small (or zero) claims and very few large claims.
Therefore, because RMSE and MAE are symmetric error functions, they favor models that predict low
reserves. Expectile regression is an avenue that is being explored to overcome this weakness.
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Appendix A. Structure of the Dataset

Table A1. An example of the structure of the database.

Policy Number Claim Number Party File Number Date . . .

P100000 C234534 1 F0000001 31 March 2004 . . .
P100000 C234534 1 F0000001 30 June 2004 . . .
P100000 C234534 1 F0000001 30 September 2004 . . .
. . . . . . . . . . . . . . . . . .
P100000 C234534 2 F0000002 31 March 2004 . . .
P100000 C234534 2 F0000002 30 June 2004 . . .
P100000 C234534 2 F0000002 30 September 2004 . . .
. . . . . . . . . . . . . . . . . .
P100034 C563454 1 F0000140 31 March 2004 . . .
P100034 C563454 1 F0000140 30 June 2004 . . .
P100034 C563454 1 F0000140 30 September 2004 . . .
. . . . . . . . . . . . . . . . . .

Note: It can be seen that the contract P100000 generated a claim involving two people, i.e., the driver and
a passenger, and generating two files. In our analysis, files F0000001 and F0000002 are considered to be
independent claims. A snapshot of the available information is taken at the end of each quarter.
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Abstract: We propose a novel approach for loss reserving based on deep neural networks.
The approach allows for joint modeling of paid losses and claims outstanding, and incorporation
of heterogeneous inputs. We validate the models on loss reserving data across lines of business,
and show that they improve on the predictive accuracy of existing stochastic methods. The models
require minimal feature engineering and expert input, and can be automated to produce forecasts
more frequently than manual workflows.
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1. Introduction

In the loss reserving exercise for property and casualty insurers, actuaries are concerned with
forecasting future payments due to claims. Accurately estimating these payments is important from
the perspectives of various stakeholders in the insurance industry. For the management of the insurer,
the estimates of unpaid claims inform decisions in underwriting, pricing, and strategy. For the
investors, loss reserves, and transactions related to them, are essential components in the balance sheet
and income statement of the insurer. In addition, for the regulators, accurate loss reserves are needed
to appropriately understand the financial soundness of the insurer.

There can be time lags both for reporting of claims, where the insurer is not notified of a loss until
long after it has occurred, and for final development of claims, where payments continue long after
the loss has been reported. Also, the amounts of claims are uncertain before they have fully developed.
These factors contribute to the difficulty of the loss reserving problem, for which extensive literature
exists and active research is being done. We refer the reader to England and Verrall (2002) for a survey
of the problem and existing techniques.

Deep learning has garnered increasing interest in recent years due to successful applications
in many fields (LeCun et al. 2015) and has recently made its way into the loss reserving literature.
Wüthrich (2018b) augments the traditional chain ladder method with neural networks to incorporate
claims features, Gabrielli and Wüthrich (2018) use neural networks to syntheisze claims data,
and Gabrielli et al. (2018) and Gabrielli (2019) embed classical parametric loss reserving models
into neural networks. More specifically, the development in Gabrielli et al. (2018) and Gabrielli (2019)
proposes initializing a neural network so that, before training, it corresponds exactly to a classical
model, such as the over-dispersed Poisson model. The training iterations then adjust the weights of the
neural network to minimize the prediction errors, which can be interpreted as a boosting procedure.

In developing our framework, which we call DeepTriangle1, we also draw inspiration from the
existing stochastic reserving literature. Works that propose using data in addition to paid losses include
Quarg and Mack (2004), which uses incurred losses, and Miranda et al. (2012), which incorporates

1 A portmanteau of deep learning and loss development triangle.
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claim count information. Moving beyond a single homogeneous portfolio, (Avanzi et al. (2016)
considers the dependencies among lines of business within an insurer’s portfolio, while Peremans et al.
(2018) proposes a robust general multivariate chain ladder approach to accommodate outliers. There is
also a category of models, referred to as state space or adaptive models, that allow parameters to
evolve recursively in time as more data is observed (Chukhrova and Johannssen 2017). This iterative
updating mechanism is similar in spirit to the continuous updating of neural network weights during
model deployment.

The approach that we develop differs from existing works in many ways, and has the following
advantages. First, it enables joint modeling of paid losses and claims outstanding for multiple
companies simultaneously in a single model. In fact, the architecture can also accommodate
arbitrary additional inputs, such as claim count data and economic indicators, should they be
available to the modeler. Second, it requires no manual input during model updates or forecasting,
which means that predictions can be generated more frequently than traditional processes, and, in turn,
allows management to react to changes in the portfolio sooner.

The rest of the paper is organized as follows: Section 2 provides a brief overview of neural
network terminology, Section 3 discusses the dataset used and introduces the proposed neural network
architecture, Section 4 defines the performance metrics we use to benchmark our models and discuss
the results, and Section 5 concludes.

2. Neural Network Preliminaries

For comprehensive treatments of neural network mechanics and implementation, we refer the
reader to Goodfellow et al. (2016) and Chollet and Allaire (2018). A more actuarially oriented discussion
can be found in Wuthrich and Buser (2019). To establish common terminology used in this paper,
we present a brief overview in this section.

We motivate the discussion by considering an example feedforward network with fully connected
layers represented in Figure 1, where the goal is to predict an output y from input x. The intermediate
values, known as hidden layers and represented by h[l]j , try to transform the input data into
representations that successively become more useful at predicting the output. The nodes in the
figure are computed, for each layer l = 1, . . . , L, as

h[l]j = g[l](z[l]j ), (1)

where
z[l]j = w[l]T

j h[l−1] + b[l]j , (2)

for j = 1, . . . , n[l]. In these equations, a superscript [l] denotes association with the layer l, a subscript j
denotes association with the j-th component of the layer, of which there are n[l]. The g[l] (l = 1, . . . , L)
are called activation functions, whose values h[l] are known as activations. The vectors w[l]

j and scalars

b[l]j are known as weights and biases, respectively, and together represent the parameters of the neural
network, which are learned during training.

For l = 1, we define the previous layer activations as the input, so that the calculation for the first
hidden layer becomes

h[1]j = g[1](w[1]T
j x + b[1]j ). (3)

Also, for the output layer l = L, we compute the prediction

ŷ = h[L]j = g[L](w[L]T
j h[L−1] + b[L]j ). (4)

We can then think of a neural network as a sequence of function compositions f = fL ◦ fL−1 ◦
· · · ◦ f1 parameterized as f (x; W [1], b[1], . . . , W [L], b[L]). Here, it should be mentioned that the g[l]

(l = 1, . . . , L) are chosen to be nonlinear, except for possibly in the output layer. These nonlinearities
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are key to the success of neural networks, because otherwise we would have a trivial composition of
linear models.

Figure 1. Feedforward neural network.

Each neural network model is specified with a specific loss function, which is used to measure
how close the model predictions are to the actual values. During model training, the parameters
discussed above are iteratively updated in order to minimize the loss function. Each update of the
parameters typically involves only a subset, or mini-batch, of the training data, and one complete pass
through the training data, which includes many updates, is known as an epoch. Training a neural
network often requires many passes through the data.

3. Data and Model Architecture

In this section, we discuss the dataset used for our experiments and the proposed model architecture.

3.1. Data Source

We use the National Association of Insurance Commissioners (NAIC) Schedule P triangles
(Meyers and Shi 2011). The dataset corresponds to claims from accident years 1988–1997,
with development experience of 10 years for each accident year. In Schedule P data, the data is
aggregated into accident year-development year records. The procedure for constructing the dataset is
detailed in Meyers (2015).

Following Meyers (2015), we restrict ourselves to a subset of the data which covers four lines of
business (commercial auto, private personal auto, workers’ compensation, and other liability) and
50 companies in each line of business. This is done to facilitate comparison to existing results.

We use the following variables from the dataset in our study: line of business, company code,
accident year, development lag, incurred loss, cumulative paid loss, and net earned premium. Claims
outstanding, for the purpose of this study, is derived as incurred loss less cumulative paid loss.
The company code is a categorical variable that denotes which insurer the records are associated with.

3.2. Training/Testing Setup

Let indices 1 ≤ i ≤ I denote accident years and 1 ≤ j ≤ J denote development years under
consideration. Also, let {Pi,j} and {OSi,j} denote the incremental paid losses and the total claims
outstanding, or case reserves, respectively.

Then, at the end of calendar year I, we have access to the observed data

{Pi,j : i = 1, . . . , I; j = 1, . . . , I − i + 1} (5)
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and
{OSi,j : i = 1, . . . , I; j = 1, . . . , I − i + 1}. (6)

Assume that we are interested in development through the Ith development year; in other words,
we only forecast through the eldest maturity in the available data. The goal then is to obtain predictions
for future values {P̂i,j : i = 2, . . . , I; j = i + 1, . . . , I} and {ÔSi,j : i = 2, . . . , I; j = i + 1, . . . , I}. We can
then determine ultimate losses (UL) for each accident year i = 1, . . . , I by calculating

ÛLi =

(
I−i+1

∑
j=1

Pi,j

)
+

(
I

∑
j=I−i+2

P̂i,j

)
. (7)

In our case, data as of year end 1997 is used for training. We then evaluate predictive performance
on the development year 10 cumulative paid losses.

3.3. Response and Predictor Variables

In DeepTriangle, each training sample is associated with an accident year-development year pair,
which we refer to thereinafter as a cell. The response for the sample associated with accident year i and
development year j is the sequence

(Yi,j, Yi,j+1, . . . , Yi,I−i+1), (8)

where each Yi,j = (Pi,j/NPEi, OSi,j/NPEi), and NPEi denotes the net earned premium for accident
year i. Working with loss ratios makes training more tractable by normalizing values into
a similar scale.

The predictor for the sample contains two components. The first component is the observed
history as of the end of the calendar year associated with the cell:

(Yi,1, Yi,2, . . . , Yi,j−1). (9)

In other words, for each accident year and at each evaluation date for which we have data,
we attempt to predict future development of the accident year’s paid losses and claims outstanding
based on the observed history as of that date. While we are ultimately interested in Pi,j, the paid losses,
we include claims outstanding as an auxiliary output of the model. We elaborate on the reasoning
behind this approach in the next section.

The second component of the predictor is the company identifier associated with the experience.
Because we include experience from multiple companies in each training iteration, we need a way
to differentiate the data from different companies. We discuss handling of the company identifier in
more detail in the next section.

3.4. Model Architecture

As shown in Figure 2, DeepTriangle is a multi-task network (Caruana 1997) using a sequence-to-
sequence architecture (Srivastava et al. 2015; Sutskever et al. 2014) with two prediction goals: paid loss
and claims outstanding. We construct one model for each line of business and each model is trained
on data from multiple companies.
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Figure 2. DeepTriangle architecture. Embed denotes embedding layer, GRU denotes gated recurrent
unit, FC denotes fully connected layer.

3.4.1. Multi-Task Learning

Since the two target quantities, paid loss and claims outstanding, are related, we expect
to obtain better performance by jointly training than predicting each quantity independently.
While Caruana (1997) contains detailed discourse on the specific mechanisms of multi-task learning,
we provide some heuristics on why it may improve predictions: by using the response data for claims
outstanding, we are effectively increasing the training data size since we are providing more signals to
the learning algorithm; there may be hidden features, useful for predicting paid losses, that are more
easily learned by trying to predict claims outstanding; also, by trying to predict claims outstanding
during training, we are imposing a bias towards neural network weight configurations which perform
that task well, which lessens the likelihood of arriving at a model that overfits to random noise.

