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1 We thank Süleyman Basak, Darrell Duffie, Wayne Ferson, and Harald Uhlig for many helpful comments

and discussions. We would also like to thank seminar participants at the London School of Economics, the

Said Business School, University of Oxford, Imperial College London, the University of York and Exeter

University for stimulating discussions. All remaining errors are ours.

1



Portfolio Efficiency and Discount Factor Bounds

With Conditioning Information: A Unified Approach

December 2004

Abstract

In this paper, we develop a unified framework for the study of mean-variance efficiency and

discount factor bounds in the presence of conditioning information. We extend the framework

of Hansen and Richard (1987) to obtain new characterizations of the efficient portfolio frontier

and variance bounds on discount factors, as functions of the conditioning information. We

introduce a covariance-orthogonal representation of the asset return space, which allows us

to derive several new results, and provide a portfolio-based interpretation of existing results.

Our analysis is inspired by, and extends the recent work of Ferson and Siegel (2001,2002), and

Bekaert and Liu (2004). Our results have several important applications in empirical asset

pricing, such as the construction of portfolio-based tests of asset pricing models, conditional

measures of portfolio performance, and tests of return predictability.

JEL Classification: G11, G12

Keywords: Asset Pricing, Portfolio Efficiency, Stochastic Discount Factors

2



1 Introduction

In this paper, we develop a unified framework for the study of mean-variance efficiency and

discount factor bounds in the presence of conditioning information. Stochastic discount fac-

tor (SDF) bounds are central in testing asset pricing models. Such bounds define the feasible

region in the mean-variance plane by providing a lower bound on the variance of admissible

SDFs. In particular in light of the mounting evidence for asset return predictability, recent

studies have focused on the use of conditioning information to refine these bounds. Since by

duality, discount factor bounds are directly related to the mean-variance efficient frontier,

studying the use of conditioning information in the construction of managed portfolios is

hence of central importance. The optimal use of conditioning information is likely to enlarge

the opportunity set available to an investor, in contrast to the ad hoc multiplicative use

prevalent in the literature. The study of portfolio efficiency with conditioning information,

and thus the construction of managed portfolios that utilize such information optimally, is

hence of independent interest. Our results extend and complement the existing literature in

many important ways, and have several theoretical implications and empirical applications,

including the construction of conditional performance measures, the study of the economic

value of asset return predictability, and tests of conditional asset pricing models.

The main contribution of this paper is two-fold; first, we develop a new portfolio-based

framework for the implementation of discount factor bounds, with and without conditioning

information. We do this by constructing a new orthogonal parameterization of the space

of returns on actively managed portfolios, which enables us to derive a general expression

for such bounds. Our results connect various different approaches to the construction of

such bounds, and allow a direct comparison of their respective properties. In particular,

we provide a direct proof of the Gallant, Hansen, and Tauchen (1990) bounds, and an

explicit expression for the ‘unconditionally efficient’ bounds of Ferson and Siegel (2003).

Our unified approach shows that both sets of bounds can be constructed in very much the

same manner, and thus facilitates a direct comparison of their respective theoretical and
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statistical properties.

Moreover, we show that discount factor bounds can be obtained in two different ways; either

directly from the moments of the traded asset returns, or as the variance of a particular

efficient actively managed portfolio. The latter is important as it provides a lower bound for

the variance of the discount factor even if moments are mis-specified. This is of particular

importance when analyzing the out-of-sample performance of asset pricing models, as it

provides a non-parametric test for the pricing kernel. Finally, we derive a new decomposition,

allowing us to separate the effect of location and shape of the efficient frontier on the level

of the bounds. This is important because empirical evidence shows that the location of the

frontier (as determined by the moments of the global minimum variance portfolio) can be

estimated much more accurately than its slope (Haugen 1997).

Second, to operationalize our theoretical results, we explicitly construct the weights of effi-

ciently managed portfolios, as functions of the conditioning information. While for a specific

class of portfolios, these weights have also been reported by Ferson and Siegel (2001), our

solutions are more general. Our expressions enable us to characterize the optimal portfolio

that attains the discount factor bounds and thus provide an alternative implementation of

the bounds that constitutes a valid test even when the model is incorrectly specified. More-

over, our formulation of the weights of this portfolio facilitates the analysis of their behavior

in response to changes in conditioning information. This is important because it enables us

to shed light on what drives the different sampling properties of the various sets of discount

factor bounds. Our results have many other empirical applications, including the analysis of

the optimal use of asset return predictability, tests of conditional asset pricing models, and

the study of conditional measures of portfolio performance.

Mean-variance efficiency, together with the stochastic discount factor approach, are at the

heart of modern empirical asset pricing, (see Ferson (2003) for a discussion). Mean-variance

theory has found numerous applications, for example in portfolio analysis and asset allo-

cation, empirical tests of asset pricing models, measurement of portfolio performance, and

many other fields. The Hilbert space approach to mean-variance theory, pioneered by Cham-
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berlain and Rothschild (1983), provides an elegant and powerful alternative to the traditional

constrained optimization approach. Hansen and Richard (1987) extend this framework to

study the optimal use of conditioning information, which is of increasing importance, given

the evidence for asset return predictability, (Cochrane 1999). Understanding how to use con-

ditioning information optimally is necessary to construct actively managed portfolios that

exploit return predictability, improve the power of statistical tests of asset pricing models,

and refine measures of portfolio performance.

Our work is related to Gallant, Hansen, and Tauchen (1990) (GHT), and Bekaert and

Liu (2004). GHT were the first to use conditioning information to improve the variance

bounds for asset pricing models by projecting the SDF unconditionally onto the infinite-

dimensional space of ‘managed’ pay-offs, and calculating the variance of this projection.

Bekaert and Liu (2004) provide an alternative implementation of the GHT bounds by finding

an optimal transformation of the conditioning instruments which maximizes the implied

hypothetical Sharpe ratio. Our methodology allows us to characterize the efficient frontier

in their setting, thus recovering the expression for their bounds. Moreover, we explicitly

construct the managed portfolio that attains these bounds. This is important as the variance

of this portfolio is a valid lower bound for the variance of the discount factor even when the

moments of asset returns are mis-specified or incorrectly estimated.

Our work is also related to Ferson and Siegel (2001), who characterize the unconditionally ef-

ficient frontier of ‘conditional’ returns. Our relative contribution is to provide a constructive

derivation of these weights, and a theoretical investigation of their behavior. The numerical

results reported by Ferson and Siegel (2001) indicate that in their setting, the weights in

the case with risk-free asset display a ‘conservative response’ to extreme values of the con-

ditioning instruments. Our analysis provides a theoretical explanation for this, even in the

case without risk-free asset. Our explicit construction of the portfolio weights also allows us

to compare conditionally and unconditionally efficient strategies. We show that the optimal

unconditionally efficient portfolio corresponds to a conditionally optimal strategy only if the

investor’s risk aversion is time-varying. This has important implications for the analysis of
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portfolio performance when returns are predictable.

