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Preface

Scope of Selective Heterocycles from Organic and Pharmaceutical Perspective is a compilation of
bioactive-chosen heterocyclic scaffolds intended for postgraduates, research scholars, phar‐
maceutical scientists, and others interested in an appreciation of the title subject. It is an edit‐
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for funding my visiting scientist position for the project work mentioned in one of the book
chapters (Grant No. 2014/25784-7). Finally, I thank RGUKT, Basar, for supporting me in all
ways.

Dr. Ravi Varala
Head, Department of Chemistry
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Chapter 1

Significance of Thiazole-based Heterocycles for
Bioactive Systems

Someshwar Pola

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/62077

Abstract

Monocyclic and Bicyclic aromatic heterocycles such as imidazoles, thiazoles, thiadiazoles,
oxazoles, oxadiazoles quinazolines, indoles, benzimidazoles, purines pyrido[4,3-d]pyri‐
midines, thiazolo[5,4-d]pyrimidines, thiazolo[4,5-d]pyrimidines, oxazolo[5,4-d]pyrimi‐
dines and thieno[2,3-d]pyrimidines are renowned pharmacophores in drug discovery.
These special structures are well explained and exemplified in chemical compound libra‐
ries. In this chapter, several types of thiazole based heterocyclic scaffolds such as mono‐
cyclic or bicyclic systems synthesis and their biological activities studies are presented,
which are not frequently present in books and reviews. We mention the first importance
of synthetic route of various thiazole based compounds and their applications in medici‐
nal chemistry in this chapter.

Keywords: Thiazole, privileged structures, thiazolopyridine, thiazolopyrimidines

1. Introduction

Currently, the whole pharmaceutical industry is encountered with the challenge of enhancing
work rate and advancement. The key obstacles are the increasing expenses of exploration and
expansion and a concurrent deteriorating amount of new chemical entities (NCEs). The source
of this modernism shortfall is not the biology. Interpreting of the human genome has directed
to a prosperity of drug targets. With the addition of more than 35,000 human genes, the
hypothesis is that at least 2,000 are significantly tangled in the occurrence and progress of the
illness. Moreover, since each of these genes is associated with the usefulness of between five
and ten proteins, the deduction is that their potency be 5,000 – 10,000 aims for innovative drugs
[1,2]. Even though the positive outline of protein therapeutics and the aptitude of gene therapy,
key pharmaceutical establishments are even focused on research and growth of small molec‐

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



ular mass compounds. Therefore, the challenge is to choose the greatest drugable objectives
and formulate the conforming drug-like molecules.These materials are not only relative to the
mark but also have precise pharmacokinetic and toxicological properties, which was allowed
to be established as a drug. Medicinal chemistry as a scientific discipline has introduced several
new techniques over the last few years to the rapidity of the drug discovery process, such as
combinatorial chemistry, microwave-assisted organic synthesis, and high - output refinement
[3]. Despite the stable rise in R & D, the total number of NCE successes in the market has
reduced fundamentally. It appears clearly that choosing the suitable molecules to synthesize
is one of the most difficult queries. It has been projected that the sum of potential compounds
with molecular weight of lower than 500 Da is 10200, where only 1060 may retain drug-like
applications. The percentage of molecules prepared untill today has been projected as one part
in 1058 or approximately the fraction of the mass of the proton to the mass of the sun. The
concern is, therefore, the selection of new molecules from this vast universe that have the
potential to be biologically active [4]. To build a new drug discovery mission and to discover
the bioactive compounds, various possibilities are offered. Triumphs can be achieved via a
virtual screening method or can be simulated from technical or manifest literature. Most often
than not, drug innovation projects start with a high quantity screening operation of commer‐
cially accessible compound collections besides targeting curiosity. It became clear in recent
years that combinatorial libraries are not distinct enough. As the core attention of the Labora‐
tory of Medicinal Chemistry showed in the synthesis and biological evaluation of bicyclic
aromatic heterocycles [5], it is scrutinized that the number of accessible bicyclics heterocycles
is principally restricted to a well-known nitrogen enclosing compounds, such as pyrimidines,
thioazoles, coumarins, thiozlopyridines and benzothiazole (Figure 1).
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In vision of the significance of thiazoles and their derivatives, numerous approaches for its synthesis were developed 
by various groups such as Hantzsch [6], Tchernic [7], Cook-Heilborn and Gabriel [8]. 

A thiazole ring system originates naturally in the crucial water soluble vitamin thiamin, also known as Vitamin B1, 
which supports the discharge of energy from carbohydrates through the course of metabolism. The occurrence of 
thiazole ring in vitamin B1 and its coenzyme play a significant role in the decarboxylation of α-keto acids and as an 
electron sink, respectively [9]. It also assist in the regular operational of the nervous system through its character in 
the synthesis of acetylcholine, a neurotransmitter. 

Thiazole ring system appears in the bacitracin and penicillin antibiotics and various synthetic drugs. Synthetic drugs 
belonging to the thiazole family consist of the antimicrobial agents acinitrazole (1) and sulfathiazole [10], (2) 
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(10) and anti-inflammatory drug Meloxicam [18] (11). Thiazole derivatives with polyoxygenated phenyl module have 
exhibited encouraging anti-fungal activity [19]. Thiazoles found from microbial, and marine ancestries reveal 
antitumor and antiviral activities. Thiazole is recognized as ligand of estrogen receptors [20] and also as unique kind 
of antagonists for adenosine receptors [21]. 
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Other substantial thiazoles take account of essential dyes and fungicides or nematicide, Tricyclazole 12, 
Thiabendazole 13, and Thifluzamide 14 are promoted for the switch of several agricultural pests [22,23]. Primuline 
yellow 15 and Rhodanine red 16 dyes are some of the best models of thiazole moiety containing dyes [24,25]. 
Numerous thiazoles are flavor materials and also originate in roasted peanuts. They materialized in foods by the 
exploit of sulfur-containing amino acids interacting with carbohydrates. Thiazoles are surrounded by some 
significant heterocyclic compounds that give the flavor of fermented coffee [26]. 
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Figure 2. Resonating Structures of Thiazole

The p-bond orders quantified by molecular orbital methods have specified thiazole molecule
to be aromatic with some dienic nature. Localization energies have projected reducing order
of the nucleophilic reactivities following the order: 2 > 5 > 4 and the electrophilic reactivities
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Other substantial thiazoles take account of essential dyes and fungicides or nematicide, Tricyclazole 12, 
Thiabendazole 13, and Thifluzamide 14 are promoted for the switch of several agricultural pests [22,23]. Primuline 
yellow 15 and Rhodanine red 16 dyes are some of the best models of thiazole moiety containing dyes [24,25]. 
Numerous thiazoles are flavor materials and also originate in roasted peanuts. They materialized in foods by the 
exploit of sulfur-containing amino acids interacting with carbohydrates. Thiazoles are surrounded by some 
significant heterocyclic compounds that give the flavor of fermented coffee [26]. 
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Figure 2. Resonating Structures of Thiazole

The p-bond orders quantified by molecular orbital methods have specified thiazole molecule
to be aromatic with some dienic nature. Localization energies have projected reducing order
of the nucleophilic reactivities following the order: 2 > 5 > 4 and the electrophilic reactivities
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as: 5 > 2 > 4. Three hydrogen atoms present in the thiazole are anticipated to have the order of
acidity as H2 >> H5 > H4.

3. Synthesis of Thiazole

In the assessment of the significance of thiazoles and their derivatives, numerous techniques
for the synthesis of thiazole derivatives were established by various research groups such as
Hantzsch [6], Tchernic [7], Cook-Heilborn and Gabriel [8]. Lately, thiazole derivatives were
generated in the presence of various catalysts such as ammonium-12-molybdophosphate [29],
cyclodextrins [30], iodine [31] and silica chloride [32] in organic solvents at higher temperature
and solvents such as 1-methyl-2-pyrrolidinone [33], with the use of a microwave [34]. Numer‐
ous procedures for the synthesis of thiazole compounds are accessible, which can be catego‐
rized into the part structures demonstrated below. The earliest of these structures is observed
to be the most significant and highly flexible of all the thiazole formation techniques. With a
workable and first reactants, it approves alkyl, aryl, aralkyl or heterocycles to be taken in any
one of the 2-, 3-, 4- or 5-carbons of the thiazole ring. This technique, better acknowledged by
the name of the German chemist Hantzsch, who invented it in 1887, contains the condensation
of a compound bearing the two heteroatoms on the same carbon with a compound attached
one halogen and one carbonyl function on two adjacent carbon atoms. A boundless diversity
of compounds may assist as nucleophilic reagent in this reaction, such as thiourea, thioamide,
ammonium thiocarbamate or dithiocarbamate and its derivatives [35].
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3.1. Synthesis from α-halocarbonyl compounds (Type Ia): Hantzsch’s synthesis. 
First designated in 1887 by Hantzsch, the cyclization of α-halo carbonyl compounds by a wide diversity of reactants 
attached to the N-C-S portion of the ring is the most extensively popular process for formation of thiazoles. 
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3.1.1.2. Condensation with higher thioamides (2,4-Disubstituted and 2,4,5-trisubstituted 
thiazoles) 
The reaction between thioamide and various α-halocarbonyl compounds has been utilized broadly, and numerous 
thiazoles with alkyl, aryl, arylalkyl or heteroaryl of several functional groups at 2-, 4- or 5-positions have been 
published. 
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3.1.2. Reactions with N-substituted Thiourea 

3.1.2.1. N-monosubstituted thioureas 
The 2-monosubstituted or disubstituted aminothiazoles obtained reaction between Halo carbonyl and N-substituted 
thioureas compounds [38]. 
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3.1.3. Reaction with salts and esters of thiocarbamic acid: 2-hydroxy thiazoles and derivatives 
This technique, originated by Marchesini [39,40], in 1893 involves the condensation of a α-halocarbonyl compound 
with ammonium thiocarbamate to give 2-hydroxythiazole derivatives. 
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3.2. Thiazoles formation from reorganization of the α-thiocyanatoketones 
The simple cyclic reaction of α-thiocyanatoketones in aqueous acid concentrated sulfuric acid in acetic acid, and 
water or alkaline solution gives to 2-hydroxy thiazoles after dilution in water. These reactions can be conceded out 
for various hours at room temperature or by refluxing for 1 or 2 hrs on a water bath [41-45]. 

3.1.1.2. Condensation with higher thioamides (2,4-Disubstituted and 2,4,5-trisubstituted thiazoles)
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3.2. Thiazoles formation from reorganization of the α-thiocyanatoketones

The simple cyclic reaction of α-thiocyanatoketones in aqueous acid concentrated sulfuric acid
in acetic acid, and water or alkaline solution gives to 2-hydroxy thiazoles after dilution in water.
These reactions can be conceded out for various hours at room temperature or by refluxing
for 1 or 2 hrs on a water bath [41-45].
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α-Thiocyanatoacetophenone reacts thioacid to yield 2-mercapto-4-phenyl thiazole. 
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α-Thiocyanatoketones highly reacts with alkyl amine or ammonium chloride to provide their N-substituted 
derivatives or 2-aminothiazoles [46]. 
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3.3. Thiazoles from α-aminonitriles (Cook-Heilbron’s synthesis) (Type-II) 
This category of synthesis, which was examined by Cook, Heilbron [47-49] give 5-aminothiazoles differently 
substituted in the 2-position by reacting with an aminonitrile with salts and esters of dithioacids, carbon oxysulfide, 
carbon disulfide, and isothiocyanates under remarkably very mild conditions. 

3.3.1. Carbon disulfide: 2-mercapto-5-aminothiazole derivatives 
Carbon disulfide freely responds with α-aminonitriles giving 2-mercapto-5-amino thiazoles [50,51], which can be 
transformed into 5-amino thiazoles unsubstituted in the 2-position. 

 

Sheme 14. sch14 

3.3.2. Esters and salts of dithioacids: 5-aminothiazole compounds and related condensations 
By reducing the salts or the esters of both dithioformic and dithiophenacetic acids with α -aminonitriles, 5-
aminothiazoles were achieved in better yields [52]. These reactions have agreed in aqueous ethereal solution at 
ambient temperature. 
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3.6. Thiazoles from Vinyl Bromide

Thiazoles holding a variability of substituents such as aliphatic, aromatic, heterocyclic, or
alkenyl groups can be synthesized by an intramolecular nucleophilic substitution reaction of
N-(2-bromoprop-2-enyl)thioamides [58]. This vinylic substitution technique would afford an
exclusive synthetic method for a range of heterocycles.
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3.7. Synthesis of 2,4-disubstituted-5-acetoxythiazoles 
From the viable existing methyl benzoate derivatives and with racemic phenyl glycine, a range of 2,4- disubstituted-
5-acetoxythiazoles obtained in worthy to reasonable yields exhausting the succeeding scheme [59]. Due to the 
excellent thermal stability of the thiazole nucleus, the polymers integrating thiazole ring protocol have also been 
prepared. 
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4. Biological importance of thiazoles 
Thiazole moiety-containing compounds invention present an extensive range of applications in medicinal chemistry 
such as antibiotics, bacteriostatics, CNS regulants to high selling diuretics [60-64]. Thiazole framework has 
established wide application in drug growth for the treatment of hypertension [65], inflammation [66] and HIV 
infections [67]. Aminothiazoles are famous for being ligands of estrogen receptors [68] as well as a innovative type of 
adenosine receptor antagonists [69]. Other equivalents are utilized as fungicides, inhibiting in vivo progress of 
Xanthomonas, as a component of herbicides or as schistosomicidal and anthelmintic drugs [70]. 

Sherif. et al. [71] syntheses of two series of compounds that is thiazolylantipyrines and thiadiazolylantipyrines, in 
which thiazolylantipyrine series exhibits better antibacterial potencies than the thiadiazolylantipyrine series of 
compounds. In thiazolylantipyrine series compounds 17 – 19 are well thought-out to be the better active 
antimicrobial members recognized in this study with a broad spectrum of antibacterial activity against both Gram 
positive and Gram negative bacteria. 
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in medicinal chemistry such as antibiotics, bacteriostatics, CNS regulants to high selling
diuretics [60-64]. Thiazole framework has established wide application in drug growth for the
treatment of hypertension [65], inflammation [66] and HIV infections [67]. Aminothiazoles are
famous for being ligands of estrogen receptors [68] as well as a innovative type of adenosine
receptor antagonists [69]. Other equivalents are utilized as fungicides, inhibiting in vivo
progress of Xanthomonas, as a component of herbicides or as schistosomicidal and anthel‐
mintic drugs [70].

Sherif. et al. [71] syntheses of two series of compounds that is thiazolylantipyrines and
thiadiazolylantipyrines, in which thiazolylantipyrine series exhibits better antibacterial
potencies than the thiadiazolylantipyrine series of compounds. In thiazolylantipyrine series
compounds 17 – 19 are well thought-out to be the better active antimicrobial members
recognized in this study with a broad spectrum of antibacterial activity against both Gram
positive and Gram negative bacteria.
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Zablotskaya A et al. [72] prepared trimethylsilyl ethers of different hydroxyl group bearing
thiazole compounds. All the compounds examined possess antihypoxic properties and extend
the life of mice under conditions of hypoxia by 20-78%. The silylated and unsilylated deriva‐
tives in the preponderance of circumstances show antihypoxic activity.

Zablotskaya A et al. [72] prepared trimethylsilyl ethers of different hydroxyl group bearing thiazole compounds. All 
the compounds examined possess antihypoxic properties and extend the life of mice under conditions of hypoxia by 
20-78%. The silylated and unsilylated derivatives in the preponderance of circumstances show antihypoxic activity. 
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Dae-Kee K et al. [73] produced a set of 5-(pyridin-2-yl)thiazoles enclosing a para or meta- carboxamide or carbonitrile-
substituted phenylmethylamino moiety at the 2-position of the thiazole ring and was estimated for activating 
receptor-like kinase 5 (ALK5) inhibitory activity in cell-based luciferase publisher assays. 
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Rajan S G et al. [74] designed and synthesized a sequence of 2-(2,4-disubstituted-thiazole-5-yl)-3-aryl-3H-quinazoline-
4-one 23 compounds. Synthesized molecules were estimated for their inhibitory activity in the course of record 
factors, nuclear factor-kB (NF-kB) and activating factor (AP-1) interceded transcriptional activation in a cell line 
based in vitro assay as well as for their anti-inflammatory activity in vivo model of severe inflammation. 
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Johan et al. [75] synthesized a unique sequence for Aurora kinase inhibitors enclosing thiazole moiety (SNS-314, 24). 
Also, key SAR as well as essential binding elements has been explained. 
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3.7. Synthesis of 2,4-disubstituted-5-acetoxythiazoles 
From the viable existing methyl benzoate derivatives and with racemic phenyl glycine, a range of 2,4- disubstituted-
5-acetoxythiazoles obtained in worthy to reasonable yields exhausting the succeeding scheme [59]. Due to the 
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prepared. 
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HI El-Subbagh et al. [76] synthesized a sequence of 2,4-disubstituted thiazole compounds
containing N-n-butyl or N-cyclohexyl thioureido synthon at position-2 and N-substituted
thiosemicarbazone moiety 25 at position-4 and verified for antitumor activity. All of the
established derivatives revealed antineoplastic activity at concentrations less than 102 μM.

HI El-Subbagh et al. [76] synthesized a sequence of 2,4-disubstituted thiazole compounds containing N-n-butyl or N-
cyclohexyl thioureido synthon at position-2 and N-substituted thiosemicarbazone moiety 25 at position-4 and 
verified for antitumor activity. All of the established derivatives revealed antineoplastic activity at concentrations less 
than 102 μM. 
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The unique model of a thiazole in the best 200 drugs citations is cefdinir 26 (Omnicef), a semi-synthetic third 
generation cephalosporin that is controlled orally and has a stretched antibacterial activity in contrast to both gram-
positive and gram-negative bacteria. The key feature of cefdinir is that it exhibits outstanding activity against 
Staphylococcus species [77]. The thiazole ring in cefdinir reveals that the heterocyclic structure in a drug does not 
only affect its pharmacodynamic properties but can also affect its kinetics. It is hypothesized that the digestive tract 
iron (II) ions form chelate complexes with the oxime nitrogen atom and thiazole ring and, therefore, decrease the 
bioavailability of cefdinir [77]. 

 

Sheme 27. sch27 

The HIV-1 protease inhibitor ritonavir [78] (Norvir 7) contains two different substituted thiazole rings, which are 
presented at the advanced steps in the synthesis of this peptidomimetic antiviral compound. Remarkably, ritonavir is 
a consequence of advanced enhancements on earlier candidates for the action of AIDS [80]. 
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The dopamine D2-agonist pramipexole 27 (Mirapex) contains a fused bicyclic tetrahydrobenzothiazole design, which 
is also easy to obtain by a Hantzsch-type condensation reaction between a α-brominated protected form of 4-
aminocyclohexanone and thiourea [81]. 
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cefdinir is that it exhibits outstanding activity against Staphylococcus species [77]. The thiazole
ring in cefdinir reveals that the heterocyclic structure in a drug does not only affect its
pharmacodynamic properties but can also affect its kinetics. It is hypothesized that the
digestive tract iron (II) ions form chelate complexes with the oxime nitrogen atom and thiazole
ring and, therefore, decrease the bioavailability of cefdinir [77].
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The dopamine D2-agonist pramipexole 27 (Mirapex) contains a fused bicyclic tetrahydrobenzothiazole design, which 
is also easy to obtain by a Hantzsch-type condensation reaction between a α-brominated protected form of 4-
aminocyclohexanone and thiourea [81]. 

The HIV-1 protease inhibitor ritonavir [78] (Norvir 7) contains two different substituted
thiazole rings, which are presented at the advanced steps in the synthesis of this peptidomi‐
metic antiviral compound. Remarkably, ritonavir is a consequence of advanced enhancements
on earlier candidates for the action of AIDS [80].
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The dopamine D2-agonist pramipexole 27 (Mirapex) contains a fused bicyclic tetrahydroben‐
zothiazole design, which is also easy to obtain by a Hantzsch-type condensation reaction
between a α-brominated protected form of 4-aminocyclohexanone and thiourea [81].
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Famotidine (28, Pepcidine) is one of the top an H2-receptor antagonists, which is equivalent to cimetidine that 
prevents various isoenzymes of the hepatic CYP450 system and the additional side effect (Swelling of the hands, feet 
or ankles) of enhancing the amount of gastric bacteria such as nitrate reducing bacteria. The arrangement of this ulcer 
therapeutic is very enthralling and contains a thiazole substituted guanidine and a sulfamoyl amidine. Current 
reports have performed designated famotidine as a significant ligand for numerous transition metals containing 
copper and cobalt developing tetradentate {N, N,S,N}-coordination spheres as revealed by single X-ray analysis [82]. 
Therefore, it seems viable that assured frequent bioavailable cations influence be included in the absorption and 
initiation of this thiazole involving compound. The formation of the thiazole ring [83,84] can be able again by 
condensation of thiourea with dichloroacetone. 
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One more example of a thiazole ring enclosing drug is known in the unique xanthine oxidase inhibitor febuxostat 29 
(Uloric) which was accepted by the FDA in 2009 [85]. This inhibitor works by hindering xanthine oxidase in a non-
competitive manner. Subsequently, the quantity of the oxidation product uric acid is decreased. Thus, it is an 
extremely well-organized action for hyperuricemia in gout. 
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Takeuchi et al. described the total synthesis of the cyclic tripeptide bistratamide H 30 established in the procedure of 
an extremely fluorous amino protecting group and multistep purifying by F-LPE using FC-72 in which 15 out of the 
17 steps were purified by F-LPE [86]. 
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containing copper and cobalt developing tetradentate {N, N,S,N}-coordination spheres as
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sation of thiourea with dichloroacetone.
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S. Zheng et. al. [89] synthesized five series of thiazole derivatives (43 – 47) for fascin therapeutic
target as emerged from cancer cells is thoroughly related to tumor progression and metastasis.
The entire compounds based on thiazole derivatives examined anti-migration and anti-
invasion activities via possible inhibition of fascin function. The five series of analogs with
elongated alkyl chain substitutions on the thiazole nitrogen revealed better anti-migration
activities than those with other structural motifs.
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Oridonin 52, a complex molecule ent-kaurane diterpenoid obtained from the traditional
Chinese herb Isodon rubescens, has demonstrated great potential in the treatment of various
human cancers due to its unique and safe anticancer pharmacological profile. However, with
oridonin’s poor solubility and poor bioavailability, hence C. Ding et. al.92 inserted thiazole ring.
The shortest way of synthesis of a series of novel nitrogen contained oridonin derivatives
inserted thiazole-fused A-ring system through an active protecting group-free synthetic
approach is the best of them, including compounds, 53−59 exhibited effective anti-proliferative
effects against breast, pancreatic, and prostate cancer cells with low micromolar to submicro‐
molar IC50 values as well as significantly improved aqueous solubility. These new derivatives
achieved by realistically transforming the natural product have been established not only to
induce considerably the apoptosis and inhibits the growth of triple-negative MDA-MB-231
breast cancer both in vitro and in vivo but also active against drug-resistant ER-positive MCF-7
clones.
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various series of compounds including a 2-amino-1,3-thiazole as substitution of the carbamate in P4. Optimization 
studies motivated on structural variations in the P3, P2, and P1 regions of the macrocycle as well as on the linked 
chain caused the discovery of numerous analogs characterized by outstanding levels of enzyme and cellular activity. 
Among these, compound 60 exhibited the best pharmacokinetic profile in preclinical species and revealed constant 
liver levels subsequent oral administration in rats. 

M. E. D. Francesco et. al. [93] reported a unique type of inhibitor, which designates the
identification of a structurally various series of compounds including a 2-amino-1,3-thiazole
as substitution of the carbamate in P4. Optimization studies motivated on structural variations
in the P3, P2, and P1 regions of the macrocycle as well as on the linked chain caused the
discovery of numerous analogs characterized by outstanding levels of enzyme and cellular
activity. Among these, compound 60 exhibited the best pharmacokinetic profile in preclinical
species and revealed constant liver levels subsequent oral administration in rats.
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P. J. Sanfilippo et. al. [94] reported and described the synthesis and biological activity of a different kind of thiazole 
containing heterocycles as inhibitors of thrombin-induced human platelet aggregation. Additional estimation of 
selected compounds shows they inhibit platelet aggregation as motivated by a range of agonists. The highly active 
compounds also were established to inhibit fibrinogen binding to platelets. To further explain the mechanism of the 
action of these compounds, direct binding studies with the cleaned glycoprotein (GP) IIb/IIIa receptor were 
conducted. Flow cytometry analyzes of 61 and 62 designate that these compounds block the activation process of the 
GPIIb/IIIa receptor without denaturing the integrin receptor. On the basis of results, 62 showed the best profile as a 
novel non-peptide inhibitor of fibrinogen-mediated platelet aggregation. 
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J. E. M. Koezen et. al. [95] prepared numerous N-[4-(2-pyridyl)thiazol-2-yl]benzamides, and these compounds 
exhibited adenosine affinities in the micromolar range. Most unexpected in the series of the N-[4-(2-pyridyl)thiazol-2-
yl]amides were the retained adenosine affinities by the introduction of a cylopentanamide instead of the benzamide. 