3.4.2. Sequential Input Processing

For handling the time series of paid losses and claims outstanding, we use gated recurrent units
(GRU) (Chung et al. 2014), which is a type of recurrent neural network (RNN) building block that is
appropriate for sequential data. A graphical representation of a GRU is shown in Figure 3, and the
associated equations are as follows2:

h̃<t> = tanh(Wh[Γrh<t−1>, x<t>] + bh) (10)

Γ<t>
r = σ(Wr[h<t−1>, x<t>] + br) (11)

Γ<t>
u = σ(Wu[h<t−1>, x<t>] + bu) (12)

h<t> = Γ<t>
u h̃<t> + (1 − Γ<t>

u )h<t−1>. (13)

Here, h<t> and x<t> represent the activation and input values, respectively, at time t, and σ

denotes the logistic sigmoid function defined as

σ(x) =
1

1 + exp(−x)
. (14)

Wh, Wr, Wu, bh, br, and bu are the appropriately sized weight matrices and biases to be learned.
Intuitively, the activations h<t> provide a way for the network to maintain state and “remember”
values from early values of the input sequence. The values h̃<t> can be thought of as candidates
to replace the current state, and Γ<t>

u determines the weighting between the previous state and the
candidate state. We remark that although the GRU (and RNN in general) may seem opaque at first,

2 Note the use of angle brackets to index position in a sequence rather than layers in a feedforward neural network as in
Section 2.
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they contain sequential instructions for updating weights just like vanilla feedforward neural networks
(and can in fact be interpreted as such (Goodfellow et al. 2016)).

We first encode the sequential predictor with a GRU to obtain a summary encoding of the
historical values. We then repeat the output I − 1 times before passing them to a decoder GRU that
outputs its hidden state for each time step. The factor I − 1 is chosen here because for the Ith accident
year, we need to forecast I − 1 timesteps into the future. For both the encoder and decoder GRU
modules, we use 128 hidden units and a dropout rate of 0.2. Here, dropout refers to the regime
where, during training, at each iteration, we randomly set the output of the hidden units to zero
with a specified probability, in order to reduce overfitting (Srivastava et al. 2014). Intuitively, dropout
accomplishes this by approximating an ensemble of sub-networks that can be constructed by removing
some hidden units.

Figure 3. Gated recurrent unit.

3.4.3. Company Code Embeddings

The company code input is first passed to an embedding layer. In this process, each company
is mapped to a fixed length vector in Rk, where k is a hyperparameter. In our case, we choose
k = number of levels − 1 = 49, as recommended in Guo and Berkhahn (2016). In other words,
each company is represented by a vector in R49. This mapping mechanism is part of the neural network
and hence is learned during the training of the network, instead of in a separate data preprocessing step,
so the learned numerical representations are optimized for predicted the future paid losses. Companies
that are similar in the context of our claims forecasting problem are mapped to vectors that are close
to each other in terms of Euclidean distance. Intuitively, one can think of this representation as
a proxy for characteristics of the companies, such as size of book and case reserving philosophy.
Categorical embedding is a common technique in deep learning that has been successfully applied
to recommendation systems (Cheng et al. 2016) and retail sales prediction (Guo and Berkhahn 2016).
In the actuarial science literature, Richman and Wuthrich (2018) use embedding layers to capture
characteristics of regions in mortality forecasting, while Gabrielli et al. (2018) apply them to lines of
business factors in loss reserving.

3.4.4. Fully Connected Layers and Outputs

Each timestep of the decoded sequence from the GRU decoder is then concatenated with the
company embedding output. The concatenated values are then passed to two subnetworks of fully
connected layers, each of which shares weights across the timesteps. The two subnetworks correspond
to the paid loss and case outstanding predictions, respectively, and each consists of a hidden layer of
64 units with a dropout rate of 0.2, followed by an output layer of 1 unit to represent the paid loss or
claims outstanding at a time step.
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Rectified linear unit (ReLU) (Nair and Hinton 2010), defined as

x �→ max(0, x), (15)

is used as the activation function (which we denote by g in Section 2) for all fully connected layers,
including both of the output layers. We remark that this choice of output activation implies we only
predict nonnegative cash flows, i.e., no recoveries. This assumption is reasonable for the dataset we
use in our experiments, but may be modified to accommodate other use cases.

3.5. Deployment Considerations

While one may not have access to the latest experience data of competitors, the company
code predictor can be used to incorporate data from companies within a group insurer. During
training, the relationships among the companies are inferred based on historical development behavior.
This approach provides an automated and objective alternative to manually aggregating, or clustering,
the data based on knowledge of the degree of homogeneity among the companies.

If new companies join the portfolio, or if the companies and associated claims are reorganized,
one would modify the embedding input size to accommodate the new codes, leaving the rest of the
architecture unchanged, then refit the model. The network would then assign embedding vectors to
the new companies.

Since the model outputs predictions for each triangle cell, one can calculate the traditional
age-to-age, or loss development, factors (LDF) using the model forecasts. Having a familiar output
may enable easier integration of DeepTriangle into existing actuarial workflows.

Insurers often have access to richer information than is available in regulatory filings,
which underlies the experiments in this paper. For example, in addition to paid and incurred losses,
one may include claim count triangles so that the model can also learn from, and predict, frequency
information.

4. Experiments

We now describe the performance metrics for benchmarking the models and training details,
then discuss the results.

4.1. Evaluation Metrics

We aim to produce scalar metrics to evaluate the performance of the model on each line of business.
To this end, for each company and each line of business, we calculate the actual and predicted ultimate
losses as of development year 10, for all accident years combined, then compute the root mean squared
percentage error (RMSPE) and mean absolute percentage error (MAPE) over companies in each line
of business. Percentage errors are used in order to have unit-free measures for comparing across
companies with vastly different sizes of portfolios. Formally, if Cl is the set of companies in line of
business l,

MAPEl =
1
|Cl | ∑

C∈Cl

∣∣∣∣∣ ÛLC − ULC
ULC

∣∣∣∣∣ , (16)

and

RMSPEl =

√√√√ 1
|Cl | ∑

C∈Cl

(
ÛLC − ULC)

ULC

)2

(17)

where ÛLC and ULC are the predicted and actual cumulative ultimate losses, respectively,
for company C.

An alternative approach for evaluation could involve weighting the company results by the
associated earned premium or using dollar amounts. However, due to the distribution of company
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sizes in the dataset, the weights would concentrate on a handful of companies. Hence, to obtain a more
balanced evaluation, we choose to report the unweighted percentage-based measures outlined above.
We note that the evaluation of reserving models is an ongoing area of research; and refer the reader to
Martinek (2019) for a recent analysis.

4.2. Implementation and Training

The loss function is computed as the average over the forecasted time steps of the mean squared
error of the predictions. The losses for the outputs are then averaged to obtain the network loss.
Formally, for the sample associated with cell (i, j), we can write the per-sample loss as

1
I − i + 1 − (j − 1)

I−i+1

∑
k=j

(P̂i,k − Pi,k)
2 + (ÔSi,k − OSi,k)

2

2
. (18)

For optimization, we use the AMSGRAD (Reddi et al. 2018) variant of ADAM with a learning
rate of 0.0005. We train each neural network for a maximum of 1000 epochs with the following
early stopping scheme: if the loss on the validation set does not improve over a 200-epoch window,
we terminate training and revert back to the weights on the epoch with the lowest validation loss.
The validation set used in the early stopping criterion is defined to be the subset of the training data
that becomes available after calendar year 1995. For each line of business, we create an ensemble of
100 models, each trained with the same architecture but different random weight initialization. This is
done to reduce the variance inherent in the randomness associated with neural networks.

We implement DeepTriangle using the keras R package (Chollet et al. 2017) and TensorFlow
(Abadi et al. 2015), which are open source software for developing neural network models. Code for
producing the experiment results is available online.3

4.3. Results and Discussion

In Table 1 we tabulate the out-of-time performance of DeepTriangle against other models:
the Mack chain-ladder model (Mack 1993), the bootstrap ODP model (England and Verrall 2002),
an AutoML model, and a selection of Bayesian Markov chain Monte Carlo (MCMC) models from
Meyers (2015) including the correlated incremental trend (CIT) and leveled incremental trend (LIT)
models. For the stochastic models, we use the means of the predictive distributions as the point
estimates to which we compare the actual outcomes. For DeepTriangle, we report the averaged
predictions from the ensembles.

Table 1. Performance comparison of various models. DeepTriangle and AutoML are abbreviated to DT
and ML, respectively. The best metric for each line of business is in bold.

Line of Business Mack ODP CIT LIT ML DT

MAPE
Commercial Auto 0.060 0.217 0.052 0.052 0.068 0.043
Other Liability 0.134 0.223 0.165 0.152 0.142 0.109
Private Passenger Auto 0.038 0.039 0.038 0.040 0.036 0.025
Workers’ Compensation 0.053 0.105 0.054 0.054 0.067 0.046

RMSPE
Commercial Auto 0.080 0.822 0.076 0.074 0.096 0.057
Other Liability 0.202 0.477 0.220 0.209 0.181 0.150
Private Passenger Auto 0.061 0.063 0.057 0.060 0.059 0.039
Workers’ Compensation 0.079 0.368 0.080 0.080 0.099 0.067

3 https://github.com/kasaai/deeptriangle.
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The AutoML model is developed by automatically searching over a set of common machine
learning techniques. In the implementation we use, it trains and cross-validates a random forest,
an extremely randomized forest, a random grid of gradient boosting machines, a random grid of deep
feedforward neural networks, and stacked ensembles thereof (The H2O.ai team 2018). Details of these
algorithms can be found in Friedman et al. (2001). Because the machine learning techniques produce
scalar outputs, we use an iterative forecasting scheme where the prediction for a timestep is used in
the predictor for the next timestep.

We see that DeepTriangle improves the performance of the popular chain ladder and ODP models,
common machine learning models, and Bayesian stochastic models.

In addition to aggregated results for all companies, we also investigate qualitatively the ability of
DeepTriangle to learn development patterns of individual companies. Figures 4 and 5 show the paid
loss development and claims outstanding development for the commercial auto line of Company 1767
and the workers’ compensation line of Company 337, respectively. We see that the model captures the
development patterns for Company 1767 reasonably well. However, it is unsuccessful in forecasting
the deteriorating loss ratios for Company 337’s workers’ compensation book.

We do not study uncertainty estimates in this paper nor interpret the forecasts as posterior
predictive distributions; rather, they are included to reflect the stochastic nature of optimizing neural
networks. We note that others have exploited randomness in weight initialization in producing
predictive distributions (Lakshminarayanan et al. 2017), and further research could study the
applicability of these techniques to reserve variability.

Figure 4. Development by accident year for Company 1767, commercial auto.
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Figure 5. Development by accident year for Company 337, workers’ compensation.

5. Conclusions

We introduce DeepTriangle, a deep learning framework for forecasting paid losses. Our models
are able to attain performance comparable, by our metrics, to modern stochastic reserving techniques,
without expert input. This means that one can automate model updating and report production
at the desired frequency (although we note that, as with any automated machine learning system,
a process involving expert review should be implemented). By using neural networks, we can
incorporate multiple heterogeneous inputs and train on multiple objectives simultaneously, and also
allow customization of models based on available data. To summarize, this framework maintains
accuracy while providing automatability and extensibility.

