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Preface

This brief book Building Better Interfaces for Remote Autonomous Systems: An 
Introduction for Systems Engineers, which we shorten to Building Better Interfaces 
here, originated from work that we have done with L3Harris Technologies (for-
merly Harris Corp) on improving interface design for operations centers. We real-
ized that this work could be valuable to a wide range of designers and engineers, 
especially in fields that have typically not prioritized interface design in their proj-
ects. We wrote this book for the engineers, designers, and managers that are respon-
sible for building large, multi-team systems found in places like NASA’s control 
rooms or control rooms for nuclear power plants. This book gives specialized engi-
neers and developers a broad review of important design frameworks and knowl-
edge about how operators see, think, and act so they can make better decisions and 
better interfaces. It is a brief book for busy designers to quickly introduce these 
issues and some of the many ways to improve interfaces. Thus, it is part of the 
SpringerBriefs in Human-Computer Interaction.

In the past several years, the significance of interface design has become more 
apparent; specialized user experience design teams are becoming more common in 
unexpected places like the defense industry. As recognizing the importance of 
usability becomes more common, we hope that this book can help shape the dis-
course regarding how interface design fits alongside more well-established fields 
like electrical engineering. 

This book advocates for user-centered design, rather than user experience design, 
as the central goal of the team handling interface design. User experience caters to 
the user, focusing on how they feel or respond emotionally to design choices. This 
is a less useful and less appropriate approach for the types of systems we discuss in 
this book. It can be very appropriate for consumer products. In contrast, user-cen-
tered design takes the user off a pedestal and places them onto equal footing with 
the rest of the system as simply another subsystem or component. This makes stake-
holders and designers assess risks to project failure more accurately for systems that 
require human input. Failure of any subsystem, even the human operator, can lead 
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to disaster. Every component has safe operating conditions that give reliable results; 
this book demonstrates how you can begin applying those same standards to the 
operator and their interactions with other systems.

This book is suitable for undergraduates studying any field and system designers. 
It is designed to be a standalone document. Readers with some experience in inter-
face design and psychology may find some sections trivial, but we hope that every 
reader will gain some value from having read it. For those wanting a deeper review 
of these topics after finishing this book, we recommend Foundations for designing 
user-centered systems by Ritter, Baxter, and Churchill. In many ways, Building 
Better Interfaces is a practical application of the lessons from Foundations for 
designing user-centered systems for designing remote, autonomous systems.

College of IST� Jacob D. Oury
The Pennsylvania State University
University Park, PA, USA�

Frank E. Ritter

Preface
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Chapter 1
Introducing Interface Design for Remote 
Autonomous Systems

Abstract  This chapter presents a high-level overview of how designers of com-
plex systems can address risks to project success associated with operator perfor-
mance and user-centered design. Operation Centers for remote, autonomous 
systems rely on an interconnected process involving complex technological sys-
tems and human operators. Designers should account for issues at possible points 
of failure, including the human operators themselves. Compared to other system 
components, human operators can be error-prone and require different knowledge 
to design for than engineering components. Operators also typically exhibit a wider 
range of performance than other system components. We propose the Risk-Driven 
Incremental Commitment Model as the best guide to decision-making when 
designing interfaces for high-stakes systems. Designers working with relevant 
stakeholders must assess where to allocate scarce resources during system develop-
ment. By knowing the technology, users, and tasks for the proposed system, the 
designers can make informed decisions to reduce the risk of system failure. This 
chapter introduces key concepts for informed decision-making when designing 
operation center systems, presents an example system to ground the material, and 
provides several broadly applicable design guidelines that support the development 
of user-centered systems in operation centers.

1.1  �Introduction

Our increasingly complex society relies on an interconnected network of systems, 
each responsible for carrying out its own role effectively. The most important com-
ponents within the systems of systems are called critical systems. Critical systems 
are defined by the cost of their failure; critical systems are called as such because 
their failure will lead to loss of life, destruction of the system, or failure for the 
organization as a whole. For example, failure in central command for the space mis-
sions may leave astronauts without the information (and oxygen!) they need if their 
oxygen tank were to fail a few days into the mission. Air traffic control is another 
example of a critical system; even minor mistakes can have devastating conse-
quences. Not every critical system, however, needs to be part of a large international 
organization. A 911 emergency call center is responsible for triaging calls, 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47775-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-47775-2_1#DOI
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dispatching appropriate services, and providing support for the caller; loss of the 
call center means local fire, medical, and police services lose their ability to coordi-
nate and respond.

Whether it’s NASA’s Christopher C. Kraft Jr. Mission Control Center in Houston, 
the Indianapolis Air Route Traffic Control Center, or a local 911 dispatcher, these 
critical systems all contain some form of an operation center at the heart of their 
operation, and these operation centers are vital communication hubs for the transfer 
of information. Within any given op center, there are going to be different stake-
holders, tasks, and priorities that must be considered in their design. A single room 
or even a single screen could be the link between the op center and multiple com-
plex systems. Figure 1.1 shows a montage of the types of system components this 
book addresses. This book primarily examines operation centers that manage 
remote, autonomous, asynchronous systems.

The book is designed to be useful to managers, designers, and implementors of 
op centers. Managers can use it to adjust their process to account for a wider range 
of risks caused by failing to support their users and their tasks. Designers can use it 
to manage the process, learn about users, and become more aware of useful types of 
shared representations. Implementers can use it to provide context for seemingly 
small decisions within an interface that are too minor to be described formally or 
have not been specified. Where we can, we also identify design principles and 
aspects of the operator, interface, or process that suggest prescriptive actions to cre-
ate better interfaces.

This introductory chapter makes the case for including knowledge about users as 
part of the system and design process. It will then briefly describe a way to include 
this knowledge (the Risk-Driven Spiral Model) and how this knowledge could be 
applied to operation centers. The rest of the book will use an example system called 
the Water Detection System (WDS) to help illustrate the principles, concepts, and 
practical implications derived from the material covered. The introduction con-
cludes with some example guidance that can be used as an executive summary or as 
a summary for readers who might not have time to read the whole book. The remain-
der of the book provides support for the guidelines. The appendices include a 
worked example that shows how the guidance is applied. Table 1.1 defines some 

common terms used throughout this book.
The design approach that results from this book will be primarily a human–com-

puter interaction (HCI) approach to make the system usable. Aspects of improving the 
system through user-centered design (UCD) and making the system more enjoyable 

(while maintaining usability) with user experience (UX) design will be included as well.

1.2  �The Role of Operators

Operators can greatly influence operation center success. In a study of errors in air 
traffic control, a type of op center, Jones and Endsley (1996) found that seven out 
of ten times system failures are due to operator error. Their error analysis for 

1  Introducing Interface Design for Remote Autonomous Systems
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Fig. 1.1  Technological advancement has expanded our ability to use and control complex systems 
in new ways and from new locations. To make full use of these powerful new systems, usability is 
paramount. (Image by Kenan Zekić)

1.2  The Role of Operators
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aviation disasters organized the contributing errors by operators using Endsley’s 
(1995) theory of situation awareness. The situation awareness framework predicts 
operator performance by rating the operator’s awareness of necessary information. 
When the errors were organized into their stage of situational awareness, they found 
that misperception or non-perception of the necessary information was the primary 
cause of air disasters about 75% of the time. Going up in complexity, failing to suc-
cessfully comprehend the meaning or the importance of information was the pri-
mary cause in only about 20% of air disasters. Finally, at the lowest error rate, 
projection into near-future system states is the key in less than 5% of disasters. 
Breaking down these failures into more specific types of failure showed that atten-
tional failure (35%; operator has information but fails to attend to it), working 
memory failure (8.4%; operator attends to information but forgets it), and mental 
model failure (18%; operator’s understanding of the situation does not match real-
ity) account for the most common events that contribute to operator errors in op 
centers.

Operators of complex systems use a set of cognitive mechanisms that are fallible 
in predictable ways. Systems engineers, developers, and designers can begin miti-
gating the risks associated with fallible cognitive behavior by learning about the 
factors and mechanisms that influence operator performance and reliability. Not all 
these mechanisms can be ameliorated by system design, but they do shed light on 
design opportunities where systems could be improved and better support operators. 
This book suggests ways to do that.

Modifying op center designs could help reduce these types of system failures by 
providing the information more clearly, making information more comprehensible, 
requiring less attention (perhaps by reducing other less useful information), and 
appropriately matching and supporting the operator’s mental model and tasks. How 
can these issues be addressed throughout the development cycle of complex sys-
tems? We propose a design process based on understanding the operator, their tasks, 
and the technology.

Table 1.1  Common terms and definitions

Term Definition

Operation center 
(op center)

A centralized location used to monitor and exert control over a system, 
situation, or event. Can sometimes be used interchangeably with command 
center or control room

Human–computer 
interaction (HCI)

A broad term for research into the design and use of computer technology, 
particularly as it relates to human–machine interactions. HCI typically 
includes user-centered design and user experience design under its purview

User-centered 
design (UCD)

A design process focused on fitting the goals, tasks, and needs of the user to 
support optimal performance for the overall human–machine system

User experience 
design (UX)

A design process that extends HCI to include all design aspects that are 
perceived and felt by the user to build systems that are desirable to use in 
both function and experience

1  Introducing Interface Design for Remote Autonomous Systems
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1.3  �How to Improve Designs

The variety and complexity of work being performed in op centers prevents strict 
design guidelines from being a “silver bullet” for every system design issue. The 
different goals, priorities, and tasks across op centers will likely add up to being 
nearly equal to the number of op centers itself. However, the common element 
across op centers is the role of human operators. Operators serve as the interface 
between the wide range of information sources and the higher command structure. 
This can involve a vast variety of tasks ranging from call intake and prioritization 
within an emergency response center to monitoring radar for airborne threats. 
Furthermore, the task variety is compounded by having a single operator be respon-
sible for multiple tasks. For example, an operator at a 911 dispatch center will often 
be simultaneously responsible for (a) providing emotional support and guidance to 
the caller, (b) recording crucial information about the situation, (c) alerting appro-
priate emergency responders, and (d) answering questions for emergency respond-
ers while en route.

The complexity and variety of tasks within an op center means that the system 
designers will need to know their users, their users’ tasks, and the technology and 
then combine these using their judgment within the design process. At all times, 
designers must be aware that interfaces that are hard to read, use, understand, or 
predict from are constant risks to project success; however these issues are not 
always easily solvable. Designers will have to use judgment when aspects of the 
users and their tasks are not fully known. They will also have to use judgment to 
prioritize tasks or user types and to balance different design requirements. Designers 
face many challenges when balancing human and system factors, and this book will 
help guide their decision-making when solutions are not immediately clear.

Simply providing a set of design guidelines will not suffice, because one size 
does not fit all. Due to the varied nature of tasks and systems across operation cen-
ters, we will need to provide a suitable foundation for designers to guide their 
decision-making when there is no direct solution. Thus, this book summarizes a 
useful process and design issues to keep in mind when designing operation centers. 
It goes further, however, by providing a worked example of design and design steps 
for an example system.

This book spends more time defining a useful interface design process than giv-
ing simple guidelines for design. This user-and-task-oriented process should lead to 
better interfaces that support operators and do this in a better way than simply pro-
viding a set of ten “rules” about font size, which might need to vary and which will 
conflict at times with rules about how many objects need to be visible on the inter-
face. And, yet, in providing background knowledge about operators and their tasks, 
there will inevitably be sensible conclusions that look like and work like guidelines. 
The design recommendations will often provide “safe” recommendations for 
designers. Design recommendations will be accompanied by brief supporting 
details meant to substantiate the information. This self-contained book will provide 
system designers with a framework for improving user experience and performance 

1.3  How to Improve Designs



6

by incorporating human-centered design principles into the design and implementa-
tion of critical systems.

System designers will benefit greatly from understanding the foundational con-
cepts and literature that support this guidance. This book provides a simple review 
of the literature to support this guidance. This review serves several purposes: (a) 
offering motivation for including the topics chosen, (b) describing the related 
research that has contributed to the high-level guidance, and (c) providing readers 
with a convenient method to learn more about a topic if needed. While not every 
system developer will choose to read this book, it provides interested readers with a 
more condensed treatment than available from reading several books on user-cen-
tered design and users. The final review and guidance should be detailed enough to 
provide further guidance in a standalone format.

1.4  �Risk-Driven Design

The design and performance of an operation center will depend on financial consid-
erations, task constraints, and the goals of the designers. However, clearly there are 
limitations on what is possible for any given design process (e.g., deadlines, access 
to user testing, ambiguous information). In an ideal world, every project would have 
ample time, personnel, and funding to be able to create the best product possible: 
clearly this is an unrealistic scenario. Thus, designers and other stakeholders must 
make decisions about how to ensure project success throughout the design process.

We propose that the Risk-Driven Incremental Commitment Model (RD-ICM) pro-
vides the best framework for creating effective systems, including assessing the risks 
associated with design choices (Pew and Mavor 2007). Figure 1.2 shows the RD-ICM 
in spiral form. Implementation of RD-ICM involves assessing the risk associated 
with a given decision. Boehm and Hansen (2001) define risks within the RD-ICM as 
“situations or possible events that can cause a project to fail.” RD-ICM uses an itera-
tive, flexible procedure to prompt the stakeholders to make candid assessments of 
what the risks are at each stage of the project. Implementing RD-ICM effectively 
leads to decisions contrary to the dogmatic idea that UX be prioritized at every stage, 
but this is because UX issues are only explored once their risks are relatively large.

The RD-ICM and risk-driven design require four key features:

	1.	 Systems should be developed through a process that considers and satisfices the 
needs of stakeholders, that is, provides a good and achievable, but not necessar-
ily the best solution.

	2.	 Development is incremental and performed iteratively. The five stages (explora-
tion, valuation, architecting, development, and operation) are performed for each 
project’s lifecycle.

	3.	 Development occurs concurrently across various project steps through simulta-
neous progress on individual aspects of the project; however, effort towards each 
aspect varies over time.

1  Introducing Interface Design for Remote Autonomous Systems
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	4.	 The process explicitly takes account of risks during system development and 
deployment to determine prioritization for resource deployment: minimal effort 
for minimal-risk decisions, high effort for high-risk decisions.

Within the spiral, each stage has phases of (a) stakeholder valuation and eval-
uation; (b) determination of objectives, alternatives, and constraints; (c) evalua-
tion of alternatives and identification and resolution of risks; and (d) development 
and verification of the next-level product. This approach allows work on risks  
to proceed in parallel and comes back to value the alternatives with the  
stakeholders.

Here is an example of how the RD-ICM could shape design choices. During the 
early design process of a complex system, the risks of not getting the system up and 
running (e.g., failure to meet expectations for funders or other high-level stakehold-
ers or technical connection issues) may outweigh the risks associated with having a 
nonideal interface design (e.g., frustrated users). The stakeholders have determined 
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Fig. 1.2  The Risk-Driven Incremental Commitment Model as a spiral of development.
(Reprinted from Pew and Mavor 2007, p. 48)
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that functionality (the task-related aspects of the design) should be prioritized over 
the user experience (UX, the users’ feelings, emotions, values, and responses to the 
system). Instead, the UX design choices could be pushed down the pipeline and 
then reassessed at a later stage. This would enable the engineering team to focus on 
creating something that “works.” However, once a functional system is formed, the 
team would reassess the risks associated with a frustrating user interface. If the 
interface fails to convey critical information in a consistent manner to most users, 
the risks of a user misinterpreting a signal may outweigh the benefits of adding 
further features to the system.

Each stage has its own iterative assessments of how to successfully complete the 
project. Further information on this approach is available from a National Research 
Council Report (Pew and Mavor 2007), a special issue of the Journal of Cognitive 
Engineering and Decision Making (Pew 2008), and an overview in the Foundations 
for Designing User-Centered Systems textbook (Ritter et al. 2014).

So, if you adopt a risk-driven process that includes human operator-related risks, 
you still must be able to recognize and reduce these risks. This book seeks to pro-
vide background knowledge to help developers judge and ameliorate the risks to 
system success that developers face during the design and implementation process 
of op centers. We hope to provide knowledge and guidance that can help designers 
understand how their design choices may affect task performance throughout the 
lifetime of the system.

Thus, we suggest following a risk-driven spiral model. This includes formal 
reviews with stakeholders at each cycle to assess risks and work focused to reduce 
risks, not just build a system. This approach uses a range of design documents as 
shared representations between the stakeholders and the designers and implement-
ers. We include an example set in Appendix 1.

1.5  �The Design Problem Space for Op Centers

This book reviews how the risks of failures due to human performance can be allevi-
ated throughout the design process of interfaces within operation centers. Because 
designing an interface for an op center is the design problem, we briefly review this 
design space and provide an overview of an example before addressing further com-
mon risks and issues that apply to operator interactions with the systems.

Op centers act as the nervous system within a larger body, directed to monitor or 
respond to a set of events. The op center aggregates information input and output to 
facilitate a rapid response to changing conditions. The specific procedures used are 
typically guided by senior staff, while operators themselves will be responsible for 
interpreting information, transmitting orders, and following preset procedures for 
specific situations.

There are three components to this design problem: the technology to support 
and implement the system, the users, and the users’ tasks. The first item is briefly 
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noted as an important component that will support and constrain designs. The final 
two are the focus of this book, so we address them together.

1.5.1  �Know Your Technology

Across the range of stakeholders involved with the design of a system, the most 
influential stakeholders will likely prioritize system functionality over concerns of 
operator-related risks like improving user-centered design. While this may irk the 
designers of human-facing subsystems, this basic fact should influence how the 
design process is conducted. Thus, system designers should have at least some 
understanding of how the technology within their system functions.

The underlying, unmanned technology within op centers processes and transmits 
the information that is presented to an operator. So, the first issue in design is to 
know what the technology can and cannot do. The technology in an op center is 
likely built from varied inputs and outputs, ranging from manually entered paper 
documentation to antenna arrays linked to distant sensors. On its own, a component 
like an oxygen sensor simply outputs an associated metric. However, once inte-
grated into an environmental monitoring station in an op center, additional design 
features to support human use (i.e., an interface, optional controls, and memory for 
time series) become apparent. Interface designers may not need to understand the 
intricacies of each component but should have some knowledge of the technology 
associated with their system.

The types of systems built for op centers are likely to differ greatly in their under-
lying technology and purpose. In some cases, designers can grasp the underlying 
technology well enough to create effective systems, but this may not always be the 
case. Building an electrical circuit monitoring system and building a hydrothermal 
monitoring system may require incorporating subject matter experts into the design 
process, especially for high-stakes systems like a nuclear power plant.

Finally, designers should understand the tools they need to build interfaces as 
well. The interface tools need to be able to support the designers in creating usable 
interfaces, which not all tools support well (Pew and Mavor 2007; Ritter et al. 2014). 
To our previous example, an electrical circuit monitoring system may require 
designers to reference an unfamiliar program used by electrical engineers like 
Pspice (Personal Simulation Program with Integrated Circuit Emphasis). 
Stakeholders should ensure that system designers can successfully understand and 
utilize the necessary information.

Understanding the technology within the system and used to build the system 
will help with the inevitable design choices. The typical issue is where designers 
should fit the person to the machine vs. fit the machine to the person. Sometimes, 
technological or personal constraints will prevent designers from optimizing the fit 
in one direction or another, but knowing the technology will help reduce problems 
of fit in both directions.

1.5  The Design Problem Space for op Centers
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1.5.2  �Know Your Users and Their Tasks

On the other hand, designs that do not support users to do their tasks can fail for this 
reason as well, so system designers need to study the user and how to design for 
users. The focus of this book is to explain how to know the users of the op centers, 
the operators, and their tasks. Human operators and their tasks, in many cases, will 
be as complex as the technology. The only difference is that many technology 
designers have been trained in technology design, but not in the science of how 
operators think, learn, and do their tasks. This book notes some of the literature, 
results, and methods for understanding operators to help in the design process. 
Similarly, it describes methods for improving the work process, like task analysis 
(TA), which is a useful tool for specifying, implementing, and checking op center 
designs.

The technology may be able to deliver, but will the operator be able to under-
stand and use the system at the expected speeds? Will the tasks, including their 
microstructure and dependencies, be supported? Or will the operator have to correct 
and store information (in a more fragile memory than computer memory)? These 
types of mismatches between operator and system are frequent causes of system 
failure.

The gold standard in design (Card et al. 1983; Pew and Mavor 2007; Ritter et al. 
2014) is to know the operators, know what tasks they are trying to perform, and then 
use the technology as best as it can be used, to support the tasks based on the opera-
tor’s capabilities. Designers who use their own understanding of a system as a refer-
ence (instead of that of the actual users) commit the fundamental attribution error 
and risk-creating systems that are unwieldy or outright unusable by the intended 
users (Baxter et  al. 2014). The fundamental attribution error of design refers to 
when designers assume all users are just like themselves. As we note in our example 
system in this book, this is often a mistake and leads to problems in usability because 
the designer and the operator have different knowledge, skills, and abilities. In addi-
tion, leaving out tasks or making them less easy to perform, or making state infor-
mation visible only upon query, are all mistakes that are easily avoided, but require 
knowing the operators and their tasks.

Knowing the frequency and importance of tasks is also important. Common and 
important tasks should be more easily and safely accomplished than less common 
and less important tasks. When the two factors of frequency and importance collide, 
then possible design choices become apparent. At this point designers can assess the 
situation through the RD-ICM and reduce risk by getting feedback from stakehold-
ers, researching similar design problems, or testing multiple designs depending on 
the risks associated with each choice.

There are numerous guidelines on how to create task analyses (e.g., Cox 2007; 
Ritter et al. 2014, Ch. 11). There are tools to support TA (i.e., Cogulator1), but often 
plain text documents provide the best value and are useful enough for most designs. 

1 http://cogulator.io/
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TA is a lot like pizza—while the balance of contents may vary in approaches, most 
versions are usable and enjoyable.

1.5.3  �Test Designs Broadly and with Cognitive Walkthroughs

During design and implementation, there may be unknown aspects of the users, 
their tasks, or the interactions between the two. A way to reduce the risk of system 
failure is to test the resulting system. The test can be quite simple, for example, 
simply to see if the tasks can be performed. Alternatively, there are more complex 
methods, like running a small A/B experiment with two possible designs or measur-
ing task performance with actual users under realistic conditions. Pew and Mavor 
(2007) review the range of these tests, and there are multiple textbooks describing 
them (e.g., Cairns and Cox 2008; Lewis and Rieman 1994). Testing interfaces will 
reduce the range of usability risks, but test methods vary by how much of a time and 
resource commitment is required to get useful results. Asking someone unfamiliar 
with the project to review the proposed interface mockup may be essentially free, 
whereas conducting an A/B test with expected users may take weeks (if not months) 
to fully set up, run, and analyze, but will be much more useful. 

The simplest test is to have naïve operators use the interface and observe them. 
This approach is explained in many textbooks, including Ritter et al. (2014). Such 
tests with naïve users could last as little as 10 min and cost next to nothing (i.e., ask 
a colleague to use the interface and provide comments) or could take multiple 
months and cost $100 k (i.e., conducting a formal study on task performance under 
realistic conditions). Stakeholders should consider system requirements and risks to 
determine how their system should be tested.

We also support using “cognitive walkthroughs” (Polson et al. 1992) to examine 
the usability of the system. A cognitive walkthrough is a method for evaluating the 
learnability and usability of an interface by simulating the cognitive activities of a 
typical user during normal tasks. The typical process for performing cognitive walk-
throughs begins with describing the goals and tasks that are required by the system. 
First, the goal structure of the model is generated from expert interviews, prior 
research, and other forms of information gathering. The goal structure, like a task 
analysis, is arranged into a hierarchy. The top-level goals represent the overall task. 
Each top-level goal is composed of intermediate-level goals (subtasks), each of 
which is composed of a set of individual actions.

Cognitive walkthroughs, when performed successfully, should determine 
whether the operator of a system is making the correct connections between each 
level of the goal. That is, the analyst compares the goals with the interface and 
attempts to map how a typical user would accomplish each goal, subtask, and action. 
If the analyst cannot make some mapping of a goal to the interface, this will suggest 
an area of the interface that requires improvement or further work. One potential 
pitfall here can occur if the analyst is too familiar with the interface (relative to a 
true “typical user”), as they will not see the same problems that users will see, at 
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least novice users. The data collected from cognitive walkthroughs can enable 
developers to provide supplementary “clues” or signals to the operator at specific 
locations to ensure that each goal, sub-goal, and individual action provide a coher-
ent information set capable of being understood and followed by the operator 
(Blackmon et al. 2002; Polson et al. 1992).

Cognitive walkthroughs require a task analysis and thus will take between an 
hour and a short working day to perform in most cases. The length of time is based 
on the number of tasks and how difficult they are to perform. Cognitive walk-
throughs may require domain knowledge and thus may be performed in teams com-
prised of an analyst working through the task analysis and a domain expert making 
the decisions.

Whenever detailed time predictions are useful, we recommend using the 
keystroke-level model (KLM) of Card et al. (1980, 1983). This approach provides 
time estimates based on the keystrokes, mouse moves, mental operators, system 
response time, and other possible cognitive operators. The times are engineering 
estimates (i.e., ± 20%), but basically support fair comparisons of different inter-
faces. The KLM time predictions suggest where and how time is spent on an inter-
face and can help identify ways to improve performance. The regularity of the 
interactions across subtasks also suggests how much needs to be learned by the 
users and where knowledge may be misapplied.

There are numerous ways to reduce system failure due to usability problems. 
This section noted a few and how to find more. Next, an example system is intro-
duced to ground this discussion and show examples of how potentially abstract 
principles can be put into practice.

1.6  �Example Task: The Mars Water Detection System

This book provides context for readers through a hypothetical use case for a 
semiautonomous system that searches for water. The scenario is based on design-
ing an op center for command and control of a remote Water Detection System 
(WDS) to accompany a manned mission to Mars. The WDS is a mostly autono-
mous mobile robot that searches Mars for signs of water, but the WDS sometimes 
requires human intervention to respond to novel or risky scenarios. The WDS 
will arrive alongside the mission team and begin operation following its assem-
bly by the team. Following its activation and an initial system check, the op 
center on Earth will take over sole command of the WDS for a 10-year mission. 
Scientists in the program office will make high-level decisions to support the 
mission of finding water, while the Earth-based operators implement action plans 
and monitor the various systems for any current or upcoming issues. The rest of 
this chapter provides a brief review of the WDS and its design requirements 
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before concluding with some design recommendations that arise from this chap-
ter. A detailed description is presented in Appendix 1.

1.6.1  �Operation Center Organization

The WDS is one part within the larger structure of an op center hosting dozens of 
systems that require constant oversight. While the WDS is important for the mis-
sion, it may not be the primary focus for the workers at any given time. The com-
mand structure of the op center involves bidirectional communication between 
scientists from the Program Office who funded the WDS and the operators respon-
sible for direct interaction with the systems. Figure 1.3 shows a few example inter-
face prototypes for the WDS. While the design will vary depending on the needs of 
the system, these systems present many different metrics of system performance. 
Operators will monitor the system, pass along alerts, and update the alerts depend-
ing on their risk assessment for a given situation. Scientists will take this informa-
tion and pass back commands for the operators to transmit. Certain tasks will be 

Fig. 1.3  Two example interface designs for the Water Detection System monitoring screen  
(second example on next page)
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able to be completed without direct contact with a supervisor, while others will need 
direct response from supervisors prior to action.

