
S P R I N G E R B R I E F S I N
H U M A N  CO M P U T E R I N T E R AC T I O N

Jacob D. Oury
Frank E. Ritter

Building Better
Interfaces
for Remote
Autonomous
Systems
An Introduction for
Systems Engineers

Human–Computer Interaction Series

SpringerBriefs in Human-Computer Interaction

Editors-in-Chief
Desney Tan
Microsoft Research, Redmond, WA, USA

Jean Vanderdonckt
Louvain School of Management, Université catholique de Louvain,
Louvain-La-Neuve, Belgium

SpringerBriefs in Human-Computer Interaction presents concise research within
the fast growing, multidisciplinary field of Human-Computer Interaction (HCI).
Designed to complement Springer’s prestigious Human-Computer Interaction
Series, this Briefs series provides researchers with a forum to publish cutting-edge
scientific material relating to any emerging HCI research that is not yet mature
enough for a volume in the Human-Computer Interaction Series, but which has
evolved beyond the level of a journal or workshop paper.

SpringerBriefs in Human-Computer Interaction are shorter works of 50–125 pages
in length, allowing researchers to present focused case studies, summaries and
introductions to state-of-the-art research. They are subject to the same rigorous
reviewing processes applied to the Human-Computer Interaction Series but offer
exceptionally fast publication.

Topics covered may include but are not restricted to:

•	 User Experience and User Interaction Design
•	 Pervasive and Ubiquitous Computing
•	 Computer Supported Cooperative Work and Learning (CSCW/CSCL)
•	 Cultural Computing
•	 Computational Cognition
•	 Augmented and Virtual Reality
•	 End-User Development
•	 Multimodal Interfaces
•	 Interactive Surfaces and Devices
•	 Intelligent Environment Wearable Technology

SpringerBriefs are published as part of Springer’s eBook collection, with millions
of users worldwide and are available for individual print and electronic purchase.
Briefs are characterized by fast, global electronic distribution, standard publishing
contracts, easy-to-use manuscript preparation and formatting guidelines and have
expedited production schedules to help aid researchers disseminate their research as
quickly and efficiently as possible.

More information about this subseries at http://www.springer.com/series/15580

http://www.springer.com/series/15580

Jacob D. Oury  •  Frank E. Ritter

Building Better Interfaces
for Remote Autonomous
Systems
An Introduction for Systems Engineers

ISSN 1571-5035	        ISSN 2524-4477  (electronic)
Human–Computer Interaction Series
ISSN 2520-1670	        ISSN 2520-1689  (electronic)
SpringerBriefs in Human-Computer Interaction
ISBN 978-3-030-47774-5        ISBN 978-3-030-47775-2  (eBook)
https://doi.org/10.1007/978-3-030-47775-2

© The Author(s) 2021
Open Access  This book is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons license and indicate if
changes were made.
The images or other third party material in this book are included in the book's Creative Commons
license, unless indicated otherwise in a credit line to the material. If material is not included in the book's
Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Jacob D. Oury
Applied Cognitive Science Lab, College of
Information Sciences & Technology
Pennsylvania State University
University Park, PA, USA

Frank E. Ritter
Applied Cognitive Science Lab, College of
Information Sciences & Technology
Pennsylvania State University
University Park, PA, USA

. This book is an open access publication.

https://doi.org/10.1007/978-3-030-47775-2
http://creativecommons.org/licenses/by/4.0/

To my parents, Molly and John Oury, for
always putting up with my antics and
keeping my head from getting too big. (Oury)

To my mentors and mentees who have done
the same for me. (Ritter)

vii

Preface

This brief book Building Better Interfaces for Remote Autonomous Systems: An
Introduction for Systems Engineers, which we shorten to Building Better Interfaces
here, originated from work that we have done with L3Harris Technologies (for-
merly Harris Corp) on improving interface design for operations centers. We real-
ized that this work could be valuable to a wide range of designers and engineers,
especially in fields that have typically not prioritized interface design in their proj-
ects. We wrote this book for the engineers, designers, and managers that are respon-
sible for building large, multi-team systems found in places like NASA’s control
rooms or control rooms for nuclear power plants. This book gives specialized engi-
neers and developers a broad review of important design frameworks and knowl-
edge about how operators see, think, and act so they can make better decisions and
better interfaces. It is a brief book for busy designers to quickly introduce these
issues and some of the many ways to improve interfaces. Thus, it is part of the
SpringerBriefs in Human-Computer Interaction.

In the past several years, the significance of interface design has become more
apparent; specialized user experience design teams are becoming more common in
unexpected places like the defense industry. As recognizing the importance of
usability becomes more common, we hope that this book can help shape the dis-
course regarding how interface design fits alongside more well-established fields
like electrical engineering.

This book advocates for user-centered design, rather than user experience design,
as the central goal of the team handling interface design. User experience caters to
the user, focusing on how they feel or respond emotionally to design choices. This
is a less useful and less appropriate approach for the types of systems we discuss in
this book. It can be very appropriate for consumer products. In contrast, user-cen-
tered design takes the user off a pedestal and places them onto equal footing with
the rest of the system as simply another subsystem or component. This makes stake-
holders and designers assess risks to project failure more accurately for systems that
require human input. Failure of any subsystem, even the human operator, can lead

viii

to disaster. Every component has safe operating conditions that give reliable results;
this book demonstrates how you can begin applying those same standards to the
operator and their interactions with other systems.

This book is suitable for undergraduates studying any field and system designers.
It is designed to be a standalone document. Readers with some experience in inter-
face design and psychology may find some sections trivial, but we hope that every
reader will gain some value from having read it. For those wanting a deeper review
of these topics after finishing this book, we recommend Foundations for designing
user-centered systems by Ritter, Baxter, and Churchill. In many ways, Building
Better Interfaces is a practical application of the lessons from Foundations for
designing user-centered systems for designing remote, autonomous systems.

College of IST� Jacob D. Oury
The Pennsylvania State University
University Park, PA, USA�

Frank E. Ritter

Preface

ix

Acknowledgments

An early draft of this book was produced as part of a project with L3Harris
Technologies. This project and book wouldn’t have come together without the sup-
port of Mark Wynkoop, Tom Wells, Jim Ringrose, Gisela Susanne Bahr, and the
other current and former members of the Specialty Engineering UX Team includ-
ing Alison Sukolsky, John Blood, Craig Pickering, and Hanna Clark. Finally, Mark
Foster provided incredible insight and was the primary designer of the Water
Detection System used as an example in this book.

We greatly appreciate the engaging discussions and comments on this book from
our colleagues, friends, and mentors associated with the Applied Cognitive Science
Lab at Penn State including Sarah Stager, David Reitter, Shan Wang, Raphael
Rodriguez, Pooyan Doozandeh, Chad (Chungil) Chae, April (Yu) Yan, Farnaz
Tehranchi, and Caesar Colchado.

We also appreciate the extensive and very useful comments from our colleagues
Steve Croker and Gordan Baxter. Sven Bilen gave sage advice on key occasions. We
also thank Helen Desmond, who was patient and helpful during the development of
this book, and an anonymous Springer copyeditor helped in preparing and publish-
ing this book.

The opinions are those of the authors and do not necessarily represent those of
L3Harris.

xi

Contents

	1	�� Introducing Interface Design for Remote Autonomous Systems���������     1
	1.1	��� Introduction���     1
	1.2	��� The Role of Operators���     2
	1.3	��� How to Improve Designs���     5
	1.4	��� Risk-Driven Design���     6
	1.5	��� The Design Problem Space for Op Centers���������������������������������������     8

	1.5.1	��� Know Your Technology���     9
	1.5.2	��� Know Your Users and Their Tasks���    10
	1.5.3	��� Test Designs Broadly and with Cognitive

Walkthroughs���    11
	1.6	��� Example Task: The Mars Water Detection System���������������������������    12

	1.6.1	��� Operation Center Organization ���    13
	1.6.2	��� Water Detection System Structure���    14
	1.6.3	��� Example Issues��    14

	1.7	��� Principles for Design���    16
	1.8	��� Conclusion���    18
References���    19

	2	�� How User-Centered Design Supports Situation Awareness
for Complex Interfaces���    21
	2.1	��� Introduction���    21
	2.2	��� User-Centered Design���    22
	2.3	��� Situation Awareness: The Key to UCD���    25

	2.3.1	��� Stage 1: Perception ���    26
	2.3.2	��� Stage 2: Comprehension ���    29
	2.3.3	��� Stage 3: Projection���    31

	2.4	��� Summary: Cognitive Mechanisms for Situation Awareness �������������    31
References���    34

xii

	3	�� Cognition and Operator Performance ���    37
	3.1	��� Introduction���    37
	3.2	��� Visual Perception���    38

	3.2.1	��� Visual Processing���    38
	3.2.2	��� Color Blindness���    39
	3.2.3	��� Visual Search���    39
	3.2.4	��� Pre-attentive Visual Processing���    40
	3.2.5	��� Summary of Visual Perception and Principles�����������������������    43

	3.3	��� Attention ���    47
	3.3.1	��� Attentional Vigilance���    48
	3.3.2	��� Resuming Attention: Interruptions

and Task-Switching���    49
	3.3.3	��� Signal Thresholds and Habituation���������������������������������������    51
	3.3.4	��� Speed-Accuracy Trade-off (Or How to Design

for Acceptable Errors)���    52
	3.3.5	��� Summary of Attention���    52

	3.4	��� Working Memory and Cognition���    55
	3.4.1	��� Working Memory���    56
	3.4.2	��� Cognitive Load���    57
	3.4.3	��� Summary of Working Memory and Cognition ���������������������    59

	3.5	��� Summary ���    59
References���    60

	4	�� Conclusion and Final Comments���    63
	4.1	��� Introduction���    63
	4.2	��� The Need for User-Centered Design���    64
	4.3	��� The Need for Better Shared Representations�������������������������������������    65
	4.4	��� Open Problems���    65
	4.5	��� Ways to Learn More���    65

	4.5.1	��� Readings to Learn More��    67
	4.5.2	��� Reading Groups���    68
	4.5.3	��� Continuing Education ���    68

References���    68

��Appendices���    71
��Appendix 1: Detailed Example Problem Space—The Water
Detection System (WDS)���    71
Appendix 2: Design Guidelines for Remote Autonomous Systems �������������    87
��Appendix 3: All Design Principles Described in This Book�������������������������   116
��References ���   117

��Author Index���   119

��Subject Index���   123

Contents

1© The Author(s) 2021
J. D. Oury, F. E. Ritter, Building Better Interfaces for Remote Autonomous
Systems, Human–Computer Interaction Series,
https://doi.org/10.1007/978-3-030-47775-2_1

Chapter 1
Introducing Interface Design for Remote
Autonomous Systems

Abstract  This chapter presents a high-level overview of how designers of com-
plex systems can address risks to project success associated with operator perfor-
mance and user-centered design. Operation Centers for remote, autonomous
systems rely on an interconnected process involving complex technological sys-
tems and human operators. Designers should account for issues at possible points
of failure, including the human operators themselves. Compared to other system
components, human operators can be error-prone and require different knowledge
to design for than engineering components. Operators also typically exhibit a wider
range of performance than other system components. We propose the Risk-Driven
Incremental Commitment Model as the best guide to decision-making when
designing interfaces for high-stakes systems. Designers working with relevant
stakeholders must assess where to allocate scarce resources during system develop-
ment. By knowing the technology, users, and tasks for the proposed system, the
designers can make informed decisions to reduce the risk of system failure. This
chapter introduces key concepts for informed decision-making when designing
operation center systems, presents an example system to ground the material, and
provides several broadly applicable design guidelines that support the development
of user-centered systems in operation centers.

1.1  �Introduction

Our increasingly complex society relies on an interconnected network of systems,
each responsible for carrying out its own role effectively. The most important com-
ponents within the systems of systems are called critical systems. Critical systems
are defined by the cost of their failure; critical systems are called as such because
their failure will lead to loss of life, destruction of the system, or failure for the
organization as a whole. For example, failure in central command for the space mis-
sions may leave astronauts without the information (and oxygen!) they need if their
oxygen tank were to fail a few days into the mission. Air traffic control is another
example of a critical system; even minor mistakes can have devastating conse-
quences. Not every critical system, however, needs to be part of a large international
organization. A 911 emergency call center is responsible for triaging calls,

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47775-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-47775-2_1#DOI

2

dispatching appropriate services, and providing support for the caller; loss of the
call center means local fire, medical, and police services lose their ability to coordi-
nate and respond.

Whether it’s NASA’s Christopher C. Kraft Jr. Mission Control Center in Houston,
the Indianapolis Air Route Traffic Control Center, or a local 911 dispatcher, these
critical systems all contain some form of an operation center at the heart of their
operation, and these operation centers are vital communication hubs for the transfer
of information. Within any given op center, there are going to be different stake-
holders, tasks, and priorities that must be considered in their design. A single room
or even a single screen could be the link between the op center and multiple com-
plex systems. Figure 1.1 shows a montage of the types of system components this
book addresses. This book primarily examines operation centers that manage
remote, autonomous, asynchronous systems.

The book is designed to be useful to managers, designers, and implementors of
op centers. Managers can use it to adjust their process to account for a wider range
of risks caused by failing to support their users and their tasks. Designers can use it
to manage the process, learn about users, and become more aware of useful types of
shared representations. Implementers can use it to provide context for seemingly
small decisions within an interface that are too minor to be described formally or
have not been specified. Where we can, we also identify design principles and
aspects of the operator, interface, or process that suggest prescriptive actions to cre-
ate better interfaces.

This introductory chapter makes the case for including knowledge about users as
part of the system and design process. It will then briefly describe a way to include
this knowledge (the Risk-Driven Spiral Model) and how this knowledge could be
applied to operation centers. The rest of the book will use an example system called
the Water Detection System (WDS) to help illustrate the principles, concepts, and
practical implications derived from the material covered. The introduction con-
cludes with some example guidance that can be used as an executive summary or as
a summary for readers who might not have time to read the whole book. The remain-
der of the book provides support for the guidelines. The appendices include a
worked example that shows how the guidance is applied. Table 1.1 defines some

common terms used throughout this book.
The design approach that results from this book will be primarily a human–com-

puter interaction (HCI) approach to make the system usable. Aspects of improving the
system through user-centered design (UCD) and making the system more enjoyable

(while maintaining usability) with user experience (UX) design will be included as well.

1.2  �The Role of Operators

Operators can greatly influence operation center success. In a study of errors in air
traffic control, a type of op center, Jones and Endsley (1996) found that seven out
of ten times system failures are due to operator error. Their error analysis for

1  Introducing Interface Design for Remote Autonomous Systems

3

Fig. 1.1  Technological advancement has expanded our ability to use and control complex systems
in new ways and from new locations. To make full use of these powerful new systems, usability is
paramount. (Image by Kenan Zekić)

1.2  The Role of Operators

4

aviation disasters organized the contributing errors by operators using Endsley’s
(1995) theory of situation awareness. The situation awareness framework predicts
operator performance by rating the operator’s awareness of necessary information.
When the errors were organized into their stage of situational awareness, they found
that misperception or non-perception of the necessary information was the primary
cause of air disasters about 75% of the time. Going up in complexity, failing to suc-
cessfully comprehend the meaning or the importance of information was the pri-
mary cause in only about 20% of air disasters. Finally, at the lowest error rate,
projection into near-future system states is the key in less than 5% of disasters.
Breaking down these failures into more specific types of failure showed that atten-
tional failure (35%; operator has information but fails to attend to it), working
memory failure (8.4%; operator attends to information but forgets it), and mental
model failure (18%; operator’s understanding of the situation does not match real-
ity) account for the most common events that contribute to operator errors in op
centers.

Operators of complex systems use a set of cognitive mechanisms that are fallible
in predictable ways. Systems engineers, developers, and designers can begin miti-
gating the risks associated with fallible cognitive behavior by learning about the
factors and mechanisms that influence operator performance and reliability. Not all
these mechanisms can be ameliorated by system design, but they do shed light on
design opportunities where systems could be improved and better support operators.
This book suggests ways to do that.

Modifying op center designs could help reduce these types of system failures by
providing the information more clearly, making information more comprehensible,
requiring less attention (perhaps by reducing other less useful information), and
appropriately matching and supporting the operator’s mental model and tasks. How
can these issues be addressed throughout the development cycle of complex sys-
tems? We propose a design process based on understanding the operator, their tasks,
and the technology.

Table 1.1  Common terms and definitions

Term Definition

Operation center
(op center)

A centralized location used to monitor and exert control over a system,
situation, or event. Can sometimes be used interchangeably with command
center or control room

Human–computer
interaction (HCI)

A broad term for research into the design and use of computer technology,
particularly as it relates to human–machine interactions. HCI typically
includes user-centered design and user experience design under its purview

User-centered
design (UCD)

A design process focused on fitting the goals, tasks, and needs of the user to
support optimal performance for the overall human–machine system

User experience
design (UX)

A design process that extends HCI to include all design aspects that are
perceived and felt by the user to build systems that are desirable to use in
both function and experience

1  Introducing Interface Design for Remote Autonomous Systems

5

1.3  �How to Improve Designs

The variety and complexity of work being performed in op centers prevents strict
design guidelines from being a “silver bullet” for every system design issue. The
different goals, priorities, and tasks across op centers will likely add up to being
nearly equal to the number of op centers itself. However, the common element
across op centers is the role of human operators. Operators serve as the interface
between the wide range of information sources and the higher command structure.
This can involve a vast variety of tasks ranging from call intake and prioritization
within an emergency response center to monitoring radar for airborne threats.
Furthermore, the task variety is compounded by having a single operator be respon-
sible for multiple tasks. For example, an operator at a 911 dispatch center will often
be simultaneously responsible for (a) providing emotional support and guidance to
the caller, (b) recording crucial information about the situation, (c) alerting appro-
priate emergency responders, and (d) answering questions for emergency respond-
ers while en route.

The complexity and variety of tasks within an op center means that the system
designers will need to know their users, their users’ tasks, and the technology and
then combine these using their judgment within the design process. At all times,
designers must be aware that interfaces that are hard to read, use, understand, or
predict from are constant risks to project success; however these issues are not
always easily solvable. Designers will have to use judgment when aspects of the
users and their tasks are not fully known. They will also have to use judgment to
prioritize tasks or user types and to balance different design requirements. Designers
face many challenges when balancing human and system factors, and this book will
help guide their decision-making when solutions are not immediately clear.

Simply providing a set of design guidelines will not suffice, because one size
does not fit all. Due to the varied nature of tasks and systems across operation cen-
ters, we will need to provide a suitable foundation for designers to guide their
decision-making when there is no direct solution. Thus, this book summarizes a
useful process and design issues to keep in mind when designing operation centers.
It goes further, however, by providing a worked example of design and design steps
for an example system.

This book spends more time defining a useful interface design process than giv-
ing simple guidelines for design. This user-and-task-oriented process should lead to
better interfaces that support operators and do this in a better way than simply pro-
viding a set of ten “rules” about font size, which might need to vary and which will
conflict at times with rules about how many objects need to be visible on the inter-
face. And, yet, in providing background knowledge about operators and their tasks,
there will inevitably be sensible conclusions that look like and work like guidelines.
The design recommendations will often provide “safe” recommendations for
designers. Design recommendations will be accompanied by brief supporting
details meant to substantiate the information. This self-contained book will provide
system designers with a framework for improving user experience and performance

1.3  How to Improve Designs

6

by incorporating human-centered design principles into the design and implementa-
tion of critical systems.

System designers will benefit greatly from understanding the foundational con-
cepts and literature that support this guidance. This book provides a simple review
of the literature to support this guidance. This review serves several purposes: (a)
offering motivation for including the topics chosen, (b) describing the related
research that has contributed to the high-level guidance, and (c) providing readers
with a convenient method to learn more about a topic if needed. While not every
system developer will choose to read this book, it provides interested readers with a
more condensed treatment than available from reading several books on user-cen-
tered design and users. The final review and guidance should be detailed enough to
provide further guidance in a standalone format.

1.4  �Risk-Driven Design

The design and performance of an operation center will depend on financial consid-
erations, task constraints, and the goals of the designers. However, clearly there are
limitations on what is possible for any given design process (e.g., deadlines, access
to user testing, ambiguous information). In an ideal world, every project would have
ample time, personnel, and funding to be able to create the best product possible:
clearly this is an unrealistic scenario. Thus, designers and other stakeholders must
make decisions about how to ensure project success throughout the design process.

We propose that the Risk-Driven Incremental Commitment Model (RD-ICM) pro-
vides the best framework for creating effective systems, including assessing the risks
associated with design choices (Pew and Mavor 2007). Figure 1.2 shows the RD-ICM
in spiral form. Implementation of RD-ICM involves assessing the risk associated
with a given decision. Boehm and Hansen (2001) define risks within the RD-ICM as
“situations or possible events that can cause a project to fail.” RD-ICM uses an itera-
tive, flexible procedure to prompt the stakeholders to make candid assessments of
what the risks are at each stage of the project. Implementing RD-ICM effectively
leads to decisions contrary to the dogmatic idea that UX be prioritized at every stage,
but this is because UX issues are only explored once their risks are relatively large.

The RD-ICM and risk-driven design require four key features:

	1.	 Systems should be developed through a process that considers and satisfices the
needs of stakeholders, that is, provides a good and achievable, but not necessar-
ily the best solution.

	2.	 Development is incremental and performed iteratively. The five stages (explora-
tion, valuation, architecting, development, and operation) are performed for each
project’s lifecycle.

	3.	 Development occurs concurrently across various project steps through simulta-
neous progress on individual aspects of the project; however, effort towards each
aspect varies over time.

1  Introducing Interface Design for Remote Autonomous Systems

7

	4.	 The process explicitly takes account of risks during system development and
deployment to determine prioritization for resource deployment: minimal effort
for minimal-risk decisions, high effort for high-risk decisions.

Within the spiral, each stage has phases of (a) stakeholder valuation and eval-
uation; (b) determination of objectives, alternatives, and constraints; (c) evalua-
tion of alternatives and identification and resolution of risks; and (d) development
and verification of the next-level product. This approach allows work on risks
to proceed in parallel and comes back to value the alternatives with the
stakeholders.

Here is an example of how the RD-ICM could shape design choices. During the
early design process of a complex system, the risks of not getting the system up and
running (e.g., failure to meet expectations for funders or other high-level stakehold-
ers or technical connection issues) may outweigh the risks associated with having a
nonideal interface design (e.g., frustrated users). The stakeholders have determined

1

2

3

4

5

6

STAKEHOLDER
COMMITMENT
REVIEW POINTS:

Opportunities to
proceed, skip
phases, backtrack,
or terminate

Exploration Commitment Review

Valuation Commitment Review

Architecture Commitment Review

Development Commitment Review

Operations1 and Development2
Commitment Review

Operations2 and Development3
Commitment Review

Cumulative Level of Understanding, Cost,Time, Product, and
Process Detail (Risk-Driven)

Concurrent
Engineering of
Products and
Processes

2345

ARCHITECTINGARCHITECTING

VALUATION

DEVELOPMENT

1

OPERATION2

16

OPERATION

ARCHITECTING

EXPLORATION

Fig. 1.2  The Risk-Driven Incremental Commitment Model as a spiral of development.
(Reprinted from Pew and Mavor 2007, p. 48)

1.4  Risk-Driven Design

8

that functionality (the task-related aspects of the design) should be prioritized over
the user experience (UX, the users’ feelings, emotions, values, and responses to the
system). Instead, the UX design choices could be pushed down the pipeline and
then reassessed at a later stage. This would enable the engineering team to focus on
creating something that “works.” However, once a functional system is formed, the
team would reassess the risks associated with a frustrating user interface. If the
interface fails to convey critical information in a consistent manner to most users,
the risks of a user misinterpreting a signal may outweigh the benefits of adding
further features to the system.

Each stage has its own iterative assessments of how to successfully complete the
project. Further information on this approach is available from a National Research
Council Report (Pew and Mavor 2007), a special issue of the Journal of Cognitive
Engineering and Decision Making (Pew 2008), and an overview in the Foundations
for Designing User-Centered Systems textbook (Ritter et al. 2014).

So, if you adopt a risk-driven process that includes human operator-related risks,
you still must be able to recognize and reduce these risks. This book seeks to pro-
vide background knowledge to help developers judge and ameliorate the risks to
system success that developers face during the design and implementation process
of op centers. We hope to provide knowledge and guidance that can help designers
understand how their design choices may affect task performance throughout the
lifetime of the system.

Thus, we suggest following a risk-driven spiral model. This includes formal
reviews with stakeholders at each cycle to assess risks and work focused to reduce
risks, not just build a system. This approach uses a range of design documents as
shared representations between the stakeholders and the designers and implement-
ers. We include an example set in Appendix 1.

1.5  �The Design Problem Space for Op Centers

This book reviews how the risks of failures due to human performance can be allevi-
ated throughout the design process of interfaces within operation centers. Because
designing an interface for an op center is the design problem, we briefly review this
design space and provide an overview of an example before addressing further com-
mon risks and issues that apply to operator interactions with the systems.

Op centers act as the nervous system within a larger body, directed to monitor or
respond to a set of events. The op center aggregates information input and output to
facilitate a rapid response to changing conditions. The specific procedures used are
typically guided by senior staff, while operators themselves will be responsible for
interpreting information, transmitting orders, and following preset procedures for
specific situations.

There are three components to this design problem: the technology to support
and implement the system, the users, and the users’ tasks. The first item is briefly

1  Introducing Interface Design for Remote Autonomous Systems

9

noted as an important component that will support and constrain designs. The final
two are the focus of this book, so we address them together.

1.5.1  �Know Your Technology

Across the range of stakeholders involved with the design of a system, the most
influential stakeholders will likely prioritize system functionality over concerns of
operator-related risks like improving user-centered design. While this may irk the
designers of human-facing subsystems, this basic fact should influence how the
design process is conducted. Thus, system designers should have at least some
understanding of how the technology within their system functions.

The underlying, unmanned technology within op centers processes and transmits
the information that is presented to an operator. So, the first issue in design is to
know what the technology can and cannot do. The technology in an op center is
likely built from varied inputs and outputs, ranging from manually entered paper
documentation to antenna arrays linked to distant sensors. On its own, a component
like an oxygen sensor simply outputs an associated metric. However, once inte-
grated into an environmental monitoring station in an op center, additional design
features to support human use (i.e., an interface, optional controls, and memory for
time series) become apparent. Interface designers may not need to understand the
intricacies of each component but should have some knowledge of the technology
associated with their system.

The types of systems built for op centers are likely to differ greatly in their under-
lying technology and purpose. In some cases, designers can grasp the underlying
technology well enough to create effective systems, but this may not always be the
case. Building an electrical circuit monitoring system and building a hydrothermal
monitoring system may require incorporating subject matter experts into the design
process, especially for high-stakes systems like a nuclear power plant.

Finally, designers should understand the tools they need to build interfaces as
well. The interface tools need to be able to support the designers in creating usable
interfaces, which not all tools support well (Pew and Mavor 2007; Ritter et al. 2014).
To our previous example, an electrical circuit monitoring system may require
designers to reference an unfamiliar program used by electrical engineers like
Pspice (Personal Simulation Program with Integrated Circuit Emphasis).
Stakeholders should ensure that system designers can successfully understand and
utilize the necessary information.

Understanding the technology within the system and used to build the system
will help with the inevitable design choices. The typical issue is where designers
should fit the person to the machine vs. fit the machine to the person. Sometimes,
technological or personal constraints will prevent designers from optimizing the fit
in one direction or another, but knowing the technology will help reduce problems
of fit in both directions.

1.5  The Design Problem Space for op Centers

10

1.5.2  �Know Your Users and Their Tasks

On the other hand, designs that do not support users to do their tasks can fail for this
reason as well, so system designers need to study the user and how to design for
users. The focus of this book is to explain how to know the users of the op centers,
the operators, and their tasks. Human operators and their tasks, in many cases, will
be as complex as the technology. The only difference is that many technology
designers have been trained in technology design, but not in the science of how
operators think, learn, and do their tasks. This book notes some of the literature,
results, and methods for understanding operators to help in the design process.
Similarly, it describes methods for improving the work process, like task analysis
(TA), which is a useful tool for specifying, implementing, and checking op center
designs.

The technology may be able to deliver, but will the operator be able to under-
stand and use the system at the expected speeds? Will the tasks, including their
microstructure and dependencies, be supported? Or will the operator have to correct
and store information (in a more fragile memory than computer memory)? These
types of mismatches between operator and system are frequent causes of system
failure.

The gold standard in design (Card et al. 1983; Pew and Mavor 2007; Ritter et al.
2014) is to know the operators, know what tasks they are trying to perform, and then
use the technology as best as it can be used, to support the tasks based on the opera-
tor’s capabilities. Designers who use their own understanding of a system as a refer-
ence (instead of that of the actual users) commit the fundamental attribution error
and risk-creating systems that are unwieldy or outright unusable by the intended
users (Baxter et al. 2014). The fundamental attribution error of design refers to
when designers assume all users are just like themselves. As we note in our example
system in this book, this is often a mistake and leads to problems in usability because
the designer and the operator have different knowledge, skills, and abilities. In addi-
tion, leaving out tasks or making them less easy to perform, or making state infor-
mation visible only upon query, are all mistakes that are easily avoided, but require
knowing the operators and their tasks.

Knowing the frequency and importance of tasks is also important. Common and
important tasks should be more easily and safely accomplished than less common
and less important tasks. When the two factors of frequency and importance collide,
then possible design choices become apparent. At this point designers can assess the
situation through the RD-ICM and reduce risk by getting feedback from stakehold-
ers, researching similar design problems, or testing multiple designs depending on
the risks associated with each choice.

There are numerous guidelines on how to create task analyses (e.g., Cox 2007;
Ritter et al. 2014, Ch. 11). There are tools to support TA (i.e., Cogulator1), but often
plain text documents provide the best value and are useful enough for most designs.

1 http://cogulator.io/

1  Introducing Interface Design for Remote Autonomous Systems

http://cogulator.io/

11

TA is a lot like pizza—while the balance of contents may vary in approaches, most
versions are usable and enjoyable.

1.5.3  �Test Designs Broadly and with Cognitive Walkthroughs

During design and implementation, there may be unknown aspects of the users,
their tasks, or the interactions between the two. A way to reduce the risk of system
failure is to test the resulting system. The test can be quite simple, for example,
simply to see if the tasks can be performed. Alternatively, there are more complex
methods, like running a small A/B experiment with two possible designs or measur-
ing task performance with actual users under realistic conditions. Pew and Mavor
(2007) review the range of these tests, and there are multiple textbooks describing
them (e.g., Cairns and Cox 2008; Lewis and Rieman 1994). Testing interfaces will
reduce the range of usability risks, but test methods vary by how much of a time and
resource commitment is required to get useful results. Asking someone unfamiliar
with the project to review the proposed interface mockup may be essentially free,
whereas conducting an A/B test with expected users may take weeks (if not months)
to fully set up, run, and analyze, but will be much more useful.

The simplest test is to have naïve operators use the interface and observe them.
This approach is explained in many textbooks, including Ritter et al. (2014). Such
tests with naïve users could last as little as 10 min and cost next to nothing (i.e., ask
a colleague to use the interface and provide comments) or could take multiple
months and cost $100 k (i.e., conducting a formal study on task performance under
realistic conditions). Stakeholders should consider system requirements and risks to
determine how their system should be tested.

We also support using “cognitive walkthroughs” (Polson et al. 1992) to examine
the usability of the system. A cognitive walkthrough is a method for evaluating the
learnability and usability of an interface by simulating the cognitive activities of a
typical user during normal tasks. The typical process for performing cognitive walk-
throughs begins with describing the goals and tasks that are required by the system.
First, the goal structure of the model is generated from expert interviews, prior
research, and other forms of information gathering. The goal structure, like a task
analysis, is arranged into a hierarchy. The top-level goals represent the overall task.
Each top-level goal is composed of intermediate-level goals (subtasks), each of
which is composed of a set of individual actions.

Cognitive walkthroughs, when performed successfully, should determine
whether the operator of a system is making the correct connections between each
level of the goal. That is, the analyst compares the goals with the interface and
attempts to map how a typical user would accomplish each goal, subtask, and action.
If the analyst cannot make some mapping of a goal to the interface, this will suggest
an area of the interface that requires improvement or further work. One potential
pitfall here can occur if the analyst is too familiar with the interface (relative to a
true “typical user”), as they will not see the same problems that users will see, at

1.5  The Design Problem Space for op Centers

12

least novice users. The data collected from cognitive walkthroughs can enable
developers to provide supplementary “clues” or signals to the operator at specific
locations to ensure that each goal, sub-goal, and individual action provide a coher-
ent information set capable of being understood and followed by the operator
(Blackmon et al. 2002; Polson et al. 1992).

Cognitive walkthroughs require a task analysis and thus will take between an
hour and a short working day to perform in most cases. The length of time is based
on the number of tasks and how difficult they are to perform. Cognitive walk-
throughs may require domain knowledge and thus may be performed in teams com-
prised of an analyst working through the task analysis and a domain expert making
the decisions.

Whenever detailed time predictions are useful, we recommend using the
keystroke-level model (KLM) of Card et al. (1980, 1983). This approach provides
time estimates based on the keystrokes, mouse moves, mental operators, system
response time, and other possible cognitive operators. The times are engineering
estimates (i.e., ± 20%), but basically support fair comparisons of different inter-
faces. The KLM time predictions suggest where and how time is spent on an inter-
face and can help identify ways to improve performance. The regularity of the
interactions across subtasks also suggests how much needs to be learned by the
users and where knowledge may be misapplied.

There are numerous ways to reduce system failure due to usability problems.
This section noted a few and how to find more. Next, an example system is intro-
duced to ground this discussion and show examples of how potentially abstract
principles can be put into practice.