We analyze an aggregated dataset with limited features in this paper because it is publicly
available and well studied, but one can extend DeepTriangle to incorporate additional data, such as
claim counts.

Deep neural networks can be designed to extend recent efforts, such as Wüthrich (2018a),
on applying machine learning to claims level reserving. They can also be designed to incorporate
additional features that are not handled well by traditional machine learning algorithms, such as
claims adjusters’ notes from free text fields and images.

While this study focuses on prediction of point estimates, future extensions may include
outputting distributions in order to address reserve variability.
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Abstract: In actuarial modelling of risk pricing and loss reserving in general insurance, also known
as P&C or non-life insurance, there is business value in the predictive power and automation through
machine learning. However, interpretability can be critical, especially in explaining to key stakeholders
and regulators. We present a granular machine learning model framework to jointly predict loss
development and segment risk pricing. Generalising the Payments per Claim Incurred (PPCI) loss
reserving method with risk variables and residual neural networks, this combines interpretable
linear and sophisticated neural network components so that the ‘unexplainable’ component can be
identified and regularised with a separate penalty. The model is tested for a real-life insurance dataset,
and generally outperformed PPCI on predicting ultimate loss for sufficient sample size.

Keywords: actuarial; risk pricing; loss reserving; granular models; neural networks; payments per
claim incurred

1. Introduction

1.1. Rationale

Key business goals for claims models typically include predictive power, automation and ease of
use, and interpretability. Predictive power is valuable in any model, but for risk pricing in insurance,
higher accuracy leads to selecting lower cost risks and is consequently a competitive advantage.
Machine learning and automation improves the business efficiency of the modelling process, and also
facilitates models with large numbers of parameters that can reflect complex non-linear relationships.
Finally, interpretability is important for communications to business stakeholders and to regulators,
particularly in loss reserving to justify projections.

Common actuarial industry practice at the time of writing is for separate sophisticated risk
pricing models and relatively simple reserving models. Risk pricing models are typically granular
claims models—traditionally Generalised Linear Models (‘GLM’). Increasingly Gradient Boosting
Decision Trees/Machines (‘GBM’) have become a popular alternative. Machine learning approaches
allow automated identification and fitting of non-linear effects. These can contribute to a higher
accuracy than GLM approaches, at the cost of transparency. Conversely, reserving models typically use
simple, deterministic triangulation based approaches, with selections based on actuarial judgement.
The simplicity of a portfolio approach for loss reserving has the advantages of transparency and the
ability to manually adjust selections based on actuarial judgement.

However, separate risk pricing and reserving models can present practical challenges, and results
can be circular. In creating risk pricing models, a rescaling adjustment based on reserving is often
required to the recent, undeveloped data. In creating reserving models, the pricing view is often used
as an initial prior for methods such as Bornhuetter–Ferguson.

Business stakeholders also often demand detailed segmented views on loss ratios to assist in
decision-making on underwriting and portfolio management processes, for which a portfolio approach
may not be appropriate. Also, where there has been a significant mix shift in the risks insured—perhaps
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due to growth or shrinkage in particular segments—the portfolio approach breaks down and input
from a granular view (often the pricing view) is needed. This suggests that a granular approach to
reserving incorporating detailed policy or claims data should be able to model segmented results with
better accuracy than simple allocation methods of portfolio Incurred But Not Reported (IBNR) reserves.

1.2. Granular Claims Models

Subsequently, a number of papers have emerged for granular model reserving. An earlier example is
a GLM approach, using explanatory variables with conditioning for case estimates (Taylor et al. 2008).

Regularisation via l1 and l2 losses are heavily used as a machine learning technique, both at the
portfolio level for loss reserving (Miller et al. 2016), or at the granular level to select factors, fit splines
or apply other useful constraints to otherwise overparametrised models (Semenovich et al. 2010).

1.3. Neural Networks

Neural network based architectures are extremely flexible and enables use of data in formats such
as numerical, categorical, image, time series, and freeform text data. It also allows multiple concurrent
outputs using multi-task neural networks (e.g., Fotso 2018; Poon 2018), as well as outputs of a time
series using recurrent neural network components such as the gated recurrent unit (Kuo 2018).

However, explainability is an issue when applying this model to claims, as fully connected neural
layers can contain large numbers of parameters. Attempts have been made at structuring the network
in a more explainable way in other applications, such as constraining neural components to have only
a single input and output neuron (Vaughan et al. 2018), or recovering explainability of individual
predictions through locally interpretable linear approximations (Ribeiro et al. 2016), but no approach
has emerged as an industry standard to date, and it remains unclear whether a fully explainable model
structure that preserves the predictive ability of a standard neural network is possible.

1.4. Residual Neural Networks

Residual networks (‘ResNets’) are a type of neural networks originally introduced in vision recognition
(He et al. 2015). This allows training of deeper networks for state-of-the-art performance, but has found
value in other applications, including actuarial modelling (Schelldorfer and Wuthrich 2019).

ResNets introduce the concept of ‘skip connections’, whereby an earlier layer is directly connected
to a later layer (Figure 1). An observation is that for a network with a single residual block, the skip
connection is in itself a linear model, ensembled with the neural network layers. With the exponential
activation function, the linear model becomes a log-link GLM.

Figure 1. (a) A residual block comprising of a group of three layers, showing the skip connection,
which can skip one or multiple layers; (b) The same block as a model, showing interpretable linear or
GLM model and ‘unexplainable’ neural network.

Mathematically, the above residual block in Figure 1b can be expressed as follows:
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Let B1, B2, B3 and B4 be weight matrices and a(x) be the activation function. Examples of activation
functions include the Rectified Linear Unit (ReLU):

a(x) =max(0, x)

or the Scaled Exponential Linear Unit (SELU), which is used in the model later in this paper:

a(x) = λ
{

x
aex − a

if x > 0
if x ≤ 0

.

For a standard feed-forward neural network with two hidden layers, we find b1, b2, b3 and b4 to
approximately minimise actual loss versus predicted Loss(ŷ, y) where:

x1 = a(B1 xinput),

x2 = a(B2 x1),

ŷ
(
B1, B2, B3, xinput

)
= B3 x2.

However, for the residual network, the skip connection can be added to the output.

ŷ
(
B1, B2, B3, B4, xinput

)
= B3 x2 + B4 xinput.

1.5. Embeddings

Embeddings are an encoding for categorical variables that is an alternative to one-hot encoding.
Each label for a categorical factor is assigned a (typically) 1 × n vector representation that can be trained
with the model. For n = 1, each category corresponds with only one value, the embedding can produce
results equivalent to one-hot encoding in an additive model structure.

1.6. Hyperparameter Selection

Layers of a neural network can be regularised separately, by applying a different λ hyperparameter
for l1 or l2 regularisation loss to any of the B1, B2, B3 and B4 weights individually as above. For a given
loss function Loss(ŷ, y), a fully parametrised regularised loss function would be as below (the model in
the next section uses mean-squared error loss):

RegLoss(ŷ , y) = Loss(ŷ , y) + λ1,1|B1|+ λ1,2|B2|+ λ1,3|B3|+ λ1,4|B4|+ λ2,1|B1|
+λ2,2|B2|+ λ2,3|B3|+ λ2,4|B4|.

We discuss two approaches for selecting the regularisation parameters. The first is to optimise for
holdout loss to find the most predictive model. One method to do so is a Random Grid Search, which
tests random sets of hyperparameters and selects the model with the best holdout error, or Bayesian
Optimisation, which estimates parameters via a Gaussian Process.

However, a second view is that regularisation provides a mechanism to penalise ‘opaque’ neural
features in favour of ‘transparent’ linear features. When the regularisation parameters of the dense
layers are set towards high values, the neural network components would shrink towards zero reducing
the network to a linear model.

We put forward the concept that between the interpretable linear model and the residual network
model, the regularisation parameter for residual network weights represents a continuum of models
between those two competing objectives.

Also, by blending the residual model with the original model, we put forward the idea that
the weights given to the linear model versus the residual network may potentially form a basis for
evaluating the extent to which non-linear effects exist within the data—if the residual model is extremely
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effective, loss optimisation will bring the blend weight of the residual towards 1.0. Subsequently,
the actuary should do additional manual analysis to improve interpretability. An iterative process
of feature engineering such as creating splines for age could reduce the need for the opaque neural
network component until the neural network is no longer needed.

However, in regards to penalising ‘unexplainability’ through regularising model components,
an open question would be in regards to what economic value is to be assigned to interpretability of
the model, such that an appropriate penalty can be applied.

With this in mind, we test this approach with a granular model that resembles a fully parametrised
PPCI-like model, combining simple linear weights for interpretability with residual components for
replicating non-linear effects.

2. Model

2.1. Definitions

Consider a dataset with dates, features, and claims development in the cross-tab format of Table 1:

Table 1. Training data format.

Origin
Period

Feature
1

. . .
Feature

m
Claim Reported

by Delay
Claim Paid

Reported by Delay
Data Exists Flag by

Delay 1

x
c p w

1 . . . n 1 . . . n 1 . . . n

1 January
2015 1 0 0 $2000 1 1

1 December
2016 - 0 NaN 0 NaN 1 0

1 December
2015 0 1 0 $3000 1 1

1 Exposure weights if needed would be multiplied to the data existence flag.

Features are policy and risk details—rating factors or any details relevant for the risk premium
model. This includes origin period, the start dates of triangulation, typically be accident month, quarter
or year. Numerical features are normalised to a mean of zero and variance of one, and categorical
features are integers encoded for the embeddings.

Exposure weights allow a yearly policy to be divided into multiple monthly records with
earned exposure.

Incremental claim count and payments data are matched back to the exposure record and is split
into columns by delay period. Delay represents times from accident to the date of claim reporting
(counts) or payment with a maximum tail of ‘n’ periods. Per standard actuarial practice, these are
ideally adjusted for inflation.

Consequently, the dataset is structured such that

• The sum of ‘claim counts reported by delay’ by origin period is the incremental claims
reported triangle,

• The sum of ‘claim payments by delay’ by origin period is the incremental payments triangle,
• If the claim counts and payments were the ultimates, it would be a typical GLM risk pricing dataset.
• The dataset remains reasonably compact as claims are in cross-tab format, which is beneficial from

a memory usage perspective.

This allows us to jointly fit a risk pricing and loss reserving model. Let:

• xi be features, for policy exposures i, including the accident or origin period,
• wi,t be exposure weights for exposure i in delay period t, with missing data after the balance date

being weighted as 0,
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• Ci,t be claim count reported for the exposure in delay period t, with Ci = ΣCi,t and
• Pi,t be claim payments for the exposure in delay period t, with Pi = ΣPi,t.

We wish to build a model for E(Ci,t) and E(Pi,t) based on x and w.

2.2. From Payments Per Claim Incurrred to Granular Model

A traditional PPCI model predicts expected payments P at delay t as a ratio of ultimate incurred C:

E(Pi,t) = ci qt,

where ci is an estimate of ultimate claim count, and qt is the payments per claim incurred.
However, these payments per claim can be factored into the expected claim severity and the

percentage paid in each period.
E(Pi,t) = ci q bt, Σtbt = 1.

Consequently, the Payment per Claim Incurred model can be expressed as a simple frequency
model (c), a constant claim severity model (q) and a constant percentage paid per period model (b).

In the model, we replace these with granular models for each, which also meets the needs of risk
pricing to model frequency and severity by rating factors.

