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”Simulation with EntropyPreface to 
Thermodynamics”

Entropy is the strange state function which extends the description of energy by adding to it the

unique property in physics that is quality. Indeed, in addition to being quantified by the first law

of thermodynamics, energy is qualified. Beyond this rather formal description, it is indeed on the

emergence of a new tool that we should focus our attention. If, thanks to a variational principle,

analytical mechanics triumphs in predicting the evolution of the systems it is able to describe,

it nevertheless leaves aside whole sections of the description of processes, where the dispersion

of energy and/or matter, in degrees of freedom made accessible, apparently makes it impossible

to apply an extremal principle. It is here, with subtlety and elegance, that the entropic approach

can be inserted. Whether it concerns the dimensioning of thermoelectric systems, the study of the

stability of thermodynamic parameters, the out-of-equilibrium behavior of plasmas, or the transport

of charge carriers in different states of matter, the entropic approach often proves to be the only closed

relationship that allows us to understand the fate of a system in contact with a reservoir of matter

and a reservoir of energy. The world of engineering has a lot of experience and pragmatism on

these subjects, only a part of which has today found a fundamental analytical formulation. Far from

claiming to answer the open-ended problems of maximizing or minimizing the production of entropy

in a general framework, this book wants to offer the reader, through very different systems, a look

at the different uses that can be made of entropy, as a measurement of the dispersion of energy and

matter. This book brings together the variety of uses of entropy by its authors in their respective

works. We would like to thank them all warmly for their work.

Christophe Goupil

Editor
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Abstract: We discuss the peculiarities of the Ohm law in dilute polyelectrolytes containing a
relatively low concentration n� of multiply charged colloidal particles. It is demonstrated that in these
conditions, the effective conductivity of polyelectrolyte is the linear function of n�. This happens
due to the change of the electric field in the polyelectrolyte under the effect of colloidal particle
polarization. The proposed theory explains the recent experimental findings and presents the
alternative to mean spherical approximation which predicts the nonlinear I–V characteristics of dilute
colloidal polyelectrolytes due to entropy changes.

Keywords: polyelectrolytes; Ohm law; colloids

1. Introduction

Polyelectrolytes are polymers whose repeating units contain a group of electrolytes. These groups
dissociate in aqueous solutions, making the polymers charged. Polyelectrolyte properties resemble
those of both electrolytes and polymers, and, like salts, their solutions are electrically conductive.
The incorporation of the nano- and micro-meter-sized charged colloidal particles can dramatically
change the electrical and heat transport properties of such systems. For instance, the authors of Ref. [1]
study the electrical transport in charged colloidal suspensions of iron oxide nanoparticles (maghemite)
dispersed in an aqueous medium, while in Ref. [2], the thermal and electrical transport is investigated
in ionically stabilized magnetic nanoparticles dispersed in aqueous potassium ferro/ferricyanide
electrolytes. Both groups report the unusual effect of multiply charged colloidal particles on
conductivity of the dilute polyelectrolytes. It turns out that the latter grows linearly with an increase
of colloidal particle concentration.

This finding seems to be non-trivial from the point of view of the percolation theory (see, for
example, [3]). Indeed, in accordance with the latter, the conductivity of a mixture between dielectric
(in our case water molecules) and conducting (colloidal particle with counter-ions coat) components
remains minute until the fraction of the conducting phase approaches the percolation threshold,
and only in the vicinity of the latter, the conductivity growths smoothly have a value of dielectric
component that is similar to to that of a metallic one.

Before discussing this contradiction, let us make an excursus into the physics of semiconductors.
In the theory of semiconductors [3], the regions of weak and strong doping (i.e., introduction of
charged impurities or structural defects with the purpose of changing the electrical properties of a
semiconductor) are distinguished. In the low doping regime, the impurity concentration n� is so small

Entropy 2020, 22, 225; doi:10.3390/e22020225 www.mdpi.com/journal/entropy1
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that the distances between them significantly exceed the Debye length λ0 and the bare radius of the
colloidal particle R0, i.e.

n� (λ0 + R0)
3 � 1, R0 ≤ λ0, (1)

and the intrinsic charge carriers of semiconductor completely screen the electric fields produced by the
charged impurities (see Figure 1). In the strong doping regime, when criterion (1) is violated, the fields
produced by the dopants are screened only partially and their interaction becomes significant.

Figure 1. The schematic presentation of the multiply charged colloidal particle surrounded by the
cloud of counter-ions.

Returning to the case of the dilute colloidal polyelectrolyte, one can map its properties to the
ones of the weak doped semiconductor and identify n� with the concentration of the colloidal
particles, while λ0 should be related to their characteristic size. The latter is determined by the known
concentration n0 of the counterions of the electrolyte hosting charged colloidal particles.

The criterion (1) is in a reasonable agreement to the common concepts of the physics of
dilute polyelectrolytes developed in the 40s of the last century by Derjaguin, Landau, Verwey, and
Overbeek [4,5] and known as DLVO formalism. Namely, if the colloidal particles are neutral, they
are not stationary in dilute solution and coagulating due to van der Waals forces acts between them.
In order to prevent such coagulation processes, one should immerse individual colloidal particles in
the electrolyte specific for each sort of them. The latter are called stabilizing electrolytes.

Being immersed (or synthesized within) in an electrolyte solution, the nanoparticles acquire
surface ions (e.g., hydroxyl groups, citrate, etc. [6–8]) resulting in a very large structural charge eZ
(|Z| � 10). Its sign can be both positive or negative, depending on the surface group type. The latter,
in return, attracts counterions from the surrounding solvent creating an electrostatic shielding coat
of the size λ0 with an effective charge −eZ. In these conditions, nano-particles approaching between
them to the distances r ≤ λ0 begin to repel each other without floculation [4,5,9]. The region of an
essential interaction between them in terms of the criterion (1) corresponds to the condition

nc� (λ0 + R0)
3 ∼ 1. (2)
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In Ref. [1,2], the massive multiply charged colloidal particles are surrounded by the clouds of
counter-ions screening their positive charge. Such formations, according to Ref. [3], should not affect
the conductivity of the dilute polyelectrolyte until the shells of the neighbor charged complexes do
not overlap among themselves (see Equation (2)). The results of both Ref. [1] and [2] demonstrate
the opposite: the conductivity of dilute colloidal polyelectrolyte grows linearly with increase of
concentration already in the range n� � nc�, where there is not yet place for percolation effects.

This contradiction can be removed by noticing that the presence of the multiply charged colloidal
particles has an effect not only on the value of conductivity of a solution but also on the local value of
the electric field:

j(n�) = σ(n�)E(n�). (3)

It is important to note that the factors in Equation (3) are affected by the presence of the multiply
charged colloidal particles in different ways. While the conductivity of the electrolyte at low
concentrations of multiply charged colloidal particles (n� ≤ nc�) remains almost unchanged, their
effect on the local electric field in this range of concentrations is essential. This happens due to
polarization of the colloidal particles by an external electric field which, in accordance with the Le
Chatelier’s principle, results in the decrease of the effective value of the field. Consequently, the
growth of conductivity [1,2] as a function of concentration n� is observed in experiments. When the
concentration of multiply charged colloidal particles reaches the percolation threshold (n� = nc�), the
role of the factors in Equation (3) is reversed. Here, the subsystem of colloidal particles forms clusters
and cannot be considered more as the gas of polarized highly conducting particles. Yet, in this range
of concentrations, the new channel of percolation charge transfer is opened and the total conductivity
of the electrolyte growth further increase by n�.

The state-of-the-art in transport phenomena in polyelectrolytes was recently reviewed in Ref. [1].
Focusing mainly on the results of the microscopic approach (so called mean spherical approximation
theory (MSA)) [10–12], the authors discuss mobility, diffusion coefficient, and the effective charge
space distribution of the colloidal particles as the function of their concentration. Yet, in Ref. [1], there
is not any information concerning the effect of clusters of polarization on the charge transfer process in
such complex systems. This aspect of the problem is the subject of our work.

2. Effective Electric Field in Bulk of Colloidal Polyelectrolyte

The colloidal polyelectrolyte is a weakly conducting liquid with the small but finite fraction
of relatively highly (due to Z � 1) conducting inclusions, i.e., colloidal particles. The collective
polarization of these inclusions occurs when the external electric field E0 is applied. This phenomenon
is analogous to polarization of neutral atoms in gas. The only difference is that the neutral atoms reside
in vacuum, while the charged conducting clusters of colloidal polyelectrolyte are immersed in a less,
but still conducting, medium. Hence, our goal is to account for this peculiarity and find the effective
field which governs the charge transport in such a complex system.

2.1. Electric Field in Absence of Current

The space distribution of the effective electric field of the colloidal particle is determined by the
Poisson equation (see [3,9])

Δϕ =
4π

ε
ρ(r), ρ(r) = |e|[n+(r)− n−(r)], (4)

where ε is the dielectric permittivity of stabilizing electrolyte.
The concentrations of the screening counterions n±(r) is determined self-consistently via the

value of local electrostatic potential

n±(r) = n0 exp [e±ϕ(r)/T], (5)

3
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n0 = n+
0 = n−

0 is the counterions bare concentration, occuring due to the complete dissociation of the
electrolyte which stabilizes the gas of colloidal particles.

In assumption eϕ(r) < T the Poisson equation can be linearized and takes form

Δϕ = ϕ/λ2
0, λ−2

0 =
8πe2

εT
n0. (6)

This equation should be solved accounting for the boundary conditions

rϕ(r)|r→R0
→ Z|e|, ϕ(r)|r→∞ → 0, (7)

what results in the standard screened Coulomb potential:

ϕ(r) = Ze
exp(− r

λ0
)

r
. (8)

The values Z,R0 and n0 of the electrolyte, which stabilizes the colloidal solution can be determined
by independent experiments (for example, by measurements of the electrophoretic forces, osmotic
pressure, etc. [1]).

One should remember that even strongly diluted polyelectrolytes can undergo the transition to
the state of a Wigner crystal in the case of strongly charged colloidal particles (Z � 1). For description
of this, observed experimentally [13–15], phenomenon the authors of [16] assumed that the interaction
between two colloidal particles has the same form of Yukawa potential (8), yet with the renormalized
effective charge Z∗ � Z, explicitly depending on the colloidal particles density n�. The value of Z∗ is
determined in the Wigner-Seitz model from the new boundary condition

∂ϕ

∂r
|r→n−1/3

�
= 0

replacing that ones, valid for the isolated charged particle in the screening media (see Equation (7)).
For some range of the colloidal particles densities n� the conditions Z � 1 and Z∗ � 1 can be satisfied
simultaneously. The former characterizes the properties of the multiply charged colloidal particles,
while the latter is determined by the strength of their interaction and n�. In the range of densities n�
satisfying Equation (1), the effect of the effective charge Z∗ on the Ohmic transport is negligible.

2.2. Electric Field in Presence of Current

When a stationary current flows through the polyelectrolyte, an internal electric field �E appears
in it. In the approximation of a very diluted solution, one can start considerations from the effect
of presence of the isolated colloidal particle on a flowing current. Namely, one should find the
perturbation of the internal electric field which would provide the homogeneity of the transport current
far from the colloidal particle. A corresponding problem recalls that one of classic hydrodynamics:
calculus of the associated mass of the particle moving in the ideal liquid [17].

We choose the center of spherical coordinates coinciding with the colloidal particle and direct the
z−axis along the electric field �E0. We assume that the conductivity of the electrolyte in the absence of
colloidal particles is σ0. The highly charged colloidal particle we will model as the conducting solid
sphere of the radius R 	 (R0 + λ0)(see Figure 1) with conductivity σ� > σ0. Analysis of the charge
transport in multi-phase systems (see [18]) is based on the requirements

div�j = 0, �j = σ�E. (9)

When the medium conductivity is invariable in space the constancy of the current, this automatically
means the homogeneity of the electric field. The situation changes when the system is inhomogeneous
and σ 
= const. The continuity Equation (9) in this case should be solved with the boundary conditions

4
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accounting for the current flow through the boundaries between domains of diverse conductivity.
According to Ref. [18,19], the tangential components of electric field intensity at the boundary must
be continuous, while the normal ones provide the continuity of the charge transfer. Applying these
rules to our simple model of the highly charged colloidal particle in the less conductive medium,
one can write

j0n = J�n , or σ0E0 = σ�E�. (10)

Solution of the system of Equations (9) and (10) for the electrostatic potential in the vicinity of the
colloidal particle (r ≥ R) acquires the form:

ϕ(r, θ) = −E0r cos θ +

(
γ − 1
γ + 2

)
E0

R3

r2 cos θ, (11)

with γ = σ�/σ0. In the limit γ → 1 the electric field remains unperturbed, �E = −∇ϕ → �E0. In the
opposite case, γ >> 1, the dipole perturbation takes the form corresponding to the case of metallic
inclusion of the radius R in the weakly conducting environment (Ref. [18]):

ϕ(r, θ) = −E0r cos θ

(
1 − R3

r3

)
. (12)

One can see that in accordance with the intuitive expectations, the presence of an isolated colloidal
particle in an electrolyte leads to the appearance of the local perturbation of the electric field of the
dipole type ∇ϕ ∝ r−3 with the value of the dipole moment of one colloidal particle

p� =

(
γ − 1
γ + 2

)
R3E0. (13)

Returning to the initial problem of the rarefied gas of colloidal particles of concentration n� in
the electrolyte media, one can introduce the effective dielectric permittivity ε�. It can be related to
the dipole moment (13) by means of the Clausius–Mossotti relation (see Ref. [18]) and in terms of the
material parameters of the problem which is read as:

ε� = 1 + 4π

(
γ − 1
γ + 2

)
R3n�. (14)

One can try to make the model of colloidal particles more realistic assuming that the latter has
the structure of a thick-walled sphere; a “nut” with the conducting shell and the insulating core of
the bare radius R0. This intricacy leads to the change in the expression for the corresponding dipole
momentum: instead of Equation (13) it takes the form (see Ref. [18])

p̃� =
(2γ + 1) (γ − 1)

(2γ + 1) (γ + 2)− 2 (γ − 1)2 R3
0/R3

(
R3 − R3

0

)
E0. (15)

This formula contains two geometrical parameters: R and R0. The latter should be determined
from some independent measurements. The difference R − R0 can be identified with the Debye length
λ0 or to consider it as the fitting parameter.

3. Ohmic Transport in a Weak Colloidal Polyelectrolyte

Equation (14) demonstrates that growth of the nano-particle concentration n� leads to increase
of the dielectric constant ε�, which, in its turn, results in the decrease of the effective electric field in
an electrolyte. The latter, in conditions of the fixed transport current, is perceived as the growth of
conductivity with an increase of the colloidal particles concentration:

σ(n�)= jε�/E0=σ0

[
1+4πn�

p� (E0)

E0

]
. (16)

5
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This expression can be already used for the experimental data processing.

3.1. Approximation of the Conducting Spheres

Substituting the dipole moment taken in the approximation of Equation (13) in Equation (16)
one finds

ΔσCP(n�)
σ0

=
σ(n�)− σ0

σ0
= 4πn�

(
γ − 1
γ + 2

)
R3, (17)

where ΔσCP is the excess conductivity due to the presence of colloidal particles. The left-hand-side
of this equation can be extracted from the data presented in Figure 2. Indeed, in the interval of the
nanoparticles concentrations 0 ≤ φ ≤ 0.6% the behavior of conductivity σ(n�) is almost linear and
σ(n�)/σ0 − 1 = 0.7. In turn, the concentration ϕ = 0.6% corresponds to n(1)

� = 5.45 × 1015 cm−3.

Figure 2. Experimental values of electrical conductivity of water based polyelectrolyte solution as a
function of colloidal concentrations. Measurements were performed in pH = 3.1 solutions containing
maghemite nanoparticles with an average diameter of 12 nm. More detailed information on the
colloidal solution preparation methods and the nature of other ions is found in Ref. [1,2].

For further estimations, it will be crucial that Equation (17) is sensitive to the value of γ only when
it is not very large. When γ >> 1 (we will justify this limit below) the combination (γ− 1)/(γ+ 2) → 1
and it ceases to influence the evaluations based on Equation (17). This allows us to find this limit

R(1)
exp = 2.17 × 10−6cm,

n(1)
�
[

R(1)
exp

]3
= 0.055 � 1. (18)

One can see that these values, together with the nanoparticle concentration n(1)
� , confirm the validity of

the assumed above approximation (1). The plausible reasons for the discovered considerable difference
between R(1)

exp and the value of bare radius R(1)
0 = 6 × 10−7 cm given in Ref. [1] will be discussed below.

The above found conductivity correction ΔσCP(n�) ∝ n�R3 (see Equation (17)) caused by presence
of nanoparticles in electrolyte can be confidently distinguished from the standard Onsager–Debye
conductivity (σOD) of the diluted 1:1 electrolyte [20–22]. Indeed, first of all, the concentration
dependencies of these conductivities are different: ΔσCP(n�) ∝ n� while σOD(n�) ∝

√
n� .

Let us focus on the unusual dependence of the excess conductivity (17) of the nanoparticle size:
ΔσCP growths with increase of R. Usually, this dependence is supposed to be opposite (the larger
radius of the sphere in Stokes viscous law, the lower its mobility, and hence, the conductivity).

One can analyze the available experimental data on the conductivity of the stabilized diluted
colloidal solution [1,2] in the conditions described by Equation (2). In accordance with Equation (17),
the excess conductivities for different sizes of nanoparticles in assumption of the same concentration

6



Entropy 2020, 22, 225

should scale as [R(1)
0 /R(2)

0 ]3. Taking the value R(1)
0 = 6 nm from [1] and R(2)

0 = 3.8 nm from [2] one
finds that the ratio

Δσ
(1)
CP

σ
(1)
0

/
Δσ

(2)
CP

σ
(2)
0

=

(
6

3.8

)3
≈ 4 (19)

Experimental data for this value give even more striking difference:

Δσ
(1)
CP

σ
(1)
0

/
Δσ

(2)
CP

σ
(2)
0

=
0.7

0.06
≈ 11.7. (20)

3.2. Approximation of the Conducting Thick-Walled Spheres

Here, it is necessary to note that the value R(1)
exp obtained in the simple approximation of Equations

(13) and (16) and the measured in Ref. [1] bare radius of the colloidal particle R0 form a relatively small
numerical parameter, [R0/R(1)

exp]
3 	 0.02. It makes sense to improve the experimental data proceeding

replacing the value p� in Equation (16) by the two parametric expressions (15). Tending γ → ∞ in it
one finds

σ(n�)− σ0

σ0
= 4πn�[R

(1)
exp]

3

⎡
⎣1 − 3

γ
− 9

2γ

R3
0(

[R(1)
exp]3 − R3

0

)
⎤
⎦ (21)

From this expression, it is clear that the approximation (17) is valid when γ � 1.
The parameter γ requires special discussion. In the DLVO colloidal model, it is assumed that some

bare core exists which is able to cause the van der Waals forces between colloidal particles in dilute,
non-stabilizing solutions. The conducting properties of this core is not so essential. For example, one
can suppose this bare core of the radius R0 to be a semiconductor possessing its intrinsic charge carriers
which are confined in its volume. If the solvent possesses the stabilizing properties its own mobile
charge carriers, counterions have the same properties as the intrinsic charge carriers of the bare core.
The requirement of electrochemical potential constancy leads to the charge exchange between the bare
core and the solvent. Such exchange results in the formation of the Debye shell (see Equations (4)–(8)),
where the concentration of counterions considerably exceeds that in the solvent bulk. We assumed
above that the value of corresponding conductivity σ(n�) considerably exceeds σ0 of the electrolyte
conductivity in absence of the nanoparticles. This assumption (γ � 1) breaks when the average value
of electrochemical potential in the Debye shell eφ� exceeds the temperature. The authors of Ref. [23]
state that in these conditions the Debye shell of the DLVO colloid can crystallize due to Coulomb forces
and the latter becomes an insulator with σ(n�) ≤ σ0.

4. Conclusions

The main result of this work consists of the proposition of an alternative scenario explaining
the linear growth of the polyelectrolyte conductivity versus the concentration of colloidal particles
observed in Ref. [1,2] in the conditions of the validity of Equation (1). It drastically differs from the
existing ideas of the transport in electrolytes resulting in the empirical Kohlrausch’s law (see [22,24])

Δσ ∼ √
n�. (22)

The speculations justifying Equation (22) were firstly proposed in early papers such as Ref. [20,21] and
the recent efforts to improve this mechanism were undertaken in Ref. [25].

The fact of the observation of the Ohmic transport in strong electrolytes (Ref. [1,2]) denies the
applicability of Kohlrausch’s law in the interval of a very low concentration of the colloidal particles.
Conversely, the mechanism proposed above, based on the analogy to the percolation mechanism of
conductivity occurring in doped semiconductors, allows to get an excellent agreement in the observed

7
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linear dependence. Moreover, it also provides very reasonable values of the microscopic parameters of
the problem.

One can believe that the validity of Kohlrausch’s law is restored in the domain of higher
concentrations and the crossover point between the two regimes (16) and (22) is determined by
the condition (2), as is shown in Figure 2. One can find the pro-arguments for this statement in the
experimental curve shown in Figure 2 of Ref. [1], where the regimes are changed in the vicinity of the
concentration n(1)

� = 5.45 × 1015 cm−3.
The question that arises is why such linear growth below the percolation threshold was never

reported in measurements performed on semiconductors. The answer probably consists of the
overwhelming supremacy of the colloidal particle dipole momentum in comparison to that of the
dopant in semiconductors.

It would be interesting to compare the values of effective charge Z extracted from the experiments
on conductivity of [2] and the review article [1]. Unfortunately, this is not easy to do because of the
analysis of the data for different Z results in very different values of R0. It is why one cannot judge the
influence of the effective charge Z on the bare radius of the colloidal particle R0.

The relative insensibility of the polyelectrolyte conductivity on the value of parameter Z is not
extended on the Seebeck coefficient. The measurements of [2] demonstrate the existence in its kinetics
of the two different phases; the initial and steady ones. The authors dealt with two types of colloids;
one is almost electroneutral (Z ≥ 1) and the other is supposed to have Z � 1.
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Abstract: In this paper, we consider the transient state behavior of a segmented thermoelectric
generator (STEG) exposed to a variable heat input power on the hot side while the transfer of heat on
the cold side is by natural convection. Numerical analysis is used to calculate the power generation
of the system. A one-dimensional STEG model, which includes Joule heating, the Peltier effect with
constant properties of materials, is considered and governing equations are solved using the finite
differences method. The transient analysis of this model is typical for energy harvesting applications.
A novel design methodology, formulated on the ratio of the figure of merit of the thermoelectric
materials, is developed including segmentation on the legs of the thermoelectric generator, which
does not consider previous studies. In our approach, the figure of merit is an advantageous parameter
to analyze its impact on thermal and electrical efficiency. The transient state of the thermoelectric
generator is analyzed, considering two and three heat input sources. We obtain the temperature
profiles, voltage generation, and efficiency of the STEG under pulsed heat input power. The results
showed that the temperature drop along the semiconductor elements was more considerable when
three pulses were applied, and when the thermal conductivity in the first segment was higher than
that of the second segment. Furthermore, we show that the generated voltage and the maximum
efficiency in the system occur when the value of the figure of merit in the first segment, which is in
contact with the temperature source, is lower than the figure of merit for the second thermoelectric
segment of the leg. The model investigated in this paper offers an essential guide on the thermal
and electrical performance behavior of the system under transient conditions, which are present
in many variable thermal phenomena such as solar radiation and the normalized driving cycles of
an automotive thermoelectric generator.

Keywords: segmented thermoelectric generator; pulsed heat; transient

1. Introduction

Power generation based on thermoelectric effects, which use new thermoelectric materials
technology, is of interest for researchers because it converts thermal energy into electricity and
is utilized as a new way to harvest clean energy. To satisfy world energy demands, it is vital to
investigate new areas in energy conversion technologies for power generation. Recent research into the
improvement of efficiency and reduced costs of thermoelectric materials make essential contributions
towards harvesting clean energy [1,2]. Therefore, advances in the development of new applications
to take advantage of renewable energy sources have increased in recent years and are being carried
out as a new solution to reduce the use of fossil fuels [3]. Thermoelectric energy harvesting employs
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thermoelectric generators. A thermoelectric generator (TEG) is composed of several pairs of p-type
and n-type semiconductor elements, known as legs, connected electrically in a series and thermally
in parallel.

Thermoelectric generators (TEGs) generate electricity directly from thermal energy in a
closed-circuit when there exists a temperature difference between the hot side and the cold side of the
device, which has no moving parts. The governing thermoelectric effects in the energy conversion are
the Seebeck, Peltier, Thomson, and Joule effects [4–6]. TEGs provides several advantages against other
power generating systems such as gas-free emissions, endless shelf life, no noise, a simple structure,
maintenance-free operation, no pollution [7–9], and have been used as a harvester of waste heat from
power plants. Therefore, most of the new research focuses on improving the efficiency of TEG to
reach high energy conversion [10]. Some groups of researchers have made an effort to investigate
new methods for energy harvesting with several numerical models to optimize the performances
of TEGs have been proposed [11,12]. Thereby, the development of promising industry and daily
life applications of TEGs is expected. In the improvement of TEGs energy conversion efficiency,
it is necessary to use new techniques that can be focused through device design or developing new
semiconductor materials according to its thermoelectric figure of merit [13]. Geometry optimization
for the legs of a thermoelectric generator has been previously analyzed by Ma et al. [14], who propose
a generator with minimized thickness for maximum power output. Meng [15] showed the effects
of thermocouple physical size on the performance of a thermoelectric heat pump driven by a TEG.
The segmentation of the semiconductor elements improves the performance of TEGs as demonstrated
by the results shown in previous research [16,17]. A segmented thermoelectric generator (STEG)
contains legs composed of two thermoelectric materials and is used to take advantage of the working
conditions at different temperature gradients. The efficiency of a STEG increases if the two joined
thermoelectric materials are compatible, which may lead to higher efficiency. Ming et al. [18] conducted
a thermal analysis, using a three-dimensional finite element model on a segmented thermoelectric
generator and results indicated that maximum efficiency increased 11.2% when the load resistance
value was very nearly to the internal resistance value. Shu et al. [19] propose a thermoelectric generator
for engine waste heat recovery, using a three-dimensional numerical model and results showed that
the output power was higher than that of a non-segmented TEG by 13.4%.

It is well known that the study of TEGs operating with pulsed heat input is more challenging
in a numerical simulation than thermoelectric coolers (TECs) because both the temperature gradient
along the semiconductors and the electric currents vary through time. The dynamic behavior of
thermoelectric devices has been studied and their importance has been reported in works such as
Paul E. Gray’s book [20]. The application of pulsed heat input is a novel method to enhance the
maximum performance of thermoelectric devices and the understanding of its transient behavior is
essential for optimizing energy harvesting from waste heat. Crane [21] studied the differences between
TEG behavior at steady-state and transient models in a MATLAB/Simulink environment where the
devices and systems modeled were optimized according to an advanced multiparameter optimization
technique. Mahmoudinezhad et al. [22] studied the performance of a STEG with self-adhesive graphite
sheet attached to the hot surface, under variable solar radiation at high operation temperatures using
a numerical simulation by the finite volume method. Results showed that the graphite absorber
had an effect on the power generation by the enhancement of absorbed radiation. Samson et al. [23]
investigated a segmented asymmetrical thermoelectric generator (SASTEG) under transient conditions
and the results showed that by using an asymmetrical leg the thermal stress reduced by 39.21%
compared to the symmetrical leg geometry.

In transport vehicles, several studies using TEGs have been performed for waste heat recovery.
For example, in driving the exhaust temperature and gas flow rate vary depending on the engine
operating conditions. High temperatures are achieved in the exhaust line recovery and a portion
of this wasted energy can be converted into electricity, which is advantageous. Transient tests have
demonstrated that the overall power generation of a TEG can be improved by controlling the hot-side
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temperature [24]. In addition to this, the placement of TEGs taking into account the interaction with
the internal combustion engine has also been investigated [25]. This kind of research can be carried
out by using a numerical simulation. Research has also been done on the variation of solar radiation,
power generation, and efficiency of a TEG under the transient condition where it has been shown
the impact of the thermal contact resistance on the temperature profile and system efficiency [26].
It is very important to study the transient behavior of a TEG when the heat source is variable and
even more so when using segmented materials, which is known to increase the efficiency of devices.
Thermoelectric devices and thermal collectors have been studied for energy harvesting, steady-state
systems, and different types of practical applications [27,28].

The previously presented literature shows the optimization of thermoelectric generators using
segmented legs. Measurements of figure of merit has been investigated using different techniques
and by also considering different leg materials (inhomogeneous or of an irregular shape), as well as
configurations of TEGs, observing an increase in the figure of merit due to the bulk thermoelectric
effect [29–31]. Previous studies do not take into account the relationship of the figure of merit between
two different materials using variable pulsed heat input to optimize TEG performance. This paper
focuses on the application of the segmented thermoelectric materials of a TEG when exposed to a
variable pulsed heat input for different energy harvesting applications.

2. One-Dimensional Model of a Segmented Thermoelectric Generator (STEG)

In this work, numerical analysis based on the finite differences method is developed to study a
STEG’s transient characteristics for example, spatial temperature profiles, voltage output, and efficiency.
The proposed model for the segmented legs of the STEG is shown in Figure 1, where A is the
cross-sectional area, L1 and L2 are the lengths of the first and second segment, respectively, L = L1 + L2

is the total length, Tc and Th are the temperatures at the cold and heat ends of the thermoelectric
element, and Tm is the temperature at the junction of the two segments. Numerical solutions for the
spatial temperature profiles, power output, and efficiency are carried out considering variable heat
input pulses when the STEG is exposed to (a) two heat input sources, and (b) three heat input sources.

Figure 1. 1D model of a segmented thermoelectric generator (STEG) under variable heat input power.
L1 and L2 are the length for the first and second segment of the leg, respectively. P1, N1 and P2

N2 are the p-type and n-type elements for the first and second segment, respectively, and R0 is the
load resistance.
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3. Numerical Model

The thermoelectric phenomena are described using (a) the energy balance equation,

DCp
∂T
∂t

+∇ · q′′ = Q′ (1)

where Cp is the specific heat capacity, D is the density, t is the time, and T is the temperature.
Q′ is the Joule heating energy,

Q′ = JV (2)

q′′ is the input heat flux,
q′′ = −κ∇T + ΠJ (3)

Π is the Peltier coefficient, V is the difference in electric potential, and J is the electric current flux.
(b) is the current density continuity,

∂ρc

∂t
= ∇ · J (4)

and ρc is the charge density.
It is well known that,

Π = αT (5)

and
J = −σ∇E − σα∇T (6)

where σ is the electrical conductivity, κ is the thermal conductivity, E is the electric field, and α is the
Seebeck coefficient.

The energy balance to the thermoelement (n-type and p-type) using the 1D unsteady-state heat
transfer modeling is given by:

∂2T
∂x2 +

ρ1,2 I2

κ1,2 A2 =
D1,2Cp1,p2

κ1,2

∂T
∂t

(7)

where ρ, I, and x are the electrical resistivity, the electric current flowing in a closed-circuit, and spatial
coordinate, respectively. The subscripts determine the type of material, where 1 is for the CoSb3 and 2
is for the Bi2Te3.

Equation (8) represents the energy balance for CoSb3 and Bi2Te3 at the interface. Equation (9)
represents the energy balance for the cold side of the thermoelement exposed to natural convection
and is expressed as follows:

ΔxAD1Cp1 + ΔxAD2Cp2

2
∂T
∂t

= −α1TI + κ1 A
∂T
∂x

+ α2TI − κ2 A
∂T
∂x

(8)

ΔxAD2Cp2

2
∂T
∂t

= −α2TI + κ2 A
∂T
∂x

+ hA(T − Ta) (9)

where h = 2.5 W
mK is the natural convection coefficient and Ta is the ambient temperature [21].

3.1. Initial Conditions

The initial conditions on the lower and upper surface of the thermoelement are as follows:

Th(t, L) = Th(t, 0) = 388 K Tc(t, L) = Tc(0, L) = 298 K (10)

3.2. Transient State Equations Solution by the Finite Differences Method

The finite difference method has been used to solve the differential equation with the transient
term (7) since this method is stable and more accurate than other methods. Further details about this
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numerical technique to solve the finite difference equations are in: Numerical Methods for engineers,
Steven C. Chapra (2007). All different temperature profiles for the transient state are obtained by
applying the finite differences method to the energy balance equations. The thermoelement have been
divided into N number of equal parts with equivalent length (Δx) and node numbers from i = 0 to
i = N + 1, where N = 110.

Solving Equations (8)–(10), we obtain,

Tn+1
i−1

(
κ1,2Δt

Cp1,p2D1,2Δx2

)
− Tn+1

i

(
2κ1,2Δt

Cp1,p2D1,2Δx2 + 1

)
+ Tn+1

i+1

(
κ1,2Δt

Cp1,p2D1,2Δx2

)
+ Tn

i +
ρ1,2 I2

A
= 0 (11)

Equation (11) describes the temperature distribution for CoSb3 and Bi2Te3.

Tn+1
i−1

(
κ1 AΔt
ψΔx

)
− Tn+1

i

(
α2 IΔt

ψ
+

κ2 AΔt
ψΔx

+
κ1 AΔt
ψΔx

− α1 IΔt
ψ

− 1
)
− Tn+1

i+1

(
κ2 AΔt
ψΔx

)
+ Tn

i = 0 (12)

Equation (12) describes the temperature CoSb3 and Bi2Te3 at interface.

Tn+1
i−1

(
2κ2 AΔt

Cp2D2Δx2

)
− Tn+1

i

(
2κ2Δt

Cp2D2Δx2 +
2hΔt

D2Cp2Δx
− 2α2 IΔt

D2 ACp2Δx
− 1

)
+ Tn

i − 2hTaΔt
D2Cp2Δx

= 0 (13)

where ψ is given as:

ψ =
ΔxAD1Cp1 + ΔxAD2Cp2

2
(14)

Equation (13) describes the temperature of the surface exposed to the natural convection of the
Bi2Te3 material.

3.3. Electrical Performance Equations

In closed-circuit mode, the generated output voltage is given by:

Vcc = Voc − IR (15)

where Voc is the open-circuit voltage and can be determined with the following equation:

Voc = T0αE − TLαE (16)

The effective coefficient of Seebeck is calculated for a segmented semiconductor material [32] and
is defined in Equation (17) as follows:

αE = α1

T0 − TN
2 +1

Th − Tc
+ α2

TN
2 +1 − TN+1

Th − Tc
(17)

where T0, TN
2 +1 and TN+1 are the hot side constant temperature, interface temperature through time,

and cold side temperature through time, respectively.
The electrical resistance, R, of the thermoelement is given by:

R =
ρ1L
A

+
ρ2L
A

(18)

where L is the length of the thermoelement of the STEG. Considering a resistive load R0 = 1.5 Ω [33],
the electric current can be determined with the following equation:

I =
Voc

R0 + R
(19)
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In a thermoelectric power generation device, efficiency is given by,

η =
W
Qh

=
I(αEΔT − IR)

KthΔT + αE ITh − 1
2 I2R

(20)

where W is the power delivered by the TEG system, Qh is the heat flow from the heat source to the
sink, and Kth = κA/L is the thermal conductance.

3.4. The Figure of Merit

To achieve a high value of the figure of merit, the dimensionless parameter that determines the
performance of a thermoelectric material requires high electrical conductivity, low thermal conductivity,
and a high Seebeck coefficient.

The figure of merit is defined as follows:

Z1,2 =
α2

1,2

ρ1,2κ1,2
(21)

Equation (21) is used to know the merit figure of material 1 and 2.

Zr =
Z1

Z2
(22)

where Zr is the ratio of material 1’s figure of merit to material 2’s figure of merit.

4. Material Properties and Geometry Description

In this paper, we assume that the thermoelectric materials’ properties are independent of
temperature and the constant parameters and dimensions of the semiconductor elements are given in
Table 1. It has been proven in other works that by using constant material properties for calculations,
thermal and electrical characterization can be matched with experimental data [33]. It has been
proven that the Thomson effect does not affect the temperature profile in TEGs, but the output voltage
is impacted by the Thomson effect and even more so by the load resistance. Here we focus on
optimization according to the ratio of figure of merit Zr since the value of the figure of merit changes,
in small ranges, due to the variation of the average temperature. Therefore, the temperature gradient
along the semiconductor’s elements is the most dominant factor and hence thermal and electrical
characterization can be achieved [34]. Optimization that takes into account the Thomson effect is
presented in this study. A novel design methodology using a computational tool that focuses on
examining the influence of segmentation is proposed. Depending on the particular application for
energy harvesting, TEG performance varies mainly due to α, κ, τ, and ρ which in this paper are
considered in Zr and Zr,τ , without the Thomson effect and with the Thomson effect, respectively.
Therefore, and according to this last statement, only a resistive load R0 is considered to show the
thermal and electrical response of a STEG considering different values of the figure of merit. Thomson
coefficient values are assumed as constant and Seebeck is related to the Thomson effect as follows:

α1,2 = (αp(1,2) − αn(1,2)) + (τp(1,2) − τn(1,2))ln(
Tavg

Tre f
) (23)

where Tre f is the room temperature (298 K) and Tavg is the average temperature when the heat fluxes
are applied, i.e., 468 K.
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Table 1. Constant properties of the thermoelectric materials [22,33].

Property Material 1 CoSb3 Material 2 Bi2Te3 Unit

α 459 × 10−6 512 × 10−6 V K−1

κ 3.22 3.518 W m−1 K−1

ρ 1.01 × 10−5 4.378 × 10−5 Ωm
D 7582 8160 Kg m3

Ta 298 298 K
A 2.25 × 10−6 2.25 × 10−6 m2

L 2.2 × 10−3 2.2 × 10−3 m
Cp 238.7 155 J kg−1 K−1

τ 157 × 10−6 22.394 × 10−6 V K−1

5. Heat Input Power Effect on Performance

A thermoelectric generator consists of copper conductors that connect the p-type and n-type
semiconductor materials and facilitates electrical conductivity within the TEG. In this work, these
copper conductors as well as heat losses due to radiation and transverse convection are not taken
into account, but an external load resistor, and thus voltage output of the STEG, can be measured.
For calculations, all materials are assumed homogeneous, and property materials such as thermal
conductivities, electrical resistivity, the Thomson coefficient, and materials’ specific heat capacities are
assumed constant and do not change throughout time or temperature. We considered a length of the
semiconductor element in the STEG of L1,2 = 1.1 × 10−3 m for the first and second segment. Variable
heating conditions are applied to the hot side of the TEG while the cold side changes through time.
We calculated the spatial temperature profiles along the STEG elements, the cold side temperature,
and output voltage during pulse heat operation under the following conditions:

(a) The system begins at room temperature at 298 K;
(b) The heat pulses are input to the system, alternating the temperature sources T1 = 388 K for

some time of t = 0–5 s and then;
(c) A source of T2 = 500 K for a period of time of t′ = 5–10 s, as shown in Figure 2.

Figure 2. Two temperature sources are applied on the thermoelements at time t and t′.

This process is repeated up to a total time of 35 s. For the second case (b), firstly a temperature
source of T1 = 388 K is applied, then a temperature source of T2 = 468 K, and finally a temperature
source of T3 = 548 K, with each source applied in a period of time of t = 0–5 s, t = 5–10 s, and t = 10–15 s,
respectively, as shown in Figure 3. This process is repeated up to a total time of 50 s. In both cases,
CoSb3 is placed in the first segment and Bi2Te3 in the second segment. The load resistance is kept
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constant throughout this study. Rectangular heat input flux function is used to model the pulse in all
cases. In our simulation model, the relevant constant parameters used in the numerical simulation are
listed in Table 1.

Figure 3. Three temperature sources are applied on the thermoelements at time t, t′, and t′′.

5.1. Two Heat Input Pulses: Thermal Behavior

In particular, the output voltage and the temperature profiles across a STEG under periodic pulse
heating were compared for different Zr and Zr,τ values, for both case (a) and (b). In all temperature
and voltage profiles, solid lines do not take into account the Thomson effect and dashed lines are for
results taking into account the Thomson effect. According to Equations (11)–(13), Figure 4 shows the
spatial temperature profile evaluated when the heat pulse of 500 K was applied in a period of time
of t = 5 s, along the STEG elements until the system reached a steady-state distribution for case (a)
as previously described. Here the temperature profile behavior was similar in all heat pulses for all
cases, and so there was no need to include all the figures. For this result a temperature difference of
ΔT = 112 K when the heat input pulse of 500 K was applied is used, and the temperature distribution
was evaluated until the temperature in the segment reached a steady-state distribution.

It can be seen that the temperature increases on the hot side, i.e., in the first segment, at the
moment when the heat pulse was applied which caused an increase in the temperatures in a specific
length and here no change in the interface was observed for the first instants of time. After 0.25 s there
was a change at the interface because the value of the thermal conductivity of the CoSb3 was higher
than the material Bi2Te3, κ1 = 3.09 W/mK and κ2 = 6.523 W/mK respectively, and therefore heat was
preferentially conducted toward the cross-sectional area easily in the first segment. Notice that the heat
absorbed in the first segment was due to CoSb3 material, and the heat released in the second segment
was due to Bi2Te3.

In this paper, the thermal characterization was made considering open-circuit conditions.
The application of the two transient rectangular pulsed heat power is shown in Figure 5 which
shows the transient behavior of the cold side temperature, Tc, for different Zr and Zr,τ values shown
in the figure. As shown from these results, the temperature profiles were not affected by the Thomson
effect as is well known from the literature and only output voltage results change considering the
Thomson effect, as demonstrated in the next section. To show the periodic behavior of the system
when the pulses were repeatedly applied, the total time in all simulation was set to 35 s. Simulations
were performed by varying the thermal conductivity of the Bi2Te3 material to obtain the different
values of Zr and this range spanned the cases when κ1 < κ2 to κ1 > κ2. It can be seen from these
results that the cold side temperature Tc values were very similar for all Zr values where the thermal
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conductivity, electrical resistivity, and Seebeck coefficient of the CoSb3 material remained as constant
values, i.e., Z1 = cte, and only material properties of Bi2Te3 were changed in order to vary Z2 values.

Figure 4. Spatial temperature profile during the heat pulse when Zr = 1.129 and Zr,τ = 0.544,
with Thomson and without Thomson coefficients, respectively. Comparison results with the Thomson
effect (dashed lines) and without the Thomson effect (solid lines). The arrow direction point out the
temperature distribution along the thermoelements through the time steps.

Figure 5. Temperature distribution on the cold side through time when two heat pulses are applied.
Comparison results with the Thomson effect (dashed lines) and without the Thomson effect (solid lines).
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5.2. Electrical Responses to Periodic Heat Fluxes

According to the law of heat transfer from the hot side to the cold side, the temperature of the cold
side changes until thermal equilibrium is attained within a STEG. Temperature gradient values become
smaller through time when the system approaches steady state and therefore when the generated
voltage also decreases. Maintaining Tc values constant in order to achieve higher temperature gradients
is difficult which directly affects the electrical performance of the TEG. Higher voltage generation
accuracy can be achieved by considering the heat input power as an efficient parameter to analyze
its influence on the energy conversion of a STEG. As is well known from the literature, no previous
study has focused on the effect of variable pulsed heat on the performance of a STEG as is done in this
work. The duty cycle determines the ratio of the heating time to the period time in the simulation if
the duty cycle value is very high, the TEG performance is reduced. In this case for the two heat pulses,
the period of heating is 5 s and the period time is 10 s, then the duty cycle is set to 0.5 s, which is the
value used in all the simulations. The heating effects on the maximum voltage generation are shown
in Figure 6 for different Zr and Zr,τ values. The output voltage follows Ohm’s law, i.e., it is given
by the current multiplied by the load resistance from Equation (19). It can be seen that during one
period of pulse heating the voltage generation values, for all the different Zr and Zrτ , are very similar
in all cases reaching a maximum value of Vmax = 55 mV and Vmax = 59 mV, without the Thomson
effect and with the Thomson effect respectively. The difference in the energy generated by STEG under
periodic heating is almost the same, with a difference of less than 0.5% which can be easily seen from
Figure 6, indicating that working with two input pulses and changing the figure of merit of the second
material, i.e., Z2, does not significantly affect the voltage generation. These results indicate that the
smaller the value of Zr, the more output voltage in the system is generated, which is confirmed in the
next section where changes in the figure of merit when working with three heat pulses, increase the
voltage generated.

Figure 6. Voltage generation when two heat input pulses are applied with a duty cycle of 35 s.
Comparison results with the Thomson effect (dashed lines) and without the Thomson effect (solid lines).

5.3. Three Heat Input Pulses: Thermal Behavior

In this section, we analyze the case in which three heat input pulses are applied, i.e., case (b)
previously described, where the initial temperature for the STEG system is 298 K. The spatial
temperature profiles were affected by the heat pulses applied and the properties of the materials.
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Thereby, we calculated the temperature profiles through the time when Zr = 0.028 and Zr,τ = 0.019.
In the next section, we will show that this value improves the voltage output compared with other Zr

and Zr,τ values. Figure 7 shows the spatial temperature profile, evaluated when the heat pulse of 548 K
is applied during 5 s until the system reaches a steady-state distribution. In this case, for three heat
pulses, the time of heating is again 5 s and the period time is 15 s, then the duty cycle is set to 0.33 s.
We should note that for the case when κ1 > κ2, the heat conduction is better in the first segment and
from the interface forward to the second segment, the conduction of heat is reduced due to the lower
thermal conductivity of the semiconductor material in the second segment. The higher temperature
of the third pulse significantly changes the temperature profile, which can be appreciated from the
interface when the Z values changes i.e., Z1 < Z2, compared to the case for two heat pulses.

Figure 7. Spatial temperature profile during the pulse from 10.25 s to 15 s in time intervals of 0.25 s
with Zr = 0.028 and Zr,τ = 0.019, with Thomson and without Thomson coefficients, respectively.
Comparison results with the Thomson effect (dashed lines) and without the Thomson effect (solid
lines). The arrow direction point out the temperature distribution along the thermoelements through
the time steps.

Figure 8 shows the temperature profiles on the cold side, Tc, for different Zr and Zr,τ . For the case
when Zr,τ = 0.019, the temperature profile of the cold side showed a small increase in temperature at
the moment when the source at 500 K was replaced by the source at 388 K. It is worthy to note that
depending on the thermal conduction coefficient and considering the Thomson effect, which directly
affects Zr,τ values, the system reached its higher temperature values for Tc, due to the amount of heat
flux across the interface for the case when κ1 > κ2. For all the other cases, the temperature profiles were
close to each other as shown in Figure 8. From these results we can point that the spatial temperature
profile played an essential role in power generation. In fact, there was a relation between Zr and Zr,τ

values with the output voltage and efficiency of the STEG system for the different temperature profiles.
See the next section.
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Figure 8. Temperature distribution on the cold side through time when three heat pulses are applied.
Comparison results with the Thomson effect (dashed lines) and without the Thomson effect (solid lines).

5.4. Electrical and Efficiency Responses to Periodic Heat Fluxes

By using a third heat input pulse, higher values on the spatial temperature profiles were
reached and consequently the output voltage increased, as shown in Figure 9 when Zr = 0.0028
and Zr,τ = 0.019. The two important parameters in power generation are the figure of merit and
temperature difference between the hot and cold sides of the STEG. Our results showed that a lower
figure of merit value was required in the second segment to achieve a higher output voltage. In this
paper, a small variation of the STEG output voltage was observed, since the value of the figure of
merit changed within a small range in all other cases of Zr values. For this case, the difference in
the energy generated by the STEG changed under three periodic heating compared with the case for
two input pulses. Figure 9 shows that working with three input pulses and reducing the devalue
of the second material’s figure of merit directly affected the voltage generation. Maximum output
voltages were Vmax = 88.7 mV, without the Thomson effect, and Vmax,τ = 108.3, with the Thomson
effect. As shown in the figure, the output voltage was significantly affected for the Thomson effect,
with an 18.1% increase of voltage generated by the system considering the Thomson effect. Thus,
the importance of including the Thomson effect was critical to the optimum characterization of STEG
models in the transient state.
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Figure 9. Voltage generation when three heat input pulses are applied with a duty cycle of 50 s.
Comparison results with the Thomson effect (dashed lines) and without the Thomson effect (solid lines).

From Figure 10, for transient state efficiency, we can see that maximum efficiency could be
obtained when there exists a maximum temperature difference following the voltage behavior. Results
show that the highest efficiency values were 2.8% and 4%, for Zr = 0.028 (orange line) and Zr,τ = 0.019
(blue line) values, respectively. Therefore, the lower value of the ratio of the figure of merit was
needed for maximum efficiency. In both cases for the two first pulses, 388 K and 468 K, the voltage
was nearly half of the peak voltage for the pulse of 548 K. These results show that the new design
for thermoelectric generator incorporating the segmented materials under variable heat input pulse
must take into account the variation of temperature differences through time. The efficiency increased
to a maximum of 4%, but then decreased to reach a steady-state when the pulses were changed to
consider the Thomson effect. The efficiency was highest in agreement with the output voltage results.
The numerical simulation shows the voltage and efficiency values obtained for the system in transient
state. In general, the energy generated was significantly affected by the ratio of the figure of merit Zr.
In a real power generation scenario, the heat input to the device was not always controlled to hold the
temperature differential. Thus, we modeled a system behavior using variable heat input.
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Figure 10. Efficiency when three heat input pulses are applied with a duty cycle of 50 s for the cases
when Zr = 0.287 and Zr,τ = 0.168, lower efficiency, and Zr = 0.028 and Zr,τ = 0.019, maximum
efficiency. Comparison results with the Thomson effect (dashed lines) and the without Thomson effect
(solid lines).

6. Conclusions

In this paper, a numerical investigation of a STEG under variable pulsed heat input power was
performed. The electrical performance, thermal behavior, and efficiency were obtained for different
values of the ratio Zr and Zr,τ . Simulations were performed by varying the thermal conductivity and
Seebeck coefficient of Bi2Te3. We gained different values of Zr and the results showed optimal Zr values
for better system performance. The equations for the numerical method based on the finite-difference
analysis were developed and solved in MATLAB. The most relevant conclusions and results of this
study are the following.

In the segmented thermoelement, the value of the figure of merit for the first segmented, on which
the temperature source was directly applied, must be lower than the figure of merit value of the
second material in order to obtain better performance. In our case the materials used in the segmented
thermoelement were CoSb3 and Bi2Te3.

From spatial temperature profile, it was observed that when the figure of merit Z1 < Z2,
the system required more time to reach steady-state. This is because the Bi2Te3 thermoelectric
properties such as conductivity and the Seebeck coefficient directly affected the figure of merit.
Our results proved that when the value of the figure of merit Z2 increased, the voltage generated also
increased, thus reaching its highest value.

Cold side temperature profiles through time showed that when Zr,τ = 0.019 the highest
temperature was reached Tc = 548.4 K at the moment in which the temperature source of 548 K
was replaced by the source of 388 K, therefore under these conditions a maximum ΔT between the hot
side and the cold side was reached.

The optimum performance was obtained considering the Thomson effect when Zr,τ = 0.019,
where the figure of merit of CoSb3 is Z1 = 1.9 × 10−3 and Bi2Te3 is Z2 = 93 × 10−3 and the maximum
difference of temperature was ΔT = 160.4 K. The maximum voltage reached when considering the
Thomson effect was Vmax,τ = 108.3 mV which was 18.1% higher in comparison to the voltage generated
without the Thomson effect, Vmax = 88.7 mV.
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Abstract: The basic principles of thermoelectrics rely on the coupling of entropy and electric charge.
However, the long-standing dispute of energetics versus entropy has long paralysed the field. Herein,
it is shown that treating entropy and electric charge in a symmetric manner enables a simple transport
equation to be obtained and the power conversion and its efficiency to be deduced for a single
thermoelectric material apart from a device. The material’s performance in both generator mode
(thermo-electric) and entropy pump mode (electro-thermal) are discussed on a single voltage-electrical
current curve, which is presented in a generalized manner by relating it to the electrically open-circuit
voltage and the electrically closed-circuited electrical current. The electrical and thermal power in
entropy pump mode are related to the maximum electrical power in generator mode, which depends
on the material’s power factor. Particular working points on the material’s voltage-electrical current
curve are deduced, namely, the electrical open circuit, electrical short circuit, maximum electrical
power, maximum power conversion efficiency, and entropy conductivity inversion. Optimizing a
thermoelectric material for different working points is discussed with respect to its figure-of-merit
zT and power factor. The importance of the results to state-of-the-art and emerging materials
is emphasized.

Keywords: thermoelectrics; power conversion; efficiency; voltage-electrical current curve; working
point; entropy pump mode; generator mode; power factor; figure of merit; Altenkirch-Ioffe model

1. Introduction

1.1. Controversial Points of View

Entropy is a central quantity in thermoelectrics, but seldom has it been addressed as such.
The basic physical quantity that is known today as entropy is widely considered to be a derived
quantity according to the approaches by Clausius [1–3] and Boltzmann [4–6] to quantify its value in
certain situations. Both the perception of entropy as a derived quantity and the underestimation of
its role in thermal processes are seen as residual outcomes of the Ostwald-Boltzmann battle, which
is worth recalling and constitutes another chapter in the tragicomical history of thermodynamics [7].
In the frame of this work, entropy is considered to be a basic quantity. The benefits of this controversial
point of view are made obvious on the example of thermoelectric materials.

1.2. Implications of Natural Philosophy

Clausius intended to borrow terms for important quantities from the ancient languages, so that
they may be adopted unchanged in all modern languages. He proposed to call the quantity S,
which had been introduced by him, the entropy of the body, from the Greek word τρoπη (tropy),
transformation [1–3]. Intentionally, he formed the word entropy to be as similar as possible to the
word energy. In his opinion, the two quantities to be denoted by these words are so nearly allied in
their physical meanings that a certain similarity in designation is desirable [1–3].
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The importance of entropy was underlined by Gibbs in the very first words of his treatise on
thermodynamics: “The comprehension of the laws which govern any material system is greatly
facilitated by considering the energy and entropy of the system in the various states of which it is
capable” [8,9]. However, the “Energeticist” [10] school in Germany, which rejected atomism and
other matter theories, postulated energy as the primary substance in nature, and considered entropy
as a superfluous derived concept [11–13]. The protagonist was Ostwald, cofounder of physical
chemistry and its Nestor in Germany, and behind it was the natural philosophy of Mach [6,14,15].
Soon, the “Energeticist” school attracted much critical attention not only by the British pioneers [16]
but also from a younger generation of German physicists [11]. The young Sommerfeld witnessed a
memorable debate at the 1895 Assembly of the German Society of Scientists and Physicians in Lübeck,
in which Boltzmann “like a bull defeated the torero [Helm as substitute to Ostwald] despite all his art
of fencing [14].” In a follow-up critique, Boltzmann [17,18] condemned Ostwald’s “Energetics” not
only for perceived mathematical and physical error, but also for its false promise of easy rewards [11].
However, Ostwald never admitted that he had been defeated, and the object of the dispute has been
kept alive to the present day [19,20]. Even though the personalities have changed over time, the
battle has been newly inflamed in the controversy regarding the Karlsruhe Physics Course [21], which
resulted in removing the entropy-treating educational course from German schools [22].

Today, the dissipation or “degradation” of energy is often treated without clear reference to
entropy [19,20]. Preference is given to thermal energy (“heat”) or enthalpy. Textbooks on classical
thermodynamics take the approach of Clausius to quantify entropy in equilibrium conditions as
the definition of entropy, which then is perceived as an energy-derived quantity. The success
of Boltzmann’s principle (called so by Einstein [6]) to quantify entropy in partitioned systems in
equilibrium [23] renders it often to be a statistics-derived quantity [24]. However, the special cases
considered herein do show only certain aspects of entropy, which should be considered in a wider
context. By not considering entropy as a central basic quantity, clearness is lost, and uncertainty
even creeps over authors who endeavor for accuracy and clarity when it comes to the description of
thermal phenomena.

1.3. Evolution of Thermodynamics

The field of thermodynamics has evolved from the aim of understanding the thermodynamical
engine (i.e., the steam engine) [11], which by principle operates under non-equilibrium conditions.
However, for several reasons, thermodynamics has been limited to equilibrium conditions for a long
time. For its suggestion to use entropy under non-equilibrium conditions, Planck’s PhD thesis [25]
was heavily criticized [19,20]. Planck was likely then intimidated and did not deepen this approach to
entropy [19,20]. Alternately, the elegance and success of Gibbs’ treatise on using equilibrium conditions
did pave the way for thermodynamics under equilibrium conditions.

It took several decades until Callen [26,27] and de Groot [28] independently formulated a theory
to describe thermodynamic systems in non-equilibrium conditions. This theory was helpful for
quantitatively describing thermoelectric phenomena. However, the primary focus was the entropy
production in irreversible processes and, thus, the excess entropy. No attention was given to entropy
itself and its ability, which in older terms could be mentioned as the motive power of entropy, to drive
a steam engine [29–31] or thermoelectric generator [32–34].