Ferson and Siegel (2003) use their characterization of the efficient frontier to construct

portfolio-based bounds for discount factors, which they refer to as ‘unconditionally efficient

(UE)’ bounds. Our contribution is to provide an explicit expression for these bounds in terms

of the moments of asset returns, as a simple application of our general result. In contrast,

their construction is purely numerical, based on parameterizing the frontier in terms of the

global minimum variance portfolio (GMV) and another, arbitrarily chosen portfolio. Our

analysis provides a theoretical basis for these choices. Moreover, as for the GHT bounds,

we construct the actively managed portfolio that attains the UE bounds, thus providing a

robust, non-parametric test that is valid even if the model is mis-specified. Our analysis of

the behavior of the efficient weights provides an explanation for the fact that the UE bounds,

while theoretically inferior, have better sampling properties than the GHT bounds (?).

The remainder of this paper is organized as follows; In Section 2, we provide an overview

of the relevant asset pricing theory, and derive a generic expression for the various classes

of discount factor bounds. In Section 3 we develop our main theoretical results, providing

a portfolio-based characterizations and an intuitive decomposition of the bounds. In the

subsequent section, we operationalize our theoretical results by explicitly characterizing the

weights of efficient portfolios, and deriving expressions of the bounds in terms of the moments

of the base asset returns. Section 5 briefly reviews the analogous results in the case where a

risk-free asset is traded. Section 6 concludes.

2 Asset Pricing with Conditioning Information

In this section, we provide a brief outline of the underlying asset pricing theory, and establish

our notation. We first construct the space of state-contingent pay-offs, and within it the

space of traded pay-offs, attainable by actively managed portfolio strategies whose weights

are functions of the conditioning information.
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2.1 Set-Up and Notation

We fix a probability space (Ω,F , P ), endowed with a discrete-time filtration (Ft)t. We fix

t > 0, and consider the period beginning at time t− 1 and ending at time t. Denote by L2
t

the space of all Ft-measurable random variables that are square-integrable with respect to

P . We interpret Ω as the set of ‘states of nature’, and L2
t as the space of all (not necessarily

attainable) state-contingent pay-offs at time t.

Conditioning Information:

To incorporate conditioning information, we take as given a sub-σ-field Gt−1 ⊆ Ft−1. We

think of Gt−1 as summarizing all information on which investors base their portfolio decisions

at time t− 1. In particular, asset prices at time t− 1 will typically depend on Gt−1. In most

practical applications, Gt−1 will be chosen as the σ-field generated by a set of conditioning

instruments1, variables that are observable at time t − 1. To simplify notation, we denote

by Et−1( · ) the conditional expectation operator with respect to Gt−1.

Traded Assets and Managed Pay-Offs:

There are n tradeable risky assets, indexed k = 1 . . . n. We denote the gross return (per

dollar invested) of the k-th asset by rk
t ∈ L2

t , and by R̃t := ( r1
t . . . rn

t )′ the n-vector of risky

asset returns. Unless stated otherwise, we assume that no risk-free asset is traded. We define

Xt as the space of all elements xt ∈ L2
t that can be written in the form, xt = R̃′

t θt−1, with

θt−1 = ( θ1
t−1 . . . θn

t−1 )′, where θk
t−1 ∈ L2

t are Gt−1-measurable functions. We interpret Xt as

the space of ‘managed’ pay-offs, obtained by forming combinations of the base assets with

weights θk
t−1 that are functions of the conditioning information2.

1Examples of such variables considered in the literature include dividend yield (Fama and French 1988),

interest rate spreads (Campbell 1987), or consumption-wealth ratio (Lettau and Ludvigson 2001).
2Note that, in contrast to the fixed-weight case without conditioning information, the space of managed

pay-offs is infinite-dimensional even when there is only a finite number of base assets.
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Pricing Function:

Since the base assets are characterized by their returns, we set Πt−1( rk
t ) ≡ 1, and extend

Πt−1 to all of Xt by conditional linearity, Πt−1 ( xt ) = e′ θt−1 for xt = R̃′
t θt−1 ∈ Xt, where

e = ( 1 . . . 1 )′ is an n-vector of ‘ones’. Throughout the remainder of this paper, we will

refer to ( Xt, Πt−1 ) as the conditional market model generated by the base assets R̃t and

the chosen conditioning set Gt−1. Finally, we set Π0( xt ) = E( Πt−1( xt ) ). By construction,

both Πt−1 and Π0 are (conditionally) linear and thus satisfy the ‘law of one price’, a weak

from of no-arbitrage condition.

2.2 Stochastic Discount Factors

Stochastic discount factors (SDFs) are a convenient way of describing an asset pricing model.

They can be characterized in terms of the following fundamental pricing equation;

Definition 2.1 By an admissible stochastic discount factor (SDF) for the conditional

market model ( Xt, Πt−1 ), we mean an element mt ∈ L2
t such that

Et−1

(
mtR̃t

)
= e, where e = ( 1 . . . 1 )′ is an n-vector of ‘ones’. (1)

Note that (1) implies that mt also prices all managed pay-offs (conditionally) correctly, that

is Et−1( mtxt ) = Πt−1( xt ) for all xt = R̃′
t θt−1 ∈ Xt. Taking unconditional expectations,

E( mtxt ) = E( Πt−1( xt ) ) = Π0( xt ) (2)

In other words, any SDF that prices the base assets (conditionally) correctly must necessarily

be consistent with the ‘generalized’ pricing function Π0( · ). Thus, any subspace Rt ⊂ Xt for

which Π0 ≡ 1 on Rt can be considered as a space of returns, attainable by a corresponding

set of managed portfolios in a generalized sense.

Discount Factor Bounds:
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For different choices of θt−1 (and hence different xt ∈ Xt), we thus obtain from (2) a family

of testable ‘moment conditions’ of the form E( mt R̃′
t θt−1 ) = E( e′ θt−1 ) that any candidate

SDF must satisfy. While these can be used in many different ways (e.g. GMM) to estimate

or test asset pricing models, most of these tests yield necessary but not sufficient conditions3.

Discount factor bounds, first introduced by Hansen and Jagannathan (1991), are one class of

such necessary conditions. They are lower bounds on the variance of an SDF, as a function

of its mean. Such bounds are a useful diagnostic in that if a candidate does not satisfy

the bounds, then it cannot be an admissible SDF. In the extended case with conditioning

information, the bounds can be formulated in their most general form as,

Lemma 2.2 Let mt ∈ L2
t with ν = E( mt ), and Rt ⊂ Xt any arbitrary subspace of Xt with

Π0 ≡ 1 on Rt. Then, necessary (not sufficient) for mt to be an admissible SDF is,

σ( mt )

ν
≥ sup

rt∈Rt

E( rt )− 1/ν

σ( rt )
=: λ∗( ν ; Rt ), (3)

Proof: Since (2) is a necessary condition for mt to be an admissible SDF, we can write

1 = E( mtrt ) = ρ · σ( mt ) σ( rt ) + ν · E( rt ) for any rt ∈ Rt, where ρ is the correlation

between mt and rt. The inequality then follows trivially from −1 ≤ ρ ≤ 1.