2.3. Network

The network diagram is shown in Figure 2.
In the interpretable model, linear models of total frequency and payments per policy were set as a

function of the features. With B representing linear weights, let:

clinear = Bc x

With the exponential transform, they become GLMs. The payments per policy can also be set to
follow the count logic for a risk premium model with plinear = Bp x or a frequency-severity model by
adding the frequency component at each step, such as with plinear = clinear + Bp x.

To allocate that to the prediction of counts and payments at delay t, development parameters dc

and dp were fitted with a log-softmax transform, let:

cinterpretable,t = wc,t × exp(c + log(softmax(dc,t))).

The softmax transform enforces that the restriction that the sum of percentage developed is 100%.
Without this constraint, it is possible for the expected claim count/paid to ‘explode’ with the percentage
developed remaining at low values. In calculations, it is applied as logsoftmax due to numerical
stability reasons.

Currently, the development function is fully parametrised but a future potential extension might
be to apply a penalty for the percentage-developed distribution or splines to enforce smoothness of the
development percentages.

Further parametrising the development network, such as using the xNNs (Vaughan et al.)
explainable network splines could reduce the unexplainable components beyond the linear model used.

The ‘neural model’ is similar, except with the residual network components. The proposed
network to predict expected frequency and cost per policy is set up with dense layers with outputs
concatenated with the original inputs for the final linear model. Three dense layers is often considered
to be sufficient for structured data problems but more can be added. For the model results below,
SELU activation was used for stability reasons. Consequently, with b representing weight vectors, let:

n1 = SELU(B1 x)
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n2 = SELU(B2 n1)

n3 = SELU(B3 n2)

cresidual = B4 n3

dc-residual = B5 n3

cneural, t =wc,t × exp(clinear + cresidual + log_softmax(dc,t))

Finally, a blended model is calculated by fitting a weighted average between the two models, with
the weight constrained to be (0, 1) by fitting a parameter wc such that:

Weightc = exp(wc)/(1 + exp(wc)),

cblended,t =Weightc cinterpretable,t + (1 −Weightc cneural,t)

This is intended to provide an indication as to the explanatory power of the residual network
compared to the simpler linear model. With optimised hyperparameters, one would expect residual
network weights to converge to 1.0 if it always explained better than the linear model.

Input and Embedding Layers

Dense Layers

Development

% (Constant

Softmax)

Frequency and

Paid per Policy

(Linear)

Interpretable Model Frequency and

Paid Development

Frequency and

Paid Per Policy

(ResNet)

Development

%

(ResNet)

Neural Model Frequency and

Paid Development

Blended Model Frequency and Paid

Development

Figure 2. Simplified model network graph. Each block represents a group of layers, and the arrows
represent the data flow. Grey arrows represent the “interpretable” network flow, whilst blue lines
represent the “neural” network flow.
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2.4. Loss

The loss function was set to optimise the sum of mean-squared error loss of all claims count and
claims paid per policy for each of the interpretable, residual and blended networks in total, and the
additional l1 penalties for the linear risk pricing weights.

One issue with multi-task learning is that if losses are imbalanced, the optimisation may favour
one particular set of outputs. While Poisson and Tweedie losses may be more appropriate for counts
and payments, respectively, as a simplification, the Mean Squared Error (MSE) (with the exponential
activation function) was used for all outputs to avoid having to significantly address this issue.
The backpropogated gradients are similar. This may have been insufficient as some results seen
later on may have optimised the claims paid, which have higher variation than claims count. More
sophisticated approaches would be possible.

2.5. Training: Dropout, Optimiser, Shuffling, Batch Size, and Learn Rate Scheduler

A dropout layer (Srivastava et al. 2014) was applied for training the residual network, and Adam
(Kingma and Ba 2015), an adaptive moment estimation optimiser, with separate l2 weight decay
penalties for the linear risk pricing and residual network weights, was used as the optimiser for the
model. Training data was shuffled to reduce mix bias within each batch. A high batch size was
used given the sparsity of the data to ensure sufficient claims data in each batch and gradient norm
clipping was applied to improve stability of the training process. Weights initialisation to suitable
starting values, learn rate search and the ‘1cycle’ learn rate scheduler (Smith 2018) was used to speed
up convergence.

2.6. Language and Package

The model was coded in Python using the Pytorch package. Pytorch was chosen for its high
level API compared to Tensorflow, ease of customisation compared to Keras, stability, wide usage
and availability of documentation. The version of the code used in this paper was uploaded
to: https://github.com/JackyP/penalised-unexplainability-network-payments-per-claim-incurred/blob/
1e757249e4f20a75e5e645d5a9f2a7ffb089a8a7/punppci/pytorch.py, with the intention to further develop
and, should it reach a state of maturity, to publish in the Python repository PyPI as package ‘punppci’.

3. Dataset Used

3.1. Dataset Details

The model was tested on actual proprietary policy and claim data with 6 features, approximately
250,000 policy exposure records underwritten in 2015–2016 calendar year and 32,000 claims, with claim
reported counts and claim paid amounts developed over 24 development months.

For testing accuracy, claims reported or payments transacted after 31 December 2016 was censored
for model fitting and used as holdout data.

3.2. Cleaning and Sampling

As part of data preparation, large claims were capped and then both claim frequency and payment
was scaled by average frequency and paid per policy of the censored data—an initial estimate of
portfolio averages that was free of data leakage from the holdout data. Features were normalised using
mean-variance standardisation, with categorical features one-hot encoded for simplicity (although
embeddings is recognised to be ideal).

The model was tested on samples of the data of 5000, 10,000, 25,000, 50,000, 100,000 and 200,000 policies
with hyperparameters as detailed in Section 4 to test the models’ effectiveness with various dataset
sizes, and then on the full dataset with hyperparameter search.
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3.3. Comparison with Manual Selections for Chain Ladder and PPCI

The benchmarking is against a mechanical (or naïve) application of chain ladder and PPCI.
In practice, factor selections would be based on both actuarial judgement, with manual identification
of unusual events, selection of averages where checks for accident or calendar year trends, and manual
smoothing of factors.

Consequently, a manual review of the full dataset was also conducted to validate whether there
were features that would influence manual selections; however, the triangles were fairly unremarkable
given the short duration of the dataset over two accident years, reasonably large size of sample and
short tail, non-statutory insurance portfolio. Certain product segments were known to develop slower;
however, there was no significant mix shift towards or away from those segments during the period.
Individual claim factors also did not appear to have any trends.

4. Results

4.1. Sampling Sizes

For the sampling test, linear l1 and l2 were set to 0.01, the residual network l2 was set to zero for
weights and biases. For the full dataset, hyperparameters were firstly grouped into ‘l1 and l2 linear’,
’l2 residual’ and ’l2 bias’, which were applied to both counts and paid for simplicity, and then Bayesian
optimisation with the ‘scikit-optimize’ package was applied.

Table 2 shows the comparison of the squared error between actual versus expected ultimates for
the model compared with naïve chain ladder and PPCI.

Table 2. Neural network versus traditional chain ladder and PPCI performance (lower is better).

Test
Sample

Size
Seed

Chain Ladder
SE Count

PPCI SE
Paid

Model SE
Count

Model SE
Paid

Better
Paid SE

0 5000 1 1453.14 3436.19 NaN NaN N
1 5000 2 472.17 2447.26 256.78 2183.37 Y
2 5000 3 431.78 5638.29 NaN NaN N
3 5000 4 339.55 1652.14 224.21 3401.45 N
4 5000 5 1590.66 58,388.27 NaN NaN N
5 10,000 1 540.19 4070.24 823.89 5181.73 N
6 10,000 2 2533.18 51,956.42 389.81 44,884.23 Y
7 10,000 3 606.79 11,418.01 272.21 7511.17 Y
8 10,000 4 1810.21 209,956.66 976.48 202,351.99 Y
9 10,000 5 1057.81 52,508.37 270.61 42,912.06 Y
10 25,000 1 5575.31 35,060.89 2583.43 23,732.57 Y
11 25,000 2 4644.56 61,120.81 750.18 51,177.28 Y
12 25,000 3 1969.43 295,767.11 NaN NaN N
13 25,000 4 4054.21 309,086.25 1985.41 299,889.39 Y
14 25,000 5 1703.19 57,953.14 1362.94 67,186.30 N
15 50,000 1 25,487.11 133,176.94 2407.64 78,762.94 Y
16 50,000 2 6313.54 125,112.45 9515.98 116,294.24 Y
17 50,000 3 3744.60 196,970.08 6727.98 220,488.81 N
18 50,000 4 13,261.61 334,846.96 19,096.74 284,140.74 Y
19 50,000 5 4430.90 67,546.64 1606.70 57,256.59 Y
20 100,000 1 23,441.53 312,086.87 29,796.32 441,193.89 N
21 200,000 1 64,274.85 5,147,858.37 28,841.52 5,076,289.65 Y

250,000 with Bayes Opt 151,959.56 1,260,099.15 201,002.33 961,150.56 Y

The model outperformed in predicting claim ultimate amounts for 75% of the test cases with policy
exposures of 10,000 or over, however, failed to achieve good results for the cases with 5000 policies, due
to frequent failing to converge.
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However, with neural networks being randomly initialised, there is significant variation in trained
model predictions between training runs. We flag model reproducibility and stability as an issue to
address for future research into neural based reserving approaches, with the observation that the
random initialisations of training weights may lead to variations in the model predictions.

4.2. Bayesian Optimisation of Hyperparameters

The Bayesian optimisation of the hyperparameter set led to penalty factors of l1 and l2 of linear
weights being 0.0103, l2 on the bias being 0.0048, and l2 on the dense network of 0.0003. This appears to
have led to a good ultimate claim amount prediction, but claim count predictions performing slightly
poorer on holdout data.

Although both claim count and claim paid were normalised to means of 1.0 prior to fitting,
payments are more variable and consequently contribute a higher proportion of the total squared loss;
so it is possible that having the same hyperparameters for both may have led to optimizing the fit of
paid while neglecting count.

For the risk pricing applications, Table 3 shows a reasonable lift and also reasonable matching
between modelled and actual payments.

Table 3. Model versus actual paid segmentation performance—250 k (closer is better).

Percentile Model Paid Actual Paid

5% 0.25 0.23
10.0% 0.33 0.32
15.0% 0.47 0.47
20.0% 0.6 0.38
25.0% 0.66 0.5
30.0% 0.71 0.54
35.0% 0.76 0.54
40.0% 0.8 0.51
45.0% 0.85 0.6
50.0% 0.9 0.67
55.0% 0.96 1.16
60.0% 1.02 1.24
65.0% 1.1 1.58
70.0% 1.18 1.18
75.0% 1.28 1.17
80.0% 1.39 0.96
85.0% 1.49 1.03
90.0% 1.62 1.8
95.0% 1.77 2.01

100.0% 2.24 3.06

This suggests the model is able to correctly distinguish higher and lower risk pricing factors
within the portfolio.

With these hyperparameters, the weight attributed to the interpretable model compared to the
neural model remained at 71% for claim count and 54% for claim paid, with the lack of weighting of
the neural model suggesting that the simpler approach continued to be quite important despite the
neural net components.

4.3. Regularisation

Table 4 shows the average absolute value of weights in the dense layers.
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Table 4. Average absolute value of weights: dense layers.