1.4. Modern Thermodynamics

Consistent with Falk [35], Fuchs [32], and Strunk [23,31], the author holds the view that entropy
should be considered as a fundamental quantity. The characteristics of a fundamental quantity
unfold from its relations with other fundamental quantities. Concise theories have been developed by
Fuchs [32], Job & Rüffler [36,37], and Strunk [23,31,38].

In context of the development of physical concepts, it is worth noting that the basic physical quantity
that is known today as entropy, was named quantity of heat by Joseph Black (1728–1799) [39–41] and

28



Entropy 2020, 22, 803

calorique by Sadi Carnot (1796–1832) [29,30,40]. Indeed, calorique is the French word for quantity
of heat. In his 1911 Presidential address to the Physical Society of London, Hugh Longbourne
Callendar [29] outlined Carnot’s calorique (i.e., entropy) as a quantity, that “any schoolboy could
understand”. Moreover, Callendar underlined that Carnot’s calorique reappeared as a triple integral
in Kelvin’s 1852 paper, as the thermodynamic function of Rankine and as equivalence-value of a
transformation in the 1854 paper of Clausius, and as entropy in the 1865 paper of Clausius [2] along
with an abstract redefinition. No one at that time appears to have realized that entropy was merely
calorique under another name. Callendar closed his remarks with the advice to distinguish a quantity
of heat from a quantity of thermal energy.

Traditionally, thermal energy is called “heat”. Concordant with Callendar [29] and Fuchs [32],
in the author’s opinion, heat is not energy, and entropy is the true measure of a quantity of heat
as opposed to a quantity of thermal energy. Thus, the use this term for thermal energy should be
avoided [42]. For clarity, the traditional term “heat” is put into quotation marks when it addresses
the thermal energy. In this approach, entropy is a basic quantity. Thermoelectrics is an example par
excellence to show the benefits of this philosophical perspective.

1.5. Entropy in Thermoelectrics

In the context of thermoelectrics, according to Boltzmann’s principle, entropy is considered as a
statistics-derived quantity when it is used to quantify the effect of spin and orbital degrees of freedom
on the Seebeck coefficient in strongly correlated electron systems [43,44]. This, however, is a minor
aspect. The approach by Clausius, to consider entropy as an energy-derived quantity does not play a
significant role either.

In the so-called theory of thermodynamics of irreversible processes, as developed by Callen [26,27]
and de Groot [28], it is rather the case that the thermal energy is derived from the entropy. Entropy is a
fundamental quantity that is central to thermoelectrics. These texts can be read with great earning
if entropy is considered as an indestructible substance-like quantity that is able to flow through the
thermoelectric material and carries the thermal energy. The concept of energy carriers was developed
by Falk et al. [45] and Herrmann [21].

However, the theory of thermodynamics of irreversible processes has the tendency to focus on
the irreversibly produced excess entropy, but not on the entropy itself. Instead, energetic quantities are
preferred. In §60 of his textbook, de Groot [28] presents an alternative presentation of thermoelectricity
by the use of entropies of transfer, for which he has stated that the theory becomes somewhat more
elegant compared to using energies of transfer. Unfortunately, he has not deepened this approach.

In a preceding paper [34], the author has shown that the rehabilitation of entropy into the theory
by Callen [26,27] and de Groot [28] leads to a vivid description of thermoelectric devices. Like electrical
charge carries the electrical energy, entropy carries the thermal energy. Thermal induction of an
electrical current and electrical induction of a thermal current become understandable.

1.6. Aim of This Work

Like the preceding paper by the author [34], the present work aims to contribute to a better
understanding of thermoelectrics by reconsidering it by treating entropy and electric charge as basic
quantities of equal rank. This is semantically considered by naming the part of energy that flows
together with entropy the thermal energy and part of energy flowing together with electrical charge
the electrical energy. The energy flux through the thermoelectric material can thus be divided into
thermal power and electrical power. Power conversion, which is in the focus of this article, implies
that the system under consideration is not in equilibrium, but instead flown through by substance-like
quantities. For the case of thermoelectric materials, these are entropy, electric charge, and energy.

By recalling the historical development of the perception of entropy, obstacles are identified,
which have hindered the recognition of its important role in the field of thermoelectrics. The confused
traditional approach and the use of model devices are avoided. Both power conversion and the
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efficiency of power conversion are accessed quantitatively for a thermoelectric material apart from
a device. New physical insight into thermoelectrics is gained on the level of the thermoelectric
material rather than on the device level. On the material’s voltage–electrical current curve, distinct
working points are identified (see Table 1), which not only allow for quantification of the material’s
properties and performance under specific operational conditions, but also relate generator mode
(thermal-to-electrical power conversion) and entropy pump mode (electrical-to-thermal power
conversion) of the same material to each other.

Table 1. Working points on the voltage–electrical current curve of a thermoelectric material in both
operational modes, as addressed in this work.

Abbreviation Working Point Operational Mode

MCEP Maximum (power) conversion efficiency point entropy pump mode
EICP Entropy conductivity inversion point entropy pump mode
OC (electrical) open circuit generator mode

MCEP (see above) generator mode
MEPP Maximum (electrical) power point generator mode

SC (electrical) short circuit generator mode

The results are worked out in detail, and the outcome from the formalism is graphically illustrated
and explained. The simplicity of thermoelectrics is clarified. The findings are linked to the outcome of
the traditional approach to thermoelectrics and state-of-the-art thermoelectric materials.

2. Results

2.1. Categories

The results section is categorized, as follows.

• Section 2.2: Coupling currents of entropy and charge in thermoelectric materials
• Section 2.3: Material’s voltage–electrical current and electrical power–electrical current characteristics
• Section 2.4: Material’s thermal conductivity–electrical current characteristics
• Section 2.5: Thermoelectric material in generator mode
• Section 2.5.1: Working point for maximum electrical power
• Section 2.5.2: Thermal conductivity
• Section 2.5.3: Thermal power
• Section 2.5.4: Power conversion efficiency (thermal to electrical)
• Section 2.5.5: Working points for maximum conversion efficiency and maximum electrical power
• Section 2.6: Thermoelectric material in entropy pump mode
• Section 2.6.1: Power conversion efficiency (electrical to thermal)
• Section 2.6.2: Electrical and thermal power
• Section 2.7: Complete picture

2.2. Coupling Currents of Entropy and Charge in Thermoelectric Materials

When a thermoelectric material is simultaneously placed in a gradient of the electrochemical
potential ∇μ̃ and a gradient of the temperature ∇T, electrical flux density jq, and entropy flux density
jS are observed [34,46]. (

jq

jS

)
=

(
σ σ · α

σ · α σ · α2 + ΛOC

)
·
(

−∇μ̃/q
−∇T

)
(1)

With the classical thermodynamic potential gradients ∇μ̃ (per electric charge q) and ∇T being
employed, the basic transport Equation (1) has the following structure.

flux densities = material tensor · potential gradients (2)
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The thermoelectric material tensor in Equation (1) is composed of only three quantities, which are
the isothermal electrical conductivity σ, the Seebeck coefficient α, and the entropy conductivity at
electrical open circuit ΛOC (i.e., at vanishing electrical current). In principle, all three quantities are
tensors themselves, but, for homogenous materials, they are often treated as scalars.

The entropy conductivity Λ is related to the traditional “heat” conductivity λ by the absolute
temperature T [32,34,37]. This, in principle, indicates that the traditional “heat” conduction is based
on a more fundamental entropy conduction. The author proposes using the generic term thermal
conductivity to address either the “heat” conductivity or the entropy conductivity [47,48].

λ = T · Λ (3)

It is emphasized that Equation (1) refers to a steady-state non-equilibrium situation. Instead of
the quantities electric charge q and entropy S, their local flux densities appear. According to Falk [35],
considering local flux densities allows addressing local energy conversion or better to say local power
conversion. Because flowing quantities are involved, preference should be given to local power
density. Remember, power is the flux of energy. Equation (1) allows for locally varying quantities to
be considered, which can be expressed with the positional vector r: jq = jq (r), jS = jS (r), σ = σ (r),
α = α (r), ΛOC = ΛOC (r), ∇μ̃ = ∇μ̃ (r), ∇T = ∇T (r). Of course, the thermodynamic potentials are
locally varying when gradients are present: μ̃ = μ̃ (r), T = T (r).

However, if the local variation of all quantities in Equation (1) is neglected, a simplified
formulation of the transport equation can be observed [34,49,50]. If a further weak temperature
dependence is assumed for the electron chemical potential μ (i.e., ∂μ

∂T ≈ 0), the temperature dependence
of the electrochemical potential μ̃ = μ + q · ϕ is only in the electrical potential ϕ. With ∇μ/q ≈ 0
follows ∇μ̃/q = ∇μ/q +∇ϕ ≈ ∇ϕ. The assumption of constant gradients (i.e., linear potential
curves) allows for them to be substituted by the difference of the respective potential along the
thermoelectric material of length L: ∇ϕ → −Δϕ/L, ∇T → −ΔT/L. Furthermore, for a thermoelectric
material of cross-sectional area A, the local flux densities can be replaced by the integrative currents
of electrical charge and entropy, respectively: jq → Iq/A, jS → IS/A. Subsequently, the transport
equation follows as: (

Iq

IS

)
=

A
L
·
(

σ σ · α

σ · α σ · α2 + ΛOC

)
·
(

Δϕ

ΔT

)
(4)

Equation (4) describes the coupling of currents of electrical charge Iq and entropy IS in
the thermoelectric material, which causes the occurence of either an electrically-induced entropy
current [51] (Peltier effect) or a thermally-induced electrical current [52,53] (Seebeck effect). Note
that Equation (4) describes these effects in a thermoelectric material, which is schematically shown in
Figure 1, apart from a device.

2.3. Material’s Voltage—Electrical Current and Electrical Power—Electrical Current Characteristics

Different working conditions of the thermoelectric material in this article are discussed with
reference to the voltage–electrical current curve, which is derived from Equation (4) as Equation (5).
Remember that the voltage Δϕ is the electrical potential difference along the thermoelectric material.

Δϕ = −α · ΔT +
Iq

A
L · σ

(5)
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Figure 1. This paper discusses characteristics of a thermoelectric material of cross-sectional area A and
length L when exposed to a temperature difference ΔT = Thot − Tcold between a hot reservoir at Thot

and a cold reservoir at Tcold.

According to Equation (5), the voltage–electrical current characteristics is a line, which has the
material’s electrical resistance R = 1

A
L ·σ

as its slope. This line is only determined by the voltage ΔϕOC

under electrically open-circuited conditions (i.e., at zero electrical current) and the electrical current
ISC at electrically short-circuited conditions (i.e., at zero voltage). The OC is of practical importance for
the measurement of temperature using thermocouples.

ΔϕOC = −α · ΔT (6)

Iq,SC =
A
L
· α · σ · ΔT (7)

Obviously, the sign of the Seebeck coefficient α determines the sign of both the voltage ΔϕOC under
electrically short-circuited conditions and the electrical current Iq,SC under electrically short-circuited
conditions. Thus, the voltage–electrical current characteristics of p-type (α > 0) or n-type (α < 0)
conductors differ from each other by principle (cf. Appendix A).

To discuss the materials independently of the sign of the Seebeck coefficient, the absolute of the
voltage | Δϕ | is plotted in Figure 2 versus the absolute value of the electrical current | Iq |. In order
to diminish Ohmic losses, the electrical resistance R = 1

A
L ·σ

must be reduced, which, for the given

geometry, requires the electrical conductivity σ to be increased.
To make the discussion independent from even the material parameters and temperature

difference ΔT, the normalized electrical current i and normalized voltage u, as normalized to electrically
short-circuited and open-circuited conditions, respectively, are considered in subsequent sections.

i =
Iq

Iq,SC
=

Iq
A
L · α · σ · ΔT

(8)

u =
Δϕ

ΔϕOC
=

Δϕ

−α · ΔT
= 1 − i (9)

The electrical power Pel is determined by the product of voltage and electrical current as given by
Equation (10). It increases linearly with the electrical current, but it is parabolically damped at high
electrical currents due to the limited electrical conductivity (Ohmic dissipation [54]).

Pel = Δϕ · Iq =

(
−α · ΔT +

Iq
A
L ·σ

)
· Iq

= −α · ΔT · Iq +
Iq

2

A
L ·σ

= − A
L · σ · α2 · (ΔT)2 · (i − i2

) (10)
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= ,

=

Figure 2. Absolute voltage | Δϕ | – electrical current | Iq | curve (green), with slope given by the
electrical resistance R = 1

A
L ·σ

, and the absolute electrical power | Pel | – electrical current | Iq | curve

(red) for a thermoelectric material. Here, ΔT = Thot−Tcold
Thot

is the temperature difference along the
thermoelectric material of cross-sectional area A and length L. These quantities, together with the
(isothermal) electrical conductivity σ and the Seebeck coefficient α, determine the electrical current
ISC under electrically short-circuited conditions. The voltage ΔϕOC under electrically open-circuited
conditions is determined by the Seebeck coefficient and the temperature difference. Generator mode refers
to a positive sign and entropy pump mode to a negative sign of the electrical power (cf. Appendix A).

The absolute of the electrical power | Pel | is plotted in Figure 2 versus the absolute value of
the electrical current | Iq | to discuss the thermoelectric materials independent of the sign of the
Seebeck coefficient.

It is obvious from Figure 2 that the electrical power to be put into the material in entropy pump
mode may distinctly exceed the electrical power that can be gained in generator mode if the material
is applied to the same temperature difference.

2.4. Material’s Thermal Conductivity—Electrical Current Characteristics

From Equation (4), the entropy current IS flowing through the material is obtained. It depends on
not only the temperature difference ΔT but also the Peltier effect that is associated with the thermally
induced electrical current Iq, which can be expressed by the normalized electrical current i as given in
Equation (8).

IS = A
L · ΛOC · ΔT + α · Iq

= A
L · ΛOC · ΔT + A

L · σα2 · i · ΔT
= A

L · (ΛOC + σα2 · i
)

ΔT
= A

L · Λ · ΔT

(11)

From Equation (11), it follows that the thermal conductivity, expressed here by the entropy
conductivity Λ, is dependent on the electrical current i.

Λ = Λ (i) = ΛOC + σα2 · i (12)

When compared to electrically open-circuited conditions, the power factor σα̇2 gives an
additional contribution to the entropy conductivity, which increases linearly with the electrical current.
Under electrically short-circuited conditions (SC, i.e., i = 1), the entropy conductivity reaches its
maximum value.
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ΛSC = ΛOC + σα2 (13)

Under electrically short-circuited conditions, the electrical potential is spatially constant (i.e., its
gradient vanishes: ∇ϕ = 0). Note that the entropy conductivity at electrical short circuit ΛSC, as
given by Equation (13), is identical to tensor element M22 of the thermoelectric material tensor in the
transport Equation (4).

To discuss the characteristics of the entropy conductivity in a general manner, it is normalized to
its value under electrically open-circuited conditions:

Λ̃ = Λ̃ (i) =
Λ

ΛOC
= 1 +

σα2

ΛOC
· i = 1 + zT · i (14)

In Equation (14), a figure-of-merit zT has been identified, which only depends on the three
material parameters σ, α and ΛOC, which make up the material tensor of Equation (4).

zT =
σ · α2

ΛOC
(15)

Equation (14) is visualized in Figure 3 for some hypothetical thermoelectric materials with
zT = 0.1, 0.5, 1, 2, 4 and 8. Working points for electrically open-circuited (OC) conditions, maximum
electrical power point (MEPP), and electrical short-circuited (SC) conditions are indicated on the
voltage–electrical current curve. Note that the entropy conductivity inversion point (ECIP) is given by
the negative reciprocal of the figure-of-merit −1/zT. Only for electrical currents being below the ECIP,
effective entropy pump mode is reached with a negative entropy conductivity of the thermoelectric
material. Only then, more entropy is pumped against the temperature difference than flows down it.
Obviously, the measurements of the thermal conductivity of a thermoelectric material must refer to the
working point on the voltage–electrical current curve.

=

Figure 3. Normalized entropy conductivity Λ̃ as function of normalized electrical current i for some
hypothetical thermoelectric materials. Depending on the figure-of-merit zT, the curves pivot through the
working point for electrically open-circuited (OC) conditions. The figure-of-merit zT gives the slope of the
curve and its negative reciprocal −1/zT indicates the entropy conductivity inversion point (ECIP). For
some thermoelectric materials, the respective ECIP is indicated as working point on the normalized voltage
u–normalized electrical current i curve. Note that the ECIP for materials with zT = 0.1. and zT = 0.5 is
out of the applied scale. The term entropy pump mode is put into brackets because a net entropy current
against the temperature difference will only occur if the magnitude of the electrical current is beyond the
respective ECIP. For generator mode, the working points MEPP and SC are indicated.
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2.5. Thermoelectric Material in Generator Mode

2.5.1. Working Point for Maximum Electrical Power

Remember, the characteristics of the thermoelectric material are all discussed for ΔT being
different from zero, which implies non-isothermal conditions. It can be easily seen from Equation (10)
that maximum electrical power output is obtained for half of the electrically short-circuited electrical
current (iMEPP = 1

2 , cf. Appendix B.1):

Pel, max =| Pel (iMEPP = 0.5) |= 1
4
· A

L
· σ · α2 · (ΔT)2 (16)

To make the discussion independent from material parameters and temperature difference, the
normalized electrical power pel, as normalized to the maximum electrical power in generator mode, is
plotted in Figure 4.

pel =
| Pel |

Pel, max
= 4· | i − i2 | (17)

The maximum electrical power point (MEPP) is indicated on the normalized voltage–electrical
current curve in Figure 4. It is clearly seen that the MEPP (iMEPP = 0.5, uMEPP = 0.5) is at half of the
open-circuited voltage as well as at half of the electrically short-circuited electrical current, which also
follows from Equation (9).

= ,

= ,

=
Figure 4. Normalized curves for both voltage u – electrical current i characteristics and electrical power
pel–electrical current i characteristics of a thermoelectric material when it is operated in generator mode.
The working points open-circuited (OC), maximum electrical power point (MEPP), and short-circuited
(SC) are indicated.

2.5.2. Thermal Conductivity

For the thermoelectric material being operated in generator mode, Equation (12) is graphically
expressed in Figure 5. The electrically open-circuited entropy conductivity ΛOC is purely dissipative,
while the part of the entropy conductivity depending on the power factor σ · α2 couples to the electrical
current, and it fully contributes to the thermal-to-electric power conversion. Obviously, to maximize
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the electrical power at a given temperature difference, the power σ · α2 must be maximized, which is
in accordance with Equation (10).

= 2
2

Figure 5. Entropy conductivity Λ as function of the normalized electrical current i for a thermoelectric
material with zT = 2 in generator mode. The working points OC, MEPP, and SC are indicated on the
normalized voltage–electrical current curve.

The thermally induced electrical current carries electrical energy, which, however, with increasing
electrical current, is diminished by Ohmic losses due to the limited (isothermal) electrical conductivity
σ as discussed above. At maximum electrical power, the entropy conductivity is increased by half of the
power factor as compared to electrically open-circuited conditions. Under electrically short-circuited
conditions, the entropy conductivity reaches its maximum (see Equation (13)).

2.5.3. Thermal Power

The thermal input power and the thermal output power depend on the electrical current i.
According to Fuchs [33], the available thermal power Pth is determined by the fall of entropy down the
temperature difference ΔT along the material.

Pth = IS · ΔT = Λ · (ΔT)2 =
A
L
·
(

ΛOC + σα2 · i
)
· (ΔT)2 (18)

Thus, the available thermal power, as given by Equation (18), depends on the electrical current in
the same manner as the entropy conductivity in Figures 3 and 5.
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2.5.4. Power Conversion Efficiency (Thermal to Electrical)

From Equations (10) and (18), the second-law power conversion efficiency for the thermoelectric
material in generator mode is obtained:

ηII,gen =| Pel
Pth,avail

| =
A
L ·σ·α2·(ΔT)2·(i−i2)

A
L ·(ΛOC+σα2·i)·(ΔT)2

= i−i2

i+ ΛOC
σ·α2

= i−i2

i+ 1
zT

(19)

Equation (19) is plotted in Figure 6 as solid blue curves for some hypothetical thermoelectric
materials with different values of the figure-of-merit zT. Obviously, the figure-of-merit zT must be
maximized in order to maximize the thermal-to-electrical power conversion efficiency at a given
(thermally induced) electrical current.

Equation (19) can be read as the coupled thermal power being converted into electrical power
with the constraint; however, with increasing electrical current, Ohmic dissipation gains overhead.
As a result, the optimum power conversion efficiency is obtained at lower electrical current than the
optimum electrical power output, and the working points for one or other task differ from each other,
which can be seen in Figure 6.

According to Fuchs [33], the second-law efficiency ηII,gen is related to the first-law efficiency ηI,gen

by Carnot’s efficiency ηC.

ηI,gen = ηC · ηII,gen =
Thot − Tcold

Thot
· ηII,gen (20)

Carnot’s efficiency ηC places a theoretical limit for the case in which the second-law efficiency
ηII,gen = 1, which refers to the unrealistic case of vanishing dissipation. Nevertheless, the second-law
efficiency ηII,gen is the only material-dependent factor and has been used by Altenkirch [55] and
Ioffe [56] in order to estimate the performance of thermoelectric materials by treating thermogenerators.
It is worth noting that the entropy-based approach presented here allows for power conversion and its
efficiency for a single thermoelectric material apart from a device to be discussed.

2.5.5. Working Points for Maximum Conversion Efficiency and Maximum Electrical Power

From the maximum of Equation (19), the maximum conversion efficiency point (MCEP) is
obtained with the normalized electrical current iMCEP,gen being, as follows (cf. Appendix B.2):

iMCEP,gen = 1√
1+zT+1 (21)

At the MCEP, the maximum power conversion efficiency of the thermoelectric material in
generator mode is then obtained, as follows (cf. Appendix B.2):

ηII,gen,max = ηII,gen
(
iMCEP,gen

)
=

√
1+zT−1√
1+zT+1

(22)

Equation (23), which shows the variation of the MCEP with varying iMCEP,gen due to varying zT,
is plotted in Figure 6 as dotted blue line.

ηII,gen,max
(
iMCEP,gen

)
= 1 − 2 · iMCEP,gen (23)
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Note that with increasing figure-of-merit zT, not only does the MCEP drift apart from the MEPP,
but the electrical power output also decreases with respect to the MEPP (see Equation (16)), both of
which can be seen in Figure 6 (cf. Appendix B.2).

Pel,MCEP = 4·√1+zT

(
√

1+zT+1)
2 · Pel,max (24)

,

Figure 6. Thermal to electrical power conversion efficiency for some hypothetic materials with
figure-of-merit zT varying from 0.5 to 100. Respective working points MCEP (blue) are indicated on the
voltage–electrical current curve as well as the MEPP (red). Vertical lines indicate the electrical power
output at the MCEP for the example materials. Note that the MCEP drifts apart from the MEPP with
increasing figure-of-merit zT. The dashed line indicates the dependence of the MCEP with varying zT.

Obviously, with increasing figure-of-merit zT, the electrical power at the MCEP converges to zero.
Figure 7 shows that a notable difference in electrical power output between MCEP and MEPP can
be expected for thermoelectric materials with zT > 0.3 only (red curves). A notable difference in the
power conversion efficiency of the thermoelectric material being operated in the MCEP or the MEPP
can only be expected when zT > 2. This is also obvious from Table 2, which, for some hypothetical
values of the material’s figure-of-merit zT, gives values of the second-law power conversion efficiency
at the working points under discussion. The 2nd law power conversion efficiency at the MEPP is
obtained as follows (cf. Appendix B.1).

ηII,gen,MEPP = ηII,gen (iMEPP = 0.5) = 1
2 · zT

zT+2 (25)
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,

Figure 7. Electrical power output (red lines) and thermal-to-electrical power conversion efficiency
(blue lines) for some hypothetic materials with figure-of-merit zT varying from 0.01 to 1000 when
operated in two distinct working points, respectively. Solid lines refer to the MCEP and dashed lines
refer to the MEPP.

It is worth noting that, for a thermoelectric material with zT < 2, there is no benefit from operating
it apart from the MEPP.

Table 2. Second-law power conversion efficiency of a thermoelectric material at the MCEP in either
entropy pump mode or generator mode and at the MEPP in generator mode for some hypothetical
values of the figure-of-merit zT.

zT Maximum 2nd Law Efficiency 2nd Law Efficiency at MEPP

0.1 0.02 0.02
0.5 0.1 0.1
1 0.17 0.17

1.5 0.23 0.21
2 0.27 0.25

2.5 0.30 0.28
3 0.33 0.3

3.5 0.36 0.32
4 0.38 0.33
8 0.5 0.4
16 0.61 0.44
32 0.70 0.47
100 0.82 0.49

2.6. Thermoelectric Material in Entropy Pump Mode

2.6.1. Power Conversion Efficiency (Electrical to Thermal)

Traditional approaches consider a coefficient of performance when addressing the performance of
a thermoelectric cooling or heating device [56,57]. Analogously, a coefficient of performance COP of
the thermoelectric material, when used in a cooler, can be considered. It is the thermal power removed
from the cold side Tcold · IS related to the electrical power (cf. Appendix C.1).
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COPcooler =| Tcold·IS
Pel

| = Tcold
ΔT · | Pth

Pel
|

= Tcold
ΔT · ηII,ep

(26)

If instead of a cooler, the thermoelectric material is used in a heater (see Fuchs [32], p. 135ff), the
thermal power released to the hot side Thot · IS becomes the reference parameter, and the COP is then
(cf. Appendix C.1):

COPheater =| Thot·IS
Pel

| = Thot
ΔT · | Pth

Pel
|

= Thot
ΔT · ηII,ep

= 1
ηC

· ηII,ep

(27)

In both cases, Equations (26) and (27), the COP can be factorized into a temperature factor and
the second-law efficiency for the thermoelectric material in entropy pump mode ηII,ep (see Fuchs [32],
p. 135ff). When the thermoelectric material is used in a heater (Equation (27)), the temperature factor is
the inverse of Carnot’s efficiency ηC [32]. The second-law efficiency for the thermoelectric material
in entropy pump mode ηII,ep relates the thermal power Pth that is needed to pump a certain entropy
current from the cold side to the hot side to the electrical power Pel (cf. Appendix C.1).

ηII,ep =| Pth
Pel

| =
i+ 1

zT
−i2+i

(28)

The second-law efficiency for the thermoelectric material in entropy pump mode ηII,ep only
depends on the normalized electrical current i (i.e., working point on the voltage–electrical current
curve) and the material’s figure-of-merit zT. It can be used to assess the performance of the
thermoelectric material when it is used to pump entropy, regardless of whether the purpose is cooling
or heating.

Note that the second-law efficiency for the thermoelectric material in entropy pump mode ηII,ep

(Equation (28)) is the inverse of the second-law efficiency for the thermoelectric material in generator
mode (Equation (19)). Because a net entropy current from the cold side to the hot side will only be
obtained for negative entropy conductivity (see Equation (14) and Figure 3), here ηII,ep will make
sense only for the normalized electrical current being i ≤ 1

zT . For this parameter range it is plotted in
Figure 8 for some hypothetic thermoelectric materials with figure-of-merit zT between 0.5 and 100.

The maximum 2nd-law power conversion efficiency for a thermoelectric material operated in
entropy pump mode is dependent on the material’s figure-of-merit zT (cf. Appendix C.2):

ηII,ep,max =
√

1+zT−1√
1+zT+1 (29)

It is obtained at a normalized electrical current iMCEP,ep, which corresponds to the thermoelectric
material’s maximum conversion efficiency point (MCEP) in entropy pump mode (cf. Appendix C.2).
Respective working points for some hypothetic thermoelectric materials are indicated on the
voltage–electrical current curve presented in Figure 8.

iMCEP,ep = − 1√
1+zT−1 (30)

The dependence of the maximum second-law efficiency on the electrical current is shown in
Figure 8 as a hyperbolic line (cf. Appendix C.2).

ηII,ep,max
(
iMCEP,ep

)
= 1

1−2·iMCEP,ep
(31)
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Obviously, an ideal thermoelectric material would have an infinite zT , but the MCEP converges
then to the OC working point at vanishing electrical current and, thus, zero electrical power. On the
contrary, for the limit of vanishing zT, the maximum second-law efficiency converges to zero at infinite
magnitude of the electrical current.

,

Figure 8. Electrical-to-thermal power conversion efficiency as a function of the reduced electrical
current for some hypothetic materials with figure-of-merit zT varying from 0.5 to 100. Respective
working points MCEP (blue) are indicated on the voltage–electrical current curve for zT =

100, 32, 18, 8 and 4. Further vertical lines (blue) indicate the MCEP for zT = 2, 1. The MCEP for
zT = 0.5 is out of display. The hyperbolic curve indicates the dependence of the MCEP with varying zT.
The red curve indicates electrical power–electrical current characteristics. The set of inclined parallel
lines (magenta) indicate the thermal power–electrical current characteristics for the respective zT. All
of the power curves are normalized to the MEPP in generator mode.

2.6.2. Electrical and Thermal Power

All of the power curves in Figure 8, for the thermoelectric material in entropy pump mode,
are normalized to the MEPP in generator mode (see Figures 2 and 4) when the material is exposed to
the same temperature difference ΔT. According to Equations (16) and (18), the normalized thermal
power pth in Figure 8 is given by a straight line that intersects the horizontal axis at − 1

zT and it has a
slope of −4 (cf. Appendix C.3).

pth = |Pth|
Pel,max

= 4· | 1
zT + i | (32)

For different values of the figure-of-merit zT, a set of inclined parallel lines results. Only the
lines for zT = 0.5, 1 and 2 are labelled in Figure 8. With increasing figure-of-merit zT, the normalized
thermal power curve approaches the normalized electrical power curve, which is in accordance with
the increasing power conversion efficiency. However, when the thermoelectric material is operated in
its MCEP, the thermal power will decrease with increasing figure-of-merit zT, which becomes obvious
when Equation (30) is combined with Equation (32) (cf. Appendix C.2).

pth,MCEP = pth
(
iMCEP,ep

)
= 4 ·

√
1+zT
zT (33)

The normalized thermal power at MCEP would be steeply curved in Figure 8, with the data point
out of scale for zT < 8, but has been skipped for clarity. Instead, relevant values for the MCEP are
listed in Table 3, together with the normalized electrical power and the normalized electrical current.
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Table 3. Values of normalized electrical current iMCEP,ep, normalized thermal power pth,MCEP, and
normalized electrical power pel,MCEP at the MCEP in entropy pump mode for some hypothetical values
of the figure-of-merit zT. Values of the second law power conversion efficiency can be read from Table 2

zT iMCEP,ep pth,MCEP pel,MCEP

0.1 −20.49 41.95 1761.32
0.5 −4.45 9.80 97.01
1 −2.41 5.66 32.87

1.5 −1.72 4.22 19.67
2 −1.36 3.46 12.83

2.5 −1.48 2.99 10.77
3.0 −1 2.68 8.93
3.5 −0.89 2.42 7.56
4 −0.80 2.2 5.76
8 −0.50 1.5 3.00

16 −0.32 1.03 1.69
32 −0.21 0.71 1.02

100 −0.11 0.40 0.49

2.7. Complete Picture

With the approach chosen here, working points on the voltage–electrical current curve relate the
power conversion properties of the thermoelectric material in generator mode and entropy pump
mode to each other. Figure 9 illustrates the concise result for a hypothetical thermoelectric material
with figure-of-merit zT = 3.5. = 3.5

1 12

Figure 9. Related characteristics of a hypothetic thermoelectric material with figure-of-merit zT = 3.5 in
entropy pump mode and generator mode: normalized voltage, normalized electrical power, normalized
thermal power, and 2nd-law conversion efficiency as a function of the normalized electrical current.
Different working points are indicated on the voltage–electrical current curve. Note that, for current
state-of-the-art materials, the MCEP in entropy pump mode would be out of display (see Table 3).

For a given figure-of-merit zT, according to Equations (22) and (29), the values of the maximum
2nd-law conversion efficiency for both modes are identical. Some values are given in Table 2.
In addition, values of the 2nd-law conversion efficiency at the MEPP in generator mode are given
(see Equation (25)). Remember, the obtained power requires consideration of the absolute value of the
electrical power, as determined by the power factor (see Equation (16)).

3. Materials and Methods

Detailed calculations, as given in Appendixs B and C, were made using pencil and paper.
The manuscript was prepared using Latex in MikTex distribution. Figures were drawn with the
aid of Microcal’s Origin and Microsoft’s PowerPoint.
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4. Discussion

4.1. Remarks on the Use of Working Points

Traditionally, a thermoelectric device is considered and, in generator mode, the operational
conditions are set by an external load resistance. The approach of this work, which uses working
points on the material’s voltage–electrical voltage curve, gives consistent results, which is explicitly
shown in Appendix B.3. However, consideration of working points comes with the advantage that
the contribution of individual thermoelectric materials in a device can be easily understood [58].
Moreover, the material’s voltage–electrical voltage curve directly relates generator mode and entropy
pump mode.

4.2. Remarks on the Altenkirch-Ioffe Model

Due to the prominence of the Altenkirch-Ioffe model [55,56], it is worth comparing it to the model,
which has been introduced in this work. A comparison of important quantities described by the model
of this work and the Altenkirch-Ioffe model is shown in Figure 10.

Remember, Equation (4) has been derived for a thermoelectric material apart from a device.
Furthermore, a constant temperature gradient has been assumed, which means a constant slope of the
temperature profile, which then connects the hot side at Thot and the cold side at Tcold by a straight line
(solid line in Figure 10a). The further assumption of a temperature-independent entropy conductivity
ΛOC at electrical open-circuit is plotted in Figure 10b as a solid line. As a consequence of these
assumptions, at a given electrical current (including electrically open-circuited conditions), the entropy
current will carry the highest energy current at the hot side of the thermoelectric material. When
advancing through the thermoelectric material to lower temperatures, the entropy current cannot
further carry all thermal energy (“heat”), which then needs to be dissipated. Following Walstrom’s
approach [59], thermal energy is assumed to be dissipated transversally together with instantaneously
produced excess entropy as its carrier. It is important to emphasize that excess entropy leaves the
thermoelectric material in directions transversal to the flow of the entropy inserted at the hot side.
The ability to conduct thermal energy is decreased with decreasing temperature, which is reflected in a
decreasing “heat” conductivity, as plotted in Figure 10c as a solid line.

Traced back to Altenkirch [55] and Ioffe [56], often a model is discussed that considers a two-leg
thermogenerator and assumes constant “heat” conductivity. Concerning the thermoelectric material,
the model is purely one-dimensional and does not allow for transversal dissipation of entropy and
energy. All dissipation has to be considered parallel or antiparallel to the flow of entropy and thermal
energy along the thermoelectric material. In fact, only the parallel option (i.e., down the temperature
gradient) remains physically meaningful. Under electrically open-circuited conditions (i.e., vanishing
electrical current), the temperature profile can still be linear. However, Heikes and Ure [60] have shown
that, in the presence of a thermally-induced electrical current, the temperature profile is flattened at
the hot side and steeply sloping at the cold side, which is shown in Figure 10a as a dashed line. As a
consequence of the curved temperature profile and the constant “heat” conductivity (see dashed line
in Figure 10c), the “heat” flux is diminished at the hot side (thermal energy input) and increased at the
cold side (thermal energy output). The change in the temperature profile is such that, as compared
to the zero electrical current situation, the thermal energy input is diminished by half of the Joule
“heat” and the thermal energy release at the cold side is increased by half of the Joule “heat”, as
shown by Heikes and Ure [60,61]. This is to account for the dissipation of thermal energy being
parallel to the flow of entropy and thermal energy. As a consequence, when compared to electrically
open-circuited conditions, the thermoelectric material would be thermally less transparent when an
electrical current flows.
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0
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0
Figure 10. Comparison of the model of this work (constant entropy conductivity) to the Altenkirch-Ioffe
model [33,55,56,60] (constant “heat” conductivity) with the schematic profiles of the following
quantities over the thermoelectric material when the material is carrying a (thermally induced) electrical
current: (a) temperature T; (b) electrically open-circuited entropy conductivity ΛOC; and, (c) electrically
open-circuited “heat” conductivity λOC. Note that profiles are not drawn to scale.

In contrast, the model of this work predicts the thermoelectric material to become thermally
more transparent with increasing electrical current, which is reflected in the then reversible increased
entropy conductivity Λ(i) (see Equations (12) and (14)). In the author’s opinion, this is an important
characteristic of thermoelectric materials, which is fully embezzled in the traditional model.
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In the Altenkirch-Ioffe model, all the excess entropy and excess thermal energy are dissipated
to the cold side, which is reflected in an irreversible increase of the entropy conductivity along the
thermoelectric material, as visualized in Figure 10b. The aforementioned assumption introduces a ratio
of Thot/Tcold into the formula for the 2nd-law efficiency at the MCEP (see Appendixs B.4 and B.5 for a
device in generator mode; see Appendixs C.4 and C.5 for a device in entropy pump mode). Ioffe [56]
has shown that the deviation from Equation (22) (generator mode) or Equation (29) (entropy pump
mode), however, is only a few per cent when the efficiency itself is small. In other words, for a small
temperature difference ΔT, both of the models give nearly the same results.

It must be emphasized that both of the models rely on very special assumptions and, thus, cannot
claim general validity [62]. In this sense, all of the results have to be considered semi-quantitatively
when it comes to real thermoelectric materials and devices. More general considerations, as provided
by Equation (1), need to consider the local variation of thermoelectric parameters but are beyond the
scope of this work. Heikes and Ure [60] and Gryasnov et al. [63] have considered the local variation
of thermoelectric parameters to some extent. However, the advantage of the model of this work is
not only to consider the thermoelectric material apart from a device, but also to clearly separate the
dissipation of entropy and thermal energy from the reversible thermoelectric coupling. The simplicity
of thermoelectrics is manifested.

4.3. Remarks on Narducci’s Model

Narducci has put the question “Do we really need high thermoelectric figures of merit?” and
found in his calculations that, when considering constant ΔT, the electrical power output of a two-leg
thermogenerator device at the MEPP increases with increased thermal conductivity (see Narducci [64],
Figure 2). The situation that is discussed by Narducci corresponds to a decreasing figure-of-merit
(i.e., zT → 0 limit) with the electrical power converging to what we have obtained here as Pel, max
(see Equation (16)). In light of this work, it becomes obvious that the MCEP and the MEPP of the
thermoelectric material(s) then merge (see Figures 6 and 7).

4.4. Remarks on ΛOC

In the model applied in this work, the electrically open-circuited entropy conductivity ΛOC

originates only from non-charge transporting excitations of the solid (mostly phonons). Here, the
contribution from electrons to the entropy conductivity solely originates from the power factor
(see Figures 3 and 5). Subsequently, distinguishing contributions from electrons and phonons to
the thermal conductivity is straightforward (see Ioffe [56], p. 44) and has been coined the "phonon
glass–electron crystal" (PGEC) concept by Slack [65]. In this case, ΛOC is identical to the phonon
contribution to the entropy conductivity.

However, as mentioned by Ioffe (see Ioffe [56], p. 46), in materials with charge carriers of both
signs (electrons and holes from multiple bands), the situation is more intricate. Subsequently, important
electronic contribution to the thermal conductivity can be expected for vanishing net flux of charge.
In other words, the electrically open-circuited entropy conductivity ΛOC has contributions from
both phonons and electrons. The application of the empirical Wiedemann-Franz law to describe the
relationship between thermal and electrical conductivity is questionable for these materials [48,56].
In practice, this is the case for many semiconductors and metals. To improve the thermoelectric
properties of these materials, it is not sufficient to reduce the phonon contribution by the PGEC concept.
In addition, electronic band engineering is required in order to diminish the electron contribution to
ΛOC. The theory in this work can be easily extended to treat this case by introducing a second type of
charge carrier into Equations (1) and (4).

4.5. Remarks on Figure-of-Merit zT

In this work, the figure-of-merit has been introduced in context with the entropy conductivity
(cf. Equation (14)) to underline that it is the dimensionless ratio of two entropy conductivities. Initially,
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the thermoelectric figure-of-merit was introduced by Ioffe [56] as a parameter z = σ·α2

λOC
in the treatment

of a thermogenerator referring to the “heat” conductivity. In subsequent treatment, Ioffe has taken
into account the medium temperature T of the device and elucidated the thermoelectric material’s
figure-of-merit to be zT = σ·α2

λOC
· T, which has subsequently been widely used as zT. With this

formulation of the figure-of-merit, researchers often have been confused by the intensive variable
temperature T showing up explicitly besides material parameters [66]. It is seen as a persistent residual
outcome of the historical dispute between Ostwald and Boltzmann (see Section 1.2) that it has not
been realized that the use of entropy conductivity Λ instead of the “heat” conductivity λ makes the
figure-of merit depend on three material parameters only, which all implicitly depend on temperature
(see Equations (3) and (15)).

The author has used zT to be consistent with the conventional nomenclature of the thermoelectric
community. All of the formulas in this article, which contain the figure-of-merit, however, would look
more straightforward if zT were to be substituted by a single letter, for instance, f as used by Zener [67].

f =
σ · α2

ΛOC
=

σ · α2

λOC
· T = zT (34)

4.6. Remarks on State-of-the-Art and Emerging Thermoelectric Materials

It is worth noting that, for a thermoelectric material with zT < 2, there is no benefit from operating
it apart from the MEPP (see Figure 6, Figure 7 and Table 2). In this context, it is important to perceive
that current state-of-the-art materials hardly exceed a zT value of 2. The values listed in Table 4 are
peak values. Among the materials of Table 4, PbTe0.7S0.3-2.5%K has a peak zT of 2.2 at 923 K and a
record high average zT of 1.56 in the temperature interval of 300–900 K [68]. Conclusively, the tracking
of the MEPP [69], but not of the MCEP, is reported for thermogenerators. However, for the application
of emerging thermoelectric materials with further improved figure-of-merit, and thus more distant
working points, tracking of the MCEP might become relevant.

Table 4. Maximum figure-of-merit zTmax and corresponding power factor σ · α2 of some state-of-the-art
and emerging thermoelectric materials at temperature T with indication of conduction type.

Material Type
zTmax σ · α2

T Ref.
[μWcm−1K−2] [K]

(Bi0.25Sb0.75)2Te3 p 1.05 43 323 [70]
FeNb0.8Ti0.2Sb p 1.10 53 973 [48,71]

Hf0.6Zr0.4Hf0.25NiSn0.995Sb0.005 n 1.20 47 900 [48,72]
Bi2(Te0.94Se0.06)3 (0.017 wt.% Te, 0.068 wt.% I) n 1.25 57 298 [73]

(Bi0.25Sb0.75)2Te3 (8wt.% Te) p 1.27 58 298 [73]
nano (Bi0.25Sb0.75)2Te3 p 1.4 38 373 [70]
ZrCoBi0.65Sb0.15Sn0.20 p 1.42 38 973 [48,74]

FeNb0.88Hf0.12Sb p 1.45 51 1200 [48,75]
Bi0.88Ca0.06Pb0.06CuSeO p 1.5 8 873 [48,76]

β-Cu2−xSe p 1.5 12 1000 [77]
Ti0.5Zr0.25Hf0.25NiSn0.998Sb0.002Se n 1.5 62 700 [48,78]

Mg3Sb1.48Bi0.4Te0.04 n 1.65 13 725 [79]
Ba0.08La0.05Yb0.04Co4Sb12 n 1.7 51 850 [80]

Mg3.175Mn0.025Sb1.5Bi0.49Te0.01 n 1.71 20 700 [48,81]
B-doped Si80Ge20 + YSi2 p 1.81 39 1073 [48,82]

Cu2−yS1/3Se1/3Te1/3 p 1.9 8 1000 [83]
AgPbmSbTe2+m n 2.2 11 800 [84]

PbTe0.7S0.3-2.5%K p 2.2 14 923 [68]
PbTe-4%SrTe-2%Na p 2.2 24 915 [85]
Ge0.89Sb0.1In0.01Te p 2.3 37 650 [86]

PbTe-8%SrTe p 2.5 30 923 [87]
SnSe single crystal’s b-axis p 2.6 10 923 [88]
β-Cu2Se/CuInSe2 (1% In) p 2.6 12.5 850 [89]

SnSe0.97Br0.03 single crystal’s a-axis n 2.8 9 773 [90]
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The benefit of an increased figure-of-merit zT will be an increased power conversion efficiency
at the MEPP anyway. Figure 6, Figure 7, and Table 2 indicate that the material’s second-law power
conversion efficiency at the MEPP will not exceed the value of 0.5 (see also Equation (25)). Interestingly,
this value corresponds to the lower limit of the Curzon-Ahlborn efficiency of a Carnot engine operated
at its MEPP [91,92]. At the MEPP, a real thermoelectric material will always be operated at less than
half of the Carnot efficiency.

4.7. Remarks on the Importance of the Power Factor and Choice of Materials for Thermogenerators

Because normalized curves are discussed in this work, one might lose sight of the fact that the
power factor σ · α2 is at least as important as the figure-of-merit zT. According to Equation (16), it rules
over the maximum achievable absolute electrical power when the thermoelectric material is operated
in generator mode at MCEP. For a material with high zT (e.g., 100), the electrical power is much lower
at the MCEP compared to the MEPP (Figures 6 and 7). This is because, at the low electrical current
of the MCEP, the thermoelectric material is less permeable to entropy when compared to the MEPP
(see Figure 5). Thus, less thermal power is available to be thermoelectrically converted into electrical
power. The amount of useful thermal power depends on the power factor and the electrical current
(see the second summand in Equation (18)).

The open-circuited entropy conductivity ΛOC causes a thermoelectrically-inactive bypass, which
eventually leads the temperature difference ΔT, which squared determines the maximum electrical
power in Equation (16), to drop. To provide large ΔT, the open-circuited entropy conductivity ΛOC

should be kept small. Here, in addition to a high power factor σα̇2, the figure-of-merit zT comes into
play, which relates the aforementioned contributions to the entropy conductivity (see Equation (12)
and Equation (15)). The materials that are listed in Table 4 represent those with the highest values of
the figure-of-merit reported thus far. In the author’s opinion, the most interesting materials are those
that also have a high power factor of at least 30 μWcm−1K−2.

A high electrical conductivity σ is also advantageous, as already mentioned in Section 2.3. The
choice of materials can easily be made with the help of type-1 Ioffe plots [56] (σα2 − σ) and type-2 Ioffe
plots (ΛOC − σ) [56,93], which have been recently revitalized on the example of current thermoelectric
materials [47,48,94]. The reader is referred to Fuchs [32] (p. 135ff) for further details.

4.8. Remarks on the Second-Law Power Conversion Efficiency vs. Coefficient of Performance for Entropy Pumps

While the upper limit of the coefficient of performance will depend on temperature conditions,
as involved in the Carnot efficiency ηC (Equation (27)) or the temperature factor Tcold

ΔT (Equation (26)),
the upper limit for the second-law efficiency is fixed to unity (i.e., ηII,ep ≤ 1). The unity value of the
second-law efficiency refers to an ideal material. While the coefficient of performance is related to a
floating scale, the second-law efficiency allows for the estimation of how far from ideal a thermoelectric
material is. Another advantage is that the second-law efficiency in Equation (28) only depends on the
figure-of-merit and the electrical current and, thus, allows for evaluation of the performance of the
thermoelectric material apart from specific temperature conditions, as well as independent from use in
a cooler or a heater.

Note that, according to Equations (29) and (22), the maximum second-law efficiency of a
thermoelectric material is identical in entropy pump mode and generator mode:

ηII,ep,max = ηII,ep
(
iMCEP,ep

)
= ηII,gen

(
iMCEP,gen

)
= ηII,gen,max (35)

This is also apparent from Figure 9.

4.9. Remarks on the Choice of Materials for Entropy Pumps

Remember, electrical and thermal power in Figure 8 are normalized to the MEPP in generator
mode (see Equations (17) and (32)). Thus, the absolute thermal power in entropy pump mode is
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determined by the material’s power factor σ · α2 (see Equation (16)). A low open-circuited entropy
conductivity ΛOC is desired to prevent the thermoelectrically inactive fall of entropy along the
temperature difference ΔT, which would make it difficult to maintain the ΔT. Thus, in addition
to a high power factor σ · α2, a high figure-of-merit zT is favourable, which relates the aforementioned
quantities (see Equation (15)).

Operating the thermoelectric material in entropy pump mode requires good performance at
ambient temperature and below (e.g., for cooling 150–300 K) or above (e.g., for heating 300–400 K).
Among the materials listed in Table 4, only bismuth telluride-based materials fulfil all requirements;
and, they are the current materials of choice for the mentioned applications and are conclusively found
in commercial devices.

According to Figure 8, emerging materials with improved figure-of-merit at a power factor
comparable to bismuth telluride-based materials would have the benefit that comparable thermal
power could be pumped from the cold to hot side at a lower electrical current and electrical power.

5. Conclusions

Treating entropy and electrical charge as basic quantities allows for a concise description of
thermoelectric transport phenomena (entropy, charge, thermal energy, and electrical energy) and it is
the key to comprehensibility. The basic transport equation involves classical thermodynamic potentials
(temperature and electrical potential) and enables the identification of a thermoelectric material tensor.
On the material’s voltage–electrical current cure, distinct working points can be identified, which
allow for consideration of the power conversion and its efficiency of the thermoelectric material apart
from a device. The power depends on the power factor, and the conversion efficiency depends on the
figure-of-merit zT. A clear physical meaning is given to the power factor as the part of the entropy
conductivity that couples to the electrical current. The thermal conductivity, expressed here as entropy
conductivity, depends on the electrical current and becomes negative when the thermoelectric material
is operated in entropy pump mode. The dimensionless figure-of-merit zT is the ratio of two entropy
conductivities, the one under electrically open-circuited conditions and the one that couples to the
electrical current. The performance of the thermoelectric material in generator mode and entropy
pump mode are related to each other and they can be considered on a single voltage–electrical current
curve apart from a device.
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Abbreviations

The following abbreviations are used in this manuscript:

ECIP Entropy Conductivity Inversion Point
MCEP Maximum Conversion Efficiency Point (either in generator mode or entropy pump mode)
MEPP Maximum Electrical Power Point (in generator mode)
OC (Electrical) Open Circuit
SC (Electrical) Short Circuit

Symbols

The following symbols are used in this manuscript:
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Geometry

A cross-sectional area of thermoelectric material
L length of thermoelectric material

Material properties

α Seebeck coefficient
f figure-of-merit (as proposed by Zener [67])
λ “heat” conductivity
λOC “heat” conductivity under electrically open-circuited (OC) conditions
Λ entropy conductivity
ΛOC entropy conductivity under electrically open-circuited (OC) conditions
ΛSC entropy conductivity under electrically open-circuited (SC) conditions
Λ̃ normalized entropy conductivity
M22 tensor element (of the thermoelectric material tensor)
R electrical resistance (of thermoelectric material)
σ isothermal electrical conductivity
z thermoelectric factor (as introduced by Ioffe [56])
zT figure-of-merit (as introduced by Ioffe [56])
zTmax maximum figure-of-merit

Thermodynamic potentials

μ chemical potential
μ̃ electrochemical potential (μ̃ = μ + q · ϕ)
∇μ̃ gradient of the electrochemical potential
∇μ̃/q gradient of the electrochemical potential per electric charge (∇μ̃/q = ∇μ/q +∇ϕ)
ϕ electrical potential
∇ϕ gradient of the electrical potential
Δϕ difference of electrical potential (along the thermoelectric material)
ΔϕOC voltage under electrically open-circuited (OC) conditions
T absolute temperature
Tcold temperature of the thermoelectric material at its cold side
Thot temperature of the thermoelectric material at its hot side
∇T gradient of the temperature
ΔT difference of temperature (along the thermoelectric material)
u normalized voltage
uMEPP normalized voltage at the maximum electrical power point (MEPP)

Fluxes

A cross-sectional area of thermoelectric material
L length of thermoelectric material
i normalized electrical current
iMCEP,ep normalized electrical current at the maximum conversion efficiency point (MCEP) in entropy pump mode
iMCEP,gen normalized electrical current at the maximum conversion efficiency point (MCEP) in generator mode
iMEPP normalized electrical current at the maximum electrical power point (MEPP)
Iq electrical current
Iq,SC electrical current at electrically short-circuited (SC) conditions
IS entropy current
jq electrical flux density
jS entropy flux density
q electric charge
S entropy
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Performance

COPcooler coefficient of performance of the thermoelectric material when used in a cooler
COPheater coefficient of performance of the thermoelectric material when used in a heater
ηI,gen first-law power conversion efficiency of the thermoelectric material in generator mode
ηII,gen second-law power conversion efficiency of the thermoelectric material in generator mode
ηII,gen,max maximum second-law power conversion efficiency of the thermoelectric material in generator mode
ηII,ep second-law power conversion efficiency of the thermoelectric material in entropy pump mode
ηII,ep,max maximum second-law power conversion efficiency of the thermoelectric material in entropy pump mode
ηC Carnot’s efficiency
pel normalized electrical power
Pel electrical power, needed for lifting electrical charge (generator mode)

or made available by the fall of electric charge (entropy pump mode);
simplified called output (generator mode) or input (entropy pump mode),
when the electrical potential on one side of the thermoelectric material is set to zero

Pel, max maximum electrical power output of the thermoelectric material in generator mode (at the MEPP)
Pel,MCEP electrical power output, of the thermoelectric material in generator mode, at the MCEP
Pth thermal power, made available by the fall of entropy (generator mode)

or needed for lifting entropy (entropy pump mode)

Appendix A. Voltage–Electrical Current and Electrical Power–Electrical Current Characteristics: p-
and n-Type Materials

The voltage–electrical current characteristics (green curve) and the electrical power–electrical
current characteristics (red curve) of a thermoelectric material with either p-type or n-type conduction
are given in Figure A1.

, =

== ,

=

p-type n-type

Figure A1. Voltage Δϕ – electrical current Iq characteristics (green curves) and electrical power Pel

– electrical current characteristics Iq (red curves) for materials with: (a) Seebeck coefficient α being
positive, which refers to p-type conduction and (b) Seebeck coefficient α being negative, which refers
to n-type conduction. Here, ΔT = Thot−Tcold

Thot
is the temperature difference along a thermoelectric

material of length L and cross-sectional area A. These quantities, together with the (isothermal)
electrical conductivity σ and the Seebeck coefficient, determine the electrical current ISC under electrical
short-circuited conditions. The voltage ΔϕOC under electrical short-circuited conditions is determined
by the Seebeck coefficient and the temperature difference. When the electrical power Pel is negative
(electrical power output), the material is in generator mode (thermal-to-electrical power conversion).
When the electrical power Pel is positive (electrical power input), the material is in entropy pump mode
(electrical-to-thermal power conversion).
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Appendix B. Thermal-to-Electrical Power Conversion: Calculations and Established Models

Appendix B.1. Maximum Electrical Power Point (MEPP): Material in Generator Mode

The MEPP is found by looking for the vanishing first derivative of the electrical power.

0 = ∂Pel
∂i = − A

L · σ · α2 · (ΔT)2 · ∂
∂i
(
i − i2

)
= − A

L · σ · α2 · (ΔT)2 · (1 − 2 · i)
(A1)

The derivative vanishes if the term in the brackets vanishes, and the normalized current at the
MEPP is as follows.

iMEPP =
1
2

(A2)

At the MEPP, the maximum electrical power is obtained as follows.

Pel,max = Pel (iMEPP) = − A
L · σ · α2 · (ΔT)2 · (iMEPP − i2MEPP

)
= − A

L · σ · α2 · (ΔT)2 ·
(

1
2 −

(
1
2

)2
)

= − A
L · σ · α2 · (ΔT)2 ·

(
1
2 − 1

4

)
= − 1

4 · A
L · σ · α2 · (ΔT)2

(A3)

The 2nd-law power conversion efficiency at the MEPP is then obtained as follows.

ηII,gen,MEPP = ηII,gen (iMEPP) =
iMEPP−i2MEPP

iMEPP+
1

zT

=
1
2−( 1

2 )
2

1
2+

1
zT

=
1
2− 1

4
1
2+

1
zT

= 1
4 · 1

1
2+

1
zT

= zT
4 · 1

zT
2 +1

= 1
2 · zT

zT+2

(A4)

Appendix B.2. Maximum Conversion Efficiency Point (MCEP): Material in Generator Mode

The 2nd-law power conversion efficiency for a thermoelectric material operated in generator mode
is obtained as follows.

ηII,gen =| Pel
Pth

|=
α · Iq · ΔT − Iq

2

A
L ·σ

α · Iq · ΔT + A
L · ΛOC · (ΔT)2 =

Iq
Iq,SC

−
(

Iq
Iq,SC

)2

Iq
Iq,SC

+ ΛOC
σ·α2

(A5)

51



Entropy 2020, 22, 803

Substituting in Equation (A5) the dimensionless normalized electrical current i = |Iq|
|Iq,SC| and the

figure-of-merit zT = σ·α2

ΛOC
, the 2nd law power conversion efficiency can be written as follows.

ηII,gen =
i − i2

i + 1
zT

(A6)

The maximum power conversion efficiency point (MCEP) can then be found by the first derivative
to vanish.

