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Abstract 

Background: As countries move to malaria elimination, detecting and targeting asymptomatic malaria infections 
might be needed. Here, the epidemiology and detectability of asymptomatic Plasmodium falciparum and Plasmodium 
vivax infections were investigated in different transmission settings in Ethiopia.

Method:: A total of 1093 dried blood spot (DBS) samples were collected from afebrile and apparently healthy indi-
viduals across ten study sites in Ethiopia from 2016 to 2020. Of these, 862 were from community and 231 from school 
based cross-sectional surveys. Malaria infection status was determined by microscopy or rapid diagnostics tests (RDT) 
and 18S rRNA-based nested PCR (nPCR). The annual parasite index (API) was used to classify endemicity as low (API > 0 
and < 5), moderate (API ≥ 5 and < 100) and high transmission (API ≥ 100) and detectability of infections was assessed 
in these settings.

Results: In community surveys, the overall prevalence of asymptomatic Plasmodium infections by microscopy/RDT, 
nPCR and all methods combined was 12.2% (105/860), 21.6% (183/846) and 24.1% (208/862), respectively. The propor-
tion of nPCR positive infections that was detectable by microscopy/RDT was 48.7% (73/150) for P. falciparum and 4.6% 
(2/44) for P. vivax. Compared to low transmission settings, the likelihood of detecting infections by microscopy/RDT 
was increased in moderate (Adjusted odds ratio [AOR]: 3.4; 95% confidence interval [95% CI] 1.6–7.2, P = 0.002) and 
high endemic settings (AOR = 5.1; 95% CI 2.6–9.9, P < 0.001). After adjustment for site and correlation between obser-
vations from the same survey, the likelihood of detecting asymptomatic infections by microscopy/RDT (AOR per year 
increase = 0.95, 95% CI 0.9–1.0, P = 0.013) declined with age.

Conclusions: Conventional diagnostics missed nearly half of the asymptomatic Plasmodium reservoir detected by 
nPCR. The detectability of infections was particularly low in older age groups and low transmission settings. These 
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Introduction
Following considerable successes in the control of 
malaria in the last two decades, progress plateaued or 
stalled in many settings in Africa [1]. Ethiopia runs a suc-
cessful malaria control programme [2] that makes it one 
of the four countries (together with India, Rwanda, and 
Pakistan) that continues to maintain the declining trend 
in malaria burden [3]. As a result, the country is on track 
for a 40% reduction in incidence (together with Rwanda, 
Zambia, and Zimbabwe) and malaria mortality rates 
(together with Zambia) by 2020 [1]. To guide elimina-
tion efforts that currently targets 239 selected districts, 
the National Malaria Control Programme (NMCP) of 
Ethiopia stratified the country into four strata using dis-
trict level annual parasite index (API) data from 2017 [4] 
as malaria-free (API, 0), low (API, 0–5), moderate (API, 
5–100), and high (API, ≥ 100) [4]. Despite its value, the 
adopted stratification lacks granularity and is not able to 
capture relevant spatial and temporal heterogeneities in 
low endemic settings [5, 6]. The unique epidemiology of 
malaria transmission in Ethiopia; the presence of strictly 
seasonal transmission in some settings and perennial 
transmission elsewhere, as well as different levels of co-
endemicity of Plasmodium falciparum and Plasmodium 
vivax [2], calls for the use of tailored approaches to char-
acterize the epidemiology of malaria.

District level stratification that relies on malaria inci-
dence data has limitations in settings where case num-
bers are extremely low. Incidence data are also sensitive 
to changes in care seeking behavior, rates of testing of 
suspected cases, and reporting completeness [7]. Screen-
ing approaches to determine the prevalence of (often 
asymptomatic) infections that are present in communi-
ties have great potential to define transmission intensity 
[8]. However, parasite prevalence estimates are greatly 
affected by parasite density distributions in communities 
that determine the detectability of infections by different 
diagnostics. Malaria elimination efforts may benefit from 
targeting all infections present in communities, irre-
spective of clinical presentation [9–11]. There is a grow-
ing body of evidence on the public health importance of 
asymptomatic malaria infections and their contribution 
to onwards malaria transmission in high [12, 13] and low 
transmission settings [13, 14]. Importantly, most asymp-
tomatic infections detected in community surveys are of 
low parasite density and the proportion of all infections 
that are submicroscopic varies between settings [15]. 

