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Scope of the Series
Modern physiology requires a comprehensive understanding of the integration 
of tissues and organs throughout the mammalian body, including the expression, 
structure, and function of molecular and cellular components. While a daunting 
task, learning is facilitated by our identification of common, effective signaling 
pathways employed by nature to sustain life. As a main example, the cellular inter-
play between intracellular Ca2  increases and changes in plasma membrane poten-
tial is integral to coordinating blood flow, governing the exocytosis of neurotrans-
mitters and modulating genetic expression. Further, in this manner, understanding 
the systemic interplay between the cardiovascular and nervous systems has now 
become more important than ever as human populations age and mechanisms of 
cellular oxidative signaling are utilized for sustaining life. Altogether, physiological 
research enables our identification of clear and precise points of transition from 
health to development of multi-morbidity during the inevitable aging process (e.g., 
diabetes, hypertension, chronic kidney disease, heart failure, age-related macular 
degeneration; cancer). With consideration of all organ systems (e.g., brain, heart, 
lung, liver; gut, kidney, eye) and the interactions thereof, this Physiology Series 
will address aims of resolve (1) Aging physiology and progress of chronic diseases  
(2) Examination of key cellular pathways as they relate to calcium, oxidative stress, 
and electrical signaling & (3) how changes in plasma membrane produced by lipid 
peroxidation products affects aging physiology. 
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Preface

Free radicals are highly unstable and react quickly with the nearest stable 
molecules, “stealing” their electrons to gain stability and, in this way, initiating a 
chain reaction and propagation until finally attaching the vital molecules of cell 
and cell membrane thus disrupting their integrity. Free radical formation occurs 
continuously in the cells as a consequence of both enzymatic and non-enzymatic 
reactions. Enzymatic reactions, which serve as the source of free radicals, include 
those involved in the respiratory chain, phagocytosis, prostaglandin synthesis, and 
the cytochrome P-450 system.

Oxidative stress, arising as a result of an imbalance between free radical production 
and antioxidant defenses, is associated with damage to a wide range of molecular 
species including lipids, proteins, and nucleic acids. Short-term oxidative stress 
may occur in tissues injured by trauma, infection, heat injury, hypertoxia, toxins, 
and excessive exercise. These injured tissues produce increased radical-generating 
enzymes (e.g., xanthine oxidase, lipogenase, cyclooxygenase), activation of 
phagocytes, release of free iron, copper ions, or a disruption of the electron transport 
chains of oxidative phosphorylation, producing excess reactive oxygen species (ROS).

This book highlights various issues of free radical biology from the perspective 
of antioxidant defense mechanisms. It is dived into two sections: “Redox Biology 
and Medicine” and “Antioxidants.” The first chapter in Section 1 is “Introductory 
Chapter: Free Radical Biology in Metal Toxicities—Role of Antioxidants.” This 
chapter explains how oxygen metabolism induces overproduction of free radicals 
due to altered pathophysiology in the system, and how inadequate antioxidants 
in the body induces impaired body defense systems and inability to fight against 
pollutants, particularly heavy metals. The chapter concludes that mode of action 
of free radical-generated oxidative stress typically starts with the reaction of heavy 
metals with target molecules and ends with toxic manifestations. These processes 
of oxidative stress and oxidant and antioxidant imbalances play a key role in free 
radical biology. Chapter 2, “Physiological Functions of Mitochondrial Reactive 
Oxygen Species,” discusses the mechanisms regulating mitochondrial physiology 
and homeostasis. Production of mitochondrial reactive species (mROS) may have 
significant potential for the development of novel therapeutic strategies for the 
treatment of a wide range of human pathologies. Chapter 3, “Role of Oxidative 
Stress in the Cardiovascular Complications of Kawasaki Disease” elaboartes on 
a complex framework of events contributing to the etiology of Kawasaki disease 
(KD). This chapter provides new lines of evidence supporting the hypothesis 
that systemic oxidative stress together with premature aging of red blood cells 
and platelets could play a critical role in the cardiovascular risk observed in 
patients with KD. Chapter 4, “Radiation-Generated ROS Induce Apoptosis via 
Mitochondrial” describes the role of mitochondria and characterizes the proteins 
involved in Ionizing Radiation(IR)-induced apoptosis. Further, the chapter 
concludes that IR triggers the activation of anti-apoptotic proteins and enhances 
the risk of a second type of cancer in patients undergoing radiotherapy. In addition 
to increasing the radioresistance of cells, anti-apoptotic proteins can also stimulate 
uncontrolled cell proliferation that culminates in mutagenesis.
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Section 2, “Antioxidants,” includes two chapters. Chapter 5, “Effects of Oxidative 
Stress on Spermatozoa and Male Infertility,” examines the delicate balance between 
ROS necessary for physiological activity and antioxidants to protect from cellular 
oxidative injury, both of which are essential for fertility. The chapter authors suggest 
that determination of the appropriate antioxidant compounds as well as their 
dosages, whether used in clinical practice or cryopreservation, need to be explored.

Finally, Chapter 6, “Nonenzymatic Exogenous and Endogenous Antioxidants” 
explains the chemical structure and mechanism of action of the most important 
non-enzymatic small exogenous and endogenous organic molecules that act as 
antioxidants. The chapter authors further conclude that the regulation of gene 
expression by employing oxidants and antioxidants represents a novel approach 
with promising therapeutic implications.

This book enriches the understanding of oxidative stress biology with reference 
to some specific antioxidant defense mechanisms. It is designed for students, 
researchers, and general readers with an interest in the subject matter.

We acknowledge the support of Dr. Shrilaxmi Bagali, Dr. Sayandeep K. Das, Dr. Aravind 
V. Patil, and Dr. Ishwar B. Bagoji for their help during the publication of this book.
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Chapter 1

Introductory Chapter: Free Radical 
Biology in Metal Toxicities—Role 
of Antioxidants
Swastika Das, Shrilaxmi Bagali, Sayandeep K. Das, 
Aravind V. Patil, Ishwar B. Bagoji, Kusal K. Das and 
Mallanagouda S. Biradar

1. Introduction

Industrial revolution imparts a high level of metal contamination in this world 
[1–3]. Although technology advances to control pollution, it fails to check environ-
mental heavy metal pollution. As metals used not always leads to biodegradation, 
hence, these heavy metals circulate in human life chains and accumulate in living 
organisms [4]. Some metals like zinc and iron are physiologically essential, but 
they may also alter the function of organisms when the exposure dose exceeds a 
critical threshold, which is species specific, and can depend on multiple factors 
including age, sex, and functional norms of physiological system [5]. Rodents are 
as sensitive and near similar to human monitoring system against metal toxicity 
studies [6].

In the last few decades there has been a tremendous interest on oxygen-free 
radicals, more generally known as “reactive oxygen species,” (ROS) and of “reactive 
nitrogen species” (RNS) in experimental and clinical studies on various environ-
mental pollutants [6]. ROS and RNS are found to be generated during irradiation 
or metal catalyzed reaction or its presence in atmosphere as pollutants or simply 
generates due to inflammation in the physiological system. Some examples of free 
radicals are hydrogen peroxide, singlet oxygen, hypochlorous acid, superoxide radi-
cal, hydroxyl radical, and nitric oxide [7].

It has generated interest that oxygen metabolism induces over production of free 
radicals due to altered pathophysiology in the system. Another hypothesis is that 
inadequate antioxidants in the body also impairs body defense system and ability to 
fight against pollutants especially heavy metal pollutants. Antioxidants can prevent 
cellular damage by interacting with free radicals and terminating chain reaction 
process [8, 9].

2. Metal toxicities

Metals play an important role by conjugating at the active sites of enzymes and 
participate directly in catalysis, stabilize macromolecular structures of proteins and 
nucleic acids, thereby affecting structural and functional integration.

The molecular mechanisms including enzymatic functions of metal induced 
bio-toxicities have been established. Possible recognition of essential biological 
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roles of metals, of course, in no way obviates the primary objective of ecological and 
toxicological investigation, i.e., to eliminate the hazards created by metals. In this 
regard, Bertrand’s early enunciation of the necessity to consider physiological and 
toxicological effects of metals as a biological continuum is important [10]. Bertrand 
further emphasized that, metals induce a double humped, biphasic dose response 
curve, which allows a gross division into two general regions.

i. Potentially, every element has a biological function which can be assessed 
properly only against a background of deficiency state.

ii. Potentially, every element is toxic when presented to an organism in high 
enough concentration.

The toxicity of a metal or its compounds in a biological system is influenced by a 
number of factors like:

 i. The intrinsic toxicity of metal

 ii. The dose of metal

 iii. The combining capacity of metal

 iv. The capacity of biological system to absorb and transport the metal to the 
target organ most susceptible to the metal intoxication

 v. The capacity of the metal to transform to a less toxic or a more toxic form at 
the target organ or during transfer

 vi. The ability of the metal to bind to essential macromolecules

 vii. The homeostatic mechanism of the organism to either excrete or sequester 
the metal

Excess doses of some non-toxic metal compounds may interfere with normal 
cellular or physiological process by non-specific activity such as changing the 
osmotic pressure and pH or physically changing the microenvironment of the GI 
tract. The defensive homeostatic mechanism of cells and tissues combat metal 
intoxication either by sequestering the metal in a harmless way or by enhanced 
excretion of the toxic metal [11]. Cellular injury from toxic metals may occur by a 
number of diverse molecular mechanisms and at many levels of biological orga-
nization within a given target organ or cell population. It has become increasingly 
evident that the toxic potential of metals such as nickel, cadmium, mercury, lead is 
highly dependent on their intracellular bioavailability. Apart from these, there are 
several interactive factors that are capable of influencing the toxic effects of these 
heavy metals. Nutritional status, the presence or absence of other essential metals, 
contribution of proper antioxidants may greatly alter the distribution of metals 
within intracellular compartments. Normally it has been found that occupational 
metal exposed toxicities in developed countries are in decreasing trend but in third 
world countries the toxicities from metal exposure is still serious issues which make 
an impact on the health of the occupationally exposed people with impairments of 
neurological, reproductive, immunological and cardiovascular functions [12]. The 
European Commission initiated an action program concerning the environmental 
protection from heavy metals exposure [13].
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3. Free radicals biology and metals

Oxidation occurs when free radicals attack biological molecules, removing an 
electron. Under certain conditions, unsaturated fatty acids can undergo oxida-
tion, known as lipid peroxidation which sets off a chain reaction that generates 
large number of free radicals, which are both cytotoxic and genotoxic capable of 
altering DNA functions. The mechanism of heavy metal toxicity through electron 
transfer most often involves the cross linking of the sulfhydryl groups of proteins. 
Free radicals can also be generated directly from molecular oxygen in a two-step 
process to produce superoxide anion. In the continued presence of heavy metals, 
the superoxide anions formed can then combine with protons in the dismutation 
reaction, generating hydrogen peroxide (H2O2) in the process. Superoxide anions 
can also produce highly toxic hydroxyl radicals. Suitable mechanisms have evolved 
so that the steady-state concentrations of potentially toxic oxygen-derived free 
radicals are kept in check under normal physiological conditions by the body’s 
intrinsic antioxidant defense system. Nevertheless, the enhanced generation of 
these ROS can overwhelm the intrinsic defenses of the cell, resulting in a condition 
known as oxidative stress [14]. Heavy metal can produce oxidative stress; therefore, 
it was conceivable that reactive oxygen species (ROS) may trigger signaling path-
ways resulting in the activation of the hypoxia-inducible factor (HIF)-1 transcrip-
tion factor and up-regulation of hypoxia-related genes. The activity of the HIF-1 
transcription factor as assessed in transient transfection assays was stimulated 
by heavy metals but this activation was not diminished when oxidative stress was 
attenuated nor was HIF-dependent transcription enhanced by hydrogen peroxide. 
It was reported that ROS are produced during the exposure of cells to metals that 
mimic hypoxia, but the formation of ROS was not involved in the activation of 
HIF-1-dependent genes [15]. One explanation of the heavy metal-induced activa-
tion of the HIF-1 transcription factor is based on the assumption that it replaces 
iron in the oxygen carrier, Fe(II)-hybrid hemoglobin. Substitution of iron by other 
heavy metals switch signal to permanent hypoxia, which in turn activates the HIF-1 
factor [16]. The pretreatment of human blood lymphocytes with either CAT (a H2O2 
scavenger), or SOD (a scavenger of O2

− radical) significantly reduced markers of 
heavy metal- induced genetic and cellular damage. Glutathione depletion, a marker 
of oxidative stress, was found in human alveolar epithelial Type II-like cell line after 
treatment with heavy metal containing ultra-fine metal dust [17]. After controlling 
for confounders, plasma lipid peroxidation levels were significantly increased and 
erythrocyte antioxidants were significantly decreased in metal exposed experimen-
tal animals as compared with controls [18].

4. Role of antioxidant on metal toxicity

Free radicals are reactive chemical species that contain one or more unpaired 
electrons e.g. hydrogen peroxide, singlet oxygen, hypochlorous acid, superoxide 
radical, hydroxyl radical, and nitric oxide. As heavy metals generate free radicals 
hence it must be quenched by an antioxidant otherwise these free radicals will react 
with membrane lipid, protein, carbohydrate and nucleic acid molecules and change 
their functional moiety in cellular system. It has been found that human nuclear 
DNA receives approximately 10,000 oxidative ‘hits’ every day. It clearly reflects 
that each of the cells is under firing from ROS and the situation becomes worst if 
the cell is targeted by heavy metals. The antioxidant defense system against metal 
toxicities are fundamentally superoxide dismutase, glutathione, peroxidases, and 
catalase besides Fe and Cu binding proteins like albumin, transferrin, lactoferrin, 
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haptoglobin, uric acid, bilirubin and carotenoids. Further antioxidant vitamins 
like vitamin C, vitamin E, Vitamin B12 are also considered as protective agents 
against metal toxicities. Some endogenous and exogenous polyphenolic compounds 
like flavonoids and ligands are also found to be protective against metal toxici-
ties as antioxidants. Finally, there are specific nuclear repair enzymes, proteases, 
and other enzymes that constantly target oxidized molecules for catabolism [19]. 
Antioxidants are intimately capable of protecting cellular damage by interfering 
with ROS and stop the free radical due to metal induced chain reactions.

The success of an antioxidant against metal induced oxidative stress depends on 
its capability to (i) quenching free radicals (ii) chelating redox metals (iii) regener-
ate some more antioxidants within “antioxidant network”, (iv) successfully induce 
cell signaling to express adaptive genes, (v) readily absorption capability, (vi) must 
have adequate concentration in tissue and biofluid and (vii) capability to act on 
both membrane and aqueous areas.

Regarding antioxidant supplementation against metal induced oxidative stress 
one must remember that higher doses of supplementary antioxidants do not always 
offer protection against free radicals. It is widely accepted that in a healthy organism 
there exists a balance between oxidants and various antioxidants. High levels of 
antioxidants may also disturb oxidant and antioxidant balance with unpredictable 
and unexpected consequences.

5. Conclusion

The steps of metal toxicity are as following: liberation of toxic metal > reaction 
with target molecules > cellular dysfunction > respond to reaction (repair) or (dis-
repair) > developmental toxicity. Mode of action typically starts with the reaction 
of metals with target molecules and ends with toxic manifestations and entire these 
process oxidative stress and oxidant and antioxidant imbalances play a key role.
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Physiological Functions of 
Mitochondrial Reactive Oxygen 
Species
Tae Gyu Choi and Sung Soo Kim

Abstract

Mitochondria are the major energy producers within a cell in the form of 
adenosine triphosphate by oxidative phosphorylation. Normal mitochondrial 
metabolism inevitably generates reactive oxygen species (ROS), which have been 
considered to solely cause cellular damage. Increase of oxidative stress has been 
linked to various pathologies. Thus, mitochondrial ROS (mROS) were basically 
proposed as byproducts of oxidative metabolism, which undergo normalized by 
antioxidant enzymes. However, the mROS have extensively been esteemed to 
function as signalling molecules to regulate a wide variety of physiology. These 
phenomena are indeed dependent on mitochondrial redox status, which is dynami-
cally altered under different physiological and pathological conditions. The oxida-
tive stress is incurred by which the redox status is inclined to exceeded oxidation or 
reduction. Here, we attempt to integrate the recent advances in our understanding 
of the physiological functions of mROS.

Keywords: mitochondrial ROS, oxidative stress, oxidative metabolism, 
redox signaling, mitochondrial physiology

1. Introduction

Mitochondria are double-membrane-bound cellular organelles found in most 
eukaryotic organisms. The number of mitochondria in cell differs widely according 
to organisms, tissues and cell types, which is determined by the energy demand. 
Mitochondria occupy around 40% of the cytoplasm in heart muscle cells and 
20–25% with ~2000 per cell in liver cells. Mitochondria, as the power plants of the 
cell, mainly generate energy in forms of adenosine triphosphates (ATPs) by oxida-
tive phosphorylation (OXPHOS) during glucose metabolism [1, 2]. The OXPHOS 
is coupled with mitochondrial respiration in which mitochondrial transmembrane 
potential (MMP, ΔΨm) is generated by pumping the protons via mitochondrial 
complexes I, III and IV of the electron transport chain (ETC) [3].

Molecular oxygen (O2) is essential for the mitochondrial bioenergetic metabo-
lism, which functions as the final electron acceptor for cytochrome c oxidase (com-
plex IV) in the respiratory ETC that catalyses the four-electron reduction of O2 to 
H2O. Mitochondria are an important source of reactive oxygen species (ROS) within 
most mammalian cells [4, 5]; mitochondrial ROS (mROS) are basically produced 
as byproducts of this bioenergetic metabolism during the OXPHOS [6]. Electron 
leaks at complex I and III from ETC lead to forming partially reduced and highly 
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reactive metabolites of O2, including superoxide anion (O2
·−) and hydrogen per-

oxide (H2O2), formed by one- and two-electron reductions of O2, respectively [7]. 
In the presence of transition metal ions, the more reactive hydroxyl radical (OH·) 
is formed. The O2

·− is rapidly dismutated to H2O2 by two dismutases including Cu/
Zn-superoxide dismutase (Cu/ZnSOD) in mitochondrial intermembrane space and 
manganese-dependent superoxide dismutase (MnSOD) in mitochondrial matrix. 
Unless the dismutation of O2

·− is catalyzed into H2O2, the radical oxidant promotes 
DNA damage, protein oxidation and lipid peroxidation in many types of cells. H2O2 
is also cell damaging molecule to be degraded to water by catalase [8]. Although the 
O2

·− generation by respiratory complexes is a well-established phenomenon, it is 
still poorly understood in mechanism [9].

Mitochondria have been implicated in the regulation of a number of physiological 
and pathological processes, including proliferation, differentiation, programmed cell 
death, innate immunity, autophagy, redox signalling, calcium homeostasis, hypoxic 
stress responses and stem cell reprogramming [10–16]. The mROS production contrib-
utes to mitochondrial damage in a range of pathologies, which is also is closely related 
to redox signalling in the cell [4, 17]. However, accumulating evidences show that 
mROS are not only deleterious molecules derived from the cellular metabolism but 
also indispensable participants in diverse cellular signalling and regulations [18–20].

In this chapter, we briefly summarize recent developments in our understanding 
of the involvement of mROS as signalling mediators in redox biology, rather than 
pathological stress, underlying physiological conditions.

2. Mitochondrial physiology and ROS production

Mitochondria, cellular organelles in cells of eukaryotic organisms, have a 
primarily role in the process of pyruvate breakdown and ATP synthesis, generat-
ing water and carbon dioxide (CO2) as the end products via aerobic respiration 
[21]. Mitochondria turned into driving forces in biological evolution after the 
symbiotic engulfment of aerobic α-proteobacteria by a precursor of the eukaryotic 
cells around 2 billion years ago [22, 23]. Although mitochondria have preserved the 
double-membrane shape and ATP production characters of their ancestors, they 
have attained numerous additional functions in the cell, dramatically altering their 
structure and composition [24]. Most part of the bacterial genome was rapidly 
lost or transferred to the nuclear DNA [25]. Mammalian mitochondrial genome is 
transmitted solely through the female germ line [26]. Human mitochondrial DNA 
(mtDNA) is a double-stranded, circular molecule of 16,569 bp and contains 37 
genes coding for two ribosomal RNAs (rRNAs), 22 transfer RNAs (tRNAs) and 13 
proteins [22]. As the major power plants, mitochondria constantly produce reactive 
radical oxidants as byproducts during OXPHOS. Thus, in response to the metabolic 
or environmental stresses, mitochondria have accomplished antioxidant defence 
system [27]. Mitochondria are also highly dynamic to maintain the functions, which 
form a tubular network that continually changes by fission and fusion [28]. In this 
section, we concisely discuss overall mitochondrial biology and the ROS generation.

2.1 Mitochondrial structure and genome

A mitochondrion comprises four subcompartments, the outer mitochondrial 
membrane (OMM) and inner mitochondrial membrane (IMM), and the two soluble 
compartments intermembrane space (IMS) and matrix, which are architecturally 
and functionally distinct. The OMM encloses the organelle, which has a protein-
to-phospholipid ratio similar to that of the plasma membrane [29]. It contains 
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large numbers of integral membrane protein, porin [30]. Voltage-dependent anion 
channel (VDAC) is a major trafficking protein that forms a beta barrel spanning 
the outer membrane, which transports nucleotides, ions and metabolites between 
cytosol and intermembrane space [31, 32]. The IMM is found inside of the OMM, 
which encloses mitochondrial matrix, extensively folded and compartmentalized 
[33]. The IMM is non-permeable to nucleotides, sugars and small ions; thus specific 
carrier proteins enable the molecules to transport across the membrane [34].

The mitochondrial respiratory complexes I–IV, in which electrochemical 
gradient is generated for OXPHOS to occur for ATP synthesis, are embedded in 
the IMM [22]. Mitochondria contain two aqueous compartments: the IMS and 
matrix. The IMS, existing between the OMM and IMM, relays molecular transport 
from cytosol to mitochondrial matrix or reversely [35]. The compositions of small 
molecules such as ions and sugars in IMS are chemically similar to those in cytosol, 
as OMM is selectively permeable to those molecules [36]. However, in case of large 
proteins, the specific signalling peptides are required to be transported across the 
OMM. Thus, the protein composition of the IMS is different to the protein composi-
tion of the cytosol (e.g. cytochrome c) [37]. The mitochondrial matrix, enclosed 
by IMM, contains mitochondrial DNA (mtDNA), RNA and proteins. Especially, a 
number of proteins in the matrix are involved in diverse biochemical processes such 
as tricarboxylic acid (TCA) cycle, fatty acid oxidation, amino acid degradation and 
mitochondrial dynamics (fission and fusion) [27, 38] (Figure 1).

2.2 Mitochondrial genome

Mitochondria contain their own genetic material (mtDNA), which is maternally 
inherited without DNA recombination and encodes 37 genes that participate in mito-
chondrial ATP synthesis. Thirteen genes of them are involved in OXPHOS, and the 
rest two rRNAs and 22 tRNAs. One human cell has hundreds to thousands of mtDNA 
copies [39, 40]. mtDNA has high rates of mutation and sequence evolution, and 
mutant and wild-type mtDNA are present in the cell at different proportions [41, 42]. 
The mtDNA mutations lead to abnormality in OXPHOS activity and ATP synthesis 
[43]. The mtDNA is exposed to OXPHOS-derived ROS without conventional histone 
proteins. Moreover, in the lacking repair mechanisms, mtDNA damage further ampli-
fies during DNA replication [44]. Therefore, the mtDNA is susceptible to mutation 

Figure 1. 
Mitochondrial structure.
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proteins. Moreover, in the lacking repair mechanisms, mtDNA damage further ampli-
fies during DNA replication [44]. Therefore, the mtDNA is susceptible to mutation 
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and damage. Therefore, mtDNA mutations and damage cause mitochondrial dys-
function, including ATP synthesis impediment, intracellular calcium level elevation, 
phospholipase activation and membrane phospholipids decomposition [45, 46].

2.3 Mitochondrial bioenergetics and dynamics

The most prominent roles of mitochondria are to produce the cellular energy 
in forms of ATPs via aerobic respiration and to regulate the cellular metabolism. 
Nutrients such as sugars (mostly glucose), lipids and amino acids are oxidized to pri-
marily produce the energy [47]. Approximately 90% of cellular energy requirements 
are generated in mitochondria [48]. Glucoses and lipids are glycolysed into pyruvic 
and fatty acids, respectively, in the cytoplasm. Subsequently, these acids form 
acetyl coenzyme A (Acetyl CoA) via a series of catabolic reactions and then enter 
the TCA cycle in the mitochondrial matrix [49]. In the reaction of the TCA cycle, 
convert three equivalents of nicotinamide adenine dinucleotide (NAD+) into three 
equivalents of reduced NAD+ (NADH), one equivalent of flavin adenine dinucleo-
tide (FAD) into one equivalent of FADH2 and one equivalent each of guanosine 
diphosphate (GDP) and inorganic phosphate (Pi) into one equivalent of guanosine 
triphosphate (GTP). The NADH and FADH2 are, in turn, used by the OXPHOS to 
generate ATPs. Thus, oxidation of nutrients provides electrons to the mitochondrial 
ETC in the form of NADH and FADH2. The sequential transport of electrons from 
complex I or II to III and IV extrudes protons from the matrix to the IMS, generating 
an electrochemical gradient. In this process, the ETC requires two electron carriers: 
coenzyme Q 10 (CoQ 10, also known as ubiquinone) and cytochrome c (Cytc) [50]. 
Along this electrochemical gradient, the protons flow through complex V (ATP 
synthase) on the IMM to return to the mitochondrial matrix. This reflux alters the 
conformation of complex V and drives the synthesis of ATP from ADP and Pi [47].

2.4 Mitochondrial dynamics (fission and fusion)

Mitochondria are highly dynamic and interacting organelles. Mitochondria are 
able to autonomously integrate (fusion) and divide (fission) by remodelling their 
morphology and moving along cytoskeletal tracks, in response to their metabolic 
or pathogenic conditions and cellular environment [29]. The mitochondrial lengths 
and networks are determined by the balance between fission and fusion rates [51]. 
Mitochondrial fission and fusion processes are mainly mediated by large guanosine 
triphosphatases (GTPases) in the dynamin family [51].

Mitochondrial fission requires the dividing of mitochondrial proteins and 
mtDNA thus that each daughter organelle normally functions without significant 
loss of soluble proteins from the mitochondrial matrix or intermembrane space [52]. 
Fission is required for the cellular distribution of mitochondria during cell division 
and embryonic growth [53]. Exceeded mitochondrial fission, not mutually balanced 
with fusion, leads to glucose oxidation, MMP decrease and hence the downregula-
tion of ATP production [54]. The fission process is coordinated by a set of compo-
nents in the cytosol, cytoskeleton, as well as mitochondria. Fission is mediated by 
a cytosolic dynamin family member, dynamin-related protein 1 (Drp1). Drp1 is 
recruited from the cytosol to form spirals around mitochondria and, subsequently, 
constricts the membranes at the fission site to split the mitochondrial cluster [29].

Mitochondrial fusion is mediated by a different set of dynamin-related GTPases. 
Mitochondrial outer membrane fusion is coordinated with inner membrane fusion. 
Three large GTPases are essential for mitochondrial fusion [55]. The mitofusins 
(Mfn1 and Mfn2) are transmembrane GTPases embedded in the OMM [56]. OPA1 
is a dynamin-related GTPase associated with the IMM or IMS. Mitofusins and OPA1 
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physically interact to mechanistically mediate OMM and IMM fusion, respec-
tively [29, 57, 58]. Mitochondrial fusion may increase to maximize the fidelity for 
OXPHOS in cellular energy demands [27].

2.5 Mitochondrial ROS production and antioxidant enzymes

Mitochondria are the major source of ROS generation [9]. In an organism, 
mitochondria utilize approximately 98% of the total amount of inhaled O2, 
including 1–2% for ROS generation [59, 60]. Mitochondria actually produce ROS 
in a number of enzymatic reactions; the vast majority of the free radicals from 
the mitochondria are formed in the ETC during OXPHOS [61]. In the process 
of OXPHOS, electron leaks from the ETC combine with O2 molecules to form 
(O2

·−). Mitochondrial O2
·−, primarily generated in complexes I and III, is cata-

lysed by Cu/ZnSOD or Mn SOD to disproportionate into H2O2. Subsequently, 
H2O2 can be converted to OH· by Fenton reaction. Mitochondrial O2

·− can also 
bind with protons to form uncharged HOO· radicals and subsequently react 
with unsaturated fatty acid of mitochondrial membrane lipids to produce lipid 
radicals. Mitochondrial nitric oxide (NO) interacts with O2

·− to form reactive 
nitrogen oxide species (RNS) such as peroxynitrite (ONOO−), which produce 
cellular dysfunction by S-nitrosylating proteins [62]. Mammalian cells have 
multiple enzymes to degrade H2O2, including peroxiredoxins (Prxs), glutathione 
peroxidases (Gpxs), thioredoxins (Trxs) and catalase. Mitochondrial H2O2 is 
primarily eliminated by the action of Gpx1, Gpx2 and Gpx4, Prx3 and Prx5 and 
Trx2 systems, which requires glutathione (GSH) [63–65]. Oxidized GSH (GSSG) 
is reduced to GSH by glutathione reductase (GR) activity [66]. Similarly, oxi-
dized Trx2 is recycled by Trx reductase (TrxR). These H2O2 scavenging system 
ultimately depends on reduced nicotinamide adenine dinucleotide phosphate 
(NADPH) which is regenerated by three mitochondrial matrix-located enzymes: 
NADP+-linked isocitrate dehydrogenase (IDH), malate dehydrogenase (MDH) 

Figure 2. 
Reactions and transformations of mitochondrial ROS. SOD enzymes catalyse the dismutation of superoxide 
(O2

·−), generating hydrogen peroxide (H2O2). The catalase (CAT), glutathione peroxidases (Gpxs) and 
peroxiredoxins (Prxs) convert H2O2 into water. H2O2 reacts with redox-active iron to generate the hydroxyl 
radical (OH·) through the Fenton reaction. The reaction between O2

·− and nitric oxide (NO·) produces 
peroxynitrite (ONOO−), whose decomposition in turn gives rise to some highly oxidizing intermediates 
including NO2

·, OH·, CO3
· as well as, finally, stable NO3

−. Thus, increased O2
·− levels can also reduce NO· and 

generate ONOO− toxicity. O2
·− by itself can reduce ferric iron (Fe3+) to ferrous iron (Fe2+) in iron-sulphur 

centres of proteins, leading to enzyme inactivation and concomitant loss of Fe2+ from the enzymes. The 
protonation of O2

·− can form the more reactive hydroperoxyl radical (HO2
·).
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Figure 3. 
Physiological regulation by mitochondrial ROS. mROS contribute to the various physiological cellular processes, 
including proliferation, differentiation autophagy, immunity and aging.

and nicotinamide nucleotide transhydrogenase (NNT) [61]. Catalase catalyses 
the decomposition of hydrogen peroxide to water and oxygen, existing as a 
tetramer composed of four identical monomers, each of which contains a heme 
group at the active site. Catalase also requires NADPH as a reducing equivalent to 
prevent oxidative inactivation of the enzyme [67] (Figure 2).