1.6.2  �Water Detection System Structure

The WDS is comprised of several subsystems. The core system in the WDS is the 
main control element (MCE). The MCE acts as the brain in the field by enacting 
orders from Earth, monitoring other subsystems, and linking the subsystems 
together. The other subsystems each perform specialized tasks (e.g., communicat-
ing with Earth, navigating the WDS, or collecting physical samples). However, all 
subsystems share a set of key features that the operators may interact with over the 
course of the mission. These features are shown in Table 1.2 and a diagram of the 
WDS–Earth link is shown in Fig. 1.4.

1.6.3  �Example Issues

System designers may be unable to anticipate every risk to system success; how-
ever, the Risk-Driven Incremental Commitment Model drives the designers to try to 
understand what risks are most likely to arise. Table 1.3 shows some example prob-
lems that could arise throughout the lifecycle of the WDS system, the risk of these 
problems occurring, the solution, and who handles them.

Fig. 1.3  (continued)
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The WDS is designed to autonomously handle most issues that arise, but human 
interaction is required on a regular basis. Many of these tasks are simple mainte-
nance and acknowledgement of warnings. For example, when batteries are low, the 
operator is required to acknowledge the low battery threshold. No action is required 

Table 1.2  Key features built into each subsystem of the WDS

Feature Description

Status The current state and functionality of the subsystem, subsystem-specific 
information, and environmental measures. The MCE checks and stores the status 
of other subsystems until information is passed to Earth

Event logs Each subsystem records detailed event logs from all executed commands. Event 
logs are periodically transferred to the MCE before being passed to Earth

Configuration Subsystems maintain a set of configuration fields that determine how the 
subsystem performs its tasks. For example, the MCE will have a modifiable field 
for checking a subsystem’s status that determines how long to wait for a 
response before initiating troubleshooting procedures

Commands Commands for subsystems will include a time reference and may include 
additional data if needed. Commands are first sent to the MCE before being 
passed to the appropriate subsystem

Redundancy Nearly every subsystem has an A and B side to provide a backup element in case 
of any issues; however only one side of each subsystem operates at any given 
time. These redundant systems are an identical copy of the original system

Fig. 1.4  Diagram of the Water Detection System (WDS) and its connection to the operation center
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other than clearing the notification. Occasionally, however, the WDS will face an 
urgent problem that requires human input. These scenarios are rare, so the operator 
has limited training in how to address the issues.

1.7  �Principles for Design

Based on the target system description, the example system, and the design process, 
we can provide an overview of the book as a set of design principles. These princi-
ples provide guidance on high-level concepts that the designers can use to improve 
the systems they create. We aggregate the most important design principles described 
in this book in Appendix 3. Though generally directed towards improving perfor-
mance across the human–machine interface, these principles will often apply to the 
entire process of designing complex systems.

Principle 1.1: Don’t Assume the User to Be How You Think You Are
One of the most important considerations for designers is to dispel the assumption 
that your users are just like you or how you think you are (we make the distinction 
because you might not think or work exactly like you think you do). Unless your 
user is a software developer, systems engineer, or astronaut, you will almost always 

Table 1.3  Example problems faced by the WDS that require operator intervention

Problem description Risk Solution Personnel

WDS is navigating in a crater and 
gets stuck. The operators need to 
escalate the issue quickly because the 
WDS witnessed unexpected terrain. 
The mappings of Mars must be 
updated appropriately

High Operator from Earth takes over 
navigation and assumes manual 
control. The typical operator is 
not trained in this task, so the 
supervising manager must take 
control

Operator, 
supervisor

Dust storm prevents batteries from 
charging. The main control element 
cannot complete all the scheduled 
commands for the day

Moderate Communications element sends 
an alert the NASA operators of 
the low battery status. Operator 
must re-task the day’s 
commands because the 
autonomous navigation element 
would use all the remaining 
power

Operator, 
supervisor

Within the op center, the wall of 
screens has many other systems 
represented at the same time. If the 
WDS has a problem, it might take a 
few days for the engineers to remote 
in to fix the issue. Therefore, the 
overview screen will remain in a 
degraded state. The problem arises 
when something else goes wrong on 
the system

Low Modify interface to facilitate 
proper information presentation. 
While issues may not be 
initially present, the possibility 
of other errors being missed due 
to clutter is increased

Operator
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need to adapt your design to meet the operator’s system-related needs, capabilities, 
and wants (in that order).

Designers often (perhaps due to the ready availability of themselves and the 
unavailability of example operators) make the risky assumption that the operator is 
just like them—this is almost never the case. It is therefore important to provide 
designers and engineers with the ability to consult users and other stakeholders 
throughout the design process. Methods for learning about users can include talking 
with them, watching them work, having them use your interfaces, reading their 
autobiographies, or watching movies about their work environments (whether docu-
mentaries or even fictional accounts). Each of these methods for understanding 
users will gather only a subset of the useful information; casting a wide net can 
reduce the risk of overgeneralization and improve the breadth of the knowledge 
gleaned from users.

Understanding the operator enables engineers to mold the system design around 
the capabilities and constraints of its operators. Countless studies have shown that 
engineers often fail to understand their users. This knowledge is the foundation of 
user-centered design and leads to increased performance, financial savings, and 
safer systems (e.g., Bias and Mayhew 2005; Lewis and Rieman 1994; Pew and 
Mavor 2007; Ritter et al. 2014).

Principle 1.2: All Design Choices Have Trade-offs—Don’t Go in Blind
Most design choices have trade-offs. This basic fact will provide engineers with 
difficult decisions throughout the design process. For example, increased font size 
may increase readability by sacrificing some valuable interface “real estate” and 
limiting the total amount of information displayed. Effectively resolving these dif-
ficult design choices requires designers to use knowledge of the tasks and users to 
make informed decisions. Use of the risk-driven spiral model helps engineers make 
the best decision given the constraints by consulting with stakeholders and using 
what others have already learned. Designers will be presented with problems like 
this, both big and small, throughout the design process, and not every individual 
design choice is worthy of a full user study.

For example, consider a system that requires operators to search for digital files 
while performing other tasks. An informed designer may realize that recognition 
memory (i.e., “Is ‘book_manuscriptV47_final.docx’ the file you are looking for?”) 
is more robust than recall memory (i.e., “What is the exact name of the file you are 
looking for?”). While searching for files on a system, it is usually easy and familiar 
to point and click around a series of folders to find some item, as in the standard 
desktop operating system. Using a keystroke-based system (like a command line) 
might be faster, but typically will require more experienced users or more training. 
Stakeholders should consider which design would be best suited for their system 
needs, users, and tasks.

As another example, consider a system that tasks operators with monitoring 
incoming pings and classifying them as friendly, hostile, or unknown. An informed 
designer will know that speed and accuracy are traded off when improving perfor-
mance. Emphasizing speed will require sacrificing accuracy (i.e., more errors), and 
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the inverse is true as well. Stakeholders can use this knowledge to analyze how to 
reach an acceptable balance between accuracy and speed. Although ideal solutions 
are not always possible, designers can meet expectations by understanding the 
expectations for task time and error rate.

Finally, almost any point-and-click system will use menu trees to support naviga-
tion. Many studies have explored how users’ decision-making, reaction time, and 
error rate change in response to changing the menu design. The Hick–Hyman Law 
(Hick 1952; Hyman 1953) predicts that choosing between more options (e.g., five 
menu choices vs. three menu choices) takes longer, but the menu is more likely to 
contain the correct choice. Signal detection theory shows a similar trade-off between 
hits, misses, false alarms, and correct rejections.

When possible, engineers should make informed decisions about the trade-offs 
between outcomes caused by different design choices.

Principle 1.3: Use and Test Multiple Designs
When designing a new display or component, create and consider multiple versions. 
Get feedback on the possible designs from a source (or sources) that is as objective 
as possible.

When you create a new display, particularly high stakes or main displays, you 
should consider multiple versions. Considering multiple versions of designs tends 
to lead to better designs at least in the tasks that have been studied (Dow 2011). The 
best objective source for feedback is often actual users’ behavior.

Research by Steven Dow examined the design process in the egg drop task. In 
this task, designers were given a set of standard materials and asked to design a 
protective cradle for an egg so it will survive a large vertical drop. Groups that 
designed more examples and that tested more often had reliably higher distances 
from which their eggs could be safely dropped. Dow argues that the beneficial 
outcomes seen from multiple designs will apply to other design tasks, and 
we agree.

1.8  �Conclusion

Throughout the design of an op center such as the WDS system and interface, the 
engineers’ top priority will be the creation of a working product. However, engi-
neers must account for the risks associated with all aspects of the project. Often, the 
risks associated with some module’s reliability or function may trump the human 
element: human error requires a task on which to err. However, as the iterative 
design process advances, and the technology itself becomes more reliable, the 
human operator becomes more likely to be the point of failure within a system. 
Systems engineers will be neglecting a crucial component of their system if they do 
not account for the system’s compatibility with the human operators. Although this 
process will have any number of constraints and variations in its implementation, 
the designers should be confident that their system can be effectively used by the 

1  Introducing Interface Design for Remote Autonomous Systems



19

target population. The user interface should facilitate high performance without 
undue stress on the operators.

Table 1.4 notes some questions that designers might have in mind when design-
ing and implementing control rooms, op centers, and other similar systems. The 
next two chapters will review the psychology and human factors concepts and theo-
ries that give rise to the principles described above and should be considered to help 
answer the questions in Table 1.4. In the conclusion to this book, we will note how 
these questions have been answered.
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Chapter 2
How User-Centered Design Supports 
Situation Awareness for Complex 
Interfaces

Abstract  This chapter moves the discussion of how to design an operation center 
down a level towards implementation. We present user-centered design (UCD) as a 
distinct design philosophy to replace user experience (UX) when designing systems 
like the Water Detection System (WDS). Just like any other component (e.g., elec-
trical system, communications networks), the operator has safe operating condi-
tions, expected error rates, and predictable performance, albeit with a more variable 
range for the associated metrics. However, analyzing the operator’s capabilities, like 
any other component in a large system, helps developers create reliable, effective 
systems that mitigate risks of system failure due to human error in integrated 
human–machine systems (e.g., air traffic control). With UCD as a design philoso-
phy, we argue that situation awareness (SA) is an effective framework for develop-
ing successful UCD systems. SA is an established framework that describes operator 
performance via their ability to create and maintain a mental model of the informa-
tion necessary to achieve their task. SA describes performance as a function of the 
operator’s ability to perceive useful information, comprehend its significance, and 
predict future system states. Alongside detailed explanations of UCD and SA, this 
chapter presents further guidance and examples demonstrating how to implement 
these concepts in real systems.

2.1  �Introduction

The whole gamut of factors that contribute to the success of an interface is difficult 
to describe within a single book, but the operator gives us a central focus. Just like 
any other component (e.g., electrical system, communications networks), the opera-
tor has safe operating conditions, expected error rates, and predictable performance, 
albeit with a more variable range for the associated metrics. However, analyzing the 
operator’s capabilities, like any other component in a large system, helps developers 
create reliable, effective systems that mitigate risks of system failure due to human 
error in integrated human–machine systems (e.g., air traffic control). We identify 
some of the most significant factors that can affect operator performance and show 
how they can be used by engineers during their design of an interface. For a more 
comprehensive review, we recommend (a) Foundations for Designing 
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User-Centered Systems: What System Designers Need to Know about People (Ritter 
et  al. 2014) and (b) Designing for Situation Awareness: An Approach to User-
Centered Design (Endsley et al. 2003b).

This book offers design guidelines for optimizing the performance of the human 
component of the operation centers for asynchronous, autonomous systems. Figure 
1.1 shows examples of the systems we are talking about like UAVS and satellites. 
User-centered design (UCD) provides the foundation for this task through basic 
tenets of its design philosophy. Designers can achieve UCD by designing for situa-
tion awareness (SA, explained below) in operators. Guidelines developed in these 
chapters will provide concise takeaways, while selected information on related cog-
nitive mechanisms will provide context.

Thus, this chapter will follow this logic. First, we describe the tenets of 
UCD. These provide high-level questions that engineers can apply to their system at 
any point in the design process. Next, the connection between operator performance 
and SA is explained. Performance levels of SA correspond with cognitive mecha-
nisms used to perform a task. The final section describes the cognitive mechanisms 
and their influences and offers design guidelines for ensuring compatibility between 
user capabilities and system interface.

2.2  �User-Centered Design

The operator is a component of the system just like the sensors or underlying code. 
High-performance systems will incorporate operator capabilities into their design. 
This requires creating a system that follows principles of user-centered design. 
Though UCD is often associated with user experience, Endsley et al. (2003b, p. 5) 
explain the difference between UCD and UX in underlying philosophy as follows:

User-centered design challenges designers to mold the interface around the capabilities and 
needs of the operators. Rather than displaying information that is centered around the sen-
sors and technologies that produce it, a user-centered design integrates this information in 
ways that fit the goals, tasks, and needs of the users. This philosophy is not borne primarily 
from a humanistic or altruistic desire, but rather from a desire to obtain optimal functioning 
of the overall human-machine system.

The three primary tenets of UCD, shown in Table 2.1, describe the high-level goals 
of UCD. Each tenet is expanded over the next few pages alongside some explana-
tion and examples.

Table 2.1  The central tenets of user-centered design as summarized by Endsley et al. (2003b, 
pp. 8–9)

1. Organize design around the user’s goals, tasks, and abilities.
2. Technology should be organized around the way users process information and make 

decisions.
3. Technology must keep the user in control and aware of the state of the system.
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To illustrate these tenets, consider driving as an example. Figure 2.1 shows a 
car’s dashboard. With respect to Tenet 1, what are the primary and secondary goals 
of the user when using this interface? The design should reflect the importance of 
each goal. While operating a vehicle, the primary goal is to arrive safely at the loca-
tion; however, minimizing travel time is a salient secondary goal. Consider how the 
dashboard shown in Fig.  2.1 matches the goals, tasks, and abilities of a typical 
operator (or driver). The speedometer is large, detailed, and centrally located, which 
supports the operator’s ability to quickly check vehicle speed, even during highway 
driving. This is the primary gauge that will be used while in motion, and thus is the 
most prominent feature in the display. The large tachometer provides instant feed-
back for operator input to the system, but with less detail than the speedometer. 
Broad markings and the red line provide simple indicators of system state. Engine 
temperature and fuel gauges are small and minimally detailed, with red lines indi-
cating when direct action needs to be taken. The simple design suits their relatively 
infrequent use and their information complexity needs.

What are the primary and secondary tasks that a user will perform on this inter-
face? The design should reflect the importance of each task. While driving, the pri-
mary task for this interface is checking the speed. The secondary task is monitoring 
the overall state of the vehicle. The speedometer has detailed markings to approxi-
mately match speed limits (10  km/h increments). The tachometer only provides 
broad details and a red line indicating an “unsafe state,” matching the detail that a 
user requires for monitoring the state.

With respect to the second tenet of UCD, the information in Fig. 2.1 makes the 
vehicle speed easy to perceive, interpret, and act upon. The other information for 
less important tasks is given less room. Where exact numbers are needed, such as 
miles traveled, this is provided as a number.

Would a typical user be able to understand this system? Users and designers 
often have different skill levels and familiarity with the system. In the case of a car, 
the average driver is not a mechanic, so they often do not need detailed information 

Fig. 2.1  Image of a basic automobile dashboard. The full dashboard shows four gauges from left 
to right: tachometer, speedometer, fuel level, and temperature. From www.freeimages.com
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on most subsystems. An indicator light to check your engine may provide sufficient 
detail for a layperson who gets minimal value from additional details. Thus, Fig. 2.1 
shows Tenet 2  in practice for the dashboard of a car. For the average driver, the 
check engine light provides only the necessary information to solve further prob-
lems and nothing more.

With respect to Tenet 3, relevant information is provided to control the system. 
In this case, a user working through sequential information on a display expects the 
next area of focus to be on a path from left to right, top to bottom (as when reading). 
For the state of a car, the water temperature and gas tank level are suitably ordered. 
More complex interfaces may require a different order, and power plant control 
rooms often order the displays based on their location in the plant.

In Fig. 2.1, if other information unrelated to driving the car was presented, such 
as distance from home, type of fuel in the tank, or brand of tire, the driver’s ability 
to drive would be less well supported. If the prominence and organization did not 
match the driver’s visual ability, for example, a less clear (or smaller) font, or dials 
presented in a different order, then the driver’s performance could suffer. Finally, if 
the state of the car were less visible, or less appropriately matched to the frequency 
and importance of goals, performance would suffer.

These tenets are not perfect, however, and do not always give clear guidance. 
Consider the display in Fig. 2.2. Here, the tenets do not provide direct guidance. The 

Fig. 2.2  Two ways to present display of an automated target identifier. Each design has trade-offs 
in operator performance that must be weighed based on the goals and priorities of the system. 
Image redrawn and modified by authors. Based on a figure from Banbury et al. (1998, p. 37)
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choice between these two designs must be based on the details of the goals and task 
priorities. If these are not known, they must be obtained from stakeholders (in the 
best case) or guessed or inferred (in the worst case).

Together, the three tenets of UCD provide a foundation for how to frame the 
system design process around the goals, tasks, and abilities of the operators. The 
various other elements within a complex system have their own design philosophies 
or guidelines (e.g., modular design, minimal complexity, easy replacement of com-
ponents). The human–system interface is no different. The tenets of UCD provide 
an underlying set of principles that should shape the design process for creating 
complex systems.

Implementing UCD within complex systems requires a method for understand-
ing and assessing operator performance during complex work. Endsley’s (1995) 
theory of situation awareness fills this need by providing a framework for under-
standing performance and decision making. Describing the SA of an operator means 
describing the product of relevant cognitive mechanisms that are necessary to per-
form complex work like decision making and troubleshooting within an opera-
tion center.

2.3  �Situation Awareness: The Key to UCD

Human operators using complex systems must be able to correctly perceive useful 
information while ignoring or disregarding other stimuli. Situation awareness (SA) 
provides a framework for describing human performance on tasks ranging from 
driving an automobile to monitoring incoming cyberattacks. At a basic level, an 
operator demonstrating perfect SA knows which information around them is task-
relevant, what this information means for the present, and what this information will 
mean for the future. With these types of knowledge, the operator understands the 
current state and can effectively project their understanding into possible future 
states of the system.

Describing an operator’s SA performance uses three iterative stages. Though 
specific performance benchmarks denoting each stage are derived from the tasks, 
the three stages of SA are typically known as (a) perception, (b) comprehension, 
and (c) projection. These are illustrated in Fig. 2.3. First, an operator must perceive 
the useful information from the task environment. Second, they integrate individual 
cues into a useful mental model of the current situation. Third, they use their model 
of the situation to predict likely outcomes based on their comprehension of the sce-
nario. Figure 2.3 uses operation of an automobile to explain the types of information 
associated with each stage.

Thus, operator performance can be improved through incorporating the tenets of 
UCD in system design. Improving the UCD of a system requires improving the SA 
of operators using the human–system interface. The system design will impact how 
well operators can develop and maintain SA during work. Interface design will 
affect how quickly and easily operators can advance to each subsequent stage of SA 
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performance and how accurate and complete the operator’s understanding is at each 
stage. Similar to shifting gears in a manual car to increase speed, the stages of SA 
progress on a continuous scale where competency with lower levels of SA is 
required to advance to the next stage.

The stages of SA provide a framework for assessing performance and identifying 
task and interface factors that can moderate SA performance. Progression through 
stages of SA will be impacted by operator characteristics (e.g., fatigue, personal 
capabilities), environmental effects (e.g., distractions), and task-related factors (e.g., 
cognitive resources required, task types, complexity; Boff and Lincoln 1988). Each 
stage requires significantly more resources (e.g., knowledge, information, time) 
than the previous. Stage 3 SA should not be expected as the norm for every operator 
or every task; however, it is the most useful.

Next, we describe the stages of SA in more detail and provide principles for 
design based on using SA as a metaphor for work in op centers. These principles are 
derived from Endsley et al. (2003b) and are applied by us to apply SA to the design 
of op centers. We include motivating examples for each stage. Tasks surrounding 
aviation were the original focus of SA research before it expanded to include a vari-
ety of complex tasks. During this discussion, we will describe the frequency of avia-
tion disasters caused by critical errors in each stage of SA. These error rates refer to 
errors in common aviation tasks for pilots, air traffic controllers, and other aviation-
related jobs, but it would be reasonable to assume that similar results would be 
found across a variety of op centers.

2.3.1  �Stage 1: Perception

Perception is the most fundamental aspect of SA. During the common tasks within 
an op center, operators are likely bombarded with information. In most cases, space 
and cost in op centers will be at a premium, leading to operators with varied tasks 

Fig. 2.3  The three stages of SA applied to task of operating a car. Figure redrawn and modified by 
authors. Based on a figure from Bolstad et al. (2010, p. 4)
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across multiple displays. Each of these displays could be presenting tens or hun-
dreds of data points, graphs, or other useful features, meaning that a major compo-
nent in skilled performance could be simply knowing where to look and when.

The situation and signal content can determine the best course of action regard-
ing how and when to respond to a signal (if at all). Operators with Stage 1 SA will 
demonstrate the ability to detect important signals while discarding irrelevant ones. 
Given perception’s fundamental role in an operator’s work, it is unsurprising that 
perceptual issues account for about 75% of errors in common SA work (Jones and 
Endsley 1996). Causes of Stage 1 errors may be attributed primarily to human fail-
ures (e.g., attentional failure, misinterpretation of a signal), system failures (unclear 
or missing information), or some combination of the human and system failure.

Some design principles related to Stage 1 SA are shown in Table 2.2. The prin-
ciples can be summed up as follows: task-relevant information should be readily 
available, easily interpretable, appropriately prominent, and simple enough for the 
typical user.

For example, in the WDS (introduced in Chap. 1 and explained in detail in 
Appendix 1), a display can indicate that the battery will be unable to charge at the 
rover’s current position and the rover will need to relocate. The interface must 
clearly convey this information for the operator so they can instigate a “move” com-
mand before the battery is too low. The interface should provide clear signals of the 
system state like a commonly used alarm icon (available) with a text description 
(interpretable) that flashes (appropriate salience) until the operator schedules the 
appropriate command (simple). While it is somewhat common practice to rely on 
unlabeled “self-explanatory” icons (i.e.,  for alarms), designers concerned about 
reducing risks of confusion, and errors will support the visual design with liberal 
use of textual labels. Words in interfaces are often underused but are more easily 
interpreted than symbols when used alone (Chilton 1996).

The principles in Table 2.2 provide a framework for ensuring the interface can 
effectively convey useful information in a manner that is useful to the operator. This 
means ensuring that the value and salience of each piece of information is appropri-
ate, actively drawing attention to important signals, and minimizing the quantity 
and salience of extraneous stimuli. The second principle in this area is to make the 
information interpretable by using intuitive, sensible designs. The third principle 
extends the first two by promoting a hierarchy of signal importance to ensure that 
the signals perceived by the operator are the most useful at any given time (or at 
least that non-useful signals are relatively muted). The fourth principle deals with 

Table 2.2  Design principles related to Stage 1 SA

Principle 2.1 Make the information available

Principle 2.2 Make the information interpretable

Principle 2.3 Ensure the value and salience of each piece of information; eliminate or suppress 
unnecessary signals

Principle 2.4 Work around the limitations of human perception and cognition by reducing 
complexity and workload of the task
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the inherent limits to human cognition. While these limits tend to be loosely calcu-
lated, designers can follow this guideline by working broadly to reduce complexity 
across the system whenever possible.

As an example, reconsider the car dashboard shown in Fig. 2.1. Several design 
features facilitate Stage 1 SA during typical operation of the vehicle. Compare the 
prominence of the speedometer and tachometer to the temperature and gas gauges 
(Principles 2.1, 2.2). Operators likely update their mental model of speed and engine 
performance every few seconds, but only check the temperature and fuel levels if 
something is going wrong (Principle 2.3). Taken together, this design takes steps to 
limit or reduce the availability of unnecessary or distracting information (Principle 
2.4). While the design of the dashboard could likely be improved, this example 
shows how simple design changes like changing size proportions can support 
Stage 1 SA.

The dashboard design also supports monitoring for infrequent, but critical, alerts 
like low fuel levels. The fuel level indicator provides two different signals when fuel 
reaches dangerously low levels. First, the fuel level gauge displays the current fuel 
level compared to a warning level. This allows the operator to quickly assess the 
current fuel level and determine whether action is needed (i.e., adding fuel). Even 
outside of warning situations, the operator can maintain suitable awareness of the 
fuel level and plan accordingly. If the operator fails to add fuel before reaching the 
warning level, the second alarm signal will trigger: the fuel level icon of a gas pump 
will glow yellow. This provides a second chance for the operator to respond to the 
situation if the first chance (fuel level indicator) fails, and only appears when fuel is 
dangerously low. Newer cars will even sound an alarm or, better yet, vocalize the 
alarm information. Altogether, the fuel level gauge supports Stage 1 SA by making 
the information available, salient, and appropriately designed to mitigate risks to 
system failure (i.e., running out of gas in the middle of nowhere).

For another example, consider the WDS introduced in Chap. 1. When below a 
certain power threshold, the dashboard interface displaying the battery information 
will continually flash a red symbol, indicating the risk of total power failure for the 
system. If this alert continues until the battery is charged, the signal will waste the 
operator’s attention and cause unnecessary distraction. Why does the signal remain 
prominent, even after the solution has been implemented? Once the solution process 
begins, there is no need to draw attention to the signal until additional information 
is received. The signal’s visual appearance should be able to be muted until another 
update is needed.

This principle has further implications for the details of displays. It suggests 
eliminating or suppressing unnecessary signals and merging compatible signals. 
Simplify complex signals. For example, an interface showing the overall WDS sta-
tus may include orientation, geographic information, battery level, and other infor-
mation. These parameters are monitored by operators for unexpected changes; 
however, excessive details increase workload by increasing the amount of visual 
clutter. Designers should strive to optimize the complexity and detail when possible, 
which in many cases means reducing those factors. If you know operators only 
check the approximate orientation (i.e., NW, S), then that’s how orientation should 
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primarily be displayed. And if the detailed heading information is still required to 
be shown for occasional use, then the salience of that information could be reduced 
(e.g., reduce text size, use muted colors for font).

The fourth principle in this area is to work with the limits of human cognition 
and perception. Human cognition has natural limits in how much it can process at 
once. Work around the limitations by reducing complexity and workload of the task.