Note that, if an (unconditionally) risk-free asset was traded with gross return rf , then any

admissible SDF would have to satisfy rf = 1/ν. Therefore, we refer to 1/ν as the ‘shadow’

risk-free rate implied by the mean ν = E( mt ) of the candidate SDF mt. The right-hand

side λ∗( ν ; Rt ) in (3) can hence be interpreted as the maximum generalized Sharpe ratio on

Rt, relative to the shadow risk-free rate 1/ν. As a consequence, any return rt ∈ Rt that

attains the supremum in (3) must necessarily be unconditionally mean-variance efficient (i.e.

have minimal unconditional variance for given unconditional mean) in Rt. We use this fact

in the following section to derive a portfolio-based characterization of the bounds.

Classification of Discount Factor Bounds:

3This is because the space Xt on which the SDF must be tested is infinite-dimensional.
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While Lemma 2.2 provides a generic characterization, the different classes of SDF bounds

considered in the literature are obtained by choosing different return spaces Rt ⊂ Xt in (3):

(i) HJ Bounds: The Hansen and Jagannathan (1991) (HJ) bounds without conditioning

information are obtained from (3) by choosing Rt as the space of fixed-weight returns,

R0
t =

{
xt = R̃′

t θ, where θ ∈ IRn with e′ θ = 1
}

(ii) UE Bounds: The ‘Unconditionally Efficient’ (UE) bounds of Ferson and Siegel (2003)

are obtained from (3) by choosing Rt as the space of ‘conditional returns’,

RC
t =

{
xt = R̃′

t θt−1, where θt−1 is Gt−1-measurable with e′ θt−1 ≡ 1
}

(iii) GHT Bounds: The Gallant, Hansen, and Tauchen (1990) (GHT) bounds, and hence

also their implementation as the ‘optimally scaled’ bounds by Bekaert and Liu (2004)

are obtained from (3) by choosing Rt as the space of ‘generalized returns’,

RG
t =

{
xt = R̃′

t θt−1, where θt−1 is Gt−1-measurable with E( e′ θt−1 ) = 1
}

The term ‘conditional returns’ in (ii) is used to reflect the fact that the portfolio constraint

Πt−1( xt ) = e′ θt−1 ≡ 1 is required to hold conditionally, i.e. for all realizations of the

conditioning information. Conversely, the term ‘generalized returns’ in (iii) indicates the

fact that Π0( xt ) = E( e′ θt−1 ) does not reflect the true price for the pay-off xt but rather

its expected cost. Note however that, by (2), any admissible SDF that prices the base assets

(conditionally) correctly, must also necessarily price all generalized returns correctly to one.

Finally note that, since RG
t ⊂ Xt is the largest possible subspace on which Π0 ≡ 1, the GHT

bounds are by construction the sharpest possible bounds for given set Gt−1 of conditioning

information. In other words, we expect

λ∗( ν ; R0
t ) < λ∗( ν ; RC

t ) < λ∗( ν ; RG
t ).

Of course, from a theoretical point of view it is therefore optimal to work with the GHT

bounds as these provide the most powerful test for an asset pricing model. However, empirical
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studies (?) show that, while the UE bounds are statistically indistinguishable from the GHT

bounds, the former have better sampling properties.

3 Stochastic Discount Factor Bounds

To construct the bound for a given mean ν = E( mt ) of the candidate discount factor, we

need to find the portfolio that maximizes the generalized Sharpe ratio in (3). In this section,

we provide a generic construction of this portfolio and hence the bounds, which is valid

for any space of returns. For what follows, we denote by Rt ⊂ Xt any subspace on which

Π0 ≡ 1, including in particular the three spaces R0
t , RC

t and RG
t or fixed-weight, conditional

and generalized returns, respectively, as defined in the preceding section.

3.1 Generic Discount Factor Bounds

Any return rt ∈ Rt that attains the supremum in (3) must necessarily be unconditionally

mean-variance efficient in Rt. Hence, we need to characterize the efficient frontier in Rt. It

follows from Hansen and Richard (1987) that every unconditionally efficient rt ∈ Rt can be

written in the form rt = r∗t + w · z∗t for some w ∈ IR, where r∗t ∈ Rt is the unique return

orthogonal4 to Zt = Π−1
0 { 0 } ⊂ Xt, and z∗t ∈ Zt is a canonically chosen excess (i.e. zero

cost) return. In other words, the efficient frontier in Rt is spanned by r∗t and z∗t .

We modify this construction and consider instead the unique return r0
t that is orthogonal to

Zt with respect to the covariance inner product5, i.e. cov ( r0
t , zt ) = 0 for all zt ∈ Zt. Note

that r0
t is nothing other than the global minimum variance (GMV) return6. In analogy with

4One can also define r∗t as the return with minimum unconditional second moment.
5In the absence of a risk-free asset, the covariance functional is indeed a well-defined inner product.
6This follows directly from the first-order condition of the unconstrained variance minimization problem.
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the Hansen and Richard (1987) construction, we choose z0
t ∈ Zt so that E ( zt ) = cov ( z0

t , zt )

for all zt ∈ Zt, i.e. z0
t is the Riesz representation of the expectation functional on Zt. Given

the defining properties of r0
t and z0

t , it is now easy to show that7,

r0
t = r∗t +

E ( r∗t )

1− E ( z∗t )
· z∗t and z0

t =
1

1− E ( z∗t )
· z∗t (4)

Note that by construction, r0
t and z0

t are linear combinations of r∗t and z∗t , and hence also span

the mean-variance efficient frontier. In our parametrization, the GMV r0
t may be regarded

as a measure of location, while z0
t determines the shape of the frontier. We discuss the

differences between the r∗t and the r0
t parameterizations in Section 3.4. We are now ready

to state our first main result,

Theorem 3.1 Necessary for mt ∈ L2
t with ν = E( mt ) to be an admissible SDF is,

σ2( mt ) ≥ ( γ2
1 + γ2γ3 ) · ν2 − 2γ1 · ν + 1

γ2
, (5)

where γ1, γ2 are the unconditional mean and variance of r0
t , respectively, and γ3 = E( z0

t ).

In other words, the lower bound on the variance of an SDF is simply a quadratic function

of its mean, with coefficients that are functions of the unconditional moments of the GMV

return r0
t and the canonical excess return z0

t .

Proof of Theorem 3.1: Follows directly from Proposition 3.2 below.

3.2 Portfolio-Based Characterization of the Bounds

Because the bounds in (5) are expressed in terms of the moments of r0
t and z0

t , they constitute

a valid test only if these moments are correctly specified. In particular, we show below that

7While the derivation of the global minimum variance portfolio in the framework of Hansen and Richard

(1987) has been reported previously (e.g. Cochrane (2001)), the novel feature here is that this portfolio

arises naturally in an orthogonal representation of the efficient frontier.
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the unconditional moments of r0
t and z0

t are functions of the conditional moments of the

base asset returns, which may be difficult to estimate and, more importantly, are subject to

model specification risk. To eliminate this weakness, we show below (Lemma 3.3) that the

bounds can also be obtained as the variance of a managed portfolio. The advantage of this

characterization is that the (in-sample) variance of this portfolio always constitutes a lower

bound for the variance of an SDF, even if moments are mis-specified. We begin by proving

the fundamental proposition from which our main results follow.