Previous studies in Ethiopia detected a significant bur-
den of asymptomatic P. falciparum and P. vivax infec-
tions [16–19]. These studies used different diagnostic 
techniques and sampling designs, making it difficult to 
compare parasite prevalence estimates or diagnostic 
performance indicators across settings. The aim of the 
present study was to understand the epidemiology of 
asymptomatic Plasmodium infections in different set-
tings in Ethiopia and their detectability by microscopy, 
rapid diagnostics test (RDT) and molecular methods.

Methods and materials
Study areas
The study was conducted in ten districts (woredas) 
encompassing different transmission settings (Fig.  1). 
Malaria transmission is highly heterogeneous in Ethiopia 
and transmission intensity varies spatially and tempo-
rally [20]. Study sites representing low (n = 2), moderate 
(n = 4), and high (n = 4) transmission settings as per the 
national stratification were selected from five administra-
tive regions (Fig.  1). Low transmission settings include 
Gomma and Babile districts from Oromia region. Mod-
erate transmission settings include Bahir Dar Zuria and 
North Achefer districts from Amhara region and Arba 
Minch Zuria from the Southern region and Mao Komo 
from Benishangul region. High transmission districts 
were from Gambela (Lare and Abobo), Amhara (Jawi), 
and Benishangul (Meng) regions.

Study population and sample collection
Samples were collected in community and school-based 
cross-sectional surveys from 2016 to 2020. Specifically, 
community-based surveys were conducted at Abobo, 
Lare, Mao-komo, Menge, and Gomma districts in 2016, 
Babile district in 2018, and Arba Minch Zuria district 
in 2020. School based surveys were conducted at North 
Achefer, Bahir Dar Zuria, and Jawi districts in 2017. 
For the school-based surveys, students were randomly 
selected from elementary school students stratified by 
age as described before [21] following protocols devel-
oped by Brooker and colleagues [22].

Prior to recruitment of participants for commu-
nity surveys, sensitization was undertaken by teams 
that involve study team members, village-based health 
extension workers, malaria focal person of the district, 
local administrators, and elderly. The study purpose, 
procedure, risk, and benefit were explained in local 

findings highlight the need for sensitive diagnostic tools to detect the entire parasite reservoir and potential infection 
transmitters.
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language. After this first step, volunteer community 
members were invited to join the study upon obtaining 
informed written consent and enrolled in the study on 
first come, first served basis.

Finger prick blood samples (~ 300  µL) collected 
from all participants were used to diagnose malaria 
using RDT (First Response® malaria Antigen pLDH/
HRP2 P.f and Pan Combo Card Test, Premier Medi-
cal Corporation Ltd, Dist. Valsad, India) or thin and 
thick blood films, and to prepare dried blood spots 
(DBS) on 3MM Whatman filter papers (Whatman, 
Maidstone, UK). Malaria was diagnosed using RDT at 
Abobo, Lare, Mao-Komo, Menge, and Gomma districts 
whilst microscopy was used at the school surveys, Arba 
Minch Zuria and Babile districts. Detailed clinical and 
socio-demographic data were captured using a pre-
tested semi-structured interview-based questionnaire. 

Axillary body temperature was measured for all par-
ticipants. If a participant was found febrile (axillary 
temperature ≥ 37.5  °C) or reports history of fever in 
the past 48 h, malaria status was checked using RDT 
and treated immediately when found positive follow-
ing the national treatment guideline [23]. DBS were air 
dried, protected from direct sunlight, and enclosed in 
zip locked plastic bags individually with self-indicat-
ing silica gel (Loba Chemie, Mumbai, India). Samples 
were transported at ambient temperature and stored 
at − 20  °C until further use. Giemsa-stained thick and 
thin smears were read independently by two experi-
enced malaria microscopists. A third expert microsco-
pist was consulted in case of discordant results. Thick 
smear slides were declared negative if no parasites were 
detected after observing 100 fields under oil immersion 
(100× magnification).