For example, a status update for the WDS may include hundreds or thousands of 
events in a data log that accompanies the basic system status report. Reserving a 
space on the interface to indicate critical or alarming events (e.g., imminent power 
failure) while hiding data related to non-important (or typically non-important) 
updates will reduce the amount of information necessary for the operator to perform 
the most useful tasks.

As another example, consider a system that is rarely interacted with during nor-
mal operations. The interface simply provides a status that is checked hourly by an 
operator. This interface was initially expected to be part of a multiple-monitor dis-
play for a seated operator, but now it is checked while standing several feet back. 
Now the operator must lean in or squint to read and understand the information.

Consider physical aspects of how the operator uses the system. An operator sit-
ting at a desk in front of the screen can effectively monitor more dense signals than 
someone 5 feet away. Ideally, the perceived details of an interface will smoothly 
transition as an operator views it from different distances.

While the people building these types of systems should typically avoid overly 
bold designs, there are still useful lessons to be learned regarding how aesthetics can 
affect operator performance. Books on visual design of interfaces can provide more 
information in this area (e.g., Kosslyn 2007; Tufte 2001, 2006).

2.3.2  �Stage 2: Comprehension

The second stage of SA involves synthesizing Stage 1 cues into a useful mental 
model of the situation. A practiced operator will purposefully seek out patterns from 
various stimuli and form a holistic view of the situation based on their experience 
with the task and the information presented. Errors arising from comprehension 
failure account for about 20% of errors (Jones and Endsley 1996). Stage 2 errors are 
often attributed to misinterpretation of an information set, failure to maintain all the 
necessary information in working memory, misuse of a mental model, or overreli-
ance on default settings (e.g., failing to check a status hidden behind a submenu). 
Some design principles related to Stage 2 SA are shown in Table 2.3.

As an example of the first principle, the interface that provides the WDS status 
information may have a variety of information presented on it using textual and 
visual signals. Icons can help reduce text or provide a more grid-like design, but 
should only be used when the operator understands the meaning (so make sure that 
the operator understands the meaning through culture, training, pop-up names, or 
other means).

2.3  Situation Awareness: The Key to UCD
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Similarly, familiar symbols should have familiar meanings. Using an “X”—par-
ticularly a red “X”—should typically indicate that something will “close,” “exit,” or 
“cancel.” Red and green follow cultural norms of stop/exit/bad and go/continue/
good, respectively. The Apple Design Guidelines1 give an example set of such 
guidelines.

The second principle is to consider how the actual tasks will be done by the 
operators. Interruptions and task-switching are major sources of error. If task inter-
ruptions are common, designers should account for their effects in their task analy-
ses for the system and seek to mitigate their negative effects on task performance. 
These design features can include the ability to postpone the next task so that the 
current task can be completed, or to remember the state of the suspended task until 
it can be returned to. Sometimes even non-digital solutions can work; in a control 
room, one solution could be to simply include a pad of paper for note-taking (Trafton 
et al. 2003).

As an example, operators may have to multitask while monitoring the WDS. The 
WDS status interface provides many different pieces of information, but the opera-
tor will typically not have any issues responding to routine events. However, once 
they need to respond to some new situation, they must split their attention between 
the normal monitoring and the new task. This could lead to the operator missing an 
important warning.

The system could support this task requirement and reduce risk by providing a 
simplistic view of critical information during times when the operator may be split-
ting attention across multiple tasks. When an operator pulls up a subsystem view 
alongside an overall status view, the overall status could become less detailed while 
increasing the salience of signals indicating new changes. Or alternatively, opera-
tors could be prompted to use simpler methods for tracking system state, such as a 
pad of paper or a sticky note on the screen, which could allow the operator to “save” 
the partial state information prior to dealing with an interruption.

Further information on how cognition is used to comprehend a situation is avail-
able in Endsley’s work (Endsley et al. 2003a, b) and other books on human–com-
puter interaction (Krug 2005; Ritter et al. 2014).

1 https://developer.apple.com/design/human-interface-guidelines/

Table 2.3  Design principles related to Stage 2 SA (Principles 2.5–2.6)

Principle 2.5 Actively design the system to prevent misinterpretation of signals. Signals should 
be unambiguous, consistent, and instantly recognizable

Principle 2.6 Consider how the actual tasks will be done by the operators. If operators will be 
expected to multitask, then build in features to accommodate this fact
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2.3.3  �Stage 3: Projection

The third stage of SA is achieved through projecting the model of the situation into 
possible future outcomes. For example, an air traffic controller could anticipate a 
dangerous situation based on how two aircraft are likely to maneuver while chang-
ing course and act to avert the future incidents. Though difficult, this type of exper-
tise is essential for high performance in some complex tasks (Endsley 2000).

Stage 3 failures account for about 3% of errors in aviation, but the complexity of 
Stage 3 SA makes generalizable causes of error difficult to isolate. General causes 
may include overtaxation of mental resources, insufficient knowledge of the domain, 
or overprojecting current trends (Jones and Endsley 1996). This type of expertise is 
difficult to plan around for the engineers during the early design stages, and thus 
will be given less focus in this book. Obviously, systems that help predict the future 
of object or systems would help operators. For example, supporting Stage 3 SA 
could be as simple as including trend lines showing system state over time, or as 
complex as automated calibration of signal strength to predict upcoming alert states 
(Tufte 2006).

One of the most effective ways to design for Stage 3 SA is by eliminating barri-
ers preventing Stage 1 and 2 SA from being effectively supported. Thus, designers 
are advised to focus on solving issues with perception and comprehension before 
specifically addressing methods for improving an operator’s ability to project into 
future states. However, further information about supporting projection can be 
found in Endsley’s work (Endsley et  al. 2003a, b) and work on mental models 
(Besnard et al. 2004; Kieras and Bovair 1984; Moray 1996; Ritter et al. 2014).

2.4  �Summary: Cognitive Mechanisms 
for Situation Awareness

The three stages of SA provide a broad classification for the performance of opera-
tors during complex tasks. This chapter only briefly describes SA. This overview 
gives engineers the tools needed to consider how SA applies to the systems they 
design. In the next chapter, the cognitive mechanisms that drive operator perfor-
mance are described and connected to SA.

This chapter briefly covers significant cognitive mechanisms used in SA as a way 
to describe and summarize them. These mechanisms and their role in SA get more 
comprehensive coverage in Chap. 3. We explain them here because these cognitive 
mechanisms can be simulated in a computer (Anderson 2007), but can also be simu-
lated in the designer’s head to make predictions about how operators use the system. 
Figure 2.4 shows these mechanisms as they are implemented in the ACT-R cogni-
tive architecture (Ritter et  al. 2014, Chap. 1). These components can be seen as 
distinct subsystems with semi-independent operations. To learn more about ACT-R, 
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Ritter et  al. (2018) review the state of research using ACT-R and other cogni-
tive models.

As shown in Fig. 2.3, the process of achieving situation awareness often starts 
with perception, the intake and processing of competing sensory cues (or signals) 
into usable information. In this approach, perception does not necessarily lead to 
detection of a signal or to understanding because the perceptual process requires 
attention from cognition. Attention, in this case, means that select information is 
targeted by the system. Cognition, the central process, directs focus on the task-
relevant information while ignoring or not processing the rest. Attention is a limited 
resource that must be distributed across appropriate features. Attention is probably 
best seen as an active process of directing cognitive resources rather than a single 
buffer responsible for passing information.

Top-down attention is goal-directed towards some feature(s) based on the goal 
while avoiding focus on distracters (e.g., monitoring speed and position but ignor-
ing billboards while driving). Bottom-up attention is driven by the common features 
that indicate activity (bright colors/lights, motion, and others).

Memory is used to perform the task, recruited from the declarative memory buf-
fer or activated from long-term memory (in ACT-R, in the declarative buffer and the 
goal buffer), which might be called working memory (WM), which operates as the 
“RAM” for cognition by storing and manipulating information chunks for short 

Fig. 2.4  A schematic of the components of a computational model (ACT-R) of the human opera-
tor. (Figure used with permission from Ritter et al. 2018; Fig. 3)

2  How User-Centered Design Supports Situation Awareness for Complex Interfaces
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periods. This stored information has to be maintained through use, manipulated, and 
stored in long-term memory, or it decays and is lost. Human memory is more simi-
lar to old drum or plated wire memory, which needed to be continually refreshed, 
than it is to current solid-state RAM, which can sit without use and without decay.

WM is more than just a singular “catchall” for temporary information storage. 
The current theory of working memory has established at least two major subsys-
tems, the visuospatial sketch pad and the phonological loop, which exclusively hold 
visual and verbal information, respectively (Baddeley 2012). Each subsystem oper-
ates semi-independently to store and maintain information for near-term use. One 
benefit of these distinct storage types is an improved ability to multitask when we 
distribute the cognitive operation across multiple WM stores. Dual-task activities 
can be performed well if each task uses only, or mostly only, a singular WM store. 
For example, it will be easier to remember a set of numbers while observing a scene 
in a play than while solving math problems.

The operator’s mental model is the operator’s internal representation of an exter-
nal situation. Their mental model provides the framework that they use to process 
information related to the task. This model is stored in memory, which means it can 
be learned, or partially forgotten, and might not match the designer’s representation 
used to understand the system and to create the interface.

The operator’s mental model of a situation provides the tools needed to handle 
large amounts of information. They use their experience from long-term memory to 
scaffold the intake of new information, noting what to pay attention to, what to dis-
card, and what to remember for a given situation. Mental models also include what 
to do in a situation.

Thus, situation awareness, the awareness of the state of the world, what is hap-
pening, and what will happen, is based on an operator’s mental model and its used 
by a set of mechanisms similar to what is in Fig. 2.4. This approach, when applied 
to op center design, suggests that each stage of the operator’s processing and 
response is important for a successful system operation. The operator needs to be 
able to see and process the stimuli. They need to be able to have attention and time 
to understand them, and the ability to acknowledge that the stimuli are important. 
They need to have an appropriate mental model in which to relate new information 
to previous information and current goals. They need to know what to do, and how 
to respond. And they need the world’s state and a good mental model to predict what 
will happen in the world.

Situation awareness thus provides a way to organize a designer’s model of the 
operator. It makes strong suggestions about design when combined with knowing 
the operator’s capabilities, their tasks and task priorities, and their mental model of 
the world. This model accounts for both the long-term learning and mastery of the 
system and the ongoing and evolving model of what is happening at any point 
in time.

The next chapter explains these components in more detail to help a designer 
understand how an operator might run and apply their mental model.

2.4  Summary: Cognitive Mechanisms for Situation Awareness
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Chapter 3
Cognition and Operator Performance

Abstract  Developing systems that foster situation awareness in operators requires 
that stakeholders can make informed decisions about the design. These decisions 
must account for the operator’s underlying cognitive processes based on perception, 
comprehension, and projection of the system state. This chapter reviews the core 
cognitive processes responsible for monitoring and responding to changes in system 
state. Operators must perceive information before they can act in response, and the 
interface design affects operator accuracy and speed via known mechanisms (i.e., 
effects of color on visual search time). Perception of key information also relies on 
how the operator thinks during tasks, and certain design choices can support better 
attention control and detection of signals. After perceiving the information, opera-
tors also must comprehend and interpret the information. Design guidance and fac-
tors related to supporting comprehension are presented alongside explanations of 
how cognitive load and working memory affect the operator’s ability to develop and 
maintain a useful mental model of the system. This review of cognitive mechanisms 
gives designers a strong foundation to make informed decisions ranging from 
choosing an alarm color to assessing how much information should be on screen 
at once.

3.1  �Introduction

This chapter explains in more detail the primary cognitive mechanisms used by 
operators to perform their tasks. This chapter should help designers have a better 
mental model of operators. These details should help a designer understand how an 
operator does their tasks and thus support the operator better.

In this approach, based on the cognitive architecture shown in Fig. 2.4, cognition 
can be described as an emergent phenomenon arising from a collection of mecha-
nisms. The mechanisms are components of an information processing system in the 
same way that a computer has components. The component mechanisms can be 
described in isolation (e.g., visual processing of an object) with a great degree of 
useful truth. However, it is important to understand that this is a practical consider-
ation. In truth, cognition relies on an extremely complex, highly interconnected 
neural system.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47775-2_3&domain=pdf
https://doi.org/10.1007/978-3-030-47775-2_3#DOI
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This chapter explains these mechanisms in detail to help a designer. The mecha-
nisms discussed here include visual perception, attention (which is perhaps emer-
gent from other system interactions), memory, and learning. In each section, we 
note design principles to summarize the results and aid design.

3.2  �Visual Perception

The most basic level of cognition for operators is the perception of stimuli. Whereas 
we may be able to receive signals from a variety of sources, visual stimuli provide 
the proportional supermajority of signals. Auditory comes in second, followed in a 
distant third by tactile (which does not appear to be used nor needed currently in 
most control rooms). We will follow this natural system order in our analysis. Thus, 
we will primarily focus our discussion on visual perception.

3.2.1  �Visual Processing

Understanding the nuances of visual processing enables system designers to build 
their interface around the natural capabilities and limitations of the operators. At a 
basic level, visual processing is the process of capturing light on some visual sensor 
and transmitting this information to the processing system. For many robotic sys-
tems, this is a relatively straightforward process where information only flows in 
one direction. In contrast, human processing is a bidirectional process including 
feature detection, goal-directed attention, pre-attentive assessment of stimuli, and 
active interpretation of the signals. This complex system allows us to make a sen-
sible, coherent world out of small snapshots of information without the need for 
detailed processing. While humans may excel at particular tasks like pattern detec-
tion, we also can be easily tricked by unconscious misapplication of visual process-
ing heuristics (e.g., visual illusions, misrecognition, not seeing target objects). 
While some sources of errorful behavior can be inhibited or corrected through con-
scious effort, others are essentially reflexive actions without any reasonable method 
for self-regulation.

A classic example of our failure to inhibit automatic processing is the Stroop task 
(Stroop 1935). The task is simple. A subject is presented with a color word (e.g., 
red, blue, yellow) written in one of those same colors. The task is to name the color 
of the ink. The experiment has two conditions, congruous and incongruous. When 
congruous, the ink color and word will match (e.g., “red” written in red ink). When 
incongruous, the ink color and word will not match (e.g., “red” written in yellow 
ink). This task seems simple in the congruous condition, but when the incongruous 
condition is tested, and the word and its color differ, the subject will typically stum-
ble through responses, be significantly slower, and make many more mistakes. Once 
we learn how to read, we simply cannot inhibit the natural response to read text. The 
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mechanistic explanation is that the reading skill is practiced so much more than the 
naming skill; thus, the reading skill must be suppressed to name the color. Unless 
some cognitive effort is used to direct attention, the “over-practiced” reading skill 
will force out the less-practiced skill when both use the same mechanisms.

A more comprehensive overview of low-level visual processing as well as addi-
tional resources can be found in the chapter “Behavior: Basic Psychology of the 
User” (Ritter et al. 2014, Chapter 4).

3.2.2  �Color Blindness

Color blindness is a particularly salient concern for designers due to its prevalence 
among the population. For the Western population, about 8% of men and 0.5% of 
women have some form of red–green color blindness. This causes affected indi-
viduals to have difficulty differentiating red from green. Individuals may also have 
blue–yellow color blindness, or even total color blindness, but these are signifi-
cantly more rare than red–green color blindness (Ritter et al. 2014).

There are many several forms of color blindness, based on the specific deficiency 
in the visual system, but the general design recommendations that alleviate their 
effects are the same. Good design will avoid using only color as a signal for an 
operator. Instead, the design should incorporate multiple signals into a cohesive 
message for the operator. For example, an important alarm could flash bolded text 
information, have red coloring, and use textual indicators like exclamation marks to 
ensure that the message is clear.

Thus, better designs will dual-code results. That is, meaning will not just be 
encoded by color but color and font, or line thickness and name, or line type and 
texture. Dual-coding stimuli makes them faster to be recognized and discriminated 
(Garner 1974). It may be useful to check designs for adherence to color blindness 
design standards. There are tools online to show how color-blind individuals per-
ceive images and interfaces.1 They typically take a URL or image file and show how 
color-blind individuals would see it. Given the prominence of color blindness 
among the general population, dual-coding signals and ensuring color-blind com-
pliance would be well-advised for any system that requires human operators.

3.2.3  �Visual Search

The visual system can be broadly broken up into two subsystems based on their 
role. The eye handles stimulus detection, and the brain (in specialized regions) han-
dles stimulus interpretation. Stimulus detection occurs within the eye, but the 

1 (e.g., https://www.toptal.com/designers/colorfilter/)
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process itself is driven by a combination of goal-directed attention from the mind 
(top-down) and automatic processing of salient features (bottom-up). Top-down and 
bottom-up directives guide the visual processing and integration of the environment 
that occur during visual search. This conflict between top-down and bottom-up 
visual processing means that designers should consider how their design interacts 
our natural visual mechanisms.

Visual search of the information displayed on an interface is a core activity for 
operators, regardless of the task. As their attention is oriented to the task at hand, the 
operator will need to comprehend the information presented on any given interface. 
Visual processing is an intermittent process in which our eyes are constantly alter-
nating between saccades (rapid eye movements to some feature) and fixations (rest-
ing moments of information intake). What we perceive as a continuous visual 
experience is actually an intermittent series of fixations that are unconsciously 
aggregated into a coherent, though not necessarily accurate, mental model of our 
surroundings (Irwin et al. 1988). During fixations, feature detection relies on distin-
guishing target features from distracter features through pre-attentive visual pro-
cessing (Healey and Enns 2012). This summary of vision as being active can be 
contrasted with folk psychology and early understanding of vision where humans 
were understood to see and understand the whole display at once. We now know 
that the eye must search for information actively on the display and often refresh 
what it sees (Findlay and Gilchrist 2003).

During complex tasks that require visual search, both bottom-up feature recogni-
tion and top-down goal-oriented activity influence the performance of the operator 
at finding that information. While top-down directives lead visual search towards a 
certain set of features, our eyes are unable to fully inhibit the bottom-up feature 
detection. Given the effects that distracting features can present for operators, 
designers should understand what types of visual features draw people’s attention 
and the role of higher-level graphical organization. The best systems engineers and 
designers will have a theory of how users will scan displays, find the salient infor-
mation, and understand it.

3.2.4  �Pre-attentive Visual Processing

Once an operator perceives the signals presented by an interface, the visual process-
ing system immediately begins working to form a coherent mental model of the 
scene. Cognitive limitations on information processing prevent humans from scan-
ning, processing, and understanding every individual signal within the visual field. 
Instead, we have developed a complex pattern-matching system that reduces work-
load without (usually) negatively impacting comprehension.

There are two main processes that occur during the early stages of visual search. 
The first is pre-attentive visual processing based on relatively simple features of the 
objects. Figure  3.1 shows examples of the types of features that are easily and 
immediately detected during visual search. The common element across these 

3  Cognition and Operator Performance



41

examples is the contrast between features. When objects vary in orientation, length, 
or size (compared to other objects in their environment), they are identified and 
distinguished much more quickly than other objects. Easily distinguished visual 
features are more salient to the operator, particularly when the operator is distracted 
or overworked.

The contrasting features shown in Fig. 3.1 vary in their salience. Just by glancing 
across the examples, we can notice a difference in how rapidly we acquire the target 
stimulus among the distracters. The target feature for orientation is easily discerned, 
while the target features for lighting direction and length take slightly longer to be 
recognized. Designers must consider the salience of the signals they will present to 
the operator and allocate the most salient cues to the most important differences.

The second major process of early visual processing is the grouping of individual 
features into shared, higher-order visual structures. This is known as Gestalt group-
ing or Gestalt theory (Chang et al. 2002; Moore and Egeth 1997). Just as particular 

Fig. 3.1  Examples of pre-attentive visual features. (Adapted from Healey and Enns 2012, p. 1172)
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features are distinguished individually, sets of features are organized into visual 
structures to be further processed by the viewer. This organization in the scene 
enables the viewer to maintain a mental representation of a coherent set of distinct 
objects drawn from the information-dense world. Just like the processing of pre-
attentive visual features, Gestalt grouping is an involuntary processing step that 
shapes how a person perceives the world around them (Moore and Egeth 1997).

Gestalt theory encompasses a family of related psychological principles of per-
ceptual organization used to describe common instances of visual integration. The 
literature on this subject is varied, and as such, the specific principles can often be 
described in multiple ways depending on the situation or researcher. Though not 
exhaustive, Fig. 3.2 shows seven of the most common examples of Gestalt princi-
ples affecting how we aggregate component pieces of a visual image. These prin-
ciples can be used by a designer to group information together or separate different 
subgroups appropriately.

Fig. 3.2  Common examples of Gestalt principles affecting image perception. (Revised from 
Ritter et al. 2014; Figure 4-15)
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Even without other factors affecting visual processing, Gestalt theory can serve 
as a useful framework for analyzing and improving the design of an interface. 
Chang et al. (2002) demonstrate how Gestalt theory can be used to guide the rede-
sign of an electronic learning tool. During their background research, the authors 
identified a subset of the many Gestalt “laws” from prior research and used these as 
the basis for their redesign process. The redesign process described by Chang and 
colleagues provides a useful exemplar of the methodology; however, they did not 
collect the empirical data necessary to provide a detailed analysis of how their rede-
sign affected interface performance.

3.2.5  �Summary of Visual Perception and Principles

Nearly everything on the interface is a signal or feature. Designers should assess the 
importance of each signal as well as the salience associated with it. The theories in 
this section provide ways to make the combined operator-interface system work 
more reliably and, thus, reduce the risk of total system failure.

To make signals recognizable, designers can change the hue, make it flash, 
increase the size, or use the pre-attentive visual features shown in Fig. 3.1 to modify 
the salience of the information. The inverse is also true. For irrelevant features (at 
least for the current task), ensure their salience is appropriate by modifying their 
visual representation to make them less apparent.

If an operator does not perceive an alarm or signal directed their way, they have 
no way of knowing there is an issue, or even that they missed an alarm at all! 
Creating a mental model requires unconscious assumptions about the world. Do not 
assume that the operator will eventually realize that they must attend to a minor 
signal or remember to look at something; help them.

It may be appropriate to test the interface for color blindness compatibility. 
Where colors cannot be changed, one could test the users to support reconsidering 
changing colors, or to find other ways to support color-blind users.

Gestalt principles give engineers the ability to predict, and thus improve, how 
operators will perceive the interface and its functionality. Designing the system lay-
out around these principles can ensure that the engineer’s intentions are clearly 
conveyed to the operator.

To summarize how to use results from visual perception in design, we present a 
few design principles related to vision.

Principle 3.1 Designing to accommodate color blindness will solve multiple prob-
lems at once

The prevalence of color blindness among the general population means that 
accommodating color blindness should be the default plan for high-stakes systems. 
Presenting information with multiple signals and modes can help ensure the mes-
sage is clearly received regardless of the operator’s color perception, and it will lead 
to faster detection of key signals.
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Principle 3.2 Colors must be used sparingly, used consistently, and should be 
reserved for critical information

Color can be recognized and interpreted much more quickly than a complex 
signal, but overuse reduces the effectiveness. If possible, follow these rules: use no 
more than four different colors, adopt a dull screen as background, and reserve spe-
cific colors for specific signals.

Thus, ensure that color provides a valuable signal to the operator through pur-
poseful use of specific colors to emphasize critical information on an otherwise dull 
interface. Often, color can be a distracter just as easily as a signal if the colors are 
overused or misused. Three specific examples are shown in Figs. 3.3, 3.4, and 3.5.

Designers must consider how each color used in the system will be interpreted 
by operators. Figure 3.3 shows a relatively dull interface that can be quickly scanned 
to identify which system processes are active without any distracting signals. 
Connecting lines between components (light yellow) are easily distinguished, but 
the reduced saturation demotes their importance during typical use.

Color is often a major factor used within an interface to encode signals with 
meaning. Color use will usually use pairs or sets of colors to provide a categorical 
piece of information for the operator. Green, yellow, and red can indicate the system 
status on a range from healthy to critical failure. Blue can represent active pumps for 
a liquid, while gray shows inactive. Color is a valuable signaling method for typical 
operators, but designers should ensure that their design has multiple signals indicat-
ing critical information.

Figure 3.4 shows an example of how color can be used to highlight critical infor-
mation (Ulrich and Boring 2013). The use of color within an interface should be 
considered as a scarce resource. On a completely plain background, one color can 
be extremely visible, but each new color and new use of a color reduces the salience 
of that signal. The information in Fig. 3.4a uses a blue line to indicate the current 
level, which is then compared to “safe” levels on the right side (red and green lines).

Fig. 3.3  Labeled example of interface with dull color overall, allowing the green “active pump” 
and red “critical event” signals to stand out. Figure redrawn by authors and modified from Ulrich 
and Boring (2013)
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For example, the gauges shown in Fig. 3.4a may be unable to provide color-blind 
operators with enough information to ensure system success. Figure 3.4b shows a 
revised interface that would be better suited for all users. Though the second gauge 
sacrifices some contrast between the safe and dangerous system states, the thick 
black line and arrow indicating the current level reduce the risk of color blindness 
leading to operator, and thus system, failure.

Principle 3.3 Make text with readable fonts, use no more Than three font types, use 
fonts of proper sizes, and use simple, short text strings

Reading from screens tends to be slower and more difficult than print-based 
reading. This may be due to the difference between projective and reflective light or 
due to pixel density. Researchers have studied the effects of screen-based reading 
quite extensively. They consistently find that reading from screens takes about 

Fig. 3.4  Examples of 
muted interface with dulled 
colors, dedicated alarm 
colors, and merged 
information for easier 
perception. Images (a) and 
(b) show an initial and 
revised pressure gauge. 
Figure redrawn by authors 
and modified from Ulrich 
and Boring’s (2013) 
guidelines

Fig. 3.5  Incremental improvement of power level indicator. Final product can be quickly refer-
enced for general status and examined more closely for detailed information like voltage and time 
remaining
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10–30% longer, leads to increased errors, and fatigues the user more quickly than 
print reading (Ritter et al. 2014, pp. 208–210). Many operators will not be trained to 
differentiate font types, so use different fonts sparingly and be cautious about using 
font type as an important signal. Improve readability and comprehension by using 
readable, simple fonts. Ensure font size is appropriate for the expected viewing 
distance. Concise text, accompanied by a symbol or icon, will be faster than a 
description and more easily interpreted than an icon alone.

Designers should thus avoid using unnecessarily “fancy” fonts and settle on sim-
ple, effective presentation of the key information. In general, long strings of text 
should be avoided. They can be replaced with symbols and bullet points or, at the 
very least, augmented with emphasized words to make scanning easier. Figure 3.5 
shows an example of improvement.

Principle 3.4 Ensure signals indicating missing information are clear and obvious

Operators rely on gathering and interpreting information to make key decisions. 
Uncertain or missing information can affect performance through incorrect assump-
tions by operators.

Missing information from a sensor or system can be a signal to the operator 
about the situation, but this is only possible if the operator is aware that the informa-
tion is missing. When operators do not realize that some information is missing, 
they may rely on their base assumption of normal operating conditions. This is 
called the normalcy bias and can lead to potential disaster.