Proposition 3.2 For given ν = E ( mt ), the maximum generalized Sharpe ratio λ∗( ν ) that

attains the discount factor bound in (3), admits a decomposition of the form,

λ2
∗( ν ) = λ2

0( ν ) + E( z0
t ), with λ0( ν ) =

E( r0
t )− 1/ν

σ ( r0
t )

. (6)

Moreover, the maximum generalized Sharpe ratio is attained by the return

rν
t = r0

t + κ∗( ν ) · z0
t , with κ∗( ν ) =

σ2( r0
t )

E( r0
t )− 1/ν

. (7)

Proof: Appendix A.1.

To our knowledge, this result is new. It provides not only a very simple way of constructing

discount factor bounds, but also a portfolio-based interpretation of these bounds. Also, we

would like to emphasize that our approach is valid even in the fixed-weight case, when there

is no conditioning information. If a risk-free asset is traded, Jagannathan (1996) shows that

the maximum Sharpe ratio is given by E ( z∗t ) /(1− E ( z∗t )). On the other hand, using (4)

our decomposition (6) can be re-written as,

λ2
∗ ( ν ) = λ2

0 ( ν ) +
E ( z∗t )

1− E ( z∗t )
. (8)

We thus generalize Equation (16) of Jagannathan (1996), to the case without risk-free asset.

Remark: Equation (6) means that the maximum generalized Sharpe ratio that attains the

discount factor bounds is driven by two distinct components; the generalized Sharpe ratio

λ2
0( ν ) of the GMV (which measures the location of the efficient frontier), and the term
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E( z0
t ) which captures the shape of the frontier (the higher this value, the ‘wider’ is the

frontier). In empirical applications, our decomposition enables us to separate the effect that

these two factors have on both location as well as the statistical properties of discount factor

bounds (see also Section 3.4 below).

Finally, note also that the return rν
t defined in (7) is the unique efficient return with zero-beta

rate 1/ν, i.e. the ‘tangency’ portfolio relative to the ‘shadow’ risk-free rate 1/ν.

3.3 Relationship to ‘Optimally Scaled’ Returns

From 3.1 we know that the discount factor bounds can be obtained as a function of the

(unconditional) moments of r0
t and z0

t . We will show below (Section 4) that these moments

in turn are functions of the conditional moments of the base asset returns. As the latter

are notoriously difficult to estimate non-parametrically, any implementation of the bounds

based directly on the moments may be subject to considerable measurement and/or model

specification error.

In the case of the GHT bounds, Bekaert and Liu (2004) provide an alternative derivation

that obtains the bounds as the variance of an ‘optimally scaled’ payoff, given in Equation

(22) of their paper. Their derivation is closely related to ours, as the following lemma shows;

Lemma 3.3 Necessary for mt ∈ L2
t with ν = E( mt ) to be an admissible SDF is,

σ( mt ) ≥ ν

κ∗( ν )
· σ( r0

t + κ∗( ν ) · z0
t ), (9)

where κ∗( ν ) ∈ IR is defined as in Proposition 3.2 above.

Proof: The proof of this lemma follows directly from Proposition 3.2.

It is now easy to show that in the case of generalized returns, the right-hand side of (9)

is equivalent to the ‘optimal scaling’ transformation used in Bekaert and Liu (2004) to
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implement the GHT bound. However, our unified approach implies that the same approach

is valid for all sets of discount factor bounds, including the ‘UE’ bounds of Ferson and Siegel

(2003) as well as the HJ bounds in the fixed-weight case. Lemma 3.3 is important because it

shows that discount factor bounds can be obtained by estimating the variance of a specific

managed return. In particular, this facilitates the analysis of the out-of-sample performance

of a candidate asset pricing model.

Note moreover that, when mt is indeed an admissible SDF, the optimally scaled payoff in

(9) can in fact be identified as the unconditional projection of mt onto the space of managed

payoffs Xt, since

ν

κ∗( ν )
· rν

t =
E( mt )E( r0

t )− 1

σ2( r0
t )

· r0
t + E( mt ) · z0

t = − proj
(
mt |Xt

)

When moments are correctly specified, the bounds are obtained as the variance of this

projection, as in (9). This is in fact the original definition of the GHT bounds used in

Gallant, Hansen, and Tauchen (1990). Moreover, even when the conditional moments are

incorrectly estimated, the variance of the optimally scaled return still provides a valid lower

bound to the variance of pricing kernels. Our analysis shows that this property not only

holds for the GHT bounds, but indeed for all the different classes of bounds considered in

the literature.

Our unified approach shows that the UE and GHT bounds (and also the HJ bounds in the

case without conditioning information) can be constructed in very much the same manner. It

is also easy to see that theoretically, the UE bounds will plot below the GHT bounds as they

are obtained from the maximum Sharpe ratio in the space RC
t of conditional returns, which

is contained in the space RG
t of generalized returns. However, in their empirical analysis ?)

show that, while the difference between the UE and GHT bounds is statistically insignificant,

the UE bounds possess better sampling properties. This is because the portfolio weights of

the efficient conditional return (7) display a more ‘conservative’ response to extreme changes

in the conditioning instruments than those of the respective generalized return (see also

Section 4 below).
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3.4 Comparison of the two Parameterizations

As mentioned before, the efficient frontier with conditioning information can also be param-

eterized using the minimum second moment return r∗t and the corresponding excess return

z∗t . This parametrization forms the basis of the Hansen and Richard (1987) analysis. Our

parametrization is based instead on the GMV portfolio r0
t and the appropriate covariance-

orthogonal excess return z0
t . Geometrically, the GMV captures the location of the frontier,

while z0
t determines its shape. Apart from dramatically simplifying the derivation of the

bounds, our representation has other interesting properties.

?) investigate the sampling properties of the building blocks of both these parameterizations.

While both r∗t and z∗t are similarly sensitive to sampling variability and measurement error,

their findings for the GMV-based parametrization are very different. The estimates of the

moments of the GMV are very robust and almost unaffected by measurement error; nearly

all of the variability that shows up in the estimates of the bounds is due to z0
t . In other

words, the location of the efficient frontier seems very stable, while its shape (curvature)

is much less robust. These results resemble those in the fixed-weight case (Haugen 1997),

where the GMV is the portfolio whose moments can be measured most accurately.