P. J. Sanfilippo et. al. [94] reported and described the synthesis and biological activity of a
different kind of thiazole containing heterocycles as inhibitors of thrombin-induced human
platelet aggregation. Additional estimation of selected compounds shows they inhibit platelet
aggregation as motivated by a range of agonists. The highly active compounds also were
established to inhibit fibrinogen binding to platelets. To further explain the mechanism of the
action of these compounds, direct binding studies with the cleaned glycoprotein (GP) IIb/IIIa
receptor were conducted. Flow cytometry analyzes of 61 and 62 designate that these com‐
pounds block the activation process of the GPIIb/IIIa receptor without denaturing the integrin
receptor. On the basis of results, 62 showed the best profile as a novel non-peptide inhibitor
of fibrinogen-mediated platelet aggregation.
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J. E. M. Koezen et. al. [95] prepared numerous N-[4-(2-pyridyl)thiazol-2-yl]benzamides, and
these compounds exhibited adenosine affinities in the micromolar range. Most unexpected in
the series of the N-[4-(2-pyridyl)thiazol-2-yl]amides were the retained adenosine affinities by
the introduction of a cylopentanamide instead of the benzamide.
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action of these compounds, direct binding studies with the cleaned glycoprotein (GP) IIb/IIIa receptor were 
conducted. Flow cytometry analyzes of 61 and 62 designate that these compounds block the activation process of the 
GPIIb/IIIa receptor without denaturing the integrin receptor. On the basis of results, 62 showed the best profile as a 
novel non-peptide inhibitor of fibrinogen-mediated platelet aggregation. 
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J. E. M. Koezen et. al. [95] prepared numerous N-[4-(2-pyridyl)thiazol-2-yl]benzamides, and these compounds 
exhibited adenosine affinities in the micromolar range. Most unexpected in the series of the N-[4-(2-pyridyl)thiazol-2-
yl]amides were the retained adenosine affinities by the introduction of a cylopentanamide instead of the benzamide. 
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different kind of thiazole containing heterocycles as inhibitors of thrombin-induced human
platelet aggregation. Additional estimation of selected compounds shows they inhibit platelet
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pounds block the activation process of the GPIIb/IIIa receptor without denaturing the integrin
receptor. On the basis of results, 62 showed the best profile as a novel non-peptide inhibitor
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J. E. M. Koezen et. al. [95] prepared numerous N-[4-(2-pyridyl)thiazol-2-yl]benzamides, and
these compounds exhibited adenosine affinities in the micromolar range. Most unexpected in
the series of the N-[4-(2-pyridyl)thiazol-2-yl]amides were the retained adenosine affinities by
the introduction of a cylopentanamide instead of the benzamide.
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P. C. Srivastava et. al. [96] published a report in which they described the glycosylthiocarboxamides were used as the 
starting compounds for the synthesis of 2-D-ribofuranosylthiazole-4-carboxamide and 2-β-D-ribofuranosylthiazole-5-
carboxamide (76). The structural variation of 2-β-D-ribofuranosylthiazole-4-carboxamide (77) into 2-(2,3,-5-tri-O-
acetyl- β-D-ribofuranosyl)thiazole-4-carboxamide (78), 2-β-D-ribofuranosylthiazole-4-thiocarboxamide, and 2-(5-
deoxy- β-D-ribofuranosyl)thiazole-4-carboxamide (79) is also designated. These thiazole nucleosides were verified for 

P. C. Srivastava et. al. [96] published a report in which they described the glycosylthiocarbox‐
amides were used as the starting compounds for the synthesis of 2-D-ribofuranosylthiazole-4-
carboxamide and 2-β-D-ribofuranosylthiazole-5-carboxamide (76). The structural variation of
2-β-D-ribofuranosylthiazole-4-carboxamide (77) into 2-(2,3,-5-tri-O-acetyl- β-D-ribofurano‐
syl)thiazole-4-carboxamide (78), 2-β-D-ribofuranosylthiazole-4-thiocarboxamide, and 2-(5-
deoxy- β-D-ribofuranosyl)thiazole-4-carboxamide (79) is also designated. These thiazole
nucleosides were verified for in vitro activity against type-1 herpes virus, type-3 parainfluenza
virus, and type-13 rhinovirus and an in vivo test was run against parainfluenza virus. They
were also analyzed as potential inhibitors of purine nucleotide biosynthesis. It was revealed
that the compounds (77 and 79) which influenced the most noteworthy antiviral activity were
also active inhibitors (40-70%) of guanine nucleotide biosynthesis.
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Z. Li et. al. [97] described the virtual screening data for flavivirus envelope proteins (E proteins) having been exposed 
to play a vital role in virus assembly, morphogenesis, and infection of host cells. Inhibition of flavivirus infection of a 
host cell by utilizing the small molecule envelope protein antagonist is an interesting approach to the development of 
antiviral agents. The virtual screening of the NCI Chemical database utilizing the dengue virus envelope protein 
structure showed numerous theoretical hit compounds. Bioassay consequences recognized a class of thiazole 
compounds with antiviral potency in cell-based analyzes. Variation of these lead compounds directed to a series of 
derivatives with enhanced antiviral activity and reduced cytotoxicity. The maximum activity exhibit compounds 80 
and 81 were potent in the low micromolar concentration range in a cellular evaluate method. 
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L. J. Lombardo et.al. [98] identified thiazole-based compounds as effective as Src/Abl kinase inhibitors with 
outstanding antiproliferative activity against hematological and solid tumor cell lines. Compound 82 was orally 
active in a K562 xenograft model of chronic myelogenous leukemia (CML), establishing complete tumor regressions 
and very low toxicity at multiple dose levels. On the basis of its powerful in vivo activity and promising 
pharmacokinetic profile, 82 was designated for supplementary characterization for oncology manifestations. 
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P. Madsen et. al. [99] explained the thiazole containing scaffold being potent human glucagon
receptor antagonists with enhanced pharmacokinetic (PK) properties for expansion of
pharmaceuticals for the medication of type-2 diabetes. The syntheses of compounds with cyclic
moieties (5-aminothiazoles), their binding affinities for the human glucagon and GIP receptors,
as well as affinities for mouse, pig, rat, dog, and monkey glucagon receptors. Normally, the
compounds had less glucagon receptor affinity corresponding to compounds of the earlier
series slightly, but this was rewarded for by much developed PK summaries in both rats and
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P. Madsen et. al. [99] explained the thiazole containing scaffold being potent human glucagon
receptor antagonists with enhanced pharmacokinetic (PK) properties for expansion of
pharmaceuticals for the medication of type-2 diabetes. The syntheses of compounds with cyclic
moieties (5-aminothiazoles), their binding affinities for the human glucagon and GIP receptors,
as well as affinities for mouse, pig, rat, dog, and monkey glucagon receptors. Normally, the
compounds had less glucagon receptor affinity corresponding to compounds of the earlier
series slightly, but this was rewarded for by much developed PK summaries in both rats and
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dogs with high oral bioavailabilities and constant high plasma coverages. The compounds
exhibited species selectivity for glucagon receptor binding with very low affinities for the rat,
mouse, rabbit, and pig receptors. However, dog and monkey glucagon receptor affinities seem
to reflect the human situation. One of the compound sequence, 83, was tested intravenously
in an anesthetized glucagon-challenged monkey model of hyperglucagonaemia and hyper‐
glycaemia and was revealed dose-dependently to reduce glycaemia.
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X. Cheng et.al. [100] reported a cell-based high throughput screening (HTS) operation for the search for potential 
candidates for octamer-binding transcription factor 4 (Oct3/4). In that process, they recognized numerous efficient 
small molecules for inducers of Oct3/4 expression. From HTS, optimized compounds are based on thiazole ring 
containing scaffold such as ethyl 2-([(4-chlorophenyl) amino])-thiazole-4-carboxylate, 84, exhibiting high activity in 
implementing Oct3/4 expression. On the source of chemical expansion, once again screened the recognized 
derivatives requiring improved activities in the direction of Oct3/4 induction. Therefore, 84 and its analogs had 
afforded better potential small molecules proper for an iPSC generation. 
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C. P. Hencken et. al. [101] synthesized 23 new dehydroartemisinin (DART) trioxane analogs in which 11 thiazoles 
moiety-containing compounds remaining are based on two oxadiazoles, and ten carboxamides and screened them for 
in vitro activity in the Toxoplasma lytic cycle. Fifteen (65%) of the analogs were noncytotoxic to host cells (TD50 ≥ 320 
μM). Eight thiazole compounds exhibited effective inhibition of Toxoplasma growth (IC50 = 0.25-0.42 μM), similar in 
potency to artemether (IC50 = 0.31 μM) and >100 times stronger inhibitory than the presently working front-line drug 
trimethoprim (IC50 = 46 μM). The thiazoles as a ring were more efficient than other analogs at the inhibiting progress 
of extracellular as well as intracellular parasites. Surprisingly, two thiazole trioxanes (109 and 110) were parasiticidal; 
both inhibited parasite replication permanently after parasite contact to 10 μM of the drug for 24 h. However, the 
standard trioxane drugs artemisinin and artemether were not parasiticidal. 

X. Cheng et.al. [100] reported a cell-based high throughput screening (HTS) operation for the
search for potential candidates for octamer-binding transcription factor 4 (Oct3/4). In that
process, they recognized numerous efficient small molecules for inducers of Oct3/4 expression.
From HTS, optimized compounds are based on thiazole ring containing scaffold such as ethyl
2-([(4-chlorophenyl) amino])-thiazole-4-carboxylate, 84, exhibiting high activity in implement‐
ing Oct3/4 expression. On the source of chemical expansion, once again screened the recog‐
nized derivatives requiring improved activities in the direction of Oct3/4 induction. Therefore,
84 and its analogs had afforded better potential small molecules proper for an iPSC generation.
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C. P. Hencken et. al. [101] synthesized 23 new dehydroartemisinin (DART) trioxane analogs
in which 11 thiazoles moiety-containing compounds remaining are based on two oxadiazoles,
and ten carboxamides and screened them for in vitro activity in the Toxoplasma lytic cycle.
Fifteen (65%) of the analogs were noncytotoxic to host cells (TD50 ≥ 320 μM). Eight thiazole
compounds exhibited effective inhibition of Toxoplasma growth (IC50 = 0.25-0.42 μM), similar
in potency to artemether (IC50 = 0.31 μM) and >100 times stronger inhibitory than the presently
working front-line drug trimethoprim (IC50 = 46 μM). The thiazoles as a ring were more efficient
than other analogs at the inhibiting progress of extracellular as well as intracellular parasites.
Surprisingly, two thiazole trioxanes (109 and 110) were parasiticidal; both inhibited parasite
replication permanently after parasite contact to 10 μM of the drug for 24 h. However, the
standard trioxane drugs artemisinin and artemether were not parasiticidal.
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Y. Kumar et. al. [102] reported that Methyl-4-(isothiocyanatomethy1)thiazole-2-carbamate have been obtained via 
chemical conversion containing 2-amino-4-(chloromethy1)thiazole (117) as precursor. The homoanalog, methyl 4-(2-
isothiocyanatoethyl)thiazole-2-carbamate was synthesized via (2-aminothiazol-4-y1)acetic acid. All thiazole 
compounds synthesized were estimated for their capability to inhibit leukemia L1210 cell proliferation. Methyl 4- 
(isothiocyanatomethyl) thiazole-2-carbamate (118) was the active compound in this screen, inhibiting the growth of 
L1210 leukemic cells with an IC50 = 3.2 NM. Mitotic blocking performs to be its key mechanism of cytotoxic activity. 
Compound 118 furthermore was the only compound that confirmed important in uiua antifiiarial activity against the 
adult worms of Acanthocheilonema uiteae in experimentally infected jirds. 
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New thiazole based compounds [103] (1-(4-arylthiazol-2-yl)-2-(3-methylcyclohexylidene) -hydrazine) 119 are 
synthesized for the studied human B isoform of monoamine oxidase. These compounds were prepared as racemates 
and (R)-enantiomers by a stereoconservative synthetic arrangement in high yield and enantiomeric excess. The (S)-
enantiomers of the highly active analogs have been separated by enantioselective HPLC. All compounds showed 
selective activity against hMAO-B with IC50 ranging between 21.90 and 0.018 μM. 
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A. S. Mayhoub et.al. [104] synthesized a sequence of third-generation referents of methyl 4-(dibromomethyl)-2-(4-
chlorophenyl)thiazole-5-carboxylate 120, which had the highly potent antiviral activity comparable to the first and 
second generation derivatives, have been synthesized and verified against yellow fever virus consuming a cell-based 
assay. The compounds were aimed at the objectives of enlightening metabolic stability, therapeutic index, and 
antiviral potency. The biological effects of C4 and C5 substitution were studied. The methylthio ester and the 
dihydroxypropylamide analogs had the effective antiviral potencies and enhanced therapeutic indices and metabolic 
stabilities comparative to the parent compound 120. 

Y. Kumar et. al. [102] reported that Methyl-4-(isothiocyanatomethy1)thiazole-2-carbamate
have been obtained via chemical conversion containing 2-amino-4-(chloromethy1)thiazole
(117) as precursor. The homoanalog, methyl 4-(2-isothiocyanatoethyl)thiazole-2-carbamate
was synthesized via (2-aminothiazol-4-y1)acetic acid. All thiazole compounds synthesized
were estimated for their capability to inhibit leukemia L1210 cell proliferation. Methyl 4-
(isothiocyanatomethyl) thiazole-2-carbamate (118) was the active compound in this screen,
inhibiting the growth of L1210 leukemic cells with an IC50 = 3.2 NM. Mitotic blocking performs
to be its key mechanism of cytotoxic activity. Compound 118 furthermore was the only
compound that confirmed important in uiua antifiiarial activity against the adult worms of
Acanthocheilonema uiteae in experimentally infected jirds.
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methylthio ester and the dihydroxypropylamide analogs had the effective antiviral potencies
and enhanced therapeutic indices and metabolic stabilities comparative to the parent com‐
pound 120.
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T. A. Dineen et.al. [105] reported the variation in structure 133 for the improved BACE1/CYP 3A4 inhibitors by a P1-
phenyl ring of the hydroxyethylamine series to afford potent, which exhibit enhanced penetration into the CNS. 
Numerous compounds caused a robust decrease of Aβ levels in rat CSF and brain subsequently oral dosing, and 
compound 134 showed a better cardiovascular safety profile comparative to 133. 
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associated with the piperazine ring and bioisosteric exchange of the aromatic tetralin moieties
were passed out. Binding assays were accepted with HEK-293 cells uttering either D2 or D3
receptors with tritiated spiperone to estimate inhibition constants (Ki). Functional activity of
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designated compounds in stimulating GTPγS binding was evaluated with CHO cells uttering
human D2 receptors and AtT-20 cells uttering human D3 receptors. SAR results recognized
compound 136 as one of the lead molecules with better agonist activity for D3 receptor (EC50

(GTPγS); D3= 0.52 nM; D2/D3 (EC50): 223). Compounds 135 and 136 showed potent radical
scavenging activity, the two lead compounds, 135 and 136, showed more in vivo activity in two
Parkinson’s disease (PD) animal models, reserpinized rat model and 6-OHDA brought
unilaterally lesioned rat model.
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Spinal muscular atrophy (SMA), an inherited autosomal neurodegenerative disease, is the foremost genetic disorder 
disturbing infant mortality. Clinically, there are four kinds of SMA (types I, II, III, and IV). In fact, SMA is the top one 
genetic origin of death in children below the age of two, and several children life have been spoil due to confined to 
wheelchairs. There is presently no medication or effective treatment for SMA. Structure-activity relationships 
including microsomal stability, cell permeability, and in vivo pharmacokinetics (PK) studies are necessary. J. Xiao et 
al. [109] reported SMA active theoretically lead candidate selected from a sequence may work for as a valuable 
analysis for exploring the therapeutic aids of SMN protein up-regulation in SMA animal models and an initial point 
for clinical improvement. With regard to all the features including ADME properties, analogs 141 and 142 possessed 
the greatest combination of effectiveness, efficiency, mouse liver microsomal steadiness, and cell permeability of all 
the analogs that showed good activity. 
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M. D, Rose, et al. [110] discussed the inhibition and antiviral activity consequence synthesis of 14- and 15-membered 
macrocycles for HIV-1 protease inhibitors (PIs) as obtained by ring-closing metathesis of the respective linear PIs. The 
macrocycles were very highly active than the linear precursors and compound 143, with a 2-thiazolyl ring was the 
best potent PI of this new series (Ki 2.2 nM, EC50 = 0.2 μM). 
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The preparation of a sequence of quinazolines inserted at C4 by aminothiazole ring is reported [111]. Their in vitro 
structure-activity relationships against Aurora A and B serine-threonine kinases are examined. The results reveal that 
quinazolines with a substituted aminothiazole at C4 possess potent Aurora A and B inhibitory activity and 
outstanding selectivity against a panel of several serine-threonine and tyrosine kinases. Compound 144 also found 
that the location and nature of the substituent on the thiazole play vital roles in cellular potency. 

Spinal muscular atrophy (SMA), an inherited autosomal neurodegenerative disease, is the
foremost genetic disorder disturbing infant mortality. Clinically, there are four kinds of SMA
(types I, II, III, and IV). In fact, SMA is the top one genetic origin of death in children below
the age of two, and several children life have been spoil due to confined to wheelchairs. There
is presently no medication or effective treatment for SMA. Structure-activity relationships
including microsomal stability, cell permeability, and in vivo pharmacokinetics (PK) studies
are necessary. J. Xiao et al. [109] reported SMA active theoretically lead candidate selected from
a sequence may work for as a valuable analysis for exploring the therapeutic aids of SMN
protein up-regulation in SMA animal models and an initial point for clinical improvement.
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at C4 possess potent Aurora A and B inhibitory activity and outstanding selectivity against a
panel of several serine-threonine and tyrosine kinases. Compound 144 also found that the
location and nature of the substituent on the thiazole play vital roles in cellular potency.
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Approximately, the thiazole ring containing compound exhibits cathepsin K inhibitors [112]. The amalgamation of 
binding elements resulted at sub-250 pM, reversible, selective, and orally bioavailable cathepsin K inhibitors. In a 
series on of the compound exhibited single digit nanomolar inhibition in vitro (of rabbit osteoclastmediated 
degradation of bovine bone). The effective compound in this series, 145 (CRA-013783/ L-006235), was orally 
bioavailable in rats, with a terminal half-life of over 3 h, 145 was medicated orally in ovariectomized rhesus monkeys 
once per day for 7 days. 
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Haffner et. al. a series of thiazoloquinazolinones [113] were prepared and studied the inhibitory activity against 
CD38. Numerous compounds were also revealed to have good pharmacokinetic properties and established the 
capability to raise NAD levels in plasma, liver, and muscle tissue. Specifically, compound 146 was agreed to diet 
induced obese (DIO) C57Bl6 mice, enriching NAD > 5-fold in liver and >1.2-fold in muscle against control animals at 
a 2 h time point. 

 

Sheme 59. sch59 

Thiazolo[5,4-d]pyrimidines and thiazolo[4,5-d]pyrimidines are structurally mimic with purines, in which a 1,3-
thiazole ring system exchanges the imidazole moiety. While purine chemistry is broadly discussed in the literature, 
the number of medicinal chemistry publications that reported the synthesis and biological studies of 
thiazolopyrimidines is narrow comparable with purines. Seemingly, the thiazolopyrimidine scaffold is not very often 
used in drug discovery platforms. However, biological activities of unequivocal thiazolo[4,5-d]pyrimidines and 
thiazolo[5,4-d]pyrimidines have been described. A summary of available compounds with their biological 
significance is presented in Figures 147, 148, 149 and 150. 
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purines, in which a 1,3-thiazole ring system exchanges the imidazole moiety. While purine
chemistry is broadly discussed in the literature, the number of medicinal chemistry publica‐
tions that reported the synthesis and biological studies of thiazolopyrimidines is narrow
comparable with purines. Seemingly, the thiazolopyrimidine scaffold is not very often used
in drug discovery platforms. However, biological activities of unequivocal thiazolo[4,5-
d]pyrimidines and thiazolo[5,4-d]pyrimidines have been described. A summary of available
compounds with their biological significance is presented in Figures 147, 148, 149 and 150.
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Thiazolo[4,5-d]pyrimidine derivative 151 revealed in vivo activity towards a broad range of RNA and DNA viruses 
[114] and also had antitumor and antimetastatic activity [115]. The guanine analogs 152 exhibited potent in vitro 
activity against human cytomegalovirus (HCMV) [116]. Thiazolo[4,5-d]pyrimidine-5,7-dione analogs (compound 
153) have been described as having potential anti-inflammatory activities, because of TNF inhibition [117]. 4 2-Oxo-3-
arylthiazolo[4,5-d]pyrimidine analogs (compound 154) have been produced as antagonists of the corticotrophin-
releasing hormone (CRH) R1 receptor [118]. 2-Thio-3-aryl-thiazolo[4,5-d]pyrimidine and its derivatives have been 
reported as having anticancer (compound 155) [119], antimicrobial and anti-inflammatory activity (compound 156a 
& 156b) [120]. 2-Aminothiazolo[4,5-d]pyrimidines (compound 157a & 157b) which performance as CXCR2 receptor 
antagonists are also recognized [121]. Lately, 2,7-substituted-thiazolo[4,5-d]pyrimidines (compound 158) have been 
explained as ATP-competitive inhibitors of protein kinase [122]. 
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2,5-Diaminothiazolo[5,4-d]pyrimidin-7(6H)-one (Compound 159), a thio-isostere of 8-amino‐
guanine, was established to be a poor inhibitor of purine nucleoside phosphorylase (PNP) [123].
7-Diethylamino-5-methylthiazolo[5,4-d]pyrimidine  160  has  vasodilating  and  hypotensive
properties, inhibits platelet aggregation, and decreasing cholesterol levels [124]. Thiazolo[5,4-
d]pyrimidines were enclosed by numerous patent properties such as activators of caspases and
inducers of apoptosis (compound 161) [125], anti-angiogenic agents (compound 162) [126],
growth factor  receptor  inhibitors  (compound 163)  [127],  heat  shock protein  90  (HSP-90)
inhibitors (compound 164) [128], and xanthine oxidase inhibitors (compound 165) [129].
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2,5-Diaminothiazolo[5,4-d]pyrimidin-7(6H)-one (Compound 159), a thio-isostere of 8-aminoguanine, was established 
to be a poor inhibitor of purine nucleoside phosphorylase (PNP) [123]. 7-Diethylamino-5-methylthiazolo[5,4-
d]pyrimidine 160 has vasodilating and hypotensive properties, inhibits platelet aggregation, and decreasing 
cholesterol levels [124]. Thiazolo[5,4-d]pyrimidines were enclosed by numerous patent properties such as activators 
of caspases and inducers of apoptosis (compound 161) [125], anti-angiogenic agents (compound 162) [126], growth 
factor receptor inhibitors (compound 163) [127], heat shock protein 90 (HSP-90) inhibitors (compound 164) [128], and 
xanthine oxidase inhibitors (compound 165) [129]. 
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5. General Synthetic Routes to Thiazolo[5,4-d]pyrimidines 
In wide-ranging, pyrimidines with a nitrogen-containing substituent at position 5 (such as an amino or nitro group) 
can work as precursors for the formation of thiazolo[5,4-d]pyrimidines by thiazole ring condensation. 5-Amino- or 5-
nitropyrimidines can be organized from diethyl amino-, nitro-, or acetylamino-malonate by reacts with coupling 
reagents such as thiourea [130], urea [131], guanidine [132] and amidines [133] in alkali conditions. By reaction of the 
4,6-dihydroxypyrimidine analog with a thionation reagent (Lawesson’s reagent or phosphorus pentasulfide) in 
pyridine, alteration of oxygen into sulfur and thiazole ring closure is accomplished. Interaction of 5-amino-6- 
mercaptopyrimidines with reagents such as phosgene [134], formic acid [135], and acid anhydride [136] also gives 
thiazolo[5,4-d]pyrimidines. 
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Thiazolo[5,4-d]pyrimidine-1-N-oxides, ready to obtain from 6-chloro-1,3-dimethyl-5-nitro‐
pyrimidinone by reaction with mercapto compounds, monitored by base catalyzed dehydra‐
tive cyclization, can be simply deoxygenated to produce thiazolopyrimidines. Reductive
deoxygenation by treatment of the thiazolopyrimidine oxides with sodium dithionite or
oxidative deoxygenation with dimethylformamide at reflux temperature can produce the
anticipated thiazolopyrimidines [137].
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Ahmed et al. [140] reported the synthesis of thiazolo[5,4-d]pyrimidines from pyrimidines
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intramolecular cyclization to produce a thiazole ring.
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with reagents such as orthoesters and amidines [143,144]. The reaction between 5-amino-4-
carboxamide (or carboxylate) thiazoles and orthoesters [145], formamide [146], and ethyl
chloroformate/DMF [147] gives thiazolo[5,4-d]pyrimidin-7(6H)ones.
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T. Lee et. al. [167] reported a series of 2,5,6,7-tetrasubstituted thiazolo[4,5-b]pyridine deriva‐
tives (168) from solid-phase synthesis. Thorpe-Ziegler type cyclization of solid supported
cyanocarbonimidodithioate with α-halo ketones gave thiazole resin, which were transformed
to the preferred thiazolopyridine resin by the Friedlander procedure under microwave
irradiation conditions. After oxidation of sulfides to sulfones, nucleophilic desulfonative
substitution with amines yielded the target thiazolo[4,5-b]pyridine derivatives.
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7. Summary

This chapter discusses the high synthetic perspective of several methods for synthesis of
thiazoles and its derivatives that have been published in the last three decades. Many pharma‐
ceutically active heterocycles have been obtained based on the reaction of acid hydrazides
particularly concerning Hantzsch reaction, Dimroth type rearrangement, Tchernich reaction,
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CooK–Heilbron reaction, Gabriel reaction, Erlenmeyer reaction, Hartke–Seib reaction and Dubs
reaction. Fundamentally α-halo carbonyl compounds and substituted thiourea or thiosemicar‐
bazide are potential precursors for the creation of wide range of thiazole analogous as main
synthon constituents for generation of several diverse heterocycles. The aza-Wittig product
such  as  iminophosphorane  intermediates  obtained  from  4-chloro-5-formylthiazoles  by
treatment with sodium azide and triphenylphosphine (Staudinger reaction) with most other
various reagents like isocyanate, isothiocyanate and carbondisulfide for bicyclic generation
system containing thiazole moiety under basic, acidic or neutral reaction conditions. Most of
these reagents are available from simply or commercially accessible, inexpensive precursors.
This chapter has also verified the noticeable feature to the advancement of an eco-friendly
experimental  technique  for  the  synthesis  of  heterocyclic  compounds.  The  synthetic  ap‐
proaches showed in this chapter can be comprehensive to the synthesis of natural macrocy‐
clic thiazole ring containing heterocycles and also suggest that α-halo carbonyl compounds can
be  a  favorable  building  block  in  combinatorial  synthesis  of  functionalized  heterocyclic
derivatives used for the design of unique very active pharmaceutical drugs with a broad
spectrum of bioresponses. In certain cases, reports on the less yield of bioactive heterocycles in
this chapter could be overwhelmed by forthcoming synthetic chemists with this sustained
research and new methods for extensive approach and explained experimental procedures
could be explored for its development for generation of a library of such multi-functional
heterocycles to afford a useful encouragement to medicinal chemistry.
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Abstract

Heterocyclic compounds are an important part of the synthetic medicinal chemistry.
They offer a high degree of structural variety and have proven to be widely useful as
therapeutic agents. Heterocyclic compounds play an important role in the biological
processes. They are widespread as natural products. Heterocyclic compounds are widely
found in nature categorically in plant alkaloids, nucleic acids, anthocyanins, and fla‐
vones. They are also present as in chlorophyll and hemoglobin. Additionally, some pro‐
teins, hormones, and vitamins also contain aromatic heterocyclic system. Heterocycles
have huge potential as the most promising molecules as lead structures for the design of
new drugs. About one half of over 6 million compounds recorded so far in chemical ab‐
stracts are heterocyclic. The proposed book chapter entitled, Recent Advances in the Biologi‐
cal Importance of Rhodanine Derivatives gives an outline of importance and applications of
the various rhodanine derivatives in medicinal chemistry from 2004 to 2014.