3.  Physiological functions of mitochondrial ROS in diverse cellular 
processes

mROS generation is a ubiquitous phenomenon during life of eukaryotic cells 
[68]. mROS-induced oxidative stress is considered a main contributor to the aetiol-
ogy of both normal senescence and severe pathologies. Under normal physiological 
conditions, mROS emission is accounted for ∼2% of the total O2 consumption, of 
which the decomposition is well-controlled [2]. Accumulation of mROS, which is 
an imbalance of neutralization, induces deleterious consequences such as neuro-
degenerative disease [69], cardiovascular disease [70] and cancers [71]. However, 
depending on the cellular environment, antioxidant machinery-regulated oxida-
tive stress could initiate diverse cellular responses, involved in cell protection, 
initiating coordinated activation of mitochondrial fission and autophagy to carry 
out clearance of abnormal mitochondria and cells, which are to protect spreading 
the damage to the adjacent cells [72, 73]. H2O2 is the primary molecule of mROS 
utilized for intracellular signalling, which selectively reacts with cysteine residues 
in redox-sensitive proteins, altering activities or conformations of the proteins to 
regulate signal transduction [74–76]. Mechanistically, H2O2 oxidizes thiol groups 
(SH) on cysteine residues to form sulphenic acid (SOH), which react with GSH to 
become glutathionylated (GSSG), with neighbouring thiols to form a disulphide 
bond (S-S) or with amides to form a sulphenyl amide (S-N) [77, 78]. In this sec-
tion, we introduce the physiological roles and regulations of mROS in diverse 
cellular processes such as proliferation, differentiation, autophagy, immunity and 
aging (Figure 3).
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3.1 Proliferation

Accumulation of mitochondria-derived ROS enables to prompt cell proliferation 
inhibition and cellular senescence [79, 80]. However, the cells essentially utilize 
mROS for survival and growth via multiple mechanisms in diverse circumstances.

mROS regulate cell proliferation during hypoxia. Under the hypoxic condition 
(a low O2 environment, generally 0.3–3% of O2), the cells raise transcriptional and 
non-transcriptional responses to increase O2 supply, simultaneously reducing O2 
consumption. These adaptations to hypoxia are enhanced by mROS. The hypoxia-
inducible factors (HIFs) such as HIF1, HIF2 and HIF3 orchestrate the transcrip-
tional response to the hypoxia, promoting erythropoietin (EPO) expression to 
increase erythropoiesis, vascular endothelial growth factor (VEGF) to promote 
blood vessel formation and glycolysis enzymes to retain ATP levels [81, 82]. HIFs 
are heterodimers consisting of two basic helix-loop-helix/PAS proteins: a stable 
β-subunit and one of three unstable labile α-subunits (HIF1α, HIF2α and HIF-3α) 
[83, 84]. Under normoxic conditions, prolyl hydroxylase domain protein 2 (PHD2) 
leads to hydroxylation of HIFα at two proline residues, which target via Von 
Hippel-Lindau (VHL) E3 ubiquitin ligase-dependent proteasomal degradation [85]. 
However, under the hypoxic condition, HIFα is stabilized, which is then dimerized 
with HIF-1β and binds HIF-response elements (HRE) to recruit gene transcription 
[86]. Moreover, mitochondrial DNA lacking ρ° cells are unable to stabilize HIFα 
proteins under hypoxic condition, which results from failure of mROS production 
by ETC deficiency. In contrast, MMP reconstitution restores mROS, which leads 
to HIFα and cell proliferation [87]. Chemical inhibition of mitochondrial ETC 
also attenuates mROS production in mitochondria-repleted cells, interrupting to 
stabilize HIFα under hypoxia [88]. Genetic loss of the complex III subunit Rieske 
iron-sulphur protein (RISP) or Cytc also inhibits mROS production and HIFα 
stabilization [89–91]. It is also indicated that mROS are requisite to activate HIFs by 
non-hypoxic stimulus [92].

mROS are also involved in vascular smooth muscle cell (VSMC) proliferation. 
Angiotensin II (AngII) is a peptide hormone basically involved in sodium and 
water homeostasis and vascular contraction, which is also recognized to influence 
cell growth and proliferation [93]. AngII exerts physiological effects by signalling 
via interacting with angiotensin type 1 receptors (AT1Rs) [94]. In VSMCs, AngII 
signalling is required to activate a multitude of mitogenic signalling cascades via 
crosstalk with growth factor receptors such as epidermal growth factor receptor 
(EGFR), platelet-derived growth factor receptors (PDGFR) and insulin receptor 
(IR). Intracellular signalling of VSMC proliferation is stimulated by AngII signalling-
triggered mROS production and subsequently induced via mitogenic serine/threo-
nine kinases, including ERK1/2 and p38MAPK [95].

Despite the detrimental effects, mROS function as signal transduction molecules 
in regulation of stem cells [96]. Depletion of ataxia telangiectasia mutated (ATM) 
kinase or forkhead box O (FOXO) transcriptional factors increases mROS levels, 
which impairs hematopoietic stem cell (HSC) proliferation [97–99]. Although the 
increased mROS level impairs the differentiation of HSCs, a decreased mROS level 
also has negative effects for self-renewal in neural and spermatogonia stem cells 
(SCs) [100, 101].

3.2 Differentiation

mROS function as active signalling molecules for diverse cell differentiation. 
Stem cells (SCs, embryonic or adult) have potentials to self-renew for maintaining 
stem cell pool or differentiate to the multicellular organism and supply de novo 
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Figure 3. 
Physiological regulation by mitochondrial ROS. mROS contribute to the various physiological cellular processes, 
including proliferation, differentiation autophagy, immunity and aging.
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3.1 Proliferation
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functional cells to tissues throughout the life of the organism. During differentia-
tion of SCs, the mitochondrial oxidative metabolism is highly stimulated, and thus 
cellular respiration and mROS production increase [102–105].

In SCs, generally, mitochondria exhibit immature mitochondrial networks 
and primitive cristae [106]. As bone marrow-derived human mesenchymal stem 
cells (MSCs) differentiate to osteoblasts, mitochondrial biosynthesis increases by 
PGC-1α activation [102]. Mitochondrial mass and oxygen consumption increase 
during differentiation of human embryonic stem cells (ESCs) [107] or pluripo-
tent stem cells (PSCs) [108]. Knockdown of the complex III protein RISP or 
mitochondrial-targeted antioxidants inhibited differentiation of human MSCs to 
adipocytes, indicating that mROS are required for differentiation of MSCs [109]. 
Furthermore, during differentiation of human PSCs, uncoupling protein 2 (UCP2) 
expression is repressed, which is required for metabolic transition from glycolysis 
to mitochondrial glucose oxidation. Knockdown of UCP2 expression facilitates 
mROS accumulation, which stimulate the PSC differentiation to cardiomyocytes. 
Ectopic UCP2 expression impairs the differentiation with retardation of mROS 
accumulation and embryonic body formation [110].

mROS, at least within physiological concentrations, have critical roles in pro-
cesses of myogenic differentiation and muscle regeneration [111]. mROS could 
promote mitochondrial biogenesis, which is an essential molecule in myogenic 
differentiation, via peroxisome proliferator-activated receptor gamma coactiva-
tor 1 (PGC1)-activated signalling pathway [112]. Myogenic cells are armed with 
antioxidant enzymes such as SODs, catalase, Gpxs, Prxs, γ-glutamylcysteine 
synthetase (γGCS) and heme oxygenase-1 (HO-1) [113–120]. These antioxidant 
enzymes could play as critical signalling molecules to maintain muscle homeostasis 
in company with primarily neutralizing excessive ROS [121]. mROS facilitate 
myoblast differentiation and hypertrophy via insulin growth factor 1 (IGF1) signal-
ling pathway [111], which enhances phosphorylation of IGF1 receptor (IGF1R) 
[122]. Mitochondrial complex I-derived H2O2 acts as a signalling molecule to induce 
cardiac myogenic differentiation. Chemical inhibition of the complex I and treat-
ment of mitochondrial-specific antioxidant exhibits reduction in mROS production 
and thus impairs the myoblast differentiation [123]. Moreover, mROS induced 
phosphatase and tensin homolog (PTEN) oxidative inactivation and thereby 
stimulated phosphoinositide 3-kinase (PI3K)-AKT signalling pathway to express 
myogenic genes during skeletal myoblast differentiation and muscle regeneration 
[124]. In differentiation of VSMCs, mROS production also elevates to activate p38 
MAPK signalling pathway [125]. However, the complexity of mROS involvement 
still requires further investigation to elucidate the certain roles of oxidative stress in 
myogenic differentiation and muscle regeneration.

3.3 Autophagy

Autophagy is a conserved catabolic process that controls cellular degrada-
tion of unnecessary or dysfunctional cellular components in the lysosome [126]. 
Generally, the autophagy continuously occurs to recycle damaged proteins and 
organelles for cellular homeostasis under normal conditions [127]. The autophagy 
has at least three different types: (1) Macroautophagy (usually referred to as 
autophagy): cytosolic contents are delivered to the lysosome by autophagosomes. 
(2) Microautophagy: the contents are directly introduced into lysosomal mem-
brane. (3) Chaperone-mediated autophagy: the target proteins contain a motif 
KFERQ , and then the chaperone (KFERQ )-protein complex binds lysosome-
associated membrane protein 2A (LAMP2A) receptors on the lysosomal membrane 
[128]. Autophagy induction results in recruitment of autophagy-related proteins 
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(ATGs) to a punctate structure, phagophore assembly site (PAS), where proteins of 
the uncoordinated-51-like kinase 1 (ULK1) complex assemble to initiate autopha-
gosome formation [129].

In autophagy signalling, mitochondria are considered as main source of ROS 
[130]. mROS, especially as H2O2, are required for autophagy induction in response 
to nutrient starvation and rapamycin, tumour necrosis factor α (TNFα) and nerve 
growth factor (NGF) deprivation [131–134]. H2O2 modulates the cysteine protease 
Atg4, which cleaves c-terminus of Atg8 (or light chain 3, LC3), and thus enables 
the addition of phosphatidylethanolamine (PE) to Atg8. Subsequently the active 
Atg8 is conjugated on the autophagosomal membrane, leading to the autophago-
some formation [131]. H2O2 also disrupts the MMP to inhibit Akt/mammalian 
target of rapamycin (mTOR) signalling pathway for autophagy initiation [135, 136]. 
Furthermore, elevated H2O2 induces autophagy via activation of p38 MAPK signal-
ling pathway in cardiac or skeletal muscle [137, 138].

In physiological energy metabolism, mitochondrial ATP production by OXPHOS 
induces mROS generation, resulting in a certain degree of constitutive mitochon-
drial damage and submitochondrial particles. The damaged mitochondria cause 
ATP depletion and Cytc release, which eventually leads to activation of caspases 
and then onset of apoptosis [139, 140]. To prevent cell death, the dysfunctional 
mitochondria are thus sequestered from the mitochondrial network and eliminated 
by selective autophagy, mitophagy, to properly maintain mitochondrial quantity 
and quality [130]. Therefore, mitophagy limits further mROS generation, which 
promotes turnover of mitochondria and avoids accumulation of dysfunctional 
mitochondria. Mitophagy is mainly controlled by the PTEN-induced kinase 1 
(PINK1)-Parkin pathway, which is stimulated upon the MMP depolarization. 
PINK1 is a Ser/Thr kinase that translocates on the outer mitochondrial membrane, 
which is stabilized by low MMP, thereby sensing mitochondrial depolarization 
[141–143]. Then, PINK1 recruits Parkin that ubiquitylates OMM-located pro-
teins such as VDAC1, resulting in recruitment of autophagic machinery and the 
selective sequestration of ubiquitylated mitochondria within autophagosomes 
[130]. Furthermore, the mitochondrial proteins, BCL2/adenovirus E1B 19-kDa-
interacting protein 3 (Bnip3) and Bcl-2/adenovirus E1B 19-kDa-interacting protein 
3 (Bnip3L/NIX), participate in mitophagy [144]. In response to oxidative stress 
after ischemia/reperfusion (I/R), Bnip3 is homodimerised, to be activated, result-
ing in induction of mitophagy [145]. NIX, an atypical BH3 protein, is required for 
mitophagy in erythrocyte development. It directly recognizes autophagosome-sited 
GABA receptor-associated protein (GABARAP) that is a functional homolog of LC3 
and subsequently induces mitophagy [126, 146]. Bnip3 and NIX directly bind to 
the autophagy machinery components, differently to PINK1 or Parkin [147]. ULK1 
also regulates mitophagy via translocation to mitochondria to phosphorylate FUN14 
domain containing 1 (FUNDC1) protein, a mitochondrial outer membrane protein, 
which is a receptor for hypoxia-induced mitophagy [148].

3.4 Immunity

In immune system, it is well known that ROS contribute to directly eliminate 
pathogens via the oxidative burst mediated by NADPH oxidases (NOXs) that are 
plasma membrane-bound enzyme complexes in phagosomes. However, intracel-
lular redox state intervened by mROS has emerged to be essential for innate and 
adaptive immune responses [149, 150].

mROS are crucial for Toll-like receptor (TLR) signalling pathways [19]. 
Activation of cell surface TLRs such as TLR1, TLR2 and TLR4 increases in mROS 
production via TNF receptor-associated factor 6 (TRAF) and evolutionary 
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selective sequestration of ubiquitylated mitochondria within autophagosomes 
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ing in induction of mitophagy [145]. NIX, an atypical BH3 protein, is required for 
mitophagy in erythrocyte development. It directly recognizes autophagosome-sited 
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domain containing 1 (FUNDC1) protein, a mitochondrial outer membrane protein, 
which is a receptor for hypoxia-induced mitophagy [148].
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In immune system, it is well known that ROS contribute to directly eliminate 
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conserved signalling intermediate in Toll pathways (ECSIT) signalling pathway 
[151]. The TRAF6 or ECSIT depletion promotes reduction of mROS generation in 
macrophages and thus impairment of bacterial clearance [151]. Lipopolysaccharide 
(LPS)-induced pro-inflammatory cytokines such as TNFα and IL-6 are controlled 
by mROS generation [152]. Innate immune response enhancement in patients with 
TNF receptor-associated periodic syndrome (TRAPS) that is an autoinflammatory 
disorder is affected by missense mutations in the type 1 TNF receptor (TNFR1), 
which might be attributable to mitochondrial ROS generation [152].

mROS control pattern recognition receptors (PRRs) such as nuclear oligomer-
ization domain (NOD)-like receptors (NLRs). NLRs form multisubunit protein 
complexes termed inflammasomes that activate caspase-1 resulting in proteolytic 
cleavage and pro-inflammatory cytokine IL-1β maturation [153, 154]. Pathogen-
associated molecular patterns (PAMPs) and damage-associated molecular patterns 
(DAMPs) such as lipopolysaccharide (LPS), asbestos, ATP and uric acid activate 
NLR family pyrin domain containing 3 (NLRP3) inflammasome via mROS genera-
tion [155, 156]. Pharmacologic or genetic inhibition of autophagy elevates mROS 
concentration, which heightens inflammasome activation [157, 158]. Increase of 
mROS persuades lysosomal membrane permeabilization, which is required for 
NLRP3 activation [159]. Activation of NLRP3 inflammasome results in mitochon-
drial damage, interrupting mitophagic signalling [160]. Notably, calcium influx 
contributes to mitochondrial damage, which might increase mROS production and 
mtDNA release to amplify NLRP3 inflammasome activation [161, 162]. However, it 
remains to be further delineated how PAMPs and DAMPs increase mROS to prop-
erly activate NLRP3 inflammasome.

In adaptive immune responses, T cells are functionally crucial in response to the 
pathogens [150, 156]. In infectious condition, naïve T cells promptly proliferate and 
differentiate into effector T cells [163]. The activation of T cells requires increase in 
glycolysis and mitochondrial metabolism for synthesis of macromolecules in process 
of the proliferation and differentiation [156, 164, 165]. Elevated mROS concentra-
tion contributes to the T-cell activation; treatment of antioxidants inhibits cellular 
proliferation and interleukin-2 (IL-2) production [166]. Similarly, antioxidant 
administration to mice exhibits their reduced immunity after infection of the virus, 
suggesting that mROS are indispensable for the T-cell functions in vivo [167, 168]. 
The T-cell receptor (TCR) stimulation induces mROS production from complex I, 
which leads to activation of NF-κB and AP1 signalling, and in turn facilitates IL-2 
and IL-4 productions that are imperative drivers in T-cell activation [169, 170].

3.5 Aging

Aging is a process that is concomitant with the accumulation of cellular damage 
over the time of all living organisms. In the 1950s, Denham Harman suggested the 
‘free radical theory of aging’ as a molecular explanation for aging [171], in which free 
radicals, as byproducts of energy metabolism, develop cumulative cellular damage 
resulting in loss of organismal ability over time. The theory has been revised that 
the mitochondria-derived free radicals are causative of aging [172]. Mitochondrial 
dysfunction and consequent excessive ROS production result in inevitable cellular 
damage and subsequent cell death [173]. Oxidative damage to genomes, proteins and 
lipids has been associated with mitochondrial dysfunction and ultimately cellular 
senescence or death [174]. Consistently, overexpression of antioxidant enzymes 
reduces ROS production and subsequently protects DNA, which is interconnected to 
a prolonged life span in Drosophila melanogaster [175, 176].

Despite numerous evidences underpinning the detrimental roles of mROS in 
aging, the discoveries are questioning a direct correlation between oxidative stress 
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and the lifespan. A mitochondrial enzyme, doublecortin-like kinase 1 (MCLK1), 
reduction induces mitochondrial dysfunction that displays the regression of 
electron transport in mitochondrial respiratory chain and decline of TCA cycle 
activity [177]. In Drosophila melanogaster, mROS levels elevate along with age, but 
do not intervene with life span [178]. Furthermore, moderate ROS levels have been 
associated with an extension of longevity in Drosophila melanogaster and in young 
mice [179–181]. Therefore, physiologically controlled mROS might activate adaptive 
responses that are beneficial to the organism and extend life span.

4. Conclusion

Mitochondria are primary energy producers to generate ATPs via oxidative 
phosphorylation. For a long time, mROS have been considered as byproducts of 
biological energy metabolism during the ATP generation or by cellular redox system 
imbalance, which are highly aggressive and detrimental to the neighbouring cells 
and tissues. However, the roles of mROS have been extensively substantiated to 
understand normal physiology and pathology over the past decades. Mitochondria-
derived H2O2 have been unequivocally recognized as essential molecules in a range 
of physiological processes in cells.

In this chapter, we have provided a brief discussion of current understanding of 
physiological roles of mROS by which mitochondria indeed contribute to the imple-
mentation of cellular proliferation, differentiation autophagy, innate and adaptive 
immunity and aging. In understanding the mechanisms regulating mitochondrial 
physiology and homeostasis, mROS production might provide a significant poten-
tial for the development of novel therapeutic strategy for the treatment of a wide 
range of human pathologies.
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phosphorylation. For a long time, mROS have been considered as byproducts of 
biological energy metabolism during the ATP generation or by cellular redox system 
imbalance, which are highly aggressive and detrimental to the neighbouring cells 
and tissues. However, the roles of mROS have been extensively substantiated to 
understand normal physiology and pathology over the past decades. Mitochondria-
derived H2O2 have been unequivocally recognized as essential molecules in a range 
of physiological processes in cells.

In this chapter, we have provided a brief discussion of current understanding of 
physiological roles of mROS by which mitochondria indeed contribute to the imple-
mentation of cellular proliferation, differentiation autophagy, innate and adaptive 
immunity and aging. In understanding the mechanisms regulating mitochondrial 
physiology and homeostasis, mROS production might provide a significant poten-
tial for the development of novel therapeutic strategy for the treatment of a wide 
range of human pathologies.
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Abstract

Kawasaki disease (KD) is a rare and often undiagnosed disease, at least in the 
western countries. Although its etiology remains unidentified, epidemiological 
features point to the role of infection and genetic predisposition. KD is character-
ized by an inflammatory acute febrile vasculitis. Coronary artery involvement is the 
most important complication of KD and may cause significant coronary stenosis 
resulting in ischemic heart disease. It has been demonstrated that the major risks in 
KD progression are the endothelial dysfunction and that systemic oxidative stress 
together with premature aging of red blood cells and alteration of platelet homeo-
stasis, could play a critical role in the cardiovascular complications associated with 
KD. This chapter will focus on the role of oxidative stress in endothelial damage and 
on circulating blood cells of KD patients.

Keywords: etiology, oxidative stress, inflammation, biomarkers,  
red blood cells, platelets

1. Introduction

Kawasaki disease (KD) is an inflammatory acute febrile vasculitis that can also 
lead to coronary artery weakening, aneurysm formation, and myocardial infarc-
tion. The incidence of this disease varies considerably between ethnic groups: 
in Asians are up to 20 times higher than Caucasians. KD is most prominently 
recognized in Japan, Korea, and Taiwan, reflecting increased genetic susceptibility 
among Asian populations. The highest incidence is reported in Japan: about 90 per 
100,000 [1, 2]. Although nearly 50 years have passed from the first description, the 
etiology of KD remains a mystery. Since the incidence of the disease is high among 
Japanese people, it can be speculated that this people may have some sort of genetic 
characteristic that leaves them susceptible to KD. In addition, both clinical and 
epidemiological findings strongly suggest that some infectious agent or bacterial 
super-antigenic toxin can play a pathogenetic role in genetically susceptible indi-
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on circulating blood cells of KD patients.
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immunoglobulin (IVIG) and aspirin therapy, up to 5% of those affected will 
develop coronary aneurysms, predisposing them to thrombotic complications that 
could result in atherosclerosis, myocardial infarction, and/or death [4]. In fact, risk 
factors for the development of atherosclerosis such as C-reactive protein (CRP), 
oxidative stress (OS), and inflammatory cytokines, are increased in the acute phase 
of KD [5]. Moreover, in the acute phase of the disease, often patients undergo 
thrombocytosis that can exert a pathogenic role in the cardiovascular complications 
that characterize KD. However, in KD progression, the major risk is endothelial 
injury and coronary artery weakening, favoring the formation of aneurysms in 1:5 
untreated children with KD as well as myocardial infarction, ischemic heart, and 
sudden death [6]. OS linked to inflammation that characterizes KD disease, has 
recently been included among the potentially useful diagnostic biomarkers in the 
vasculature of KD [7]. Several lines of evidence suggest that in KD patients, sys-
temic OS may promote: (i) endothelial dysfunction through increased production 
of oxygen- and nitrogen-derived species (ROS/RNS); (ii) alter red blood cell (RBC) 
homeostasis, resulting in a sort of premature aging in these circulating cells that 
could lead to anemia and formation of blood clots; and (iii) stimulate platelet func-
tions and defective platelet apoptosis program, resulting in thrombocytosis that can 
exert a pathogenetic role in the cardiovascular complications occurring in KD [8].

2. Kawasaki disease etiology

The etiology of KD remains one of the major mysteries in the field of Pediatrics, 
and no specific biological markers for diagnostic testing have been characterized 
to date. A large body of clinical, epidemiologic, immunologic, pathologic, and 
ultrastructural evidence suggests that environmental factors or infectious agents 
induce an intense inflammatory host response in genetically susceptible individuals 
[3]. The clinical findings of conjunctival injection, oral and pharyngeal erythema, 
cervical adenopathy, and rash, observed in patients with KD, are very similar to 
those observed in other pediatric infections acquired by the respiratory route.

2.1 Infections

Even if not confirmed, many published reports implicate a number of bacte-
rial or viral pathogens such as Staphylococcus, Streptococcus, Adenovirus, human 
herpes virus 6 (HHV-6), Epstein Barr virus (HBV), human T-lymphotropic virus 
(HTLV), coronavirus and human bocavirus (HBoV) [9–19]. Staphylococci and 
Streptococci release exotoxins, known as super-antigens that promote the activa-
tion of a large numbers of T helper (Th) cells (5–20% of T cell clones) leading to 
an extensive immunological reaction [20]. Matsubara and collaborators state that 
toxic shock syndrome toxin-1 (TSST-1), Streptococcal Pyogenic Exotoxin A or C 
(SPEA or SPEC), and Staphylococcal Enterotoxin A or B (SEA or SEB) may act 
as super-antigens that could stimulate the immune system and result in KD [21]. 
However, despite an increase in: (i) anti-streptococcal SPEC antibodies in the sera 
of KD patients in acute phase [22] and (ii) anti-SPEC and -SPEA IgM found in the 
first few weeks following the illness [21], no significant differences in super-antigen 
antibody were found from some serological studies.

2.2 Immune dysregulation

Most investigators believe that derangement of the immune system and func-
tional disorder of Th cells are the primary pathophysiologic features in patients with 
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KD [23]. Data analyses for KD show that abnormal immune responses to infectious 
agents play key roles in disease initiation. It has been reported that, in the acute 
phase of KD, viral or bacterial super-antigens act by binding to the Vβ region of 
the T cell receptor inducing a widespread immunological response and resulting 
in the release of pro-inflammatory cytokines such as tumor necrosis factor (TNF) 
α, interleukin (IL) 1β, 6, 8, interferon (IFN) γ, and chemokines, such as monocyte 
chemotactic protein-1 (MCP-1) [3, 24]. In fact, it has been found that serum levels 
of some cytokines, such as IL-6, IL-20, TNF-α, and IFN-γ increase significantly 
before IVIG treatment and that levels of IL-6, IL-10, and IFN-γ decreased rapidly 
after treatment [25]. Moreover, studies in a murine systemic vasculitis, induced 
by Candida albicans extract, emphasize a relationship between the development 
of vasculitis and the overexpression of pro-inflammatory cytokines, such as 
TNF-α and IL-6 [26, 27]. The activation of the immune system and the cascade of 
inflammatory factors are considered as important features of KD. In fact, Th cells, 
mononuclear cells, macrophages and plasma cells, with a smaller number of neu-
trophils, are observed in various organ tissues of fatal cases of acute KD [23]. When 
activated, T helper cells mainly differentiate into two functionally distinct subsets, 
Th1 and Th2 cells. Th1 cells play an important role in cellular immunity by secreting 
IL-2 and IFN-γ, while Th2 cells involve the development of antibody-producing B 
cells via the secretion of IL-4, IL-5, IL-6, and IL-10. Some of these cytokines play an 
important role in the progression from systemic activation of the immune system 
to local inflammation in coronary vessels. Recently, it has been demonstrated 
that KD patients may be non-responsive to IVIG when, after IVIG treatment, the 
serum levels of IL-6 and IL-10 decrease slowly and the levels of IL-4 and TNF-α 
increase [25]. Although activation of the immune system and production of various 
cytokines have both been reported in patients with KD, the role of T cells and the 
functional state of Th1 and Th2 cells in KD are still not fully understood. Moreover, 
an imbalance between the line Th 17 (Th17) and regulatory T (Treg) cells has been 
described in the peripheral blood from patients with KD [28]. Th17 cells have been 
identified as inflammation regulators via production of distinct cytokines, such as 
interleukin IL-17. Conversely, to the Treg cells expressing FOXP3 has been attrib-
uted an anti-inflammatory role via production of anti-inflammatory cytokines, for 
example, IL-10 and TGF-β1 [29]. T helper cells involved in KD etiology are listed in 
Figure 1 and Table 1.

2.3 Genetics

For decades, researchers attempted to identify candidate genes conferring sus-
ceptibility to the KD. In particular, studies on genes related to innate and acquired 
immune functions or to vascular remodeling, have been conducted [30]. Genes 
for analyses were selected based on the information of their known function or 
role in the disease pathophysiology. Initial genetic studies were focused on human 
leukocyte antigen (HLA) genes, located at chromosome 6p21.3, that encode the 
protein on the cell-surface antigen-presenting proteins, involved in the regulation 
of the immune system. The roles of HLA genes have been investigated in several 
immune-mediated vascular diseases, including KD. The results of such studies 
vary depending on the ethnic group studied. A recent genome-wide association 
study demonstrated the significant association of HLA class II region (HLA-
DQB2-DOB) with KD in a Japanese population [31]. A genome-wide association 
study conducted in a Korean population demonstrated a significant association 
with KD of the HLA class I locus that contains the HLA-B and HLA-C genes [32]. 
These studies suggest that either HLA class I or class II may be associated with 
KD and play a role in KD pathogenesis. Several reports show associations between 
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KD [23]. Data analyses for KD show that abnormal immune responses to infectious 
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phase of KD, viral or bacterial super-antigens act by binding to the Vβ region of 
the T cell receptor inducing a widespread immunological response and resulting 
in the release of pro-inflammatory cytokines such as tumor necrosis factor (TNF) 
α, interleukin (IL) 1β, 6, 8, interferon (IFN) γ, and chemokines, such as monocyte 
chemotactic protein-1 (MCP-1) [3, 24]. In fact, it has been found that serum levels 
of some cytokines, such as IL-6, IL-20, TNF-α, and IFN-γ increase significantly 
before IVIG treatment and that levels of IL-6, IL-10, and IFN-γ decreased rapidly 
after treatment [25]. Moreover, studies in a murine systemic vasculitis, induced 
by Candida albicans extract, emphasize a relationship between the development 
of vasculitis and the overexpression of pro-inflammatory cytokines, such as 
TNF-α and IL-6 [26, 27]. The activation of the immune system and the cascade of 
inflammatory factors are considered as important features of KD. In fact, Th cells, 
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trophils, are observed in various organ tissues of fatal cases of acute KD [23]. When 
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that KD patients may be non-responsive to IVIG when, after IVIG treatment, the 
serum levels of IL-6 and IL-10 decrease slowly and the levels of IL-4 and TNF-α 
increase [25]. Although activation of the immune system and production of various 
cytokines have both been reported in patients with KD, the role of T cells and the 
functional state of Th1 and Th2 cells in KD are still not fully understood. Moreover, 
an imbalance between the line Th 17 (Th17) and regulatory T (Treg) cells has been 
described in the peripheral blood from patients with KD [28]. Th17 cells have been 
identified as inflammation regulators via production of distinct cytokines, such as 
interleukin IL-17. Conversely, to the Treg cells expressing FOXP3 has been attrib-
uted an anti-inflammatory role via production of anti-inflammatory cytokines, for 
example, IL-10 and TGF-β1 [29]. T helper cells involved in KD etiology are listed in 
Figure 1 and Table 1.

2.3 Genetics

For decades, researchers attempted to identify candidate genes conferring sus-
ceptibility to the KD. In particular, studies on genes related to innate and acquired 
immune functions or to vascular remodeling, have been conducted [30]. Genes 
for analyses were selected based on the information of their known function or 
role in the disease pathophysiology. Initial genetic studies were focused on human 
leukocyte antigen (HLA) genes, located at chromosome 6p21.3, that encode the 
protein on the cell-surface antigen-presenting proteins, involved in the regulation 
of the immune system. The roles of HLA genes have been investigated in several 
immune-mediated vascular diseases, including KD. The results of such studies 
vary depending on the ethnic group studied. A recent genome-wide association 
study demonstrated the significant association of HLA class II region (HLA-
DQB2-DOB) with KD in a Japanese population [31]. A genome-wide association 
study conducted in a Korean population demonstrated a significant association 
with KD of the HLA class I locus that contains the HLA-B and HLA-C genes [32]. 
These studies suggest that either HLA class I or class II may be associated with 
KD and play a role in KD pathogenesis. Several reports show associations between 
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KD and specific HLA genotypes including HLA-B54 in a Japanese population 
[33], HLA-B51 in Caucasian populations [34], HLA-B35, -B75, and -Cw09 in 
Korean [35], and the major histocompatibility complex class I chain-related gene 
A (MICA) genes in southern Chinese [36]. Genome-wide association studies 
(GWASs) have identified several susceptibility genes associated with KD, includ-
ing CD40L, HLA-E, BLK, and FCGR2A [37–40]. CD40L gene, located on Xq26, is 
known to induce endothelial cells to produce cell adhesion molecules and chemo-
kines. Its expression has been found elevated on CD4+ Th cells and platelets dur-
ing the acute-phase KD and in KD patients with coronary artery lesions (CALs) 

Figure 1. 
T helper cells involved in KD etiology. In the acute phase of Kawasaki disease, viral or bacterial super-antigens 
induce immunological response resulting in the release of cytokines. Th cells are regulators of inflammation. T 
helper 1 cells secrete interferon g (IFN-g) and interleukin 2 (IL-2); T helper 2 cells secrete interleukin 4, 5, 6, 
and 10; T helper 17 cells secrete interleukin 17 (IL-17). Conversely, regulatory T cells (Treg) have an anti-
inflammatory role via production of interleukin 10 (IL-10) and growth factor-beta (TGF-b).

T helper cells Functions

Th1 Regulate cellular immunity by secreting IL-2 and IFN-γ

Th2 Regulate humoral immunity by secreting IL-4, IL-5, IL-6, and IL-10

Th17 Regulate inflammation by secreting IL-17

Treg Anti-inflammatory role by the release of IL-10 and TGF-β1

Treg, regulatory T cells.