For example, a pilot operating a plane in cloud cover with malfunctioning terrain 
sensors can respond differently if aware of the missing information. If aware of the 
issue, they could climb to a safe altitude regardless of any “true” obstacle. If 
unaware, they may crash after assuming they were on a safe trajectory. This type of 
catastrophic failure is so common that it has its own name, CFIT, or controlled flight 
into terrain.

As an example for the WDS, signals indicating success for a repeating procedure 
could be represented as a simple binary response: success or failure (1a and 3 from 
Fig. 3.6). The interface design in Fig. 3.6 may allow operators to quickly see when 
the last test occurred and provides an intermediate signal for a missing self-test. If 
the update schedule is known to vary by 30 min, this could lead to many false alarms 
if a missing self-test at the exact due time qualifies as a critical failure. These addi-
tional states added to the design give operators a signal to be in a “ready” state to 
respond to a critical failure.

Principle 3.5 Arrangement of screen components should be useful, consistent, 
and close

Whether designing the full system interface with multiple objects or creating the 
objects themselves, limit the distance between signals that are commonly used 
together. This means having a theory of how the interface will be used and using the 
task analysis, operator knowledge, and characteristics to design the interface such 
that the information and signals used for the same tasks are near each other. This 
principle is implied by the Gestalt principles.
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As an operator scans the system interface during typical monitoring tasks, they 
will be generally searching for alarms, alerts, or any sign indicating a potentially 
risky situation. The task analysis should provide a summary of the tasks, their 
importance, and their frequency. Checking systems with distant components (mea-
sured as travel time through the interface) requires more time and effort to perform 
well. Additionally, upon identifying an alarm, operators often will search for signals 
that confirm the veracity of the alarm. Grouping related components together makes 
this easier, reduces strain, and increases their ability to search for information.

Grouping and arrangement should also attempt to follow consistent patterns both 
visually and semantically across multiple displays. The design guidelines in 
Appendix 3 (specifically in A3.3: Visual Feature Index) provide guidance about the 
terminology, significance, and heuristics that designers should use when building 
these systems.

3.3  �Attention

Visual perception is broadly described as the integration of information through the 
field of vision. However, this does not account for how useful signals are isolated 
from the noisy environment around them. Attention is the “spotlight” that makes a 
set of stimuli more active or relevant than the rest of the display. As operators are 
presented with a constant array of information, an executive control system in the 
mind is directing attention towards features or items in that set of information. A 
crucial feature of attention is enhanced acuity for the target of interest at the expense 

Fig. 3.6  The role of color to represent missing and aging information
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of awareness of peripheral stimuli (Ritter et al. 2014, p. 139). The shift in focus 
from one target to another can occur due to the salience of certain features, per-
ceived relevance to a particular goal, or an active process of cognitive control.

In this section, we will first discuss the basics of the underlying mechanisms of 
attention and how task-switching affects operator performance. Next, we will 
describe the causes and implications of limited attentional resources and the attri-
tion of attention.

Attention plays a crucial role in visual perception by providing a mechanism for 
isolating specific features of interest. Visual perception involves making sense of a 
world with too much information present; attention is the tool for “working around” 
this natural limitation. Attention provides guidance for, though not total control of, 
the sequence of eye saccades and fixations during goal-directed search for visual 
features. The interaction between visual perception and attention is moderated by 
cognitive control (e.g., goal-directed behavior) and aspects of features in the visual 
field (e.g., salience). The interaction between these two systems can affect perfor-
mance by altering the usage of “cognitive resources” during a particular task. For 
example, inhibiting a response to look at a flashing light requires active control of 
visual search, and thus attention. The skill with which a user can inhibit these 
responses is governed, at least in part, by their working memory capacity (Unsworth 
et  al. 2004). The inverse is true as well: an extremely salient signal will require 
fewer cognitive resources to detect.

3.3.1  �Attentional Vigilance

The role that attention plays in cognitive tasks cannot be overstated. Although we 
have primarily been describing the role of attention on visual processes, attention 
plays a central role in both internal (e.g., problem-solving, goal sustenance) and 
external cognitive mechanisms (e.g., visual search). The act of maintaining atten-
tion on a task is called attentional vigilance, or just vigilance. Tasks that require 
vigilance are characterized by the need to maintain attention over an extended 
period while attempting to detect target stimuli without responding to neutral or 
distracting stimuli. Performance loss is often ascribed to a vigilance decrement, or 
the performance decline that occurs over a period of active monitoring. Tasks that 
require vigilance are extremely common for operators during their work in op 
centers.

Sustained attention on a task can be impaired by several factors. First, the 
salience of the goal signals directly affects the decay rate of operator performance 
due to the vigilance decrement (Helton and Warm 2008). Increased working 
memory load leads to worse performance on vigilance tasks. If an operator needs 
to remember other tasks or keep other information in working memory, they will 
have a higher cognitive load (Helton and Russell 2011). Depending on the type of 
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information being remembered, the impact on performance may be reduced. For 
example, listening to a supervisor speak (verbal) while monitoring trends on a 
graphical display (visual) is easier than listening while reading text (both verbal) 
(Epling et al. 2016).

The ability to maintain attention over minutes or hours is also affected by the 
time of day and the natural circadian rhythm that is driving the operator’s sleep 
schedule. The impact of sleep and restfulness on performance varies by the task 
characteristics. Discrete, active motor control tasks (e.g., tilting a platform to roll a 
ball towards a hole) seem to be less affected by sustained time awake (Bolkhovsky 
et  al. 2018). However, the biggest concerns should be for monitoring tasks that 
require focus over minutes or hours to catch infrequent events. Sustained alertness 
tasks with reaction time-dependent performance show increased reaction times, 
error rates, and instances of “sleep attacks,” an event where attention lapses for tens 
of seconds mid-task causing a signal to be missed (Gunzelmann et  al. 2009). If 
sustained attention is a major component for tasks on an interface, designers should 
consider the attentional requirements of the task and take advantage of tools like 
FAST (Fatigue Avoidance Scheduling Tool; Eddy and Hursh 2006) to plan work 
schedules that are compatible with the sleep patterns of the operators. For further 
information on sleep and circadian rhythms, it can be found in Wide Awake at 3:00 
A.M.: By Choice Or By Chance? (1986) by R.M. Coleman.

3.3.2  �Resuming Attention: Interruptions and Task-Switching

Interruptions provide a major risk in disrupting the ability of operators to maintain 
their attention on a given task. Unanticipated breaks during the completion of a task 
have been shown to increase subjective workload and error rates, even for experi-
enced professionals (e.g., Campoe and Giuliano 2017; DeMarco and Lister 1999). 
Campoe and Giuliano (2017) found that the errors when programming medical 
pumps occurred 7% more often when more than two interruptions occurred during 
the ≈5-min task. Designers should be aware of how interruptions, even when 
planned, can impair performance of operators.

The overall framework for understanding task interruption can be divided into 
several phases. First, the worker will be completing some primary task. At some 
point prior to completing the primary task, the worker is exposed to a distraction 
signaling the need to complete a secondary task. The time between receiving the 
signal and initiating the secondary task is called the interruption lag. Next, the 
worker begins the secondary task. The time to complete the secondary task is called 
the interruption length. Upon concluding the secondary task, a period called the 
resumption lag occurs until the worker is able to resume the primary task (Trafton 
et al. 2013). This process can occur multiple times throughout the completion of a 
primary task.
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Distractions force the operator to lose their attention on one task, begin attending 
to a different task, and then transition back into attending to the original task. Each 
time the operator transfers their focus (in both directions), there will be a necessary 
“activation period” where the operator is working through the stages of situational 
awareness: perceiving the task features, forming a mental model of the situation, 
and finally extending their mental model into likely future scenarios to guide action. 
This process takes time and leads to performance impairment. It is also a source of 
errors. Well-designed systems should attempt to alleviate the risks associated with 
interruptions to primary tasks.

Systems engineers and designers can exhibit significant control over the design 
of the associated tasks. Although designers may be able to influence operator train-
ing, it is more practical to design the system and tasks around a range of skill levels 
(when possible). The first method for reducing the effects of interruptions on perfor-
mance is simply removing them from the possible task structure. Even among expe-
rienced professionals working in high-stakes situations, the number of interruptions 
is directly correlated with an increased error rate, cognitive workload, and stress 
level (Campoe and Giuliano 2017).

If interruptions cannot be limited, there are several ways to alleviate the perfor-
mance impairment. First, designers can provide a preliminary warning signal that 
indicates an interruption is imminent (within the next 10 s). This allows operators to 
begin preparing to switch tasks (e.g., mentally noting a suitable stopping point) 
without the need to fully place their focus on the new task just yet. Trafton et al. 
(2003) informally describe the process that occurs after the warning signal as the 
operator answering two questions and storing the response in memory: “Now what 
was I doing?” “Now what am I about to do?” The answer to the first question helps 
the operator identify the point from which to resume the primary task, thus reducing 
the resumption lag. The answer to the second question prompts the user to gradually 
begin attending to the interruption task, thus reducing the interruption lag. The same 
study demonstrated that providing a warning signal with 10-s notice for a distrac-
tion reduced the resumption lag by nearly 50% (8 s without warning vs. 4 s with a 
warning) for an unpracticed task. Although this effect diminished with repeated 
practice, this design guideline is particularly useful for infrequent tasks that may be 
minimally practiced.

Besides offering a warning, designers can design interruptions that minimize the 
performance impairment. First, interruption length is a large predictor of the 
resumption lag. Working memory plays a significant role in managing attention. 
Long interruptions impair the ability to rehearse the previous task state and lead to 
an operator forgetting their place in the task. Designers can account for this by 
reducing the length of interruptions and preventing interruptions during high-stakes 
tasks (Campoe and Giuliano 2017). Interruptions that force the operator to change 
contexts also impair performance. Context change is a broad descriptor that may 
include changing locations, unexpected transitions from visual processing to verbal 
processing (e.g., talking to a coworker), or generally unexpected shifts in cognitive 
requirements (Marsh et al. 2006). So, when possible, allow the operator to finish 
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their current primary task step. This reduces the resumption lag for computer-based 
work, though this benefit appears to disappear for manual work (Campoe and 
Giuliano 2017).

3.3.3  �Signal Thresholds and Habituation

Visual input is naturally limited by the minimum stimulus strength that is detectable 
by the structures in the eye. The threshold that separates undetectable and detectable 
stimuli is called a detection threshold. For visual signals in the human eye, the 
threshold for light detection is approximately 100 quanta. The threshold corre-
sponds to being able to detect a candle flame from 50 km on a clear dark night 
(Galanter 1962).

The amount of change necessary to create detectable differences between stimuli 
is called a just noticeable difference (JND). We use JND to generally refer to a 
detectable difference as measured by the appropriate scale for the metric (e.g., deci-
bels for sound). For example, let’s say we ask a person to select the darker shade of 
orange between two similar, but different, orange color swatches. If the difference 
between the two is less than a single JND for the human visual system, then the 
person will perform no better than chance, even though a computer can instantly 
recognize a difference. A change in the interface display with less than one JND will 
have signals that are physiologically impossible to detect for the user. Thus, the 
signals and stimuli directed to the operator must be sufficiently clear and distinct to 
be detected, and designers should avoid implementing visual features that commu-
nicate important changes through subtle differences.

Although human vision can be very sensitive during the initial presentation of a 
stimulus, there is also a natural process of habituation that occurs during persistent 
detection of certain stimuli. As an operator becomes accustomed to a predictable, 
persistent visual stimulus, they lose the ability to perceive it without conscious 
effort; the stimulus becomes background to them. For example, people living next 
to train tracks stop noticing the trains. Though it is more common with simple stim-
uli, habituation can also occur with complex stimuli that require action (e.g., click-
ing a “confirm action” box for every action; Ritter et al. 2014).

System designers already will be taking some steps towards accounting for these 
low-level issues during the design process. For example, system designers will often 
use particular visual characteristics such as flickering or flashing lights, changes in 
color, or motion to indicate that an operator’s attention is needed. However, design-
ers should use caution when deciding when to use alerting signals. When a system 
is working as intended, the designer should be aiming for signals that facilitate 
habituation, that is, the changes appear normal and do not call attention to them-
selves. However, once the system detects an alert of some kind, the design princi-
ples become inverted. Rather than facilitating habituation, designers should actively 
attempt to prevent habituation.
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3.3.4  �Speed-Accuracy Trade-off (Or How to Design 
for Acceptable Errors)

There is a constant in human behavior represented by Fig. 3.7. This graph shows 
that behavior can be slow and careful with low errors, or rather fast and with higher 
errors. Operators will vary in what their curve looks like. Similar operators may be 
at different points on the same curve as well. To avoid the extremes, psychology 
studies often instruct subjects “to work as quickly and accurately as possible” to 
attempt to put subjects at some ideal center point along this curve. The center point 
allows fair comparisons between conditions in a study, but, typically, users will 
move along the curve to suit the task and situation.

We note this speed-accuracy trade-off to designers so that when they are observ-
ing users, they realize that operators may be working at different points in the curve. 
For example, when typing drafts, we type quickly and use spell correction to clean 
up. When entering passwords, we type slowly because errors take time and force us 
to redo the whole task.

3.3.5  �Summary of Attention

Attention can be seen as the tasks and information that the operator is attending to 
or working with. There are consistencies and effects that arise from this process. To 
the extent that designers can understand the operator and their tasks, they have a role 
to facilitate the allocation of attention and to support its use.

To summarize how designers can support operators’ attention, we present a few 
design principles related to attention.

Fig. 3.7  The speed-
accuracy trade-off curve. 
(Reprinted with minor 
changes from Ritter et al. 
2014; Fig. 6-12)

3  Cognition and Operator Performance



53

Principle 3.6 Present information needed for comprehension directly

Attention and working memory are limited; information shown to the operator 
should be processed and integrated as much as possible to reduce operator workload 
and support the system goals.

Avoid giving operators extra work, particularly for tasks that can be automated 
or otherwise more effectively handled by the system. Methods for implementing 
this can range in complexity, but beneficial design choices will be structured around 
eliminating extraneous work for the operator. Simple examples might include 
reducing unnecessary mental math or just moving related information closer 
together. Eye movements take time, as do mouse movements. Making an interface 
easier to use with many small changes is important: milliseconds matter (Gray and 
Boehm-Davis 2000). Complex examples include totally redesigning a complicated 
display around a relatable design metaphor with a unified representation of the 
information, as shown in Figs. 3.8 and 3.9.

For example, consider a simple altimeter design. Pilots are often skilled opera-
tors with a lot of experience in their primary tasks. However, the human limits on 
attention and memory are always a factor. Designing to improve comprehension 
will reduce mental strain for experienced and inexperienced pilots alike.

A pilot need not calculate the difference between assigned altitude and present 
altitude. Technology has advanced so that this can be calculated and displayed bet-
ter than the initial dials. Simplify the task and use each system’s strengths. The 
computer can handle simple mathematical calculations and could show the values 
using two lines separated by the deviation. The pilot can then identify any issues 
with altitude much more quickly with the visual process.

Compare the two altimeters in Fig. 3.8. On Fig. 3.8a, the pilot must personally 
compute the difference, and direction of difference, between the present and 

Fig. 3.8  The interfaces for two different altimeters. The generic digital altimeter (a) requires the 
pilot to mentally compare their altitude to the set value while accounting for variables affecting the 
instrument accuracy. (b) The Garmin G500 simplifies this by including a spatial comparison 
between accurate barometric altitudes and clear representation of current altitude and ground level. 
(Used with permission, www.garmin.com)
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assigned altitudes before responding accordingly. However, on Fig. 3.8b, the alti-
tude difference is interpreted visually and is a much faster and less error-prone task.

As another example that is more complex, consider Fig. 3.9 which shows the OZ 
display. It provides a redesign of an airplane’s control panel around a direct imple-
mentation of an airplane metaphor. Flying with traditional airplane displays requires 
the pilot to mentally calculate their current flight relative to the limits based on the 
flight envelope (i.e., stable flight based on related parameters like airspeed, altitude, 
and orientation). This mental calculation is difficult and cognitively taxing, particu-
larly during times of high workload from adverse conditions such as fog or 
turbulence.

When vision is impaired, pilots rely solely on instrument flight (IF) with no 
visual reference frame. This risky situation led Temme et al. (2003) to propose an 
interface titled “OZ” that portrays the key information as an integrated display built 
around a digital plane, shown in Fig. 3.9 (b, top). This display presents exactly what 
the pilot needs to know for the task: current aircraft performance compared to air-
craft limits and optimal performance values. A comparison between old and new 
displays is shown in Fig. 3.9 (a and b, bottom).

Although the OZ display in Fig. 3.9(b, bottom) appears complex to novice or 
unfamiliar users, it was designed to support common tasks that are familiar to pilots 
and is derived from the mental model used by the pilot during flight. The improve-
ments from the new design were confirmed via tests showing that novice pilots 
using the OZ interface performed significantly better than novice pilots with the 

Fig. 3.9  The OZ display compared to a traditional cockpit. The traditional display (a) is an emu-
lated display, and (b) shows the plane metaphor (top) used to develop the functional OZ cockpit 
display (bottom). Used with permission from Temme et al. 2003, pp. 75–77
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conventional display. With the OZ display, subjects with no flight experience imme-
diately showed greater flight precision (for orientation and altitude) and reduced 
performance loss from turbulence than when using the typical display. After about 
80 h of flight time with both displays, subjects attempted to perform a reading task 
while operating the plane. This task was essentially impossible with the conven-
tional display, but subjects saw almost no loss in performance when using 
OZ. Similar designs could be created for control rooms, perhaps as a summary sup-
porting task performance while retaining the raw data visible behind the summary 
display.

Principle 3.7 Provide support for operators that may deal with interruptions.

To summarize, to support operators so they can deal with interruptions:

	1.	 High-stakes work should be distraction-free.
	2.	 Warn operators that an interruption is imminent when possible, that is, allow 

operators to prepare for task-switching.
	3.	 Promote completion of primary task steps before beginning secondary tasks. 

Simplify the process for resuming a postponed task. This can be done by sus-
pending the secondary task, autocompleting the primary task, or providing note-
taking tools for recording the status of the primary task.

	4.	 If interruptions are necessary, reduce the distance and difference between the 
primary and secondary tasks as measured semantically or syntactically.

Principle 3.8 Consider the risks of stimulus habituation appropriately

Even highly salient signals will become habituated with repeated presentation. 
Constant presentation of a signal leads to habituation, and thus reduced detection 
and attention by operators. Designers should create a hierarchy of signal salience to 
ensure the right signals get through to the operator.

3.4  �Working Memory and Cognition

Following the perception of information from the environment, the operator needs 
to use that information to make decisions and complete their work. Task-related 
information must be analyzed, manipulated, and transformed into useful informa-
tion that can guide the actions taken by the operator. The operator must integrate 
their knowledge of the state of the world with their mental model of the task. For 
example, an operator sees that the temperature of some module is above the safe 
threshold and the battery is running low. The operator stores these facts in their 
working memory and then consults their long-term memory on how to respond to 
the issue. The response is then also added to working memory alongside the facts 
about the world state. The operator responds with the appropriate actions in the 
system, ensures the problem is fixed, and then discards the old information before 
moving onto their next task.
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Variations of this process occur many times throughout an operator’s shift. These 
human memories do not work as well (at least under conventional views) as com-
puter memory, so designers familiar with computers should be aware of the differ-
ences. Designers should particularly be aware of the differences because their own 
mental models of their own memories are likely to be particularly incorrect—if your 
memory fails, you are unlikely to be able to notice this! This section will describe 
how working memory and long-term memory affect operator performance.

3.4.1  �Working Memory

Often, the work performed in op centers requires operators to integrate snippets of 
information from various sources to come to a decision or understand the situation. 
This process of storing and manipulating that information occurs within the work-
ing memory of the operator. Working memory stores and manipulates information 
for near-term use (Ricker et al. 2010). Some tasks require multiple pieces of infor-
mation to be analyzed and processed near-simultaneously; working memory enables 
people to handle this by offering a “scratch pad” for relevant information. Though 
particularly relevant during the performance of complex tasks, working memory is 
a foundational mediator for how each person interacts with the world. Working 
memory acts as a store for both internal events (i.e., recalling long-term memories) 
and external events (i.e., perceiving visual signals). In many ways, working memory 
is often analogized to be comparable to the RAM of a computer system, whereas 
long-term memory is like the ROM. The RAM, or working memory, allows rapid 
data access, efficient manipulation, and quick turnover between processes. The 
ROM, or long-term memory, provides a slower, semipermanent location for infor-
mation storage and retrieval.

The RAM–ROM analogy also applies to the limitations of working memory. 
While long-term memory does not appear to have a clear storage limit in humans, 
working memory is constrained by a capacity of only a few items—the most com-
mon general storage limit is about seven items plus or minus two items (Miller 
1956). The seven-item limit is overly simplistic but provides a useful anchor for 
working memory capacity. Working memory capacity also varies across the popula-
tion with greater working memory capacity being associated with better perfor-
mance on cognitive tasks (Just and Carpenter 1992). The levels of abstraction and 
familiarity with the relevant concepts also have an effect; less abstract and more 
practiced tasks are easier to remember and use (Ritter et al. 2014, Ch. 5).

The approximate limit for working memory capacity becomes even more com-
plex due to processes such as chunking. Chunking refers to a mental process for 
grouping sets of individual information pieces into easily recognizable sets. For 
example, it will be easier to remember a sequence of items like “N S A F B I” (chun-
ked as NSA, FBI) than “Q G Z T Y V” (not “chunkable” by most; Chalmers 2003; 
Ellis 1996). Chunking mechanisms can be leveraged by system designers to increase 
the practical working memory capacity of the users.
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Modern theories of memory suggest that working memory is built from special-
ized subsystems that differ based on their input: the “visuospatial sketch pad” for 
visual spatial information and the “phonological loop” for verbal information 
(Baddeley 2000). This distinction between verbal and visual working memory 
stores is important because these two systems can perform semi-independently 
without much interference (i.e., loss of performance) between them. When imple-
mented successfully, this can allow someone to drive a car while listening to an 
audiobook with almost no loss of performance for the primary task (Granados et al. 
2018). However, implementing this concept is not necessarily foolproof. When the 
secondary task requires too much mental effort (i.e., maintaining a conversation vs. 
passive listening), driving performance tends to be degraded to a noticeable degree 
(Strayer et  al. 2003). Although multitasking is best avoided, making attempts to 
isolate the tasks to distinct working memory stores can provide some measure of 
risk reduction when it is impossible to eliminate the need for multiple tasks.

For the designer, there are a few takeaway implications for design:

	(a)	 Working memory has limitations on capacity and performance. Don’t use it up 
asking the user to remember items the system can remember for them.

	(b)	 Chunking of items can increase the functional working memory capacity. 
Support chunking when you can by putting items in a canonical order, spacing 
items to support chunking (e.g., FBI vs. F____BI), and understanding the pat-
terns that operators know and choose, or even teaching them new acronyms.

	(c)	 Working memory has a time-based decay. Maintenance requires rehearsal at 
some cost to the operator’s cognitive resources. Ensure users are not required to 
independently store and remember lots of information for minutes at a time.

3.4.2  �Cognitive Load

Cognitive work is inherently taxing on our mental resources. We have previously 
discussed the impairment of cognition as it relates to attention, but higher-order 
processes are also affected. Throughout the performance of cognitive work within 
an op center, operators are presented with information that must be monitored and 
assessed and may need to be compared across time. These types of work are inher-
ently difficult, particularly when during long periods of performing the tasks. 
Cognitive load theory (CLT) describes how the various factors such as working 
memory load, personal stress, and task difficulty can provide an overall decrement 
on performance of cognitive work (Sweller 1988). Cognitive load theory provides a 
way to compare task difficulty (relative to the expertise of the user) across different 
task environments. Reducing cognitive load provides a broadly effective way to 
improve performance by freeing up working memory capacity for more important 
tasks like integrating information and learning. CLT currently lacks units and an 
objective way to measure it; however, we find CLT to be useful nonetheless because 
it provides a framework for comparing system design choices.

3.4 � Working Memory and Cognition
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A review of cognitive load’s role in human–computer interaction design is pro-
vided by Hollender et al. (2010). Their review integrates CLT research into a useful 
framework for systems engineers. They posit three main types of cognitive load: 
intrinsic, extrinsic, and germane. Intrinsic cognitive load refers to the inherent com-
plexity of the information being processed by the user. Comparing intrinsic load can 
only really be done by comparing two tasks rather than by providing a stand-alone 
value. For example, driving on an empty highway would likely provide less inherent 
complexity compared to driving on a busy city street.

Extrinsic cognitive load refers to environmental and context-dependent factors 
that provide unnecessary contributions to task difficulty. Integrating spatially distant 
information from displays that are on opposite ends of the room will be inherently 
more difficult than if the displays were side by side due to the required storage of 
the information in working memory between task steps.

Finally, germane cognitive load refers to the beneficial cognitive work that 
improves task performance. Learning and practice of the skills and schema required 
to perform a task also require cognitive resources, in contrast to unhelpful portions 
of the overall cognitive load. All three types of load contribute to the overall work-
ing memory needs of any given task, and the ideal task will reduce the intrinsic and 
extrinsic load to provide more resources for the beneficial mechanisms that occur 
from germane cognitive load.

Reducing the cognitive load of extraneous tasks can provide a consistently useful 
method for improving the performance of operators. A simple method for reducing 
cognitive load is by enforcing consistency across the layout, color scheme, and 
overall information presentation style for components of an individual system and 
across multiple systems (Chalmers 2003). Even experienced users that may switch 
between a Windows OS and Mac OS will know the feeling of attempting to use a 
Mac-only shortcut on a Windows machine (or vice versa).

Many of the recommendations for reducing cognitive load can be succinctly 
described as follows: when possible, reduce the space and distance between code-
pendent pieces of information. In some cases, it’s a relatively simple process to find 
multiple solutions. Disparate information sources could be split across multiple dis-
plays to maximize information presentation, or alternatively, a single display could 
be trimmed of unnecessary information to bring the most important features onto a 
single, more efficient display (Brown et al. 2013). Other cases provide less clarity in 
determining the best practices for a given context. Providing redundancy in feature 
presentation can help reinforce certain information, but the additional features 
inherently increase the intrinsic cognitive load during interaction with the system 
(Grunwald and Corsbie-Massay 2006).

Engineers and other stakeholders must use the risk-driven approach to make 
informed decisions; competing design recommendations are rarely weighted on 
easily comparable scales. Krug’s (2005) approach provides further suggestions to 
reduce cognitive load that center around the titular message of the book: Don’t 
Make Me Think. Krug argues that small design flaws like unclear labels, confusing 
buttons, and unclear feedback introduce minor inconveniences that can add up and 
lead to a noticeable drop in overall system performance.
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Further ways to support operators and reduce cognitive load can involve shifting 
cognitively taxing tasks and information onto the system. This includes (a) remind-
ing operators when tasks should begin; (b) reducing load by simplifying the num-
ber, length, and complexity of actions; and (c) automating tasks that can be 
automated, like how automobile turn signals automatically shut off after the steering 
wheel rotates back to straight.