Keywords: Rhodanine, biological activities, structure activity relationship and selectivity
of rhodanine derivatives

1. Introduction

Rhodanine is a five-membered heterocyclic molecule containing a thiazole nucleus with thioxo
group on second carbon and carbonyl group on fourth carbon. It was first discovered in 1877
by Marceli Nencki, who named it “Rhodaninsaure.” Structural modifications of rhodanine
derivatives (Figure 1) constantly result in compounds with a broad spectrum of pharmaco‐
logical activities [1, 2]. Rhodanine derivatives recently have grabbed the attention of research‐
ers because of their broad range of pharmacological activities. Since past 10 years, the number
of scientific publications and patents describing a plenty of the different biological activities
of rhodanine-based compounds is increasing continuously (Figure 2). It has been reached at

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



the peak in 2014 with 461 publications. A majority of the biologically active rhodanines are 5-
arylmethylidenerhodanines (Figure 1), which contain the exocyclic double bond. Because the
latter is conjugated to the carbonyl group at position 4 of the rhodanine ring, such compounds
are electrophilic and potentially reactive due to possible Michael addition of the nucleophilic
protein residues to the exocyclic double bond [3–5].

Figure 1. Chemical structures of the important rhodanine-based derivatives.
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Figure 2. SciFinder search for recent publications, including biological activity of rhodanines sorted by year, as deter‐
mined on 10 August 2015.

Rhodanine have been found to possess various biological activities, such as antidiabetic,
antibacterial, antifungal, anti-infective, pesticidal, antimycobacterial, antineoplastic, and so on
[6–19]. They also exhibit antitubercular, anti–human immunodeficiency virus (HIV), and
antimalarial activities. Due to the various possibilities of structural derivatization of the
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rhodanine ring, their derivatives will probably remain a privileged scaffold in drug discovery
[20]. We therefore want to review the biological activities, mechanism of action, structure–
activity relationship (SAR), and selectivity of rhodanine derivatives against various targets in
this chapter.

1.1. Antibacterial activity

Villain-Guillot et al. [21] have reported design, synthesis, and SAR of furanyl-substituted
rhodanine derivatives as RNA polymerase (RNAP) inhibitors. These derivatives were found
to inhibit transcription and affect growth of bacteria living in suspension or in a biofilm. The
derivative (I) is found as most active among all the reported rhodanine derivatives. It inhibits
the Escherichia coli RNAP transcription at minimum inhibition concentration of ≤10 μM. It also
have high efficacy against various gram-positive bacteria, including Staphylococcus epidermidis. 

 

(I) 

Hardej et al. [22] have synthesized a series of rhodanine derivatives containing various
substituents at the N3- and C5-positions and tested for in vitro antibacterial activity against a
panel of clinically relevant methicillin-resistant Staphylococcus aureus (MRSA) strains. The anti-
MRSA activity of compounds II (minimum inhibitory concentration (MIC)=3.9 μg/mL) and III
(MIC=1.95 μg/mL) were significantly greater than that of the reference antibiotics penicillin G
(MIC=31.25 μg/mL) and ciprofloxacin (MIC=7.8 μg/mL).

 

 

                          (II)                                                                (III) 
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Li et al. [23] have synthesized a series of arylhydrazone derivatives bearing a rhodanine moiety
and evaluated as antibacterial activity against several different strains of gram-positive
bacteria, including multidrug-resistant clinical isolates. Of all the compounds tested, IV and
V were identified as the most effective, with minimum inhibitory concentration values of 2–4
μg/mL against methicillin-resistant and quinolone-resistant S. aureus.

 

 

                          (IV)                                                                 (V) 

Zheng et al. [24] have synthesized three novel series of 5-aryloxypyrazole derivatives and
tested for their antibacterial activity. The majority of the synthesized compounds showed
potent inhibitory activity against gram-positive bacteria S. aureus 4220, especially against the
strains of multidrug-resistant clinical isolates (MRSA3167/3506 and QRSA3505/3519). Among
which, compounds VI, VII, and VIII showed the most potent levels of activity (MIC=1 μg/mL),
and cytotoxic activity assay showed that the compounds tested did not affect cell viability on
the human cervical (HeLa) cells at their MICs.

 

                 (VI)                                              (VII)                                              (VIII) 

Xu et al. [25] synthesized pyrazole-substituted derivatives bearing rhodanine-3-fatty acid
moieties and analyzed their antimicrobial activities against various gram-positive as well as
gram-negative bacteria. Compound (IX) bearing a rhodanine-3-pentanoic acid displayed the
most potent activity with a MIC of 2 μg/mL against MRSA.
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(IX) 

Miao et al. [26] have synthesized a series of rhodanine-3-acetic acid derivatives and investi‐
gated for their antibacterial activity against gram-positive bacteria, including multidrug-
resistant clinical isolates. The compounds X, XI, XII, XIII, XIV, and XV presented better
activities against multidrug-resistant S. aureus than the standard drug, especially XIII with a
MIC of 1 μg/mL. However, none of the compounds were active against gram-negative bacteria
at 64 μg/mL.

 

 

 

(X)-(XV) 

(X)= CH
3
, (XI)= OCH

3
, (XII)= F,  

(XIII)= Br, (XIV)= Cl, (XV)= CF
3 

1.2. Antifungal activity

Orchard et al. [27] have synthesized rhodanine-3-acetic acid derivatives XVI, XVII, and XVIII
inhibit Candida albicans PMT1 with inhibition concentration 50% (IC50) values 0.17, 0.2, and 0.35
μM, respectively. These compounds could serve as useful tools for studying the effects of
protein O-mannosylation and its relevance in the search for novel antifungal agents.
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(XVI)-(XVIII) 

    (XVI)= CH
2
OH, (XVII)= CH

3
, (XVIII)= CONH

2
,  

Sortino et al. [28] reported a series of benzylidene–rhodanines acting as antifungal agents.
Among them, compounds XIX and XX showed to be fungicides and were the most active
against Candida genus and Candida neoformans, including clinical isolates.

 

 

                                                (XIX)                              (XX) 

In an effort to develop highly potent antifungal agents, Chauhan et al. [29] have reported potent
antifungal rhodanine analogs. Some derivatives XXI, XXII, and XXIII were found to be very
effective (MIC=0.78 μg/mL) against C. albicans MTCC183. The potent compounds were further
tested for in vitro anticandidal activity and amphotericin B–resistant strain of C. albicans.
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Moreover, these analogs did not exhibit any toxicity up to MIC 3.12 μg/mL against mammalian
cell line L929.

 

 

           (XXI)                                      (XXII)                                              (XXIII) 

Insuasty et al. [30] have synthesized several simple rhodanine derivatives and tested for their
antifungal activity against 10 different fungal strains. Compound XXIV showed high activity
against Saccharomyces cerevisiae (MIC 3.9 μg/mL) of all the tested derivatives.

 

 

(XXIV) 

1.3. Antidiabetic activity

Murugan et al. [31] illustrated simple and efficient synthesis of regio- and stereo-controlled
dispiropyrrolidine derivatives of rhodanine XXV, which are found to exhibit attractive
antidiabetic properties to male Wistar rats. Among the eight rhodanine compounds, particu‐
larly two compounds showed the excellent antidiabetic activity

1.4. Anticancer activity

Moorthy et al. [32] have synthesized 5-isopropylidiene derivatives of 3-dimethyl-2-thio-
hydantoin XXVI, 3-ethyl-2-thio-2,4-oxazolidinedione XXVII, and 5-benzilidene-3-ethyl
rhodanine XXVIII, which are cytotoxic against leukemic cell line in concentration-dependent
manner. The results of the trypan blue and MTT assays indicated that the compound XXVIII
found to be fivefold to sevenfold more potent than XXVI and XXVII with IC50<10 μM. XXVIII
found to affect DNA replication by inducing a block at S phase on the basis of cell cycle analysis
and tritiated thymidine assays. Moreover, the treatment of XXVIII led to increased level of
reactive oxygen species (ROS) production and DNA strand breaks. This suggests the activation
of apoptosis for induction of cell death.
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Li et al. [33] have synthesized a series of rhodanine-containing sorafenib derivatives. The in
vitro pharmacological activity indicated that some of the target compounds possessed high
antitumor activity against cancer cell lines, such as A549, H460, and HT29, compared to the
standard drug sorafenib. The compound XXIX has displayed highest IC50 value of 0.8, 1.3, and
2.8 μM against A549, H460, and HT29 cell lines, respectively. The SAR data indicated that the
activity strongly depends on the substitution pattern of the rhodanine motif at C-5 position.
 

 

(XXIX) 

Liu et al. [34] synthesized a series of dihydropyrimidinone and rhodanine derivatives and
tested their tyrosinase inhibitory activity. The results showed that some of the synthesized

 

 

(XXV) 
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(XXV) 
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derivatives displayed significant inhibitory activities. The SAR data indicated that the
compound XXX with the presence of hydroxyethoxyl group at position 4 of phenyl ring has
displayed highest tyrosinase inhibitory activity with IC50 value of 0.56 μM. The inhibitory effect
of compound XXX on the tyrosinase was found to be irreversible. These results suggested that
such compounds might be served as lead for further designing of new potential tyrosinase
inhibitors.

 

 

(XXX) 

Min et al. [35] synthesized rhodanine derivatives, XXXI and XXXII, which inhibited protein
tyrosine phosphatase type IVA, member 3 (PRL-3) enzymatic activity with IC50 values of 0.8
and 1.1 μM, respectively. These two derivatives highly inhibited the migration and invasion
of PRL-3 overexpressing colon cancer cells. The phosphorylation recovery of known PRL-3
substrates, such as ezrin and cytokeratin, confirmed the specificity of the inhibitors on PRL-3
phosphatase activity. These compounds also selectively inhibited the PRL-3 when compared
to the other phosphatases. Moreover, the derivative XXXI also found to regulate the epithelial-
to-mesenchymal transition (EMT) marker proteins.

  

 

                                        (XXXI)                                                      (XXXII) 
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1.5. Anti-HIV

Rajamaki et al. [36] have reported a novel series of rhodanine derivatives inhibiting HIV-1
integrase using virtual screening techniques. The compound XXXIII has displayed highest
therapeutic index (7.0) of all the synthesized derivatives.

 

 

Maga et al. [37] synthesized a series of second-generation rhodanine derivatives with high
inhibitory activity toward cellular DEAD (Asp-Glu-Ala-Asp) (DDX3) and HIV-1 replication
using optimization protocol to the first non-nucleoside inhibitor of the adenylpyrophospha‐
tase (ATPase) activity of human DEAD-box RNA helicase DDX3. Rationalized biological data
in terms of SAR and docking simulations indicated that compound XXXIII displayed highest
selectivity index (10.0) of all the synthesized rhodanine derivatives.

 

(XXXIII) 

Jiang et al. [38] reported syntheses of furan-substituted rhodanine derivatives by Suzuki-
Miyaura cross-coupling, followed by Knoevenagel condensation reaction. The derivatives
XXXIV and XXXV have shown excellent potency against primary HIV-1 strains with effective
concentration 50% (EC50) at low nanomolar level of all the synthesized derivatives. The SAR
data indicated that these derivatives also inhibit the HIV-1–mediated cell–cell fusion and the
glycoprotein 41 (gp41) six-helix bundle formation.
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                    (XXXIV)                                                                    (XXXV) 

1.6. Anti–hepatitis C virus activity

Talele et al. [39] reported novel allosteric inhibitors of hepatitis C virus (HCV) nonstructural
protein 5B (NS5B) through a combination of structure-based virtual screening, synthesis, and
SAR optimization approach. All the derivatives that exhibited IC50 values ranging from 7.7 to
68.0 μM were developed. Compound XXXVI, a novel rhodanine analog with NS5B inhibitory
potency in the low micromolar level range may be a promising lead for future development
of more potent NS5B inhibitors.

 

 

(XXXVI) 

Patel et al. [40] have reported the synthesis and in vitro evaluation of anti-NS5B polymerase
activity of some novel rhodanine derivatives. Depending on the nature of substituents, the
tested compounds exhibited IC50 values ranging between 2 and 50 μM against NS5B poly‐
merase. Analogue (XXXVII) have displayed highest IC50 (2.6 μM) of all the tested rhodanine
derivatives.

1.7. Anti-Inflammatory agent

Cutshall et al. [41] have synthesized a series of rhodanine-based inhibitors and tested against
the dual-specificity phosphatases (DSP) family member c-Jun N-terminal kinases (JNK)-
stimulating phosphatase-1 (JSP-1). The SAR studies demonstrated that presence of stronger
electron-withdrawing functional groups at aryl-benzylidene position provided analogs with
the greatest potencies as illustrated by compound (XXXVIII). These derivatives may be useful
for the treatment of inflammatory and proliferative disorders.
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(XXXVIII) 

Irvine et al. [42] have reported the in vitro anti-inflammatory activity of a novel series of
rhodanine-based phosphodiesterase-4 (PDE4) inhibitors. From the SAR study, it was observed
that analog XXXIX (IC50=0.89 μM) and XXXX (IC50 0.74 μM) displayed highest anti-inflamma‐
tory activity. 

 

                              (XXXIX)                                                         (XXXX) 

 

 

(XXXVII) 
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2. Conclusion

This chapter describes rhodanine-based compounds that have been highly associated with
biological activity, especially with antibacterial, antiviral, and anticancer activities. Rhodanine
derivatives have attracted huge attention of millions of chemists and biologist in recent time
because of their wide range of pharmacological activities and therefore, further improved
protocol with better observation is still under progress. To conclude, rhodanines will probably
remain a privileged scaffold in drug discovery due to their wide spectrum of pharmacological
activity and the different possibilities of structural modification, which enable potent and
selective drugs to be developed.
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Abstract

There is an urgent need for better drugs for a more successful fight against leishmaniasis,
one of the most important neglected diseases caused by the parasite Leishmania. We have
recently synthesized several symmetrical pyridinium compounds belonging to two dif‐
ferent series: bis-pyridinium and bis-quinolinium acyclic structures and bis-pyridinium
diazacyclophanes derivatives. The first series of bis-pyridinium derivatives have been
found to display activity against promastigotes and intracellular amastigotes of Leishma‐
nia donovani and Leishmania major, with EC50 values lower than 1 μM. The majority of
compounds show a similar behavior in both Leishmania species, being slightly more active
against intracellular amastigotes of L. major. The series of bis-pyridinium diazacyclo‐
phanes can be considered as rigid analogues of the previous bis-cationic ones. The activi‐
ty of these compounds has also been evaluated against promastigotes and intracellular
amastigotes of L. donovani and L. major. All the diazacyclophanes are more active against
L. major, with EC50 values of between 1 and 17 μM in intracellular amastigotes, and in
some cases they present a higher selectivity index than the reference anti-leishmanial
drugs such as amphotericin B and miltefosine. In conclusion, these bis-quaternary com‐
pounds represent promising candidates as potential therapeutic agents against leishma‐
niasis.

Keywords: Pyridinium phanes, diazacyclophanes, leishmaniasis, Leishmania chemothera‐
py

1. Introduction

Leishmaniasis is a major group of neglected tropical diseases caused by the protozoan parasite
Leishmania. Currently it affects 12 million people in 98 countries, and around 350 million people

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



worldwide are at risk of infection [1]. Leishmaniasis is responsible for a variety of pathologies
that have been classified in three main clinical manifestations including cutaneous (CL),
mucocutaneous (MCL), and visceral (VL) leishmaniasis, ranging from self-healing cutaneous
lesions to fatal visceral infection [2].

All Leishmania species are digenetic parasites that exist as both insect vector (promastigotes)
and mammalian forms (intracellular amastigotes). The digenetic life cycle of Leishmania
consists of flagellated, motile, extracellular promastigote form that proliferates in the midgut
of phlebotomine sand fly family vectors, which infect mammalian host and transform into the
non-motile, intracellular amastigote form that resides in phagolysosomes of macrophages and
other reticuloendothelial cells.

Since an effective vaccine against leishmaniasis is not available, chemotherapy is at present
the only effective way to treat all forms of the disease. The recommended first-line therapies
for leishmaniasis include pentavalent antimonials such as sodium stibogluconate and meglu‐
mine antimoniate, amphotericin B (AmB), paromomycin, and miltefosine (Figure 1), all of
which have different types of limitations including toxicity, price, efficacy, and emerging
resistance [3], which emphasizes the importance of developing new drugs against leishma‐
niasis. Pentamidine [1,5-bis(4-amidinophenoxy)pentane] is an aromatic diamidine (Figure 1)
widely used for the treatment of sleeping sickness caused by Trypanosoma brucei [4]. It was
used as a second-line drug against VL in cases of antimony failure, but its use against leish‐
maniasis is now limited to the treatment of some forms of CL in South America [5]. Pentami‐
dine acts at the mitochondrial level of the parasite by accumulating within the mitochondria
and binding to DNA, thus interfering with the replication and transcription [6]. Novel
diamidine derivatives with improved pharmacokinetic properties have been under develop‐
ment in recent years [7, 8].

New diamidine and choline-derivative dications have been developed recently in order to find
new drugs with improved activity against leishmaniasis and lower toxicity [9–12] (Figure 2).

Chemistry is a science on which all the other sciences are based. An understanding of biology
requires knowledge of chemistry. The majority of the leishmaniasis reviews are concentrating
on the biology of the processes and very little on the chemistry. We would like to fill this gap
and we will focus on the chemical structures that could be useful to the medicinal chemists
working in this important area of research.

Here we present the anti-leishmanial activity of a set of symmetrical bis-pyridinium com‐
pounds with cyclic or acyclic structures. Both types of compounds can be named according to
the IUPAC nomenclature for phanes, a method based on assembling names that describe
component parts of a complex structure.

2. Symmetrical bis-pyridinium compounds

We have previously designed and synthesized a set of symmetrical bis-pyridinium com‐
pounds, which consist of a linker and two cationic heads which are 4-substituted pyridinium
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or quinolinium rings with cyclic or acyclic amino groups, as inhibitors of the human choline
kinase (ChoK) (Table 1), the first enzyme in the CDP–choline pathway that synthesizes
phosphatidylcholine, the major phospholipid in eukaryotic cell membranes. In humans,
choline kinase exists as three isoforms (ChoKα1, α2, and β). Specific inhibition of ChoKα has
been reported to selectively kill the tumor cells. Ten symmetrical bis-pyridinium and bis-
quinolinium derivatives were tested for their ability to inhibit human ChoKα2, and VGP-118
and VGP-150 were identified as highly potent choline kinase inhibitors with EC50 values of 80
nM. Kinetic enzymatic assays indicated a mixed, predominantly competitive, inhibition
mechanism for these compounds. These novel compounds showed strong anti-proliferative
activity (EC50 of 1 μM) on the human breast cancer SKBR3 cell line [13].

In addition, these compounds can be considered as structural analogues of pentamidine in
which the amidino moiety, which is protonated at physiological pH, has been replaced by a
positively charged nitrogen atom as a pyridinium ring. In view of this structural resemblance
and with the intention of identifying potential drugs against leishmaniasis, we analyzed the
anti-leishmanial activity of these bis-pyridinium derivatives.
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Figure 1. Anti-leishmanial drugs.
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2.1. Susceptibility analysis in Leishmania lines

The anti-leishmanial activity of the ten choline kinase inhibitors was evaluated against
promastigotes and intracellular amastigotes of Leishmania donovani and Leishmania major in
order to identify the potential hits for further optimization. The cytotoxic effect of these
compounds was also investigated on the human monocytic cell line THP-1, the host cell used
in the assay with intracellular amastigotes. Selectivity indexes (SI) were calculated as the ratio
of the EC50 (the concentration of compound required to inhibit growth by 50%) for THP-1 to
the EC50 for intracellular amastigotes. Table 2 shows the results, where miltefosine and AmB
were used as the reference anti-leishmanial drugs. Most assayed compounds exhibit a specific
high activity against promastigotes and intracellular amastigotes of L. major, with EC50 values
between 0.09 and 0.42 μM in amastigotes, except for compounds VGP-106 and VGP-118 (EC50

13.07 and 6.21 μM, respectively). With regard to L. donovani, all assayed compounds display
EC50 values below 1 μM in promastigotes, except compound VGP-138 (EC50 2.11 μM).
Although these values are slightly higher in intracellular amastigotes, they are similar to those
for the anti-leishmanial drug miltefosine [14].
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Our analysis of the effect on THP-1 cells showed that bis-pyridinium derivatives (VGP-106,
VGP-114, VGP-118, VGP-130, VGP-138) are less cytotoxic than the bis-quinolinium counter‐
parts (VGP-146, VGP-150, VGP-162, VGP-174, VGP-182), with a higher SI than miltefosine
(Table 2).
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Table 1. Structure of the bis-cationic compounds
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EC50 promastigotes (µM) EC50 amastigotes (µM) [SI]b THP-1 toxicity EC50

(µM)Compound L. major L. donovani L. major L. major

VGP-106 21.55 ± 3.72 0.36 ± 0.09 13.07 ± 6.30 [15.8] 0.86 ± 0.46 [240.2] 206.54 ± 9.89

VGP-114 0.47 ± 0.04 0.61 ± 0.09 0.10 ± 0.03 [1000.6] 0.85 ± 0.04 [117.7] 100.06 ± 8.57

VGP-118 29.15 ± 5.73 0.65 ± 0.19 6.21 ± 1.02 [2.4] 0.18 ± 0.03 [85.3] 15.35 ± 3.99

VGP-130 0.50 ± 0.07 0.73 ± 0.11 0.09 ± 0.02 [903.7] 2.02 ± 0.05 [40.3] 81.34 ± 10.65

VGP-138 0.74 ± 0.19 2.11 ± 0.48 0.30 ± 0.16 [586.8] 4.01 ± 0.43 [43.9] 176.05 ± 20.75

VGP-146 0.21 ± 0.06 0.33 ± 0.07 0.10 ± 0.04 [156.1] 0.42 ± 0.01 [37.2] 15.61 ± 3.26

VGP-150 0.36 ± 0.11 0.77 ± 0.04 0.09 ± 0.03 [267] 0.55 ± 0.16 [43.7] 24.03 ± 5.42

VGP-162 0.40 ± 0.08 0.35 ± 0.02 0.37 ± 0.03 [29.6] 1.00 ± 0.08 [11.0] 10.97 ± 2.41

VGP-174 1.70 ± 0.01 0.34 ± 0.03 0.41 ± 0.05 [6.1] 0.86 ± 0.03 [2.8] 2.47 ± 0.05

VGP-182 2.51 ± 0.01 0.92 ± 0.2 0.42 ± 0.12 [11.2] 0.52 ± 0.12 [9.1] 4.71 ± 0.23

AmB 0.32 ± 0.02 0.21 ± 0.01 0.24 ± 0.01 [59.7] 0.28 ± 0.13 [51.1] 14.32 ± 4.10

Miltefosine 16.65 ± 1.23 6.60 ± 1.57 10.61 ± 0.89 [2.5] 0.88 ± 0.14 [30.5] 26.86 ± 3.08

aParasites were grown for 72 h at 28 °C (promastigotes) or 37 ºC (intracellular amastigotes) in the presence of increasing
concentrations of compounds. THP-1 cells were grown for 72 h at 37 ºC, in the presence of increasing concentrations of
compounds. Promastigotes and THP-1 viability was determined using an MTT-based assay. Number of intracellular
amastigotes was determined by nuclear staining. AmB and miltefosine were used as standard anti-leishmanial agents.
Data are means ± SD of three independent determinations.
bSelectivity indexes [SI] were calculated by dividing the EC50 THP-1 by that for intracellular amastigotes. Compound
VGP-106 (grey color) was selected for further studies of the mechanism of action.