0 =
∂ηII,gen

∂i

= ∂
∂i

(
i−i2

i+ 1
zT

)

=
(1−2·i)·(i+ 1

zT )−(i−i2)·1
(i+ 1

zT )
2

=
i+ 1

zT −2·i2−2· 1
zT ·i−i+i2

(i+ 1
zT )

2

=
−i2−2· 1

zT ·i+ 1
zT

(i+ 1
zT )

2

(A7)

The derivative vanishes when the numerator vanishes.

i2 + 2 · 1
zT

· i − 1
zT

= 0 (A8)

This quadratic equation has two solutions, from which only one gives a positive-definite
normalized current i at the maximum conversion efficiency point (MCEP).

iMCEP,gen =
√

1+zT−1
zT

=
(
√

1+zT−1)·(
√

1+zT+1)
zT·(

√
1+zT+1)

= 1+zT+
√

1+zT−√
1+zT−1

zT·(
√

1+zT+1)

= zT
zT·(

√
1+zT+1)

= 1√
1+zT+1

(A9)
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At the MCEP, the maximum power conversion efficiency of the thermoelectric material in
generator mode is then obtained as follows.

ηII,gen,max = ηII,gen
(
iMCEP,gen

)
=

iMCEP,gen−i2MCEP,gen

iMCEP,gen+
1

zT

= iMCEP,gen · 1−iMCEP,gen

iMCEP,gen+
1

zT

= iMCEP,gen ·
1

iMCEP,gen
−1

1+ 1
iMCEP,gen ·zT

= 1√
1+zT+1

·
1
1√

1+zT+1

−1

1+ 1
1√

1+zT+1
·zT

= 1√
1+zT+1

·
√

1+zT+1−1
1+

√
1+zT+1

zT

= 1√
1+zT+1

· zT·√1+zT
zT+

√
1+zT+1

= 1√
1+zT+1

· zT·√1+zT
1+zT+

√
1+zT

= 1√
1+zT+1

· zT√
1+zT+1

= zT
(
√

1+zT+1)
2

= 1+zT−1
(1+

√
1+zT)

2

=
(
√

1+zT+1)·(
√

1+zT−1)

(1+
√

1+zT)
2

=
√

1+zT−1√
1+zT+1

(A10)

By combining Equation (A9) and Equation (A10), the dependence of the maximum second-law
efficiency on the electrical current can be shown to be linear.

ηII,gen,max
(
iMCEP,gen

)
=

√
1+zT−1√
1+zT+1

=
√

1+zT+1−2√
1+zT+1

=
1

iMCEP,gen
−2

1
iMCEP,gen

= 1 − 2 · iMCEP,gen

(A11)
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The electrical power at the MCEP is as follows.

Pel,MCEP = Pel
(
iMCEP,gen

)
= − A

L · σ · α2 · (ΔT)2 ·
(

iMCEP,gen − i2MCEP,gen

)

= − A
L · σ · α2 · (ΔT)2 ·

(
1√

1+zT+1
− 1

(
√

1+zT+1)
2

)

= − A
L · σ · α2 · (ΔT)2 ·

( √
1+zT+1

(
√

1+zT+1)
2 − 1

(
√

1+zT+1)
2

)

= − A
L · σ · α2 · (ΔT)2 ·

√
1+zT

(
√

1+zT+1)
2

= − 1
4 · A

L · σ · α2 · (ΔT)2 · 4·√1+zT

(
√

1+zT+1)
2

= Pel,max · 4·√1+zT

(
√

1+zT+1)
2

(A12)

Appendix B.3. Comparison to Power Conversion Efficiency after Fuchs: Thermogenerator Device

By accepting temperature and entropy as primitive quantities, Fuchs [33] has created aggregate
dynamical models of a Peltier device. Suggesting the Peltier device to function analogously to a battery,
he has derived linear voltage-electrical current characteristics and identified the only two dissipative
processes, which are the diffusion of electric charge and the diffusion of entropy. For the case of the
device being operated as a thermogenerator, Fuchs [33] has derived its 2nd-law efficiency by the ratio
of useful to available power and expressed the efficiency with respect to the internal resistance of the
device RTEG and an external load resistance Rext.

ηII,TEG =
Rext

RTEG + (RTEG + Rext) · 1
zT

· RTEG

RTEG + Rext
(A13)

For a given figure-of-merit zT, the 2nd-law efficiency of the device has its maximum at.

Rext =
√

1 + zT · RTEG (A14)
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Thus, the maximum 2nd-law power conversion efficiency is as follows.

ηII,TEG,max =
√

1+zT·RTEG
RTEG+(RTEG+

√
1+zT·RTEG)· 1

zT
· RTEG

RTEG+
√

1+zT·RTEG

=
√

1+zT
1+(1+

√
1+zT)· 1

zT
· 1

1+
√

1+zT

=
√

1+zT
zT+(1+

√
1+zT)

· zT
1+

√
1+zT

=
√

1+zT
1+zT+

√
1+zT

· zT
1+

√
1+zT

= 1√
1+zT+1

· zT
1+

√
1+zT

= zT
(1+

√
1+zT)

2

= 1+zT−1
(1+

√
1+zT)

2

=
(
√

1+zT+1)·(
√

1+zT−1)

(1+
√

1+zT)
2

=
√

1+zT−1√
1+zT+1

(A15)

Of note, Fuchs has neglected the Joule “heat”, which would only have a small impact when
the device is operated in generator mode. Note that Equation (A15) is equivalent to what has been
obtained in this work for a thermoelectric material apart from a device (cf. Equation (A10)).

Appendix B.4. Comparison to Power Conversion Efficiency after Altenkirch: Thermogenerator Device

Altenkirch [55] has estimated the power conversion efficiency for a thermogenerator (called
thermopile at that time), which has been assumed to be made of two legs of dissimilar materials. For
a small temperature difference along the device, which will cause only a small thermally-induced
electrical current and allows neglect the Joule heating as well as the Thomson effect, he has derived
his Equation (4) for the 1st-law power conversion efficiency. Altenkirch [55] has factorized the 1st

law power conversion efficiency into the Carnot efficiency and what we call here the 2nd-law power
conversion efficiency ηII. The latter has been of the following form.

ηII,TEG =
zT· Rext

RTEG

zT·
(

1+ Rext
RTEG

)
+
(

1+ Rext
RTEG

)2

= zT·Rext·RTEG
zT·(R2

TEG+RTEG·Rext)+(RTEG+Rext)
2

= Rext·RTEG
RTEG·(RTEG+Rext)+(RTEG+Rext)

2· 1
zT

= Rext
RTEG+(RTEG+Rext)· 1

zT
· RTEG

RTEG+Rext

(A16)

Here, Altenkirchs’s nomenclature has been substituted by Rext
RTEG

= x and zT = 107 · η′. In his
treatment, the factor 107 appeared due to the use of the calorie as the energy units, and “η′” was
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called the effective thermopower of the device, which however contained the Seebeck coefficient
multiplied with the square root of the ratio of specific thermal and specific electrical conductivities of
the thermoelectric materials involved. Equation (A16) is equivalent to the result observed by Fuchs
(cf. Equation (A13)).

Subsequently, Altenkirch derived the efficiency to be maximized for the following.

x =
Rext

RTEG
=

√
1 + zT (A17)

Note that Equation (A17) is equivalent to the result obtained by Fuchs (cf. Equation (A14)).
For the thermoelectric generator (TEG), Altenkirch derived the maximum 2nd-law power

conversion efficiency ηII,TEG,max to be (see Altenkirch [55], Equation (5)) as follows.

ηII,TEG,max =
√

1+zT−1√
1+zT+1

(A18)

Note that Equation (A18) is equivalent to the result obtained by Fuchs (cf. Equation (A15)).
Even though Altenkirch did not use the term figure-of-merit (compare Altenkirch [55], Figure 3),

he plotted the maximum 2nd law power conversion efficiency ηII,TEG,max as a function of x = Rext
RTEG

for
different values of his “η′”, which despite a dimensionless factor has been identified with zT. In the
plot, he indicated the shift of the MCEP with varied figure-of-merit.

Altenkirch extended his approach by considering the impact of the Thomson effect on the power
conversion efficiency. Moreover, he added remarks on the rate of thermal power exchange of the
device with a hot reservoir and cold reservoir and its impact on the effective temperature difference
along the device.

Appendix B.5. Comparison to Power Conversion Efficiency after Ioffe: Thermogenerator Device

Ioffe [56] has considered a thermocouple in which legs of materials 1 and 2 of equal length are
joined by a metallic bridge. The Seebeck coefficient of the device has been estimated from those
of the two legs: α =| α1 | + | α2 |. From equal length and the individual values of the electrical
resistivities (ρ1, ρ2), “heat” conductivities (λOC,1, λOC,2) and cross-sectional area, he has calculated
the total electrical resistance RTEG and thermal conductance of the device KTEG (see Ioffe [56], p. 36).
To calculate the efficiency of thermal-to-electrical power conversion of the device, he has neglected the
Thomson “heat”. Furthermore, he made an assumption regarding the Joule “heat” (see Ioffe [56], p. 38):
“Of the total Joule ‘heat’ Iq

2 · RTEG generated in the thermoelement, half passes to the hot junction,
returning the power 1

2 · Iq
2 · RTEG and the rest is transferred to the cold junction.” As a result, the

temperatures of the hot Thot and cold junction Tcold appear in the maximum second-law efficiency.

ηII,TEG,max =

√
1+zT−1√

1+zT+
Thot
Tcold

(A19)

The aforementioned argument, which was probably inspired by Altenkirch’s [55] article, is based
on misunderstanding the dissipation, which in the author’s opinion is thermal energy to leave the
system together with produced entropy. The entropy, and thus the thermal energy, will not have
driving force to flow to higher temperature. Anyway, following the argument, the thermal input power
is diminished by half of the dissipated Joule “heat”. In this work, it has been outlined that the effect
of Joule “heat” would be a diminished thermal power supply due to a changed temperature profile
(cf. Section 4.2 in the the main text).

Neglecting the Joule “heat”, Ioffe has derived the following equation (see Ioffe [56], p. 40).

ηII,TEG,max =

√
1+zT−1√
1+zT+1

(A20)
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Note that this is equivalent to what has been obtained in this work for a thermoelectric material
apart from a device.

In the factor z, which Ioffe deduced (see Ioffe [56], p. 39), the cross-sectional areas A1 and A2

and length L cancel out, so it depends only on the thermoelectric properties of both materials but not
their dimensions.

z =
α2

KTEG · RTEG
=

α2(√
λOC,1 · ρ1 +

√
λOC,2 · ρ2

)2 =
α2(√

λOC,1
σ1

+
√

λOC,2
σ2

)2 (A21)

In the case that the electrical conductivities (σ = σn = σp) and “heat” conductivities (λOC =

λOC,1 = λOC,2) are equal in both legs of the device, respectively, Equation (A21) becomes the following.

z =
σ · α2

λOC
(A22)

Ioffe used Equation (A22) when discussing a thermoelectric cooler (see Ioffe [56], p. 100) but
derived an equivalent expression – using the thermal conductance instead of the thermal conductivity
– when discussing the thermogenerator (see Ioffe [56], p. 38ff.). Anyway, in Equations (A19) and (A20)
for the maximum power conversion efficiency, there appears not the factor z but this factor multiplied
with the average temperature T.

zT = z · T = z · Thot + Tcold
2

(A23)

Because of Ioffe’s Equations (A21)–(A23), the figure-of-merit of a thermoelectric material is
currently termed zT or zT.

Appendix C. Electrical-to-Thermal Power Conversion: Calculations and Established Models

Appendix C.1. Power Conversion Efficiency

When the thermoelectric material is used in a cooler, the coefficient of performance COP is the
ratio of the thermal power removed from the cold side Tcold · IS related to the electrical power Pel.

COPcooler =| Tcold·IS
Pel

| =| Tcold·IS
Pth

| · | Pth
Pel

| = Tcold
ΔT · | Pth

Pel
|

= Tcold
ΔT ·

A
L ·(ΛOC+σα2·i)·(ΔT)2

A
L ·σ·α2·(ΔT)2·(i−i2)

= Tcold
ΔT ·

ΛOC
σα2 +i

i−i2

= Tcold
ΔT · i+ 1

zT
−i2+i

= Tcold
ΔT · ηII,ep

(A24)
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When the thermoelectric material is used in a heater, the coefficient of performance COP is the
ratio of the thermal power released to the hot side Thot · IS related to the electrical power Pel.

COPheater =| Thot·IS
Pel

| =| Thot·IS
Pth

| · | Pth
Pel

| = Thot
ΔT · | Pth

Pel
|

= Thot
ΔT · i+ 1

zT
−i2+i

= Thot
ΔT · ηII,ep

=
ηII,ep

ηC

(A25)

The second-law efficiency for the thermoelectric material in entropy pump mode ηII,ep is
as follows.

ηII,ep =| Pth
Pel

| =
A
L ·(ΛOC+σα2·i)·(ΔT)2

A
L ·σ·α2·(ΔT)2·(i−i2)

=
ΛOC
σα2 +i

i−i2

=
i+ 1

zT
−i2+i

(A26)

The electrical power Pel used in Equations (A24)–(A26) is available by the fall of electric charge
along the electrical potential difference Δϕ. It drives the pumping of entropy from the material’s cold
side to its hot side. The thermal power Pth = ΔT · IS = Thot · IS − Tcold · IS is needed for lifting entropy
along the temperature difference ΔT. Some illustration is given in Figure A2.

Figure A2. When the thermoelectric material is operated in entropy pump mode, electrical power
Pel, which is available by the fall of electric charge along Δϕ, drives the pumping of entropy from
the cold side to hot side. The thermal power Pth = ΔT · IS = Thot · IS − Tcold · IS for lifting entropy
along the temperature difference ΔT adds to the thermal power removed from the cold side Tcold · IS

to give the thermal power released to the hot side Thot · IS. Different width of arrows refers to different
magnitudes of thermal power at the opposite sides of the material, which is due to thermoelectric
power conversion.
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Appendix C.2. Maximum Conversion Efficiency Point (MCEP): Material in Entropy Pump Mode

The maximum power conversion efficiency point (MCEP) follows when the first derivative of the
2nd-law power conversion efficiency, as given by Equation (A26), vanishes.

0 =
∂ηII,ep

∂i

= ∂
∂i

(
i+ 1

zT
−i2+i

)

=
1·(−i2+i)−(i+ 1

zT )·(−2·i+1)

(−i2+i)2

=
−i2+i+2·i2+ 2

zT ·i−i− 1
zT

(−i2+i)2

=
i2+ 2

zT ·i− 1
zT

(−i2+i)2

(A27)

The derivative vanishes when the numerator vanishes.

i2 + 2
zT · i − 1

zT = 0
(A28)

The quadratic Equation (A28) has two solutions.

i1,2 = − 1
zT ±

√(
1

zT

)2
+ 1

zT

= − 1
zT ± 1

zT · √1 + zT
(A29)

From the two solutions shown in Equation (A29) only one fulfils the requirement i ≤ − 1
zT for the

material’s maximum conversion efficiency point (MCEP) in entropy pump mode. Thus, the normalized
electrical current at the maximum conversion efficiency point (MCEP) is obtained as follows.

iMCEP,ep = − 1
zT − 1

zT · √1 + zT

= − 1+
√

1+zT
zT

= −
√

1+zT+1
zT !

= −
√

1+zT+1
1+zT−1

= −
√

1+zT+1
(
√

1+zT+1)·(
√

1+zT−1)

= − 1√
1+zT−1

(A30)

59



Entropy 2020, 22, 803

The maximum 2nd-law power conversion efficiency for a thermoelectric material operated in
entropy pump mode is then as follows.

ηII,ep,max = ηII,ep,max
(
iMCEP,ep

)
=

iMCEP,ep+
1

zT
−i2MCEP,ep+iMCEP,ep

=
−

√
1+zT+1

zT + 1
zT

−
(√

1+zT+1
zT

)2−
√

1+zT+1
zT

= zT
zT · −√

1+zT−1+1
− 1

zT ·(
√

1+zT+1)
2−(

√
1+zT+1)

= 1
−(

√
1+zT+1)

· −√
1+zT

1
zT ·(

√
1+zT+1)+1

= zT√
1+zT+1

·
√

1+zT
(
√

1+zT+1)+zT

= zT√
1+zT+1

·
√

1+zT
1+zT+

√
1+zT

= zT√
1+zT+1

· 1√
1+zT+1

= 1+zT−1√
1+zT+1

· 1√
1+zT+1

=
(
√

1+zT+1)·(
√

1+zT−1)√
1+zT+1

· 1√
1+zT+1

=
√

1+zT−1√
1+zT+1

(A31)

By combining Equations (A30) and (A31), the dependence of the maximum second-law efficiency
on the electrical current can be shown to be hyperbolic.

ηII,ep,max
(
iMCEP,ep

)
=

√
1+zT−1√
1+zT+1

=
√

1+zT−1√
1+zT−1+2

=
−1

iMCEP,ep
−1

iMCEP,ep
+2

= 1
1−2·iMCEP,ep

(A32)
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The normalized thermal power (cf. Appendix C.3) at the MCEP is obtained by combining
Equations (A35) and (A30).

pth,MCEP = pth
(
iMCEP,ep

)
= 4· | 1

zT − 1√
1+zT−1

|

= 4
zT · | 1 − zT√

1+zT−1
|

= 4
zT · | 1 − 1+zT−1√

1+zT−1
|

= 4
zT · | 1 − (

√
1+zT+1)·(

√
1+zT−1)√

1+zT−1
|

= 4
zT · | 1 − (√1 + zT + 1

) |
= 4

zT · | 1 −√
1 + zT − 1 |

= 4
zT · | −

√
1 + zT |

= 4· | −
√

1+zT
zT |

= 4 ·
√

1+zT
zT

(A33)

The absolute thermal power at the MCEP in entropy pump mode, which is related to the MEPP
in generator mode, is thus the following:

| Pth,MCEP | = pth,MCEP · Pel,max

= 4 ·
√

1+zT
zT · Pel,max

(A34)

Appendix C.3. Normalized Thermal Power

The normalized thermal power pth is obtained as follows.

pth = |Pth|
Pel,max

=
| A

L ·(ΛOC+σα2·i)·(ΔT)2|
1
4 · A

L ·σ·α2·(ΔT)2

= 4· | ΛOC
σα2 + i |

= 4· | 1
zT + i |

(A35)

Appendix C.4. Comparison to Power Conversion Efficiency after Altenkirch: Thermoelectric Cooler Device

For a thermoelectric cooler made of two legs of dissimilar thermoelectric materials (called a
thermopile) in steady-state condition, Altenkirch [57] has derived an expression for the minimum
electrical power input related to a given cooling power (see Altenkirch [57], Equation (12)), which
factorizes into a Carnot-type factor Thot−Tcold

Tcold
and the reciprocal of what he called the dissipation factor

for the electro-thermal device. It must be emphasized that the Carnot-type factor introduced by
Altenkirch is different from Carnot’s efficiency because it relates the temperature difference Thot − Tcold
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to the temperature of the cold side Tcold instead of the hot side Thot. This is due to the thermal energy
current removed from the cold side being related to the electrical power input.

When Altenkirch’s nomenclature is substituted by zT = 107 · η′, his dissipation factor
(see Altenkirch [57], Equation (13)) for the thermoelectric cooler (TEC), which is the device-related
analogue of what we here call the maximum 2nd-law power conversion efficiency for a thermoelectric
material operated in entropy pump mode ηII,ep,max, becomes as follows.

ηII,TEC,max =

√
1+zT− Thot

Tcold√
1+zT+1 (A36)

Altenkirch [57] states that, for small temperature differences (i.e., Thot
Tcold

≈ 1), the maximum 2nd-law
power conversion efficiency for thermoelectric cooler ηII,TEC,max becomes the following.

ηII,TEC,max =
√

1+zT−1√
1+zT+1 (A37)

Altenkirch’s result of Equation (A37) for a device is identical to the maximum 2nd-law power
conversion efficiency for a thermoelectric material operated in entropy pump mode ηII,ep,max as
obtained in this work (see Equation (A31)).

Appendix C.5. Comparison to Power Conversion Efficiency after Ioffe: Thermoelectric Cooler Device

For a thermoelectric cooler made of two legs of dissimilar thermoelectric materials, Ioffe [56]
(see Ioffe [56], p. 99) has derived a maximum coefficient of performance COP, which he factorized into
the inverse of a Carnot-type factor Tcold

Thot−Tcold
and what we here call the maximum 2nd-law efficiency

ηII,ep,max. After Ioffe [56], the device-related analogue of the latter has been as follows.

ηII,TEC,max =

√
1+ 1

2 ·z·(Thot+Tcold)− Thot
Tcold√

1+ 1
2 ·z·(Thot+Tcold)+1 (A38)

In the case of small temperature difference (i.e., Tcold
Thot

≈ 1) and when identifying the average

temperature T = 1
2 · (Thot + Tcold), it becomes identical to the result of this work for a thermoelectric

material (see Equation (A31)).
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Abstract: The efficiency of a thermoelectric (TE) generator for the conversion of thermal energy
into electrical energy can be easily but roughly estimated using a constant properties model (CPM)
developed by Ioffe. However, material properties are, in general, temperature (T)-dependent and the
CPM yields meaningful estimates only if physically appropriate averages, i.e., spatial averages for
thermal and electrical resistivities and the temperature average (TAv) for the Seebeck coefficient (α),
are used. Even though the use of αTAv compensates for the absence of Thomson heat in the CPM in
the overall heat balance, we find that the CPM still overestimates performance (e.g., by up to 6% for
PbTe) for many materials. The deviation originates from an asymmetric distribution of internally
released Joule heat to either side of the TE leg and the distribution of internally released Thomson heat
between the hot and cold side. The Thomson heat distribution differs from a complete compensation
of the corresponding Peltier heat balance in the CPM. Both effects are estimated quantitatively here,
showing that both may reach the same order of magnitude, but which one dominates varies from
case to case, depending on the specific temperature characteristics of the thermoelectric properties.
The role of the Thomson heat distribution is illustrated by a discussion of the transport entropy flow
based on the α(T) plot. The changes in the lateral distribution of the internal heat lead to a difference
in the heat input, the optimum current and thus of the efficiency of the CPM compared to the real case,
while the estimate of generated power at maximum efficiency remains less affected as it is bound
to the deviation of the optimum current, which is mostly <1%. This deviation can be corrected to a
large extent by estimating the lateral Thomson heat distribution and the asymmetry of the Joule heat
distribution. A simple guiding rule for the former is found.

Keywords: TEG performance; device modeling; temperature profile; constant properties model;
Fourier heat; Thomson heat; Joule heat

1. Introduction

Thermoelectric generator (TEG) materials convert a certain fraction of the heat passed through
them into useful electrical power, as the charge carriers (holes/electrons) absorb the thermal energy
and move from the hot side to the cold side, carrying entropy [1,2]. The transport entropy flux
related to the convective heat transport is given by α j, with the Seebeck coefficient α(T) and current
density j. Typically, a thermoelectric (TE) module consists of a series of pn leg pairs (thermocouples),
electrically connected in series and thermally in parallel [3]. In steady-state conditions, the exact

Entropy 2020, 22, 1128; doi:10.3390/e22101128 www.mdpi.com/journal/entropy67
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performance of the TEG is obtained by solving the thermoelectric heat balance equation [4] for the
temperature profile T(x). In 1D, it reads

κ(T)
∂2T
∂x2 +

dκ
dT

(
∂T
∂x

)2
− jT

dα
dT
∂T
∂x

= −ρ(T) j2 (1)

where the thermal conductivity κ, the electrical resistivity ρ and α are the three main

temperature-dependent thermoelectric properties. Here, ∂∂x ·
{
κ(T)∂T∂x

}
= κ(T)∂

2T
∂x2 + dκ

dT

(
∂T
∂x

)2
corresponds

to the (negative) divergence of the Fourier heat flux, i.e., its local change; jT dα
dT
∂T
∂x corresponds to the

local Thomson heat absorption driven by the change of the convective entropy flux α j related to the
temperature dependence of α(T), and ρ(T) j2 corresponds to the local Joule heat dissipation. With a
typical TE material, with κ(T) falling with T and the amount of α(T) rising with T, Thomson heat
will be released and Fourier heat flow will grow from the hot to the cold side along a TE leg in TEG
operation, where the current flow is driven by the thermo-voltage generated by the leg. Equation (1) is
a second-order non-linear partial differential equation, which can be solved using numerical methods
like finite element methods (FEMs) [5,6], finite volume methods (FVMs) [7–9] or finite difference
methods (FDMs) [6]. However, these solution methods are costly and time-consuming.

On the other hand, when assuming constant properties of the TE properties, an approximate
solution can be found analytically, as suggested by Ioffe [1]. This solution by the constant property
model (CPM) involves a discrepancy from the exact results due to the underlying simplification.
Moreover, the choice of the averaged constant properties to be obtained from the actual
temperature-dependent data is not straightforward. As can be seen from Equation (1), the Thomson
heat vanishes when the Seebeck coefficient (and with that the convective entropy flux α j) remains
constant. Various models corrected the CPM to compensate for this “missing Thomson heat” [10–16]
have been proposed. Meanwhile, Sandoz et al. [17] attempted to explain the use of the T-averaged
Seebeck coefficient in predicting exact power in the CPM mathematically, but did not recognize the
importance of the asymmetry in heat distribution for the prediction of efficiency.

In a previous study [18], on the physically appropriate choice of averages in the CPM,
we highlighted that spatial averages (SpAv) for resistivities (electrical and thermal) and temperature
averaging (TAv) for the Seebeck coefficient are essential for a meaningful CPM estimate.
However, there is still a remaining deviation due to unconsidered local redistribution of internal heat
release or absorption and of thermal conduction in the CPM, which is linked to a change in the T
profile T(x) [1,12,18,19]. Here, we will analyze the individual heat contributions exemplarily for six
representative thermoelectric materials that we considered previously [18] plus PbTe [20], as this is
one of the best TE materials in practice and shows an especially large deviation between CPM and
exact results.

Initially, the effect of the T dependence of each of the TE properties, α, ρ and κ, leading to locally
shifted heat release and transport over the TE element, for performance estimation, is studied separately.
Calculated maximum efficiency in the full temperature-dependent case, ηmax, is compared with tailored
model materials, in order to separate and quantify the individual contributions. Model materials
are defined by setting one or two of the three TE properties constant at its respective average while
keeping the other properties T dependent. Next, we explain the physical origin of a relevant part of the
discrepancy between CPM results and the real situation using a schematic plot of the convective entropy
flux derived from an α(T) graph, alongside showing that the net Peltier/Thomson heat is correctly
considered by the CPM when appropriate temperature averaging is used for α(T). Marked areas
in the entropy flux diagram quantify the exchange of Peltier and Thomson heat, and with that,

a correction for the related deviation in CPM efficiency estimation, dηmax =
ηmax−ηmax

CPM

ηmaxCPM , is suggested
and demonstrated.
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2. Methods, Results and Discussion

2.1. Role of the T Dependence of Material Properties in Performance Estimation

Since a generalized temperature dependence study for all types of T dependence is quite
elaborate, a comparative study based on seven well-known and representative TE materials [20–24]
was conducted. To understand the role of the T dependence of each of α, ρ and κ in performance
estimation, the calculated maximum efficiencies when all properties are considered as T dependent
(referred to as “real case” or “exact” from now on) were compared with the calculated efficiencies
of model materials. These model materials have the same T dependence as the real materials for
one or two of the three thermoelectric transport properties, while the remaining properties are kept
constant; these materials are denoted as two temperature-dependent property (2TD) materials and
1TD materials, respectively. The constants used to define the model materials were obtained using
the spatial averages (SpAv; for electrical and thermal resistivity) at a current density corresponding
to the maximum efficiency of the real material and the temperature average (TAv; for the Seebeck
coefficient). The SPAv and TAv of a T-dependent quantity p for a hot side temperature Th and a cold
side temperature Tc are given by [1,12,18,25]

pTAv = p =
1

ΔT

∫ Th

Tc

p(T)dT (2)

pSpAv = 〈p〉 = 1
L

∫ L

0
p(T(x))dx (3)

where ΔT = Th − Tc and L are the length of the TE leg. The exact efficiency using T-dependent
properties was obtained using the 1D solution algorithm developed in [18] by calculating

P = V·I,
where V = Vo −RinI, Vo = αΔT and

(4)

η = P/Qin (5)

Here, P is the output power, V is the net output voltage which is given by the Seebeck voltage

generated, Vo =
∫ Th

Tc
α(T)dT, minus the voltage drop due to internal resistance Ri =

ρSpAvL
A , where A

is the area of the TE leg and ρSpAv = 1
L

∫ L
0 ρ(T(x))dx. I = jA is the current passing through the TE

material due to the generated voltage. The efficiency (η) is given by the ratio of output power to the
input heat flow (Qin) as in Equation (5), where Qin is given by

Qin = −κh·A·dT
dx h

+ I·αh·Th (6)

Qin consists of the Fourier heat flow −κh·A· dT
dx h (including the fraction of Joule and Thomson heat

contributions released in the leg which is flowing to the hot side) plus the Peltier heat (I·αh· Th) absorbed
at the hot side. The suffix h indicates the hot side values, i.e., κh = κ(Th) and αh = α(Th). As the
spatial averages depend on T(x), which in turn varies with current, they were formed pre-assuming
the optimum current of the real materials. For brevity, the efficiency was also calculated at the optimum
current of the real material. The optimum current in the numerical calculation was obtained by finding
the current where dη

dI becomes zero.
The relative deviation (RD) of the calculated maximum efficiency between the 2TD model

materials and the real materials, δηmodel
max =

ηmax−ηmax
model

ηmax
, is shown in Figure 1a. Here, and in the

following, for brevity, we will use δ and d to denote a relative and absolute deviation, respectively.
The comparison shows how strongly each of the contributing T dependences alone would shift
efficiency. Obviously, the T dependence of ρ will affect the calculated efficiency to a lower extent than
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α(T) and κ(T) will do for some materials (middle section of Figure 1a); the asymmetry of Joule heat
generation mostly plays a minor role. However, this does not hold for all materials and it does not
mean that the RD between the CPM and a real material due to asymmetric distribution of Joule heat,

δηmaxJ =
dηmax

d
.

Q
h
J

δ
.

Q
h
J , would be insignificant, as all of the three identified effects will act simultaneously

when comparing the CPM and the real case. Although the effects of the T dependence of α(T) and
κ(T) are much larger for some materials, they often partly cancel each other. A comparison of the
real Joule heat partial T profiles in Figure 1b shows a considerable asymmetry, in correlation to the
deviations in the ρ(T) = const. case for SnSe and PbTe (Figure 1a, mid); however, the RD contribution
related to the profiles in Figure 1b is larger as they contain an asymmetry due to the asymmetry of axial
heat conduction linked to κ(T), in addition to the asymmetry of Joule heat generation which alone is
represented by Figure 1a. Calculation of the partial T profiles is explained in Appendix A.2. It should
be noted that unlike for α(T), where the absence of the T dependence means an absence of Thomson
heat, the absence of the T dependence of ρ just means that there is no local asymmetry in Joule heat
generation, whereas the amount of Joule heat that appears remains unchanged. Both symmetrically or
asymmetrically released Joule heat will contribute, together with Thomson heat, to the effect of a T
dependence of κ(T) that consists in shifting the distribution of the inner reversible and irreversible
heat towards the hot and cold sides. Accordingly, the magnitude of the effect of a T dependence of
κ(T) will scale with the total amount of inner heat.

  
Figure 1. (a) Comparison of the relative deviation of the calculated maximum efficiency of 2TD
(two temperature-dependent property) model materials (one of the thermoelectric properties kept
constant,) to their real counterpart for the example materials, (b) T profile bending caused by Joule heat
for example materials. Distinct asymmetry is observed particularly for PbTe and SnSe, correlated to
maximum offset values in the middle part of Figure (a).

When α or κ is kept constant, there can be large discrepancies, as seen from the scatter in the left
and right section of Figure 1a. Switching off Thomson heat results in a change from non-constant to
constant convective entropy flux linked to a different partition of reversible (Peltier + Thomson-bound)
heat to both sides of the leg. When setting κ(T) = const., net Fourier heat transmitted does not
change as the thermal resistance of the leg is fixed by the definition of the SpAv. Rather, the observed
differences are merely due to a changed lateral distribution of Thomson and Joule heat. Comparing this
to Figure 2a reveals that a large RD for κ(T) = const. correlates to strongly non-linear T profiles linked
to κ(T) (see T profiles for j = 0); see also Appendix A.2, Figure A1a, where SnSe, Bi2Te3 and PbTe have
significantly different κh and κc and Figure A2a, showing that the weight of Joule and Thomson heat
to Qin is comparably large for these materials.

The dominating effect of the T dependence of κ and α on the estimated performance is also seen
by comparing the T profiles of the model cases with the real temperature profile of n-type Mg2(Si,Sn)
(referred to as n-Mg2X), Figure 2b. All profiles are calculated for the optimum current for maximum
efficiency of the real material. Here, in addition to the 2TD materials, 1TD materials were also involved.
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α(T) and κ(T) play a dominating role in the shaping of the temperature profile, which is reflected by
the closeness of the α(T) � const., κ(T) � const. case to the real material.

  

Figure 2. (a) Bending of T profiles for the real materials at j = 0 (dotted lines) and j = jopt (solid lines),
normalized to ΔT, (b) T profile bending for the 1TD and 2TD model materials in comparison to the full
T -dependent case and the constant properties case, along with the individual contributions to the fully
T-dependent profile for an n-Mg2(Si,Sn) TE leg with Th = 723 K and Tc = 383 K.

The effects of the 2TD cases on the overall inflowing Fourier heat and thus on the efficiency of
n-Mg2X from Figure 1a (red dots) can be discussed in terms of the hot side slopes of the corresponding
temperature profiles (red lines) in Figure 2b when comparing between cases with the same κ(T).
The downward dT

dx h for the 2TD material with α(T) = const.(red solid line) indicates an increase in
the inflowing Fourier due to missing Thomson heat, compared to the actual case (dark green line).
Simultaneously, but only partly compensated in the Qin balance by missing Thomson heat, less Peltier
heat is absorbed at the hot side and therefore the efficiency is overestimated (Figure 1a left side, red dot).
The 2TD κ(T) = const.(red dotted line) deforms the T profile considerably but hardly increases the
heat input (Equation (6)) compared to the real material, as the SpAv of κ(T) maintains an unchanged
thermal resistance of the TE leg. We can conclude that replacing the T dependence of α(T) and κ(T) by
adequate constants will, although significantly changing the T profile, influence the inflowing heat and
thus efficiency to a much lower extent due to compensating effects. The RD of CPM efficiency in effect
arises mainly from a redistribution of internal Joule and Thomson heat due to considerable deformation
of the T profile by neglecting the T dependence of κ(T) and α(T) and local redistribution of reversible
heat generation as a consequence of neglect of the T dependence of the convective entropy flux.

When comparing the 1TD and 2TD model materials, additionally a shift of the SpAv values of
ρ and κ as a consequence of different T profiles, as well as coupling effects among the individual
contributions, play a role, but only to a very minor extent, as proven by the close coincidence of
their profiles to combinations of the individual partial T profiles of the real material, see Figure 2b
(pink and cyan lines). The latter represent the physical contributions to the real temperature profile,
ΔTJoule, ΔTThomson and ΔTκ(T) and are plotted by symbols and lines in Figure 2b. They sum up,
together with the linear part, Tlin(x) = Th − x ΔT

L , to the total temperature profile

T(x) = Tlin(x) + ΔTJoule(x) + ΔTThomson(x) + ΔTκ(T)(x) (7)

The procedure to calculate the partial profiles is described in Appendix A.3.
From the close coincidence of combinations of the real partial T profiles to the T profiles of the

1TD and 2TD model materials, as evident from Figure 2b, we can conclude that the contributions from
each of the effects (Thomson heat, Joule heat, T dependence of κ) to the total T(x) behave in good
approximation and are independent and additive (a small note on this is given in the Appendix A.1.).
The reason for the overall weak cross-coupling between the contributing effects is the small amplitude
of the partial T profiles ΔTJoule, ΔTThomson, ΔTκ(T) compared to the overall ΔT but also the fact that
ΔTThomson and ΔTκ(T) often partially compensate. Therefore, the T profiles of a real material and the
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CPM may also be quite close to each other for some materials. It is evident that the shape of α(T)
and κ(T) affects the temperature profile much more than that of ρ(T) but this does not mean that the
asymmetry of Joule heat distribution between the hot and cold side would contribute insignificantly to
the difference of the inflowing heat between the CPM case and a real material. The redistribution of Joule
heat affects the maximum efficiency to a relevant extent along with the redistribution of Thomson heat.
Thus, we can split the RD of the maximum efficiency according to the physical origin—redistribution

of Peltier–Thomson heat and Joule heat—as δηmax =
ηmax−ηmax

CPM

ηmaxCPM = δηmaxπτ + δηmaxJ.

Depending on the slope ratio of κ(T) and α(T), the efficiency discrepancy due to Joule heat
asymmetry, δηmaxJ, will vary considerably between different materials and may change sign from case
to case, as observed in [18].

Now, let us proceed to understand in more detail how the absence of Thomson heat in the CPM
will affect the efficiency calculation. We will see that it is partially and usually not entirely compensated
by the difference in Peltier heat between a real material and its CPM approximation.

2.2. Peltier–Thomson Heat Balance and the Resulting Uncertainty in CPM Efficiency

Consider a TE material with constant κ and a linearly increasing α(T) curve (which is typical for a
TE material below the peak zT temperature), as schematically shown in Figure 3. In a TE material under
current flow, the convective entropy flux is given by

.
s(T) = jα(T). Hence, in a TE leg with a current

flow I, the convective entropy flow
.
S(T) = Iα(T) is directly linked to the temperature dependence of

the Seebeck coefficient.

Figure 3. Schematic representation of reversible heat exchange in a TE leg for a linear α(T) curve
(black line) in a plot of a convective 1D entropy flow with a constant current I. According to the relation
.

Qπ = IαT, areas in the
.
S(T) diagram represent certain amounts of (flowing or exchanged) Peltier

(including Thomson) heat. The dark blue and light blue rectangles—in- and outflowing Peltier heat;
trapezium above the

.
S(T) curve—Thomson heat (marked with slant lines); trapezium below the

.
S(T)

curve (marked in checked lines) —gross electrical power generated (VoI); red trapezium—Thomson
heat flowing to the hot side; orange rectangle—hot side Peltier heat (CPM). The green triangle indicates
part of the difference in the amount of absorbed Peltier heat at the hot side between the actual and the
CPM cases that is not compensated in the real material by backflowing Thomson heat

.
Qτ,h.

Peltier heat absorbed at the hot side (Th) in the real case is given by
.

Qπ,h = IαhTh, while at the

cold side, it is
.

Qπ,c= IαcTc. Areas in the diagram of Figure 3 represent certain amounts of Peltier and
Thomson heat but also generated electric power. This allows a schematic comparison of reversible
heat exchange in a T-dependent material to its CPM approximation. The difference in the Peltier heat
balance, I(αhTh − αcTc), is given by the difference of the light and dark blue line-marked areas. It is

composed of the area below the
.
S(T) curve (marked in checked lines) given by P0 = IV0 = I

∫ Th
Tc
α(T)dT,
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which is the gross produced electrical power (which includes Joule heat). The area to the left from the
.
S(T) curve (indicated by slant lines) is

∫ Iαh

Iαc

Td
.
S = I

∫ Th

Tc

T
dα
dT

dT = I
∫ Th

Tc

τdT =
.

Qτ (8)

where τ = T dα
dT is the Thomson coefficient. This area represents the net Thomson heat generated in

the TE leg,
.

Qτ, which is directly linked to the variation of the convective entropy flow over the leg.
The reversible heat balance .

Qπ,h−
.

Qπ,c =
.

Qτ + P0 (9)

shows that the loss of Peltier heat in the sample equals released Thomson heat plus produced gross
electrical power.

.
Qτ and P0 are counted here as positive when going out of the system. Part of

the Thomson heat will flow back, as a contribution to the overall Fourier heat flow, to the hot side.
For simplification we assume that Thomson heat that is released at any point in the leg will flow out
to the closer side. This is physically not strict but sufficient to qualitatively illustrate the relevant
effect of undercompensation of the difference in Peltier heat exchanged at the hot side in a real
material compared to the CPM by Thomson heat flowing back to the hot side, i.e., compensation of
d

.
Qπ,h =

.
Qπ,h −

.
Qπ,c

CPM = ITh(αh − α) by
.

Qτ,h = I
∫ αh
ατ,ex

Tdα. The relevant question on the Seebeck

value ατ,ex, from which the integration gives the correct amount of
.

Qτ,h (and its corresponding
temperature Tτ,ex with ατ,ex = α(Tτ,ex)), will be touched on below.

In the CPM, the Peltier heat at the hot side is given by IαTh, while at the cold side it is IαTc,
where α = αTAv is the temperature average of α(T) (see Equation (2)). Therefore, the following
equation holds:

.
Qπ,h

CPM − .
Qπ,c

CPM = Iα(Th − Tc) = I
∫ Th

Tc

α(T)dT (10)

i.e., Peltier heat is completely balanced by electrical production.
From Equations (9) and (10), it is obvious that globally the explicit absence of Thomson heat in the

CPM is taken care of correctly by the use of temperature averaged α in the CPM, i.e.,

.
Qπ,h −

.
Qπ,c −

.
Qτ =

.
Qπ,h

CPM − .
Qπ,c

CPM = IαΔT = P0 (11)

With this choice of α as the CPM value, the gross power generated is exactly the same in the CPM
as in the real material, at the same current. On the other hand, it implies that, typically, considerably less
Peltier heat is absorbed at the hot side in the CPM case than in reality, whereas back-flowing Thomson
heat partly compensates the actually higher Peltier heat intake. Figure 3 visualizes with the green triangle
that this compensation is incomplete, i.e., d

.
Qπτ,h = d

.
Qπ,h −

.
Qτ,h > 0. Accordingly, more Thomson

heat is leaving at the cold side. It is evident that this holds not only for a linear but also for a left- or
right-hand bowed Seebeck curve.

In a less typical case with strongly asymmetric heat conduction, i.e., κ(T) strongly increasing with
T, or if α(T) forms a significant maximum, this typical tendency could reverse, but mostly it leads
to underestimation of the inflowing heat in the CPM case Qin

CPM and hence to overestimation of the
efficiency by the CPM. With p-Mg2X, a particular example is given in Appendix A.3.2 (Figure A2c)
where, with α(T) weakly changing between Tc and Th but peaking inside, this compensation can also
be almost perfect, or, as for SnSe (Figures 4, 5b and 6), overcompensation may even occur.
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Figure 4. Calculated relative deviation (RD) of (a) the maximum efficiency, δηmax, heat input, δ

.
Qin,

power at maximum efficiency, δPηmax , and optimum current, δIopt,η; additionally, δ
.

Qin when neglecting

δIopt,η (black stars), (b) Joule heat, δ
.

Q
h
J , reversible heat, δ

.
Q

h
πτ, (see Equation (12)) and, for direct

comparison, also d
.

Q
h
J /

.
Q

h
πτ.

  
Figure 5. Plot of the convective 1D entropy flow at constant current I for (a) PbTe and (b) SnSe.

Relevant areas are marked to determine the uncompensated Peltier–Thomson heat d
.

Q
h
πτ (green area).

Note that the L
2 temperature and the temperature Tτ,ex according to the extremum of ΔTThomson(x)

may be located quite far apart (b) whereas Tτ,ex is very close to the crossing point of α(T) to α.

Figure 6. RD in maximum efficiency, δηcorr
max, corrected with respect to d

.
Q

h, I=const
πτ (Tτ,ex according to

the peak of the exact Thomson profile; blue), d
.

Q
h
πτ (exact numerical calculation; red; compare also

Equation (12)) and a first guess by the L
2 position.

74



Entropy 2020, 22, 1128

Overall, the efficiency deviation between the real and CPM cases would be negligible if
Qin = Qin

CPM. For a rising α(T) curve, which is the typical case applied for most of the established

TE materials, the Peltier–Thomson part,
.

Q
h
πτ

CPM, of
.

Qin will remain lower than the real
.

Q
h
πτ.

Thus, the efficiency is often overestimated by the CPM. Furthermore, a shift in Iη,opt
CPM against

the true Iη,opt has to be taken into consideration due to a change in the current-dependent contributions

to
.

Qin. The usually higher intake of reversible heat at the hot side in the real case,
.

Q
h
πτ, compared to

the CPM (δ
.

Qπτ,h > 0) results in a steeper curve
.

Qin(I) than
.

Qin
CPM(I). Efficiency, as defined by

η(I) = P/
.

Qin, will accordingly have a lower slope in reality than for the CPM, equivalent to a
lower maximum position Iopt,η. Thus, usually, the CPM will overestimate the optimum current,

δIopt,η =
Iopt,η−ICPM

opt,η

ICPM
opt,η

< 0, and hence will overestimate output power at maximum efficiency (δPηmax < 0),

which adds to the overestimate of maximum efficiency: δηmax = δPηmax − δ
.

Qin, amplifying the effect of

δ
.

Qin (see Figure 4a). Hence, for a quantitative analysis, we have to consider three contributions to the
(absolute) deviation of

.
Qin

d
.

Qin = d
.

Q
h
πτ − d

.
Q

h
J = d

.
Q

h, I=const
πτ − d

.
Q

h, I=const
J +

∂
.

Qin

∂I

∣∣∣∣∣∣∣
Iopt,η

dIopt,η (12)

where, similar to the outflowing Thomson heat, outflowing Joule heat is also counted as positive and

d
.

Q
h
J is due to the Joule heat asymmetry at the hot side. Asymmetry of Joule heat distribution and heat

conduction will, with falling κ(T), as for PbTe and SnSe, favor heat release to the cold side. This will
likewise contribute to a higher

.
Qin and steeper

.
Qin(I), amplifying the same trend as for reversible

heat, or will counteract it with rising κ(T). Thus, asymmetry of Joule heat distribution will add to the
mispoint in Iopt,η

CPM.
Figure 4a shows that for most materials, Iopt,η changes for about 1% or less and, consequently,

also the deviation of the output power, remain small. However, for PbTe, δIopt,η reaches 10%. Then the

deviation of output power, δPηmax , may grow in absolute amount to be as large as δ
.

Qin, doubling its

effect. Whereas the contribution to δ
.

Qin, due to δIopt,η usually remains insignificant, it becomes relevant

for PbTe where it compensates half of d
.

Qin related to the distribution of inner heat at an unchanged

current, d
.

Q
h
πτ

(
Iopt,η

)
− d

.
Q

h
J

(
Iopt,η

)
, see Equation (12) and black stars in Figure 4a.

The RD of hot side Joule heat, δ
.

Q
h
J , and Peltier/Thomson heat, δ

.
Q

h
πτ with

.
Q

h
πτ =

.
Q

h
π −

.
Q

h
τ, are

shown in Figure 4b. δ
.

Q
h
J reaches quite significant nominal values (SnSe), mainly due to the low

magnitude of
.

Q
h
J itself. For direct comparison to δ

.
Q

h
πτ, the (absolute) deviation d

.
Q

h
J related to

.
Q

h
πτ is

plotted and shows that both effects reach the same order of magnitude. Typically, both contributions
partly compensate. Furthermore, no general behavior can be observed in their mutual relation over
the materials, as in some cases clearly one effect dominates, in others the other.

As seen from Figure 1b, usually, more Joule heat is released to the hot side than to the cold
side in a real material, whereas there are symmetric amounts in the CPM case. This contributes to
an underestimation of the efficiency in the CPM case, δηmaxJ > 0. On the other hand, as explained,
the Peltier–Thomson balance tends to an overestimation, δηmaxπτ < 0, thus, both effects counteract
and partially compensate. From Figure 4a, it can be seen that the CPM overestimates the efficiency
compared to the real case for all selected materials except Bi2Te3, which has an exceptionally higher κh

compared to the cold side (Figure A1a in Appendix A.2) together with high Joule release (Figure 4b)
and almost compensation of the Peltier–Thomson balance. Thus, the Joule contribution dominates,
leading to an underestimation of the efficiency. Additionally, SnSe behaves somewhat differently from
the general trend, with a falling α(T) curve (Appendix A.2 Figure A1b) and the over-resistivity at the
cold side (Appendix A.2 Figure A1c). Moreover, κh is much lower than κc. As an effect, Joule heat
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is preferentially led to the cold side; consequently, hot side Joule heat is greatly overestimated in the
CPM (Figure 4b), but as the relative contribution of Joule heat to Qin is small (Figure A2a), the resulting
trend towards the overestimation of performance in the CPM remains moderate. On the other hand,
as seen from Appendix A.3.2 Figure A1b, Thomson heat is absorbed in the leg as α(T) for SnSe is
a falling curve and is mainly bound to the hot side. As seen from Figure 4b, for SnSe, the hot side
Peltier–Thomson heat will, unlike for most of the other materials, be overestimated by the CPM.
However, the resulting underestimation of efficiency in the CPM will be overcompensated by the
counteracting Joule heat distribution.

The first four materials in our list (see Figure 4a) show a minor discrepancy of the CPM with
reality. Although Joule heat asymmetry is contributing comparably, from case to case, the dominating
source of discrepancy is mostly the uncompensated Peltier heat according to Equation (11)). It is
particularly relevant in the cases of n-Mg2X, Mg2Si and PbTe, which have larger Thomson contributions
(Figure A2a), leading to larger discrepancies of the CPM efficiency estimate.

2.3. Refining the CPM Efficiency Estimate

Having identified the effects causing a systematic uncertainty in the CPM efficiency estimation,
they can be accordingly corrected.

We want to analyze how this can be done practically for the Thomson contribution, δ
.

Q
h
πτ,

by calculating the uncompensated Peltier heat at the hot side. Therefore, we discuss the approach for
example materials with dissimilar α(T) characteristics.

The values of
.

Qπ,h and
.

Q
CPM
π,h are known from Th, αh and α, for a given current, where, as a

first approximation, ICPM
opt,η is used. We have seen that the Thomson heat flowing to the hot side

is strictly calculated from the partial T profile ΔTThomson(x) by
.

Qτ,h = −κh· dΔTThomson
dx h . We apply

this route to form a reference for an approximate estimation to be developed and, because of this,
we omit a numerical calculation of exact T profiles. As derived from Equation (10), we obtain the

uncompensated Peltier–Thomson heat from d
.

Q
h
πτ =

.
Qπ,h +

.
Qτ,h −

.
Qπ,h

CPM. Neglecting any deviation
of current, this can be illustrated in the α(T) diagram based on our interpretation of areas by amounts
of reversible heat, see Figure 3. Thus, we aim for a good approximation of the green marked area in
Figure 3 by an appropriateand simple approximation. The problem splits into two aspects: finding
the temperature Tτ,ex above which the inner Thomson heat is conducted to the hot side and finding a
close approximation of the integral. As α(T) may be quite different (see Figure A1b), we meet various
situations, represented by different ΔTThomson(x) temperature profiles (Figure A2b), among them
typical ones with a single maximum according to Thomson heat flowing out to both sides, but also less
typical ones with a single minimum (Thomson heat flowing in from both sides) or even two extrema
(for Bi2Te3) where Thomson heat is released to the cold side but absorbed from the hot side. A rule to
treat all of the cases likewise is needed. Figure 5a,b and Figure A2c,d accordingly show scenarios where
α(T) contains almost linear intervals along with strongly bowed ones, where α(T) is monotonous or
contains a maximum, where αh and α are far from each other or close together or where α(T) crosses
the α horizontal once or twice. The position of the extrema (maxima or minima) of ΔTThomson(x) is
marked in each diagram by a brown line. Accordingly, the area corresponding to the uncompensated
heat might be more complex than is shown in Figure 3, e.g., see Figure 5a. The area to the left of the
α(T) curve to the α-axis from this point up to the hot side αh (marked by a red border) represents

.
Qτ,h.

The fact that the respective area also contains negatively counted parts when α(T) goes through a
maximum is also taken into account. Accordingly, the upper slim boat-shaped area in Figure 5a counts
as negative; symbolically, it is mirrored in the green area.

However, in such a case, the integration can be simplified, switching from the hot to the cold
side, as

.
Qτ,h =

.
Qτ −

.
Qτ,c and with Equation (10),

.
Qτ =

.
Qπ,h −

.
Qπ,c − P0. Note that if there are two

extrema of ΔTThomson(x), then we have two Tτ,ex values where the Thomson heat between both can be
neglected as it cancels out completely. Only the intervals outside, (Tc; Tτ,ex) or (Tτ,ex; Th), have to be
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considered. Among both intervals, the side has to be chosen where α(T) is a monotonous function in
the relevant temperature interval, where it is closer to linearity, and possibly where Tτ,ex is closer to Th

or Tc.
Applying Equation (11) accordingly to the chosen interval, the integration for

.
Qτ can be substituted

by one for P0, e.g., for the cold side:

.
Qτ,c =

.
Qπ,Tτ,ex −

.
Qπ,c −

∫ Tτ,ex

Tc

αdT (13)

This facilitates practical execution as α(T) is mostly known as a low-order polynomial,
thus integration could be done analytically.

If the Thomson T profile is not known, half of the leg length, L
2 , can be taken as a first guess of

the position for the calculation of
.

Qτ,h. The corresponding temperature is marked in the diagrams.
This can be a quite good estimate when the Thomson T profile is close to symmetric, as for PbTe
(see Figure A2b), but may fail greatly when Thomson heat is strongly asymmetric, as for SnSe. On the
contrary, an entropy consideration of Thomson heat in the TE leg (see Appendix A.4.) leads to a rule of
thumb for Tτ,ex that is

α(Tτ,ex) ≈ α (14)

Indeed, it applies well for all example materials involved here. With this rule, approximation of
.

Qτ,h is facilitated considerably, as just a crossing point of α(T) with its TAv has to be found.
Figure 6 shows the remaining efficiency deviation, δηcorr

max, corrected by the uncompensated
Peltier–Thomson heat calculated from the α(T) graph using the L

2 position, using Tτ,ex according
to the extremum (maximum) position of ΔTThomson(x) but neglecting the current deviation δIopt,η,

as well as corrected by the exact deviation d
.

Q
h
πτ =

.
Qπ,h −

.
Qτ,h −

.
Qπ,h

CPM. The efficiency estimate by
the CPM is greatly improved when the ΔTThomson(x) extremum position is used(red dots).

Only occasionally, e.g., when α(T) is close to linear, the L
2 position works well for correction

but fails for most materials as it does not take into account the asymmetry of heat sources and heat
conduction. Similarly, models suggesting half of the Thomson heat on either side for correcting the
CPM results [14–16,26,27] will mostly not work sufficiently. The correction employing the ΔTThomson(x)
peak position is close to the exact numerical correction for most materials as this position considers the
asymmetry exactly. The difference between both cases is merely due to the change of the optimum
current which is as yet unconsidered by the graphical correction. The remaining discrepancy is due to
Joule heat asymmetry.

Whereas we have used exact numerical calculations to demonstrate the principle of the Thomson
correction method and to show that the rule α(Tτ,ex) ≈ α holds well, the suggested practical procedure

for the correction of d
.

Q
h, I=const
πτ described here, which is based on an analysis of the physical effects

behind the deviation of CPM performance estimates, is limited to basic algebraic operations which can
be instantaneously calculated by any table calculation software.

3. Conclusions

From the study of 2TD and 1TD model materials with one or two selected properties among α, ρ
and κ set as constant, which results in both redistribution of heat between the hot and cold side of
the element and the change of spatial averages, we see that in some examples, large deviations in
efficiency δηmodel

max arise as a consequence of considerable modification of the T profile. In comparison
to the efficiency deviation between the CPM and real materials δηmax which conserve the spatial
property averages and are mostly below 2%, this shows that a change of spatial averages due to
an arbitrary modification of the T profile may contribute a strong shift to the efficiency estimate.
Thus, conservation of the leg’s thermal and electrical resistance is essential for a valid efficiency estimate.
However, the shift mainly remains low if only ρ(T) is switched to constant. Nevertheless, it cannot
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be concluded from this that the temperature dependence of the electrical resistivity plays a minor
role in the efficiency estimation by the CPM. The 2TD and 1TD model materials lead to quite good
approximations of the partial T profiles ΔTJoule(x), ΔTThomson(x) and ΔTκ(T)(x).

It is shown that the deviation of a CPM-based efficiency estimate, δηmax, is not just due to the
absence of Thomson heat in the CPM, as the choice of the temperature average of α(T) as a CPM
parameter mainly compensates for the absence of Thomson heat. Rather, the discrepancy in efficiency
determination in the CPM is shown to be, to a major extent, due to the excess unaccounted heat at
the hot side in the CPM δ

.
Qin, which usually leads to overestimation of performance, and, to a minor

extent, due to a shift of the optimum current δIopt,η and, consequently, of the produced electrical
power at maximum efficiency, δPηmax

. In most cases, the change of the optimum current is small.
In materials with rising α(T), less of the released Thomson heat flows back to the hot side than would
compensate for the reduced hot side Peltier heat absorption assumed by the CPM. This systematic
undercompensation tends towards a higher actual heat intake at the hot side compared to the CPM,
thus overestimating efficiency when the CPM is used. Asymmetry of Joule heat usually has an opposite
influence but is overcompensated in most cases.