Table 1. 
Immune dysregulation in KD: role of T helper cells.
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[41]. HLA-E is a known ligand of CD94/natural killer cell receptor group 2-A 
(NKG2-A) and CD94/NKG2-C, which are expressed on natural killer cells [38]. 
Recent studies have shown that HLA-E has regulatory functions in both the innate 
and adaptive immune responses and that may have important implications in the 
pathogenesis of immune-mediated vascular diseases [42]. BLK is a Src family 
tyrosine kinase expressed primarily in the B-cell lineage and located on chromo-
some 8p22-23. During the acute and convalescent stages of KD, BLK expression 
correlates with the percentage of B cells in the peripheral blood mononuclear cells. 
Importantly, a decreased BLK expression in peripheral blood B cells may alter B 
cell function and predispose individuals to KD [43]. The BLK was significantly 
associated with KD susceptibility in Taiwanese and in Japanese populations [43]. 
FCGR2A gene is on chromosome 1q23 and encodes the FcγRIIA protein (CD32a), 
a member of a family of receptors for IgG (including the A, B, and C subunits of 
FcγRI and FcγRII and the A and B subunits of FcγRIII). This receptor is found on 
the surface of many immune cells, including natural killer cells, macrophages, 
and neutrophils, and it is involved in cellular activation and uptake of immune 
complexes [44]. The FCGR2A is associated with KD susceptibility in Korean and 
Asiatic populations [30]. Genes related to vasoactive or angiogenic molecules 
also can be considered as candidates for KD susceptibility or severity. Ohno and 
co-worker have shown that an up-regulation of vascular endothelial growth factor 
(VEGF) is involved in formation of coronary artery lesions (CALs) [45]. VEGF, 
expressed in various types of cells including leukocytes and vascular smooth 
muscle cells, binding to its receptor (VEGFR-1 and VEGFR-2) expressed on 
endothelial cells induces cell proliferation, survival, migration, and angiogenesis. 
Its ability to induce vascular hyper-permeability and chemotaxis of bone marrow-
derived cells suggest significant roles of VEGF in inflammation [45]. Other 
candidate genes for KD are transforming growth factor-beta (TGF-β), because 
TGF-β-mediated T-cell activation and cardiovascular remodeling are important 
features of KD. This gene, located on chromosome 19q13.1, modulates the balance 
of pro-inflammatory/anti-inflammatory T cells through a complex set of interac-
tions [46]. Genetic variations in the TGF-β pathway may lead to an imbalance of 
pro-inflammatory and regulatory T cells (Treg) by affecting the expression of 
the forkhead/winged helix transcription factor P3 (FOXP3) that is involved in the 
differentiation, function, and survival of CD4 + CD25+ regulatory T cells. Several 
studies demonstrated that in the peripheral circulation of KD patients, Treg cell 
numbers were reduced, and their function compromised [47]. Recently, in KD, 
191 genes mainly implicated in inflammation and innate immune response and 
some signaling pathway such as platelet activation have been identified. Among 
these genes, MAPK14 and PHLPP1 were considered as the key functional genes 
that can distinguish KD from common infectious illness [48]. MAPK14 is a gene 
that encodes p38α, a MAP kinases implicated in various cellular processes includ-
ing proliferation, differentiation, transcription regulation, and development 
[49]. MPK14/P38 was found to significantly improve endothelial function and 
inflammation after vascular injury. PHLPP1 encodes a protein that is a member of 
the Ser/Thr phosphatase family. Its upregulation in acute KD may reduce vascular 
injury by inactivating Akt and subsequent reducing the expression of NO [48]. 
Moreover, genetic polymorphisms of 1,4,5-trisphosphate 3-kinase C (ITPKC) 
and caspase 3 (CASP3) have been shown to associate with coronary artery lesions 
formation in both Japanese and Taiwanese populations of KD patients [50]. 
ITPKC is a gene located on chromosome 19q23 that acts as a negative regulator of 
T-cell activation. CASP3 is a gene located on chromosome 4q35, that is related to 
the apoptosis of immune cells [50]. Candidate genes in the KD etiology are listed 
in Table 2.
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and adaptive immune responses and that may have important implications in the 
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Asiatic populations [30]. Genes related to vasoactive or angiogenic molecules 
also can be considered as candidates for KD susceptibility or severity. Ohno and 
co-worker have shown that an up-regulation of vascular endothelial growth factor 
(VEGF) is involved in formation of coronary artery lesions (CALs) [45]. VEGF, 
expressed in various types of cells including leukocytes and vascular smooth 
muscle cells, binding to its receptor (VEGFR-1 and VEGFR-2) expressed on 
endothelial cells induces cell proliferation, survival, migration, and angiogenesis. 
Its ability to induce vascular hyper-permeability and chemotaxis of bone marrow-
derived cells suggest significant roles of VEGF in inflammation [45]. Other 
candidate genes for KD are transforming growth factor-beta (TGF-β), because 
TGF-β-mediated T-cell activation and cardiovascular remodeling are important 
features of KD. This gene, located on chromosome 19q13.1, modulates the balance 
of pro-inflammatory/anti-inflammatory T cells through a complex set of interac-
tions [46]. Genetic variations in the TGF-β pathway may lead to an imbalance of 
pro-inflammatory and regulatory T cells (Treg) by affecting the expression of 
the forkhead/winged helix transcription factor P3 (FOXP3) that is involved in the 
differentiation, function, and survival of CD4 + CD25+ regulatory T cells. Several 
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2.4 Environmental factors

Environmental factors, including socio-economic status and cultural habits 
in a society, affect the occurrence of infectious and autoimmune diseases. Recent 
studies suggest that environmental triggers, such as air pollution and extreme 
temperatures, may also serve as risk factors for KD [51]. Particulate matter and vari-
ous gaseous pollutants, contained in the ambient air, have strong oxidizing property 
and the potential to induce KD through exaggerated inflammatory response, 
which is heavily involved in the pathophysiologic process of KD development [52]. 
Short-term exposure to air pollutants may damage endothelial cells, impair vascular 
function, stimulate systemic inflammation response, increase oxidative stress, and 
induce cardiac ischemia and repolarization abnormalities [52–54], consequently 
contributing to the development of KD. Moreover, from a time-stratified case-
crossover study in Taiwan, evidence has been provided that exposure to ozone (O3) 
may increase the risk of KD in children [55].

Recently, a study carried out on the Japanese population has found an associa-
tion between higher household income, urbanization, and smaller family size at 
birth with increased KD incidence, which raises the hygiene hypothesis for the 
etiology of KD [56].

It has been reported that the human immune system and microbiota are try-
ing to adapt to a changing environment. Gut microflora of infants were different 

Candidate genes Locus Populations Function

HLA-B54 6p21.3 Japanese Regulation of the immune system

HLA-B51 6p21.3 Caucasian Regulation of the immune system

HLA-B35 6p21.3 Corean Regulation of the immune system

HLA-B75 6p21.3 Corean Regulation of the immune system

HLA-E 6p21.3 Taiwanese CAL formation

HLA-Cw09 6p21.3 Corean Coronary complication

MICA 6p21.3 Southern Chinese CAL formation

CD40L Xq26 Taiwanese CAL formation

BLK 8p22-23 Taiwanese and 
Japanese

Correlation with the % of B cells during KD

FCGR2A 1q23 Korean and Asiatic Cellular activation and uptake of immune 
complexes

VEGF 6p12 Japanese CAL formation

TGF-β 19q13.1 European Modulates the balance of proinflammatory/
anti-inflammatory T cells

MAPK14 6p21.31 Chinese Autoimmunity-related vasculitis

PHLPP Chinese Reduce vascular injury

ITPKC 19q23 Taiwanese Inactive T cells

CASP3 4q35 Taiwanese Apoptosis in immune cells

HLA, human leukocyte antigen; MICA, major histocompatibility complex class I chain–related gene A; 
BLK, B-lymphoid tyrosine kinase; FCGR2A, Fc fragment of IgG receptor IIa; VEGF, vascular endothelial growth 
factor; TGF-β, transforming growth factor-beta; MAPK14, mitogen-activated protein kinase 14; PHLPP, PH domain 
leucine-rich repeat-containing protein phosphatase 1; ITPKC, 1,4,5-trisphosphate 3-kinase C; CASP3, caspase 3.
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according to ethnic groups, and the changing environment factors from industri-
alization may affect the distribution of gut microflora in infants [57]. Thus, it is 
very possible that normal flora also adjusts to a changing environment. Presently, 
the majority of data has found that the composition of the gut microbiota in KD 
patients differs from healthy subjects. Lee and co-workers have hypothesized that 
the immune system should lose tolerance to a part of the resident intestinal flora 
and that environmental factors, that is, a Western lifestyle or improved public 
hygiene systems, could transform the commensal flora into a pathogen one, as 
observed in different gastrointestinal disorders [58].

3. Implication of systemic oxidative stress in KD

It has been recognized that a systemic pro-oxidant state associated with inflam-
mation can play a key role in the pathogenesis and progression of KD [59]. In 
support to this theory, experimental evidences showed increased concentration of 
oxidative stress-related biomarkers such as ROS/RNS, malondialdehyde (MDA), 
protein 3-nitrotyrosine, asymmetric dimethylarginine (ADMA), and myeloperoxi-
dase (MPO). ROS/RNS are chemical heterogeneous molecules that include radical 
species, such as superoxide anion (O2

•−), hydroxyl radicals (•OH), and nitric oxide 
(•NO) and non-radical species such as hydrogen peroxide (H2O2,) and peroxynitrite 
(the product of the fast reaction between O2

•− and •NO). Peroxynitrite-mediated 
oxidation includes its direct reaction with several cellular targets (CO2, hemopro-
teins, and thiols), as well as indirect reaction, CO2-dependent oxidations mediated 
by strong oxidizing radicals, such as •NO2 and carbonate radical (CO3

•). The pro-
duction of these oxidants is known to generate in blood a pro-oxidant status able to 
promote the occurrence of oxidative- and nitrative stress as well as redox imbalance 
leading to altered cell signaling and functions. These events may play a pathogenetic 
role in the cardiovascular complications often associated with KD [8]. As already 
mentioned, ROS/RNS generically can react with all the macromolecules of biologi-
cal importance in cell and tissues, generating oxidative modification in lipids, DNA, 
and proteins that, in some cases, can be the footprint of the oxidant generated [60]. 
Malondialdehyde (MDA), the most investigated end-products of lipid peroxidation, 
is one of several low-molecular-weight end-products formed via the decomposition 
of certain primary and secondary lipid peroxidation products. It is a specific marker 
of omega-3 and omega-6 fatty acids peroxidation [61]. Increased serum levels of 
MDA were found in KD patients with coronary aneurysm associated with carotid 
intima-media thickening and stiffening [59]. Another marker of lipid peroxidation 
evaluated in KD patients is 8-isoprostaglandin F2α (8-iso-PG), a non-enzymatic 
oxidation product of arachidonic acid. Increased levels of 8-iso-PG have been 
measured in the urine from acute KD patients before IVIG therapy [62, 63]. Its 
increase reflects an enhanced endothelial dysfunction and correlates with cardiac 
dysfunction in acute KD [62]. Protein tyrosine nitration is an oxidative post-trans-
lational covalent modification of tyrosine residues consisting, in the addition of a 
nitro group (▬NO2) to the position 3, of the phenolic ring leading to the formation 
of 3-nitrotyrosine as an end-product [64]. It is a free-radical-mediated reaction 
induced by the one-electron oxidation of tyrosine residues to tyrosyl radical 
followed by its fast reaction with the nitrating agent •NO2. In biological systems, 
3-nitrotyrosine formation is mediated mainly by peroxynitrite-derived strong 
oxidants, such as •OH, •NO2, CO3

• [64]. In addition, 3-nitrotyrosine formation can 
be mediated by metals of heme-containing peroxidases in the presence of H2O2 and 
nitrite. The H2O2-genereted oxo-metal compounds (O = MnIV) and compounds I 
and II of heme-containing peroxidases, such as MPO, are highly heme oxidation 
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2.4 Environmental factors

Environmental factors, including socio-economic status and cultural habits 
in a society, affect the occurrence of infectious and autoimmune diseases. Recent 
studies suggest that environmental triggers, such as air pollution and extreme 
temperatures, may also serve as risk factors for KD [51]. Particulate matter and vari-
ous gaseous pollutants, contained in the ambient air, have strong oxidizing property 
and the potential to induce KD through exaggerated inflammatory response, 
which is heavily involved in the pathophysiologic process of KD development [52]. 
Short-term exposure to air pollutants may damage endothelial cells, impair vascular 
function, stimulate systemic inflammation response, increase oxidative stress, and 
induce cardiac ischemia and repolarization abnormalities [52–54], consequently 
contributing to the development of KD. Moreover, from a time-stratified case-
crossover study in Taiwan, evidence has been provided that exposure to ozone (O3) 
may increase the risk of KD in children [55].

Recently, a study carried out on the Japanese population has found an associa-
tion between higher household income, urbanization, and smaller family size at 
birth with increased KD incidence, which raises the hygiene hypothesis for the 
etiology of KD [56].

It has been reported that the human immune system and microbiota are try-
ing to adapt to a changing environment. Gut microflora of infants were different 

Candidate genes Locus Populations Function

HLA-B54 6p21.3 Japanese Regulation of the immune system

HLA-B51 6p21.3 Caucasian Regulation of the immune system

HLA-B35 6p21.3 Corean Regulation of the immune system

HLA-B75 6p21.3 Corean Regulation of the immune system
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HLA-Cw09 6p21.3 Corean Coronary complication

MICA 6p21.3 Southern Chinese CAL formation

CD40L Xq26 Taiwanese CAL formation

BLK 8p22-23 Taiwanese and 
Japanese

Correlation with the % of B cells during KD

FCGR2A 1q23 Korean and Asiatic Cellular activation and uptake of immune 
complexes

VEGF 6p12 Japanese CAL formation

TGF-β 19q13.1 European Modulates the balance of proinflammatory/
anti-inflammatory T cells

MAPK14 6p21.31 Chinese Autoimmunity-related vasculitis

PHLPP Chinese Reduce vascular injury

ITPKC 19q23 Taiwanese Inactive T cells

CASP3 4q35 Taiwanese Apoptosis in immune cells

HLA, human leukocyte antigen; MICA, major histocompatibility complex class I chain–related gene A; 
BLK, B-lymphoid tyrosine kinase; FCGR2A, Fc fragment of IgG receptor IIa; VEGF, vascular endothelial growth 
factor; TGF-β, transforming growth factor-beta; MAPK14, mitogen-activated protein kinase 14; PHLPP, PH domain 
leucine-rich repeat-containing protein phosphatase 1; ITPKC, 1,4,5-trisphosphate 3-kinase C; CASP3, caspase 3.
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according to ethnic groups, and the changing environment factors from industri-
alization may affect the distribution of gut microflora in infants [57]. Thus, it is 
very possible that normal flora also adjusts to a changing environment. Presently, 
the majority of data has found that the composition of the gut microbiota in KD 
patients differs from healthy subjects. Lee and co-workers have hypothesized that 
the immune system should lose tolerance to a part of the resident intestinal flora 
and that environmental factors, that is, a Western lifestyle or improved public 
hygiene systems, could transform the commensal flora into a pathogen one, as 
observed in different gastrointestinal disorders [58].

3. Implication of systemic oxidative stress in KD

It has been recognized that a systemic pro-oxidant state associated with inflam-
mation can play a key role in the pathogenesis and progression of KD [59]. In 
support to this theory, experimental evidences showed increased concentration of 
oxidative stress-related biomarkers such as ROS/RNS, malondialdehyde (MDA), 
protein 3-nitrotyrosine, asymmetric dimethylarginine (ADMA), and myeloperoxi-
dase (MPO). ROS/RNS are chemical heterogeneous molecules that include radical 
species, such as superoxide anion (O2

•−), hydroxyl radicals (•OH), and nitric oxide 
(•NO) and non-radical species such as hydrogen peroxide (H2O2,) and peroxynitrite 
(the product of the fast reaction between O2

•− and •NO). Peroxynitrite-mediated 
oxidation includes its direct reaction with several cellular targets (CO2, hemopro-
teins, and thiols), as well as indirect reaction, CO2-dependent oxidations mediated 
by strong oxidizing radicals, such as •NO2 and carbonate radical (CO3

•). The pro-
duction of these oxidants is known to generate in blood a pro-oxidant status able to 
promote the occurrence of oxidative- and nitrative stress as well as redox imbalance 
leading to altered cell signaling and functions. These events may play a pathogenetic 
role in the cardiovascular complications often associated with KD [8]. As already 
mentioned, ROS/RNS generically can react with all the macromolecules of biologi-
cal importance in cell and tissues, generating oxidative modification in lipids, DNA, 
and proteins that, in some cases, can be the footprint of the oxidant generated [60]. 
Malondialdehyde (MDA), the most investigated end-products of lipid peroxidation, 
is one of several low-molecular-weight end-products formed via the decomposition 
of certain primary and secondary lipid peroxidation products. It is a specific marker 
of omega-3 and omega-6 fatty acids peroxidation [61]. Increased serum levels of 
MDA were found in KD patients with coronary aneurysm associated with carotid 
intima-media thickening and stiffening [59]. Another marker of lipid peroxidation 
evaluated in KD patients is 8-isoprostaglandin F2α (8-iso-PG), a non-enzymatic 
oxidation product of arachidonic acid. Increased levels of 8-iso-PG have been 
measured in the urine from acute KD patients before IVIG therapy [62, 63]. Its 
increase reflects an enhanced endothelial dysfunction and correlates with cardiac 
dysfunction in acute KD [62]. Protein tyrosine nitration is an oxidative post-trans-
lational covalent modification of tyrosine residues consisting, in the addition of a 
nitro group (▬NO2) to the position 3, of the phenolic ring leading to the formation 
of 3-nitrotyrosine as an end-product [64]. It is a free-radical-mediated reaction 
induced by the one-electron oxidation of tyrosine residues to tyrosyl radical 
followed by its fast reaction with the nitrating agent •NO2. In biological systems, 
3-nitrotyrosine formation is mediated mainly by peroxynitrite-derived strong 
oxidants, such as •OH, •NO2, CO3

• [64]. In addition, 3-nitrotyrosine formation can 
be mediated by metals of heme-containing peroxidases in the presence of H2O2 and 
nitrite. The H2O2-genereted oxo-metal compounds (O = MnIV) and compounds I 
and II of heme-containing peroxidases, such as MPO, are highly heme oxidation 
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state complexes able to oxidize tyrosine to tyrosyl radical, which in the presence of 
•NO2, generate 3-nitrotyrosine [65, 66]. Protein tyrosine nitration is considered a 
hallmark of the reactions involving •NO-derived oxidant, that is, peroxynitrite and 
•NO2, able to dramatically affect protein structure and function. Indeed, the 
occurrence of this oxidative modification leads to a loss- (superoxide dismutase, 
prostacyclin synthase, etc.) or to a gain-of-function (cytochrome c, protein kinase, 
glutathione S-transferase, etc.) of key macromolecules able to affect cell homeosta-
sis and fate [64]. The well-established association of protein tyrosine nitration to 
several pathologies, such as cardiovascular disease, neurodegeneration, inflamma-
tion and cancer has made this protein modification not only a biomarker of RNS-
derived oxidative stress in vivo, but also a predictor of disease onset and 
progression. MPO is a pro-oxidant enzyme released by activated poly-morphonu-
clear leukocytes that can promote the pro-inflammatory state by inducing the 
formation of RNS, 3-nitrotyrosine, and lipid peroxidation [65]. Furthermore, it can 
promote a blood pro-coagulant state favoring the binding of oxidized lipoproteins 
to the specific receptor present on the surface of platelets [67]. In this regard, 
3-nitrotyrosine and MPO could play a pathogenetic role in the cardiovascular 
complications of KD and could be considered as biomarkers of inflammation in this 
disease. Indeed, elevated MPO levels were detected in acute KD patients before 
IVIG treatment [8]. It has been recognized that a persistent OS and an excessive 
ROS production play an integral role in the endothelial and smooth muscle dysfunc-
tion leading to the risk of premature arteriosclerosis in KD patients [68]. A longer 
duration of fever is associated with higher risk of oxidative stress-induced endothe-
lial dysfunction [68]. ADMA, produced following the catabolism of proteins 
containing methylated arginine residues, is an endogenous inhibitor of the enzyme 
nitric oxide synthase (NOS), regulating the nitric oxide bioavailability. Many 
disease states, including cardiovascular diseases and diabetes, are associated with 
increased plasma levels of ADMA [69]. This compound could therefore play a 
crucial role in the pathogenesis of diseases associated with endothelial dysfunction, 
so that it has been proposed as a biomarker for cardiovascular risk. In plasma from 
KD patients, low levels of ADMA were detected before IVIG treatment and associ-
ated with coronary abnormalities [8, 70]. Moreover, it has been suggested that a 
pro-oxidant blood status could alter RBC homeostasis [71]. RBCs, under physiologi-
cal conditions, represent the major components of blood antioxidant capacity and 
the cells with higher resistance to oxidative stress [71]. They exert a scavenging 
activity with a particular regard for ROS and for the species derived from nitric 
oxide, often overproduced in inflamed tissues. In fact, crossing inflamed areas can 
contribute to detoxify ROS and RNS “protecting” cells (e.g. endothelial cells). In 
contrast, when they cross a tissue where an intense production of ROS occurs, they 
may accumulate oxidative damage and become a source of reactive species capable 
of modifying the behavior and fate of endothelial cells [72]. In KD patients, altera-
tions of RBCs, typically associated with oxidative imbalance, have been detected 
[8]. In particular, increased ROS levels and reduced intracellular total thiol content 
were measured in RBCs from KD patients before treatment with IVIG and aspirin. 
In addition, the appearance of RBCs with alterations typically associated with 
premature aging (e.g. glycophorin A and CD47 expression) or eryptosis (e.g. 
clustering of band 3 and increase of phosphatidylserine externalization) was 
observed. Glycophorin A (GA) is a glycoprotein widely expressed at the RBC 
surface that is downregulated during senescence. CD47 is an integrin-associated 
protein. Known as thrombospondin receptor, it acts as marker of self. Band 3 is an 
ion exchanger involved in RBC adhesion to endothelium. Phosphatidylserine (PS) is 
a phospholipid normally localized to the inner leaflet of the plasma membrane. 
During cell remodeling, it is externalized to the outer leaflet leading to RBC aging 
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and death (eryptosis). Importantly, the appearance of aged and eryptotic RBCs in 
KD patients correlates with some clinical evaluations. In fact, it has been found that 
during the first 5 days of hospitalization, the number of RBCs, hemoglobin, mean 
corpuscular value, and hematocrit decrease significantly [8]. In addition, prema-
ture aging of RBCs, and their consequent removal from circulation, might be a risk 
factor for anemia: condition that can be found in KD patients. Furthermore, it has 

Figure 2. 
Oxidative stress and vascular implications in Kawasaki disease. The Kawasaki disease (KD) is characterized 
by acute inflammation that has tissue oxidative stress as hallmark. This condition boosts the increase of reactive 
oxygen (ROS) and nitrogen (RNS) species formation in tissues and in the vasculature through the activation 
of the related producing enzymes in the cytosol. The cytosolic enzymes include the different isoforms of NADPH 
oxidase (NOXs), nitric oxide synthase (NOS), cyclooxygenase (COX), xanthine oxidase (OX), asymmetric 
dimethylarginine (ADMA), uncoupled endothelial NOS (eNOS), and myeloperoxidase (MPO). Other 
potential sources of ROS and RNS are the oxidized RBCs (oxRBCs) and lipid peroxidation. The Kawasaki 
disease is also characterized by the down-regulation of the antioxidant systems, including the depletion of 
GSH concentration and the decrease in the activity of the detoxifying enzymes, such as superoxide dismutase 
(SOD), catalase (Cat) glutathione peroxidase (Gpx), glutathione reductase (GR) and the couple constituted by 
thioredoxin (Trx) and thioredoxin reductase (TrxR). These conditions result in the irreversible accumulation 
of oxidation products in proteins, lipids, and sugars, which allow to the impairment of the intracellular 
redox signaling and detrimentally affect vascular biology by promoting vascular inflammation, endothelial 
dysfunction, and vascular remodeling. These alterations underlie the typical KD-associated cardiovascular 
complications, such as coronary artery weakening, aneurysm formation, and myocardial infarction.
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state complexes able to oxidize tyrosine to tyrosyl radical, which in the presence of 
•NO2, generate 3-nitrotyrosine [65, 66]. Protein tyrosine nitration is considered a 
hallmark of the reactions involving •NO-derived oxidant, that is, peroxynitrite and 
•NO2, able to dramatically affect protein structure and function. Indeed, the 
occurrence of this oxidative modification leads to a loss- (superoxide dismutase, 
prostacyclin synthase, etc.) or to a gain-of-function (cytochrome c, protein kinase, 
glutathione S-transferase, etc.) of key macromolecules able to affect cell homeosta-
sis and fate [64]. The well-established association of protein tyrosine nitration to 
several pathologies, such as cardiovascular disease, neurodegeneration, inflamma-
tion and cancer has made this protein modification not only a biomarker of RNS-
derived oxidative stress in vivo, but also a predictor of disease onset and 
progression. MPO is a pro-oxidant enzyme released by activated poly-morphonu-
clear leukocytes that can promote the pro-inflammatory state by inducing the 
formation of RNS, 3-nitrotyrosine, and lipid peroxidation [65]. Furthermore, it can 
promote a blood pro-coagulant state favoring the binding of oxidized lipoproteins 
to the specific receptor present on the surface of platelets [67]. In this regard, 
3-nitrotyrosine and MPO could play a pathogenetic role in the cardiovascular 
complications of KD and could be considered as biomarkers of inflammation in this 
disease. Indeed, elevated MPO levels were detected in acute KD patients before 
IVIG treatment [8]. It has been recognized that a persistent OS and an excessive 
ROS production play an integral role in the endothelial and smooth muscle dysfunc-
tion leading to the risk of premature arteriosclerosis in KD patients [68]. A longer 
duration of fever is associated with higher risk of oxidative stress-induced endothe-
lial dysfunction [68]. ADMA, produced following the catabolism of proteins 
containing methylated arginine residues, is an endogenous inhibitor of the enzyme 
nitric oxide synthase (NOS), regulating the nitric oxide bioavailability. Many 
disease states, including cardiovascular diseases and diabetes, are associated with 
increased plasma levels of ADMA [69]. This compound could therefore play a 
crucial role in the pathogenesis of diseases associated with endothelial dysfunction, 
so that it has been proposed as a biomarker for cardiovascular risk. In plasma from 
KD patients, low levels of ADMA were detected before IVIG treatment and associ-
ated with coronary abnormalities [8, 70]. Moreover, it has been suggested that a 
pro-oxidant blood status could alter RBC homeostasis [71]. RBCs, under physiologi-
cal conditions, represent the major components of blood antioxidant capacity and 
the cells with higher resistance to oxidative stress [71]. They exert a scavenging 
activity with a particular regard for ROS and for the species derived from nitric 
oxide, often overproduced in inflamed tissues. In fact, crossing inflamed areas can 
contribute to detoxify ROS and RNS “protecting” cells (e.g. endothelial cells). In 
contrast, when they cross a tissue where an intense production of ROS occurs, they 
may accumulate oxidative damage and become a source of reactive species capable 
of modifying the behavior and fate of endothelial cells [72]. In KD patients, altera-
tions of RBCs, typically associated with oxidative imbalance, have been detected 
[8]. In particular, increased ROS levels and reduced intracellular total thiol content 
were measured in RBCs from KD patients before treatment with IVIG and aspirin. 
In addition, the appearance of RBCs with alterations typically associated with 
premature aging (e.g. glycophorin A and CD47 expression) or eryptosis (e.g. 
clustering of band 3 and increase of phosphatidylserine externalization) was 
observed. Glycophorin A (GA) is a glycoprotein widely expressed at the RBC 
surface that is downregulated during senescence. CD47 is an integrin-associated 
protein. Known as thrombospondin receptor, it acts as marker of self. Band 3 is an 
ion exchanger involved in RBC adhesion to endothelium. Phosphatidylserine (PS) is 
a phospholipid normally localized to the inner leaflet of the plasma membrane. 
During cell remodeling, it is externalized to the outer leaflet leading to RBC aging 
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and death (eryptosis). Importantly, the appearance of aged and eryptotic RBCs in 
KD patients correlates with some clinical evaluations. In fact, it has been found that 
during the first 5 days of hospitalization, the number of RBCs, hemoglobin, mean 
corpuscular value, and hematocrit decrease significantly [8]. In addition, prema-
ture aging of RBCs, and their consequent removal from circulation, might be a risk 
factor for anemia: condition that can be found in KD patients. Furthermore, it has 

Figure 2. 
Oxidative stress and vascular implications in Kawasaki disease. The Kawasaki disease (KD) is characterized 
by acute inflammation that has tissue oxidative stress as hallmark. This condition boosts the increase of reactive 
oxygen (ROS) and nitrogen (RNS) species formation in tissues and in the vasculature through the activation 
of the related producing enzymes in the cytosol. The cytosolic enzymes include the different isoforms of NADPH 
oxidase (NOXs), nitric oxide synthase (NOS), cyclooxygenase (COX), xanthine oxidase (OX), asymmetric 
dimethylarginine (ADMA), uncoupled endothelial NOS (eNOS), and myeloperoxidase (MPO). Other 
potential sources of ROS and RNS are the oxidized RBCs (oxRBCs) and lipid peroxidation. The Kawasaki 
disease is also characterized by the down-regulation of the antioxidant systems, including the depletion of 
GSH concentration and the decrease in the activity of the detoxifying enzymes, such as superoxide dismutase 
(SOD), catalase (Cat) glutathione peroxidase (Gpx), glutathione reductase (GR) and the couple constituted by 
thioredoxin (Trx) and thioredoxin reductase (TrxR). These conditions result in the irreversible accumulation 
of oxidation products in proteins, lipids, and sugars, which allow to the impairment of the intracellular 
redox signaling and detrimentally affect vascular biology by promoting vascular inflammation, endothelial 
dysfunction, and vascular remodeling. These alterations underlie the typical KD-associated cardiovascular 
complications, such as coronary artery weakening, aneurysm formation, and myocardial infarction.
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been hypothesized that in KD patients, oxidative stress can alter platelet functions 
and platelet apoptosis program resulting in thrombocytosis that can exert a patho-
genetic role in the cardiovascular complications [47]. This hypothesis is supported 
by the detection of markers of platelet activation, such as P-selectin shedding and 
PS externalization. P-selectin is a cell-adhesion molecule constitutively expressed in 
the α-granules of resting platelet. It translocates at the surface during platelet 
activation and subsequently released by a shedding phenomenon. Its release 
modulates leucocyte adhesion to both platelets and endothelial cells during inflam-
matory responses and thrombus formation [73]. PS externalization in platelets is 
usually associated with a sort of programmed cell death and correlated with their 
hyper-activation. In KD patients, before treatment with IVIG and aspirin, two 
different sub-populations of platelets have been identified: (i) annexin V positive 
platelets, characterized by a decreased mitochondrial membrane potential and 

Plasmatic biomarkers Specificity Clinical findings 
in KD

ROS/RNS (O2
•−, •OH, •NO, 

H2O2)
Generates in blood a pro-oxidant status Increased levels

MDA Specific marker of omega-3 and omega-6 
fatty acids peroxidation

Increased levels

Protein 3-nitrotyrosine End-product of modification of tyrosine 
residues

Increased levels

ADMA Endogenous inhibitor of the endothelial 
NOS. Regulates the NO bioavailability

Decreased levels

MPO Pro-oxidant enzyme that can promote the 
pro-inflammatory state

Increased levels

RBC biomarkers

Glycophorin A Glycoprotein downregulated during RBC 
senescence

Down-regulated

CD47 Thrombospondin receptor that acts as a 
marker of self

Down-regulated

Band 3 Ion exchanger involved in RBC adhesion to 
endothelium

Down-regulated

PS externalization Phospholipid, marker of RBC aging and 
death when externalized to the outer leaflet 
of the plasma membrane

Increased percentage 
of RBCs with 
externalized PS

Platelet biomarkers

P-selectin A cell-adhesion molecule that modulates 
leucocyte adhesion to both platelets and 
endothelial cells during inflammatory 
responses and thrombus formation

Shedding

PS externalization and loss 
of mitochondrial membrane 
potential

Biomarkers of pro-coagulant platelets Detected

Mitochondrial membrane 
hyperpolarization without PS 
externalization

Biomarkers of potentially pro-coagulant 
platelets

Detected

ROS/RNS, oxygen- and nitrogen-derived species; O2
•, superoxide anion; •OH, hydroxyl radicals; •NO, nitric oxide; 

H2O2, hydrogen peroxide; MDA, malondialdehyde; ADMA, asymmetric dimethylarginine; MPO, myeloperoxidase; 
RBC, red blood cell; PS, phosphatidylserine; NOS, nitric oxide synthase.

Table 3. 
Biomarkers of oxidative stress in KD.
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defined as activated pro-coagulant platelets [74] and (ii) annexin V negative 
platelets, characterized by an increased mitochondrial membrane potential, prone 
to become pro-coagulant when in contact with adenosine diphosphate (ADP) and 
thromboxane, mediators normally released from activated platelets [75]. It has been 
hypothesized that in KD patients, activated pro-coagulant platelets could contrib-
ute to the increased thrombotic risk detected in these patients. Implication of 
oxidative stress in KD is depicted in Figure 2. Biomarkers of oxidative stress in KD 
patients are summarized in Table 3.

4. Conclusions

In this chapter, a complex framework of events contributing to the etiology 
of KD has been described. These include some type of bacterial or viral infec-
tion, genetic determinants, immune system as well as hematological alterations. 
Although epidemiological and clinical data suggest that KD may arise from an 
abnormal response to infectious diseases in genetically susceptible individuals, 
there are still many controversies about the etiology of KD. There is no agree-
ment on KD-related infectious agents, and the immune mechanisms behind KD 
remaining only partially known. Only the basic research evaluating the pathogenic 
mechanisms of this disease will probably find new targets for identifying disease-
modifying agents or therapies that are more specific. Moreover, in this chapter, we 
provided new lines of evidence supporting the hypothesis that systemic oxidative 
stress together with premature aging of RBCs and platelets could play a critical role 
in the cardiovascular risk observed in patients with KD.
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ADMA asymmetric dimethylarginine
ADP adenosine diphosphate
CALs coronary artery lesions
CASP3 caspase 3
CO3

• carbonate radical
CRP C-reactive protein
GA glycophorin A
GWASs genome-wide association studies
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HBoV coronavirus and human bocavirus
HBV Epstein Barr virus
HHV-6 human herpes virus 6
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IFN-γ Interferon γ
ITPKC 1,4,5-trisphosphate 3-kinase C
IVIG intravenous immunoglobulin
KD Kawasaki disease
MCP-1 monocyte chemotactic protein-1
MDA malondialdehyde
MICA major histocompatibility complex class I chain-related gene A
MPO myeloperoxidase
NKG2-A natural killer cell receptor group 2-A
•NO nitric oxide
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been hypothesized that in KD patients, oxidative stress can alter platelet functions 
and platelet apoptosis program resulting in thrombocytosis that can exert a patho-
genetic role in the cardiovascular complications [47]. This hypothesis is supported 
by the detection of markers of platelet activation, such as P-selectin shedding and 
PS externalization. P-selectin is a cell-adhesion molecule constitutively expressed in 
the α-granules of resting platelet. It translocates at the surface during platelet 
activation and subsequently released by a shedding phenomenon. Its release 
modulates leucocyte adhesion to both platelets and endothelial cells during inflam-
matory responses and thrombus formation [73]. PS externalization in platelets is 
usually associated with a sort of programmed cell death and correlated with their 
hyper-activation. In KD patients, before treatment with IVIG and aspirin, two 
different sub-populations of platelets have been identified: (i) annexin V positive 
platelets, characterized by a decreased mitochondrial membrane potential and 
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MPO Pro-oxidant enzyme that can promote the 
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CD47 Thrombospondin receptor that acts as a 
marker of self

Down-regulated

Band 3 Ion exchanger involved in RBC adhesion to 
endothelium

Down-regulated

PS externalization Phospholipid, marker of RBC aging and 
death when externalized to the outer leaflet 
of the plasma membrane

Increased percentage 
of RBCs with 
externalized PS

Platelet biomarkers

P-selectin A cell-adhesion molecule that modulates 
leucocyte adhesion to both platelets and 
endothelial cells during inflammatory 
responses and thrombus formation

Shedding

PS externalization and loss 
of mitochondrial membrane 
potential

Biomarkers of pro-coagulant platelets Detected

Mitochondrial membrane 
hyperpolarization without PS 
externalization

Biomarkers of potentially pro-coagulant 
platelets

Detected

ROS/RNS, oxygen- and nitrogen-derived species; O2
•, superoxide anion; •OH, hydroxyl radicals; •NO, nitric oxide; 

H2O2, hydrogen peroxide; MDA, malondialdehyde; ADMA, asymmetric dimethylarginine; MPO, myeloperoxidase; 
RBC, red blood cell; PS, phosphatidylserine; NOS, nitric oxide synthase.