Table 2. Anti-leishmanial activity and toxicity in THP-1 cells of symmetrical bis-pyridinium compounds.a

Compound VGP-106 was identified as a representative compound that displayed a potent
activity against L. donovani intracellular amastigotes. As the least cytotoxic of the set of
compounds assayed for THP-1 cells, it was selected to further elucidate their mechanism of
action in this protozoan parasite [14].

2.2. Drug susceptibility assay of L. donovani lines overexpressing CEK or EK

Considering that the Leishmania genome includes two homologous enzymes of human ChoK,
namely, choline/ethanolamine kinase (CEK) and ethanolamine kinase (EK), we decided to
study whether there is a correlation between their ChoK inhibitory activity and anti-leishma‐
nial activity. These proteins can be overexpressed in L. Donovani promastigotes by transfecting
the parasites with a plasmid encoding the Leishmania CEK (pXG-CEK) or EK (pXG-EK) genes
[14]. The susceptibility of transfected parasites to compound VGP-106 was determined in both
promastigotes and intracellular amastigotes. As can be seen from Table 3, there are no
significant differences between the EC50 values of parasites overexpressing CEK or EK
enzymes compared to control parasites. These results suggest that the mechanism of action of
this compound in Leishmania is independent of the aforementioned enzymes [14]. If this were
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namely, choline/ethanolamine kinase (CEK) and ethanolamine kinase (EK), we decided to
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not the case, overexpression of these enzymes would have resulted in an increase in the EC50

value.

EC50 (µM)

Plasmid Promastigotes Amastigotes

pXG 0.36 ± 0.09 0.45 ± 0.03

pXG-CEK 0.36 ± 0.09 0.42 ± 0.05

pXG-EK 0.43 ± 0.05 0.35 ± 0.03

aControl (pXG) and transfected (pXG-CEK and pXG-EK) parasites were grown for 72 h at 28 °C (promastigotes) or 37 ºC
(intracellular amastigotes) in the presence of increasing concentrations of compounds. Data are means ± SD of three
independent determinations.

Table 3. Susceptibility to VGP-106 of L. donovani lines overexpressing CEK or EK.a

3. Symmetrical bis-pyridinium diazacyclophanes

Rigidification is a commonly used strategy to increase the activity of a drug or to reduce its
side effects. A cyclophane is a hydrocarbon consisting of an aromatic unit (typically a benzene
ring) and an aliphatic chain that forms a bridge between two non-adjacent positions of the
aromatic ring.

We have synthesized a new family of symmetrical bis-pyridinium diazacyclophanes designed
as cyclic analogues of previously reported acyclic bis-pyridinium derivatives, by cyclization
through the exocyclic nitrogen atoms at position 4 of the pyridinium moiety via linker 2, which
leads to the diazacyclophane targets (Figure 3) [15]. These compounds have been evaluated
against L. major and L. donavani.
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2Br

NRR' NRR'

N N
Linker 1

Cyclization

Linker 2

Linker 1

A B

Figure 3. Structural variation that leads to symmetrical bis-pyridinium diazacyclophanes (B) from symmetrical acyclic
bis-pyridinium derivatives (A).

This new compounds are symmetrical bis-pyridinium derivatives which differ from each other
in the upper and lower spacers. Four different spacers were used: two are phenyl-p-diyl‐
methylene and phenyl-m-diylmethylene linkers, and the other two are aliphatic, such as the
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1,5-pentanediyl and 3-oxa-1,5-pentanediyl moieties. At least one of the two spacers in every
cyclophane is an aliphatic linker (Table 4).

The final compounds were synthesized according to Scheme 1. Dipyridines 1 and 2 were
prepared from commercially available diamines and 4-bromopyridine in the presence of
phenol under argon atmosphere, as previously described [11]. A reaction involving phenol as
proton donor, solvating agent, and source of phenoxide ion is envisaged, as outlined in Scheme
1 [16]. As a reaction medium, phenol reduces both the reaction time and temperature of the
halogen-replacement reactions.
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Sheme 1. As a reaction medium, phenol reduces reaction time and temperature of halogen-replacement reactions, by
acting as proton donor, solvating agent, and source of phenoxide ion.

The novel dipyridines (3 and 4) were prepared from commercially available pentane-1,5-
diamine and bis-2-(aminoethyl)ether, and following the same synthetic protocol previously
reported [11].

Cyclophanes were obtained by cyclization of dipyridines 1-4 and the dibromide derivatives
in acetonitrile, according to our reported procedures [11]. The reaction was carried out by
adding 4 mM solution of the dibromide drop by drop to the dipyridine in acetonitrile at the
reflux temperature of the mixture for a period of 10–12 days, which favors the cyclization step
and avoids the intermolecular reaction [17]. In order to shorten the reaction time, microwave
was used. Thus, dipyridine and dibromide derivatives in acetonitrile were microwave-
irradiated at 140 ºC for 20 min. Under these conditions, similar yields were obtained as
compared to standard heating at the boiling point of the solvent (acetonitrile). Similarly bis-
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Compound Linker 1 Linker 2

VGP-222 (CH2)5

VGP-234 (CH2)2 O (CH2)2

VGP-310 (CH2)5

VGP-312 (CH2)2 O (CH2)2

VGP-318 (CH2)5 (CH2)5

VGP-328 (CH2)2 O (CH2)2

VGP-334 (CH2)5 (CH2)2 O (CH2)2

VGP-340 (CH2)2 O (CH2)2 (CH2)2 O (CH2)2

VGP-352 (CH2)2 O (CH2)2 (CH2)5

Table 4. Structures of the symmetrical bis-pyridinium diazacyclophanes.
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quinolinium cyclophanes [18–20] needed to be purified by tedious reverse-phase preparative
HPLC because conventional purification methods failed to give analytically pure samples for
biological testing, despite having been obtained under high-dilution conditions (1–2 mM). In
our case, this represents a great advantage for the accessibility of such an interesting class of
compounds (Scheme 2).
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VGP-310 (58%)
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VGP-318 (33%)
VGP-328 (69%)
VGP-334 (21%)
VGP-340 (35%)
VGP-352 (33%)

Sheme 2. General synthesis of the symmetrical bis-pyridinium diazacyclophanes.

3.1. Anti-leishmanial activity

The final nine cyclophanes were tested as anti-leishmanial agents against promastigotes and
intracellular amastigotes of L. donovani and L. major [15]. The results are shown in Table 5,
where miltefosine and AmB were used as reference drugs.

All assayed compounds exhibit activity against promastigotes and intracellular amastigotes
of L. major and L. donovani, being more active in L. major, with EC50 values lying in the range 1
and 17 μM in amastigotes. Compounds VGP-310, VGP-318, VGP-334, VGP-340, and VGP-352
display EC50 values below 1 μM against promastigotes of L. major, an activity 100-fold higher
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biological testing, despite having been obtained under high-dilution conditions (1–2 mM). In
our case, this represents a great advantage for the accessibility of such an interesting class of
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3.1. Anti-leishmanial activity

The final nine cyclophanes were tested as anti-leishmanial agents against promastigotes and
intracellular amastigotes of L. donovani and L. major [15]. The results are shown in Table 5,
where miltefosine and AmB were used as reference drugs.

All assayed compounds exhibit activity against promastigotes and intracellular amastigotes
of L. major and L. donovani, being more active in L. major, with EC50 values lying in the range 1
and 17 μM in amastigotes. Compounds VGP-310, VGP-318, VGP-334, VGP-340, and VGP-352
display EC50 values below 1 μM against promastigotes of L. major, an activity 100-fold higher
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than that obtained in promastigotes of L. donovani. However, the differences in activity
decrease in the amastigote forms, because some of these compounds are less active in amas‐
tigotes than in promastigotes of L. major and more active in amastigotes than in promastigotes
of L. donovani.

EC50 promastigotes (µM) EC50 amastigotes (µM) [SI]b
THP-1 toxicity EC50

(µM)

Compound L. major L. donovani L. major L. donovani

VGP-222 16.84 ± 1.20 51.97 ± 1.97 5.94 ± 0.93 [32.3] 13.53 ± 1.40 [14.2] 191.90 ± 8.12

VGP-234 5.97 ± 0.35 33.77 ± 4.68 8.67 ± 1.04 [22.5] 8.92 ± 1.96 [10.3] 195.17 ± 6.41

VGP-310 0.17 ± 0.01 26.41± 1.28 0.97 ± 0.27 [170.2] 38.33 ± 1.74 [4.3] 165.06 ± 21.29

VGP-312 26.48 ± 2.44 76.87 ± 9.59 17.15 ± 1.50 [12.9] 63.67 ± 5.21 [3.5] 221.89 ± 8.27

VGP-318 0.07 ± 0.01 10.64 ± 1.03 1.26 ± 0.30 [122.3] 7.62 ± 0.16 [20.2] 154.07 ± 5.95

VGP-328 2.87 ± 0.36 76.27 ± 4.96 1.61 ± 0.35 [120.8] 21.25 ± 2.03 [9.2] 194.41 ± 2.95

VGP-334 0.26 ± 0.02 31.47 ± 2.53 2.59 ± 0.23 [62.7] 33.19 ± 0.57 [4.9] 162.44 ± 6.07

VGP-340 0.19 ± 0.01 23.43 ± 0.57 2.24 ± 0.35 [57.2] 20.72 ± 1.07 [6.2] 128.22 ± 9.78

VGP-352 0.26 ± 0.01 31.41 ± 3.02 2.18 ± 0.05 [98.5] 12.95 ± 1.86 [16.6] 214.65 ± 13.80

AmB 0.32 ± 0.02 0.21 ± 0.01 0.24 ± 0.01 [59.7] 0.28 ± 0.13 [51.1] 14.32 ± 4.10

Miltefosine 16.65 ± 1.23 6.60 ± 1.57 10.61 ± 0.89 [2.5] 0.88 ± 0.14 [30.5] 26.86 ± 3.08

aParasites were grown for 72 h at 28 °C (promastigotes) or 37 ºC (intracellular amastigotes) in the presence of increasing
concentrations of compounds. THP-1 cells were grown for 72 h at 37 ºC, in the presence of increasing concentrations of
compounds. Promastigote and THP-1 viability was determined using an MTT-based assay. Number of intracellular
amastigotes was determined by nuclear staining. AmB, and miltefosine were used as standard anti-leishmanial agents.
Data are means ± SD of three independent determinations.

bSelectivity indexes [SI] were calculated by dividing the EC50 THP-1 by that for intracellular amastigotes. Compound
VGP-318 (grey color) was selected for further studies of the mechanism of action.

Table 5. Anti-leishmanial activity and toxicity in THP-1 cells of symmetrical bis-pyridinium diazacyclophanesa.

In general, from a structural point of view, compounds with two aliphatic linkers show better
activity against promastigotes of L. major than compounds with an aromatic linker. However,
the presence of an aromatic spacer increases the activity in intracellular amastigotes relative
to the activity in promastigotes, except for VGP-310. This could be due to the higher lipophi‐
licity of these structures that allowed a better penetration into THP-1 cells. Nevertheless, most
compounds displayed higher activity in intracellular amastigotes than in promastigotes of L.
donovani. Regarding the aliphatic linker, the presence of an oxygen atom in the linker did not
involve significant differences in the activity. All diazacyclophanes exhibited very low toxicity
against THP-1 cells (EC50 values between 128 and 220 μM) and some of them evince a higher
selectivity index than the reference compounds.
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Compound VGP-318 was chosen as a representative compound to further investigate the
mechanism of action of this new family of compounds [15]. This compound shows promising
activity against intracellular amastigotes of L. major (EC50 1.3 ± 0.3 μM), with a selectivity index
(122) higher than those of AmB (51) and miltefosine (30). It is also the most active diazacyclo‐
phane derivative against intracellular amastigotes of L. donovani (EC50 7.6 ± 0.2 μM).

3.2. Drug susceptibility assay of L. donovani lines overexpressing CEK or EK

As we have previously published that other bis-pyridinium diazacyclophanes were ChoK
inhibitors and active anti-proliferative drugs [11], we performed a sensitivity test for VGP-318
in promastigotes and intracellular amastigotes of L. donovani overexpressing the Leishmania
enzymes CEK or EK. The sensitivity for VGP-318 is similar in both promastigotes and
intracellular amastigotes overexpressing CEK and EK versus control parasites (Table 6). This
result suggests that the anti-leishmanial activity of these compounds is not related to the CEK
and EK enzymes [15].

EC50 (μM)

Plasmid Promastigotes Amastigotes

pXG 13.50 ± 0.32 8.84 ± 0.18

pXG-CEK 11.51 ± 0.52 12.70 ± 2.03

pXG-EK 12.04 ± 0.42 10.54 ± 1.42

aControl (pXG) and transfected (pXG-CEK and pXG-EK) parasites were grown for 72 h at 28 °C (promastigotes) or 37 ºC
(intracellular amastigotes) in the presence of increasing concentrations of compound. Data are means ± SD of three
independent determinations.

Table 6. Susceptibility to VGP-318 of L. donovani lines overexpressing CEK or EK.a

3.3. Effect of VGP-318 on Leishmania metabolism

In order to investigate the anti-leishmanial mechanism of action of compound VGP-318, we
focused the studies on the energetic metabolism of Leishmania promastigotes [15]. First, the
effect of the compound on intracellular ATP levels was analyzed by the bioluminescence assay,
which generates a luminescent signal proportional to the amount of ATP. In L. major, this assay
showed a rapid decrease in the intracellular ATP levels which depends on the compound
concentration (Figure 4A). However, no effect was observed on L. donovani after incubation
with 30 μM for 3 h (Figure 4B). The decrease in the ATP levels may be caused mainly by an
effect on the ATP synthesis or a release of the intracellular ATP due to the permeabilization of
plasma membrane. However, under conditions that decrease 95% of the ATP relative to control
(30 μM for 3 h), no sign of plasma membrane alteration was observed (Figure 5), showing that
the drop of free intracellular ATP is not due to disruption of the plasma membrane and
suggesting that this may be due to a defect in the ATP synthesis.
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Figure 4. Effect of VGP-318 on ATP levels in Leishmania promastigotes. Changes in intracellular ATP levels in L. major
(A) or L. Donovani (B) promastigotes treated with 0.2 (black bar) or 30 μM (white bar) of compound VGP-318 were
determined using the bioluminescence assay. Data are means ± SD of three independent experiments. Significant dif‐
ferences were determined using Student's t-test (*p<0.01).

Figure 5. Compound VGP-318 does not alter the plasma membrane potential in Leishmania lines. Promastigotes were
incubated with 30 μM of compound VGP-318 for 3 h and then treated with 2 μM of the specific plasma membrane
potential probe DIBAC4(3) for 10 min at 28 ºC. Untreated parasites were used as control, and treatment with 10 μM
CCCP was used as 100% depolarization of the plasma membrane potential. Data are means ± SD of three independent
experiments. Significant differences were determined using Student's t-test (*p< 0.01).

In Leishmania, the ATP is mainly synthesized by mitochondrial oxidative phosphorylation [21].
The anti-parasitic activity of many drugs, such as pentamidine and miltefosine, is mediated
by an alteration of the mitochondrial membrane potential (∆Ψm) [22, 23]. To determine whether
the intracellular ATP decay was associated with an effect of VGP-318 on the mitochondria, the
variation of its electrochemical potential was monitored in parasites incubated with VGP-318
using the JC-1 fluorescent marker. L. major parasites incubated for 1 h with 0.2 μM of VGP-318
(conditions where there was 50% decay in the ATP levels) showed a significant decrease in
JC-1 ratio compared with untreated parasites (Figure 6), evidencing a depolarization of the
mitochondrial potential. However, in L. donovani promastigotes non-significant depolarization
was observed after treatment with 30 μM of VGP-318 for 3 h (Figure 6). The depolarization of
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the ∆Ψm in L. major promastigotes suggests that this compound may cause damage in the
mitochondria, leading to a fall in the intracellular ATP levels and the death of parasites.

Figure 6. Effect of VGP-318 on the ∆Ψm of Leishmania promastigotes. Promastigotes were treated with 0.2 μM (L. major)
or 30 μM (L. donovani) of compound VGP-318 for 3 h and then incubated with 5 μM JC-1 for 10 min for the ∆Ψm deter‐
mination. The FL2/FL1 fluorescence ratio was measured by flow cytometry analysis. Untreated parasites were used as
control, and treatment with 10 μM FCCP for 10 min was used as full depolarization controls. Data are means ± SD of
three independent experiments. Significant differences were determined using Student's t-test (*p<0.01).

The lack of effect of compound VGP-318 in L. donovani may be explained by the lower activity
of this compound; VGP-318 is 100-fold less active in promastigote forms of L. donovani than
in L. major. Additionally, VGP-318 induces a slight depolarization of the ∆Ψm in L. Donovani
promastigotes, suggesting that a longer incubation time is necessary to produce significant
mitochondrial damage leading to failure of ATP synthesis. Compound VGP-318 has been
highlighted very recently [24].

4. Conclusions

In the search of new drugs against leishmaniasis, we have synthesized and evaluated two set
of symmetrical bis-pyridinium derivatives: (i) bis-pyridinium and bis-quinolinium acyclic
structures which contain a linker and 4-substituted cyclic or acyclic amino groups in the two
cationic heads and (ii) bis-pyridinium diazacyclophanes that are rigid derivatives with an
upper spacer which joins the two exocyclic amino groups and a lower spacer joining the two
positively charged nitrogen atoms. Restriction of conformational flexibility could be an
important consideration for the design of anti-leishmanial agents. Global constraint was
obtained by backbone cyclization in a tail-to-tail fashion. This popular tactic in medicinal
chemistry remains in some extent empirical, but has met successes, mainly for the elaboration
of working or preliminary pharmacophores.

All these bis-pyridinium salts show activity against promastigotes and intracellular amasti‐
gotes of the protozoan parasites L. donovani and L. major [14, 15]. Most acyclic compounds show
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a similar behavior in both species, being slightly more active against L. major amastigotes. All
the cyclophanes are more active against promastigotes and amastigotes of L. major than L.
donovani, although with a lower potency than the acyclic derivatives. However, in contrast to
the variable toxicity of the acyclic compounds [14], all cyclophanes exhibit very low toxicity
against mammalian cells THP-1 and some of them evince a higher safety margin than well-
known anti-leishmanial drugs such as AmB and miltefosine [15].

Although we have studied certain aspects of the mechanism of action of these compounds [14,
15], it has not been determined any key target on which they are operating, which would be
decisive for the rational design of new structures. Future work should be directed to carry out
studies to elucidate the metabolism, pharmacokinetics, and mechanism of action of these
compounds. On the other hand, it would be interesting to conduct a screening of a large
number of symmetrical bis-pyridinium compounds that allows us to study structure–activity
relationships. In any case, additional experiments are necessary for evaluating the toxicity and
potency of these compounds by in vivo assays.

Note

Some parts of this chapter have been previously published in references [14, 15].
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Abstract

In this Chapter we revisit the main strategies used for years in synthesizing staurosporine
indolocarbazole alkaloid and its analogues, which are promising compounds for treating
cancer. In addition to describing the details of the synthesis strategies, including the key
challenges that had to be faced, we offer a historical perspective of the development in
the field.

Keywords: Indolocarbazole, alkaloids, cancer, synthesis, sugar moiety, glycosylation

1. Introduction

1.1. Aims and significance

Cancer is one of the most serious threats against human health [1], which has motivated
extensive research into a plethora of chemotherapeutic agents [2-3]. The need for new anti‐
cancer drugs arises not only from the limitations of current drugs, but also from the develop‐
ment of drug resistance [4-6]. Several strategies exist for designing such novel drugs, for which
the essential criterion is the selection of a suitable starting point from the vast chemical space
[7]. Natural products, in this context, are privileged structures [8] and biologically prevalidated
leads, for they contain molecules that probably evolved to exert highly specialized functions.
About 74% of anticancer compounds originate from natural products or from natural product-
derived products [9]. The variety of structures in products is key for new therapeutics [10].

The indolocarbazole family of natural products (hereafter referred to as ICZ’s) was discovered
in 1977 in actinomycetes, bacteria commonly found in soil, and is now investigated by
medicinal chemists especially due to its antitumor and neuroprotective properties [11-13].

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



Figure 1 illustrates that ICZs are a structurally diverse family of natural products. The four
types of aglycons include: A) the parent indolo[2,3-a]carbazole nucleus, such as that found in
tjipanazole F2 (7); B) an imide, as in rebeccamycin (8) and arcyriaflavin D (3); C) hydroxy
lactams, as in the UNC compounds (2); and D) simple lactams, found in 1, 4, 5 and 6. In all of
these aglycon types, substitution with halides, ethers, phenols, has been done at various
positions on the aromatic heterocycle. The compounds possessing the pyrroloindolocarbazole
system with one N-glycosidic bond, such as rebeccamycin (8), act by inhibiting DNA topoiso‐
merase (target for cancer chemotherapy), whereas those with two N-glycosidic bonds, e.g.,
staurosporine (1), are mainly protein kinase C (PKC) inhibitors [14]. 
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Figure 1. Well-known indolocarbazole alkaloids

We can also further divide ICZs based on the pattern of attachment of aglycon to the sugar
moiety into four sub-patterns, viz.: A) ICZs having no sugar moiety, such as 3, 4; B) ICZs
possessing one indole N-glycosidic linkages, such as 5, 7 and 8; C) ICZs with pyranose fused
ring with two indole N-glycosidic linkages (e.g., 1, 2); and, D) ICZs with furanose fused ring
with two indole N-glycosidic linkages (e.g., 6). The synthetically most challenging subgroups
of indolocarbazoles are the cyclofuranosylated [e.g., K252a (6a)] and cyclopyranosylated [e.g.,
staurosporine (1)] congeners.

Knolker and Reddy reviewed the synthesis and biological activity of carbazole alkaloids,
depicted in Figure 2, where different synthetic strategies for indolocarbazole alkaloids were
discussed [15].

1.2. Motivation for the chapter

Potent drugs against cancer normally have to fulfill a number of requirements in terms of its
toxicity to tumor cells and solubility for efficient delivery. This requires a full-fledged charac‐
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toxicity to tumor cells and solubility for efficient delivery. This requires a full-fledged charac‐
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terization of drug candidates, including possible synthetic strategies. In this Chapter we
concentrate on indolocarbazoles such as staurosporine, the most potent PKC inhibitors isolated
to date, which probably act by occupying the ATP binding site and preventing protein
phosphorylation. There is hence the need of synthetic routes to prepare indolocarbazole
derivatives that are selective toward specific malfunctioning kinases associated with a disease.
Furthermore, clinically useful compounds should have enhanced solubility in water, as
compared to the poorly soluble ICZs. Since most indolocarbazoles with potent biological
activities have substituents on the benzene portion of the core, enhanced solubility has been
attempted with at least three approaches. The first is to introduce a hydrophilic group on the
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Figure 2. Approaches to indolocarbazole alkaloids
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imide nitrogen, e.g. the N-bis(hydroxymethyl)methylamino group. The second possibility
consists in elongating the carbohydrate side chain. The third approach is to replace the
uncharged sugar residue of ICZ with a positively charged amino-carbohydrate. Many of the
recent synthetic approaches toward indolo[2,3-]carbazole glycosides separately address the
syntheses of the sugar and heterocyclic portions, leaving glycosylation as the consummate
step. One of the major difficulties associated with the synthesis of biologically-active ICZ alkaloids, such
as Staurosporine, is the regiocontrol required for the glycosylation step. Left undiscriminated to the
last, the attachment of a chiral sugar moiety to a specific indolic nitrogen indolocarbazole
moiety (R1 =R2 =H) occurs nonselectively, thus producing regioisomers.