In order to correct for the Peltier–Thomson heat-related deviation δ
.

Q
h
πτ, a graphical illustration

in terms of convective entropy flow based on the α(T) curve is given. It confirms that the rule for
the splitting of Thomson heat to the sides α(Tτ,ex) ≈ α, which results from an entropy consideration,

holds well. This enables a valid approximation of δ
.

Q
h
πτ with a simple algebraic procedure, omitting the

exact numerical calculation of the temperature profile. Although a considerable deformation of the T
profile caused by the T dependence of κ(T) is observed, it will affect the deviation between the real
situation and its CPM approximation simply via a local shift of the thermal and electrical resistivity
but will not explicitly contribute to the inflowing heat balance

.
Qin.

In summary, the performance of a TE material does not only depend on its averaged material
parameters but also on local asymmetry of Thomson and Joule heat, driven by the T dependence of the
TE properties. In particular, Thomson heat can show highly asymmetric distribution. Thus, TE device
efficiency can be varied beyond the averaged properties, represented by a figure of merit.
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Appendix A

Appendix A.1. Note from Section 2.1

A very good approximation of the actual T profile and hence the SpAv of ρ and κ in accordance
with a real material can be calculated in a straightforward way from the T-dependent properties
without using an iterative solution [18] for T(x). This may considerably simplify the estimation of
appropriate SpAvs as CPM property values. ΔTJoule(x) can be obtained analytically from the CPM
case, ΔTκ(T) from a integration of the Fourier equation and ΔTThomson and from a 1TD α(T) model by
a single integration.
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Appendix A.2. Material Data and Boundary Conditions

  

 

Figure A1. Temperature-dependent thermoelectric material properties of representative material
classes: (a) thermal conductivity, (b) Seebeck coefficient, (c) electrical resistivity and (d) figure of
merit. Since SnSe has much higher resistivity, the scale for it is given on the right y-axis. All the raw
experimental data taken from the literature [20–24] were fitted with appropriate polynomials (usually
3rd or 4th order). For SnSe, a 9th order polynomial fit was used owing to the complex T dependence
and hence shows an unusually high zTmax. However, this does not affect the physics discussed and
hence these fitted data were used throughout the manuscript.

Table A1. Temperature range of analysis for all materials of Figure A1.

Material Temperature Range of Analysis

p-Mg2(Si,Sn) 723 K to 383 K
n-Mg2(Si,Sn) 723 K to 383 K

HMS 833 K to 298 K
Mg2Si 833 K to 298 K

p-Bi2Te3 553 K to 301 K
SnSe 973 K to 373 K
PbTe 850 K to 320 K

Appendix A.3. Additional Information

Appendix A.3.1. Finding Individual Contributions to the Total T Profile

The partial T profiles are each found by equating κ(T) ∂
2T
∂x2 in Equation (1) to each of the other

corresponding terms, assuming isothermal boundary conditions and fixing all coefficients in the
equation according to the total T profile T(x). Thus, solving for the respective partial T profile reduces
to a double integration, where the first step provides the total amount of each partial heat contribution
to the thermal balance.
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As the partial T profiles can have opposite signs in amplitude and partially compensate for many
of the common TE materials (however, not always), the T profiles of a real material and the CPM may
be quite close, as in the example of n-type Mg2X, Figure 2b.

Appendix A.3.2. Contributions to
.

Qin

As both Joule and Thomson heat, after appearing inside the leg, will flow out, physically, as Fourier
heat, we have to consider in this discussion the pure Fourier heat QF,h = KΔT (with K =

〈
κ−1
〉−1A/L),

which is merely related to the thermal resistance of the leg and is constant along the leg, separately
from the Joule- and Thomson-related contributions. Accordingly, Qin is composed of

.
Qin =

.
QF,h +

.
Qπ,h −

.
Qτ,h −

.
QJ,h (A1)

The real Joule- and Thomson-related contributions, − .
Qτ,h and

.−QJ,h, to the inflowing hot side
heat are calculated by splitting the overall temperature profile T(x) into additive partial T profiles,
each related to one of the individual physical contributions. Partial Thomson T profiles of example
materials are plotted in Figure A2b. Evaluating −κh·

(
d
dx ΔTThomson

)
h

and −κh·
(

d
dx ΔTJoule

)
h

from the

partial T profiles gives
.

Qτ,h and
.

QJ,h, respectively.

Figure A2a shows the relative contribution of each heat to
.

Qin:
.

QF,h
.

Qin
,

.
Qπ,h

.
Qin

,−
.

QJ,h
.

Qin
,−

.
Qτ,h

.
Qin

.

This comparison reveals that Joule and Thomson heat contribute about 1–5% to
.

Qin, usually flowing
out, with their contributions being roughly of the same order. Figure A2a also shows the fraction of

Thomson heat and Joule heat distributed to the hot side (
.

Qτ,h
.

Qτ
and

.
QJ,h

.
QJ

).

In order to illustrate example situations of the distribution of Peltier and Thomson heat along the
leg, α(T) graphs for p-Mg2X and Bi2Te3 are given in Figure A2c,d, respectively. Due to the bowed
shape of the α(T) graph and relatively close values of αh to αc for p-Mg2X, the difference between
.

Qπ,h and
.

Q
CPM
π,h is almost negligible, but

.
Qτ,h amounts to more than twice the amount of

.
Qπ,h −

.
Q

CPM
π,h .

Nevertheless, this did not affect the efficiency deviation δηmax too much, as
.

Qτ,h is quite small in

absolute terms. In the case of Bi2Te3,
.

Q
CPM
π,h is even higher than

.
Qπ,h again due to the curved shape of

α(T), affecting the position of αTAv. However,
.

Qτ,h almost completely compensates for this Peltier heat
difference, keeping the influence on the efficiency deviation negligible.

Appendix A.4. Thomson Heat Distribution and Entropy

With the TEG leg, we discuss the entropy flow in a reversible system of Peltier heat transport
and Thomson heat exchange which is running on a non-equilibrium temperature background mainly
fixed by the continuous flow of Fourier heat. As released Thomson heat will be transported as Fourier
heat but is small in relation to the Fourier heat background (see Figure A2a), which is driven by the
temperature difference and the thermal resistance of the TE leg, we will treat the variation of the
temperature profile by the conducted Thomson heat as insignificant for the following consideration.

In the steady state, the entropy of the system remains constant; there is a continuous entropy
production by the dissipative heat transport from hot to cold and the balancing continuous entropy
export by transmitted Fourier heat (plus a negligible fraction arising from outflowing Joule heat).
Assuming ideal outer current leads with α = 0, there is no other entropy exchange at the hot and
cold sides.
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Figure A2. (a) Ratio of individual heat contributions to
.

Qin (Equation (A1)) calculated from the
corresponding partial temperature profiles (for comparison, all quantities are counted as positive when
flowing into the element) (left y-axis), and distribution factors (right y-axis) for Thomson and Joule
heat. (b) Thomson T profiles for all example materials (c)

.
S(T) diagram for p-Mg2X showing the area

between Iα(Th) and IαTAv (corresponding to the Peltier heat difference between the CPM and real
case), which is very small due to the shape of α(T). The position of the first peak in the Thomson
partial T profile is marked as a brown vertical line. (d)

.
S(T) diagram for Bi2Te3,where αTAv > α(Th).

Hence,
.

Q
CPM
π,h is higher than

.
Qπ,h.

In the CPM, we have a constant convective entropy flow αI throughout the element, equal to the
absorbed and released entropy rate αI by absorption and release of Peltier heat at the terminals. In a
real material, the absorbed entropy rate αhI equals the convective entropy flow at the hot side, and,
likewise, the amount of αcI at the cold side. The variation of α along the leg drives local Thomson heat
production d

.
Qτ = T dα

dT IdT = TIdα, contributing an entropy flow increment d
.
S = Idα. Thomson heat

flows to the hot and cold sides and the related total entropy exchange is (αh − αc)I = ΔαI. It distributes
by the fraction xh to the hot and cold sides:

Δ
.
Sτ,h = xh(αh − αc)I and Δ

.
Sτ,c = (1− xh)(αh − αc)I. (A2)

Driven by the gradient of the partial Thomson temperature profile, all Thomson heat released at
one side of a maximum (or minimum) of this profile will be exchanged to this side of the leg. With the
temperature Tτ,ex of this position and its Seebeck coefficient ατ,ex = α(Tτ,ex), the shares of the entropy
exchange which are bound to each of the sides are

Δ
.
Sτ,h = (αh − ατ,ex)I and Δ

.
Sτ,c = (ατ,ex − αc)I. (A3)

Multiplying both by the respective temperature of the side yields total Thomson heat:

.
Qτ = Th(αh − ατ,ex)I + Tc(ατ,ex − αc)I =

{
Thαh − Tcαc − ατ,ex(Th − Tc)

}
I = Δ

.
Qπ−

Iατ,exΔT.
(A4)

81



Entropy 2020, 22, 1128

Comparing Equation (A4) with the energy balance of reversible heat
.

Qτ = Δ
.

Qπ − IV0, we can
conclude that

ατ,exΔT = V0 = αΔT, thus ατ,ex = α (A5)

This gives us a rule for the temperature intervals over which the Thomson heat is flowing to either
side of the leg. Consequently, Thomson heat has to be integrated from the crossing point of the curve of
the Seebeck coefficient α(T) with its temperature average α. As a reversible approximation, this result
is approximate and not strict as we have neglected here that dissipative processes are involved when
Thomson heat is conducted to the leg sides. Below we will analyze these changes and find that these
are small, and thus the rule stated here on the position of ατ,ex, although not strict, is a good guide for
estimates of the distribution of Thomson heat. Indeed, as observed by comparison to exact numerical
calculations, this rule is almost perfectly fulfilled for all the example materials.

Within this reversible approximation, the Thomson heat flowing to the hot side is obtained as
.

Qτ,h = Th(αh − α)I. This would be equivalent to a complete compensation of the Peltier heat difference
between reality and the CPM, i.e., the vanishing axial redistribution of reversible heat which is
consistent with the simplifying assumption that the Thomson heat flowing to the outside is transmitted
free of dissipation, i.e., equivalent to reversible heat. Here, the (additional) T gradient related to the
flow of Thomson heat is neglected, whereas an underlying T profile related to an independent heat
flow (here, the background of Fourier heat transfer) does, in effect, not contribute to its dissipation.
We will see below that this happens as Thomson heat flowing to different sides will contribute almost
compensating shares to the entropy balance. What is neglected here is that the Thomson heat itself
when flowing to the ends of the leg will dissipate, according to the slight shift of the inner T profile it
is causing. Above, this T offset was separated and called the partial T profile due to Thomson heat,
ΔTThomson(x). Additionally, this omission will contribute to a weak deviation from the position rule
ατ,ex = α.

The dissipative part of the entropy transport to the sides of the leg is related to the T drop or
step-up between the location where an increment of Thomson heat d

.
Qτ is released and the side

temperature, Th or Tc. The entropy increment is released over a segment of the leg with the T increment

dT is d
.
S = Idα =

d
.

Qτ
T . With the transfer to the cold side, for example, the transmitted increment of

Thomson heat d
.

Qτ increases its entropy up to d
.

Sc =
d

.
Qτ
Tc

, and the according entropy gain is

dΔ
.

Sc = d
.

Sc − d
.
S =

d
.

Qτ

Tc
− d

.
Qτ

T
=

d
.

Qτ

TTc
(T − Tc) = d

.
S

T − Tc

Tc
(A6)

Summing over all Thomson heat flowing to that side, we have

Δ
.

Sc =
1
Tc

∫ Iα

Iαc

(T − Tc)d
.
S =

I
Tc

∫ α
αc

(T − Tc)dα =
I

Tc

∫ Tα

Tc

T
dα
dT

dT − I(α− αc) (A7)

Multiplying with the cold side temperature, Δ
.

Qτ,c = TcΔ
.

Sc =
∫ Tα

Tc
T dα

dT dT − I(α− αc)Tc gives
us the amount of Thomson heat that is just the difference from the Peltier–Thomson heat balance

of the CPM, Δ
.

Qτ,c =
.

Qτ,c −
( .
Q

CPM
π,c −

.
Qπ,c

)
, i.e., the part that we have identified as uncompensated

Peltier–Thomson heat in a real material. Note that
.

Q
CPM
π,c contains merely completely reversible

exchange of Peltier heat. Thus, the incomplete compensation of the Peltier–Thomson heat balance can
be understood as an effect of the partly dissipative character of the exchange of the Thomson heat in a
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real system when conducted to the side. Accordingly, with the same consideration for the hot side,

with d
.

Sh =
d

.
Qτ
Th

, we obtain

Δ
.

Sh = d
.

Sh − d
.
S =

d
.

Qτ

Th
− d

.
Qτ

T
=

I
Th

∫ αh

α
(T − Th)dα =

I
Th

∫ Th

Tα
T

dα
dT

dT − I(αh − α) (A8)

i.e., Δ
.

Sh gives a negative contribution to the entropy balance. This sounds contradictory to the second
law of thermodynamics but it is not, as the Thomson heat is not really flowing from a lower to a higher
temperature but, when released, reduces the T gradient of the underlying background of flowing
Fourier heat, thus reducing the Fourier heat flow by the amount of “upstreaming” Thomson heat.

The hot and cold side entropy changes together give

Δ
.
S = Δ

.
Sh + Δ

.
Sc =

I
Th

∫ αh
α

(T − Th)dα+ I
Tc

∫ α
αc
(T − Tc)dα = I

Tc

∫ Tα
Tc

T dα
dT dT+

I
Th

∫ Th
Tα

T dα
dT dT − I(αh − αc).

(A9)

With 1
Tc

∫ α
αc

Tdα>̃α− αc and 1
Th

∫ αh
α

Tdα<̃αh − αwe get I
Tc

∫ Tα
Tc

T dα
dT dT + I

Th

∫ Th
Tα

T dα
dT dT ≈I(αh − αc)

and thus Δ
.
S ≈ 0. Hence, assuming ατ,ex = α, the entropy balance of the inner Thomson heat transfer

as an offset of a much larger background Fourier heat flow is almost zero. This indeed confirms
our approach to deduce a rule for the local distribution of Thomson heat based on a reversible
approximation, i.e., assuming Δ

.
S ≈ 0, but also shows that the rule is not completely strict.
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Abstract: Besides the material research in the field of thermoelectrics, the way from a material to a functional
thermoelectric (TE) module comes alongside additional challenges. Thus, comprehension and optimization
of the properties and the design of a TE module are important tasks. In this work, different geometry
optimization strategies to reach maximum power output or maximum conversion efficiency are applied
and the resulting performances of various modules and respective materials are analyzed. A Bi2Te3-based
module, a half-Heusler-based module, and an oxide-based module are characterized via FEM simulations.
By this, a deviation of optimum power output and optimum conversion efficiency in dependence of
the diversity of thermoelectric materials is found. Additionally, for all modules, the respective fluxes
of entropy and charge as well as the corresponding fluxes of thermal and electrical energy within the
thermolegs are shown. The full understanding and enhancement of the performance of a TE module
may be further improved.

Keywords: thermoelectric materials; energy harvesting; thermoelectric generator; working points;
maximum electrical power point

1. Introduction

The direct energy conversion from wasted thermal energy into usable electrical energy via
thermoelectric (TE) modules has been extensively studied and improved in recent years. Such devices
benefit from long-term stability without the need of maintenance and they are quietly operating without
moving parts that may get damaged over time [1]. The main parts of research on thermoelectric energy
conversion are investigating and improving thermoelectric materials in order to reach high power output
and high conversion efficiency on the one hand [2,3] and the scalable and effective manufacturing of
devices on the other hand [4,5]. However, up to now, TE modules have not achieved characteristics that
justify the investment for a wide commercial usage. Especially, the design of the device, the optimization
of the cross-sectional area ratio, and thermal and electrical contact resistivity are crucial factors on the way
from a promising material to a functional device with high power output and conversion efficiency [6], even
if suitable thermoelectric materials are provided. The aim of the work is to improve the understanding
and the optimization of the working principle of TE modules based on finite element method (FEM)
simulations of several material combinations with the software ANSYS for various geometry optimization
strategies.

Entropy 2020, 22, 1233; doi:10.3390/e22111233 www.mdpi.com/journal/entropy
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1.1. Thermoelectric Materials

The thermoelectric energy conversion can be described by the coupling of the flux density of electric
charge jq and the flux density of entropy js. These fluxes are transmitted by the thermoelectric material
tensor, which represents the characteristics of the included thermoelectric materials with a cross-sectional
area A and length l, when simultaneously placed in a gradient of electrical potential ∇ϕ and a gradient of
temperature ∇T, as shown in Equation (1) [7,8].(

jq

js

)
=

A
l
·
(

σ σ · α

σ · α σ · α2 + ΛOC

)
·
(
−∇ϕ

−∇T

)
(1)

The energy conversion is therefore mainly based on three material parameters: the isothermal
electrical conductivity σ, the Seebeck coefficient α and the entropy conductivity at electrical open-circuit
ΛOC. In principle, all three quantities are tensors themselves, but, for homogeneous materials, they are
often treated as scalars [8,9]. The figure of merit f = zT [10,11] shown in Equation (2), which displays the
conversion efficiency of a thermoelectric material, is a function of the three material parameters.

f =
σ · α2

ΛOC
=

σ · α2

λOC
· T = zT (2)

Consequently, thermoelectric materials are usually desired to have a high power factor σα2 and
a simultaneously low open-circuited entropy conductivity ΛOC. Note that, due to the use of entropy
conductivity ΛOC instead of the heat conductivity λOC, the absolute temperature T does not occur explicitly
within the short form of Equation (2), but implicitly within the three material parameter σ(T), α(T) and
ΛOC(T) [11].

Within the thermoelectric materials, the respective flux density of thermal energy jE,th(x) and flux
density of electrical energy jE,el(x) at a certain point x across the length of the materials are given as
the product of the respective flux density of entropy jS(x) and flux density of electrical charge jq(x) and
the temperature T(x) and voltage U(x) = Δϕ(x) at this point (Equations (3) and (4)) [8]. Note that this
description is analyzed as a function of x, along a central line through the respective thermoleg (compare
Figure A1), so these values as a function of x are used as scalars.

jE,th(x) = jS(x) · T(x) (3)

jE,el(x) = jq(x) · U(x) (4)

These descriptions of electrical and thermal phenomena are used as a basis to analyze and improve
the understanding of thermoelectric modules within this work. Here, the explicit description of the flux
densities of charge and entropy and the resulting flux densities of thermal and electrical energy can be
useful in order to further understand and improve the thermoelectric energy conversion.

As thermoelectric materials, various classes of materials have been studied intensively including
bismuth telluride [12,13], which is commonly used for thermoelectric modules, other tellurides [14],
and selenides [15,16], intermetallic phases, such as as Zintl phases [17–19] and half-Heusler phases [20,21],
oxides and oxyselenides [22,23], and conductive polymers [24,25]. Each material class provides a different
thermoelectric characteristic, requires special treatments or fabrication and it is suitable in a certain application
temperature range [2]. In order to influence and improve the thermoelectric properties, band structure
modelling via doping and nanostructuring [26–28], segmentation of thermoelegs [29–31] and the utilization
of hybrid materials [32–34] are widely investigated.

The resulting thermoelectric performance of a material is usually described by the U-Iq-characteristic
(voltage-electrical current curve) and the resulting electrical power curve Pel-Iq. Here, two important
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material working points can be identified: the maximum electrical power point (MEPP) of a respective
material (the point where Pel = U · Iq reaches its maximum), which is given at half the open-circuited
voltage UOC, and half the short-circuited current Iq,SC and the maximum conversion efficiency point
(MCEP) of a respective material, which is a function of the figure of merit zT of the material. The MCEP
and MEPP drift apart with increasing figure of merit zT of the respective material, As shown in a previous
work [11] (Figure 1). Therefore, optimizing different parameters to influence the materials MEPP and
MCEP are important to effectively improve the performance of a resulting TE module. Furthermore,
this implies that not only the resulting conversion efficiency based on the figure of merit zT, but also the
resulting electrical power output, which is a function of the power factor σα2, is a key parameter. In fact,
the power factor should have at least the same significance as the figure of merit zT, as has been reported
before [2,35].

Figure 1. Normalized U-Iq and Pel-Iq characteristics of some hypothetic thermoelectric materials with a
zT of 0.5, 1, 2, and 4. The second-law energy conversion efficiency ηII,mat increases with increasing figure
of merit zT. The maximum conversion efficiency point (MCEP) is a function of the figure of merit zT and,
therefore, drifts apart from the maximum electrical power point (MEPP). Working points of short-circuit
(SC) with the short-circuit current Iq,SC and open-circuit (OC) with the open-circuit voltage UOC are marked.
Reworked from [11].

1.2. From Material to Device

In this work, the concept of the material working points MEPP and MCEP and the resulting
significance of figure of merit zT and power factor σα2 are transferred to a TE module. As described before,
the concept and design of a TE module also strongly influence the resulting performance. This is based on
several factors:

• The respective thermoelectric materials properties.
• The design of the respective device, the flexibility and the free volume.
• The aimed application temperature range, limiting the options for thermoelectric materials.
• Optimization factors, such as thermal- and electrical-contact resistivity, as well as the cross-sectional

area ratio between n- and p-type materials
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Especially, the respective geometry of the p- and n-type materials strongly influence the certain
MEPP and MCEPs of the materials and therefore the resulting performance of the TE module [6]. Often,
the geometry is optimized to a maximum figure of merit zT and the resulting An/Ap ratio is used for
simulations for example by Ouyang and Li [30]. For certain materials, this optimization, in fact, leads to
overlapping MCEP and MEPPs of the respective materials in a resulting module due to matching values of
the thermal conductivity λn = λp [36], which, however, is not always the case. Recently, Xing et al. [36] also
described that an optimization of TE modules for a high power output and an according materials choice
can strongly enhance the resulting properties when compared to an optimization for maximum energy
conversion efficiency. This corresponds to the assertion of the significance of the power factor. Therefore,
in this work, an analysis of different material combinations in a TE module is provided, based on the
analogous description of jE,th(x) and jE,el(x) shown above for three different optimization strategies: for
maximum zT, for matching Iq,SC (and, therefore, overlapping material working points), and for maximum
electrical power output. For this purpose, FEM simulations of various modules are provided both based
on materials with similar (Bi2Te3-based TE module and half-Heusler-based TE module), as well as with
very different thermoelectric properties (oxide-based TE module) of the n- and p-type materials.

2. Methods and Simulation

2.1. Materials and Modules for FEM Simulations

Table 1 shows the used materials. For all thermoelectric materials, literature data have been used. The
exact input values are shown in Tables A1–A3 in Appendix A. As a connector, a metal conductor made of
copper with 0.5 mm height, an electrical conductivity of 4.85 × 108 S m−1 and a thermal conductivity of
400 W m−1 K−1 was used. Figure 2 shows the resulting TE modules used for FEM simulations.

Table 1. Material combinations for the simulated modules with according literature for the thermoelectric
properties. The exact input values are shown in Tables A1–A3 in Appendix A. For all modules, a stable
temperature difference of 50 K has been assumed. For the calculation of the An/Ap ratios, a linear behavior
has been assumed and the calculation was done with the medium values of the respective temperature
range.

Module p-Type n-Type Thot/K Tcold/K

Module 1 Bi0.5Sb1.5Te3 [37] Bi2Te3-xSbx [38] 348 298
Module 2 FeNb0.88Hf0.12Sb [39] Hf0.6Zr0.4NiSn0.995Sb0.005 [40] 1000 950
Module 3 Ca3Co4O9 [41] In1.95Sn0.05O3 [41] 1075 1025
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Figure 2. Resulting modules characterized via finite elemente simulations (FEM)-simulations.
(a) Bi2Te3-based TE module 1, (b) half-Heusler-based TE module 2, and (c) oxide-based TE module 3
with three different An/Ap ratios. The colors refer to the respective temperatures (red: hot side, blue: cold
side). Note that the effective area An + Ap is constant for all modules and An/Ap ratios. As connector, the
characteristics of copper has been used in the simulation.

2.2. Optimization of Geometry

The An/Ap ratios for the simulated modules have been calculated for three different optimizations:
First, according to a zT optimization for maximum energy conversion efficiency that has been derived and
used before (Equation (5)) [30]. Here, ρn and ρp are the specific electrical resistivity and λn and λp the heat
conductivity of the n- and p-type materials, respectively:

[
An

Ap
]zT =

√
ρn

ρp
· λp

λn
(5)

Second, the [An
Ap ]matching Iq,SC ratio for overlapping material working points was calculated according

to Equation (6) (compare Equations (A1)–(A7) in Appendix B). Here, αn and αp are the Seebeck coefficient
of the n-type and p-type materials, respectively:

[
An

Ap
]matching Iq,SC =

αp

|αn| ·
ρn

ρp
(6)

Third, an optimization for maximum power output was conducted according to Xing et al. [36] via
Equation (7) (compare Equations (A8)–(A14) in Appendix C):

[
An

Ap
]power =

√
ρn

ρp
(7)

Additionally, the areas of the n- and p-type materials have been chosen for the same effective area
An + Ap for all modules. The maximum first-law energy conversion efficiency ηI,TEG,max for all optimized
geometries have been calculated from the thermoelectric properties of the materials [9,11,30] (compare
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Equations (A15)–(A19) in Appendix D). The length of all thermolegs was chosen to be l = 2 mm, as
otherwise there would have been too many varying parameters and a fixed and matching length for n-
and p-type is reasonable for a functional TE module.

2.3. Simulation Parameters

The software ANSYS Mechanical (Version 2020 R1), which is based on the finite element method, is
used in order to simulate the TE modules. Here, a steady-state thermal-electrical conduction analysis that
allows for a simultaneous solution of thermal and electrical fields was chosen. After setting the material
parameters for the n- and p-type thermolegs, the following boundary conditions for the simulation were
set: the temperature of the cold junction, the ambient temperature that is equal to the temperature of the
cold junction, the side at zero potential, and the side that determines the value of the electric current; all of
the remaining faces were set for free convection in air with the heat transfer coefficient with a typical value
of 20 W m−2 K−1 [42].

The simulation process was divided into two stages. First, a U-Iq curve was taken in order to evaluate
the general characteristics of the TE module. By changing the value of the electrical current that can flow
through the TE module, the effect of the external load on the voltage is simulated. Using the U-Iq curve,
the electrical power Pel was calculated and a Pel-Iq curve was constructed to determine the MEPP. Then,
to study the specific characteristics of the TE module at the MEPP, the following four distributions were
simulated: temperature, flux density of thermal energy, electrical voltage, and flux density of charge.
From each distribution, the values alongside the center of the thermoleg have been calculated. For these
positions inside the leg, the local entropy flux density was calculated from the local temperature and local
flux density of thermal energy according to Equation (3). The values of the electrical voltage and the local
flux density of electrical charge were used in order to calculate the flux density of the electrical energy
according to Equation (4). As a result, a description of all parameters as a function of the position x, along a
central line through the respective thermoleg, is received. The corresponding images of the distribution of
the temperature T(x), the voltage U(x), flux density of thermal energy jE,th(x), and flux density of electrical
charge jq(x) within the thermolegs are shown in Figures A2–A6 in the Appendix E.

2.4. Notes on Limitations

For all material parameters, a linear behavior within the applied temperature range has been assumed
and the average value has been used for the calculation of the An/Ap ratio. Over a relatively small
temperature difference of 50 K, the assumption of linear behavior of the thermoelectric parameters can
be made, but, for exact simulations, the respective behavior has to be analyzed in detail for each specific
case. Because the maximum temperature difference in the simulation was only 50 K and the maximum
application temperature was about 1000 K, the dominant mechanism of heat transfer is convection, so the
influence of thermal radiation was not considered. Note that, for temperatures above 1000 K and if ceramic
substrates are used on top and at the bottom, the thermal radiation becomes increasingly important and
has to be considered if an application at higher temperatures is aimed. For all of the simulated modules,
an active cooling with a stable temperature difference of 50 K was assumed. Although a matching length
l for both thermolegs is reasonable, this may also be optimized, since the length strongly influences the
U–Iq-curve as well as the temperature difference, if no active cooling with a stable temperature difference
is applied. Additionally, as mentioned before, the electric and thermal contact resistivity between each
individual thermoleg and the connector is an important parameter, which has to be investigated and
optimized for each individual case. To allow for comparison, ideal contacts are assumed in this work.
The results in this work are specifically shown for a thermoelectric module in generator mode, which,
however, may also apply for the entropy pump mode in thermoelectric coolers. For the thermoelectric
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materials, the respective material working points are also correlated to the material properties [11], but, for
the thermoelectric modules in entropy pump mode, this is yet to be proven.

3. Results and Discussion

As material combinations, a Bi2Te3-based TE module (module 1), a half-Heusler-based TE module
(module 2) and an oxide-based TE module (module 3) were chosen. The respective optimized geometries
An/Ap for maximum zT, matching Iq,SC and for maximum electrical power are shown in Table 2. For
module 1 and 2, all of the optimizations led to very similar An/Ap ratios. Therefore, only the zT-optimized
modules have been simulated. For module 3, the resulting An/Ap ratios vary widely, so simulations of
this module were done for all the calculated optimized geometries.

Table 2. Resulting optimized geometries according to the zT optimization, matching Iq,SC and power
optimization. For the values in brackets, no simulations were carried out, due to insignificant deviation
from the zT optimization.

Module [ An
Ap

]zT [ An
Ap

]matching Iq,SC
[ An

Ap
]power

Module 1 1.0345 (1.0745) (1.0459)
Module 2 1.0831 (1.0969) (1.0308)
Module 3 0.0596 0.1306 0.2433

3.1. Similar Material Properties

For the materials that were chosen for module 1 and 2, the optimizations of the An/Ap ratios for
maximum zT, matching material working points and for maximum power output all result in ratios near 1,
with only a slight variation. This is a result of the fairly similar thermoelectric properties of the respective
n- and p-types. Therefore, a fixed An/Ap ratio of 1.04 and 1.08 are used for the simulations of module 1
and module 2, respectively. Note that, although the calculated optimum An/Ap ratios for module 1 and 2
all are close together, they are not the same, meaning that an optimization for maximum power output
may still result in a slightly higher power output of the respective module compared to a zT optimization.
However, the effect is much stronger for the oxide-based module 3, which is the reason why this module
is analyzed in depth for all three optimized geometries.

3.1.1. Bi2Te3-Based TE Module

For module 1, Bi2Te3-xSbx [38] and Bi0.5Sb1.5Te3 [37] were chosen as n- and p-type materials,
respectively. As An/Ap ratio, the zT-optimized ratio of 1.04 was used in the simulation. Figure 3 shows
the simulated U-Iq characteristics and the electrical power output of the Bi2Te3-based TE module and the
respective thermoelectric parameters across the length of the respective legs. The working points of the p-
and n-type material with a zT-optimized An/Ap ratio show a good overlap. This results in a high electrical
power output of the TE module with a maximum power density ωel,max,TEG of approximately 124.5 mW
cm−2 at the applied temperature difference of 50 K. The individual fluxes that are within in the p-type and
n-type thermolegs are shown in Figure 3c–h. The temperature is set to be 348 K at the hot side and 298 K
at the cold side. The entropy flux density jS(x) and therefore also the thermal energy flux density jE,th(x)
are very similar in the respective legs, due to the similar thermal conductivity of the chosen materials.
At the applied temperature difference of 50 K, a voltage U(x) of 11 mV is achieved in one thermocouple.
Analogous to the entropy flux density, the electrical flux density jq(x) is also similar in the p-type and
n-type thermolegs. In one thermocouple, this results in an electrical energy flux density jE,el(x) of 2.4 ×
10−3 W m−2. Note that the dashed lines presented in Figure 3c–h represent the metallic connector between
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the p-type and n-type materials, so both materials are not in direct contact. Thus the different fluxes do not
necessarily have the same value at the dashed line.

Figure 3. FEM simulations of module 1 (p-type Bi0.5Sb1.5Te3 and n-type Bi2Te3-xSbx) with a hot side
temperature of 348 K and cold side temperature of 298 K. (a) U-Iq characteristics and (b) electrical power
output Pel–Iq of the module. The respective MEPPs of the materials overlap and result in a high power
output of the TE module. Thermoelectric characteristics of the respective materials as a function of the
length of the respective legs: (c) temperature T(x), (d) entropy flux density jS(x), (e) thermal energy flux
density jE,th(x), (f) voltage U(x), (g) electrical flux density jq(x), and (h) electrical energy flux density jE,el(x)
trend throughout one thermocouple. Note that the dashed line in (c–h) represents the metallic connector
between the p-type and n-type materials. The simulated distributions are shown in Figure A2 in Appendix
E.

3.1.2. Half-Heusler-Based TE Module

Figure 4 shows the simulated U-Iq characteristics and the electrical power output of the
half-Heusler-based TE module and the respective thermoelectric parameters across the length of the
respective legs. For n- and p-type materials, Hf0.6Zr0.4NiSn0.995Sb0.005 [40] and FeNb0.88Hf0.12Sb [39] were
chosen.
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Figure 4. FEM simulations of module 2 (p-type FeNb0.88Hf0.12Sb and n-type Hf0.6Zr0.4NiSn0.995Sb0.005)
with a hot side temperature of 1000 K and cold side temperature of 950 K. (a) U-Iq characteristics and (b)
electrical power output Pel–Iq of the module. The respective MEPPs of the materials overlap and result in a
high power output of the module. Thermoelectric characteristics of the respective materials as a function of
the length of the respective legs: (c) temperature T(x), (d) entropy flux density jS(x), (e) thermal energy flux
density jE,th(x), (f) voltage U(x), (g) electrical flux density jq(x), and (h) electrical energy flux density jE,el(x)
trend throughout one thermocouple. Note that the dashed line in (c–h) represent the metallic connector
between the p-type and n-type materials. The simulated distributions are shown in Figure A3 in Appendix
E.

Analogous to the Bi2Te3-based module, the materials exhibit similar thermoelectric properties and
the resulting An/Ap ratio is still near 1. For the simulations, the zT-optimized An/Ap ratio of 1.08 was
used. The material working points also show a good overlap as a result of the zT optimization. Therefore,
the module’s MEPP and MCEP are also close together. The TE module reaches a high electrical power
output of approximately 51.1 mW. With an effective area of 0.334 cm2, this corresponds to a similarly
high maximum power density ωel,max,TEG of 153.14 mW cm−2, which is slightly higher compared to the
Bi2Te3-based module 1. The individual fluxes within in the p-type and n-type thermolegs are shown in
Figure 4c–h. The temperature is set to be 1000 K at the hot side and 950 K at the cold side. At the applied
50 K temperature difference, a voltage U(x) of 10.54 mV can be reached, which is slightly lower compared
to the Bi2Te3-based module, as a result of the slightly lower Seebeck coefficient of the n-type material. The
entropy flux density jS(x) of the p-type is slightly higher when compared to the n-type thermoleg, due
to the higher thermal conductivity of the p-type material. Analogously, the electrical flux density jq(x) is
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also slightly higher in the p-type material, due to the higher electrical conductivity of the p-type material.
In one thermocouple, a thermal energy flux density jE,th(x) of 16 × 103 W m−2 and an electrical energy
flux density jE,el(x) of 2.9 × 103 W m−2 are reached, both being higher when compared to the Bi2Te3-based
module, due to the higher values of electrical and thermal conductivity of the respective materials.

Table 3 summarizes the simulated characteristics of the Bi2Te3-based and half-Heusler-based TE
modules. The respective material working points are close together, which results in a high electrical power
output and conversion efficiency of both modules. However, the Bi2Te3-based module 1 reaches a higher
conversion efficiency of 2.5%, while the half-Heusler based module 2 reaches a higher power output of up
to 153 mW cm−2. This is the expected behavior, due to the higher power factor, but simultaneously higher
thermal conductivity of the half-Heusler materials. This also displays the aforementioned importance
of the power factor (for power output), which, for certain applications, may be equally important as the
figure of merit zT (for efficiency).

Table 3. Resulting maximum electrical power output Pel,max,TEG, electrical power density ωel,max,TEG and
maximum first-law energy conversion efficiency ηI,TEG,max of module 1 (Bi2Te3) and module 2 (half-Heusler
materials) for zT-optimized geometry.

Module Module MEPP/A Pel,max,TEG/mW ωel,max,TEG/mW cm−2 ηI,TEG,max

Module 1 3.75 41.60 124.50 2.50
Module 2 4.72 51.10 153.14 0.97

3.2. Dissimilar Material Properties

For n- and p-type materials of module 3, In1.995Sn0.05O3 and Ca3Co4O9 [41] were chosen. For these
materials, the optimizations of the An/Ap ratios for maximum zT, matching Iq,SC and for maximum power
output result in dissimilar ratios of 0.06, 0.13, and 0.24, respectively. Therefore, modules with all calculated
An/Ap ratios were simulated.

Oxide-Based TE Module

Figure 5 shows the simulated U-Iq characteristics and the electrical power output of the
Ca3Co4O9-In1.95Sn0.05O2 TE module and the thermoelectric parameters across the length of the respective
legs. Here, the zT optimization of the An/Ap ratio does not result in an overlap of the respective material
working points. The short-circuited electrical current Iq,SC of the p-type Ca3Co4O9 is approximately twice
the short-circuited current Iq,SC of the n-type In1.95Sn0.05O2. Therefore, the resulting MEPP of the TE
module is located between the respective material working points, and the power output of the module is
only slightly higher when compared to the power output of the p-type Ca3Co4O9 leg. With an effective
area of 0.3332 cm2 the simulated TE module reaches a maximum electrical power density ωel,max,TEG of
approximately 4.5 mW cm−2. The individual fluxes within in the p-type and n-type thermolegs are shown
in Figure 4c–h. The temperature difference was again set to 50 K, with a hot side temperature of 1075 K
and a cold side temperature of 1025 K. The strong difference of the Seebeck coefficient of n- and p-type
materials is displayed in the distribution of the voltage U(x). In the p-type material, a voltage of 6.6 mV is
reached, while, in the n-type material, the voltage only increases by 1 mV to 7.6 mV. The strong difference
of thermoelectric properties of p- and n-type materials is also displayed in the flux density of charge and
flux density of entropy, both being higher in the n-type In1.995Sn0.05O3 due to the higher electrical and
thermal conductivity. Therefore, the same behavior is noticeable in the flux densities of thermal energy
and electrical energy.
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Figure 5. FEM simulations of the zT-optimized module 3 (p-type Ca3Co4O9 and n-type In1.95Sn0.05O3)
with a hot side temperature of 1050 K and cold side temperature of 1000 K. (a) U-Iq characteristics and
(b) electrical power output Pel-Iq of the module. Thermoelectric characteristics of the respective materials
as a function of the length of the respective legs: (c) temperature T(x), (d) entropy flux density jS(x), (e)
thermal energy flux density jE,th(x), (f) voltage U(x), (g) electrical flux density jq(x), and (h) electrical energy
flux density jE,el(x) trend throughout one thermocouple. Note, that the dashed line in (c–h) represent the
metallic connector between the p-type and n-type materials. The simulated distributions are shown in
Figure A4 in Appendix E.

Figure 6 shows the simulated U-Iq characteristics and the electrical power output of the
Ca3Co4O9–In1.95Sn0.05O2 TE module and the respective thermoelectric parameters across the length
of the respective legs for an optimized An/Ap ratio for matching Iq,SC. As a result of this optimization,
the module MEPP is also similar to the both materials’ working points and the power output of the
module is already significantly higher than of the respective materials. With an effective area of 0.333
cm2 a maximum electrical power density ωel,max,TEG of approximately 5.64 mW cm−2 can be reached.
The individual fluxes within in the p-type and n-type thermolegs for the module optimized for matching
Iq,SC are shown in Figure 6c–h. When compared to the zT optimization, the larger area of the n-type
In1.995Sn0.05O3 results in a bigger impact of the material, displayed in a higher value of voltage reached
in the n-type material. Additionally, both the entropy flux density (slightly) as well as the electrical flux
density (significantly) of the n-type material are lower, due to the larger area, which results in the same
trend for the flux densities of thermal energy and electrical energy.
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Figure 6. FEM simulations of the module 3 (p-type Ca3Co4O9 and n-type In1.95Sn0.05O3) with matching
Iq,SC with a hot side temperature of 1050 K and cold side temperature of 1000 K. (a) U–Iq characteristics and
(b) electrical power output Pel-Iq of the module. Thermoelectric characteristics of the respective materials
as a function of the length of the respective legs: (c) temperature T(x), (d) entropy flux density jS(x), (e)
thermal energy flux density jE,th(x), (f) voltage U(x), (g) electrical flux density jq(x), and (h) electrical energy
flux density jE,el(x) trend throughout one thermocouple. Note, that the dashed line in (c–h) represent the
metallic connector between the p-type and n-type materials. The simulated distributions are shown in
Figure A5 in Appendix E.

Finally, in Figure 7, the power optimization of the An/Ap ratio according to Equation (7) is shown.
Again, the material working points do not overlap, but as a result of the increasing cross-sectional area
of the n-type In1.95Sn0.05O2, the electrical power output of the the n-type material is significantly higher
compared to the other two optimization strategies. In fact, both materials reach a similar electrical power
output Pel,max of about 1 mW, resulting in a maximum electrical power output Pel,max,TEG of about 2 mW
for the module. This corresponds to a maximum electrical power density ωel,max,TEG of 5.89 mW cm−2.
The individual fluxes within in the p-type and n-type thermolegs for the power-optimized module are
shown in Figure 7c–h. Here, the trend from the module optimized for matching Iq,SC continues. The larger
area of the n-type material results in a higher voltage U(x) and as well as decreasing flux densities of
entropy jS(x) (slightly lower) and charge jq(x) (significantly lower).
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Figure 7. FEM simulations of the power-optimized module 3 (p-type Ca3Co4O9 and n-type In1.95Sn0.05O3)
with a hot side temperature of 1050 K and cold side temperature of 1000 K. (a) U-Iq characteristics and
(b) electrical power output Pel-Iq of the module. Thermoelectric characteristics of the respective materials
as a function of the length of the respective legs: (c) temperature T(x), (d) entropy flux density jS(x), (e)
thermal energy flux density jE,th(x), (f) voltage U(x), (g) electrical flux density jq(x), and (h) electrical energy
flux density jE,el(x) trend throughout one thermocouple. Note, that the dashed line in (c–h) represent the
metallic connector between the p-type and n-type materials. The simulated distributions are shown in
Figure A6 in Appendix E.

Table 4 summarizes the simulated characteristics of the zT-optimized Ca3Co4O9-In1.95Sn0.05O2 TE
module, the optimized module for matching Iq,SC, as well as for the power-optimized geometry. The
module with power-optimized An/Ap ratio reaches a maximum power density of 5.89 mW cm−2, which is
slightly higher compared to the module with overlapping material working points and about 30% higher
when compared to the module with zT-optimized geometry. Additionally, the maximum first-law energy
conversion efficiency ηI,TEG,max for all three optimized geometries have been calculated. As expected, the
zT-optimized module reaches the highest ηI,TEG,max with 0.13%, while the module optimized for matching
Iq,SC and the power-optimized module show slightly lower efficiencies of 0.11% and 0.09%, respectively.
This shows the contrary trend of a higher efficiency (for the zT-optimized module) and of higher power
density (for the power-optimized module).
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Table 4. Resulting maximum electrical power output Pel,max,TEG, electrical power density ωel,max,TEG,
and maximum first-law energy conversion efficiency ηI,TEG,max of module 3 with optimized geometry for
maximum zT, matching Iq,SC and maximum power output. The resulting power density increases due to
the overlapping material working points.

Module Module MEPP/mA Pel,max,TEG/mW ωel,max,TEG/mW cm−2 ηI,TEG,max

zT-optimized 189.90 1.50 4.51 0.13%
same Iq,SC 239.89 1.86 5.64 0.11%

power-optimized 252.00 1.96 5.89 0.09%

As a result, module 3 is build based on the same materials with identical thermoelectric properties, but
it is either optimized for maximum zT, matching Iq,SC or maximum power output. Figure 8 summarizes
the results of all three optimization strategies. The zT optimization leads to a module with the highest
conversion efficiency, but the lowest electrical power output. Contrary, the power optimization leads
to a module with the the highest electrical power output, but the lowest conversion efficiency. The
module with optimized geometry for matching Iq,SC is in between, but closer to the maximum electrical
power output. This also corresponds to the results of Xing et al. [36], who observed a similar increase in
the maximum electrical power output with a respective geometry optimization when compared to an
optimization for maximum zT. Note that this correlation between the deviation of optimum power output
and optimum conversion efficiency is here shown on the example of module 3, but also applies for the
other TE modules. As shown in Table 2, the optimum An/Ap ratio for the Bi2Te3-based module 1 and the
half-Heusler-based module 2 also varies slightly for the different optimization strategies. Therefore, also
for quite similar thermoelectric materials, a slight deviation between optimum power output and energy
conversion efficiency can be expected.

Figure 8. Comparison of all three optimization strategies for module 3 (dash: zT-optimized, dash-dot:
matching Iq,SC, line: power-optimized). The power-optimized module shows a significantly higher power
output when compared to zT-optimized module. The module with overlapping material working points is
in between, but closer to the maximum power output.

4. Conclusions

Three different optimization strategies for the An/Ap ratio were applied, whereas, for certain modules,
they all resulted in different geometries. For module 3, based on strongly dissimilar thermoelectric
properties of the p-type Ca3Co4O9 and the n-type In1.95Sn0.05O3, the geometry optimizations show strongly
dissimilar An/Ap ratios. Here, a strong deviation between high conversion efficiency (with zT-optimized
geometry) and high power output (with power-optimized geometry) was found. The power optimization
resulted in a 30% higher power output compared to the zT-optimized counterpart. For modules with
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more similar thermoelectric properties of the n- and p-type, which, in this work, are the Bi2Te3-based
module 1 and the half-Heusler-based module 2, the respective optimum geometries only differ slightly,
but also show this deviation in the geometry optimization. This emphasizes that, for TE module concepts,
various optimization strategies may be applied, either to target high conversion efficiency or high power
output. This phenomena correlates to the diversity of the thermoelectric materials that were used for the
TE module. Additionally, this also underlines the similar importance of the power factor of thermoelectric
materials, to target a high power output, when compared to the figure of merit zT.
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Abbreviations

The following abbreviations are used in this manuscript:

TE module thermoelectric module
TEG thermoelectric generator
MCEP maximum conversion efficiency point
MEPP maximum electrical power point
OC (electrical) open-circuit
SC (electrical) short-circuit

Symbols

The following symbols are used in this manuscript:

Geometry

A cross-sectional area of thermoelectric material
An cross-sectional area of n-type material
Ap cross-sectional area of p-type material
l length of thermoelectric material
ln length of n-type material
lp length of p-type material
An
Ap ratio of the cross-sectional areas of the n-type and p-type materials

[An
Ap ]zT ratio of the cross-sectional areas of the n-type and p-type materials for maximum zT

[An
Ap ]matching Iq,SC ratio of the cross-sectional areas of the n-type and p-type materials for matching Iq,SC

[An
Ap ]power ratio of the cross-sectional areas of the n-type and p-type materials for maximum power
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Material properties

α Seebeck coefficient
αn Seebeck coefficient of n-type material
αp Seebeck coefficient of p-type material
λn heat conductivity of n-type material
λp heat conductivity of p-type material
λOC heat conductivity under electrically open-circuited (OC) conditions
ΛOC entropy conductivity under electrically open-circuited (OC) conditions
ρ specific electrical resistivity
ρn specific electrical resistivity of n-type material
ρp specific electrical resistivity of p-type material
Rn resistance of n-type material
Rp resistance of p-type material
σ isothermal electrical conductivity
f figure of merit (as introduced by Zener [43]
zT figure of merit (as introduced by Ioffe [10])

Thermodynamic potentials

ϕ electric potential
T absolute temperature
Tcold temperature of the thermoelectric material at its cold side
Thot temperature of the thermoelectric material at its hot side
∇T gradient of the temperature
ΔT difference of temperature (along the thermoelectric material)
U voltage
UOC voltage at electrically open-circuited (OC) conditions

Fluxes

i normalized electrical current
Iq electrical current
Iq,SC electrical current at electrically short-circuited (SC) conditions
jq electrical flux density
js entropy flux density
jE,el electrical energy flux density
jE,th thermal energy flux density
q electric charge
S entropy
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Performance

Pel,max maximum electrical power output of the thermoelectric material (at MEPP)
Pel,max,TEG maximum electrical power output of the module (at MEPP)
ωel,max,TEG maximum electrical power density of the module (at MEPP)
Iq,MEPP current Iq at the MEPP
Iq,MEPP,n current Iq at the MEPP of the n-type material
Iq,MEPP,p current Iq at the MEPP of the p-type material
UMEPP,TEG voltage U at the MEPP of the TE module
Iq,MEPP,TEG current Iq at the MEPP of the TE module
RTEG internal resistance of the TE module
ηII,mat second-law energy conversion efficiency of a thermoelectric material
ηI,TEG,max maximum first-law energy conversion efficiency of the TE module
ηCarnot Carnot efficiency of the TE module
ηII,TEG,max maximum second-law energy conversion efficiency of the TE module

Appendix A. Input Data for FEM-Simulation

Table A1. Thermoelectric parameters of module 1 (p-type Bi0.5Sb1.5Te3 [37], n-type Bi2Te3-xSbx [38]) used
for FEM simulations. For all material parameters a linear behavior within the applied temperature range
has been assumed and the average value has been used for the calculation of the An/Ap ratio.

p-Type n-Type

T/K 348 298 348 298
σ/S cm−1 760 990 711 875
α/μV K−1 227 213 −228 −220

λOC/W m−1 K−1 1.31 1.39 1.40 1.35
ΛOC/W m−1 K−2 3.76 × 10−3 4.66 × 10−3 4.02 × 10−3 4.53 × 10−3

Table A2. Thermoelectric parameters of module 2 (p-type FeNb0.88Hf0.12Sb [39], n-type
Hf0.6Zr0.4NiSn0.995Sb0.005 [40]) used for FEM simulations. For all material parameters a linear behavior
within the applied temperature range has been assumed and the average value has been used for the
calculation of the An/Ap ratio.

p-Type n-Type

T/K 1000 950 1000 950
σ/S cm−1 1053 1158 960 1000
α/μV K−1 223 217 −212 −219

λOC/W m−1 K−1 4.33 4.44 4.16 3.90
ΛOC/W m−1 K−2 4.33 × 10−3 4.76 × 10−3 4.16 × 10−3 4.11 × 10−3

Table A3. Thermoelectric parameters of module 3 (p-type Ca3Co4O9 [41], n-type In1.95Sn0.05O3 [41]) used
for FEM simulations. For all material parameters a linear behavior within the applied temperature range
has been assumed and the average value has been used for the calculation of the An/Ap ratio.

p-Type n-Type

T/K 1075 1025 1075 1025
σ/S cm−1 29.63 31.48 609.26 448.15
α/μV K−1 202.83 225.74 −100.94 −92.45

λOC/W m−1 K−1 0.63 0.66 10.70 10.94
ΛOC/W m−1 K−2 0.59 × 10−3 0.64 × 10−3 9.95 × 10−3 10.67 × 10−3
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Appendix B. An/Ap Optimization for Matching Short-Circuit Current

Here, the optimized An/Ap ratio for matching Iq,SC is derived. The idea of this optimization is as
follows: the working points of the respective thermoelectric materials overlap, if the flux of charge in both
materials is the same. Then, the working points of the materials overlap, so

Iq,MEPP,n = Iq,MEPP,p (A1)

By including

Iq,MEPP,n =
|αn|(ΔT)2

2Rn
(A2)

and

Iq,MEPP,p =
αp(ΔT)2

2Rp
(A3)

with the electrical resistance of the materials

Rn = ρn · ln

An
(A4)

and

Rp = ρp · lp

Ap
(A5)

the following relation is received:

|αn| · (ΔT)2

2ρn
ln
An

=
αp · (ΔT)2

2ρp
lp
Ap

(A6)

After rearrangement and with the assumed same length of the thermolegs ln = lp the result for a
An/Ap ratio for matching Iq,SC is:

An

Ap
=

αp

|αn| ·
ρn

ρp
(A7)

Appendix C. An/Ap Optimization for Maximum Power

The maximum power output of a TE module is a function of the electrical current Iq of the module
at the MEPP Iq,MEPP,TEG and the voltage U of the module at the MEPP UMEPP,TEG, which are calculated
according to Equations (A8) and (A9):

Iq,MEPP,TEG =
(αp − αn) · ΔT

2R
(A8)

UMEPP,TEG =
(αp − αn) · ΔT

2
(A9)

From this, the maximum electrical power output of a module at the MEPP can be derived as

Pel,max,TEG =
(αp − αn)2 · (ΔT)2

4RTEG
(A10)
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with the internal electrical resistance of the module RTEG

RTEG = ρp
lp

Ap
+ ρn

ln

An
(A11)

Considering, that the effecive area A is a sum of the cross-sectional areas An and Ap, Equation (A11)
can be differentiated and has to be equal 0 for its maximum. So

− (αp − αn)
2(ΔT)2 ·

ρplp
(A+Ap)2

− ρnln
Ap2

(
ρplp
Ap + ρnln

A−Ap )
2
= 0 (A12)

This Equation (A12) is zero, if the numerator of the fraction is zero, so

ρplp

(A + Ap)2 − ρnln

Ap2 = 0 (A13)

After rearrangement, the optimum An/Ap ratio for maximum power output is received as

An

Ap
=

√
ρn

ρp
(A14)

The final Equation (A14) derived corresponds to the reported ratio for maximum power output of
Xing et al. [36] .

Appendix D. Efficiency of the Module

The maximum first-law efficiency ηI,TEG,max of a module is the product of the Carnot efficiency ηCarnot

and the second-law efficiency ηII,TEG,max [9,11] and can be determined as

ηI,TEG,max = ηCarnot · ηII,TEG,max =
Thot − Tcold

Thot
·
√

1 + ZT̄ − 1√
1 + ZT̄ + 1

(A15)

Here, T̄ is the average temperature and Z is a function of the materials thermoelectric parameters:

Z =
α2

R · K
(A16)

with

α = (αp − αn) (A17)

R =
1

σp
· lp

Ap
+

1
σn

· ln

An
(A18)

and

K = λp · Ap

lp
+ λn · An

ln
(A19)

So, the maximum first-law efficiency ηI,TEG,max of a module can be determined as a function of the
materials thermoelectric parameter and the respective cross-sectional areas An and Ap [30].
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Appendix E. Simulated Module Fluxes

Figure A1. Analyzed path x along a central line through the respective thermoleg on the example of module
1.

Figure A2. Distribution of (a) temperature T(x), (b,c) flux density of thermal energy jE,th(x), (d) voltage U(x)
and (e,f) flux density of electrical charge jq(x) in module 1.

Figure A3. Distribution of (a) temperature T(x), (b,c) flux density of thermal energy jE,th(x), (d) voltage U(x)
and (e,f) flux density of electrical charge jq(x) in module 2.
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Figure A4. Distribution of (a) temperature T(x), (b,c) flux density of thermal energy jE,th(x), (d) voltage U(x)
and (e,f) flux density of electrical charge jq(x) in module 3 with zT-optimized geometry.

Figure A5. Distribution of (a) temperature T(x), (b,c) flux density of thermal energy jE,th(x), (d) voltage U(x)
and (e,f) flux density of electrical charge jq(x) in module 3 with geometry for matching Iq,SC.

Figure A6. Distribution of (a) temperature T(x), (b,c) flux density of thermal energy jE,th(x), (d) voltage U(x)
and (e,f) flux density of electrical charge jq(x) in module 3 with power-optimized geometry.
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Abstract: We derive time evolution equations, namely the Schrödinger-like equations and the
Klein–Gordon equations for coherent fields and the Kadanoff–Baym (KB) equations for quantum
fluctuations, in quantum electrodynamics (QED) with electric dipoles in 2 + 1 dimensions. Next
we introduce a kinetic entropy current based on the KB equations in the first order of the gradient
expansion. We show the H-theorem for the leading-order self-energy in the coupling expansion (the
Hartree–Fock approximation). We show conserved energy in the spatially homogeneous systems
in the time evolution. We derive aspects of the super-radiance and the equilibration in our single
Lagrangian. Our analysis can be applied to quantum brain dynamics, that is QED, with water electric
dipoles. The total energy consumption to maintain super-radiant states in microtubules seems to be
within the energy consumption to maintain the ordered systems in a brain.

Keywords: non-equilibrium quantum field theory; quantum brain dynamics; Kadanoff–Baym
equation; entropy; super-radiance

1. Introduction

Numerous attempts to understand memory in a brain have been made over one hundred years
starting at the end of 19th century. Nevertheless, the concrete mechanism of memory still remains an
open question in conventional neuroscience [1–3]. Conventional neuroscience is based on classical
mechanics with neurons connected by synapses. However, we still cannot answer how limited
connections between neurons describe mass excitations in a brain in classical neuron doctrine.