Weight Decay (l2) Paid w * Dense Layer 1 Dense Layer 2 Dense Layer 3

0.0001 0.97 0.043 0.026 0.031
0.001 2.51 0.016 0.009 0.007
0.01 2.39 8.26 × 10−5 1.57 × 10−5 2.71 × 10−4

0.1 0.64 0.004 2.36 × 10−5 4.02 × 10−5

* Weighting to residual model is ew/(1 + ew).

A small amount of regularisation appears to be helpful to the fit of the residual model, increasing
its weight, but as expected, as weight decay is increased towards higher values, the contribution of
the neural network to the blended model diminishes. Due to random initialisation of the network for
training, there is some variation in the results.

5. Extending with Freeform Data—Claim Description

There are a number of examples outside actuarial modelling that incorporate unstructured data
into neural network models. Typically, this is done by using a pre-trained network for the type of
data, such as VG-16G for images, Word2Vec for words, or BERT (Devlin et al. 2018) for sentences.
The intermediate outputs of the pre-trained model are used as features for the main model.

However, we are not aware of any academic publications to date applying it within the domain of
claims reserving. To demonstrate the earlier claims in Section 1.3, an example would be to extend the
model to use freeform text incident descriptions. The incident description for each claim consists of a
short phrase manually entered by claims staff describing the claim, e.g., ‘insured damaged phone’.
The code is available at: https://gist.github.com/JackyP/99141e403df720a2e752b9bbf08e428c.

The adjustments to the modelling process are as follows: the training dataset consists of the
associated incident description and the corresponding subset of the policy-claims data from Section 3
that have had claims. Sentences are tokenised into integer vectors with each vector representing a
word. Then, the pre-trained BERT network converts these vectors into an intermediate representation.
These are then incorporated as additional features into an expanded model.

6. Conclusions

We extended the use of risk-pricing residual networks to granular reserving applications by
introducing a claims development percentage sub-network with a softmax layer to produce a multi-task
claim count and paid output, and found it had good performance benchmarked against a traditional
PPCI approach when trained on sufficient dataset size.

In regards to interpretability, the softmax layer ensures claims development percentages sum to
100%, and consequently allows separation of risk pricing and claims development effects, whilst also
jointly fitting them in a single model. In addition, we also introduced and discussed the concept of
separate regularisation between linear and deep effects as a penalty on ‘unexplainability’.

For practical application on large insurance datasets, we tested the use of Adam optimiser
with learn rate search, “1cycle” policy optimisation, and setting of reasonable initial bias values.
We found this led to effective results, and reasonable training times enabled Bayesian cross-validation
optimisation algorithms to be accessible.

To demonstrate the flexible nature of neural networks, the model was also extended with
a pre-trained BERT model to use the incident description as a freeform text input for predicting
claim payments.

Overall while neural networks techniques for granular loss reserving remains nascent, we anticipate
significant opportunities for it to continue developing in the future.
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Abstract: The purpose of this paper is to survey recent developments in granular models and machine
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the possible further development of these models in the future.
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1. Background

The history of loss reserving models, spanning 50-odd years, displays a general trend toward
ever-increasing complexity and data-intensity. The objectives of this development have been broadly
two-fold, both drawing on increased richness of the data. One objective has been increased predictive
power; the other the enablement of modelling of the micro-mechanisms of the claim process (which may
also enhance predictive power).

Two families of model that have undergone development within this context over the past decade
are granular models (GMs) and machine learning models (MLMs). The first of these, also known as
micro-models, is aimed at the second objective above. As the complexity of model structures increases,
feature selection and parameter estimation also become more complex, time-consuming and expensive.
MLMs are sometimes seen as a suitable means of redress of these difficulties.

The purpose of the present paper is to survey the history of loss reserving models, and how that
history has led to the most recent types of model, granular forms and machine learning forms. History
has not yet resolved whether one of these forms is superior to the other, or whether they can coexist in
harmony. To some extent, therefore, they are currently in competition with each other.

Claim models may be developed for purposes other than loss reserving, with different imperatives.
For example, pricing will require differentiation between individual risks, which loss reserving may
or may not require. Here, emphasis will be placed on loss reserving applications throughout. The
performance of the models considered here might be evaluated differently in relation to other applications.

Much of the historical development of loss reserving models has been, if not driven, at least enabled
by the extraordinary increase in computing capacity that has occurred over the past 50 years or so. This
has encouraged the analysis of more extensive data and the inclusion of more features in models.

Some of the resulting innovations have been of obvious benefit. However, the advantages and
disadvantages of each historical model innovation will be discussed here, and this will create a
perspective from which one may attempt to anticipate whether one of the two model forms is likely to
gain ascendancy over the other in the near future.

Risks 2019, 7, 82; doi:10.3390/risks7030082 www.mdpi.com/journal/risks81
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Sections 3–6 proceed through the archaeology of loss reserving models. Archaeological ages
are identified, marking fundamental breaks in model evolution. These sections proceed roughly
chronologically, discussing many of the families of models contained in the literature, identifying their
relative advantages and disadvantages.

These historical perspectives sharpen one’s perspective on the issues associated with the more
modern GMs and MLMs. They expose the strengths and weaknesses of earlier models, and place in
focus those areas where the GMs and MLMs might have potential for improved methodology.

Against this background, Section 7 discusses the criteria for model selection, and Section 8 concentrates
on the predictive efficiency of GMs and MLMs. Section 8 also discusses one or two aspects of MLMs that
probably require resolution before those models will be widely accepted, and Sections 9 and 10 draw the
discussion of the previous sections together to reach some conclusions and conjectures about the future.

It is not the purpose of this paper to provide a summary of an existing methodology. This is
provided by various texts. The real purpose is set out in the preceding paragraph, and the discussion
of historical model forms other than GMs or MLMs is introduced only to provide relevant context to
the GM–MLM comparison.

Thus, a number of models will be introduced without, or with only brief, description. It is assumed
that the reader is either familiar with the relevant detail or can obtain it from the cited reference.

2. Notation and Terminology

This paper will consider numerous models, with differing data requirements. The present section
will establish a relatively general data framework that will serve for most of these models. All but the
most modern of these are covered to some degree in the standard loss reserving texts, Taylor (1986,
2000) and Wüthrich and Merz (2008).

Claim data may relate to individual or aggregate claims, but will often be labelled by accident
period and development period. These periods are not assumed to be years, but it is assumed that
they are all of equal duration, e.g., accident quarter and development quarter. Other cases are possible,
e.g., accident year and development quarter, but add to the notational complexity while adding little
insight to the discussion.

Let Y[n]
i j denote claim payments in development period j in respect of claim n, which was incurred

in accident period i. The couple (i, j) will be referred to as a cell. Also, define the total claim payments
associated with the (i, j) cell as

Yij =
∑

n
Y[n]

i j

Usually, Y[n]
i j will be considered to be a random variable, and a realization of it will be denoted by y[n]i j .

Likewise, a realisation of Yij will be denoted by yij. As a matter of notation, E
[
Y[n]

i j

]
= μ

[n]
i j , Var

[
Y[n]

i j

]
=

σ
2[n]
i j and E

[
Yij
]
= μi j, Var

[
Yij
]
= σ2

i j.
Many simple claim models use the conventional data triangle, in which cells exist for i = 1, 2, . . . , I

and j = 1, 2, . . . , I − i + 1, which may be represented in triangular form with i and j indexing rows and
columns, respectively, as illustrated in Figure 1.

It is useful to note at this early stage that the (i, j) cell falls on the (i + j− 1)-th diagonal of the
triangle. Payments occurring anywhere along this diagonal are made in the same calendar period, and
accordingly diagonals are referred to as calendar periods or payment periods.

It will be useful, for some purposes, to define cumulative claim payments. For claim n, from
accident period i, the cumulative claim payments to the end of development period j are defined as

X[n]
i j =

j∑
k=1

Y[n]
ik
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and the definition is extended in the obvious way to Xij, the aggregate, for all claims incurred in
accident period i, of cumulative claim payments to the end of development period j.

A quantity of interest later is the operational time (OT) at the finalisation of a claim. OT was
introduced to the loss reserving literature by Reid (1978), and is discussed by Taylor (2000) and Taylor
and McGuire (2016).

Let the OT for claim n be denoted τ[n], defined as follows. Suppose that claim n belongs to
accident period i[n], and that N̂i[n] is an estimator of the number of claims incurred in this accident

period. Let F[n]
i[n]

denote the number of claims from the accident period finalised up to and including

claim n. Then τ[n] = F[n]
i[n]

/N̂i[n] . In other words, τ[n] is the proportion of claims from the same accident
period as claim n that are finalised up to and including claim n.

Figure 1. Illustration of the data triangle.

3. The Jurassic Period

The earliest models date generally from the late 1960s. These include the chain ladder and the
separation method, and all their derivatives, such as Bornhuetter–Ferguson and Cape Cod. They are
discussed in Taylor (1986, 2000) and Wüthrich and Merz (2008). The chain ladder’s provenance seems
unclear, but it may well have preceded the 1960s.

These models were based on the notion of “development” of an aggregate of claims over time, i.e.,
the tendency for the total payments made in respect of those claims to increase over time in accordance
with some recognisable pattern. They therefore fall squarely in the class of phenomenological, or
non-causal, models, in which attention is given to only mathematical patterns in the data rather than
the mechanics of the claim process or any causal factors.

Figure 2 is a slightly enhanced version of Figure 1, illustrating the workings of the chain ladder. It
is assumed that a cell (i, j) develops to its successor (i, j + 1) in accordance with the rule

xi, j+1 = f jxi j, (1)

where f j is a parameter describing development, and referred to as a development factor or an
age-to-age factor.

Forecasts are made according to this rule. The trick is to estimate factors f j from past experience,
and in practice they were typically estimated by some kind of averaging of past observations on these
factors, i.e., observed values of xi, j+1/xij.

Models of this type are very simple, but their most interesting quality is that they are not, in
fact, models at all. The original versions of these models were not stochastic, as is apparent from (1).
Nor is (1) even true over the totality of past experience; it is not the case for a typical data set that
xi, j+1/xij = f j, constant for fixed j, but varying i. So, the “models” in this group are actually algorithms
rather than models in the true sense.
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Figure 2. Illustration of a forecast by age-to-age factors.

Of course, this fault has been rectified over the subsequent years, with (1) replaced by the genuine
model defined by the following conditions:

(a) Each row of the triangle is a Markov chain.
(b) Distinct rows of the triangle are stochastically independent.

(c) Xi, j+1|Xij is subject to some defined distribution for which E
[
Xi, j+1|Xij

]
= f jXij, where f j is a

parameter to be estimated from data.

A model of this sort was proposed by Mack (1993) (“the Mack model”), and much development
of it has followed, though the earliest stochastic formulation of the chain ladder (Hachemeister and
Stanard 1975) should also be credited.

While the formulation of a genuine chain ladder model was immensely useful, the fundamental
structure of the model retains some shortcomings. First, in statistical parlance, it is a multiplicative
row-and-column effect model. This is a very simple structure, in which all rows are just, in expectation,
scalar multiples of one another. This lacks the complexity to match much real-life claim experience.

For example, a diagonal effect might be present, e.g., E
[
Xi, j+1|Xij

]
= f jgi+ j−1Xij, in (c), where

gi+ j−1 is a parameter specific to diagonal i + j − 1. A variable inflationary effect would appear in
this form, but cannot be accommodated in the chain ladder model formulated immediately above.
One can add such parameters to the model, but this will exacerbate the over-parameterisation problem
described in the next main dot point.

Rates of claim settlement might vary from one row to another, causing variation in the factors f j
(Fisher and Lange 1973). Again, one can include additional effects in the models, but at the expense of
additional parameters.