Well-known examples of pharmaceutically important glycosylated natural products include
macrolide antibiotics, aromatic polyketides, glycopeptides, indolocarbazoles, aminoglyco‐
sides, and cardiac glycosides. The sugar moieties are often essential for the biological activity
in such natural products. Thus, altering the structures and/or substitution patterns of sugar
appendages on aglycone moieties, a process known as glycodiversification, could potentially
generate glyco-conjugates with enhanced biological activity. Therefore, glycodiversification
may ultimately lead to new antibiotics against drug-resistant infectious bacteria, improved
cytotoxic agents for treating cancer, or potent chemicals for combating other ailments.

1.3. Definition of the problem

The indolocarbazole acceptor is generally a weaker nucleophile than the bis(indoly1)-malei‐
mide or indole acceptor, which limits application of established glycosylation methodologies
to the indolocarbazole aglycones.

1.4. History of staurosporine

1.4.1. Isolation

Omura et al reported in 1977 a new alkaloid, isolated from Streptomyces staurosporeus during
a search for new alkaloids in actinomycetes, found to possess potent hypotensive properties
in addition to broad spectrum antifungal activity [16]. It was originally named as AM-2282 (1),
whose structure solved by single crystal X-ray analysis contained an indolocarbazole subunit
with the two indole nitrogens bridged by glycosyl linkages (see Figure 3) [17-18]. AM-2282
was then renamed staurosporine (1), and became the first of over 50 compounds to be
characterized in this family of alkaloids possessing the indolo[2,3-a]carbazole subunit [19-20].

Structure 1a, the enantiomer of the natural product, was originally assigned to staurosporine,
and not until recently has the assignment of the absolute configuration of staurosporine been
revised to that shown in structure 1 (Figure 4) [21].

This isolation of staurosporine sparked research into related natural and synthetic compounds,
particularly for treating cancer with nanomolar inhibition of protein kinases (PKC) [22]. Many
staurosporine analogues are in phase III clinical trials to treat cancer and about ten such PKC
inhibitors have been approved for use in clinical level.
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1.4.2. The importance of protein kinase c inhibitors

Protein kinase C (PKC) is a family comprised of at least eight serine/threonine specific kinases
that are approximately 77 kD in size. The importance of PKC in regulating signal transduction
pathways and ultimately cellular response has been well-established [59]. Activation of PKC
occurs through a series of events that begins with specific binding of an extracellular agonist
to a cell surface receptor. This binding results in activation of phospholipase C which then
cleaves inositol triphosphate (IP3) from phosphatidylinositol-4-5- biphosphate (PIP2) and
leaves behind a molecule of 1,2-diacylglycerol (DAG) in the membrane. Phosphorylation
ultimately results in cellular responses by modifying the function of rate-limiting enzymes and
regulatory proteins implicated in metabolic pathways.

As already mentioned, indolocarbazoles such as K252a and staurosporine are the most
powerful PKC inhibitors isolated to date. This mode of PKC binding, illustrated in Figure 5,
unfortunately results in a relatively non-selective inhibition of several kinases. The preparation
of indolocarbazole derivatives possessing selectivity toward specific malfunctioning kinases
associated with a disease state would be a solution; thus, an efficient and general synthetic
route to the indolocarbazoles is desirable.
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(Adapted from: B. M. Stolz, PhD Thesis, Yale University 1997)

Figure 5. Mechanism of PKC inhibitors

1.4.3. Pharmacology of staurosporine and its analogues

The recent literature on staurosporine analogues has provided valuable inputs into their
biochemical pharmacology and generated discussion on the suitability of protein kinase C as
potential target for anticancer drugs. The following conclusions are particularly pertinent with
respect to pharmacological mechanisms [23]:

1. staurosporine analogues such as UCN-01 and CGP 41251 are inhibitors not only of PKC,
but of a ‘cocktail’ of kinases;

2. the composition of this cocktail and expression of its constituent kinases in a given
neoplasm determine the nature and extent of pharmacological efficacy; and

3. slight alterations in molecular structure dramatically alter individual components of this
cocktail.

Indolocarbazoles are all biologically active and display such properties as antimicrobial,
antifungal, and antitumor activity, in addition to acting as hypotensive or platelet aggregation
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agents [24-27]. Three representative examples of this class are staurosporine (1), rebeccamycin
(8), and K-252a (6) (see Figure 1). Rebeccamycin (8) causes topoisomerase I-mediated DNA
cleavage and is presently in late-stage clinical trials as an anticancer agent. Additionally,
staurosporine (1) and K-252a (6a) are potential antitumor agents acting as potent inhibitors of
protein kinase C (PKC). Staurosporine has also been reported to possess immunosuppressive
activity and to reverse multidrug resistance [28-30]. It is because of its nanomolar inhibition
of PKC, however, that staurosporine has attained its current acclaim.

2. Synthesis of staurosporine and its analogues

2.1. Introduction

Staurosporine can be divided into two distinct parts: the "northern" indolocarbazole aglycon
and the ‘‘southern’’ carbohydrate portion of the molecule, as shown in Figure 6. One can
envision that by so dissecting the molecule, a convergent synthetic approach would be possible
in which a lactam-protected derivative of aglycon could be coupled with a bis-glycal derivative
(no commitment is made as to the functional nature of R1 or R2).
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Figure 6. Retrosynthetic analysis of staurosporine (1).

From Figure 7 one may infer that aglycon 2 is itself a natural product, commonly referred to
as staurosporinone or K-252c. Because it constitutes a major unit of many indolocarbazole
natural products, several approaches to its synthesis have been developed [31-32]. Classified
by the last covalent bond(s) formed, these approaches include cycloaromatization (A), double
nitrene C-H insertion (B, B'), nitrene C-H insertion (B'), maleimide reduction (C), and diazo‐
lactam initiated cycloaromatization (D).
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2.2. Biosynthetic pathway of staurosporine

2.2.1. Biogenesis of the indolocarbazole nucleus

Cordell and Pearce independently reported the first indolocarbazole biosynthesis in 1988
[33-35], both identifying aglycon units of ICZs (1 and 8 (Figure 1)), to be derived from two
intact tryptophan units. Tryptophan (10) was in fact utilized in the aglycon biosynthesis,
produced by Streptomyces staurosporeus from D-glucose (9), probably via the shikimic acid
pathway (Scheme 1) [36].
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2.2.2. Biosynthesis of indolocarbazole carbohydrates

The carbohydrate precursor to staurosporine has been shown to be D-glucose and the N- and
O-methyl groups are derived from L-methionine as shown in Scheme 2. Hoehn reported the
isolation of 15b by cofermentation and bioconversion studies and found that O-methylation
is the last step, ie., direct precursor to staurosporine biosynthesis [37].
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2.2. Biosynthetic pathway of staurosporine

2.2.1. Biogenesis of the indolocarbazole nucleus

Cordell and Pearce independently reported the first indolocarbazole biosynthesis in 1988
[33-35], both identifying aglycon units of ICZs (1 and 8 (Figure 1)), to be derived from two
intact tryptophan units. Tryptophan (10) was in fact utilized in the aglycon biosynthesis,
produced by Streptomyces staurosporeus from D-glucose (9), probably via the shikimic acid
pathway (Scheme 1) [36].

 

OH

OH
OH

HO

OH

N
H

NH2

OH
O

N
H

N
H

H
N O

N
H

O

OH
O

N
H

N
H

H
N O

O

Cl
Cl

Shikmic acid 
Pathway

Pearce

9

10

11

4

12  
Scheme 1 

2.2.2. Biosynthesis of indolocarbazole carbohydrates

The carbohydrate precursor to staurosporine has been shown to be D-glucose and the N- and
O-methyl groups are derived from L-methionine as shown in Scheme 2. Hoehn reported the
isolation of 15b by cofermentation and bioconversion studies and found that O-methylation
is the last step, ie., direct precursor to staurosporine biosynthesis [37].
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2.2.3. About this pathway

The first enzyme identified in staurosporine biosynthesis was the one catalyzing the very last
step (3'-O-demethyl-staurosporine methyltransferase). A Streptomyces longisporoflavus mutant
defective in this enzyme was reported in 1995 [37], while the enzyme was identified in 1998
[38]. The complete staurosporine biosynthetic gene cluster was cloned from Streptomyces sp.
L-amino acid oxidase staO initiates synthesis by converting L-tryptophan to the imine form of
indole-3-pyruvate (2-imino-3-(indol-3-yl)propanoate). StaD (staD) then catalyzes coupling of
two IPA imines to yield chromopyrrolate. Formation of the indolocarbazole core of stauro‐
sporine is catalyzed by two enzymes: staP converts chromopyrrolate into three indolocarba‐
zole compounds, K-252c, 7-hydroxy-K252c and arcyriaflavin A, by intramolecular C-C bond
formation and oxidative decarboxylation, while StaC is required to ensure that the main
product is K-252c.

The next step is glycosylation, which is catalyzed by two enzymes. K252c N-glycosyltransfer‐
ase (staG) catalyzes N-glycosidic bond formation between N-13 and C-6' of the nucleotide
sugar dTDP-L-ristosamine. Cytochrome P450 StaN (staN) then catalyzes an additional C-N
bond formation between N-12 and C-5'. These two enzymes convert K-252c to 3'-O-demeth‐
yl-4'-N-demethyl-staurosporine via the intermediates holyrine A and holyrine B. The final
steps in the pathway are two methylation reactions. staMA catalyzes N-methylation of 3'-O-
demethyl-4'-N-demethyl-staurosporine and staMB catalyzes O-methylation, which results in
staurosporine (Figure 8) [39].
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2.3. First total synthesis of staurosporine and ent-staurosporine (Danishefsky et al., 1995)

It was not until 1995 that the first total synthesis of staurosporine (1) was reported by Dani‐
shefsky et al. [40]. A central challenge in total synthesis by previous groups was that of
constructing the two glycosidic bonds to weakly nucleophilic indolic nitrogens [41-44].
Danishefsky observed oxazolidinone glycal 27b to function as the glycosyl donor and bis(in‐
dolyl)maleimide 26 to function as the aglycon acceptor (Scheme 3). Aglycon 26 was synthe‐
sized from benzyloxymethyl (BOM) dibromomaleimide 24 in the modular fashion shown. 
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Triisopropylsilyl-L-glucal 31 (TIPS-L-glucal) was converted to its bis- (trichloroacetimidate)
and then to oxazoline 30 by an apparent vinylogous Schmidt glycosylation. The oxazolidinone,
fashioned from derivative 29, was protected as its BOM derivative 27. The TIPS protecting
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group was cleaved, and a p-methoxybenzyl ether (PMB) was installed. Accordingly, glycal 28b
was oxidized with 2,2-dimethyldioxirane. The mixture of epoxides (27) was treated with the
sodium salt of 26 to furnish indole glycoside 32 with 47% yield.

Compound 32a was subjected to Barton deoxygenation to remove C2
’ hydroxyl, affording

32b. Seco-system 32c was obtained by further deprotection of C6
’ PMB and the indolic SEM

groups. Photolytic oxidative cyclization resulted in compound 33 (Scheme 3). The exo-glycal,
which was essential for intramolecular glycosylation, was performed using iodination strategy
of 33 followed by elimination. Treatment of 34 with potassium tert-butoxide and iodine
eventually resulted 35. Thereafter, reacting with tri-n-butyltin hydride and deprotecting the
BOM groups, compound 37 was available. For compound 38, a BOC group was introduced
particularly on the oxazolidinone ring to facilitate disconnection of oxazolidinone. The BOC
group would protect against dimethylation of the amine during the opening reaction. To
safeguard the imide ring during sequential modifications, which would generate N-methyl
and O-methyl functions, compound 38 was converted into 39. Treatment of 39 with cesium
carbonate in methanol led to 40. Next, the O-methyl and single N-methyl groups were
incorporated to yield 41, which on further deprotection afforded 7-oxostaurosporine (42)
(Scheme 4). 7-Oxo compound 42 was transformed into staurosporine.

A methodology was developed to convert the 7-oxo compound 42 to staurosporine itself. It
started with a reduction with sodium borohydride (In Scheme 4, 40-42). It was not that easy
to deoxygenate the carbanolamide linkage but this portion was smoothly accomplished by
using benzeneselenol. By performing two steps on 42, Danishefsky et al. obtained a 1:l mixture
of isostaurosporine (43) and staurosporine (1) [40]. After separation, homogeneous fully
synthetic staurosporine (1) was isolated. The total synthesis of staurosporine (1) was thus
completed.

2.4. Staurosporine and ent-staurosporine: The first total syntheses, prospects for a
regioselective approach, and activity profiles (Danishefsky et al., 1996)

The total syntheses of staurosporine and ent-staurosporine was achieved again by Danishefsky
et al, by constructing both the glycosidic bonds from glycal precursors [45]. The first glycosidic
bond was originated from direct epoxidation of endo-glycal to give 1,2-anhydro sugar, which
was later made to react with indole anion through intermolecular coupling. They used the
strategy of intramolecular iodo glycosylation for the second bond using an exo-glycal [45].

The authors dealt with the problem of indole glycosylation, functional group management in
the pyranose ring, and regiochemical harmonization in the course of the first total synthesis
of staurosporine (1) detailed herein. It is an electrophilically induced cyclization of the second indolic
nitrogen onto a novel exo-glycal to establish the staurosporine core skeleton.

Monosaccaharide synthesis

Danishefsky et al. assumed the upcoming C3´ methoxy and C4´ methylamino vestiges would
be existing in an oxazolidinone ring. Protecting the nitrogen with a benzyloxymethyl group,
C1´-p-methoxybenzyl ether would protect a primary alcohol that could be utilized in designing
the exo-glycal essential for intramolecular indole glycosylation (Scheme 5).

Scope of Selective Heterocycles from Organic and Pharmaceutical Perspective94



group was cleaved, and a p-methoxybenzyl ether (PMB) was installed. Accordingly, glycal 28b
was oxidized with 2,2-dimethyldioxirane. The mixture of epoxides (27) was treated with the
sodium salt of 26 to furnish indole glycoside 32 with 47% yield.

Compound 32a was subjected to Barton deoxygenation to remove C2
’ hydroxyl, affording

32b. Seco-system 32c was obtained by further deprotection of C6
’ PMB and the indolic SEM

groups. Photolytic oxidative cyclization resulted in compound 33 (Scheme 3). The exo-glycal,
which was essential for intramolecular glycosylation, was performed using iodination strategy
of 33 followed by elimination. Treatment of 34 with potassium tert-butoxide and iodine
eventually resulted 35. Thereafter, reacting with tri-n-butyltin hydride and deprotecting the
BOM groups, compound 37 was available. For compound 38, a BOC group was introduced
particularly on the oxazolidinone ring to facilitate disconnection of oxazolidinone. The BOC
group would protect against dimethylation of the amine during the opening reaction. To
safeguard the imide ring during sequential modifications, which would generate N-methyl
and O-methyl functions, compound 38 was converted into 39. Treatment of 39 with cesium
carbonate in methanol led to 40. Next, the O-methyl and single N-methyl groups were
incorporated to yield 41, which on further deprotection afforded 7-oxostaurosporine (42)
(Scheme 4). 7-Oxo compound 42 was transformed into staurosporine.

A methodology was developed to convert the 7-oxo compound 42 to staurosporine itself. It
started with a reduction with sodium borohydride (In Scheme 4, 40-42). It was not that easy
to deoxygenate the carbanolamide linkage but this portion was smoothly accomplished by
using benzeneselenol. By performing two steps on 42, Danishefsky et al. obtained a 1:l mixture
of isostaurosporine (43) and staurosporine (1) [40]. After separation, homogeneous fully
synthetic staurosporine (1) was isolated. The total synthesis of staurosporine (1) was thus
completed.

2.4. Staurosporine and ent-staurosporine: The first total syntheses, prospects for a
regioselective approach, and activity profiles (Danishefsky et al., 1996)

The total syntheses of staurosporine and ent-staurosporine was achieved again by Danishefsky
et al, by constructing both the glycosidic bonds from glycal precursors [45]. The first glycosidic
bond was originated from direct epoxidation of endo-glycal to give 1,2-anhydro sugar, which
was later made to react with indole anion through intermolecular coupling. They used the
strategy of intramolecular iodo glycosylation for the second bond using an exo-glycal [45].

The authors dealt with the problem of indole glycosylation, functional group management in
the pyranose ring, and regiochemical harmonization in the course of the first total synthesis
of staurosporine (1) detailed herein. It is an electrophilically induced cyclization of the second indolic
nitrogen onto a novel exo-glycal to establish the staurosporine core skeleton.

Monosaccaharide synthesis

Danishefsky et al. assumed the upcoming C3´ methoxy and C4´ methylamino vestiges would
be existing in an oxazolidinone ring. Protecting the nitrogen with a benzyloxymethyl group,
C1´-p-methoxybenzyl ether would protect a primary alcohol that could be utilized in designing
the exo-glycal essential for intramolecular indole glycosylation (Scheme 5).

Scope of Selective Heterocycles from Organic and Pharmaceutical Perspective94

Consistent with the discussion above, they formulated the donor to be a glucal of the type
50a. This sequence shown in Scheme 5 provided oxazolidinone glycal 50a which proved to be
an effective glycosyl donor subjecting to proper activation. It was noted that oxazolidinone
would provide stereochemical guidance in activating the endo-glycal en route to the first indole
glycosylation.

Glycosylation and Elaboration.

Oxazolidinone glycal 50a and its derived epoxide proved to be effective as functional versions
of target glycals. Danishefsky et al. next focused on the first glycosidic bond (Scheme 6), for
which bis-indolyl maleimides were effective glycosyl acceptors for 1,2-anhydrosugar donors.
Thus, the sodium anion of bis-indolyl maleimide 26 was synthesized and treated with a
solution of 1,2-anhydrosugars prepared from epoxidation of glycal 50a using 3,3-dimethyl‐
dioxirane. A mixture of expected indole glycoside 52 (47% yield) and indole glycoside 53 (10%
yield) was obtained upon heating the reaction.
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Alteration of the functional group was essential to construct the second glycosidic bond. It was
performed by deoxygenating the newly created alcohol at C5´, deprotecting the indole moiety,
establishing 2,2´ indolic bond, and finally formation of exo-glycal (Scheme 7).

The Key Cyclization

Early screening of the reaction of indolocarbazole glycoside 61 with an array of electrophiles
failed to establish conditions to perform cyclization and lead to the fully functionalized core
of staurosporine (1). Indolocarbazole glycoside 61 should have its activated exo-glycal and
thereby undergo a conformational change so that cyclization would be made possible. The
sterically demanding aglycon must be in an axial conformation rather than the preferred
equatorial conformation. Cyclization to 62 thus resulted as the nucleophillic nitrogen attacks
the activated exo-glycal.
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Completion of the Synthesis

To complete the total synthesis of ent-staurosporine (2), a two-step deprotection strategy
(hydrogenation followed by aminal hydrolysis) delivered 64 from 63 in high yield (Scheme 8).
Danishefsky et al. preferred to clarify the monosaccharide domain prior to reducing the
maleimide function [45]. The most efficient method involved reduction of the imide group
with sodium borohydride to provide a 1:1:1:1 mixture of hydroxy lactams. Further reduction
to ent-staurosporine (1a) and ent-isostaurosporine (71) was then successfully finished using
phenylselenol and p-TSA. Compounds 1a and 71 were each isolated in a homogeneous state
from the 1:1 mixture generated from this two-step sequence.
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Pd(OH)2, EtOAc, MeOH, rt, then NaOMe in MeOH, 84% (g) TFA, CH2Cl2, rt, 97%, (h) NaBH4, EtOH, rt, 
workup, then PhSeHcat. TsOH, CH2Cl2, rt 39% of 2, 39% of 89 and 15%of 88
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Scheme 8 

Upon successfully completing the chemistry in the ent-series, the strategy towards total
synthesis of staurosporine (1) was evident (Scheme 9). Initially, tri-O-acetyl-L-glucal 72 was
transformed into the corresponding oxazolidinone 73. Compound 74 resulted from coupling
to the aglycon, deoxygenation, photocyclization, and finally by exposing exo-glycal. There‐
after, performing the crucial cyclization step yielded 75. Opening the oxazolidinone, methyl‐
ation, deprotection, and reduction furnished staurosporine (1) and isostaurosporine (1a).

Danishefsky et al. evaluated ent-staurosporine (1a), ent-isostaurosporine (71), a related imide
64, and their corresponding enantiomers for their in vitro antitumor activity, their capacity to
inhibit PKC (Table 1), and their ability to inhibit topoisomerase I. The cytotoxicity of indolo‐
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Upon successfully completing the chemistry in the ent-series, the strategy towards total
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transformed into the corresponding oxazolidinone 73. Compound 74 resulted from coupling
to the aglycon, deoxygenation, photocyclization, and finally by exposing exo-glycal. There‐
after, performing the crucial cyclization step yielded 75. Opening the oxazolidinone, methyl‐
ation, deprotection, and reduction furnished staurosporine (1) and isostaurosporine (1a).

Danishefsky et al. evaluated ent-staurosporine (1a), ent-isostaurosporine (71), a related imide
64, and their corresponding enantiomers for their in vitro antitumor activity, their capacity to
inhibit PKC (Table 1), and their ability to inhibit topoisomerase I. The cytotoxicity of indolo‐
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carbazole alkaloids can also be affected by a different mechanism than inhibition of PKC, i.e.

inhibition of topoisomerase I (Table 2).

Table 1. PKC Inhibition and in Vitro Cytotoxicity
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2.5. Wood and Stolz’s synthesis of staurosporine

A total synthesis of the natural product (+)-staurosporine has been achieved [46] along with
other ICZs. The synthetic strategy involved steroselective ring expansion of a furanosylated
indolocarbazole [(+)-79] to a pyranosylated congener [(+)-80] that serves a common intermedi‐
ate in the production of 1 and other desired ICZs.

2.5.1. Retrosynthetic analysis: The development of a ring expansion approach to the pyranosylated
indolocarbazoles

Wood and Stolz began by considering approaches that involved ring expansion of a furano‐
sylated intermediate. Noting the striking structural homology of 1 and other related ICZs, they
envisioned a strategy that would allow access to these congeners via a common intermediate.
Specifically, R-methoxy ketone 76 was viewed as ideal since the stereogenic centers common
in place and flexibility for stereocontrolled functionalization at C(4´) and C(5´) is maintained.
Thus, reductive amination would produce staurosporine (1).

N
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MeO
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H3C H
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4' 5'

Figure 9. Key intermediate 76
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The inspiration for developing this approach derived from Wood’s recognition that ketone 76
might be accessed from aldehyde 79 via a Tiffaneu-Demyanov-like ring expansion (Schemes
10 and 11). In designing this ring expansion approach, Wood et al. addressed the issues of
regio- and stereochemical outcome and the known propensity of similar systems to undergo
skeletal rearrangement (i.e., 77 to 78, Scheme 10). From Scheme 3, it could be envisioned that
the planned rearrangement occurs with migration of either bond a or bond b of aldehyde 79,
to produce regioisomeric hydroxy ketones 80 or 81, respectively. Thus, Wood et al [46]
assumed bond a would migrate to the si face of the aldehyde, producing a product (80) that
possesses both the regio- and stereochemistry needed for further progressive steps towards
staurosporine.
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2.5.2. Completion of staurosporine

Next, Wood and Stolz [46] treated (+)-80 with NH2OH.HCl to produce corresponding oxime
(-)-83 in 95% yield. In contrast to ketone (+)-80, bis-methylation of (-)-83 under phase transfer
conditions (MeI, KOH, and n-Bu4NBr in THF) occurred cleanly to afford (-)-84 and set the stage
for a stereoselective reduction (H2/PtO2) that furnished amine (+)-85a. Mono-methylation and
deprotection then afforded (+)-staurosporine (1) in 67% yield (two steps, Scheme 11).
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Scheme 11 

3. The synthesis of carbohydrates for indolocarbazole synthesis

Only a few methodologies have been developed for synthesizing complex carbohydrate
intermediates for use in the total synthesis of indolocarbazole alkaloids such as staurosporine
(1). Some of those strategies are summarized in the succeeding sections:

3.1. Synthesis of staurosporine monosaccharide (Weinreb et al.)

Weinreb published the synthesis of aminohexose fragment of staurosporine via an N-sulfinyl
Diels-Alder [4+2] cycloaddition [43,47]. From Scheme 12, cycloaddition of diene 86 and benzyl
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sulfinylcarbamate (87) resulted in a mixture of diastereomeric sulfoxides which after oxidation
yielded the corresponding sultam (88) and then converted to acetal 99. Subjecting to diaster‐
eoselectively epoxidition of olefin 89 using trifluoroperacetic acid afforded 90. Hydrolytic-
reductive opening of epoxide 90 followed by olefin cleavage resulted in keto-acetal 91, a critical
synthon for the staurosporine carbohydrate (92).
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3.2. Staurosporine glycal precursor (Danishefsky et al).