4 Explicit Construction of Discount Factor Bounds

We now operationalize the results of the preceding section by explicitly constructing the

portfolio weights of the efficient return rν
t that attains the SDF bounds, both for conditional

and generalized returns. In the process, we recover the efficient portfolio weights stated in

Ferson and Siegel (2001), and provide a characterization of the efficient frontier implicit in

Bekaert and Liu (2004). Using our results from Section 3, we obtain explicit expressions for

the UE bounds of Ferson and Siegel (2003), and Bekaert and Liu’s (2001) implementation

of the GHT bounds. Our unified framework helps clarify the relationship between these two

sets of bounds.
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4.1 Efficient ‘Conditional’ Returns and UE Bounds

We first study the properties of the efficient frontier for conditional returns. Using our results

from Section 3, we then characterize the return that attains the maximum generalized Sharpe

ratio in (3), from which we obtain an explicit expression for the ‘unconditionally efficient

(UE)’ bounds. To begin with, we define,

µt−1 = Et−1

(
R̃t

)
, and Λt−1 = Et−1

(
R̃t · R̃′

t

)
. (10)

In other words, returns can be written as R̃t = µt−1 + εt, where µt−1 is the conditional

expectation of returns given conditioning information, and εt is the residual disturbance

with variance-covariance matrix Σt−1 = Λt−1 − µt−1µ′t−1. This is the formulation of the

model with conditioning information used in Ferson and Siegel (2001)8. Finally, we set

At−1 = e′Λ−1
t−1e, Bt−1 = µ′t−1Λ

−1
t−1e, Dt−1 = µ′t−1Λ

−1
t−1µt−1 (11)

These are the conditional versions of the ‘efficient set’ constants from classic mean-variance

theory. We choose this notation in order to highlight the structural similarities between the

UE and GHT bounds, and to facilitate a direct comparison.

(A) Efficient Portfolio Weights

Ferson and Siegel (2001) describe the efficient frontier in terms of a set of constants α1, α2

and α3. In our notation, we can write these as9

α1 = E( Bt−1/At−1 ), α2 = E( 1/At−1 ), and α3 = E( Dt−1 −B2
t−1/At−1 ).

Note that, using Proposition A.1, we can identify these constants as E ( r∗t ) = α1 and

σ2 ( r∗t ) = α2 − α2
1. In other words, α1 and α2 are the first and second moments of the

8Note however that our notation differs slightly from that used in Ferson and Siegel (2001), who define

Λt−1 to be the inverse of the conditional second-moment matrix.
9Note that our notation differs slightly from that used in Ferson and Siegel (2001), where the roles of

α1 and α2 are reversed. Our notation is such that α1 and α2 are the first and second moments of r∗t ,

respectively.

17



minimum second moment return r∗t . Similarly, Proposition A.2 implies α3 = E ( z∗t ). Using

this notation, we can now characterize the efficient frontier in the space RC
t of conditional

returns;

Lemma 4.1 The unconditionally efficient conditional return rm
t ∈ RC

t for given uncondi-

tional mean m ∈ IR can be written as rm
t = R̃′

tθt−1, where

θt−1 = Λ−1
t−1

( 1− wBt−1

At−1
e + w µt−1

)
, where w =

m− α1

α3
, (12)

While this result has been reported in Ferson and Siegel (2001), we include it here for two

reasons. First, we wish to highlight the connection between the efficient set constants and

the moments of r∗t and z∗t . Second, a direct comparison with Theorem 4.3 in the next section

allows us to analyze the similarities and differences between the efficient portfolio weights

for conditional and generalized returns, respectively.

Proof of Lemma 4.1: Appendix A.2.

Note that, using (4), we can obtain the weights of the GMV return r0
t by setting m =

α1/(1− α3) in (12). Similarly, the weights of r∗t can be obtained by setting w = 0.

(B) Discount Factor Bounds

The discount factor bounds are now a trivial implication of the results derived so far;

Corollary 4.2 Necessary for mt ∈ L2
t with ν = E( mt ) to be an admissible SDF is,

σ2( mt ) ≥ (α2α3 + α2
1) · ν2 − 2α1 · ν + (1− α3)

α1(1− α3)− α2
1

. (13)

In other words, the UE bound takes the form of a second-order polynomial in the mean ν

of the candidate SDF, where the coefficients are functions of the efficient set constants.

Proof of Corollary 4.2: From (4), it follows trivially that γ1 = α1/(1 − α3) and

γ2 = α2−α2
1/(1−α3), respectively. Similarly, we obtain γ3 = α3/(1−α3). Substituting this

into Equation (5) yields the desired result.
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(C) Bounds from Portfolios

From Lemma 3.3 we know that the discount factor bound can also be obtained as the

variance of the efficient return rν
t = r0

t + κ∗( ν ) · z0
t . Using Lemma 4.1, together with the

fact that rν
t has zero-beta rate 1/ν, we can write rν

t = R̃′
tθt−1, where

θt−1 = Λ−1
t−1

( 1− wBt−1

At−1
e + w µt−1

)
, with w =

α2ν − α1

α1ν − (1− α3)
(14)

From the preceding section, we can identify this as the weights of the efficient return that

has unconditional mean m = α1 + wα3. The zero-beta rate associated with this portfolio is,

by construction, 1/ν.

There are thus two methods of obtaining discount factor bounds; either directly from the

conditional moments of the base asset returns as in (13), or via the variance of a specific

return using Lemma 3.3. When the conditional moments are correctly specified, these two

methods yield the same answer. If, however, the conditional moments are misspecified, then

the variance of the return constructed above still yields a valid lower bound for the variance

of an SDF. Clearly, this is particularly useful for studying the out-of-sample properties of the

bounds. Moreover, empirical studies (?) seem to indicate that the bounds from portfolios

have marginally better sampling properties than the bounds obtained directly from the

conditional moments.

4.2 Efficient ‘Generalized’ Returns and GHT Bounds

In analogy with the preceding section, we now study the properties of the efficient frontier

for generalized returns, which has not been done previously. Using our results from Section

3, we then characterize the return that attains the maximum generalized Sharpe ratio in (3),

from which we obtain an explicit expression for the GHT bounds. We also derive a portfolio-

based characterization of these bounds, which establishes the link between our approach and

the ‘optimal scaling’ approach of Bekaert and Liu (2004).

We use lowercase letters a, b and d to denote the unconditional expectations of the conditional
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constants At−1, Bt−1, and Dt−1 introduced in the preceding section. Note that these are

normalized versions of the efficient set constants defined in Bekaert and Liu (2004).

(A) Efficient Portfolio Weights

Although Bekaert and Liu (2004) do not study the efficient frontier for generalized returns,

it is implicit in their ‘optimal scaling’ approach. To highlight the similarities between the

expressions for conditional and generalized returns, we define,

α̂1 = b/a, α̂2 = 1/a, and α̂3 = d− b2/a.

As before, using Propositions A.3 and A.4, we can identify α̂1 and α̂2 as the first and second

moments of r∗t in the case of generalized returns, and α̂3 = E( z∗t ).

Theorem 4.3 The unconditionally efficient generalized return rm
t ∈ RG

t for given uncondi-

tional mean m ∈ IR can be written as rm
t = R̃′

tθt−1, where

θt−1 = Λ−1
t−1

( 1− wb

a
e + w µt−1

)
, where w =

m− α̂1

α̂3
(15)

Proof: Appendix A.3.

To our knowledge, this result is new. Comparing the above expression with (12), we note

that the functional form of the efficient weights is identical in both cases. The only difference

is that the conditional constants At−1 and Bt−1 that appear in the case of conditional returns

are replaced by their unconditional counterparts. While this difference may seem marginal,

it is responsible for the difference in response of the weights to extreme changes of the

conditioning information.