Quantum field theory (QFT) of the brain or quantum brain dynamics (QBD), is one of the
hypotheses expected to describe the mechanism of memory in the brain [4–6]. Experimentally, several
properties of memory, namely the diversity, the long-term but imperfect stability and nonlocality
(Memory is diffused and non-localized in several domains in a brain. It does not disappear due to
the destruction in a particular local domain. The term ‘nonlocality’ does not indicate nonlocality in
entanglement in quantum mechanics.), are suggested in [7–9]. The QBD can describe these properties
by adopting infinitely physically or unitarily inequivalent vacua in QFT, distinguished from quantum
mechanics which cannot describe unitarily inequivalence. Unitarily inequivalence represents the
emergence of the diversity of phases and allows the possibility of spontaneous symmetry breaking
(SSB) [10–13]. The vacua or the ground states appearing in SSB describe the stability of the states.
Furthermore, the QFT can describe both microscopic degrees of freedom and macroscopic matter [10].
To describe stored information, we can adopt the macroscopic ordered states in QFT with SSB involving
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long-range correlation via Nambu–Goldstone (NG) quanta. In 1967, Ricciardi and Umezawa proposed
a quantum field theoretical approach to describe memory in a brain [14]. They adopted the SSB with
long-range correlations mediated by NG quanta in QFT. Stuart et al. developed QBD by assuming
a brain as a mixed system of classical neurons and quantum degrees of freedom, namely corticons
and exchange bosons [15,16]. The vacua appearing in SSB, the macroscopic order, are interpreted as
the memory storage in QBD. The finite number of excitations of NG modes represents the memory
retrieval. Around the same time, Fröhlich proposed the application of a theory of electric dipoles to
the study of biological systems [17–22]. He suggested a theory of the emergence of a giant dipole in
open systems with breakdown of rotational symmetry of dipoles where dipoles are aligned in the
same direction (the ordered states with coherent wave propagation of dipole oscillation in the Fröhrich
condensate). In 1976, Davydov and Kislukha studied a theory of solitary wave propagation in protein
chains, called the Davydov soliton [23]. It is found that the theory by Fröhlich and that by Davydov
represent static and dynamical properties in the nonlinear Schödinger equation with an equivalent
quantum Hamiltonian, respectively [24]. In the 1980s, Del Giudice et al. applied a theory of water
electric dipoles to biological systems [25–28]. In particular, the derivation of laser-like behavior is a
suggestive study. In the 1990s, Jibu and Yasue gave a concrete picture of corticons and exchange bosons,
namely water electric dipole fields and photon fields [4,29–32]. The QBD is nothing but quantum
electrodynamics (QED) with water electric dipole fields. When electric dipoles are aligned in the
same directions coherently, the polaritons, NG bosons in SSB of rotational symmetry, emerge. The
dynamical order in the vacua in SSB is maintained by long-range correlation of the massless NG bosons.
In QED, the NG bosons are absorbed by photons and then photons acquire mass due to the Higgs
mechanism and can stay in coherent domains. The massive photons are called evanescent photons.
The size of a coherent domain is in the order of 50 μm. Furthermore, two quantum mechanisms
of information transfer and integration among coherent domains are suggested. The first one is to
use the super-radiance and the self-induced transparency via microtubules connecting two coherent
domains [31]. Super-radiance is the phenomenon indicating coherent photon emission with correlation
among not only photons but also atoms (or dipoles) [33–37]. The atoms (or dipoles) cooperatively decay
in a short time interval due to correlation; coherent photons with intensity proportional to the square
of the number of atoms (or dipoles) are emitted. The pulse wave photons in super-radiance propagate
through microtubules without decay. Then the self-induced transparency appears, since microtubules
are perfectly transparent in the propagation. The second one is to use the quantum tunneling effect
among coherent domains surrounded by incoherent domains [32]. The effect is essentially equivalent
to the Josephson effect between two superconducting domains separated by a normal domain. Del
Giudice et al. studied this effect in biological systems [28]. In 1995, Vitiello has shown that a huge
memory capacity can be realized by regarding a brain as an open dissipative system and doubling the
degrees of freedom with mathematical techniques in thermo-field dynamics [38]. In dissipative model
of a brain, each memory state evolves in classical deterministic trajectory like a chaos [39]. The overlap
among distinct memory states is zero at any time in the infinite volume limit. However, finite volume
effects allow states to overlap one another, which might represent association of memories [6]. In 2003,
exclusion zone (EZ) water was discovered experimentally [40]. The properties of EZ water correspond
to those of coherent water [41].

However, we have never seen the dynamical memory formations based on QBD at the
physiological temperature in the presence of thermal effects written by quantum fluctuations. Hence,
there are still criticisms related with the decoherence phenomena (We should use the mass of polaritons
in estimating the critical temperature of ordered states, not that of water molecules themselves.)in
memory formations in QBD [42]. So, we need to derive time evolution equations of coherent
fields and quantum fluctuations and show numerical simulations of memory formation processes in
non-equilibrium situations to check whether or not memory in QBD is robust against thermal effects.
Futhermore, in 2012 Craddock et al. suggested the mechanism of memory coding in microtubules with
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phosphorylation by Ca2+ calmodulin kinase II [43]. It will be an interesting topic to investigate how
water electric dipoles and evanescent photons are affected by phosphorylated microtubules.

The aim of this paper is to derive time evolution equations, namely the Schrödinger-like equations
for coherent dipole fields, the Klein–Gordon equations for coherent photon fields, the Kadanoff–Baym
equations for quantum fluctuations [44–46], with the two-particle-irreducible effective action technique
with Keldysh formalism [47–51]. We derive both the equilibration for quantum fluctuations and the
super-radiance for background coherent fields from the single Lagrangian in quantum electrodynamics
(QED) with electric dipole fields. We arrive at the Maxwell–Bloch equations for the super-radiance by
starting with QED with electric dipole fields in 2 + 1 dimensions. When we consider electric fields in
super-radiance, we only need two spatial dimensions, one axis for the amplitude and another axis
for the propagation. Hence we have discussed the case in 2 + 1 dimensions in this paper. By using
our equations for super-radiance in this paper, we can describe information transfer via microtubules.
Then, microtubule-associated proteins can make an important contribution to information transfer
with interconnections among microtubules. We also derive the Higgs mechanism and the tachyonic
instability for coherent fields in the Klein–Gordon equation for coherent electric fields. In two energy
level approximation for electric dipole fields, namely with the ground state and the first excited states,
the Higgs mechanism appears in normal population in which the probability amplitude in the ground
state is larger than that in the first excited states. The penetrating length in the Meissner effect due to the
Higgs mechanism is 6.3 μm derived by using coefficients in 2 + 1 dimensions and the number density
of liquid water molecules in 3 + 1 dimensions. On the other hand, the tachyonic instability appears
in inverted population in which the probability amplitudes in the first excited states are larger than
that in the ground state. Then the electric field increases exponentially while the system is in inverted
population. The increase stops at times when normal population is realized. Our analysis also contains
the dynamics of quantum fluctuations in non-equilibrium cases. We also derive the Kadanoff–Baym
equations for quantum fluctuations with the leading-order self-energy in the coupling expansion. The
Kadanoff–Baym equations describe the entropy producing dynamics during equilibration as shown in
the proof of the H-theorem. Entropy production stops when the Bose–Einstein distribution is realized.
By combining time evolution equations (the Klein–Gordon equations for coherent electric fields and
the Schrödinger-like equations for coherent electric dipole fields) and the Kadanoff–Baym equations
for quantum fluctuations, we can describe the dynamical behavior of dipoles with thermal effects
written by quantum fluctuations. Our analysis will be applied to memory formation processes in
QBD. In particular, by extending our method to the case in open systems (networks), we can also
trace dynamical memory recalling processes with excitations of particles in coherent domains via
quantum tunneling processes, which are described by the Kadanoff–Baym equations. We can perform
the simulations of the dynamical recalling processes in QBD with our equations to understand our
thinking processes.

This paper is organized as follows. In Section 2, we introduce the two-particle-irreducible
effective action in the closed-time path contour to describe non-equilibrium phenomena and derive
time evolution equations. In Section 3, we introduce a kinetic entropy current in the first order of
the gradient expansion, and show the H-theorem in the leading-order approximation of the coupling
expansion. In Section 4, we show the time evolution equations, the conserved total energy and the
potential energy in spatially homogeneous systems in an isolated system. In Section 5, we derive
the super-radiance by analyzing the time evolution equations for coherent fields. In Section 6, we
discuss our results. In Section 7, we provide the concluding remarks. In the Appendix A, we show
how quantum fluctuations appear as additional terms in the Klein–Gordon equations. In this paper,
the labels i, j = 1 and 2 represent x and y directions in space, the labels a, b, c, d = 1, 2 represent two
contours in the closed-time path, the labels α = −1, 1 represent the angular momentum of electric
dipoles. The speed of light, the Planck constant divided by 2π and the Boltzmann constant are set to
be 1 in this paper. We adopt the metric tensor ημν = diag(1,−1,−1) with μ, ν = 0, 1, 2.

111



Entropy 2019, 21, 1066

2. The Two-Particle-Irreducible Effective Action and Time Evolution Equations

We begin with the following Lagrangian density to describe quantum electrodynamics (QED)
with electric dipoles in 2 + 1 dimensions in the background field method [52–55],

L[Ψ∗(x, θ), Ψ(x, θ), A(x), a(x)] = −1
4

Fμν[A + a]Fμν[A + a]− (∂μaμ)2

2α1

+
∫ 2π

0
dθ

[
Ψ∗i

∂

∂x0 Ψ +
1

2m
Ψ∗∇2

i Ψ

+
1
2I

Ψ∗ ∂2

∂θ2 Ψ − 2edeΨ∗uiΨF0i[A + a]

]
, (1)

where A is the background coherent photon fields, a is the quantum fluctuations of photon fields,
Fμν[A] = ∂μ Aν − ∂ν Aμ is the field strength, the α1 is a gauge fixing parameter, the m is the mass of
a dipole, the I is the moment of inertia, ui = (cos θ, sin θ) is the direction of dipoles and 2ede is the
absolute value of dipole vector. The variable θ represents the degrees of freedom of rotation of dipoles
in 2 + 1 dimensions. The dipole–photon interaction term −2edeΨ∗uiΨF0i[A + a] has the similar form
to that in [27]. We shall expand the electric dipole fields Ψ and Ψ∗ by the angular momentum and
consider only the ground state and the first excited states in energy-levels. Then we can write them as,

Ψ(x, θ) =
1√
2π

(
ψ0(x) + ψ1(x)eiθ + ψ−1(x)e−iθ

)
,

Ψ∗(x, θ) =
1√
2π

(
ψ∗

0 (x) + ψ∗
1 (x)e−iθ + ψ∗

−1(x)eiθ
)

, (2)

in 2 + 1 dimensions. (In 3 + 1 dimensions, we might expand Ψ and Ψ∗ by spherical harmonics.) We
can rewrite the terms in the above Lagrangian as,

∫
dθΨ∗(x, θ)i

∂

∂x0 Ψ(x, θ) = ψ∗
0 i

∂

∂x0 ψ0 + ψ∗
1 i

∂

∂x0 ψ1 + ψ∗
−1i

∂

∂x0 ψ−1, (3)∫
dθ

1
2m

Ψ∗∇2
i Ψ =

1
2m

[
ψ∗

0∇2
i ψ0 + ψ∗

1∇2
i ψ1 + ψ∗

−1∇2
i ψ−1

]
, (4)∫

dθ
1
2I

Ψ∗ ∂2

∂θ2 Ψ =
−1
2I
[
ψ∗

1 ψ1 + ψ∗
−1ψ−1

]
. (5)

We also write the dipole–photon interaction term with electric fields F0i = −Ei by,
∫

dθ2edeΨ∗uiΨEi = ede

∫
dθ
[
(E1 − iE2)Ψ∗eiθΨ + (E1 + iE2)Ψ∗e−iθΨ

]
= ede

[
(E1 − iE2)(ψ

∗
0 ψ−1 + ψ∗

1 ψ0) + (E1 + iE2)(ψ
∗
0 ψ1 + ψ∗

−1ψ0)
]

, (6)

with the direction of dipoles ui = (cos θ, sin θ).
Next, we show two-particle-irreducible (2PI) effective action [47–49] for electric dipole fields and

photon fields. Starting with the above Lagrangian density, we write the generating functional with the
gauge fixing condition for quantum fluctuation,

gauge fixing :a0 = 0, (7)
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and perform the Legendre transformations. Then we arrive at,

Γ2PI[A, āiψ̄, ψ̄∗] =
∫
C

dd+1x

[
− 1

4
Fμν[A + ā]Fμν[A + ā] + iψ̄∗

0
∂

∂x0
ψ̄0 + ∑

α=−1,1
iψ̄∗

α
∂

∂x0
ψ̄α

+
1

2m

(
ψ̄∗

0∇2
i ψ̄0 + ∑

α=−1,1
ψ̄∗

α∇2
i ψ̄α

)
− 1

2I ∑
α=−1,1

ψ̄∗
αψ̄α

+ede ∑
α=−1,1

[(E1 + iαE2)(ψ̄
∗
0 ψ̄α + ψ̄∗−αψ̄0)]

]

+iTr ln Δ−1 + iTrΔ−1
0 Δ +

i
2

Tr ln D−1 +
i
2

TrD−1
0 D +

Γ2[Δ, D]

2
, (8)

where the C represents the Keldysh contour [50,51] shown in Figure 1, the spatial dimension d = 2, the
bar represents the expectation value 〈·〉 with the density matrix. The 3 × 3 matrix iΔ−1

0 (x, y) is defined
as follows,

iΔ−1
0 (x, y) ≡ δ2

∫
x L

δψ∗(y)δψ(x)

∣∣∣∣∣
a=0

=

⎡
⎢⎢⎣

i ∂
∂x0 +

∇2
i

2m − 1
2I ede(E1 + iE2) 0

ede(E1 − iE2) i ∂
∂x0 +

∇2
i

2m ede(E1 + iE2)

0 ede(E1 − iE2) i ∂
∂x0 +

∇2
i

2m − 1
2I

⎤
⎥⎥⎦ δd+1

C (x − y), (9)

for −1, 0 and 1, and the iD−1
0,ij(x, y) is written by,

iD−1
0,ij(x, y) ≡ δ2

∫
x L

δai(x)δaj(y)

= −δij∂
2
xδd+1

C (x − y), (10)

where i and j run over spatial components 1, · · ·, d = 2 in 2 + 1 dimensions. The 3 × 3 matrix Δ(x, y) is,

Δ(x, y) =

⎡
⎢⎣ Δ−1−1(x, y) Δ−10(x, y) Δ−11(x, y)

Δ0−1(x, y) Δ00(x, y) Δ01(x, y)
Δ1−1(x, y) Δ10(x, y) Δ11(x, y)

⎤
⎥⎦ , (11)

where Δ−10(x, y) = 〈TCδψ−1(x)δψ∗
0 (y)〉 with time-ordered product TC in the closed-time path contour.

The Green’s function of dipole fields Δ−10(x, y) is also written by the 2 × 2 matrix Δab
−10(x, y) with

a, b = 1, 2 in the contour. The Green’s function for photon fields Dij(x, y) represents,

Dij(x, y) = 〈TCai(x)aj(y)〉. (12)

1

2

t

t0 ∞

O

Figure 1. Closed-time path contour C. The label “1” represents the path from t0 to ∞ and the label “2”
represents the path from ∞ to t0.
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Finally we write time evolution equations for coherent fields and quantum fluctuations. The 2PI
effective action satisfies the following equations,

δΓ2PI

δΔ

∣∣∣∣∣
ā=0

= 0, (13)

δΓ2PI

δD

∣∣∣∣∣
ā=0

= 0, (14)

δΓ2PI

δāi

∣∣∣∣∣
ā=0

=
δΓ2PI

δAi

∣∣∣∣∣
ā=0

= 0, (15)

δΓ2PI

δψ̄
(∗)
−1,0,1

∣∣∣∣∣
ā=0

= 0, (16)

due to the Legendre transformation of the generating functional. Equation (13) is written by,

iΔ−1
0 − iΔ−1 − iΣ = 0, (17)

with iΣ ≡ − 1
2

δΓ2
δΔ . The matrix of self-energy Σ can be written by diagonal elements,

Σ = diag(Σ−1−1, Σ00, Σ11), (18)

since we can neglect the off-diagonal elements which are higher order of the coupling expansion.
Equation (17) represents the Kadanoff–Baym equations for electric dipole fields in the two-energy-level
approximation in 2 + 1 dimensions. Similarly, the Kadanoff–Baym equation for photon fields in
Equation (14) is written by,

iD−1
0 − iD−1 − iΠ = 0, (19)

with iΠ ≡ − δΓ2
δD . Equation (15) is given by,

∂νFνi = Ji, (20)

with,

J1(x) = −ede
∂

∂x0 ∑
α=−1,1

(
Δ0α(x, x) + Δα0(x, x) + ψ̄0(x)ψ̄∗

α(x) + ψ̄α(x)ψ̄∗
0 (x)

)
, (21)

J2(x) = −ede
∂

∂x0 ∑
α=−1,1

(
− iα(Δ0α(x, x)− Δα0(x, x) + ψ̄0(x)ψ̄∗

α(x)− ψ̄α(x)ψ̄∗
0 (x))

)
. (22)

Equation (20) represents the Klein–Gordon equations for spatial dimensions i = 1 and 2.
Equation (16) is written by,(

i
∂

∂x0 +
∇2

i
2m

)
ψ̄0 + ∑

α=−1,1
ede(E1 + iαE2)ψ̄α = 0, (23)

(
i

∂

∂x0 +
∇2

i
2m

− 1
2I

)
ψ̄α + ede(E1 − iαE2)ψ̄0 = 0, (24)
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and their complex conjugates. They are Schrödinger-like equations for coherent dipole fields.
Equations (23) and (24) and their complex conjugates give the following probability conservation,

∂

∂x0

(
ψ̄∗

0 ψ̄0 + ∑
α=−1,1

ψ̄∗
αψ̄α

)
+

1
2mi

∇i

(
ψ̄∗

0∇iψ̄0 − ψ̄0∇iψ̄
∗
0 + ∑

α=−1,1
(ψ̄∗

α∇iψ̄α − ψ̄α∇iψ̄
∗
α)

)
= 0. (25)

We shall define J0(x) as,

J0(x) = −ede
∂

∂x1 ∑
α=−1,1

(
Δ0α(x, x) + Δα0(x, x) + ψ̄0(x)ψ̄∗

α(x) + ψ̄α(x)ψ̄∗
0 (x)

)

−ede
∂

∂x2

(
− iα(Δ0α(x, x)− Δα0(x, x) + ψ̄0(x)ψ̄∗

α(x)− ψ̄α(x)ψ̄∗
0 (x))

)
. (26)

Then since we can use ∂0 J0 −∇i Ji = 0 with i = 1, 2,

∂0 J0 = ∇i Ji = −∂i∂νFνi = ∂μ∂νFνμ − ∂i∂νFνi = ∂0∂νFν0,

or, ∂νFν0 = J0, (27)

where the time dependent term in the time integral might be interpreted as an initial charge, but
it is set to be zero. This equation represents the Poisson equation for scalar potential A0 given by
∇2 A0 = ∇ · μ with the vector of dipole moments −μ on the right-hand side in Equation (26). (Since
the Fourier transformed Ã0(q) is written by Ã0(q) ∝ (qiμ̃i)/q2 with μi = μ̃iδ(r), the electric field

Ej = −∇j A0(r) is proportional to
∫

q eiq·r qjqi μ̃i
q2 . If we can also apply the analysis in this section to the

case in 3 + 1 dimensions, we find Ej ∝ ∂j∂i
μ̃i
r . Then we obtain dipole–dipole interaction potential

−μ̃jEj ∼
[

μ̃j μ̃j
r3 − 3(ri μ̃i)(rj μ̃j)

r5

]
in 3 + 1 dimensions.)

3. Kinetic Entropy Current in the Kadanoff–Baym Equations and the H-Theorem

In this section, we derive a kinetic entropy current from the Kadanoff–Baym equations with
first order approximation of the gradient expansion and show the H-theorem for the leading-order
approximations in the coupling expansion based on [56–58]. The analysis in this section is similar to
that in open systems (the central region connected to the left and the right region) [59]. Since (−1, 1)
and (1,−1) components in iΔ−1

0 (x, y) in Equation (9) are zero, the same procedures to rewrite the
Kadanoff–Baym equations as those in open systems [59–63] can be adopted. We set t0 → −∞.

First, we shall write the Kadanoff–Baym equations in Equation (17) for each components. By
multiplying the matrix Δ from the right in Equation (17) and taking the (0, 0) component, we can write
it as,

i
(

Δ−1
0,00 − Σ00

)
Δ00 + ∑

α=−1,1
ede(E1 + iαE2)Δα0 = iδC(x − y), (28)

where the (0, 0) component of the matrix Δ−1
0 represents iΔ−1

0,00(x, y) =

(
i ∂

∂x0 +
∇2

i
2m

)
δC(x − y). By

taking (α, 0) component, we can write it as,

i(Δ−1
0,αα − Σαα)Δα0 + ede(E1 − iαE2)Δ00 = 0. (29)

It is convenient to introduce the Green’s functions Δg,αα as,

iΔ−1
g,αα = iΔ−1

0,αα − iΣαα. (30)
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Then by using Equations (29) and (30), we can write Δα0 as,

Δα0(x, y) = − ede

i

∫
C

dwΔg,αα(x, w)(E1(w)− iαE2(w))Δ00(w, y). (31)

Equation (31) means the propagation from y to x with zero angular momentum, change of angular
momentum at w and the propagation from w to x with angular momentum α = ±1. By using
Equation (31), we can rewrite Equation (28) as,

i
∫
C

dw(Δ−1
0,00(x, w)− Σ00(x, w))Δ00(w, y)

+i ∑
α=−1,1

(ede)
2
∫
C

dw(E1(x) + iαE2(x))Δg,αα(x, w)(E1(w)− iαE2(w))Δ00(w, y) = iδC(x − y). (32)

The second term on the left-hand side in Equation (32) represents the propagation from y to
w with zero angular momentum, the change of the angular momentum to α = ±1 at w due to the
coherent electric fields, the propagation from w to x and the change of the angular momentum from
α = ±1 to zero due to the coherent electric fields. In a similar way to φ4 theory in open systems [59],
we can derive,

i
∫
C

dwΔ00(x, w)(Δ−1
0,00(w, y)− Σ00(w, y))

+i ∑
α=−1,1

(ede)
2
∫
C

dwΔ00(x, w)(E1(w) + iαE2(w))Δg,αα(w, y)(E1(y)− iαE2(y)) = iδC(x − y), (33)

where we have used,

Δ0α(x, y) = −1
i

∫
C

dwΔ00(x, w)(ede)(E1(w) + iαE2(w))Δg,αα(w, y). (34)

The (α, α) components of the Kadanoff–Baym equations are written by,

i
∫
C

dw
(

Δ−1
0,αα(x, w)− Σαα(x, w)

)
Δαα(w, y)

+i(ede)
2
∫
C

dw(E1(x)− iαE2(x))Δ00(x, w)(E1(w) + iαE2(w))Δg,αα(w, y) = iδC(x − y), (35)

and,

i
∫
C

dwΔαα(x, w)
(

Δ−1
0,αα(w, y)− Σαα(w, y)

)
+i(ede)

2
∫
C

dwΔg,αα(x, w)(E1(w)− iαE2(w))Δ00(w, x)(E1(x) + iαE2(x)) = iδC(x − y), (36)

where we have used Equations (31) and (34).
Next, we shall perform the Fourier transformation (

∫
d(x− y)eip·(x−y)) with the relative coordinate

x − y of the (0, 0) and (α, α) components of the Kadanoff–Baym equations. We use the 2 × 2 matrix
notation in the closed-time path with a, b, c, d = 1, 2. Equations (32) and (33) are transformed as,

i

(
Δ−1

0,00(p)− Σ00(X, p)σz + ∑
α

Uαα(X, p)σz

)ac

◦ Δcb
00(X, p) = iσab

z , (37)

iΔac
00(X, p) ◦

(
Δ−1

0,00(p)− σzΣ00(X, p) + σz ∑
α

Uαα(X, p)

)cb

= iσab
z , (38)
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where X = x+y
2 , σz = diag(1,−1),

iΔ−1
0,00(p) = p0 − p2

2m
, (39)

and the Uαα(X, p) is the Fourier transformation,

Uαα(X, p) = (ede)
2
∫

d(x − y)eip·(x−y)(E1(x) + iαE2(x))Δg,αα(x, y)(E1(y)− iαE2(y))

= (ede)
2E(X)2Δg,αα(X, p + α∂ζ) +

(
∂2

∂X2

)
, (40)

with the definition of ζ and |E|,

E1(x) + iαE2(x) = |E(x)|eiαζ(x), (41)

and,

(Uαα(X, p)σz)
ac = Uad

αα(X, p)σdc
z , (42)

The ◦ is expanded by the derivative of X [64–67] as,

H(X, p)◦I(X, p) = H(X, p)I(X, p) +
i
2
{H, I}+

(
∂2

∂X2

)
, (43)

with the definition of the Poisson bracket,

{H, I} ≡ ∂H
∂pμ

∂I
∂Xμ

− ∂H
∂Xμ

∂I
∂pμ

. (44)

We find that the Uαα represents the change of momenta of dipoles as shown in Figure 2a.

E1 − iαE2

(00), p

(αα), p+ α∂ζ

E1 + iαE2
(00), p

(a)

(00), p

(photon), k

(αα), p− k

(b)

(00), p

Figure 2. Diagrams of (a) Uαα(X, p) and (b) self-energy Σ00(X, p).

In a similar way to [59], in the 0th and the first order in the gradient expansion in Equations (37)
and (38), we can derive the following retarded Green’s function,

Δ00,R(X, p) =
−1

p0 − p2

2m − Σ00,R + ∑α=−1,1 Uαα,R

, (45)

with the retarded parts (the subscript ‘R’) Δ00,R = i(Δ11
00 − Δ12

00), Σ00,R = i(Σ11
00 − Σ12

00) and Uαα,R =

i(U11
αα − U12

αα). By taking the imaginary part of the retarded Green’s function Δ00,R(X, p), we can
derive the spectral function ρ00 = i(Δ21

00 − Δ12
00) = 2iImΔ00,R(X, p) which represents the information of

dispersion relations. Similarly, the (α, α) components of the Kadanoff–Baym equations are written as,

i
(

Δ−1
0,αα(p)− Σαα(X, p)σz

)
◦ Δαα(X, p) + iVαα(X, p)σz ◦ Δg,αα(X, p) = iσz, (46)

117



Entropy 2019, 21, 1066

and,

iΔαα(X, p) ◦
(

Δ−1
0,αα(p)− σzΣαα(X, p)

)
+ iΔg,αα(X, p) ◦ σzVαα(X, p) = iσz, (47)

where,

iΔ−1
0,αα(p) = p0 − p2

2m
− 1

2I
, (48)

and,

Vαα(X, p) = (ede)
2
∫

d(x − y)eip·(x−y)(E1(x)− iαE2(x))Δ00(x, y)(E1(y) + iαE2(y))

= (ede)
2E(X)2Δ00(X, p − α∂ζ) +

(
∂2

∂X2

)
. (49)

We can also write for Δcb
g,αα(X, p) as,

i
(

Δ−1
0,αα(p)− Σαα(X, p)σz

)ac ◦ Δcb
g,αα(X, p) = iσab

z , (50)

Δac
g,αα(X, p) ◦ i

(
Δ−1

0,αα(p)− σzΣαα(X, p)
)cb

= iσab
z . (51)

In the 0th and the first order in the gradient expansion in Equations (46) and (47), we can derive,

Δαα,R = Δg,αα,R + Δg,αα,RVαα,RΔg,αα,R (52)

with Δαα,R = i(Δ11
αα − Δ12

αα) and Vαα,R = i(V11
αα − V12

αα ). Here we have used the solution in the 0th and
the first order in the gradient expansion in Equations (50) and (51) given by,

Δg,αα,R =
−1

p0 − p2

2m − 1
2I − Σαα,R

, (53)

with Σαα,R = i(Σ11
αα − Σ12

αα). The derivation is the same as [59]. The imaginary part of the
retarded Green’s function Δαα,R(X, p) multiplied by 2i represents the spectral function ραα =

i(Δ21
αα − Δ12

αα) = 2iImΔαα,R(X, p) which represents the information of dispersion relations. In addition,
the Kadanoff–Baym equations for photons in Equation (19) are written by,

i
(

D−1
0,ij(k)− Πij(X, k)σz

)ac ◦ Dcb
jl (X, k) = iδilσ

ab
z , (54)

iDac
ij (X, k) ◦

(
D−1

0,jl(k)− σzΠjl(X, k)
)cb

= iδilσ
ab
z , (55)

with,

iD−1
0,ij(k) = k2δij. (56)

Next we shall derive the self-energy in the leading-order (LO) of the coupling expansion in
Equation (6). The (a, b) = (1, 2) and (2, 1) component of i Γ2

2 are given by,

i Γ2,LO
2 = − 1

2 (ede)2
∫

dudw ∑α=−1,1

(
Δ21

αα(w, u)Δ12
00(u, w)(1,−αi)j∂

0
u∂0

w

(
D12

jl (u, w) + D21
l j (w, u)

)
(1, αi)t

l

+Δ12
αα(w, u)Δ21

00(u, w)(1,−αi)j∂
0
u∂0

w

(
D21

jl (u, w) + D12
l j (w, u)

)
(1, αi)t

l

)
,

(57)
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where t represents the transposition. It is convenient to rewrite,

Dab
ij (k) =

(
δij −

kikj

k2

)
Dab

T (k) +
kikj

k2 Dab
L (k), (58)

Πab
ij (k) =

(
δij −

kikj

k2

)
Πab

T (k) +
kikj

k2 Πab
L (k), (59)

where T and L represent the transverse and the longitudinal part, respectively. The LO self-energy
iΠ21

ji (y, x) = − δΓ2,LO
δD12

ij (x,y)
is,

iΠ21
jl (y, x) = −i(ede)

2 ∑
α=−1,1

(
∂0

x∂0
y

(
Δ21

αα(y, x)Δ12
00(x, y)

)
(1,−αi)l(1, αi)t

j

+∂0
x∂0

y

(
Δ21

00(y, x)Δ12
αα(x, y)

)
(1,−αi)j(1, αi)t

l

)
. (60)

By Fourier-transforming with the relative coordinate x − y and multiplying δij − kikj
k2 or

kikj
k2 , we

arrive at,

Π21
T (X, k) = −(ede)

2
(

k0
)2 ∫

p
∑

α=−1,1

(
Δ21

αα(X, k + p)Δ12
00(X, p) + Δ21

00(X, k + p)Δ12
αα(X, p)

)

+

(
∂2

∂X2

)
, (61)

Π21
L (X, k) = Π21

T (X, k), (62)

with
∫

p =
∫ dd+1 p

(2π)d+1 . The second equation is due to the spatial dimension d = 2. Similarly, we arrive at,

Π12
T (X, k) = −(ede)

2
(

k0
)2 ∫

p
∑

α=−1,1

(
Δ12

αα(X, k + p)Δ21
00(X, p) + Δ12

00(X, k + p)Δ21
αα(X, p)

)

+

(
∂2

∂X2

)
, (63)

Π12
L (X, k) = Π12

T (X, k). (64)

The Fourier transformation of the LO self-energy iΣ12
00(x, y) = − 1

2
δΓ2,LO

δΔ21
00(y,x)

is,

Σ12
00(X, p) = −(ede)

2
∫

k
∑

α=−1,1

(
k0
)2

Δ12
αα(X, p − k)

[
D12

T (X, k) + D12
L (X, k)

]
+

(
∂2

∂X2

)
. (65)

Similarly,

Σ21
00(X, p) = −(ede)

2
∫

k
∑

α=−1,1

(
k0
)2

Δ21
αα(X, p − k)

[
D21

T (X, k) + D21
L (X, k)

]
+

(
∂2

∂X2

)
. (66)

This self-energy is shown in Figure 2b. Similarly we can derive,

Σ12
αα(X, p) = −(ede)

2
∫

k

(
k0
)2

Δ12
00(X, p − k)

[
D12

T (X, k) + D12
L (X, k)

]
+

(
∂2

∂X2

)
, (67)
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and,

Σ21
αα(X, p) = −(ede)

2
∫

k

(
k0
)2

Δ21
00(X, p − k)

[
D21

T (X, k) + D21
L (X, k)

]
+

(
∂2

∂X2

)
. (68)

Finally we derive a kinetic entropy current in the first order approximation in the gradient
expansion and show the H-theorem in the LO approximation in the coupling expansion. By taking a
difference of Equations (32) and (33), we arrive at,

i
{

p0 − p2

2m
, Δab

00

}
= i

[(
Σ00 − ∑

α

Uαα

)
σz ◦ Δ00

]ab

− i

[
Δ00 ◦ σz

(
Σ00 − ∑

α

Uαα

)]ab

. (69)

We use the Kadanoff–Baym Ansatz Δ12
00 = ρ00

i f00, Δ21
00 = ρ00

i ( f00 + 1), Σ12
00 =

Σ00,ρ
i γ00, Σ21

00 =
Σ00,ρ

i (γ00 + 1), U12
αα =

Uαα,ρ
i γU,αα and U21

αα =
Uαα,ρ

i (γU,αα + 1) with ρ00 = i(Δ21
00 − Δ12

00) = 2iImΔ00,R,
Σ00,ρ = i(Σ21

00 − Σ12
00) = 2iImΣ00,R and Uαα,ρ = i(U21

αα − U12
αα) = 2iImUαα,R where we just rewrite

the (1, 2) and the (2, 1) components with the spectral parts ρ00, Σ00,ρ and Uαα,ρ and distribution
functions f00, γ00 and γU,αα. The distribution functions f00, γ00 and γU,αα approach the Bose–Einstein
distributions near equilibrium states. In the first order approximation in the gradient expansion in
Equation (69) for (a, b) = (1, 2) and (2, 1), we can derive,

f00 = γ00 + O
(

∂

∂X

)
, and f00 = γU,αα + O

(
∂

∂X

)
. (70)

(Rewrite (a, b) = (1, 2) and (2, 1) components in Equation (69), then we can show the collision

terms Δ21
00Σ12

00 − Δ12
00Σ21

00 ∝ f00 − γ00 = O
(

∂
∂X

)
and f00 − γU,αα = O

(
∂

∂X

)
.) We shall multiply ln iΔ12

00
ρ00

in

(a, b) = (1, 2) component in Equation (69) and ln iΔ21
00

ρ00
in (2, 1) component in Equation (69), take the

difference of them and integrate with
∫

p. By the use of Equation (70), we arrive at,

∂μsμ
matter,00 = −

∫
p

(
Σ21

00(X, p)Δ12
00(X, p)− Σ12

00(X, p)Δ21
00(X, p)

)
ln

Δ12
00(X, p)

Δ21
00(X, p)

+∑
α

∫
p

(
U21

αα(X, p)Δ12
00(X, p)− U12

αα(X, p)Δ21
00(X, p)

)
ln

Δ12
00(X, p)

Δ21
00(X, p)

, (71)

with the definition of entropy current sμ
matter,00 for (0, 0) component,

sμ
matter,00 ≡

∫
p

[(
δ

μ
0 +

δ
μ
i pi

m
− ∂Re(Σ00,R − ∑α Uαα,R)

∂pμ

)
ρ00

i

+
∂ReΔ00,R

∂pμ

Σ00,ρ − ∑α Uαα,ρ

i

]
σ[ f00], (72)

σ[ f00] ≡ (1 + f00) ln(1 + f00)− f00 ln f00. (73)

We can derive the Boltzmann entropy
∫

p [(1 + n) ln(1 + n)− n ln n] with the number density
n(X, p) in the quasi-particle limit ImUαα,R = ImΣ00,R → 0 in the same way as in [58]. Similarly, we can
derive a kinetic entropy current for (αα) components. >From Equations (46) and (47), we can derive

i
{

p0 − p2

2m
− 1

2I
, Δab

αα

}
= i [Σαασz ◦ Δαα − Δαα ◦ σzΣαα]

ab

−i
[
Vαασz ◦ Δg,αα − Δg,αα ◦ σzVαα

]ab . (74)
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We use the Kadanoff–Baym Ansatz Δ12
αα = ραα

i fαα, Δ21
αα = ραα

i ( fαα + 1), Δ12
g,αα =

Δg,αα,ρ
i γg,αα, Δ21

g,αα =
Δg,αα,ρ

i (γg,αα + 1), Σ12
αα =

Σαα,ρ
i γαα, Σ21

αα =
Σαα,ρ

i (γαα + 1), V12
αα =

Vαα,ρ
i γV,αα and V21

αα =
Vαα,ρ

i (γV,αα + 1)
with ραα = i(Δ21

αα − Δ12
αα) = 2iImΔαα,R, Σαα,ρ = i(Σ21

αα − Σ12
αα) = 2iImΣαα,R and Vαα,ρ = i(V21

αα − V12
αα ) =

2iImVαα,R. In Equation (74), we can show,

fαα ∼ γαα, γg,αα ∼ γV,αα, (75)

for distribution functions fαα, γαα and γV,αα by writing the (a, b) = (1, 2) and (2, 1) components in the
Kadanoff–Baym equations (74). We can also show,

γαα ∼ γg,αα, (76)

from Equations (50) and (51). We shall multiply ln iΔ12
αα

ραα
in (a, b) = (1, 2) component in Equation (74)

and ln iΔ21
αα

ραα
in (2, 1) component in Equation (74), take the difference of them and integrate with

∫
p. By

using Equations (75) and (76), we arrive at,

∂μsμ
matter,αα = −

∫
p

(
Σ21

αα(X, p)Δ12
αα(X, p)− Σ12

αα(X, p)Δ21
αα(X, p)

)
ln

Δ12
αα(X, p)

Δ21
αα(X, p)

+
∫

p

(
V21

αα (X, p)Δ12
g,αα(X, p)− V12

αα (X, p)Δ21
g,αα(X, p)

)
ln

Δ12
αα(X, p)

Δ21
αα(X, p)

, (77)

with the definitions of entropy current sμ
matter,αα for (αα) components,

sμ
matter,αα ≡

∫
p

[(
δ

μ
0 +

δ
μ
i pi

m
− ∂ReΣαα,R

∂pμ

)
ραα

i
+

∂ReΔαα,R

∂pμ

Σαα,ρ

i

+
∂ReVαα,R

∂pμ

Δg,αα,ρ

i
− ∂ReΔg,αα,R

∂pμ

Vαα,ρ

i

]
σ[ fαα]. (78)

In this derivation, we have used the same way as that in open systems in [59]. We can also
derive the following equations for the Kadanoff–Baym equations for photons with the Kadanoff–Baym
Ansatz D21

T = ρT
i (1 + fT), D12

T = ρT
i fT , D21

L = ρL
i (1 + fL) and D12

L = ρL
i fL with distribution functions

fT and fL and spectral functions ρT and ρL,

∂μsμ
photon = −1

2

∫
k

[
Π21

T (X, k)D12
T (X, k)− Π12

T (X, k)D21
T (X, k)

]
ln

D12
T (X, k)

D21
T (X, k)

−1
2

∫
k

[
Π21

L (X, k)D12
L (X, k)− Π12

L (X, k)D21
L (X, k)

]
ln

D12
L (X, k)

D21
L (X, k)

, (79)

with the entropy current for photons,

sμ
photon ≡

∫
k

[(
kμ − 1

2
∂ReΠT,R

∂kμ

)
DT,ρ

i
+

1
2

∂ReDT,R

∂kμ

ΠT,ρ

i

]
σ[ fT ]

+
∫

k

[(
kμ − 1

2
∂ReΠL,R

∂kμ

)
DL,ρ

i
+

1
2

∂ReDL,R

∂kμ

ΠL,ρ

i

]
σ[ fL]. (80)
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As a result, the total entropy current sμ = sμ
matter,00 + ∑α sμ

matter,αα + sμ
photon satisfies,

∂μsμ = (ede)
2
∫

p,k

(
k0
)2

∑
α

[
Δ21

αα(p − k)Δ12
00(p)D21

T (k)− Δ12
αα(p − k)Δ21

00(p)D12
T (k)

]

× ln
Δ21

αα(p − k)Δ12
00(p)D21

T (k)
Δ12

αα(p − k)Δ21
00(p)D12

T (k)

+(ede)
2
∫

p,k

(
k0
)2

∑
α

[
Δ21

αα(p − k)Δ12
00(p)D21

L (k)− Δ12
αα(p − k)Δ21

00(p)D12
L (k)

]

× ln
Δ21

αα(p − k)Δ12
00(p)D21

L (k)
Δ12

αα(p − k)Δ21
00(p)D12

L (k)

+(ede)
2(E(X))2 ∑

α

∫
p

(
Δ21

g,αα(p + α∂ζ)Δ12
00(p)− Δ12

g,αα(p + α∂ζ)Δ21
00

)

× ln
Δ21

g,αα(p + α∂ζ)Δ12
00(p)

Δ12
g,αα(p + α∂ζ)Δ21

00(p)
≥ 0, (81)

where we have used the inequality (x − y) ln x
y ≥ 0 for real variables x and y with x > 0 and y > 0. The

equality is satisfied in f00 = fαα = fT = fL = 1
ep0/T−1

. Here we have used Δ21
αα

Δ12
αα

∼ Δ21
g,αα

Δ12
g,αα

with γg,αα ∼ fαα

in first order in the gradient expansion. We have shown the H-theorem in the LO approximation in
the coupling expansion and in the first order approximation in the gradient expansion. There is no
violation in the second law in thermodynamics in the dynamics.

4. Time Evolution Equations in Spatially Homogeneous Systems and Conserved Energy

In this section, we write time evolution equations in spatially homogeneous systems and show a
concrete form of the conserved energy density.

It is convenient to introduce the statistical functions F00 =
Δ21

00+Δ12
00

2 , Fαα = Δ21
αα+Δ12

αα
2 , FT =

D21
T +D12

T
2 ,

FL =
D21

L +D12
L

2 , which represent the information of how many particles are occupied in (p0, p) (particle

distributions) and statistical parts, Uαα,F = U21
αα+U12

αα
2 , Vαα,F = V21

αα+V12
αα

2 , Δg,αα,F =
Δ21

g,αα+Δ12
g,αα

2 , Σ00,F =
Σ21

00+Σ12
00

2 , Σαα,F = Σ21
αα+Σ12

αα
2 , ΠT,F =

Π21
T +Π12

T
2 and ΠL,F =

Π21
L +Π12

L
2 . The variables of these functions are

(X0, p0, p) with the center-of-mass coordinate X0 = x0+y0

2 and p given by the Fourier transformation
with the relative coordinate x − y in variables (x, y) in Green’s functions and self-energy in Section 2.
The statistical functions and parts are real at any time when we start with real statistical functions at
initial time. The spectral functions are given by taking the difference of (2, 1) and (1, 2) components
multiplied by i, namely ρ00 = i(Δ21

00 − Δ12
00). They represent the information of which states can be

occupied by particles in (p0, p) (dispersion relations). The spectral parts in self-energy are given by
taking the difference of (2, 1) and (1, 2) components multiplied by i (and written by the subscript ρ),
namely Δg,αα,ρ = i(Δ21

g,αα − Δ12
g,αα), Σ00,ρ = i(Σ21

00 − Σ12
00) and so on. The spectral functions and parts

are pure imaginary at any time when we start with pure imaginary spectral functions at initial time.
We can use the real statistical parts labeled by the subscripts F and the pure imaginary spectral parts
labeled by the subscript ρ in self-energy in the time evolution. We use the subscript ‘R’, ‘F’ and ‘ρ’ to
represent the retarded, statistical and spectral parts in self-energy, respectively.

The Kadanoff–Baym equation for the statistical and spectral functions are given by,{
p0 − p2

2m
− ReΣ00,R + ∑

α=−1,1
ReUαα,R, F00

}
+

{
ReΔ00,R, Σ00,F − ∑

α

Uαα,F

}

=
1
i
(

F00Σ00,ρ − ρ00Σ00,F
)− 1

i ∑
α

(
F00Uαα,ρ − ρ00Uαα,F

)
, (82)
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{
p0 − p2

2m
− ReΣ00,R + ∑

α=−1,1
ReUαα,R, ρ00

}
+

{
ReΔ00,R, Σ00,ρ − ∑

α

Uαα,ρ

}
= 0, (83)

{
p0 − p2

2m
− 1

2I
− ReΣαα,R, Fαα

}
+ {ReΔαα,R, Σαα,F}+

{
ReVαα,R, Δg,αα,F

}− {ReΔg,αα,R, Vαα,F
}

=
1
i
(

FααΣαα,ρ − ρααΣαα,F
)− 1

i
(
Δg,αα,FVαα,ρ − Δg,αα,ρVαα,F

)
, (84)

{
p0 − p2

2m
− 1

2I
− ReΣαα,R, ραα

}
+
{

ReΔαα,R, Σαα,ρ
}

+
{

ReVαα,R, Δg,αα,ρ
}− {ReΔg,αα,R, Vαα,ρ

}
= 0, (85)

{
p0 − p2

2m
− 1

2I
− ReΣαα,R, Δg,αα,F

}
+
{

ReΔg,αα,R, Σαα,F
}

=
1
i
(
Δg,αα,FΣαα,ρ − Δg,αα,ρΣαα,F

)
, (86){

p0 − p2

2m
− 1

2I
− ReΣαα,R, Δg,αα,ρ

}
+
{

ReΔg,αα,R, Σαα,ρ
}
= 0, (87)

{
p2 − ReΠR,T , FT

}
+ {ReDR,T , ΠF,T} =

1
i
(

FTΠρ,T − ρTΠF,T
)

, (88){
p2 − ReΠR,T , ρT

}
+
{

ReDR,T , Πρ,T
}

= 0, (89)

and longitudinal parts given by changing the label T to L in Equations (88) and (89). We can use
Equation (69) in the previous section to derive Equations (82) and (83), for example.

We can write,

Uαα,F(X, p) = (ede)
2E(X)2Δg,αα,F(p + α∂ζ), Uαα,ρ(X, p) = (ede)2E(X)2Δg,αα,ρ(p + α∂ζ), (90)

Vαα,F(X, p) = (ede)
2E(X)2F00(p − α∂ζ), Vαα,ρ(X, p) = (ede)2E(X)2ρ00(p − α∂ζ). (91)

In case we start with initial condition E2(X0 = 0) = 0, ∂0E2(X0 = 0) = 0 and symmetric Green’s
functions for α → −α in spatially homogeneous systems, we can use ∂ζ = 0 in the above equations at
any time. We can write the self-energy as,

Σ00,F(p) = −(ede)
2 ∑

α=−1,1

∫
k

(
k0
)2
[

Fαα(p − k)(FT(k) + FL(k)) +
1
4

ραα(p − k)
i

ρT(k) + ρL(k)
i

]
, (92)

Σ00,ρ(p) = −(ede)
2 ∑

α=−1,1

∫
k

(
k0
)2

[Fαα(p − k)(ρT(k) + ρL(k)) + ραα(p − k)(FT(k) + FL(k))] , (93)

Σαα,F(p) = −(ede)
2
∫

k

(
k0
)2
[

F00(p − k)(FT(k) + FL(k)) +
1
4

ρ00(p − k)
i

ρT(k) + ρL(k)
i

]
, (94)

Σαα,ρ(p) = −(ede)
2
∫

k

(
k0
)2

[F00(p − k)(ρT(k) + ρL(k)) + ρ00(p − k)(FT(k) + FL(k))] , (95)
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ΠT,F(k) = ΠL,F(k) = −(ede)
2
(

k0
)2

∑
α=−1,1

∫
p

[
Fαα(k + p)F00(p)− 1

4
ραα(k + p)

i
ρ00(p)

i

+F00(k + p)Fαα(p)− 1
4

ρ00(k + p)
i

ραα(p)
i

]
, (96)

ΠT,ρ(k) = ΠL,ρ(k) = −(ede)
2
(

k0
)2

∑
α=−1,1

∫
p

[
ραα(k + p)F00(p)− Fαα(k + p)ρ00(p)

+ρ00(k + p)Fαα(p)− F00(k + p)ραα(p)

]
, (97)

where we have omitted the label of the center-of-mass cordinate X in Green’s functions and self-energy.
We find that the ΠT,F(k) = ΠL,F(k) are symmetric (ΠT,F(−k) = ΠT,F(k)) under k → −k and that
ΠT,ρ = ΠL,ρ are anti-symmetric (ΠT,ρ(−k) = −ΠT,ρ(k)) under k → −k, for any Green’s functions for
dipole fields. When we prepare initial conditions with symmetric FT,L and anti-symmetric ρT,L for
photons, we can derive symmetric FT,L and anti-symmetric ρT,L at any time. In addition, since Π(k)’s
are proportional to (k0)2, there is no mass gap for incoherent photons for the leading-order self-energy
in the coupling expansion. The velocity of gapless modes of incoherent photons will decrease when
we increase the density of dipoles in this theory.

Finally, we show the energy density Etot. In the spatially homogeneous system in the 2 + 1
dimensions, we can derive ∂Etot

∂X0 = 0 with the energy density given by,

Etot ≡ 1
2I ∑

α=−1,1
ψ̄∗

αψ̄α +
1
2
(∂0 Ai)

2 +
∫

p
p0

(
F00 + ∑

α=−1,1
Fαα

)
+

1
2

∫
p

(
p0
)2

(FT + FL)

+2(ede)
2E2 ∑

α=−1,1

∫
p

(
F00(p)ReΔg,αα,R(p + α∂ζ) + ReΔ00,R(p)Δg,αα,F(p + α∂ζ)

)
−
∫

p
(ReΣ00,RF00 + ReΔ00,RΣ00,F)− ∑

α=−1,1

∫
p
(ReΣαα,RFαα + ReΔαα,RΣαα,F)

−1
2

∫
p
(ReΠR,T FT + ReDR,TΠF,T + ReΠR,LFL + ReDR,LΠF,L) , (98)

where we have used the KB equations in this section, the Klein–Gordon Equation (20) and the
Schödinger-like Equations (23) and (24) in Section 2. The first term represents the contribution
of nonzero angular momenta for coherent dipole fields. The second term represents the contribution
by electric fields Ei = ∂0 Ai. The third and the fourth terms represent the contribution by quantum
fluctuations for dipoles and photons, respectively. When the temperature is nonzero T 
= 0 at
equilibrium states and the spectral width in the spectral functions is small enough, statistical functions
which are proportional to the Bose–Einstein distributions 1

ep0/T−1
give temperature-dependent terms

mT2 for dipole fields and ∝ T3 for photon fields in 2 + 1 dimensions. The fifth term represents the
potential energy in processes in Figure 2a. The sixth, seventh and eighth terms represent the potential
energy in processes in Figure 2b. The coefficients in the sixth and seventh terms are not 1

3 but 1. While
the factor 1 might look like a contradiction with the preceding research in [68,69] which suggest that
the factor 1

3 appears in the interaction with 3-point-vertex, the factor 1 appears due to time derivative
(∂0)2 in self-energy for dipole fields and photon fields.

5. Dynamics of Coherent Fields

In this section, we show that our Lagrangian describes the super-radiance phenomena in time
evolution equations of coherent fields. We shall assume that all the coherent fields are independent of
x1 (dependent on x0 and x2). We also assume the symmetry for α = −1 and α = 1, namely ψ̄

(∗)
1 = ψ̄

(∗)
−1 ,

Δ01 = Δ0−1, and Δ10 = Δ−10. We set initial conditions E2 = 0 and ∂0E2 = 0 at x0 = 0.
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We define Z ≡ 2|ψ̄1|2 − |ψ̄0|2. It is possible to derive the following equations from time evolution
Equations (20), (23) and (24) with their complex conjugates for background coherent fields in Section 2.

∂0Z = i4edeE1 (ψ̄
∗
1 ψ̄0 − ψ̄∗

0 ψ̄1) , (99)

∂0 (ψ̄
∗
1 ψ̄0) =

i
2I

ψ̄∗
1 ψ0 + iedeE1Z (100)[

(∂0)
2 − (∂2)

2
]

E1 = −2ede(∂0)
2 [ψ̄∗

1 ψ̄0 + ψ̄∗
0 ψ̄1 + Δ01(x, x) + Δ10(x, x)] . (101)

We have used moderately varying spatial dependence |∇2
i ψ̄−1,0,1/m| � |∂0ψ̄−1,0,1|. We derive

aspects of the super-radiance and the Higgs mechanism in the above three equations.

5.1. Super-Radiance

In this section, we show the super-radiance in time evolution equations for coherent fields with
the rotating wave approximations neglecting non-resonant terms and quantum fluctuations. We have
used the derivations in [70,71] for background coherent fields.

We shall consider only k0 = 1
2I in this section and we expand the electric field E1 and the transition

rate ψ̄0ψ̄∗
1 as,

E1(x0, x2) =
1
2

ε(x0, x2)e−i(k0x0−k0x2) +
1
2

ε∗(x0, x2)ei(k0x0−k0x2), (102)

ψ̄1ψ̄∗
0 =

1
2

R(x0, x2)e−i(k0x0−k0x2), (103)

We consider the following case,

|∂0ε| � |k0ε|, |∂0R| � |k0R|,
|∂2ε| � |k0ε|. (104)

Neglect non-resonant terms like e±2ik0x0
and quantum fluctuations (Green’s functions Δ01

and Δ10) (the rotating wave approximation). Then from Equations (99)–(101), we arrive at the
Maxwell–Bloch equations,

∂ε

∂x0 +
∂ε

∂x2 = iedek0R, (105)

∂Z
∂x0 = iede(εR∗ − ε∗R), (106)

∂R
∂x0 = −iedeεZ. (107)

We assume that ε, Z and R are independent of the spatial coordinate of the x2 direction. We
shall change ε → iε in the above equations and assume real functions R = R∗ and ε = ε∗. Then we
can write,

∂ε

∂x0 = edek0R, (108)

∂Z
∂x0 = −2edeεR, (109)

∂R
∂x0 = edeεZ. (110)

We find the conservation law with the definition B2 ≡ 2R2 + Z2,

∂

∂x0 B2 =
∂

∂x0

(
2R2 + Z2

)
= 0. (111)
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The relation ∂B
∂x0 = 0 represents the probability conservation since we can rewrite B2 =(

2|ψ̄1|2 + |ψ̄0|2
)2 by Equation (103) and Z ≡ 2|ψ̄1|2 − |ψ̄0|2. We also find the following

conservation law,

∂

∂x0

[
1
2

ε2 +
1
2

k0Z
]
= 0, (112)

which represents the energy conservation. By this relation, we might be able to estimate the maximum
energy density of electric fields,(

1
2

ε2
)

max
= −1

2
k0Zmin =

1
2

k0B, (113)

in case there is no external energy supply. We derive the following solutions in Equations (108)–(110),

R(x0) =
1√
2

B sin θ(x0), Z(x0) = B cos θ(x0), (114)

θ(x0) = θ0 +
√

2ede

∫ x0

0
dx′0ε(x′0), (115)

with ∂θ
∂x0 =

√
2edeε and the constant B in a similar way to [71]. The θ(x0) swings around the position

θ = π with the frequency Ω = ede
√

k0B in case we start with initial conditions at around θ0 ∼ π

(|ψ̄1|2 = 0), since we can rewrite Equation (108) as

∂2θ(x0)

∂(x0)2 = (ede)
2k0B sin θ(x0). (116)

The B is the order of the number density of dipoles.
We introduce the damping term 1

L ε for the release of radiation and the propagation length L in
Equation (108). We can write,

∂ε

∂x0 +
1
L

ε =
edek0
√

2
B sin θ(x0). (117)

In κ = 1
L � time derivative, we can neglect the first term in the above equations, then

∂θ

∂x0 =
(ede)2k0B

κ
sin θ(x0). (118)

The solution is,

θ(x0) = 2 tan−1
[

exp
(
(ede)2k0Bx0

κ

)
tan

θ0

2

]
, (119)

and,

ε =
1√

2edeτR
×
[

cosh
(

x0 − τ0

τR

)]−1

(120)

with τR = κ
(ede)2k0B and τ0 = −τR ln(tan θ0

2 ). The τR ∝ 1/B ∼ 1/N with the number of dipoles N
represents the relaxation time of electric fields in the super-radiance. When N dipoles decay within time
scales 1/N, the intensity of electric fields becomes the order N2 (super-radiant decay with correlation
among dipoles), not N (spontaneous decay without correlation among dipoles).

126



Entropy 2019, 21, 1066

5.2. Higgs Mechanism and Tachyonic Instability

In this section, we rewrite time evolution equations for coherent fields with only real functions.
We assume the spatially homogeneous case. We do not adopt the rotating wave approximation in this
section. We show how coherent electric fields E1 are affected by Z = 2|ψ̄1|2 − |ψ̄0|2.