3.4.3  �Summary of Working Memory and Cognition

Operators will be using their working memory on every task, but there are inherent 
limitations to capacity and processing power that need to be considered when 
designing the interface. Off-loading information to the system (when possible) 
reduces strain on working memory, as does simplifying or optimizing how informa-
tion is displayed to leverage mechanisms like chunking to increase functional work-
ing memory capacity. By understanding the tasks and operators for their system, 
designers can identify ways to support operator performance through design 
choices.

Principle 3.9 Reduce the cognitive resources used during multi-step tasks

Operators’ cognitive resources, including working memory and attention, are 
limited, and these limitations are made worse by fatigue, stress, and task difficulty. 
Simplifying the work will reduce workload and make errors less likely to occur.

Simplifying tasks can be done in many ways depending on the specific scenario. 
The common factor for all successful implementations of this guideline is a reduc-
tion in the amount of working memory, attention, or other cognitive resources 
needed to perform the task.

For example, if an operator is alerted for a task that needs to be done in 30 min, 
the system should provide an additional reminder at the appropriate time rather than 
relying on the operator’s memory.

If a common task requires several steps to complete, provide an interactive 
task checklist that indicates the current state of the procedure—checklists are 
very helpful to support complex tasks. A simpler solution could be incorporating 
a window showing all inputs and outputs for the system with associated 
timestamps.

3.5  �Summary

The mechanisms that operators use while performing their work influence how the 
work gets done, what errors are likely to occur, and how to design to support system 
success. This concept is common across other engineering fields. For an electrical 
engineer, the components that comprise electrical circuits influence how circuits 
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produce their outputs, what errors are likely to occur within the circuit, and how to 
design effective systems that require electrical circuits.

The most salient mechanisms of operators that are relevant to improving the 
design of op centers are perception, attention, and working memory. These mecha-
nisms interact, and good design will be based on a theory of how they are used by 
operators to perform their tasks based on the information presented to them in the 
interface.

We include design principles to help with design. When these principles contra-
dict themselves, which design principles and guidelines will inevitably do, the 
designers will have to resort to analysis of the tasks and their procedures, impor-
tance, and frequency to resolve the design trade-offs.

There are also other mechanisms of operators, shown in Fig. 2.4, that will influ-
ence performance in op centers. These mechanisms include motor output and other 
forms of perception. An overview of these mechanisms is available in Ritter 
et al. (2014).
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Chapter 4
Conclusion and Final Comments

Abstract  The foundational design philosophy of user-centered design (UCD) 
offers an ideal approach for systems engineers, programmers, designers, and any 
other stakeholder involved with the design of high-stakes systems with human oper-
ators. Furthermore, UCD, as presented here, is tailor-made to meet the unique needs 
of critical human–machine systems in systems like air traffic control towers, 911 
call centers, or NASA’s Mission Control Center. Whenever the operator is a mission-
critical component of the system, stakeholders must be able to make informed deci-
sions during the design process, and this book provides the tools necessary to make 
those decisions.

4.1  �Introduction

This book summarizes a process for designing and implementing op centers like the 
Water Detection System introduced in Chap. 1. As the work is performed, risks are 
assessed using a spiral development model that checks with stakeholders at each 
major phase, and adjusts the process based on the risks that can be perceived at that 
stage. The intermediate and final system can be assessed using simple usability tests 
as well as cognitive walkthroughs.

The process uses shared representations of the operators, their tasks, and the 
context of the work. An example of these is provided in Appendix 1. These shared 
representations are used to design and create an op center. Appendix 1, with its 
subsections, provides an example set of documents for describing your users and 
their tasks in a way that is useful for design. Larger systems will need correspond-
ingly larger and more complex descriptions, while smaller systems will typically 
need less. Systems only used by their developers might not need anything, but sys-
tems that are designed without these documents are designed informally and solely 
for their designer’s use, not for the operators. As architects would discuss blueprints 
particularly before building a project, op center designers should expect to prepare 
and discuss these documents during design with other stakeholders, such as manag-
ers, future operators, and funders. These discussions can reduce misunderstandings, 
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lead to supporting all the tasks for all stakeholders, defend designs, and help keep 
the relevant goals, missions, and tasks in mind when designing a system. Using 
these documents reduces risks (Pew & Mavor, 2007).

Chapters 2 and 3 provide design principles that managers, designers, and imple-
menters can be informed by. These stakeholders can also be informed by greater 
knowledge of the operators as a type of system component. Chapter 3 provides a 
short overview of the types of knowledge of operators that can help inform system 
design and implementation. Further sources for learning more are noted in each 
chapter.

This book should also be seen as an initial review. There is more to know about 
how to support operators than is covered here. Appendix 2 provides pointers to fur-
ther information on how to support operators in control rooms and to support the 
designers who create them. Appendix 3 aggregates the most important design prin-
ciples that we have described in this book. The rest of this chapter briefly summa-
rizes the book, offers areas of future work, and responds to the set of design questions 
presented at the end of Chap. 1.

4.2  �The Need for User-Centered Design

One of the difficulties with this approach will be investing the perceived additional 
time and effort to avoid the risks that this approach helps mitigate, ameliorate, or 
avoid. Typically, this approach takes additional effort, and organizations do not 
always see the risks until they arrive. There is evidence, however, that a mindful 
approach can overall reduce costs (Booher and Minninger 2005).

A problem that remains then is to provide evidence that there are risks and that 
this approach helps reduce risks and their impact. Pew and Mavor (2007) call for 
examples to help motivate the different team members to appreciate how usability 
can influence system performance. Table 4.1 notes a few examples. Support from 
management for this more engineering-based approach as well as further local 
examples could be useful to motivate implementers and technology designers to 
take operator tasks and their knowledge, skills, and abilities more seriously.

Keeping a list of known risks and accidents related to the design domain could 
also be helpful in several ways. The particular risks to op centers’ success may 
be difficult to quantify and will often arise from unexpected events. It may be 

Table 4.1  Examples of usability problems leading to accidents (or extreme training or testing 
avoiding them). Further examples are available in Casey (1998)

The USS Vincennes incident
The US Airways Flight 1549 that landed in the Hudson River
A Tomahawk launch system that was cancelled for not meeting response time when the problem 
was known (Chipman and Kieras 2004)
Task analyses of various army projects that led to saving hundreds of millions of dollars across 
multiple projects (Booher and Minninger 2005)
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worthwhile for an organization to keep track of misses and near misses to  
accidents, as NASA does for air traffic control in the NASA Aviation Safety 
Reporting System (asrs.arc.nasa.gov/).

4.3  �The Need for Better Shared Representations

Another problem is the usability of the shared representations of users, tasks, and 
technology. Shared representations are documents about the design (e.g., types of 
users and tasks) that are shared across groups of stakeholders. The managers, 
designers, and implementers can come from different intellectual backgrounds, and 
have different assumptions. There is a need to translate some representations to 
“engineer speak,” and perhaps in the other direction. There is a young literature on 
how to prepare knowledge about design aspects to share with other team members. 
This is a problem noted by Pew and Mavor (2007), where it is called shared repre-
sentations, and work remains to make sure the shared representations are as usable 
as they can be.

4.4  �Open Problems

We can now revisit the questions in Table 1.4, presented here as Table  4.2. The 
responses are included in the table for convenience of reading and presentation.

As the material in Table 4.2 notes, there remain open problems with applying this 
approach. The degree of detail required for the documents will vary across particu-
lar op centers, and across different technologies, and thus should be adjusted accord-
ingly to the needs of the proposed system. The risks that arise in the use of particular 
op centers will vary with the domain that the op center is supporting. This approach 
does not guarantee a perfect or even a better system, but it overall reduces risk and 
the probability of system failures.

4.5  �Ways to Learn More

Designers of control rooms will need to know more about design and about opera-
tors than what is covered in this book. They will need to know more theory about 
design and human users, and they will need more details about the situations and 
operators and tasks that they are designing for. This appendix notes a few ways to 
learn more. These ways include reading, discussion, and formal and informal edu-
cation. An hour a week of learning is not much in a week, but in a year, it can change 
how you think.

4.5  Ways to Learn More

https://asrs.arc.nasa.gov/
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Table 4.2  Questions addressed by this book

Process performance

1. Which user interface features reduce user stress and improve and maintain level of 
performance?

Situation awareness (SA) describes the operator’s awareness of system state, and designs 
should support the cognitive processes used by operators to build up SA. Reducing cognitive 
load will reduce user stress, improve performance, support better SA, and help maintain 
performance over time. Cognitive load depends on multiple aspects of an interface, so 
matching the user, system, and tasks with the overall design will reduce stress and generally 
improve performance. Doing so is done by matching the user’s capabilities with the interface

2. Which user interface design factors mitigate performance degradation (speed, accuracy) 
during the execution of detailed procedures for troubleshooting?

The factors noted in answer 1 to start. Furthermore, designers should advocate for minimal task 
interruptions when possible, and support multitasking with helpful features when it is required. 
Developing and supporting SA in operators will also help reduce performance degradation by 
allowing high performance to be achieved while minimizing wasted cognitive resources
High-throughput reaction times

3. Which features in fast and complex interfaces impair or enhance user reaction time and 
accuracy?

The factors are detailed in Chaps. 2 and 3. Briefly, make perception of the task and task 
features quick, easy, and properly prioritized. Ensure that information presentation supports 
the mental model of the operator so they can have better SA. Improve the visual design and 
reduce cognitive load by reducing the type and number of substeps, and making the output 
able to be processed faster and more accurately by the operator

4. What are the reaction time and accuracy for a user to react to an alert and respond to the alert 
with the correct actions using the task user interface? What are the upper limits of the number 
and speed of alerts before performance degrades?

We have ways to estimate the time to handle an alert. The keystroke-level model (Card et al. 
1980, 1983) can be used to estimate response times. The upper limit must be based on an 
interface specified in enough detail to make predictions. The field does not have, to our 
knowledge, tools to fully compute the upper limit, because the limit would depend on many 
things that we don’t yet have fully computational or algorithmic equations for

5. What are the reaction time and accuracy for a user to distinguish between levels of criticality 
using the task user interface?

This time measure would depend on the perceptual display, the relatively frequency of signal 
and noise, and the payoffs between signal and noise. We do not know of an equation to 
compute this in general, but an equation could be created for fixed measures and validated 
empirically with operators

6. What are the effects of time-on-task (i.e., work shift length) on reaction time and accuracy for 
a user using the system?

In general, with practice, reaction time goes down (Ritter et al. 2014; Chap. 5), but fatigue 
goes up. There are formulas to compute the general effect of fatigue (FAST; Hursh et al. 
2004). They are validated but require some examination and understanding before use in a 
given situation.

(continued)

4  Conclusion and Final Comments
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4.5.1  �Readings to Learn More

Designers wanting to learn more about design and operators can most easily read 
more. There are numerous books on how operators (as people) think and learn. A 
good book of this type is Anderson’s Cognitive Psychology and Its Implications 
(2020). There are similar books for learning about perception (Sekuler and Blake 
2005). Norman’s (1988/2013) book helped start the area of human–computer inter-
action but does not provide a unified theory of how to support design. It makes the 
case for paying attention to users and provides food for thought. As design moves in 
different directions, related books and textbooks can be found on broader topics 
such as the effects of emotions on our interactions with systems (Norman 2004).

There are also books describing operators in terms that support design. Our 
favorite is Foundations for Designing User-Centered Systems: What System 
Designers Need to Know about People (Ritter et al. 2014), but textbooks by Wickens 
(e.g., Wickens et al. 2012) and Lewis and Rieman (1994) are also useful. If detailed 
knowledge about users is required, one can try to find the information in Boff and 
Lincoln’s (1988) large compendium, but often the designer will be driven to reading 
more specialized papers, asking experts, running a study, or making an educated 
guess based on similar circumstances. Finally, the book Designing for situation 
awareness (Endsley et al. 2003) provides further useful advice. It will be familiar 
because we use it extensively in this book.

We also recommend Sommerville’s (2015) Software engineering (10th ed.), and 
particularly the chapters on reliability engineering (Chap. 11), systems engineering 
(Chap. 19), and systems of systems (Chap. 20). While not directly addressed in this 
book, Baxter and Sommerville’s work on socio-technical systems brings a new per-
spective on the holistic design by integrating organizational change and system 
development into a unified framework.

There are also two final topics that we did not broach in this book: automation 
and the related topic of how operators use automation. Automation generally refers 
to the execution of some task that was formerly performed by a human. Eventually, 

Table 4.2  (continued)

Interface generalizability and individualized effectiveness

7. Which interface design elements vary and do not vary in effectiveness across various 
demographics?

Design elements will vary based on previous experience with the design elements. The design 
elements would have to be specified to fully answer this question. In general, designers 
should know the operators’ tasks and make it easy to support each stage of SA by matching 
operators’ capabilities with the interface

8. Which of the above questions are affected by age and prior education?
All of these questions are affected by age and prior education. Typically, people become 
slower with age with raw response time, but this is typically not seen due to additional practice 
that contributes to lower response times as well as more knowledge which leads to better 
strategies and less search and problem-solving. Prior education that gives practice on the task 
or related tasks decreases time. Education that teaches useful theory will lead to better 
strategies that will in time, but perhaps not immediately, reduce response time. Further reviews 
are available in the cognitive and aging literature, and in the expertise literature, respectively

4.5  Ways to Learn More
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some tasks will become fully automated with no future human interaction, at which 
point, these are simply machine tasks (Parasuraman and Riley 1997).

Designers should be careful not to rush into automating tasks, particularly for com-
plex tasks that will continue to rely on human input. Under perfect conditions, auto-
mation seems like an easy way to reduce the workload for your operators; however, 
when faced with the complications that reality brings, you can quickly run into issues.

Operators use their trust in the automation to know how to use the automation 
and to then perform their tasks successfully with automation doing part of the task. 
Working with automation that is hard to calibrate can end up requiring more effort 
because the operator will need to monitor the automation to ensure success. Optimal 
performance can only be achieved when designers instill the proper amount of reli-
ance and trust on the automated systems (Lee et al. 2004). The mental model of how 
the automation works and when it works should be accessible and easy to learn and 
easy to use. The process for automating tasks in complex systems is difficult and 
outside the scope of this book, but we recommend reading Lee et al.’s (2004) article 
Trust in Automation: Designing for Appropriate Reliance and Parasuraman and 
Riley’s (1997) article Humans and Automation: Use, Misuse, and Disuse if you 
wish to learn more. We also recommend reviewing NASA’s Automation Interface 
Design Development project (https://techport.nasa.gov/view/23597).

4.5.2  �Reading Groups

One way to solidify knowledge from reading and to learn information not com-
pletely codified is to participate in a reading group. Sometimes these groups appear 
as graduate courses. They can also be organized around a work group or, better, 
across work groups. They take time, but a group can help digest a book, and even 
the social loafers who do not read the material can learn something. It is also a way 
to build a shared theory of design in a workplace.

4.5.3  �Continuing Education

Finally, the most solid but expensive way to learn more is to take courses. Some will 
be available at local universities, and some are available online. Coursera and Lynda 
offer various courses that are related to these topics.
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�Appendices

�Appendix 1: Detailed Example Problem Space—The Water 
Detection System (WDS)

Here is an example autonomous, asynchronous system that is used as a running 
example in this book. The goal of this fictitious use case is to enable readers to con-
sider an example case that is typical of such op centers. The system description 
includes an overview, system architecture, key features, example day in the life (i.e., 
scenarios), typical issues, user types, and task analysis. Each of these could and 
should be expanded in more detail for real op centers. A set of these descriptions 
provides a solid basis for designing with the operator in mind. The initial draft of 
this system description has been created primarily by Mark Foster of L3Harris 
Technologies, and we have extended it over time. It is also a complete enough 
example of a remote autonomous, asynchronous system to be reused for other proj-
ects and courses.

�Overview

SatCorp is an imaginary corporation that builds user interfaces for a unique class of 
command and control systems. These systems, while all unique, have many features 
that are consistent throughout their designs. The fictitious use case involves building 
a user interface to command and control a remote Water Detection System (WDS) 
that is based on an autonomous robot. It receives commands once per day and 
reports back at the same time. This WDS will be deployed to Mars in an attempt to 
detect pockets of water underneath the surface or traces of water in the soil on the 
surface.

The WDS will take 5 years to develop and test before it is ready to deploy. Once 
ready, it will be sent to Mars as part of a larger manned mission. Due to space 
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constraints on the manned vessel, the WDS will be disassembled before launch. It 
will be the responsibility of the team on this space mission to assemble the WDS, 
perform some initial checkout of the system, and ultimately deploy the WDS on the 
surface of Mars. During the assembly and checkout of the system, the team will 
command and control the system via a laptop with a local LAN connection to the 
WDS. The system checkout of the system is intended to exercise the different parts 
of the system to make sure they are still operational. Spare parts will be shipped 
with the system in case anything is damaged in transport.

Once deployed on the surface of Mars, the WDS is expected to a have a 10-year 
mission where it is solely commanded and controlled by NASA’s operation center. 
The operators in NASA’s ops center are on duty 24/7. The WDS is only one of 
dozens of systems they monitor. Decision-making with regard to how the WDS is 
utilized comes from the scientists in the Program Office, which funded the 
development of the WDS. It is the Program Office’s charter to find water sources in 
other locations throughout our solar system.

This example (and associated material) ignores the communication delays with 
Mars because most op centers do not deal with such long time delays in 
communication media (although they will see delays in reports from other systems).

�System Architecture

The WDS is comprised of several elements. These elements are listed with a brief 
description of each. Figure 1.4 (Chap. 1) diagrams the WDS and its connectivity 
to Earth.

Main Control Element (MCE)

The MCE acts as the brain in the field. It is the responsibility of the MCE to facilitate 
commands from Earth and collect data and status to send back to Earth. More 
specifically, when commands are sent to the WDS, the MCE oversees the execution 
of those commands. Commands that are scheduled for a future date will reside in 
the MCE until it is time to execute such commands. Commands for immediate 
execution will be executed upon receipt. Depending on the command type, the MCE 
is tasked with powering on the necessary elements and forwarding subcommands to 
those elements. All the while, the MCE is also constantly polling the other elements 
for status. In addition, the MCE provides storage for water analysis data from the 
Rock and Sand Exploration Element and Deep-Water Detection Element. When the 
WDS sends data home, it is the responsibility of the MCE to bundle element status 
and water analysis data, perform compression and encryption, and then forward that 
data when appropriate to the Communications Element.
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Communications Element (CE)

The CE contains the antenna for communicating with Earth. This antenna is single-
duplex and therefore can only receive or transmit at a given time. Due to this 
limitation, the antenna is by default in receive mode to receive commands from 
Earth. The team on Earth must command it into transmit mode to transmit data 
home. Typically, the team will schedule several transmit commands per day for 
updates from the WDS, but will only send commands to the WDS about once per 
week under standard operating procedures.

Autonomous Navigation Element (ANE)

The ANE controls the components of the WDS that are responsible for moving the 
WDS from one location to another. The ANE includes cameras for taking pictures 
of the terrain around it and has special image detection algorithms for identifying 
obstacles it must navigate around. The ANE can be commanded to move from point 
A to point B, and on its own determine the best route to get there, which may not be 
a straight line if obstacles are in the way. In addition, this element controls the drive 
motor, wheels, and steering functions. It also controls the emergency assist wheels 
and arms that enable it to get out of precarious physical situations.

Rock and Sand Exploration Element (RSEE)

The RSEE controls the shovel-like apparatuses that the WDS is equipped with. It 
also controls the cameras and sensors that are used to evaluate a segment of sand or 
rocks. Data recorded from this element are forwarded to the MCE for storage until 
being sent back to Earth for analysis.

Deep-Water Detection Element (DWDE)

The DWDE controls the drill and soil probe the WDS uses to search for water 
underneath the surface. When commanded to do so, the DWDE will drive the probe 
into the ground to gather water analysis data. In cases where the ground is too solid, 
the DWDE will remove the probe and use the drill to loosen the ground underneath 
the surface. After drilling, the probe is reinserted into the ground to continue 
gathering water analysis data. Like the RSEE, data recorded by this element are 
forwarded to the MCE for storage until being sent back to Earth for analysis.
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Power Generation Element (PGE)

The PGE consists of solar panels and the system batteries. The PGE has a set of 
solar panels that are distributed around the WDS. These panels are used to generate 
power and charge the system batteries. The solar panels can rotate and tilt as needed 
to maximize sun exposure. The PGE is responsible for calculating the ideal rotation 
and attitude.

�Key Features of the WDS

The following sections outline the key features that the user interface must 
accommodate.

Status

All six system architecture components listed above contain numerous status items 
that must be reported on a regular basis. Status items can range from environmental 
measures, such as pressure, temperature, and humidity, to element-specific status 
such as current speed (mph or kph) for the ANE.

One of the roles of the MCE is to periodically poll all the components for their 
latest status values. The MCE then stores all these values until the next opportunity 
to transmit data to Earth. All WDS components have redundant hardware with A 
and B sides for each element, so the MCE polls only the A or B side of a given 
component, depending on which side is currently booted. If the MCE attempts to 
poll a given component that is unresponsive, the MCE can power cycle that 
component or even switch sides of that component. This usually only occurs after 
some threshold of unresponsive polls. This threshold is configurable.

Event Logs

Like reporting status, each component is recording an event log of the activities that 
component is executing. When a given component’s log file reaches a given 
threshold, that component will start a new log and transfer the old log to the 
MCE. The MCE will send all the logs home at the next opportunity to transmit data 
to Earth. The command and control GUI back on Earth will consolidate these logs 
into a single system log, but typically needs to filter out element-specific details for 
display.
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Configuration

Each element also maintains a set of configuration fields. For example, the MCE 
may be configured to power cycle a given component after a certain number of 
unresponsive polls by the MCE. This value is configurable under some scenarios 
because it may be appropriate to power cycle if three polls are unresponsive, whereas 
others may call for a wait period of ten polls without responding. In addition, 
whether to power cycle a component or power cycle a component and switch sides 
is another configurable feature of the MCE. Another common configuration field is 
which side of a component to use. The MCE holds a field for each component, such 
that when commands are received from Earth, the MCE knows which side (A or B) 
of each component to power on to execute the commands.

Commands

Although commands are always sent to the MCE, each component supports a set of 
its own commands. For example, a Transmit command that is scheduled for 1 week 
from the current day would reside on the MCE’s schedule for a week. Then, shortly 
before the Transmit command, the MCE would power on the CE and pass it the 
Transmit command and a bundle of data to transmit. At the scheduled time, the CE 
will execute the transmission of the data bundle back to Earth.

Redundancy

The WDS system will be deployed to Mars for a 10-year mission. During those 
10 years, there will not be any maintenance missions, so every part of the WDS 
must have built in redundancy to assure the system can last 10 years. Except for the 
PGE’s solar panels, every component has both an A and B side. For example, the 
MCE has two processor boards, one known as the A side and one known as the B 
side. The system only uses one at a time, but can be configured to use either side. 
Furthermore, each side of a component has its own status. For example, the RSEE 
uses advanced moisture sensors to detect traces of water in the soil. In this case, the 
A side has a set of moisture sensors, and the B side has a completely different set of 
moisture sensors. Similarly, the network that connects all these components is also 
completely redundant, so there are A and B networks.

�Day in the Life

A day in the life of the WDS is often unique. Table A1.1 shows a schedule for an 
example 24-hour period (24 hours per day, scaled from the Martian cycle). For the 
purpose of this use case, the Mars daylight hours will mirror those of Eastern 
Standard Time.
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Table A1.1  Example day for WDS

Time Activity

00:00–
06:00

System idle time to avoid draining batteries below emergency shutdown threshold

06:00–
06:15

Receive the following Immediate commands from Earth:
 � * Relocate to the Tarakan Crater
 � * Survey the surface of the Crater
 � * Find Location of the Tarakan Crater Low Point
 � * Relocate to Tarakan Crater Low Point
 � * Probe the Tarakan Crater Low Point
Because these commands are “Immediate” commands, the MCE will begin executing 
them in the order they were received. The MCE will maintain a queue of these 
commands until they are all complete

06:15–
07:25

The MCE begins the first Relocate command. It starts by powering on the ANE. The 
ANE takes about 4 min to boot. Once booted, the MCE passes the command to the 
ANE. The ANE begins calculating its navigation plan to the Tarakan Crater

06:25–
07:25

The ANE drives the WDS towards the Tarakan Crater

07:25–
07:30

The ANE is continually imaging the terrain and detects an obstruction in its path to the 
crater. The ANE stops driving and recalculates a new navigation plan

07:30–
07:35

The ANE continues driving towards the Tarakan Crater

07:35–
07:40

While driving, the MCE powers on the CE, as there is a scheduled Transmit command 
for 08:20 today. The CE takes about 3 min to boot, but the MCE has several GB of 
data that will take about 30 min to bundle, compress, encrypt, and copy over to the 
CE. All of this will occur in the background while the system is doing other activities

07:40–
07:50

The ANE finishes driving to the crater and locates itself in the centermost point of the 
crater

07:50–
07:55

The MCE receives events from the ANE that the Relocate command is complete. The 
MCE then begins the Survey command. It starts by powering on the RSEE. Even 
though the Relocate command is complete, the MCE does not power off the ANE, as 
the MCE knows it will need the ANE powered up to conduct the Survey command. 
Once the RSEE has booted, the MCE sends both the RSEE and ANE the Survey 
command

07:55–
08:20

The two elements then begin executing their commands in tandem. A survey is 
conducted by the ANE slowly navigating the WDS over a given area, while the RSEE 
continually scoops sand and rocks to gather water analysis data. Both elements are 
logging events while executing their commands. The MCE will monitor both their 
event logs to make sure they are staying synchronized. Due to the size of this crater, 
this set of commands will take up much of the day

08:20–
08:30

The CE executes a Transmit command
The Survey continues

08:30–
12:30

The Survey continues and completes

12:30–
12:40

The MCE finishes receiving the water analysis data from the RSEE and the 
corresponding events such that the MCE knows the RSEE has completed the survey. 
The MCE shuts the RSEE down

(continued)
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�Example Issues

The WDS is designed to autonomously handle issues that arise, but human 
interaction is required on a regular basis. Many of these tasks are simple maintenance 
and acknowledgement of warnings. For example, when batteries are low, the 
operator is required to acknowledge the low battery threshold. No action is required 
other than clearing the notification. Occasionally, however, the WDS will face an 
urgent problem that requires human input. These scenarios are rare, so the operator 
typically has limited training in how to address the issues. Here are some examples:

Problem: The WDS is navigating in the crater and gets stuck.

The operator from Earth must manually drive the WDS and control the ANE. The 
typical operator is not trained in this task, so the supervising manager must 
take control. The operators need to escalate the issue quickly because the 
WDS witnessed unexpected terrain. The mappings of Mars must be updated 
appropriately.