1.6  �Example Task: The Mars Water Detection System

This book provides context for readers through a hypothetical use case for a
semiautonomous system that searches for water. The scenario is based on design-
ing an op center for command and control of a remote Water Detection System
(WDS) to accompany a manned mission to Mars. The WDS is a mostly autono-
mous mobile robot that searches Mars for signs of water, but the WDS sometimes
requires human intervention to respond to novel or risky scenarios. The WDS
will arrive alongside the mission team and begin operation following its assem-
bly by the team. Following its activation and an initial system check, the op
center on Earth will take over sole command of the WDS for a 10-year mission.
Scientists in the program office will make high-level decisions to support the
mission of finding water, while the Earth-based operators implement action plans
and monitor the various systems for any current or upcoming issues. The rest of
this chapter provides a brief review of the WDS and its design requirements

1  Introducing Interface Design for Remote Autonomous Systems

13

before concluding with some design recommendations that arise from this chap-
ter. A detailed description is presented in Appendix 1.

1.6.1  �Operation Center Organization

The WDS is one part within the larger structure of an op center hosting dozens of
systems that require constant oversight. While the WDS is important for the mis-
sion, it may not be the primary focus for the workers at any given time. The com-
mand structure of the op center involves bidirectional communication between
scientists from the Program Office who funded the WDS and the operators respon-
sible for direct interaction with the systems. Figure 1.3 shows a few example inter-
face prototypes for the WDS. While the design will vary depending on the needs of
the system, these systems present many different metrics of system performance.
Operators will monitor the system, pass along alerts, and update the alerts depend-
ing on their risk assessment for a given situation. Scientists will take this informa-
tion and pass back commands for the operators to transmit. Certain tasks will be

Fig. 1.3  Two example interface designs for the Water Detection System monitoring screen
(second example on next page)

1.6  Example Task: The Mars Water Detection System

14

able to be completed without direct contact with a supervisor, while others will need
direct response from supervisors prior to action.

1.6.2  �Water Detection System Structure

The WDS is comprised of several subsystems. The core system in the WDS is the
main control element (MCE). The MCE acts as the brain in the field by enacting
orders from Earth, monitoring other subsystems, and linking the subsystems
together. The other subsystems each perform specialized tasks (e.g., communicat-
ing with Earth, navigating the WDS, or collecting physical samples). However, all
subsystems share a set of key features that the operators may interact with over the
course of the mission. These features are shown in Table 1.2 and a diagram of the
WDS–Earth link is shown in Fig. 1.4.

1.6.3  �Example Issues

System designers may be unable to anticipate every risk to system success; how-
ever, the Risk-Driven Incremental Commitment Model drives the designers to try to
understand what risks are most likely to arise. Table 1.3 shows some example prob-
lems that could arise throughout the lifecycle of the WDS system, the risk of these
problems occurring, the solution, and who handles them.

Fig. 1.3  (continued)

1  Introducing Interface Design for Remote Autonomous Systems

15

The WDS is designed to autonomously handle most issues that arise, but human
interaction is required on a regular basis. Many of these tasks are simple mainte-
nance and acknowledgement of warnings. For example, when batteries are low, the
operator is required to acknowledge the low battery threshold. No action is required

Table 1.2  Key features built into each subsystem of the WDS

Feature Description

Status The current state and functionality of the subsystem, subsystem-specific
information, and environmental measures. The MCE checks and stores the status
of other subsystems until information is passed to Earth

Event logs Each subsystem records detailed event logs from all executed commands. Event
logs are periodically transferred to the MCE before being passed to Earth

Configuration Subsystems maintain a set of configuration fields that determine how the
subsystem performs its tasks. For example, the MCE will have a modifiable field
for checking a subsystem’s status that determines how long to wait for a
response before initiating troubleshooting procedures

Commands Commands for subsystems will include a time reference and may include
additional data if needed. Commands are first sent to the MCE before being
passed to the appropriate subsystem

Redundancy Nearly every subsystem has an A and B side to provide a backup element in case
of any issues; however only one side of each subsystem operates at any given
time. These redundant systems are an identical copy of the original system

Fig. 1.4  Diagram of the Water Detection System (WDS) and its connection to the operation center

1.6  Example Task: The Mars Water Detection System

16

other than clearing the notification. Occasionally, however, the WDS will face an
urgent problem that requires human input. These scenarios are rare, so the operator
has limited training in how to address the issues.

1.7  �Principles for Design

Based on the target system description, the example system, and the design process,
we can provide an overview of the book as a set of design principles. These princi-
ples provide guidance on high-level concepts that the designers can use to improve
the systems they create. We aggregate the most important design principles described
in this book in Appendix 3. Though generally directed towards improving perfor-
mance across the human–machine interface, these principles will often apply to the
entire process of designing complex systems.

Principle 1.1: Don’t Assume the User to Be How You Think You Are
One of the most important considerations for designers is to dispel the assumption
that your users are just like you or how you think you are (we make the distinction
because you might not think or work exactly like you think you do). Unless your
user is a software developer, systems engineer, or astronaut, you will almost always

Table 1.3  Example problems faced by the WDS that require operator intervention

Problem description Risk Solution Personnel

WDS is navigating in a crater and
gets stuck. The operators need to
escalate the issue quickly because the
WDS witnessed unexpected terrain.
The mappings of Mars must be
updated appropriately

High Operator from Earth takes over
navigation and assumes manual
control. The typical operator is
not trained in this task, so the
supervising manager must take
control

Operator,
supervisor

Dust storm prevents batteries from
charging. The main control element
cannot complete all the scheduled
commands for the day

Moderate Communications element sends
an alert the NASA operators of
the low battery status. Operator
must re-task the day’s
commands because the
autonomous navigation element
would use all the remaining
power

Operator,
supervisor

Within the op center, the wall of
screens has many other systems
represented at the same time. If the
WDS has a problem, it might take a
few days for the engineers to remote
in to fix the issue. Therefore, the
overview screen will remain in a
degraded state. The problem arises
when something else goes wrong on
the system

Low Modify interface to facilitate
proper information presentation.
While issues may not be
initially present, the possibility
of other errors being missed due
to clutter is increased

Operator

1  Introducing Interface Design for Remote Autonomous Systems

17

need to adapt your design to meet the operator’s system-related needs, capabilities,
and wants (in that order).

Designers often (perhaps due to the ready availability of themselves and the
unavailability of example operators) make the risky assumption that the operator is
just like them—this is almost never the case. It is therefore important to provide
designers and engineers with the ability to consult users and other stakeholders
throughout the design process. Methods for learning about users can include talking
with them, watching them work, having them use your interfaces, reading their
autobiographies, or watching movies about their work environments (whether docu-
mentaries or even fictional accounts). Each of these methods for understanding
users will gather only a subset of the useful information; casting a wide net can
reduce the risk of overgeneralization and improve the breadth of the knowledge
gleaned from users.

Understanding the operator enables engineers to mold the system design around
the capabilities and constraints of its operators. Countless studies have shown that
engineers often fail to understand their users. This knowledge is the foundation of
user-centered design and leads to increased performance, financial savings, and
safer systems (e.g., Bias and Mayhew 2005; Lewis and Rieman 1994; Pew and
Mavor 2007; Ritter et al. 2014).

Principle 1.2: All Design Choices Have Trade-offs—Don’t Go in Blind
Most design choices have trade-offs. This basic fact will provide engineers with
difficult decisions throughout the design process. For example, increased font size
may increase readability by sacrificing some valuable interface “real estate” and
limiting the total amount of information displayed. Effectively resolving these dif-
ficult design choices requires designers to use knowledge of the tasks and users to
make informed decisions. Use of the risk-driven spiral model helps engineers make
the best decision given the constraints by consulting with stakeholders and using
what others have already learned. Designers will be presented with problems like
this, both big and small, throughout the design process, and not every individual
design choice is worthy of a full user study.

For example, consider a system that requires operators to search for digital files
while performing other tasks. An informed designer may realize that recognition
memory (i.e., “Is ‘book_manuscriptV47_final.docx’ the file you are looking for?”)
is more robust than recall memory (i.e., “What is the exact name of the file you are
looking for?”). While searching for files on a system, it is usually easy and familiar
to point and click around a series of folders to find some item, as in the standard
desktop operating system. Using a keystroke-based system (like a command line)
might be faster, but typically will require more experienced users or more training.
Stakeholders should consider which design would be best suited for their system
needs, users, and tasks.

As another example, consider a system that tasks operators with monitoring
incoming pings and classifying them as friendly, hostile, or unknown. An informed
designer will know that speed and accuracy are traded off when improving perfor-
mance. Emphasizing speed will require sacrificing accuracy (i.e., more errors), and

1.7  Principles for Design

18

the inverse is true as well. Stakeholders can use this knowledge to analyze how to
reach an acceptable balance between accuracy and speed. Although ideal solutions
are not always possible, designers can meet expectations by understanding the
expectations for task time and error rate.

Finally, almost any point-and-click system will use menu trees to support naviga-
tion. Many studies have explored how users’ decision-making, reaction time, and
error rate change in response to changing the menu design. The Hick–Hyman Law
(Hick 1952; Hyman 1953) predicts that choosing between more options (e.g., five
menu choices vs. three menu choices) takes longer, but the menu is more likely to
contain the correct choice. Signal detection theory shows a similar trade-off between
hits, misses, false alarms, and correct rejections.

When possible, engineers should make informed decisions about the trade-offs
between outcomes caused by different design choices.

Principle 1.3: Use and Test Multiple Designs
When designing a new display or component, create and consider multiple versions.
Get feedback on the possible designs from a source (or sources) that is as objective
as possible.

When you create a new display, particularly high stakes or main displays, you
should consider multiple versions. Considering multiple versions of designs tends
to lead to better designs at least in the tasks that have been studied (Dow 2011). The
best objective source for feedback is often actual users’ behavior.

Research by Steven Dow examined the design process in the egg drop task. In
this task, designers were given a set of standard materials and asked to design a
protective cradle for an egg so it will survive a large vertical drop. Groups that
designed more examples and that tested more often had reliably higher distances
from which their eggs could be safely dropped. Dow argues that the beneficial
outcomes seen from multiple designs will apply to other design tasks, and
we agree.

1.8  �Conclusion

Throughout the design of an op center such as the WDS system and interface, the
engineers’ top priority will be the creation of a working product. However, engi-
neers must account for the risks associated with all aspects of the project. Often, the
risks associated with some module’s reliability or function may trump the human
element: human error requires a task on which to err. However, as the iterative
design process advances, and the technology itself becomes more reliable, the
human operator becomes more likely to be the point of failure within a system.
Systems engineers will be neglecting a crucial component of their system if they do
not account for the system’s compatibility with the human operators. Although this
process will have any number of constraints and variations in its implementation,
the designers should be confident that their system can be effectively used by the

1  Introducing Interface Design for Remote Autonomous Systems

19

target population. The user interface should facilitate high performance without
undue stress on the operators.

Table 1.4 notes some questions that designers might have in mind when design-
ing and implementing control rooms, op centers, and other similar systems. The
next two chapters will review the psychology and human factors concepts and theo-
ries that give rise to the principles described above and should be considered to help
answer the questions in Table 1.4. In the conclusion to this book, we will note how
these questions have been answered.

References

Baxter, G. D., Churchill, E. F., & Ritter, F. E. (2014). Addressing the fundamental attribution error
of design using the ABCS. AIS SIGCHI Newsletter, 13(1), 76–77.

Bias, R. G., & Mayhew, D. J. (2005). Cost-justifying usability: An update for the internet age. San
Francisco: Morgan Kaufmann. https://doi.org/10.1016/B978-0-12-095811-5.X5000-7.

Blackmon, M. H., Polson, P. G., Kitajima M, & Lewis, C. (2002). Cognitive walkthrough for the
web. In CHI 2002: Proceedings of the Conference on Human Factors in Computing Systems,
(pp. 463–470). New York: ACM Press.

Boehm, B., & Hansen, W. (2001). The spiral model as a tool for evolutionary acquisition.
CrossTalk, 14(5), 4–11.

Cairns, P., & Cox, A. L. (2008). Research methods for human-computer interaction (1st ed., eds.
P. Cairns & A. L. Cox). New York: Cambridge University Press.

Card, S. K., Moran, T. P., & Newell, A. (1980). The keystroke-level model for user performance
time with interactive systems. Communications of the ACM, 23(7), 396–410. https://doi.
org/10.1145/358886.358895.

Table 1.4  Questions to be answered by this book for systems like the WDS

Process performance

1. Which user interface features reduce user stress and improve and maintain level of
performance?

2. Which user interface design factors mitigate performance degradation (speed, accuracy)
during the execution of detailed procedures for troubleshooting?

High-throughput reaction times

3. Which features in fast and complex interfaces impair or enhance user reaction time and
accuracy?

4. What are the reaction time and accuracy for a user to react to an alert and respond to the alert
with the correct actions using the task user interface? What are the upper limits of number
and speed of alerts before performance degrades?

5. What are the reaction time and accuracy for a user to distinguish between levels of criticality
using the task user interface?

6. What are the effects of time-on-task (i.e., work shift length) on reaction time and accuracy for
a user using the system?

Interface generalizability and individualized effectiveness

7. Which interface design elements vary and do not vary in effectiveness across various
demographics?

8. Which of the above questions are affected by age and prior education?

References

https://doi.org/10.1016/B978-0-12-095811-5.X5000-7
https://doi.org/10.1145/358886.358895
https://doi.org/10.1145/358886.358895

20

Card, S. K., Moran, T. P., & Newell, A. (1983). The psychology of human-computer interaction.
Hillsdale: Lawrence Erlbaum.

Cox, D. (2007). Task analysis, usability and engagement. In Human-computer interaction.
Interaction design and usability (pp. 1072–1081). Springer, Berlin, Heidelberg. https://doi.
org/10.1007/978-3-540-73105-4_117.

Dow, S. (2011). How prototyping practices affect design results. ACM interactions, 18(5), 54–59.
Endsley, M. R. (1995). Toward a theory of situation awareness in dynamic systems. Human

Factors, 37(1), 32–64. https://doi.org/10.1518/001872095779049543.
Hick, W. E. (1952). On the rate of gain of information. Quarterly Journal of Experimental

Psychology, 4(1), 11–26. https://doi.org/10.1080/17470215208416600.
Hyman, R. (1953). Stimulus information as a determinant of reaction time. Journal of Experimental

Psychology, 45(3), 188–196. https://doi.org/10.1037/h0056940.
Jones, D. G., & Endsley, M. R. (1996). Sources of situation awareness errors in aviation. Aviation,

Space, and Environmental Medicine, 67(6), 507–512. https://doi.org/10.1039/c4qo00187g.
Lewis, C., & Rieman, J. (1994). Task-centered user interface design: A practical introduction.

Retrieved from http://www.hcibib.org/tcuid/
Pew, R. W. (2008). Some new perspectives for introducing human-systems integration into the

system development process. Journal of Cognitive Engineering and Decision Making, 2(3),
165–180. https://doi.org/10.1518/155534308X377063.

Pew, R. W., & Mavor, A. S. (2007). Human-system integration in the system development process.
Washington, DC: The National Academies Press. https://doi.org/10.17226/11893.

Polson, P. G., Lewis, C., Rieman, J., & Wharton, C. (1992). Cognitive walkthroughs: A method
for theory-based evaluation of user interfaces. International Journal of Man-Machine Studies,
36(5), 741–773. https://doi.org/10.1016/0020-7373(92)90039-N.

Ritter, F. E., Baxter, G. D., & Churchill, E. F. (2014). Foundations for designing user-centered
systems. London: Springer. https://doi.org/10.1007/978-1-4471-5134-0.

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

1  Introducing Interface Design for Remote Autonomous Systems

https://doi.org/10.1007/978-3-540-73105-4_117
https://doi.org/10.1007/978-3-540-73105-4_117
https://doi.org/10.1518/001872095779049543
https://doi.org/10.1080/17470215208416600
https://doi.org/10.1037/h0056940
https://doi.org/10.1039/c4qo00187g
http://www.hcibib.org/tcuid/
https://doi.org/10.1518/155534308X377063
https://doi.org/10.17226/11893
https://doi.org/10.1016/0020-7373(92)90039-N
https://doi.org/10.1007/978-1-4471-5134-0
http://creativecommons.org/licenses/by/4.0/

21© The Author(s) 2021
J. D. Oury, F. E. Ritter, Building Better Interfaces for Remote Autonomous
Systems, Human–Computer Interaction Series,
https://doi.org/10.1007/978-3-030-47775-2_2

Chapter 2
How User-Centered Design Supports
Situation Awareness for Complex
Interfaces

Abstract  This chapter moves the discussion of how to design an operation center
down a level towards implementation. We present user-centered design (UCD) as a
distinct design philosophy to replace user experience (UX) when designing systems
like the Water Detection System (WDS). Just like any other component (e.g., elec-
trical system, communications networks), the operator has safe operating condi-
tions, expected error rates, and predictable performance, albeit with a more variable
range for the associated metrics. However, analyzing the operator’s capabilities, like
any other component in a large system, helps developers create reliable, effective
systems that mitigate risks of system failure due to human error in integrated
human–machine systems (e.g., air traffic control). With UCD as a design philoso-
phy, we argue that situation awareness (SA) is an effective framework for develop-
ing successful UCD systems. SA is an established framework that describes operator
performance via their ability to create and maintain a mental model of the informa-
tion necessary to achieve their task. SA describes performance as a function of the
operator’s ability to perceive useful information, comprehend its significance, and
predict future system states. Alongside detailed explanations of UCD and SA, this
chapter presents further guidance and examples demonstrating how to implement
these concepts in real systems.

2.1  �Introduction

The whole gamut of factors that contribute to the success of an interface is difficult
to describe within a single book, but the operator gives us a central focus. Just like
any other component (e.g., electrical system, communications networks), the opera-
tor has safe operating conditions, expected error rates, and predictable performance,
albeit with a more variable range for the associated metrics. However, analyzing the
operator’s capabilities, like any other component in a large system, helps developers
create reliable, effective systems that mitigate risks of system failure due to human
error in integrated human–machine systems (e.g., air traffic control). We identify
some of the most significant factors that can affect operator performance and show
how they can be used by engineers during their design of an interface. For a more
comprehensive review, we recommend (a) Foundations for Designing

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47775-2_2&domain=pdf
https://doi.org/10.1007/978-3-030-47775-2_2#DOI

22

User-Centered Systems: What System Designers Need to Know about People (Ritter
et al. 2014) and (b) Designing for Situation Awareness: An Approach to User-
Centered Design (Endsley et al. 2003b).

This book offers design guidelines for optimizing the performance of the human
component of the operation centers for asynchronous, autonomous systems. Figure
1.1 shows examples of the systems we are talking about like UAVS and satellites.
User-centered design (UCD) provides the foundation for this task through basic
tenets of its design philosophy. Designers can achieve UCD by designing for situa-
tion awareness (SA, explained below) in operators. Guidelines developed in these
chapters will provide concise takeaways, while selected information on related cog-
nitive mechanisms will provide context.

Thus, this chapter will follow this logic. First, we describe the tenets of
UCD. These provide high-level questions that engineers can apply to their system at
any point in the design process. Next, the connection between operator performance
and SA is explained. Performance levels of SA correspond with cognitive mecha-
nisms used to perform a task. The final section describes the cognitive mechanisms
and their influences and offers design guidelines for ensuring compatibility between
user capabilities and system interface.

2.2  �User-Centered Design

The operator is a component of the system just like the sensors or underlying code.
High-performance systems will incorporate operator capabilities into their design.
This requires creating a system that follows principles of user-centered design.
Though UCD is often associated with user experience, Endsley et al. (2003b, p. 5)
explain the difference between UCD and UX in underlying philosophy as follows:

User-centered design challenges designers to mold the interface around the capabilities and
needs of the operators. Rather than displaying information that is centered around the sen-
sors and technologies that produce it, a user-centered design integrates this information in
ways that fit the goals, tasks, and needs of the users. This philosophy is not borne primarily
from a humanistic or altruistic desire, but rather from a desire to obtain optimal functioning
of the overall human-machine system.

The three primary tenets of UCD, shown in Table 2.1, describe the high-level goals
of UCD. Each tenet is expanded over the next few pages alongside some explana-
tion and examples.

Table 2.1  The central tenets of user-centered design as summarized by Endsley et al. (2003b,
pp. 8–9)

1. Organize design around the user’s goals, tasks, and abilities.
2. Technology should be organized around the way users process information and make

decisions.
3. Technology must keep the user in control and aware of the state of the system.

2  How User-Centered Design Supports Situation Awareness for Complex Interfaces

23

To illustrate these tenets, consider driving as an example. Figure 2.1 shows a
car’s dashboard. With respect to Tenet 1, what are the primary and secondary goals
of the user when using this interface? The design should reflect the importance of
each goal. While operating a vehicle, the primary goal is to arrive safely at the loca-
tion; however, minimizing travel time is a salient secondary goal. Consider how the
dashboard shown in Fig. 2.1 matches the goals, tasks, and abilities of a typical
operator (or driver). The speedometer is large, detailed, and centrally located, which
supports the operator’s ability to quickly check vehicle speed, even during highway
driving. This is the primary gauge that will be used while in motion, and thus is the
most prominent feature in the display. The large tachometer provides instant feed-
back for operator input to the system, but with less detail than the speedometer.
Broad markings and the red line provide simple indicators of system state. Engine
temperature and fuel gauges are small and minimally detailed, with red lines indi-
cating when direct action needs to be taken. The simple design suits their relatively
infrequent use and their information complexity needs.

What are the primary and secondary tasks that a user will perform on this inter-
face? The design should reflect the importance of each task. While driving, the pri-
mary task for this interface is checking the speed. The secondary task is monitoring
the overall state of the vehicle. The speedometer has detailed markings to approxi-
mately match speed limits (10 km/h increments). The tachometer only provides
broad details and a red line indicating an “unsafe state,” matching the detail that a
user requires for monitoring the state.

With respect to the second tenet of UCD, the information in Fig. 2.1 makes the
vehicle speed easy to perceive, interpret, and act upon. The other information for
less important tasks is given less room. Where exact numbers are needed, such as
miles traveled, this is provided as a number.

Would a typical user be able to understand this system? Users and designers
often have different skill levels and familiarity with the system. In the case of a car,
the average driver is not a mechanic, so they often do not need detailed information

Fig. 2.1  Image of a basic automobile dashboard. The full dashboard shows four gauges from left
to right: tachometer, speedometer, fuel level, and temperature. From www.freeimages.com

2.2  User-Centered Design

http://www.freeimages.com

24

on most subsystems. An indicator light to check your engine may provide sufficient
detail for a layperson who gets minimal value from additional details. Thus, Fig. 2.1
shows Tenet 2 in practice for the dashboard of a car. For the average driver, the
check engine light provides only the necessary information to solve further prob-
lems and nothing more.

With respect to Tenet 3, relevant information is provided to control the system.
In this case, a user working through sequential information on a display expects the
next area of focus to be on a path from left to right, top to bottom (as when reading).
For the state of a car, the water temperature and gas tank level are suitably ordered.
More complex interfaces may require a different order, and power plant control
rooms often order the displays based on their location in the plant.

In Fig. 2.1, if other information unrelated to driving the car was presented, such
as distance from home, type of fuel in the tank, or brand of tire, the driver’s ability
to drive would be less well supported. If the prominence and organization did not
match the driver’s visual ability, for example, a less clear (or smaller) font, or dials
presented in a different order, then the driver’s performance could suffer. Finally, if
the state of the car were less visible, or less appropriately matched to the frequency
and importance of goals, performance would suffer.

These tenets are not perfect, however, and do not always give clear guidance.
Consider the display in Fig. 2.2. Here, the tenets do not provide direct guidance. The

Fig. 2.2  Two ways to present display of an automated target identifier. Each design has trade-offs
in operator performance that must be weighed based on the goals and priorities of the system.
Image redrawn and modified by authors. Based on a figure from Banbury et al. (1998, p. 37)

2  How User-Centered Design Supports Situation Awareness for Complex Interfaces

25

choice between these two designs must be based on the details of the goals and task
priorities. If these are not known, they must be obtained from stakeholders (in the
best case) or guessed or inferred (in the worst case).

Together, the three tenets of UCD provide a foundation for how to frame the
system design process around the goals, tasks, and abilities of the operators. The
various other elements within a complex system have their own design philosophies
or guidelines (e.g., modular design, minimal complexity, easy replacement of com-
ponents). The human–system interface is no different. The tenets of UCD provide
an underlying set of principles that should shape the design process for creating
complex systems.

Implementing UCD within complex systems requires a method for understand-
ing and assessing operator performance during complex work. Endsley’s (1995)
theory of situation awareness fills this need by providing a framework for under-
standing performance and decision making. Describing the SA of an operator means
describing the product of relevant cognitive mechanisms that are necessary to per-
form complex work like decision making and troubleshooting within an opera-
tion center.

2.3  �Situation Awareness: The Key to UCD

Human operators using complex systems must be able to correctly perceive useful
information while ignoring or disregarding other stimuli. Situation awareness (SA)
provides a framework for describing human performance on tasks ranging from
driving an automobile to monitoring incoming cyberattacks. At a basic level, an
operator demonstrating perfect SA knows which information around them is task-
relevant, what this information means for the present, and what this information will
mean for the future. With these types of knowledge, the operator understands the
current state and can effectively project their understanding into possible future
states of the system.

Describing an operator’s SA performance uses three iterative stages. Though
specific performance benchmarks denoting each stage are derived from the tasks,
the three stages of SA are typically known as (a) perception, (b) comprehension,
and (c) projection. These are illustrated in Fig. 2.3. First, an operator must perceive
the useful information from the task environment. Second, they integrate individual
cues into a useful mental model of the current situation. Third, they use their model
of the situation to predict likely outcomes based on their comprehension of the sce-
nario. Figure 2.3 uses operation of an automobile to explain the types of information
associated with each stage.

Thus, operator performance can be improved through incorporating the tenets of
UCD in system design. Improving the UCD of a system requires improving the SA
of operators using the human–system interface. The system design will impact how
well operators can develop and maintain SA during work. Interface design will
affect how quickly and easily operators can advance to each subsequent stage of SA

2.3  Situation Awareness: The Key to UCD

26

performance and how accurate and complete the operator’s understanding is at each
stage. Similar to shifting gears in a manual car to increase speed, the stages of SA
progress on a continuous scale where competency with lower levels of SA is
required to advance to the next stage.

The stages of SA provide a framework for assessing performance and identifying
task and interface factors that can moderate SA performance. Progression through
stages of SA will be impacted by operator characteristics (e.g., fatigue, personal
capabilities), environmental effects (e.g., distractions), and task-related factors (e.g.,
cognitive resources required, task types, complexity; Boff and Lincoln 1988). Each
stage requires significantly more resources (e.g., knowledge, information, time)
than the previous. Stage 3 SA should not be expected as the norm for every operator
or every task; however, it is the most useful.

Next, we describe the stages of SA in more detail and provide principles for
design based on using SA as a metaphor for work in op centers. These principles are
derived from Endsley et al. (2003b) and are applied by us to apply SA to the design
of op centers. We include motivating examples for each stage. Tasks surrounding
aviation were the original focus of SA research before it expanded to include a vari-
ety of complex tasks. During this discussion, we will describe the frequency of avia-
tion disasters caused by critical errors in each stage of SA. These error rates refer to
errors in common aviation tasks for pilots, air traffic controllers, and other aviation-
related jobs, but it would be reasonable to assume that similar results would be
found across a variety of op centers.

2.3.1  �Stage 1: Perception

Perception is the most fundamental aspect of SA. During the common tasks within
an op center, operators are likely bombarded with information. In most cases, space
and cost in op centers will be at a premium, leading to operators with varied tasks

Fig. 2.3  The three stages of SA applied to task of operating a car. Figure redrawn and modified by
authors. Based on a figure from Bolstad et al. (2010, p. 4)

2  How User-Centered Design Supports Situation Awareness for Complex Interfaces

27

across multiple displays. Each of these displays could be presenting tens or hun-
dreds of data points, graphs, or other useful features, meaning that a major compo-
nent in skilled performance could be simply knowing where to look and when.

The situation and signal content can determine the best course of action regard-
ing how and when to respond to a signal (if at all). Operators with Stage 1 SA will
demonstrate the ability to detect important signals while discarding irrelevant ones.
Given perception’s fundamental role in an operator’s work, it is unsurprising that
perceptual issues account for about 75% of errors in common SA work (Jones and
Endsley 1996). Causes of Stage 1 errors may be attributed primarily to human fail-
ures (e.g., attentional failure, misinterpretation of a signal), system failures (unclear
or missing information), or some combination of the human and system failure.

Some design principles related to Stage 1 SA are shown in Table 2.2. The prin-
ciples can be summed up as follows: task-relevant information should be readily
available, easily interpretable, appropriately prominent, and simple enough for the
typical user.

For example, in the WDS (introduced in Chap. 1 and explained in detail in
Appendix 1), a display can indicate that the battery will be unable to charge at the
rover’s current position and the rover will need to relocate. The interface must
clearly convey this information for the operator so they can instigate a “move” com-
mand before the battery is too low. The interface should provide clear signals of the
system state like a commonly used alarm icon (available) with a text description
(interpretable) that flashes (appropriate salience) until the operator schedules the
appropriate command (simple). While it is somewhat common practice to rely on
unlabeled “self-explanatory” icons (i.e., for alarms), designers concerned about
reducing risks of confusion, and errors will support the visual design with liberal
use of textual labels. Words in interfaces are often underused but are more easily
interpreted than symbols when used alone (Chilton 1996).

The principles in Table 2.2 provide a framework for ensuring the interface can
effectively convey useful information in a manner that is useful to the operator. This
means ensuring that the value and salience of each piece of information is appropri-
ate, actively drawing attention to important signals, and minimizing the quantity
and salience of extraneous stimuli. The second principle in this area is to make the
information interpretable by using intuitive, sensible designs. The third principle
extends the first two by promoting a hierarchy of signal importance to ensure that
the signals perceived by the operator are the most useful at any given time (or at
least that non-useful signals are relatively muted). The fourth principle deals with

Table 2.2  Design principles related to Stage 1 SA

Principle 2.1 Make the information available

Principle 2.2 Make the information interpretable

Principle 2.3 Ensure the value and salience of each piece of information; eliminate or suppress
unnecessary signals

Principle 2.4 Work around the limitations of human perception and cognition by reducing
complexity and workload of the task

2.3  Situation Awareness: The Key to UCD

28

the inherent limits to human cognition. While these limits tend to be loosely calcu-
lated, designers can follow this guideline by working broadly to reduce complexity
across the system whenever possible.

As an example, reconsider the car dashboard shown in Fig. 2.1. Several design
features facilitate Stage 1 SA during typical operation of the vehicle. Compare the
prominence of the speedometer and tachometer to the temperature and gas gauges
(Principles 2.1, 2.2). Operators likely update their mental model of speed and engine
performance every few seconds, but only check the temperature and fuel levels if
something is going wrong (Principle 2.3). Taken together, this design takes steps to
limit or reduce the availability of unnecessary or distracting information (Principle
2.4). While the design of the dashboard could likely be improved, this example
shows how simple design changes like changing size proportions can support
Stage 1 SA.

The dashboard design also supports monitoring for infrequent, but critical, alerts
like low fuel levels. The fuel level indicator provides two different signals when fuel
reaches dangerously low levels. First, the fuel level gauge displays the current fuel
level compared to a warning level. This allows the operator to quickly assess the
current fuel level and determine whether action is needed (i.e., adding fuel). Even
outside of warning situations, the operator can maintain suitable awareness of the
fuel level and plan accordingly. If the operator fails to add fuel before reaching the
warning level, the second alarm signal will trigger: the fuel level icon of a gas pump
will glow yellow. This provides a second chance for the operator to respond to the
situation if the first chance (fuel level indicator) fails, and only appears when fuel is
dangerously low. Newer cars will even sound an alarm or, better yet, vocalize the
alarm information. Altogether, the fuel level gauge supports Stage 1 SA by making
the information available, salient, and appropriately designed to mitigate risks to
system failure (i.e., running out of gas in the middle of nowhere).

For another example, consider the WDS introduced in Chap. 1. When below a
certain power threshold, the dashboard interface displaying the battery information
will continually flash a red symbol, indicating the risk of total power failure for the
system. If this alert continues until the battery is charged, the signal will waste the
operator’s attention and cause unnecessary distraction. Why does the signal remain
prominent, even after the solution has been implemented? Once the solution process
begins, there is no need to draw attention to the signal until additional information
is received. The signal’s visual appearance should be able to be muted until another
update is needed.

This principle has further implications for the details of displays. It suggests
eliminating or suppressing unnecessary signals and merging compatible signals.
Simplify complex signals. For example, an interface showing the overall WDS sta-
tus may include orientation, geographic information, battery level, and other infor-
mation. These parameters are monitored by operators for unexpected changes;
however, excessive details increase workload by increasing the amount of visual
clutter. Designers should strive to optimize the complexity and detail when possible,
which in many cases means reducing those factors. If you know operators only
check the approximate orientation (i.e., NW, S), then that’s how orientation should

2  How User-Centered Design Supports Situation Awareness for Complex Interfaces

29

primarily be displayed. And if the detailed heading information is still required to
be shown for occasional use, then the salience of that information could be reduced
(e.g., reduce text size, use muted colors for font).

The fourth principle in this area is to work with the limits of human cognition
and perception. Human cognition has natural limits in how much it can process at
once. Work around the limitations by reducing complexity and workload of the task.

For example, a status update for the WDS may include hundreds or thousands of
events in a data log that accompanies the basic system status report. Reserving a
space on the interface to indicate critical or alarming events (e.g., imminent power
failure) while hiding data related to non-important (or typically non-important)
updates will reduce the amount of information necessary for the operator to perform
the most useful tasks.

As another example, consider a system that is rarely interacted with during nor-
mal operations. The interface simply provides a status that is checked hourly by an
operator. This interface was initially expected to be part of a multiple-monitor dis-
play for a seated operator, but now it is checked while standing several feet back.
Now the operator must lean in or squint to read and understand the information.

Consider physical aspects of how the operator uses the system. An operator sit-
ting at a desk in front of the screen can effectively monitor more dense signals than
someone 5 feet away. Ideally, the perceived details of an interface will smoothly
transition as an operator views it from different distances.

While the people building these types of systems should typically avoid overly
bold designs, there are still useful lessons to be learned regarding how aesthetics can
affect operator performance. Books on visual design of interfaces can provide more
information in this area (e.g., Kosslyn 2007; Tufte 2001, 2006).