Table 3. 
Biomarkers of oxidative stress in KD.
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defined as activated pro-coagulant platelets [74] and (ii) annexin V negative 
platelets, characterized by an increased mitochondrial membrane potential, prone 
to become pro-coagulant when in contact with adenosine diphosphate (ADP) and 
thromboxane, mediators normally released from activated platelets [75]. It has been 
hypothesized that in KD patients, activated pro-coagulant platelets could contrib-
ute to the increased thrombotic risk detected in these patients. Implication of 
oxidative stress in KD is depicted in Figure 2. Biomarkers of oxidative stress in KD 
patients are summarized in Table 3.

4. Conclusions

In this chapter, a complex framework of events contributing to the etiology 
of KD has been described. These include some type of bacterial or viral infec-
tion, genetic determinants, immune system as well as hematological alterations. 
Although epidemiological and clinical data suggest that KD may arise from an 
abnormal response to infectious diseases in genetically susceptible individuals, 
there are still many controversies about the etiology of KD. There is no agree-
ment on KD-related infectious agents, and the immune mechanisms behind KD 
remaining only partially known. Only the basic research evaluating the pathogenic 
mechanisms of this disease will probably find new targets for identifying disease-
modifying agents or therapies that are more specific. Moreover, in this chapter, we 
provided new lines of evidence supporting the hypothesis that systemic oxidative 
stress together with premature aging of RBCs and platelets could play a critical role 
in the cardiovascular risk observed in patients with KD.
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CALs coronary artery lesions
CASP3 caspase 3
CO3

• carbonate radical
CRP C-reactive protein
GA glycophorin A
GWASs genome-wide association studies
H2O2 hydrogen peroxide
HBoV coronavirus and human bocavirus
HBV Epstein Barr virus
HHV-6 human herpes virus 6
HLA human leukocyte antigen
HTLV human T-lymphotropic virus
IFN-γ Interferon γ
ITPKC 1,4,5-trisphosphate 3-kinase C
IVIG intravenous immunoglobulin
KD Kawasaki disease
MCP-1 monocyte chemotactic protein-1
MDA malondialdehyde
MICA major histocompatibility complex class I chain-related gene A
MPO myeloperoxidase
NKG2-A natural killer cell receptor group 2-A
•NO nitric oxide



Free Radical Medicine and Biology

46

Author details

Rosa Vona1, Donatella Pietraforte2, Lucrezia Gambardella1, Alessandra Marchesi3, 
Isabella Tarissi de Jacobis3, Alberto Villani3, Domenico Del Principe4  
and Elisabetta Straface1*

1 Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di 
Sanità, Rome, Italy

2 Core Facilities, Istituto Superiore di Sanità, Rome, Italy

3 General Pediatric and Infectious Disease Unit, Internal Care Department, 
Bambino Gesù Children’s Hospital, Rome, Italy

4 Institute of Translational Pharmacology, CNR, Rome, Italy

*Address all correspondence to: elisabetta.straface@iss.it

NOS nitric oxide synthase
O2

•− superoxide anion
•OH hydroxyl radicals
OS oxidative stress
PS phosphatidylserine
RBC red blood cell
RNS reactive nitrogen species
ROS reactive oxygen species
SEA Staphylococcal Enterotoxin A
SEB Staphylococcal Enterotoxin B
SPEA Streptococcal Pyogenic Exotoxin A
SPEC Streptococcal Pyogenic Exotoxin C
TGF-β transforming growth factor-beta
TNF-α tumor necrosis factor α
Treg regulatory T cells
TSST-1 toxic shock syndrome toxin-1
VEGF vascular endothelial growth factor

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 

47

Role of Oxidative Stress in the Cardiovascular Complications of Kawasaki Disease
DOI: http://dx.doi.org/10.5772/intechopen.86781

References

[1] Makino N, Nakamura Y, Yashiro 
M, et al. Descriptive epidemiology of 
Kawasaki disease in Japan, 2011 2012: 
From the results of the 22nd nationwide 
survey. Journal of Epidemiology. 
2015;25:239-245

[2] Bayers S, Shulman ST, Paller 
AS. Kawasaki disease: Part I. Diagnosis, 
clinical features, and pathogenesis. 
Journal of the American Academy of 
Dermatology. 2013;69:501-511

[3] Greco A, De Virgilio A, Rizzo MI, 
Tombolini M, Gallo A, Fusconi M, 
et al. Kawasaki disease: An evolving 
paradigm. Autoimmunity Reviews. 
2015;14:703-709

[4] Paredes N, Mondal T, Brandão LR, 
Chan AK. Management of myocardial 
infarction in children with Kawasaki 
disease. Blood Coagulation & 
Fibrinolysis. 2010;21:620-631

[5] Fukazawa R, Ogawa S. Long-
term prognosis of patients with 
Kawasaki disease: At risk for future 
atherosclerosis? Journal of Nippon 
Medical School. 2009;76:124-133

[6] Baker AL, Newburger JW. Kawasaki 
disease. Circulation. 2008;118:110-112

[7] Wenzel P, Kossmann S, Munzel 
T, Daiber A. Redox regulation 
of cardiovascular inflammation 
immunomodulatory function of 
mitochondrial and Nox-derived 
reactive oxygen and nitrogen species. 
Free Radical Biology & Medicine. 
2017;109:48-60

[8] Straface E, Marchesi A, Gambardella 
L, Metere A, Tarissi de Jacobis I, 
Viora M, et al. Does oxidative stress 
play a critical role in cardiovascular 
complications of Kawasaki disease? 
Antioxidants & Redox Signaling. 
2012;17:1441-1446

[9] Hall M, Hoyt L, Ferrieri P, Schlievert 
PM, Jenson HB. Kawasaki syndrome-
like illness associated with infection 
caused by enterotoxin B-secreting 
Staphylococcus aureus. Clinical Infectious 
Diseases. 1999;29:586-589

[10] Shinomiya N, Takeda T, Kuratsuji 
T, Takagi K, Kosaka T, Tatsuzawa O, 
et al. Variant Streptococcus sanguis as 
an etiological agent of Kawasaki disease. 
Progress in Clinical and Biological 
Research. 1987;250:571-572

[11] Kikuta H, Nakanishi M, Ishikawa 
N, Konno M, Matsumoto S. Detection 
of Epstein-Barr virus sequences in 
patients with Kawasaki disease by 
means of the polymerase chain reaction. 
Intervirology. 1992;33:1-335

[12] Anderson DG, Warner G, Barlow 
E. Kawasaki disease associated with 
streptococcal infection within a family. 
Journal of Paediatrics and Child Health. 
1995;31:355-357

[13] Embil JA, McFarlane ES, 
Murphy DM, Krause VW, Stewart 
HB. Adenovirus type 2 isolated from 
a patient with fatal Kawasaki disease. 
Canadian Medical Association Journal. 
1985;132:1400

[14] Okano M, Luka J, Thiele GM, 
Sakiyama Y, Matsumoto S, Purtilo 
DT. Human herpesvirus 6 infection and 
Kawasaki disease. Journal of Clinical 
Microbiology. 1989;27:2379-2380

[15] Okano M. Kawasaki disease and 
human lymphotropic virus infection. 
Current Medical Research and Opinion. 
1999;15:129-134

[16] Holman RC, Belay ED, Clarke MJ, 
Kaufman SF, Schonberger LB. Kawasaki 
syndrome among American Indian and 
Alaska Native children, 1980 through 
1995. The Pediatric Infectious Disease 
Journal. 1999;18:451-455



Free Radical Medicine and Biology

46

Author details

Rosa Vona1, Donatella Pietraforte2, Lucrezia Gambardella1, Alessandra Marchesi3, 
Isabella Tarissi de Jacobis3, Alberto Villani3, Domenico Del Principe4  
and Elisabetta Straface1*

1 Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di 
Sanità, Rome, Italy

2 Core Facilities, Istituto Superiore di Sanità, Rome, Italy

3 General Pediatric and Infectious Disease Unit, Internal Care Department, 
Bambino Gesù Children’s Hospital, Rome, Italy

4 Institute of Translational Pharmacology, CNR, Rome, Italy

*Address all correspondence to: elisabetta.straface@iss.it

NOS nitric oxide synthase
O2

•− superoxide anion
•OH hydroxyl radicals
OS oxidative stress
PS phosphatidylserine
RBC red blood cell
RNS reactive nitrogen species
ROS reactive oxygen species
SEA Staphylococcal Enterotoxin A
SEB Staphylococcal Enterotoxin B
SPEA Streptococcal Pyogenic Exotoxin A
SPEC Streptococcal Pyogenic Exotoxin C
TGF-β transforming growth factor-beta
TNF-α tumor necrosis factor α
Treg regulatory T cells
TSST-1 toxic shock syndrome toxin-1
VEGF vascular endothelial growth factor

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 

47

Role of Oxidative Stress in the Cardiovascular Complications of Kawasaki Disease
DOI: http://dx.doi.org/10.5772/intechopen.86781

References

[1] Makino N, Nakamura Y, Yashiro 
M, et al. Descriptive epidemiology of 
Kawasaki disease in Japan, 2011 2012: 
From the results of the 22nd nationwide 
survey. Journal of Epidemiology. 
2015;25:239-245

[2] Bayers S, Shulman ST, Paller 
AS. Kawasaki disease: Part I. Diagnosis, 
clinical features, and pathogenesis. 
Journal of the American Academy of 
Dermatology. 2013;69:501-511

[3] Greco A, De Virgilio A, Rizzo MI, 
Tombolini M, Gallo A, Fusconi M, 
et al. Kawasaki disease: An evolving 
paradigm. Autoimmunity Reviews. 
2015;14:703-709

[4] Paredes N, Mondal T, Brandão LR, 
Chan AK. Management of myocardial 
infarction in children with Kawasaki 
disease. Blood Coagulation & 
Fibrinolysis. 2010;21:620-631

[5] Fukazawa R, Ogawa S. Long-
term prognosis of patients with 
Kawasaki disease: At risk for future 
atherosclerosis? Journal of Nippon 
Medical School. 2009;76:124-133

[6] Baker AL, Newburger JW. Kawasaki 
disease. Circulation. 2008;118:110-112

[7] Wenzel P, Kossmann S, Munzel 
T, Daiber A. Redox regulation 
of cardiovascular inflammation 
immunomodulatory function of 
mitochondrial and Nox-derived 
reactive oxygen and nitrogen species. 
Free Radical Biology & Medicine. 
2017;109:48-60

[8] Straface E, Marchesi A, Gambardella 
L, Metere A, Tarissi de Jacobis I, 
Viora M, et al. Does oxidative stress 
play a critical role in cardiovascular 
complications of Kawasaki disease? 
Antioxidants & Redox Signaling. 
2012;17:1441-1446

[9] Hall M, Hoyt L, Ferrieri P, Schlievert 
PM, Jenson HB. Kawasaki syndrome-
like illness associated with infection 
caused by enterotoxin B-secreting 
Staphylococcus aureus. Clinical Infectious 
Diseases. 1999;29:586-589

[10] Shinomiya N, Takeda T, Kuratsuji 
T, Takagi K, Kosaka T, Tatsuzawa O, 
et al. Variant Streptococcus sanguis as 
an etiological agent of Kawasaki disease. 
Progress in Clinical and Biological 
Research. 1987;250:571-572

[11] Kikuta H, Nakanishi M, Ishikawa 
N, Konno M, Matsumoto S. Detection 
of Epstein-Barr virus sequences in 
patients with Kawasaki disease by 
means of the polymerase chain reaction. 
Intervirology. 1992;33:1-335

[12] Anderson DG, Warner G, Barlow 
E. Kawasaki disease associated with 
streptococcal infection within a family. 
Journal of Paediatrics and Child Health. 
1995;31:355-357

[13] Embil JA, McFarlane ES, 
Murphy DM, Krause VW, Stewart 
HB. Adenovirus type 2 isolated from 
a patient with fatal Kawasaki disease. 
Canadian Medical Association Journal. 
1985;132:1400

[14] Okano M, Luka J, Thiele GM, 
Sakiyama Y, Matsumoto S, Purtilo 
DT. Human herpesvirus 6 infection and 
Kawasaki disease. Journal of Clinical 
Microbiology. 1989;27:2379-2380

[15] Okano M. Kawasaki disease and 
human lymphotropic virus infection. 
Current Medical Research and Opinion. 
1999;15:129-134

[16] Holman RC, Belay ED, Clarke MJ, 
Kaufman SF, Schonberger LB. Kawasaki 
syndrome among American Indian and 
Alaska Native children, 1980 through 
1995. The Pediatric Infectious Disease 
Journal. 1999;18:451-455



Free Radical Medicine and Biology

48

[17] Principi N, Bosis S, Esposito S. 
Effects of coronavirus infections in 
children. Emerging Infectious Diseases. 
2010;16:183-188

[18] Rowley AH, Baker SC, 
Shulman ST, et al. Ultrastructural, 
immunofluorescence, and RNA 
evidence support the hypothesis of a 
“new” virus associated with Kawasaki 
disease. The Journal of Infectious 
Diseases. 2011;203:1021-1030

[19] Catalano-Pons C, Giraud C, 
Rozenberg F, Meritet JF, Lebon P, 
Gendrel D. Detection of human 
bocavirus in children with Kawasaki 
disease. Clinical Microbiology and 
Infection. 2007;13:1220-1222

[20] Proft T, Fraser JD. Bacterial 
superantigens. Clinical and 
Experimental Immunology. 
2003;133:299-306

[21] Matsubara K, Fukaya T, Miwa 
K, et al. Development of serum IgM 
antibodies against superantigens of 
Staphylococcus aureus and Streptococcus 
pyogenes in Kawasaki disease. Clinical 
and Experimental Immunology. 
2006;143:427-434

[22] Yoshioka T, Matsutani T, Toyosaki-
Maeda T, et al. Relation of streptococcal 
pyrogenic exotoxin C as a causative 
superantigen for Kawasaki disease. 
Pediatric Research. 2003;53:403-410

[23] Lv YW, Wang J, Sun L, Zhang JM, 
Cao L, Ding YY, et al. Understanding 
the pathogenesis of Kawasaki disease 
by network and pathway analysis. 
Computational and Mathematical 
Methods in Medicine. 2013;2013:989307

[24] Meissner HC, Leung DY. 
Superantigens, conventional antigens 
and the etiology of Kawasaki syndrome. 
The Pediatric Infectious Disease Journal. 
2000;19:91-94

[25] Wang Y, Wang W, Gong F, Fu S, 
Zhang Q , Hu J, et al. Evaluation of 

intravenous immunoglobulin resistance 
and coronary artery lesions in relation 
to Th1/Th2 cytokine profiles in patients 
with Kawasaki disease. Arthritis and 
Rheumatism. 2013;65:805-814

[26] Takahashi K, Oharaseki T, 
Wakayama M, Yokouchi Y, Naoe S, 
Murata H. Histopathological features 
of murine systemic vasculitis caused 
by Candida albicans extract—An 
animal model of Kawasaki disease. 
Inflammation Research. 2004;53:72-77

[27] Miura NN, Komai M, Adachi 
Y, Osada N, Kameoka Y, Suzuki K, 
et al. IL-10 is a negative regulatory 
factor of CAWS-vasculitis in CBA/J 
mice as assessed by comparison with 
Bruton’s tyrosine kinase-deficient 
CBA/N mice. Journal of Immunology. 
2009;183:3417-3424

[28] Jia S, Li C, Wang G, et al. 
The T helper type 17/regulatory 
T cell imbalance in patients with 
acute Kawasaki disease. Clinical 
and Experimental Immunology. 
2010;162:131-137

[29] Workman CJ, Szymczak-
Workman AL, Collison LW, Pillai 
MR, Vignali DA. The development 
and function of regulatory T cells. 
Cellular and Molecular Life Sciences. 
2009;66:2603-2622

[30] Onouchi Y. Molecular genetics of 
Kawasaki disease. Pediatric Research. 
2009;65:46R-54R

[31] Onouchi Y, Ozaki K, Burns JC, 
Shimizu C, Terai M, Hamada H, et al. 
A genome-wide association study 
identifies three new risk loci for 
Kawasaki disease. Nature Genetics. 
2012;44:517-521

[32] Kim JJ, Yun SW, Yu JJ, Yoon KL, 
Lee KY, Kil HR, et al. A genome-wide 
association analysis identifies NMNAT2 
and HCP5 as susceptibility loci for 
Kawasaki disease. Journal of Human 
Genetics. 2017;62:1023-1029

49

Role of Oxidative Stress in the Cardiovascular Complications of Kawasaki Disease
DOI: http://dx.doi.org/10.5772/intechopen.86781

[33] Kato S, Kimura M, Tsuji K, 
Kusakawa S, Asai T, Juji T, et al. HLA 
antigens in Kawasaki disease. Pediatrics. 
1978;61:252

[34] Kaslow RA, Bailowitz A, Lin 
FY, Koslowe P, Simonis T, Israel 
E. Association of epidemic Kawasaki 
syndrome with the HLA-A2, B44, Cw5 
antigen combination. Arthritis and 
Rheumatism. 1985;28:938

[35] Oh JH, Han JW, Lee SJ, Lee KY, 
Suh BK, Koh DK, et al. Polymorphisms 
of human leukocyte antigen genes in 
Korean children with Kawasaki disease. 
Pediatric Cardiology. 2008;29:402

[36] Huang Y, Lee YJ, Chen MR, Hsu CH, 
Lin SP, Sung TC, et al. Polymorphism of 
transmembrane region of MICA gene 
and Kawasaki disease. Experimental 
and Clinical Immunogenetics. 
2000;17:130-137

[37] Onouchi Y, Onoue S, Tamari M, 
Wakui K, Fukushima Y, Yashiro M, 
et al. CD40 ligand gene and Kawasaki 
disease. European Journal of Human 
Genetics. 2004;12:1062-1068

[38] Lin YJ, Wan L, Wu JY, Sheu JJ, 
Lin CW, Lan YC, et al. HLA-E gene 
polymorphism associated with 
susceptibility to Kawasaki disease 
and formation of coronary artery 
aneurysms. Arthritis and Rheumatism. 
2009;60:604-610

[39] Wang W, Lou J, Lu XZ, Qi YQ , Shen 
N, Zhong R, et al. 8p22-23-rs2254546 
as a susceptibility locus for Kawasaki 
disease: A case-control study and a 
meta-analysis. Scientific Reports. 
2014;4:4247

[40] Khor CC, Davila S, Breunis WB, 
Lee YC, Shimizu C, Wright VJ, et al. 
Genome-wide association study 
identifies FCGR2A as a susceptibility 
locus for Kawasaki disease. Nature 
Genetics. 2011;43(12):1241-1246

[41] Wang CL, Wu YT, Liu CA, et al. 
Expression of CD40 ligand on CD4+ 
T-cells and platelets correlated to the 
coronary artery lesion and disease 
progress in Kawasaki disease. Pediatrics. 
2003;111:E140-E147

[42] Coupel S, Moreau A, Hamidou 
M, Horejsi V, Soulillou JP, Charreau 
B. Expression and release of soluble 
HLA-E is an immunoregulatory feature 
of endothelial cell activation. Blood. 
2007;109:2806-2814

[43] Chang CJ, Kuo HC, Chang JS, et al. 
Replication and meta-analysis of GWAS 
identified susceptibility loci in Kawasaki 
disease confirm the importance of 
B lymphoid tyrosine kinase (BLK) 
in disease susceptibility. PLoS One. 
2013;8:e72037

[44] Falcini F, Trapani S, Turchini 
S, Farsi A, Ermini M, Keser G, 
et al. Immunological findings in 
Kawasaki disease: An evaluation in 
a cohort of Italian children. Clinical 
and Experimental Rheumatology. 
1997;15:685-689

[45] Ohno T, Igarashi H, Inoue K, 
Akazawa K, Joho K, Hara T. Serum 
vascular endothelial growth factor: 
A new predictive indicator for the 
occurrence of coronary artery lesions in 
Kawasaki disease. European Journal of 
Pediatrics. 2000;159:424-429

[46] Shimizu C, Jain S, Davila S, 
et al. Transforming growth factor-
beta signaling pathway in patients 
with Kawasaki disease. Circulation. 
Cardiovascular Genetics. 2011;4:6-25

[47] Del Principe D, Pietraforte D, 
Gambardella L, Marchesi A, Tarissi de 
Jacobis I, Villani A, et al. Pathogenetic 
determinants in Kawasaki disease: The 
haematological point of view. Journal 
of Cellular and Molecular Medicine. 
2017;21:632-639

[48] Chang D, Qian C, Li H, Feng 
H. Comprehensive analyses of DNA 



Free Radical Medicine and Biology

48

[17] Principi N, Bosis S, Esposito S. 
Effects of coronavirus infections in 
children. Emerging Infectious Diseases. 
2010;16:183-188

[18] Rowley AH, Baker SC, 
Shulman ST, et al. Ultrastructural, 
immunofluorescence, and RNA 
evidence support the hypothesis of a 
“new” virus associated with Kawasaki 
disease. The Journal of Infectious 
Diseases. 2011;203:1021-1030

[19] Catalano-Pons C, Giraud C, 
Rozenberg F, Meritet JF, Lebon P, 
Gendrel D. Detection of human 
bocavirus in children with Kawasaki 
disease. Clinical Microbiology and 
Infection. 2007;13:1220-1222

[20] Proft T, Fraser JD. Bacterial 
superantigens. Clinical and 
Experimental Immunology. 
2003;133:299-306

[21] Matsubara K, Fukaya T, Miwa 
K, et al. Development of serum IgM 
antibodies against superantigens of 
Staphylococcus aureus and Streptococcus 
pyogenes in Kawasaki disease. Clinical 
and Experimental Immunology. 
2006;143:427-434

[22] Yoshioka T, Matsutani T, Toyosaki-
Maeda T, et al. Relation of streptococcal 
pyrogenic exotoxin C as a causative 
superantigen for Kawasaki disease. 
Pediatric Research. 2003;53:403-410

[23] Lv YW, Wang J, Sun L, Zhang JM, 
Cao L, Ding YY, et al. Understanding 
the pathogenesis of Kawasaki disease 
by network and pathway analysis. 
Computational and Mathematical 
Methods in Medicine. 2013;2013:989307

[24] Meissner HC, Leung DY. 
Superantigens, conventional antigens 
and the etiology of Kawasaki syndrome. 
The Pediatric Infectious Disease Journal. 
2000;19:91-94

[25] Wang Y, Wang W, Gong F, Fu S, 
Zhang Q , Hu J, et al. Evaluation of 

intravenous immunoglobulin resistance 
and coronary artery lesions in relation 
to Th1/Th2 cytokine profiles in patients 
with Kawasaki disease. Arthritis and 
Rheumatism. 2013;65:805-814

[26] Takahashi K, Oharaseki T, 
Wakayama M, Yokouchi Y, Naoe S, 
Murata H. Histopathological features 
of murine systemic vasculitis caused 
by Candida albicans extract—An 
animal model of Kawasaki disease. 
Inflammation Research. 2004;53:72-77

[27] Miura NN, Komai M, Adachi 
Y, Osada N, Kameoka Y, Suzuki K, 
et al. IL-10 is a negative regulatory 
factor of CAWS-vasculitis in CBA/J 
mice as assessed by comparison with 
Bruton’s tyrosine kinase-deficient 
CBA/N mice. Journal of Immunology. 
2009;183:3417-3424

[28] Jia S, Li C, Wang G, et al. 
The T helper type 17/regulatory 
T cell imbalance in patients with 
acute Kawasaki disease. Clinical 
and Experimental Immunology. 
2010;162:131-137

[29] Workman CJ, Szymczak-
Workman AL, Collison LW, Pillai 
MR, Vignali DA. The development 
and function of regulatory T cells. 
Cellular and Molecular Life Sciences. 
2009;66:2603-2622

[30] Onouchi Y. Molecular genetics of 
Kawasaki disease. Pediatric Research. 
2009;65:46R-54R

[31] Onouchi Y, Ozaki K, Burns JC, 
Shimizu C, Terai M, Hamada H, et al. 
A genome-wide association study 
identifies three new risk loci for 
Kawasaki disease. Nature Genetics. 
2012;44:517-521

[32] Kim JJ, Yun SW, Yu JJ, Yoon KL, 
Lee KY, Kil HR, et al. A genome-wide 
association analysis identifies NMNAT2 
and HCP5 as susceptibility loci for 
Kawasaki disease. Journal of Human 
Genetics. 2017;62:1023-1029

49

Role of Oxidative Stress in the Cardiovascular Complications of Kawasaki Disease
DOI: http://dx.doi.org/10.5772/intechopen.86781

[33] Kato S, Kimura M, Tsuji K, 
Kusakawa S, Asai T, Juji T, et al. HLA 
antigens in Kawasaki disease. Pediatrics. 
1978;61:252

[34] Kaslow RA, Bailowitz A, Lin 
FY, Koslowe P, Simonis T, Israel 
E. Association of epidemic Kawasaki 
syndrome with the HLA-A2, B44, Cw5 
antigen combination. Arthritis and 
Rheumatism. 1985;28:938

[35] Oh JH, Han JW, Lee SJ, Lee KY, 
Suh BK, Koh DK, et al. Polymorphisms 
of human leukocyte antigen genes in 
Korean children with Kawasaki disease. 
Pediatric Cardiology. 2008;29:402

[36] Huang Y, Lee YJ, Chen MR, Hsu CH, 
Lin SP, Sung TC, et al. Polymorphism of 
transmembrane region of MICA gene 
and Kawasaki disease. Experimental 
and Clinical Immunogenetics. 
2000;17:130-137

[37] Onouchi Y, Onoue S, Tamari M, 
Wakui K, Fukushima Y, Yashiro M, 
et al. CD40 ligand gene and Kawasaki 
disease. European Journal of Human 
Genetics. 2004;12:1062-1068

[38] Lin YJ, Wan L, Wu JY, Sheu JJ, 
Lin CW, Lan YC, et al. HLA-E gene 
polymorphism associated with 
susceptibility to Kawasaki disease 
and formation of coronary artery 
aneurysms. Arthritis and Rheumatism. 
2009;60:604-610

[39] Wang W, Lou J, Lu XZ, Qi YQ , Shen 
N, Zhong R, et al. 8p22-23-rs2254546 
as a susceptibility locus for Kawasaki 
disease: A case-control study and a 
meta-analysis. Scientific Reports. 
2014;4:4247

[40] Khor CC, Davila S, Breunis WB, 
Lee YC, Shimizu C, Wright VJ, et al. 
Genome-wide association study 
identifies FCGR2A as a susceptibility 
locus for Kawasaki disease. Nature 
Genetics. 2011;43(12):1241-1246

[41] Wang CL, Wu YT, Liu CA, et al. 
Expression of CD40 ligand on CD4+ 
T-cells and platelets correlated to the 
coronary artery lesion and disease 
progress in Kawasaki disease. Pediatrics. 
2003;111:E140-E147

[42] Coupel S, Moreau A, Hamidou 
M, Horejsi V, Soulillou JP, Charreau 
B. Expression and release of soluble 
HLA-E is an immunoregulatory feature 
of endothelial cell activation. Blood. 
2007;109:2806-2814

[43] Chang CJ, Kuo HC, Chang JS, et al. 
Replication and meta-analysis of GWAS 
identified susceptibility loci in Kawasaki 
disease confirm the importance of 
B lymphoid tyrosine kinase (BLK) 
in disease susceptibility. PLoS One. 
2013;8:e72037

[44] Falcini F, Trapani S, Turchini 
S, Farsi A, Ermini M, Keser G, 
et al. Immunological findings in 
Kawasaki disease: An evaluation in 
a cohort of Italian children. Clinical 
and Experimental Rheumatology. 
1997;15:685-689

[45] Ohno T, Igarashi H, Inoue K, 
Akazawa K, Joho K, Hara T. Serum 
vascular endothelial growth factor: 
A new predictive indicator for the 
occurrence of coronary artery lesions in 
Kawasaki disease. European Journal of 
Pediatrics. 2000;159:424-429

[46] Shimizu C, Jain S, Davila S, 
et al. Transforming growth factor-
beta signaling pathway in patients 
with Kawasaki disease. Circulation. 
Cardiovascular Genetics. 2011;4:6-25

[47] Del Principe D, Pietraforte D, 
Gambardella L, Marchesi A, Tarissi de 
Jacobis I, Villani A, et al. Pathogenetic 
determinants in Kawasaki disease: The 
haematological point of view. Journal 
of Cellular and Molecular Medicine. 
2017;21:632-639

[48] Chang D, Qian C, Li H, Feng 
H. Comprehensive analyses of DNA 



Free Radical Medicine and Biology

50

methylation and gene expression 
profiles of Kawasaki disease. Journal of 
Cellular Biochemistry. 2019

[49] Bonney EA. Mapping out 
p38MAPK. American Journal 
of Reproductive Immunology. 
2017;77:e12652

[50] Kuo HC, Hsu YW, Wu CM, Chen 
SH, Hung KS, Chang WP, et al. A 
replication study for association of 
ITPKC and CASP3 two-locus analysis 
in IVIG unresponsiveness and coronary 
artery lesion in Kawasaki disease. PLoS 
One. 2013;8:e69685

[51] Lin Z, Meng X, Chen R, Huang 
G, Ma X, Chen J, et al. Ambient 
air pollution, temperature and 
Kawasaki disease in Shanghai, China. 
Chemosphere. 2017;186:817-822

[52] Kelly FJ. Oxidative stress: Its role in 
air pollution and adverse health effects. 
Occupational and Environmental 
Medicine. 2003;60:612-616

[53] Brook RD, Rajagopalan S, Pope CA 
3rd, Brook JR, Bhatnagar A, Diez-Roux 
AV, et al. Particulate matter air pollution 
and cardiovascular disease: An update 
to the scientific statement from the 
American Heart Association. Circulation. 
2010;121:2331-2378

[54] Chen R, Zhao Z, Sun Q , Lin Z,  
Zhao A, Wang C, et al. Size-fractionated 
particulate air pollution and circulating 
biomarkers of inflammation, 
coagulation, and vasoconstriction in a 
panel of young adults. Epidemiology. 
2015;26:328-336

[55] Jung CR, Chen WT, Lin YT, Hwang 
BF. Ambient air pollutant exposures and 
hospitalization for Kawasaki disease 
in Taiwan: A case-crossover study 
(2000-2010). Environmental Health 
Perspectives. 2017;125:670-676

[56] Fujiwara T, Shobugawa Y, 
Matsumoto K, Kawachi I. Association of 

early social environment with the onset 
of pediatric Kawasaki disease. Annals of 
Epidemiology. 2019;29:74-80

[57] Stearns JC, Zulyniak MA, de Souza 
RJ, Campbell NC, Fontes M, Shaikh M, 
et al. Ethnic and diet-related differences 
in the healthy infant microbiome. 
Genome Medicine. 2017;9:32

[58] Lee KY, Han JW, Lee JS. Kawasaki 
disease may be a hyper-immune 
reaction of genetically susceptible 
children to variants of normal 
environmental flora. Medical 
Hypotheses. 2007;69:642-651

[59] Cheung YF, Karmin O, Woo CW, 
Armstrong S, Siow YL, Chow PC, et al. 
Oxidative stress in children late after 
Kawasaki disease: Relationship with 
carotid atherosclerosis and stiffness. 
BMC Pediatrics. 2008;8:20

[60] Marrocco I, Altieri F, Peluso 
I. Measurement and clinical significance 
of biomarkers of oxidative stress in 
humans. Oxidative Medicine and 
Cellular Longevity. 2017;2017:6501046

[61] Signorini C, De Felice C, Durand 
T, Oger C, Galano JM, Leoncini S, et al. 
Isoprostanes and 4-hydroxy-2-nonenal: 
Markers or mediators of disease? 
Focus on Rett syndrome as a model of 
autism spectrum disorder. Oxidative 
Medicine and Cellular Longevity. 
2013;2013:343824