Problem: Dust storm prevents batteries from charging.

The MCE cannot task all the scheduled commands for the day. The CE alerts the 
NASA operators of the low battery status. The operator must re-task the day’s 

Table A1.1  (continued)

Time Activity

12:40–
12:45

The MCE kept the ANE power up and now passes the Find Location command to the 
ANE. The ANE uses its terrain data to determine the lowest point of the crater. Via 
events the MCE is notified the ANE has completed the Find Location command

12:45–
12:55

The MCE passes the next Relocate command to the ANE. The ANE drives the WDS to 
the low point of the crater

12:55–
13:10

The MCE sees the ANE has completed the second Relocate command and powers 
down the ANE. The MCE then powers up the DWDE. The DWDE takes about 8 min 
to boot up. Once booted, the MCE passes the Probe command to the DWDE for 
execution

13:10–
17:40

The DWDE executes the Probe command but encounters a lot of solid rock. This 
forces the DWDE to alternate between Probe and Drill frequently. After over 4 h of 
mostly drilling, the batteries have taken a significant hit, because the solar panels 
cannot keep up with the power needs of the drill

17:40–
19:35

A (configurable) low battery threshold is reached that causes the MCE to take over and 
pause the Probe command. The MCE powers down the RSEE and transitions into an 
idle mode to allow the system to charge

19:35–
22:00

The sun has set, and system can no longer charge the batteries again until the next day

22:00–
22:50

The MCE powers on the CE, as there is another scheduled Transmit command for 
22:40 today. While the batteries are still not charged enough for a drilling activity, the 
battery threshold for a Transmit is much lower. Batteries are sufficient for a Transmit 
command and therefore the system successfully transmits at 22:40

22:50–
23:59

System resumes idle mode. This will continue until the next day’s sunrise
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commands because the ANE would use all the remaining power. This task is 
simple and can be completed by a novice employee but will require review by 
a supervisor.

Problem: The op center’s wall of screens has many other systems represented at the 
same time.

If the WDS has a problem, it might take a few days for the engineers to remote 
in to fix the issue. Therefore, the overview screen will remain in a degraded 
(fault-shown) state. The problem arises when something else goes wrong on 
the system. For example, while at low power, a piece of equipment might 
overheat and be in danger of catching fire. The operators need to be alerted to 
this new degraded status and respond quickly.

�Stakeholder Analysis

When designing a system, it is worthwhile keeping the stakeholders, the audience 
for the system, in mind (Boehm and Hansen 2001; Pew and Mavor 2007). 
Stakeholders for the WDS and other complex systems will have a similar structure 
as shown in Table A1.2. Direct users (i.e., operators), funders, and other stakeholders 
will each have their own requirements for the project. The stakeholders identified 
for the WDS are described in the rest of this section.

NASA 24/7 Operators

Primary operators (or users) of the system are those who perform routine activity 
monitoring, respond to low-level alarms and events, and identify issues that require 
outside performance. They want a task that is within their knowledge, skills, and 
abilities and provides them with job satisfaction.

Table A1.2  List of primary stakeholders and a brief overview of their role in the project

Stakeholder Role

NASA 24/7 operators Lower-skilled workers that handle routine tasks on various 
systems within the op center

Operation/command center 
supervisors

Experienced managers that handle complex tasks and 
monitor op center performance

System developers and engineers Experienced engineers that build and maintain the system
NASA Program Office scientists Highly experienced project managers that direct the WDS 

actions and use the data that is collected
Project funders and other 
high-level stakeholders

Outside managers responsible for ensuring project success 
and making high-level project decisions

On-site astronaut install team Extremely skilled operators that will deploy and troubleshoot 
the system (if necessary)
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The primary objectives of the 24/7 operators are to monitor the WDS for anoma-
lies or issues and maintain communication with the WDS. It is the role of the opera-
tors to plan sets of transmit commands for the WDS system (which requires 
coordination with third-party communication systems) and send those commands to 
the WDS. Additionally, they must monitor the WDS interface to verify that the 
WDS has transmitted data to Earth when it is scheduled to. Upon receipt of this 
data, the operators perform a cursory review of the data to determine if there are any 
system issues that need to be addressed. In most cases, upon discovering a system 
issue, the operators will contact the Program Office or Engineering Development 
team to troubleshoot the issue. Lastly, the operators are expected to respond to 
requests for information regarding the WDS. At any time, if the Program Office or 
Engineering Development team needs some data points from the system, the opera-
tors should be able to retrieve that data for them.

The risk of overall project failure due to operator abilities and needs is relatively 
more difficult to specify due to the delay between operator feedback and interaction 
with the system. The most common sources of major failure will likely be due to 
unforeseen issues that are preventable by experienced (or lucky) operators who can 
react to the system beyond the pre-determined alarm and event conditions. For 
example, a system overheat event can lead to a positive feedback loop of further 
heating of other components that destroys key components. This could plausibly be 
detected by a perceptive operator, but system alert priorities might not directly 
reveal this as a critical issue until it is too late.

A source of “minor” project failure could be through overall issues with design 
that lead to high error rates that increase project cost and reduce the perceived 
reliability of the system. Although an operator taking the wrong action (e.g., a 
command scheduling issue is first reported to the system’s development team before 
calling Program Office scientists) is a relatively minor issue at first, high error rates 
from operators increase the costs of the project and reduce the overall effectiveness 
of the operation center.

The environment the operators work in is a command center that is staffed 24/7 
with approximately 15 workstations. It is typically staffed with about 15 operators 
during the day and 10 operators at night. The primary environment is a “dim” room 
with desks in the center (i.e., not along the walls). The front wall, which all the 
desks face, is a wall of screens. The back wall, which no one faces, is a secondary 
wall of screens. Both walls of screens consist of multiplexed, disparate displays of 
40–100 systems.

Operators alternate in 12-hour shifts, with a day shift from 7 am to 7 pm and a 
night shift from 7 pm to 7 am. The night shift operators are typically former enlisted 
personnel, hence generally not college educated, and mostly in their early twenties. 
The day shift workers typically have a more advanced skill set than the night shift 
operators. The average age is greater compared to the night shift. The day shift 
operators tend to have more system knowledge and can handle slightly more 
advanced troubleshooting or analysis than the night shift.
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Operation/Command Center Supervisors

Supervisors within the command center ensure operator performance and respond 
to high-level alarms and events upon notification by the primary operators. Like 
operators, the supervisors want job satisfaction and a task that is within their 
abilities.

The supervisor’s use of the system will share mostly the same set of risks as 
operators; risks to project failure will likely be the result of unforeseen issues that 
could be successfully caught with experienced or skilled workers. Supervisors act 
as the interface between the high-level management from NASA research scientists 
and the ground-level operators that directly interact with the op center systems.

System Developers and Engineers

The Engineering Development team is a cross-discipline team that has developed 
the WDS over the past 5 years. During the development phase, the WDS program 
consisted of hundreds of engineers; however, the program has now been reduced to 
essential personnel because the development is nearly ready for deployment. Most 
of the remaining personnel are software engineers, systems engineers, and 
integration/test engineers. This team’s primary responsibility is to resolve bug 
tickets regarding the WDS software. This team is continually integrating and testing 
the latest software. Once a software release is ready, it will be loaded to the WDS, 
whether the WDS is still being used for training at NASA or if it has been deployed 
on Mars. In addition, any issues or anomalies with the system are investigated by 
the Engineering Development team in their development lab.

The developers want mission success (as measured by other stakeholders), an 
easily programmed system, clear instructions, and to generally avoid “hard mental 
operations,” leading to difficult to program constructs, when possible.

Developers will need to able to create the system within the constraints of the 
other stakeholders while also meeting their funding and time constraints. Besides 
these “common” risks that engineers should be familiar with, the other major risk of 
project failure facing developers is ensuring that all the needs of the system and 
users are met. The example of a major failure described under “operators” would 
partially be the fault of the developers (for not identifying the tasks and needs), the 
Program Office scientists (for not providing an adequate list of tasks and needs), and 
possibly the op center supervisors, depending on the circumstances. However, the 
developers should make strides to gather this information or risk having their 
reputation be negatively affected (whether or not the failure is directly related to 
their decisions).

The Engineering Development team works primarily in a large lab with the same 
equipment that will be or has been deployed on Mars. This enables the team to test 
the software releases and procedures before releasing updates. The team is available 
to address any issues that arise after deployment. The Program Office scientists 
relay the issues that are presented by the NASA operators. Occasionally the 
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Engineering team can interface directly with NASA to get their feedback on the 
WDS software, but this is usually limited. Therefore, the team must prioritize tasks 
based on Program Scientists’ feedback. The Engineering team tests software updates 
with their mock hardware.

NASA Program Office Scientists

The Program Office scientists are highly educated individuals whose charter is to 
find water on Mars. This team is formally the customer for the Engineering 
Development team and, while colleagues of the operators, receives customer-like 
status when in the operation center. This team owns the decision-making on 
everything from design details to live mission judgment calls. They are the 
consumers of the water analysis data received from the WDS. They will use this 
data to generate reports for upper management at NASA and politicians. Their work 
heavily influences the direction of our country’s Space Program. This team decides 
where the WDS should navigate on Mars and when the WDS should attempt to 
gather more water analysis data.

They need to be able to complete all necessary technical tasks (which are 
assumed to be known to the developers and engineers for the system). They also 
need to be able to interpret the data from the WDS, input and alter commands, and 
interact with the WDS via the same GUI as the operators that work within the 
operation center.

Program Office scientists should be able to provide an adequate set of 
requirements for the system or risk finding out that their needs are unable to be met 
once the WDS arrives on Mars.

The Program Office scientists interface with the WDS via the same command 
and control GUI as the 24/7 operators. They frequent the operation center during 
business hours and especially around the time when transmit commands are 
scheduled with the WDS. While their primary expertise is in the science behind the 
water analysis data, they are fairly well versed with the WDS, as most of them have 
been a part of this program during the development of the WDS. Furthermore, most 
of them have experience working on similar systems deployed to other parts of the 
solar system.

Project Funders and Other High-Level Stakeholders

These are various individuals and organizations that oversee the project and provide 
funding for the work. They will be responsive to the assessments from the Program 
Office scientists, explanations from the developers, and requirements from the 
supervisors within the operation center. However, they also have their needs and 
desires for the project. They may require design features based on a naïve 
understanding of the project’s technical and scientific needs. For example, they may 
prefer too great a consistency across projects (e.g., a common event log button 
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across all systems), the use of incompatible software or hardware, or to prioritize a 
task (and interface elements) that does not correspond to other stakeholder needs. 
They also may provide necessary restrictions on work due to classification or other 
regulations that limit otherwise valuable sources of collaboration and feedback. 
They often want to have mission success with reduced resource costs.

As the funders of the program, they will have their own expectations for project 
success. These expectations may differ from the assessments made by the Program 
Office scientists, system developers, and other stakeholders. Many of the risks to 
system failure will come from lack of communication or miscommunication 
between the stakeholders.

NASA Astronaut Install Team

The astronaut install team is the last primary stakeholder for this project. They are 
responsible for assembling the WDS, conducting pre-deployment tests on the 
system, and launching it (thus releasing it from their responsibilities). This primarily 
provides technological requirements (e.g., the device must be able to be assembled 
with the resources available to the astronauts). Besides the technological 
requirements, they will need to be able to interact with the ground team to 
troubleshoot any issues or pass off the machine for remote troubleshooting via the 
operation center.

The installation environment for the installers is obviously Mars. Therefore, their 
time is very limited as their mission is bounded by the resources (i.e., air, water, 
food, fuel) they have with them. Their energy levels are expected to be perpetually 
compromised after the extended time in space required to travel to Mars. Due to the 
annual meteor storm on the sector of Mars where the Program Office desires the 
WDS to be deployed, the install team will not have communication with Earth 
during the installation.

Summary and Lessons

Each project will have multiple stakeholders. The list of relevant stakeholders is not 
simply limited to users that directly interact with the completed system or the 
implementers of the system. System success requires integration of the needs of the 
various stakeholders into a cohesive project plan that addresses their needs, 
capabilities, and abilities. This example system also has a wide range of stakeholders. 
Like other systems, there can be conflicts and trade-offs between their goals.
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�Task Analysis for 24/7 Operators

The hierarchical task analysis developed for the NASA 24/7 operators provides a 
clear set of the most important tasks performed by the operators. The interface of a 
system should be designed to match the needs and capabilities of the stakeholders 
that are impacted by the interface. We focus on the 24/7 operators to provide a 
blueprint for the tasks that need to be accomplished using any interface designed for 
the WDS system.

Table A1.3 gives an overview of the tasks described by the task analysis. 
Following the table is the detailed view of the tasks showing subtasks and other 
components. This task list would, through expansion, turn into an operation manual 
for any usability studies and a checklist for performing a cognitive walkthrough of 
the interfaces (Polson et al. 1992).

The six tasks shown in Table A1.3 are an overview of the responsibilities for the 
operator of the WDS within an op center. Each task is decomposed into subtasks to 
identify the key steps and decisions taken by an operator while completing the task.

Task 1: Periodic comprehensive review of WDS system
Assumptions: WDS periodic update takes 300 ± 30 seconds.

	1.	 Identify if a comprehensive review of the WDS is necessary.

	(a)	 Find and check the WDS review schedule.
	(b)	 Compare time for the scheduled review and the current time.

	(i)	 If review is not necessary, end task.
	(ii)	 If review is necessary, proceed to 2.

	2.	 Check the WDS update time, and ensure that there is a period of at least 3 minutes 
before the next update.

	(a)	 If time before the next update is insufficient, postpone until after next update 
end task.

	(b)	 If time before the next update is greater than 3 min, proceed to 3.

	3.	 Perform the WDS periodic review.

	(a)	 Complete the WDS periodic review checklist.
	(b)	 Record the findings of the checklist in the appropriate location and 

end task.

Table A1.3  Overview of the tasks for the NASA 24/7 operator for managing the WDS

Task 1: Periodic comprehensive review of WDS system
Task 2: Repair or respond to any alarms following a WDS data update
Task 3: Ensure WDS transmits data to Earth per schedule and troubleshoot any delays
Task 4: Ensure that WDS maintains a regular, constant supply of commands throughout use
Task 5: Responding to information requests regarding the WDS
Task 6: Respond to other events, alarms, and alerts that occur in non-WDS systems
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Task 2: Repair or respond to any alarms following a WDS data update

	1.	 Identify the cause or causes of the alarm(s).
	2.	 Fix high-priority alarms first.

	(a)	 If alarm origin is PGE, proceed to 2-a-i.
(i)	 Check expected charge and determine if expected charge will bring bat-

tery above the acceptable threshold.
(ii)	 If charge will resolve alert, contact NASA Program Office scientists 

and report overtasking of battery then return to 2.
(iii)	 If charging is low or nonexistent, contact WDS Development Team and 

report battery charging failure then return to 2.
(iv)	 If issue is unknown, contact op center supervisor and report unknown 

issue with PGE then return to 2.

	(b)	 If WDS requires manual navigation control, proceed to 2-b-i.

	(i)	 Contact op center supervisor and report WDS request for manual 
control.

	(ii)	Return to step 2.
	3.	 Fix low-priority alarms and latching alerts.

	(a)	 Determine cause of latching alert.

	(i)	 If latching alert originated from WDS, proceed to 3-a-i-1.

	1.	 Find WDS element that sent the latching alert.
	2.	 Identify the command schedule file used during the alarm.
	3.	 Report the command schedule file, WDS element, and status data associated 

with the element to the NASA Program Office scientists.

	(ii)	 If latching alert did not originate from the WDS, proceed to 3-a-ii-1.

	1.	 Report the latching alarm origin and any other associated information to the 
op center supervisor.

	4.	 Resolve any event notifications.

	(a)	 Identify special event priorities, if any, that have been requested by the 
NASA Program Office scientists or op center supervisors.

	(b)	 If new event notifications match special event priorities, proceed to 4-b-i.

	(i)	 If special event priorities include action plan for event occurrence, fol-
low instructions from the action plan.

	(ii)	 If no action plan is present, report event occurrence and associated data 
to the program that placed the special event priority.

	(c)	 If no special priority events are found, dismiss all new events.

	5.	 If all alarms, alerts, and events are processed, end task.
Else, return to 2.
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Task 3: Ensure WDS transmits data to Earth per schedule and troubleshoot 
any delays

Assumptions: The scheduled update timeframe includes a margin of error.

	1.	 Find the WDS interface and expected time of next update.

	(a)	 If the update has not loaded and the update is not due,

	(i)	 End task, and resume other duties.

	(b)	 If update has loaded, ensure the next update time is shown and end task.
	(c)	 If the update is not here and the update is due, check the margin of error for 

the update schedule.

	(i)	 If within the margin of error, perform other duties until margin of error 
passes, and end task.

	(ii)	 If update has not appeared after margin of error, continue to the next step.

	2.	 Follow the troubleshooting protocol for a missing update.

	(a)	 Check if the file was received.

	(i)	 Go to operation center event log.
	(ii)	Determine if a file update event is found within update time frame within 

the op center event log.

	1.	 If file not received, check for connectivity issues between satellite and oper-
ation center.

	(a)	 If there are connectivity issues, call Comms team, inform of missing file, 
and end task.

	(b)	 If there are no connectivity issues, call WDS Development Team, inform 
of unknown cause of failed data upload, and end task.

	2.	 If file was received, determine cause of failed update via event logs.

	(a)	 Check operation center event logs and look for an application error.
	(b)	 Check operation center event logs and look for an error processing file.
	(c)	 If either is found, call EIT, report the error, and end task.

Task 4: Ensure that WDS maintains a regular, constant supply of commands 
throughout use

	1.	 Determine if WDS needs new commands within the next 10 min.

	(a)	 Find the WDS commands details module.
	(b)	 Check the latest WDS command file’s end time.
	(c)	 If the end time is more than 10 min away, end task.
	(d)	 If end time is within 10 min, move on to 2.

	2.	 Receive (or acquire) the new command file from NASA Program Office 
scientists.
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	(a)	 In the command details module, find the section showing commands waiting 
to be uploaded.

	(b)	 If no commands are present, call NASA Program Office scientists, report 
lack of commands, and end task.

	(c)	 If new commands are present, proceed to 3.

	3.	 Set the new command file to be uploaded to the WDS.

	(a)	 Verify that new command file is ready for update.
	(b)	 Schedule command file update.

	4.	 Verify command file is sent and received by WDS.

	(a)	 Wait until next update from WDS.
	(b)	 Check Comms event log for a successful command file download during the 

last update cycle.
	(c)	 If event is found within correct time window, end task.
	(d)	 If no event is found, call op center supervisor, report findings, and 

end task.

Task 5: Responding to information requests regarding the WDS

	1.	 Identify the element or module associated with the information request.
	2.	 If event related, go to the location of the event history for the element or module.

	(a)	 Isolate the requested event history.
	(b)	 Transmit the requested event history to the NASA Program Office scientists.

	3.	 If related to current status for the element or module, find the element or 
module widget.

	(a)	 Isolate the requested information for the NASA Program Office scientists.
	(b)	 Transmit the requested current status information to the NASA Program 

Office scientists.

Task 6: Respond to other events, alarms, and alerts that occur in non-WDS systems

	1.	 Recognize an alert from a non-WDS console.
	2.	 If currently working on a WDS task, appropriately determine prioritization.

	(a)	 Request supervisor support if unsure of appropriate priority.

	3.	 If currently working on WDS task, note the stopping point in the activity.
	4.	 Resolve the non-WDS events, alarms, and alerts according to their system’s 

protocol.
	5.	 Return to WDS and complete task.

	(a)	 Check for system changes.
	(b)	 Identify stopping point for interrupted task.
	(c)	 Complete interrupted WDS task.
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�Appendix 2: Design Guidelines for Remote 
Autonomous Systems

This appendix provides more detailed guidelines for desktop implementations of 
operation center interfaces than what has been covered previously in this book. The 
guidelines draw heavily on Apple’s Human Interface Guidelines for desktop appli-
cations but are modified to apply to the WDS system, its users and technology, and 
the users’ tasks.

These guidelines are annotated, modified, and abridged to assist designers and 
engineers during the development of the applications and systems within operation 
centers. They are numbered and where appropriate sub-numbered. They are 
annotated according to four criteria: evidence level, testability, value added, and 
assessment for testing by the authors (Table A2.1).

The criteria are represented after the guidelines in the following format:

	 Example guideline Level T V1 No1� � �� � � � � �, , , 	

For this example, the format means that his guideline has some support from 
UCD and HCI experts (Level 1), could be easily tested for a given interface (T+), 

Table A2.1  Criteria definitions for the design guidelines

1. Evidence level (ranging from a case study within op center to some consensus from experts)
   (a) Level 5 is highly supported by research directly on the design feature
   (b) Level 4 is highly supported by research but without a direct case study on the design 
feature
   (c) Level 3 is likely supported based on integrating literature and expert opinions
   (d) Level 2 is plausibly supported by research and supported by multiple expert opinions
   (e) Level 1 is broadly accepted as valuable by the field of HCI, but may be [“untestable”], or 
untested to our knowledge
2. Testability
   (a) T+ (easily or close to easily testable)
   (b) T (middle)
   (c) T– (difficult to test overall or difficult to test without major work)
3. Value added by experiment (e.g., avoiding attentional tunneling vs perfect shade of blue)
   (a) V3 (most value)
   (b) V2 (moderate value)
   (c) V1 (low value)
4. Is further research into this subject worth the time and resource investment?
   (a) Yes
   (b) No
   (c) Maybe
   (d) No need
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would not be much value to test (V1) for a given interface, and is not recommended 
for further testing by the authors (No). With regard to recommendation for further 
testing, we are not claiming that additional research is useless; rather, we just think 
that the benefits would not be worth the effort compared to other ways to spend 
limited .resources for design of a single interface.

In the case of complex guidelines, like the first guideline, we apply a general 
assessment of the claims made in the section without breaking down the findings to 
every sub-statement. The various sub-statements might be guidelines or examples, 
and each statement might not have the same level of support. If only the high-level 
heading is rated on the criteria, please assume that the guidelines below that heading 
are a “set” that should be considered as a whole (e.g., Help and Tooltips under 
General User Interaction Guidelines). Otherwise, the high-level heading rating 
should be considered an overall assessment that is somewhat like an average of the 
ratings for individual guidelines.

Finally, the support and evidence for the guidelines is provided in comments 
appended to the guidelines. A list of useful acronyms is described in Table A2.2. 
These will cover the majority of the evidence support, but some guidelines are also 
supported by links to full references to the research articles.

Table A2.2  Common acronyms used throughout the guidelines and comments

Acronym Meaning Source

GOMS Goals, operators, methods, and selection rules (task 
analysis variant)

Card et al. (1983)

CPM-
GOMS

Critical path method-GOMS (task analysis variant) Gray et al. (1992)

FDUCS Foundations for Designing User-Centered Systems 
(user-centered design textbook)

Ritter et al. (2014)

CWT Cognitive walkthroughs (A usability method and 
its rationale)

Lewis and Rieman (1994), 
Polson et al. (1992)

ADG Apple design guidelines (expert opinions) https://developer.apple.com/
design/

FOK Feeling of knowing effect Reder and Ritter (1992)
TA Task analysis literature Ritter et al. (2014)
WMTIH Writing mistakes that I hate (essay by Frank 

E. Ritter)
Ritter (2010)
http://acs.ist.psu.edu/ist597/
writing-tips3.pdf

LR Literature review covered in Chaps. 1, 2, and 3 of 
this book

ISO/CD International Organization for Standardization 
Committee Draft 9241-151

Bevan and Spinhof (2007), 
ISO 9241-151:2008

NN/g Nielsen Norman Group
(expert opinions/blog)

https://www.nngroup.com/

Appendices

https://developer.apple.com/design/
https://developer.apple.com/design/
http://acs.ist.psu.edu/ist597/writing-tips3.pdf
http://acs.ist.psu.edu/ist597/writing-tips3.pdf
https://www.nngroup.com/


89

�Introduction: Design Themes

It is helpful for users to be able to anticipate design elements in an interface. It is 
useful, thus, for the elements to appear to be drawn using the same overall design 
framework with the same color palette, style and use of verbiage, style of tone, and 
word choice (e.g., word length, concreteness of words, use of articles, verb tense, 
and representational mapping). The same things should always appear as the same 
things, so differentiation can be reserved for useful, functional differences.

Thus, conducting a design review after a multi-person team finishes building an 
interface can be a useful method for improving the coherence of the design. A 
thorough design review will help pull the interface elements together and meld them 
into a coherent, intuitive whole that allows users to draw from a unified set of task 
and context knowledge applicable across all of a company’s systems. Design 
reviews can be made even more effective by implementing methods like heuristic 
evaluation by HCI experts on system design and cognitive walkthroughs to evaluate 
the system interactions.

�General User Interaction Guidelines

Loading and Delays [Level 5], [T–], [V2], [No/Maybe]

Operators want an application that acts on their commands and communicates how 
long processing will take. If your application presents blank or static content and 
does not provide feedback, people might think your app is frozen.

	1.	 Provide instant acknowledgement of user interactions. Users expect to receive 
feedback for their actions throughout the interface. For example, buttons should 
visually respond to clicks and the pointer should change depending on its location 
(when appropriate). [Level 5], [T], [V2], [Maybe]

FDUCS §6.2.3: Feeling of Knowing and Confidence Judgments. Swift feedback 
helps users develop their knowledge for working with the system and avoid 
confusion.

LR §2.2.2 Stage 2 – Comprehension. Support comprehension by providing users 
with awareness of the system state.

	2.	 Help people gauge how long a process will take to complete by providing time 
estimates, activity spinners indicating action, and preferably an explicit progress 
indicator and supplementary descriptive text. [Level 4], [T], [V2], [Maybe]

LR §2.2.2 Stage 2 – Comprehension. Support comprehension by providing users 
with awareness of the system state.
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	3.	 Show content as soon as possible by showing placeholder text, gradually 
improving image quality, and preloading content when possible. [Level 3], [T–], 
[V1], [No]

LR §2.2.2 Stage 2 – Comprehension. Support comprehension by providing users 
with awareness of the system state.

Supporting Novice and Expert Users [Level 4], [T+], [V2], [Yes]

Installation of op center systems may include up to 6 weeks of training to support 
new users; however, replacement workers may not receive that same support. These 
systems should accommodate experienced and novice users by providing in-system 
tools that enable learning of new tasks and reviewing procedures for uncommon or 
obscure tasks.

	1.	 Establish a default configuration that’s applicable to most or all operators.  
[Level 3], [T], [V3], [Yes]

LR §2: Know your users, tasks. LR §3.1.5: Design to accommodate colorblindness.

	2.	 Avoid unnecessary splash screens and instructions. Typically splash screens are 
fine for showing progress, but they are often just for show. If tutorials or intro 
sequences are necessary, provide a way to skip them. [Level 3], [T-], [V1], [No]

FDUCS §11 & §12 on Task analysis; ADG. Splash screens can waste time, but 
also can be a source of feedback as the system loads. Splash screens can 
provide information at the expense of task efficiency.