2.3.2  �Stage 2: Comprehension

The second stage of SA involves synthesizing Stage 1 cues into a useful mental
model of the situation. A practiced operator will purposefully seek out patterns from
various stimuli and form a holistic view of the situation based on their experience
with the task and the information presented. Errors arising from comprehension
failure account for about 20% of errors (Jones and Endsley 1996). Stage 2 errors are
often attributed to misinterpretation of an information set, failure to maintain all the
necessary information in working memory, misuse of a mental model, or overreli-
ance on default settings (e.g., failing to check a status hidden behind a submenu).
Some design principles related to Stage 2 SA are shown in Table 2.3.

As an example of the first principle, the interface that provides the WDS status
information may have a variety of information presented on it using textual and
visual signals. Icons can help reduce text or provide a more grid-like design, but
should only be used when the operator understands the meaning (so make sure that
the operator understands the meaning through culture, training, pop-up names, or
other means).

2.3  Situation Awareness: The Key to UCD

30

Similarly, familiar symbols should have familiar meanings. Using an “X”—par-
ticularly a red “X”—should typically indicate that something will “close,” “exit,” or
“cancel.” Red and green follow cultural norms of stop/exit/bad and go/continue/
good, respectively. The Apple Design Guidelines1 give an example set of such
guidelines.

The second principle is to consider how the actual tasks will be done by the
operators. Interruptions and task-switching are major sources of error. If task inter-
ruptions are common, designers should account for their effects in their task analy-
ses for the system and seek to mitigate their negative effects on task performance.
These design features can include the ability to postpone the next task so that the
current task can be completed, or to remember the state of the suspended task until
it can be returned to. Sometimes even non-digital solutions can work; in a control
room, one solution could be to simply include a pad of paper for note-taking (Trafton
et al. 2003).

As an example, operators may have to multitask while monitoring the WDS. The
WDS status interface provides many different pieces of information, but the opera-
tor will typically not have any issues responding to routine events. However, once
they need to respond to some new situation, they must split their attention between
the normal monitoring and the new task. This could lead to the operator missing an
important warning.

The system could support this task requirement and reduce risk by providing a
simplistic view of critical information during times when the operator may be split-
ting attention across multiple tasks. When an operator pulls up a subsystem view
alongside an overall status view, the overall status could become less detailed while
increasing the salience of signals indicating new changes. Or alternatively, opera-
tors could be prompted to use simpler methods for tracking system state, such as a
pad of paper or a sticky note on the screen, which could allow the operator to “save”
the partial state information prior to dealing with an interruption.

Further information on how cognition is used to comprehend a situation is avail-
able in Endsley’s work (Endsley et al. 2003a, b) and other books on human–com-
puter interaction (Krug 2005; Ritter et al. 2014).

1 https://developer.apple.com/design/human-interface-guidelines/

Table 2.3  Design principles related to Stage 2 SA (Principles 2.5–2.6)

Principle 2.5 Actively design the system to prevent misinterpretation of signals. Signals should
be unambiguous, consistent, and instantly recognizable

Principle 2.6 Consider how the actual tasks will be done by the operators. If operators will be
expected to multitask, then build in features to accommodate this fact

2  How User-Centered Design Supports Situation Awareness for Complex Interfaces

https://developer.apple.com/design/human-interface-guidelines/

31

2.3.3  �Stage 3: Projection

The third stage of SA is achieved through projecting the model of the situation into
possible future outcomes. For example, an air traffic controller could anticipate a
dangerous situation based on how two aircraft are likely to maneuver while chang-
ing course and act to avert the future incidents. Though difficult, this type of exper-
tise is essential for high performance in some complex tasks (Endsley 2000).

Stage 3 failures account for about 3% of errors in aviation, but the complexity of
Stage 3 SA makes generalizable causes of error difficult to isolate. General causes
may include overtaxation of mental resources, insufficient knowledge of the domain,
or overprojecting current trends (Jones and Endsley 1996). This type of expertise is
difficult to plan around for the engineers during the early design stages, and thus
will be given less focus in this book. Obviously, systems that help predict the future
of object or systems would help operators. For example, supporting Stage 3 SA
could be as simple as including trend lines showing system state over time, or as
complex as automated calibration of signal strength to predict upcoming alert states
(Tufte 2006).

One of the most effective ways to design for Stage 3 SA is by eliminating barri-
ers preventing Stage 1 and 2 SA from being effectively supported. Thus, designers
are advised to focus on solving issues with perception and comprehension before
specifically addressing methods for improving an operator’s ability to project into
future states. However, further information about supporting projection can be
found in Endsley’s work (Endsley et al. 2003a, b) and work on mental models
(Besnard et al. 2004; Kieras and Bovair 1984; Moray 1996; Ritter et al. 2014).

2.4  �Summary: Cognitive Mechanisms
for Situation Awareness

The three stages of SA provide a broad classification for the performance of opera-
tors during complex tasks. This chapter only briefly describes SA. This overview
gives engineers the tools needed to consider how SA applies to the systems they
design. In the next chapter, the cognitive mechanisms that drive operator perfor-
mance are described and connected to SA.

This chapter briefly covers significant cognitive mechanisms used in SA as a way
to describe and summarize them. These mechanisms and their role in SA get more
comprehensive coverage in Chap. 3. We explain them here because these cognitive
mechanisms can be simulated in a computer (Anderson 2007), but can also be simu-
lated in the designer’s head to make predictions about how operators use the system.
Figure 2.4 shows these mechanisms as they are implemented in the ACT-R cogni-
tive architecture (Ritter et al. 2014, Chap. 1). These components can be seen as
distinct subsystems with semi-independent operations. To learn more about ACT-R,

2.4  Summary: Cognitive Mechanisms for Situation Awareness

32

Ritter et al. (2018) review the state of research using ACT-R and other cogni-
tive models.

As shown in Fig. 2.3, the process of achieving situation awareness often starts
with perception, the intake and processing of competing sensory cues (or signals)
into usable information. In this approach, perception does not necessarily lead to
detection of a signal or to understanding because the perceptual process requires
attention from cognition. Attention, in this case, means that select information is
targeted by the system. Cognition, the central process, directs focus on the task-
relevant information while ignoring or not processing the rest. Attention is a limited
resource that must be distributed across appropriate features. Attention is probably
best seen as an active process of directing cognitive resources rather than a single
buffer responsible for passing information.

Top-down attention is goal-directed towards some feature(s) based on the goal
while avoiding focus on distracters (e.g., monitoring speed and position but ignor-
ing billboards while driving). Bottom-up attention is driven by the common features
that indicate activity (bright colors/lights, motion, and others).

Memory is used to perform the task, recruited from the declarative memory buf-
fer or activated from long-term memory (in ACT-R, in the declarative buffer and the
goal buffer), which might be called working memory (WM), which operates as the
“RAM” for cognition by storing and manipulating information chunks for short

Fig. 2.4  A schematic of the components of a computational model (ACT-R) of the human opera-
tor. (Figure used with permission from Ritter et al. 2018; Fig. 3)

2  How User-Centered Design Supports Situation Awareness for Complex Interfaces

33

periods. This stored information has to be maintained through use, manipulated, and
stored in long-term memory, or it decays and is lost. Human memory is more simi-
lar to old drum or plated wire memory, which needed to be continually refreshed,
than it is to current solid-state RAM, which can sit without use and without decay.

WM is more than just a singular “catchall” for temporary information storage.
The current theory of working memory has established at least two major subsys-
tems, the visuospatial sketch pad and the phonological loop, which exclusively hold
visual and verbal information, respectively (Baddeley 2012). Each subsystem oper-
ates semi-independently to store and maintain information for near-term use. One
benefit of these distinct storage types is an improved ability to multitask when we
distribute the cognitive operation across multiple WM stores. Dual-task activities
can be performed well if each task uses only, or mostly only, a singular WM store.
For example, it will be easier to remember a set of numbers while observing a scene
in a play than while solving math problems.

The operator’s mental model is the operator’s internal representation of an exter-
nal situation. Their mental model provides the framework that they use to process
information related to the task. This model is stored in memory, which means it can
be learned, or partially forgotten, and might not match the designer’s representation
used to understand the system and to create the interface.

The operator’s mental model of a situation provides the tools needed to handle
large amounts of information. They use their experience from long-term memory to
scaffold the intake of new information, noting what to pay attention to, what to dis-
card, and what to remember for a given situation. Mental models also include what
to do in a situation.

Thus, situation awareness, the awareness of the state of the world, what is hap-
pening, and what will happen, is based on an operator’s mental model and its used
by a set of mechanisms similar to what is in Fig. 2.4. This approach, when applied
to op center design, suggests that each stage of the operator’s processing and
response is important for a successful system operation. The operator needs to be
able to see and process the stimuli. They need to be able to have attention and time
to understand them, and the ability to acknowledge that the stimuli are important.
They need to have an appropriate mental model in which to relate new information
to previous information and current goals. They need to know what to do, and how
to respond. And they need the world’s state and a good mental model to predict what
will happen in the world.

Situation awareness thus provides a way to organize a designer’s model of the
operator. It makes strong suggestions about design when combined with knowing
the operator’s capabilities, their tasks and task priorities, and their mental model of
the world. This model accounts for both the long-term learning and mastery of the
system and the ongoing and evolving model of what is happening at any point
in time.

The next chapter explains these components in more detail to help a designer
understand how an operator might run and apply their mental model.

2.4  Summary: Cognitive Mechanisms for Situation Awareness

34

References

Anderson, J. R. (2007). How can the human mind occur in the physical universe? New York:
Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195324259.001.0001.

Baddeley, A. D. (2012). Working memory: Theories, models, and controversies. Annual Review of
Psychology, 63, 1–29. https://doi.org/10.1146/annurev-psych-120710-100422.

Banbury, S., Selcon, S., Endsley, M. R., Gorton, T., & Tatlock, K. (1998). Being certain about
uncertainty: How the representation of system reliability affects pilot decision making.
Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 42(1), 36–39.
https://doi.org/10.1177/154193129804200109.

Besnard, D., Greathead, D., & Baxter, G. D. (2004). When mental models go wrong: Co-occurrences
in dynamic, critical systems. International Journal of Human Computer Studies, 60(1),
117–128.

Boff, K. R., & Lincoln, J. E. (1988). Engineering data compendium: Human perception and per-
formance. Dayton: Wright-Patterson Air Force Base.

Bolstad, C. A., Cuevas, H., Wang-Costello, J., Endsley, M. R., & Angell, L. S. (2010).
Measurement of situation awareness for automobile technologies of the future. In G. L. Rupp
(Ed.), Performance metrics for assessing driver distraction: The quest for improved road safety
(pp. 195–213). Warrendale: SAE International. https://doi.org/10.4271/R-402.

Chilton, E. (1996). What was the subject of Titchener’s doctoral thesis? SigCHI Bulletin, 28(2), 96.
Endsley, M. R. (1995). Toward a theory of situation awareness in dynamic systems. Human

Factors, 37(1), 32–64. https://doi.org/10.1518/001872095779049543.
Endsley, M. R. (2000). Theoretical underpinnings of situation awareness: A critical review. In

M. R. Endsley & D. J. Garland (Eds.), Situation awareness analysis and measurement
(pp. 3–32). Boca Raton: CRC Press. https://doi.org/10.1016/j.jom.2007.01.015.

Endsley, M. R., Bolstad, C. A., Jones, D. G., & Riley, J. M. (2003a). Situation awareness ori-
ented design: From user’s cognitive requirements to creating effective supporting technologies.
Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 47(3), 268–272.
https://doi.org/10.1177/154193120304700304.

Endsley, M. R., Bolte, B., & Jones, D. G. (2003b). In M. R. Endsley (Ed.), Designing for situation
awareness: An approach to user-centered design. New York: CRC Press.

Jones, D. G., & Endsley, M. R. (1996). Sources of situation awareness errors in aviation. Aviation,
Space, and Environmental Medicine, 67(6), 507–512. https://doi.org/10.1039/c4qo00187g.

Kieras, D. E., & Bovair, S. (1984). The role of a mental model in learning how to operate a device.
Cognitive Science, 8(3), 255–273.

Kosslyn, S. M. (2007). Clear and to the point: 8 psychological principles for compelling
PowerPoint presentations. New York: Oxford University Press.

Krug, S. (2005). Don’t make me think: A common sense approach to web usability (2nd ed.).
Berkeley: New Riders Press.

Moray, N. (1996). A taxonomy and theory of mental models. In Proceedings of the Human Factors
and Ergonomics Society 40th Annual Meeting (pp. 164–168). Los Angeles: SAGE Publishing.

Ritter, F. E., Baxter, G. D., & Churchill, E. F. (2014). Foundations for designing user-centered
systems. London: Springer. https://doi.org/10.1007/978-1-4471-5134-0.

Ritter, F. E., Tehranchi, F., & Oury, J. D. (2018). ACT-R: A cognitive architecture for model-
ing cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 10(4), 1–19. https://doi.
org/10.1002/wcs.1488.

Trafton, J. G., Altmann, E. M., Brock, D. P., & Mintz, F. E. (2003). Preparing to resume an interrupted
task: Effects of prospective goal encoding and retrospective rehearsal. International Journal of
Human Computer Studies, 58(5), 583–603. https://doi.org/10.1016/S1071-5819(03)00023-5.

Tufte, E. R. (2001). The visual display of quantitative information (2nd ed.). Cheshire: Graphics
Press LLC.

Tufte, E. R. (2006). Beautiful evidence. Cheshire: Graphics Press LLC.

2  How User-Centered Design Supports Situation Awareness for Complex Interfaces

https://doi.org/10.1093/acprof:oso/9780195324259.001.0001
https://doi.org/10.1146/annurev-psych-120710-100422
https://doi.org/10.1177/154193129804200109
https://doi.org/10.4271/R-402
https://doi.org/10.1518/001872095779049543
https://doi.org/10.1016/j.jom.2007.01.015
https://doi.org/10.1177/154193120304700304
https://doi.org/10.1039/c4qo00187g
https://doi.org/10.1007/978-1-4471-5134-0
https://doi.org/10.1002/wcs.1488
https://doi.org/10.1002/wcs.1488
https://doi.org/10.1016/S1071-5819(03)00023-5

35

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

References

http://creativecommons.org/licenses/by/4.0/

37© The Author(s) 2021
J. D. Oury, F. E. Ritter, Building Better Interfaces for Remote Autonomous
Systems, Human–Computer Interaction Series,
https://doi.org/10.1007/978-3-030-47775-2_3

Chapter 3
Cognition and Operator Performance

Abstract  Developing systems that foster situation awareness in operators requires
that stakeholders can make informed decisions about the design. These decisions
must account for the operator’s underlying cognitive processes based on perception,
comprehension, and projection of the system state. This chapter reviews the core
cognitive processes responsible for monitoring and responding to changes in system
state. Operators must perceive information before they can act in response, and the
interface design affects operator accuracy and speed via known mechanisms (i.e.,
effects of color on visual search time). Perception of key information also relies on
how the operator thinks during tasks, and certain design choices can support better
attention control and detection of signals. After perceiving the information, opera-
tors also must comprehend and interpret the information. Design guidance and fac-
tors related to supporting comprehension are presented alongside explanations of
how cognitive load and working memory affect the operator’s ability to develop and
maintain a useful mental model of the system. This review of cognitive mechanisms
gives designers a strong foundation to make informed decisions ranging from
choosing an alarm color to assessing how much information should be on screen
at once.

3.1  �Introduction

This chapter explains in more detail the primary cognitive mechanisms used by
operators to perform their tasks. This chapter should help designers have a better
mental model of operators. These details should help a designer understand how an
operator does their tasks and thus support the operator better.

In this approach, based on the cognitive architecture shown in Fig. 2.4, cognition
can be described as an emergent phenomenon arising from a collection of mecha-
nisms. The mechanisms are components of an information processing system in the
same way that a computer has components. The component mechanisms can be
described in isolation (e.g., visual processing of an object) with a great degree of
useful truth. However, it is important to understand that this is a practical consider-
ation. In truth, cognition relies on an extremely complex, highly interconnected
neural system.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47775-2_3&domain=pdf
https://doi.org/10.1007/978-3-030-47775-2_3#DOI

38

This chapter explains these mechanisms in detail to help a designer. The mecha-
nisms discussed here include visual perception, attention (which is perhaps emer-
gent from other system interactions), memory, and learning. In each section, we
note design principles to summarize the results and aid design.

3.2  �Visual Perception

The most basic level of cognition for operators is the perception of stimuli. Whereas
we may be able to receive signals from a variety of sources, visual stimuli provide
the proportional supermajority of signals. Auditory comes in second, followed in a
distant third by tactile (which does not appear to be used nor needed currently in
most control rooms). We will follow this natural system order in our analysis. Thus,
we will primarily focus our discussion on visual perception.

3.2.1  �Visual Processing

Understanding the nuances of visual processing enables system designers to build
their interface around the natural capabilities and limitations of the operators. At a
basic level, visual processing is the process of capturing light on some visual sensor
and transmitting this information to the processing system. For many robotic sys-
tems, this is a relatively straightforward process where information only flows in
one direction. In contrast, human processing is a bidirectional process including
feature detection, goal-directed attention, pre-attentive assessment of stimuli, and
active interpretation of the signals. This complex system allows us to make a sen-
sible, coherent world out of small snapshots of information without the need for
detailed processing. While humans may excel at particular tasks like pattern detec-
tion, we also can be easily tricked by unconscious misapplication of visual process-
ing heuristics (e.g., visual illusions, misrecognition, not seeing target objects).
While some sources of errorful behavior can be inhibited or corrected through con-
scious effort, others are essentially reflexive actions without any reasonable method
for self-regulation.

A classic example of our failure to inhibit automatic processing is the Stroop task
(Stroop 1935). The task is simple. A subject is presented with a color word (e.g.,
red, blue, yellow) written in one of those same colors. The task is to name the color
of the ink. The experiment has two conditions, congruous and incongruous. When
congruous, the ink color and word will match (e.g., “red” written in red ink). When
incongruous, the ink color and word will not match (e.g., “red” written in yellow
ink). This task seems simple in the congruous condition, but when the incongruous
condition is tested, and the word and its color differ, the subject will typically stum-
ble through responses, be significantly slower, and make many more mistakes. Once
we learn how to read, we simply cannot inhibit the natural response to read text. The

3  Cognition and Operator Performance

39

mechanistic explanation is that the reading skill is practiced so much more than the
naming skill; thus, the reading skill must be suppressed to name the color. Unless
some cognitive effort is used to direct attention, the “over-practiced” reading skill
will force out the less-practiced skill when both use the same mechanisms.

A more comprehensive overview of low-level visual processing as well as addi-
tional resources can be found in the chapter “Behavior: Basic Psychology of the
User” (Ritter et al. 2014, Chapter 4).

3.2.2  �Color Blindness

Color blindness is a particularly salient concern for designers due to its prevalence
among the population. For the Western population, about 8% of men and 0.5% of
women have some form of red–green color blindness. This causes affected indi-
viduals to have difficulty differentiating red from green. Individuals may also have
blue–yellow color blindness, or even total color blindness, but these are signifi-
cantly more rare than red–green color blindness (Ritter et al. 2014).

There are many several forms of color blindness, based on the specific deficiency
in the visual system, but the general design recommendations that alleviate their
effects are the same. Good design will avoid using only color as a signal for an
operator. Instead, the design should incorporate multiple signals into a cohesive
message for the operator. For example, an important alarm could flash bolded text
information, have red coloring, and use textual indicators like exclamation marks to
ensure that the message is clear.

Thus, better designs will dual-code results. That is, meaning will not just be
encoded by color but color and font, or line thickness and name, or line type and
texture. Dual-coding stimuli makes them faster to be recognized and discriminated
(Garner 1974). It may be useful to check designs for adherence to color blindness
design standards. There are tools online to show how color-blind individuals per-
ceive images and interfaces.1 They typically take a URL or image file and show how
color-blind individuals would see it. Given the prominence of color blindness
among the general population, dual-coding signals and ensuring color-blind com-
pliance would be well-advised for any system that requires human operators.

3.2.3  �Visual Search

The visual system can be broadly broken up into two subsystems based on their
role. The eye handles stimulus detection, and the brain (in specialized regions) han-
dles stimulus interpretation. Stimulus detection occurs within the eye, but the

1 (e.g., https://www.toptal.com/designers/colorfilter/)

3.2 � Visual Perception

https://www.toptal.com/designers/colorfilter/

40

process itself is driven by a combination of goal-directed attention from the mind
(top-down) and automatic processing of salient features (bottom-up). Top-down and
bottom-up directives guide the visual processing and integration of the environment
that occur during visual search. This conflict between top-down and bottom-up
visual processing means that designers should consider how their design interacts
our natural visual mechanisms.

Visual search of the information displayed on an interface is a core activity for
operators, regardless of the task. As their attention is oriented to the task at hand, the
operator will need to comprehend the information presented on any given interface.
Visual processing is an intermittent process in which our eyes are constantly alter-
nating between saccades (rapid eye movements to some feature) and fixations (rest-
ing moments of information intake). What we perceive as a continuous visual
experience is actually an intermittent series of fixations that are unconsciously
aggregated into a coherent, though not necessarily accurate, mental model of our
surroundings (Irwin et al. 1988). During fixations, feature detection relies on distin-
guishing target features from distracter features through pre-attentive visual pro-
cessing (Healey and Enns 2012). This summary of vision as being active can be
contrasted with folk psychology and early understanding of vision where humans
were understood to see and understand the whole display at once. We now know
that the eye must search for information actively on the display and often refresh
what it sees (Findlay and Gilchrist 2003).

During complex tasks that require visual search, both bottom-up feature recogni-
tion and top-down goal-oriented activity influence the performance of the operator
at finding that information. While top-down directives lead visual search towards a
certain set of features, our eyes are unable to fully inhibit the bottom-up feature
detection. Given the effects that distracting features can present for operators,
designers should understand what types of visual features draw people’s attention
and the role of higher-level graphical organization. The best systems engineers and
designers will have a theory of how users will scan displays, find the salient infor-
mation, and understand it.

3.2.4  �Pre-attentive Visual Processing

Once an operator perceives the signals presented by an interface, the visual process-
ing system immediately begins working to form a coherent mental model of the
scene. Cognitive limitations on information processing prevent humans from scan-
ning, processing, and understanding every individual signal within the visual field.
Instead, we have developed a complex pattern-matching system that reduces work-
load without (usually) negatively impacting comprehension.

There are two main processes that occur during the early stages of visual search.
The first is pre-attentive visual processing based on relatively simple features of the
objects. Figure 3.1 shows examples of the types of features that are easily and
immediately detected during visual search. The common element across these

3  Cognition and Operator Performance

41

examples is the contrast between features. When objects vary in orientation, length,
or size (compared to other objects in their environment), they are identified and
distinguished much more quickly than other objects. Easily distinguished visual
features are more salient to the operator, particularly when the operator is distracted
or overworked.

The contrasting features shown in Fig. 3.1 vary in their salience. Just by glancing
across the examples, we can notice a difference in how rapidly we acquire the target
stimulus among the distracters. The target feature for orientation is easily discerned,
while the target features for lighting direction and length take slightly longer to be
recognized. Designers must consider the salience of the signals they will present to
the operator and allocate the most salient cues to the most important differences.

The second major process of early visual processing is the grouping of individual
features into shared, higher-order visual structures. This is known as Gestalt group-
ing or Gestalt theory (Chang et al. 2002; Moore and Egeth 1997). Just as particular

Fig. 3.1  Examples of pre-attentive visual features. (Adapted from Healey and Enns 2012, p. 1172)

3.2 � Visual Perception

42

features are distinguished individually, sets of features are organized into visual
structures to be further processed by the viewer. This organization in the scene
enables the viewer to maintain a mental representation of a coherent set of distinct
objects drawn from the information-dense world. Just like the processing of pre-
attentive visual features, Gestalt grouping is an involuntary processing step that
shapes how a person perceives the world around them (Moore and Egeth 1997).

Gestalt theory encompasses a family of related psychological principles of per-
ceptual organization used to describe common instances of visual integration. The
literature on this subject is varied, and as such, the specific principles can often be
described in multiple ways depending on the situation or researcher. Though not
exhaustive, Fig. 3.2 shows seven of the most common examples of Gestalt princi-
ples affecting how we aggregate component pieces of a visual image. These prin-
ciples can be used by a designer to group information together or separate different
subgroups appropriately.

Fig. 3.2  Common examples of Gestalt principles affecting image perception. (Revised from
Ritter et al. 2014; Figure 4-15)

3  Cognition and Operator Performance

43

Even without other factors affecting visual processing, Gestalt theory can serve
as a useful framework for analyzing and improving the design of an interface.
Chang et al. (2002) demonstrate how Gestalt theory can be used to guide the rede-
sign of an electronic learning tool. During their background research, the authors
identified a subset of the many Gestalt “laws” from prior research and used these as
the basis for their redesign process. The redesign process described by Chang and
colleagues provides a useful exemplar of the methodology; however, they did not
collect the empirical data necessary to provide a detailed analysis of how their rede-
sign affected interface performance.

3.2.5  �Summary of Visual Perception and Principles

Nearly everything on the interface is a signal or feature. Designers should assess the
importance of each signal as well as the salience associated with it. The theories in
this section provide ways to make the combined operator-interface system work
more reliably and, thus, reduce the risk of total system failure.

To make signals recognizable, designers can change the hue, make it flash,
increase the size, or use the pre-attentive visual features shown in Fig. 3.1 to modify
the salience of the information. The inverse is also true. For irrelevant features (at
least for the current task), ensure their salience is appropriate by modifying their
visual representation to make them less apparent.

If an operator does not perceive an alarm or signal directed their way, they have
no way of knowing there is an issue, or even that they missed an alarm at all!
Creating a mental model requires unconscious assumptions about the world. Do not
assume that the operator will eventually realize that they must attend to a minor
signal or remember to look at something; help them.

It may be appropriate to test the interface for color blindness compatibility.
Where colors cannot be changed, one could test the users to support reconsidering
changing colors, or to find other ways to support color-blind users.

Gestalt principles give engineers the ability to predict, and thus improve, how
operators will perceive the interface and its functionality. Designing the system lay-
out around these principles can ensure that the engineer’s intentions are clearly
conveyed to the operator.

To summarize how to use results from visual perception in design, we present a
few design principles related to vision.

Principle 3.1 Designing to accommodate color blindness will solve multiple prob-
lems at once

The prevalence of color blindness among the general population means that
accommodating color blindness should be the default plan for high-stakes systems.
Presenting information with multiple signals and modes can help ensure the mes-
sage is clearly received regardless of the operator’s color perception, and it will lead
to faster detection of key signals.

3.2 � Visual Perception

44

Principle 3.2 Colors must be used sparingly, used consistently, and should be
reserved for critical information

Color can be recognized and interpreted much more quickly than a complex
signal, but overuse reduces the effectiveness. If possible, follow these rules: use no
more than four different colors, adopt a dull screen as background, and reserve spe-
cific colors for specific signals.

Thus, ensure that color provides a valuable signal to the operator through pur-
poseful use of specific colors to emphasize critical information on an otherwise dull
interface. Often, color can be a distracter just as easily as a signal if the colors are
overused or misused. Three specific examples are shown in Figs. 3.3, 3.4, and 3.5.

Designers must consider how each color used in the system will be interpreted
by operators. Figure 3.3 shows a relatively dull interface that can be quickly scanned
to identify which system processes are active without any distracting signals.
Connecting lines between components (light yellow) are easily distinguished, but
the reduced saturation demotes their importance during typical use.

Color is often a major factor used within an interface to encode signals with
meaning. Color use will usually use pairs or sets of colors to provide a categorical
piece of information for the operator. Green, yellow, and red can indicate the system
status on a range from healthy to critical failure. Blue can represent active pumps for
a liquid, while gray shows inactive. Color is a valuable signaling method for typical
operators, but designers should ensure that their design has multiple signals indicat-
ing critical information.

Figure 3.4 shows an example of how color can be used to highlight critical infor-
mation (Ulrich and Boring 2013). The use of color within an interface should be
considered as a scarce resource. On a completely plain background, one color can
be extremely visible, but each new color and new use of a color reduces the salience
of that signal. The information in Fig. 3.4a uses a blue line to indicate the current
level, which is then compared to “safe” levels on the right side (red and green lines).

Fig. 3.3  Labeled example of interface with dull color overall, allowing the green “active pump”
and red “critical event” signals to stand out. Figure redrawn by authors and modified from Ulrich
and Boring (2013)

3  Cognition and Operator Performance

45

For example, the gauges shown in Fig. 3.4a may be unable to provide color-blind
operators with enough information to ensure system success. Figure 3.4b shows a
revised interface that would be better suited for all users. Though the second gauge
sacrifices some contrast between the safe and dangerous system states, the thick
black line and arrow indicating the current level reduce the risk of color blindness
leading to operator, and thus system, failure.

Principle 3.3 Make text with readable fonts, use no more Than three font types, use
fonts of proper sizes, and use simple, short text strings

Reading from screens tends to be slower and more difficult than print-based
reading. This may be due to the difference between projective and reflective light or
due to pixel density. Researchers have studied the effects of screen-based reading
quite extensively. They consistently find that reading from screens takes about

Fig. 3.4  Examples of
muted interface with dulled
colors, dedicated alarm
colors, and merged
information for easier
perception. Images (a) and
(b) show an initial and
revised pressure gauge.
Figure redrawn by authors
and modified from Ulrich
and Boring’s (2013)
guidelines

Fig. 3.5  Incremental improvement of power level indicator. Final product can be quickly refer-
enced for general status and examined more closely for detailed information like voltage and time
remaining

3.2 � Visual Perception

46

10–30% longer, leads to increased errors, and fatigues the user more quickly than
print reading (Ritter et al. 2014, pp. 208–210). Many operators will not be trained to
differentiate font types, so use different fonts sparingly and be cautious about using
font type as an important signal. Improve readability and comprehension by using
readable, simple fonts. Ensure font size is appropriate for the expected viewing
distance. Concise text, accompanied by a symbol or icon, will be faster than a
description and more easily interpreted than an icon alone.

Designers should thus avoid using unnecessarily “fancy” fonts and settle on sim-
ple, effective presentation of the key information. In general, long strings of text
should be avoided. They can be replaced with symbols and bullet points or, at the
very least, augmented with emphasized words to make scanning easier. Figure 3.5
shows an example of improvement.

Principle 3.4 Ensure signals indicating missing information are clear and obvious

Operators rely on gathering and interpreting information to make key decisions.
Uncertain or missing information can affect performance through incorrect assump-
tions by operators.

Missing information from a sensor or system can be a signal to the operator
about the situation, but this is only possible if the operator is aware that the informa-
tion is missing. When operators do not realize that some information is missing,
they may rely on their base assumption of normal operating conditions. This is
called the normalcy bias and can lead to potential disaster.

For example, a pilot operating a plane in cloud cover with malfunctioning terrain
sensors can respond differently if aware of the missing information. If aware of the
issue, they could climb to a safe altitude regardless of any “true” obstacle. If
unaware, they may crash after assuming they were on a safe trajectory. This type of
catastrophic failure is so common that it has its own name, CFIT, or controlled flight
into terrain.

As an example for the WDS, signals indicating success for a repeating procedure
could be represented as a simple binary response: success or failure (1a and 3 from
Fig. 3.6). The interface design in Fig. 3.6 may allow operators to quickly see when
the last test occurred and provides an intermediate signal for a missing self-test. If
the update schedule is known to vary by 30 min, this could lead to many false alarms
if a missing self-test at the exact due time qualifies as a critical failure. These addi-
tional states added to the design give operators a signal to be in a “ready” state to
respond to a critical failure.

Principle 3.5 Arrangement of screen components should be useful, consistent,
and close

Whether designing the full system interface with multiple objects or creating the
objects themselves, limit the distance between signals that are commonly used
together. This means having a theory of how the interface will be used and using the
task analysis, operator knowledge, and characteristics to design the interface such
that the information and signals used for the same tasks are near each other. This
principle is implied by the Gestalt principles.

3  Cognition and Operator Performance

47

As an operator scans the system interface during typical monitoring tasks, they
will be generally searching for alarms, alerts, or any sign indicating a potentially
risky situation. The task analysis should provide a summary of the tasks, their
importance, and their frequency. Checking systems with distant components (mea-
sured as travel time through the interface) requires more time and effort to perform
well. Additionally, upon identifying an alarm, operators often will search for signals
that confirm the veracity of the alarm. Grouping related components together makes
this easier, reduces strain, and increases their ability to search for information.

Grouping and arrangement should also attempt to follow consistent patterns both
visually and semantically across multiple displays. The design guidelines in
Appendix 3 (specifically in A3.3: Visual Feature Index) provide guidance about the
terminology, significance, and heuristics that designers should use when building
these systems.

3.3  �Attention

Visual perception is broadly described as the integration of information through the
field of vision. However, this does not account for how useful signals are isolated
from the noisy environment around them. Attention is the “spotlight” that makes a
set of stimuli more active or relevant than the rest of the display. As operators are
presented with a constant array of information, an executive control system in the
mind is directing attention towards features or items in that set of information. A
crucial feature of attention is enhanced acuity for the target of interest at the expense

Fig. 3.6  The role of color to represent missing and aging information

3.3 � Attention

48

of awareness of peripheral stimuli (Ritter et al. 2014, p. 139). The shift in focus
from one target to another can occur due to the salience of certain features, per-
ceived relevance to a particular goal, or an active process of cognitive control.

In this section, we will first discuss the basics of the underlying mechanisms of
attention and how task-switching affects operator performance. Next, we will
describe the causes and implications of limited attentional resources and the attri-
tion of attention.

Attention plays a crucial role in visual perception by providing a mechanism for
isolating specific features of interest. Visual perception involves making sense of a
world with too much information present; attention is the tool for “working around”
this natural limitation. Attention provides guidance for, though not total control of,
the sequence of eye saccades and fixations during goal-directed search for visual
features. The interaction between visual perception and attention is moderated by
cognitive control (e.g., goal-directed behavior) and aspects of features in the visual
field (e.g., salience). The interaction between these two systems can affect perfor-
mance by altering the usage of “cognitive resources” during a particular task. For
example, inhibiting a response to look at a flashing light requires active control of
visual search, and thus attention. The skill with which a user can inhibit these
responses is governed, at least in part, by their working memory capacity (Unsworth
et al. 2004). The inverse is true as well: an extremely salient signal will require
fewer cognitive resources to detect.