Fig. 1 Location of study sites and their Annual Parasite Index (API) as per the stratification by National Malaria Control Program based on 2017 data: 
BA = Babile, GO = Gomma, NA = North Achefer, AMZ = ArbaMinch Zuria, BDZ = Bahir Dar Zuria, MK = Mao-komo, AB = Abobo, LA = Lare, JA = Jawi, 
ME = Meng
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Species specific detection of Plasmodium parasites by 18S 
rRNA based nested polymerase chain reaction
Genomic DNA was extracted from 6 mm diameter DBS 
punches using Chelex-Saponin extraction method [24]. 
In brief, DNA was eluted after an overnight lysis in 
0.5% saponin (SIGMA)/PBS (SIGMA) buffer and wash-
ing step followed by boiling at 97 ˚C in 150  µL of 6% 
Chelex (Bio Rad) in DNase/RNase free water (SIGMA). 
From the final eluate, 80 µL was transferred into a new 
plate and stored at − 20 ˚C until further use. Plasmo-
dium species identification was done by nested poly-
merase chain reaction (nPCR) that targeted the small 
subunit 18S rRNA gene as described before [25]. A pos-
itive control (for P. falciparum NF54 culture from Rad-
boudumc, Nijmegen, The Netherlands; for P. vivax the 
malaria reference laboratory positive controls from the 
London School of Hygiene and Tropical Medicine, Lon-
don, UK) and negative controls (PCR grade water) were 
run in every reaction plate. Amplified products were 
visualized using UV transilluminator (Bio Rad, USA) 
after electrophoresis using 2% agarose gels (SIGMA, 
ALDRICH) stained with Ethidium Bromide (Promega, 
Madison, USA).

Statistical analysis
For the school surveys, sample size was calculated based 
on protocols by Brooker and colleagues [22] for the origi-
nal study that aimed at assessing longitudinal evaluation 
of parasite prevalence in school children [21]. For this 
study, 70.0% (231/330) of the students were successfully 
sampled. For the community surveys, an overall preva-
lence of 6.8% asymptomatic Plasmodium infections was 
expected based on previous observations [17, 19, 26–35] 
with a precision of 5%. Based on previous experience, a 
minimum of 75 samples for the school surveys and 114 
for the community samples was targeted across the study 
sites [21]. Data was double entered into excel, compiled, 
checked for consistency, and analyzed using Stata ver-
sion 15 (Stata corporation; College Station, TX, USA) 
and GraphPad Prism 5.3 (GraphPad Software Inc., CA, 
USA). Proportions were compared between categories 
using Fisher’s exact test and Pearson’s chi-squared test 
where it was appropriate. Equality tests on unmatched 
data such as age between school and community sur-
veys were tested by two-sample Wilcoxon rank-sum 
(Mann-Whitney) test. Generalized Estimating Equation 
(GEE) was used to allow parameter estimates and stand-
ard errors adjusted for clustering across the study sites; 
exchangeable correlation matrix and robust standard 
errors were used. Sample characteristics such as age, gen-
der, and transmission intensity were tested in the model 
for their association with infection prevalence and roles 

as potential confounders. A 5% level of significance was 
considered in all cases.

Results
Characteristics of study participants
A total of 1093 individuals, 231 from school (3 schools; 
75–80 per school survey) and 862 from community sur-
veys (7 surveys; 114–161 per study site) participated in 
the study. None of the partifcipants was febrile at the 
time of sampling. Female participants constituted 43.5% 
(372/855) of community and 51.8% (118/228) of school 
surveys (P = 0.026). The overall median age of the par-
ticipants was 16 years (Interquartile range [IQR]: 11–35). 
As expected, participants from the school surveys were 
younger (median age, 12; IQR, 11–14) than community 
surveys (median age, 23; IQR, 10–38; P < 0.001). Results 
are presented separately for community and school 
surveys, focusing on community surveys for the main 
comparisons (Table  1). Within the community surveys, 
participants from low (median age, 30; IQR, 18–45; 
n = 232) and moderate (median age, 30; IQR, 12–42; 
n = 272) endemic settings were older than participants 
from high endemic settings (median age, 13; IQR, 8–28; 
n = 318; P < 0.001).