Danishefsky exploited glycal epoxide 93 as the glycosyl donor in his first total synthesis of
staurosporine [41,48]. Glycal 94, a derivative of L-glucal, was transformed into its correspond‐
ing oxazoline 95 by a modified Schmidt reaction. Conversion to oxazolidinone proceeded
under standard conditions, and finally treatment with Murry’s reagent provided the glycal
epoxide (96, Scheme 13).
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3.3. Methods describing the combination of carbohydrate and indolocarbazole

3.3.1. The Danishefsky synthesis of (+)- and (-)-staurosporine

Danishefsky formulated a strategy to staurosporine [41], in which epoxidation of glycal
(-)-98 with maleimide 97 resulted in one of the indole N-glycosidic linkages to form 99.
Treatment of olefin 99 using Barton deoxygenation, iodine and t-BuOK followed by radical
dehalogenation provided the pyranosylated indolocarbazole 101 with 64% yield. Deprotection
and methylation followed as shown in Scheme 14 (i.e., 101→102), after which reduction of
imide 102 led to a 1:1 mixture of 1 and 1a.
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3.3.2. Syntheses, biochemical and biological evaluation of staurosporine analogues from the microbial
metabolite rebeccamycin

To synthesize staurosporine analogues from rebeccamycin, different structural variations were
exploited by Prudhomme et al., including coupling of the sugar moiety to the second indole
nitrogen, dechlorination and then reduction of imide to amide [49].

The synthesized compounds 105-109 in Scheme 15 were tested for their ability to bind to DNA
and inhibit topoisomerase I and protein kinase C [49]. The cytotoxicity of dechlorinated imide
analogue 108 correlates well with its DNA binding and anti-topoisomerase I activities.

3.3.3. Synthetic studies on indolocarbazoles: Total synthesis of staurosporine aglycon

Mohankrishnan et al synthesized staurosporine aglycon and its analogues with 28-36% overall
yield, using 2-methylindole (110) as synthetic precursor [50]. The key steps for the synthesis
of indolocarbazole alkaloids involved electrocyclization and nitrene insertion reactions as
depicted in Schemes 16 and 17.
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3.3.2. Syntheses, biochemical and biological evaluation of staurosporine analogues from the microbial
metabolite rebeccamycin

To synthesize staurosporine analogues from rebeccamycin, different structural variations were
exploited by Prudhomme et al., including coupling of the sugar moiety to the second indole
nitrogen, dechlorination and then reduction of imide to amide [49].

The synthesized compounds 105-109 in Scheme 15 were tested for their ability to bind to DNA
and inhibit topoisomerase I and protein kinase C [49]. The cytotoxicity of dechlorinated imide
analogue 108 correlates well with its DNA binding and anti-topoisomerase I activities.

3.3.3. Synthetic studies on indolocarbazoles: Total synthesis of staurosporine aglycon

Mohankrishnan et al synthesized staurosporine aglycon and its analogues with 28-36% overall
yield, using 2-methylindole (110) as synthetic precursor [50]. The key steps for the synthesis
of indolocarbazole alkaloids involved electrocyclization and nitrene insertion reactions as
depicted in Schemes 16 and 17.
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Triphenylphospite-mediated nitrene insertion of 2-nitroarylcarbazole was performed at a
moderate temperature using anhydrous ZnBr2 as catalyst. In addition, an alternative synthetic
protocol for preparing ICZs involving concurrent electrocyclization followed by nitrene
insertion was adopted as in Scheme 17 by Mohankrishna et al. [50].

3.3.4. Synthesis of pyrrolidin-2-ones and staurosporine aglycon (K-252c) by intermolecular Michael
reaction

3,4-Disubstituted pyrrolidin-2-ones, a group of compounds with interesting biological
properties, are related to staurosporinone. The most important property is inhibition of protein
kinase C (PKC), so that this antiproliferative agent can interfere with the cell cycle. The
synthetic strategy permits preparation of said compounds using an intermolecular Michael
addition, starting from nitroethene derivatives and substituted acetate Michael donors [51].
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Enantioselective syntheses can also be carried out using chiral auxiliaries in this strategy.
Reduction of the nitro group using raney nickel and subsequent lactamization, the desired
lactam precursor of staurosporine, which is essential for the biological activity, is obtained
according to Scheme 18. The easiest and shortest (in contrast to the published routes of
staurosporinone) synthetic strategy of staurosporinone within three steps with good to
moderate yields is obtained.
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3.4. Syntheses of the indolo[2,3-a]carbazole nucleus

Synthetic strategies for preparing the indolo[2,3-a]carbazole nucleus have been already
summarized in Figure 2 based on the key bond formations, type of structure synthesized
(aglycon), and research group. In the following section some of the methodologies are
described briefly.

3.4.1. Winterfeld’s strategy to synthesis of staurosporinone

In 1983, Winterfeld published the first synthesis of K252c as shown in Scheme 19 [52-53]. The
synthesis of lactam 126 was successfully achieved by intramolecular aldol reaction of ketoa‐
mide 125 and then followed by titanium-mediated deoxygenation. Oxidative Photocyclization
of 126 resulted in indolocarbazole 4 (staurosporinone).
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3.4.2. Magnus’ approach

Magnus published a synthetic methodology to selectively protect staurosporinones, just after
Winterfeld’s report [54]. Intramolecular Diels-Alder cycloaddition of indole-2,3-quinidome‐
thane 130a was the crucial step in his synthetic strategy (see Scheme 22). Imine 130 was
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prepared from condensation of tryptamine derivative 129 and 2-aminostyrene and then
subjecting to acylation yielded indole-2,3-quinidomethane 130a (in situ) and initiated an
intramolecular Diels-Alder reaction. Oxidative work-up with DDQ resulted in indolocarba‐
zole 131. Deprotecting phthalimide group on 131 followed by acylation gave bis-protected
staurosporinone 132. Interestingly, the indoles could be selectively deprotected (e.g., 132→4
or 132→133, Scheme 20) to facilitate regioselective introduction of a sugar portion. 
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3.4.3. The Weinreb approach

Weinreb exploited a synthetic strategy for the synthesis of bis indolyl maleimides to furnish
maleimide 135 from indole-Grignard 134 and imide 134a [43]. DDQ mediated oxidative
cyclization of 135 resulted N-benzyl imide 136. To complete the synthesis, Clemmenson
reduction was performed for desymmetrizing 136, to produce the corresponding lactam 137
(Scheme 21).

3.4.4. Raphael’s approach

Raphael staurosporinone synthesis based on intermolecular Diels-Alder methodology and
nitrene insertion chemistry is depicted in Scheme 22 [55-56]. Reaction of numerous dienophiles
with diene 139 following dehydrogenation afforded triaryl products such as 140a and b. In an
initial attempt, 140b was reduced and cyclized in good yield to afford lactam 137, a compound
previously prepared by Weinreb and Bergman [43].

3.4.5. The Moody approach

Moody utilized the pyranoindolone 147 to regulate intramolecular Diels-Alder reaction with
subsequent aromatization to carbazole 148 (Scheme 23). Nitrene formation by deoxygenation
using triethylphosphire produced K252c (4, staurosporinone) [57-58].
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4. Conclusion

In this book chapter, a brief introduction to biologically active indolocarbazole alkaloids was
presented, with emphasis on the isolation and synthetic pathways of powerful protein kinase
inhibitors such as Staurosporine indolocarbazole alkaloid and its analogues. Glycosylation on
indolic moiety and concerns were discussed apart from the synthesis of staurosporinone
aglycon and sugar portion. We do hope that this book chapter will be a valuable addition to
the chemists dealing with indolocarbazole alkaloids from pharmaceutical industry and
synthetic organic point of view.
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Abstract

Indole  and indolizines  (heterocyclic  aromatic  compounds  structurally  and chemically
isomeric with indoles) are an important class of N-fused heterocyclic compounds due to
their interesting biological and optical properties. Different strategies for generating di‐
verse collections of small molecules with indole and indolizine moieties have been de‐
veloped. They can be synthesized by means of classical and nonclassical pathways. The
present study discusses the versatile nature of indole/indolizine derivatives, new green
methods for their synthesis, their possible mechanism of action and also provides infor‐
mation about current/future prospects of the topics and different indole/indolizine de‐
rivatives  in  pharmaceutical/clinical  trials.  With  the  remarkable  number  of  approved
indole-containing drugs as well  as  the importance of  the indolizine moiety,  it  can be
easily concluded that indole and indolizine derivatives offer perspectives on how pyr‐
role scaffolds might be exploited in the future as bioactive molecules against a broad
range of diseases.

Keywords: Indole, indolizine, bioactive heterocycles, green chemistry, functionalization,
mechanism

1. Introduction

A great deal of research in heterocyclic chemistry concerns the development of strategies for
efficient synthesis and the discovery of new methods of ring formation, since more than half
of the biologically active compounds produced by nature contain a heterocyclic moiety as a
fundamental unit in their structure. Also, heteroaromatic compounds are always of great
importance for chemists and the identification and confirmation of highly potent and selective
bioactive molecules is a decisive step both in academic and pharmaceutical research.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
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Heterocyclic compounds with a pyrrole cycle are significant both in materials and in medicinal
chemistry [1]. Indoles and indolizines (heterocyclic aromatic compounds structurally and
chemically isomeric with indoles) are important classes of N-fused heterocyclic compounds
due to their interesting biological and optical properties. Although their chemistry is a well-
established subject for researchers, they continue to attract much attention due to their diverse
biological properties. Also, the correlation between indoles and indolizines has prompted
speculation that indolizine analogs of biologically important indoles could conceivably have
potent physiological activities [2].

Indoles and their derivatives are well-known as an important class of heterocyclic compounds,
their core being a near-ubiquitous component of biologically active natural products, wide‐
spread in different species of plants, animals, and marine organisms. The indole is also well-
known as one of the most important scaffolds for drug discovery, capable of serving as ligand
for a diverse array of receptors and it has been a major focus of research [3]. Indole derivatives
have the unique property of mimicking the structure of peptides and to bind reversibly to
enzymes and exhibit significant physiological and pharmacological, industrial, and synthetic
applications such as beneficial estrogen metabolism promoter in humans, anticarcinogenic
properties, inhibitors of human prostate cancer cells, and free radical scavenging activities [1,
4]. The indole scaffold is widely used in antiviral drugs and reverse-transcriptase inhibitors,
drugs used to treat HIV infection or AIDS, and in some cases hepatitis B. Meanwhile, a number
of bis (indolyl) alkanes have received considerable attention because of their occurrence in
bioactive metabolites of terrestrial and marine origin [5].

Indolizine is the core structure of many of the naturally occurring alkaloids such as swainso‐
nine (a potent inhibitor of Golgi alpha-mannosidase II, an immunomodulator and a potential
chemotherapy drug), monomorine (might be used to lure ants to their doom), gephyrotoxin
(muscarinic antagonist), and lamellarins (HIV-1 integrase inhibition and antibiotic activity) [6].

The indolizine synthetic derivatives also deserve special attention because of their pharmaco‐
logical  properties  such  as  antibacterial,  anti-inflammatory,  antiviral  and antileishmanial,
analgesic and antitumor, antioxidant activities, aromatase inhibition, calcium entry block‐
ing,  histamine  H3  receptor  antagonist,  and  physicochemical  properties  such  as  strong
fluorescence [6, 7].

Different strategies for generating diverse collections of small molecules with indole and
indolizine moieties have been developed. They can be synthesized by means of classical and
nonclassical pathways.

The development of simple, convenient, and an eco-friendly approach for the synthesis of these
biologically important compounds is still in demand. For example, the very useful and green
concept of a “click” reaction is a facile, selective, high-yield reaction under mild water-tolerant
conditions with little or no by-products [8]. Cascade annulation reactions lead also to the
formation of polycyclic fused six- and seven-membered heterocycles with indole and indoli‐
zine core [9].

Microwave irradiation, sonication, and solvent-free are green chemistry techniques that have
been used for a variety of applications including organic synthesis. Microwaves and ultra‐
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sounds have been used as synthetic techniques for obtaining indole and indolizine derivatives
in high-yield, higher reaction rate. The simplicity of the reactions using these techniques, the
elimination of toxic solvents, and the synthesis carried out in a very short time period are
particularly useful for the creation of diverse chemical compounds of “drug-like” molecules
for biological screening [10].

Multicomponent reactions (MCRs) or tandem reactions have developed as a powerful tool for
delivering the molecular diversity needed for the synthesis of interesting heterocyclic scaf‐
folds, to efficiently construct a variety of intermediates possessing an indolyl or indolizyl
subunit and are particularly attractive especially if they start from simple molecules [11].

The present study discusses the versatile nature of indole/ indolizine derivatives, new green
methods for their synthesis, their possible mechanism of action, and also provides information
about current/future prospects of the topics and different indole/indolizine derivatives in
pharmaceutical/clinical trials.

2. Indoles

Indole derivatives are, perhaps, the most studied nitrogen heterocyclic systems because of
interesting biological properties that received particular interest due to the reserpine alkaloid,
one of the first drugs used for the treatment of central nervous system (CNS) disorders.
Different substituted indoles are particularly important in pharmaceutical chemistry being
capable to bind many receptors with high affinity exhibiting various pharmacological
activities. Therefore, it is important to explore new synthetic reactions and evaluate various
properties of indole derivatives.

2.1. Indole synthesis

To obtain biologically relevant N-hydroxyindoles, a prudent step would be to synthesize O-
protected hydroxyindoles, to avoid their dimerization into kabutanes. Such were the premises
of one study, presenting the annulation of nitrosoarenes with various alkylating and acylating
agents, able to afford the desired compounds with excellent regioselectivity [4].

The synthesis of 3,3-dimethyl-2-amide indoles could be achieved through the I2/DMSO
promoted oxidative amidation reaction between 1,2,3,3-tetramethyl-3H-indolium iodide and
secondary amines with moderate yields (Figure 1) [12].

Using a method involving four steps, 2-indole-3-yl-thiochroman-4-ones could be obtained
(Figure 2), according to Song et al. In the final step, the Michael addition reaction of thiochro‐
mone and indole, an ionic liquid is used, to increase the yield, with the added advantage that
it could be reused three times without a decrease of efficiency [13].
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Figure 2. Synthesis of 2-indole-3-yl-thiocroman-4-ones derivatives [13]

2.2. Green methods for indole synthesis

Polyvinylsulfonic acid, a biodegradable and recyclable polymeric acid rarely used in organic
transformations, could be used as a Bronsted acid catalyst in the synthesis of bis (indolyl)
methane [14]. Another pathway to obtain this compound would be to employ a reusable resin,
Indion Ina 225H, as catalyst of the substitution reaction between indoles and aldehydes (Figure
3), reportedly attaining excellent yields in short reaction times [15].

Figure 3. Synthesis of bis(indolyl) methane using a reusable resin, Indion Ina 225H [15]

Various carbonyl compounds, including ketones could also be building blocks for the much
desired bis(indolyl)methanes, using catalytic amounts of iodine in the presence of sodium
dodecylsulfate in aqueous solution above its critical micellar concentration and the protocol
was also extended to afford 3-substituted indolyl ketones (Figures 4 and 5) [3].

Figure 1. Synthesis of 3,3-dimethyl-2-amide indoles: mechanism [12]
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Figure 4. Synthesis of bis(indolyl)methanes, using catalytic amounts of iodine in the presence of sodium dodecylsul‐
fate [3]

Figure 5. Iodine-catalyzed formation of bis(indolyl) methane from indole and aldehyde under aqueous micelar condi‐
tions [3]

3. Indolizine derivatives

The indolizine core has found numerous applications in the synthesis of biologically active
compounds. Partially or completely reduced indolizine analogs are widely used in the
synthesis of indolizidine alkaloids and related unnatural products. Among many other
pharmacological uses, polycyclic analogs of indolizine, for example, have found a broad
application as heterocyclic analogs of indene in the synthesis of ligands for transition metal
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complexes. Although many methods have been developed for their synthesis, they are
generally time-consuming or require the use of stoichiometric amounts of organometallic
reagents, Lewis acids, expensive catalysts or potentially toxic solvents, which limits their
economical applications. Accordingly, development of alternative catalytic methods for
construction of these important heterocyclic cores is necessary [9].

3.1. Indolizines obtained via 1,3-Dipolar cycloaddition

The mechanism of obtaining condensed five-membered ring systems via 1,3-dipolar cycload‐
ditions implies the reaction of a dipole, in this case an N-ylide generated in situ from a
cycloimmonium halide and a base or another deprotonating agent followed by its addition to
a dipolarophile, olefinic, or acetylenic [7].

N-ylides could be generated employing 1,2-epoxybutane as both solvent and deprotonation
agent, or by using triethylamine in DCM, with ethyl propiolate or DMAD as dipolarophiles,
or again coupling the ylide with acrylonitrile and using TPCD for the aromatization step, all
methods with similar medium to good yields (Figure 6) [7]. Moderate yields, up to 22%, are
reported when reacting DMAD with N-ylides generated from pyridinium salts and K2CO3,
using catalytic amounts of dicyclohexyl-18-crown-6 [16]. In another study, 20 substituted
indolizines were obtained in just 30 min at room temperature, employing electron-deficient
alkynes, in the presence of K2CO3 in DMF, with yields as high as 77% [17].

Figure 6. Synthesis of the new 7,8,9,10-tetrahydropyrrolo[2,1-a]isoquinolines [7]

The solvent could have a great impact on the reaction mechanism, as one study demonstrates,
using substituted ethenes (E-1,2-di(alkylsulfonyl)-1,2-dichloroethene) as dipolarophiles
(Figure 7). In aprotic solvents, the reaction takes place as a 1,3-dipolar cycloaddition, with
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yields between 62 and 75% for the six indolizines obtained, but in protic solvents an addition–
elimination reaction intervenes, leading to the competitive formation of furans, with indolizine
yields as low as 9% [18].

Figure 7. The reactions of pyridinium ylides with ethenes in EtOH [18]

3.2. Indolizines obtained via one-pot reactions

One-pot reactions imply obtaining the product in a single step, by adding all the necessary
reagents in the same reaction medium, without having to isolate and purify any precursors of
the desired product. This type of procedure offers advantages such as swiftness, the prepara‐
tion of complex compounds from readily available material, simplification of workup and
atom economy.

Mishra et al. present a method to obtain 1-aminoindolizines from aldehydes, secondary
amines, and terminal alkynes, in a one-pot reaction (Figure 8). After testing several solvents
and metal catalysts, the best results are obtained with CuCl in PEG, synthesizing 15 substituted
indolizines with yields exceeding 70%, after 3–4 h reaction time [19].

Substituted 3-aminoindolizines could be obtained via one-pot multistep reactions, from 2-
pyridine carboxyaldehide and various nitriles, after 3 h reaction in toluene at 105°C, by adding
1.1 eq of Hantzsch ester as a hydride transfer agent and catalytic amounts of piperidinium
acetate [20].
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The synthesis of 2-acetyl-3-(phenylamino)indolizine-1-carboxamides could also be achieived
in a single step (Figure 9), by combining pyridine-2-carbaldehyde, acetoacetanilide and
isocyanides in toluene at reflux, with yields around 90% for the four compounds obtained [21].

Figure 9. Synthesis of 2-acetyl-3-(phenylamino)indolizine-1-carboxamides via a three-component condensation [21]

A four-component tandem reaction is proposed by Zhenjun et al., by treating pyridine (or
quinoline) with phenacyl bromides (or bromoacetophenones), ethyl glyoxalate, and Na2CO3

in refluxing acetonitrile. The resulting polysubstituted indolizines are obtained after 16 h of
reaction time in moderate-to-good yields [22].

Seventeen polysubstituted indolizines could be obtained via a one-pot sequential addition-
cyclodehydration-dehydrocyanation from of 2-(1H-pyrrol-1-yl) nitriles with α,β-unsaturated
carbonyl compounds (Figure 10) [23].

Figure 10. One-pot addition-cyclodehydration-dehydrocyanation of 2-(1H-pyrrol-1-yl) nitriles with α,β-unsaturated
carbonyl compounds [23]

Figure 8. One-pot multicomponent synthesis of 1-aminoindolizines [19]
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3.3. Novel approaches to indolizine synthesis

The  indolizine  core  could  be  accessible  starting  from pyrrole,  with  strategies  involving
intramolecular aldol cyclization or domino Knoevenagel condensation, shown in Figure 11 [24].

Figure 11. Possible synthetic approaches to indolizines [24]

Another [3+3] annulation approach employs allyl bromides derived from Morita-Baylis-
Hilman adducts (Figure 12), with the conclusion that electron withdrawing groups, as
substituents at the aromatic ring, contribute to successful ring closure and result in accordingly
substituted indolizines [25].

Figure 12. Design of new [3+3] annulation route to indolizines [25]

Novel 2-acyl-6-aryl substituted indolizines were obtained starting from 4-acyl-pyrrole-2-
carbaldehyde and α, β-unsaturated esters, in the presence of K2CO3 in DMF, with yields
between 42 and 68% after 8–12 h at 50°C [26].

Another possibility would be to perform a tandem oxidative C-H functionalization and 5-
endo-dig cyclization, starting from 2-substituted pyridines and alkynes (Figure 13), which
could be achieved with good yields using an Ag2CO3 reusable catalyst [27].
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Figure 13. Silver-mediated oxidative C-H functionalization to synthesize indolizines [27]

Substituted pyridines and acetophenones lead to the formation of 1,2,3-triarylindolizines with
moderate-to-excellent yields, promoted by I2/DMSO at 100°C, the proposed mechanism for
this reaction is presented in Figure 14 [28].

Figure 14. Formation of 1,2,3-triarylindolizines. Proposed reaction pathway [28]

3.4. Green methods for indolizine synthesis

During the synthesis of N-heterocycles there are many problems of health and safety in
addition to the environmental problems caused by their use and disposition as waste. Green
methods are a route towards increasing the efficiency of indoles and indolizines synthesis, and
stride to use less toxic solvents, to reduce the stages of the synthetic routes and minimize waste
as far as practically possible for sustainable development.

A potential method to make synthetic chemistry more environment-friendly would be to reuse
catalysts, such as ion-exchanging resins. Amberlite-IRA 402 (OH) could be employed as the
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ylide-forming base in the reaction between phenacyl pyridinium, quinolinium and isoquino‐
linium salts and alkynes (Figure 15) [29].

Figure 15. Synthesis of indolizines and pyrrolo [1,2-a] quinolines using alkynes [29]

Unconventional activation techniques, such as microwave irradiation, not only lead to shorter
reaction times but generally increase the purity of the desired compound. One study presents
the synthesis of 8 indolizine derivatives in an aqueous medium that were obtained in good
yields after 1 min of irradiation at 300W [30].

Biocatalysis could be employed to aid the formation of indolizine derivatives in an aqueous
medium, as seen in Figure 16. Ultrasound activation was compared to conventional heating,
affording 7,7′-bis-indolizines with similar yields in much shorter reaction times [31].

Figure 16. Synthesis of bisindolizines by biocatalytic reaction [31]
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4. Indoles and indolizines functionalization

The Oxone-induced oxidation of indole-3-carbaldehydes and 5-halogenated analogs could
lead to the formation of tryptanthrin derivatives (Figure 17), a highly functionalized biologi‐
cally active natural product, at room temperature [32]. The phthalazine moiety could also be
accessible with green methods, employing catalytic amounts of L-proline, with good yields
and less than 2 h reaction time [33].

Figure 17. Tryptanthrin derivative [32]

The reaction between indole and formaldeyde could produce high yields of hemiaminals, with
the added value of mild conditions, such as room temperature and an aqueous medium, in
the presence of TBAF [34].

The most eco-friendly approach when it comes to solvent choices would be not to employ any
solvents. Analogs of 3-alkylindole, for example, could be prepared in solvent-free conditions,
using MgO nanoparticles as catalyst [35]. Bis(indol-3-yl)methanes could be synthesized in
solvent-free grinding conditions, employing a reusable catalyst, phosphate-impregnated
titania, obtaining yields as high as 93% [36].

Figure 18. Synthesis of highly functionalized indolylpyrans [37]

Unconventional activation techniques could also be used for indole functionalization. Within
10 min, including reaction and purification time, 3-pyranyl indole derivatives could be
obtained with good yields, through one-pot microwave-assisted reactions, with InCl3 as
catalyst (Figure 18) [37]. Indolyl chalcones could be prepared from indole-3-carboxaldehyde
and heteroaryl active methyl compounds under conventional heating, but the yield was much
improved and reaction time was drastically reduced (from more than 9 h to less than 15 min)
when microwave irradiation was introduced [38]. Ultrasounds aid the selective formation of
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11 3-selanylindole derivatives with good yields, proving superior to conventional heating and
microwave irradiation for this synthesis [39].