3.3.1  �Attentional Vigilance

The role that attention plays in cognitive tasks cannot be overstated. Although we
have primarily been describing the role of attention on visual processes, attention
plays a central role in both internal (e.g., problem-solving, goal sustenance) and
external cognitive mechanisms (e.g., visual search). The act of maintaining atten-
tion on a task is called attentional vigilance, or just vigilance. Tasks that require
vigilance are characterized by the need to maintain attention over an extended
period while attempting to detect target stimuli without responding to neutral or
distracting stimuli. Performance loss is often ascribed to a vigilance decrement, or
the performance decline that occurs over a period of active monitoring. Tasks that
require vigilance are extremely common for operators during their work in op
centers.

Sustained attention on a task can be impaired by several factors. First, the
salience of the goal signals directly affects the decay rate of operator performance
due to the vigilance decrement (Helton and Warm 2008). Increased working
memory load leads to worse performance on vigilance tasks. If an operator needs
to remember other tasks or keep other information in working memory, they will
have a higher cognitive load (Helton and Russell 2011). Depending on the type of

3  Cognition and Operator Performance

49

information being remembered, the impact on performance may be reduced. For
example, listening to a supervisor speak (verbal) while monitoring trends on a
graphical display (visual) is easier than listening while reading text (both verbal)
(Epling et al. 2016).

The ability to maintain attention over minutes or hours is also affected by the
time of day and the natural circadian rhythm that is driving the operator’s sleep
schedule. The impact of sleep and restfulness on performance varies by the task
characteristics. Discrete, active motor control tasks (e.g., tilting a platform to roll a
ball towards a hole) seem to be less affected by sustained time awake (Bolkhovsky
et al. 2018). However, the biggest concerns should be for monitoring tasks that
require focus over minutes or hours to catch infrequent events. Sustained alertness
tasks with reaction time-dependent performance show increased reaction times,
error rates, and instances of “sleep attacks,” an event where attention lapses for tens
of seconds mid-task causing a signal to be missed (Gunzelmann et al. 2009). If
sustained attention is a major component for tasks on an interface, designers should
consider the attentional requirements of the task and take advantage of tools like
FAST (Fatigue Avoidance Scheduling Tool; Eddy and Hursh 2006) to plan work
schedules that are compatible with the sleep patterns of the operators. For further
information on sleep and circadian rhythms, it can be found in Wide Awake at 3:00
A.M.: By Choice Or By Chance? (1986) by R.M. Coleman.

3.3.2  �Resuming Attention: Interruptions and Task-Switching

Interruptions provide a major risk in disrupting the ability of operators to maintain
their attention on a given task. Unanticipated breaks during the completion of a task
have been shown to increase subjective workload and error rates, even for experi-
enced professionals (e.g., Campoe and Giuliano 2017; DeMarco and Lister 1999).
Campoe and Giuliano (2017) found that the errors when programming medical
pumps occurred 7% more often when more than two interruptions occurred during
the ≈5-min task. Designers should be aware of how interruptions, even when
planned, can impair performance of operators.

The overall framework for understanding task interruption can be divided into
several phases. First, the worker will be completing some primary task. At some
point prior to completing the primary task, the worker is exposed to a distraction
signaling the need to complete a secondary task. The time between receiving the
signal and initiating the secondary task is called the interruption lag. Next, the
worker begins the secondary task. The time to complete the secondary task is called
the interruption length. Upon concluding the secondary task, a period called the
resumption lag occurs until the worker is able to resume the primary task (Trafton
et al. 2013). This process can occur multiple times throughout the completion of a
primary task.

3.3 � Attention

50

Distractions force the operator to lose their attention on one task, begin attending
to a different task, and then transition back into attending to the original task. Each
time the operator transfers their focus (in both directions), there will be a necessary
“activation period” where the operator is working through the stages of situational
awareness: perceiving the task features, forming a mental model of the situation,
and finally extending their mental model into likely future scenarios to guide action.
This process takes time and leads to performance impairment. It is also a source of
errors. Well-designed systems should attempt to alleviate the risks associated with
interruptions to primary tasks.

Systems engineers and designers can exhibit significant control over the design
of the associated tasks. Although designers may be able to influence operator train-
ing, it is more practical to design the system and tasks around a range of skill levels
(when possible). The first method for reducing the effects of interruptions on perfor-
mance is simply removing them from the possible task structure. Even among expe-
rienced professionals working in high-stakes situations, the number of interruptions
is directly correlated with an increased error rate, cognitive workload, and stress
level (Campoe and Giuliano 2017).

If interruptions cannot be limited, there are several ways to alleviate the perfor-
mance impairment. First, designers can provide a preliminary warning signal that
indicates an interruption is imminent (within the next 10 s). This allows operators to
begin preparing to switch tasks (e.g., mentally noting a suitable stopping point)
without the need to fully place their focus on the new task just yet. Trafton et al.
(2003) informally describe the process that occurs after the warning signal as the
operator answering two questions and storing the response in memory: “Now what
was I doing?” “Now what am I about to do?” The answer to the first question helps
the operator identify the point from which to resume the primary task, thus reducing
the resumption lag. The answer to the second question prompts the user to gradually
begin attending to the interruption task, thus reducing the interruption lag. The same
study demonstrated that providing a warning signal with 10-s notice for a distrac-
tion reduced the resumption lag by nearly 50% (8 s without warning vs. 4 s with a
warning) for an unpracticed task. Although this effect diminished with repeated
practice, this design guideline is particularly useful for infrequent tasks that may be
minimally practiced.

Besides offering a warning, designers can design interruptions that minimize the
performance impairment. First, interruption length is a large predictor of the
resumption lag. Working memory plays a significant role in managing attention.
Long interruptions impair the ability to rehearse the previous task state and lead to
an operator forgetting their place in the task. Designers can account for this by
reducing the length of interruptions and preventing interruptions during high-stakes
tasks (Campoe and Giuliano 2017). Interruptions that force the operator to change
contexts also impair performance. Context change is a broad descriptor that may
include changing locations, unexpected transitions from visual processing to verbal
processing (e.g., talking to a coworker), or generally unexpected shifts in cognitive
requirements (Marsh et al. 2006). So, when possible, allow the operator to finish

3  Cognition and Operator Performance

51

their current primary task step. This reduces the resumption lag for computer-based
work, though this benefit appears to disappear for manual work (Campoe and
Giuliano 2017).

3.3.3  �Signal Thresholds and Habituation

Visual input is naturally limited by the minimum stimulus strength that is detectable
by the structures in the eye. The threshold that separates undetectable and detectable
stimuli is called a detection threshold. For visual signals in the human eye, the
threshold for light detection is approximately 100 quanta. The threshold corre-
sponds to being able to detect a candle flame from 50 km on a clear dark night
(Galanter 1962).

The amount of change necessary to create detectable differences between stimuli
is called a just noticeable difference (JND). We use JND to generally refer to a
detectable difference as measured by the appropriate scale for the metric (e.g., deci-
bels for sound). For example, let’s say we ask a person to select the darker shade of
orange between two similar, but different, orange color swatches. If the difference
between the two is less than a single JND for the human visual system, then the
person will perform no better than chance, even though a computer can instantly
recognize a difference. A change in the interface display with less than one JND will
have signals that are physiologically impossible to detect for the user. Thus, the
signals and stimuli directed to the operator must be sufficiently clear and distinct to
be detected, and designers should avoid implementing visual features that commu-
nicate important changes through subtle differences.

Although human vision can be very sensitive during the initial presentation of a
stimulus, there is also a natural process of habituation that occurs during persistent
detection of certain stimuli. As an operator becomes accustomed to a predictable,
persistent visual stimulus, they lose the ability to perceive it without conscious
effort; the stimulus becomes background to them. For example, people living next
to train tracks stop noticing the trains. Though it is more common with simple stim-
uli, habituation can also occur with complex stimuli that require action (e.g., click-
ing a “confirm action” box for every action; Ritter et al. 2014).

System designers already will be taking some steps towards accounting for these
low-level issues during the design process. For example, system designers will often
use particular visual characteristics such as flickering or flashing lights, changes in
color, or motion to indicate that an operator’s attention is needed. However, design-
ers should use caution when deciding when to use alerting signals. When a system
is working as intended, the designer should be aiming for signals that facilitate
habituation, that is, the changes appear normal and do not call attention to them-
selves. However, once the system detects an alert of some kind, the design princi-
ples become inverted. Rather than facilitating habituation, designers should actively
attempt to prevent habituation.

3.3 � Attention

52

3.3.4  �Speed-Accuracy Trade-off (Or How to Design
for Acceptable Errors)

There is a constant in human behavior represented by Fig. 3.7. This graph shows
that behavior can be slow and careful with low errors, or rather fast and with higher
errors. Operators will vary in what their curve looks like. Similar operators may be
at different points on the same curve as well. To avoid the extremes, psychology
studies often instruct subjects “to work as quickly and accurately as possible” to
attempt to put subjects at some ideal center point along this curve. The center point
allows fair comparisons between conditions in a study, but, typically, users will
move along the curve to suit the task and situation.

We note this speed-accuracy trade-off to designers so that when they are observ-
ing users, they realize that operators may be working at different points in the curve.
For example, when typing drafts, we type quickly and use spell correction to clean
up. When entering passwords, we type slowly because errors take time and force us
to redo the whole task.

3.3.5  �Summary of Attention

Attention can be seen as the tasks and information that the operator is attending to
or working with. There are consistencies and effects that arise from this process. To
the extent that designers can understand the operator and their tasks, they have a role
to facilitate the allocation of attention and to support its use.

To summarize how designers can support operators’ attention, we present a few
design principles related to attention.

Fig. 3.7  The speed-
accuracy trade-off curve.
(Reprinted with minor
changes from Ritter et al.
2014; Fig. 6-12)

3  Cognition and Operator Performance

53

Principle 3.6 Present information needed for comprehension directly

Attention and working memory are limited; information shown to the operator
should be processed and integrated as much as possible to reduce operator workload
and support the system goals.

Avoid giving operators extra work, particularly for tasks that can be automated
or otherwise more effectively handled by the system. Methods for implementing
this can range in complexity, but beneficial design choices will be structured around
eliminating extraneous work for the operator. Simple examples might include
reducing unnecessary mental math or just moving related information closer
together. Eye movements take time, as do mouse movements. Making an interface
easier to use with many small changes is important: milliseconds matter (Gray and
Boehm-Davis 2000). Complex examples include totally redesigning a complicated
display around a relatable design metaphor with a unified representation of the
information, as shown in Figs. 3.8 and 3.9.

For example, consider a simple altimeter design. Pilots are often skilled opera-
tors with a lot of experience in their primary tasks. However, the human limits on
attention and memory are always a factor. Designing to improve comprehension
will reduce mental strain for experienced and inexperienced pilots alike.

A pilot need not calculate the difference between assigned altitude and present
altitude. Technology has advanced so that this can be calculated and displayed bet-
ter than the initial dials. Simplify the task and use each system’s strengths. The
computer can handle simple mathematical calculations and could show the values
using two lines separated by the deviation. The pilot can then identify any issues
with altitude much more quickly with the visual process.

Compare the two altimeters in Fig. 3.8. On Fig. 3.8a, the pilot must personally
compute the difference, and direction of difference, between the present and

Fig. 3.8  The interfaces for two different altimeters. The generic digital altimeter (a) requires the
pilot to mentally compare their altitude to the set value while accounting for variables affecting the
instrument accuracy. (b) The Garmin G500 simplifies this by including a spatial comparison
between accurate barometric altitudes and clear representation of current altitude and ground level.
(Used with permission, www.garmin.com)

3.3 � Attention

http://www.garmin.com

54

assigned altitudes before responding accordingly. However, on Fig. 3.8b, the alti-
tude difference is interpreted visually and is a much faster and less error-prone task.

As another example that is more complex, consider Fig. 3.9 which shows the OZ
display. It provides a redesign of an airplane’s control panel around a direct imple-
mentation of an airplane metaphor. Flying with traditional airplane displays requires
the pilot to mentally calculate their current flight relative to the limits based on the
flight envelope (i.e., stable flight based on related parameters like airspeed, altitude,
and orientation). This mental calculation is difficult and cognitively taxing, particu-
larly during times of high workload from adverse conditions such as fog or
turbulence.

When vision is impaired, pilots rely solely on instrument flight (IF) with no
visual reference frame. This risky situation led Temme et al. (2003) to propose an
interface titled “OZ” that portrays the key information as an integrated display built
around a digital plane, shown in Fig. 3.9 (b, top). This display presents exactly what
the pilot needs to know for the task: current aircraft performance compared to air-
craft limits and optimal performance values. A comparison between old and new
displays is shown in Fig. 3.9 (a and b, bottom).

Although the OZ display in Fig. 3.9(b, bottom) appears complex to novice or
unfamiliar users, it was designed to support common tasks that are familiar to pilots
and is derived from the mental model used by the pilot during flight. The improve-
ments from the new design were confirmed via tests showing that novice pilots
using the OZ interface performed significantly better than novice pilots with the

Fig. 3.9  The OZ display compared to a traditional cockpit. The traditional display (a) is an emu-
lated display, and (b) shows the plane metaphor (top) used to develop the functional OZ cockpit
display (bottom). Used with permission from Temme et al. 2003, pp. 75–77

3  Cognition and Operator Performance

55

conventional display. With the OZ display, subjects with no flight experience imme-
diately showed greater flight precision (for orientation and altitude) and reduced
performance loss from turbulence than when using the typical display. After about
80 h of flight time with both displays, subjects attempted to perform a reading task
while operating the plane. This task was essentially impossible with the conven-
tional display, but subjects saw almost no loss in performance when using
OZ. Similar designs could be created for control rooms, perhaps as a summary sup-
porting task performance while retaining the raw data visible behind the summary
display.

Principle 3.7 Provide support for operators that may deal with interruptions.

To summarize, to support operators so they can deal with interruptions:

	1.	 High-stakes work should be distraction-free.
	2.	 Warn operators that an interruption is imminent when possible, that is, allow

operators to prepare for task-switching.
	3.	 Promote completion of primary task steps before beginning secondary tasks.

Simplify the process for resuming a postponed task. This can be done by sus-
pending the secondary task, autocompleting the primary task, or providing note-
taking tools for recording the status of the primary task.

	4.	 If interruptions are necessary, reduce the distance and difference between the
primary and secondary tasks as measured semantically or syntactically.

Principle 3.8 Consider the risks of stimulus habituation appropriately

Even highly salient signals will become habituated with repeated presentation.
Constant presentation of a signal leads to habituation, and thus reduced detection
and attention by operators. Designers should create a hierarchy of signal salience to
ensure the right signals get through to the operator.

3.4  �Working Memory and Cognition

Following the perception of information from the environment, the operator needs
to use that information to make decisions and complete their work. Task-related
information must be analyzed, manipulated, and transformed into useful informa-
tion that can guide the actions taken by the operator. The operator must integrate
their knowledge of the state of the world with their mental model of the task. For
example, an operator sees that the temperature of some module is above the safe
threshold and the battery is running low. The operator stores these facts in their
working memory and then consults their long-term memory on how to respond to
the issue. The response is then also added to working memory alongside the facts
about the world state. The operator responds with the appropriate actions in the
system, ensures the problem is fixed, and then discards the old information before
moving onto their next task.

3.4 � Working Memory and Cognition

56

Variations of this process occur many times throughout an operator’s shift. These
human memories do not work as well (at least under conventional views) as com-
puter memory, so designers familiar with computers should be aware of the differ-
ences. Designers should particularly be aware of the differences because their own
mental models of their own memories are likely to be particularly incorrect—if your
memory fails, you are unlikely to be able to notice this! This section will describe
how working memory and long-term memory affect operator performance.

3.4.1  �Working Memory

Often, the work performed in op centers requires operators to integrate snippets of
information from various sources to come to a decision or understand the situation.
This process of storing and manipulating that information occurs within the work-
ing memory of the operator. Working memory stores and manipulates information
for near-term use (Ricker et al. 2010). Some tasks require multiple pieces of infor-
mation to be analyzed and processed near-simultaneously; working memory enables
people to handle this by offering a “scratch pad” for relevant information. Though
particularly relevant during the performance of complex tasks, working memory is
a foundational mediator for how each person interacts with the world. Working
memory acts as a store for both internal events (i.e., recalling long-term memories)
and external events (i.e., perceiving visual signals). In many ways, working memory
is often analogized to be comparable to the RAM of a computer system, whereas
long-term memory is like the ROM. The RAM, or working memory, allows rapid
data access, efficient manipulation, and quick turnover between processes. The
ROM, or long-term memory, provides a slower, semipermanent location for infor-
mation storage and retrieval.

The RAM–ROM analogy also applies to the limitations of working memory.
While long-term memory does not appear to have a clear storage limit in humans,
working memory is constrained by a capacity of only a few items—the most com-
mon general storage limit is about seven items plus or minus two items (Miller
1956). The seven-item limit is overly simplistic but provides a useful anchor for
working memory capacity. Working memory capacity also varies across the popula-
tion with greater working memory capacity being associated with better perfor-
mance on cognitive tasks (Just and Carpenter 1992). The levels of abstraction and
familiarity with the relevant concepts also have an effect; less abstract and more
practiced tasks are easier to remember and use (Ritter et al. 2014, Ch. 5).

The approximate limit for working memory capacity becomes even more com-
plex due to processes such as chunking. Chunking refers to a mental process for
grouping sets of individual information pieces into easily recognizable sets. For
example, it will be easier to remember a sequence of items like “N S A F B I” (chun-
ked as NSA, FBI) than “Q G Z T Y V” (not “chunkable” by most; Chalmers 2003;
Ellis 1996). Chunking mechanisms can be leveraged by system designers to increase
the practical working memory capacity of the users.

3  Cognition and Operator Performance

57

Modern theories of memory suggest that working memory is built from special-
ized subsystems that differ based on their input: the “visuospatial sketch pad” for
visual spatial information and the “phonological loop” for verbal information
(Baddeley 2000). This distinction between verbal and visual working memory
stores is important because these two systems can perform semi-independently
without much interference (i.e., loss of performance) between them. When imple-
mented successfully, this can allow someone to drive a car while listening to an
audiobook with almost no loss of performance for the primary task (Granados et al.
2018). However, implementing this concept is not necessarily foolproof. When the
secondary task requires too much mental effort (i.e., maintaining a conversation vs.
passive listening), driving performance tends to be degraded to a noticeable degree
(Strayer et al. 2003). Although multitasking is best avoided, making attempts to
isolate the tasks to distinct working memory stores can provide some measure of
risk reduction when it is impossible to eliminate the need for multiple tasks.

For the designer, there are a few takeaway implications for design:

	(a)	 Working memory has limitations on capacity and performance. Don’t use it up
asking the user to remember items the system can remember for them.

	(b)	 Chunking of items can increase the functional working memory capacity.
Support chunking when you can by putting items in a canonical order, spacing
items to support chunking (e.g., FBI vs. F____BI), and understanding the pat-
terns that operators know and choose, or even teaching them new acronyms.

	(c)	 Working memory has a time-based decay. Maintenance requires rehearsal at
some cost to the operator’s cognitive resources. Ensure users are not required to
independently store and remember lots of information for minutes at a time.

3.4.2  �Cognitive Load

Cognitive work is inherently taxing on our mental resources. We have previously
discussed the impairment of cognition as it relates to attention, but higher-order
processes are also affected. Throughout the performance of cognitive work within
an op center, operators are presented with information that must be monitored and
assessed and may need to be compared across time. These types of work are inher-
ently difficult, particularly when during long periods of performing the tasks.
Cognitive load theory (CLT) describes how the various factors such as working
memory load, personal stress, and task difficulty can provide an overall decrement
on performance of cognitive work (Sweller 1988). Cognitive load theory provides a
way to compare task difficulty (relative to the expertise of the user) across different
task environments. Reducing cognitive load provides a broadly effective way to
improve performance by freeing up working memory capacity for more important
tasks like integrating information and learning. CLT currently lacks units and an
objective way to measure it; however, we find CLT to be useful nonetheless because
it provides a framework for comparing system design choices.

3.4 � Working Memory and Cognition

58

A review of cognitive load’s role in human–computer interaction design is pro-
vided by Hollender et al. (2010). Their review integrates CLT research into a useful
framework for systems engineers. They posit three main types of cognitive load:
intrinsic, extrinsic, and germane. Intrinsic cognitive load refers to the inherent com-
plexity of the information being processed by the user. Comparing intrinsic load can
only really be done by comparing two tasks rather than by providing a stand-alone
value. For example, driving on an empty highway would likely provide less inherent
complexity compared to driving on a busy city street.

Extrinsic cognitive load refers to environmental and context-dependent factors
that provide unnecessary contributions to task difficulty. Integrating spatially distant
information from displays that are on opposite ends of the room will be inherently
more difficult than if the displays were side by side due to the required storage of
the information in working memory between task steps.

Finally, germane cognitive load refers to the beneficial cognitive work that
improves task performance. Learning and practice of the skills and schema required
to perform a task also require cognitive resources, in contrast to unhelpful portions
of the overall cognitive load. All three types of load contribute to the overall work-
ing memory needs of any given task, and the ideal task will reduce the intrinsic and
extrinsic load to provide more resources for the beneficial mechanisms that occur
from germane cognitive load.

Reducing the cognitive load of extraneous tasks can provide a consistently useful
method for improving the performance of operators. A simple method for reducing
cognitive load is by enforcing consistency across the layout, color scheme, and
overall information presentation style for components of an individual system and
across multiple systems (Chalmers 2003). Even experienced users that may switch
between a Windows OS and Mac OS will know the feeling of attempting to use a
Mac-only shortcut on a Windows machine (or vice versa).

Many of the recommendations for reducing cognitive load can be succinctly
described as follows: when possible, reduce the space and distance between code-
pendent pieces of information. In some cases, it’s a relatively simple process to find
multiple solutions. Disparate information sources could be split across multiple dis-
plays to maximize information presentation, or alternatively, a single display could
be trimmed of unnecessary information to bring the most important features onto a
single, more efficient display (Brown et al. 2013). Other cases provide less clarity in
determining the best practices for a given context. Providing redundancy in feature
presentation can help reinforce certain information, but the additional features
inherently increase the intrinsic cognitive load during interaction with the system
(Grunwald and Corsbie-Massay 2006).

Engineers and other stakeholders must use the risk-driven approach to make
informed decisions; competing design recommendations are rarely weighted on
easily comparable scales. Krug’s (2005) approach provides further suggestions to
reduce cognitive load that center around the titular message of the book: Don’t
Make Me Think. Krug argues that small design flaws like unclear labels, confusing
buttons, and unclear feedback introduce minor inconveniences that can add up and
lead to a noticeable drop in overall system performance.

3  Cognition and Operator Performance

59

Further ways to support operators and reduce cognitive load can involve shifting
cognitively taxing tasks and information onto the system. This includes (a) remind-
ing operators when tasks should begin; (b) reducing load by simplifying the num-
ber, length, and complexity of actions; and (c) automating tasks that can be
automated, like how automobile turn signals automatically shut off after the steering
wheel rotates back to straight.

3.4.3  �Summary of Working Memory and Cognition

Operators will be using their working memory on every task, but there are inherent
limitations to capacity and processing power that need to be considered when
designing the interface. Off-loading information to the system (when possible)
reduces strain on working memory, as does simplifying or optimizing how informa-
tion is displayed to leverage mechanisms like chunking to increase functional work-
ing memory capacity. By understanding the tasks and operators for their system,
designers can identify ways to support operator performance through design
choices.

Principle 3.9 Reduce the cognitive resources used during multi-step tasks

Operators’ cognitive resources, including working memory and attention, are
limited, and these limitations are made worse by fatigue, stress, and task difficulty.
Simplifying the work will reduce workload and make errors less likely to occur.

Simplifying tasks can be done in many ways depending on the specific scenario.
The common factor for all successful implementations of this guideline is a reduc-
tion in the amount of working memory, attention, or other cognitive resources
needed to perform the task.

For example, if an operator is alerted for a task that needs to be done in 30 min,
the system should provide an additional reminder at the appropriate time rather than
relying on the operator’s memory.

If a common task requires several steps to complete, provide an interactive
task checklist that indicates the current state of the procedure—checklists are
very helpful to support complex tasks. A simpler solution could be incorporating
a window showing all inputs and outputs for the system with associated
timestamps.

3.5  �Summary

The mechanisms that operators use while performing their work influence how the
work gets done, what errors are likely to occur, and how to design to support system
success. This concept is common across other engineering fields. For an electrical
engineer, the components that comprise electrical circuits influence how circuits

3.5 � Summary

60

produce their outputs, what errors are likely to occur within the circuit, and how to
design effective systems that require electrical circuits.

The most salient mechanisms of operators that are relevant to improving the
design of op centers are perception, attention, and working memory. These mecha-
nisms interact, and good design will be based on a theory of how they are used by
operators to perform their tasks based on the information presented to them in the
interface.

We include design principles to help with design. When these principles contra-
dict themselves, which design principles and guidelines will inevitably do, the
designers will have to resort to analysis of the tasks and their procedures, impor-
tance, and frequency to resolve the design trade-offs.

There are also other mechanisms of operators, shown in Fig. 2.4, that will influ-
ence performance in op centers. These mechanisms include motor output and other
forms of perception. An overview of these mechanisms is available in Ritter
et al. (2014).

References

Baddeley, A. D. (2000). The episodic buffer: A new component of working memory? Trends in
Cognitive Sciences, 4(11), 417–423. https://doi.org/10.1016/S1364-6613(00)01538-2.

Bolkhovsky, J. B., Ritter, F. E., Chon, K. H., & Qin, M. (2018). Performance trends during sleep
deprivation on a tilt-based control task. Aerospace Medicine and Human Performance, 89(7),
626–633. https://doi.org/10.3357/AMHP.4843.2018.

Brown, J. M., Greenspan, S. L., & Biddle, R. L. (2013). Complex activities in an operations cen-
ter: A case study and model for engineering interaction. Proceedings of the 5th ACM SIGCHI
symposium on engineering interactive computing systems, 2(November), pp. 265–274. https://
doi.org/10.1145/2494603.2480310.

Campoe, K. R., & Giuliano, K. K. (2017). Impact of frequent interruption on nurses’ patient-
controlled analgesia programming performance. Human Factors, 59(8), 1204–1213. https://
doi.org/10.1177/0018720817732605.

Chalmers, P. A. (2003). The role of cognitive theory in human-computer interface. Computers in
Human Behavior, 19(5), 593–607. https://doi.org/10.1016/S0747-5632(02)00086-9.

Chang, D., Dooley, L., & Tuovinen, J. E. (2002). Gestalt theory in visual screen design – A new
look at an old subject. In Proceedings of the seventh world conference on computers in educa-
tion conference on computers in education: Australian topics – Volume 8, pp. 5–12. Retrieved
from http://crpit.com/confpapers/CRPITV8Chang.pdf

DeMarco, T., & Lister, T. (1999). Peopleware: Productive projects and teams (1st ed.). New York:
Dorset House Publishing.

Eddy, D. R., & Hursh, S. R. (2006). Fatigue Avoidance Scheduling Tool (FAST) phase II SBIR
final report, part 1. https://doi.org/[Tech. Rep. No. AFRL-HE-BR-TR-2006-0015] Brooks
AFB, TX.

Ellis, N. C. (1996). Sequencing in SLA: Phonological memory, chunking, and points of
order. Studies in Second Language Acquisition, 18(1), 91–126. https://doi.org/10.1017/
S0272263100014698.

Epling, S. L., Russell, P. N., & Helton, W. S. (2016). A new semantic vigilance task: Vigilance
decrement, workload, and sensitivity to dual-task costs. Experimental Brain Research, 234(1),
133–139. https://doi.org/10.1007/s00221-015-4444-0.

3  Cognition and Operator Performance

https://doi.org/10.1016/S1364-6613(00)01538-2
https://doi.org/10.3357/AMHP.4843.2018
https://doi.org/10.1145/2494603.2480310
https://doi.org/10.1145/2494603.2480310
https://doi.org/10.1177/0018720817732605
https://doi.org/10.1177/0018720817732605
https://doi.org/10.1016/S0747-5632(02)00086-9
http://crpit.com/confpapers/CRPITV8Chang.pdf
https://doi.org/10.1017/S0272263100014698
https://doi.org/10.1017/S0272263100014698
https://doi.org/10.1007/s00221-015-4444-0

61

Findlay, J. M., & Gilchrist, I. D. (2003). Active vision: The psychology of looking and seeing.
Oxford: Oxford University Press.

Galanter, E. (1962). Contemporary psychophysics. In R. Brown, E. Galanter, E. H. Hess, &
G. Mandler (Eds.), New directions in psychology (pp. 87–156). New York City: Holt/Rinehart/
Winston.

Garner, W. R. (1974). The processing of information and structure. Potomac: Lawrence Erlbaum
Associates.

Granados, J., Hopper, M., & He, J. (2018). A usability and safety study of bone-conduction
headphones during driving while listening to audiobooks. Proceedings of the Human
Factors and Ergonomics Society Annual Meeting, 62(1), 1373–1377. https://doi.
org/10.1177/1541931218621313.

Gray, W. D., & Boehm-Davis, D. A. (2000). Milliseconds matter: An introduction to microstrate-
gies and to their use in describing and predicting interactive behavior. Journal of Experimental
Psychology. Applied, 6(4), 322–335.

Grunwald, T., & Corsbie-Massay, C. (2006). Guidelines for cognitively efficient multime-
dia learning tools: Educational strategies, cognitive load, and interface design. Academic
Medicine, 81(3), 213–223. Retrieved from http://journals.lww.com/academicmedicine/
Fulltext/2006/03000/Guidelines_for_Cognitively_Efficient_Multimedia.3.aspx

Gunzelmann, G., Gross, J. B., Gluck, K. A., & Dinges, D. F. (2009). Sleep deprivation and sus-
tained attention performance: Integrating mathematical and cognitive modeling. Cognitive
Science, 33(5), 880–910. https://doi.org/10.1111/j.1551-6709.2009.01032.x.

Healey, C., & Enns, J. (2012). Attention and visual memory in visualization and computer graph-
ics. IEEE Transactions on Visualization and Computer Graphics, 18(7), 1170–1188. https://
doi.org/10.1109/TVCG.2011.127.

Helton, W. S., & Russell, P. N. (2011). Working memory load and the vigilance decrement.
Experimental Brain Research, 212(3), 429–437. https://doi.org/10.1007/s00221-011-2749-1.

Helton, W. S., & Warm, J. S. (2008). Signal salience and the mindlessness theory of vigilance. Acta
Psychologica, 129(1), 18–25. https://doi.org/10.1016/j.actpsy.2008.04.002.

Hollender, N., Hofmann, C., Deneke, M., & Schmitz, B. (2010). Integrating cognitive load
theory and concepts of human-computer interaction. Computers in Human Behavior, 26(6),
1278–1288. https://doi.org/10.1016/j.chb.2010.05.031.

Irwin, D. E., Brown, J. S., & Sun, J. (1988). Visual masking and visual integration across saccadic
eye movements. Journal of Experimental Psychology. General, 117(3), 276–287. https://doi.
org/10.1037/0096-3445.117.3.276.

Just, M. A., & Carpenter, P. A. (1992). A capacity theory of comprehension: Individual
differences in working memory. Psychological Review, 99(1), 122–149. https://doi.
org/10.1037/0033-295X.99.1.122.

Krug, S. (2005). Don’t make me think: A common sense approach to web usability (2nd ed.).
Berkeley: New Riders Press.

Marsh, R. L., Cook, G. I., & Hicks, J. L. (2006). Task interference from event-based intentions
can be material specific. Memory & Cognition, 34(8), 1636–1643. https://doi.org/10.3758/
BF03195926.

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capac-
ity for processing information. Psychological Review, 63(2), 81–97. https://doi.org/10.1037/
h0043158.

Moore, C. M., & Egeth, H. E. (1997). Perception without attention: Evidence of grouping under
conditions of inattention. Journal of Experimental Psychology. Human Perception and
Performance, 23(2), 339–352.

Ricker, T. J., AuBuchon, A. M., & Cowan, N. (2010). Working memory. Wiley Interdisciplinary
Reviews: Cognitive Science, 1(4), 573–585. https://doi.org/10.1002/wcs.50.

Ritter, F. E., Baxter, G. D., & Churchill, E. F. (2014). Foundations for designing user-centered
systems. London: Springer. https://doi.org/10.1007/978-1-4471-5134-0.

References

https://doi.org/10.1177/1541931218621313
https://doi.org/10.1177/1541931218621313
http://journals.lww.com/academicmedicine/Fulltext/2006/03000/Guidelines_for_Cognitively_Efficient_Multimedia.3.aspx
http://journals.lww.com/academicmedicine/Fulltext/2006/03000/Guidelines_for_Cognitively_Efficient_Multimedia.3.aspx
https://doi.org/10.1111/j.1551-6709.2009.01032.x
https://doi.org/10.1109/TVCG.2011.127
https://doi.org/10.1109/TVCG.2011.127
https://doi.org/10.1007/s00221-011-2749-1
https://doi.org/10.1016/j.actpsy.2008.04.002
https://doi.org/10.1016/j.chb.2010.05.031
https://doi.org/10.1037/0096-3445.117.3.276
https://doi.org/10.1037/0096-3445.117.3.276
https://doi.org/10.1037/0033-295X.99.1.122
https://doi.org/10.1037/0033-295X.99.1.122
https://doi.org/10.3758/BF03195926
https://doi.org/10.3758/BF03195926
https://doi.org/10.1037/h0043158
https://doi.org/10.1037/h0043158
https://doi.org/10.1002/wcs.50
https://doi.org/10.1007/978-1-4471-5134-0

62

Strayer, D. L., Drews, F. A., & Johnston, W. A. (2003). Cell phone-induced failures of visual
attention during simulated driving. Journal of Experimental Psychology. Applied, 9(1), 23–32.
https://doi.org/10.1037/1076-898X.9.1.23.

Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental
Psychology, 18(6), 643–662. https://doi.org/10.1037/h0054651.

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science,
12(2), 257–285. https://doi.org/10.1207/s15516709cog1202_4.

Temme, L. A., Still, D. L., & Acromite, M. (2003). OZ: A human-centered computing cockpit
display. 45th Annual Conference of the International Military Testing Association. Pensacola,
FL, USA, pp. 70–90

Trafton, J. G., Altmann, E. M., Brock, D. P., & Mintz, F. E. (2003). Preparing to resume an interrupted
task: Effects of prospective goal encoding and retrospective rehearsal. International Journal of
Human Computer Studies, 58(5), 583–603. https://doi.org/10.1016/S1071-5819(03)00023-5.

Trafton, J. G., Hiatt, L. M., Harrison, A. M., Tamborello, F., Khemlani, S., & Schultz, A. (2013).
ACT-R/E: An embodied cognitive architecture for human-robot interaction. Journal of Human-
Robot Interaction, 2(1), 30–55. https://doi.org/10.5898/JHRI.2.1.Trafton.

Ulrich, T. A., & Boring, R. L. (2013). Example user centered design process for a digital control
system in a nuclear power plant. Proceedings of the Human Factors and Ergonomics Society
Annual Meeting, 57(1), 1727–1731. https://doi.org/10.1177/1541931213571385.

Unsworth, N., Schrock, J. C., & Engle, R. W. (2004). Working memory capacity and the anti-
saccade task: Individual differences in voluntary saccade control. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 30(6), 1302–1321. https://doi.
org/10.1037/0278-7393.30.6.1302.

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

3  Cognition and Operator Performance

https://doi.org/10.1037/1076-898X.9.1.23
https://doi.org/10.1037/h0054651
https://doi.org/10.1207/s15516709cog1202_4
https://doi.org/10.1016/S1071-5819(03)00023-5
https://doi.org/10.5898/JHRI.2.1.Trafton
https://doi.org/10.1177/1541931213571385
https://doi.org/10.1037/0278-7393.30.6.1302
https://doi.org/10.1037/0278-7393.30.6.1302
http://creativecommons.org/licenses/by/4.0/

63© The Author(s) 2021
J. D. Oury, F. E. Ritter, Building Better Interfaces for Remote Autonomous
Systems, Human–Computer Interaction Series,
https://doi.org/10.1007/978-3-030-47775-2_4

Chapter 4
Conclusion and Final Comments

Abstract  The foundational design philosophy of user-centered design (UCD)
offers an ideal approach for systems engineers, programmers, designers, and any
other stakeholder involved with the design of high-stakes systems with human oper-
ators. Furthermore, UCD, as presented here, is tailor-made to meet the unique needs
of critical human–machine systems in systems like air traffic control towers, 911
call centers, or NASA’s Mission Control Center. Whenever the operator is a mission-
critical component of the system, stakeholders must be able to make informed deci-
sions during the design process, and this book provides the tools necessary to make
those decisions.

4.1  �Introduction

This book summarizes a process for designing and implementing op centers like the
Water Detection System introduced in Chap. 1. As the work is performed, risks are
assessed using a spiral development model that checks with stakeholders at each
major phase, and adjusts the process based on the risks that can be perceived at that
stage. The intermediate and final system can be assessed using simple usability tests
as well as cognitive walkthroughs.

The process uses shared representations of the operators, their tasks, and the
context of the work. An example of these is provided in Appendix 1. These shared
representations are used to design and create an op center. Appendix 1, with its
subsections, provides an example set of documents for describing your users and
their tasks in a way that is useful for design. Larger systems will need correspond-
ingly larger and more complex descriptions, while smaller systems will typically
need less. Systems only used by their developers might not need anything, but sys-
tems that are designed without these documents are designed informally and solely
for their designer’s use, not for the operators. As architects would discuss blueprints
particularly before building a project, op center designers should expect to prepare
and discuss these documents during design with other stakeholders, such as manag-
ers, future operators, and funders. These discussions can reduce misunderstandings,

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47775-2_4&domain=pdf
https://doi.org/10.1007/978-3-030-47775-2_4#DOI

64

lead to supporting all the tasks for all stakeholders, defend designs, and help keep
the relevant goals, missions, and tasks in mind when designing a system. Using
these documents reduces risks (Pew & Mavor, 2007).

Chapters 2 and 3 provide design principles that managers, designers, and imple-
menters can be informed by. These stakeholders can also be informed by greater
knowledge of the operators as a type of system component. Chapter 3 provides a
short overview of the types of knowledge of operators that can help inform system
design and implementation. Further sources for learning more are noted in each
chapter.

This book should also be seen as an initial review. There is more to know about
how to support operators than is covered here. Appendix 2 provides pointers to fur-
ther information on how to support operators in control rooms and to support the
designers who create them. Appendix 3 aggregates the most important design prin-
ciples that we have described in this book. The rest of this chapter briefly summa-
rizes the book, offers areas of future work, and responds to the set of design questions
presented at the end of Chap. 1.

4.2  �The Need for User-Centered Design

One of the difficulties with this approach will be investing the perceived additional
time and effort to avoid the risks that this approach helps mitigate, ameliorate, or
avoid. Typically, this approach takes additional effort, and organizations do not
always see the risks until they arrive. There is evidence, however, that a mindful
approach can overall reduce costs (Booher and Minninger 2005).

A problem that remains then is to provide evidence that there are risks and that
this approach helps reduce risks and their impact. Pew and Mavor (2007) call for
examples to help motivate the different team members to appreciate how usability
can influence system performance. Table 4.1 notes a few examples. Support from
management for this more engineering-based approach as well as further local
examples could be useful to motivate implementers and technology designers to
take operator tasks and their knowledge, skills, and abilities more seriously.

Keeping a list of known risks and accidents related to the design domain could
also be helpful in several ways. The particular risks to op centers’ success may
be difficult to quantify and will often arise from unexpected events. It may be

Table 4.1  Examples of usability problems leading to accidents (or extreme training or testing
avoiding them). Further examples are available in Casey (1998)

The USS Vincennes incident
The US Airways Flight 1549 that landed in the Hudson River
A Tomahawk launch system that was cancelled for not meeting response time when the problem
was known (Chipman and Kieras 2004)
Task analyses of various army projects that led to saving hundreds of millions of dollars across
multiple projects (Booher and Minninger 2005)

4  Conclusion and Final Comments

65

worthwhile for an organization to keep track of misses and near misses to
accidents, as NASA does for air traffic control in the NASA Aviation Safety
Reporting System (asrs.arc.nasa.gov/).

4.3  �The Need for Better Shared Representations

Another problem is the usability of the shared representations of users, tasks, and
technology. Shared representations are documents about the design (e.g., types of
users and tasks) that are shared across groups of stakeholders. The managers,
designers, and implementers can come from different intellectual backgrounds, and
have different assumptions. There is a need to translate some representations to
“engineer speak,” and perhaps in the other direction. There is a young literature on
how to prepare knowledge about design aspects to share with other team members.
This is a problem noted by Pew and Mavor (2007), where it is called shared repre-
sentations, and work remains to make sure the shared representations are as usable
as they can be.

4.4  �Open Problems

We can now revisit the questions in Table 1.4, presented here as Table 4.2. The
responses are included in the table for convenience of reading and presentation.

As the material in Table 4.2 notes, there remain open problems with applying this
approach. The degree of detail required for the documents will vary across particu-
lar op centers, and across different technologies, and thus should be adjusted accord-
ingly to the needs of the proposed system. The risks that arise in the use of particular
op centers will vary with the domain that the op center is supporting. This approach
does not guarantee a perfect or even a better system, but it overall reduces risk and
the probability of system failures.

4.5  �Ways to Learn More

Designers of control rooms will need to know more about design and about opera-
tors than what is covered in this book. They will need to know more theory about
design and human users, and they will need more details about the situations and
operators and tasks that they are designing for. This appendix notes a few ways to
learn more. These ways include reading, discussion, and formal and informal edu-
cation. An hour a week of learning is not much in a week, but in a year, it can change
how you think.

4.5  Ways to Learn More

https://asrs.arc.nasa.gov/

66

Table 4.2  Questions addressed by this book

Process performance

1. Which user interface features reduce user stress and improve and maintain level of
performance?

Situation awareness (SA) describes the operator’s awareness of system state, and designs
should support the cognitive processes used by operators to build up SA. Reducing cognitive
load will reduce user stress, improve performance, support better SA, and help maintain
performance over time. Cognitive load depends on multiple aspects of an interface, so
matching the user, system, and tasks with the overall design will reduce stress and generally
improve performance. Doing so is done by matching the user’s capabilities with the interface

2. Which user interface design factors mitigate performance degradation (speed, accuracy)
during the execution of detailed procedures for troubleshooting?

The factors noted in answer 1 to start. Furthermore, designers should advocate for minimal task
interruptions when possible, and support multitasking with helpful features when it is required.
Developing and supporting SA in operators will also help reduce performance degradation by
allowing high performance to be achieved while minimizing wasted cognitive resources
High-throughput reaction times

3. Which features in fast and complex interfaces impair or enhance user reaction time and
accuracy?

The factors are detailed in Chaps. 2 and 3. Briefly, make perception of the task and task
features quick, easy, and properly prioritized. Ensure that information presentation supports
the mental model of the operator so they can have better SA. Improve the visual design and
reduce cognitive load by reducing the type and number of substeps, and making the output
able to be processed faster and more accurately by the operator

4. What are the reaction time and accuracy for a user to react to an alert and respond to the alert
with the correct actions using the task user interface? What are the upper limits of the number
and speed of alerts before performance degrades?

We have ways to estimate the time to handle an alert. The keystroke-level model (Card et al.
1980, 1983) can be used to estimate response times. The upper limit must be based on an
interface specified in enough detail to make predictions. The field does not have, to our
knowledge, tools to fully compute the upper limit, because the limit would depend on many
things that we don’t yet have fully computational or algorithmic equations for

5. What are the reaction time and accuracy for a user to distinguish between levels of criticality
using the task user interface?

This time measure would depend on the perceptual display, the relatively frequency of signal
and noise, and the payoffs between signal and noise. We do not know of an equation to
compute this in general, but an equation could be created for fixed measures and validated
empirically with operators

6. What are the effects of time-on-task (i.e., work shift length) on reaction time and accuracy for
a user using the system?

In general, with practice, reaction time goes down (Ritter et al. 2014; Chap. 5), but fatigue
goes up. There are formulas to compute the general effect of fatigue (FAST; Hursh et al.
2004). They are validated but require some examination and understanding before use in a
given situation.

(continued)

4  Conclusion and Final Comments

67

4.5.1  �Readings to Learn More

Designers wanting to learn more about design and operators can most easily read
more. There are numerous books on how operators (as people) think and learn. A
good book of this type is Anderson’s Cognitive Psychology and Its Implications
(2020). There are similar books for learning about perception (Sekuler and Blake
2005). Norman’s (1988/2013) book helped start the area of human–computer inter-
action but does not provide a unified theory of how to support design. It makes the
case for paying attention to users and provides food for thought. As design moves in
different directions, related books and textbooks can be found on broader topics
such as the effects of emotions on our interactions with systems (Norman 2004).

There are also books describing operators in terms that support design. Our
favorite is Foundations for Designing User-Centered Systems: What System
Designers Need to Know about People (Ritter et al. 2014), but textbooks by Wickens
(e.g., Wickens et al. 2012) and Lewis and Rieman (1994) are also useful. If detailed
knowledge about users is required, one can try to find the information in Boff and
Lincoln’s (1988) large compendium, but often the designer will be driven to reading
more specialized papers, asking experts, running a study, or making an educated
guess based on similar circumstances. Finally, the book Designing for situation
awareness (Endsley et al. 2003) provides further useful advice. It will be familiar
because we use it extensively in this book.

We also recommend Sommerville’s (2015) Software engineering (10th ed.), and
particularly the chapters on reliability engineering (Chap. 11), systems engineering
(Chap. 19), and systems of systems (Chap. 20). While not directly addressed in this
book, Baxter and Sommerville’s work on socio-technical systems brings a new per-
spective on the holistic design by integrating organizational change and system
development into a unified framework.

There are also two final topics that we did not broach in this book: automation
and the related topic of how operators use automation. Automation generally refers
to the execution of some task that was formerly performed by a human. Eventually,

Table 4.2  (continued)

Interface generalizability and individualized effectiveness

7. Which interface design elements vary and do not vary in effectiveness across various
demographics?

Design elements will vary based on previous experience with the design elements. The design
elements would have to be specified to fully answer this question. In general, designers
should know the operators’ tasks and make it easy to support each stage of SA by matching
operators’ capabilities with the interface

8. Which of the above questions are affected by age and prior education?
All of these questions are affected by age and prior education. Typically, people become
slower with age with raw response time, but this is typically not seen due to additional practice
that contributes to lower response times as well as more knowledge which leads to better
strategies and less search and problem-solving. Prior education that gives practice on the task
or related tasks decreases time. Education that teaches useful theory will lead to better
strategies that will in time, but perhaps not immediately, reduce response time. Further reviews
are available in the cognitive and aging literature, and in the expertise literature, respectively

4.5  Ways to Learn More

68

some tasks will become fully automated with no future human interaction, at which
point, these are simply machine tasks (Parasuraman and Riley 1997).

Designers should be careful not to rush into automating tasks, particularly for com-
plex tasks that will continue to rely on human input. Under perfect conditions, auto-
mation seems like an easy way to reduce the workload for your operators; however,
when faced with the complications that reality brings, you can quickly run into issues.

Operators use their trust in the automation to know how to use the automation
and to then perform their tasks successfully with automation doing part of the task.
Working with automation that is hard to calibrate can end up requiring more effort
because the operator will need to monitor the automation to ensure success. Optimal
performance can only be achieved when designers instill the proper amount of reli-
ance and trust on the automated systems (Lee et al. 2004). The mental model of how
the automation works and when it works should be accessible and easy to learn and
easy to use. The process for automating tasks in complex systems is difficult and
outside the scope of this book, but we recommend reading Lee et al.’s (2004) article
Trust in Automation: Designing for Appropriate Reliance and Parasuraman and
Riley’s (1997) article Humans and Automation: Use, Misuse, and Disuse if you
wish to learn more. We also recommend reviewing NASA’s Automation Interface
Design Development project (https://techport.nasa.gov/view/23597).

4.5.2  �Reading Groups

One way to solidify knowledge from reading and to learn information not com-
pletely codified is to participate in a reading group. Sometimes these groups appear
as graduate courses. They can also be organized around a work group or, better,
across work groups. They take time, but a group can help digest a book, and even
the social loafers who do not read the material can learn something. It is also a way
to build a shared theory of design in a workplace.

4.5.3  �Continuing Education

Finally, the most solid but expensive way to learn more is to take courses. Some will
be available at local universities, and some are available online. Coursera and Lynda
offer various courses that are related to these topics.

References

Anderson, J. R. (2020). Cognitive psychology and its implications (9th ed.). New York: Worth
Publishers.

Baxter, G. D., & Sommerville, I. (2011). Socio-technical systems: From design methods to
systems engineering. Interacting with Computers, 23(1), 4–17. https://doi.org/10.1016/j.
intcom.2010.07.003.

4  Conclusion and Final Comments

https://techport.nasa.gov/view/23597
https://doi.org/10.1016/j.intcom.2010.07.003
https://doi.org/10.1016/j.intcom.2010.07.003

69

Boff, K. R., & Lincoln, J. E. (1988). Engineering data compendium: Human perception and per-
formance. Wright-Patterson Air Force Base, OH: AFRL.

Booher, H. R., & Minninger, J. (2005). Human systems integration in Army systems acquisition.
In H. R. Booher (Ed.), Handbook of human systems integration (pp. 663–698). https://doi.
org/10.1002/0471721174.ch18.

Card, S. K., Moran, T. P., & Newell, A. (1980). The keystroke-level model for user performance
time with interactive systems. Communications of the ACM, 23(7), 396–410.

Card, S. K., Moran, T. P., & Newell, A. (1983). The psychology of human-computer interaction.
Hillsdale: Erlbaum.

Casey, S. M. (1998). Set phasers to stun: And other true tales of design, technology, and human
error. Santa Barbara: Aegean.

Chipman, S. F., & Kieras, D. E. (2004). Operator centered design of ship systems. In Engineering
the total ship symposium. American Society of Naval Engineers, NIST, Gaithersburg, MD.

Endsley, M. R., Bolte, B., & Jones, D. G. (2003). Designing for situation awareness: An approach
to user-centered design (1st ed.). London: Taylor & Francis.

Hursh, S. R., Redmond, D. P., Johnson, M. L., Thorne, D. R., Belenky, G., & Balkin, T. J. (2004).
Fatigue models for applied research in warfighting. Aviation, Space, and Environmental
Medicine, 73(3), A44–A53.

Lee, J. D., See, K. A., & City, I. (2004). Trust in automation: Designing for appropriate reliance.
Human Factors, 46(1), 50–80.

Lewis, C., & Rieman, J. (1994). Task-centered user interface design: A practical introduction.
Available at: http://www.hcibib.org/tcuid/

Norman, D. A. (1988/2013). The design of everyday things (Revised). New York: Basic Books .
Norman, D. A. (2004). Emotional design: Why we love (or hate) everyday things. New York:

Basic Books.
Parasuraman, R., & Riley, V. (1997). Human and automation-misuse, disuse and abuse. Human

Factors, 39(2), 230–253.
Pew, R. W., & Mavor, A. S. (2007). Human-system integration in the system development process.

Washington, DC: The National Academies Press. https://doi.org/10.17226/11893.
Ritter, F. E., Baxter, G. D., & Churchill, E. F. (2014). Foundations for designing user-centered

systems. London: Springer. https://doi.org/10.1007/978-1-4471-5134-0.
Sekuler, R., & Blake, R. (2005). Perception (2nd ed.). New York: McGraw-Hill.
Sommerville, I. (2015). Software engineering (10th ed.). Harlow: Pearson.
Wickens, C. D., Hollands, J. G., Banbury, S., & Parasuraman, R. (2012). Engineering psychology

and human performance (4th ed.). New York: Psychology Press.

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

References

https://doi.org/10.1002/0471721174.ch18
https://doi.org/10.1002/0471721174.ch18
http://www.hcibib.org/tcuid/
https://doi.org/10.17226/11893
https://doi.org/10.1007/978-1-4471-5134-0
http://creativecommons.org/licenses/by/4.0/

71© The Author(s) 2021
J. D. Oury, F. E. Ritter, Building Better Interfaces for Remote Autonomous
Systems, Human–Computer Interaction Series,
https://doi.org/10.1007/978-3-030-47775-2

�Appendices

�Appendix 1: Detailed Example Problem Space—The Water
Detection System (WDS)

Here is an example autonomous, asynchronous system that is used as a running
example in this book. The goal of this fictitious use case is to enable readers to con-
sider an example case that is typical of such op centers. The system description
includes an overview, system architecture, key features, example day in the life (i.e.,
scenarios), typical issues, user types, and task analysis. Each of these could and
should be expanded in more detail for real op centers. A set of these descriptions
provides a solid basis for designing with the operator in mind. The initial draft of
this system description has been created primarily by Mark Foster of L3Harris
Technologies, and we have extended it over time. It is also a complete enough
example of a remote autonomous, asynchronous system to be reused for other proj-
ects and courses.

�Overview

SatCorp is an imaginary corporation that builds user interfaces for a unique class of
command and control systems. These systems, while all unique, have many features
that are consistent throughout their designs. The fictitious use case involves building
a user interface to command and control a remote Water Detection System (WDS)
that is based on an autonomous robot. It receives commands once per day and
reports back at the same time. This WDS will be deployed to Mars in an attempt to
detect pockets of water underneath the surface or traces of water in the soil on the
surface.

The WDS will take 5 years to develop and test before it is ready to deploy. Once
ready, it will be sent to Mars as part of a larger manned mission. Due to space

https://doi.org/10.1007/978-3-030-47775-2#DOI

72

constraints on the manned vessel, the WDS will be disassembled before launch. It
will be the responsibility of the team on this space mission to assemble the WDS,
perform some initial checkout of the system, and ultimately deploy the WDS on the
surface of Mars. During the assembly and checkout of the system, the team will
command and control the system via a laptop with a local LAN connection to the
WDS. The system checkout of the system is intended to exercise the different parts
of the system to make sure they are still operational. Spare parts will be shipped
with the system in case anything is damaged in transport.

Once deployed on the surface of Mars, the WDS is expected to a have a 10-year
mission where it is solely commanded and controlled by NASA’s operation center.
The operators in NASA’s ops center are on duty 24/7. The WDS is only one of
dozens of systems they monitor. Decision-making with regard to how the WDS is
utilized comes from the scientists in the Program Office, which funded the
development of the WDS. It is the Program Office’s charter to find water sources in
other locations throughout our solar system.

This example (and associated material) ignores the communication delays with
Mars because most op centers do not deal with such long time delays in
communication media (although they will see delays in reports from other systems).

�System Architecture

The WDS is comprised of several elements. These elements are listed with a brief
description of each. Figure 1.4 (Chap. 1) diagrams the WDS and its connectivity
to Earth.

Main Control Element (MCE)

The MCE acts as the brain in the field. It is the responsibility of the MCE to facilitate
commands from Earth and collect data and status to send back to Earth. More
specifically, when commands are sent to the WDS, the MCE oversees the execution
of those commands. Commands that are scheduled for a future date will reside in
the MCE until it is time to execute such commands. Commands for immediate
execution will be executed upon receipt. Depending on the command type, the MCE
is tasked with powering on the necessary elements and forwarding subcommands to
those elements. All the while, the MCE is also constantly polling the other elements
for status. In addition, the MCE provides storage for water analysis data from the
Rock and Sand Exploration Element and Deep-Water Detection Element. When the
WDS sends data home, it is the responsibility of the MCE to bundle element status
and water analysis data, perform compression and encryption, and then forward that
data when appropriate to the Communications Element.

Appendices

73

Communications Element (CE)

The CE contains the antenna for communicating with Earth. This antenna is single-
duplex and therefore can only receive or transmit at a given time. Due to this
limitation, the antenna is by default in receive mode to receive commands from
Earth. The team on Earth must command it into transmit mode to transmit data
home. Typically, the team will schedule several transmit commands per day for
updates from the WDS, but will only send commands to the WDS about once per
week under standard operating procedures.

Autonomous Navigation Element (ANE)

The ANE controls the components of the WDS that are responsible for moving the
WDS from one location to another. The ANE includes cameras for taking pictures
of the terrain around it and has special image detection algorithms for identifying
obstacles it must navigate around. The ANE can be commanded to move from point
A to point B, and on its own determine the best route to get there, which may not be
a straight line if obstacles are in the way. In addition, this element controls the drive
motor, wheels, and steering functions. It also controls the emergency assist wheels
and arms that enable it to get out of precarious physical situations.

Rock and Sand Exploration Element (RSEE)

The RSEE controls the shovel-like apparatuses that the WDS is equipped with. It
also controls the cameras and sensors that are used to evaluate a segment of sand or
rocks. Data recorded from this element are forwarded to the MCE for storage until
being sent back to Earth for analysis.

Deep-Water Detection Element (DWDE)

The DWDE controls the drill and soil probe the WDS uses to search for water
underneath the surface. When commanded to do so, the DWDE will drive the probe
into the ground to gather water analysis data. In cases where the ground is too solid,
the DWDE will remove the probe and use the drill to loosen the ground underneath
the surface. After drilling, the probe is reinserted into the ground to continue
gathering water analysis data. Like the RSEE, data recorded by this element are
forwarded to the MCE for storage until being sent back to Earth for analysis.

Appendix 1: The Water Detection System

74

Power Generation Element (PGE)

The PGE consists of solar panels and the system batteries. The PGE has a set of
solar panels that are distributed around the WDS. These panels are used to generate
power and charge the system batteries. The solar panels can rotate and tilt as needed
to maximize sun exposure. The PGE is responsible for calculating the ideal rotation
and attitude.

�Key Features of the WDS

The following sections outline the key features that the user interface must
accommodate.

Status

All six system architecture components listed above contain numerous status items
that must be reported on a regular basis. Status items can range from environmental
measures, such as pressure, temperature, and humidity, to element-specific status
such as current speed (mph or kph) for the ANE.

One of the roles of the MCE is to periodically poll all the components for their
latest status values. The MCE then stores all these values until the next opportunity
to transmit data to Earth. All WDS components have redundant hardware with A
and B sides for each element, so the MCE polls only the A or B side of a given
component, depending on which side is currently booted. If the MCE attempts to
poll a given component that is unresponsive, the MCE can power cycle that
component or even switch sides of that component. This usually only occurs after
some threshold of unresponsive polls. This threshold is configurable.

Event Logs

Like reporting status, each component is recording an event log of the activities that
component is executing. When a given component’s log file reaches a given
threshold, that component will start a new log and transfer the old log to the
MCE. The MCE will send all the logs home at the next opportunity to transmit data
to Earth. The command and control GUI back on Earth will consolidate these logs
into a single system log, but typically needs to filter out element-specific details for
display.

Appendices

75

Configuration

Each element also maintains a set of configuration fields. For example, the MCE
may be configured to power cycle a given component after a certain number of
unresponsive polls by the MCE. This value is configurable under some scenarios
because it may be appropriate to power cycle if three polls are unresponsive, whereas
others may call for a wait period of ten polls without responding. In addition,
whether to power cycle a component or power cycle a component and switch sides
is another configurable feature of the MCE. Another common configuration field is
which side of a component to use. The MCE holds a field for each component, such
that when commands are received from Earth, the MCE knows which side (A or B)
of each component to power on to execute the commands.

Commands

Although commands are always sent to the MCE, each component supports a set of
its own commands. For example, a Transmit command that is scheduled for 1 week
from the current day would reside on the MCE’s schedule for a week. Then, shortly
before the Transmit command, the MCE would power on the CE and pass it the
Transmit command and a bundle of data to transmit. At the scheduled time, the CE
will execute the transmission of the data bundle back to Earth.

Redundancy

The WDS system will be deployed to Mars for a 10-year mission. During those
10 years, there will not be any maintenance missions, so every part of the WDS
must have built in redundancy to assure the system can last 10 years. Except for the
PGE’s solar panels, every component has both an A and B side. For example, the
MCE has two processor boards, one known as the A side and one known as the B
side. The system only uses one at a time, but can be configured to use either side.
Furthermore, each side of a component has its own status. For example, the RSEE
uses advanced moisture sensors to detect traces of water in the soil. In this case, the
A side has a set of moisture sensors, and the B side has a completely different set of
moisture sensors. Similarly, the network that connects all these components is also
completely redundant, so there are A and B networks.

�Day in the Life

A day in the life of the WDS is often unique. Table A1.1 shows a schedule for an
example 24-hour period (24 hours per day, scaled from the Martian cycle). For the
purpose of this use case, the Mars daylight hours will mirror those of Eastern
Standard Time.

Appendix 1: The Water Detection System

76

Table A1.1  Example day for WDS

Time Activity

00:00–
06:00

System idle time to avoid draining batteries below emergency shutdown threshold

06:00–
06:15

Receive the following Immediate commands from Earth:
 � * Relocate to the Tarakan Crater
 � * Survey the surface of the Crater
 � * Find Location of the Tarakan Crater Low Point
 � * Relocate to Tarakan Crater Low Point
 � * Probe the Tarakan Crater Low Point
Because these commands are “Immediate” commands, the MCE will begin executing
them in the order they were received. The MCE will maintain a queue of these
commands until they are all complete

06:15–
07:25

The MCE begins the first Relocate command. It starts by powering on the ANE. The
ANE takes about 4 min to boot. Once booted, the MCE passes the command to the
ANE. The ANE begins calculating its navigation plan to the Tarakan Crater

06:25–
07:25

The ANE drives the WDS towards the Tarakan Crater

07:25–
07:30

The ANE is continually imaging the terrain and detects an obstruction in its path to the
crater. The ANE stops driving and recalculates a new navigation plan

07:30–
07:35

The ANE continues driving towards the Tarakan Crater

07:35–
07:40

While driving, the MCE powers on the CE, as there is a scheduled Transmit command
for 08:20 today. The CE takes about 3 min to boot, but the MCE has several GB of
data that will take about 30 min to bundle, compress, encrypt, and copy over to the
CE. All of this will occur in the background while the system is doing other activities

07:40–
07:50

The ANE finishes driving to the crater and locates itself in the centermost point of the
crater

07:50–
07:55

The MCE receives events from the ANE that the Relocate command is complete. The
MCE then begins the Survey command. It starts by powering on the RSEE. Even
though the Relocate command is complete, the MCE does not power off the ANE, as
the MCE knows it will need the ANE powered up to conduct the Survey command.
Once the RSEE has booted, the MCE sends both the RSEE and ANE the Survey
command

07:55–
08:20

The two elements then begin executing their commands in tandem. A survey is
conducted by the ANE slowly navigating the WDS over a given area, while the RSEE
continually scoops sand and rocks to gather water analysis data. Both elements are
logging events while executing their commands. The MCE will monitor both their
event logs to make sure they are staying synchronized. Due to the size of this crater,
this set of commands will take up much of the day

08:20–
08:30

The CE executes a Transmit command
The Survey continues

08:30–
12:30

The Survey continues and completes

12:30–
12:40

The MCE finishes receiving the water analysis data from the RSEE and the
corresponding events such that the MCE knows the RSEE has completed the survey.
The MCE shuts the RSEE down

(continued)

Appendices

77

�Example Issues

The WDS is designed to autonomously handle issues that arise, but human
interaction is required on a regular basis. Many of these tasks are simple maintenance
and acknowledgement of warnings. For example, when batteries are low, the
operator is required to acknowledge the low battery threshold. No action is required
other than clearing the notification. Occasionally, however, the WDS will face an
urgent problem that requires human input. These scenarios are rare, so the operator
typically has limited training in how to address the issues. Here are some examples:

Problem: The WDS is navigating in the crater and gets stuck.

The operator from Earth must manually drive the WDS and control the ANE. The
typical operator is not trained in this task, so the supervising manager must
take control. The operators need to escalate the issue quickly because the
WDS witnessed unexpected terrain. The mappings of Mars must be updated
appropriately.

Problem: Dust storm prevents batteries from charging.

The MCE cannot task all the scheduled commands for the day. The CE alerts the
NASA operators of the low battery status. The operator must re-task the day’s

Table A1.1  (continued)

Time Activity

12:40–
12:45

The MCE kept the ANE power up and now passes the Find Location command to the
ANE. The ANE uses its terrain data to determine the lowest point of the crater. Via
events the MCE is notified the ANE has completed the Find Location command

12:45–
12:55

The MCE passes the next Relocate command to the ANE. The ANE drives the WDS to
the low point of the crater

12:55–
13:10

The MCE sees the ANE has completed the second Relocate command and powers
down the ANE. The MCE then powers up the DWDE. The DWDE takes about 8 min
to boot up. Once booted, the MCE passes the Probe command to the DWDE for
execution

13:10–
17:40

The DWDE executes the Probe command but encounters a lot of solid rock. This
forces the DWDE to alternate between Probe and Drill frequently. After over 4 h of
mostly drilling, the batteries have taken a significant hit, because the solar panels
cannot keep up with the power needs of the drill

17:40–
19:35

A (configurable) low battery threshold is reached that causes the MCE to take over and
pause the Probe command. The MCE powers down the RSEE and transitions into an
idle mode to allow the system to charge

19:35–
22:00

The sun has set, and system can no longer charge the batteries again until the next day

22:00–
22:50

The MCE powers on the CE, as there is another scheduled Transmit command for
22:40 today. While the batteries are still not charged enough for a drilling activity, the
battery threshold for a Transmit is much lower. Batteries are sufficient for a Transmit
command and therefore the system successfully transmits at 22:40

22:50–
23:59

System resumes idle mode. This will continue until the next day’s sunrise

Appendix 1: The Water Detection System

78

commands because the ANE would use all the remaining power. This task is
simple and can be completed by a novice employee but will require review by
a supervisor.

Problem: The op center’s wall of screens has many other systems represented at the
same time.

If the WDS has a problem, it might take a few days for the engineers to remote
in to fix the issue. Therefore, the overview screen will remain in a degraded
(fault-shown) state. The problem arises when something else goes wrong on
the system. For example, while at low power, a piece of equipment might
overheat and be in danger of catching fire. The operators need to be alerted to
this new degraded status and respond quickly.

�Stakeholder Analysis

When designing a system, it is worthwhile keeping the stakeholders, the audience
for the system, in mind (Boehm and Hansen 2001; Pew and Mavor 2007).
Stakeholders for the WDS and other complex systems will have a similar structure
as shown in Table A1.2. Direct users (i.e., operators), funders, and other stakeholders
will each have their own requirements for the project. The stakeholders identified
for the WDS are described in the rest of this section.

NASA 24/7 Operators

Primary operators (or users) of the system are those who perform routine activity
monitoring, respond to low-level alarms and events, and identify issues that require
outside performance. They want a task that is within their knowledge, skills, and
abilities and provides them with job satisfaction.

Table A1.2  List of primary stakeholders and a brief overview of their role in the project

Stakeholder Role

NASA 24/7 operators Lower-skilled workers that handle routine tasks on various
systems within the op center

Operation/command center
supervisors

Experienced managers that handle complex tasks and
monitor op center performance

System developers and engineers Experienced engineers that build and maintain the system
NASA Program Office scientists Highly experienced project managers that direct the WDS

actions and use the data that is collected
Project funders and other
high-level stakeholders

Outside managers responsible for ensuring project success
and making high-level project decisions

On-site astronaut install team Extremely skilled operators that will deploy and troubleshoot
the system (if necessary)

Appendices

79

The primary objectives of the 24/7 operators are to monitor the WDS for anoma-
lies or issues and maintain communication with the WDS. It is the role of the opera-
tors to plan sets of transmit commands for the WDS system (which requires
coordination with third-party communication systems) and send those commands to
the WDS. Additionally, they must monitor the WDS interface to verify that the
WDS has transmitted data to Earth when it is scheduled to. Upon receipt of this
data, the operators perform a cursory review of the data to determine if there are any
system issues that need to be addressed. In most cases, upon discovering a system
issue, the operators will contact the Program Office or Engineering Development
team to troubleshoot the issue. Lastly, the operators are expected to respond to
requests for information regarding the WDS. At any time, if the Program Office or
Engineering Development team needs some data points from the system, the opera-
tors should be able to retrieve that data for them.