[62] Takeuchi D, Saji T, Takatsuki S, 
Fujiwara M. Abnormal tissue Doppler 
images are associated with elevated 
plasma brain natriuretic peptide and 
increased oxidative stress in acute 
Kawasaki disease. Circulation Journal. 
2007;71:357-362

[63] Takatsuki S, Ito Y, Takeuchi D, 
et al. IVIG reduced vascular oxidative 
stress in patients with Kawasaki disease. 
Circulation Journal. 2009;73:1315-1318

[64] Bartesaghi S, Radi R. Fundamentals 
on the biochemistry of peroxynitrite 

51

Role of Oxidative Stress in the Cardiovascular Complications of Kawasaki Disease
DOI: http://dx.doi.org/10.5772/intechopen.86781

and protein tyrosine nitration. Redox 
Biology. 2018;14:618-625

[65] Campolo N, Bartesaghi S, Radi R.  
Metal-catalyzed protein tyrosine 
nitration in biological systems. Redox 
Report. 2014;19:221-231

[66] van der Vliet A, Eiserich JP, 
Halliwell B, Cross CE. Formation 
of reactive nitrogen species during 
peroxidase-catalyzed oxidation 
of nitrite. A potential additional 
mechanism of nitric oxide-dependent 
toxicity. The Journal of Biological 
Chemistry. 1997;272:7617-7625

[67] Ueno K, Nomura Y, Morita Y,  
Eguchi T, Masuda K, Kawano 
Y. Circulating platelet-neutrophil 
aggregates play a significant role in 
Kawasaki disease. Circulation Journal. 
2015;79:1349-1356

[68] Ishikawa T, Seki K. The association 
between oxidative stress and endothelial 
dysfunction in early childhood 
patients with Kawasaki disease. BMC 
Cardiovascular Disorders. 2018;18:30

[69] Rochette L, Lorin J, Zeller M, 
Guilland JC, Lorgis L, Cottin Y, et al. 
Nitric oxide synthase inhibition and 
oxidative stress in cardiovascular 
diseases: Possible therapeutic targets? 
Pharmacology & Therapeutics. 
2013;140:239-257

[70] Huang YH, Tain YL, Lee CP, Kuo 
HC. Asymmetric and symmetric 
dimethylarginine are associated with 
coronary artery lesions in Kawasaki 
disease. The Journal of Pediatrics. 
2014;165:295-299

[71] Minetti M, Malorni W. Redox 
control of red blood cell biology: The 
red blood cell as a target and source of 
prooxidant species. Antioxidants & 
Redox Signaling. 2006;8:1165-1169

[72] Buehler PW, Alayash AI. Oxygen 
sensing in the circulation: “Cross 

talk” between red blood cells and the 
vasculature. Antioxidants & Redox 
Signaling. 2004;6:1000-1010

[73] Furie B, Furie BC, Flaumenhaft 
R. A journey with platelet P-selectin: 
The molecular basis of granule 
secretion, signalling and cell adhesion. 
Thrombosis and Haemostasis. 
2001;86:214-221

[74] Dale GL, Friese P. Bax activators 
potentiate coated-platelet formation. 
Journal of Thrombosis and Haemostasis. 
2006;4:2664-2669

[75] Pietraforte D, Gambardella 
L, Marchesi A, Tarissi de Jacobis 
I, Villani A, Del Principe D, et al. 
Platelets in Kawasaki patients: Two 
different populations with different 
mitochondrial functions. International 
Journal of Cardiology. 2014;172:526-528



Free Radical Medicine and Biology

50

methylation and gene expression 
profiles of Kawasaki disease. Journal of 
Cellular Biochemistry. 2019

[49] Bonney EA. Mapping out 
p38MAPK. American Journal 
of Reproductive Immunology. 
2017;77:e12652

[50] Kuo HC, Hsu YW, Wu CM, Chen 
SH, Hung KS, Chang WP, et al. A 
replication study for association of 
ITPKC and CASP3 two-locus analysis 
in IVIG unresponsiveness and coronary 
artery lesion in Kawasaki disease. PLoS 
One. 2013;8:e69685

[51] Lin Z, Meng X, Chen R, Huang 
G, Ma X, Chen J, et al. Ambient 
air pollution, temperature and 
Kawasaki disease in Shanghai, China. 
Chemosphere. 2017;186:817-822

[52] Kelly FJ. Oxidative stress: Its role in 
air pollution and adverse health effects. 
Occupational and Environmental 
Medicine. 2003;60:612-616

[53] Brook RD, Rajagopalan S, Pope CA 
3rd, Brook JR, Bhatnagar A, Diez-Roux 
AV, et al. Particulate matter air pollution 
and cardiovascular disease: An update 
to the scientific statement from the 
American Heart Association. Circulation. 
2010;121:2331-2378

[54] Chen R, Zhao Z, Sun Q , Lin Z,  
Zhao A, Wang C, et al. Size-fractionated 
particulate air pollution and circulating 
biomarkers of inflammation, 
coagulation, and vasoconstriction in a 
panel of young adults. Epidemiology. 
2015;26:328-336

[55] Jung CR, Chen WT, Lin YT, Hwang 
BF. Ambient air pollutant exposures and 
hospitalization for Kawasaki disease 
in Taiwan: A case-crossover study 
(2000-2010). Environmental Health 
Perspectives. 2017;125:670-676

[56] Fujiwara T, Shobugawa Y, 
Matsumoto K, Kawachi I. Association of 

early social environment with the onset 
of pediatric Kawasaki disease. Annals of 
Epidemiology. 2019;29:74-80

[57] Stearns JC, Zulyniak MA, de Souza 
RJ, Campbell NC, Fontes M, Shaikh M, 
et al. Ethnic and diet-related differences 
in the healthy infant microbiome. 
Genome Medicine. 2017;9:32

[58] Lee KY, Han JW, Lee JS. Kawasaki 
disease may be a hyper-immune 
reaction of genetically susceptible 
children to variants of normal 
environmental flora. Medical 
Hypotheses. 2007;69:642-651

[59] Cheung YF, Karmin O, Woo CW, 
Armstrong S, Siow YL, Chow PC, et al. 
Oxidative stress in children late after 
Kawasaki disease: Relationship with 
carotid atherosclerosis and stiffness. 
BMC Pediatrics. 2008;8:20

[60] Marrocco I, Altieri F, Peluso 
I. Measurement and clinical significance 
of biomarkers of oxidative stress in 
humans. Oxidative Medicine and 
Cellular Longevity. 2017;2017:6501046

[61] Signorini C, De Felice C, Durand 
T, Oger C, Galano JM, Leoncini S, et al. 
Isoprostanes and 4-hydroxy-2-nonenal: 
Markers or mediators of disease? 
Focus on Rett syndrome as a model of 
autism spectrum disorder. Oxidative 
Medicine and Cellular Longevity. 
2013;2013:343824

[62] Takeuchi D, Saji T, Takatsuki S, 
Fujiwara M. Abnormal tissue Doppler 
images are associated with elevated 
plasma brain natriuretic peptide and 
increased oxidative stress in acute 
Kawasaki disease. Circulation Journal. 
2007;71:357-362

[63] Takatsuki S, Ito Y, Takeuchi D, 
et al. IVIG reduced vascular oxidative 
stress in patients with Kawasaki disease. 
Circulation Journal. 2009;73:1315-1318

[64] Bartesaghi S, Radi R. Fundamentals 
on the biochemistry of peroxynitrite 

51

Role of Oxidative Stress in the Cardiovascular Complications of Kawasaki Disease
DOI: http://dx.doi.org/10.5772/intechopen.86781

and protein tyrosine nitration. Redox 
Biology. 2018;14:618-625

[65] Campolo N, Bartesaghi S, Radi R.  
Metal-catalyzed protein tyrosine 
nitration in biological systems. Redox 
Report. 2014;19:221-231

[66] van der Vliet A, Eiserich JP, 
Halliwell B, Cross CE. Formation 
of reactive nitrogen species during 
peroxidase-catalyzed oxidation 
of nitrite. A potential additional 
mechanism of nitric oxide-dependent 
toxicity. The Journal of Biological 
Chemistry. 1997;272:7617-7625

[67] Ueno K, Nomura Y, Morita Y,  
Eguchi T, Masuda K, Kawano 
Y. Circulating platelet-neutrophil 
aggregates play a significant role in 
Kawasaki disease. Circulation Journal. 
2015;79:1349-1356

[68] Ishikawa T, Seki K. The association 
between oxidative stress and endothelial 
dysfunction in early childhood 
patients with Kawasaki disease. BMC 
Cardiovascular Disorders. 2018;18:30

[69] Rochette L, Lorin J, Zeller M, 
Guilland JC, Lorgis L, Cottin Y, et al. 
Nitric oxide synthase inhibition and 
oxidative stress in cardiovascular 
diseases: Possible therapeutic targets? 
Pharmacology & Therapeutics. 
2013;140:239-257

[70] Huang YH, Tain YL, Lee CP, Kuo 
HC. Asymmetric and symmetric 
dimethylarginine are associated with 
coronary artery lesions in Kawasaki 
disease. The Journal of Pediatrics. 
2014;165:295-299

[71] Minetti M, Malorni W. Redox 
control of red blood cell biology: The 
red blood cell as a target and source of 
prooxidant species. Antioxidants & 
Redox Signaling. 2006;8:1165-1169

[72] Buehler PW, Alayash AI. Oxygen 
sensing in the circulation: “Cross 

talk” between red blood cells and the 
vasculature. Antioxidants & Redox 
Signaling. 2004;6:1000-1010

[73] Furie B, Furie BC, Flaumenhaft 
R. A journey with platelet P-selectin: 
The molecular basis of granule 
secretion, signalling and cell adhesion. 
Thrombosis and Haemostasis. 
2001;86:214-221

[74] Dale GL, Friese P. Bax activators 
potentiate coated-platelet formation. 
Journal of Thrombosis and Haemostasis. 
2006;4:2664-2669

[75] Pietraforte D, Gambardella 
L, Marchesi A, Tarissi de Jacobis 
I, Villani A, Del Principe D, et al. 
Platelets in Kawasaki patients: Two 
different populations with different 
mitochondrial functions. International 
Journal of Cardiology. 2014;172:526-528



53

Chapter 4

Radiation-Generated ROS Induce 
Apoptosis via Mitochondrial
Sandra Claro, Alice Teixeira Ferreira  
and Maria Etsuko Miyamoto Oshiro

Abstract

Ionizing radiation (IR) causes an increase in intracellular calcium, alters con-
tractility, and triggers apoptosis via the activation of PKCα and -ε in irradiated 
smooth muscle cells. The present study investigated the role of the mitochondria in 
these processes and characterized the proteins involved in IR-induced apoptosis. 
Intestinal smooth muscle cells were exposed to 10–50 Gy from a γ-source. ROS 
and H2O2 levels were measured with colourimetry and a DCFH-DA probe, and 
protein expression was analyzed by immunoblotting and immunofluorescence. 
The IR-induced generation of ROS was inhibited by glutathione, and apoptosis was 
mediated by the mitochondria via BAX, cytochrome c, and caspase 3. IR increased 
the expression of the cyclins A, B2, and E, and led to unbalanced cellular growth in 
an absorption dose-dependent manner. However, radiation did not induce altera-
tions in the mitochondrial ultrastructure or in KΨmito. In contrast, IR increased the 
nuclear expression of BAG-1, TNFα, PKCα, and -ε and cyclins A and E. In conclu-
sion, IR triggers the activation of antiapoptotic proteins and enhances the risk of a 
second type of cancer in patients undergoing radiotherapy. In addition to increasing 
the radioresistance of cells, antiapoptotic proteins can also stimulate uncontrolled 
cell proliferation that culminates in mutagenesis.

Keywords: ROS, apoptosis, mitochondria, cyclins, smooth muscle

1. Introduction

The molecular pathways that induce and regulate apoptosis have been exten-
sively studied [1, 2]. Apoptosis is characterized by the condensation of nuclear 
chromatin and blebbing of nuclear and cytoplasmic membranes, a process that 
leads to the formation of membrane-bound apoptotic bodies [3]. The proteolytic 
caspase cascade plays a central role in the apoptotic response, and proteins of the 
BCL-2 family are key checkpoints in the regulation of apoptosis [4, 5]. In healthy 
cells, the BCL-2 family is kept in an inactive form, with a complex distribution in 
the mitochondrial outer membrane (MOM), sarco/endoplasmic reticulum (SER), 
cytosol, and nuclear envelope [6].

The mitochondria also play a key role in Ca2+ homeostasis and oxidative stress 
[7]. Elevated intracellular calcium concentrations ([Ca2+]i) do not seem to inhibit 
mitochondrial motility [8] but can lead to the opening of the mitochondrial 
transition pore (MTP) complex during the process of swelling, which is respon-
sible in turn for the permeability of the MOM to large molecules and the collapse 
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of the mitochondrial transmembrane electric potential (KΨmito) [9]. Several 
studies have used tumor cells to investigate the molecular pathways involved in 
the regulation and triggering of apoptosis by ionizing radiation (IR) [10, 11], but 
IR is more effective in normal than neoplasic tissue; so it is important to minimize 
the exposure in it and to clarify the mechanisms involved in the cellular damage 
[12]. In addition, damage to healthy tissues due to IR used in cancer treatment 
is frequently associated with the appearance of a second cancer occurring in the 
radiated field or in its vicinity [13]. This event could be explained by remodeling 
of the molecular and cellular processes triggering a number of inter- and intracel-
lular signaling cascades that regulate the progression of the cell cycle and cell 
survival [14–16].

The apoptotic pathway activated by IR is different from the extrinsic pathway 
activated by ligands and involves the generation of reactive oxygen species (ROS) 
and H2O2 [10, 17]. According to Orrenius [18], the enhanced ROS production 
regulates cellular metabolism, for the execution of the suicide program, by proteins 
released from the mitochondria. One of the factors involved in ROS-induced cell 
death is tumor necrosis factor alpha (TNFα) [15, 19], and mitochondria appear 
to participate in the production of this mediator. A number of hypotheses have 
been put forward to explain the mechanism by which TNFα cytotoxicity induces 
the intrinsic pathway [11]. Nevertheless, the mechanisms regulated by ROS is not 
totally clear, but our previous results described an increase in [Ca2+]i [20] and the 
activation of protein kinase C (PKCα and -ε) [21]. IR has not been directly dem-
onstrated to affect proteins, including cyclins, cyclin-dependent kinases (CDKs), 
retinoblastoma protein (Rb), and E2F complex proteins [22–24], involved in the 
orchestration of the cell cycle. The goals of this study were to examine the extrinsic 
and intrinsic mechanisms involved in the apoptosis, and to investigate ROS and 
H2O2 generation and the mitochondria role under IR of intestinal smooth muscle 
cells from the guinea pig ileum.

1.1 Tissues and cell culture

Fragments of the longitudinal smooth muscle layer of the guinea pig ileum 
(LSMLGPI) were prepared as described previously [20, 21], and the IR exposure 
in tissue fragments and confluent cell cultures from the LSMLGPI were exposed 
to single dose of 10–50 Gy, emitted by a 60Co γ-source [25]. The samples were 
radiated with a total dose of 10–50 Gy, and were then maintained for 3 days in 
Dulbecco’s Modified Eagle Medium (DMEM).

1.2 Colourimetry

The ROS level was measured in the homogenates using the fluorescent method 
described by Yagi [26].

The H2O2-induced lipid peroxidation (LP) was measured through the oxidation 
of Fe2+ in the presence of xylenol orange in a spectrophotometer [27].

1.3 Immunofluorescence analysis

a. The data were acquired and analyzed using a FACS Calibur flow cytometer and 
CellQuest software.

b. The cell death study was measured at 585/542 nm using the log or linear model 
in the FL-2 channel [20, 28].
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c. To test if the generation of ROS contributes to apoptosis, some cultured cells 
were incubated with glutathione (GSH), 10−3 M reduced glutathione, and 
yeast glutathione reductase type II (0.08 units/mg protein) and then fixed and 
stained as described in section b [29].

d. The generation of H2O2 was measured with 2′7′-dichlorofluorescein diacetate 
(DCFH-DA, as described by Hasui [30]) in live cultured cells. The cells were 
suspended in PBS, mixed with 0.3 mM DCFH-DA at 37°C to allow the conver-
sion to DCF, and analyzed at 570/530 nm in the FL-1 channel.

e. To measure the degree of unbalanced growth, cultured cells were detached 
and stained with acridine orange (AO) for the evaluation of the ratio of RNA 
content, according to Traganos [31].

f. The proteins involved in apoptosis were measured by immunofluorescence by 
specific antibodies, anti-: caspase 3, cyclin A, cyclin B2, cyclin E, PKCα, PKCε, 
TNFα, BAX, cytochrome c, BAG-1, BCL-2, and BCL-xL ([20, 32]).

g. The cyclins A, B2, and E, and the DNA content were analyzed by MODFIT 3.0 
software as described by Gong [33].

1.4 Western blot analysis

The experimental procedure was performed as previously described [21] using 
LSMLGPI homogenates. The following antibodies were used, anti-: caspase 3, cyclin 
A and cyclin B2, cyclin E, BCL-xL, BAX, cytochrome c, and BCL-2.

1.5 Confocal microscopy

LSMLGPI cells were seeded onto glass coverslips and exposed to IR. The mito-
chondria were stained with a probe as described by Claro [20] in living cells.

For analysis of the KΨmito, 0.5 μM DiOC6(3) was used in DMEM, in vivo. The 
fluorescence was measured between 546/500 nm. To confirm the mitochondrial 
accumulation of DiOC6(3), the cells were incubated with KΨmito inhibitors [34] for 
different periods of time.

1.6 Electron micrography

The cells were seeded as described by Claro [21], and were then radiated and 
fixed before being analyzed with a transmission electron microscope (1200 EXII, 
JEOL, Tokyo, Japan).

1.7 Fluorescence microscopy

Living cells were incubated with 2 μg/ml bisbenzimides diluted in DMEM and 
were analyzed between 461 and 350 nm, for DNA labeling.

1.8 Statistical analysis

Differences between irradiated and nonradiated groups were identified using 
the analysis of variance (ANOVA) of the unpaired Newman-Keuls tests (GraphPad 
Prism 5 software). Statistical significance was set at P < 0.05.
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c. To test if the generation of ROS contributes to apoptosis, some cultured cells 
were incubated with glutathione (GSH), 10−3 M reduced glutathione, and 
yeast glutathione reductase type II (0.08 units/mg protein) and then fixed and 
stained as described in section b [29].
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(DCFH-DA, as described by Hasui [30]) in live cultured cells. The cells were 
suspended in PBS, mixed with 0.3 mM DCFH-DA at 37°C to allow the conver-
sion to DCF, and analyzed at 570/530 nm in the FL-1 channel.

e. To measure the degree of unbalanced growth, cultured cells were detached 
and stained with acridine orange (AO) for the evaluation of the ratio of RNA 
content, according to Traganos [31].

f. The proteins involved in apoptosis were measured by immunofluorescence by 
specific antibodies, anti-: caspase 3, cyclin A, cyclin B2, cyclin E, PKCα, PKCε, 
TNFα, BAX, cytochrome c, BAG-1, BCL-2, and BCL-xL ([20, 32]).

g. The cyclins A, B2, and E, and the DNA content were analyzed by MODFIT 3.0 
software as described by Gong [33].

1.4 Western blot analysis

The experimental procedure was performed as previously described [21] using 
LSMLGPI homogenates. The following antibodies were used, anti-: caspase 3, cyclin 
A and cyclin B2, cyclin E, BCL-xL, BAX, cytochrome c, and BCL-2.

1.5 Confocal microscopy

LSMLGPI cells were seeded onto glass coverslips and exposed to IR. The mito-
chondria were stained with a probe as described by Claro [20] in living cells.

For analysis of the KΨmito, 0.5 μM DiOC6(3) was used in DMEM, in vivo. The 
fluorescence was measured between 546/500 nm. To confirm the mitochondrial 
accumulation of DiOC6(3), the cells were incubated with KΨmito inhibitors [34] for 
different periods of time.

1.6 Electron micrography

The cells were seeded as described by Claro [21], and were then radiated and 
fixed before being analyzed with a transmission electron microscope (1200 EXII, 
JEOL, Tokyo, Japan).

1.7 Fluorescence microscopy

Living cells were incubated with 2 μg/ml bisbenzimides diluted in DMEM and 
were analyzed between 461 and 350 nm, for DNA labeling.

1.8 Statistical analysis

Differences between irradiated and nonradiated groups were identified using 
the analysis of variance (ANOVA) of the unpaired Newman-Keuls tests (GraphPad 
Prism 5 software). Statistical significance was set at P < 0.05.
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2. Results

We tested if LSMLGPI cells die by apoptosis in response to IR and observed that 
the maximum number of apoptotic bodies appeared 72 h following radiation with 
10–50 Gy [21, 28]. The first step was to evaluate the effects of IR on the expression 
of cell-cycle proteins in LSMLGPI cells (Figure 1). In contrast to the cyclins B2 
and E, the expression of cyclin A was unchanged at 24, 48, and 72 h postradiation. 
Subsequently, all proteins were analyzed at 24 h postradiation.

Figure 1. 
Effects of IR on the expression and localisation of cell cycle proteins. Cell cultures from LSMLGPI were fixed 
and labeled with specific primary and secondary antibodies. (A) Representative time-course histograms 
of activation of cyclins by IR. (B) Quantification of cells resuspended in PBS 24 h postradiation; besides, 
representative histograms of the acquisition data of relative cell size and analysis of fluorescence intensity 
distribution are shown. *P < 0.01 compared to control, #P < 0.01 compared to 10 Gy, Newman-Keuls test. Error 
bars indicate SEM. (C) Western blot analysis in whole-cell lysates demonstrating expression of cyclin a, B2 and 
E detected with appropriate antibodies. (D) Images of irradiated cells are representative of three independent 
experiments. Cyclin a and E co-localized with nucleus are light blue. Nuclear staining was done using DAPI 
(blue). Scale bar indicates 20 μm.
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Figure 2. 
Effects of IR the on synthesis of RNA and DNA and on the cyclins in the cell cycle. (A) DNA, RNA and αr 
RNA/ (DNA + RNA) distribution 24 h postradiation; besides, representative histograms are shown. (B) 
Quantification of cell cycle phases by DNA content and analysis of G1, S, and G2 phases of cell cycle at 
different times of postradiation. (C) Scheme illustrating the analysis performed to estimate the cells expressing 
cyclins versus cell-cycle phases in measurements of cellular DNA content (PI) and the intensity of cyclins 
associated Alexa Fluor immunofluorescence analyzed by MODFIT 3.0 software. *P < 0.01 compared to control, 
#and §P < 0.01 compared to 10 and 30 Gy, respectively. Newman-Keuls test. Error bars indicate SEM.
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Figure 3. 
Measurements of IR-generated-ROS and H2O2. (A) TBARS and lipid peroxidation measured in homogenate 
of LSMLGPI via colourimetric assays. (B) Detection of intracellular H2O2 using DCFH-DA probe analyzed at 
flow cytometer, and (C) the representative histograms. *P < 0.01 compared to 0 Gy, #and §P < 0.01 compared to 
10 and 30 Gy respectively. (D) Effect of glutathione on irradiated cells and fixed in 50% ethanol, and loaded 
with PI in the presence (+) or absence (−) of GSH, measured 72 h postradiation using flow cytometry and 
(E) representative histograms. *P < 0.01 indicates statistical difference between GSH-treated and untreated 
cells, #P < 0.01 compared to GSH-untreated control. *, § and ζP < 0.01 indicate statistical difference between 
untreated cells compared to control, 10 and 30 Gy, respectively. Newman-Keuls test. Error bars indicate SEM.
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Figure 2 correlates the changes in cyclin expression and the alteration of the cell 
cycle caused by IR. The αr ratio of RNA to total nucleic acid content decreased in an 
absorption dose-dependent manner, and it visualizes nuclear content. The radi-
ated population of cells did not divide because the G2 phase was arrested despite 
a significant increase in the accumulation of RNA and DNA during the S phase. 
Cyclins were continuously expressed during the cell cycle, however it was observed 
the G2 phase.

Figure 3 indicates that IR caused dose-dependent increases in the generation 
of thiobarbituric acid reactive substances (TBARS) and H2O2 with maximal ROS 
generation and a decrease in ROS levels. IR effects were suppressed by GSH, with a 
reduction in the number of cells in the M2 region. GSH reduced cell death indepen-
dent on the dose of radiation, resulting in levels similar to those in control cells.

Apoptosis was assessed 24 h later by the binding of antibodies specific for BAX, 
cytochrome c, and caspase 3 (Figure 4). IR also increased the expression levels of 
BCL-xL and BCL-2, suggesting that these oncoproteins attempted to promote cell 
proliferation.

Figure 5 shows the stained apoptotic bodies and the localization of Bax, caspase 3,  
cytochrome c, Bcl-2, and BCL-xL.

Figure 6 proves that mitochondria presented no evidence of damage other 
than the appearance of several lysosomes. To prove that the mitochondria 
were healthy, various agents known to reduce the KΨmito were incubated with 
DiOC6(3), in living cells.

Figure 4. 
Effects of IR on (A) pro- and (C) antiapoptotic proteins of LSMLGPI cells measured in the flow cytometer 
24 h postradiation. Cells were fixed, permeabilised and incubated with specific primary and secondary 
antibodies and resuspended in PBS. *P < 0.001 compared to control, #and §P < 0.01 compared to 10 and 30 Gy, 
respectively, Newman-Keuls test. Error bars indicate SEM. (B) and (D) western blot analyses demonstrating 
BAX, cytochrome c, caspase 3, BCL-xL, and BCL-2 expression, respectively.
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Figure 5. 
Effects of IR on apoptotic proteins localisation 24 h postradiation. (A) Cell death by apoptosis is shown 
by apoptotic bodies formation in irradiated living cells labeled with 2 μg/ml Hoechst 33342 resuspended 
in cultured medium DMEM maintained at 37°C. Control cells exhibit low blue fluorescence, while 
irradiated cells exhibit high blue fluorescence and some apoptotic bodies (arrows). Images of irradiated 
cells present (B) proapoptotic and (C) antiapoptotic proteins with mitochondria stained with Mitotracker 
(red), and cells incubated with specific primary and secondary antibodies. Nuclear staining was done 
using DAPI (blue). Proteins co-localized with mitochondria are yellow. Arrows indicate apoptotic bodies. 
Images are representative of three independent experiments observed in confocal microscope. Scale bar 
indicates 20 μm.
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The increased levels and activation/translocation of PKCα and -ε to the nucleus 
induced IR. Similarly, a large part of the TNFα was internalized and BAG-1 immu-
nofluorescence appears next to the nucleus (Figure 7).

3. Discussion

IR generates ROS and H2O2 and promotes changes related to the expression 
and localization of cyclins, and in the cellular cycle phase distributions in a dose-
dependent manner in LSMLGPI. Cyclins were continuously expressed during the 
cell cycle after treatment with IR; however, an arrest of the G2 phase and enhanced 
DNA replication at the initiation of the S phase occurred. The G2 phase is known 

Figure 6. 
Effect of IR on mitochondria in LSMLGPI cells cultures 72 h postradiation. (A) Electron microscopic analysis 
showing the mitochondria (Mito) with normal morphology scattered in the cytosol of control and lysosomes 
(Lyso); scale bar indicates 0.5 μm. (B) Confocal microscopy images in living cells loaded with DiOC6(3) and 
kept at 37°C. Cells were photographed before administration of ionophores, and after exposure to 4.5 nM 
valinomycin, 1 μM gramicidin, 1 mM DNP, 10 mM sodium azide, and 6.5 μM oligomycin; scale bar indicates 
50 Zm. The figures are representative of three independent experiments.
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Figure 7. 
Effects of IR on the expression and localisation of TNFα and BAG1, PKCα, and -ε, of LSMLGPI cell 
cultures 24 h postradiation. Cells were fixed and incubated with specific primary and secondary antibodies. 
(A) Quantification using flow cytometry in cells resuspended in PBS.*P < 0.01 compared to control, #and 
§P < 0.01 compared to 10 and 30 Gy, respectively, Newman-Keuls test. Error bars indicate SEM. Figures are 
representative of three independent experiments and present enhanced green fluorescence of (B) PKCα, PKCε, 
TNFα, and (C) BAG-1 co-localized with mitochondria that are yellow and with nucleus that are light blue 
(arrow shows apoptotic bodies). Nuclear staining was done using DAPI (blue). Scale bar indicates 20 μm.

to be the most radiosensitive phase of the cell cycle, followed by the G1 phase [35]; 
thus, cells in the G2 phase did not continue to synthesize RNA or DNA. IR induced 
an excess of DNA in relation to RNA content. These results demonstrate that IR 
interferes in the cell-cycle distribution, but it does not cause cyclins degradation.

Cell death was effectively triggered by the activation and translocation of BAX 
to the mitochondria, resulting in cytochrome c release into the cytosol in an absorp-
tion dose-dependent manner. Ultrastructural changes and DNA fragmentation 
characteristics of apoptosis were also identified in vitro [21] and it was confirmed 
by Hoechst which stained the apoptotic bodies in living cells.

The BAX fluorescence intensity was increased next to the perinuclear region, 
with some co-localization with the MOM (yellow). Caspase 3 was overexpressed 
in the nucleus and co-localized with the mitochondria (yellow), and possible 
retention in the intermembrane space. We also observed caspase 3 localization 
in the nucleolus which is an atypical form. As cytochrome c mediates the activa-
tion of caspases via BAX disruption, we hypothesized that it might also induce 
the activation of antiapoptotic proteins. According to Edlich [36], activation of 
BCL-xL and BCL-2 increased the cellular resistance to death and could also cause 
the retrotranslocation of BAX to the cytosol, confirming our results. Our results 
demonstrated that there is more than one type of cellular response to IR, namely 
death or survival. The mitochondrial ultrastructure and function appeared normal 
in IR-induced apoptosis.

We have shown that IR causes apoptosis which is preceded by the activation of 
PKCα and -ε and suggests a role for the PKC-mediated pathway [21] and caspase 
12 translocation to the cytosol [20]. We and other authors have shown that single 
absorption doses induce early reactions in normal smooth muscle cells, including 
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protein breakage and the degradation of membrane phospholipids. However, ROS 
and H2O2 also cause DNA fragmentation and prevent the repair mechanisms elicited 
by sublethal damage [20, 21, 37]. ROS and H2O2 have been implicated in several 
mechanisms of cellular injury, including peroxidation of membrane phospholipids, 
which increases membrane permeability and leads to apoptosis ([38], pp. 196–208). 
In the present study, however, we observed that up to 50 Gy of IR led to cell death 
by apoptosis, despite the preservation of the plasma membrane. It is possible that 
H2O2, rather than ROS, can cross cell membranes rapidly and cause LP in small, 
discrete sites on smooth muscle membranes ([38], pp. 79–80). In contrast, ROS 
can mediate necrosis in neurons by the MTP pathway [18]. H2O2 is a weak oxidiz-
ing agent but can form hydroxyl radicals. These findings suggest that IR-generated 
ROS or H2O2 favors the internalization of TNFα. Several mechanisms may have 
protected the cells against injury in the presence of GSH, including the prevention 
of protein oxidation, the accumulation of H2O2 through its transformation in water 
([38], pp. 10–21), the provision of a substrate for glutathione peroxidase, and the 
scavenging of hydroxyl radicals. Nevertheless, the most remarkable effect of GSH 
appears to be protection against alterations in the cell cycle ([38], pp. 247–251).

In fact, here, we show that high concentrations of ROS or H2O2 generated by 
IR were followed by the release of cytochrome c from the mitochondria into the 
cytosol. Several models of cytochrome c release have been proposed [2, 5], such as 
release through the MTP mega channel [39].

The mechanisms involving BAX, which is inserted into the MOM, may include 
the formation of channels, by oligomerization, and the preservation of mitochon-
drial membrane integrity [40]. Although we cannot discount the possible involve-
ment of heterodimers among activated BCL-2, BCL-xL and BAG-1 proteins, there is 
no clear evidence that any of these have pore-forming activity [41].

The mitochondrial membranes were maintained intact in radiated cells, with 
similar fluorescence as the control cells, in which the electronegativity of the probe 
allowed its retention in the mitochondrial interior [34], KΨmito was maintained.

Our data indicate an intrinsic mechanism of IR-induced apoptosis. Moreover, 
this mechanism may be different in different types of mitochondria [15, 37].

Another potential repair mechanism is the decrease in the cellular ROS or H2O2 
levels induced by BCL-2 [42]. This mechanism may also be activated by increased 
levels of antiapoptotic proteins BCL-xL and BAG-1. However, it has been suggested 
that BCL-2 survival factors are characteristic of cancer cell metabolism [43].

In addition to this survival pathways, that prevented cell death, we observed that 
BCL-2, BCL-xL, and BAG-1 were activated by direct IR and/or indirect via ROS or 
H2O2 action [44, 45]. Besides, the mitochondrial pattern can vary on different cells 
and it causes apoptosis that could be independent on the mitochondrial pathway 
[15, 37]. The radioresistance of mitochondria may be due to the action of natural 
antioxidants ([37, 38], pp. 97–98) and/or other compounds [46].