	3.	 Anticipate the need for help and provide integrated help features.  
[Level 4], [T+], [V3], [Yes]

	(a)	 Proactively look for times when people might be stuck. For obscure work 
and uncommon tasks, provide additional help in menus.

	(b)	 Add help tags to system-specific controls.
	(c)	 Provide task-oriented documentation through a form of supplementary help 

documentation (either digitally or as a physical copy of a help document).

LR §2.2.2 Stage 2 Comprehension; LR §3.3 Working Memory and Cognition. 
Providing integrated help reduces cognitive load by reducing the amount of 
time spent searching for help and reducing the time and space between the 
issue and task completion. Including a help button would allow users to find 
help when needed and also provide a metric for which screens or tasks 
needed the most help. Testing could be done by comparing how users respond 
to in-system help, providing a physical help guide, and providing 
another option.
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	4.	 Use keystroke accelerators (KSAs) to improve performance of expert users. 
[Level 5], [T+], [V3], [Yes/maybe]

	(a)	 Provide KSAs in menus to support learning.
	(b)	 Base KSAs on typical Windows KSAs like ctrl-s for Save and ctrl-p for Print.
	(c)	 Provide a full list of KSAs that can be viewed and/or printed out.

GOMS, ADG, FDUCS. Clearly using KSAs would improve performance; how-
ever, outstanding questions include the value of KSAs for each task, time 
required to learn KSAs, and maybe others.

Data Entry [Level 3.5], [T+], [V3], [Yes]

Whether using a keyboard, mouse, or any other input mode, inputting information 
can be a tedious and sometimes error-prone process. When an app asks for lots of 
input before doing anything useful, people can get discouraged quickly.

	 1.	 When entering data, prompt operators to choose an input rather than enter free 
text whenever possible. Selecting from a table, pop-up button, or set of radio 
buttons improves accuracy and reduces error rates, especially when the input 
needs to be exactly correct. [Level 4], [T–], [V3], [No need]

LR §3.3. Working Memory and Cognition; FDUCS §10 Errors. Recall memory 
is slower, harder, and more error-prone than recognition memory. Even 
expert users are going to make errors at some point, so using recognition 
memory will reduce the number of errors and constrain errors to be within 
the known selection list.

	 2.	 Simplify navigation of value lists unless there are times when none will apply. 
Long lists should be sortable and filterable, and all lists should be arranged 
logically, like alphabetical order or grouped by type. [Level 3], [T], [V2], [Yes]

FDUCS §7.3.4 Scanning Displays and Menus. People tend to scan displays 
rather than deeply read them and the information should be presented in a 
scannable way that is sorted according to the operator’s mental model.

	 3.	 Use introductory labels to describe text entry fields. Support the labels with 
clear, visible hints placed closely outside the text field. [Level 3], [T–], [V1], 
[No need]

LR §2.2.1 Stage 1 Perception; FDUCS §5.2.4.4 Priming; FDUCS §4.4.6 Pop-
Out Effects; FDUCS §7.3 Reading; NN/g. Labels help users understand 
what they are looking at and prompt them to begin thinking about the 
relevant information needed for the task. Also, words are automatically 
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processed for experienced readers so they will pop out upon being viewed by 
the user. Also, users read a word faster than naming an icon.

	 4.	 Support effective reading and comprehension for text within a text field and 
long strings of texts like event logs. [Level 4], [T+], [V2], [No need]

FDUCS §7.3 Reading

	(a)	 Adjust text field line breaks accordingly. By default, any text extending 
beyond the bounds of a text field is clipped. A text field, however, can be 
set to wrap text to a new line at the character or word level or to be 
truncated (indicated by an ellipsis) at the beginning, middle, or end.

	(b)	 Consider using an expansion tooltip to show the full version of clipped 
or truncated text. An expansion tooltip behaves like a help tag and 
appears when the user places the pointer over the field.

	 5.	 Let the user adjust text attributes if it makes sense. If your text field contains 
styled text, it may add value if the user can adjust the font, size, and color of the 
text. System-controlled text attribute changes could be used to instantiate the 
pop-out effect in event logs.	 [Level 2], [T], [V1], [No need]

ADG

	 6.	 Get information from the system whenever possible. Don’t force users to 
provide information that can be gathered automatically or with the user’s 
permission. [Level 4], [T], [V1], [No need]

GOMS; CPM-GOMS; FDUCS §10 Errors: An Inherent part of human-system 
performance

	 7.	 Provide reasonable default values and prefill fields with most likely values 
when appropriate. [Level 3], [T+], [V2], [Maybe]

GOMS; CPM-GOMS; ADG

	 8.	 Dynamically validate field values rather than waiting until submission. This 
reduces the need to backtrack when data entry fails validation. [Level 3], [T+], 
[V3], [Yes]

ADG; NN/g

	 9.	 Use proper formatting that connects the input format with user expectations.	
[Level 3], [T+], [V2], [Yes]

	(a)	 Displaying the input for percentages as a percentage or automatically 
presenting phone numbers in their standard format.

	(b)	 Entries expecting long text should allow users to view the input with 
minimal scrolling (and thus less short-term memory usage).

	10.	 Use of numeric data entry, especially for critical features, should follow these 
guides. [Level 4], [T+], [V3], [Yes]
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Thimbleby, H., & Cairns, P. (2010). Reducing number entry errors: Solving a wide-
spread, serious problem. Journal of The Royal Society Interface, 7(51), 
1429–1439. https://doi.org/10.1098/rsif.2010.0112. Test case from study was for 
medication dosage entry to reduce the risk of killing patient due to operator error.

	(a)	 Always show commas for values above 1,000.
	(b)	 Don’t use “naked” decimal points: 0.5 is better than .5.
	(c)	 Avoid showing trailing zeros for values that are always whole numbers: 1 is 

better than 1.0.
	(d)	 When possible, build in automatic blocking of invalid numbers.
	(e)	 Maximum stakes data entry fields can reduce risk of failure by using slightly 

larger decimal points and smaller font for numerals after the decimal.
	(f)	 Batch long numbers in groups of three: 123 456 789 is better than 123456789.

Help and Tooltips [Level 4], [T], [V2], [No/Maybe]

Ideally, people can figure out how to use your system without a guide. However, 
even in a highly intuitive interface, users sometimes need help learning advanced 
and secondary features. When called for, your program can offer assistance in the 
form of help tags and other forms of help documentation. Help tags allow you to 
provide temporary, context-sensitive help, whereas documentation allows you to 
provide a more thorough discussion of the topic.

Isaksen, H., Iversen, M., Kaasbøll, J., & Kanjo, C. (2017). Methods for Evaluation 
of Tooltips. Lecture Notes in Computer Science (including subseries Lecture 
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 297–312. 
https://doi.org/10.1007/978-3-319-58071-5_23

Mildly testable but expensive. A study on tooltips found that explicit evaluation was 
costly. Instead, help features and tooltips provide a consistently useful way to 
bolster the usability of any interface so their inclusion in the interface should be 
assumed.

	1.	 Describe only the control that’s directly beneath the pointer.
	2.	 Add help tags to app-specific or system-specific controls. Skip tags on common 

features like resize controls, scrollers, or others.
	3.	 Focus on the action that a control initiates. A good rule of thumb is to start tool 

tips with a verb.
	4.	 Use the fewest number of words possible.

	(a)	 Try to limit tags to a maximum of 60 or 75 characters, depending on your 
system needs.

	(b)	 Requiring more text to explain a feature may indicate that the interface is 
overly complicated.

	5.	 In general, don’t reference a tag’s corresponding control. Typically, the help 
tag’s location (directly adjacent to the control) will provide sufficient context for 
the user.
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	6.	 Use sentence fragments with sentence-style capitalization. This emphasizes 
brevity without overly sacrificing readability for users.

	7.	 Consider offering context-sensitive help tags.

Keyboard Interactions [Level 4.5], [T+], [V3], [Yes]

The keyboard is an essential input device for entering text, navigating, and initiating 
actions. Some users will prefer to use the keyboard for performing most or all tasks.

GOMS, general wide support

	 1.	 Respect standard keyboard shortcuts and create program-specific shortcuts for 
frequently used commands.

	 2.	 Add full keyboard access mode support for all custom interface elements.

	(a)	 Full keyboard access mode lets users navigate and activate windows, 
menus, interface elements, and system features using the keyboard alone.

	(b)	 Tab is an important command for switching between areas and fields.

	 3.	 Enable expected shortcuts for standard menu items. Strive for consistency 
across all applications and systems for common actions.

	 4.	 Define new keyboard shortcuts only for things people do regularly.

	(a)	 Unexpected shortcut design can easily confuse users, and it rarely makes 
sense to redefine a common shortcut.

	(b)	 The WDS and similar systems could log commands to know which 
keyboard shortcuts and commands are most common. This would help 
improve keystroke accelerator generation.

	 5.	 Use a standardized hierarchy for assigning modifier keys (i.e., ctrl, alt, shift) 
when creating a new shortcut.

	(a)	 Maintain a consistent order using modifiers and writing out commands 
with modifiers.

	 6.	 Provide keystroke accelerators for nearly all commands.
	 7.	 Keystroke accelerators are displayed in a help screen as a set and on menus and 

perhaps tool tips.
	 8.	 At a convenient time, like starting or stopping or loading or paused, note a 

keystroke accelerator of the day.
	 9.	 Prefer to create “sets” of commands centered around a single action key with 

multiple modifier keys. For example, Control-P may activate the “print” 
command, and Shift-Control-P may activate the “page layout” menu that 
complements the “print” command.

	10.	 Determine which keyboard shortcuts are common and/or reserved with your 
system to ensure that your application does not interfere with prior knowledge 
from the users regarding how to interact with systems of this type.
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Providing User Feedback [Level 4], [T–], [V2]

Feedback tells people what an app is doing and helps them understand the results of 
actions and what they can do next.

FOK; CWT

	1.	 Unobtrusively integrate status and other types of feedback into your interface. If 
a notification does not provide immediately actionable information, the operator 
should be able to continue their current task uninterrupted. [Level 4] [T], 
[V3], [Yes]

LR §3.2.2 Interruptions

	2.	 Avoid unnecessary alerts by carefully assessing whether new information is 
worth disrupting the operator’s current task, so they can address the situation. If 
deemed important, ensure that the alert is disruptive enough to ensure the user 
responds. [Level 4] [T], [V3], [Yes]

LR §3.2.2 Interruptions

	3.	 Warn people when they initiate a task that can cause an unexpected and 
irreversible loss of data. Avoid being overzealous (e.g., notifications for clearing 
the recycle bin on desktop), but try to strike a balance between user expectations 
and task requirements. [Level 3], [T–], [V1], [No]

	4.	 Inform the user when a command can’t be carried out. [Level 3], [T–], [V1], [No]
	5.	 Clearly note time constraints for alert triggers, postponing an alert response, and 

other important tasks. [Level 4], [T], [V2], [Maybe]
	6.	 If it makes sense, allow users to adjust time constraints for how alerts are 

provided. For example, a user (or supervisor) may wish to make a certain alert 
type occur more or less often. [Level 2], [T–], [V1], [No]

	7.	 Allow users to set up new alerts when it makes sense. [Level 3], [T–], 
[V2], [Maybe]

Badging or Icons as Updates [Level 3], [T], [V3], [Yes]

The various systems in an op center can display small, meaningful icons to indicate 
new, noncritical information like events or minor alerts.

Mostly unstudied other than to note that even common icons only have a 70% 
recognition rate on average. See Ghayas, S., Sulaiman, S., Khan, M., & Jaafar, 
J. (2013). The effects of icon characteristics on users’ perception. In International 
Visual Informatics Conference (pp. 652–663).

	1.	 Use badging for notification purposes only for focused, simple information. 
Avoid using icons as updates for complex, quickly changing information (e.g., 
air quality or wind speed). [Level 3], [T+], [V3], [Yes]
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	2.	 Badging should supplement direct presentation of information within the appli-
cation. If a badge indicates some alert, that same alert should be presented within 
the application in text form. [Level 3], [T-], [V2], [Maybe]

	3.	 Ensure badges update quickly in response to user activity such as dismissal or 
acknowledgement of some alert. [Level 2], [T–], [V1], [No need]

	4.	 Prefer short and concrete words where these will work. They are faster to read 
and easier to interpret. The button that says “word” is clearer to ask about than 
the button with a confusing icon. [Level 4], [T], [V2], [Maybe]

FDUCS §7.3 How Users Read; Stroop on Automatic Processing of Words

Notifications [Level 3], [T+], [V3], [Yes]

System notifications provide timely and important information anytime. 
Notifications may occur when a message arrives, an event occurs, new data is 
available, or the status of something has changed.

	1.	 Use distinct notification styles to differentiate between minor notifications and 
alerts. Alerts should remain visible until dismissed by the user, whereas 
notifications can disappear after a few seconds. [Level 2], [T+], [V3], [Yes]

	2.	 Notifications should be useful and informative: use complete sentences and 
standard grammatical style, avoid repetitive notifications that clutter the view, 
and ensure key information (like origin) is clearly displayed. [Level 4], [T], 
[V2], [Maybe]

FDUCS §7.3 How Users Read

	3.	 If possible, ensure that responses prompted by the notification are not overly 
specific or difficult to accomplish once the notification is dismissed. [Level 3], 
[T–], [V2], [Maybe]

LR §3.3 Working Memory and Cognition

	4.	 Adapt notification behavior for different contexts. Consider using cognitive 
counter-measures to correct behavior in risky situations. [Level 3], [T+], 
[V3], [Yes]

	(a)	 If the user is on the home page, then a notification about new events may be 
useful; if the user is already on the event log page, then displaying a pop-up 
will likely be annoying compared to other methods of informing the user of 
new event information.

	(b)	 Critical events can implement cognitive counter-measures to capture the 
attention of the operator. Cognitive counter-measures are temporary, major 
changes to the interface intended to temporarily break their focus, so they 
will reorient onto the important task. For example, a low battery alert that 
occurs during manual control of an unmanned vehicle could clear the screen 
of all features and prominently display the low battery alert until cleared 
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before resuming normal operation. This eliminates the risk of “tunnel vision” 
causing the signal to be missed.

Directly tested for the exact scenario described. Extremely relevant to WDS 
interface design: Dehais, F., Causse, M., & Tremblay, S. (2011). Mitigation 
of conflicts with automation: Use of cognitive countermeasures. Human 
Factors, 53(5), 448–460. https://doi.org/10.1177/0018720811418635

	(c)	 Critical events should use dual-coded alerts such as a visual and audio 
indicator or multiple visual indicators.

	5.	 Provide intuitive, beneficial action buttons on pop-up notifications and alerts. 
Limit buttons for user response to two buttons if possible. [Level 3], [T], 
[V2], [Maybe]

	(a)	 Use the buttons to perform common, time-saving tasks. This will help reduce 
how often the operator needs to change views for simple tasks.

Color [Level 4] [T+], [V2], [No/Maybe]

Color is a great way to provide status information, give feedback in response to user 
actions, and help people visualize data.

	1.	 Use color judiciously for communication. Limit the number of colors used for 
communication to fewer than five. [Level 3], [T], [V2], [Maybe]

ADG; LR §3.1.5 Principle 7

	2.	 Provide adequate support for colorblind users. Colorblindness is common 
enough that, when possible, designers and engineers should ensure that the 
standard design supports colorblind users. [Level 4], [T+], [V2], [Maybe]

LR §3.1 Perception

	3.	 Color contrast should be between foreground and background colors should be 
at least 4.5:1, if not a higher contrast of 7:1. [Level 3], [T], [V1], [No]

ADG

	4.	 Test the application’s color scheme under appropriate lighting conditions. A 
system used in a brightly-lit room will have different requirements than one used 
in a dark room. [Level 4], [T+], [V2], [No]

LR §1.4
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�Visual Feature Index

Most applications should be built using components from your preferred graphic 
design kit, such as Java Swing. This will provide a programming framework that 
defines common interface elements. This framework lets applications achieve a 
consistent appearance across the system while at the same time offering a high level 
of customization. The following interface elements are a common set of flexible and 
familiar features that can provide a design framework for building nearly any system.

Windows and Views

Alerts

An alert appears when the system or program needs to warn the user about an error 
condition or a potentially hazardous situation or consequence. A major alert within 
an application should be modal; once the alert is received, the program is locked 
into an “alert response” mode that requires user input regarding the alert before 
enabling any other actions. Minor alerts should be displayed differently than 
major alerts.

	1.	 Minimize alerts. Alerts disrupt the operator and should be reserved for important 
situations. The infrequency of alerts helps ensure that operators take them 
seriously. [Level 3], [T+], [V3], [Yes]

	2.	 Ensure that each alert offers critical information and useful choices. [Level 3], 
[T], [V2], [Yes]

	(a)	 Avoid using alerts to merely provide information.
	(b)	 Users become annoyed at alerts and interruptions that don’t provide 

actionable information.
	(c)	 Avoid displaying alerts for common, undoable actions.

	3.	 Use a standardized alert display. Consistency will help users understand the 
meaning of the alerts by supporting learned responses to different alert displays. 
[Level 4], [T], [V3], [Maybe]

Rieman, J., Young, R. M., & Howes, A. (1996). A dual-space model of iteratively 
deepening exploratory learning. International Journal of Human Computer 
Studies, 44(6), 743–775. https://doi.org/10.1006/ijhc.1996.0032

	4.	 Provide a clear, succinct alert message that gives the user what, why, and where 
for a given alert. [Level 2], [T], [V2], [Maybe]

ADG

	(a)	 Consider phrasing a message as a question when the default action has 
some negative consequences (e.g., “Do you want to empty the trash?”)

	(b)	 Supplement alert messages with informative text. Use this space to elabo-
rate on consequences, suggest solutions, and explain why the user 
should care.
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	5.	 Avoid using alert buttons that require explanation. [Level 3], [T–], V1], [No]
ADG; LR §2.2.2; CWT

	(a)	 If the text and button titles are clear, there should be no need to explain 
the buttons.

	(b)	 If guidance is needed, preserve capitalization when referencing buttons 
and don’t enclose button titles in quotes.

	(c)	 Give alert buttons succinct, logical titles. Best titles will use one- or two-
word verb phrases that describe the result of clicking the button. Avoid 
using “yes and no” as the options.

	(d)	 Label cancellation buttons appropriately.
	(e)	 Include a Cancel button when there’s a destructive button or action (e.g., 

delete file).

	6.	 Generally, prefer two-button alerts. Single-button alerts inform but give no 
control; alerts with three or more buttons create complexity. [Level 2], [T], 
[V2], [Maybe]

ADG

	7.	 Ensure that the default button title reflects the action the button performs. Avoid 
using OK unless the alert is purely informational. Specific button titles like 
Erase, Convert, Clear, or Delete help users understand the action. [Level 3], 
[T–], [V1], [Maybe]

CWT; ADG

	8.	 Place buttons where people expect them. In general, the default (or most likely) 
button should be on the right. Cancel is usually on the left. [Level 2], [T], 
[V1], [No]

ADG; Others

	9.	 Consider offering time-saving keyboard shortcuts for all buttons. For example, 
Enter (or return) can a default “Accept” button for situations that are not high 
stakes. Clearly indicate defaults by using bold, underlined text (or another con-
sistent graphic element) on the default choice. [Level 2], [T], [V2], [Maybe]

Boxes [Level 2], [T–], [V1], [No]

A box is a type of view that creates distinct, logical groupings of controls, text 
fields, and other interface elements. For example, a preferences window may include 
boxes that visually group related settings together. By default, a box has a border 
and a title, either of which can be disabled if it makes sense for your sub-display. 
The title, if displayed, can be positioned above (the default) or below the box.

	1.	 Avoid nesting boxes. Nested boxes waste space and reduce the effectiveness of 
boxes overall for grouping information.

ADG
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	2.	 Use sentence-style capitalization in box titles. Don’t end box titles with a colon.

APA guidelines; FDUCS §7.3 How Users Read

Dialogs

A dialog is a type of window that elicits a response from the user. Many dialogs—
like the Print dialog, for example—let people provide several responses at once. 
Dialogs are presented in three ways: document-modal, app-modal, and modeless.

A document-modal dialog is attached to a document as a sheet and prevents the 
user from doing anything in the document until the dialog is dismissed. The user can 
still switch to other documents and apps. A Save dialog is an example of a document-
modal dialog.

An app-modal dialog prevents the user from doing anything in the app until the 
dialog is dismissed. The user can still switch to other apps. An Open dialog is an 
example of an app-modal dialog.

A modeless dialog is usually referred to as a panel. The user can continue inter-
acting with documents and apps uninterrupted. The standard Find file dialog is an 
example of a modeless dialog.

Data Entry for Dialogs

Dialogs are intended to be small, transient windows that don’t require in-depth user 
interaction, so it’s important to ensure that data entry is efficient.

	1.	 Provide default values for controls and fields whenever possible. [Level 4.5], 
[T], [V2], [No]

	2.	 Set the initial focus to the first location that accepts user input. [Level 4.5], [T], 
[V2], [No]

	3.	 Make static text selectable. For example, users may want to copy an error 
message or IP address.

	4.	 Check for errors during data entry. The best time to check is immediately after 
the user moves onto the next field. Waiting until they hit the submit button can 
annoy the user.

	5.	 Whenever possible, minimize the potential for invalid input.

Layout

	6.	 Use disclosure control to provide information or functionality that’s only occa-
sionally needed.

	7.	 Position buttons as expected. [Level 2], [T], [V2], [Maybe]

	(a)	 Buttons in the bottom right of a dialog should dismiss the dialog.
	(b)	 An action button, which initiates the dialog’s primary action, should be far-

thest to the right.
	(c)	 A cancel button should be to the immediate left of the action button.
	(d)	 If a third button is needed, it should be to the left of the cancel button.
	(e)	 If a help button is shown, it should be the furthest left button.
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	8.	 Separate destructive buttons from nondestructive buttons.

	(a)	 For example, Don’t Save should be far enough away from Save to ensure 
accidents are rare.

	(b)	 Destructive buttons should require intentional effort.
	(c)	 Ideally, 24 points of separation is best.

Dialog Dismissal

	 9.	 Provide a default button only when the user’s most likely action is harm-
less. Users may simply hit Return/Enter (or ESC) to dismiss an alert or dialog. 
This should never trigger an important event. If it’s important enough, they 
should have to select a response.

	10.	 Provide a default button only when the Return key isn’t already used by text 
fields on the dialog.

	11.	 Include a Cancel button that responds to the standard cancellation keyboard 
shortcuts. A Cancel button provides a clear, safe way out of the dialog and 
returns the computer to its previous state.

	12.	 Ensure the Cancel button undoes all applied changes.

Outline View [Level 3], [T+], [V3], [Yes/Maybe]

An outline view presents hierarchical data—like folders and the items they contain—
cleanly and efficiently in a scrolling list of cells that are organized into columns and 
rows. At minimum, an outline view includes one column that contains the primary 
hierarchical data: parent containers and their children. Subsequent columns may be 
added, as needed, to display additional attributes that supplement the primary data. 
Event logs could be presented in outline view as an alternative to the typical 
table view.

	1.	 Outline view should be used for hierarchical data, whereas table view should be 
used for non-hierarchical data. Event logs have some underlying hierarchical 
traits, but presentation style should depend on the task being performed. [Level 
3], [T], [V3], [Maybe]

Bakke, E., Karger, D. R., & Miller, R. C. (2013). Automatic layout of structured 
hierarchical reports. IEEE Transactions on Visualization and Computer 
Graphics, 19(12), 2586–2595. https://doi.org/10.1109/TVCG.2013.137. The 
outline view is just one way to present data. There could be valuable testing 
done on how best to present complex sets of events from the WDS and other 
systems based on the mental model of the user.

	2.	 The data hierarchy structure should be viewable within the first column only. 
[Level 1] [T], [V1], [No]

ADG
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	3.	 If deemed appropriate, operators should be able to click column headings to sort 
an outline view. Clicking again should sort the column in the reverse order of the 
initial click. [Level 2], [T], [V1], [No]

ADG

	4.	 Support ease of use by providing clear, noun-based column headings, allowing 
operators to resize columns, and ensuring that rows are easily distinguished. 
[Level 2], [T], [V1], [No]

	5.	 Long text strings within a cell should be truncated in some way. This can be done 
with an ellipsis in the middle, with the ends unaffected, or with a trailing ellipsis 
that prioritizes early text. [Level 3], [T+], [V2], [Yes]

	6.	 Search fields should be provided to allow operators to quickly find specific items. 
[Level 3], [T+], [V3], [Yes]

Panels

A panel is an auxiliary window containing controls, options, or information related 
to the active document or selection. A panel appears less prominent than a main 
window and can behave like a normal window or be configured to float above other 
open windows—even modal windows. Panels can also adopt a darker, translucent 
appearance when the UX calls for it.

	1.	 Use a panel to provide quick access to important controls or information related 
to content.

	2.	 As an alternative to panels, you could also implement popovers, sidebars, split 
views, or a toolbar.

	3.	 Title panels with appropriate text that describes the purpose with nouns or noun 
phrases.

	4.	 Link the visibility of a panel to whether the associated application is currently 
active. Inactive applications shouldn’t have visible panels.

	5.	 Consider using HUD-style panels for highly visual content.

	(a)	 HUD panels are translucent and typically have a darkened background.
	(b)	 Use simple controls and interactions for HUD panels. Avoid making the user 

type, for example.
	(c)	 Keep HUD panels fairly plain with minimal color and other distracting 

features.

Popover [Level 2], [T–], [V1], [No]

A popover is a view that appears above other content on screen when you click or 
mouse-over a control or view. Popovers typically integrate an arrow pointing to its 
origin. Popovers can close in response to a user interaction (transient behavior), in 
response to a user’s interaction with the view or element from which the popover 
emerged (semi-transient behavior). A popover can also be made detachable. A 
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detachable popover becomes a separate window when dragged by the user, allowing 
it to remain visible on screen while the user interacts with other content.

ADG

	1.	 Popovers are for limited information or functionality and typically disappear 
following user interaction. Avoid using popovers for complex tasks and functions.

	2.	 Use popovers to streamline interfaces by moving simple interactions from static 
regions into context-dependent popover views.

	3.	 Popover behavior should be intuitive based on the popover’s function.

NN/g

	(a)	 Typically, this means exiting automatically after completing a task or click-
ing outside the popover rather than requiring a Close button.

	(b)	 Ensure popovers don’t obscure the screen element that caused it to appear.
	(c)	 Only display a single popover on the screen at one time.

Scroll View [Level 3], [T+], [V2], Yes/Maybe

A scroll view lets people browse content (e.g., a large event log) that is larger than 
the view’s visible area. A scroll view itself has no appearance, but can display 
horizontal and vertical scroll bars, each of which consists of a track containing a 
draggable control known as a knob. The height/width of a knob reflects the quantity 
of scrollable content.