The risk of overall project failure due to operator abilities and needs is relatively
more difficult to specify due to the delay between operator feedback and interaction
with the system. The most common sources of major failure will likely be due to
unforeseen issues that are preventable by experienced (or lucky) operators who can
react to the system beyond the pre-determined alarm and event conditions. For
example, a system overheat event can lead to a positive feedback loop of further
heating of other components that destroys key components. This could plausibly be
detected by a perceptive operator, but system alert priorities might not directly
reveal this as a critical issue until it is too late.

A source of “minor” project failure could be through overall issues with design
that lead to high error rates that increase project cost and reduce the perceived
reliability of the system. Although an operator taking the wrong action (e.g., a
command scheduling issue is first reported to the system’s development team before
calling Program Office scientists) is a relatively minor issue at first, high error rates
from operators increase the costs of the project and reduce the overall effectiveness
of the operation center.

The environment the operators work in is a command center that is staffed 24/7
with approximately 15 workstations. It is typically staffed with about 15 operators
during the day and 10 operators at night. The primary environment is a “dim” room
with desks in the center (i.e., not along the walls). The front wall, which all the
desks face, is a wall of screens. The back wall, which no one faces, is a secondary
wall of screens. Both walls of screens consist of multiplexed, disparate displays of
40–100 systems.

Operators alternate in 12-hour shifts, with a day shift from 7 am to 7 pm and a
night shift from 7 pm to 7 am. The night shift operators are typically former enlisted
personnel, hence generally not college educated, and mostly in their early twenties.
The day shift workers typically have a more advanced skill set than the night shift
operators. The average age is greater compared to the night shift. The day shift
operators tend to have more system knowledge and can handle slightly more
advanced troubleshooting or analysis than the night shift.

Appendix 1: The Water Detection System

80

Operation/Command Center Supervisors

Supervisors within the command center ensure operator performance and respond
to high-level alarms and events upon notification by the primary operators. Like
operators, the supervisors want job satisfaction and a task that is within their
abilities.

The supervisor’s use of the system will share mostly the same set of risks as
operators; risks to project failure will likely be the result of unforeseen issues that
could be successfully caught with experienced or skilled workers. Supervisors act
as the interface between the high-level management from NASA research scientists
and the ground-level operators that directly interact with the op center systems.

System Developers and Engineers

The Engineering Development team is a cross-discipline team that has developed
the WDS over the past 5 years. During the development phase, the WDS program
consisted of hundreds of engineers; however, the program has now been reduced to
essential personnel because the development is nearly ready for deployment. Most
of the remaining personnel are software engineers, systems engineers, and
integration/test engineers. This team’s primary responsibility is to resolve bug
tickets regarding the WDS software. This team is continually integrating and testing
the latest software. Once a software release is ready, it will be loaded to the WDS,
whether the WDS is still being used for training at NASA or if it has been deployed
on Mars. In addition, any issues or anomalies with the system are investigated by
the Engineering Development team in their development lab.

The developers want mission success (as measured by other stakeholders), an
easily programmed system, clear instructions, and to generally avoid “hard mental
operations,” leading to difficult to program constructs, when possible.

Developers will need to able to create the system within the constraints of the
other stakeholders while also meeting their funding and time constraints. Besides
these “common” risks that engineers should be familiar with, the other major risk of
project failure facing developers is ensuring that all the needs of the system and
users are met. The example of a major failure described under “operators” would
partially be the fault of the developers (for not identifying the tasks and needs), the
Program Office scientists (for not providing an adequate list of tasks and needs), and
possibly the op center supervisors, depending on the circumstances. However, the
developers should make strides to gather this information or risk having their
reputation be negatively affected (whether or not the failure is directly related to
their decisions).

The Engineering Development team works primarily in a large lab with the same
equipment that will be or has been deployed on Mars. This enables the team to test
the software releases and procedures before releasing updates. The team is available
to address any issues that arise after deployment. The Program Office scientists
relay the issues that are presented by the NASA operators. Occasionally the

Appendices

81

Engineering team can interface directly with NASA to get their feedback on the
WDS software, but this is usually limited. Therefore, the team must prioritize tasks
based on Program Scientists’ feedback. The Engineering team tests software updates
with their mock hardware.

NASA Program Office Scientists

The Program Office scientists are highly educated individuals whose charter is to
find water on Mars. This team is formally the customer for the Engineering
Development team and, while colleagues of the operators, receives customer-like
status when in the operation center. This team owns the decision-making on
everything from design details to live mission judgment calls. They are the
consumers of the water analysis data received from the WDS. They will use this
data to generate reports for upper management at NASA and politicians. Their work
heavily influences the direction of our country’s Space Program. This team decides
where the WDS should navigate on Mars and when the WDS should attempt to
gather more water analysis data.

They need to be able to complete all necessary technical tasks (which are
assumed to be known to the developers and engineers for the system). They also
need to be able to interpret the data from the WDS, input and alter commands, and
interact with the WDS via the same GUI as the operators that work within the
operation center.

Program Office scientists should be able to provide an adequate set of
requirements for the system or risk finding out that their needs are unable to be met
once the WDS arrives on Mars.

The Program Office scientists interface with the WDS via the same command
and control GUI as the 24/7 operators. They frequent the operation center during
business hours and especially around the time when transmit commands are
scheduled with the WDS. While their primary expertise is in the science behind the
water analysis data, they are fairly well versed with the WDS, as most of them have
been a part of this program during the development of the WDS. Furthermore, most
of them have experience working on similar systems deployed to other parts of the
solar system.

Project Funders and Other High-Level Stakeholders

These are various individuals and organizations that oversee the project and provide
funding for the work. They will be responsive to the assessments from the Program
Office scientists, explanations from the developers, and requirements from the
supervisors within the operation center. However, they also have their needs and
desires for the project. They may require design features based on a naïve
understanding of the project’s technical and scientific needs. For example, they may
prefer too great a consistency across projects (e.g., a common event log button

Appendix 1: The Water Detection System

82

across all systems), the use of incompatible software or hardware, or to prioritize a
task (and interface elements) that does not correspond to other stakeholder needs.
They also may provide necessary restrictions on work due to classification or other
regulations that limit otherwise valuable sources of collaboration and feedback.
They often want to have mission success with reduced resource costs.

As the funders of the program, they will have their own expectations for project
success. These expectations may differ from the assessments made by the Program
Office scientists, system developers, and other stakeholders. Many of the risks to
system failure will come from lack of communication or miscommunication
between the stakeholders.

NASA Astronaut Install Team

The astronaut install team is the last primary stakeholder for this project. They are
responsible for assembling the WDS, conducting pre-deployment tests on the
system, and launching it (thus releasing it from their responsibilities). This primarily
provides technological requirements (e.g., the device must be able to be assembled
with the resources available to the astronauts). Besides the technological
requirements, they will need to be able to interact with the ground team to
troubleshoot any issues or pass off the machine for remote troubleshooting via the
operation center.

The installation environment for the installers is obviously Mars. Therefore, their
time is very limited as their mission is bounded by the resources (i.e., air, water,
food, fuel) they have with them. Their energy levels are expected to be perpetually
compromised after the extended time in space required to travel to Mars. Due to the
annual meteor storm on the sector of Mars where the Program Office desires the
WDS to be deployed, the install team will not have communication with Earth
during the installation.

Summary and Lessons

Each project will have multiple stakeholders. The list of relevant stakeholders is not
simply limited to users that directly interact with the completed system or the
implementers of the system. System success requires integration of the needs of the
various stakeholders into a cohesive project plan that addresses their needs,
capabilities, and abilities. This example system also has a wide range of stakeholders.
Like other systems, there can be conflicts and trade-offs between their goals.

Appendices

83

�Task Analysis for 24/7 Operators

The hierarchical task analysis developed for the NASA 24/7 operators provides a
clear set of the most important tasks performed by the operators. The interface of a
system should be designed to match the needs and capabilities of the stakeholders
that are impacted by the interface. We focus on the 24/7 operators to provide a
blueprint for the tasks that need to be accomplished using any interface designed for
the WDS system.

Table A1.3 gives an overview of the tasks described by the task analysis.
Following the table is the detailed view of the tasks showing subtasks and other
components. This task list would, through expansion, turn into an operation manual
for any usability studies and a checklist for performing a cognitive walkthrough of
the interfaces (Polson et al. 1992).

The six tasks shown in Table A1.3 are an overview of the responsibilities for the
operator of the WDS within an op center. Each task is decomposed into subtasks to
identify the key steps and decisions taken by an operator while completing the task.

Task 1: Periodic comprehensive review of WDS system
Assumptions: WDS periodic update takes 300 ± 30 seconds.

	1.	 Identify if a comprehensive review of the WDS is necessary.

	(a)	 Find and check the WDS review schedule.
	(b)	 Compare time for the scheduled review and the current time.

	(i)	 If review is not necessary, end task.
	(ii)	 If review is necessary, proceed to 2.

	2.	 Check the WDS update time, and ensure that there is a period of at least 3 minutes
before the next update.

	(a)	 If time before the next update is insufficient, postpone until after next update
end task.

	(b)	 If time before the next update is greater than 3 min, proceed to 3.

	3.	 Perform the WDS periodic review.

	(a)	 Complete the WDS periodic review checklist.
	(b)	 Record the findings of the checklist in the appropriate location and

end task.

Table A1.3  Overview of the tasks for the NASA 24/7 operator for managing the WDS

Task 1: Periodic comprehensive review of WDS system
Task 2: Repair or respond to any alarms following a WDS data update
Task 3: Ensure WDS transmits data to Earth per schedule and troubleshoot any delays
Task 4: Ensure that WDS maintains a regular, constant supply of commands throughout use
Task 5: Responding to information requests regarding the WDS
Task 6: Respond to other events, alarms, and alerts that occur in non-WDS systems

Appendix 1: The Water Detection System

84

Task 2: Repair or respond to any alarms following a WDS data update

	1.	 Identify the cause or causes of the alarm(s).
	2.	 Fix high-priority alarms first.

	(a)	 If alarm origin is PGE, proceed to 2-a-i.
(i)	 Check expected charge and determine if expected charge will bring bat-

tery above the acceptable threshold.
(ii)	 If charge will resolve alert, contact NASA Program Office scientists

and report overtasking of battery then return to 2.
(iii)	 If charging is low or nonexistent, contact WDS Development Team and

report battery charging failure then return to 2.
(iv)	 If issue is unknown, contact op center supervisor and report unknown

issue with PGE then return to 2.

	(b)	 If WDS requires manual navigation control, proceed to 2-b-i.

	(i)	 Contact op center supervisor and report WDS request for manual
control.

	(ii)	Return to step 2.
	3.	 Fix low-priority alarms and latching alerts.

	(a)	 Determine cause of latching alert.

	(i)	 If latching alert originated from WDS, proceed to 3-a-i-1.

	1.	 Find WDS element that sent the latching alert.
	2.	 Identify the command schedule file used during the alarm.
	3.	 Report the command schedule file, WDS element, and status data associated

with the element to the NASA Program Office scientists.

	(ii)	 If latching alert did not originate from the WDS, proceed to 3-a-ii-1.

	1.	 Report the latching alarm origin and any other associated information to the
op center supervisor.

	4.	 Resolve any event notifications.

	(a)	 Identify special event priorities, if any, that have been requested by the
NASA Program Office scientists or op center supervisors.

	(b)	 If new event notifications match special event priorities, proceed to 4-b-i.

	(i)	 If special event priorities include action plan for event occurrence, fol-
low instructions from the action plan.

	(ii)	 If no action plan is present, report event occurrence and associated data
to the program that placed the special event priority.

	(c)	 If no special priority events are found, dismiss all new events.

	5.	 If all alarms, alerts, and events are processed, end task.
Else, return to 2.

Appendices

85

Task 3: Ensure WDS transmits data to Earth per schedule and troubleshoot
any delays

Assumptions: The scheduled update timeframe includes a margin of error.

	1.	 Find the WDS interface and expected time of next update.

	(a)	 If the update has not loaded and the update is not due,

	(i)	 End task, and resume other duties.

	(b)	 If update has loaded, ensure the next update time is shown and end task.
	(c)	 If the update is not here and the update is due, check the margin of error for

the update schedule.

	(i)	 If within the margin of error, perform other duties until margin of error
passes, and end task.

	(ii)	 If update has not appeared after margin of error, continue to the next step.

	2.	 Follow the troubleshooting protocol for a missing update.

	(a)	 Check if the file was received.

	(i)	 Go to operation center event log.
	(ii)	Determine if a file update event is found within update time frame within

the op center event log.

	1.	 If file not received, check for connectivity issues between satellite and oper-
ation center.

	(a)	 If there are connectivity issues, call Comms team, inform of missing file,
and end task.

	(b)	 If there are no connectivity issues, call WDS Development Team, inform
of unknown cause of failed data upload, and end task.

	2.	 If file was received, determine cause of failed update via event logs.

	(a)	 Check operation center event logs and look for an application error.
	(b)	 Check operation center event logs and look for an error processing file.
	(c)	 If either is found, call EIT, report the error, and end task.

Task 4: Ensure that WDS maintains a regular, constant supply of commands
throughout use

	1.	 Determine if WDS needs new commands within the next 10 min.

	(a)	 Find the WDS commands details module.
	(b)	 Check the latest WDS command file’s end time.
	(c)	 If the end time is more than 10 min away, end task.
	(d)	 If end time is within 10 min, move on to 2.

	2.	 Receive (or acquire) the new command file from NASA Program Office
scientists.

Appendix 1: The Water Detection System

86

	(a)	 In the command details module, find the section showing commands waiting
to be uploaded.

	(b)	 If no commands are present, call NASA Program Office scientists, report
lack of commands, and end task.

	(c)	 If new commands are present, proceed to 3.

	3.	 Set the new command file to be uploaded to the WDS.

	(a)	 Verify that new command file is ready for update.
	(b)	 Schedule command file update.

	4.	 Verify command file is sent and received by WDS.

	(a)	 Wait until next update from WDS.
	(b)	 Check Comms event log for a successful command file download during the

last update cycle.
	(c)	 If event is found within correct time window, end task.
	(d)	 If no event is found, call op center supervisor, report findings, and

end task.

Task 5: Responding to information requests regarding the WDS

	1.	 Identify the element or module associated with the information request.
	2.	 If event related, go to the location of the event history for the element or module.

	(a)	 Isolate the requested event history.
	(b)	 Transmit the requested event history to the NASA Program Office scientists.

	3.	 If related to current status for the element or module, find the element or
module widget.

	(a)	 Isolate the requested information for the NASA Program Office scientists.
	(b)	 Transmit the requested current status information to the NASA Program

Office scientists.

Task 6: Respond to other events, alarms, and alerts that occur in non-WDS systems

	1.	 Recognize an alert from a non-WDS console.
	2.	 If currently working on a WDS task, appropriately determine prioritization.

	(a)	 Request supervisor support if unsure of appropriate priority.

	3.	 If currently working on WDS task, note the stopping point in the activity.
	4.	 Resolve the non-WDS events, alarms, and alerts according to their system’s

protocol.
	5.	 Return to WDS and complete task.

	(a)	 Check for system changes.
	(b)	 Identify stopping point for interrupted task.
	(c)	 Complete interrupted WDS task.

Appendices

87

�Appendix 2: Design Guidelines for Remote
Autonomous Systems

This appendix provides more detailed guidelines for desktop implementations of
operation center interfaces than what has been covered previously in this book. The
guidelines draw heavily on Apple’s Human Interface Guidelines for desktop appli-
cations but are modified to apply to the WDS system, its users and technology, and
the users’ tasks.

These guidelines are annotated, modified, and abridged to assist designers and
engineers during the development of the applications and systems within operation
centers. They are numbered and where appropriate sub-numbered. They are
annotated according to four criteria: evidence level, testability, value added, and
assessment for testing by the authors (Table A2.1).

The criteria are represented after the guidelines in the following format:

	 Example guideline Level T V1 No1� � �� � � � � �, , , 	

For this example, the format means that his guideline has some support from
UCD and HCI experts (Level 1), could be easily tested for a given interface (T+),

Table A2.1  Criteria definitions for the design guidelines

1. Evidence level (ranging from a case study within op center to some consensus from experts)
 (a) Level 5 is highly supported by research directly on the design feature
 (b) Level 4 is highly supported by research but without a direct case study on the design
feature
 (c) Level 3 is likely supported based on integrating literature and expert opinions
 (d) Level 2 is plausibly supported by research and supported by multiple expert opinions
 (e) Level 1 is broadly accepted as valuable by the field of HCI, but may be [“untestable”], or
untested to our knowledge
2. Testability
 (a) T+ (easily or close to easily testable)
 (b) T (middle)
 (c) T– (difficult to test overall or difficult to test without major work)
3. Value added by experiment (e.g., avoiding attentional tunneling vs perfect shade of blue)
 (a) V3 (most value)
 (b) V2 (moderate value)
 (c) V1 (low value)
4. Is further research into this subject worth the time and resource investment?
 (a) Yes
 (b) No
 (c) Maybe
 (d) No need

Appendix 2: Design Guidelines

88

would not be much value to test (V1) for a given interface, and is not recommended
for further testing by the authors (No). With regard to recommendation for further
testing, we are not claiming that additional research is useless; rather, we just think
that the benefits would not be worth the effort compared to other ways to spend
limited .resources for design of a single interface.

In the case of complex guidelines, like the first guideline, we apply a general
assessment of the claims made in the section without breaking down the findings to
every sub-statement. The various sub-statements might be guidelines or examples,
and each statement might not have the same level of support. If only the high-level
heading is rated on the criteria, please assume that the guidelines below that heading
are a “set” that should be considered as a whole (e.g., Help and Tooltips under
General User Interaction Guidelines). Otherwise, the high-level heading rating
should be considered an overall assessment that is somewhat like an average of the
ratings for individual guidelines.

Finally, the support and evidence for the guidelines is provided in comments
appended to the guidelines. A list of useful acronyms is described in Table A2.2.
These will cover the majority of the evidence support, but some guidelines are also
supported by links to full references to the research articles.

Table A2.2  Common acronyms used throughout the guidelines and comments

Acronym Meaning Source

GOMS Goals, operators, methods, and selection rules (task
analysis variant)

Card et al. (1983)

CPM-
GOMS

Critical path method-GOMS (task analysis variant) Gray et al. (1992)

FDUCS Foundations for Designing User-Centered Systems
(user-centered design textbook)

Ritter et al. (2014)

CWT Cognitive walkthroughs (A usability method and
its rationale)

Lewis and Rieman (1994),
Polson et al. (1992)

ADG Apple design guidelines (expert opinions) https://developer.apple.com/
design/

FOK Feeling of knowing effect Reder and Ritter (1992)
TA Task analysis literature Ritter et al. (2014)
WMTIH Writing mistakes that I hate (essay by Frank

E. Ritter)
Ritter (2010)
http://acs.ist.psu.edu/ist597/
writing-tips3.pdf

LR Literature review covered in Chaps. 1, 2, and 3 of
this book

ISO/CD International Organization for Standardization
Committee Draft 9241-151

Bevan and Spinhof (2007),
ISO 9241-151:2008

NN/g Nielsen Norman Group
(expert opinions/blog)

https://www.nngroup.com/

Appendices

https://developer.apple.com/design/
https://developer.apple.com/design/
http://acs.ist.psu.edu/ist597/writing-tips3.pdf
http://acs.ist.psu.edu/ist597/writing-tips3.pdf
https://www.nngroup.com/

89

�Introduction: Design Themes

It is helpful for users to be able to anticipate design elements in an interface. It is
useful, thus, for the elements to appear to be drawn using the same overall design
framework with the same color palette, style and use of verbiage, style of tone, and
word choice (e.g., word length, concreteness of words, use of articles, verb tense,
and representational mapping). The same things should always appear as the same
things, so differentiation can be reserved for useful, functional differences.

Thus, conducting a design review after a multi-person team finishes building an
interface can be a useful method for improving the coherence of the design. A
thorough design review will help pull the interface elements together and meld them
into a coherent, intuitive whole that allows users to draw from a unified set of task
and context knowledge applicable across all of a company’s systems. Design
reviews can be made even more effective by implementing methods like heuristic
evaluation by HCI experts on system design and cognitive walkthroughs to evaluate
the system interactions.

�General User Interaction Guidelines

Loading and Delays [Level 5], [T–], [V2], [No/Maybe]

Operators want an application that acts on their commands and communicates how
long processing will take. If your application presents blank or static content and
does not provide feedback, people might think your app is frozen.

	1.	 Provide instant acknowledgement of user interactions. Users expect to receive
feedback for their actions throughout the interface. For example, buttons should
visually respond to clicks and the pointer should change depending on its location
(when appropriate). [Level 5], [T], [V2], [Maybe]

FDUCS §6.2.3: Feeling of Knowing and Confidence Judgments. Swift feedback
helps users develop their knowledge for working with the system and avoid
confusion.

LR §2.2.2 Stage 2 – Comprehension. Support comprehension by providing users
with awareness of the system state.

	2.	 Help people gauge how long a process will take to complete by providing time
estimates, activity spinners indicating action, and preferably an explicit progress
indicator and supplementary descriptive text. [Level 4], [T], [V2], [Maybe]

LR §2.2.2 Stage 2 – Comprehension. Support comprehension by providing users
with awareness of the system state.

Appendix 2: Design Guidelines

90

	3.	 Show content as soon as possible by showing placeholder text, gradually
improving image quality, and preloading content when possible. [Level 3], [T–],
[V1], [No]

LR §2.2.2 Stage 2 – Comprehension. Support comprehension by providing users
with awareness of the system state.

Supporting Novice and Expert Users [Level 4], [T+], [V2], [Yes]

Installation of op center systems may include up to 6 weeks of training to support
new users; however, replacement workers may not receive that same support. These
systems should accommodate experienced and novice users by providing in-system
tools that enable learning of new tasks and reviewing procedures for uncommon or
obscure tasks.

	1.	 Establish a default configuration that’s applicable to most or all operators.
[Level 3], [T], [V3], [Yes]

LR §2: Know your users, tasks. LR §3.1.5: Design to accommodate colorblindness.

	2.	 Avoid unnecessary splash screens and instructions. Typically splash screens are
fine for showing progress, but they are often just for show. If tutorials or intro
sequences are necessary, provide a way to skip them. [Level 3], [T-], [V1], [No]

FDUCS §11 & §12 on Task analysis; ADG. Splash screens can waste time, but
also can be a source of feedback as the system loads. Splash screens can
provide information at the expense of task efficiency.

	3.	 Anticipate the need for help and provide integrated help features.
[Level 4], [T+], [V3], [Yes]

	(a)	 Proactively look for times when people might be stuck. For obscure work
and uncommon tasks, provide additional help in menus.

	(b)	 Add help tags to system-specific controls.
	(c)	 Provide task-oriented documentation through a form of supplementary help

documentation (either digitally or as a physical copy of a help document).

LR §2.2.2 Stage 2 Comprehension; LR §3.3 Working Memory and Cognition.
Providing integrated help reduces cognitive load by reducing the amount of
time spent searching for help and reducing the time and space between the
issue and task completion. Including a help button would allow users to find
help when needed and also provide a metric for which screens or tasks
needed the most help. Testing could be done by comparing how users respond
to in-system help, providing a physical help guide, and providing
another option.

Appendices

91

	4.	 Use keystroke accelerators (KSAs) to improve performance of expert users.
[Level 5], [T+], [V3], [Yes/maybe]

	(a)	 Provide KSAs in menus to support learning.
	(b)	 Base KSAs on typical Windows KSAs like ctrl-s for Save and ctrl-p for Print.
	(c)	 Provide a full list of KSAs that can be viewed and/or printed out.

GOMS, ADG, FDUCS. Clearly using KSAs would improve performance; how-
ever, outstanding questions include the value of KSAs for each task, time
required to learn KSAs, and maybe others.

Data Entry [Level 3.5], [T+], [V3], [Yes]

Whether using a keyboard, mouse, or any other input mode, inputting information
can be a tedious and sometimes error-prone process. When an app asks for lots of
input before doing anything useful, people can get discouraged quickly.

	 1.	 When entering data, prompt operators to choose an input rather than enter free
text whenever possible. Selecting from a table, pop-up button, or set of radio
buttons improves accuracy and reduces error rates, especially when the input
needs to be exactly correct. [Level 4], [T–], [V3], [No need]

LR §3.3. Working Memory and Cognition; FDUCS §10 Errors. Recall memory
is slower, harder, and more error-prone than recognition memory. Even
expert users are going to make errors at some point, so using recognition
memory will reduce the number of errors and constrain errors to be within
the known selection list.

	 2.	 Simplify navigation of value lists unless there are times when none will apply.
Long lists should be sortable and filterable, and all lists should be arranged
logically, like alphabetical order or grouped by type. [Level 3], [T], [V2], [Yes]

FDUCS §7.3.4 Scanning Displays and Menus. People tend to scan displays
rather than deeply read them and the information should be presented in a
scannable way that is sorted according to the operator’s mental model.

	 3.	 Use introductory labels to describe text entry fields. Support the labels with
clear, visible hints placed closely outside the text field. [Level 3], [T–], [V1],
[No need]

LR §2.2.1 Stage 1 Perception; FDUCS §5.2.4.4 Priming; FDUCS §4.4.6 Pop-
Out Effects; FDUCS §7.3 Reading; NN/g. Labels help users understand
what they are looking at and prompt them to begin thinking about the
relevant information needed for the task. Also, words are automatically

Appendix 2: Design Guidelines

92

processed for experienced readers so they will pop out upon being viewed by
the user. Also, users read a word faster than naming an icon.

	 4.	 Support effective reading and comprehension for text within a text field and
long strings of texts like event logs. [Level 4], [T+], [V2], [No need]

FDUCS §7.3 Reading

	(a)	 Adjust text field line breaks accordingly. By default, any text extending
beyond the bounds of a text field is clipped. A text field, however, can be
set to wrap text to a new line at the character or word level or to be
truncated (indicated by an ellipsis) at the beginning, middle, or end.

	(b)	 Consider using an expansion tooltip to show the full version of clipped
or truncated text. An expansion tooltip behaves like a help tag and
appears when the user places the pointer over the field.

	 5.	 Let the user adjust text attributes if it makes sense. If your text field contains
styled text, it may add value if the user can adjust the font, size, and color of the
text. System-controlled text attribute changes could be used to instantiate the
pop-out effect in event logs.	 [Level 2], [T], [V1], [No need]

ADG

	 6.	 Get information from the system whenever possible. Don’t force users to
provide information that can be gathered automatically or with the user’s
permission. [Level 4], [T], [V1], [No need]

GOMS; CPM-GOMS; FDUCS §10 Errors: An Inherent part of human-system
performance

	 7.	 Provide reasonable default values and prefill fields with most likely values
when appropriate. [Level 3], [T+], [V2], [Maybe]

GOMS; CPM-GOMS; ADG

	 8.	 Dynamically validate field values rather than waiting until submission. This
reduces the need to backtrack when data entry fails validation. [Level 3], [T+],
[V3], [Yes]

ADG; NN/g

	 9.	 Use proper formatting that connects the input format with user expectations.	
[Level 3], [T+], [V2], [Yes]

	(a)	 Displaying the input for percentages as a percentage or automatically
presenting phone numbers in their standard format.

	(b)	 Entries expecting long text should allow users to view the input with
minimal scrolling (and thus less short-term memory usage).

	10.	 Use of numeric data entry, especially for critical features, should follow these
guides. [Level 4], [T+], [V3], [Yes]

Appendices

93

Thimbleby, H., & Cairns, P. (2010). Reducing number entry errors: Solving a wide-
spread, serious problem. Journal of The Royal Society Interface, 7(51),
1429–1439. https://doi.org/10.1098/rsif.2010.0112. Test case from study was for
medication dosage entry to reduce the risk of killing patient due to operator error.

	(a)	 Always show commas for values above 1,000.
	(b)	 Don’t use “naked” decimal points: 0.5 is better than .5.
	(c)	 Avoid showing trailing zeros for values that are always whole numbers: 1 is

better than 1.0.
	(d)	 When possible, build in automatic blocking of invalid numbers.
	(e)	 Maximum stakes data entry fields can reduce risk of failure by using slightly

larger decimal points and smaller font for numerals after the decimal.
	(f)	 Batch long numbers in groups of three: 123 456 789 is better than 123456789.

Help and Tooltips [Level 4], [T], [V2], [No/Maybe]

Ideally, people can figure out how to use your system without a guide. However,
even in a highly intuitive interface, users sometimes need help learning advanced
and secondary features. When called for, your program can offer assistance in the
form of help tags and other forms of help documentation. Help tags allow you to
provide temporary, context-sensitive help, whereas documentation allows you to
provide a more thorough discussion of the topic.

Isaksen, H., Iversen, M., Kaasbøll, J., & Kanjo, C. (2017). Methods for Evaluation
of Tooltips. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 297–312.
https://doi.org/10.1007/978-3-319-58071-5_23

Mildly testable but expensive. A study on tooltips found that explicit evaluation was
costly. Instead, help features and tooltips provide a consistently useful way to
bolster the usability of any interface so their inclusion in the interface should be
assumed.

	1.	 Describe only the control that’s directly beneath the pointer.
	2.	 Add help tags to app-specific or system-specific controls. Skip tags on common

features like resize controls, scrollers, or others.
	3.	 Focus on the action that a control initiates. A good rule of thumb is to start tool

tips with a verb.
	4.	 Use the fewest number of words possible.

	(a)	 Try to limit tags to a maximum of 60 or 75 characters, depending on your
system needs.

	(b)	 Requiring more text to explain a feature may indicate that the interface is
overly complicated.

	5.	 In general, don’t reference a tag’s corresponding control. Typically, the help
tag’s location (directly adjacent to the control) will provide sufficient context for
the user.

Appendix 2: Design Guidelines

https://doi.org/10.1098/rsif.2010.0112
https://doi.org/10.1007/978-3-319-58071-5_23

94

	6.	 Use sentence fragments with sentence-style capitalization. This emphasizes
brevity without overly sacrificing readability for users.

	7.	 Consider offering context-sensitive help tags.

Keyboard Interactions [Level 4.5], [T+], [V3], [Yes]

The keyboard is an essential input device for entering text, navigating, and initiating
actions. Some users will prefer to use the keyboard for performing most or all tasks.

GOMS, general wide support

	 1.	 Respect standard keyboard shortcuts and create program-specific shortcuts for
frequently used commands.

	 2.	 Add full keyboard access mode support for all custom interface elements.

	(a)	 Full keyboard access mode lets users navigate and activate windows,
menus, interface elements, and system features using the keyboard alone.

	(b)	 Tab is an important command for switching between areas and fields.

	 3.	 Enable expected shortcuts for standard menu items. Strive for consistency
across all applications and systems for common actions.

	 4.	 Define new keyboard shortcuts only for things people do regularly.

	(a)	 Unexpected shortcut design can easily confuse users, and it rarely makes
sense to redefine a common shortcut.

	(b)	 The WDS and similar systems could log commands to know which
keyboard shortcuts and commands are most common. This would help
improve keystroke accelerator generation.

	 5.	 Use a standardized hierarchy for assigning modifier keys (i.e., ctrl, alt, shift)
when creating a new shortcut.

	(a)	 Maintain a consistent order using modifiers and writing out commands
with modifiers.

	 6.	 Provide keystroke accelerators for nearly all commands.
	 7.	 Keystroke accelerators are displayed in a help screen as a set and on menus and

perhaps tool tips.
	 8.	 At a convenient time, like starting or stopping or loading or paused, note a

keystroke accelerator of the day.
	 9.	 Prefer to create “sets” of commands centered around a single action key with

multiple modifier keys. For example, Control-P may activate the “print”
command, and Shift-Control-P may activate the “page layout” menu that
complements the “print” command.

	10.	 Determine which keyboard shortcuts are common and/or reserved with your
system to ensure that your application does not interfere with prior knowledge
from the users regarding how to interact with systems of this type.

Appendices

95

Providing User Feedback [Level 4], [T–], [V2]

Feedback tells people what an app is doing and helps them understand the results of
actions and what they can do next.

FOK; CWT

	1.	 Unobtrusively integrate status and other types of feedback into your interface. If
a notification does not provide immediately actionable information, the operator
should be able to continue their current task uninterrupted. [Level 4] [T],
[V3], [Yes]

LR §3.2.2 Interruptions

	2.	 Avoid unnecessary alerts by carefully assessing whether new information is
worth disrupting the operator’s current task, so they can address the situation. If
deemed important, ensure that the alert is disruptive enough to ensure the user
responds. [Level 4] [T], [V3], [Yes]

LR §3.2.2 Interruptions

	3.	 Warn people when they initiate a task that can cause an unexpected and
irreversible loss of data. Avoid being overzealous (e.g., notifications for clearing
the recycle bin on desktop), but try to strike a balance between user expectations
and task requirements. [Level 3], [T–], [V1], [No]

	4.	 Inform the user when a command can’t be carried out. [Level 3], [T–], [V1], [No]
	5.	 Clearly note time constraints for alert triggers, postponing an alert response, and

other important tasks. [Level 4], [T], [V2], [Maybe]
	6.	 If it makes sense, allow users to adjust time constraints for how alerts are

provided. For example, a user (or supervisor) may wish to make a certain alert
type occur more or less often. [Level 2], [T–], [V1], [No]

	7.	 Allow users to set up new alerts when it makes sense. [Level 3], [T–],
[V2], [Maybe]

Badging or Icons as Updates [Level 3], [T], [V3], [Yes]

The various systems in an op center can display small, meaningful icons to indicate
new, noncritical information like events or minor alerts.

Mostly unstudied other than to note that even common icons only have a 70%
recognition rate on average. See Ghayas, S., Sulaiman, S., Khan, M., & Jaafar,
J. (2013). The effects of icon characteristics on users’ perception. In International
Visual Informatics Conference (pp. 652–663).