(B) Discount Factor Bounds

The GHT bound can now be obtained in the same fashion as the UE bound;

Corollary 4.4 Necessary for mt ∈ L2
t with ν = E( mt ) to be an admissible SDF is,

σ2( mt ) ≥ (α̂2α̂3 + α̂2
1) · ν2 − 2α̂1 · ν + (1− α̂3)

α̂1(1− α̂3)− α̂2
1

. (16)
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Proof: The proof is identical to that of Corollary 4.2 in the preceding section.

Note that (16) in this case is sharp, since the right-hand side is attained by the variance of the

GHT projection. Similar to the UE bounds, this expression also takes the form of a second-

order polynomial in ν. The methodology in Bekaert and Liu (2004) yields the GHT bounds

as a quartic over a quadratic polynomial which, if moments are correctly specified, reduces

to the above expression. Specifically, substituting into (16) the corresponding expressions

for the α̂i in terms of the constants a, b and d, we obtain Equation (25) in Bekaert and Liu

(2004).

(C) Bounds from Portfolios

Using Theorem 4.3, together with the fact that rν
t has zero-beta rate 1/ν, we can write the

efficient return that attains the bounds as rν
t = R̃′

tθt−1, where

θt−1 = Λ−1
t−1

( 1− wb

a
e + w µt−1

)
, where w =

α̂2ν − α̂1

α̂1ν − (1− α̂3)
(17)

Again, substituting for the α̂i in terms of a, b and d, it is straight-forward to show that these

weights indeed coincide with the optimal scaling vector given in Equations (22) and (23) of

Bekaert and Liu (2004), suitably normalized. The GHT bound is then obtained from the

variance of this generalized return via (9).

4.3 Properties of the Efficient Portfolio Weights

Throughout this section, we will assume that the conditional mean is a linear function of

a single conditioning instrument, µt−1 = µ( yt−1 ) = µ0 + βyt−1 for some Gt−1-measurable

yt−1. Moreover, we assume that the conditional variance-covariance matrix Σt−1 of the base

asset return innovations does not depend on yt−1 (we will hence write simply Σ). In other

words, we assume that the base asset returns are given by a linear predictive regression, as

in Equation (1) of Ferson and Siegel (2001).

To investigate the asymptotic properties of the efficient weights for large values of the condi-
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tioning instrument, we use a well-known matrix identity, stated for completeness in Appendix

A.4. Using this identity and the definition of the efficient set constants, it is easy to see that

Λ−1
t−1µt−1−→ 0 and Bt−1−→ 0 as yt−1−→ ±∞, while both Λ−1

t−1e and At−1 converge to finite

limits. Hence, for extreme values of the instrument, the weights of the efficient conditional

return, as given in (12), converge to

θt−1 −→
( β′Σ−1β )Σ−1e− ( β′Σ−1e )Σ−1β

( e′Σ−1e )( β′Σ−1β )− ( β′Σ−1e )2
as yt−1−→ ±∞. (18)

These are in fact the asymptotic weights of the minimum second moment return r∗t as it can

be shown that z∗t −→ 0 as yt−1−→ ±∞ in the Hansen and Richard (1987) decomposition

of the efficient frontier. Moreover, it is easy to see that the conditional mean of the efficient

return defined by (12) converges to w as yt−1−→±∞, similar to the case with risk-free asset.

In contrast, just as in the case with risk-free asset, the conditional mean of the corresponding

conditionally efficient strategy can be shown to diverge for extreme values of the instrument.

An argument similar to that made above shows that the weights of the efficient generalized

return, as given in (15), converge to

θt−1 −→
1− wb

a

[
Σ−1e− β′Σ−1e

e′Σ−1e
Σ−1β

]
as yt−1−→ ±∞. (19)

While both the conditional as well as the generalized efficient returns converge to fixed limits

for extreme values of the conditioning instrument, a numerical analysis based on estimated

values for Σ and β shows that the weights of the conditional return converge much quicker

towards their asymptotic values. In contrast, while the weights of the generalized return will,

as we have just shown, eventually converge, they display an almost linear response for any

reasonable range of values of the conditioning instrument. This difference in response can be

largely attributed to the tighter portfolio constraint for conditional returns, which limits the

extent to which the weights can respond to changes in conditioning information. In turn,

the different response to extreme signals is largely responsible for the different sampling

properties (?) of the UE and GHT bounds.
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5 Case With Risk-Free Asset

While not the central focus of this paper, we analyze in this section the case when a risk-free

asset is traded. Since in this case, discount factor bounds are trivial, we focus instead on

the properties of efficient portfolios.

Assume that in addition to the n risky assets, an (unconditionally) risk-free asset is traded,

whose (gross) return we denote rf . In this case, the augmented space Xt of ‘managed’ pay-

offs now consist of elements of the form xt = θ0
t−1rf + ( R̃t − rfe )′θt−1. Note that we allow

portfolios that have ‘managed’ positions in the risk-free asset, which themselves are hence no

longer risk-free, since the weight θ0
t−1 may vary with conditioning information. In contrast to

Section 4, the weights θt−1 on the risky assets are now applied to their excess returns, which

implies that the pricing functional now takes the particularly simple form Πt−1( xt ) = θ0
t−1.

As a consequence, the space RC
t of conditional returns in this framework is given by those

pay-offs for which θ0
t−1 ≡ 1. Conversely, the space RG

t of generalized returns is defined by

the (less strict) constraint E
(
θ0

t−1

)
= 1. We define

Σt−1 = Var
(

R̃t | Gt−1

)
= Λt−1 − µt−1 · µ′t−1 (20)

Note that, in contrast to Ferson and Siegel (2001), we derive the efficient portfolio weights

in the case with risk-free asset in terms of the conditional variance-covariance matrix Σt−1

of returns, rather than the matrix of second moments Λt−1. This will enable us to derive an

expression for the Sharpe ratio for generalized returns, which is similar to Equation (16) in

Jagannathan (1996).

5.1 Efficient Frontier and Sharpe Ratio

We begin by defining the analogue to the efficient set constants introduced in Section 4,

H2
t−1 = ( µt−1 − rfe )′ Σ−1

t−1 ( µt−1 − rfe ), (21)
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Similar to Section 4, we denote by h2 = E
(
H2

t−1

)
the unconditional expectation of H2

t−1.

From classic mean-variance theory it is well-known that the quantity H2
t−1 is in fact the

maximum squared conditional Sharpe ratio (i.e. the maximum Sharpe ratio achievable by

portfolios that are fixed-weight efficient relative to conditional mean and variance).