Both indoles and indolizines could be functionalized via alkylation with enamides under mild
conditions (Figures 19 and 20), using FeCl3, in short reaction times with good yields [2].

Figure 19. Iron-catalyzed alkylation of indoles with enamides [2]

Figure 20. Iron-catalyzed alkylation of indolizines with enamides [2]

The Friedel-Crafts alkylation of indoles could also be performed in water, as presented in
Figure 21, with yields as high as 97% in the presence of Keggin heteropoly acids, solid super-
acid catalysts [40].

Figure 21. Friedel-Crafts alkylation of indole [40]
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A novel approach presents the previously inaccessible regioselective formation of substituted
pyrido[2,3-b]indolizine-10-carbonitriles, via a cascade transformation of α,β-unsaturated
carbonyl compounds with a dimer of 1-(cyanomethyl) pyridinium chloride, in ethanol/water
in the presence of sodium acetate [41].

5. Pharmaceutical applications

As we have seen so far, interesting pathways have been proposed for the synthesis of indoles
and indolizines. Many of these molecules have subsequently been involved in tests to assess
their biological activity. Natural compounds with these moieties have also attracted interest,
not just as extracts, but as targets for total/semisynthesis or as frameworks for compound
libraries. Next, we shall review some of the extremely diverse pharmaceutical applications of
these derivatives, ranging from fluorescence probes, to antiviral, to anticancer molecules
currently in clinical trials.

5.1. Natural and synthetic indoles

Lead by Cialis, there are seven indole-containing commercial drugs in the Top-200 Best Selling
Drugs by US Retail Sales in 2012. Examples of indole derivatives marketed as antiviral drugs,
for example, are Arbidol (a broad-spectrum antiviral with anti-influenza and immunomodu‐
lating effects) and Delavirine (a non-nucleoside reverse transcriptase inhibitor) [42].

Bisindoles, such as hamacanthin A, isolated from marine sponges (Hamacantha sp., Spongosor‐
ites sp.), or the more famous indole-3-carbinol (I3C), a compound found in cruciferous
vegetables (cabbage, kale, cauliflower, broccoli, Brussels sprouts) and its bisindole metabolite,
3,3'-diindolylmethane (DIM), have displayed biological activities such as antimicrobial,
antiparasitic, anti-inflammatory, and anticancer and are high up on the interest list of many
researchers [43].

Figure 22. Natural indoles [50]

Some of the many studies published in this field have resulted in the elucidation of some of
the mechanisms of their bioactivity. The influence of I3C, for example, on lung cancer cells,
has been attributed to apoptosis via Fas activation and caspase-8 pathways and also cell-cycle
arrest at the G0/G1 phase, and it was also shown that cancer preventive effects of I3C were
mediated via modulation of the phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathway
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[44]. I3C was also shown to induce the expression of phase I and II enzymes by the binding of
the aryl hydrocarbon receptor (AhR) (Figure 23) [45].

Figure 23. Biological activity pathways of indoles [45]

DIM has been found to increase bone mass by supressing osteoclastic bone resorption, in
physiological and pathological conditions [46]. DIM could also help prevent heart failure, as
one study indicates the compound improves myocardial energy metabolism imbalance via
AMPKα signaling [47].

Strychnine and brucine are well known for their toxic effect that manifests in the form of
hypertension and violent convulsions. Brucine is also a proposed anticancer drug candidate,
as it inhibits VEGF-induced cell proliferation, reducing p-VEGFR2 kinase activity and
inhibiting neovascularization in vivo [48].

Other indole alkaloids, isolated from marine sources, such as coscinamides, dragmacidin D,
topsentins, or even fungal sources, such as asterriquinone, have exibited antiviral (anti-HIV),
antimicrobial, antitumor activity, along with the inhibition of serine–threonine protein
phosphatases or ascites hepatoma AH13, for example [49]. Such compounds, isolated from the
Strychnos species, have also been found to inhibit quinine- and choloquinine-resistant P.
falciparum [50]. One of the more studied indole alkaloids would be physostigmine, the template
that led to the development of rivastigmine, globally licensed in 2006 to fight the symptoms
of dementia associated with Parkinson's disease, also prescribed for the symptomatic treat‐
ment of Alzheimer’s disease [51].

Figure 24. Indole alkaloids – strychnine, brucine, asterriquinone, physostigmine, and rivastigmine[50]
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With methods of extraction developing since the 1960s, with many efforts concentrating on
the efficiency and environmental impact of the process, terpenoid indole alkaloids and their
pharmacological  properties  continue  to  attract  attention  as  some  of  them  are  already
marketed as anticancer, antihypertensive, or hypoglycemic agents, for example [52]. Some
monoterpene indole alkaloids are in high demand, such as vinblastine (Catharanthus roseus)
and camptothecin (Camptotheca acuminata, Nothapodytes foetida), currently used as chemother‐
apic drugs, and eyes have turned toward metabolic engineering. However, their biosynthet‐
ic pathways are still not fully elucidated and geneticians, chemists, and biotech specialists
are scrambling to fill in the gaps, with resources such as cell- and organ-specific transcrip‐
tome databases on hand [53, 54].

Figure 25. Indole alkaloids – vinblastine and camptothecin [50]

A novel class of indole-2-carboxylate derivatives was designed starting from the structure of
pyrroloquinoline quinone, with two compounds (Figure 26) emerging as more potent anti‐
proliferants than the reference drugs, compounds that induced PARP cleavage and increased
ROS generation dose-dependence [55].

Figure 26. Indole-2-carboxylate derivatives [55]

Protein tyrosine phosphatases (PTP) are a novel, mostly untapped family of therapeutic
targets, with implications in oncology (SHP2), autoimmunity (Lyp) or diabetes (PTP1B). X-ray
crystal structural analysis has been performed on PTP-inhibitor complexes, revealing bicyclic
benzofuran and indole-based salicylic acids as useful first steps toward the development of
more potent inhibitors (Figure 27) [56].
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Figure 27. PTP-inhibitor [56]

Novel galantamine derivatives with indole moiety have exhibited an activity against acetyl‐
cholinesterase up to 95 times higher than the parent compound, with one promising lead
binding in a region close to the peripheral anionic site of the enzyme, where the Ω-loop of
amyloid beta peptide adheres [57].

Coronary heart disease, prevalent in industrialized regions, comes hand-in-hand with high
levels of LDL-C (”bad cholesterol”) and low levels of HDL-C (”good cholesterol”), treated
mostly with statins, inhibitors of HMG-CoA reductase with dose-limiting hepato- and
myotoxicity. However, the screening of a small indole chalcone fibrates library (Figure 28) has
revealed three compounds with a more potent hypolipidemic effect than the standard drug,
fenofibrate, coupled with high inhibition percentages of superoxide anions, hydroxyl radicals,
and microsomal lipid-peroxidation [58].

Figure 28. Indole chalcone fibrates [58]

Beneficial effects on lipid and also glucose metabolism were also reported concerning 1-(4-
chlorobenzoyl)-5-hydroxy-2-methyl-3-indoleacetitic acid (GY3), which increased glucose
consumption and decreased lipid accumulation through AMPK activation in hepG2 cells, with
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obvious implications in metabolic syndrome, type 2 diabetes, and nonalcoholic fatty liver
disease [59].

Some indole derivatives also show promising antimicrobial activity. Five out of 24 bisindo‐
lylmethane Schiff base derivatives synthesized were found to specifically inhibit Salmonella
typhi, S. paratyphi A and S. paratyphi B, even if the inhibition was moderate at best, when nitro
or halogen substituents were introduced [43].

5.2. Natural and synthetic indolizines

Natural products derived from the indolizine core, such as castanospermine, swainsonine, or
tylophorine, polyhydroxylated indolizidine alkaloids, have attracted much attention, strug‐
gles toward total synthesis, or analog design issues. Their biological properties range from the
antiviral to the anticancer realm, with promising effects on autoimmune diseases [60].

Figure 29. Indolizidine alkaloids [50]

For example, castanospermine glycoside analogs inhibit breast cancer cells MCF-7 and MDA-
MB-231, inducing cell cycle arrest and apoptosis without impact on normal cell proliferation
[61]. Some 5α-substituted swainsonine analogs successfully inhibit Golgi alpha-mannosidase
II, a key enzyme in the N-glycosylation pathway and a potential target for cancer chemother‐
apy, without much loss of activity by comparison with the parent compound [62]. Tylophorine
was shown to inhibit VEGFR2 tyrosine kinase activity and its downstream signaling pathways,
neovascularization, tumor angiogenesis and tumor growth, molecular docking simulations
indicating that it could form hydrogen bonds and have aromatic interactions within the ATP-
binding region of the VEGFR2 kinase unit [63].

In the indolizine nucleus, the six-membered ring suffers from low electron density, with a
subsequent charge buildup in the five-membered ring, resulting in a large dipole moment and
fluorescence properties. The influence of the substituents goes a long way into predicting a
blue or red-shifted fluorescence; for example, the C-2 position could carry a lot of weight [26].

The 10π conjugated planar electronic structure, exhibiting strong fluorescence properties, can
be useful for DNA interaction studies. Such is the case of some indolizinylpyridinium
derivatives, found to interact similarly to ethidium bromide, binding in the minor groove, but
having its fluorescence partially quenched [64].
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Switchable biosensors could be designed starting from Seoul-Fluor (Figure 30), an indolizine
scaffold with three positions for different radicals: R1 and R2 substituents affect electronic
perturbation; R3 could be a functional handle for bioconjugation, thus creating a versatile
platform with tuneable emission wavelength and controllable quantum yield [65].

Figure 30. Indolizine biosensor: Seoul-Fluor [65]

Many indolizine derivatives have been proven to be worthy therapeutic agents, with a number
of them undergoing clinical trials, notably five anticancer molecules that inhibit topoisomerase
[66]. As is the case of photophysical properties, the substituents of the indolizine core can be
tailored to suit the bioactivity requirements.

Following a SAR study, 49 indolizine derivatives were obtained and tested as potential HIV-1
infectivity factor inhibitors, one of which was found to exhibit an IC50 value of 11 μM [67].

A feature that makes indolizine derivatives attractive is the design possibilities. The facile
replacement of substituents could lead to more in-depth perception toward their effect upon
desired bioactivity, solubility, or other properties sought [66].

Two new classes of indolizines fused with phenantroline skeletons were designed and
synthesized, obtaining compounds with a coplanar structure, potentially able to interact with
DNA through an intercalation mechanism, compounds that also possess good solubility in
microbiological medium. Furthermore, one of the compounds exhibit, under aerobic condi‐
tions, activity against M. tuberculosis H37Rv, with an IC50 = 67 μM. Two other compounds had
a selective and significant antiproliferative activity (around 50%) against two breast cancer cell
lines (MCF7 and T-47D) (Figure 31) [68].

Figure 31. Indolizines fused with phenantroline skeletons active against M. tuberculosis and breast cancer [68]

During rational design efforts, concentrated on the identification of potential farnesyltrans‐
ferase inhibitors (implications with respect to oncogenic Ras proteins), the replacement of the
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triazole unit with the indolizine nucleus resulted in IC50s in the low micromolar range. The
substituents’ influence on bioactivity and pharmacokinetic parameters was also investigated
[69].

Rational design could be pushed even further, employing 3D-QSAR studies to yield pharma‐
cophore models, as is the case for 15-lipoxygenase inhibitory activity. For this purpose, 47
indolizines with anti-15-LOX activity were used to obtain a statistically significant model [70].

The similarity of the two heterocycles has motivated researchers since 1967, when Harrell and
Doerge postulated that indolizine analogs of bioactive indoles could possess similar or
improved potency [66]. Such an endeavor was attempted with the synthesis of l-(2-aminoeth‐
yl)-3-benzyl-7-methoxy-2-methylindolizine, an analog of indole derivative benanserin, the
replacement of indole with indolizine proving to have no effect on anti-acetylcholinesterase
activity but diminished the antihistamine and anti-5-hydroxytryptamine activity [66].

Ramatroban, 3-((3R)-3-{[(4-fluorophenyl)sulfonyl]amino}-1,2,3,4-tetrahydro-9H-carbazol-9-
yl)propanoic acid, is a well-known prostaglandin D2 inhibitor and thromboxane receptor
antagonist. Researchers from Merck and Amira have presented numerous ramatroban analogs
with the indole moiety replaced with indolizine and aza-indole, both proving potential during
SAR studies. Among them, a 4-aza-indole derivative (Figure 32) inhibited hCRTH2 with an IC
of 6 nM and was active in a murine OVA-induced lung inflammation model [71-74].

Figure 32. Tricyclic CRTH2 antagonist [74]

LE 300 is a selective antagonist for dopamine D1/D5 and serotonin 5-HT (2A) receptors, bearing
an azecine ring fused to an indole ring on one side and a benzene moiety on the other side.
New analogs of this compound were prepared, namely pyrrolo[2,3-g]indolizine, pyrrolo[3,2-
a]quinolizine rings and their corresponding dimethylpyrrolo[2,3-d]azonine, and dimethyl‐
pyrrolo[2,3-d]azecine [75]. The study concludes that the indolizine and quinolizine derivatives
show no activity concerning the receptors analyzed, while their azonine and azecine counter‐
parts exhibited only weak antagonistic effects for serotonin and histamine receptors, remain‐
ing nonresponsive toward the four dopamine receptors tested.

Scope of Selective Heterocycles from Organic and Pharmaceutical Perspective134



triazole unit with the indolizine nucleus resulted in IC50s in the low micromolar range. The
substituents’ influence on bioactivity and pharmacokinetic parameters was also investigated
[69].

Rational design could be pushed even further, employing 3D-QSAR studies to yield pharma‐
cophore models, as is the case for 15-lipoxygenase inhibitory activity. For this purpose, 47
indolizines with anti-15-LOX activity were used to obtain a statistically significant model [70].

The similarity of the two heterocycles has motivated researchers since 1967, when Harrell and
Doerge postulated that indolizine analogs of bioactive indoles could possess similar or
improved potency [66]. Such an endeavor was attempted with the synthesis of l-(2-aminoeth‐
yl)-3-benzyl-7-methoxy-2-methylindolizine, an analog of indole derivative benanserin, the
replacement of indole with indolizine proving to have no effect on anti-acetylcholinesterase
activity but diminished the antihistamine and anti-5-hydroxytryptamine activity [66].

Ramatroban, 3-((3R)-3-{[(4-fluorophenyl)sulfonyl]amino}-1,2,3,4-tetrahydro-9H-carbazol-9-
yl)propanoic acid, is a well-known prostaglandin D2 inhibitor and thromboxane receptor
antagonist. Researchers from Merck and Amira have presented numerous ramatroban analogs
with the indole moiety replaced with indolizine and aza-indole, both proving potential during
SAR studies. Among them, a 4-aza-indole derivative (Figure 32) inhibited hCRTH2 with an IC
of 6 nM and was active in a murine OVA-induced lung inflammation model [71-74].

Figure 32. Tricyclic CRTH2 antagonist [74]

LE 300 is a selective antagonist for dopamine D1/D5 and serotonin 5-HT (2A) receptors, bearing
an azecine ring fused to an indole ring on one side and a benzene moiety on the other side.
New analogs of this compound were prepared, namely pyrrolo[2,3-g]indolizine, pyrrolo[3,2-
a]quinolizine rings and their corresponding dimethylpyrrolo[2,3-d]azonine, and dimethyl‐
pyrrolo[2,3-d]azecine [75]. The study concludes that the indolizine and quinolizine derivatives
show no activity concerning the receptors analyzed, while their azonine and azecine counter‐
parts exhibited only weak antagonistic effects for serotonin and histamine receptors, remain‐
ing nonresponsive toward the four dopamine receptors tested.

Scope of Selective Heterocycles from Organic and Pharmaceutical Perspective134

Secretory phospholipases A2 (sPLA2s) is successfully inhibited by substituted indole and
indolizine derivatives, as previously reported by Lilly and Shinogi researchers, with com‐
pounds like indoxam and Me-indoxam exhibiting favorable pharmacokinetic profiles [76-79].
Oslund et al. have prepared a set of benzo-fused analogs, among which they identified a
compound that was the first reported potent inhibitor of groups IID and IIF sPLA2s and the
most generally potent sPLA2 inhibitor reported to date (Figure 33) [80].

Figure 33. Substituted indole, indolizine, and benzo-fused indole inhibitors against human and mouse sPLA2 [80]

James et al. have prepared a series of indole and indolizine-glyoxylamides (Figure 34) and
subsequently tested the compounds’ cytotoxicity against cancer cell lines, identifying high
antiproliferative activities, even in the case of multidrug-resistant phenotypes. After searching
among numerous cores, with the goal to replace indole, the researchers synthesized a novel
class of cancer agents with an indolizine core, with a lead compound that proved effective
against multidrug-resistant cell lines such as MES-SA/DX5 and HL60/TX1000, resistant to
treatment with Taxol [81].

Figure 34. Indole- and Indolizine-glyoxylamide derivatives [81]

6. Conclusions

Considering the growing interest for biologically active compounds, we believe that in the
future the search for novel indole and indolizine derivatives will result in the emergence of
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new synthesis pathways and new and unexplored biologically active derivatives with pyrrole
moieties.

Taking into account the importance of anticancer drugs, like vinblastine, irinotecan, topotecan,
or camptothecin, the development of biologically active derivatives of new natural lead
compounds containing indole and indolizine nucleus might be helpful in the design and
development of novel and more potent anticancer drugs, antiviral agents, intercalating agents.

With the remarkable number of approved indole-containing drugs as well as the importance
of the indolizine moiety, it can be easily concluded that indole and indolizine derivatives offer
perspectives on how pyrrole scaffolds might be exploited in the future as bioactive molecules
against a broad range of diseases.
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Chapter 6

Synthesis of Nitriles – Synthesis of 4-Cyano Pyrazole, 5-
Aminopyrazole Derivatives and the Deamination of 5-
Aminopyrazole Derivatives

Raghunath Toche

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/64050

Abstract

Chemoselective reaction on 3-dimethylamino-2-aroyl-propenenitrile and hydrazine in
acidic medium yields 4-cyano pyrazole, where as in basic medium yields 5-amino pyra‐
zoles as major product.

Keywords: 4-Cyanopyrazole, 5-aminopyrazole, Deamination, Isopentyl nitrite, Chemose‐
lective reactions

1. Introduction

Pyrazole is an organic compound having a molecular formula C3H4N2, pentatomic heterocycle
with a nitrogen heteroatom, having a five member ring structure with three carbon and
adjacent two nitrogen atoms. Pyrazoles rarely occur in nature; in 1959, β-(1-pyrazolyl) alanine
was isolated from the seeds of water melons (Citurllus lanatus) (L. Fowden). Pyrazoles exhibit
wild range of biological activities such as anti-diabetic, antiviral, anti-cancer, anti-inflamma‐
tory, antibacterial, and antifungal activities).

History: Ludwig Knorr (1883) has given the name pyrazole to this class of compounds. The
reduced forms of pyrazoles are pyrazoline and pyrazolidine. The substituted derivatives of
pyrazole has been used in medicines and in other technical applications.

1.1. Physical properties

Pyrazole is a colorless solid, boiling points (b.p), 186-188°C, melting point (m.p.), 67-70 oC, a
weak base Pkb = 11.5 (pKa of the conjugated acid 2.49 at 25 °C, Mol. Wt. 68.0776 g/mol, and
soluble in water

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



1.2. Chemistry of pyrazole

The high m.p. and b.p. of pyrazole compared with 1-alkyl or aryl substituted pyrazoles are
due to intermolecular hydrogen bonding which results in the dimmer. It is a tautomeric
substance. Pyrazole is a weak basic and forms salts with inorganic acids; the imino hydrogen
may be replaced by an acyl group.
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Figure 1. Resonating structures for pyrazole

Pyrazole resistant to oxidation and reduction reaction due to loss of aromaticity, but may be
hydrogenated catalytically, first to pyrazoline, and then to pyrazolidine. Both of these
compounds are stronger bases than pyrazole.

Oxidation: Pyrazole ring system is resistant to oxidizing agents but the side chain may be
oxidized to carboxylic acid group in the presence of potassium permanganate.

Reduction: Pyrazole ring system can be reduced with molecular hydrogen and metal catalyst
to pyrazole and pyrazolidine both are stronger bases than pyrazole.

1.3. Alkylation and acylation

The free N-H group in pyrazole can be alkylated with alkylating agents such as alkyl halides,
diazomethane, and dimethyl sulfate or acylated using acid chloride and acetic anhydride.

Electrophilic aromatic substitutions: Pyrazole is an aromatic compound that exhibits all the
properties of aromatic compounds such as electrophilic substitution reactions e.g. halogena‐
tion, nitration, sulfonation, etc., in neutral or in basic medium, but not in acidic medium. The
substitution occurs at C4-position through the formation of arenium ion intermediate.

Reactions of pyrazoles with nucleophilies: The presence of a strong electron-withdrawing
group on pyazole assists nucleophilic substitution.

General synthesis:-

1. Pyrazoles and their derivatives were synthesized from hydrazine or its derivatives and a
1,3-dicarbonyl compound using an acid catalyst, the reaction is also known as Knorr
pyrazole synthesis.

2. Sucrow reported the synthesis of pyrazole using monomethyl hydrazones of dialkyloxa‐
lacetates.

3. Hart and Brew Baker have described the cyclization of 1,3- bis(diazopropane) to pyrazole
by a concerted intermolecular 1,3-dipolar cycloaddition reaction.
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4. Pyrazoles are prepared by the action of hydrazine on 1,3-di-functional derivatives, such
as carbonyl group, which can be replaced by a three-member ring, usually oxirane-
aziridine-β-substituted-pyrrole-indole derivatives.

5. The addition of diazo compound to acetylenes gives pyrazole derivatives.

The same reaction as applied to olefin leads to dihydropyrazoles which are termed pyrazolines.

6. Reaction of hydrazine and their derivatives with α, β-unsaturated aldehyde / ketones
yields pyrazolines.

1.4. Pharmacological interest

Pyrazole nucleus constitutes a number of sub-structures of natural products and biologically
active compounds. Several derivatives of these systems find use in medicine described as
follows:

Derivatives of pirolidine as drugs: Piracetam (Nootropilum) polyvinylpyrrolidone used for
dementia and cognitive problems such as a chronic or persistent disorder of the mental
processes caused by brain disease or injury and marked by memory disorders, personality
changes, and impaired reasoning.

Derivatives of pyrazolone-5 as drugs: Phenazone (antipyrine) Antipyrine and benzocaine otic are
used to relieve ear pain and swelling caused by middle ear infections. The dipyrone (metami‐
zole sodium) is an organic sodium salt of antipyrine substituted at C-4 by a methyl(sulfonato‐
methyl)amino group, commonly used as a powerful analgesic and antipyretic. The budirol
(propiphenazonum) is an analgesic efficacy.

Derivatives of pyrazolidine-3, 5-dione as drugs: Phenylbutazone, tribuzonum, kebuzone.
Derivatives of pirolidine as drugs: Piracetam (Nootropilum), polyvinylpyrrolidone used for

Synthesis of Nitriles – Synthesis of 4-Cyano Pyrazole, 5-Aminopyrazole Derivatives and the Deamination of...
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dementia cognitive problems such as a chronic or persistent disorder of the mental processes
caused by brain disease or injury and marked by memory disorders, personality changes, and
impaired reasoning.
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dione used as analgesic, antiinflammatory, and antipyretic 
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Forbisen is 2, 2', 3, 3'-tetramethyl-1, 1'-diphenyl-4, 4'-bi-3, 

3'-pyrazoline-5, 5'-dione a by-product obtained in the 
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former is having a 3 methylbutenyl substituent at C4-
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Phenazone is a pyrazoline derivative, chemically 2,3-

dimethyl-1-phenyl 3-pyrazolin-5-one, available in white 

crystals or white crystalline powder soluble in water. 

Phenazone is well known for its analgesic and antipyretic 

actions. 

Phenylbutazone is 4-butyl-1, 2-diphenyl pyrazolidine 3,5-dione used as
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crystals or white crystalline powder soluble in water. 
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pyrazolin-5-one, available in white crystals or white crystalline powder
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Propylphenazone (4-isopropyl 2,3-dimethyl-1-phenyl-3-

pyrazolin-5-one) is phenazone derivative with C4-

isopropyl side chain having analgesic properties.  
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Propylphenazone (4-isopropyl 2,3-dimethyl-1-phenyl-3-pyrazolin-5-one) is
phenazone derivative with C4-isopropyl side chain having analgesic
properties.
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5-Pyrazolone derivatives are also used as cotton azo dye to improve quality such as brightness
and light fastness property.

The 5-aminopyrazole system represents an important hetero-cyclic compound having
considerable interest due their long history of applications in the pharmaceutical and agro‐
chemical industries [1-4].