	1.	 Use badging for notification purposes only for focused, simple information.
Avoid using icons as updates for complex, quickly changing information (e.g.,
air quality or wind speed). [Level 3], [T+], [V3], [Yes]

Appendix 2: Design Guidelines

96

	2.	 Badging should supplement direct presentation of information within the appli-
cation. If a badge indicates some alert, that same alert should be presented within
the application in text form. [Level 3], [T-], [V2], [Maybe]

	3.	 Ensure badges update quickly in response to user activity such as dismissal or
acknowledgement of some alert. [Level 2], [T–], [V1], [No need]

	4.	 Prefer short and concrete words where these will work. They are faster to read
and easier to interpret. The button that says “word” is clearer to ask about than
the button with a confusing icon. [Level 4], [T], [V2], [Maybe]

FDUCS §7.3 How Users Read; Stroop on Automatic Processing of Words

Notifications [Level 3], [T+], [V3], [Yes]

System notifications provide timely and important information anytime.
Notifications may occur when a message arrives, an event occurs, new data is
available, or the status of something has changed.

	1.	 Use distinct notification styles to differentiate between minor notifications and
alerts. Alerts should remain visible until dismissed by the user, whereas
notifications can disappear after a few seconds. [Level 2], [T+], [V3], [Yes]

	2.	 Notifications should be useful and informative: use complete sentences and
standard grammatical style, avoid repetitive notifications that clutter the view,
and ensure key information (like origin) is clearly displayed. [Level 4], [T],
[V2], [Maybe]

FDUCS §7.3 How Users Read

	3.	 If possible, ensure that responses prompted by the notification are not overly
specific or difficult to accomplish once the notification is dismissed. [Level 3],
[T–], [V2], [Maybe]

LR §3.3 Working Memory and Cognition

	4.	 Adapt notification behavior for different contexts. Consider using cognitive
counter-measures to correct behavior in risky situations. [Level 3], [T+],
[V3], [Yes]

	(a)	 If the user is on the home page, then a notification about new events may be
useful; if the user is already on the event log page, then displaying a pop-up
will likely be annoying compared to other methods of informing the user of
new event information.

	(b)	 Critical events can implement cognitive counter-measures to capture the
attention of the operator. Cognitive counter-measures are temporary, major
changes to the interface intended to temporarily break their focus, so they
will reorient onto the important task. For example, a low battery alert that
occurs during manual control of an unmanned vehicle could clear the screen
of all features and prominently display the low battery alert until cleared

Appendices

97

before resuming normal operation. This eliminates the risk of “tunnel vision”
causing the signal to be missed.

Directly tested for the exact scenario described. Extremely relevant to WDS
interface design: Dehais, F., Causse, M., & Tremblay, S. (2011). Mitigation
of conflicts with automation: Use of cognitive countermeasures. Human
Factors, 53(5), 448–460. https://doi.org/10.1177/0018720811418635

	(c)	 Critical events should use dual-coded alerts such as a visual and audio
indicator or multiple visual indicators.

	5.	 Provide intuitive, beneficial action buttons on pop-up notifications and alerts.
Limit buttons for user response to two buttons if possible. [Level 3], [T],
[V2], [Maybe]

	(a)	 Use the buttons to perform common, time-saving tasks. This will help reduce
how often the operator needs to change views for simple tasks.

Color [Level 4] [T+], [V2], [No/Maybe]

Color is a great way to provide status information, give feedback in response to user
actions, and help people visualize data.

	1.	 Use color judiciously for communication. Limit the number of colors used for
communication to fewer than five. [Level 3], [T], [V2], [Maybe]

ADG; LR §3.1.5 Principle 7

	2.	 Provide adequate support for colorblind users. Colorblindness is common
enough that, when possible, designers and engineers should ensure that the
standard design supports colorblind users. [Level 4], [T+], [V2], [Maybe]

LR §3.1 Perception

	3.	 Color contrast should be between foreground and background colors should be
at least 4.5:1, if not a higher contrast of 7:1. [Level 3], [T], [V1], [No]

ADG

	4.	 Test the application’s color scheme under appropriate lighting conditions. A
system used in a brightly-lit room will have different requirements than one used
in a dark room. [Level 4], [T+], [V2], [No]

LR §1.4

Appendix 2: Design Guidelines

https://doi.org/10.1177/0018720811418635

98

�Visual Feature Index

Most applications should be built using components from your preferred graphic
design kit, such as Java Swing. This will provide a programming framework that
defines common interface elements. This framework lets applications achieve a
consistent appearance across the system while at the same time offering a high level
of customization. The following interface elements are a common set of flexible and
familiar features that can provide a design framework for building nearly any system.

Windows and Views

Alerts

An alert appears when the system or program needs to warn the user about an error
condition or a potentially hazardous situation or consequence. A major alert within
an application should be modal; once the alert is received, the program is locked
into an “alert response” mode that requires user input regarding the alert before
enabling any other actions. Minor alerts should be displayed differently than
major alerts.

	1.	 Minimize alerts. Alerts disrupt the operator and should be reserved for important
situations. The infrequency of alerts helps ensure that operators take them
seriously. [Level 3], [T+], [V3], [Yes]

	2.	 Ensure that each alert offers critical information and useful choices. [Level 3],
[T], [V2], [Yes]

	(a)	 Avoid using alerts to merely provide information.
	(b)	 Users become annoyed at alerts and interruptions that don’t provide

actionable information.
	(c)	 Avoid displaying alerts for common, undoable actions.

	3.	 Use a standardized alert display. Consistency will help users understand the
meaning of the alerts by supporting learned responses to different alert displays.
[Level 4], [T], [V3], [Maybe]

Rieman, J., Young, R. M., & Howes, A. (1996). A dual-space model of iteratively
deepening exploratory learning. International Journal of Human Computer
Studies, 44(6), 743–775. https://doi.org/10.1006/ijhc.1996.0032

	4.	 Provide a clear, succinct alert message that gives the user what, why, and where
for a given alert. [Level 2], [T], [V2], [Maybe]

ADG

	(a)	 Consider phrasing a message as a question when the default action has
some negative consequences (e.g., “Do you want to empty the trash?”)

	(b)	 Supplement alert messages with informative text. Use this space to elabo-
rate on consequences, suggest solutions, and explain why the user
should care.

Appendices

https://doi.org/10.1006/ijhc.1996.0032

99

	5.	 Avoid using alert buttons that require explanation. [Level 3], [T–], V1], [No]
ADG; LR §2.2.2; CWT

	(a)	 If the text and button titles are clear, there should be no need to explain
the buttons.

	(b)	 If guidance is needed, preserve capitalization when referencing buttons
and don’t enclose button titles in quotes.

	(c)	 Give alert buttons succinct, logical titles. Best titles will use one- or two-
word verb phrases that describe the result of clicking the button. Avoid
using “yes and no” as the options.

	(d)	 Label cancellation buttons appropriately.
	(e)	 Include a Cancel button when there’s a destructive button or action (e.g.,

delete file).

	6.	 Generally, prefer two-button alerts. Single-button alerts inform but give no
control; alerts with three or more buttons create complexity. [Level 2], [T],
[V2], [Maybe]

ADG

	7.	 Ensure that the default button title reflects the action the button performs. Avoid
using OK unless the alert is purely informational. Specific button titles like
Erase, Convert, Clear, or Delete help users understand the action. [Level 3],
[T–], [V1], [Maybe]

CWT; ADG

	8.	 Place buttons where people expect them. In general, the default (or most likely)
button should be on the right. Cancel is usually on the left. [Level 2], [T],
[V1], [No]

ADG; Others

	9.	 Consider offering time-saving keyboard shortcuts for all buttons. For example,
Enter (or return) can a default “Accept” button for situations that are not high
stakes. Clearly indicate defaults by using bold, underlined text (or another con-
sistent graphic element) on the default choice. [Level 2], [T], [V2], [Maybe]

Boxes [Level 2], [T–], [V1], [No]

A box is a type of view that creates distinct, logical groupings of controls, text
fields, and other interface elements. For example, a preferences window may include
boxes that visually group related settings together. By default, a box has a border
and a title, either of which can be disabled if it makes sense for your sub-display.
The title, if displayed, can be positioned above (the default) or below the box.

	1.	 Avoid nesting boxes. Nested boxes waste space and reduce the effectiveness of
boxes overall for grouping information.

ADG

Appendix 2: Design Guidelines

100

	2.	 Use sentence-style capitalization in box titles. Don’t end box titles with a colon.

APA guidelines; FDUCS §7.3 How Users Read

Dialogs

A dialog is a type of window that elicits a response from the user. Many dialogs—
like the Print dialog, for example—let people provide several responses at once.
Dialogs are presented in three ways: document-modal, app-modal, and modeless.

A document-modal dialog is attached to a document as a sheet and prevents the
user from doing anything in the document until the dialog is dismissed. The user can
still switch to other documents and apps. A Save dialog is an example of a document-
modal dialog.

An app-modal dialog prevents the user from doing anything in the app until the
dialog is dismissed. The user can still switch to other apps. An Open dialog is an
example of an app-modal dialog.

A modeless dialog is usually referred to as a panel. The user can continue inter-
acting with documents and apps uninterrupted. The standard Find file dialog is an
example of a modeless dialog.

Data Entry for Dialogs

Dialogs are intended to be small, transient windows that don’t require in-depth user
interaction, so it’s important to ensure that data entry is efficient.

	1.	 Provide default values for controls and fields whenever possible. [Level 4.5],
[T], [V2], [No]

	2.	 Set the initial focus to the first location that accepts user input. [Level 4.5], [T],
[V2], [No]

	3.	 Make static text selectable. For example, users may want to copy an error
message or IP address.

	4.	 Check for errors during data entry. The best time to check is immediately after
the user moves onto the next field. Waiting until they hit the submit button can
annoy the user.

	5.	 Whenever possible, minimize the potential for invalid input.

Layout

	6.	 Use disclosure control to provide information or functionality that’s only occa-
sionally needed.

	7.	 Position buttons as expected. [Level 2], [T], [V2], [Maybe]

	(a)	 Buttons in the bottom right of a dialog should dismiss the dialog.
	(b)	 An action button, which initiates the dialog’s primary action, should be far-

thest to the right.
	(c)	 A cancel button should be to the immediate left of the action button.
	(d)	 If a third button is needed, it should be to the left of the cancel button.
	(e)	 If a help button is shown, it should be the furthest left button.

Appendices

101

	8.	 Separate destructive buttons from nondestructive buttons.

	(a)	 For example, Don’t Save should be far enough away from Save to ensure
accidents are rare.

	(b)	 Destructive buttons should require intentional effort.
	(c)	 Ideally, 24 points of separation is best.

Dialog Dismissal

	 9.	 Provide a default button only when the user’s most likely action is harm-
less. Users may simply hit Return/Enter (or ESC) to dismiss an alert or dialog.
This should never trigger an important event. If it’s important enough, they
should have to select a response.

	10.	 Provide a default button only when the Return key isn’t already used by text
fields on the dialog.

	11.	 Include a Cancel button that responds to the standard cancellation keyboard
shortcuts. A Cancel button provides a clear, safe way out of the dialog and
returns the computer to its previous state.

	12.	 Ensure the Cancel button undoes all applied changes.

Outline View [Level 3], [T+], [V3], [Yes/Maybe]

An outline view presents hierarchical data—like folders and the items they contain—
cleanly and efficiently in a scrolling list of cells that are organized into columns and
rows. At minimum, an outline view includes one column that contains the primary
hierarchical data: parent containers and their children. Subsequent columns may be
added, as needed, to display additional attributes that supplement the primary data.
Event logs could be presented in outline view as an alternative to the typical
table view.

	1.	 Outline view should be used for hierarchical data, whereas table view should be
used for non-hierarchical data. Event logs have some underlying hierarchical
traits, but presentation style should depend on the task being performed. [Level
3], [T], [V3], [Maybe]

Bakke, E., Karger, D. R., & Miller, R. C. (2013). Automatic layout of structured
hierarchical reports. IEEE Transactions on Visualization and Computer
Graphics, 19(12), 2586–2595. https://doi.org/10.1109/TVCG.2013.137. The
outline view is just one way to present data. There could be valuable testing
done on how best to present complex sets of events from the WDS and other
systems based on the mental model of the user.

	2.	 The data hierarchy structure should be viewable within the first column only.
[Level 1] [T], [V1], [No]

ADG

Appendix 2: Design Guidelines

https://doi.org/10.1109/TVCG.2013.137

102

	3.	 If deemed appropriate, operators should be able to click column headings to sort
an outline view. Clicking again should sort the column in the reverse order of the
initial click. [Level 2], [T], [V1], [No]

ADG

	4.	 Support ease of use by providing clear, noun-based column headings, allowing
operators to resize columns, and ensuring that rows are easily distinguished.
[Level 2], [T], [V1], [No]

	5.	 Long text strings within a cell should be truncated in some way. This can be done
with an ellipsis in the middle, with the ends unaffected, or with a trailing ellipsis
that prioritizes early text. [Level 3], [T+], [V2], [Yes]

	6.	 Search fields should be provided to allow operators to quickly find specific items.
[Level 3], [T+], [V3], [Yes]

Panels

A panel is an auxiliary window containing controls, options, or information related
to the active document or selection. A panel appears less prominent than a main
window and can behave like a normal window or be configured to float above other
open windows—even modal windows. Panels can also adopt a darker, translucent
appearance when the UX calls for it.

	1.	 Use a panel to provide quick access to important controls or information related
to content.

	2.	 As an alternative to panels, you could also implement popovers, sidebars, split
views, or a toolbar.

	3.	 Title panels with appropriate text that describes the purpose with nouns or noun
phrases.

	4.	 Link the visibility of a panel to whether the associated application is currently
active. Inactive applications shouldn’t have visible panels.

	5.	 Consider using HUD-style panels for highly visual content.

	(a)	 HUD panels are translucent and typically have a darkened background.
	(b)	 Use simple controls and interactions for HUD panels. Avoid making the user

type, for example.
	(c)	 Keep HUD panels fairly plain with minimal color and other distracting

features.

Popover [Level 2], [T–], [V1], [No]

A popover is a view that appears above other content on screen when you click or
mouse-over a control or view. Popovers typically integrate an arrow pointing to its
origin. Popovers can close in response to a user interaction (transient behavior), in
response to a user’s interaction with the view or element from which the popover
emerged (semi-transient behavior). A popover can also be made detachable. A

Appendices

103

detachable popover becomes a separate window when dragged by the user, allowing
it to remain visible on screen while the user interacts with other content.

ADG

	1.	 Popovers are for limited information or functionality and typically disappear
following user interaction. Avoid using popovers for complex tasks and functions.

	2.	 Use popovers to streamline interfaces by moving simple interactions from static
regions into context-dependent popover views.

	3.	 Popover behavior should be intuitive based on the popover’s function.

NN/g

	(a)	 Typically, this means exiting automatically after completing a task or click-
ing outside the popover rather than requiring a Close button.

	(b)	 Ensure popovers don’t obscure the screen element that caused it to appear.
	(c)	 Only display a single popover on the screen at one time.

Scroll View [Level 3], [T+], [V2], Yes/Maybe

A scroll view lets people browse content (e.g., a large event log) that is larger than
the view’s visible area. A scroll view itself has no appearance, but can display
horizontal and vertical scroll bars, each of which consists of a track containing a
draggable control known as a knob. The height/width of a knob reflects the quantity
of scrollable content.

	1.	 Don’t have nested scrolling views. [Level 2], [T], [V1], [No]
	2.	 Ensure scroll bars and sliders have distinct appearances. [Level 2], [T], [V1], [No]
	3.	 Avoid requiring horizontal and vertical scrolling on the same interface and prefer

vertical scrolling over horizontal. [Level 4], [T+], [V3], [Yes]

GOMS; Bakke, E., Karger, D. R., & Miller, R. C. (2013). Automatic layout of
structured hierarchical reports. IEEE Transactions on Visualization and
Computer Graphics, 19(12), 2586–2595. https://doi.org/10.1109/
TVCG.2013.137. Event logs are complex sets of data that need searched by
users, and determining the best way to present them could be valuable.

	4.	 If possible, avoid requiring the use of scrolling to view all content. This must be
balanced against over-crowding an interface. [Level 4], [T+], [V3], [Yes]

GOMS; LR §3.3 Working Memory and Cognition. Scrolling requires the user to
store more information in working memory rather than “maintaining” that
information on the screen.

Split View

A split view manages the presentation of two or more panes of content. Each pane
can contain any variety of elements, including buttons, tables, column views, text
fields, and even other split views. The panes of a split view can be arranged
horizontally or vertically and are separated by a divider that can typically be dragged

Appendix 2: Design Guidelines

https://doi.org/10.1109/TVCG.2013.137
https://doi.org/10.1109/TVCG.2013.137

104

to resize the panes. Each pane can have a minimum and maximum size, which
affects how much it can be resized. Many apps let the user hide specific panes on
request.

ADG

	1.	 Allow panes to be hidden when it makes sense. For example, hiding a pane may
help reduce distractions during focused work.

	2.	 Provide multiple ways to access hidden panes. Provide toolbar buttons or menu
items with keyboard shortcuts.

	3.	 Ensure minimum and maximum pane sizes set based on the system’s requirements
and functions.

	4.	 Use Thin dividers (1 pt. width) for most dividers. If the designer wants to indicate
a stronger visual distinction between panes, then use a Thick divider (9 pt. width).

Tab Views [Level 3], [T], [V2], [No/Maybe]

A tab view presents multiple mutually exclusive panes of content in the same area.
A tab view includes a tabbed control (which is similar in appearance to a segmented
control) and a content area. Each segment of a tabbed control is known as a tab, and
clicking a tab displays its corresponding pane in the content area. Although the
amount of content can vary from pane to pane, switching tabs doesn’t change the
overall size of the tab view or its parent window.

	1.	 Use a tab view to present closely related, equally important content areas. [Level
2], [T–], [V1], [No] need

	2.	 Provide between two and six tabs in tab view. If more tabs are necessary, consider
alternative views. [Level 2], [T], [V2], [Maybe]

ADG

	3.	 Controls within a pane using tab view should only affect content within that tab.
[Level 2], [T], [V1], [No need]

ADG; CWT

	4.	 Provide a label for each tab that describes the content of its pane. [Level 2], [T–],
[V1], [No need]

	5.	 Ensure switching between tabs requires only a single action, such as pressing a
button, using a keystroke (e.g., tab), or clicking. [Level 3], [T+], [V1], [No need]

ADG; GOMS

Menus [Level 3], [T+], [V2], [Yes/Maybe]

A menu presents a list of items–commands, attributes, or states–from which a user
can choose. An item within a menu is known as a menu item and may be configured
to initiate an action, toggle a state on or off, or display a submenu of additional

Appendices

105

menu items when selected or in response to an associated keyboard shortcut. Menus
can also include separators, and menu items can contain icons and symbols, like
checkmarks.

CWT; GOMS; ADG

	 1.	 Use title-style capitalization for all text. [Level 2], [T], [V1], [No need]

APA Guidelines; ADG

	 2.	 Ensure menu titles are intuitive so users will anticipate the types of items the
menu contains. [Level 4], [T], [V2], [Maybe]

ADG; NN/g; CWT; Information scent research

	 3.	 Keep menus enabled, even when menu items are unavailable. [Level 3], [T],
[V2], [Maybe]

ADG; CWT; Mendel, J., & Pak, R. (2009). The effect of interface consistency
and cognitive load on user performance in an information search task.
Proceedings of the Human Factors and Ergonomics Society Annual Meeting,
53(22), 1684–1688. https://doi.org/10.1177/154193120905302206

	(a)	 This tells users that they have found a particular function but it is
unavailable at the moment.

	(b)	 Unavailable menu items also allow users to learn about other functions
in the system, even if the actions aren’t possible.

	 4.	 Make menu titles as short as possible without sacrificing clarity. [Level 3], [T],
[V1], [No need]

FDUCS §7.3 How Users Read; ADG

	 5.	 Only use text for menu items. Icons are confusing and unnecessary. [Level 3],
[T], [V1], [Maybe]

FDUCS §7.3 How Users Read; Ghayas, S., Sulaiman, S., Khan, M., & Jaafar,
J. (2013). The effects of icon characteristics on users’ perception. In
International Visual Informatics Conference (pp. 652–663).

	 6.	 Ensure the menu titles and text make sense according to their function. [Level
2], [T], [V2], [No]

ADG; NN/g

	(a)	 Use verbs and verb phrases for menu items that initiate actions.
	(b)	 Use adjectives and adjective phrases for menu items that toggle

attribute states.
	(c)	 Avoid articles in menu item titles.

	 7.	 Use keyboard shortcuts for frequently used items in the menu bar. Make sure
keyboard shortcuts are shown next to the functions. [Level 4.5], [T+],
[V3], [Yes]

Appendix 2: Design Guidelines

https://doi.org/10.1177/154193120905302206

106

	 8.	 Avoid using submenus when possible. [Level 4], [T+], [V2], [Maybe]
FDUCS §7.3.4

	(a)	 If necessary to include a submenu, only have a single additional level to
the menu.

	(b)	 Avoid having more than five items in a submenu.
	(c)	 Only consolidate related menu items into submenus. For example, Sort

By Name, Sort By Date, and Sort By Length could be merged into a
single command Sort By with a submenu for Date, Name, and Length.

	 9.	 Group items within a menu in a logical manner. [Level 4], [T+], [V2], [No]

FDUCS §7.3.4; GOMS; St. Amant, R., Horton, T. E., & Ritter, F. E. (2004).
Model-based evaluation of cell phone menu interaction. Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, 6(1), 343–350.
https://doi.org/10.1145/985692.985736

	(a)	 Group closely related items together (Find and Find Next).
	(b)	 Arrange sets of closely related items by frequency of use. Put frequently

used items at the top of the list.
	(c)	 Separate items that initiate actions from items that set attributes.

	10.	 Avoid scrolling menus. [Level 4], [T+], [V3], [Yes]

GOMS; LR §3.3 Working Memory and Cognition. Scrolling requires the user to
store more information in working memory rather than “maintaining” that
information on the screen.

	11.	 If icons are necessary for your menus (such as for a toggled setting), use a
standard, limited set of clear symbols like a checkmark. [Level 2], [T],
[V2], [Maybe]

ADG

Contextual Menus

A contextual menu, or shortcut menu, gives people access to frequently used
commands related to the current context. Contextual menus are typically brought up
by using a right-click on the item. Contextual menus often provide a limited set of
useful actions that are frequently used in a particular situation.

	1.	 Follow the standards and best practices of typical menu design within your system.
	2.	 Include only the most commonly used commands that are appropriate in the

current context.
	3.	 Always make contextual menu items available in the menu bar as well.

Appendices

https://doi.org/10.1145/985692.985736

107

Buttons

Checkbox [Level 3], [T], [V1], [No]

A checkbox is a type of button that lets the user choose between two opposite states,
actions, or values. A selected checkbox is considered on when it contains a
checkmark and off when it’s empty. A checkbox is almost always followed by a title
unless it appears in a checklist.

ADG; Tufte

	1.	 Ensure the label or title implies two opposite states. If the titled/labeled check-
box is difficult to make unambiguous, consider using two binary-titled radio
buttons instead.

	2.	 Checkboxes should be within a view, not a window frame (i.e., toolbars and
status bars).

	3.	 Consider using a label for describing a set of several checkboxes if their
relationship isn’t evident.

	4.	 Checkboxes should usually be arranged vertically.
	5.	 Checkboxes can use a hierarchical arrangement with indentation to show

relationships between parent and child checkboxes.
	6.	 Parent checkboxes should use a mixed state [−] if the child checkboxes have

mixed settings.

Gradient Button

A gradient button initiates an immediate action related to a view, such as adding or
removing table rows. Gradient buttons contain icons—not text—and can be
configured to behave as push buttons, toggles, or pop-up buttons. They usually
reside in close proximity to (either within or beneath) their associated view.

ADG

	1.	 Gradient buttons should only be visible in views, not in window frames.
	2.	 Use standard system-provided icons for gradient buttons to ensure users are

familiar with the symbols and meaning.
	3.	 Gradient buttons should be clearly linked to a particular view and shouldn’t need

a label.

Help Button [Level 3], [T+], [V3], [Yes]

A help button appears within a view and opens application-specific help
documentation when clicked. All help buttons are circular, consistently sized
buttons that contain a question mark icon.

	1.	 Use system-provided help buttons and ensure the help buttons have a consistent
response.

	2.	 Only include one help button per window.

Appendix 2: Design Guidelines

108

	3.	 Position help buttons as expected.

	(a)	 Dialog with dismissal buttons (e.g., OK and Cancel): lower-left corner
aligned with dismissal buttons.

	(b)	 Dialog without dismissal buttons: lower-left or lower-right corner.
	(c)	 Preference window or pane: lower-left or lower-right corner.

Push Buttons [Level 2.5], [T–], [V1], [No]

A push button appears within a view and initiates an instantaneous app-specific
action, such as printing a document or deleting a file. Push buttons contain text—not
icons—and often open a separate window, dialog, or app so the user can
complete a task.

ADG; NN/g

	1.	 Design the options to ensure a likely default button is clear.
	2.	 Push buttons should only be in views, not window frames.
	3.	 Only use text for push buttons, not icons.
	4.	 Give push buttons clear labels with verbs to describe the effect of clicking

the button.
	5.	 Be specific when possible. “Select Text File” is much clearer than “Input.”
	6.	 Include a trailing ellipsis in the title when a push button opens another window,

dialog, or application.
	7.	 Push buttons should be similar in size (when appropriate) for aesthetics and

clarity.

Radio Button [Level 2.5], [T–], [V1], [No]

A radio button is a small, circular button followed by a title. Typically presented in
groups of two to five, radio buttons provide the user a set of related but mutually
exclusive choices. A radio button’s state is either on (a filled circle) or off (an empty
circle). A radio button can also permit a mixed state (a circle containing a dash)
that’s partially on and partially off. However, it’s better to use checkboxes when
your app requires a mixed state.

ADG; NN/g; GOMS; General support from work on visual scanning

	1.	 Ensure radio buttons have meaningful titles.
	2.	 Use a standard button instead of a radio button if initiating an action.
	3.	 Use radio buttons in views only, and not in window frames.
	4.	 Labels can help clarify the connection between a set of radio buttons.
	5.	 Avoid horizontally placed radio buttons, but if necessary, then use consistent

spacing.
	6.	 If more than five choices are necessary, consider using a pop-up button instead.

Appendices

109

	7.	 In almost every case, pre-select a radio button to indicate the default selection.
Default buttons reduce confusion and can allow engineers to imply the best
course of action to the user.

Fields and Labels

Combo Box

A combo box combines a text field with a pull-down button in a single control. The
user can enter a custom value into the field or click the button to choose from a list
of predefined values. When the user enters a custom value, it’s not added to the list
of choices.

ADG; NN/g; CWT; LR §2.2.2; Rieman, J., Young, R. M., & Howes, A. (1996). A
dual-space model of iteratively deepening exploratory learning. International
Journal of Human Computer Studies, 44(6), 743–775. https://doi.org/10.1006/
ijhc.1996.0032

	1.	 Populate the field with a meaningful default value from the list.
	2.	 Use an introductory label to let the user know what types of items to expect.
	3.	 Provide useful, relevant choices for the user to select. Ensure that the options are

all standalone selections, because combo boxes shouldn’t allow multiple
selection.

Labels [Level 3.5], [T], [V2], [Yes]

A label is a static text field that describes an onscreen interface element or provides
a short message. Although people can’t edit labels, they can sometimes copy label
contents.

	1.	 Ensure labels are legible, clear, and consistent. [Level 3], [T], [V2], [Maybe/No]

	(a)	 Typically labels for controls should end with a colon. An exception to this
rule is when the label and control form a complete sentence.

	(b)	 Use system-provided, standardized label colors to communicate relative
importance.

	2.	 Make sure label text is selectable, where possible, and make logs copiable
so users can copy useful text onto other locations. [Level 3.5], [T+], [V2],
[Yes/Maybe]

ADG; GOMS; CWT; LR §3.3 Working Memory and Cognition

	3.	 Labels and other text must use a consistent vocabulary, syntax, and grammar.
Even minor changes can have a negative impact on the mental model and
understanding of the user. [Level 4], [T+], [V3], [Yes]

Appendix 2: Design Guidelines

https://doi.org/10.1006/ijhc.1996.0032
https://doi.org/10.1006/ijhc.1996.0032

110

Mendel, J., & Pak, R. (2009). The effect of interface consistency and cognitive
load on user performance in an information search task. Proceedings of the
Human Factors and Ergonomics Society Annual Meeting, 53(22), 1684–1688.
https://doi.org/10.1177/154193120905302206

	4.	 If users will be exposed to many labels at once, use colors and icons to help dif-
ferentiate items for faster, more accurate search. [Level 4.5], [T], [V3], [No
need/Maybe]

NN/g; https://www.nngroup.com/articles/visual-indicators-differentiators/

Search Field [Level 3], [T+], [V3], [Yes]

A search field is a style of text field optimized for performing text-based searches in
a large collection of values. Many windows include a search field in the toolbar, but
a search field can also be displayed in the body area of a window. A search field
typically displays a magnifying glass icon and can also include placeholder text and
a cancellation button.

ADG; NN/G; CWT; Others

	1.	 Ensure search fields have a distinct look that users can instantly recognize and
distinguish from other similar features like text fields. [Level 3], [T],
[V1], [Maybe]

ADG; Mendel, J., & Pak, R. (2009). The effect of interface consistency and cog-
nitive load on user performance in an information search task. Proceedings of
the Human Factors and Ergonomics Society Annual Meeting, 53(22), 1684–1688.
https://doi.org/10.1177/154193120905302206

	(a)	 Placeholder text can remind users of the types of information that are
searchable.

	2.	 Determine an appropriate time to begin searching. Consider whether to show
search results dynamically or only after the user initiates the search. [Level 3],
[T+], [V2], [Yes/Maybe]

ADG; NN/g. See https://www.nngroup.com/articles/suggested-employee-
search/.

	3.	 Scope bars, a type of toolbar for filtering searches, will help users trim down
unnecessary information during searches that may bring up large amounts of
data. [Level 2.5], [T], [V2], [Maybe]

ADG; NN/g; CWT

	(a)	 Plan scope bar functions around the tasks. Searching documentation for a
page might not need detailed search filters; however, searching an event
log with thousands of entries may require users to input multiple filters.

Appendices

https://doi.org/10.1177/154193120905302206
https://www.nngroup.com/articles/visual-indicators-differentiators/
https://doi.org/10.1177/154193120905302206
https://www.nngroup.com/articles/suggested-employee-search/
https://www.nngroup.com/articles/suggested-employee-search/

111

	(b)	 Some general useful filters for event logs include date range, module ori-
gin, text, and severity.

	(c)	 More advanced or specialized filters could include number of results
shown, reverse filters, and options for pre-set filter categories (e.g., alarms
from past 24 hours from only core modules).

	(d)	 Include a “not” function for searches to support more detailed searching
behavior.

	4.	 Searches with no results found should be clearly communicated to the operator.
[Level 3], [T+], [V1], [No]

ADG; LR: §2.2.1 Stage 1 – Perception

	5.	 Filtering for date ranges should have multiple input methods like text view and
calendar view. [Level 2], [T+], [V2], [Maybe]

ADG; NN/g

	6.	 Ensure that date formats are clear.

Text/Character Field [Level 3], [T], [V2], [Yes]

A text field is a rectangular area in which the user enters or edits one or more lines
of text. A text field can contain plain or styled text. Text fields are the base category
for search fields, labels, and other related features.

ADG; NN/g

	1.	 When providing a user-provided data entry field, use a clear label with useful
hints close by to communicate the purpose of the text field. [Level 2], [T],
[V1], [No]

LR §3.3 Working Memory and Cognition. Disappearing placeholder text can
strain working memory, particularly when distracted.

	2.	 Perform field validation after the user finishes typing into the field. Don’t wait
until the user tries to submit the data. [Level 3], [T], [V2], [Yes]

ADG; NN/g; Others. The value of this is dependent on what is being typed. For
numerical entry, this is more important.

	3.	 Number formatters help users provide accurate numerical data by making the
text easier to read and comprehend. See Data Entry.

	4.	 Ensure that text fields allow users to easily view the full content in the field.
Consider enabling resizing of text fields or providing another method to view the
full text. [Level 4], [T], [V1], [Maybe]

LR §3.3 Working Memory and Cognition. Being unable to view the full text field
forces operators to store information within working memory rather than
simply view it if they want the full picture.

Appendix 2: Design Guidelines

112

	5.	 When possible, match the size of the text field to the expected size of the input.
A text field for a five-digit zip code can be static and just slightly wider than the
text. A text field for paragraph-length entries should show (at the very least)
multiple lines and potentially include a method for resizing the text field. [Level
3], [T], [V1], [No]

	6.	 A page with multiple text fields should ensure the layout is clean and clear.
[Level 4], [T], [V1], [Maybe]

Mendel, J., & Pak, R. (2009). The effect of interface consistency and cognitive
load on user performance in an information search task. Proceedings of the
Human Factors and Ergonomics Society Annual Meeting, 53(22), 1684–1688.
https://doi.org/10.1177/154193120905302206

	(a)	 Evenly space multiple text fields.
	(b)	 Prefer a vertical layout over horizontal.
	(c)	 Prefer consistent text field widths when appropriate. This can be used to

signal relationships between text fields. For example, “first name” and
“last name” can be one width, while the “address” and “city” fields can
be another width.

	7.	 Ensure that “tabbing” between fields follows a logical, intuitive path. [Level 3],
[T], [V1], [Maybe]

FOK; Mendel, J., & Pak, R. (2009). The effect of interface consistency and
cognitive load on user performance in an information search task. Proceedings
of the Human Factors and Ergonomics Society Annual Meeting, 53(22),
1684–1688. https://doi.org/10.1177/154193120905302206

	8.	 Provide access to an “other” option when the task is complicated. This provides
users a method for completing the task when the options don’t align exactly.
[Level 2], [T], [V1], [Maybe]

ADG; Consistency and cognitive load on user performance in an information
search task. Proceedings of the Human Factors and Ergonomics Society
Annual Meeting, 53(22), 1684–1688. https://doi.
org/10.1177/154193120905302206

Date/Time Picker [Level 3], [T], [V3], [Yes]

A date picker lets the user choose a date, a time, a date and time, or a range of dates.
Date and time can be presented in a textual format using text fields, as a graphical
format using a calendar view and/or clock view, or as a display showing both
at once.