Prevalence of asymptomatic malaria infection 
across the study sites
In the community surveys, the overall prevalence 
of asymptomatic Plasmodium infections was 12.2% 
(105/860) by microscopy/RDT and 21.6% (183/846) by 
nPCR (Table  1); 24.1% (208/862) of participants were 
parasite positive by either nPCR and/or microscopy/
RDT. When considering infecting Plasmodium species 
by nPCR, 16.4% (139/846) of samples were P. falciparum 
positive; 3.7% (31/846) were P. vivax and 1.5% (13/846) 
were mixed P. vivax and P. falciparum. Although the 
school surveys were from high and moderate transmis-
sion sites, there was overall lower Plasmodium infection 
prevalence in the school surveys than in the community 
surveys as measured by all methods combined (11.3% vs. 
24.1%; χ2 = 17.9, P < 0.001).

Among the school surveys, the overall prevalence of 
asymptomatic malaria was 0.4% (1/231) by microscopy/
RDT whilst 11.3% (26/231) were parasite positive either 
by nPCR or both methods combined. Of these nPCR 
positive malaria infections from the school surveys, 2.6% 
(6/231) were due to P. falciparum, 5.2% (12/231) were 
due to P. vivax, and 3.5% (8/231) were due to mixed P. fal-
ciparum and P. vivax species infections (Additional file 1: 
Table S1, Additional file 2: Table S2).

Across the community surveys, in high transmission 
settings, nPCR-based prevalence of malaria infection 
ranged from 17.6% (n/N) at Meng to 46.1% (47/102) at 
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Lare district. In the moderate transmission sites, the 
nPCR-based prevalence was 29.3% (34/116) at Mao-
Komo and 12.4% (20/161) at Arbaminch Zuria district. In 
low transmission sites, the overall nPCR infection preva-
lence was 9.4% (22/234). The overall microscopy/RDT 
based prevalence was 23.1% (81/351), 7.9% (22/277), and 
0.9% (2/232), in high, moderate, and low transmission 
settings, respectively (Table 1).

Among the community samples, the prevalence of 
Plasmodium infections detected by all methods com-
bined was substantially higher for the high transmission 
settings (36.7%, 129/351; 95% CI 31.9–41.9; P < 0.001) 
compared to moderate (20.6%, 57/277; 95% CI 16.2–
25.8) and low transmission settings (9.4%, 22/234; 
95% CI 6.3–13.9). Moreover, the burden of asympto-
matic Plasmodium infection was higher in the 5–15 age 
groups as measured by microscopy/RDT (20.7%, 50/241, 
P < 0.001) and nPCR (26.7%, 62/232, P = 0.008) (Table 1) 

as compared to under-five children and adults older than 
15 years (Table 1).

Detectability of asymptomatic Plasmodium infections 
in different endemicities
Among community samples, microscopy/RDT detected 
44.2% (80/181) of nPCR detected Plasmodium infec-
tions (Agreement = 86.9%, κ = 0.526, Table 2). All, but 8 
RDT positive P. falciparum and 1 microscopy positive P. 
vivax sample, were also nPCR positive (Additional file 2: 
Table S2). The likelihood that Plasmodium infected indi-
viduals (i.e. individuals who were parasite positive by any 
diagnostic method) were detected by RDT was increased 
for individuals living in higher transmission settings 
(AOR = 5.1, 95% CI 2.6–9.9, P < 0.001) and individuals 
living in moderate transmission (AOR: 3.4, 95% CI 1.6–
7.2, P = 0.002) compared to low transmission settings 
(Additional file 3: Table S3; Fig. 2). Age was an important 

Table 1 Community-based prevalence of asymptomatic Plasmodium infection using nPCR and microscopy/RDT