	1.	 Don’t have nested scrolling views. [Level 2], [T], [V1], [No]
	2.	 Ensure scroll bars and sliders have distinct appearances. [Level 2], [T], [V1], [No]
	3.	 Avoid requiring horizontal and vertical scrolling on the same interface and prefer 

vertical scrolling over horizontal. [Level 4], [T+], [V3], [Yes]

GOMS; Bakke, E., Karger, D. R., & Miller, R. C. (2013). Automatic layout of 
structured hierarchical reports. IEEE Transactions on Visualization and 
Computer Graphics, 19(12), 2586–2595. https://doi.org/10.1109/
TVCG.2013.137. Event logs are complex sets of data that need searched by 
users, and determining the best way to present them could be valuable.

	4.	 If possible, avoid requiring the use of scrolling to view all content. This must be 
balanced against over-crowding an interface. [Level 4], [T+], [V3], [Yes]

GOMS; LR §3.3 Working Memory and Cognition. Scrolling requires the user to 
store more information in working memory rather than “maintaining” that 
information on the screen.

Split View

A split view manages the presentation of two or more panes of content. Each pane 
can contain any variety of elements, including buttons, tables, column views, text 
fields, and even other split views. The panes of a split view can be arranged 
horizontally or vertically and are separated by a divider that can typically be dragged 

Appendix 2: Design Guidelines

https://doi.org/10.1109/TVCG.2013.137
https://doi.org/10.1109/TVCG.2013.137


104

to resize the panes. Each pane can have a minimum and maximum size, which 
affects how much it can be resized. Many apps let the user hide specific panes on 
request.

ADG

	1.	 Allow panes to be hidden when it makes sense. For example, hiding a pane may 
help reduce distractions during focused work.

	2.	 Provide multiple ways to access hidden panes. Provide toolbar buttons or menu 
items with keyboard shortcuts.

	3.	 Ensure minimum and maximum pane sizes set based on the system’s requirements 
and functions.

	4.	 Use Thin dividers (1 pt. width) for most dividers. If the designer wants to indicate 
a stronger visual distinction between panes, then use a Thick divider (9 pt. width).

Tab Views [Level 3], [T], [V2], [No/Maybe]

A tab view presents multiple mutually exclusive panes of content in the same area. 
A tab view includes a tabbed control (which is similar in appearance to a segmented 
control) and a content area. Each segment of a tabbed control is known as a tab, and 
clicking a tab displays its corresponding pane in the content area. Although the 
amount of content can vary from pane to pane, switching tabs doesn’t change the 
overall size of the tab view or its parent window.

	1.	 Use a tab view to present closely related, equally important content areas. [Level 
2], [T–], [V1], [No] need

	2.	 Provide between two and six tabs in tab view. If more tabs are necessary, consider 
alternative views. [Level 2], [T], [V2], [Maybe]

ADG

	3.	 Controls within a pane using tab view should only affect content within that tab. 
[Level 2], [T], [V1], [No need]

ADG; CWT

	4.	 Provide a label for each tab that describes the content of its pane. [Level 2], [T–], 
[V1], [No need]

	5.	 Ensure switching between tabs requires only a single action, such as pressing a 
button, using a keystroke (e.g., tab), or clicking. [Level 3], [T+], [V1], [No need]

ADG; GOMS

Menus [Level 3], [T+], [V2], [Yes/Maybe]

A menu presents a list of items–commands, attributes, or states–from which a user 
can choose. An item within a menu is known as a menu item and may be configured 
to initiate an action, toggle a state on or off, or display a submenu of additional 
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menu items when selected or in response to an associated keyboard shortcut. Menus 
can also include separators, and menu items can contain icons and symbols, like 
checkmarks.

CWT; GOMS; ADG

	 1.	 Use title-style capitalization for all text. [Level 2], [T], [V1], [No need]

APA Guidelines; ADG

	 2.	 Ensure menu titles are intuitive so users will anticipate the types of items the 
menu contains. [Level 4], [T], [V2], [Maybe]

ADG; NN/g; CWT; Information scent research

	 3.	 Keep menus enabled, even when menu items are unavailable. [Level 3], [T], 
[V2], [Maybe]

ADG; CWT; Mendel, J., & Pak, R. (2009). The effect of interface consistency 
and cognitive load on user performance in an information search task. 
Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 
53(22), 1684–1688. https://doi.org/10.1177/154193120905302206

	(a)	 This tells users that they have found a particular function but it is 
unavailable at the moment.

	(b)	 Unavailable menu items also allow users to learn about other functions 
in the system, even if the actions aren’t possible.

	 4.	 Make menu titles as short as possible without sacrificing clarity. [Level 3], [T], 
[V1], [No need]

FDUCS §7.3 How Users Read; ADG

	 5.	 Only use text for menu items. Icons are confusing and unnecessary. [Level 3], 
[T], [V1], [Maybe]

FDUCS §7.3 How Users Read; Ghayas, S., Sulaiman, S., Khan, M., & Jaafar, 
J. (2013). The effects of icon characteristics on users’ perception. In 
International Visual Informatics Conference (pp. 652–663).

	 6.	 Ensure the menu titles and text make sense according to their function. [Level 
2], [T], [V2], [No]

ADG; NN/g

	(a)	 Use verbs and verb phrases for menu items that initiate actions.
	(b)	 Use adjectives and adjective phrases for menu items that toggle 

attribute states.
	(c)	 Avoid articles in menu item titles.

	 7.	 Use keyboard shortcuts for frequently used items in the menu bar. Make sure 
keyboard shortcuts are shown next to the functions. [Level 4.5], [T+], 
[V3], [Yes]
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	 8.	 Avoid using submenus when possible. [Level 4], [T+], [V2], [Maybe]
FDUCS §7.3.4

	(a)	 If necessary to include a submenu, only have a single additional level to 
the menu.

	(b)	 Avoid having more than five items in a submenu.
	(c)	 Only consolidate related menu items into submenus. For example, Sort 

By Name, Sort By Date, and Sort By Length could be merged into a 
single command Sort By with a submenu for Date, Name, and Length.

	 9.	 Group items within a menu in a logical manner. [Level 4], [T+], [V2], [No]

FDUCS §7.3.4; GOMS; St. Amant, R., Horton, T. E., & Ritter, F. E. (2004). 
Model-based evaluation of cell phone menu interaction. Proceedings of the 
SIGCHI Conference on Human Factors in Computing Systems, 6(1), 343–350. 
https://doi.org/10.1145/985692.985736

	(a)	 Group closely related items together (Find and Find Next).
	(b)	 Arrange sets of closely related items by frequency of use. Put frequently 

used items at the top of the list.
	(c)	 Separate items that initiate actions from items that set attributes.

	10.	 Avoid scrolling menus. [Level 4], [T+], [V3], [Yes]

GOMS; LR §3.3 Working Memory and Cognition. Scrolling requires the user to 
store more information in working memory rather than “maintaining” that 
information on the screen.

	11.	 If icons are necessary for your menus (such as for a toggled setting), use a 
standard, limited set of clear symbols like a checkmark. [Level 2], [T], 
[V2], [Maybe]

ADG

Contextual Menus

A contextual menu, or shortcut menu, gives people access to frequently used 
commands related to the current context. Contextual menus are typically brought up 
by using a right-click on the item. Contextual menus often provide a limited set of 
useful actions that are frequently used in a particular situation.

	1.	 Follow the standards and best practices of typical menu design within your system.
	2.	 Include only the most commonly used commands that are appropriate in the 

current context.
	3.	 Always make contextual menu items available in the menu bar as well.
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Buttons

Checkbox [Level 3], [T], [V1], [No]

A checkbox is a type of button that lets the user choose between two opposite states, 
actions, or values. A selected checkbox is considered on when it contains a 
checkmark and off when it’s empty. A checkbox is almost always followed by a title 
unless it appears in a checklist.

ADG; Tufte

	1.	 Ensure the label or title implies two opposite states. If the titled/labeled check-
box is difficult to make unambiguous, consider using two binary-titled radio 
buttons instead.

	2.	 Checkboxes should be within a view, not a window frame (i.e., toolbars and 
status bars).

	3.	 Consider using a label for describing a set of several checkboxes if their 
relationship isn’t evident.

	4.	 Checkboxes should usually be arranged vertically.
	5.	 Checkboxes can use a hierarchical arrangement with indentation to show 

relationships between parent and child checkboxes.
	6.	 Parent checkboxes should use a mixed state [−] if the child checkboxes have 

mixed settings.

Gradient Button

A gradient button initiates an immediate action related to a view, such as adding or 
removing table rows. Gradient buttons contain icons—not text—and can be 
configured to behave as push buttons, toggles, or pop-up buttons. They usually 
reside in close proximity to (either within or beneath) their associated view.

ADG

	1.	 Gradient buttons should only be visible in views, not in window frames.
	2.	 Use standard system-provided icons for gradient buttons to ensure users are 

familiar with the symbols and meaning.
	3.	 Gradient buttons should be clearly linked to a particular view and shouldn’t need 

a label.

Help Button [Level 3], [T+], [V3], [Yes]

A help button appears within a view and opens application-specific help 
documentation when clicked. All help buttons are circular, consistently sized 
buttons that contain a question mark icon.

	1.	 Use system-provided help buttons and ensure the help buttons have a consistent 
response.

	2.	 Only include one help button per window.
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	3.	 Position help buttons as expected.

	(a)	 Dialog with dismissal buttons (e.g., OK and Cancel): lower-left corner 
aligned with dismissal buttons.

	(b)	 Dialog without dismissal buttons: lower-left or lower-right corner.
	(c)	 Preference window or pane: lower-left or lower-right corner.

Push Buttons [Level 2.5], [T–], [V1], [No]

A push button appears within a view and initiates an instantaneous app-specific 
action, such as printing a document or deleting a file. Push buttons contain text—not 
icons—and often open a separate window, dialog, or app so the user can 
complete a task.

ADG; NN/g

	1.	 Design the options to ensure a likely default button is clear.
	2.	 Push buttons should only be in views, not window frames.
	3.	 Only use text for push buttons, not icons.
	4.	 Give push buttons clear labels with verbs to describe the effect of clicking 

the button.
	5.	 Be specific when possible. “Select Text File” is much clearer than “Input.”
	6.	 Include a trailing ellipsis in the title when a push button opens another window, 

dialog, or application.
	7.	 Push buttons should be similar in size (when appropriate) for aesthetics and 

clarity.

Radio Button [Level 2.5], [T–], [V1], [No]

A radio button is a small, circular button followed by a title. Typically presented in 
groups of two to five, radio buttons provide the user a set of related but mutually 
exclusive choices. A radio button’s state is either on (a filled circle) or off (an empty 
circle). A radio button can also permit a mixed state (a circle containing a dash) 
that’s partially on and partially off. However, it’s better to use checkboxes when 
your app requires a mixed state.

ADG; NN/g; GOMS; General support from work on visual scanning

	1.	 Ensure radio buttons have meaningful titles.
	2.	 Use a standard button instead of a radio button if initiating an action.
	3.	 Use radio buttons in views only, and not in window frames.
	4.	 Labels can help clarify the connection between a set of radio buttons.
	5.	 Avoid horizontally placed radio buttons, but if necessary, then use consistent 

spacing.
	6.	 If more than five choices are necessary, consider using a pop-up button instead.
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	7.	 In almost every case, pre-select a radio button to indicate the default selection. 
Default buttons reduce confusion and can allow engineers to imply the best 
course of action to the user.

Fields and Labels

Combo Box

A combo box combines a text field with a pull-down button in a single control. The 
user can enter a custom value into the field or click the button to choose from a list 
of predefined values. When the user enters a custom value, it’s not added to the list 
of choices.

ADG; NN/g; CWT; LR §2.2.2; Rieman, J., Young, R. M., & Howes, A. (1996). A 
dual-space model of iteratively deepening exploratory learning. International 
Journal of Human Computer Studies, 44(6), 743–775. https://doi.org/10.1006/
ijhc.1996.0032

	1.	 Populate the field with a meaningful default value from the list.
	2.	 Use an introductory label to let the user know what types of items to expect.
	3.	 Provide useful, relevant choices for the user to select. Ensure that the options are 

all standalone selections, because combo boxes shouldn’t allow multiple 
selection.

Labels [Level 3.5], [T], [V2], [Yes]

A label is a static text field that describes an onscreen interface element or provides 
a short message. Although people can’t edit labels, they can sometimes copy label 
contents.

	1.	 Ensure labels are legible, clear, and consistent. [Level 3], [T], [V2], [Maybe/No]

	(a)	 Typically labels for controls should end with a colon. An exception to this 
rule is when the label and control form a complete sentence.

	(b)	 Use system-provided, standardized label colors to communicate relative 
importance.

	2.	 Make sure label text is selectable, where possible, and make logs copiable 
so users can copy useful text onto other locations. [Level 3.5], [T+], [V2], 
[Yes/Maybe]

ADG; GOMS; CWT; LR §3.3 Working Memory and Cognition

	3.	 Labels and other text must use a consistent vocabulary, syntax, and grammar. 
Even minor changes can have a negative impact on the mental model and 
understanding of the user. [Level 4], [T+], [V3], [Yes]
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Mendel, J., & Pak, R. (2009). The effect of interface consistency and cognitive 
load on user performance in an information search task. Proceedings of the 
Human Factors and Ergonomics Society Annual Meeting, 53(22), 1684–1688. 
https://doi.org/10.1177/154193120905302206

	4.	 If users will be exposed to many labels at once, use colors and icons to help dif-
ferentiate items for faster, more accurate search. [Level 4.5], [T], [V3], [No 
need/Maybe]

NN/g; https://www.nngroup.com/articles/visual-indicators-differentiators/

Search Field [Level 3], [T+], [V3], [Yes]

A search field is a style of text field optimized for performing text-based searches in 
a large collection of values. Many windows include a search field in the toolbar, but 
a search field can also be displayed in the body area of a window. A search field 
typically displays a magnifying glass icon and can also include placeholder text and 
a cancellation button.

ADG; NN/G; CWT; Others

	1.	 Ensure search fields have a distinct look that users can instantly recognize and 
distinguish from other similar features like text fields. [Level 3], [T], 
[V1], [Maybe]

ADG; Mendel, J., & Pak, R. (2009). The effect of interface consistency and cog-
nitive load on user performance in an information search task. Proceedings of 
the Human Factors and Ergonomics Society Annual Meeting, 53(22), 1684–1688. 
https://doi.org/10.1177/154193120905302206

	(a)	 Placeholder text can remind users of the types of information that are 
searchable.

	2.	 Determine an appropriate time to begin searching. Consider whether to show 
search results dynamically or only after the user initiates the search. [Level 3], 
[T+], [V2], [Yes/Maybe]

ADG; NN/g. See https://www.nngroup.com/articles/suggested-employee- 
search/.

	3.	 Scope bars, a type of toolbar for filtering searches, will help users trim down 
unnecessary information during searches that may bring up large amounts of 
data. [Level 2.5], [T], [V2], [Maybe]

ADG; NN/g; CWT

	(a)	 Plan scope bar functions around the tasks. Searching documentation for a 
page might not need detailed search filters; however, searching an event 
log with thousands of entries may require users to input multiple filters.
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	(b)	 Some general useful filters for event logs include date range, module ori-
gin, text, and severity.

	(c)	 More advanced or specialized filters could include number of results 
shown, reverse filters, and options for pre-set filter categories (e.g., alarms 
from past 24 hours from only core modules).

	(d)	 Include a “not” function for searches to support more detailed searching 
behavior.

	4.	 Searches with no results found should be clearly communicated to the operator. 
[Level 3], [T+], [V1], [No]

ADG; LR: §2.2.1 Stage 1 – Perception

	5.	 Filtering for date ranges should have multiple input methods like text view and 
calendar view. [Level 2], [T+], [V2], [Maybe]

ADG; NN/g

	6.	 Ensure that date formats are clear.

Text/Character Field [Level 3], [T], [V2], [Yes]

A text field is a rectangular area in which the user enters or edits one or more lines 
of text. A text field can contain plain or styled text. Text fields are the base category 
for search fields, labels, and other related features.

ADG; NN/g

	1.	 When providing a user-provided data entry field, use a clear label with useful 
hints close by to communicate the purpose of the text field. [Level 2], [T], 
[V1], [No]

LR §3.3 Working Memory and Cognition. Disappearing placeholder text can 
strain working memory, particularly when distracted.

	2.	 Perform field validation after the user finishes typing into the field. Don’t wait 
until the user tries to submit the data. [Level 3], [T], [V2], [Yes]

ADG; NN/g; Others. The value of this is dependent on what is being typed. For 
numerical entry, this is more important.

	3.	 Number formatters help users provide accurate numerical data by making the 
text easier to read and comprehend. See Data Entry.

	4.	 Ensure that text fields allow users to easily view the full content in the field. 
Consider enabling resizing of text fields or providing another method to view the 
full text. [Level 4], [T], [V1], [Maybe]

LR §3.3 Working Memory and Cognition. Being unable to view the full text field 
forces operators to store information within working memory rather than 
simply view it if they want the full picture.
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	5.	 When possible, match the size of the text field to the expected size of the input. 
A text field for a five-digit zip code can be static and just slightly wider than the 
text. A text field for paragraph-length entries should show (at the very least) 
multiple lines and potentially include a method for resizing the text field. [Level 
3], [T], [V1], [No]

	6.	 A page with multiple text fields should ensure the layout is clean and clear. 
[Level 4], [T], [V1], [Maybe]

Mendel, J., & Pak, R. (2009). The effect of interface consistency and cognitive 
load on user performance in an information search task. Proceedings of the 
Human Factors and Ergonomics Society Annual Meeting, 53(22), 1684–1688. 
https://doi.org/10.1177/154193120905302206

	(a)	 Evenly space multiple text fields.
	(b)	 Prefer a vertical layout over horizontal.
	(c)	 Prefer consistent text field widths when appropriate. This can be used to 

signal relationships between text fields. For example, “first name” and 
“last name” can be one width, while the “address” and “city” fields can 
be another width.

	7.	 Ensure that “tabbing” between fields follows a logical, intuitive path. [Level 3], 
[T], [V1], [Maybe]

FOK; Mendel, J., & Pak, R. (2009). The effect of interface consistency and 
cognitive load on user performance in an information search task. Proceedings 
of the Human Factors and Ergonomics Society Annual Meeting, 53(22), 
1684–1688. https://doi.org/10.1177/154193120905302206

	8.	 Provide access to an “other” option when the task is complicated. This provides 
users a method for completing the task when the options don’t align exactly. 
[Level 2], [T], [V1], [Maybe]

ADG; Consistency and cognitive load on user performance in an information 
search task. Proceedings of the Human Factors and Ergonomics Society 
Annual Meeting, 53(22), 1684–1688. https://doi.
org/10.1177/154193120905302206

Date/Time Picker [Level 3], [T], [V3], [Yes]

A date picker lets the user choose a date, a time, a date and time, or a range of dates. 
Date and time can be presented in a textual format using text fields, as a graphical 
format using a calendar view and/or clock view, or as a display showing both 
at once.

KLM; CWT

	1.	 Ensure that the formatting of time and date displays matches the needs of the 
user and system.

	2.	 The date and time format should be consistent across the system (or all systems).
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	3.	 Ensure the detail shown by the display matches the needs of the task. Scheduling 
an in-person meeting requires less precision than scheduling access to a super 
computer.

	4.	 Present dates and times in a familiar format for the user. Ensure that cultural and 
international differences are considered during the design.

Segmented Control

A segmented control is a horizontal set of two or more segments, each of which 
functions as a button, and is usually configured as a toggle. Segmented controls 
provide closely related choices that affect an object, state, or view. Like buttons, 
segments can contain text or icons. A segmented control can enable single choice or 
multiple choices.

ADG; LR §2.2.2 Stage 2 – Comprehension

	1.	 In general, try to keep segment size consistent.
	2.	 Consider using labels to add clarity. Labels can introduce a segmented control, 

clarify its purpose, and help ensure that icons are understood by the user.
	3.	 Segmented controls should follow the toolbar design guidelines when possible.
	4.	 Segmented controls should not be used as a replacement for tab view controls 

within a primary window. Segmented controls can be used for view switching 
within a toolbar or inspector pane, however.

	5.	 Segmented controls should not be used for Add or Remove actions. Instead, use 
gradient buttons.

	6.	 Segmented control labels should use nouns or noun phrases.
	7.	 Segmented controls that use text within the control don’t need an additional 

label; however, icons should be accompanied by labels.
	8.	 Avoid including text and icons within a single segmented control.

Level Indicators [Level 3.5], [T+], [V3], [Yes]

A level indicator graphically represents of a specific value within a range of numeric 
values. It is similar to a slider in purpose, but is more visual and doesn’t contain a 
distinct control for selecting a value—clicking and dragging across the level 
indicator itself to select a value is supported, however. A level indicator can also 
include tick marks, making it easy for the user to pinpoint a specific value in the 
range. A capacity indicator illustrates the current level in relation to a finite capacity. 
Capacity indicators are often used when communicating factors like disk and 
battery usage.

	1.	 The fill color for capacity indicators should be used to alert users about significant 
values like low battery or low disk space.

	2.	 Large ranges of data should use continuous indicators and tick marks to provide 
additional information about the data value.

Appendix 2: Design Guidelines



114

	3.	 Use the quantity and width of discrete indicators to convey additional context 
information to the user. Don’t use tick marks on discrete indicators since they 
already include that information in their display.

	4.	 Be sure to label at least the first and last tick marks if they are used on a continuous 
indicator.

Progress Indicators [Level 4], [T], [V2], [No]

Don’t make people sit around staring at a static screen waiting for your app to load 
content or perform lengthy data processing operations. Use progress indicators to 
let people know your app hasn’t stalled and to give them some idea of how long 
they’ll be waiting.

There are two general kinds of progress indicators: bar indicators and spinning 
indicators. Bar indicators (or progress bars) use a horizontal bar that fills from left 
to right to show the progress of some action. Spinning indicators use a circular form 
to show progress through filling the circle as progress continues.

Ghafurian, M., Reitter, D., and Ritter, F.E., (2020). Countdown Timer Speed: A 
Trade-off between Delay Duration Perception and Recall. ACM Transactions on 
Computer-Human Interaction (TOCHI), 27(2), 1–25, https://doi.org/ 
10.1145/3380961

	 1.	 Progress indicators should only be shown within a view, not in window frame 
areas like toolbars and status bars.

	 2.	 Progress indicators should be in consistent locations across the system.
	 3.	 If possible and useful, allow users to halt processing for an action without 

causing negative side effects.
	 4.	 Only use determinate progress indicators for tasks with well-defined durations. 

Be sure to differentiate between processes that have a determinate length and 
processes that have an indeterminate length.

	 5.	 Always report progress accurately. Users will be frustrated by a progress bar 
that does not represent the progress in a useful, accurate manner. For example, 
avoid making a progress bar that jumps to 90% completion within the first 
10 seconds, but takes 5 minutes to complete the final 10% of the task.

	 6.	 Hide determinate progress indicators once they are completely filled, but make 
sure the user realizes that the task is complete. If it disappears too quickly, they 
may wonder if that task was actually completed.

	 7.	 Labels for progress bars can provide useful context about the current state of 
the system. Use a trailing ellipsis on labels to indicate that the task is an ongoing 
process.

	 8.	 Spinning progress indicators should be used to communicate the status of a 
background operation or to save space on the screen.

	 9.	 In general, determinate progress indicators are preferred over indeterminate 
indicators.

	10.	 Don’t switch between spinning indicators and progress bars for the same task.
	11.	 Try to keep indeterminate progress bars in motion to ensure that the user knows 

that something is happening. This prevents users from wondering whether the 
task is progressing or if the system has stalled.
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	12.	 Spinning progress indicators typically won’t need labels.

�Some Parting Advice for Designers

Guidelines Will Not Cover All Decisions

Guidelines cannot cover all instances. There may be edge cases or places where 
unexpected questions arise about design: for example, another item to add, another 
task to add, or a different type of screen or user. The guidelines might also contradict 
themselves, which will require theory or an experiment to resolve. The implementer 
will often be asked to make short-term, rapid design decisions without the requisite 
time or resources to properly analyze the situation. For example, a customer may 
determine that the power module requires a view showing power over time in 
addition to the current power level. Should the power-over-time view be shown in 
addition to the current power level or merged into a single view? Should the power-
over-time view change the line’s color to show low-power alerts or use a horizontal 
threshold line instead? Providing implementers, designers, and engineers with 
additional training will allow them to make good design decisions throughout the 
design process.

Even design guidance will not always provide enough information to implement 
a system. Better systems are built when the implementer is at least sympathetic to 
and perhaps even has studied a bit about the domain they are implementing. 
Architects who understand how buildings are built provide better, easier to build 
buildings, and architectural engineers build better buildings if they have studied 
architecture. The same holds true for systems engineers, UX designers, and the 
various other groups that contribute to creating the systems that reside in op centers. 
Engineers who understand their users and other stakeholders will build better 
interfaces.

Study the User

Thus, interface implementers should study the user slightly to be prepared for when, 
explicitly or implicitly, decisions must be made while implementing the interface. 
This might take 10–25 hours a year.

Study How to Design

Interface design and implementation is a process and procedural skill like any engi-
neering discipline, similar to writing code, writing English, or even medical prac-
tice. Professionals in this area should get continuing education in the process of 
design. This might take 10–25 hours a year.
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�Appendix 3: All Design Principles Described in This Book

This appendix lists all the design principles that are covered in the book. Some 
design principles are grouped and presented as a table (Table A3.1).

Table A3.1  Aggregated list of design principles covered by this book

Principle Section

Principle 
1.1

Don’t assume the user to be how you think you are 1.7

1.2 All design choices have trade-offs. Don’t go in blind 1.7

1.3 Use and test multiple designs 1.7

2.1 Make the information available 2.3.1

2.2 Make the information interpretable 2.3.1

2.3 Ensure the value and salience of each piece of information; eliminate or 
suppress unnecessary signals

2.3.1

2.4 Work around the limitations of human perception and cognition by 
reducing complexity and workload of the task

2.3.1

2.5 Actively design the system to prevent misinterpretation of signals. Signals 
should be unambiguous, consistent, and instantly recognizable

2.3.2

2.6 Consider how the actual tasks will be done by the operators. If operators 
will be expected to multi-task, then build in features to accommodate this 
fact

2.3.2

3.1 Designing to accommodate color blindness will solve multiple problems at 
once

3.2.5

3.2 Colors must be used sparingly and used consistently and should be 
reserved for critical information

3.2.5

3.3 Make text with readable fonts, use no more than three font types, use fonts 
of proper sizes, and use simple, short text strings

3.2.5

3.4 Ensure signals indicating missing information are clear and obvious 3.2.5

3.5 Arrangement of screen components should be useful, consistent, and close 3.2.5

3.6 Present information needed for comprehension directly 3.3.5

3.7 Provide support for operators that may deal with interruptions 3.3.5

3.8 Consider the risks of stimulus habituation appropriately 3.3.5

3.9 Reduce the cognitive resources used during multi-step tasks 3.4.3
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