Second, even with this simple form, it is at risk of over-parameterisation. The model
of an n × n triangle and the associated forecast are characterised by 2(n− 1) parameters,
f1, . . . , fI−1, Y2,I−1, X3,I−2, . . . , XI1 (actually, the last n − 1 of these are conditioning observations but
function essentially as parameters in the forecast). For example, a 10× 10 triangle would contain 55
observations, would forecast 45 cells, and would require 18 parameters. Over-parameterisation can
increase forecast error.

The Jurassic continued through the 1970s and into the 1980s, during which time it spawned mainly
non-stochastic models. It did, however, produce some notably advanced creatures. Hachemeister and
Stanard (1975) has already been mentioned. A stochastic model of claim development essentially by
curve fitting was introduced by Reid (1978), and Hachemeister (1978, 1980) constructed a stochastic
model of individual claim development.
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4. The Cretaceous Period—Seed-Bearing Organisms Appear

The so-called models of the Jurassic period assumed the general form:

Yij = g(Y,α) (2)

where g is some real-valued function, Y is the vector containing the entire set of observations as its
components, and α is some set of parameters, either exogenous or estimated from Y. The case of the
chain ladder represented by (1) is an example in which α = {f1, . . . , fI−1}.

Although (2) is not a stochastic model, it may be converted to one by the simple addition of a
stochastic error εij:

Yij = g(Y,α) + εi j,E
[
εi j
]
= 0 (3)

Note that the Mack model of Section 3 is an example. In addition, with some limitation of g and
εij, (3) becomes a Generalised Linear Model (GLM) (McCullagh and Nelder 1989), specified as follows:

(a) Yij ∼ F
(
μi j,ϕ/wij

)
where μi j = E

[
Yij
]

and F is a distribution contained in the exponential
dispersion family (EDF) (Nelder and Wedderburn 1972) with dispersion parameter ϕ and weights
wij;

(b) μi j takes the parametric form h
(
μi j
)
= xT

ijβ for some one–one function h (called the link function),
and where xij is a vector of covariates associated with the (i, j) cell and β the corresponding
parameter vector.

Again, the chain ladder provides an example. The choices h = ln, xT
i, j+1 =

[
0, . . . 0, Xi, j, 0 . . . 0

]
, β =

[ f1, f2, . . .]T yield the Mack model of Section 3.
The Cretaceous period consisted of such models. The history of actuarial GLMs is longer than is

sometimes realised. Its chronology is as follows:

• in 1972, the concept was introduced by Nelder and Wedderburn;
• in 1977, modelling software called GLIM was introduced;
• in 1984, the Tweedie family of distributions was introduced (Tweedie 1984), simplifying the

modelling software;
• in 1990 and later, seminal actuarial papers (Wright 1990; Brockman and Wright 1992) appeared.

GLMs were not widely used in an actuarial context until 1990, and to some extent this reflected
the limitations of earlier years’ computing power. It should be noted that their actuarial introduction
to domestic lines pricing occurred as early as 1979 (Baxter et al. 1980). I might be permitted to add here
a personal note that they were heavily used for loss reserving in all the consultancies with which I was
associated from the early 1980s.

The range of GLM loss reserving applications has expanded considerably since 1990. A few
examples are:

• analysis of an Auto Liability (relatively long-tailed) portfolio (Taylor and McGuire 2004) with:

� rates of claim settlement that varied over time;
� superimposed inflation (SI) (a diagonal effect) that varied dramatically over time and also

over OT (defined in Section 2);
� a change of legislation affecting claim sizes (a row effect);

• analysis of a mortgage insurance portfolio (Taylor and Mulquiney 2007), using a cascade of GLM
sub-models of experience in different policy states, viz.

� healthy policies;
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� policies in arrears;
� policies in respect of properties that have been taken into possession; and
� policies in respect of which claims have been submitted;

• analysis of a medical malpractice portfolio (Taylor et al. 2008), modelling the development of
individual claims, both payments and case reserves, taking account of a number of claim covariates,
such as medical specialty and geographic area of practice; and

• a monograph on GLM reserving (Taylor and McGuire 2016).

It is of note that chain ladder model structures may be regarded as special cases of the GLM.
Indeed, these chain ladder formulations may be found in the literature (Taylor 2011; Taylor and
McGuire 2016; Wüthrich and Merz 2008). However, these form a small subset of all GLM claim models.

5. The Paleogene—Increased Diversity in the Higher Forms

5.1. Adaptation of Species—Evolutionary Models

Recall the general form of GLM set out in Section 4, and note that the parameter vector β is
constant over time. It is possible, of course, that it might change.

Consider, for example, the Mack model of Section 3. One might wish to adopt such a model but
with parameters f 1, . . . , fI−1 varying stochastically from one row to the next. This type of modelling
can be achieved by a simple extension of the GLM framework defined in Section 4. The resulting
model is the following.

Evolutionary (or adaptive) GLM. For brevity here, adopt the notation t = i+ j− 1, so that t indexes
payment period. Let the observations Yij satisfy the conditions:

(a) Yij ∼ F
(
μ
(t)
i j ,ϕ/wij

)
where μ(t)i j = E

[
Yij
]
;

(b) μ
(t)
i j takes the parametric form h

(
μ
(t)
i j

)
= xT

ijβ
(t), where the parameter vector is now β(t) in payment

period t; and
(c) The vector β(t) is now random: β(t) ∼ P

(
.; β(t−1),ψ

)
, which is a distribution that is a natural

conjugate of F(., .) with its own dispersion parameter ψ.

If this is compared with the static GLM of Section 4, then the earlier model can be seen to have
been adjusted in the following ways:

• all parameters have been superscripted with a time index;

• the fundamental parameter vector β(t) is now randomised, with a prior distribution that is
conditioned by β(t−1), the parameter vector at the preceding epoch.

The model parameters evolve thus through time, allowing for the model to adapt to changing
data trends. A specific example of the evolution (c) would be a stationary random walk in which
β(t) = β(t−1) + η(t) with η(t) ∼ P∗(.;ψ), with P∗ now a prior on η(t) and subject to E

[
η(t)
]
= 0.

The mathematics of evolutionary models were investigated by Taylor (2008) and numerical
applications given by Taylor and McGuire (2009). Their structure is reminiscent of the Kalman filter
(Harvey 1989) but with the following important difference that the Kalman filter is the evolutionary
form of a general linear model, whereas the model described here is the evolutionary form of a GLM.

Specifically,

• the Kalman filter requires a linear relation between observation means and parameter vectors,
whereas the present model admits nonlinearity through the link function;

• the Kalman filter requires Gaussian error terms in respect of both observations and priors, whereas
the present model admits non-Gaussian within the EDF.
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One difficulty arising within this type of model is that the admission of nonlinearity often causes the
posterior of β(t) in (c) to lie outside the family of conjugate priors of F at the next step of the evolution,
where β(t) evolves to β(t+1). This adds greatly to the complexity of its implementation.

The references cited earlier (Taylor 2008; Taylor and McGuire 2009) proceed by replacing the
posterior for β(t), which forms the prior for β(t+1), by the natural conjugate of F that has the same mean
and covariance structure as the actual posterior. This is reported to work reasonably well, though with
occasional stability problems in the conversion of iterates to parameter estimates.

5.2. Miniaturisation of Species—Parameter Reduction

The Jurassic models were lumbering, with overblown parameter sets. The GLMs of Section 4
were more efficient in limiting the size of the parameter set, but without much systematic attention
to the issue. A more recent approach that brings the issue into focus is regularised regression, and
specifically the least absolute shrinkage and selection operator (LASSO) model (Tibshirani 1996).

Consider the GLM defined by (a) and (4) in Section 4. At this point, let the data set be quite
general in form. It might consist of the Yij, as in (3); or of the Y[n]

i j defined in Section 2; or, indeed, of
any other observations capable of forming the independent variable of a GLM. Let this general data set
be denoted byY.

The parameter vector β of the GLM is typically estimated by maximum likelihood estimation. For
this purpose, the negative log-likelihood (actually, negative log-quasi-likelihood) of the observations
Y given β is calculated. This is otherwise known as the scaled deviance, and will be denoted D(Y; β).
The estimate of β is then

β̂ = argmin
β

D(Y; β). (4)

Here, the deviance operates as a loss function. Consider the following extension of this loss function:

L(Y; β) = D(Y; β) + λ||β||p (5)

where || ||p denotes the Lp norm and λ > 0 is a constant, to be discussed further below.
This inclusion of the additional member in (5) converts the earlier GLM to a regularised GLM. In

parallel with (4), its estimate of β is
β̂ = argmin

β
L(Y; β). (6)

Certain special cases of regularised regression are common in the literature, as summarised in
Table 1.

Table 1. Special cases of regularised regression.

λ p Special Case

0 - GLM
>0 1 Lasso
>0 2 Ridge regression

The case of particular interest here is the lasso. According to (5), the loss function is

L(Y; β) = D(Y; β) + λ||β||1 = D(Y; β) + λ
∑

k

|βk| (7)

where the βk are the components of β.
A property of this form of loss function is that it can force many components of β̂ to zero, rendering

the lasso an effective tool for elimination of covariates from a large set of candidates.
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The term λ||β||1 in (7) may be viewed as a penalty for every parameter included in the model.
Evidently, the penalty increases with increasing λ, with the two extreme cases recognisable:

• λ→ 0 : no elimination of covariates (ordinary GLM—see also Table 1);
• λ→∞ : elimination of all covariates (trivial regression).

Thus, the application of the lasso may consist of defining a GLM in terms of a very large number
of candidate covariates, and then calibrating by means of the lasso, which has the effect of selecting a
subset of these candidates for inclusion in the model.

The prediction accuracy of any model produced by the lasso is evaluated by cross-validation,
which consists of the following steps:

(a) Randomly delete one n-th of the data set, as a test sample;
(b) Fit the model to the remainder of the data set (the training set);
(c) Generate fitted values for the test sample;
(d) Compute a defined measure of error (e.g., the sum of squared differences) between the test sample

and the values fitted to it;
(e) Repeat steps (a) to (d) a large number of times, and take the average of the error measures, calling

this the cross-validation error (CV error).

The process just described pre-supposes a data set sufficiently large for dissection into a training
set and a test sample. Small claim triangles (e.g., a 10 × 10 triangle contains only 55 observations) are
not adapted to this. So, cross-validation is a model performance measure suited to large data sets, such
as are analysed by GMs and MLMs.

One possible form of calibration (e.g., McGuire et al. (2018)) proceeds as follows. A sequence of
models is examined with increasing λ, and therefore with the number of covariates decreasing. The
models with small λ tend to be over-parameterised, leading to poor predictive performance; those with
large λ tend to be under-parameterised, again leading to poor predictive performance. The optimal
model is chosen to minimise CV error.

It is evident that, by the nature of this calibration, the lasso will be expected to lead to high
forecast efficiency.

Figure 3 provides a numerical example of the variation of CV error with the number of parameters
used to model a particular data set.

 

Figure 3. An example of cross-validation error.
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The lasso is a relatively recent addition to the actuarial literature, but a number of applications
have already been made. Li et al. (2017) and Venter and Şahın (2018) used it to model mortality. Gao
and Meng (2018) constructed a loss reserving lasso, modelling a 10 × 10 aggregate claim triangle
and using a model broadly related to the chain ladder. McGuire et al. (2018) also constructed a loss
reserving lasso, but modelling a large data set of individual claims containing a number of complex
data features, some of which will be described in Section 6.