Age was missed for 40 samples. Gender was missed for seven samples

CI confidence interval, API Annual Parasite Index /1000 people

Attributes Category Parasite prevalence 
by nPCR,
% (n/N) [95% CI]

P-value Parasite prevalence by microscopy/RDT,
% (n/N) [95% CI]

P-value

Gender Male 22.5 (106/472) 
[18.9–26.5]

0.442 13.5(65/483) [10.7–16.8] 0.232

Female 20.2 (74/367) 
[16.4–24.6]

10.7(40/372) [7.9–14.3]

Age group (years) ≤ 5 21.5 (14/65) 
[13.1–33.3]

0.008 10.6 (7/66) [5.1–20.7] < 0.001

5–15 26.7 (62/232) 
[21.4–32.8]

20.7 (50/241) [16.1–26.3]

≥ 15 16.9 (87/513) 
[13.9–20.5]

5.6 (29/515) [3.9–7.9]

Study sites (n/N)
High transmission

Lare 46.1 (47/102) 
[36.6–55.8]

< 0.001 35.9 (41/114) [27.6–45.2] < 0.001

Abobo 34.2 (39/114) 
[26.1–43.4]

23.7 (28/118) [16.9–32.3]

Meng 17.6 (21/119) 
[11.8–25.6]

10.1 (12/119) [5.8–16.9]

Moderate transmis-
sion

Mamo-Komo 29.3 (34/116) 
[21.7–38.3]

16.4 (19/116) [10.7–24.3]

Arba Minch zuria 12.4 (20/161) 
[8.1–18.5]

1.8 (3/161) [0.6–5.6]

Low transmission Babile 15.4 (18/117) 
[9.9–23.2]

1.7 (2/117) [0.4–6.6]

Gomma 3.4 (4/117) [1.3–8.8] 0.0 (0/115 [NA]

Transmission intensity High 31.9 (107/335) 
[6.3–13.9]

< 0.001 23.1(81/351) [18.9–27.8] < 0.001

Moderate 19.5 (54/277) 
[15.2–24.6]

7.9 (22/277) [5.3–11.8]

Low 9.4 (22/234) [6.3–13.9] 0.9 (2/232) [0.2–3.4]

Overall Prevalence 
(n/N)

– 21.6 (183/846) 
[18.9–24.5]

12.2 (105/860) [10.1–14.6]
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predictor of asymptomatic malaria positivity by micros-
copy/RDT. After adjusting for site and correlation 
between observations from the same survey, a 5% decline 
in detection using microscopy/RDT was observed for 
every year increase of age from those that tested positive 
by all methods (AOR = 0.95, 95% CI 0.9–1.0, P = 0.013).

The parasite species composition and detectability var-
ied between transmission settings (Fig.  2). Among the 
Plasmodium species detected in the community samples, 
the majority were attributable to P. falciparum (77.4%, 
161/208) when all samples were combined. Of the nPCR 
detected P. falciparum-mono species infections (n = 139) 
and mixed-species infections (n = 13), microscopy/RDT 
successfully detected P. falciparum in 48.7% (73/150) of 
infections (Table 2). Of the nPCR detected P. vivax-mono 
infections (n = 31) and mixed-species infections (n = 13), 
microscopy/RDT successfully detected P. vivax in 4.6% 
(2/44) of infections (Table 2).

Discussion
This study describes the prevalence and detectability 
of asymptomatic Plasmodium infections in ten differ-
ent transmission settings by nPCR and conventional 
diagnostics (i.e. microscopy/RDT). More asymptomatic 
infections were detected in high transmission settings by 
both methods. The detectability of asymptomatic Plas-
modium infections using microscopy/RDT relative to 
nPCR increased as transmission intensity increases. As a 

result, most infections in low transmission settings were 
not detectable by microscopy/RDT.

In Ethiopia, several cross-sectional studies have doc-
umented asymptomatic parasite carriage using con-
ventional and molecular methods [16–18, 33, 34]. The 
current multi-site study allowed an assessment of fac-
tors influencing the prevalence of infections as well as 
their detectability by microscopy-RDT. The prevalence 
of asymptomatic Plasmodium infections in the current 
study was in the same range as other reports from high 
[18, 34] and moderate [27] transmission settings in Ethio-
pia and elsewhere [17, 29, 36, 37].