In Equation (101), the second derivatives of coherent fields on the right-hand side are written by,

ede

2I2 (ψ̄∗
1 ψ̄ + ψ̄∗

0 ψ̄1) +
2(ede)2Z

I
E1,

where we have used Equation (100). As a result, we arrive at,

[
(∂0)

2 − (∂2)
2 − 2(ede)2Z

I

]
E1 =

μ1

4I2 +
2(ede)2E1

I

∫
p
(2F11(X, p)− F00(X, p)− Δg,11,F(X, p))

+
(ede)2

I2 E1

∫
p

(
ReΔg,11,R(X, p)F00(X, p) + Δg,11,F(X, p)ReΔ00,R(X, p)

)
+
(ede)2

2I2
∂E1

∂X0

∫
p

(
∂F00

∂p0

Δg,11,ρ

i
+

ρ00

i
∂Δg,11,F

∂p0

)
+

(ede)2

4I2 E1
∂

∂X0

∫
p

(
∂F00

∂p0

Δg,11,ρ

i
+

ρ00

i
∂Δg,11,F

∂p0

)
, (121)

with the x1 direction of the dipole moment (density) given by μ1 = 2ede
(
ψ̄∗

1 ψ̄0 + ψ̄∗
0 ψ̄1

)
, F11(X, p) =

Δ21
11(X,p)+Δ12

11(X,p)
2 , F00(X, p) = Δ21

00(X,p)+Δ12
00(X,p)

2 and Δg,11,F(X, p) =
Δ21

g,11(X,p)+Δ12
g,11(X,p)

2 . In the Appendix
A we have shown the detailed derivation for the second, third, fourth and fifth terms in the above
equations. We have assumed the self-energy Σ00 = Σ11 = 0 in deriving the time derivatives of Δ10 and
Δ01 in Equation (101). Even if we include contributions of self-energy in Equation (121), they are higher
order O

(
(ede)4) in the coupling expansion. We have neglected higher order terms in the gradient

expansion for quantum fluctuations. In Equation (121), we leave the −(∂2)
2E1 term on the left-hand

side in the above equation to compare with the sign of − 2(ede)2Z
I E1 term. We find the Higgs mechanism

with the mass squared − 2(ede)2Z
I in the case of the normal population Z = 2|ψ̄1|2 − |ψ̄0|2 < 0. On the

other hand, the tachyonic instability appears in the inverted population Z > 0 in the above equation.
Then the electric field E1 will increase exponentially until Z becomes negative. In Equation (121), the
second term on the right-hand side is proportional to 2F11 − F00 − Δg,11,F. Near equilibrium states,
we might find F00 > 2F11 − Δg,11,F, where statistical functions F11, F00 and Δg,11,F are proportional
to the Bose–Einstein distribution 1

ep0/T−1
plus 1

2 (with the Kadanoff–Baym ansatz) with different

dispersion relations p0 ∼ p2

2m for F00 and p0 ∼ p2

2m + 1
2I for F11 and Δg,11,F, due to the energy difference

1
2I − 0

2I between the ground state and first excited states. So the 2F11 − F00 − Δg,11,F in the second
term is negative near the equilibrium states, which might mean no tachyonic unstable terms appear
from quantum fluctuations near equilibrium states. The contributions of quantum fluctuations on
the right-hand side written by statistical functions (second, third, fourth and fifth terms) vanish at
zero temperature T = 0. Quantum fluctuations represent finite temperature effects at equilibrium
states, although we need not restrict ourselves to only the equilibrium case. We have shown general
contributions of quantum fluctuations in both equilibrium and non-equilibrium case in this paper.

Finally we shall consider remaining equations for coherent dipole fields. By using Equations (99)
and (100) and the definitions of real functions μ1 = 2ede(ψ̄∗

1 ψ̄0 + ψ̄∗
0 ψ̄1), P = iede(ψ̄∗

1 ψ̄0 − ψ̄∗
0 ψ̄1) and

Z = 2|ψ̄1|2 − |ψ̄0|2, we can also derive,

∂0Z = 4E1P, (122)

∂0μ1 =
P
I

, (123)

∂0P = −μ1

4I
− 2(ede)

2E1Z. (124)
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We can show ∂0(2|ψ̄1|2 + |ψ̄0|2) = 0 by using these three equations. In these equations with initial
conditions E1 > 0, Z > 0 (inverted population), P = 0 and μ1 = 0, the P and the μ1 decrease at around
the initial time and Z starts to decrease due to E1P < 0. In initial conditions E1 > 0, Z < 0 (normal
population), P = 0 and μ1 = 0, the P and the μ1 increase at around the initial time and Z starts to
increase due to E1P > 0. The absolute values of Z decrease at around the initial time. We find that
there is no term of quantum fluctuations in Equations (122)–(124).

We can solve Equations (121)–(124) with real functions in this section and the Kadanoff–Baym
equations with real statistical functions and pure imaginary spectral functions in Section 4,
simultaneously.

6. Discussion

In this paper, we have derived time evolution equations, namely the Klein–Gordon equations
for coherent photon fields, the Schrödinger-like equations for coherent electric dipole fields
and the Kadanoff–Baym equations for quantum fluctuations, starting with the Lagrangian in
quantum electrodynamics with electric dipoles in 2 + 1 dimensions. We have adopted the
two-particle-irreducible effective action technique with the leading-order self-energy of the coupling
expansion. We find that electric dipoles change their angular momenta due to coherent electric
fields E1 ± iαE2 with α = ±1. They also change momenta and angular momenta by scattering with
incoherent photons. The proof of H-theorem is possible for these processes as shown in Section 3.
Our analysis provides the dynamics of both the order parameters with coherent fields and quantum
fluctuations for incoherent particles.

In Section 2, we adopt two-energy level approximation for the angular momenta of dipoles. Then,
we find that the iΔ−1

0 is written by 3 × 3 matrix with zero (−1, 1) and (1,−1) components. The form of
the matrix is similar to 3 × 3 matrix in the analysis in open systems, the central region, left and right
reservoirs as in [59,61–63]. Hence we can simplify the Kadanoff–Baym equations for dipole fields in
an isolated system with the same procedures as those in open systems. The difference between QED
with dipoles and φ4 theory in open systems is that the coherent electric field changes the momenta
of dipoles when the phase αζ in E1 ± iαE2 with α = ±1 is dependent on space–time. The space
dependence of coherent electric fields might disappear in the time evolution due to the instability by
the lower entropy of the system, then electric fields will change angular momenta of dipoles but not
change momenta p due to ∂ζ = 0. We can also trace the dynamics with ∂ζ = 0. By setting the initial
conditions with the symmetry α → −α, namely ψ̄

(∗)
α = ψ̄

(∗)
−α , Δα0 = Δ−α0 and Δ0α = Δ0−α, with initial

conditions E2 = 0 and ∂0E2 = 0 in spatially homogeneous systems in ∂νFν2 = J2 in Equation (20), we
can show E2 = 0 at any time. Then we can use ∂ζ = 0. This condition simplifies numerical simulations
in the Kadanoff–Baym equations since we need not estimate the momentum shift p → p ± α∂ζ in the
finite-size lattice for the momentum space. As a result, the simulations for Kadanoff–Baym equations
for dipoles and photons will be similar to those in QED with charged bosons in [72].

In Section 3, we have introduced a kinetic entropy current and shown the H-theorem in the
leading-order of the coupling expansion with ede. This entropy approaches the Boltzmann entropy in
the limit of zero spectral width as in [58]. The mode-coupling processes between dipoles and photons
produce entropy. When there are deviations between (00) and (αα) components of distribution
functions, entropy production occurs. Entropy production stops when the Bose–Einstein distribution
is realized in the dynamics of Kadanoff–Baym equations.
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We can also derive the energy shifts in dispersion relations due to nonzero electric fields by using
the retarded Green’s functions in Section 3. The 0th order equations for retarded Green’s functions are
given by,

(
p0 − p2

2m
+ 2(ede)

2E2
1Δg,11,R

)
Δ00,R = −1, (125)(

p0 − p2

2m
− 1

2I

)
Δ11,R + (ede)

2E2
1Δ00,RΔg,11,R = −1, (126)

with Δg,11,R = −1

p0− p2
2m − 1

2I

. Multiply p0 − p2

2m − 1
2I , take the imaginary parts in the above equations and

remember the imaginary parts of retarded Green’s functions are the spectral functions, then we find,

W

[
ρ00

ρ11

]
= 0, with,

W =

⎡
⎣
(

p0 − p2

2m − 1
2I

) (
p0 − p2

2m

)
− 2(ede)2E2

1 0

−(ede)2E2
1

(
p0 − p2

2m − 1
2I

)2

⎤
⎦ (127)

By setting determinant |W| to be zero, we find the following solutions for dispersion relations,

p0 =
p2

2m
+

1
4I

± 1
2

√
1

4I2 + 8(ede)2E1
2. (128)

Here we assumed the symmetry for α = ±1 for Green’s functions and zero self-energy Σ00 =

Σ11 = 0. We find how electric fields shift two energy levels 0 and 1
2I . The above energy shift is similar

to the energy shift given in [27] in 3 + 1 dimensions due to nonzero electric fields.
In Section 5.1, we have derived the super-radiance from time evolution equations for coherent

fields. We find that it is possible to derive the Maxwell–Bloch equations from our Lagrangian with
the probability conservation law and the energy conservation law. Super-radiant decay with intensity
of the order ∝ N2 (N: The number of dipoles) appears in a similar way to [70,71]. It is possible to
derive the maximum energy of electric fields by use of Equation (113). We know that the moment
of inertia of water molecule is I = 2mH R2 with mH = 940 MeV with R = 0.96 × 10−10 m. Hence the
k0 = 1

2I = 1.1 × 10−3 eV. Since B = N
V = 3.3 × 1028 /m3 for liquid water, we find

1
2

ε2
max =

1
2

k0B = 1.8 × 1025 eV/m3. (129)

When we multiply the volume of all microtubules (MTs) in a brain,

VMT = π × 15nm2 × 1000nm × 2000 MTs/neuron × 1011 neurons/brain = 1.4 × 10−7 m3, (130)

we can arrive at,

1
2

ε2
maxVMT = 0.41 J = 0.1 cal. (131)

If we maintain our brain 100 s without energy supply, we need at least 0.1 ×
10−2 cal/s or 86 cal/day to maintain the ordered states of memory. We can compare
86 cal/day with 4000 cal/day = 2000 kcal/day × 0.2 (energy consumption rate of brain) ×
0.01 (energy rate to maintain the ordered system). The 86 cal/day is within the 4000 cal/day, which
is consistent with our experiences. In this derivation, we have used coefficients in 2 + 1 dimensions
and the number density of water molecules in 3 + 1 dimensions.
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In Section 5.2, we have derived time evolution equations for electric field E1. The Higgs
mechanism appears in this equation in normal population Z < 0. As a result, the dynamical mass
generation occurs with the maximum mass ΩHiggs = 2ede

√
k0B = 30k0 where the number density of

dipoles is B = 2|ψ̄1|2 + |ψ̄0|2 = N
V . The period is 2π/ΩHiggs = 1.3 × 10−13 s. In normal population

Z < 0, the Meissner effect appears with the penetrating length 1/ΩHiggs = 6.3 μm. On the other
hand, the tachyonic instability occurs in inverted population Z > 0. The electric field E1 increases
exponentially with exp(ΩX0) (with Ω ≤ Ωmax) where the time scale is 1/Ωmax = 2.1 × 10−14 s with
Ωmax = ΩHiggs. Due to energy conservation, since Z decreases as the absolute value of the electric
field increases, tachyonic instability stops in Z < 0.

We have prepared for numerical simulations with time evolution equations, namely the
Schödinger-like equations for coherent electric dipole fields, the Klein–Gordon equations for coherent
electric fields and the Kadanoff–Baym equations for quantum fluctuations. Our simulations might
describe the dynamics towards equilibrium states for quantum fluctuations and the dynamics of
super-radiant states for coherent fields. Our analysis is also extended to simulations in open systems
by preparing the left and the right reservoirs like those in [59] or networks [73].

7. Conclusions

We have derived the Schrödinger equations for coherent electric dipole fields, the Klein–Gordon
equations for coherent electric fields and the Kadanoff–Baym equations for quantum fluctuations in
QED with electric dipoles in 2 + 1 dimensions. It is possible to derive equilibration for quantum
fluctuations and super-radiance for background coherent fields simultaneously. Total energy
consumption to maintain super-radiance in microtubules is consistent with energy consumption in our
experiences. We can describe dynamical information transfer with super-radiance via microtubules
without violation of the second law in thermodynamics. We have also derived the Higgs mechanism
in normal population and the tachyonic instability in inverted population. These dynamical properties
might be significant to form and maintain coherent domains composed of dipoles and photons. We
are ready to describe memory formation processes towards equilibrium states in 2 + 1 dimensions
with equations in this paper. Furthermore, our approach might pave the way to understand the
dynamical thinking processes with memory recalling in QBD by investigating the case in open systems
with the Kadanoff–Baym equations. This work will be extended to the 3 + 1 dimensional analysis to
describe memory formation processes in numerical simulations. We should derive the Schödinger-like
equations, the Klein–Gordon equations and the Kadanoff–Baym equations by starting with the single
Lagrangian in QED with electric dipoles in 3 + 1 dimensions in the future study. These equations in
3 + 1 dimensions will describe more realistic and practical dynamics in QBD.
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Appendix A. Quantum Fluctuations in the Klein–Gordon Equations

In this section, we shall derive the second, third, fourth and fifth terms involving quantum
fluctuations on the right-hand side in Equation (121) in spatially homogeneous systems. They
correspond to the following term,

−2ede(∂0)
2 [Δ10(x, x) + Δ01(x, x)] ,
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in Equation (101) with the symmetry Δ10 = Δ−10 and Δ01 = Δ0−1. It appears in taking the time
derivative of J1 (given by Equation (21) ) in Equation (20). Here Δ10(x, x) and Δ01(x, x) can be
rewritten by,

Δ10(x, x) = − ede

i

∫
w

Δg,11(x, w)E1(w)Δ00(w, x), (A1)

Δ01(x, x) = − ede

i

∫
w

Δ00(x, w)E1(w)Δg,11(w, x), (A2)

where we have used Equations (31) and (34) by setting E2 = 0. We rewrite second time derivatives of
Δ10(x, x) and Δ01(x, x).

We shall rewrite Equation (30) without self-energy Σαα as,[
i

∂

∂x0 +
∇2

i
2m

− 1
2I

]
Δg,11(x, w) = iδC(x − w), (A3)

[
−i

∂

∂x0 +
∇2

i
2m

− 1
2I

]
Δg,11(w, x) = iδC(w − x), (A4)

where we have multiplied Δg,11 from the right and left of Equation (30). By using the above equations

and Equations (32) and (33) with Equations (A1) and (A2) and Δ−1
0,00(x, y) =

(
i ∂

∂x0 +
∇2

i
2m

)
δC(x − y),

we can show

∂

∂x0 Δ10(x, x) = ede

[ [(
−∇2

i
2m

+
1
2I

)
Δg,11 + iδC

]
E1Δ00

+Δg,11E1
∇2

i
2m

Δ00 + 2Δg,11edeE1Δ01E1 − Δg,11E1iδC

]

= ede

[(
1
2I

Δg,11 + iδC
)

E1Δ00 + 2Δg,11edeE1Δ01E1 − Δg,11E1iδC

]
, (A5)

∂

∂x0 Δ01(x, x) = ede

[
(−2edeE1Δ10 + iδC) E1Δg,11 + Δ00E1

(
− 1

2I
Δg,11iδC

)]
, (A6)

where δC represents the delta function in the closed-time path. Here the terms proportional to ∇2
i are

cancelled in spatially homogeneous systems. By use of the above two equations, we can show

∂

∂x0 (Δ10 + Δ01) =
1

2iI
(Δ10 − Δ01) , (A7)

and,

∂2

∂(x0)2 (Δ10 + Δ01) =
ede

2iI

[(
Δg,11

2I
+ iδC

)
E1Δ00 + 2Δg,11edeE1Δ01E1 − Δg,11E1iδC

− (−2edeE1Δ10 + iδC) E1Δg,11 − Δ00E1

(
− 1

2I
Δg,11 − iδC

)]

=
ede

2iI

[
2iE1

(
Δ00 − Δg,11

)
+

1
2I
(
Δg,11E1Δ00 + Δ00E1Δg,11

)

+2ede
(
Δg,11E1Δ01E1 + E1Δ10E1Δg,11

) ]
. (A8)
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Since we can rewrite Equations (35) or (36) by multiplying iΔg,11 as,

iΔg,11 − iΔ11 = edeΔg,11E1Δ01

= edeΔ10E1Δg,11, (A9)

we arrive at,

∂2

∂(x0)2 (Δ10 + Δ01) = − 1
4I2 (Δ10 + Δ01) +

edeE1

I
(
Δ00 − 2Δ11 + Δg,11

)
, (A10)

where we have used Equations (A1) and (A2).
Finally by rewriting the statistical parts (subscript ‘F’) of Δ10 + Δ01 with Equations (A1) and (A2),

and using E1(w) = E1(x) + (w0 − x0)∂0E1(x) in,[ ∫
dw
[
Δg,11(x, w)E1(w)Δ00(w, x) + Δ00(x, w)E1(w)Δg,11(w, x)

] ]
F

,

and the relation in the first order in the gradient expansion,[ ∫
dwΔg,11(x, w)Δ00(w, x)

]
F

=
∫

p

(
Δg,11,R(x, p)

i
F00(x, p) + Δg,11,F

Δ00,A

i

+
i
2

{
Δg,11,R(x, p)

i
, F00(x, p)

}
+

i
2

{
Δg,11,F,

Δ00,A

i

})
,(A11)

with the advanced (subscript ‘A’) Δ00,A = i(Δ11
00 − Δ21

00) = ReΔ00,R − ρ00
2 and the retarded Δ00,R =

i(Δ11
00 − Δ12

00) = ReΔ00,R + ρ00
2 , we can derive the third, fourth and fifth terms on the right-hand side in

Equation (121).
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63. Dražić, M.S.; Cerovski, V.; Zikic, R. Theory of time-dependent nonequilibrium transport through a single
molecule in a nonorthogonal basis set. Int. J. Quantum Chem. 2017, 117, 57–73. [CrossRef]

64. Stratonovich, R.L. Gauge Invariant Generalization of Wigner Distribution. Dok. Akad. Nauk SSSR 1956, 109,
72–75.

65. Fujita, S. Introduction to Non-Equilibrium Quantum Statistical Mechanics; Krieger Pub Co: Malabar, FL,
USA, 1966.

66. Groenewold, H.J. On the Principles of Elementary Quantum Mechanics; Springer: The Netherlands, 1946;
Volume 12, pp. 1–56.

67. Moyal, J.E. Quantum mechanics as a statistical theory. Math. Proc. Camb. Philos. Soc. 1949, 45, 99–124.
[CrossRef]

68. Knoll, J.; Ivanov, Y.B.; Voskresensky, D.N. Exact conservation laws of the gradient expanded Kadanoff–Baym
equations. Ann. Phys. 2001, 293, 126–146. [CrossRef]

69. Ivanov, Y.B.; Knoll, J.; Voskresensky, D. Self-consistent approach to off-shell transport. Phys. At. Nucl. 2003,
66, 1902–1920. [CrossRef]

70. Bonifacio, R.; Preparata, G. Coherent spontaneous emission. Phys. Rev. A 1970, 2, 336. [CrossRef]
71. Benedict, M.G. Super-Radiance: Multiatomic Coherent Emission; Routledge: London, UK, 2018.

134



Entropy 2019, 21, 1066

72. Nishiyama, A.; Tuszynski, J.A. Nonequilibrium quantum electrodynamics: Entropy production during
equilibration. Int. J. Mod. Phys. B 2018, 32, 1850265. [CrossRef]

73. Nishiyama, A.; Tuszynski, J.A. Non-Equilibrium φ4 theory for networks: Towards memory formations with
quantum brain dynamics. J. Phys. Commun. 2019, 3, 055020. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

135





entropy

Article

Variational Autoencoder Reconstruction of Complex
Many-Body Physics

Ilia A. Luchnikov 1,2, Alexander Ryzhov 1, Pieter-Jan Stas 3, Sergey N. Filippov 2,4,5 and

Henni Ouerdane 1,*

1 Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 3 Nobel Street,
Skolkovo, Moscow Region 121205, Russia; Ilia.Luchnikov@skoltech.ru (I.A.L.); a.ryzhov@skoltech.ru (A.R.)

2 Moscow Institute of Physics and Technology, Institutskii Per. 9, Dolgoprudny,
Moscow Region 141700, Russia; sergey.filippov@phystech.edu

3 Department of Applied Physics, Stanford University 348 Via Pueblo Mall, Stanford, CA 94305, USA;
pjstas@stanford.edu

4 Valiev Institute of Physics and Technology of Russian Academy of Sciences, Nakhimovskii Pr. 34,
Moscow 117218, Russia

5 Steklov Mathematical Institute of Russian Academy of Sciences, Gubkina St. 8, Moscow 119991, Russia
* Correspondence: h.ouerdane@skoltech.ru

Received: 9 October 2019; Accepted: 6 November 2019; Published: 7 November 2019

Abstract: Thermodynamics is a theory of principles that permits a basic description of the macroscopic
properties of a rich variety of complex systems from traditional ones, such as crystalline solids, gases,
liquids, and thermal machines, to more intricate systems such as living organisms and black holes
to name a few. Physical quantities of interest, or equilibrium state variables, are linked together in
equations of state to give information on the studied system, including phase transitions, as energy
in the forms of work and heat, and/or matter are exchanged with its environment, thus generating
entropy. A more accurate description requires different frameworks, namely, statistical mechanics and
quantum physics to explore in depth the microscopic properties of physical systems and relate them
to their macroscopic properties. These frameworks also allow to go beyond equilibrium situations.
Given the notably increasing complexity of mathematical models to study realistic systems, and
their coupling to their environment that constrains their dynamics, both analytical approaches and
numerical methods that build on these models show limitations in scope or applicability. On the
other hand, machine learning, i.e., data-driven, methods prove to be increasingly efficient for the
study of complex quantum systems. Deep neural networks, in particular, have been successfully
applied to many-body quantum dynamics simulations and to quantum matter phase characterization.
In the present work, we show how to use a variational autoencoder (VAE)—a state-of-the-art tool in
the field of deep learning for the simulation of probability distributions of complex systems. More
precisely, we transform a quantum mechanical problem of many-body state reconstruction into a
statistical problem, suitable for VAE, by using informationally complete positive operator-valued
measure. We show, with the paradigmatic quantum Ising model in a transverse magnetic field,
that the ground-state physics, such as, e.g., magnetization and other mean values of observables,
of a whole class of quantum many-body systems can be reconstructed by using VAE learning of
tomographic data for different parameters of the Hamiltonian, and even if the system undergoes a
quantum phase transition. We also discuss challenges related to our approach as entropy calculations
pose particular difficulties.

Keywords: complex systems thermodynamics; machine learning; quantum phase transition;
Ising model; variational autoencoder
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1. Introduction

The development of the dynamical theory of heat or classical equilibrium thermodynamics as
we know it was possible only with empirical data collection, processing, and analysis, which led,
through a phenomenological approach, to the definition of two fundamental physical concepts, the
actual pillars of the theory: energy and entropy [1]. It is with these two concepts that the laws (or
principles) of thermodynamics could be stated and the absolute temperature be given a first proper
definition. Though energy remains as fully enigmatic as entropy from the ontological viewpoint,
the latter concept is not completely understood from the physical viewpoint. This of course did not
preclude the success of equilibrium thermodynamics as evidenced not only by the development of
thermal sciences and engineering, but also because of its cognate fields that owe it, at least partly or as
an indirect consequence, their birth, from quantum physics to information theory.

Early attempts to refine and give thermodynamics solid grounds started with the development of
the kinetic theory of gases and of statistical physics, which in turn permitted studies of irreversible
processes with the development of nonequilibrium thermodynamics [2–6] and later on finite-time
thermodynamics [7–9], thus establishing closer ties between the concrete notion of irreversibility and
the more abstract entropy, notably with Boltzmann’s statistical definition [10] and Gibbs’ ensemble
theory [11]. Notwithstanding conceptual difficulties inherent to the foundations of statistical physics,
such as, e.g., irreversibility and the ergodic hypothesis [12,13], entropy acquired a meaningful statistical
character and the scope of its definitions could be extended beyond thermodynamics, thus paving the
way to information theory, as information content became a physical quantity per se, i.e., something
that can be measured [14]. Additionally, although quantum physics developed independently from
thermodynamics, it extended the scope of statistical physics with the introduction of quantum statistics,
led to the definition of the von Neumann entropy [15], and also introduced new problems related
to small, i.e., mesoscopic and nanoscopic systems [16,17], down to nuclear matter [18], where the
concepts of thermodynamic limit and ensuing standard definitions of thermodynamic quantities may
be put at odds.

Quantum physics problems that overlap with thermodynamics are typically classified into
different categories: ground state characterization [19], thermal state characterization at finite
temperature [20], the so-called eigenstate thermalization hypothesis [21–25], calculation of the
dynamics of either closed or open systems [26,27], state reconstruction from tomographic data [28], and
quantum system control, which, given the complexity for its implementation, requires the development
of new methods [29]. Among the rich variety of methods applicable to such problems, including,
e.g., mean-field approach [30], slave particle approach [31], dynamical mean-field theory [32],
nonperturbative methods based on functional integrals [33], we believe two large families of techniques
are of particular interest for numerical studies of many-body systems when strong correlations must be
accounted for: One is based on the quantum Monte Carlo (QMC) framework [34], which is powerful to
overcome the curse of dimensionality by using the stochastic estimation of high-dimensional integrals;
the other family encompasses methods that search solutions in the parametric set of functions, also
called ansatz. The most used ansatzes are based on different tensor network architectures [35,36]
as tensor network-based methods show state-of-the-art performance for the characterization of
one-dimensional strongly correlated quantum systems. One can solve either the ground-state
problem by using the variational matrix product state (MPS) ground state search [37] or a dynamical
problem using a time-evolving block decimation (TEBD) algorithm [38]. Quantum criticality of
one-dimensional systems also can be studied by using a more advanced architecture called multiscale
entanglement renormalization ansatz (MERA) [39]. The application of tensor networks is not restricted
to one-dimensional systems, and one can describe an open quantum dynamics [40], characterize the
numerical complexity of an open quantum dynamics [41,42], perform tomography of non-Markovian
quantum processes by using tensor networks [43,44], analyze properties of two dimensional quantum
lattices by using projected entangled pair states (PEPS) [45], or solve classical statistical physics
problems [46,47].
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The cross-fertilization of quantum physics and thermodynamics has benefited much from the
powerful quantum formalism and computational techniques; however, as thermodynamic concepts
evolved from intuitive/phenomenological definitions to classical-mechanics constructs, extended
with quantum physics and formalism when needed, thermodynamics, in spite of its undeniable
theoretical and practical successes, never managed to fully mature into a genuine fundamental
theory that firmly rests on strong basic postulates. On one hand, this led a growing number of
physicists to consider thermodynamics as incomplete, and on the other, to think quantum theory as
the underlying framework from which equilibrium and nonequilibrium thermodynamics emerge.
Quantum thermodynamics [48,49] is a fairly recent field of play, where new ideas are tested while
revisiting old problems related to cycles, engines, refrigerators, and entropy production, to name
a few [50,51]. Further, quantum technology is a burgeoning field at the interface of physics and
engineering, which seeks to develop devices able to harness quantum effects for computing and
secure communication purposes [52,53]. The wide scale development of such a kind of systems,
which irreversibly interact with an infinite environment, rests on the ability to properly simulate the
open quantum dynamics of their many-body properties and analyze coherence and dissipation at the
quantum level.

How fast quantum thermodynamics will progress is difficult to anticipate as there exist numerous
unsolved problems, especially those related to the proper characterization of the physical processes,
e.g., what qualifies as heat or work on ultrashort time and length scales, where averages become
irrelevant is unclear, and how the laws of thermodynamics may be systematically adapted still may be
debated. To mitigate risks of slow progress, one may resort to approaches that do not rely on models
of systems, but rather on data, the idea being to gain actual knowledge and understanding from data
irrespective of how complex the studied system is. Machine learning (ML) provides perfectly suited
tools for that purpose [54]. ML has a rather long history that can be dated back with the works of
Bayes (1763) on prior knowledge that can be used to calculate the probability of an event as formulated
by Laplace (1812). Much later (1913), Markov chains were proposed as a tool to describe sequences
of events, each being characterized by a probability of occurrence that depends on the actuality of
the previous event only. The main milestone is in 1950, with Turing’s machine that can learn [55],
shortly followed in 1951 by the first neural network machine [56]. Thanks to the huge increase in
computational power over the last two decades, ML is now used for a wide variety of problems [54],
and quantum machine learning now shows extraordinary potential for faster and more efficient than
ever treatment of complex quantum systems problems [57], one major challenge still residing in the
development of the hardware capable to harness and transform this potentiality into actual tool.

With the recent success in the field of deep learning, tools other than those based on tensor
networks work as well as an ansatz. Restricted Boltzmann machine has been successfully applied
as an ansatz to a ground state search, dynamics calculation, and quantum tomography [58–60], as
well as convolution neural network to the two-dimensional frustrated J1 − J2 model [61]. The deep
autoregressive model was applied very efficiently and elegantly to a ground state search of many-body
quantum system and to classical statistical physics as well [62,63]. It was also recently shown how
ML can establish and classify with high accuracy the chaotic or regular behavior of quantum billiards
models and XXZ spin chains [64]. Thus, it can be useful to transfer deep architectures from the field
of deep learning to the area of many-body quantum systems. A variational autoencoder (VAE) was
used for sampling from probability distributions of quantum states in [65]; in the present work, we
show that state-of-the-art generative architecture called conditional VAE can be applied to describe
the whole family of the ground states of a quantum many-body system. For that purpose, using
quantum tomography (albeit in an approximate fashion as discussed below) and reconstruction tools
developed in [66], we consider the paradigmatic Ising model in a transverse-field as an illustration of
the usefulness and efficiency of our approach. The use of VAE in such a problem is justified by the
simplicity of VAE training, as well as its expressibility [67].
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The article is organized as follows. In Section 2, we give a brief recap of the physics of the Ising
model in a transverse field. In Section 3, we develop our generative model in the framework of the
tensor network. Section 4 is devoted to the variational autoencoder architecture. The results are shown
and discussed in Section 5. The article ends with concluding remarks, followed a by a short series
of appendices.

2. Transverse-Field Ising Model

Among the rich variety of condensed matter systems, magnetic materials are a source of
many fruitful problems, whose studies and solutions inspired discussions and new models beyond
their immediate scope. The Kondo effect (existence of a minimum of electrical resistivity at low
temperature in metals due to the presence of magnetic impurities) is one such problem [68,69],
as it provides an excellent basis for studies of quantum criticality and absolute zero-temperature
phase transitions [70,71] and, also, on a more fundamental level, a concrete example of asymptotic
freedom [69]. Assuming infinite on-site repulsion, the single-impurity Anderson model [68,72]
was used to establish a correspondence between Hamiltonian language and path integral for the
development of nonperturbative methods in quantum field theory [73,74]. One other important model
is that of the Heisenberg Hamiltonian, defined for the study of ferromagnetic materials, and which,
assuming a crystal subjected to an external magnetic field B, reads [75] as

H = − ∑
〈i,j〉

JijŜi Ŝj − h · ∑
j

Ŝj (1)

where, for ease of notations, we introduced h = gμBB, with g being the Landé factor and μB = eh̄/2me

being the Bohr magneton (e: elementary electric charge, and me: electron mass); Jij is a parameter
that characterizes the nearest-neighbors exchange interaction between electron spins on the crystal
sites i and j (the quantum spins Ŝi and Ŝj are vector operators whose components are proportional
to the Pauli matrices). For simplicity, one may consider Jij ≡ J constant. If J > 0, then the system is
ferromagnetic and if J < 0 the system is antiferromagnetic. Hereafter, we fix the electron’s magnetic
moment gμB = 1.

Although Equation (1) has a fairly simple form, the exact calculation of the partition function is

Z = Tr e−βH (2)

where β = 1/kBT is the inverse thermal energy, which is possible on the analytical level with the
mean-field approximation that simplifies the Hamiltonian (1), and also for one-dimensional systems,
one difficulty of the Heisenberg Hamiltonian being that the three components of a spin vector operator
do not commute. That said, Heisenberg’s Hamiltonian is very useful to, e.g., study spin frustration [76],
entanglement entropy [77], and also serve as a test case for density-matrix renormalization group
algorithms [78]. Under zero field, Heisenberg’s Hamiltonian is also a simplified form of the Hubbard
model at half-filling, thus including ferromagnetism in the scope of strongly correlated systems studies.

A particular, but very important, approximation of Heisenberg’s Hamiltonian, whose significance
lies in physics, especially for the study of critical phenomena, cannot be underestimated: the so-called
Ising model. In its initial formulation [79], Ising spins are N classical variables, which may take ±1 as
values and form a one-dimensional (1D) system characterized by free or periodic boundary conditions.
The classical partition function Z may be calculated analytically for the 1D Ising model, and quantities
such as the average total magnetization are obtained directly [80]:

M =
1
β

∂ ln Z
∂h

(3)
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In the present work, we consider a 1D quantum spin chain whose Hilbert space is given by H =
⊗N

i C2.
The system is described by the transverse-field Ising (TFI) Hamiltonian [81]:

H = −J ∑
〈i,j〉

σi
zσi+1

z + hx

N

∑
i=1

σi
x. (4)

where σi
α (α ≡ x, z) is the Pauli matrix for the α-component of the i-th spin in the chain, and hx is the

magnetic field applied in the transverse direction x. In this case, the spins are no longer the classical
Ising ones and the two terms that compose the Hamiltonian H do not commute, therefore requiring a
full quantum approach. An example of a real-world system that may be studied as a quantum Ising
chain is cobalt niobate (CoNb2O6); in this case, the spins that undergo the phase transition as the
transverse field varies are those of the Co2+ ions [82]. The spin states are denoted |+〉i and |−〉i at ion
site i. There are two possible ground states: when all N spins are in the state |+〉 or in the state |−〉,
i.e., when they are all aligned, which defines the ferromagnetic phase.

The phase transition from the ferromagnetic phase to the paramagnetic phase that we speak of
now is of a quantum nature, and not of a thermal nature, as here it is driven only by the external
magnetic field. More precisely, when the transverse field hx is applied with sufficient strength, the spins
align along the x direction, and the spin state at site i is given as the superposition (|+〉i + |−〉i) /

√
2,

which is nothing else but the eigenstate of the x-component of the spin. Therefore, in this particular
case, there is no need to raise the temperature of the system initially in the ferromagnetic phase beyond
the Curie temperature to make it a paramagnet: the many-body system remains in its ground state,
but its properties have changed. Further, note that unlike for the ferromagnetic phase, the quantum
paramagnetic phase has spin-inversion symmetry. An insightful discussion on quantum criticality can
be found in Reference [83].

Now, we briefly comment on the quantity β = 1/kBT in the context of quantum phase transitions,
which, strictly speaking, can only occur at temperature T = 0 K. In fact, close to the absolute zero,
where β → ∞, their signatures can be observed as quantum fluctuations dominate thermal fluctuations
in the criticality region, where the quantum critical point lies. The imaginary time formalism [84],
where exp(−βH) is interpreted as an evolution operator, and the partition function Z as a path integral,
provides a way to map a quantum problem onto a classical one with the introduction of the imaginary
time β resulting from a Wick rotation in the complex plane, thus yielding one extra dimension to
the model. In classical thermodynamics, to observe a phase transition in a system requires that its
size (i.e., the number of constituents N) tends to infinity so that the order parameter is non-analytic
at the transition point; so, for the quantum transition, the thermodynamic limit entails the limit
β → ∞ also: the 1D TFI model is mapped onto an equivalent 2D classical Ising model [85]. The
imaginary time formalism permits implementation of classical Monte Carlo simulations to study
quantum systems. Further discussion, including the sign problem for the quantum spin-1/2 system, is
available in Reference [4].

We have chosen the transverse-field Ising model as an illustrative case for our study for several
reasons. First, as this system is 1-dimensional, we can apply an MPS variational ground state solver [37],
and therefore obtain the ground state solution in MPS representation. We can then perform fast and
exact sampling for generation of large data sets for the training of the VAE. Next, this model can be
solved analytically, which allows us to adequately benchmark our results. Finally, this model shows
a nontrivial behavior around the quantum phase transition point at hx = 1, and thus constitutes an
interesting example to apply a VAE.

3. Generative Model as a Quantum State

Many-body quantum physics is rich in high-dimensional problems. Often, however, with
increasing dimensionality, these become extremely difficult or impossible to solve. One solving
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method is through the reformulation of the quantum mechanical problem as a statistical problem,
when possible. This way, machine learning can be used to effectively solve such a problem, as
machine learning is a tool for the solving of high-dimensional statistical problems [86]. Probabilistic
interpretation allows for using powerful sampling-based methods that work efficiently with high
dimensional data.

An example of the reformulation of a quantum problem as a statistical problem is with
informationally complete (IC) positive-operator valued measures (POVMs) [87]. POVMs describe
the most general measurements of a quantum system. Each particular POVM is defined by a set
of positive semidefinite operators Mα, with the normalization condition ∑α Mα = 1, where 1 is the
identity operator. The fact that the POVM is informationally complete means that using measurement
outcomes one can reconstruct the state of a system with arbitrary accuracy.

The probability of measurement outcome for a quantum system with the density operator ρ is
governed by Born’s rule: P[α] = Tr(�Mα), where {Mα} is a particular POVM and α is an outcome result.
In other words, any density matrix can be mapped on a mass function, although not all mass functions
can be mapped on a density matrix [88,89]. Some mass functions lead to non-positive semidefinite
“density matrices”, which is not physically allowed. As such, quantum theory is a constrained version
of probability theory. For a many-body system, these constraints can be very complicated, and direct
consideration of quantum theory as a constrained probability theory is not fruitful. However, if one can
access the samples of the IC POVM induced mass function, which is by definition physically allowed,
this mass function can be reconstructed using generative modeling [66,67]. Samples can be obtained
either by performing generalized measurements over the quantum system or by in silico simulation.

In the present work, we simulate measurements of the ground state of a spin chain with the TFI
Hamiltonian, Equation (4). As a local (one spin) IC POVM, we use the so-called symmetric IC POVM
for qubits (tetrahedral) POVM [90]:

Mα
tetra =

1
4
(1+ sασ) , α ∈ (0, 1, 2, 3), σ =

(
σx, σy, σz

)
,

s0 = (0, 0, 1), s1 =

(
2
√

2
3

, 0,−1
3

)
, s2 =

(
−
√

2
3

,

√
2
3

,−1
3

)
, s3 =

(
−
√

2
3

,−
√

2
3

,−1
3

)
. (5)

Note that the many-spin generalization of local IC POVM can easily be obtained by considering the
tensor product of local ones:

Mα1,...,αN
tetra = Mα1

tetra ⊗ Mα2
tetra ⊗ · · · ⊗ MαN

tetra. (6)

To simulate measurements outcome under the IC POVM described above, we implement the
following numerical scheme: First, we run a variational MPS ground state solver to obtain the ground
state of the TFI model in the MPS form:

Ωi1,i2,...,iN = ∑
β1,β2,...,βN−1

A1
i1β1

A2
β1i2β2

. . . AN
βN−1iN

(7)

where we use the tensor notation instead of the bra-ket notation for further simplicity, and we obtain
the MPS representation of IC POVM induced mass function:

P[α1, α2, . . . , αN ] = ∑
δ1,δ2,...,δN−1

πα1δ1 πδ1α2δ2 . . . πδN−1αN ,

πδn−1αnδn = π
βn−1β′

n−1︸ ︷︷ ︸
multi−index δn−1

αn βnβ′
n︸ ︷︷ ︸

multi−index δn

= [Mtetra]
αn
ij An

βn−1 jβn
[An]∗β′n−1iβ′n (8)

whose diagrammatic representation [35] is shown in Figure 1. Next, we produce a set of samples of
size M: {αi

1, αi
2, . . . , αi

N}M
i=1 from the given probability. The sampling can be efficiently implemented
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as shown in Appendix B. We call this set of samples (outcome measurements) a data set, which
may then be used to train a generative model p[α1, α2, . . . , αN |θ] to emulate the true mass function
P[α1, α2, . . . , αN ]. Here, θ is the set of parameters of the generative model, which is trained
by maximizing the logarithmic likelihood L(θ) = ∑M

i=1 log p[αi
1, αi

2, . . . , αi
N |θ] with respect to the

parameters θ [91]. The trained generative model fully characterizes a quantum state. The density
matrix is obtained by applying an inverse transformation to the mass function [92]:

� = ∑
α1,α2,...,αN

p[α1, α2, . . . , αN |θ][Mα1
tetra]

−1 ⊗ [Mα2
tetra]

−1 ⊗ · · · ⊗ [MαN
tetra]

−1,

[Mα
tetra]

−1 = ∑
α′

T−1
αα′ M

α′
tetra, (9)

Tαα′ = Tr
(

Mα
tetraMα′

tetra

)
,

the diagrammatic representation of which is given in Figure 2. Note that the summation included in
the density matrix representation is numerically intractable, but we can estimate it using samplings
from the generative model.

Figure 1. Tensor diagrams for (a) building blocks, (b) matrix product state (MPS) representation of
measurement outcome probability, and (c) its subtensor.

Figure 2. Tensor diagrams for (a) building blocks and (b) inverse transformation from a mass function
to a density matrix.

Our goal is to use a generative model as an effective representation of quantum states to calculate
the mean values of observables such as, e.g., two-point and higher-order correlation functions. An
explicit expression of the two-point correlation function obtained by sampling from the trained
generative model is shown in Figure 3. To obtain the ground state of the TFI model, we use a
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variational MPS ground state search, and we pick the bond dimension of MPS equal to 25 and perform
5 DMRG sweeps to get an approximate ground state in the MPS form. We use the variational MPS
solver provided by the mpnum toolbox [93].

Figure 3. Tensor diagrams representing calculation of two-point correlation function.

4. Variational Autoencoder Architecture

In our work, we use a conditional VAE [94] to represent quantum states. A conditional VAE is a
generative model expressed by the following probability distribution,

p[x|θ, h] =
∫

p[x|z, θ, h]p[z]dz, (10)

where x is the data we want to simulate; θ represents the VAE parameters, which can be tuned to get
the desired probability distribution over x; h is the condition; and z is a vector of latent variables. In
our case, x is the quantum measurement outcome in one-hot notation. A collection of measurement
outcomes is a matrix of size N × 4, where N is the number of particles in the chain and 4 is the number
of possible outcomes of the tetrahedral IC POVM, which is either [1000], [0100], [0010], or [0001]. h is
the external magnetic field. The probability distribution p[x|z, θ, h] can thus be written as

p[x|z, θ, h] =
N

∏
i=1

4

∏
j=1

πij(z, h, θ)xij , (11)

where πij(z, h, θ) is the neural network in our architecture, and, more precisely, πij is the probability of
the jth outcome of the POVM for the ith spin with ∑N

j=1 πij = 1 and πij ≥ 0. The quantity p[z] is the

prior distribution over latent variables, which is simply given by N (0, I) = 1√
2π

N exp
{
− 1

2 zTz
}

, with

I being the identical covariance matrix. We take the number of latent variables equal to the number of
spins, N. Essentially, we want to optimize our VAE so that its probability matches the probability of
the quantum measurement outcomes as closely as possible. This can be done using the well-known
maximum likelihood estimation:

θMLE = argmax
θ

M

∑
i=1

log(p[xi|θ, h]), (12)

where {xi}M
i=1 is the data set of outcome measurements. We cannot simply maximize this function

using, for example, a gradient descent method, due to the presence of hidden variables in the structure
of this function. However, we can overcome this problem by using the Evidence Lower Bound
(ELBO) [95] and the reparametrization trick shown in [96]. The detailed description of the procedure is
given in the Appendix A.
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Once trained, the VAE is a simple and efficient way to produce new samples from its probability
distribution. It can be done in three steps. First, we produce a sample from the prior distribution
p[z] = N (0, I). Next, we feed this sample and the external magnetic field value into the neural network
decoder πij(z, θ, h), which returns the matrix of probabilities. Finally, we sample from the matrix
of probability πij(z, θ, h) to generate “fake” outcome measurements. A visual representation of the
sampling method is shown in Figure 4.

Figure 4. Sampling scheme with the trained variational autoencoder (VAE).

In many problems, gradients of observables with respect to different model parameters yield
quantities of interest. For example, one may consider the magnetic differential susceptibility tensor
χij = ∂μi/∂hj. It can be done efficiently by using backpropagation through the VAE architecture but,
as samples from the VAE are discrete, a straightforward backpropagation is impossible. In recent
papers [97–99], a method called the Gumbel-softmax was introduced to overcome this difficulty
through continuous relaxation. The spirit, and therefore the physical meaning of the method, may
be understood with a short discussion of the so-called simulated annealing technique, which is often
used to solve discrete optimization problems. Broadly speaking, the simulated annealing rests on
the introduction of a parameter that acts as an artificial “temperature”, which varies continuously
to modify the state of the system in search of a global optimum. Starting from a given state, for
some values of the temperature, if the system mostly explores the neighboring states, moving among
them and possibly in the vicinity of the “better” ones, i.e., with lower energy, it may get and remain
close to a local optimum, or local energy minimum in the thermodynamic language; however, to
avoid remaining in a locally optimal region, “bad” moves leading to worse (i.e., higher energy) states
are useful to explore the temperature space more completely improving the chance to find a global
optimum or at least to be near it. To each move an energy variation, ΔE, is associated; it is the
continuous character of the fictitious temperature that makes the discrete problem continuous as the
probability exp(−ΔE)/kBT of acceptance of a state is continuous. Although this approach has been
known for a long time [100], it remains topical and under active development [101,102]. The method
of continuous relaxation we use also exploits such an artificial temperature to make discrete samples
continuous.

The Gumbel-softmax trick, consists of three steps:

1. We calculate the matrix of log probabilities, taking element-wise logarithm of decoder network

output: log Π =

⎡
⎢⎢⎢⎣

log π11 log π12 . . . log π1N
log π21 log π22 . . . log π2N
log π31 log π32 . . . log π3N
log π41 log π42 . . . log π4N

⎤
⎥⎥⎥⎦,

2. We generate a matrix of samples from the standard Gumbel distribution G and sum it up
element-wise with the matrix of log probabilities log Π: Z = log Π + G,

3. Finally, we take the softmax function of the result from the previous step: xfake
soft (T) =

softmax(Z/T), where T is a temperature of softmax. The softmax functions is defined by the

expression softmax(xij) =
exp(xij)

∑i exp(xij)
.
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The quantity xfake
soft (T) has a number of remarkable properties: first, it becomes an exact one-hot

sample when T → 0; second, we can backpropagate through soft samples for any T> 0. The method is
validated in the next section.

Before we proceed to the presentation and discussion of our results, and to better see the added
value of the VAE, it is instructive to compare MPS and VAE (NN) in terms of expressibility, i.e.,
“estimation of MPS states via incomplete local measurements” vs “VAE reconstruction”. As the state of
the system is assumed to be unknown, and some measurement outcomes are only known for different
magnetic fields, these outcomes are too few for exact tomography. Further, it is known that for a
given bond dimension d, the entangled entropy cannot be larger than log(d); in other words, the bond
dimension of MPS places an upper bound on the entangled entropy. Thus, the MPS representation
describes well only quantum states with low entangled entropy, i.e., quantum states which satisfy
the area law [103,104]. The situation with neural network quantum states (NQS) is different: there is
no such a restriction for NQS. Moreover, the existence of NQS with volume-law entanglement [105]
shows a promising development of new, and possibly powerful, NN-based approaches to representing
many-body quantum systems.

5. Results

Here, we show that the VAE trained on a set of preliminary measurements is capable to describe
the physics of the whole family of TFI models. We validate our results by comparing VAE-based
calculations with numerically exact calculations performed by variational MPS algorithm [35].
Additionally, to assess the capabilities of the VAE, we consider a spin chain with 32 spins. We
calculate the MPS representation of the ground state and extract information from it by performing
measurements over the state. The external field in the x-direction is varied from 0 to 2 with a step of
0.1. The VAE is trained on a data set (TFI measurement outcomes) consisting of 10.5 million samples in
total: 21 external fields hx with 500,000 samples per field.

To evaluate the VAE performance, we simply compare directly the numerically exact correlation
functions with those reconstructed with our VAE. Those of n = 1, . . . , 32, 〈σ1

z σn
z 〉, and 〈σ1

x σn
x 〉 are shown

in Figures 5 and 6, respectively, and we compare the numerically exact and the VAE-based average
magnetizations along x, given by 〈σn

x 〉 for each position of the spin along the chain, in Figure 7. We see
that the VAE captures well the physics of the one- and two-point correlation functions. Figure 8 shows
the total magnetizations, μx and μz, in the x and z directions, respectively, with μi =

1
N ∑N

j=1〈σj
i 〉, and

we see that the VAE is a tool well-suited for the description of the quantum phase transition and
also finite-size effects: whereas for the infinite TFI chain, i.e., in the thermodynamic limit, the phase
transition is observed at hx = 1, and the finite size of the system yields a shift of the critical point at
hx ≈ 0.9. Also note that in the T → 0 limit, the magnetization M defined in Equation (3) coincides
exactly with the magnetization μ defined above.

A backpropagation algorithm combined with the Gumbel-softmax trick may be used to evaluate
the derivative of an output over an input. We use this approach to calculate some elements of a
magnetic differential susceptibility tensor χij = ∂μi/∂hj, in particular, χxx and χzx shown in Figure 9.
The backpropagation-based magnetic differential susceptibility agrees well with the numerically
calculated one (central differences). The main advantage of the backpropagation-based calculation is
its numerical efficiency. The VAE may thus be trained with an arbitrary set of external parameters, i.e.,
not only hx, but also hy and hz, and yield the full differential susceptibility tensor.
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Figure 5. Two-point correlation function 〈σz
1 σz

n〉 for different values of external magnetic field hx.

Figure 6. Two-point correlation function 〈σx
1 σx

n 〉 for different values of external magnetic field hx.

Figure 7. Average magnetization per site along x for different values of external magnetic field hx.
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Figure 8. Total magnetization along x and z axes for different values of external magnetic field hx.
The location of the critical region is slightly shifted towards smaller values of hx due to the finite size of
the chain.

Figure 9. Backpropagation-based and numerical-based (central differences) values of χxx and χzx for
different values of external magnetic field hx. Both derivatives slightly fluctuate due to VAE error.

At this stage, we could conclude that the VAE is capable to describe the physics of one- and
two-point correlation functions, and therefore the TFI physics. However, notwithstanding the ability
of the VAE to yield correlation functions that fit well numerically-exact correlation functions, this is
not yet a full proof that it represents quantum states well. To address this point, we consider a small
spin chain (five spins with TFI Hamiltonian and an external magnetic field hx = 0.9) for which we
calculate both the exact mass function and that estimated from VAE samples. Figure 10 shows that the
VAE result again fits the numerically exact mass function with high accuracy. Further, we calculate the

Bhattacharyya coefficient [106]: BC(pvae, pexact) = ∑α pexact[α]

√
pvae[α]

pexact[α]
as a function of the external

magnetic field hx. Results reported in Figure 11 show that BC(pvae, pexact) > 0.99 over the whole hx

range, which thus proves that the VAE represents a quantum state well, at least for small spin chains.
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Figure 10. Comparison of two positive-operator valued measure (POVM)-induced mass functions
(P[α] = Tr(ρMα)) for a chain of size 5: numerically exact mass function and reconstructed from VAE
samples mass function. A sequence of indices α has been transformed into a single multi-index. Indices
have been ordered to put numerically exact probability in descending order. A good agreement
between the mass functions is observed.

Figure 11. Dependence of the classical fidelity on the external magnetic field. A high predictive
accuracy is demonstrated for the whole set of fields.

The structure of the entanglement is an another interesting subject that we would like to validate.
The essence of entanglement between two parts of the chain, which is split into n left spins and N − n
right spins, can be described by the Réniy entropy of the left part of this chain: Sα = 1

1−α log Trρα
n,

where ρn is the density matrix of the first n spins in the chain. We estimate the Rényi entropy of order
2: S2 = − log(Trρ2), as it can be efficiently calculated from the matrix product representation of the
density matrix and from the VAE samples. However, as sample-based estimation of the entangled
entropy has a variance that grows exponentially with the number of spins, we consider a small spin
chain of size 10. A direct comparison between the numerically exact and the VAE-based entangled
entropies is shown for different values of n in Figure 12. For this particular case, the VAE clearly
overestimates the entangled entropy. This undesirable effect is indeed observed for all sizes of spin
chains, and even for the spin chain of size 5, for which we have an excellent agreement between the
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numerically exact mass function and the VAE-based result. The entropy S2 is sensitive to small errors
in the mass function, but it also appears that the primary method of state reconstruction used in the
present work has the following shortcomings.

Figure 12. Comparison of the numerically exact Rényi entropy and that reconstructed from the VAE
samples for different values of n.

1. If one reconstructs a pure state, the VAE smooths the spectrum of the density matrix and
approximates the pure state by a slightly mixed state, as illustrated with a simple example
in Figure 13.

2. The VAE does not account the positivity constraints, which yields negative eigenvalues for the
density matrix. These negative eigenvalues even appear in the spectrum of the reduced density
matrix, as shown in Figure 13.

Figure 13. Comparison of numerically exact spectra of density matrices and VAE-estimated spectra.
The ground state spectra of the spin chain of size 5 with an external magnetic field h = 0.9 is shown on
the right panel, and the spectra of the reduced density matrix (last 3 spins) are shown on the left panel.
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These drawbacks hinder a robust description of the entanglement structure. In addition to the
mismatch between the Rényi entropies (S2), the entropy of a reduced density matrix can be larger than
the entropy of the whole density matrix, which is erroneous. This particular issue, now identified, may
be resolved by introduction of a particular regularization term into the VAE loss. This is the object of
future work.

Finally, it is also instructive to comment on the memory costs of the use of either MPS or VAE,
which is somehow a tricky question, as it is unclear for any NN-based architecture what numbers of
layers and neurons per layer are needed because there is no criterion for NN, whereas for the MPS
and tensor networks, there is one. Thus, a direct comparison of NN architectures and tensor networks
(MPS, etc.) is certainly a difficult task, and in our opinion, likely an impossible one. At this stage, we
may say the following. For a given spin chain of size N and maximal entangled entropy between
subchains S = −Trρ log ρ, the MPS requires to store approximately 2N exp (2S) complex numbers; this
follows from the fact that one then considers N subtensors of size exp (S)× 2 × exp (S), where exp (S)
is the typical (approximate) size of bond dimension. For a VAE, although it seems that there are no
entropic restrictions, the proper quantitative characterization of the “neural network” complexity of
a quantum state still is an open question (for tensor networks, it is the entangled entropy). A VAE
contains two neural networks: encoder and decoder. To store a feed-forward neural network, one
has to store ∑i li−1 × li + li real numbers, with li being the number of neurons in the layer number
i. In general, one may conclude that the MPS is preferable for low entangled states, and the VAE is
preferable for highly entangled states.

6. Conclusions

The thermodynamic study of complex many-body quantum systems still requires the
development of new methods, including those that may stem from machine learning. The quantum
Ising model, which is of particular importance for practical purposes [107,108], provides a rich
framework to test these new methods that are also useful to obtain deeper physical insight into
its nonequilibrium dynamics properties such as, e.g., quantum fluctuations propagation [109]. In the
present work, we studied the ability of a VAE to reconstruct the physics of quantum many-body
systems, using the transverse-field Ising model as a nontrivial example. We used the IC POVM to
map the quantum problem onto a probabilistic domain and vice versa. We trained the VAE on a
set of samples from the transformed quantum problem, and our numerical experiments show the
following results.

• For a large system (32 spins), the VAE’s reliability is verified by comparing one- and two-point
correlation functions.

• For small system (five spins), the VAE’s reliability is verified by direct comparison of
mass functions.

• The VAE can capture a quantum phase transition.
• The response functions (magnetic differential susceptibility tensor) can be obtained using

backpropagation through VAE.
• Despite the very good agreement between the VAE-based mass function and the true mass

function, the VAE shows limited performance with the determination of the entangled entropy.
This is point is the object of further development.

Our method can be extended to any other thermodynamic system by introduction of the
temperature as an external parameter, thereby considering also thermal phase transitions. As one can
calculate different thermodynamic quantities by applying backpropagation through VAE, a worthwhile
and highly complex system to study would be water under its difference phases, so as to test recent
new ideas and models [110,111].

Our code for our numerical experiments is available on the GitHub repository website [112].
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Abbreviations

The following abbreviations are used in this manuscript.