5.3. Granular (or Micro-) Models

Granular models, sometimes referred to as micro-models, are not especially well-defined.
The general idea is that they endeavour to extend modelling into some of the detail that underlies the
aggregate data in a claim triangle. For example, a granular model may endeavour to model individual
claims in terms of the detail of the claim process.

Hachemeister’s (1978, 1980) individual claim model has already been mentioned. The early
statistical case estimation models used in industry were also granular. See, for example, Taylor and
Campbell (2002) for a model of workers compensation claims in which claimants move between
“active” and “incapacitated” states, receiving benefits for incapacity and other associated benefits, such
as medical costs.

The history of granular models is generally regarded as having commenced with the papers of
Norberg (1993, 1999) and Hesselager (1994). These authors represented individual claims by a model
that tracked a claim process through a sequence of key dates, namely accident date, notification date,
partial payment date, . . . , partial payment date, final payment date, and closure date. The process is a
marked process in the sense that each payment date is tagged with a payment amount (or mark).

This type of model has been implemented by Pigeon et al. (2013, 2014) and Antonio and Plat
(2014). Comment will be made on the performance of these models in Section 8.2.

Distinction is sometimes made between aggregate and granular models, but it is debatable. The literature
contains models with more extensive data inputs than just claim payment triangles. For example, the
payment triangle might be supplemented by a claim count triangle, as in the Payments per Claim Incurred
model described in Taylor (2000), or in the Double Chain Ladder of Miranda et al. (2013).

These models certainly use more extensive data than a simple claim amount triangle, but the data
are still aggregated. It is more appropriate to regard claim models as forming a spectrum that varies
from a small amount of conditioning data at one end (e.g., a chain ladder) to a very large amount at the
other (e.g., the individual claim models of Pigeon, Antonio and Denuit).

6. The Anthropocene—Intelligent Beings Intervene

6.1. Artificial Neural Networks in General

By implication, the present section will be concerned with the application of machine learning
(ML) to loss reserving. Once again, the classification of specific models as MLMs or not may be
ambiguous. If ML is regarded as algorithmic investigation of patterns and structure in data with
minimal human intervention, then the lasso of Section 5.2 might be regarded as an MLM.

There are other contenders, such as regression trees, random forests, support vector machines,
and clustering (Wüthrich and Buser 2017), but the form of ML that has found greatest application to
loss reserving is the artificial neural network (ANN), and this section will concentrate on these.

Just a brief word on the architecture of a (feed-forward) ANN, since it will be relevant to the
discussion in Section 8.3. Using the notation of Kuo (2018), let the ANN input be a vector x. Suppose
there are L− 1 (≥ 1) hidden layers of neurons, each layer a vector, with values denoted by h[1], . . . , h[L−1];
a vector output layer, with a value denoted by h[L]; and a vector prediction ŷ of some target quantity y.
Let the components of h[�] be denoted by h[�]j .

The relevant computational relations are
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h[�]j = g[�]
(
z[�]j

)
, � = 1, 2, . . . , L (8)

z[�] =
(
w[�]
)T(

h[�−1]
)
+ b[�], � = 1, 2, . . . , L with the convention h[0] = x (9)

ŷ = h[L] (10)

where z[�] is a vector with components z[�]j , the g[�] are prescribed activation functions, the h[�]j are called

activations, w[�] is a vector of weights, and b[�] is a vector of biases. The weights and biases are selected
by the ANN to maximise the accuracy of the prediction.

The hidden layers need not be of equal length. The activation functions will usually be nonlinear.
An early application of an ANN was given by Mulquiney (2006), who modelled an earlier version

of the data set used by McGuire et al. (2018) in Section 5.2. This consisted of a unit record file in
respect of about 60,000 Auto Bodily Injury finalised claims, each tagged with its accident quarter,
development quarter of finalisation, calendar quarter of finalisation, OT at finalisation and season of
finalisation (quarter).

Prior GLM analysis of the data set over an extended period had been carried out by Taylor
and McGuire (2004), as described in Section 4, and they found that claim costs were affected in a
complex manner by the factors listed there. The ANN was able to identify these effects. For example, it
identified:

• an accident quarter effect corresponding to the legislative change that occurred in the midst of the
data; and

• SI that varied with both finalisation quarter and OT.

Although the ANN and GLM produced similar models, the ANN’s goodness-of-fit was somewhat
superior to that of the GLM.

Interest in and experimentation with ANNs has accelerated in recent years. Harej et al. (2017)
reported on an International Actuarial Association Working Group on individual claim development
with machine learning. Their model was a somewhat “under-powered” ANN that assumed separate
chain ladder models for paid and incurred costs, respectively, for individual claims, and simply
estimated the age-to-age factors.

However, since both paid and incurred amounts were included as input information in both
models, they managed to differentiate age-to-age factors for different claims, e.g., claims with small
amounts paid but large amounts incurred showed higher development of payments.

A follow-up study, with a similar restriction of ANN form, namely pre-supposed chain ladder
structure, was published by Jamal et al. (2018).

Kuo (2018) carried out reserving with deep learning ANN, i.e., with multiple hidden layers. In
this case, no model structure was pre-supposed. The ANN was applied to 200 claim triangles (50
insurers, each four lines of business) by Meyers and Shi (2011), and its results compared with those
generated by five other models, including chain ladder and several from Meyers (2015).

The ANN out-performed all contenders most of the time and, in other cases, was only slightly
inferior to them. This is an encouraging demonstration of the power of the ANN, but the small triangles
of aggregate data do not exploit the potential of the ANN, which can be expected to perform well on
large data sets that conceal complex structures.

The pace of development has picked up over the past couple of years. Wüthrich (2018a, 2018b)
has been active. Other contributions include Ahlgren (2018) and Gabrielli (2019).

6.2. The Interpretability Problem

GMs and MLMs can greatly improve modelling power in cases of data containing complex
patterns. GMs can delve deeply into the data and provide valuable detail of the claim process. Their
formulation can, however, be subject to great, even unsurmountable, difficulties. MLMs, on the
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other hand, for the large part provide little understanding, but may be able to bypass the difficulties
encountered by GMs. They may also be cost-effective in shifting modelling effort from the actuary to
the algorithm (e.g., lasso).

MLMs’ greatest obstacle to useful implementation is the interpretability problem. Some recent
applications of ANNs have sought to address this. For example, Vaughan et al. (2018) introduce their
explainable neural network (xNN), in which the ANN architecture (8) to (10) is restricted in such a
way that

ŷ = μ+
K∑

k=1

γk fk
(
βT

k x
)

for scalar constants μ, γ1, . . . , γK, vector constants β1, . . . , βK, and real-valued functions fk.
This formulation is an attempt to bring known structure to the prediction ŷ. It is similar to the use

of basis functions in the lasso implementation of McGuire et al. (2018). The use of xNNs is as yet in its
infancy but offers promise.

7. Model Assessment

The assessment of a specific loss reserving model needs to consider two main factors:

• the model’s predictive efficiency; and
• its fitness for purpose.

7.1. Adaptation of Species—Evolutionary Models

Let R denote the quantum of total liability represented by the loss reserve, and R̂ the statistical
estimate of it. Both quantities are viewed as random variables, and the forecast error is R− R̂, also a
random variable.

Loss reserving requires some knowledge of the statistical properties of R̂. Obviously, the mean
E
[
R̂
]

is required as the central estimate. Depending on the purpose of the reserving exercise, one may
also require certain quantiles of R̂ for the establishment of risk margins and/or capital margins, but an
important statistic will be the estimate of forecast error.

One such estimate is the mean square error of prediction (MSEP), defined as

MSEP
[
R− R̂

]
= E
[
R− R̂

]2
. (11)

The smaller the MSEP, the greater the predictive efficiency of R̂, so a reasonable choice of model
would often be that which minimises the MSEP (maximises prediction efficiency). As long as one is
not concerned with quantiles other than moderate, e.g., 75%, this conclusion will hold. If there is a
major focus on extreme quantiles, e.g., 99%, the criterion for model selection might shift to the tail
properties of the distribution of R̂.

It may often be assumed that R̂ is unbiased, i.e., E
[
R− R̂

]
= 0, but (11) may remain a reasonable

measure of forecast error in the absence of this condition.
The structure of MSEP is discussed at some length in Taylor (2000, sec. 6.6) and Taylor and

McGuire (2016, chp. 4). Suffice to say here that it consists of three additive components, identified as:

• parameter error;
• process error; and
• model error.

As discussed in the cited references, model error is often problematic and, for the purpose of the
present subsection, MSEP will be taken to be the sum of just parameter and process errors.

In one or two cases, MSEP may be obtained analytically, most notably in the case of the Mack
model, as set out in detail in Mack (1993). The MSEP of a GLM forecast may be approximated by the
delta method, discussed in Taylor and McGuire (2016, sec. 5.2).
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However, generally, for non-approximative estimates, two methods are available, namely:

• the bootstrap (Taylor and McGuire 2016, sec. 5.3); and
• (in the case of Bayesian models) Markov Chain Monte Carlo (MCMC) (Meyers 2015).

7.2. Fitness for Purpose

In certain circumstances, forecasts of ultimate claim cost may be required at an individual level.
Suppose, for example, a self-insurer adopts a system of devolving claim cost to cost centres, but has
not the wherewithal to formulate physical estimates of those costs. Then, a GM or MLM at the level of
individual claims will be required.

If a loss reserving model is required not only for the simple purpose of entering a loss reserve
in a corporate account, but also to provide some understanding of the claims experience that might
be helpful to operations, then a more elaborate model than the simplest, such as chain ladder, would
be justified.

Such considerations will determine the subset of all available models that are fit for purpose. Within
this subset, one would, in principle, still usually choose that with the maximum predictive efficiency.

8. Predictive Efficiency

The purpose of the present section is to consider the predictive efficiency of GMs and MLMs.
It will be helpful to preface this discussion with a discussion of cascaded models.

8.1. Cascaded Models

A cascaded model consists of a number of sub-models with the output of at least one of these
providing input to another. An example is the Payments per Claim Finalized model discussed by
Taylor (2000). This consists of three sub-models, as follows:

• claim notification counts;
• claim finalisation counts; and
• claim finalisation amounts.

The sub-models are configured as in Figure 4.

Figure 4. The Payments per Claim Finalized model and its sub-models.
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By contrast, the chain ladder consists of just a single model of claim amounts.
It is evident that increasing the number of sub-models within a model must add to the number of

parameters, and it is well-known that, although too few parameters will lead to a poor model due to
bias in forecasts, an increase in the number of parameters beyond a certain threshold will lead to poor
predictive efficiency (over-parameterisation).

A cascaded model of n sub-models would typically generate less biased forecasts than one of n− 1
sub-models. However, the increased number of parameters might degrade predictive efficiency to the
point where the more parsimonious model, even with its increased bias, is to be preferred.

It follows that the addition of a further sub-model will be justified only if the bias arising from its
exclusion is sufficiently severe. This is illustrated in the empirical study by Taylor and Xu (2016) of
many triangles from the data set of Meyers and Shi (2011).

They find that many of them are consistent with the assumptions of the chain ladder, in which
case that model out-performs more elaborate cascaded models. However, there are also cases in which
the chain ladder is a poor representation of the data, calling for a more elaborate model. In such cases,
the cascaded models produce the superior performance.