Increases in [Ca2+]i can potentiate the effects of ROS by enhancing LP [8, 14, 47]. 
ROS and increased [Ca2+]i have been shown to induce opening of the MTP, which 
triggers the mitochondrial of cell death [47]. It is noteworthy that mitochondria 
are located close to the SER, which sequestrates part of the Ca2+ released by these 
organelles, and this may affect the release of apoptotic and antiapoptotic factors 
from the SER [48–52]. The mitochondrial morphology may be altered by Ca2+ 
overload, with an increase in the MOM permeability culminating in the release of 
proapoptotic factors [8, 11]. However, our data demonstrated that the mitochondrial 
motility was maintained even in elevated [Ca2+]i after IR [20]. Increases of [Ca2+]i 
can also inhibit DNA and protein synthesis as well as nuclear transport, resulting in 
an accumulation of cells in the quiescent state (G0) [23]. In addition, [Ca2+]i up to 
500 nM has been implicated in the regulation of the mammalian cell cycle during the 
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Figure 7. 
Effects of IR on the expression and localisation of TNFα and BAG1, PKCα, and -ε, of LSMLGPI cell 
cultures 24 h postradiation. Cells were fixed and incubated with specific primary and secondary antibodies. 
(A) Quantification using flow cytometry in cells resuspended in PBS.*P < 0.01 compared to control, #and 
§P < 0.01 compared to 10 and 30 Gy, respectively, Newman-Keuls test. Error bars indicate SEM. Figures are 
representative of three independent experiments and present enhanced green fluorescence of (B) PKCα, PKCε, 
TNFα, and (C) BAG-1 co-localized with mitochondria that are yellow and with nucleus that are light blue 
(arrow shows apoptotic bodies). Nuclear staining was done using DAPI (blue). Scale bar indicates 20 μm.
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BCL-2, BCL-xL, and BAG-1 were activated by direct IR and/or indirect via ROS or 
H2O2 action [44, 45]. Besides, the mitochondrial pattern can vary on different cells 
and it causes apoptosis that could be independent on the mitochondrial pathway 
[15, 37]. The radioresistance of mitochondria may be due to the action of natural 
antioxidants ([37, 38], pp. 97–98) and/or other compounds [46].

Increases in [Ca2+]i can potentiate the effects of ROS by enhancing LP [8, 14, 47]. 
ROS and increased [Ca2+]i have been shown to induce opening of the MTP, which 
triggers the mitochondrial of cell death [47]. It is noteworthy that mitochondria 
are located close to the SER, which sequestrates part of the Ca2+ released by these 
organelles, and this may affect the release of apoptotic and antiapoptotic factors 
from the SER [48–52]. The mitochondrial morphology may be altered by Ca2+ 
overload, with an increase in the MOM permeability culminating in the release of 
proapoptotic factors [8, 11]. However, our data demonstrated that the mitochondrial 
motility was maintained even in elevated [Ca2+]i after IR [20]. Increases of [Ca2+]i 
can also inhibit DNA and protein synthesis as well as nuclear transport, resulting in 
an accumulation of cells in the quiescent state (G0) [23]. In addition, [Ca2+]i up to 
500 nM has been implicated in the regulation of the mammalian cell cycle during the 
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early G1 phase and in the transition from the G1 to S phase [53]. Ca2+/calmodulin 
may also modulate the activity of cyclin-dependent kinases (CDK) and/or cyclin E 
[54]. In previous studies [20], we observed an increase in basal [Ca2+]i cells was 
observed and it was suggested that IR causes modifications in the plasma membrane 
and/or in the sarco/endoplasmic reticulum, but the capacitative Ca2+ entry into 
radiated cells was reduced [55].

The cyclins A and E are constitutively nuclear proteins when involved in 
mitosis [14, 16]; nevertheless, in radiated cells, they leaked from the nucleus to the 
cytosol. The cyclin B2 complex appears to be localized predominantly in the SER 
[14, 16, 22, 23]. At the start of mitosis, cyclin B2 is rapidly transported into the 
nucleus [14]. An important fact to consider is that IR induced unbalanced growth 
[31]. Similar mechanism to Polavarapu [56] could be explained is the penetration 
of TNFα in the intestinal smooth muscle. According to our results, TNFα may 
penetrate the intracellular compartment through damage caused by lipid peroxida-
tion in small, discrete sites of plasma membrane, since there is an ability of TNFα 
to form pores in biomembranes, or through the conventional receptor/lysosome 
route [46]. Also, activated TNFα can contribute to the apoptosis, as caused by 
ROS or H2O2. The increased TNFα expression in the cytosol could be explained by 
the presence of lysosomes in radiated cells, and we can infer that the TNFα was 
not subject to lysosomal autodigestion, since the mitochondrial membranes were 
preserved. TNFα can induce cell survival by the polymerization and depolymeriza-
tion of actin filaments, which prevent the nuclear translocation of proapoptotic 
molecules and subsequently inhibit caspase 3 [57]. The activation involving ROS 
or H2O2 has been associated with the triggering of cell death modulated by TNFα 
[10, 15], through the activation of BAX or the protease cascade [58]. TNFα can also 
be involved in cell survival similar to IR models with higher doses [41]. In addition, 
we can infer that caspase 3 may enter into the MOM through membrane openings 
caused by activated BAX or TNFα [39, 59].

IR induces the formation of apoptotic bodies which will remain in the medium of 
cultured cells or they will be phagocytosed and digested by adjacent cells in the tissue 
[60]. Although DNA lesions induced by IR are lethal if not properly repaired, it is 
clear that membrane events may also contribute to radiation-induced apoptosis [61].

Our experiments demonstrated that radiation induced atypical activation of 
PKCα and -ε, and there is evidence that this may be related to a conservative regula-
tion of cell cycle events, which act as a molecular link connecting signal transduc-
tion pathways and constituents of the cell-cycle machinery [62]. PKC participate 
in the control of G1 and G2/M, and PKCα and -ε may be regulators of the G1 phase 
and cause a delay in the G1/S transition, thereby halting DNA synthesis and con-
tributing to cellular differentiation or death. In addition, we suggest that PKCα and 
-ε trigger cyclin activation and translocation to the nucleus, which occur through 
the C-terminal region [63]. The mechanism involved in the nuclear localization of 
PKCα and -ε after IR could be similar to that of PKCγ [63] but still remains to be 
determined. In contrast, the activation of PKCα and -ε may also have been induced 
by TNFα, with apoptosis triggered via activation of the TNF-receptor, in addition to 
elevated calcium, ROS and H2O2 levels [10, 15, 54]. PKCα and -ε may interact with 
the cyclins A, B2, and E in the mechanism of cellular survival, similar as the CDKs 
and PKC which have domains that may activate serine/threonine protein kinases 
[64, 65], in an atypical fashion. The involvement of PKCα and -ε activation in 
apoptosis has already been suggested [21].

We can speculate that cyclin E modulates PKCα and -ε when involved in the 
apoptosis. This possible involvement of PKCε would constitute a new finding, as 
currently it has only been associated with oncogenesis [66, 67]. Similar to TNFα, 
PKCε also contains an actin binding site, and its direct interaction with actin is 
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essential for the invasion and metastasis of tumors grown in vitro or in vivo in the 
regulatory domain [66–68].

An important outcome of the complex network of events triggered by IR is the 
activation of antiapoptotic proteins in patients with cancer, and radiation therapy 
may lead to an increased risk of a second cancer [13]. In addition to their maleficent 
role in increasing radioresistance in normal cells, antiapoptotic proteins can stimu-
late uncontrolled cellular proliferation that culminates in carcinogenesis and muta-
genesis [43]. Takayama et al. [69] identified BAG-1 and BCL-2 heterodimers that 
suppress apoptosis. Furthermore, BAG-1 overexpression is an important prognostic 
indicator of malignant tumors and may help to identify the metastatic potential of 
tumoral cells in vivo [70]. BCL-2 can alter the distribution of intracellular BAG-1, 
thereby changing the cancer risk [70]. Therefore, the overexpression of BCL-2, 
BCL-xL, and BAG-1 in normal cells may be a predictive indicator of carcinogenesis 
[69, 70]. In addition, PKCε is an important signaling molecule that influences the 
levels/activation of antiapoptotic proteins of the BCL-2 family and may regulate 
mitochondrial integrity, which is associated with cancer [71, 72]. However, the 
mechanism by which proteins of the BCL-2 family regulate cell death remains con-
troversial. Our data suggest that not only apoptosis but also cellular repair mecha-
nisms are activated in smooth muscle cells subjected to a low absorption dose.

Additionally, the expression level and localization of these proteins may be an 
important survival indicator in irradiated normal cells and may inform the progno-
sis of cancer patients undergoing radiotherapy.
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Chapter 5

Effects of Oxidative Stress on 
Spermatozoa and Male Infertility
Yi Fang and Rongzhen Zhong

Abstract

Oxidative stress occurs when the production of potentially destructive reactive 
oxygen species (ROS) exceeds the body’s own natural antioxidant defences, result-
ing in cellular damage. Spermatozoa oxidative stress is intimately linked to several 
reproductive pathologies including the failure of spermatozoa cryopreservation and 
spermatozoa-egg recognition and fertilization. In this light, this review focuses on 
(i) the effects of oxidative stress on spermatozoa and application of antioxidants; 
(ii) production of ROS during cryopreservation; and (iii) oxidative stress in male 
infertility. This literature describes both a physiological and a pathological role of 
ROS in fertility. A delicate balance between ROS necessary for physiological activity 
and antioxidants to protect from cellular oxidative injury is essential for fertility.

Keywords: spermatozoa, oxidative stress, antioxidants, cryopreservation, infertility

1. Effects of oxidative stress on spermatozoa

1.1 What is oxidative stress?

Oxidative stress occurs when a system has an imbalance between oxidation and 
reduction reactions, leading to generation of excess oxidants or molecules that 
accept an electron from another reactant [1]. A free radical is a molecule or ele-
ment with an unpaired electron that is extremely reactive in an attempt to reach an 
electronically stable state. ROS are free radical derivatives of oxygen (O2) contain-
ing molecules. Some of the clinically important ROS identified include peroxyl 
(·ROO—) and hydroxyl (·OH—) radicals, superoxide (·O2

—) anion, and H2O2. 
Nitrogen compounds such as nitric oxide (NO) and peroxynitrite anion (ONOO) 
also appear to play a role in oxidation and reduction reactions. Common molecules 
that receive the unpaired electron are lipids in membranes and carbohydrates in 
nucleic acids [2]. This leads to potential cellular membrane and DNA damage when 
ROS are greater than the antioxidant-carrying capacity (Figure 1).

1.2 Production of ROS

The process of mitochondrial oxidative phosphorylation uses nicotinamide ade-
nine dinucleotide (NADH) as an electron donor and O2 as an electron acceptor in 
the electron transport chain, coupling both reduction and oxidation reactions with 
the synthesis of adenosine triphosphate (ATP), and about 1–5% O2 transformed 
into ROS [3]. Another intrinsic source of spermatic ROS production is cytoplasmic 
glucose-6-phosphate dehydrogenase (G-6-PDH). This cytoplasmic source of ROS 
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may explain why increased spermatic cytoplasm could be linked to infertility [4]. 
In addition to leucocytes, infection in semen has also been implicated as a source of 
ROS. Exposure to heavy metals (e.g., cadmium, lead, iron and copper), pesticides, 
phthalate and pollution can lead to spermatozoa damage by excessive ROS [5]. 
Smoking has also been associated with decreased spermatic function. But industrial 
exposure not only induces oxidative stress but also disrupts the hypothalamic–
pituitary-gonadal axis to inhibit the release of GnRH, LH and FSH in human and 
animal [6, 7].

1.3 Pathological effects on spermatozoa

Only the balance of ROS and antioxidants can keep the optimal spermatozoa 
function. Low level of ROS has been shown to be essential for fertilization, acro-
some reaction, hyperactivation, motility and capacitation [8, 9]. ROS induces 
cyclic adenosine monophosphate (cAMP) in spermatozoa that inhibits tyrosine 
phosphatase, leading to tyrosine phosphorylation [10]. In particular, capacitation 
not only requires ROS, but also it can be inhibited by catalase (CAT) [11]. It has 
been described that high level of ROS can promote the acrosome reaction with the 
mechanism of ROS-modulated tyrosine phosphorylation [12].

1.3.1 Lipid peroxidation of plasma membrane

Lipids are present in spermatozoa plasma membrane in the form of polyunsatu-
rated fatty acids (PUFA), most susceptible to oxidative damage [13, 14]. Once there 
is generation of lipid peroxide radical, it will react with the neighboring lipid mol-
ecule, triggering a chain reaction that can lead to >50% oxidation of the spermato-
zoa plasma membrane [15]. Byproducts of lipid oxidization include mutagenic and 
genotoxic molecules malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), 
leading indirectly to DNA damage [16]. Buffalo spermatozoa are more prone to 
oxidative damage than that of cattle, since it is rich in polyunsaturated fatty acids 
like arachidonic acids and docosahexaenoic acids [17].

Figure 1. 
Factors contributing to oxidative stress-induced male infertility.
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1.3.2 DNA damage

Free radicals have the capability to directly damage spermatozoa DNA via 
single- and double-strand DNA breaks, cross-links and chromosomal rearrange-
ments [18, 19]. ROS also can cause various types of gene mutations such as point 
mutations and polymorphism, resulting in decreased semen quality [20]. Other 
mechanisms such as denaturation and DNA base-pair oxidation also may be 
involved. Although most of the spermatozoa genome (85%) is bound to central 
nucleoprotamines that protect it from free radical attack [21], infertile men often 
have deficient protamination, which may make their sperm DNA more vulnerable 
to ROS damage [22]. A common byproduct of DNA oxidation, 8-hydroxy-2-deox-
yguanosine (8-OH-2- deoxyguianosine), has been considered a key biomarker of 
this oxidative DNA damage [23].

1.3.3 Motility

Decreased motility has been shown to be due to ROS-induced peroxidation of lip-
ids in the spermatozoa membrane decreasing flexibility and by inhibition of motility 
mechanisms [24, 25]. The axosome and associated dense fibers of the middle pieces 
in spermatozoa are covered by mitochondria that generate energy from intracellular 
stores of ATP. It is well established that ROS can induce axonemal and mitochon-
drial damage, resulting in the immobilization of spermatozoa [26, 27]. In addition, 
ROS-induced damage of mitochondrial DNA leads to decreased ATP and energy 
availability and leads to activation of caspases and ultimately apoptosis, impeding 
spermatozoa motility [28, 29]. H2O2 can diffuse across the membranes of sperma-
tozoa and inhibit the activity of some vital enzymes such as glucose-6-phosphate 
dehydrogenase (G6PD), which is an enzyme controlling the intracellular availability 
of NADPH. This is used as a source of electrons by spermatozoa to fuel the genera-
tion of ROS by an enzyme system known as NADPH oxidase [30]. Another hypoth-
esis involves a series of interrelated events resulting in a ROS-reduced motility due 
to a decrease in axonemal protein phosphorylation and mitochondrial membrane 
damage and leakage of intracellular enzymes [31]. Meanwhile, cytochrome c release 
during the apoptotic pathway further increases levels of ROS, promoting DNA 
damage and fragmentation [32]. Especially after frozen–thawed cycles, spermatozoa 
with higher levels of oxidative stress have higher levels of caspase activation that can 
trigger apoptosis [33].

1.3.4 Apoptosis

High levels of ROS disrupt the mitochondrial membranes, inducing the release 
of the cytochrome c protein and Ca2+ and activating the caspase-inducing apop-
tosis [34]. Apoptosis in spermatozoa also may be initiated by ROS-independent 
pathways involving the cell surface protein Fas, which is a type I membrane protein 
that belongs to the tumor necrosis factor-nerve growth factor receptor family and 
mediates apoptosis [35]. Mitochondrial exposure to ROS also results in the release 
of apoptosis-inducing factor (AIF), which directly interacts with the DNA to cause 
DNA fragmentation in spermatozoa [36, 37].

1.3.5 Fertilization, pregnancy and miscarriage

Lipid peroxides and DNA damage are the most typical oxidative stress injury 
in sperm. Lipid peroxides are spontaneously generated in the sperm plasma 
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may explain why increased spermatic cytoplasm could be linked to infertility [4]. 
In addition to leucocytes, infection in semen has also been implicated as a source of 
ROS. Exposure to heavy metals (e.g., cadmium, lead, iron and copper), pesticides, 
phthalate and pollution can lead to spermatozoa damage by excessive ROS [5]. 
Smoking has also been associated with decreased spermatic function. But industrial 
exposure not only induces oxidative stress but also disrupts the hypothalamic–
pituitary-gonadal axis to inhibit the release of GnRH, LH and FSH in human and 
animal [6, 7].

1.3 Pathological effects on spermatozoa

Only the balance of ROS and antioxidants can keep the optimal spermatozoa 
function. Low level of ROS has been shown to be essential for fertilization, acro-
some reaction, hyperactivation, motility and capacitation [8, 9]. ROS induces 
cyclic adenosine monophosphate (cAMP) in spermatozoa that inhibits tyrosine 
phosphatase, leading to tyrosine phosphorylation [10]. In particular, capacitation 
not only requires ROS, but also it can be inhibited by catalase (CAT) [11]. It has 
been described that high level of ROS can promote the acrosome reaction with the 
mechanism of ROS-modulated tyrosine phosphorylation [12].

1.3.1 Lipid peroxidation of plasma membrane

Lipids are present in spermatozoa plasma membrane in the form of polyunsatu-
rated fatty acids (PUFA), most susceptible to oxidative damage [13, 14]. Once there 
is generation of lipid peroxide radical, it will react with the neighboring lipid mol-
ecule, triggering a chain reaction that can lead to >50% oxidation of the spermato-
zoa plasma membrane [15]. Byproducts of lipid oxidization include mutagenic and 
genotoxic molecules malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), 
leading indirectly to DNA damage [16]. Buffalo spermatozoa are more prone to 
oxidative damage than that of cattle, since it is rich in polyunsaturated fatty acids 
like arachidonic acids and docosahexaenoic acids [17].

Figure 1. 
Factors contributing to oxidative stress-induced male infertility.
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1.3.2 DNA damage
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in spermatozoa are covered by mitochondria that generate energy from intracellular 
stores of ATP. It is well established that ROS can induce axonemal and mitochon-
drial damage, resulting in the immobilization of spermatozoa [26, 27]. In addition, 
ROS-induced damage of mitochondrial DNA leads to decreased ATP and energy 
availability and leads to activation of caspases and ultimately apoptosis, impeding 
spermatozoa motility [28, 29]. H2O2 can diffuse across the membranes of sperma-
tozoa and inhibit the activity of some vital enzymes such as glucose-6-phosphate 
dehydrogenase (G6PD), which is an enzyme controlling the intracellular availability 
of NADPH. This is used as a source of electrons by spermatozoa to fuel the genera-
tion of ROS by an enzyme system known as NADPH oxidase [30]. Another hypoth-
esis involves a series of interrelated events resulting in a ROS-reduced motility due 
to a decrease in axonemal protein phosphorylation and mitochondrial membrane 
damage and leakage of intracellular enzymes [31]. Meanwhile, cytochrome c release 
during the apoptotic pathway further increases levels of ROS, promoting DNA 
damage and fragmentation [32]. Especially after frozen–thawed cycles, spermatozoa 
with higher levels of oxidative stress have higher levels of caspase activation that can 
trigger apoptosis [33].

1.3.4 Apoptosis

High levels of ROS disrupt the mitochondrial membranes, inducing the release 
of the cytochrome c protein and Ca2+ and activating the caspase-inducing apop-
tosis [34]. Apoptosis in spermatozoa also may be initiated by ROS-independent 
pathways involving the cell surface protein Fas, which is a type I membrane protein 
that belongs to the tumor necrosis factor-nerve growth factor receptor family and 
mediates apoptosis [35]. Mitochondrial exposure to ROS also results in the release 
of apoptosis-inducing factor (AIF), which directly interacts with the DNA to cause 
DNA fragmentation in spermatozoa [36, 37].

1.3.5 Fertilization, pregnancy and miscarriage

Lipid peroxides and DNA damage are the most typical oxidative stress injury 
in sperm. Lipid peroxides are spontaneously generated in the sperm plasma 
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membrane, which induce decrease in fertility during storage of semen [38]. In 
addition, the importance of sperm DNA damage is brought to light when studies 
correlated the degree of DNA damage with various indices of fertility such as the 
fertilization rate, embryo cleavage rate, implantation rate, pregnancy rate and live 
birth rate of the offspring. If sperm DNA is unable to decondense after entering 
the ooplasma, fertilization may not take place or a postfertilization failure may 
occur when sperm DNA is defective by ROS. Higher miscarriage rate is observed 
with ROS-induced sperm DNA damage [39]. High-level sperm DNA fragmentation 
induced was related to lower pregnancy rates in in vitro fertilization (IVF) but not 
in intracytoplasmic sperm injection (ICSI) cycles, whereas it was associated with 
higher miscarriage rates in both IVF and ICSI cycles. In addition, ROS actively 
participate in metabolic pathways during sperm activation, which leads to choles-
terol efflux, cyclic adenosine monophosphate (cAMP) production and tyrosine 
phosphorylation, important events that contribute to fertilization competence 
[40]. However, it has been also described that appropriate ROS (hydrogen peroxide 
stimulation) can promote the acrosome reaction and sperm hyperactivation with 
the mechanism of ROS-modulated tyrosine phosphorylation [41], thereby assisting 
the sperm’s transit through the cumulus and zona pellucida [42].

2. Production of ROS during cryopreservation

Cryopreservation of spermatozoa is an applicable technique, but it may influ-
ence the post-thaw qualities of spermatozoa, including morphology, motility, 
viability and DNA integrity. The imbalance between the presence of ROS and 
spermatozoa antioxidant activity is a main cause of cryodamage of spermatozoa 
[43]. The specific cell structure and plasma membrane of spermatozoa, a large 
number of mitochondria, low cytoplasm and incomplete antioxidant system in 
cytoplasm make them possibly vulnerable to damage from free radicals [43]. 
Susceptibility to cold temperatures is also linked to a high ratio of unsaturated to 
saturated fatty acid content of the spermatozoa plasma membrane. Bull, ram and 
boar spermatozoa are more sensitive to cooling than rabbits, dogs and human, 
due to a higher ratio of unsaturated to saturated fatty acids [44]. Antioxidants 
are the main defense factors against oxidative stress induced by free radicals [45]. 
Supplementation of cryopreservation extenders with antioxidants provides a cryo-
protective effect on bull, ram, goat, boar, canine and human spermatozoa quality, 
thus minimizing the detrimental effect of ROS and improving quality of post-thaw 
spermatozoa (Table 1).

Vitamin E (α-tocopherol) is a highly potent chain-breaking lipophilic antioxi-
dant residing on the cell membrane which can break the covalent links that ROS 
have formed between fatty acid side chains in membrane lipids [83]. Addition of 
α-tocopherol in rabbit, equine, bovine, boar and ram, aiming to improve semen 
quality, led to inconsistent results [46]. Combined with vitamin C, vitamin E 
enhanced motility and viability of cooled spermatozoa [47, 48]. Askari et al. (1994) 
showed that vitamin E improved hypo-osmotic swelling scores and the post-thaw 
motility slightly. Moreover, α-tocopherol supplementation at 200 uM concentration 
may protect the spermatozoa against stress oxidative by reducing lipid peroxidation 
and DNA fragmentation [67].

The GSH content and its antioxidant defensive capacity alter during the freez-
ing–thawing process, possibly because of oxidative stress and cell death [84], so 
that addition of GSH to the freezing extender has variable outcomes. Varghese et al. 
reported that addition of 5 mM of GSH to human spermatozoa freezing media 
improved the DNA integrity, but failed in reducing the lipid peroxidation and in 
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increasing the motility [49]. Recently, Gadea et al. showed that GSH supplementa-
tion to freezing media reduced human spermatozoa ROS levels and increased the 
level of sulphhydryl groups on membrane proteins in spite of increasing the per-
centage of motile and progressively motile spermatozoa after addition of GSH to the 
thawing media. Longer exposure to GSH and main damaging effect on spermatozoa 
membrane before the dilution in the thawing extender may elucidate this difference 
in viability [85]. It seems that boar spermatozoa benefited from the supplementa-
tion with this antioxidant at 1 and 5 mM [86]. GSH (at 1 mM) improved the quality 
of red deer post-thawing spermatozoa, especially regarding kinematic parameters 
and mitochondrial status [50]. In ram semen, Camara et al. (2011) found no 

Antioxidant Effects Species References

Vitamin C Improve semen quality Rabbit, equine, 
bovine, boar and ram

[46]

Enhance motility and viability Ram and goat [47, 48]

GSH Improve DNA integrity Human [49]

Improve progressively motile, protect 
plasma membrane integrity

Red deer [50]

Ameliorate acrosome ultrastructure Ram [51]

Increase motility, viability and fertilization Boar [52]

Vitamin C Improve motility, acrosome and membrane 
integrity

Bovine [53]

Reduce DNA damages Infertile human [54]

Reduce DNA damage and lipid peroxidation Boar [55]

Ergothioneine Protect DNA integrity Bull [56]

Melatonin Improve spermatozoa characteristics Goat, rat, boar, ram, 
mouse and human

[57–63]

Improve spermatozoa function Boar [64]

Enhance hyperactivation Hamster [65]

Selenium Ameliorate motility, viability, membrane 
integrity and total antioxidant capacity

Bovine [66]

Zinc Improve hypo-osmotic swelling (HOS), 
reduce lipid peroxidation and DNA 
fragmentation

Mammalian [67]

Amino acids Membrane stabilizer and inhibit 
spermatozoa capacitation

Ram [68]

Enhances membrane integrity, viability and 
motility, reduce lipid peroxidation and DNA 
damage

Bull, ram, goat, boar 
and fish

[69–74]

Reduce DNA fragmentation Fish [75]

Natural herbs Improve motility and viability, reduce DNA 
damage

Human [76, 77]

Enhance motility and viability and 
minimize DNA damage

Human, rat [78]

Improve viability and motility and prevent 
peroxidatation

Boar, canine, bull 
and ovine

[79–82]

Table 1. 
Proposed antioxidants in spermatozoa cryopreservation.
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membrane, which induce decrease in fertility during storage of semen [38]. In 
addition, the importance of sperm DNA damage is brought to light when studies 
correlated the degree of DNA damage with various indices of fertility such as the 
fertilization rate, embryo cleavage rate, implantation rate, pregnancy rate and live 
birth rate of the offspring. If sperm DNA is unable to decondense after entering 
the ooplasma, fertilization may not take place or a postfertilization failure may 
occur when sperm DNA is defective by ROS. Higher miscarriage rate is observed 
with ROS-induced sperm DNA damage [39]. High-level sperm DNA fragmentation 
induced was related to lower pregnancy rates in in vitro fertilization (IVF) but not 
in intracytoplasmic sperm injection (ICSI) cycles, whereas it was associated with 
higher miscarriage rates in both IVF and ICSI cycles. In addition, ROS actively 
participate in metabolic pathways during sperm activation, which leads to choles-
terol efflux, cyclic adenosine monophosphate (cAMP) production and tyrosine 
phosphorylation, important events that contribute to fertilization competence 
[40]. However, it has been also described that appropriate ROS (hydrogen peroxide 
stimulation) can promote the acrosome reaction and sperm hyperactivation with 
the mechanism of ROS-modulated tyrosine phosphorylation [41], thereby assisting 
the sperm’s transit through the cumulus and zona pellucida [42].

2. Production of ROS during cryopreservation

Cryopreservation of spermatozoa is an applicable technique, but it may influ-
ence the post-thaw qualities of spermatozoa, including morphology, motility, 
viability and DNA integrity. The imbalance between the presence of ROS and 
spermatozoa antioxidant activity is a main cause of cryodamage of spermatozoa 
[43]. The specific cell structure and plasma membrane of spermatozoa, a large 
number of mitochondria, low cytoplasm and incomplete antioxidant system in 
cytoplasm make them possibly vulnerable to damage from free radicals [43]. 
Susceptibility to cold temperatures is also linked to a high ratio of unsaturated to 
saturated fatty acid content of the spermatozoa plasma membrane. Bull, ram and 
boar spermatozoa are more sensitive to cooling than rabbits, dogs and human, 
due to a higher ratio of unsaturated to saturated fatty acids [44]. Antioxidants 
are the main defense factors against oxidative stress induced by free radicals [45]. 
Supplementation of cryopreservation extenders with antioxidants provides a cryo-
protective effect on bull, ram, goat, boar, canine and human spermatozoa quality, 
thus minimizing the detrimental effect of ROS and improving quality of post-thaw 
spermatozoa (Table 1).

Vitamin E (α-tocopherol) is a highly potent chain-breaking lipophilic antioxi-
dant residing on the cell membrane which can break the covalent links that ROS 
have formed between fatty acid side chains in membrane lipids [83]. Addition of 
α-tocopherol in rabbit, equine, bovine, boar and ram, aiming to improve semen 
quality, led to inconsistent results [46]. Combined with vitamin C, vitamin E 
enhanced motility and viability of cooled spermatozoa [47, 48]. Askari et al. (1994) 
showed that vitamin E improved hypo-osmotic swelling scores and the post-thaw 
motility slightly. Moreover, α-tocopherol supplementation at 200 uM concentration 
may protect the spermatozoa against stress oxidative by reducing lipid peroxidation 
and DNA fragmentation [67].

The GSH content and its antioxidant defensive capacity alter during the freez-
ing–thawing process, possibly because of oxidative stress and cell death [84], so 
that addition of GSH to the freezing extender has variable outcomes. Varghese et al. 
reported that addition of 5 mM of GSH to human spermatozoa freezing media 
improved the DNA integrity, but failed in reducing the lipid peroxidation and in 
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increasing the motility [49]. Recently, Gadea et al. showed that GSH supplementa-
tion to freezing media reduced human spermatozoa ROS levels and increased the 
level of sulphhydryl groups on membrane proteins in spite of increasing the per-
centage of motile and progressively motile spermatozoa after addition of GSH to the 
thawing media. Longer exposure to GSH and main damaging effect on spermatozoa 
membrane before the dilution in the thawing extender may elucidate this difference 
in viability [85]. It seems that boar spermatozoa benefited from the supplementa-
tion with this antioxidant at 1 and 5 mM [86]. GSH (at 1 mM) improved the quality 
of red deer post-thawing spermatozoa, especially regarding kinematic parameters 
and mitochondrial status [50]. In ram semen, Camara et al. (2011) found no 

Antioxidant Effects Species References

Vitamin C Improve semen quality Rabbit, equine, 
bovine, boar and ram

[46]

Enhance motility and viability Ram and goat [47, 48]

GSH Improve DNA integrity Human [49]

Improve progressively motile, protect 
plasma membrane integrity

Red deer [50]

Ameliorate acrosome ultrastructure Ram [51]

Increase motility, viability and fertilization Boar [52]

Vitamin C Improve motility, acrosome and membrane 
integrity

Bovine [53]

Reduce DNA damages Infertile human [54]

Reduce DNA damage and lipid peroxidation Boar [55]

Ergothioneine Protect DNA integrity Bull [56]

Melatonin Improve spermatozoa characteristics Goat, rat, boar, ram, 
mouse and human

[57–63]

Improve spermatozoa function Boar [64]

Enhance hyperactivation Hamster [65]

Selenium Ameliorate motility, viability, membrane 
integrity and total antioxidant capacity

Bovine [66]

Zinc Improve hypo-osmotic swelling (HOS), 
reduce lipid peroxidation and DNA 
fragmentation

Mammalian [67]

Amino acids Membrane stabilizer and inhibit 
spermatozoa capacitation

Ram [68]

Enhances membrane integrity, viability and 
motility, reduce lipid peroxidation and DNA 
damage

Bull, ram, goat, boar 
and fish

[69–74]

Reduce DNA fragmentation Fish [75]

Natural herbs Improve motility and viability, reduce DNA 
damage

Human [76, 77]

Enhance motility and viability and 
minimize DNA damage

Human, rat [78]

Improve viability and motility and prevent 
peroxidatation

Boar, canine, bull 
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Table 1. 
Proposed antioxidants in spermatozoa cryopreservation.
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enhancement adding GSH (0.5–2 mM) to the freezing extender, but the concentra-
tion at 2 and 5 mM ameliorated the ultrastructure of the acrosome which resulted 
in obtaining even lower motility at 7 mM [51]. Also, adding 1–2 mM glutathione to 
the ram semen extender increased the activities of GPX and SOD, decreased free 
radicals and improved the survival rate of post-thawed spermatozoa. Addition of 
SOD or CAT to boar spermatozoa freezing extender not only increased spermatozoa 
motility and viability but also decreased post-thaw ROS generation which led to a 
rising in in vitro fertilizing potential of thawed spermatozoa [52]. These findings 
comply with results showing that the addition of CAT and SOD to the extender 
improved the survival and in vitro fertility of liquid stored ram spermatozoa [87].

The intake of vitamin C (ascorbic acid) could result in decreasing of GSH-Px 
in opposition to GSH increase and improved spermatozoa motility, acrosome and 
membrane integrity [53]. The addition of ascorbic acid before cryopreservation 
reduced DNA damages only in infertile men [54]. Because ascorbic acid is rapidly 
oxidized into inactive dehydroascorbate when exposed to highly oxidative environ-
ment [88], it is difficult to maintain its scavenging activities during exposure of 
spermatozoa to high oxidative environments for extended periods of time. Ascorbic 
acid 2-O-α-glucoside (AA-2G) is characterized by high resistance to thermal and 
oxidative degradation in neutral solutions and non-reducing conditions. Addition 
of AA-2G to the freezing extender improved the post-thaw quality of boar sper-
matozoa through the protection of spermatozoa against DNA damage and the lipid 
peroxidation caused by oxidative stress during cryopreservation [55].