(A) Efficient Conditional Returns

When a risk-free asset is traded, the maximum Sharpe ratio λ2
∗ is in fact attained by the

return r∗t from the Hansen and Richard (1987) representation of the efficient frontier. Mod-

ifying the proof of Proposition A.1 to account for the presence of a risk-free asset, one can

show10 that the maximum (squared) Sharpe ratio in the space RC
t of conditional returns is

given by the expression λ2
∗ = ζ/(1− ζ), where

ζ = E
( H2

t−1

1 + H2
t−1

)
, (22)

as defined in Ferson and Siegel (2001). Following the same arguments as in Section 4.1, it is

now straight-forward to show that the unconditionally efficient conditional return rm
t ∈ RC

t

for given unconditional mean m ∈ IR can be written as rm
t = rf + ( R̃t − rfe )′θt−1, where

θt−1 =
w − rf

1 + H2
t−1

· Σ−1
t−1

(
µt−1 − rfe

)
, with w =

m− rf (1− ζ)

ζ
. (23)

Using a simple matrix identity (see Appendix A.4), this expression can be shown to be

identical to that stated in Equation (12) of Ferson and Siegel (2001). Our expression (23),

while similar to the efficient portfolio weights in the absence of conditioning information,

differs from the latter in that the normalization factor 1 + H2
t−1 is in fact time-varying. The

presence of this time-varying quantity, an artefact of the conditional portfolio constraint, is

responsible for the ‘conservative response’ of the portfolio weights to extreme values of the

conditioning information, as reported in Ferson and Siegel (2001).

(B) Efficient Generalized Returns

10In the interest of space, we do not include the proof in this paper, details are available from the authors

upon request.
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Similarly, extending the proof of Proposition A.3 to include a risk-free asset, one can show

that the maximum (squared) Sharpe ratio in the space RG
t of generalized returns is simply

given by λ2
∗ = E( H2

t−1 ) = h2. In other words, the (squared) maximum unconditional Sharpe

ratio is simply the unconditional expectation of the squared conditional Sharpe ratio. While

our results apply also to multiple risky assets, the analogous result for a single risky asset

has been reported in Cochrane (1999).

It now follows that the unconditionally efficient generalized return rm
t ∈ RG

t for given un-

conditional mean m ∈ IR can be written as rm
t = θ0

t−1rf + ( R̃t − rfe )′θt−1, where

θt−1 =
w − rf

1 + h2
· Σ−1

t−1

(
µt−1 − rfe

)
, with w =

m− rf

h2
, (24)

and θ0
t−1 is a function of H2

t−1, normalized so that E( θ0
t−1 ) = 1. Note that the functional

form of (24) is identical to the weights obtained from classic mean-variance theory in the

case without conditioning information.

5.2 Properties of Efficient Portfolio Weights

In this section we further explore the properties of the weights of unconditionally efficient

conditional returns and generalized returns. We first discuss the connections with utility

maximization, and show that the weights of the unconditionally efficient conditional return

have properties similar to fixed-weight efficient portfolios in the case when estimation risk is

taken into account. As in Section 4.3, we assume for the remainder of this section that the

conditional mean is a linear function of a single conditioning instrument, µt−1 = µ( yt−1 ) =

µ0 + βyt−1, and that the conditional variance-covariance matrix Σ is constant.

Ferson and Siegel (2001) and Avramov and Chordia (2003) show that the unconditionally

efficient weights arise from maximizing the conditional expected value of a quadratic util-

ity function. The resulting unconditionally efficient strategy is conditionally efficient, but

not vice-versa. We now explore the differences between conditionally and unconditionally

efficient strategies. Consider first an investor who maximizes conditional quadratic utility
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with (conditional) risk aversion coefficient Γt−1. Standard portfolio theory implies that the

optimal portfolio is of the form

rt = rf + ( R̃t − rfe )′θt−1 where θt−1 =
1

Γt−1
Σ−1 ( µt−1 − rfe ).

Evidently, the conditional expected excess return of this strategy is H2
t−1/Γt−1, where H2

t−1 is

the maximum squared conditional Sharpe ratio as defined above. Conversely, suppose now

that the investor chooses a managed strategy such as to maximize unconditional quadratic

utility with risk aversion coefficient γ. The optimal portfolio can be shown11 to be of the

form

rt = rf + ( R̃t − rfe )′θt−1 with θt−1 =
1

γ
· 1 + h2

1 + H2
t−1

Σ−1( µt−1 − rfe ), (25)

where h2 = E( H2
t−1 ) as defined above. Hence, the unconditionally optimal strategy implied

by a risk aversion coefficient γ, when viewed as a conditionally efficient strategy, corresponds

to a conditional risk aversion coefficient of

Γt−1 = γ ·
1 + H2

t−1

1 + h2
.

In other words, the unconditionally efficient strategy corresponds to a conditionally efficient

strategy that is associated with a time-varying coefficient of risk aversion. The portfolio

strategy of an unconditional utility maximizer behaves like that of a conditional utility

maximizer whose risk aversion changes with the value of the conditioning information. In

particular, while h2 is a constant, it is clear that in the linear specification considered here

the conditional Sharpe ratio H2
t−1 will tend to infinity when yt−1−→±∞. Thus, for extreme

values of the conditioning information, the unconditionally efficient strategy when viewed as

a conditionally efficient one has a much higher coefficient of relative risk-aversion. Conversely,

for the same level of risk aversion, the unconditionally efficient strategy becomes increasingly

conservative for large values of the conditioning variable, reducing the weights on the risky

assets. This is analogous to the behavior of efficient fixed-weight portfolios that incorporate

11This follows from (23).
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estimation risk. Such strategies reduce the weight in the tangency portfolio relative to

strategies that do not account for estimation risk (Brown 1976).

The behaviour of the conditional means is also interesting. For the same level of risk aver-

sion, the conditional mean of the conditionally efficient strategy clearly tends to infinity as

yt−1−→ ±∞. In contrast, the excess mean of the unconditionally efficient strategy tends

to ( 1 + h2 )/γ. The unconditionally efficient strategy thus resembles the conditionally effi-

cient strategy for small values of the conditioning information, and a conditionally efficient

strategy that is constrained to keep the conditional mean fixed for extreme values.

In contrast, the risky asset weights (24) of the unconditionally efficient generalized return

are identical to those of the corresponding conditionally efficient strategy, given the same

level of risk aversion. The difference in this case lies in the weight placed on the risk-free

asset, which in the case of generalized returns is time-varying. Thus, the unconditionally

efficient generalized return does not display the conservative response to extreme values of

the conditioning variable. In fact, the weights on the risky assets in this case depend linearly

on the instrument, requiring potentially extreme long and short positions.

6 Conclusion

We provide a unified framework for the study of mean-variance efficiency and discount factor

bounds in the presence of conditioning information. First, we develop a new portfolio-based

framework for the implementation of discount factor bounds with and without conditioning

information. To do this, we construct a new, covariance-orthogonal parameterization of the

space of returns on managed portfolios. As a direct implication of our results, we obtain

a general, portfolio-based methodology for the implementation of discount factor bounds.

Our results connect various different approaches to the construction of such bounds, and

allow a direct comparison of their respective properties. Second, we explicitly construct the

weights of efficiently managed portfolios as functions of the conditioning information. This
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enables us to characterize the optimal portfolios that maximize unconditional Sharpe ratios

and thus attain the sharpest possible discount factor bounds. Moreover, our formulation of

the weights facilitates the analysis of their behavior in response to changes in conditioning

information.