KLM; CWT

	1.	 Ensure that the formatting of time and date displays matches the needs of the
user and system.

	2.	 The date and time format should be consistent across the system (or all systems).

Appendices

https://doi.org/10.1177/154193120905302206
https://doi.org/10.1177/154193120905302206
https://doi.org/10.1177/154193120905302206
https://doi.org/10.1177/154193120905302206

113

	3.	 Ensure the detail shown by the display matches the needs of the task. Scheduling
an in-person meeting requires less precision than scheduling access to a super
computer.

	4.	 Present dates and times in a familiar format for the user. Ensure that cultural and
international differences are considered during the design.

Segmented Control

A segmented control is a horizontal set of two or more segments, each of which
functions as a button, and is usually configured as a toggle. Segmented controls
provide closely related choices that affect an object, state, or view. Like buttons,
segments can contain text or icons. A segmented control can enable single choice or
multiple choices.

ADG; LR §2.2.2 Stage 2 – Comprehension

	1.	 In general, try to keep segment size consistent.
	2.	 Consider using labels to add clarity. Labels can introduce a segmented control,

clarify its purpose, and help ensure that icons are understood by the user.
	3.	 Segmented controls should follow the toolbar design guidelines when possible.
	4.	 Segmented controls should not be used as a replacement for tab view controls

within a primary window. Segmented controls can be used for view switching
within a toolbar or inspector pane, however.

	5.	 Segmented controls should not be used for Add or Remove actions. Instead, use
gradient buttons.

	6.	 Segmented control labels should use nouns or noun phrases.
	7.	 Segmented controls that use text within the control don’t need an additional

label; however, icons should be accompanied by labels.
	8.	 Avoid including text and icons within a single segmented control.

Level Indicators [Level 3.5], [T+], [V3], [Yes]

A level indicator graphically represents of a specific value within a range of numeric
values. It is similar to a slider in purpose, but is more visual and doesn’t contain a
distinct control for selecting a value—clicking and dragging across the level
indicator itself to select a value is supported, however. A level indicator can also
include tick marks, making it easy for the user to pinpoint a specific value in the
range. A capacity indicator illustrates the current level in relation to a finite capacity.
Capacity indicators are often used when communicating factors like disk and
battery usage.

	1.	 The fill color for capacity indicators should be used to alert users about significant
values like low battery or low disk space.

	2.	 Large ranges of data should use continuous indicators and tick marks to provide
additional information about the data value.

Appendix 2: Design Guidelines

114

	3.	 Use the quantity and width of discrete indicators to convey additional context
information to the user. Don’t use tick marks on discrete indicators since they
already include that information in their display.

	4.	 Be sure to label at least the first and last tick marks if they are used on a continuous
indicator.

Progress Indicators [Level 4], [T], [V2], [No]

Don’t make people sit around staring at a static screen waiting for your app to load
content or perform lengthy data processing operations. Use progress indicators to
let people know your app hasn’t stalled and to give them some idea of how long
they’ll be waiting.

There are two general kinds of progress indicators: bar indicators and spinning
indicators. Bar indicators (or progress bars) use a horizontal bar that fills from left
to right to show the progress of some action. Spinning indicators use a circular form
to show progress through filling the circle as progress continues.

Ghafurian, M., Reitter, D., and Ritter, F.E., (2020). Countdown Timer Speed: A
Trade-off between Delay Duration Perception and Recall. ACM Transactions on
Computer-Human Interaction (TOCHI), 27(2), 1–25, https://doi.org/
10.1145/3380961

	 1.	 Progress indicators should only be shown within a view, not in window frame
areas like toolbars and status bars.

	 2.	 Progress indicators should be in consistent locations across the system.
	 3.	 If possible and useful, allow users to halt processing for an action without

causing negative side effects.
	 4.	 Only use determinate progress indicators for tasks with well-defined durations.

Be sure to differentiate between processes that have a determinate length and
processes that have an indeterminate length.

	 5.	 Always report progress accurately. Users will be frustrated by a progress bar
that does not represent the progress in a useful, accurate manner. For example,
avoid making a progress bar that jumps to 90% completion within the first
10 seconds, but takes 5 minutes to complete the final 10% of the task.

	 6.	 Hide determinate progress indicators once they are completely filled, but make
sure the user realizes that the task is complete. If it disappears too quickly, they
may wonder if that task was actually completed.

	 7.	 Labels for progress bars can provide useful context about the current state of
the system. Use a trailing ellipsis on labels to indicate that the task is an ongoing
process.

	 8.	 Spinning progress indicators should be used to communicate the status of a
background operation or to save space on the screen.

	 9.	 In general, determinate progress indicators are preferred over indeterminate
indicators.

	10.	 Don’t switch between spinning indicators and progress bars for the same task.
	11.	 Try to keep indeterminate progress bars in motion to ensure that the user knows

that something is happening. This prevents users from wondering whether the
task is progressing or if the system has stalled.

Appendices

https://doi.org/10.1145/3380961
https://doi.org/10.1145/3380961

115

	12.	 Spinning progress indicators typically won’t need labels.

�Some Parting Advice for Designers

Guidelines Will Not Cover All Decisions

Guidelines cannot cover all instances. There may be edge cases or places where
unexpected questions arise about design: for example, another item to add, another
task to add, or a different type of screen or user. The guidelines might also contradict
themselves, which will require theory or an experiment to resolve. The implementer
will often be asked to make short-term, rapid design decisions without the requisite
time or resources to properly analyze the situation. For example, a customer may
determine that the power module requires a view showing power over time in
addition to the current power level. Should the power-over-time view be shown in
addition to the current power level or merged into a single view? Should the power-
over-time view change the line’s color to show low-power alerts or use a horizontal
threshold line instead? Providing implementers, designers, and engineers with
additional training will allow them to make good design decisions throughout the
design process.

Even design guidance will not always provide enough information to implement
a system. Better systems are built when the implementer is at least sympathetic to
and perhaps even has studied a bit about the domain they are implementing.
Architects who understand how buildings are built provide better, easier to build
buildings, and architectural engineers build better buildings if they have studied
architecture. The same holds true for systems engineers, UX designers, and the
various other groups that contribute to creating the systems that reside in op centers.
Engineers who understand their users and other stakeholders will build better
interfaces.

Study the User

Thus, interface implementers should study the user slightly to be prepared for when,
explicitly or implicitly, decisions must be made while implementing the interface.
This might take 10–25 hours a year.

Study How to Design

Interface design and implementation is a process and procedural skill like any engi-
neering discipline, similar to writing code, writing English, or even medical prac-
tice. Professionals in this area should get continuing education in the process of
design. This might take 10–25 hours a year.

Appendix 2: Design Guidelines

116

�Appendix 3: All Design Principles Described in This Book

This appendix lists all the design principles that are covered in the book. Some
design principles are grouped and presented as a table (Table A3.1).

Table A3.1  Aggregated list of design principles covered by this book

Principle Section

Principle
1.1

Don’t assume the user to be how you think you are 1.7

1.2 All design choices have trade-offs. Don’t go in blind 1.7

1.3 Use and test multiple designs 1.7

2.1 Make the information available 2.3.1

2.2 Make the information interpretable 2.3.1

2.3 Ensure the value and salience of each piece of information; eliminate or
suppress unnecessary signals

2.3.1

2.4 Work around the limitations of human perception and cognition by
reducing complexity and workload of the task

2.3.1

2.5 Actively design the system to prevent misinterpretation of signals. Signals
should be unambiguous, consistent, and instantly recognizable

2.3.2

2.6 Consider how the actual tasks will be done by the operators. If operators
will be expected to multi-task, then build in features to accommodate this
fact

2.3.2

3.1 Designing to accommodate color blindness will solve multiple problems at
once

3.2.5

3.2 Colors must be used sparingly and used consistently and should be
reserved for critical information

3.2.5

3.3 Make text with readable fonts, use no more than three font types, use fonts
of proper sizes, and use simple, short text strings

3.2.5

3.4 Ensure signals indicating missing information are clear and obvious 3.2.5

3.5 Arrangement of screen components should be useful, consistent, and close 3.2.5

3.6 Present information needed for comprehension directly 3.3.5

3.7 Provide support for operators that may deal with interruptions 3.3.5

3.8 Consider the risks of stimulus habituation appropriately 3.3.5

3.9 Reduce the cognitive resources used during multi-step tasks 3.4.3

Appendices

117

References

Bevan N, Spinhof L (2007) Are guidelines and standards for web usability comprehen-
sive? International Conference on Human-Computer Interaction: Interaction Design and
Usability:407–419. https://doi.org/10.1007/978-3-540-73105-4_45

Boehm, B., & Hansen, W. (2001). The spiral model as a tool for evolutionary acquisition.
CrossTalk, 14(5), 4–11. http://nkhalid.seecs.nust.edu.pk/SE/software p. models readings/pre-
sentation 1.pdf

Card, S. K., Moran, T. P., & Newell, A. (1983). The psychology of human-computer interaction.
Hillsdale: Lawrence Erlbaum.

Gray WD, John BE, Atwood ME (1992) The precis of project Ernestine or an overview of a vali-
dation of GOMS. Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems - CHI ‘92:307–312. https://doi.org/10.1145/142750.142821

Lewis, C., & Rieman, J. (1994). Task-centered user interface design: A practical introduction.
http://www.acm.org/perlman/uidesign.html

Pew, R. W., & Mavor, A. S. (2007). Human-system integration in the system development process.
Washington, DC: The National Academies Press. https://doi.org/10.17226/11893.

Polson, P. G., Lewis, C., Rieman, J., & Wharton, C. (1992). Cognitive walkthroughs: A method
for theory-based evaluation of user interfaces. International Journal of Man-Machine Studies,
36(5), 741–773. https://doi.org/10.1016/0020-7373(92)90039-N

Reder, L. M., & Ritter, F. E. (1992). What determines initial feeling of knowing? Familiarity with
question terms, not with the answer. Journal of Experimental Psychology: Learning, Memory
& Cognition, 18(3), 435–451.

Ritter F.E (2010) Common writing mistakes that I hate. http://acs.ist.psu.edu/ist597/writ-
ingtips3.pdf

Ritter, F. E., Baxter, G. D., & Churchill, E. F. (2014). Foundations for designing user-centered
systems. London: Springer. https://doi.org/10.1007/978-1-4471-5134-0

Appendix 3: List of Design Principles

https://doi.org/10.1007/978-3-540-73105-4_45
https://doi.org/http://nkhalid.seecs.nust.edu.pk/SE/software p. models readings/presentation 1.pdf
https://doi.org/http://nkhalid.seecs.nust.edu.pk/SE/software p. models readings/presentation 1.pdf
https://doi.org/10.1145/142750.142821
http://www.acm.org/perlman/uidesign.html
https://doi.org/10.17226/11893
https://doi.org/10.1016/0020-7373(92)90039-N
http://acs.ist.psu.edu/ist597/writingtips3.pdf
http://acs.ist.psu.edu/ist597/writingtips3.pdf
https://doi.org/10.1007/978-1-4471-5134-0

119© The Author(s) 2021
J. D. Oury, F. E. Ritter, Building Better Interfaces for Remote Autonomous
Systems, Human–Computer Interaction Series,
https://doi.org/10.1007/978-3-030-47775-2

A
Acromite, M., 54
Altmann, E.M., 30
Anderson, J.R., 31, 67
Angell, L.S., 26
AuBuchon, A.M., 56

B
Baddeley, A.D., 33, 57
Balkin, T.J., 66
Banbury, S., 24
Baxter, G.D., 8, 10, 22, 31, 67
Belenky, G., 66
Besnard, D., 31
Bias, R.G., 17
Biddle, R.L., 58
Blackmon, M.H., 12
Blake, R., 67
Boehm, B., 6
Boehm-Davis, D.A., 53
Boff, K.R., 26, 67
Bolkhovsky, J.B., 49
Bolstad, C.A., 26, 30, 31
Booher, H.R., 64
Boring, R.L., 44, 45
Bovair, S., 31
Brock, D.P., 30
Brown, J.M., 58
Brown, J.S., 40

C
Cairns, P., 11, 93
Campoe, K.R., 49–51

Card, S.K., 10, 12, 66, 88
Carpenter, P.A., 56
Casey, S.M., 64
Chalmers, P.A., 56, 58
Chang, D., 41, 43
Chilton, E., 27
Chipman, S.F., 64
Chon, K.H., 49
Churchill, E.F., 8, 10, 22, 67
Cook, G.I., 50
Corsbie-Massay, C., 58
Cowan, N., 56
Cox, A.L., 11
Cox, D., 10
Cuevas, H., 26

D
DeMarco, T., 49
Deneke, M., 58
Dinges, D.F., 49
Dooley, L., 41
Dow, S., 18
Drews, F.A., 57

E
Eddy, D.R., 49
Egeth, H.E., 41
Ellis, N.C., 56
Endsley, M.R., 2, 22, 24, 26, 27,

29–31, 67
Engle, R.W., 48
Enns, J., 40, 41
Epling, S.L., 49

Author Index

https://doi.org/10.1007/978-3-030-47775-2#DOI

120

F
Findlay, J.M., 40

G
Galanter, E., 51
Garner, W.R., 39
Gilchrist, I.D., 40
Giuliano, K.K., 49–51
Gluck, K.A., 49
Gorton, T., 24
Granados, J., 57
Gray, W.D., 53, 88
Greathead, D., 31
Greenspan, S.L., 58
Gross, J.B., 49
Grunwald, T., 58
Gunzelmann, G., 49

H
Hansen, W., 6, 78
Harrison, A.M., 49, 50
He, J., 57
Healey, C., 40, 41
Helton, W.S., 48, 49
Hiatt, L.M., 50
Hick, W.E., 18
Hicks, J.L., 50
Hofmann, C., 58
Hollands, J.G., 67
Hollender, N., 58
Hopper, M., 57
Hursh, S.R., 49
Hyman, R., 18

I
Irwin, D.E., 40

J
Johnson, M.L., 66
Johnston, W.A., 57
Jones, D.G., 2, 22, 27,

29–31
Just, M.A., 56

K
Khemlani, S., 49
Kieras, D.E., 31, 64
Kitajima, M., 12
Kosslyn, S.M., 29
Krug, S., 30, 58

L
Lewis, C., 11, 12, 17, 67, 88
Lincoln, J.E., 26, 67
Lister, T., 49

M
Marsh, R.L., 50
Mavor, A.S., 6–11, 17, 64, 65, 78
Mayhew, D.J., 17
Miller, G.A., 56
Minninger, J., 64
Mintz, F.E., 30
Moore, C.M., 41
Moran, T.P., 10, 12, 66
Moray, N., 31

N
Newell, A., 10, 12, 66
Norman, D.A., 67

O
Oury, J.D., 32

P
Pew, R.W., 6–11, 17, 64, 65, 78
Polson, P.G., 11, 12, 83, 88

Q
Qin, M., 49

R
Redmond, D.P., 66
Ricker, T.J., 56
Rieman, J., 11, 17, 67, 88
Riley, J.M., 30, 68
Ritter, F.E., 9, 10, 17, 30, 31, 39, 42, 46, 48,

51, 56, 60, 66, 67, 88
Russell, P.N., 48

S
Schmitz, B., 58
Schrock, J.C., 48
Schultz, A., 49
Sekuler, R., 67
Selcon, S., 24
Sommerville, I., 67
Still, D.L., 54
Strayer, D.L., 57

Author Index

121

Stroop, J.R., 38
Sun, J., 40
Sweller, J., 57

T
Tamborello, F., 49
Tatlock, K., 24
Tehranchi, F., 31, 32
Temme, L.A., 54
Thorne, D.R., 66
Trafton, J.G., 30, 49, 50
Tufte, E.R., 29, 31, 100
Tuovinen, J.E., 41

U
Ulrich, T.A., 44, 45
Unsworth, N., 48

W
Wang-Costello, J., 26
Warm, J.S., 48
Wharton, C., 11
Wickens, C.D., 67

Z
Zekić, K., 3

Author Index

123© The Author(s) 2021
J. D. Oury, F. E. Ritter, Building Better Interfaces for Remote Autonomous
Systems, Human–Computer Interaction Series,
https://doi.org/10.1007/978-3-030-47775-2

A
A/B experiment, 11

See also Study
ACT-R, 31, 32

See also Cognitive model
Aesthetics, see User-experience design (UX)
Age, 19, 67, 79
Aircraft, 31, 54
Air disasters, 4
Air traffic controller(s) and control (ATC), 31
Alarms, 27, 28, 39, 43, 45, 47, 78–80, 83,

84, 86, 111
Alerts, 13, 16, 19, 28, 31, 47, 51, 66, 77, 79,

83, 84, 86, 95–99, 101, 113, 115
Altimeters, 53
Apple Human Interface Design

Guidelines, 85
Astronauts, 1, 16, 78, 82
Attention

attentional failure, 4, 27
attentional vigilance, 48
goal-directed attention, 40

Audition/auditory, 38
Automation, 67, 68, 97
Aviation disaster, see Air disaster
Automobile, 23, 25, 59, see Car

interfaces, driving

B
Badging, 95–96
Buttons, 58, 81, 89, 91, 96, 97, 99–101, 103,

104, 107–110, 113

C
Car interfaces, 23, 24, 26, 28
Checkboxes, 107, 108
Chunking, 56, 57, 59
Circadian rhythms, 49
CMN-GOMS, see Keystroke-level

model, GOMS
Cognition, 27–30, 32, 37–60, 90, 91, 96, 103,

106, 109, 111, 116
Cognitive, 4, 8, 11, 12, 22, 25, 26, 31–33, 37,

39, 40, 48, 50, 56–59, 63, 66, 67,
88–90, 96, 97, 105, 110, 112, 116

Cognitive load theory (CLT), 57, 58
Cognitive modeling, 32, 33

See also ACT-R, Keystroke-Level
Model, GOMS

Cognitive processes, 66
Cognitive walkthrough (CWT), 11, 83, 88, 95,

99, 104, 105, 109, 110, 112
Cogulator, 10
Color

blindness, 39, 43, 45, 116
perception of, 43
vision, 38, 39, 43–45

Command Center, see Operation center
Complexity, 4, 5, 23, 25–29, 31, 53, 58,

59, 99, 116
Comprehend, 4, 30, 40, 111
Comprehension, 25, 29–31, 40, 46, 53, 89, 90,

92, 113, 116
Control center, see Operation center
Control room, see Operation center
Critical systems, 1, 2, 6

Subject Index

https://doi.org/10.1007/978-3-030-47775-2#DOI

124

D
Dashboard

car, 23, 28
interfaces, 23, 28

Data entry
date/time, 104
numeric data, 89

Decision making, 8, 25
Declarative knowledge, 32
Declarative memory, 32
Design

choices, 6–10, 17, 18, 53, 57, 59, 89, 116
gold standard in design, 10
tradeoffs, 17–18, 24, 52, 60
guidelines, 2, 5, 22, 25, 30, 47, 50, 60, 87,

113, 115
principles, 2, 6, 16, 25–30, 38, 43, 46, 51,

52, 60, 64, 116
Designers, 2, 4–6, 8–10, 14, 16–19, 22, 23, 27,

28, 30, 31, 33, 37–44, 46, 47, 49–52,
55–57, 59, 60, 63–68, 87, 97, 104, 115

Disasters, 4, 26, 46
Distractions, 26, 28, 49, 50, 104
Divided attention, 49

See also Multitasking
Driving, 23–25, 32, 49, 57, 58, 76
Dual-coding, 39
Dual-task, 33

See also Multi-tasking

E
Education, 19, 65, 67, 115
Emergent phenomenon, 37
Errors

frequency, 26
implications for design, 31, 33

Event logs, 15, 74, 76, 81, 85, 86, 92, 96, 101,
103, 110, 111

Expertise, 31, 57, 67, 81
Expert users, 91

F
False alarms, 18, 46
Fatigue, 26, 46, 59, 66

See also Attentional vigilance, Sleep
Fatigue Avoidance Scheduling Tool (FAST),

19, 49, 52, 66
Feeling of knowing (FOK), 88, 89, 95, 112
Fixations, 40, 48
Flight, 46, 54, 55

Focus, 8–10, 13, 21, 24, 26, 31, 32, 38, 48–50,
83, 93, 96, 100

See also Attention
Fonts, 5, 17, 24, 29, 39, 46, 92, 93, 116
Foundations for designing user-centered

systems (FDUCS), 8, 88–92, 96, 100,
105, 106

Friendly fire, 24
Fundamental attribution error

of design, 10
Funders, 7, 63, 78, 82

See also Stakeholders

G
Gauge (interface feature), 23, 28, 45, 89

See also Level indicator
Gestalt theory, 41–43
Goals, 4–6, 11, 12, 22–25, 32, 33, 48, 53, 64,

71, 82, 88
Goals, operators, methods and selection rules

(GOMS), 88, 91, 92, 94, 103–106,
108, 109

Gradient buttons, 107, 113
Guidelines, see Design guidelines

H
Habituate, 55
Help buttons, 90, 100, 107, 108

See also Tooltips
Hick-Hyman law, 18
Hicks law, 18
High-stakes tasks, 50

See also Critical systems
Human-computer interaction (HCI), 2,

4, 87, 89
Human error, see Error
Human-system interface, 25

I
Icons, 27–29, 46, 92, 95, 96, 105–108,

110, 113
Indicators, 23, 24, 39, 97, 113, 114
Interfaces, 2, 5, 7–9, 11–13, 16–19, 21–30, 33,

38–40, 43–47, 49, 51, 53, 54, 59, 60,
66–68, 71, 74, 79–83, 85, 87–89,
93–99, 103, 105, 109, 110, 112, 115

Interruptions, 30, 49–51, 55, 66, 95, 98, 116
See also Task-switching, multi-tasking,

distractions, divided attention

Subject Index

125

J
Judgements, see Decision making
Just noticeable difference (JND), 51

K
Key, see Keystroke
Keyboard

shortcuts, 94, 99, 101, 104, 105
Keystroke, 12, 94, 104
Keystroke accelerators (KSAs), 91, 94
Keystroke-level model (KLM), 12, 112

See also Cognitive model
Knowledge

declarative, 32
procedural, 33

L
Labels, 27, 58, 91, 99, 104, 107–111, 113–115
Layout, 43, 58, 94, 100, 101, 103, 112
Learning, 4, 17, 33, 38, 43, 57, 58, 64, 65, 67,

90, 91, 93, 98, 109
Level indicator, 28, 45, 113
Lights, 4, 24, 32, 38, 44, 45, 48, 51
Lists, 64, 78, 80, 82, 83, 88, 91, 101, 104, 106,

109, 116
Low-level visual perception, see Pre-attentive

visual processing

M
Managers, 2, 16, 63–65, 77, 78
Mars Water Detection System (WDS), see

Water Detection System (WDS)
Memory

long-term, 32, 33, 55, 56
recall, 17, 91
recognition, 17, 91
short term, 92
working, 48
working memory capacity, 48, 56, 57, 59
working memory failure, 4
working memory load, 48, 57

Mental model failure, 4
Mental models, 4, 25, 28, 29, 31, 33, 37, 40,

43, 50, 54–56, 66, 68, 91, 101, 109
Mental workload

See also Cognitive Load
Menus, 18, 90, 91, 94, 104–107
Missing information, 27, 46, 116

Mission control center, 2
Models, 2, 8, 11, 17, 25, 31–33, 63, 98, 109
Multiple designs, see Prototyping
Multi-tasking, 57

See also Interruptions, distractions,
task-switching

N
NASA

NASA Program Office Scientist, 78,
80, 82–84

National Research Council, 8
Normalcy bias, 46
Note-taking, 30
Notifications, 16, 77, 80, 84, 95–97
Novice users, 12, 90

O
Operation Center (Op center), 2, 4–6, 8–10,

12, 13, 15, 16, 18, 25, 26, 33, 57, 63,
65, 78–82, 85, 87, 90, 95

Operators
visual illusions, 38

OZ, 54, 55

P
Paper, 9, 30, 67
Perception, 26–29, 31, 32, 38–40, 42–48, 55,

60, 66, 67, 91, 95, 97, 105, 111, 116
Phonological loop, 33, 57

See also Working memory
Pilots, 26, 46, 53, 54
Popovers, 102–103
Pre-attentive visual processing, 40
Primary tasks, 23, 49–51, 53, 55, 57
Progress indicators, 89, 114, 115
Projection, 4, 31
Prototype, 13
Push buttons, 107, 108

R
Radio buttons, 91, 107–109
Reaction times, 18, 19, 49, 66
Reading, 6, 17, 24, 39, 45, 46, 49, 55, 65, 67,

68, 91, 92
Recall, 17, 88
Redundancy, 15, 58, 75

Subject Index

126

Reliability, 4, 18, 67, 79
Remote autonomous systems, ix,

1–19, 85–106
Risk-driven incremental commitment model

(RD-ICM), 6, 7, 10
Risks, 2, 4–11, 13, 14, 16–18, 21, 27, 28, 30,

43, 45, 49, 50, 57, 63–65, 79–82,
93, 97, 116

Risk-driven approach, see Risk-driven
incremental commitment model

Risk-driven spiral model, see Risk-driven
incremental commitment model

S
Saccades, 40, 48
Safety critical systems, see Critical systems
Screen, see Interface
Scroll view, 103
Search fields, 102, 110, 111
Secondary tasks, 23, 49, 55, 57
Sensors, 9, 22, 38, 46, 73, 75
Shapes, 7, 25, 42
Sight, see Vision
Signal

detection theory, 18
habituation, 55
thresholds, 28

Situation awareness (SA)
Stage 1: Perception, 26–29
Stage 2: Comprehension, 29–30
Stage 3: Projection, 31

Sleep, 49
Software engineer, 67, 80
Sound, 28, 51
Speed-accuracy tradeoff, 52
Speedometer, 23, 28
Spiral model, see Risk-Driven Incremental

Commitment Model
Splash screens, 90
Split views, 103
Stakeholder analysis, 78–82
Stakeholders, 2, 6–11, 17, 18, 25, 58, 63–65,

78, 80, 82, 83, 115
Stimulus, 25, 27, 29, 33, 38, 39, 41, 47,

48, 51, 116
Stimulus detection, 39
Stroop task, 38
Stress, 19, 50, 57, 59, 66
Studies, 2, 10, 11, 17, 18, 50, 52, 67, 83, 87,

93, 98, 109, 115
Sub-goals, 12
Subtasks, 11, 12, 81, 82

Supervisors, 14, 49, 78, 80, 86, 95
System failures, 2, 4, 10–12, 21, 27, 28,

43, 65, 82
System of systems, 1, 67
Systems developers, 6, 78, 80, 81
Systems engineers, 4, 16, 18, 40, 50, 58, 115

T
Tab views, 104, 113
Tachometer, 23, 28
Tactile, 38
Task analysis (TA), 10–12, 46, 47, 71,

83, 88, 90
See also Keystroke-Level Model, cognitive

walkthrough, GOMS
Tasks, 2, 4–6, 8, 10–19, 22, 23, 25–27, 29–33,

37, 38, 40, 43, 46–50, 52–60, 63–68,
77, 78, 80–91, 94–97, 101, 103, 105,
108, 110, 112–116

Task-switching, 30, 48, 55
Tomahawk launch system, 64
Tooltips, 88, 92, 93
Training, 16, 17, 29, 50, 64, 77, 80, 90, 115
Types of memory, 10
Typing, 52, 111

U
Usability, 2, 3, 8, 10–12, 63–65, 83, 88, 93
US Airways Flight 1549, 64
User-centered design (UCD), 2, 4, 6, 9, 17,

22–26, 87, 88
User-experience design (UX), 2, 4, 6, 8, 22,

102, 115
User feedback, 91
Users, 2, 4–8, 10–12, 16–19, 22–24, 27, 39,

40, 43, 45, 46, 48, 50–52, 54, 56–58,
63, 65–67, 71, 74, 78, 80, 82, 87–116

User-testing, 6
See also Study, A/B experiment

USS Vincennes incident, 64

V
Vigilance, see Attentional vigilance
Vision

pre-attentive visual processing, 40
visual processing, 40
visual search, 37, 39–40, 48

Visual illusions, 38
Visual processing, 37–41, 43, 50
Visual search, 40, 48

Subject Index

127

Visuospatial sketch pad, 33, 57
See also Cognitive load, mental workload

W
Wall of Screens, 16, 78, 79
Warnings, 15, 28, 30, 50, 77

Water detection system (WDS), 2, 12–16,
18, 19, 27–30, 46, 63, 71–87,
94, 97, 101

Working memory, 29, 33, 48, 50, 53, 55–60,
90, 91, 96, 103, 106, 109, 111

Workload, see Cognitive load, mental
workload

Subject Index

	Preface
	Acknowledgments
	Contents
	Chapter 1: Introducing Interface Design for Remote Autonomous Systems
	1.1 Introduction
	1.2 The Role of Operators
	1.3 How to Improve Designs
	1.4 Risk-Driven Design
	1.5 The Design Problem Space for Op Centers
	1.5.1 Know Your Technology
	1.5.2 Know Your Users and Their Tasks
	1.5.3 Test Designs Broadly and with Cognitive Walkthroughs

	1.6 Example Task: The Mars Water Detection System
	1.6.1 Operation Center Organization
	1.6.2 Water Detection System Structure
	1.6.3 Example Issues

	1.7 Principles for Design
	1.8 Conclusion
	References

	Chapter 2: How User-Centered Design Supports Situation Awareness for Complex Interfaces
	2.1 Introduction
	2.2 User-Centered Design
	2.3 Situation Awareness: The Key to UCD
	2.3.1 Stage 1: Perception
	2.3.2 Stage 2: Comprehension
	2.3.3 Stage 3: Projection

	2.4 Summary: Cognitive Mechanisms for Situation Awareness
	References

	Chapter 3: Cognition and Operator Performance
	3.1 Introduction
	3.2 Visual Perception
	3.2.1 Visual Processing
	3.2.2 Color Blindness
	3.2.3 Visual Search
	3.2.4 Pre-attentive Visual Processing
	3.2.5 Summary of Visual Perception and Principles

	3.3 Attention
	3.3.1 Attentional Vigilance
	3.3.2 Resuming Attention: Interruptions and Task-Switching
	3.3.3 Signal Thresholds and Habituation
	3.3.4 Speed-Accuracy Trade-off (Or How to Design for Acceptable Errors)
	3.3.5 Summary of Attention

	3.4 Working Memory and Cognition
	3.4.1 Working Memory
	3.4.2 Cognitive Load
	3.4.3 Summary of Working Memory and Cognition

	3.5 Summary
	References

	Chapter 4: Conclusion and Final Comments
	4.1 Introduction
	4.2 The Need for User-Centered Design
	4.3 The Need for Better Shared Representations
	4.4 Open Problems
	4.5 Ways to Learn More
	4.5.1 Readings to Learn More
	4.5.2 Reading Groups
	4.5.3 Continuing Education

	References

	Appendices
	Appendix 1: Detailed Example Problem Space—The Water Detection System (WDS)
	Overview
	System Architecture
	Main Control Element (MCE)
	Communications Element (CE)
	Autonomous Navigation Element (ANE)
	Rock and Sand Exploration Element (RSEE)
	Deep-Water Detection Element (DWDE)
	Power Generation Element (PGE)

	Key Features of the WDS
	Status
	Event Logs
	Configuration
	Commands
	Redundancy

	Day in the Life
	Example Issues
	Stakeholder Analysis
	NASA 24/7 Operators
	Operation/Command Center Supervisors
	System Developers and Engineers
	NASA Program Office Scientists
	Project Funders and Other High-Level Stakeholders
	NASA Astronaut Install Team
	Summary and Lessons

	Task Analysis for 24/7 Operators

	Appendix 2: Design Guidelines for Remote Autonomous Systems
	Introduction: Design Themes
	General User Interaction Guidelines
	Loading and Delays [Level 5], [T–], [V2], [No/Maybe]
	Supporting Novice and Expert Users [Level 4], [T+], [V2], [Yes]
	Data Entry [Level 3.5], [T+], [V3], [Yes]
	Help and Tooltips [Level 4], [T], [V2], [No/Maybe]
	Keyboard Interactions [Level 4.5], [T+], [V3], [Yes]
	Providing User Feedback [Level 4], [T–], [V2]
	Badging or Icons as Updates [Level 3], [T], [V3], [Yes]
	Notifications [Level 3], [T+], [V3], [Yes]
	Color [Level 4] [T+], [V2], [No/Maybe]

	Visual Feature Index
	Windows and Views
	Alerts
	Boxes [Level 2], [T–], [V1], [No]
	Dialogs
	Outline View [Level 3], [T+], [V3], [Yes/Maybe]
	Panels
	Popover [Level 2], [T–], [V1], [No]
	Scroll View [Level 3], [T+], [V2], Yes/Maybe
	Split View
	Tab Views [Level 3], [T], [V2], [No/Maybe]

	Menus [Level 3], [T+], [V2], [Yes/Maybe]
	Contextual Menus

	Buttons
	Checkbox [Level 3], [T], [V1], [No]
	Gradient Button
	Help Button [Level 3], [T+], [V3], [Yes]
	Push Buttons [Level 2.5], [T–], [V1], [No]
	Radio Button [Level 2.5], [T–], [V1], [No]

	Fields and Labels
	Combo Box
	Labels [Level 3.5], [T], [V2], [Yes]
	Search Field [Level 3], [T+], [V3], [Yes]
	Text/Character Field [Level 3], [T], [V2], [Yes]
	Date/Time Picker [Level 3], [T], [V3], [Yes]
	Segmented Control
	Level Indicators [Level 3.5], [T+], [V3], [Yes]
	Progress Indicators [Level 4], [T], [V2], [No]

	Some Parting Advice for Designers
	Guidelines Will Not Cover All Decisions
	Study the User
	Study How to Design

	Appendix 3: All Design Principles Described in This Book

	References
	Author Index
	Subject Index