Ergothioneine is an important low-molecular-weight thiol which scavenges 
singlet oxygen [89] and hydroxyl and peroxyl radicals [90]. It exists in millimolar 
concentrations in some tissues and has been linked to the metabolism of iron, 
copper and zinc. Increasing concentration of ergothioneine in semen extenders 
preserved DNA integrity of spermatozoa against cryodamage [56].

Melatonin (N-acetyl-5-methoxytryptamine, MT) is mainly synthesized and 
secreted by the pineal gland in reaction to changes in dark–light cycles [91]. It can 
stimulate the activity of antioxidant enzymes such as SOD and GSH-Px [92]. MT 
scavenges a variety of reactive oxygen and nitrogen species with powerful non-
enzymatic antioxidant property [93]. MT can improve spermatozoa characteristics 
in goat [57], rat [58], boar [59], ram [60], mouse [61] and human [62, 63]. In addi-
tion, it had a dose-dependent effect on all parameters of spermatozoa motility. 1 uM 
MT did not succeed in improving the function of boar semen stored at 17°C [64], 
but 1 nM MT can enhance hyperactivation of hamster spermatozoa [65].

It has been indicated that dietary Se supplementation enhanced reproductive 
function in mice, sheep and cattle [94, 95] and also brought about the improve-
ment in post-thaw spermatozoa quality [66]. Lack of Se has been related to repro-
ductive problems and diminished spermatozoa quality in mice, pigs, sheep and 
cattle [96], but excessive Se intake also has been connected to an impaired sperma-
tozoa quality [97]. In frozen–thawed buffalo spermatozoa, extenders containing 1 
and 2 ug mL−1 Se significantly ameliorated spermatozoa motility, viability, mem-
brane integrity and total antioxidant capacity. It also exerts its effects in a dose-
dependent manner so that it had deleterious effects on spermatozoa parameters at 
high levels of 4 and 8 ug mL−1.

Amino acids have an important biological role for prevention of cell damage 
during cryopreservation. L-cysteine (L-Cys) is a naturally occurring sulfur contain-
ing non-essential amino acid, which penetrates the spermatozoa membrane easily 
to participate in the intracellular GSH biosynthesis [98]. It protects the membrane 
lipids and proteins via indirect scavenging of free radicals; also it acts as a mem-
brane stabilizer and inhibitor of spermatozoa capacitation [68]. Moreover, L-Cys is 
metabolized to taurine after passing into cells. Taurine transformed to acyl-taurine 
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after combination with a fatty acid in plasma membrane which improves surfactant 
properties and osmoregulation of the spermatozoa membrane [99, 100]. It has been 
reported that L-Cys enhances motility and morphology of spermatozoa, reducing 
lipid peroxidation of plasma membrane and preventing DNA damage from ROS 
of post-thaw bull [69], ram [70], goat [71] and fish [72, 73] spermatozoa, and 
improves the viability, the chromatin structure, and membrane integrity of boar 
spermatozoa during chilled storage [74]; in combination with docosahexaenoic 
acid (DHA)-enriched hen egg yolk, L-cysteine significantly improved progressive 
motility and acrosome integrity of boar spermatozoa. Also, the cysteine enhanced 
the post-thaw Merino ram spermatozoa mitochondrial activity without improving 
motility after the freezing–thawing cycle. 5 or 10 mM was the optimum concentra-
tion of L-cysteine for improving the quality of frozen–thawed boar spermatozoa. 
Methionine had a positive effect on the sperm viability and increased the post-thaw 
spermatozoa motility and reduced DNA damage of fish spermatozoa [101, 102]. 
DNA fragmentation in gilthead seabream (S. aurata) and European sea bass (D. 
labrax) was significantly reduced by taurine and hypotaurine [75]. The concentra-
tion of 50 mM taurine provided the most pronounced protective effect in improv-
ing post-thaw quality of red seabream sperm [103].

The addition of natural herbs also improves the cryoprotective effect of sper-
matozoa. Addition of genistein to the cryoprotectant has a significant antioxidant 
protective effect on the frozen–thawed spermatozoa. It causes a reduction in ROS 
production and makes an improvement in the sperm motility and viability; it also 
reduces DNA damage caused by the process of cryopreservation [76, 77]. The high 
concentrations of genistein decreased the proportion of motile mice spermatozoa 
which was approved in human spermatozoa, too [104]. In ram spermatozoa, 
addition of either resveratrol or quercetin (5–20 ug/mL for each compound) to a 
Tris-egg yolk-glycerol extender decreased the mitochondrial membrane potential 
[105]. Quercetin at 50 uM enhanced spermatozoa motility and viability and mini-
mized post-thawed human spermatozoa DNA damage and also proved its potential 
role in protecting spermatozoa against H2O2-mediated spermatozoa damage on 
spermatozoa parameters and lipid peroxidation by reducing the levels of MDA and 
improving activities of antioxidant enzymes in rats [78]. The antioxidant proper-
ties of Rhodiola sacra aqueous extract (RSAE)-enriched freezing extender with 
or without glycerol had substantial impacts on concentrations of MAD and GSH, 
apart from the quality of frozen–thawed boar spermatozoa. Likewise, the optimal 
concentration of RSEA in extender ranged from 4 to 8 mg L−1 with and without 
glycerol, even if the influence of 6 mg L−1 RSEA on spermatozoa quality was more 
enhanced in glycerol-free extender than glycerol-containing extender [106]. The 
effects of adding rosemary to semen freezing extenders in several species have 
been reported, including boar [79], canine [80] and ovine [81]. Rosemary-enriched 
freezing extender efficiently improved motility and prevented peroxidatation of 
epididymal boar spermatozoa, showing a significant correlation between rosemary 
concentration and concentration of MDA [107]. Added 10 g L−1 rosemary extract to 
the freezing extender of bull semen before cryopreservation and showed its effects 
on increasing viability, motility and average path velocity as well as on decreasing 
lipid peroxidation after thawing [82].

3. Oxidative stress in male infertility

A decline in fertility rates is becoming an increasingly prevalent issue worldwide. 
Infertility affects up to 15% of the population globally [108], and furthermore, 
male infertility is responsible in about 20% of cases but may contribute to 40% of 
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enhancement adding GSH (0.5–2 mM) to the freezing extender, but the concentra-
tion at 2 and 5 mM ameliorated the ultrastructure of the acrosome which resulted 
in obtaining even lower motility at 7 mM [51]. Also, adding 1–2 mM glutathione to 
the ram semen extender increased the activities of GPX and SOD, decreased free 
radicals and improved the survival rate of post-thawed spermatozoa. Addition of 
SOD or CAT to boar spermatozoa freezing extender not only increased spermatozoa 
motility and viability but also decreased post-thaw ROS generation which led to a 
rising in in vitro fertilizing potential of thawed spermatozoa [52]. These findings 
comply with results showing that the addition of CAT and SOD to the extender 
improved the survival and in vitro fertility of liquid stored ram spermatozoa [87].

The intake of vitamin C (ascorbic acid) could result in decreasing of GSH-Px 
in opposition to GSH increase and improved spermatozoa motility, acrosome and 
membrane integrity [53]. The addition of ascorbic acid before cryopreservation 
reduced DNA damages only in infertile men [54]. Because ascorbic acid is rapidly 
oxidized into inactive dehydroascorbate when exposed to highly oxidative environ-
ment [88], it is difficult to maintain its scavenging activities during exposure of 
spermatozoa to high oxidative environments for extended periods of time. Ascorbic 
acid 2-O-α-glucoside (AA-2G) is characterized by high resistance to thermal and 
oxidative degradation in neutral solutions and non-reducing conditions. Addition 
of AA-2G to the freezing extender improved the post-thaw quality of boar sper-
matozoa through the protection of spermatozoa against DNA damage and the lipid 
peroxidation caused by oxidative stress during cryopreservation [55].

Ergothioneine is an important low-molecular-weight thiol which scavenges 
singlet oxygen [89] and hydroxyl and peroxyl radicals [90]. It exists in millimolar 
concentrations in some tissues and has been linked to the metabolism of iron, 
copper and zinc. Increasing concentration of ergothioneine in semen extenders 
preserved DNA integrity of spermatozoa against cryodamage [56].

Melatonin (N-acetyl-5-methoxytryptamine, MT) is mainly synthesized and 
secreted by the pineal gland in reaction to changes in dark–light cycles [91]. It can 
stimulate the activity of antioxidant enzymes such as SOD and GSH-Px [92]. MT 
scavenges a variety of reactive oxygen and nitrogen species with powerful non-
enzymatic antioxidant property [93]. MT can improve spermatozoa characteristics 
in goat [57], rat [58], boar [59], ram [60], mouse [61] and human [62, 63]. In addi-
tion, it had a dose-dependent effect on all parameters of spermatozoa motility. 1 uM 
MT did not succeed in improving the function of boar semen stored at 17°C [64], 
but 1 nM MT can enhance hyperactivation of hamster spermatozoa [65].

It has been indicated that dietary Se supplementation enhanced reproductive 
function in mice, sheep and cattle [94, 95] and also brought about the improve-
ment in post-thaw spermatozoa quality [66]. Lack of Se has been related to repro-
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after combination with a fatty acid in plasma membrane which improves surfactant 
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infertile couples [109]. The leading cause of male infertility stems from a loss of 
spermatozoa function, ultimately resulting in a loss of fertilization potential [110]. 
This loss in function is causatively linked to oxidative stress within the spermatozoa 
driven by the presence and/or overproduction of intracellular ROS [111].

Several studies have shown conflicting results for the effect of the antioxidant 
therapy on male fertility, whilst a number of studies conveyed a favorable effect 
on basic semen parameters, advanced spermatozoa function tests and pregnancy 
rates. But, the ideal balance of the redox system necessary for optimal sperma-
tozoa function is not known, and overconsumption of antioxidants may result 
in reductive stress that could cause detrimental effects on human health and 
well-being. Impairment of mitochondrial activity [112], reduction in blood–brain 
barrier permeability [113] and attenuation of endothelial cell proliferation [114] 
are consequences that have been reported to occur secondary to reductive stress. 
Table 2 shows the mechanism of action of several commonly used antioxidants for 
the treatment of male infertility. The list of antioxidants used in treatment of male 
infertility is presented in Table 3.

Vitamin E is well accepted as the first line of defence against lipid peroxidation, 
protecting polyunsaturated fatty acids in cell membranes through its free radical 
quenching activity in biomembranes at an early state of free radical attack. MDA 
concentration was prevented by treatment with vitamin E; it may help in the pre-
vention of against production of free radicals and quenches free hydroxyl radicals 
and superoxide anions, thereby reducing lipid peroxidation initiated by ROS at 
the level of plasma membranes [126]. Its antioxidant activity is similar to that of 
glutathione peroxidase. In infertility of male, the percentage of motile spermatozoa 
is significantly related to spermatozoa vitamin E content [127]. Lower levels of 
vitamin E were observed in the semen of infertile men [128]. Insufficient intake of 
vitamin E produced deleterious effects on the process of normal spermatozoa [129]. 
One of the earlier studies investigating vitamin E alone (300 mg daily) on infertile 
men reported significant improvement in spermatozoa motility [121]. Combined 
with clomiphene citrate treatments, vitamin E significantly improved spermatozoa 
concentration and motility of patients with idiopathic oligoasthenozoospermia 
(OAT) [130]. Another observational study investigated a daily regimen of vitamin 
E (400 mg) + selenium (200 lg), for a period of 100 days, on infertile men with 
idiopathic asthenoteratospermia. Results revealed that 52.6% of patients showed a 
significant improvement in spermatozoa motility, morphology or both [131]. On the 
other hand, a few other studies failed to reproduce any significant effect on semen 

Antioxidants Antioxidant mechanism Typical daily 
dose

Vitamin E Neutralizes free radicals 200–600 mg

Vitamin C Neutralizes free radicals 200–1000 mg

Selenium Enhancement of antioxidant enzyme activity 100–200 mg

Zinc Inhibition of NADPH oxidase and scavenges hydroxyl radicals 15–40 mg

Carnitines Neutralizes free radicals and acts as an energy source 1–3 g

CoQ10 Scavenges free radicals of mitochondrial electron transport 
system

60–300 mg

Lycopene Scavenges free radicals 4–6 mg

Vitamin E, tocopherol; vitamin C, ascorbic acid; NADPH, nicotinamide adenine dinucleotide phosphate.

Table 2. 
Mechanism of action of commonly used antioxidants and clinical dosage.
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parameters using vitamin E as a single treatment [123, 125] or in combination with 
other antioxidants [132].

In the male reproductive system, vitamin C (ascorbic acid) is known to 
protect spermatogenesis and plays a key role in spermatozoa integrity and fertil-
ity both in men by increasing testosterone levels and preventing spermatozoa 
agglutination. It exists at a concentration 10 times higher in seminal plasma than 
in blood serum [133] and contributes up to 65% of the total antioxidant capacity 
of seminal plasma found intracellularly and extracellularly [134, 135]. Semen of 
infertile men with asthenozoospermia was found to contain lower vitamin C lev-
els and higher ROS levels than those obtained from fertile controls [117]. Vitamin 
C as a single agent which is used to treat heavy smokers, with a daily dose of 200 
or 1000 mg or placebo for 1 month, significantly improved spermatozoa quality 
[136]. Receiving 500 mg daily vitamin C with a combination of zinc, vitamin E 
and vitamin C for a total of 3 months after undergoing varicocelectomy sig-
nificantly improved spermatozoa motility and morphology on varicocelectomy 
patients [118, 137].

Clinical applications Antioxidants daily References

Oligozoospermia Vitamin E (180 mg), vitamin A (30 mg) and essential fatty 
acids (600 mg)

[22]

LC (2 g) [115]

CoQ10 (300 mg) [116]

Selenium (200 mg) [117]

Folic acid (5 mg) + zinc (66 mg) [118]

Lycopene (2 mg) [119]

Asthenozoospermia Zinc (400 mg), vitamin E (20 mg) and vitamin C (10 mg) [120]

CoQ10 (300 mg) [116]

Selenium (200 mg) [117]

Lycopene (2 mg) [119]

Teratozoospermia Selenium (200 mg) [117]

Zinc (400 mg), vitamin E (20 mg) and vitamin C (10 mg) [120]

Improving DNA integrity Vitamin E (1 g) + vitamin C (1 g) [121]

Vitamin C (400 mg), vitamin E (400 mg), b-carotene 
(18 mg), zinc (500 mmol) and selenium (1 mmol)

[29]

LC (1500 mg), vitamin C (60 mg), CoQ10 (20 mg), vitamin 
E (10 mg), zinc (10 mg), folic acid (200 lg),

[32]

Improving ART vitamin E (200 mg) [33]

Vitamin E (600 mg) [122]

Vitamin C (1 g) + vitamin E (1 g) [123]

Improving live birth rate CoQ10 (300 mg) [116]

Vitamin E (300 mg) [124]

Zinc (5000 mg) [12]

Vitamin E (1 g) + vitamin C (1 g) [121]

Carnitines: LC (2 g) + LAC (1 g) [125]

Table 3. 
Proposed antioxidants in various clinical treatments.
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Carnitines [L-carnitine (LC) and L-acetyl carnitine (LAC)] are water-soluble 
antioxidants involved in spermatozoa metabolism, fuelling important activities 
like spermatozoa motility [138]. The carnitine and acetylcarnitine can significantly 
improve spermatozoa motility or kinetics in patients with asthenozoospermia [120, 
139]. In vitro studies of spermatozoa cultured in media containing carnitines had 
higher motility and viability. They exhibit their antioxidant activities through scav-
enging superoxide anions and hydrogen peroxide radicals, thereby inhibiting lipid 
peroxidation. A combined treatment of LC (2 g) and LAC (1 g) for 2 months’ duration 
to placebo in men with OAT showed significant improvement in all semen parameters; 
however, the most significant increase was in spermatozoa motility. Low-grade vari-
cocele and idiopathic infertility patients treated with LC and LAC in comparison with 
placebo had significant improvement in all semen parameters [140]. On the contrary, 
LC (1000 mg) and LAC (500 mg) daily treated asthenozoospermic men for 12 weeks 
and failed to show any significant improvement in spermatozoa motility [141].

CoQ10 is a vital antioxidant omnipresent in almost all body tissues. It is particularly 
present at high concentrations in spermatozoa mitochondria involved in cellular respira-
tion and plays an integral role in energy production [142]. This contribution rationalizes 
its use as a promotility and antioxidant molecule. Furthermore, CoQ10 inhibits super-
oxide formation, delivering protection against OS-induced spermatozoa dysfunction. A 
significant negative correlation between CoQ10 levels and hydrogen peroxide has been 
reported, and a linear correlation between CoQ10 levels in seminal plasma spermatozoa 
count and motility was detected [115]. 300 mg CoQ10 for 26 weeks obtained a signifi-
cant increase in sperm density and motility [143]. A systemic review of clinical trials on 
332 infertile men revealed that treatment with CoQ10 (200–300 mg daily) resulted in a 
significant increase in spermatozoa concentration and motility [144].

Antioxidant properties of selenium are thought to stem from its ability to augment 
the function of glutathione. More than 25 selenoproteins exist, such as phospholipid 
hydroperoxide glutathione peroxidase (PHGPX) [145] and spermatozoa capsular sele-
noprotein glutathione peroxidase [146], to maintain spermatozoa structural integrity 
[147]. Selenium deficiency has been most commonly associated with morphological 
spermatozoa midpiece abnormalities and impairment of spermatozoa motility [148]. 
A significant increase (74%) in total normal spermatozoa concentration was noted 
amongst the subfertile group receiving combined therapy [116] with a combination of 
both folic acid and zinc for 26 weeks of treatment. Selenium has been less frequently 
investigated for the treatment of subfertile men. As previously noted, with selenium 
(200 mg) supplements for 26 weeks, results showed a significant improvement in all 
semen parameters. A strong correlation was seen between the sum of the selenium and 
mean spermatozoa concentration, motility and percentage normal morphology [149]. 
Furthermore, the combination of selenium with vitamin E resulted in an increase in 
spermatozoa motility [124, 150]. But in the contrary report, treatment with selenium 
(300 mg) daily for 48 weeks did not result in a significant influence on semen param-
eters of a group of normozoospermic men [122].

Zinc plays a vital role in the metabolism of RNA and DNA, signal transduction, gene 
expression and regulation of apoptosis. Its antioxidant properties are thought to result 
from its ability to decrease production of hydrogen peroxide and hydroxyl radicals 
through antagonizing redox-active transition metals, such as iron and copper [151]. 
Zinc concentrations of seminal plasma were found to be significantly lower in subfertile 
men [152]. Spermatozoa flagellar abnormalities, such as hypertrophy and hyperplasia of 
the fibrous sheath, axonemal disruption, defects of the inner microtubular dynein arms 
and abnormal or absent midpiece, are all associated with zinc deficiency [153]. Zinc 
given for 3 months in men with asthenozoospermia obtained a significant improvement 
in spermatozoa concentration, progressive motility and fertilizing capacity and a reduc-
tion in the incidence of anti-spermatozoa antibodies [153]. Oral zinc supplementation 
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successfully restored seminal catalase-like activity and improved spermatozoa concen-
tration and progressive motility in a group of asthenozoospermic men [154].

Lycopene is a naturally synthesized carotenoid presented in fruits and vegeta-
bles. Its powerful ROS quenching abilities make it a major contributor to the human 
redox defense system [155]. Lycopene is detected at high concentrations in human 
testes and seminal plasma with levels that tend to be lower in infertile men [156]. 
The treatment with 2 mg lycopene twice daily for 3 months significantly improves 
spermatozoa concentration and motility in 66% of patients, respectively. However, 
the effects were only significant in patients who had baseline spermatozoa concen-
trations of >5 × 106 sperm/mL [119].

4. Conclusion

Spermatozoa possess an inherent but limited capacity to generate ROS which may 
help the fertilization process. Antioxidants improve the motility and fertilizing ability 
of spermatozoa. A balance between the benefits and risks from ROS and antioxidants 
appears to be necessary for the survival and normal functioning of spermatozoa. 
Antioxidants in extenders may minimize the detrimental effect of ROS and improve 
the quality of frozen–thawed spermatozoa in animals and human. From the other point 
of view, the divergent effect of each antioxidant supplementation, improving different 
parameters of frozen–thawed sperm quality, is attributed to animal species, extender 
medium and type of molecule and concentration used for each species. Although a 
beneficial influence was generally observed for antioxidants in reversing ROS-induced 
spermatozoa dysfunction and in improving pregnancy rates, evaluation of ROS and 
the use of antioxidants are not routine in clinical practice. The dose and duration of 
these antioxidants should also be determined and standardized. There should be an 
effort to develop optimum combinations of antioxidants to supplement spermatozoa 
media. Finally, this study suggests that further research should be done to determine 
the appropriate antioxidant compounds as well as certain dose of antioxidants whether 
used clinical practices or cryopreservation. Moreover the future studies should concern 
the spermatozoa fertilization and pregnancy rate as a research emphasis.
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these antioxidants should also be determined and standardized. There should be an 
effort to develop optimum combinations of antioxidants to supplement spermatozoa 
media. Finally, this study suggests that further research should be done to determine 
the appropriate antioxidant compounds as well as certain dose of antioxidants whether 
used clinical practices or cryopreservation. Moreover the future studies should concern 
the spermatozoa fertilization and pregnancy rate as a research emphasis.
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Chapter 6

Nonenzymatic Exogenous and 
Endogenous Antioxidants
Ziad Moussa, Zaher M.A. Judeh and Saleh A. Ahmed

Abstract

Nonenzymatic exogenous and endogenous antioxidants play an important role 
in human health and act as preservatives for cosmetics, pharmaceuticals, and food 
products. This chapter will discuss the chemical structure and mechanism of action 
of the most important nonenzymatic small exogenous and endogenous organic 
molecules that act as antioxidants. The chapter will focus on the structural features, 
functional groups, properties, biosynthetic origin, and mechanism of action of 
such antioxidants. It also covers damages that free radicals create and the mecha-
nisms by which they are neutralized by the various antioxidants. The scope of this 
chapter will be limited to nonenzymatic exogenous and endogenous antioxidants 
since enzymatic antioxidants have been discussed extensively in several reviews.

Keywords: antioxidants, nonenzymatic, endogenous, exogenous, low-molecular 
weight antioxidants, mechanism

1. Introduction

Antioxidants are structurally diverse group of small organic molecules and large 
enzymes that comprise complex systems of overlapping activities working syner-
gistically to enhance cellular defense and to combat oxidative stress resulting from 
various reactive oxygen species (ROS) and reactive nitrogen species (RNS) [1]. The 
former substances are byproducts of metabolism and are ironically produced from 
oxygen, an indispensable element for life. Many of these reactive species are free 
radicals possessing one or more unpaired electrons and as such rendered highly 
reactive. The reactive species generated in cells include hydrogen peroxide (H2O2), 
hypochlorous acid (HClO), the hydroxyl radical (·OH), the superoxide anion radi-
cal (O2

−), the nitric oxide radical (NO·), and the lipid peroxyl radical (LOO·) [2, 3]. 
The term antioxidants may refer to either industrial chemicals that may be added 
to products to combat oxidation or to natural products that are found in foods and 
tissue. While the former act as preservatives for cosmetics, pharmaceuticals, and 
food products, the latter play an important role in human health as well. There are 
many reactive oxygen species conducting unwanted oxidation reactions in a variety 
of cell and tissue sites [4]. Likewise, each antioxidant targets specific types of ROS 
and provides protection in distinct environments. Antioxidants reduce reactive 
oxygen species which otherwise participate in oxidation reactions that can gener-
ate free radicals and cause damage to cellular components such as DNA, proteins, 
carbohydrates, and lipids [4]. It is noted, however, that reactive oxygen species 
mediate certain cellular functions like redox signaling and gene expression as well 
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Nonenzymatic Exogenous and 
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Abstract

Nonenzymatic exogenous and endogenous antioxidants play an important role 
in human health and act as preservatives for cosmetics, pharmaceuticals, and food 
products. This chapter will discuss the chemical structure and mechanism of action 
of the most important nonenzymatic small exogenous and endogenous organic 
molecules that act as antioxidants. The chapter will focus on the structural features, 
functional groups, properties, biosynthetic origin, and mechanism of action of 
such antioxidants. It also covers damages that free radicals create and the mecha-
nisms by which they are neutralized by the various antioxidants. The scope of this 
chapter will be limited to nonenzymatic exogenous and endogenous antioxidants 
since enzymatic antioxidants have been discussed extensively in several reviews.

Keywords: antioxidants, nonenzymatic, endogenous, exogenous, low-molecular 
weight antioxidants, mechanism

1. Introduction

Antioxidants are structurally diverse group of small organic molecules and large 
enzymes that comprise complex systems of overlapping activities working syner-
gistically to enhance cellular defense and to combat oxidative stress resulting from 
various reactive oxygen species (ROS) and reactive nitrogen species (RNS) [1]. The 
former substances are byproducts of metabolism and are ironically produced from 
oxygen, an indispensable element for life. Many of these reactive species are free 
radicals possessing one or more unpaired electrons and as such rendered highly 
reactive. The reactive species generated in cells include hydrogen peroxide (H2O2), 
hypochlorous acid (HClO), the hydroxyl radical (·OH), the superoxide anion radi-
cal (O2

−), the nitric oxide radical (NO·), and the lipid peroxyl radical (LOO·) [2, 3]. 
The term antioxidants may refer to either industrial chemicals that may be added 
to products to combat oxidation or to natural products that are found in foods and 
tissue. While the former act as preservatives for cosmetics, pharmaceuticals, and 
food products, the latter play an important role in human health as well. There are 
many reactive oxygen species conducting unwanted oxidation reactions in a variety 
of cell and tissue sites [4]. Likewise, each antioxidant targets specific types of ROS 
and provides protection in distinct environments. Antioxidants reduce reactive 
oxygen species which otherwise participate in oxidation reactions that can gener-
ate free radicals and cause damage to cellular components such as DNA, proteins, 
carbohydrates, and lipids [4]. It is noted, however, that reactive oxygen species 
mediate certain cellular functions like redox signaling and gene expression as well 
as defend against pathogens [5, 6]. Thus, the role of antioxidant systems is not to 
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eliminate oxidants completely, but instead maintain them at an optimum level. 
Despite the presence of the antioxidant defense mechanism to counteract oxidative 
stress, damage due to oxidation has a cumulative effect and has been implicated 
in several chronic conditions and disease states such as cancer [7], cardiovascular 
disease [8], and neurodegenerative disorders [9]. Antioxidant compounds and 
antioxidant enzyme systems display synergistic and interdependent effects on one 
another. Antioxidants found in nature can be classified in a number of ways. Based 
on their activity, they can be classified as enzymatic and nonenzymatic antioxi-
dants (phytochemicals and vitamins). While antioxidant enzymes like superoxide 
dismutase (SOD) [10], glutathione peroxidase (GPx) [11], glutathione reductase 
(GSR) [12], peroxiredoxin I-IV and catalases (CAT) [13] are macromolecules, the 
vast majority of the remaining natural antioxidants classified as phytochemicals 
and vitamins are relatively smaller organic molecules with low molecular weights 
[14, 15]. Antioxidants have also been categorized as water-soluble or fat-soluble 
molecules.

This chapter will highlight the chemical structures and mechanism of action of 
important nonenzymatic small exogenous (natural) and endogenous (synthetic/
physiological) organic molecules that act as antioxidants in plants and animals. 
The antioxidants described in this chapter are among the most important, 
although certainly they are not the only ones known. Special focus on the struc-
tural features, functional groups, properties, biosynthetic origin, and mechanism 
of action will be undertaken with special coverage of damages that free radicals 
create and the mechanisms by which they are neutralized by the various antioxi-
dant molecules.

2. Enzymatic versus nonenzymatic antioxidants

Based on their activity, antioxidants are classified as enzymatic and nonenzy-
matic antioxidants. While enzymatic antioxidants [10–13] function by converting 
oxidized metabolic products in a multi-step process to hydrogen peroxide (H2O2) 
and then to water using cofactors such as iron, zinc, copper, and manganese, 
nonenzymatic antioxidants intercept and terminate free radical chain reactions. 
Examples of natural nonenzymatic antioxidants are vitamin E, A, C, flavonoids, 
carotenoids, glutathione, plant polyphenols, uric acid, theaflavin, allyl sulfides, 
curcumin, melatonin, bilirubin, and polyamines [14, 15]. Some of these antioxi-
dants are water-soluble and predominantly found in the cytosol or cytoplasmic 
matrix, while others are liposoluble and are present in cell membranes. The enzy-
matic antioxidants and their mechanism of action have been discussed extensively 
in several review articles [16–18]. The scope of this chapter will be limited to 
nonenzymatic exogenous and endogenous antioxidants.

3. Generation of free radicals in living organisms

The production of ROS in biological systems occurs during oxygen metabo-
lism and plays an important role in homeostasis and cell signaling [5]. However, 
under conditions of environmental stress, the concentration of ROS can increase 
significantly and inflict damage on cell structures. The generation of ROS begins 
with the reduction of molecular oxygen with NADPH to produce the superoxide 
anion radical (O2.−), a precursor to most remaining reactive oxygen and nitrogen 
species (Figure 1). Subsequent dismutation of two molecules of the superoxide 
anion catalyzed by the enzyme superoxide dismutase (SOD) generates oxygen and 
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hydrogen peroxide. The latter in turn may undergo partial reduction to hydroxyl 
radical through the Fenton reaction or alternatively via the Haber-Weiss process 
[19]. While hydrogen peroxide is more damaging to DNA, the hydroxyl radical is 
highly reactive and turns biomolecules into free radicals, thus perpetuating a free 
radical chain reaction. Hydrogen peroxide may also be converted to the potent 
oxidant hypochlorous acid in the presence of the chloride ion, an omnipresent 
species. This transformation is catalyzed by the enzyme myeloperoxidase (MPO). 
Reaction of HOCl with H2O2 regenerates chloride ion and produces singlet oxygen 
as yet another ROS. On the other hand, RNS such as nitric oxide (NO.) are produced 
by the enzyme nitric oxide synthase (NOS) starting from the precursor L-arginine 
[20]. Nitric oxide functions as a superoxide quencher forming peroxynitrite 
(ONOO−), a strong oxidant that reacts indiscriminately with biological targets. 
Further, it may disintegrate into a pair of hydroxyl and nitric dioxide radicals and 
cause damage through such species (Figure 1).

4. Damaging chemical reactions of free radicals in living organisms

4.1 Free radical damage to the deoxyribose moiety of DNA

The highly reactive hydroxyl radical (·OH) reacts with the sugar moiety of DNA 
causing structural modification and strand breaks by a variety of mechanisms [21]. 
The OH radical reacts with the 2′-deoxyribose sugar residue in DNA by abstracting 
H• from all its carbon atoms forming five carbon-centered radicals. The H4′ and 
H5′ atoms are more accessible to H• abstraction by the OH radical than the H1′, H2′, 
and H3′. The C4′ C-centered radical appears to be the major radical generated by 
H• abstraction from 2′-deoxyribose in DNA [22]. These radicals undergo further 
reactions, producing a variety of 2′-deoxyribose oxidative adducts. While some 
products detach from DNA, others remain tethered as end groups of fragmented 
DNA strands [22]. In the absence of oxygen and as depicted in Figure 2, one of the 
byproducts formed from C4′-radical of 2′-deoxyribose as an end group of a severed 
DNA strand is 2,5-dideoxypentose-4-ulose. The product is formed by heterolytic 
cleavage of the phosphate group at C5′ to give a C4′/C5′-radical cation which in turn 
undergoes hydration and subsequent one-electron reduction and base elimination 
(Figure 2). Other products formed from the C4′ radical include 2-deoxypentose-
4-ulose and 2,3-dideoxypentose-4-ulose. However, in the presence of oxygen, rapid 
addition of O2 to the C4′-radical forms a peroxyl radical which undergoes a series 
of fragmentation reactions yielding 3′-phosphoglycolate as an end group [23]. 

Figure 1. 
Generation of ROS and RNS in living species.
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dants are water-soluble and predominantly found in the cytosol or cytoplasmic 
matrix, while others are liposoluble and are present in cell membranes. The enzy-
matic antioxidants and their mechanism of action have been discussed extensively 
in several review articles [16–18]. The scope of this chapter will be limited to 
nonenzymatic exogenous and endogenous antioxidants.

3. Generation of free radicals in living organisms

The production of ROS in biological systems occurs during oxygen metabo-
lism and plays an important role in homeostasis and cell signaling [5]. However, 
under conditions of environmental stress, the concentration of ROS can increase 
significantly and inflict damage on cell structures. The generation of ROS begins 
with the reduction of molecular oxygen with NADPH to produce the superoxide 
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hydrogen peroxide. The latter in turn may undergo partial reduction to hydroxyl 
radical through the Fenton reaction or alternatively via the Haber-Weiss process 
[19]. While hydrogen peroxide is more damaging to DNA, the hydroxyl radical is 
highly reactive and turns biomolecules into free radicals, thus perpetuating a free 
radical chain reaction. Hydrogen peroxide may also be converted to the potent 
oxidant hypochlorous acid in the presence of the chloride ion, an omnipresent 
species. This transformation is catalyzed by the enzyme myeloperoxidase (MPO). 
Reaction of HOCl with H2O2 regenerates chloride ion and produces singlet oxygen 
as yet another ROS. On the other hand, RNS such as nitric oxide (NO.) are produced 
by the enzyme nitric oxide synthase (NOS) starting from the precursor L-arginine 
[20]. Nitric oxide functions as a superoxide quencher forming peroxynitrite 
(ONOO−), a strong oxidant that reacts indiscriminately with biological targets. 
Further, it may disintegrate into a pair of hydroxyl and nitric dioxide radicals and 
cause damage through such species (Figure 1).