Literature reports over the past hundred years and their chemistry have been reviewed in 1964
[5] and in 1967 [6] and proved their importance in medicinal and technical applications.
Structurally, simple 5-amino-1-tertbutylpyrazole-4-carboxamide I was found to inhibit p56
Lck [7]. The simple N-phenyl amide of 5-amino-1,3-dimethylpyrazole-4-carboxylic acid II has
been shown to exhibit antifungal activity [8]. The 5-amino-1-(2,6-dichloro-4-trifluoromethyl)
phenyl)-4-(3-ethoxyphenyl)-3-methyl thiopyrazole has been described as a potent GABA (γ-
aminobutyric acid) inhibitor with selectivity toward insect versus mammalian receptors [9].
5-Amino-4-benzoyl-3-methylthio-1-(2,4,6-trichlorophenyl)pyrazole III has been reported as a
potent corti-cotrophin-releasing factor-1 (CRF-1) receptor antagonist [10]. The 5-amino-1-(4-
methylphenyl) pyrazole IV has been tested as an NPY5 antagonist [11].
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The 5-amino-1-pyrazinyl-3-carboxamidopyrazole derivatives has been recently reported as a
potent antibacterial agent with a very broad spectrum [12]. Recently, the components of the
mitotic machinery have been targeted in an attempt to develop novel anticancer agents. These
include critical signaling kinases such as the Aurora, PLK, and the cyclin-dependent kinase
(CDK). The compound (AZD1152) is the first Aurora-B selective inhibitor to enter the clinical
trials [13].

2. Results and discussion

The synthesis of 3-dimethyl-2-benzoyl propenenitriles 1(a-b) is the vital key intermediate for
the synthesis of various nitrogen heterocycles, such as pyrazole and pyrimidine derivatives.
The literature reports suggest that 1,3,4-trisubstituted pyrazole derivatives are important
compounds in the preparation of 1,5-diphenylpyrazole nonnucleoside derivatives, which are
used as HIV-1 nonnucleoside reverse transcriptose inhibitors [15]. Similarly, 4-cyano pyrazole
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derivatives showed significant biological activity by inhibiting alcohol dehydrogenase [16].
They also produce skeletal muscle relaxation on administration to animals [17].

In the literature, several methods have been reported for the synthesis of 5-amino pyrazole
derivatives. Hasseneen and coworkers [18] have prepared pyrazole derivatives by the reaction
of nitrile imine with fumaronitrile. Jachak and co-workers [19] also reported the synthesis of
4-cyano pyrazole derivatives by starting with cyanoacetaldehyde, DMF-DMA (N,N-Dime‐
thylformamide dimethyl aceta) and hydrazines.

Recently, David Tupper [20] has reported the synthesis of 4-cyano pyrazole derivatives by
starting with compounds similar to 1a. These workers have prepared 4-cyano pyrazole
derivatives along with 5-amino pyrazole derivative by refluxing 3-dimethylamino-2-benzoyl‐
propenenitrile 1a with phenyl hydrazine or hydrazine in ethanol. However, the product was
always a mixture of 4-cyano and 5-aminopyrazole derivatives. These workers have separated
the mixture of pyrazoles by column chromatography and observed that the reaction of
hydrazine or phenyl hydrazine took place with 3-dimethylamino-2-aroyl-propenenitrile to
furnished pyrazole carbonitrile as major and aminopyrazoles as minor products.

Herein, the new route for the synthesis of 4-cyano pyrazole and 5-amino pyrazole derivatives
has been described. It was demonstrated that the new procedure for the synthesis of 4-cyano
and 5-aminopyrazole derivatives gave good yield. Also it was observed that treatment of 1
with hydrazine (or substituted hydrazine) in acidic medium gave 1,3-disubstituted 4-cyano‐
pryrazole derivatives 3. Herein, the new route for the synthesis of 4-cyano pyrazole and 5-
amino pyrazole derivatives has been described. It was demonstrated that the new procedure
for the synthesis of 4-cyano and 5-aminopyrazole derivatives gave good yield. Also it was
observed that treatment of 1 with hydrazine (or substituted hydrazine) in acidic medium gave
1,3-disubstituted 4-cyanopryrazole derivatives 3. Tuper, Bray and his co-workers [20] reported
that the 1,5-disubstituted–4-cyanopyrazole was obtained when compound 1 was refluxed in
ethanol with hydrazine (or phenyl hydrazine).

2.1. Section I: Synthesis of 4-cyano pyrazole derivatives, 3a-i

Different methods were used for the synthesis of 4-cyano and 5-amino pyrazole derivatives.
Tuper and Bray [20] performed these reactions without acid and base. Our observation was
different from their studies.

The reactions of hydrazine or phenyl hydrazine with compound 2 in ethanol and catalytic
amount of conc. HCl furnished 4-cyano pyrazole derivative 3(a-i) as a single product (Experi‐
ment No. 1).
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3: a, Ar= Ph, R=Ph; b, Ar=Ph, R=p-CH3Ph, c, Ar=Ph, R=p-CPh; d; Ar=Ph, R=p-NO2Ph; e, Ar=Ph,
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The formation of 4-cyano pyrazole derivatives 3 can be rationalized as the acid protonated
nitrogen of dimethylamino group and was replaced by hydrazine and then NH2 of the
hydrazine condenses with carbonyl carbon to form pyrazole ring. When the condensation of
3-dimethylamino-2-bezoyl-propenenitrile 1a and N-methyl ester of hydrazine was carried out,
the ester group has been hydrolyzed and decarboxylated to give 1H-pyrazole derivative 3f. 
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Sr. No. Name of the compound Solvent N1-R C3-Ar C5-H

1. 1,3-diphenyl-1H-pyrazole-4-
carbonitrile, 3a

Lit [22]

2. 3-phenyl-1-p-tolyl-1H-pyrazole-4-
carbonitrile, 3b

DMSO-d6 2.35, s, 3H, CH3,
7.10-7.60 m, 4H, Ar-H

7.10-7.60, m, 5H, Ar-
H

8.42, s

3. 1-(4-cholorphenyl)-3-phenyl-1H-
pyrazole-4-carbonitrile
3c

DMSO-d6 d ,7.60, d,4H, Ar-H 7.16-7.50, m,Ar-H 8.45, s

4. 1-(4-nitrophenyl)-3-phenyl-1H-
pyrazole-4-carbonitrile, 3d

Lit [19]

5. 1-(4-methoxyphenyl)-3-
phenyl-1H-pyrazole-4-
carbonitrile, 3e

DMSO-d6 3.75 s CH3
6.90-5.77 m , 4H, Ar-H

6.90- 5.77, m,Ar-H 8.37, s

6. 3-phenyl-1H-pyrazole-4-
carbonitrile, 3f

DMSO-d6 11.52, s, NH 7.40- 7.95 m 5H, Ar-
H

8.00, s

7. 1-(2-hydroxyethyl)-3-phenyl-1H-
pyrazole-4-carbonitrile
3g

CDCl3 3.67, t, 2H, CH2,4.25 ,t
2H, CH2

7.65, m, 5H, Ar-H 8.08, s

8. 3-(4-bromophenyl)-1-(2-
hydroxyethyl)-1H-pyrazole-4-
carbonitrile, 3h

CDCl3 3.67, t, 2H, CH2, 4.25 ,t
2H, CH2

7.42 & 7.65 d, 4H Ar-
H

87.95, s

Table 1. NMR of 4-cyano pyrazole 3a-j
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These compounds were characterized by IR, 1H NMR (Table No. 1). The IR of 3h
(R=CH2CH2OH) showed strong absorption at 2231 cm–1due to CN and 3493 cm–1 for OH. The
1H NMR in CDCl3 of this compound showed clear triplet at δ 4.083 and 4.22 with J = 9.3 Hz.
The aromatic protons showed para substituted pattern at δ 7.68 and 7.70 as doublet with
coupling constant J=8.4 Hz. The C5-H appeared as a sharp singlet at δ 7.89.

2.2. Section II: Synthesis of 5-Amino-4-aryl-substituted pyrazole derivatives, 4a-f

Compounds 1 and hydrazine or substituted hydrazine when refluxed in ethanol in the
presence of triethylamine furnished 5-amino pyrazole derivatives 4(a-f) in good yields
(Experiment No. 2). This observation was again contradictory with Tupper’s work [6]. These
workers observed that when hydrazine and compound 1a were refluxed with hydrazine or
phenyl hydrazine in ethanol yielded the mixture of 4-cyano pyrazole and 5-amino pyrazole
derivatives in 45–85% and 10–35% respectively. But it was observed that when base is used
as a catalyst, the reaction completed within 1–2 hours, and 5-amino pyrazole derivative is
only the product obtained. In this reaction, the condensation occurs by replacement of dime‐
thylamino group and the ring closure reaction because of the attack of hydrazine moiety on
nitrile function. The mechanism can be given as below.

3 

-3-phenyl -4-cyanopyrazole, 3e 

7 8 4-Cyano-3-phenyl-1H-pyrazole,3f 3-phenyl-1H-pyrazole-4-carbonitrile, 3f  
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8 8 
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  Here the other product 4-cyano pyrazole was not formed in the basic medium. The benzoyl
carbonyl is less reactive, and there is no chance for the condensation of hydrazine with it. The
1H NMR spectra (Table No. 2), IR of the compound 4(a-f) characterizes all these 5-aminopyr‐
azole derivatives. The elemental analysis was in agreement with the proposed structure. IR
spectra 4f show absorption bands at 3370 and 3320 cm–1 due to NH2 group and at 1748 cm–1

due to the presence of carbonyl group. The 1H NMR of 4f in CDCl3 showed that the NH2 split
into two singlets at δ 7.57 and 7.76 exchangeable with D2O. The 4-aromatic p-substituted
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  Here the other product 4-cyano pyrazole was not formed in the basic medium. The benzoyl
carbonyl is less reactive, and there is no chance for the condensation of hydrazine with it. The
1H NMR spectra (Table No. 2), IR of the compound 4(a-f) characterizes all these 5-aminopyr‐
azole derivatives. The elemental analysis was in agreement with the proposed structure. IR
spectra 4f show absorption bands at 3370 and 3320 cm–1 due to NH2 group and at 1748 cm–1

due to the presence of carbonyl group. The 1H NMR of 4f in CDCl3 showed that the NH2 split
into two singlets at δ 7.57 and 7.76 exchangeable with D2O. The 4-aromatic p-substituted
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protons appears at 7.63 and 7.69 δ as doublet with J = 8 Hz. The 5-aromatic protons of the
phenyl ring showed multiplet at δ 7.55–7.77, and the C3-H appears as a singlet at δ 7.76. Thus
the cyclization reaction provided synthesis for 4-cyano pyrazole and 5-amino pyrazole
derivatives without a mixture of these two. The time required for the cyclization is also between
1 and 3 hours as compare to 2–18 hours as reported by Tupper and Bray [20].
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The presence of NH2 in 5-amino pyrazole 4(a-f) was confirmed by the formation of acetyl
derivative. Thus compound 4e on refluxing in acetic acid and acetic anhydride furnished acetyl
derivative 5.. The structure of 5 was characterized by IR and 1H NMR which is given in
experimental part.

2.2.1. Deamination of 5-aminopyrazole derivatives

In the literature, the amino group in the pyrazole system can be removed by the method
explained by Nishiwaki et al [23] and Doyle et al [21]. Doyle and his coworkers have performed
the reductive deamination involving arylamines. Kornblum suggested that the aromatic
primary amine group was diazotized and replaced by hydrogen donor [22]. 
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Thus the amino group in compounds 4a, d, e in pyrazole on treatment with isopentylnitrile in
DMF furnished deaminated pyrazole derivative 6a-c in good yields.(ExperimentNo. 3).
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Compound 6a-c was characterized by 1H NMR, IR, and elemental analysis. The IR spectra did
not show peak at δ 3370 and 3320 cm–1 for NH2 group, and the increase in carbonyl absorption
from 1690 to 1720 cm–1 was due to the free carbonyl group that indicated the loss of NH2

group. The 1H NMR of 6c, R=Ph in CDCl3 showed singlet for C3-H and C5-H at δ 8.12 and δ
8.34 as it was expected. The four aromatic protons showed para substituted pattern at δ 7.79,
7.77 as two doublets J = 8 Hz and five protons of phenyl ring showed multiplet at δ 7.22–7.75.
After deamination, the product containing carbonyl function was characterized by the
formation of 2,4-DNP derivatives.
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Sr. No. Name of the compound Solvent N1-R C4-COAr C3-H C5-NH2

1 (5-Amino-1-phenyl-1H-
pyrazole-4-
yl)phenyl)methanone, 4a

DMSO-d6 7.40-7.75, m 5H
Ar-H

7.407.75,5H,
m, Ar-H

7.86, s 7.40 &7.78 s

2 (5-Amino-1-(3-
pyridylcarboxy)-1H-
pyrazole-4-yl)phenyl)
methanone, 4b

DMSO-d6 8.15-8.60, m, 4H 7.40-7.75, m 5H, Ar-
H

7.97, s 8.80 & 9.15, s

3 (5-Amino-1-
(phenylsemicarbazide)-1H-
pyrazole-4-yl) phenyl)
methanone, 4c

DMSO-d6 7.28-7.93, m, 5H
12.05, bs, NH

7.28-7.94, m, 8.04, s 9.2 & 11.82 s

4 (5-Amino-1-(4-
chlorobenzene))-1H-
pyrazole-4-yl) phenyl)
methanone, 4d

DMSO-d6 7.25-7.78 m, 4H 7.25-7.78, m, 5H 7.92, s 8.25 & 11.75 s

5 (5-Amino-1-(2,4-
dinitrophenyl))-1H-
pyrazole-4-yl) phenyl)
methanone, 4e

CDCl3 8.23, 8.45, d &
9.23, s Ar-H

7.28 &7.65 d
4H, Ar-H

8.02, s 8.30 & 11.80, s

6 (5-Amino-1-(4-
bromobenzene))-1H-
pyrazole-4-yl) phenyl)
methanone, 4f

CDCl3 7.02-7.56, m, 5H,
Ar-H

7.26 & 7.63 d, 4H,
ar-H

7.92 s 7.26 & 7.63 s, peak
lost in D2O

Table 2. NMR of 1-phenyl-4-benzoyl-5-aminopyrazole, 4a-f chemical shift in δ
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Thus compound 6c on treatment with 2,4-dinitrophenylhydrazine in acidic medium furnished
the hydrazone derivative 7 and supported the presence of carbonyl group in compound 6c.
(Experiment No. 5). The 1H NMR clearly indicated the singlet at δ 11.15. for NH protons and
3 hydrogen of phenyl group containing nitro group clearly observed at δ 8.09, 8.22, and 9.05.

3. Conclusion

The reaction of aroylpropenenitrile and substituted hyrazines in the presence of acid catalyst
yielded 4-cyano pyrazoles and the same reaction in basic medium yielded 5-amino pyrazole
derivatives as signal product in good yields.

To an equimolar solution (0.01 mol) of 1(a-b) and substituted hydrazine 2(a-i), in ethanol (30
ml), concentrated hydrochloric acid (0.2 ml) was added, and the reaction mixture was refluxed
for the time shown below. The solvent was removed in vacuo to get the residue of 3(a-j), which
was recrystallized from the proper solvent.

1,3-Diphenyl-4cyanopyrazoles, 3a

Heating under refluxed for 3.5 hours, yield 65%, recrystallized from ethanol, m.p. 134°C (lit.
[21] m.p. 135°C).

1-p-Toloyl-3-phenyl-4-cyanopyrazole, 3b

Heating under refluxed for 3 hours, yield 68%, recrystallized from ethanol, m.p. 123°C,
IR(KBr):2230 and 1520 cm–1.

1-(p-Chlorophenyl)-3-phenyl-4-cyanopyrazole, 3c

Heating under refluxed for 3 hours, yield 75%, recrystallized from ethanol, m.p. 141°C. IR
(KBr): 2240, 1505 cm–1.

1-(4-nitrophenyl)-3-phenyl-1H-pyrazole-4-carbonitrile,3d

Heating under refluxed for 3.5 hours, yield 70%, recrystallized from ethanol, m.p. 223°C, (lit.
[19] m.p. 225°C).

1-(4-methoxyphenyl)-3-phenyl-1H-pyrazole-4-carbonitrile,3e

Heating under refluxed for 1 hour, yield 75%, recrystallized from ethanol, m.p. 125°C. IR (KBr):
2228 and 1510 cm–1.

3-phenyl-1H-pyrazole-4-carbonitrile, 3f

Heating at 60°C for 6 hours, yield 60%, recrystallized from ethanol, m.p. 131°C (lit. [19] m.p.
134°C. IR (KBr): 3150, 2960, 2240, and 1510 cm–1.

1-(2-hydroxyethyl)-3-phenyl-1H-pyrazole-4-carbonitrile, 3g

Heating under refluxed for 2.5 hours, yield 65%, recrystallized from ethanol, m.p. 106°C. IR
(KBr): 2228, 1510 cm–1.
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3-(4-bromophenyl)-1-(2-hydroxyethyl)-1H-pyrazole-4-carbonitrile, 3h

Heating under refluxed for 2.5 hours, yield 63%, recrystallized from methanol, m.p. 135°C. IR
(KBr): 2231, 1563, and 1533 cm–1.

3-(4-Bromophenyl)-1-phenyl-1H-pyrazole-4-carbonitrile, 3i

Heating under refluxed for 2 hours, yield 68%, recrystallized from methanol, m.p. 210°C. IR
(KBr): 2210, 1600, 1580, and 1533 cm–1.

3.1. Experiment 2

Synthesis of 1-substituted-4-benzoyl-5-aminopyrazoles, 4(a-h)

To an equimolar solution of 1a or 1b (0.01 mol), substituted hydrazines, 2a, j-n in ethanol (30
ml) was taken in a reaction flask. Triethlyamine (0.2 ml) was added, and the reaction mixture
was heated under reflux for the time shown below. The solvent removed in vacuo and the
product obtained was filtered, recrystallized from the solvent shown for individual com‐
pound.

(5-Amino-1-phenyl-1H-pyrazole-4-yl)phenyl)methanone, 4a

Heating at 65°C for 1 hour, yield 65%, m.p. 178°C. IR (KBr): 3380, 3275, 1620, and 1540 cm–1.

(5-Amino-1-(3-pyridylcarboxy)-1H-pyrazole-4-yl)phenyl) methanone, 4b

Heating under reflux for 1.5 hours, yield 45%, m.p. 149°C. IR (KBr): 3460, 3320, 3050, 1705,
1695, and 1630 cm–1.

5-Amino-1-(phenylsemicarbazide)-1H-pyrazole-4-yl) phenyl) methanone, 4c

Heating under reflux for 1.5 hours, yield 450%, m.p. 127°C. IR (KBr): 3380, 3300, 3140, 1640,
1600, and 1550 cm–1.

(5-Amino-1-(4-chlorobenzene))-1H-pyrazole-4-yl) phenyl) methanone, 4d

Heating under reflux for 1.5 hours, yield 45%, m.p. 199°C, recrystallized from ethanol. IR (KBr):
3370, 3320, 3040, 1690, 1630, 1590, and 1550 cm–1.

(5-Amino-1-(2,4-dinitrophenyl))-1H-pyrazole-4-yl) phenyl) methanone, 4e

Heating under reflux for 2 hours, yield 60%, m.p. 217°C, recrystallized from ethanol. IR (KBr):
3443, 3221, 3050, 2922, 1741, 1631, 1605, and 1550 cm-1.

(5-Amino-1-(4-bromobenzene))-1H-pyrazole-4-yl) phenyl) methanone, 4f

Heating under reflux for 1 hour, yield 50%, m.p. 186°C, recrystallized from ethanol. IR (KBr):
3370, 3320, 3040, 1690, 1630, 1590, and 1550 cm–1.

3.2. Experiment 3

Deamination of 5-amonopyrazole derivatives: Preparation of 1-Substituted-4-benzoyl pyra‐
zole, 6(a-d)
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3-(4-bromophenyl)-1-(2-hydroxyethyl)-1H-pyrazole-4-carbonitrile, 3h

Heating under refluxed for 2.5 hours, yield 63%, recrystallized from methanol, m.p. 135°C. IR
(KBr): 2231, 1563, and 1533 cm–1.

3-(4-Bromophenyl)-1-phenyl-1H-pyrazole-4-carbonitrile, 3i

Heating under refluxed for 2 hours, yield 68%, recrystallized from methanol, m.p. 210°C. IR
(KBr): 2210, 1600, 1580, and 1533 cm–1.

3.1. Experiment 2

Synthesis of 1-substituted-4-benzoyl-5-aminopyrazoles, 4(a-h)

To an equimolar solution of 1a or 1b (0.01 mol), substituted hydrazines, 2a, j-n in ethanol (30
ml) was taken in a reaction flask. Triethlyamine (0.2 ml) was added, and the reaction mixture
was heated under reflux for the time shown below. The solvent removed in vacuo and the
product obtained was filtered, recrystallized from the solvent shown for individual com‐
pound.

(5-Amino-1-phenyl-1H-pyrazole-4-yl)phenyl)methanone, 4a

Heating at 65°C for 1 hour, yield 65%, m.p. 178°C. IR (KBr): 3380, 3275, 1620, and 1540 cm–1.

(5-Amino-1-(3-pyridylcarboxy)-1H-pyrazole-4-yl)phenyl) methanone, 4b

Heating under reflux for 1.5 hours, yield 45%, m.p. 149°C. IR (KBr): 3460, 3320, 3050, 1705,
1695, and 1630 cm–1.

5-Amino-1-(phenylsemicarbazide)-1H-pyrazole-4-yl) phenyl) methanone, 4c

Heating under reflux for 1.5 hours, yield 450%, m.p. 127°C. IR (KBr): 3380, 3300, 3140, 1640,
1600, and 1550 cm–1.

(5-Amino-1-(4-chlorobenzene))-1H-pyrazole-4-yl) phenyl) methanone, 4d

Heating under reflux for 1.5 hours, yield 45%, m.p. 199°C, recrystallized from ethanol. IR (KBr):
3370, 3320, 3040, 1690, 1630, 1590, and 1550 cm–1.

(5-Amino-1-(2,4-dinitrophenyl))-1H-pyrazole-4-yl) phenyl) methanone, 4e

Heating under reflux for 2 hours, yield 60%, m.p. 217°C, recrystallized from ethanol. IR (KBr):
3443, 3221, 3050, 2922, 1741, 1631, 1605, and 1550 cm-1.

(5-Amino-1-(4-bromobenzene))-1H-pyrazole-4-yl) phenyl) methanone, 4f

Heating under reflux for 1 hour, yield 50%, m.p. 186°C, recrystallized from ethanol. IR (KBr):
3370, 3320, 3040, 1690, 1630, 1590, and 1550 cm–1.

3.2. Experiment 3

Deamination of 5-amonopyrazole derivatives: Preparation of 1-Substituted-4-benzoyl pyra‐
zole, 6(a-d)
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To a solution of 3a, d, or f (0.01 mol) in anhydrous dimethylformamide (5 ml) maintained at
60–65°C, isopentylnitrite (0.01 5 mol) in anhydrous DMF (3 ml) was added over 10 minute.
The mixture was stirred for 30 minutes. The solvent was removed under reduced pressure to
get solid. The solid obtained was filtered washed with petroleum ether and recrystallized from
proper solvent.

1-Phenyl-4-benzoylpyrazole, 6a

M.p. 124°C (lit [22]. m.p. 123–124°C); recrystallized from ethanol 1-(p-Chlorophenylsemicar‐
bazole)-4-benzoylpyrazole, 6b m.p. 235°C, recrystallized from ethanol, yield 65%. IR(KBr):
3320, 1660, 1591, 1573, and 1490 cm–1. 1H NMR (DMSO-d6) δ: 7.25–7.78 (m, 10H, Ar-H); 7.92 (s,
1H, C3-H); 12.12 (bs 1H, NH). 1-Phenyl-4-benzoylpyrazole, 6c yield 76%, and m.p. 198–199°C.
Recrystallized from methyl alcohol. IR (KBr): 1720, 1626, 1582, and 1562 cm–1. 1H NMR
(CDCl3) δ: 7.22–7.75 (m, 5H, Ar-H); 7.63 and 7.77 (d 4H, Ar-H); 8.13(s, 1H, C3-H); 8.43(s 1H
C-5-H).

3.3. Experiment 4

Synthesis of 2,4-dinitrophenylhydrazone derivative of 1-phenyl-4-benzoylpyrazole, 7. In
the mixture 1-phenyl-4-benzoylpyrazole (0.002 mol, 0.642 gm), 2,4-dinitro phenyl hydrazine
(0.002 mol, 0.396 gm) in ethyl alcohol (20 ml), concentrated sulfuric acid (0.2 ml) was added.
The reaction mixture was refluxed for 3 hours. The solvent was removed and solid obtained
was filtered, washed with ethanol and recrystallized from ethanol: DMF (2:8), yield 400 mg,
76%, m.p. 220°C. IR (KBr): 3340, 1626, 1590, 15550, and 1480 cm–1. 1H NMR (CDCl3) δ:
7.25-7.51(m, 5H, Ar-H); 7.70 and 7.85 (d 4H, J=8.4 Hz, Ar-H); 7.95(s, 1H, C3-H); 8.04(s 1H C5-
H); 8.25 & 8.40 (d 2H J=8.4 HzAr-H); 9.15(s, 1H Ar-H).
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