Consistent with other studies [16, 38, 39], the current 
study observed that microscopy/RDT detected fewer 
asymptomatic infections as compared to PCR. The pro-
portion of Plasmodium infections that was detectable 
by microscopy/RDT increased with increasing in trans-
mission intensity. Whilst this trend has been reported in 
meta-analyses for P. falciparum [15, 36, 40], it is striking 
that this trend is also apparent in the current study within 
one country affected by both P. falciparum and P. vivax. 
Moreover, the effect size was comparatively large with 
approximately 5-fold higher detectability of infections in 
high endemic settings compared to low endemic settings. 
The trend of increasing detectability with increasing 
transmission intensity may be attributable to the fact that 
asymptomatically infected individuals have higher aver-
age parasite densities in high transmission settings [15, 
41]. Moreover, in low endemic settings individuals will 

Fig. 2 Community and school- based surveys asymptomatic malaria infection prevalence and detectability using nPCR and microscopy/RDT: black 
circles represent parasite prevalence by nPCR (x-axis) and proportion all infections detected by microscopy/RDT (left y-axis); white circles indicate 
parasite prevalence by microscopy/RDT (right y-axis). School surveys were (N. Achefer) North Achefer, BDZ (Bahir Dar Zuria) and Jawi
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receive fewer infectious bites with, due to the absence 
of super-infections, lower parasitemia over the course 
of infection [9, 36]. Low genetic diversity of the para-
site population in low transmission settings may also 
contribute to rapidly acquired immunity to the specific 
clones [42], further limiting parasite density. An impact 
of immunity on parasite density and the detectability of 
infections is also illustrated by the negative impact of 
increasing age on the detectability on infections in line 
with the current study [43].

Lower parasite densities in P. vivax compared to P. fal-
ciparum [44, 45] also results in a low detectability of P. 
vivax infections by microscopy/RDT. This low density in 
P. vivax is mainly attributable to the parasite’s preference 
to infect reticulocytes [46, 47] that typically constitute 
less than 1% of the total erythrocyte population [48] and 
also to the early acquisition of immunity [47]. These find-
ings have implications for estimates of the relative burden 
of P. falciparum and P. vivax infections. The introduction 
of sensitive molecular tools may thus improve the detec-
tion of P. vivax infections substantially. Since treatment 
strategies differ for P. falciparum and P. vivax, this is rel-
evant for public health interventions.

Although RDT and microscopy were used separately 
in the study sites due to logistics reasons, the prevalence 
measured by conventional RDT and microscopy was 
assumed to be comparable [37].

Nine samples that were declared microscopy/RDT 
positive were negative by nPCR while seven samples 
that were detected P. falciparum positive by RDT were 
P. vivax positive by nPCR. False RDT positivity might be 
due to the presence of parasite antigens after adequate 
clearance of parasites which might explain the variation 
between RDT positivity and PCR negative detection 
among asymptomatic malaria infections [49, 50]. Hence, 
there is a possibility that RDT can be positive for linger-
ing antigens of P. falciparum while missing the low-den-
sity P. vivax infection from the same patient.

Conclusions
Conventional diagnostics missed nearly half of the 
asymptomatic malaria reservoir detected by nPCR. 
Moreover, the detectability of asymptomatic Plasmo-
dium infections in all endemic sites might reflect the 
long persistence of these infections from weeks up 
to months in high [51] as well as in low transmission 
settings [52, 53] even in the presence of effective con-
trol and elimination interventions. As these infections 
can have relevance for onward malaria transmission 
[13–15], a detailed understanding of the distribution, 
detectability, and contribution to the infectious reser-
voir of asymptomatic infections will greatly improve 

our ability to target all relevant infections. The wide 
scale presence of low-density infections calls for more 
in-depth studies on understanding parasite density 
oscillations, their relevance for malaria symptoms, and 
onward transmission to mosquitoes.
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