4. Damaging chemical reactions of free radicals in living organisms

4.1 Free radical damage to the deoxyribose moiety of DNA

The highly reactive hydroxyl radical (·OH) reacts with the sugar moiety of DNA 
causing structural modification and strand breaks by a variety of mechanisms [21]. 
The OH radical reacts with the 2′-deoxyribose sugar residue in DNA by abstracting 
H• from all its carbon atoms forming five carbon-centered radicals. The H4′ and 
H5′ atoms are more accessible to H• abstraction by the OH radical than the H1′, H2′, 
and H3′. The C4′ C-centered radical appears to be the major radical generated by 
H• abstraction from 2′-deoxyribose in DNA [22]. These radicals undergo further 
reactions, producing a variety of 2′-deoxyribose oxidative adducts. While some 
products detach from DNA, others remain tethered as end groups of fragmented 
DNA strands [22]. In the absence of oxygen and as depicted in Figure 2, one of the 
byproducts formed from C4′-radical of 2′-deoxyribose as an end group of a severed 
DNA strand is 2,5-dideoxypentose-4-ulose. The product is formed by heterolytic 
cleavage of the phosphate group at C5′ to give a C4′/C5′-radical cation which in turn 
undergoes hydration and subsequent one-electron reduction and base elimination 
(Figure 2). Other products formed from the C4′ radical include 2-deoxypentose-
4-ulose and 2,3-dideoxypentose-4-ulose. However, in the presence of oxygen, rapid 
addition of O2 to the C4′-radical forms a peroxyl radical which undergoes a series 
of fragmentation reactions yielding 3′-phosphoglycolate as an end group [23]. 

Figure 1. 
Generation of ROS and RNS in living species.
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Oxidation of the C1′, C2′, and C5′ radicals yields products such as 2-deoxypentonic 
acid lactone, erythrose, 2-deoxytetradialdose, and 5′ aldehyde [22].

4.2 Free radical damage to DNA bases

Besides reacting with the sugar moiety of DNA, the highly reactive hydroxyl 
radical (·OH) reacts with the heterocyclic bases guanine (Figure 3), thymine, and 
cytosine, causing free radical-induced DNA damage by several different pathways. 
Guanine, however, possesses the lowest reduction potential (1.29 V) among the four 
DNA bases, rendering the motif the best electron donor and prone to preferential 
oxidization [24]. The hydroxyl radical reacts with the C4-, C5-, and C8-positions of 
guanine and to a lesser extent with the C2-position, generating a plethora of prod-
ucts. Interestingly, the HO-adduct radicals generated from the addition reactions 
of HO. may exhibit reducing or oxidizing properties (redox ambivalence), yielding 
the relevant products accordingly. Hence, while the C5-OH– and the C8-OH–adduct 
radicals are reducing, the C4-OH–adduct radical is predominantly oxidizing. The 
last two adduct radicals form in yields of 17% and 65–70%, respectively, whereas 
the yield of the C5-OH– adduct radical is lower than 10% [25]. Although formed in 
relatively lower yields, the C8-OH–adduct radical produces the major byproducts of  
guanine reactions (Figure 3). Thus, as shown in Figure 3 and following reaction 
of the hydroxyl radical with the C-8 position of guanine, one-electron oxidation 
of the resulting C8-OH–adduct radical yields the enol form of 8-hydroxyguanine 
which undergoes tautomerization to generate the predominant keto form [21]. 
The latter may also form via a pathway involving 1,2-hydride-shift and subsequent 
oxidation of the C8-OH–adduct radical. The 1,2-hydride-shift radical product may 
also undergo single electron reduction, followed by ring opening reaction to form 
2,6-diamino-4-hydroxy-5- formamidopyrimidine. The preceding radical damage to 
DNA has been directly correlated to several disease states such as genetic mutation, 
atherosclerosis, Alzheimer’s disease, and the aging process [26, 27].

Figure 2. 
Mechanism of product formation from reactions of the C4′-radical of 2′-deoxyribose, leading to 
2,5-dideoxypentose-4-ulose as an end group of a broken DNA strand.

Figure 3. 
Oxidative and reductive product formation from reactions of the C8-OH–adduct radical of guanine.
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4.3 Free radical damage to polyunsaturated fatty acid groups of cell membranes

While free radicals react with all major classes of biomolecules, peroxidation 
of the polyunsaturated fatty acid groups (PUFA) of cell membranes comprises 
the main target of oxidative damage, resulting in a destructive self-propagating 
chain reaction. The general mechanism of PUFA peroxidation involves abstraction 
of hydrogen from a lipid molecule (LH) by an initiator (R.) to generate a carbon-
based free radical (L.) which reacts rapidly with molecular oxygen to form the 
peroxyl radical (LOO.) known to propagate the chain reaction (Figure 4). As such, 
the peroxyl radical reacts with PUFA moieties, producing lipid hydroperoxides 
(LOOH) and perpetuating the chain reaction. The hydroperoxides can further 
dissociate to dangerous radical species like bioactive aldehydes which inflict damage 
on other cellular components. Lipid hydroperoxidation has been linked to a number 
of physiological conditions and tissue injuries [28].

5.  Regulation of free radicals with nonenzymatic small natural 
exogenous antioxidants

5.1 Vitamins

5.1.1 Vitamin E

Vitamin E is a collection of optically active methylated phenolic compounds 
comprising four tocopherols and four tocotrienols [29] where α-tocopherol is 
the most common and biologically active species (Figure 5) [30]. The structures 
feature two primary parts: a densely substituted polar chromanol aromatic ring 
and a lipophilic long polyprenyl side chain. The main chemical structural differ-
ence between different forms of Vitamin E is that tocotrienols feature unsaturated 
isoprenoid hydrocarbon side chains with three carbon-carbon double bonds versus 
saturated isoprenoid side chains for tocopherols. Within each group, the vitamers are 
differentiated by the number and positions of the methyls in the chromate ring. The 
polyprenyl precursor for the biosynthesis of tocopherols and tocotrienols is phytyl 
pyrophosphate (PPP) and geranylgeranyl pyrophosphate (GGPP), respectively [31]. 
Vitamin E is biosynthesized though the shikimate pathway, and while α-tocopherol 
and α-tocotrienol are considered structurally unique, the remaining compounds in 
each class are constitutional isomers. The presence of three stereogenic centers (posi-
tion C2 of the chromate ring, position C4 and C8 of the phytyl side chain) produces 8 
different stereoisomers (four pairs of enantiomers) depending on the position and 
orientation of the groups in each of the chiral centers. Since the discovery of vitamin 
E in 1920, it has been shown to be the most powerful membrane-bound antioxidant 
utilized by cells to scavenge reactive nitrogen and oxygen species with consequent 
disruption of oxidative damage to cell membrane phospholipids during cellular lipid 
peroxidation of the polyunsaturated fatty acids (PFA) and low-density lipoprotein 
(LDL) [32]. The antioxidant is liposoluble and localized to cell membranes. Vitamin 
E functions by reducing lipid peroxyl radicals (LOO.) by transferring the phenolic 
hydrogen atom of the chroman ring (Figure 5), resulting in a relatively stable and 
unreactive resonance-stabilized tocopheroxyl radical which is unable to trigger 

Figure 4. 
General process of lipid peroxidation.
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Oxidation of the C1′, C2′, and C5′ radicals yields products such as 2-deoxypentonic 
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4.2 Free radical damage to DNA bases

Besides reacting with the sugar moiety of DNA, the highly reactive hydroxyl 
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oxidization [24]. The hydroxyl radical reacts with the C4-, C5-, and C8-positions of 
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last two adduct radicals form in yields of 17% and 65–70%, respectively, whereas 
the yield of the C5-OH– adduct radical is lower than 10% [25]. Although formed in 
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which undergoes tautomerization to generate the predominant keto form [21]. 
The latter may also form via a pathway involving 1,2-hydride-shift and subsequent 
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polyprenyl precursor for the biosynthesis of tocopherols and tocotrienols is phytyl 
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and α-tocotrienol are considered structurally unique, the remaining compounds in 
each class are constitutional isomers. The presence of three stereogenic centers (posi-
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further lipid peroxidation itself. The α-tocopherol radical can be reduced back to 
the original active α-tocopherol form by ascorbic acid or coenzyme Q10 [33, 34]. 
Alternatively, it may quench a second peroxyl radical where the resulting tocopheryl 
peroxide eliminates a peroxide leaving group, forms a hemiketal after reacting with 
water, and lastly hydrolyses to the tocopherolquinone. This is an essential foundation 
and benchmark of a good antioxidant. The synergistic antioxidation interactions 
between vitamin E and the ascorbate ion of vitamin C position the former at the 
forefront of the anti-radical defense system. Vitamin E is exogenous and hence is 
essential and must be obtained through diet in small amounts since the organism 
cannot synthesize it. Its biosynthesis is restricted to plants, photosynthetic algae, 
and certain cyanobacteria. Although vitamin A deficiency is rare, the most frequent 
manifestations of its lack comprise a number of disorders and disease states which 
include encephalomalacia, exudative diathesis, muscular dystrophy, and ceroid pig-
mentation. α-Tocopherol exhibits the highest bioactivity (100%), with the relative 
activities of β-, γ-, and δ-tocopherols being 50, 10, and 3%, respectively [35].

5.1.2 Vitamin A

Vitamin A, just like vitamin E, is a term that designates a family of unsaturated 
liposoluble organic compounds that include retinol, retinal, retinoic acid, and retinyl 
palmitate, and many provitamin A carotenoids such as beta-carotene (Figure 6). All 
forms share a beta-ionone ring to which an isoprenoid tether known as retinyl group 
is attached. It is noteworthy that both features are essential for vitamin A activity. The 
common chemical structure is a diterpene (C20H32) where the various molecular forms 
differ by the terminal side chain functional group. Thus, retinol contains a hydroxyl 
group, retinal contains an aldehyde function, retinoic acid has a terminal carboxylic 
acid group, and retinyl palmitate bears an ester moiety. The discovery of the antioxi-
dant activity of vitamin A dates back to 1932 when Schmitt and Monaghan reported 
that vitamin A prevents lipid rancidity [36]. Several reviews outlining the antioxidant 
role and metabolic functions of vitamin A have appeared in the literature [37, 38]. 
Besides eliminating free radicals, it plays a major role in maintaining good vision. 
The aldehyde form of vitamin E is required by the retina to form the light-absorbing 
molecule rhodopsin necessary for both color and scotopic vision [39]. On the other 
hand, the fully irreversibly oxidized form of retinol functions in a very different 
way as a growth factor for epithelial and other types of cells [38]. As an antioxidant, 
vitamin A scavenges lipid peroxyl radicals (LOO.) according to the mechanism shown 
in Figure 6. Thus, by trapping the peroxyl radical through an addition reaction to the 
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beta-ionone ring of retinol, the resultant tertiary and highly conjugated trans-retinol 
carbon radical intermediate is relatively stable and under normal conditions is not 
reactive enough to induce further lipid peroxidation itself. However, the intermediate 
may continue reacting with lipid peroxyl radicals or molecular oxygen to produce a 
bis-peroxyl adduct or retinol-derived peroxyl radical, respectively. Alternatively, it 
may eliminate LO radical and oxidizes to 5,6-retinol epoxide [15].

5.1.3 Vitamin C

Vitamin C (L-ascorbic acid) is an optically-active hydrosoluble free radical 
scavenger that bears a highly acidic hydroxyl group (pKa = 4.2) known to be 
completely ionized at neutral pH [35, 40]. Thus, the acidic vitamin readily loses a 
proton from the 3-hydroxyl group affording a resonance-stabilized ascorbate anion 
(AscH−) (Figure 7). The unusual acidity of the alcohol is related to the presence 
of two conjugated double bonds which stabilize the deprotonated monoanionic 
conjugate base. Furthermore, these same electronic factors impart stability to the 
radical form of vitamin C when it undergoes one electron oxidation by lipid radicals 
to generate the ascorbate radical (Figure 7), a much less reactive species than most 
other free radicals. As such, vitamin C is able to assume the role of a free-radical 
scavenger. The low standard 1-electron reduction potential (282 mV) renders 
vitamin C an excellent electron donor. As well, at low ascorbate concentrations, 
it may function as a pro-oxidant reducing agent and is able to reduce redox-active 
copper and iron metals. Vitamin C is therefore required as a cofactor for a number 
of metabolic processes that mediate essential biological functions in all animals 
and plants [41]. The structure features a chiral 3,4-dihydroxyfuran-2(5H)-one 
ring and a 1,2-dihydroxyethyl tether containing another stereogenic center. The 
6-carbon ketolactone is structurally related to glucose. Although four stereoisomers 
are expected depending on the position of the substituents around the stereogenic 
centers, only the L-enantiomer exhibits antioxidant capacity in biological systems, 
both in vitro and in vivo. While vitamin C is biosynthesized by nearly all animals, 
humans comprise a notable exception. Consequently, it is an essential nutrient and 
must be obtained through dietary means. In biological species, the vitamin exists 
in the protonated form at low pH, but in media with pH above 5, it is found in the 
dissociated ascorbate form [42]. This species is a 2-electron donor and gets oxidized 
to a molecule of dehydroascorbate (DHA) which does not have any antioxidant 
capacity. However, regeneration of the ascorbate from DHA is possible by the addi-
tion of two electrons and has been proposed to be carried out by oxidoreductase 
[43]. In animals, the biosynthesis of ascorbic acid is carried out by several enzymes 
in the liver from glucose [42], by a synthetic route which initially involves oxida-
tion to D-glucuronic acid via uridine diphosphate (UDP) derivatives. Subsequent 
reduction of the open-chain aldehyde form of D-glucuronic acid to the primary 

Figure 6. 
Chemical structure of vitamin A and termination of lipid peroxidation with retinol.
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Figure 8. 
General skeletal structure of the various flavonoid classes.

alcohol (L-gulonic acid), lactone formation between the carboxyl and 4-hydroxyl 
group, oxidation of the secondary hydroxyl function to a carbonyl, and subsequent 
enolization result in L-ascorbic acid. The latter, specifically in the ascorbate form, 
acts as a reducing agent, donating electrons to lipid radicals in order to terminate 
the lipid peroxidation chain reaction (Figure 7). Another main function of Vitamin 
C as an antioxidant is to regenerate vitamin E (HO-tocopherol) from its oxidized 
form (.O-tocopherol) back to its active state by reducing vitamin E radicals formed 
when vitamin E scavenges oxygen radicals. The recycling of vitamin E is carried 
out in cell membranes in conjunction with glutathione (GSH) or other sacrificial 
reductants [33, 34]. Likewise, vitamin C acts as an antioxidant and reducing agent 
by donating electrons to various enzymatic and nonenzymatic reactions. It reduces 
the transition metal ions of several biosynthetic enzymes, thus preventing biologi-
cal oxidation of macromolecules. In plants, vitamin C is a substrate for the enzyme 
ascorbate peroxidase which catalyzes the reduction of toxic hydrogen peroxide 
(H2O2) to water (H2O) [44]. Currently, this vitamin is the most widely employed 
vitamin in drugs, premedication, and dietary supplements worldwide.

5.2 Flavonoids

Flavonoids are exogenous antioxidants displaying rich structural diversity and 
are ubiquitous in plants and certain photosynthetic organisms. More than 8000 of 
these benzo-γ-pyran derivatives have been identified and characterized [45, 46]. The 
general structure features a C6-C3-C6 15-carbon flavone skeleton, which comprises 
two phenyl rings (A and B) linked by a heterocyclic ring (C) (Figure 8). Flavonoids 
have been classified into flavones, flavanones, flavanols, flavonols, and anthocya-
nins. While flavones have a double bond between C2 and C3, flavanones have a 
saturated C2–C3 bond. Compared to flavones, the corresponding flavonols have an 
additional hydroxyl group at the C3 position while flavonols are C2-C3 saturated 
analogs of flavonols. Flavonoid groups are differentiated based on the number of 
hydroxyl and other substituents on the phenyl rings [47].

Figure 7. 
Biosynthesis, chemical structure, and reduction mechanism of ascorbic acid.
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Quercetin (3,5,7,3′,4′–pentahydroxyflavone) (Figure 9) is the most ubiquitous 
polyphenolic flavonoid known to prevent oxidative damage to DNA oligonucle-
otides brought about by H2O2, HO., and O2.−. On the other hand, anthocyanidin is 
a strong inhibitor of lipid oxidations. Thus, as shown in Figure 9, the antioxidant 
mechanism of lipid peroxyl radicals scavenging capability of anthocyanidin is 
based on its hydrogen radical donation ability from the p-hydroxyl group of ring 
B to generate a resonance-stabilized anthocyanidin radical incapable of partici-
pating in other radical reactions. In addition, the effectiveness of anthocyanidin 
in inhibiting lipid peroxidation has been correlated to their metal-ion chelating 
power [48, 49]. In particular, the ortho-dihydroxy groups in the B-ring confer 
upon this class of compounds antiperoxidative properties [50]. However, phenolic 
compounds can also act as prooxidants if present in high concentrations with 
metal ions and high pH [47].

5.3 Carotenoids

Carotenoids, also known as tetraterpenoids, are a group of phytonutrients 
produced by plants and algae, as well as some bacteria and fungi [51]. The long 
unsaturated hydrocarbon alkyl chain renders carotenoids highly liposoluble. 
Hence, they play a key role in the protection of lipoproteins and cellular 
membranes from lipid peroxidation and exhibit particularly efficient scaveng-
ing capacity against peroxyl radicals as compared to any other ROS and they 
are known to be the most common lipid-soluble antioxidants [52, 53]. Over 
1100 carotenoids have been identified and classified primarily into two groups: 
the oxygen-containing xanthophylls and those that are purely hydrocarbons, 
carotenes (Figure 10). Biosynthetically, all carotenoids are tetraterpenes 
comprising 40 carbon atoms which are produced from eight isoprene units. The 
structural backbone consists of isoprenoid units biosynthesized either by head-
to-tail or by tail to-tail process. The basic building blocks of carotenoids are 
isopentyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) which 
produce the major carotenoid precursor geranylgeranyl pyrophosphate (GGPP) 
[54]. GGPP undergoes several different reactions within the carotenoid bio-
synthetic pathway to afford carotenes or xanthophylls. Carotenoids reduce 
the peroxyl radicals to form a resonance-stabilized carbon-centered radical 
product. Lycopene and carotene are the most prominent and potent carotenoid 
antioxidants. The former is notably a strong singlet oxygen quencher due to 
the high number of conjugated trans-configuration double bonds present in 
the structure. In general, the extended conjugated system in carotenoids is 
strongly-reducing, facilitating abstraction of hydrogen atoms from the allylic 
positions to this conjugation, as well allowing free-radical addition reactions 
to proceed with ease. Lycopene for instance reduces peroxyl radicals through 
electron transfer to afford an unreactive resonance stabilized carbon-centered 
radical (Figure 10).

Figure 9. 
Structure of quercetin and mechanism of radical scavenging activity of anthocyanidin.
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5.4 Hydroxycinnamic acids

Hydroxycinnamic acids (hydroxycinnamates) are a class of phenylpropanoids 
possessing a C6–C3 skeleton. These compounds are hydroxy derivatives of cinnamic 
acid which is their common biosynthetic precursor. Mechanistically, bimolecular 
elimination of ammonia from the side chain of L-Phenylalanine generates trans-
(E)-cinnamic acid (Figure 11). A subsequent cytochrome P-450-dependent direct 
hydroxylation reaction of cinnamic acid mediated by cinnamate 4-hydroxylase 
enzyme (E2) produces the first member of this class, p-coumaric acid. The sub-
stitution patterns of the remaining cinnamic acids are constructed sequentially 
by further hydroxylation and methylation reactions, which is typical of shikimate 
pathway metabolites. Hence, direct hydroxylation of p-coumaric acid mediated by 
p-coumarate 3-hydroxylase enzyme (E3) generates caffeic acid. Subsequent meth-
ylation of the latter by caffeic acid O-methyltransferase (E4) produces ferulic acid. 
Hydroxylation of ferulic acid by ferulate-5-hydroxylase (E5), a cytochrome P450-
dependent monooxygenase enzyme, followed by methylation with SAM produces 
the last member, sinapic acid. As chain-breaking antioxidants, hydroxycinnamic 
acids prevent oxidation of LDL, although in varying efficiencies, depending on 
their standard one-electron reduction potential, hydrogen or electron donating 
ability, and the capacity to delocalize and stabilize the resulting phenoxyl radical 
within their structural framework [55, 56]. The antioxidant activity of the deriva-
tives is correlated with the methylation and hydoxylation substitution pattern of the 
benzene ring. Thus, the antioxidant efficiency of the hydroxycinnamate conjugates 
on human LDL oxidation has been found to increase in the order of p-coumaric 
acid, ferulic acid, sinapic acid, and caffeic acid [57]. The general mechanism of 
free radical scavenging by which these antioxidants act involves donation of a 
p-hydroxyl hydrogen atom to ROS and generation of resonance stabilized carbon-
based radical. Additionally, the presence of ortho-dihydroxyl groups allows metal-
ion chelation much like flavonoids and enhances their antioxidant capacity against 
lipid peroxidation.

Figure 10. 
Structure and radical scavenging mechanism of some prominent xanthophyll and carotene carotenoids.

Figure 11. 
Structures, biosynthesis, and free radical scavenging mechanism of hydroxycinnamic acids.
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5.5 Other natural exogenous antioxidants (allyl sulfides & curcumin)

Allicin (diallyl thiosulfinate), a compound mainly found in garlic, and 
curcumin are biologically active compounds possessing antioxidative properties. 
The active form responsible for the antioxidant activity of allicin is 2-propene-
sulfenic acid [58], formed via a cope elimination reaction of the former precur-
sor (Figure 12) [59, 60]. The radical-scavenging mechanism of allicin involves 
H-atom abstraction by a peroxyl radical from the sulfenic acid residue [61, 62]. 
The bis-α,β-unsaturated β-diketone, curcumin, is a liposoluble free radical scav-
enger that displays remarkable chain breaking ability similar to that of vitamin 
E [63]. As shown in Figure 11, the methylene group of the β-diketone residue 
and the phenolic hydroxyl (OH) function are sites that can transfer electrons 
or H-atoms to quench free radicals and generate extended resonance-stabilized 
carbon- or oxygen-centered radicals. The phenoxyl radical, which has been 
credited for the antioxidative properties of curcumin [64], generates a quinone 
methide as it moves through the carbon framework and reacts with molecular 
oxygen to produce a peroxyl radical. Subsequent reduction of the peroxyl radical 
and dehydration of the resulting hydroperoxide, followed by rearrangement into 
a spiro-epoxide and hydrolysis, give the final bis-cyclopentadione product.

6.  Regulation of free radicals with nonenzymatic small endogenous 
(synthetic/physiological) antioxidants

6.1 Uric acid

Uric acid (UA) is a hydrophilic antioxidant generated during the metabolism 
of purine nucleotides and accounts nearly for 66% of the total oxygen scavenging 
activity in the blood serum. Mammals and humans are capable of producing UA, 
making it the most predominant aqueous antioxidant present in humans [65, 66] 
with an approximate blood level of 3.5–7.5 mg/dL. UA is a strong electron donor 
and a selective scavenger of peroxynitrite (ONOO−), requiring the participation of 
ascorbic acid and thiols in its cycle for complete scavenging of such species [67, 68]. 
Peroxynitrite is formed by the reaction between nitric oxide (·NO) and superoxide 
radical (O2

.−) (Figure 1) and has been implicated in many pathologies. Besides 
scavenging peroxynitrite, UA reacts with hydroxyl radicals, singlet oxygen, lipid 
peroxides, and hypochlorous acid, itself getting converted to innocuous chemical 
species like urea and allantoin. Furthermore, it has been implicated in scavenging 
carbonate ions (CO3

.−) and nitrogen dioxide (NO2
.) [69], and in complexation with 

copper and iron ions, resulting in the inhibition of deleterious free radical reactions 
like the Fenton and the Haber-Weiss reactions [65]. Some have suggested that UA 

Figure 12. 
Structures and radical-scavenging activities of curcumin and allicin.
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Figure 12. 
Structures and radical-scavenging activities of curcumin and allicin.
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does not directly scavenge peroxynitrite since UA cannot compete for the reaction of 
peroxynitrite with CO2. The antioxidant effect of uric acid may thus be related to the 
scavenging of the radicals CO3·− and NO2. which are formed from the reaction of per-
oxynitrite with CO2 [67]. As shown in Figure 13, UA displays a keto-enol tautomerism 
where the enol form predominantly exists as the monobasic urate anion at physiological 
pH [70]. The complete scavenging of peroxynitrite requires the presence of ascorbic 
acid and thiols whereby the urate anion is regenerated following reduction of the urate 
free radical with ascorbate (AscH−). ESR studies on UA radical production by hydrogen 
atom abstraction provided evidence that the unpaired electron resides primarily on the 
five-membered ring of the purine structure. The radical was described as a delocalized 
π radical as the odd electron showed spin density on all four nitrogen atoms [71].

6.2 Glutathione

Glutathione (GSH) is present in all plant and animal cells and comprises three 
amino acids: glycine, cysteine, and glutamic acid. It is mainly synthesized in the 
liver [72] and exists in several redox forms, among which the most predominant is 
the reduced glutathione. GSH is a hydrosoluble antioxidant present in high cellular 
concentrations (1–10 mM) in the nucleus, mitochondria, and cytoplasm. GSH is 
involved in several lines of defense against ROS. First, the thiol group confers GSH 
with the ability to protect other thiol functions in proteins against oxidative damage 
[73]. Thiol groups (-SH) are widespread and highly reactive chemical entities in 
cells. They complex with metal ions, participate in oxidation reactions by getting 
oxidized themselves to sulfonic acids, and form thiol radicals and disulfides [74]. As 
an antioxidant, GSH reduces ROS during the enzymatic and nonenzymatic reac-
tions. It regenerates other oxidized antioxidants like vitamin C and vitamin E [75] 
and is involved in the repair of lipids damaged in peroxidation processes and in the 
maintenance of sulfhydryl moieties of proteins in the reduced form [76, 77]. GSH 
functions in conjunction with three groups of enzymes to maintain an intracellular 
reducing environment and combat excessive formation of harmful ROS. These 
enzymes are glutathione peroxidase (GSHPx), glutathione reductase (GR), and glu-
tathione oxidase (GOx). Glutathione peroxidase (GSHPx) is a selenium-containing 
enzyme that mediates catalytic reduction of peroxides using GSH as a sacrificial 
reductant [78]. The enzyme is a tetramer featuring a selenocysteine residue in each 
subunit [11]. The oxidation-reduction chemistry of the selenol functional group 
found in each selenocysteine is responsible for the activity of GSHPx, and the 
catalytic cycle is displayed in Figure 14 [79]. In the first step, the selenol functional 
group (EnzSeH) gets oxidized by the peroxide to the corresponding selenenic acid 
(EnzSeOH). The thiophilic acid reacts with GSH to generate a selenenyl sulfide 

Figure 13. 
Chemical structure and radical scavenging mechanism of uric acid.
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intermediate (EnzSeSG) which is highly reactive and is susceptible to nucleophilic 
displacement at the sulfur atom. Thus, attack by a second molecule of GSH at the 
sulfur atom regenerates the original selenol and eliminates oxidized glutathione 
(GSSG) as a byproduct. The latter is recycled back to GSH in an NADPH-dependent 
reduction process mediated by glutathione reductase (GR). GSH is also a substrate 
for glutathione oxidase (GOx) which catalyzes the reduction of oxygen to hydrogen 
peroxide and GSSG.

6.3 Melatonin

Since its discovery in 1993, melatonin’s ability to reduce oxidative stress 
induced in all cells and organs by both oxygen- and nitrogen-based radicals has 
been reported in over one thousand publications. The structure of this endog-
enous antioxidant features an indoleamine and is biosynthesized in animals 
from L-tryptophan, an intermediate product of the shikimate pathway [80]. The 
biosynthetic process includes hydroxylation, decarboxylation, acetylation, and a 
methylation (Figure 15). Melatonin, which is produced mainly by the pineal gland 
in the brain [81], indirectly reduces free radical formation primarily through a 
process known as radical avoidance by stimulating the expression of endogenous 
antioxidant enzymes that metabolize reactive species and maintain redox homeo-
stasis within cells [82]. These include superoxide dismutase (SOD), glutathione 
peroxidase (GSHPx), glutathione reductase, and catalase. In addition, it induces the 
synthesis of the antioxidant glutathione and inhibits certain enzymes that normally 
produce free radicals like nitric oxide synthase (generates NO•). Melatonin can also 
directly scavenge free radicals along with several of its metabolites that are formed 
during radical neutralization [83, 84]. For example, it is a very effective scavenger 
of the hydroxyl radical, singlet oxygen, peroxynitrite anion, and nitric oxide. 
Interestingly, melatonin has been shown to exhibit double the activity of vitamin E 
and ranks among as the most effective lipophilic antioxidant.

Figure 14. 
Structure and role of glutathione (GSH) in the catalytic cycle of glutathione peroxidase (GSHPx), glutathione 
reductase (GR), and glutathione oxidase (GOx).

Figure 15. 
Structure and biosynthesis of melatonin.
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6.4 Bilirubin

Bilirubin (BIL) is an endogenous antioxidant produced from the enzymatic 
degradation of hemoglobin and other heme proteins (Figure 16). The process 
involves oxidative cleavage, catalyzed by the enzyme heme oxygenase, of one 
porphyrin exocyclic double bond of a heme residue of hemoglobin to generate 
biliverdin. Subsequent enzymatic reduction of biliverdin by biliverdin reductase 
yields bilirubin. This process is reversible and the oxidation of bilirubin by lipo-
philic ROS results in the formation of biliverdin. Notable structural features of 
bilirubin include an open chain of four connected pyrrole rings and a Z,Z-double 
bond geometry. In biological systems, bilirubin shows potent antioxidant properties 
[85, 86] especially against peroxyl radicals [87].

6.5 Polyamines

Putrescine (H2N-(CH2)4-NH2), spermidine ([H2N-(CH2)3]2-NH), and spermine 
(H2N-(CH2)3-NH-(CH2)4-NH-(CH2)3-NH2) are biogenic unbranched polyamines 
(PAs) that exhibit antioxidant activities [88–90]. These amines are present in minute 
quantities in virtually all living species. While putrescine (1,4-diaminobutane) bears 
two primary amine groups at both terminal carbons, spermidine (triamine) and 
spermine (tetraamine) contain one and two additional secondary amine moieties, 
respectively. As antioxidants, PAs mediate protection of DNA against oxidative 
damage induced by hydrogen peroxide [90], scavenge free radicals [88], and reduce 
oxidative haemolysis of erythrocytes [90]. The amines also function as positive 
modulators of antioxidant genes under conditions of strong oxidative stress [88]. The 
protective effect of PAs is related to the stabilization of polyunsaturated phospho-
lipids in cell membranes from peroxyl radicals, superoxides, and hydrogen peroxide 
[89]. In regard to their role in DNA protection against ROS, PAs are positively charged 
at physiological pH, enabling them to remain in proximity to negatively charged mac-
romolecules, thus protecting them against oxidative damage [90]. Biosynthetically, 
the three polyamines are biosynthesized from L-ornithine, known to supply C4N 
building block, and L-methionine [91]. In animals, L-ornithine undergoes a pyridoxal 
phosphate (PLP)-dependent decarboxylation to generate putrescine. Thereafter, 
aminopropylation of putrescine by the enzyme spermidine synthase and decarboxy-
S-adenosyl methionine produces spermidine. Repetition of the same sequence of 
reactions in the presence of the enzyme spermine synthase generates spermine.

7. Conclusions

In addition to the oxidative damage that reactive oxygen and nitrogen species 
inflict on macromolecules, they also participate in damage caused by microbial 

Figure 16. 
Enzymatic degradation of hemoglobin heme to bilirubin.
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infections, tumor progression, and neurodegenerative diseases. In response to such 
oxidative injuries, tissues protect themselves by expressing genes encoding antioxi-
dant enzymes and endogenous antioxidants to maintain oxidants at harmless levels. 
Oxidants themselves mediate certain cellular functions and cannot be eliminated 
completely. This fact emphasizes the significance of the antioxidant defense system 
in maintaining homeostasis and normal physiological processes, and in combating 
diseases and promoting immunity. The regulation of gene expression by employing 
oxidants and antioxidants represents a novel approach with promising therapeutic 
implications. Exogenous antioxidants are also critical for maintaining healthy living 
and longevity and must be obtained through dietary means. However, excessive 
dietary supplementation may disrupt the activation of the endogenous antioxidant 
defense system. Consequently, further research is required to fully elucidate the 
importance of antioxidants in the therapy of several human disease states and 
promotion of health span.
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