Our analysis has several important empirical applications. First, the expression for the

maximum Sharpe ratio in the presence of conditioning information can be used to study the

effect of return predictability. Second, the techniques developed in this paper can be used to

construct portfolio-based tests of conditional asset pricing models. Finally, our results can

also be used to construct measures of portfolio performance in the presence of conditioning

information, a topic we are currently investigating.
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A Mathematical Appendix

A.1 Proof of Proposition 3.2:

For arbitrary κ ∈ IR, consider the efficient return rt = r0
t + κ · z0

t . The objective is to find κ

such as to maximize the implied squared hypothetical Sharpe ratio,
[
E

(
r0
t + κ · z0

t

)
− 1/ν

]2

σ2
(
r0
t + κ · z0

t

) =

[
E

(
r0
t

)
+ κ · E

(
z0

t

)
− 1/ν

]2

σ2
(
r0
t

)
+ κ2 · E

(
z0

t

)

The first-order condition for this maximization problem can be written as,

κ · E
(
z0

t

) [
E

(
r0
t

)
+ κ · E

(
z0

t

)
− 1/ν

]
= E

(
z0

t

) [
σ2

(
r0
t

)
+ κ2 · E

(
z0

t

) ]
.

The quadratic terms in this expression cancel, due to our choice of z0
t . Hence, the first-order

condition can be easily solved to obtain (7). To prove the decomposition (6) of the maximum

hypothetical Sharpe ratio, we re-write the first-order condition as,

λ2
∗( ν ) =

[ E ( r0
t )− 1/ν ]2

σ2 ( r0
t )

+ E
(
z0

t

)
= λ2

0( ν ) + E
(
z0

t

)

This completes the proof of Proposition 3.2.

A.2 Proof of Lemma 4.1:

In Propositions A.1 and A.2 below we characterize the portfolio weights for the conditional

returns r∗t and z∗t . From this follows,

E( r∗t ) = E( Bt−1/At−1 ) = α1, and E( z∗t ) = E( Dt−1 −B2
t−1/At−1 ) = α3.

The desired result then follows from the Hansen and Richard (1987) representation of the

efficient frontier.

Proposition A.1 The conditional return r∗t with minimum second moment is given by,

r∗t = R̃′
tθt−1 with θt−1 =

1

At−1
Λ−1

t−1e
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Proof: Throughout the proof, we will omit the time subscript to simplify notation. By

Lemma 3.3 of Hansen and Richard (1987), the second moment minimization problem for

conditional returns can be solved conditionally. We set up the (conditional) Lagrangean,

L( θ ) =
1

2

(
θ′Λθ

)
− α

(
e′θ − 1

)

where α is the Lagrangean multiplier for the conditional portfolio constraint. The first-order

condition with respect to θ for the minimization problem is,

Λθ = αe which implies θ = αΛ−1e

To determine the Lagrangean multiplier α, we use the portfolio constraint,

1 = e′θ = α( e′Λ−1e ) = αA which implies θ =
1

A
Λ−1e

This completes the proof of Proposition A.1.

Proposition A.2 The projection z∗t of 1 onto the space of conditional excess returns is,

z∗t = R̃′
tθt−1 with θt−1 = Λ−1

t−1

(
µt−1 −

Bt−1

At−1
e

)

Proof: Throughout the proof, we will omit the time subscript. We use the fact that z∗ is

the Riesz representation of the conditional expectation on the space of excess returns. Since

any excess return can be written as z = ( z + r∗ )− r∗ =: r − r∗, this implies

Et−1

(
( r − r∗ )( z∗ − 1 )

)
= 0 for all r ∈ RC

Write z∗ = R̃′θ and r = R̃′φ/(e′φ) for some arbitrary vector of weights φ. Using the

conditional moments and the fact that z∗ is conditionally orthogonal to r∗, we obtain,

0 = Et−1

(
rz∗ − ( r − r∗ )

)
=

θ′Λφ

e′φ
− µ′

( φ

e′φ
− 1

A
Λ−1e

)

which implies
[
Λθ − ( µ− B

A
e )

]′
φ = 0

Since this equation must hold for any φ, it implies,

θ = Λ−1
(
µ− B

A
e
)

This completes the proof of Proposition A.2.
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A.3 Proof of Theorem 4.3:

In Propositions A.3 and A.4 below we characterize the portfolio weights for the generalized

returns r∗t and z∗t . From this, we obtain,

E( r∗t ) = b/a = α̂1, and E( z∗t ) = d− b2/a = α̂3.

The desired result then follows from the Hansen and Richard (1987) representation of the

efficient frontier.

Proposition A.3 The generalized return r∗t with minimum second moment is given by,

r∗t = R̃′
tθt−1 with θt−1 =

1

a
Λ−1

t−1e

Proof: Throughout the proof, we will omit the time subscript. We use calculus of variation.

Suppose θ is a solution, and φ is an arbitrary vector of (managed) weights. Define,

θε = ( 1− ε )θ + ε
φ

E ( e′φ )

By normalization, θε is an admissible perturbation in the sense that it generates a one-

parameter family of generalized returns. Since θ solves the minimization problem, the fol-

lowing first-order condition must hold,

d

dε

∣∣∣∣
ε=0

E
(
θ′εΛθε

)
= 0

which implies 0 = E
(
θ′Λ

[
E ( e′φ ) θ − φ

] )
= E

( [
E ( θ′Λθ ) e′ − θ′Λ

]
φ

)

Since this equation must hold for every φ, it implies,

θ = E ( θ′Λθ ) Λ−1e =: αΛ−1e

To determine the normalization constant α, we use the portfolio constraint,

1 = E ( e′θ ) = αE
(
e′Λ−1e

)
= αa which implies θ =

1

a
Λ−1e

This completes the proof of Proposition A.3.
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Proposition A.4 The projection z∗t of 1 onto the space of generalized excess returns is,

r∗t = R̃′
tθt−1 with θt−1 = Λ−1

t−1

(
µt−1 −

b

a
e

)

Proof: Throughout the proof, we will omit the time subscript. For unconditional returns,

z∗ is the Riesz representation of the unconditional expectation. Hence,

E ( ( r − r∗ )( z∗ − 1 ) ) = 0 for all r ∈ RG

As before, we write z∗ = R̃′θ and r = R̃′φ/E ( e′φ ) for some arbitrary φ. Using the law of

iterated expectations and the fact that z∗ is orthogonal to r∗, we obtain,

0 = E ( rz∗ − ( r − r∗ ) ) = E
( θ′Λφ

E ( e′φ )
− µ′

( φ

E ( e′φ )
− 1

a
Λ−1e

) )

which implies E
( [

θ − ( µ− b

a
e )

]′
φ

)
= 0

Since this equation must hold for any φ, it implies,

θ = Λ−1
(
µ− b

a
e
)

This completes the proof of Proposition A.4.

A.4 Matrix Identity used in Section 5:

Suppose Σ ∈ IRn×n is symmetric and µ ∈ IRn. If both Σ and (Σ− µµ′) are invertible, then

( Σ + µµ′ )−1 = Σ−1 − Σ−1µµ′Σ−1

1 + µ′Σ−1µ

This relation is trivial to verify, we do not provide a proof here.
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