VAE Variational Autoencoder
MPS Matrix product state
TFI Transverse-field Ising
IC Informationally incomplete
POVM Positive-operator valued measure
ELBO Evidence lower bound
NN Neural network
KL Kullback–Leibler
DMRG Density matrix renormalization group

Appendix A. VAE: Training and Implementation Details

When training our VAE, we find the arg maximum of the logarithmic likelihood L(θ) w.r.t. its
parameters θ:

θMLE = argmax
θ

L(θ) = argmax
θ

log(p[x|θ, h]), (A1)

Equation (A1) cannot directly be evaluated, because of hidden variables in the structure of p[x|θ, h].
We can, however, simplify this problem by introducing a distribution over hidden variables z.
Remember that the probability distribution can be described as p[x|θ, h] =

∫
p[x|z, θ, h]p[z]dz, so

that the expression for the log likelihood becomes

L(θ) = log
(∫

p[x|z, θ, h]p[z]dz
)

. (A2)

We can then use a mathematical trick that might seem counterintuitive at first glance, but ultimately

becomes quite powerful. We multiply the function inside the integral by q[z|x,θ̃,h]
q[z|x,θ̃,h]

= 1, where q[z|x, θ̃, h]

is some arbitrary distribution that can be adjusted with θ̃, so that

L(θ) = log
(∫

p[x|z, θ, h]p[z]dz
)
= log

(∫ q[z|x, θ̃, h]
q[z|x, θ̃, h]

p[x|z, θ, h]p[z]dz
)

= log
(
Eq[z|x,θ̃,h]p[x|z, θ, h]

p[z]
q[z|x, θ̃, h]

)
(A3)

where the quantity E f [x] denotes the expectation value w.r.t some distribution f [x]. We can then use
Jensen’s inequality to show that

log
(
Eq[z|x,θ̃,h]p[x|z, θ, h]

p[z]
q[z|x, θ̃, h]

)
≥ Eq[z|x,θ̃,h] log

(
p[x|z, θ, h]

p[z]
q[z|x, θ̃, h]

)
. (A4)
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where the rhs of this inequality is the lower bound of the log likelihood, as it will always be greater
than or equal to the lower bound, and equality can always be achieved by a proper choice of q if it is in
a complex enough family.

Maximizing the lower bound is equivalent to maximizing the log likelihood. We can decompose
this lower bound term into two terms:

L(θ) ≥ ELBO(θ, θ̃) = Eq[z|x,θ̃,h] log (p[x|z, θ, h])−
∫

q[z|x, θ̃, h] log
q[z|x, θ̃, h]

p[z]
dz (A5)

Note that the second term is equivalent to the Kullback–Leibler divergence KL(q[z|x, θ̃, h] || p[z]).
In our case, we picked the particular distribution forms that reflect the structure of our problem:

p[x|z, θ, h] =
N

∏
i=1

4

∏
j=1

πij(z, θ, h)xij ,

q[z|x, θ̃, h] = N (μi(x, θ̃, h), Diag(σ2
i (x, θ̃, h))), (A6)

P[z] = N (0, I)

where μi and σi are given by the encoder neural network, and πij is given by the decoder neural
network, with ∑4

j=1 πij = 1 and πij ≥ 0, which can be achieved by applying the softmax funtion to the
output of the neural network. Now, we can use the reparametrization trick to change the variable in
the integral z = σj(x, θ̃, h)ε + μj(x, θ̃, h), where ε j ∼ N (0, I), to simplify this expression to

ELBO(θ, θ̃) =
N

∑
i=1

4

∑
j=1

xij
〈
log

(
πij(σi(x, θ̃, h)ε + μi(x, θ̃, h), θ, h)

)〉
ε j∼N (0,I)

−
N

∑
i=1

(
log σi(x, θ̃, h)− σ2

i (x, θ̃, h) + μ2
i (x, θ̃, h)− 1

2

)
. (A7)

The first term is the cross-entropy, which pushes the probability distribution to be as close as
possible to the data. The second term is the regularizer, which forces the latent variable z not to diverge
too much from the normal distribution N (0, I), so that the VAE can be used to generate new data
once it is trained. Note that both xij and σi must be positive. Instead of adding a constraint to the
VAE, which would be difficult to do, we train the VAE for the variables Π = log π and ξ = 2 log σ.
Equation (A7) then becomes

ELBO(θ, θ̃) =
N

∑
i=1

4

∑
j=1

xij

〈
Πij(eξi(x,θ̃,h)/2ε + μi(x, θ̃, h), θ, h)

〉
ε j∼N (0,I)

−1
2

N

∑
i=1

(
ξi(x, θ̃, h)− eξi(x,θ̃,h) − μ2

i (x, θ̃, h) + 1
)

. (A8)

Now, ELBO(θ, θ̃) can be effectively optimized using gradient descent methods, averaging over
ε can be done by sampling. Generalizing to a data set of size M: {xk}M

k=1 can be easily done and is
shown by

ELBO(θ, θ̃) =
M

∑
k=1

N

∑
i=1

4

∑
j=1

xk
ij

〈
Πij(eξi(xk ,θ̃,h)/2ε + μi(xk, θ̃, h), θ, h)

〉
ε j∼N (0,I)

−1
2

M

∑
k=1

N

∑
i=1

(
ξi(xk, θ̃, h)− eξi(xk ,θ̃,h) − μ2

i (xk, θ̃, h) + 1
)

. (A9)

A visual representation of the VAE architecture is shown in Figure A1.
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Figure A1. Architecture of the variational autoencoder.

To solve the optimization problem, we use Adam optimizer [113] with standard parameters
(lr = 0.001, β1 = 0.9, β2 = 0.999). For the encoder and decoder, we use fully-connected neural
networks with two hidden layers and 256 neurons on each. We train the VAE using batches of size
100,000 samples and for 750 epochs.

Appendix B. Sampling from POVM-Induced Mass Function

The mass function induced by POVM P[α1, α2, . . . , αN ] has a form of matrix product state. Thus,
one can easily calculate any marginal mass function because a summation over any α can be done
locally. Any conditional mass functions can be also calculated by using marginal mass functions. Thus,
one can calculate chain decomposition of the whole mass function:

P[α1, α2, . . . , αN ] = P[αN ]P[αN−1|αN ]P[αN−2|αN−1, αN ] . . . P[α1|α2, . . . , αN ] (A10)

With this decomposition, one can produce a sample α̃N from P[αN ] first, then a sample α̃N−1 from
P[αN−1|α̃N ], and continue up to the end of the chain. The obtained set {α̃1, α̃2, . . . , α̃N} is a valid
sample from the mass function.
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Abstract: The thermodynamic and transport properties of weakly non-ideal, high-density partially
ionized hydrogen plasma are investigated, accounting for quantum effects due to the change in the
energy spectrum of atomic hydrogen when the electron–proton interaction is considered embedded
in the surrounding particles. The complexity of the rigorous approach led to the development of
simplified models, able to include the neighbor-effects on the isolated system while remaining
consistent with the traditional thermodynamic approach. High-density conditions have been
simulated assuming particle interactions described by a screened Coulomb potential.

Keywords: Debye plasmas; thermodynamics; pressure-ionization; electrical conductivity

1. Introduction

The development of new technologies and experimental techniques has triggered
intensive theoretical studies on modeling spatially confined quantum systems [1,2] and also
extreme-high-pressure plasmas [3] like in stellar envelopes [4]. The thermodynamics of high-density
hydrogen plasmas has been deeply investigated [5–9], due to the necessity of properly accounting for
the effects of the multi-body interaction and in principle requiring the reformulation of the statistical
mechanics in terms of a global Hamiltonian for the whole gas, instead of the usual separable form of
non-interacting chemical species characterized through internal and translational partition functions.
The non-ideality also affects the transport properties and in the case of dense, non-ideal, weakly-ionized
Debye hydrogen plasma, the electrical conductivity in the non-metal-to-metal transition region at
150 GPa has been measured [10].

The investigation of the thermodynamic and transport properties of highly-dense hydrogen
(and its isotopes) and helium plasmas is in fact relevant to many different fields, from astrophysics,
for applications to low mass stars and giant planets [11], to inertial confinement fusion for the
understanding of the ignition phase. Moreover, hot dense hydrogen and deuterium plasmas can be
generated in a laboratory with shock compression, allowing the experimental accurate determination
of the molecular-to-atomic transition along the principal Hugoniot to be compared with theoretical
first-principle results [12].

It is also worth noting that atomic properties (level ensemble, electrical properties, static
polarizability and hyperpolarizability [13–15] and optical oscillator strengths [16]) and the dynamics of
collisions (electron impact excitation and ionization [17], symmetric charge exchange [18–20]) change
in high-density regimes and are the subject in recent years of an intense investigation focused on the
atomic hydrogen system.

In this paper, the thermodynamic properties and the electrical conductivity of weakly non-ideal,
high-density partially ionized hydrogen plasma are investigated, accounting for quantum effects due
to the change in the energy spectrum of atomic hydrogen when the electron-proton interaction is
considered embedded in the surrounding particles. High-density conditions were simulated assuming
atomic hydrogen described by a static screened Coulomb potential.
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The Debye-Hückel or Yukawa potential, derived from the linearization of the exponential in the
Poisson–Boltzmann equation [21,22], is considered suitable for the description of weakly-coupled
plasmas, i.e., when the coupling parameter Γ = 1/(akBTe) ≤ 1, where a = [3/(4πNe)]1/3 and Ne

is the free electron density, and has been used in the literature for the estimation of the effects on
collision processes [17,19,23–27]. The conditions explored in the present paper, the electron density
ranging from 1016 to 1023 cm−3 and the temperature from 104 to 5 104 K, are compatible with weak
coupling up to ne=1022, while for higher densities the value of Γ is greater than the unity and in
principle would require a quantum approach to properly treat the interaction in these strongly-coupled
plasmas. In fact, the chemical picture of the interaction offered by the Yukawa potential fails in a
strongly correlated quantum regime, where other effects need to be accounted for, such as the ion-ion
correlation, the electron exchange, the consistent statistics for electrons and therefore the accurate ab
initial molecular dynamics method has to be resorted to [28–30]. Another important issue in both
weakly- and strongly-coupled plasmas and neglected in this paper is the dynamical nature of screening,
affecting the interaction potential between electrons and ions, and in turn, the transport properties
of the plasma and the dynamics of elastic and reactive collisions [21,31,32]. In fact, plasma density
fluctuations, due to inter-particle correlation in dense plasmas, produce time-dependent effects in the
interaction of electrons and ions, due to the polarization induced by the electron on the surrounding
plasma particles, that critically depends on the ratio between the electron velocity and its thermal
velocity. The effect of dynamic screening on scattering processes in weakly-coupled plasmas has
been investigated [25,33,34], showing that the use of static screening overestimates the shielding,
therefore, we would expect an increase of the elastic transport cross-sections reducing the electrical
and thermal conductivities.

2. Results

2.1. Thermodynamics

In weakly non-ideal, partially ionized Debye plasmas, the electron–proton interaction embedded
in the surrounding particles can be adequately described by the Yukawa potential, i.e., the static
screened Coulomb potential (in atomic units), which is

U(r) = −exp(−r/λD)

r
(1)

where
λD =

√
kBTe/(4πNe) (2)

is the Debye length, kB the Boltzmann constant, Te the electron temperature and Ne the electron density,
with severe confined conditions being related to small λD values.

The atomic hydrogen levels have been calculated by discretization of the radial differential
equation and for solving eigenvalues and eigenvectors for different screening conditions, from 2000 to
0.9 Bohr radii [a0], so as to obtain a smooth description of the variation of level energy with the Debye
length towards the critical transition to the continuum. In fact, the quantum effects act in modifying
the H level structure and lead to a finite number of bound states [7,35]. As the screening increases, i.e.,
in very high-pressure regimes, the ground state moves towards the continuum, reducing the ionization
potential, here estimated through the Koopman theorem, as shown in Figure 1a. Correspondingly, the
radial wavefunction of the 1s level, displayed in Figure 1b, becomes more diffuse, describing a physical
condition characterized by an electron loosely bound to the nucleus. The system of excited levels also
move to the ionization limit, entering the continuum (Mott effect) [7], therefore, the number of bound
levels progressively reduces as the Debye length decreases, up to a critical value of last existence of the
only 1s state, below which bound states are not admitted and the plasma is fully ionized.
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Figure 1. (a) Dependence of the ionization potential of atomic hydrogen on the Debye length (δ = 105a0).
(b) Radial wavefunction of the H(1s) ground level for different screening conditions, from isolated
atom (λD = ∞) to severe confinement corresponding to very low values of λD.

In the framework of statistical thermodynamics, the state functions are fully determined by the
partition function of the system Q and the ionization equilibrium is governed by the Saha equation

NH+ Ne

NH
=

2Qtr
e

QH
exp− Ieff

kBT
(3)

where Qtr
e is the translational partition function and is derived for a plasma at pressure p in a continuum

approximation, while the QH is the internal partition function of atomic hydrogen.

QH = 2
nmax

∑
n,�

(2�+ 1) exp [−(εn,� − ε1s)/kBT] (4)

For ideal plasmas, the natural divergency of the internal partition function is avoided, truncating
the summation in Equation (4) by using the cutoff criteria, i.e., the minimum value between the Fermi
and the Griem cutoff [22]. In Debye plasmas, the finiteness of the number of atomic levels due to the
screening presents the very attractive feature of a natural cutoff. In this case, the eigenvalues become
dependent on the value of the Debye length that is consistent with the equilibrium in the plasma
system, that is ελD

n,� and in turn

QH = 2
nλD

∑
n,�

(2�+ 1) exp [−(ελD
n,� − ελD

1s )/kBT] (5)

The mutual dependence of the Debye length and of the equilibrium value of the number density
of electrons, Ne, makes the determination of λD an iterative procedure that allows the self-consistency
of the values characterizing the plasma at a given temperature and pressure. The non-ideal character
of the plasma is usually accounted for, including the Debye-Hückel correction in the calculation
of the lowering of the ionization energy [36]. This term for the hydrogen atom corresponds to the
so-called self-energy shift, Δ = −e2/λD, thus leading to an effective value [7,22] Ieff = I0 + Δ, where
I0 is the ionization potential of the isolated, unperturbed hydrogen atom. However, the effect of the
modification in the energy level scheme due to the screening also affects the internal partition function,
producing an additional lowering that is incorporated in the internal partition function

Q′
H = QH exp [−(ε1s − ελD

1s )/kBT] (6)

It should be stressed that in the present paper, the free electrons are described through the classical
Boltzmann statics, but for us to move to strongly non-ideal dense plasmas, the inclusion of the quantum
Fermi statistics would be required [37–39].

In Figure 2a,b, the temperature dependence of the internal partition function and of the Debye
length is self-consistently determined, following the notation adopted in the literature, for a specific
value of the total electron density, ne = Ne + NH, i.e., electrons bound in an atomic system plus free
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electrons formed in ionization, ne = 1020 cm−3 are reported. The Debye length reported is actually
calculated while also considering the shielding of ionic species and not only free electrons [22].
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Figure 2. (a) Atomic hydrogen internal partition function as a function of temperature at ne = 1020 cm−3,
calculated with the unperturbed levels with cut-off criteria, QH , including all the levels consistent
with the Debye length in the plasma and accounting for the lowering of ionization potential, QλD

H , and
considering the additional ionization lowering, Q′

H . (b) Corresponding temperature behavior of the
Debye length, self-consistently determined in the three cases.

The results obtained using the eigenvalues for the unperturbed atom are compared with the
partition functions calculated, accounting for the λD-dependent energy levels and of the additional
lowering. The partition function in the case of unperturbed levels is actually lower than the values
obtained by accounting for the actual levels, as already shown in the literature [40], in fact, the change
in the energy-spacing of levels for a screened Coulomb potential allows a larger number of levels
to be kept in the summation with respect to what was established with an external cutoff criterion.
The inclusion of the additional lowering significantly affects the effective partition function, especially
for temperature below 20,000 K. It is also worth noting that the Debye length is also affected in the
three different cases attaining values of the order of tens of Bohrs.

The ionization degree α = Ne/(Ne + NH) has been calculated at a constant total electron density,
from 1016 to 1023 cm−3, over a wide temperature range [15,000–50,000 K]. For higher densities,
the theoretical framework is no longer able to deal with the non-ideal effects in the presence of
strongly-coupled plasmas and different approaches need to be considered [41].
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Figure 3. Isotherms of the ionization degree of atomic hydrogen plasma as a function of total electron
density in the plasma ne, obtained neglecting (dotted lines) and including (markers and lines) the effect
of electronic levels, compared with theoretical results in the literature (dashed lines) [7]. Experimental
results for a hydrogen arc at a pressure of 10 atm [42] are also reported (squares).
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The isotherms are shown in Figure 3, and exhibit the phenomenon of pressure ionization [7,22],
i.e., the rapid increase of α in the high-density regime. Contrary to what is expected in ideal plasmas,
where the pressure (or density) increase produces a temperature shift in the ionization equilibrium,
thus retarding its onset, the non-ideal quantum effects favor the ionization process and produce
the observed increase of α merging to the fully ionized case in the limit of high temperature or
very-high densities. The results obtained in this work considering only the Debye-Hückel correction
to the ionization potential compare well with those reported in the literature [7]. The isotherm at
15,000 K presents a critical behavior around 2 × 1022 cm−3 that produces an ultra-fast transition to
the full ionization and corresponds to the condition of lowest values for the Debye length and to the
disappearance of any bound state for the atomic hydrogen. In the same figure, the isotherms are
calculated including the effect of additional lowering of the ionization potential, due to the non-ideal
effects on the electronic atomic structure, and these show a more pronounced pressure ionization.

Inspection of the isotherms clearly shows the presence of oscillations, more pronounced in the case
of additional lowering. These oscillations are due to the fact that the internal partition function QH has
a non-regular behavior with the total electron density due to the induced modification in the atomic
internal level structure, that introduces discontinuities. This behavior is mirrored on the equilibrium
constant KP that shows a non-regular increase with the density differently from the pressure that
increases rapidly and thus producing, as a combined effect, the oscillations in the molar fractions of
species and in the ionization degree, representing an ultimate result of the Mott effect of bound levels
transitioning to the continuum.

In Figure 3 the ionization degree derived from experiments in a hydrogen arc at a pressure of
10 atm [42] for three different temperature values, approximately corresponding to a total electron
density of 1018 cm−3, are also reported, showing a satisfactory agreement with the theoretically
predicted values. Unfortunately, there is no available experimental data that could validate the results
at higher densities, that is where the non-ideal phenomenon manifests itself.

Concerning the validity of the present approach with respect to theories that can handle the
quantum physics of plasmas even in strongly coupled conditions, the results derived for the hydrogen
plasma by using the direct fermionic path integral Monte Carlo (PIMC) method [41,43] are compared
with present results in Figure 4a,b. In Figure 4c, the temperature behavior of the Helmholtz free energy
is also reported for two values of the total electron density.

A = −kBT ∑
s
Ns

(
ln

Qs

Ns
+ 1

)
− 1

12
kBT

V
πλ3

D
(7)

where V is the gas volume, Ns is the number of particles of the s-th species and the last term on the
right-side of equation represents the Debye-Hückel correction, contributing not more than 11%.

The PIMC simulations allow for the estimation of the internal partition function from
configurational integrals that simultaneously includes the different interactions among elementary
particles in the atomic system (electrons and protons) in the frame of a physical picture. The pressure
isochors (Figure 4a) for two density values are in very good agreement with PIMC simulation [41].
Figure 4b displays the internal energy of the hydrogen plasma as a function of ne for a selected value
of the temperature and the comparison, limited to the upper value explored in this work, shows again
a satisfactory agreement with the PIMC simulation.
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Figure 4. (a) Pressure isochors of a hydrogen plasma as a function of temperature for two different
values of the total electron density (dashed lines) compared to results in the literature (closed
squares) [41]. (b) Internal energy of the atomic hydrogen plasma as a function of the total electron
density at the temperature T = 5 × 104 K (dashed line) compared with results obtained in path integral
Monte Carlo (PIMC) simulation [43]. (c) Helmholtz free energy as a function of temperature for two
different values of the total electron density (dashed lines) and corresponding relative Debye-Hückel
corrections, ΔA/A (dotted lines).

2.2. Transport: The Electrical Conductivity

The effects of non-ideality on transport properties have been investigated in the frame of the
Chapman-Enskog theory [44]. As is well-known, in this theory, the binary interactions are described
through the collision integrals, and the non-ideal quantum effects producing a change in the internal
level structure of atoms also significantly affects the quantities directly related to the transport
cross-sections. However, in this paper we are focused on the effect of the change in the thermodynamic
equilibrium, due to the accounting for the additional lowering, on electrical conductivity and therefore
the collision integrals for e-H and H-H interactions are assumed to be unaffected, the corresponding
screening-independent transport cross-sections taken from the literature [45], while charged-particle
interactions, including electron-electron, modeled with accurate Debye-length-dependent collision
integrals by Mason [46,47], recently fitted in a wide temperature range in [48].

The electrical conductivity of the atomic hydrogen Debye plasma is displayed in Figure 5 as a
function of the total electron density for three values of the temperature, considering the two cases,
i.e., neglecting or accounting for the additional lowering of the ionization potential. In Figure 5a the σ

exhibits a behavior with the increase of the screening in the plasma that is largely dependent on the
electron density, and thus mirrors the phenomenon of the pressure ionization in Figure 3: The curves
go through a minimum then merge to the fully ionized regime. This first series of results can be
compared with the literature, obtained in the frame of different theories. In particular, in [49], the
two-term Boltzmann equation is solved including in the collisional terms accurate elastic transport
cross-sections for e-e and e-H interactions, re-evaluated so as to account for the additional screened
Coulomb potential in the first Born approximation, while in [37] the linear response theory is used
for transport. Both [37,49] neglect the contribution of excited levels in the atomic internal partition
function, one dealing with the ground-state approximation and the second using the Planck-Larkin
approach to avoid divergence which explains the satisfactory agreement found.
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Figure 5. Electrical conductivity of an atomic hydrogen plasma for different temperatures as a function
of the total electron density. The results (solid lines) obtained neglecting the additional lowering
of ionization potential are compared with (a) data in literature (dashed lines) [49], (dashed-dotted
lines) [37], and with (b) calculation including the additional lowering.

Accounting for the effect of the change in the level structure on the effective ionization of atomic
hydrogen ( Figure 5b) produces significant differences in the isotherms, especially at lower values of
the temperature where the dip is pronounced, while the enhancement of the pressure ionization leads
to a rapid increase towards the fully ionized case.

It is worth mentioning that for densities >0.1 g/cm−3 (for ne > 6 × 1022 cm−3) accurate electrical
conductivity results have been obtained with finite-temperature density functional theory molecular
dynamics (FT-DFT-MD) simulations [29]. Unfortunately, in this regime of strongly-coupled plasma,
the assumption of Debye plasmas is no longer valid and an extension of the present approach to those
densities are expected to be unreliable.

3. Conclusions

The non-ideal behavior of thermodynamic and transport properties of a partially-ionized,
weakly-coupled atomic hydrogen plasma was investigated in the framework of the classical statistical
approach and Chapman-Enskog theory, respectively. The approach adopted in literature accounts
for the effects of surrounding plasma through the Debye-Hückel correction to the value of ionization
potential and disregarding the change in the level ensemble of the H, that are considered in any
conditions in those of the unperturbed isolated atom, limited in the internal partition function by
different cutoff criteria. The accurate description of the level structure in different screening conditions
also correspond to high-density regimes, which allows us to account for all the non-ideal effects on
the equilibrium composition, i.e., the natural cutoff of bound levels in QH and the further shift of the
ground level to the continuum limit that determines an additional lowering of the effective ionization
potential. The most significant result is represented by the emphasized phenomenon of pressure
ionization, predicting a more rapid increase of the ionization degree with the total electron density
in the whole temperature range considered. These results are expected to also impact the transport
properties of the plasma, and in this work, the effect on the behavior of the electrical conductivity is
demonstrated. The present results, though relying on the classical theoretical approaches, seem to
compare well, at least for the density regime considered, with more accurate methods, reformulating
the thermodynamics on the basis of a physical picture and accounting for the modification of transport
cross-sections for the relevant interaction in the transport theory. In a future work, the contributions of
Fermi statistics and dynamic screening will be investigated.
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Abstract: The entropy of conduction electrons was evaluated utilizing the thermodynamic definition of
the Seebeck coefficient as a tool. This analysis was applied to two different kinds of scientific questions
that can—if at all—be only partially addressed by other methods. These are the field-dependence of
meta-magnetic phase transitions and the electronic structure in strongly disordered materials, such as
alloys. We showed that the electronic entropy change in meta-magnetic transitions is not constant
with the applied magnetic field, as is usually assumed. Furthermore, we traced the evolution of
the electronic entropy with respect to the chemical composition of an alloy series. Insights about
the strength and kind of interactions appearing in the exemplary materials can be identified in
the experiments.

Keywords: electronic entropy; Seebeck coefficient; transport; LaFeSi; FeRh; CuNi

1. Introduction

Entropy provides information about the degrees of freedom or ordering of a statistical collectivity,
i.e., it is macroscopically seen and treated as an entity. This order directly correlates with changes in
the density of states of the respective statistical collectivity. For electrons in crystalline solids, this
information is usually extracted from band structure theory assumptions. It is valid in the case that
the sometimes quite stringent assumptions of the theoretical model are met. Experimental systems
inherently deviate from the ideal solid state model. Due to this, the density of states calculated
theoretically is sometimes not enough to describe the electronic properties in real systems. Typical cases
where changes in the electronic density of states occur are charge order/disorder phenomena, such
as the formation of charge density waves phases, superconducting phases, Fermi liquid systems, or
other correlated electron systems. Further systems that are challenging to describe by theoretical
solid state considerations are disordered solids, such as alloys, amorphous materials, materials with
complex elementary cells, or materials containing a high number of defects induced, for instance, by
the fabrication technology.

A usual approach to evaluate the total electronic entropy SE of a crystalline solid from experimental
data is to analyse the low temperature specific heat capacity, cp, measurements under the assumption of
a free electron gas [1]. Here the Sommerfeld coefficient is the relevant value, experimentally obtained
by fitting the low-temperature cp data. While this is currently the most widely applied method for an
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SE characterization of crystalline solids, there are some intrinsic drawbacks to this method. These come
on the one hand from the assumption of a free electron gas and on the other hand from the fact that
the relevant materials properties can only be inspected at low temperature [1]. Both rule out the
investigation SE changes at phase transition, especially those occurring at temperatures above 20 K,
and such that induce electronic ordering phenomena.

Within this article, we discuss a recently suggested method for the SE characterization [2]
that overcomes some of the limitations of the low temperature cp analysis, providing a tool for
investigating such mentioned electronic systems by a direct experimental approach. We herein utilize
the thermodynamic description of the Seebeck coefficient, α, originally described by Onsager [3,4],
and later referred to by Ioffe [5] in order to describe the SE of solids. The inherent advantage of
the thermodynamic interpretation of α is that it is not bound to any model, provided the statistical
description of the system is significant.

The idea to measure the SE through the measurement of macroscopic electronic properties like
the Seebeck of Thomson effect has been discussed in literature [4–8], and dates, in principle, back to
Thomson (Lord Kelvin) who interpreted that the Thomson effect could be seen as the specific heat
of electrons, whereas the Seebeck coefficient would be the electronic entropy (divided by the charge
of the electrons) [9]. Rockwood [9] pointed out that the measurement of thermoelectric transport
properties necessarily only addresses the electrons that participate in the transport. He therefore
specified the term “electronic transport entropy” to distinguish from a “static electronic entropy”.
Furthermore, thermoelectric transport measurement could never be done under truly reversible
conditions since the sample needs to be exposed to a temperature gradient and is therefore not under
isothermal conditions. Still, he came to the conclusion that the measurement of the thermoelectric
coefficients would most likely provide the only practical and generally valid method by which
partial molar entropies of electrons could be obtained. Peterson and Shastry construed the Seebeck
coefficient as particle number derivative of the entropy at constant volume and constant temperature [8].
Despite this given theoretical framework, examples in which Seebeck coefficient measurements were
used to quantitatively deduce SE are rare and recent but still prove the broad applicability. Our group
showed that SE of a magneto-caloric phase transition could be obtained by thermoelectric transport
characterization [2]. Small entities of particles like quantum dots can likewise be characterized [10].
At high temperatures, molten semiconductors and metals were similarly studied [11]. Within this
paper, we will discuss the broad applicability of this method. For the following discussion, we refer to
the description of the electronic entropy per particle, SN, as derived within a recent review, providing
an applied view on the thermodynamic interpretation of α [12]:

SN = α · e (1)

where e is the charge of the particle.
In simple metals, a formal expression of α can be derived from band structure arguments as in the

case of the Mott formula [13]. Often, a single parabolic band model is assumed. Herein, the relation
between α and the density of states becomes evident, thus establishing a direct connection between
α and SE. While the general thermodynamic interpretation of α does not rely on any kind of model,
the Mott formula already contains simplifications and assumptions. From the description of the
quantity SN as introduced in Equation (1), it is suggested that there exists an absolute value of SN
since α is a quantity that also has an experimentally accessible defined zero-level rather than a relative
one where only changes in the quantity can be considered. The case of α = 0 occurs, for example,
(i) in the superconducting state of matter, where electrons all condense at the state of lowest energy
possible and therefore per definition a situation of zero entropy [14] and (ii) in the compensated case
that electrons and holes exactly transport the same amount of heat, i.e., intrinsic semiconductors
have zero Seebeck coefficients [15]. The latter is an often-seen zero crossing of an n-type conductivity
mechanism to a p-type conductivity mechanism. Then, the measured α = 0 corresponds to the overall
observable α of the material. Naturally, the contributions of the individual bands contain electronic
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entropy contributions with SE, individual subband � 0. The full evaluation of SE from α requires a correct
description of the collectivity of electrons in the system. This is the point in the complete line of
argumentation where assumptions and simplifications necessarily enter the picture. In order to
experimentally obtain the entropy of the entity of electrons that participate in the transport, referred
to as electronic entropy, SE, the number of electrons contributing to the Seebeck voltage needs to be
known. In principle, any experimental procedure to obtain the charge carrier density, n, could be used.
Herein, it is, as, for instance, suggested in [2,11]:

SE = n · SN = n · α · e (2)

In this work, we measure the ordinary Hall coefficient RH to obtain n, using the relation RH = 1/(n·e).
By doing so, we introduce the strong assumption of a parabolic single-band transport model that is
inherent to any Hall measurement. Combining both quantities, we can give a measure of SE:

SE = α/RH (3)

We present examples that highlight the relevance of the entropy interpretation of α and provide
insight into the electronic properties: (1) magneto-structural phase transitions of an intermetallic
Ni-doped iron rhodium phase, Fe0.96Ni0.02Rh1.02 (FeRh) [16], and an intermetallic lanthanum iron silicon
phase, LaFe11.2Si1.8 (LaFeSi) [17–21]; (2) alloying in the copper–nickel (CuNi) solid solution series.

2. Materials and Methods

All samples characterized within this work were obtained by arc melting, and followed by specific
temperature treatments to ensure a homogenous microstructure. Details about the fabrication and
structural characterization of the samples can be found in [22] and in [23] for LaFe11.2Si1.8 (LaFeSi).
The samples investigated in the present paper stem from the same batches as the indicated references.
In the case of the CuNi alloy series, the processing followed a combination of homogenization (973 K,
5 h) with quenching in H2O, hot rolling (1173 K) and recrystallization (973 K, 1 h).

The transport characterization was performed depending on the temperature range using physical
property measurement systems of the Quantum Design DynaCool series and the Versalab series using
the thermal transport option for α and the electrical transport option for the Hall characterization in
standard Hall bar geometry [24]. For the CuNi alloy series, a Linseis LSR 3 device was used to measure
the near-room temperature α (315 K) and electrical conductivity, σ.

The microstructure of the samples was routinely investigated by scanning electron microscopy
and X-ray diffraction.

3. Results and Discussion

As briefly discussed above, the entity of carriers needs to be known for the statistical interpretation
of α. Following Equation (2), we utilize n obtained from a Hall-effect measurement. Herein, one has to
be aware of the fact that this evaluation method may be affected by multi-channel transport, induced
by multiple bands. However, given a minimal set of regularities, we can compare a homogenous series
of samples or one sample under different experimental conditions consistently.

3.1. Magneto-Structural Phase Transition

The first example is related to meta-magnetic phase transitions in two magneto-caloric materials,
namely Ni-doped FeRh and LaFeSi. They represent examples for a system that can be described with
a band magnetism model (FeRh) [25] and a system with a component of localized ionic magnetism
(LaFeSi) [26]. General information on the total entropy change in the phase transition of FeRh can be
found in Ref. [2] and references therein, as well as a discussion of SE of this phase transition derived
by transport measurements. Additionally, LaFeSi is a well-studied material with respect to magnetic
and lattice entropy [26–28]. Due to soft phonon states close to transition, the lattice entropy change is
large [29], but a combined contribution of lattice entropy and SE was suggested [27]. Details on the
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transport properties of LaFeSi are given in literature with respect to α [28,29] and the anomalous Hall
effect [30].

The impact of the applied magnetic field on the transport of the mobile charge carriers shows
a clear distinct signature in both materials, which we will discuss in the following. Both magnetic
systems behave differently, as best seen in α. In the case of FeRh (Figure 1a), it can be seen that
the temperature of the phase transition depends on the magnetic field. This is a striking difference
of the SE evaluation by transport experiments and calorimetric measurements that—for intrinsic
reasons—do not allow this difference to be unveiled. The α far from the phase transition is independent
of the strength of the magnetic field, as emphasized in the inset in Figure 1a that shows an enlarged
view of the data in the main panel. In contrast, in the case of LaFeSi (Figure 1c), the α far from the
phase transition shows a clear difference in the value depending on the magnetic field. Interestingly,
the magnitude of α increases as a magnetic field is applied. The inset to Figure 1c shows the measured
Hall coefficient, and the black lines indicate the levels used for the entropy evaluation as was similarly
done in [2]. We get a value corresponding to the ΔSE at the phase transition, as depicted in Figure 1b,d.
In both cases, we see ΔSE of a comparable magnitude around 4 J K−1 kg−1. Moreover, the absolute
values of the obtained SE are also comparable. Furthermore, in both cases, an increase of ΔSE is
observed when a magnetic field is applied. However, the apparent origin of the increase in ΔSE for
both materials is different. In the case of FeRh, the first order meta-magnetic transition shifts to lower
temperatures as the field is applied (Figure 1a,b). Accordingly, α follows a monotonic trend until the
phase transition occurs. In the case of the LaFeSi, the amount of Si (x = 1.8) is on the threshold for
changing the transition type to the second order [28]. Therefore, the transition temperature does not
shift significantly, and only a slight broadening is observed. In this case, it is the change of the over-all
entropy level with the applied magnetic field (Figure 1c,d) that causes the increase in ΔSE. In the
case of LaFeSi, this could be an indication of the interaction between itinerant electrons and localized
moments, causing the increase of SE with magnetic field. There is no such interaction in the FeRh case,
as magnetism resides to a dominant part within the conduction electrons. Besides minor numerical
corrections to the presented results (compare discussion Ref. [2]), it is clear that this method of analysis
provides an insight to the interactions relevant to the conduction electrons that go beyond what typical
calorimetric experiments can offer.

 

Figure 1. Seebeck coefficient and entropy evaluation in Ni-doped FeRh (a,b) and LaFeSi (c,d). Inset to
(a): enlarged view of the high temperature region. Inset to (c): Measured Hall coefficient of LaFeSi.
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3.2. Alloying

The differential evaluation of a systematic series of homogenized CuNi alloys with respect to
their |α|, σ, n, and SE at room temperature is shown in Figure 2. Herein, it is the specific situation of
alloys that they typically cannot be accurately calculated or predicted by usual band structure models.
However, the full alloy series is experimentally accessible. There are no structural phase transitions
reported, and, also, all investigated samples were homogenous with respect to their microstructure
and composition by scanning electron microscopy and X-ray diffraction. The dependence of σ on the
Ni content (Figure 2a) presents two minima at around 30 at.%-Ni and at around 70 at.%-Ni, which are
better seen in the inset to Figure 2a, where the data of the main panel are presented in logarithmic
vertical scale.

 
Figure 2. Thermoelectric and transport properties across alloy system Cu–Ni at room temperature,
alloy composition was obtained with Energy-Dispersive X-Ray spectroscopy: (a) electrical conductivity,
(b) the Seebeck coefficient in absolute values, (c) the carrier concentration derived from the Hall
coefficient, (d) calculated electronic entropy. Lines and shades are guides to the eye.

In the trend of |α| (Figure 2b), a broad maximum can be seen slightly below to the equiatomic
composition, close to the composition of the highest chemical disorder, a similar situation to that of
other entropic parameters of such alloys [31], but a shoulder at a composition of about 70 at.%-Ni is
also evident. This observation of high |α|for a high chemical disorder reflects the general finding that
high configurational entropy is a prerequisite for the observation of large |α| [32]. Because of the close
relationship between large |α| and high configurational entropy, it was recently suggested to even
use configurational entropy as a gene-like performance indicator for the computational search of new
thermoelectric materials [33].

The parameters σ and |α| follow inverse trends with respect to one another. Additionally, these
trends match the description of α under the Mott formula [13]. Consequently, the investigated alloy
series represents a good electronic model system. There is no clear trend in the data of n. (Figure 2c)
The pure metals Cu and Ni have the highest n. Different effects superimpose to a more sophisticated
dependence of n on the alloy composition: (i) the effect of change in the average lattice parameter by the
alloying [31] should create a gradual increase in n as the amount of Nickel increases; (ii) additionally,
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with the addition of Ni (Ni: 3d8 4s2; 2 electrons per Ni atom) into the Cu matrix (Cu: 3d10 4s1; 1 electron
per Cu atom) more charge will also be added [34]. A linear increase is schematically depicted by the
dashed line in Figure 2c. The overall result of these measurements is a clear minimum at approximately
65 at.%-Ni. This already indicates that additional degrees of complexity add to this simplified picture.

The combination of |α| and n to extract the SE allows us to gain additional information compared
to the individual transport coefficients. Figure 2d shows a curve in SE with maximum at approximately
30% of Ni and an additional clear minimum at approximately 65% of Ni. Coming from the Cu-side of
the phase diagram, the increase in SE points out an increase in the available states for the transport
electrons, which may be intuitively understood: the disorder in the non-periodic electrostatic potential
leads to an increase in the entropy of the transport electrons. This increase in SE reaches a maximum
close to the point where the maximum chemical disorder is expected, following the trend of |α|.
Coming from the Ni-side of the phase diagram, |α| increases and n decreases. The |α|, similar to the
Cu-side of the phase diagram, shows higher values because of a higher degree of chemical disorder in
the system. But the |α| does not follow a monotonic trend; instead, it has a plateau. This, combined with
the reduction of n in the same composition region, results in a sharp minimum of SE. This minimum
exactly coincides with the onset of ferromagnetism in the alloy series. Hence, the entropy evaluation
provides an insight on how the magnetic ordering mechanism in this alloy affects the localization
of charges, possibly due to interactions between d- and s-orbitals. While there is no one-to-one
correspondence between the experiment and the microscopic origin, it still provides a meaningful
measure of the intensity of correlations in the electronic transport system, which are not easily accessible
by usual ab-initio methods.

4. Conclusions

In conclusion, this proposed method provides a good instrument for the characterization of
electronic interactions or correlations in the material, although the absolute values of SE or ΔSE obtained
may, in some cases, need to be corrected (further discussed in [1]). In the case of magnetocaloric
materials, the effect of the magnetic field on the electronic entropy change can be traced. In the case of
alloys, the effect of the atomic disorder can also be traced on the free electrons. In order to gain deeper
insight on the physics of disordered systems or systems with concurring interactions, the goal of future
research might be to develop the statistical methods under the point of view of thermodynamics that
would allow us to describe the statistical collectivity of electrons. In this way, we could transform the
qualitative results of our experiments into quantitative predictions.
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Abstract: Optimization of structured reactors is not without some difficulties due to highly random
economic issues. In this study, an entropic approach to optimization is proposed. The model of
entropy production in a structured catalytic reactor is introduced and discussed. Entropy production
due to flow friction, heat and mass transfer and chemical reaction is derived and referred to the
process yield. The entropic optimization criterion is applied for the case of catalytic combustion
of methane. Several variants of catalytic supports are considered including wire gauzes, classic
(long-channel) and short-channel monoliths, packed bed and solid foam. The proposed entropic
criterion may indicate technically rational solutions of a reactor process that is as close as possible
to the equilibrium, taking into account all the process phenomena such as heat and mass transfer,
flow friction and chemical reaction.

Keywords: entropy production; optimization; reactor modelling; irreversible thermodynamics

1. Introduction

At the industrial level, optimization of chemical processes, including those based on structured
catalytic reactors, is an inherent issue of the design procedure. Process optimization considers the
prices of raw materials, energy, products and installations (apparatus); the prices may change rapidly
and unpredictably due to market fluctuations, even at the negotiation stage. Therefore, process
optimization is usually regarded as being within the engineering domain, it is in fact more connected
with business and economic issues. These issues usually exceed the knowledge of an engineer or a
scientist and require input from other individuals.

Structured reactors are very important in chemistry and catalysis [1–3]. The process design, i.e.,
the apparatus and the process conditions, has to secure some economic profitability in spite of potential
changes of costs. Regardless of possible economic fluctuations (excluding any collapses), the process
has to be profitable during the following years.

A review of the literature provides hints about recommended flow velocities, process temperatures
and catalyst carriers. The data originate from the long-standing technical and economic experience
of engineers and entrepreneurs. Recently, a new generation of structured catalytic reactors has
been introduced into industry, and there is a paucity of knowledge and experience about their
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optimization. Moreover, the inner-structure design of the reactors is complicated because many
geometrical parameters need to be optimized.

In the literature, different criteria can be found, which help identify optimal operating conditions
of chemical reactors. “The technical” or “engineering” optimization, with which this work deals,
focuses on reactor optimization in terms of fluid velocities, process (reaction) temperature, structured
catalyst carrier shape and dimensions. This kind of optimization has begun in energetics due to
the introduction of compact heat exchangers that usually exploit a combination of fins, turbulence
mixers and other features. In the current literature, even more sophisticated criteria are proposed for
multiparameter optimization of different equipment such as heat exchangers. So far, similar criteria for
catalytic reactors have been derived. The comprehensive performance evaluation criteria (PEC) use
three components: transport coefficients, reaction kinetics and pressure drop [4,5]. Another approach
is the comparison of reactor length (or catalyst mass) with the resulting flow resistance as shown
in [4,6]. For heat exchanger optimization, there are also evaluation criteria based on entropy production
during the process, as presented, e.g., by London [7] and Bejan [8], who also predicted the extension of
entropic criteria to chemical reactors. Entropy in economic analysis is treated as trade-off factor and
can be a substitute of currency [9]. The application of entropic criterion can also be found in [10–12].

The aim of the study is to propose a highly simplified approach, based on irreversible
thermodynamics, suitable for engineering optimization of chemical reactors. The entropic criterion
is proposed to optimize structured catalytic reactors. The assumed model process is the catalytic
combustion of methane.

2. Theoretical Background

To derive the equations governing entropy production, the reactor model must be specified.
For the purposes of this paper, the one-dimensional plug-flow model (neglecting axial dispersion) in
the steady-state was assumed. Due to the very thin catalyst layer deposited on the structured carrier,
the internal diffusional resistance can be neglected.

Mass balance of reactant A, in the flowing fluid, per unit surface area of the reactor cross-section,
is as follows:

w0
dCA
dx

+kCSv(CA −CAS) = 0 (1)

The initial conditions are: (i) x = 0; CA = CA0 and (ii) the reactant A, mass transferred from the gas
bulk to the catalyst surface is balanced by the first-order catalytic reaction:

kC(CA −CAS) = krCAS. (2)

Deriving concentration of A, at the catalyst surface from Equation (2), Equation (1) becomes:

−w0
dCA
dx

= Sv
kCkr

kC+kr
CA, (3)

and, after integration, local concentration CAx and the reactor length L, required for the outlet
concentration CAL are:

CAx = CA0 exp
(
− x

w0

SvkCkr

kC+kr

)
, (4)

L=
w0

Sv

kC+kr

kCkr
ln
(

CA0

CAL

)
. (5)

The energy balance may be presented (assuming no heat losses to the environment) as:

w0�cp
dT
dx

+αSv(T − TS) = 0, (6)

the initial conditions: at x = 0, T = T0.
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The mass and heat transfer in a heterogeneous catalytic reactor are strictly bound up (released
reaction heat depends on the reactants mass transferred to the catalyst), thus

q= α(TS − T) = −ΔHRJA= −ΔHRkC(CA −CAS). (7)

The above equations assume an isothermal process. In reality, the process is adiabatic. However,
the concentration of organic air pollutants is usually low. For the volatile organic compounds (VOCs),
a concentration of very few ppm is typical; for methane, it depends on the kind of source and may be
within 1–1000 ppm. The level of concentrations of 100 ppm and higher can be treated by homogeneous
combustion in, e.g., reverse-flow reactors due to important reaction heat. Thus, we assumed the
concentration of methane at 200 ppm as rational for our analysis. In such a case, the adiabatic
temperature rise is about 6 K, so the temperature increase along the reactor can be securely neglected.

Entropy production is an increase of system entropy due only to the irreversible phenomena [13].
This means that there is no entropy production at equilibrium or during a quasi-static process that
runs infinitely close to the equilibrium. Any industrial process runs far from the equilibrium, and it
produces entropy at irreversible conditions. In irreversible thermodynamics, entropy production is
derived as the product of flux Ji and the driving force Δπ (causing the stream) divided by absolute
temperature T [13,14]:

Si =
JiΔπ

T
. (8)

Assuming that the stream Ji is proportional to the driving force:

Ji = kiΔπ, (9)

entropy production is proportional to the square of the driving force, thus it increases rapidly with the
distance from the equilibrium:

Si =
ki(Δπ)

2

T
. (10)

In this paper, entropy production is considered due to the following irreversible phenomena:

• heat transfer between the gas phase and the catalyst surface (further denoted as H);
• diffusional mass transfer between the gas phase and the catalyst surface (denoted as D);
• irreversible catalytic reaction (denoted as R);
• flow friction, i.e., work performed against the flow resistance (denoted as F).

Total entropy production (per 1 mole of reactant A consumed in the reactor) is the sum of all
the components:

SP = SH+SD+SR+SF. (11)

The above-mentioned components of entropy production are gathered in Table 1.
In the first column, basic equations of local entropy production are presented. In the second and

third columns, the equations for the stream and the driving force are presented, respectively, derived
using the reactor model. The last column presents reactor-integrated entropy production per 1 mole
of substrate A consumed (e.g., burned) in the reactor. Detailed derivations, simple in fact, are not
presented for reason of conciseness. The last position in Table 1, flow friction needs further comment.
The entropy source considered is the volume fluid flow. The stream (flux) is the flow velocity and the
driving force is the pressure gradient. The entropy produced is tantamount to viscous dissipation of
pumping energy. This approach seems more friendly for engineers than viscous momentum flux often
presented by irreversible thermodynamics; the flux is the pressure tensor and the driving force is the
velocity gradient [11].

The impact of the reaction rate constant, kr, and the heat and mass transfer coefficients, α and kC,
respectively, on the entropy produced by the heat (SH) and mass (SD) transfer is illustrated in Figure 1
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for the combustion process and exemplary kr and kC values. The heat and mass transfer coefficients
are bound by the Chilton–Colburn analogy [15], Equation (12), which allows the influence of mass
transport on SH to be determined.

j =
Nu

RePr1/3
=

Sh
ReSc1/3

. (12)

SD = Rln
(
1+

kr

kC

)
, (13)

SH =
kr

kC+kr

⎡⎢⎢⎢⎢⎣ (−ΔHR)
2(CA0 −CAL)DASc1/3

2λT2 Pr1/3

⎤⎥⎥⎥⎥⎦. (14)

Table 1. Local and reactor-averaged components of entropy produced.

Entropy, σi Flux, Ji Driving Force, Δπ
Entropy, Reactor Average Value, Si

(per mol of Substrate A)

Heat transfer (H)
σH = − q

T2∇T

Heat flux
q = −ΔHRJA =

= α(Ts−T)

Temperature gradient
(Ts − T) =

=
kC(−ΔHR)(CA−CAS)

α

SH = kCkr
kC+kr

(−ΔHR)
2(CA0−CAL)

2αT2

Mass transfer (D)
σD = −∑

i

Ji
T∇μi

Diffusive mass flux
JA = kC(CA −CAS) =

= kCrCA

Chemical potential gradient
∇μA = RT μA−μAS

se f

SD= Rln
(

kC+kr
kC

)

Reaction (R)
σR = −ArASv

T

Reaction rate
rA = krCAS = kCrCA

Chemical affinity
A= − ∑

i
νiμi =

= −ΔGo,T
R − RT

∑
i
νilnyi

SR = A
T

Flow friction (F)
σF = W

TFcL = −w∇P
T

Fluid stream
w

Pressure gradient
−∇P SF =

f
2T

w3
0�

ε3kCr

ln
(

CA0
CAL

)
(C A0−CAL)

 
 

 
 

(a) (b) 

Figure 1. Impact of the mass transfer coefficient and reaction rate on entropy production due to: (a)
mass transfer and (b) heat transfer.

In Figure 1, a distinct increase of entropy produced with the reaction rate constant, kr, is observed.
Conversely, entropy decreases with the mass transfer coefficient, kC (due to heat, SH, and mass, SD,
transfer). A rapid chemical reaction (i.e., high kr) generates intense mass transport of substrates to the
catalyst surface and adequate heat transfer in the opposite direction. The faster the reaction, the further
the process runs from the equilibrium. When the transfer coefficients are small compared to the reaction
rate, the concentration and temperature gradients are large, and even the substrates concentration on
the catalyst goes to zero. Entropy production is large, being proportional to the square of the driving
force (concentration or temperature gradient, cf. Equation (10)).

The impact of the mass transfer coefficient is opposite. The higher the transfer coefficient for a
given reaction rate, the lower the temperature and concentration gradients are and the closer to the
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equilibrium the process runs. Smaller driving forces lead to lower entropy according to Equation
(10). However, when analysing the plots in Figure 1, the impact of mass transfer intensification is
distinct only if kC is close to the kr value. If kC is much smaller than kr, slight transfer enhancement will
give nothing as the concentration and temperature gradients are still large (zero concentration at the
catalyst surface). The gradients start to decrease as the reaction and transfer become comparable.

Obviously, the values of kr and especially of kC in Figure 1, may not be found in reality as the
plots presented are theoretical, to illustrate the common impact of transfer and reaction rates on
entropy production.

3. Catalyst Supports Considered

The aim of this study is to show the optimal adjustment of the catalyst carrier geometry, as well
as its transfer and friction characteristics to the catalytic reaction kinetics. The catalyst performance
(reaction kinetics) is treated as a model parameter only. Therefore, analysed catalyst supports were
selected on the basis of similar value of specific surface area. This means that, in all considered cases,
approximately, the same area was available for active layer catalyst deposition. For comparison,
monolith and packed bed are also examined.

Correlations for the heat transfer and Fanning friction factor were derived experimentally and
presented in detail in our earlier papers [4,16]. A photo of catalyst supports considered in the study is
presented in Figure 2, and a summary of equations for Fanning friction factor, Nusselt number and
Sherwood number of investigated supports are presented in Table 2 and compared in Figure 3.

 
 

 
 

 
 

(a) (b) (c) 

Figure 2. Catalyst supports: (a) triangular short-channel structure, (b) wire gauze, and (c) nickel
chromium foam.

The kinetic tests were performed experimentally. Two different catalyst deposition methods were
applied: (1) for Pd/ZrO2, the incipient wetness (IW) method [20] and (2) for Pd/Al2O3, sonochemical
(SC) method [4]. The kinetic studies were conducted in the temperature range of 373–823 K [20].
Kinetic data are presented in Table 3. As was found in [21], the sonochemical method allows higher
catalyst activity to be obtained in comparison to the incipient wetness method.

 
 

 
 

(a) (b) 

Figure 3. (a) Average Nusselt number and (b) Fanning friction factor for considered catalyst carriers.
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Table 2. Correlations used to calculate flow resistance, heat and mass transfer for analysed
catalyst supports.

Structure Description Correlations

Wire gauze [4]

f = 118.09/Re + 0.836
Nu = 2.19Re0.636 Pr1/3

Sh = 2.19Re0.636Sc1/3

Sv = 1355
ε = 0.97

Triangular short channel [16]

( f Re) = 13.33 + 11.59(L+)−0.514

Nu =
(
3.11 + 0.45(L∗)−0.61

)(
0.55(PrL∗)−0.15

)
Sh =

(
3.11 + 0.45

(
L∗M
)−0.61

)(
0.55
(
PrL∗M

)−0.15
)

Sv = 1314
ε = 0.95

Nickel chromium foam (NC 0610), Recemat®

(Dodewaard, The Netherlands); [4]

f = 79.9/Re + 0.445
Nu = 0.96Re0.53 Pr1/3

Sh = 0.96Re0.53Sc1/3

Sv = 1298
ε = 0.89

Monolith [17]

( f Re) = 14.23
(
1 + 0.045/L+

)0.5

Nu = 3.608(1 + 0.095/L∗)0.45

Sh = 3.608
(
1 + 0.095/L∗M

)0.45

Sv = 1339
ε = 0.72

Packed bed [18,19]

f= (ε−1)[600η(ε−1)−7Dh�w]
8Dhε�w

Nu = 2 + 1.1Re0.6 Pr1/3

Sh = 2 + 1.1Re0.6Sc1/3

Sv = 1240
ε = 0.38

Table 3. Kinetic data of tested catalysts.

Catalyst
Pre-Exponential Coefficient in
Arrhenius Equation, k∞, m s−1 Activation Energy, Ea, kJ mol−1

Slow kinetic, incipient wetness
(IW)

Pd/ZrO2

252.49 62.79

Fast kinetic, sonochemical (SC)
Pd/Al2O3

1.07·1010 110.4

4. Results and Discussion

Plots referring to analysis of entropy production were constructed assuming reactor length
required for 90% conversion and show the entropy produced per 1 kmole of methane combusted in
the reactor under given process conditions. Entropy production is presented as a function of process
temperature and the Reynolds number. Entropy is produced due to the four components denoted as
R—reaction, H—heat transfer, D—diffusional mass transfer and F—flow friction. The subscript HDFR
means total entropy produced due to the H, D, F and R components.

The components of entropy production (according to Table 1) for the knitted wire gauze are
compared for the methane catalytic combustion process vs. process temperature (Figure 4) and the
Reynolds number (Figure 5) for the fast (Pd/Al2O3) and slow (Pd/ZrO2) kinetics assuming initial
methane concentration of 200 ppm in both cases.
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(a) (b) 

Figure 4. Comparison of entropy production components vs. process temperature for knitted wire
gauze, Re = 1000, CH4 inlet concentration: 200 ppm: (a) fast kinetics, Pd/Al2O3 and (b) slow kinetics,
Pd/ZrO2.

  
(a) (b) 

Figure 5. Comparison of entropy production components vs. Reynolds number for knitted wire gauze,
T = 773 K, CH4 inlet concentration: 200 ppm: (a) fast kinetics, Pd/Al2O3 and (b) slow kinetics, Pd/ZrO2.

When analysing the Pd/Al2O3 catalyst (Figure 4a) within the lower temperature range, entropy
due to flow friction, SF, is the major component, and it is close to the total entropy production
SHDFR. The heat and mass transport components, SH and SD, play less important roles. However, for
higher temperatures, the kinetics become much faster, causing significant shortening of reactor length
necessary to attain 90% conversion. The share of flow friction entropy decreases; simultaneously,
the entropy components due to heat and mass transport play more important roles. For the highest
temperature range analysed, total entropy SHDFR is close to the reaction component SR, while the
remaining components are comparable. Increased entropy production due to heat and mass transport
at higher temperatures is a result of faster reaction rate. This leads to lower methane concentration on
the catalyst surface, and thus to higher temperature and concentration gradients, in consequence of
more intense entropy production (cf. Table 1, Equation (10) and Figure 1).

For the Pd/ZrO2 catalyst (Figure 4b), total entropy production is close to the flow friction
component in the whole temperature range analysed. The transport component SD, SH are minor due
to low gradients (a result of slow kinetics), and even the reaction component SR is much lower than the
flow friction one, SF.

Figure 5 illustrates entropy production as a function of the Reynolds number for knitted wire
gauze assuming a rather high temperature of 773 K. The transport components SD and SH are almost
constant within the whole Re range analysed. The flow friction component SF increases with Re,
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reaching an even higher value than SR, especially in the case of the Pd/ZrO2 catalyst. Moreover, in
Figure 5b, the total entropy produced is close to the flow friction component, with a minor role played
by the remaining components.

Large entropy production is due to the irreversible reaction of methane catalytic combustion.
Moreover, this entropy component is almost the same per mole of reactant, regardless of process
conditions (T, Re and catalyst); analysis of the equation for SR (Table 1) should render this as no
surprise. Chemical affinity is close to the standard Gibbs energy of reaction (at the process temperature)
ΔGR

o,T, because the sum of the concentration logarithms is minor. For optimization purposes, the place
of the minimum total entropy production reflects the process optimum, making the precise value less
important. Analysis of Figures 4 and 5 shows that the SR component is nearly constant within the ranges
studied. Note that reaction component, SR, is the lowest possible entropy that can be produced in the
chemical reactor. For engineering purposes, such as process optimization, the remaining components
are more interesting because they make entropy production higher than that due to chemical reaction
(SR) and they are dependent on the physical properties of carriers. For slow reaction, there is no
difference between the analysed approaches, because, in this case, flow resistance plays a major role
(cf. Figures 4b and 5b) and the minimum is not observed within the considered temperature range.
In summarising the catalytic structures displaying close specific surface area Sv (i.e., similar catalyst
amount), SR will be neglected during next analysis.