8.2. Granular Models

The discussion of Section 8.1 perhaps sounds a cautionary note in relation to GMs. These are, by
their nature, cascaded, e.g., a sub-model for the notification process, a sub-model for the partial payment
process, etc. They may, in fact, be very elaborate, in which case the possibility of over-parameterisation
becomes a concern.

A salutary remark in the consideration of GMs is that the (aggregate) chain ladder has minimum
variance for over-dispersed Poisson observations (Taylor 2011). So, regardless of how one expands the
scope of the input data (e.g., more precise accident and notification dates, individual claim data, etc.), the
forecast of future claim counts will not be improved as long as the chain ladder assumptions are valid.

The GM literature is rather bereft of demonstration that a GM has out-performed less elaborate
contenders. It is true that Huang et al. (2016) make this claim in relation to the data considered by
them. However, a closer inspection reveals that their GM is essentially none other than the Payments
per Claim Finalized model discussed in Section 8.1.

The model posits individual claim data, and generates individual claim loss reserves. However,
the parameters controlling these individual reserves are not individual-claim-specific. So, the model
appears to lie somewhere between an individual claim model and an aggregate model.

This does not appear to be a case of a GM producing predictive efficiency superior to that of
an aggregate model. Rather, it is a case of a cascaded model producing efficiency superior to that of
uncascaded models.

There is one other major characteristic of GMs that requires consideration. A couple of
examples illustrate.

Example 1. Recall Antonio and Plat (2014), whose model is of the type mentioned in Section 5.3, tracing
individual claims through the process of occurrence, notification, partial payments and closure. Claim payments
occur according to a distribution of delays from notification but, conditional on these, the severities of individual
payments in respect of an individual claim are equi-distributed and stochastically independent.

In some lines of business, perhaps most but especially in Liability lines, this assumption will not withstand
scrutiny. The payments of a medium-to-large claim typically tend to resemble the following profile: a series of
relatively small payments (fees for incident reports, preliminary medical expenses), a payment of dominant size
(settlement of agreed liability), followed possibly by a smaller final payment (completion of legal expenses).

Consequently, if a large payment (say $500 K) is made, the probability of another of anywhere near the
same magnitude is remote. In other words, the model requires recognition of dependency between payments.
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Example 2. (From Taylor et al. (2008)). Consider a GM of development of case estimates over time. Suppose an
estimate of ultimate liability in respect of an individual claim increases 10-fold, from $5 K to $50 K, over a particular
period. Then, typically, the probability of a further 10-fold increase, from $50 K to $500 K, in the next period will be low.

The reason is that the first increase signifies the emergence of information critical to the quantum of the claim, and
it is unusual that further information of the same importance would emerge separately in the following period. Again,
the random variables describing the development of a claim cannot be assumed to be stochastically independent.

Taylor et al. (2008) suggest an estimation procedure that allows for any such dependency without
the need for its explicit measurement.

The essential point to emerge from this discussion is that the detail of a claim process usually
involves a number of intricate dependencies. One ignores these at one’s peril, but taking account of them
may well be problematic, since it opens the way to a hideously complex model with many dependency
parameters. This, in turn, raises the spectre of over-parameterisation, and its attendant degradation of
predictive efficiency, not to mention possible difficulty in the estimation of the dependency parameters.

This by no means condemns GMs, but it appears to me that the jury is still out on them; they have
yet to prove their case.

8.3. Artificial Neural Networks

ANNs are effective tools for taking account of obscure or complex data structures. Recall the
data set used by Mulquiney’s (2006) ANN in Section 6, which had been previously modelled with a
GLM. It is evident from the description of the results that the GLM would have required a number of
interactions:

• for the legislative effect, interaction between accident quarter and OT;
• for SI, interaction between finalisation quarter and OT.

The seeking out of such effects in GLM modelling (feature selection) can be difficult,
time-consuming and expensive. This point is made by McGuire et al. (2018) in favour of the
lasso, which is intended to automate feature selection.

The ANN is an alternative form of automation. As can be seen from the model form set out in (8)
to (10), no explicit feature selection is attempted. The modelling is essentially an exercise in nonlinear
curve-fitting, the nonlinearity arising from the activation functions. The number of parameters in the
model can be controlled by cross-validation, as described in Section 5.2.

To some extent ANNs provide a rejoinder to the dependency issues raised in Section 8.2. Identification
of dependencies becomes a mere special case of feature selection, and is captured obscurely by (8) to (10).

On the other hand, the abstract curve-fitting nature of ANNs renders them dangerously susceptible
to extrapolation errors. Consider SI, for example. In the forecast of a loss reserve, one needs to make
some assumption for the future. A GLM will have estimated past SI, and while this might not be
blindly extrapolated into the future, it can provide valuable information, perhaps to be merged with
collateral information, leading to a reasoned forecast.

In the case of an ANN, any past SI will have been “modelled” in the sense that the model may
include one or more functions that vary over calendar quarter, but these curves may interact with
other covariates, as mentioned above, and the extraction of all this information in an organised and
comprehensible form may present difficulties. Mulquiney (2006) alludes to this issue.

All actuaries are familiar with text-book examples of curves (e.g., polynomials) that fit well to past
data points, but produce wild extrapolations into the future. Blind extrapolation of ANNs can, on occasion,
produce such howlers. Suffice to say that care and, possibly, skill is required in their use for forecasting.

9. The Watchmaker and the Oracle

The tendency of GMs (watchmaking) is to increase the number of cascaded models (relative
to aggregate models), first to individual claim modelling, then perhaps to individual transaction
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modelling, to dissect the available data in ever greater detail, to increase the number of model
components and the complexity of their connections, and then assemble an integrated model from all
the tiny parts.

If this can be achieved, it will provide powerful understanding of the claim process in question.
However, as indicated in Section 8.2, the process is fraught with difficulty. The final model may be
over-simplified and over-parameterised, with unfavourable implications for predictive efficiency. In
addition, the issue of modelling complex stochastic dependencies may be difficult, or even impossible,
to surmount.

One may even discover that all sub-models pass goodness-of-fit tests, and yet the integrated
model, when assembled, does not. This can arise because of inappropriate connections between the
sub-models or overlooked dependencies.

An example of this can occur in the workers compensation framework mentioned in Section 5.3.
One might successfully model persistence in the active state as a survival process, and persistence in
the incapacitated state as a separate survival process, and then combine the two to forecast a worker’s
future incapacity experience.

However, the active survival intensities may not be independent of the worker’s history. A claim
recently recovered from incapacity may be less likely to return to it over the following few days than a
worker who has never been incapacitated. Failure to allow for this dependency (and possibly other
similar ones) will lead to unrealistic forecasts of future experience.

The behaviour of the ANN is Oracle-like. It is presented with a question. It surveys the available
information, taking account of all its complexities, and delivers an answer, with little trace of reasoning.

It confers the benefit of bypassing many of the challenges of granular modelling, but the price
to be paid for this is an opaque model. This is the interpretability problem. Individual data features
remain hidden within the model. They may also be sometimes poorly measured without the human
assistance given to more structured models. For example, diagonal effects might be inaccurately
measured, but compensated for by measured, but actually nonexistent, row effects. Similar criticisms
can be levelled at some other MLMs, e.g., lasso.

The ANN might be difficult to validate. Cross-validation might ensure a suitably small MSEP
overall. However, if a poor fit is found in relation to some subset of the data, one’s recourse is unclear.
The abstract nature of the model does not lend itself easily to spot-correction.

10. Conclusions

Aggregate models have a long track record. They are demonstrably adequate in some situations,
and dubious to unsuitable in others. Cases may easily be identified in which a model as simple as the
chain ladder works perfectly, and no other approach is likely to improve forecasting with respect to
either bias or precision.

However, these simple models are characterised by very simple assumptions and, when a data
set does not conform to these assumptions, the performance of the simple models may be seriously
disrupted. Archetypal deviations from the simple model structures are the existence of variable
SI, structural breaks in the sequence of average claim sizes over accident periods, or variable claim
settlement rates (see e.g., Section 4).

When disturbances of this sort occur, great flexibility in model structure may be required. For a
few decades, GLMs have provided this (see Section 4). GLMs continue to be applicable and useful.
However, the fitting of these models requires considerable time and skill, and is therefore laborious
and costly.

One possible response to this is the use of regularised regression, and the lasso in particular
(Section 5.2). This latter model may be viewed as a form of MLM in that it automates model selection.
This retains all the advantages of a GLM’s flexibility, but with the reduced time and cost of calibration
flowing from automation, and also provides a powerful guard against over-parameterisation.
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The GMs of Section 5.3 are not a competitor of the GLM. Rather, they attempt to deconstruct the
claim process into a number of components and model each of these. GLMs may well be used for the
component modelling.

This approach may extract valuable information about the claim process that would otherwise
be unavailable. However, as pointed out in Section 8.2, there will often be considerable difficulty in
modelling some dependencies in the data, and failure to do so may be calamitous for predictive accuracy.

Most GMs are also cascaded models and, indeed, some are extreme cases of these. Section 8.1
points out that the complexity of cascaded models, largely reflected in the number of sub-models,
comes with a cost in terms of enlarged predictive error (MSEP). They are therefore useful only when
the failure to consider sub-models would cause the introduction of prediction bias worse than the
increase in prediction error caused by their inclusion.

The increased computing power of recent years has enabled the recruitment of larger data sets,
with a greater number of explanatory variables for loss reserving, or lower-level, such as individual
claim, data. This can create difficulties for GMs and GLMs. The greater volume of data may suggest
greater model complexity. It may, for example, necessitate an increase in the number of sub-models
within a GLM.

If a manually constructed GLM were to be used, the challenges of model design would be
increased. It is true, as noted above, that these are mitigated by the use of a lasso (or possibly other
regularisation), but not eliminated.

Automation of such a model requires a selection of the basis functions mentioned in Section 6.2.
It is necessary that the choice allow for interactions of all orders to be recognised in the model. As
the number of potential covariates if the model increases, the number of interactions can mount
very rapidly, possibly to the point of unworkability. This will sometimes necessitate the selection of
interaction basis functions by the modeler, at which point erosion of the benefits of automated model
design begins.

ANNs endeavour to address this situation. Their very general structure (see (8) to (10)) renders
them sufficiently flexible to fit a data set usually as well as a GLM, and to identify and model
dependencies in the data. They represent the ultimate in automation, since the user has little
opportunity to intervene in feature selection.

However, this flexibility comes at a price. The output function of the ANN, from which the model
values are fitted to data points, becomes abstract and inscrutable. While providing a forecast, the
ANN may provide the user with little or no understanding of the data. This can be dangerous, as
the user may lack control over extrapolation into the future (outside the span of the data) required
for prediction.

The literature contains some recent attempts to improve on this situation with xNNs, which
endeavor to provide some shape for the network’s output function, and so render it physically
meaningful. For example, the output function may be expressed in terms of basis functions parallel to
those used for a lasso. However, experience with this form of lasso indicates that effort may still be
required for interpretation of the model output expressed in this form.

In summary, the case is still to be made for both GMs and MLMs. Particular difficulties are
embedded in GMs that may prove insurmountable. MLMs hold great promise but possibly require
further development if they are to be fully domesticated and realise their loss-reserving potential.

A tantalising prospect is the combination of GMs and ANNs to yield the best of both worlds.
To the author’s knowledge, no such model has yet been formulated, but the vision might be the
definition of a cascaded GM with one or more ANNs used to fit the sub-models or the connections
between them, or both.
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