Analysis of entropy production due to the heat and mass transfer and flow friction (denoted as
SHDF) is presented in Figures 6 and 7 presents SHDF as a function of the Reynolds number and process
temperature for the five catalyst supports considered. In the following figures, minimal entropy
production for each support is shown; these points give optimal process conditions for particular
catalyst supports.

  

(a) (b) 

Figure 6. Entropy production vs. Reynolds number for different catalyst supports for the fast kinetics,
Pd/Al2O3 at temperature: (a) 573 K and (b) 773 K.

In Figure 6, entropy is presented for two selected temperatures, moderate (573 K) and high (773 K).
For the moderate temperature of 573 K (Figure 6a), packed bed seems the best for Re < 20. For Re < 500,
knitted wire gauze is optimal (minimum value at Re = 84) in that this results in the lowest entropy
production and the most profitable behaviour within this analysis. For a higher Reynolds number,
monolith displays the lowest entropy production, undoubtedly due to its lowest flow resistance.
For higher temperatures of 773 K (Figure 6b), the impact of transfer properties is more pronounced
as a result of faster reaction rate, and knitted wire gauze appears to be the best with classic and
short-channel monoliths. Packed bed produces the largest entropy in almost the entire Reynolds range,
due to the highest flow resistance. For the higher temperature (773 K), the minima are generally slightly
shifted to higher Reynolds numbers and entropy production is several times higher.
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(a) (b) 

Figure 7. Entropy production vs. temperature for the fast kinetics, Pd/Al2O3 for different catalyst
supports at Reynolds number: (a) Re = 100 and (b) Re = 500.

When considering temperature influence on entropy production (Figure 7), the same conclusions
may be derived. Low process temperature is favourable for the classic monolith, while for higher
temperatures, wire gauze and monolith seem to be the best choice. For Re= 100 (Figure 7a), above 650 K,
all the internals display close entropy production. Interestingly, all the structures except packed bed
show minima within the narrow range of 500–540 K. For Re = 500 (Figure 7b), entropy produced is
higher, especially for packed bed. The minima are shifted towards higher temperatures by 60–100 K.
Above 600 K, knitted gauze and monolith are the best.

Analogous plots for slow kinetics (Figures 8 and 9) show quite different behaviour. Here,
the reactor is long due to the slow reaction rate. Moreover, slow reaction does not require intense
heat and mass transfer. Concentration and temperature differences between the flowing fluid and
catalyst surface are very small; entropy production due to transfer is small compared to that due
to flow friction. Consequently, entropy produced for the slow kinetics is ordered identically to the
friction factors (Figure 3b) vs. the Reynolds number and process temperature. Flow friction is the
main entropy source (when neglecting chemical reaction). For slow kinetics, entropy production
characteristic considered for all the internals is similar. The shift observed (towards higher or lower
entropy produced) results mainly from the flow resistance. All the curves are nearly parallel, and only
slight convergence is observed for low Re as a result of different transport properties. The internals
displaying the lowest flow resistance (monolith and short-channel structure, cf. Figure 3) offer the
lowest entropy production, while those of high flow resistance (packed bed, cf. Figure 3) produce
larger entropy, so are less profitable.

 

Figure 8. Entropy production vs. Reynolds number for different catalyst supports for the slow kinetics,
Pd/ZrO2 at temperature 673 K.
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Figure 9. Entropy production vs. temperature for the slow kinetics, Pd/ZrO2 for different catalyst
supports at Reynolds number 1500.

5. Conclusions

The results obtained by entropy analysis indicate that wire gauze is the best choice for the
Pd/Al2O3 catalyst and the packed bed is the worst one. In the case of the Pd/ZrO2 catalyst, the best
carriers are monolith and short-channel structures, while the worst solution is a packed bed. However,
meeting the efficiency criteria cannot be regarded as the ultimate verdict. Any process has its own
characteristics and limitations. It is rare for a process to occur separately, as it is usually part of a larger
installation. For example, process temperature is limited by catalyst thermal deactivation, and the
flow resistance may be limited by the gas pressure available. Therefore, each process needs to be
considered individually, and any overall limiting parameters must also be taken into consideration
during optimization.

The entropy-based optimization methodology is able to optimize reactor structure (indicating
the best geometry, specific surface, etc.), as well as the process temperature and fluid velocity for
considered reaction kinetics. The criterion, ensuring the minimum entropy production, ignores the
reactor cost and is able to indicate the best structure from among the considered ones, as well as the
optimal working conditions of a reactor (e.g., temperature and flow velocity).

Irreversible chemical reaction produces almost the same entropy, per mole of reactant, regardless
of the process conditions. Therefore, it can be safely neglected during entropic optimization.
The hypothesis is confirmed by analysis presented in Figure 4. For proper results, entropy produced
by heat transfer, mass transfer and flow friction should be accounted for.

The gauze structures are assessed as being very effective due to their satisfactory transfer and
friction properties. The monolith and short triangular channel display good efficiency for slow
kinetics (Pd/ZrO2 catalyst) due to their low flow resistance. The packed bed usually appears as an
unsatisfactory solution.

For fast kinetics (Pd/Al2O3 catalyst), the transfer properties of the catalyst support are the most
important for low entropy production. The intense transfer properties of, e.g., knitted wire gauze,
make the support excellent for such processes. The impact of flow resistance is minor as, for a fast
reaction not hampered by insufficient transfer rate, the reactor is very short.

For slow kinetics (Pd/ZrO2 catalyst), the reactor is long. The impact of flow resistance becomes
important. In contrast, heat and mass transfer contributions to entropy production are minor. Heat and
mass transfer resistance is low, so temperatures (concentrations) gradients between fluid and catalyst
surface are low, and the process runs near to the equilibrium.

The optimization methodology presented in this study obviously requires further development,
including thorough experimental industrial and economic application. In spite of this, the entropic
criterion seems able to indicate technically rational solutions of the reactor process considering the
heat and mass transfer, flow resistance and reaction kinetics.
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Nomenclature

A chemical affinity, J mol−1

CA reagent concentration, mol m−3

cp heat capacity, J kg−1 K−1

DA diffusivity, m2 s−1

Dh hydraulic diameter, = 4εSv
−1, m

Fc reactor cross-sectional area, m2

f Fanning friction factor, = �w0
2L(2ΔPDhε

2)−1

JA diffusional mass flux, mol s−1 m−2

Ji stream (flux) of irreversible process, Equation (9)
kC mass transfer coefficient, m s−1

kr kinetic rate constant of the first-order reaction, referred to the catalyst surface area, m s−1

k∞ pre-exponential coefficient in Arrhenius equation, m s−1

kCr =

kCkr/(kC+kr)
combined transfer-reaction coefficient, m s−1

L bed length, m
ΔP pressure drop, Pa/m
q heat flux, W m−2

R gas constant, J mol−1 K−1

rA reaction rate, mol m−2 s−1

S entropy production rate, J K−1mol−1

sef film thickness, m
Sv specific surface area, m2 m−3

T temperature, K
W pumping power, W
w0 superficial fluid velocity, m s−1

yi mole fraction
ΔHR reaction enthalpy, J mol−1

ΔGR reaction Gibbs energy, J mol−1

Greek symbols

α heat transfer coefficient, W m−2 K−1

ε porosity
η dynamic viscosity, Pa s
λ thermal conductivity, W m−1 K−1

μ chemical potential, J mol−1

ν stoichiometric coefficient
Δπ driving force of irreversible process
� density, kg m−3

σ entropy production per m3 of reactor volume, W m−3 K−1

Dimensionless numbers

L+ dimensionless length for the hydrodynamic entrance region, = LDh
−1Re−1

L* dimensionless length for the thermal entrance region, = LDh
−1Re−1Pr−1

L*M dimensionless length for the mass transfer entrance region, = LDh
−1Re−1Sc−1
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Pr Prandtl number, = ηcpλ−1

Re Reynolds number, = w0Dh�η−1ε−1

Sc Schmidt number, = η�−1DA
−1

Sh Sherwood number, = kCDhDA
−1

Subscripts

A key reactant
D entropy production due to mass transfer
F entropy production due to flow friction
H entropy production due to heat transfer
P total entropy production
R entropy production due to chemical reaction
S catalyst surface
x reactor arbitrary axial coordinate
0, L reactor inlet, outlet
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Abstract: Adaptable or adapted? Whether it is a question of physical, biological, or even economic
systems, this problem arises when all these systems are the location of matter and energy conversion.
To this interdisciplinary question, we propose a theoretical framework based on the two principles
of thermodynamics. Considering a finite time linear thermodynamic approach, we show that
non-equilibrium systems operating in a quasi-static regime are quite deterministic as long as
boundary conditions are correctly defined. The Novikov–Curzon–Ahlborn derivation applied
to non-endoreversible systems then makes it possible to precisely determine the conditions for
obtaining characteristic operating points. As a result, power maximization principle (MPP), entropy
minimization principle (mEP), efficiency maximization, or waste minimization states are only specific
modalities of system operation. We show that boundary conditions play a major role in defining
operating points because they define the intensity of the feedback that ultimately characterizes the
operation. Armed with these thermodynamic foundations, we show that the intrinsically most
efficient systems are also the most constrained in terms of controlling the entropy and dissipation
production. In particular, we show that the best figure of merit necessarily leads to a vanishing
production of power. On the other hand, a class of systems emerges, which, although they do not offer
extreme efficiency or power, have a wide range of use and therefore marked robustness. It therefore
appears that the number of degrees of freedom of the system leads to an optimization of the allocation
of entropy production.

Keywords: out of equilibrium thermodynamics; finite time thermodynamics; living systems

1. Introduction

The issue of energy conversion is the subject of historical debate. Without going back to its
roots, let us mention the work initiated by Glansdorf and Prigogine, which placed at the center the
question of entropy production in out-of-equilibrium systems, an issue that is still largely relevant [1,2].
This debate is itself part of an even broader debate that questions the operating points of the systems,
considering mainly the maximization of entropy production (MEP), its minimization (mEP), or power
maximization (MPP) [3,4]. One of the reasons why these questions do not find a general consensus
today is that they are most often considered on very different systems, in particular in the definition
of the boundary conditions of the device with its environment, considered immutable. The case of
idealized mechanical systems is, from this point of view, much simpler, since, broadly speaking,
the absence of any friction process means that the system interacts with its environment via a very
limited number of degrees of freedom, which makes variational approaches relevant. On the contrary,
it has long been accepted that there is no variational principle that governs the out-of-equilibrium
steady state of a thermodynamic system [5]. This can be understood as an impossibility to establish
a variational principle when the number of degrees of freedom diverges, which is obviously the case
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when the system is connected to a thermostat, and when dissipative processes occur. However, it is
equally obvious that many out-of-equilibrium systems are perfectly deterministic in their evolution,
and have a perfectly defined stationary state, as is the case, for example, for Kirchoff’s networks in
electronics. As a result, these systems, although not governed by a Lagrangian form and an associated
variational principle, have a completely established stationary operating point, without any possible
affirmation of an underlying minimization or maximization of the production of the entropy or
the power.

These questions of power and finite time performance have been the subject of much work [6]
particularly in thermoelectricity [7–11]. Without entering into these debates again, we propose an
approach that provides a fairly generic framework for describing a complete thermodynamic system
with perfectly established boundary conditions. In this article, we will limit ourselves to the case of
locally linear machines, subscribing to Onsager’s formalism. This formalism, based on the concept
of local equilibrium, makes it possible to consider the thermodynamic potentials of the system,
which are the intensive parameters. As a result, it becomes possible to derive a thermodynamics close
to equilibrium, with, in particular, a rigorous choice of potentials that allow for obtaining the symmetry
of the out-of-diagonal coefficients of the Onsager matrix. The stationary nature also requires that
kinetic coefficients and boundary conditions of the system be constant or slowly variable compared to
the characteristic relaxation time of entropy production and dissipation diffusion, thus guaranteeing
both stationary processes and local equilibrium.

In this article, we consider the transport of energy and matter within a system, where the
thermodynamic conversion is produced by coupling the energy and matter currents. By applying
the first law of thermodynamics, both of these currents are conservative. By applying the second law,
the energy, and sometimes the matter, used during the conversion process is subject to dispersion
in the degrees of freedom accessible to the system. As a result, thermodynamics is based on both
quantity and quality principles. Since the loss of quality is directly related to dispersion in the degrees
of freedom, the search for processes to reduce their number has always been a guideline. It should be
noted that, in the case of non-spontaneous processes, it is possible to consider a reduction in the degrees
of freedom, but this operation requires the implementation of external processes. These processes
offer other opportunities for energy dispersion, in greater proportions than those gained within the
system. As a result, any physical process taking place over a finite period of time is the location of
a compromise between the total energy used to carry out a process, and the energy actually converted
for the needs to be covered. The process efficiency is therefore written as the ratio between the actually
converted energy and the total energy supplied. We propose to consider energy conversion processes
in a very generic form, in order to establish their main characteristics and constraints. In particular,
we address the question of power and entropy production, insisting on the compromises they impose.

The question of adapting a device to the uses assigned to it then arises. In the case of single
working point, the system may be designed to be as much adapted as is it possible. However, this single
operating working point is a rare configuration, and realistic systems are asked to work in a given
range of working points. Then, the concept of adaptability, or flexibility, arises, which enters into
competition with the previous adapted concept. This problem of adaptation or adaptability concerns
all thermodynamic systems, including, of course, living systems. Indeed, as soon as we define an
envelope, we delimit the boundaries of a space occupied by a given device and the interactions
of this device with the outside world. Considering the energy and matter budget at the borders of
the device, we then characterize the relationship between the device and its environment. Since the
processes take place over a finite period of time, it is important to consider an out-of-equilibrium
description. In this paper, we consider an out-of-equilibrium thermodynamic description, driven by
locally linear equations. We show that the intrinsic characteristics of the device, on the one hand,
and the boundary conditions, on the other hand, totally determine the behavior of the system. It appears
that the allocation of dissipation largely determines the possible ranges of use of an out-of-equilibrium
thermodynamic system.
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In terms of boundary conditions, we show that the real coupling conditions of a system with
its environment are always located between the Dirichlet and Neumann boundaries, also called
“stock” and “flow” boundary conditions. It should be noted that both pure stock and flow are
extreme boundary conditions which can never being strictly reached. Between adaptable and adapted,
the performances of thermodynamic systems are therefore the result of a compromise between intrinsic
performance of a device and the coupling to the environment. This question of coupling to the
environment is the subject of the first section of this article. In the following section, we describe the
envisaged system in its most general form. The third section concerns the descriptions of the device
at the heart of the system, while the fourth section describes its insertion into the complete system.
The fifth section considers the different configurations that such a global system may encounter, and the
consequences on the production of power, dissipation, and more generally, entropy. The article ends
with concluding remarks.

2. System Description

2.1. Boundary Conditions

As indicated above, the system is composed of two sub-parts: a central zone, which we will call
the device, and which is the place of thermodynamic conversion, on the one hand, and the boundary
conditions, consisting of the source, and, on the other hand, the sink and the elements connecting it to
the device. These elements allow for modifying at will the boundary conditions that condition the
coupling of the device with the source and the sink, which is a central question for the optimization.
Among the latter, we can distinguish systems whose intrinsic parameters are constant, as is the case
for most machines, and systems, whose intrinsic parameters are subject to modification, as is the
case for living or societal systems. These latter are subject to potential developments and evolution,
which are not possible for the above-mentioned machines. By potential development, we consider
the case of living systems, societies or organisms, which can, under conditions of energy and matter
supply, develop, maintain, or regress.

In the case of systems under Neumann boundary conditions, the system is somehow fed by
a constant current of energy and/or matter, which guarantees the maintenance of the system as much
as it constrains its development. Under such conditions, the possible development of the system is
limited by the value of the current of matter and/or energy. In the case of Dirichlet systems, there
are no restrictions on access to the resource, except for the intrinsic limitations of the conversion
device. As a result, the currents of energy and matter may diverge completely, if the characteristics
of the device lend themselves to it. The same reasoning applies to the production and rejection of
waste to the sink. Access to the resource and waste production are therefore both dependent on these
boundary conditions. Let us consider, as an historical illustration, the situation of the industrial
revolution, which saw the rise of the use of fossil energy [12]. The latter are by definition stock
resources that lead the human societies to find themselves in Dirichlet conditions, as far as access
to the resource is concerned. Concerning the waste rejected to the sink, the Dirichlet’s condition
has been the norm, as long as the planet has been considered a bottomless sink. On the other hand,
if we consider the situation before the industrial revolution, it can be noted that the main resource for
development, which is the food resource, was dependent on Neumann-type boundary conditions,
due to the subjection to solar flux. Without going further into this illustration, which is beyond the
scope of this article, we can nevertheless observe the importance of boundary conditions, both on
the functioning of systems, but also for their possible evolutions. Indeed, in the case of boundary
conditions of the Neumann type, there is no possibility of development, in the sense of increasing the
current of energy and matter that feed the conversion device. Consequently, there is no possibility
of any increase of the quantities. On the other hand, there are possibilities of increase of the quality
because the conditions of coupling between energy and matter may change, as the history of life
proved it.
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On the other hand, in the case of Dirichlet boundary conditions, there is no limit to the increase
in energy and matter currents, which could lead to their possible divergence. It should be noted
that the actual Dirichlet conditions for the access to the energy for the human species are quite
singular in the history of the living systems. In order to remain explicit and relatively simple to
address, these questions need to be modeled in the most compact form possible. This why we
propose to describe a generic thermodynamic machine in order to guarantee a general character to the
developments of this article. Many extensions and refinements can be added, as for previous systems
in the literature [6,10].

2.2. Thermodynamic Device

The proposed thermodynamic system is described in Figure 1. It consists of a reservoir providing
the resource and a sink receiving the waste, with the respective potentials ΠR

1 and ΠS
1 fixed at constant

values. Between these two reservoirs is the energy conversion device which is the place of coupling
between a current of matter I2, and a current of energy IE. The energy current entering the system
is associated with an incoming entropy current, I1, with Π1 its conjugated potential. In the case of
a thermal system of heat current IQ, temperature T and entropy current IS, we would simply have
Π1 I1 = IQ = TIS so I1 would be the classical entropy current. The current of matter is defined by I2 and
its conjugated potential Π2. The energy currents budget finally writes IE = Π1 I1 + Π2 I2. We recognize
the fractions of dispersed energy, Π1 I1, and concentrated energy, Π2 I2, which are a generalization of
the notions of heat and work extended to the case of non-thermal systems [13,14]. The coupling term
between energy and matter is defined, under I2 = 0 condition, as α = −(δΠ2/δΠ1)I2 . The geometry
of the system is given by its length L and its cross-section A. The two currents of energy and matter
are then associated with two conductivities σ1 and σ2, which, at the integrated scale, behave like two
resistive dipoles R1/2 = 1

σ1/2
L
A . The connection of the conversion zone with the two reservoirs is

defined by the coupling resistors R+ and R−, which allow the boundary conditions to be set, at will,
between Dirichlet conditions (R+ = R− = 0), or Neumann conditions, where R+ and R− diverge.
This type of configuration is not in itself new, and has already been used in specific systems [14,15].
In particular, it has been shown that, under these conditions, the way the system operates is partially
governed by the feedback effects induced by boundary conditions. Some of this feedback can lead to
the presence of oscillations. It should be noted that these processes do not violate the first principle in
that they are not self-sustained oscillations, at least from an energy point of view. They do not violate
the second principle either, since these structures are highly dissipative and are only maintained by
a continuous supply of energy. It can also be noted that the incoming current of energy is used to
produce a potential difference, which, if maintained, allows the circulation of the matter under the
action of the thermodynamic force, which is defined from the gradient of the potential. This type of
analysis of thermodynamic conversion has been used with success by Alicki in various systems [16,17].
This description of two coupled currents can, of course, be extended to a larger number of coupled
currents without changing the spirit of the study.

As it is represented, the system is therefore quite generic. The main determinants of functioning
are thus summarized by three terms, the capture of the resource, its conversion into a usable form,
and the rejection of waste. It is clear that ideally the target is the one where the output power would be
maximum and the amount of energy released would be minimal. The study of the limits to achieving
this target is one of the objectives of this article. As the coupling parameter for the conversion, the α

parameter is therefore central since it determines the system’s ability to convert energy into a usable
form. A naive picture may suggest that the largest possible α value necessarily leads to the most
efficient system, but this is not correct, as we will see now.
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Figure 1. Schematic view of the generic system, with a resource and a sink, whose potential ΠR
1 and

ΠS
1 are constant. The coupling of the conversion zone (circle) with the two reservoirs is ensured by

the elements R+ and R−. As a result, the difference potential Π+
1 − Π−

1 is less than that between
reservoir and sink. Power produced in the conversion zone (circle) is P = −αΔΠ1 = ΔΠ2. The internal
resistance R2 = L

Aσ2
gives rise to a dissipative contribution R2 I2

2 . The RL resistance is the output load,
and the output power is Pout = RL I2

2 .

3. Local Energy Conversion

3.1. Presentation

At the local level, energy conversion is produced by coupling the energy and matter currents
flowing through the device. These currents are generated by the presence of differences between
the two thermodynamic potentials Π1 and Π2. This local modeling is therefore based on the three
parameters of conductivity associated with energy transport, σ1, conductivity associated with matter
transport, σ2, and the coupling coefficient between the gradients of the two potentials, α. We deduce
from this the formulation of local Onsager matrix, where ∇ = d

dx is the spatial gradient, here reduced
to 1D in order to simplify the description.

(
J2

JE

)
=

(
L11 L12

L21 L22

)(
−∇

(
Π2
Π1

)
∇( 1

Π1
)

)
. (1)

JE and J2 are the densities of the two currents, and are extensive and conservative quantities. Given the
differential form JE = Π1 J1 + Π2 J2, the equality of non-diagonal terms L12 = L21 is insured according
to the choice of the correct potentials −Π2

Π1
and 1

Π1
[18,19]. The four terms of the matrix are therefore

reduced to three, σ1, σ2and α, whose correspondences with the coefficients Lij are

σ1 =
1

Π2
1

[
L11L22 − L21L12

L11

]
, (2)

σ2 =
L11

Π2
, (3)

α = −ΔΠ2

ΔΠ1
=

1
Π1

L12

L11
. (4)

In the absence of a matter gradient, the energy conductivity can be defined as
σΠ2 = σ1

[
1 + α2σ2/σ1Π2

]
. The figure of merit is then defined as

Fm =
α2R1

R2
Π2 =

L2
12

L11L22 − L21L12
. (5)

It is known that the ratio σ2/σ1, therefore Fm, is a direct measure of the intrinsic capacity of
energy conversion. Fm can be related to the ratio of the equivalent specific heats by the expression
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γ =
CΠ2
CI2

= Fm + 1. In their seminal paper, Kedem and Caplan derived the following expression of the
coupling parameter between the two fluxes involved in the conversion process [13]:

q =
L12√

L11L22
=

√
Fm

1 + Fm
(6)

an expression that explicitly includes the kinetic coefficients Lij. The figure of merit and the coupling
factor q are equivalent in terms of measure of the system performance: the larger their (absolute)
values, the better the energy conversion system. This can be evidenced by the derivation of the local
maximal efficiency of the conversion process in generator mode, ηmax:

ηmax =

(
1 +

√
1 − q2

q

)2

=

√
γ − 1√
γ + 1

. (7)

3.2. Entropy Production and Efficiency

The volumetric entropy production rate is given by the summation of the force-flow products,

.
S = J2∇

(
−Π2

Π1

)
+ JE∇

(
1

Π1

)
= − 1

Π1
[J2∇Π2 + J1∇Π1] . (8)

In the case of a reversible process
.
S = 0 so does J2∇Π2 + J1∇Π1. We get − J2∇Π2

Π1 J1
= ∇Π1

Π1
= ηC,

where ηC is the Carnot efficiency. This leads to the general expression of the local efficiency,

η = − J2∇Π2

J1Π1
< ηC. (9)

Let us define the reduced current as
j =

αJ2

J1
, (10)

which is the ratio between the entropy carried by the transport of the matter, divided by the
total entropy transported. In the case of a reversible process, both terms are equal so j = 1 [20].
This expression shows three regions for the η(j) meaning. For 0 < j < 1, the device works as a generator.
For j < 0 and j > 1, the device works as a receptor. For reasons of brevity, we will mainly deal with
the generator configuration in this article.

Rewriting the Onsager matrix in more suitable form [21], we get(
J2

Π1 J1

)
=

(
σ2 ασ2

αΠ1σ2 γσ1

)(
−∇Π2

−∇Π1

)
. (11)

Then,

j =
ηαΠ1σ2 − jασ2∇Π1

ηαΠ1σ2 − jγσ1
α

∇Π1
Π1

. (12)

Thus,

η = ηC j
jγ − α2σ2

σ1
Π1

j α2σ2
σ1

Π1 − α2σ2
σ1

Π1

, (13)

where γ = α2σ2
σ1

Π1 + 1. After a few algebra, we get

η =
ηC

(γ − 1)
γj2 − (γ − 1) j

j − 1
(14)
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η presents a maximum for jopt = 1 +
√

1
γ for a receptor mode, and jopt = 1 −

√
1
γ for a generator

mode. Both optima reduce to j = 1 in the ideal case, when γ diverges, where we recover the Carnot
efficiency. In this diverging case, the system do not present anymore dissipation production, and the
equivalence between the receptor and generator modes is a proof of the absence of causality of the
Carnot configuration. This absence of causality is another name for reversibility. We then recover
the Kedem–Caplan expression of the maximal efficiency, ηmax = ηC

√
γ−1√
γ+1 for the generator mode,

and ηmax = ηC

√
γ+1√
γ−1 for the receptor mode. Let us now plot the efficiency versus the reduced current,

as reported in Figure 2.
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Figure 2. Normalized efficiency η
ηC

according to reduced current j = αJ2/J1 with γ = 2 (red,

dot dashed), 4 (green, dots), 8 (blue, loosely dashed), 20 (cyan, dashed), 2 × 102 (magenta, loosely dot
dashed) in main figure, and γ = 2 × 102 (magenta, loosely dot dashed), 2 × 103 (black, dot dashed),
2 × 104 (red, dot dot dashed) in inset. The grey area corresponds to the receptor mode (resp. generator
mode). Note that the figure is symmetrical with respect to the Carnot point (blue star), which is never
reached. This singular point defines the reversible configuration, where causality is broken.

As expected for the maximum performance achieved, ηmax is an increasing function of the figure
of merit. On the other hand, it also appears that the sensitivity to fluctuations in j becomes all the more
important as ηmax is important. This is confirmed by estimating the value of the slope in the vicinity
of the maximum yield, which is ∂η/∂(j) ≈ −2ηmaxFm. The larger the figure of merit, the steeper the
slope. This local description allows us to conclude that the performance of the device is obtained at
the cost of a constraint of stability of the operating points, directly driven by the value of the figure of
merit. As an intrinsic quantity, the figure of merit defines the performance ceiling beyond which it
cannot be exceeded. It is clear from the figure that the system defined by a high figure of merit exceeds
in performance all the systems of lower figure of merit value. However, this result is strongly weighted
by the fact that, for excursions of j around the optimal value, the efficiency falls rapidly. Then, it is
not necessarily relevant to look for a device with a large figure of merit, without first inventorying the
operating range that will be brought to run this device. For simplicity’s sake, we have only dealt here
with the case where the system works as a generator, which is obtained by 0 < j < 1. It is clear that the
same study can be carried out for the case where the system operates as a receptor, instead of working
as a generator. This situation, well known for thermal machines, corresponds to heat pump operation.
More broadly, and in the case of non-thermal machines, this case actually corresponds to the operation
in recycling mode where the treated quantity undergoes regeneration. It should be noted that the
expression of performance refers only to γ, and therefore to the figure of merit, without specifying any
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contribution from σ1, σ2 and α, respectively. The local level is totally blind to these issues so we now
consider the situation of the entire system to see the relative contributions.

4. Global Conversion System

4.1. Presentation

In accordance with the diagram in Figure 1, the device of the conversion zone is connected to its
reservoirs via the two resistors R+ and R−, which makes it possible to explore all boundary conditions.
The presence of R+ and R− may lead to the pinching of the potential difference Π+

1 − Π−
1 according

to the system operating point. More precisely, R+ governs the limitation of access to the resource
while R− reflects possible saturation effects of waste disposal. This global model, although limited,
makes it possible to approach the behavior of many systems, including living systems, depending on
whether the resource is abundant or scarce, and whether waste disposal, including thermal waste,
is easy or not. Living system and non-living systems differ from the fact that the energy current is
never zero in living systems, so R1 is always finite, and there is a non-zero resting point. On the
contrary, a non-living system may have a zero resting point, with zero energy current, so R1 may be
infinite in these systems. Let us consider the set of the four equations that governs the functioning of
the system (see Appendix A):

IE− = αΠ−
1 I2 + (1 − ϕ) R2 I2

2 +

(
Π+

1 − Π−
1
)

R1
, (15)

IE− =
(Π−

1 − ΠS
1 )

R−
, (16)

IE+ = αΠ+
1 I2 − ϕR2 I2

2 +

(
Π+

1 − Π−
1
)

R1
, (17)

IE+ =
(ΠR

1 − Π+
1 )

R+
. (18)

These equations have their origin in the integration of the local form described in the previous
paragraph. These developments have been the subject of previous articles [14,22] , and will not be
re-described here. ϕ controls the dissipation fraction that returned to the source or to the sink. In the
following, we will choose ϕ = 0. This choice is not critical here since the effect of ϕ = 0 is driven by
R2, which is equal to zero.

4.2. Devices with Zero Resting Point

First of all, we consider that R2 = 0 and R1 diverge, in order to separate the contributions of
entropy production and internal dissipation. R2 governs the current of matter, so we therefore consider
that this current may not be limited, so there is no intrinsic dissipation within the device. The figure of
merit of the device is then infinite and we may expect to reach the ideal conditions and the Carnot
efficiency. However, the classical discussion around the Carnot efficiency is based on pure Dirichlet
boundary conditions, which is clearly not the case here, so we have to consider the new conditions
introduced by the modification of the boundary conditions. In the present configuration of zero resting
point systems, the general equations (see Appendix A) can be summarized as

IE− =
ΠS

1 I2
1
α − R− I2

, (19)

IE+ =
ΠR

1 I2

R+ I2 +
1
α

, (20)

with the output power given by P = IE+ − IE−.
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The plots in Figure 3 summarize the behavior of the global system. The output power presents
a maximum and two zero values. The first value corresponds to the case where the efficiency reaches
its maximum. This situation is obtained for I2 = 0, so IE− = IE+ = P = 0. This means that no
matter or energy can flow through the system, which is a totally useless situation for a physical system.
The second zero power value is reached for a current of matter I2sc , named the short-circuit current,
by analogy with electronics. In this situation, the produced power is completely re-dissipated inside
the system. I2sc is therefore an ultimate operating point for the system, working as an energy generator.
For a truly efficient operation, it is therefore necessary to try to push I2sc to large values, which are
obtained by getting as close as possible to Dirichlet conditions. In the general case, the approximate
expression of this current is

I2sc ≈ 1
α

ΔΠ1

R−ΠS
1 + R+ΠR

1
, (21)

which confirms that Dirichlet’s conditions where R− = R+ ≈ 0 are to be sought, if accessible. Since the
resting point here is zero, the power curve necessarily intercepts that of IE−. Beyond this interception
point, the system is in a situation where it releases more waste than it produces output power. We call
critical point the point where P = IE−, reached for I2cp. The fact that power is not a monotonous
function of I2 is actually quite unexpected because, to the extent that R2 = 0, the total absence of
intrinsic viscosity should not lead to any limit to I2. However, if we carry out a development at the
first order of the expression of power we find

P ≈
[
αΔΠ1 −

(
ΠR

1 R+ + ΠS
1 R−

)
α2 I2

]
I2 (22)

which clearly indicates the presence of a viscous friction term R f b,

R f b ≈ α2(ΠR
1 R+ + ΠS

1 R−) (23)

which reduces the transport of the matter, even though the intrinsic viscosity, i.e., 1
σ2

, associated with
the transport of the matter, is zero. This additional dissipation is a pure feedback effect that is due to
the presence of boundary conditions at the general limits where R+et R− are non-zero. This additional
dissipation can only be rendered null if R+ = R− = 0, i.e., a strict Dirichlet condition, which is,
in reality, only very rarely observed. Note that the condition α = 0 leads to the same result but it is
useless because in this case the transport of energy and matter are fully decoupled, and the device
does not convert the energy anymore. The conditions R2 = 0 and R1 → ∞ determine the performance
envelope for a system with an ideal conversion zone. In particular, it is noted that, although IE+ and
IE− are increasing functions of the current of matter I2, the growth rate of the energy waste current IE−
always ends up reaching that of the energy current IE+ supplied to the system. In addition, even in
the case of a system whose core is composed of an ideal device, (R2 = 0, R1 → ∞), the increase in
the current of matter inexorably leads to an increase in the current of waste in larger proportions to
the rate of supply of resources. The only way out is to limit the current of matter to values below
a threshold, which may be that of maximum power, maximum efficiency, minimum waste generation,
or below the critical point. In the Figure 3, the response is given for two different values of the coupling
parameter α. The influence of α is quite surprising. At first we observe that the lower is α and the
lower are the output power and efficiencies, as expected for a lower conversion level of the energy.
However, in the same time, the short-circuit current is strongly enhanced, opening the way to a large
range of I2 working points for the transport of the matter. This is due to the α−2 dependency of I2sc.
This leads to the conclusion that the search for a very efficient system is in contradiction with the search for
a very adaptable system.
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Figure 3. Representations of the powers IE+, IE−, with R−1
1 = 0, R2 = 0 (and P = Pout), R+ = R− = 2,

ΠS
1 = 1, ΠR

1 = 30. (a) shows efficiencies (resp. in red and green) η+/− = Pout/I2+/− in function of I2,
the current of matter. (b) is the efficiency in function of the power produced Pout. (c) show the power
(resp. in red, green and black) IE+, IE− and Pout in function of I2. (d) shows (resp. in red, green and
black) COE+/− = IE+/−/I2 and COEPout = Pout/I2 in function of I2. Dotted lines are α = 0.9, solid
lines are α = 1, dashed lines are α = 1.1. In (c) and (d) cyan stars show short circuit situations I2sc,
yellow circles are critical points I2cp. In (b) vertical and horizontal red lines are respectively maximal
efficiency and maximal power.

Let us now focus on the issue of the trade-off between power efficiency and waste generation.
The Figure 3a represents the curves of the production efficiency ηprod = P/IE+ and the waste efficiency
ηwaste = P/IE−. Note that ηprod , which is the traditional efficiency, is limited by the Carnot efficiency
but ηwaste is not, since it does not refer to the traditional expression of efficiency but is just an extension
of the notations. ηprod is bounded by a zero value, which corresponds to zero power, and a maximum
efficiency point, reported in Figure 3b. Between these two values, the system presents a maximum
of the power, which absolutely does not coincide with the maximum efficiency. In this configuration
the MPP or mEP operations are clearly disjointed as already mentioned [23,24]. Let us now consider
the cost of carrying out a unitary process. By unitary process we consider a process standardized
by the value of the associated transport of matter, i.e., the ratio between the energy currents and the
matter current. We call this quantity Cost Of Energy, i.e., COE. This makes it possible to consider
energy expenditures with regard to the associated matter transformation along a unitary displacements.
In other words, COE can measure the amount of energy needed to be rejected as a waste, for displacing
the matter from a unit length. This quantity is already known in biology as Cost Of Oxygen Transport
(COT), where it has made it possible to qualify a unit displacement with regard to the energy released
in the form of waste [25,26]. Here, we extend the notion in a more general form where COE is defined
by COE+ which is the cost of energy needed to feed the system, and COE− which is the cost of waste
energy that is rejected, so,

COE+/− =
IE+/−

I2
(24)

Note that the COE+ is a strictly decreasing function of I2 and COE− is a strictly increasing function
of I2. This means that the cost of energy needed for a unitary process decrease when I2 increases but,
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in the same time the amount of waste always increases. There is therefore no optimum to consider
any minimization of the waste. In addition, it is important to note that the R−1

1 = 0 configuration is
the only one that provides the strong coupling conditions, for which the energy and matter currents
are roughly proportional [10]. In this case, the Onsager matrix has a zero determinant. This situation
is an idealization of the transport of energy entirely achieved by the transport of matter. In other
words, it is a question of considering that the behavior of out-of-equilibrium thermodynamics may
be equivalently described by pure mechanics. This is obviously never fully encountered unless it is
considered that a ΔΠ1 difference can persist without an associated current of matter existing. This is
the purpose of the following paragraph.

4.3. Devices with Non Zero Resting Point

The study of devices with non zero resting points concern the case of all systems for which
a shutdown means death. Indeed, unlike a machine, all living systems are never totally shut down,
and always keep a minimum operating point value , which we call basal, also known as a resting point.
This situation corresponds to the case where R1 has a finite value. While remaining, for the moment in
the case where R2 = 0, we can develop the main results from this configuration. The general equations
of the system are given in Appendix B. In this situation, the efficiency, nor the power, can reach the
previous values, as reported in the Figure 4. At the resting point I2 = 0, the system is in its basal
configuration where P = 0, so IE+ = IE− = B with,

B =
ΔΠ1

R+ + R1 + R−
(25)

The typical response of systems with non zero resting points is given in the Figure 4. One can
notice that the general shape is not strongly modified from the case of zero resting point configurations,
except the presence of a non zero current of energy even at zero I2 and a slight modification of
the short-circuit point. Regardless of the reduction in efficiency introduced by the presence of R1,
the search for a system with a very low basal point requires to be located in a configuration close to
Neumann conditions where R+ and R− have very large values. This is not problematic except that
it requires the system to operate at low values of I2, in order to limit the dissipation due to the term
R f b. There is therefore a fundamental contradiction between having a system with low resting power
consumption and a system that can provide significant power. It is clear that a sober system, in the
sense of its consumption at rest, is unsuited to the production of significant power, without leading to
significant dissipation at high speed, or equivalently, high I2. If such a power is sought, then it implies
that the boundary conditions should be of Dirichlet like with R+ ≈ R− ≈ 0. However, in this case the
system will have a necessarily high rest consumption. Compared to systems with a zero resting point,
it can be seen that the maximum power operating point and maximum efficiency operating point tend
to approach each other as R1 increases. In this configuration, as can be derivated in [27], the feedback
resistance is approximately given by

R f b ≈ α2〈Π1〉
1

R++R− + 1
R1

= R∗α2〈Π1〉 (26)

where R∗ = (R++R−)R1
R1+R++R− and 〈Π1〉 = ΠR

1 /2 + ΠS
1 /2.

Compared to the previous configuration the dissipation introduced by the presence of R f b can now
be modified whatever are the boundary conditions because R∗ < Min(R+ + R−, R1). More precisely,
in the case of Neumann-like boundary conditions, there is a restriction to the value of R1 where
R1 � R+ + R− is expected. Under Dirichlet-like boundary conditions R+ and R− are small so there
is no condition on R1. Consequently, a system with a very low basal point, with large values of both
(R+, R−) (Neumann like) and R1 will suffer from a large R f b and is then limited to very low I2 currents.
If the boundary conditions are more like Dirichlet conditions, then R f b keeps low but the low basal
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level now imposes that R1 strongly increases, which reduced both the available power P and the
efficiency. Thus, we can see that there is no room for a powerful and efficient system working in all
conditions. The main trade-off is between power and efficiency, but it ultimately extends beyond that.
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Figure 4. Representations of the powers IE+, IE− and P, with R−1
1 = 0.05, R2 = 0 (and P = Pout),

R+ = R− = 2, ΠS
1 = 1, ΠR

1 = 30. (a) shows efficiencies (resp. in red and green) η+/− = Pout/I2+/−
in function of I2 the current of matter; (b) is the efficiency in function of the power produced Pout;
(c) shows the power (resp. in red, green and black) IE+, IE− and Pout in function of I2; (d) shows
(resp. in red, green and black) COE+/− = IE+/−/I2 and COEPout = P/I2 in a function of I2. Dotted
lines are α = 0.9, solid lines are α = 1, dashed lines are α = 1.1. In (c) and (d), cyan stars show short
circuit situations I2sc, and yellow circles are critical points I2cp. In (b), vertical and horizontal red lines
are respectively maximal efficiency and maximal power.

From a rather general point of view, the incoming energy current IE+ makes it possible to establish
and maintain, thanks to the presence of R1, a potential difference that permits the production of output
work. On this point, we join the work of Alicki [16], who considers that the incoming energy current
makes it possible to maintain a difference in potential, exactly as a pump would do. This situation
is particularly described in the case of photovoltaic structures, with a difference in electrochemical
potential [16], or in the case of muscles where the attachment and release cycles of actin and myosin
structures lead to the maintenance of a force [28]. It should be noted that, depending on the position of
the resting point, the power curve can intercept between zero and twice the IE+ curve. It can therefore
be seen that, in the case of systems with a relatively low resting point, there may be an area for which
the power produced is greater than the power released as a waste. More intriguing, this area can
start with a non-zero value of I2. In other words, there may be systems for which the situation I2 
= 0
leads to a proportionally smaller waste production than at rest. Systems with a non-zero resting point
therefore present very different optima than non-living systems, whose zero resting point leads to
minimizing power by stopping the machine. By using the definition COE− = IE−/I2, we can plot
its response according to I2. It should be noted that the COE− has a minimum value, which does
not coincide with the maximum power point. This defines a new operating point for the system,
which characterizes the situation where the system minimizes its production of waste.
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An illustration of this can be given if we consider the motion of living systems. Let us consider
that the task to be accomplished consists in moving the body over a unit distance, the question arises
as to how fast this operation will lead to a minimum of waste, essentially in the form of heat and
metabolic degradation products. It is clear that displacement here corresponds to the transport of
matter, and is therefore assimilated to I2 proportional to the speed of travel as previously said. There is
an abundant amount of literature showing that there exists a minimum of the so-called COT ≡ COE−
point for all animals for which movement appears to be favored when the COT is minimal [25,26].
As expected, see Figure 4, COE− and COE+ curves have a common point at the short circuit point.
We previously saw that Dirichlet’s conditions, R+ = R− = 0, were those that minimized the feedback
resistance R f b and allowed for considering potentially a divergence of the current of matter and the
output power. This simple observation shows that strict Dirichlet’s conditions are simply nonphysical.
Nevertheless, one can consider that this condition can be approached. However, the presence of R+,R−
and R1 in series shows that Dirichlet’s condition is asymptotically obtained only if the ratios R+/R1

and R−/R1 are negligible, which imposes an important value for R1, and therefore a high value of the
basal power. We therefore see the emergence of a paradox, which, seeking to minimize the dissipation due to
R f b leads to the constraint of high consumption at rest. The same system cannot therefore be both very powerful
and very energy-efficient at its resting point. We find here the generalization of a well-known situation,
for example for the thermal engines of vehicles, in which the engine’s displacement determines its
ability to produce power, as well as its efficiency.

4.4. Internal Dissipation Devices

Let us now consider the introduction of the dissipative term R2. The output power of the system
is now represented by Figure 5. As a thermodynamic engine, the system provides a power P =

α
(
Π+

1 − Π−
1
)

I2 as already defined. The efficiency of this part of the system is given by η2 =
P−R2 I2

2
P .

Thus, the total efficiency of the system is

ηsys = η1η2, (27)

with η1 = P
IE+

. Compared to the previous configurations, both the power, the short-circuit current Isc,
and the efficiency are now reduced. The influence of R2 appears to be always detrimental, which was
not the case for R1. It is clear that one should look for minimal R2 if possible. In other words,
in the expression of the figure of merit, there is a constraint on R2. At first, both α and R1 seem to be
non-constrained, and the same figure of merit can be obtained for various values of the couple (α, R1).
Nevertheless, as we have mentioned, the present description shows that R2 is linked in series with
R f b. Consequently, the constraint on R2 can be relaxed to the condition R2 � R f b. According to the

expression R f b ≈ α2〈Π1〉
1

R++R− + 1
R1

, this leads to the condition 1 + R1
RΣ

< α2R1
R2

〈Π1〉 where we recognize the

figure of merit, so the condition becomes

1 +
R1

RΣ
< Fm, (28)

where RΣ = R+ + R−. According to the previous observation, the minimization of the dissipation
occurring from the R f b term imposes that R1

RΣ
should be large enough. Thus, we now get

a supplementary condition for Fm. In this expression, the boundary conditions and the intrinsic
performances of the device are considered together. Under Dirichlet conditions, 1 + R1

RΣ
diverges so the

system keeps its level of dissipation low only in the case of a very large figure of merit, and is forced
to work at very low I2 values. Under Neumann conditions, RΣ diverges and then the condition on
the figure of merit is then relaxed. Ideally, even when achieved asymptotically, one might want to
achieve maximum power, as well as minimal waste production, combined with maximum efficiency.
We conclude that looking for maximum efficiency always leads to approaching the Carnot point, which is, even in
an out-of-equilibrium description, the point where power production is canceled out.
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Figure 5. Different representations of the powers IE+, IE− and P, with R−1
1 = 0.05, R2 = 4,

R+ = R− = 2, ΠS
1 = 1, ΠR

1 = 30. (a) shows efficiencies (resp. in red and green) η+/− = P/I2+/−
as a function of I2 the current of matter. (b) is the efficiency in function of the power produced P.
(c) shows the power (resp. in red, green and black) IE+, IE− and Pout in function of I2. (d) shows
(resp. in red, green and black) COE+/− = IE+/−/I2 and COEPout = Pout/I2 as a function of I2. Dotted
lines are α = 0.9, solid lines are α = 1, dashed lines are α = 1.1. In (c) and (d), cyan stars show short
circuit situations I2sc and yellow circles are critical points I2cp. In (b), vertical and horizontal red lines
are respectively maximal efficiency and maximal power.

5. Entropic Point of View

The previous power budget analysis highlighted three classes of systems: systems with a zero
resting point, systems with a non-zero resting point, and, finally, systems with an additional internal
dissipation term R2. Let us consider these three classes again from the entropic point of view.

5.1. Devices with Zero Resting Point

The production of entropy from the presence of R− and R+ is given respectively on both sides of
the device by

.
SE+ =IE+

(
1

Π+
1
− 1

ΠR
1

)
=

α2 I2
2 R+

1 + αI2R+
, (29)

.
SE− =IE−

(
1

ΠS
1
− 1

Π−
1

)
=

α2 I2
2 R−

1 − αI2R−
. (30)

The results are given in Figure 6.
There is clearly an asymmetry in the two entropy productions. Indeed, if the two contributions

initially increase in a quadratic form with the current of matter, the contribution of the resource side,
.
SE+, tends to a linear progression independent of the coupling condition R+, while the contribution
on the waste rejection side

.
SE− tends to diverge as soon as I2 ≈ 1/αR−. It is surprising to see that,

in addition, this divergence is more marked as the coupling factor α between energy and matter is
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important. There is therefore no other solution than to make R− as small as possible, and therefore reject all the
waste easily. This is an additional constraint for the design of efficient systems.
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Figure 6. Evaluation of the entropy production with the same configuration as in Figure 3, R−1
1 = 0,

R2 = 0, R+ = R− = 2, ΠS
1 = 1, ΠR

1 = 30. (a) shows ṠE+ and (b) shows ṠE−, both in function of I2 the
current of matter—the same color and line-style code as in Figure 3.

5.2. Devices with Non-Zero Resting Points

Let us now look at the configuration of non-zero resting point systems, while keeping R2 ≈ 0.
In this case, the general expressions become

.
SE+ =IE+

(
1

Π+
1
− 1

ΠR
1

)
=

R+ I2
E+(

ΠR
1 − R+ IE+

)
ΠR

1
, (31)

.
SE− =IE−

(
1

ΠS
1
− 1

Π−
1

)
=

R− I2
E−(

R− IE− + ΠS
1
)

ΠS
1

. (32)

The results are given in Figure 7 where IE+ and IE− are defined according to the Appendix B.
We can see that the presence of R1 reintroduces a significant symmetry between the two contributions
to the entropy production. Moreover, the question of the importance of the quality of the coupling
on the resource side, by minimizing R+, or to the rejection side, by minimizing R−, is now of
equal importance.

5.3. Internal Dissipation Devices

For internally dissipated devices, the term R2 produces a quadratic dissipation R2 I2
2 . We have

seen before that the presence of R2 never brings any advantage in terms of energy conversion since
it only contributes to lowering the power available at the output of the system. As this dissipation
diffuses into the system, it is itself a source of entropy, as shown in Figure 8. At this stage, it is important
to know how this dissipation occurs. In the case of some thermal systems, an analytical calculation
can be carried out that leads to an equal distribution of this dissipation between the resource and
the sink, i.e., ϕ = 0.5, see Appendix B in accordance with [22]. In other systems, such as muscles
subjected to moderate stress, this dissipation is considered to be completely rejected into the sink
(ϕ = 0) [14]. For some living systems, including homeothermic species, it is likely that a fraction of
this dissipation is partially released, and partially used to maintain the central temperature of the body,
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leading to a value ϕ ≈ 1, depending on outdoor conditions. One example is the case of vaso-dilatation
and vasoconstriction of peripheral vessels, which is a solution for modulating the value of R− and
consequently reject less, or more, heat outside of the body.
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Figure 7. Evaluation of the entropy production with the same configuration as in Figure 4 with
R−1

1 = 0.05, R2 = 0, R+ = R− = 2, ΠS
1 = 1, ΠR

1 = 30. (a) shows ṠE+ and (b) shows ṠE−, both in
function of I2 the current of matter—the same color and line-style code as in Figure 3.

0.0 0.1 0.2 0. 0.

I2

0.000

0.02

0.0 0

0.0

0.100

0.12

0.1 0

0.1

0.200

E
nt
ro
py

P
ro
d
u
ct
io
n

(a)

0.0 0.1 0.2 0. 0.

I2

0

1

2E
nt
ro
py

P
ro
d
u
ct
io
n

(b)

Figure 8. Plot of the entropy production with the same configuration as in Figure 5 with R−1
1 = 0.05,

R2 = 4, R+ = R− = 2, ΠS
1 = 1, ΠR

1 = 30. (a) shows ṠE+ and (b) shows ṠE−, both in function of I2 the
current of matter—the same color and linestyle code as in Figure 3.

6. Adaptable or Adapted?

The study of the behavior of a generic system composed of a conversion device, and the boundary
conditions to the reservoirs, now allows us to establish several observations. First, the search for the
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best device, in terms of power and efficiency, can be summarized by the search for the largest figure
of merit Fm. However, this result must be modulated by the fact that the value of Fm is determined
by the set of the three parameters R1, R2, and α which, at this stage, do not present any constraints.
In addition, few thermodynamic devices have a single operating point, but are generally expected to
operate over a wide range of uses that principally means large range of I2. In the precedent paragraph,
we concluded that the greater the figure of merit, the smaller the effective operating range becomes.
Indeed, for such a narrow range, the users must then conform quite strictly to that imposed by the
value of the figure of merit of the device. This observation explains quite simply why the consumption
observed by vehicle drivers is always larger than that reported by vehicle manufacturers, since the
actual conditions of use never coincide with the test conditions. Similarly, the measured performance
of equipment in dwellings, as well as the performance of the dwellings themselves, is below the
expected performance during construction. This observation leads to the recommendation that devices
intended to operate over a wide range of uses should not be designed solely on the basis of their
maximum performance in terms of efficiency and power. Beyond this observation, the question arises
of determining, within a system, which of the three parameters R1, R2, and α should be optimized as
a priority. We can first conclude that, unless there are situations where dissipation is explicitly sought,
R2 must be systematically minimized. With regard to R1, we have seen that its choice determines
two categories of systems, depending on whether R1 is zero or not. It must be noticed that R1 = 0
is not possible for living systems because a resting point does exist until the death. In the category
where R1 = 0, the operating range of the system is limited by the feedback effects that introduce
an excess dissipation term R f b. Note that this term can be minimized if the boundary conditions are
as close as possible to Dirichlet conditions. In this situation, the currents of matter I2 and energy
IE may diverge. This situation has been that of our societies since the beginning of the industrial
revolution [12], with coal, followed by an acceleration after the Second World War, due to the rise in
oil consumption. The divergence of matter and energy currents is directly linked to an increase in the
figure of merit, through an increased facilitation of the circulation of matters and energies, which is
produced by a minimization of R2, as well as an increase of α, i.e., technological progress that allows
thermodynamic potentials to be more strongly coupled. A basic illustration of this increase is the
performance of steam machines, which have gradually increased the ratio between outlet pressures and
inlet temperatures [29]. The second category of system concerns the case where R1 
= 0. These systems
are particular in that they consume energy, even in a resting situation. We can include living organisms
and societies, but also machines, when the latter operate in the idle position, with no other power
production than the maintenance of this idle. We have seen that, in this case, there are two categories
of systems depending on whether we favor power production or low consumption at rest. These two
categories are resolutely distinct and it is illusory to think of a system capable of producing a very high
power, while maintaining a very low basic consumption. The choice of R1, i.e., the dissipation at rest,
is also decisive in the dissipation produced by feedback. The issues of minimization or maximization
of efficiency and power are therefore part of a much broader framework than initially thought.

7. Discussion

We proposed a generic thermodynamic system model that allows for considering several
situations of coupling of the energy and matter currents, as well as their conversions. At the local level,
the intrinsic performance of the device that constitutes the core of the system was studied. It appears
that the best intrinsic performance in terms of power and efficiency is obtained for the devices with the
largest figure of merit, without specifying the respective contributions of the conductivities associated
with the transport of energy or matter. However, the sensitivity of these devices to changes in the
reduced current j shows that the intrinsically most efficient devices are also the most constraining
because they require precise control of this reduced current, and therefore of energy and matter currents.
At the scale of a complete system, the coupling to the external environment very strongly modifies the
conclusions compared to the observations made at the local level. It is observed that behavior is mainly
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governed by the boundary conditions that connect the local system to the resource and the waste.
The presence of boundary conditions such as Dirichlet or Neumann leads to a wide variety of behaviors.
The ideal Dirichlet conditions are the only ones that do not lead to any feedback, and consequently
conduct in the absence of limitations for the energy and matter currents. When the boundary conditions
are between Dirichlet and Neumann, many possibilities then arise. The presence or absence of a resting
point for the system strongly influences these possibilities in terms of power, but also in terms of
waste production associated with the completion of a task. The concept of coefficient of energy cost,
COE, is introduced, generalizing the classical COT already established for biological systems. Finally,
it is observed that the internal dissipation produced by the presence of R2 is always detrimental for
both the efficiency and the power. Its only positive contribution is limited to cases where dissipation
and entropy production are explicitly sought, as in the case of homeothermic animals.
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Appendix A

We consider the set of the four equations of the generic model:

IE− = αΠ−
1 I2 + (1 − ϕ) R2 I2

2 +

(
Π+

1 − Π−
1
)

R1
, (A1)

IE− =
(Π−

1 − ΠS
1 )

R−
, (A2)

IE+ = αΠ+
1 I2 − ϕR2 I2

2 +

(
Π+

1 − Π−
1
)

R1
, (A3)

IE+ =
(ΠR

1 − Π+
1 )

R+
. (A4)

The ϕ term defines the fraction of the waste which is respectively rejected to the source and to
the sink. This is a well known parameter in some thermal engines [22]. In the case of a living system,
ϕ may define the ratio of heat rejected outside of the body and kept inside.

The resolution of the four equations gives(
Π−

1
Π+

1

)
=

1
AD − BC

(
D −B
−C A

)(
ΠS

1 + (1 − ϕ) R−R2 I2

ΠR
1 + ϕR+R2 I2

)
, (A5)

with

A = 1 − αR− I +
R−
R1

,

B = −R−
R1

,

C = −R+

R1
,

D = αR+ I +
R+

R1
+ 1.
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Appendix B

In the case of a system without dissipation, R2=0, the general equations become

IE− = αΠ−
1 I2 +

Π+
1 − Π−

1
R1

, (A6)

Π−
1 = R− IE− + ΠS

1 , (A7)

IE+ = αΠ+
1 I2 +

Π+
1 − Π−

1
R1

, (A8)

Π+
1 = ΠR

1 − R+ IE+, (A9)

which leads to

IE+ =
αI2

R1
R+

ΠS
1 +

ΔΠ1
R+

+ αAI2
R1
R− ΠR

1 + A ΔΠ1
R−

1 + AB
, (A10)

IE− =
αI2

R1
R− ΠR

1 + ΔΠ1
R− − αBI2

R1
R+

ΠS
1 − B ΔΠ1

R+

1 + AB
, (A11)

with

A =

(
αI2R1

R−
R+

− R1

R+
− R−

R+

)
,

B =

(
αI2R1

R+

R−
+

R+

R−
+

R1

R−

)
.
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