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Zimbabwe
Zvifadzo Matsena Zingoni1* , Tobias F. Chirwa1 , Jim Todd2 and Eustasius Musenge1

Abstract

Background: This study aimed to jointly model HIV disease progression patterns based on viral load (VL) among
adult ART patients adjusting for the time-varying “incremental transients states” variable, and the CD4 cell counts
orthogonal variable in a single 5-stage time-homogenous multistate Markov model. We further jointly mapped the
relative risks of HIV disease progression outcomes (detectable VL (VL ≥ 50copies/uL) and immune deterioration
(CD4 < 350cells/uL) at the last observed visit) conditional not to have died or become loss to follow-up (LTFU).

Methods: Secondary data analysis of individual-level patients on ART was performed. Adjusted transition intensities,
hazard ratios (HR) and regression coefficients were estimated from the joint multistate model of VL and CD4 cell
counts. The mortality and LTFU transition rates defined the extent of patients’ retention in care. Joint mapping of
HIV disease progression outcomes after ART initiation was done using the Bayesian intrinsic Multivariate Conditional
Autoregressive prior model.

Results: The viral rebound from the undetectable state was 1.78times more likely compared to viral suppression
among patients with VL ranging from 50-1000copies/uL. Patients with CD4 cell counts lower than expected had a
higher risk of viral increase above 1000copies/uL and death if their VL was above 1000copies/uL (state 2 to 3 (λ23):
HR = 1.83 and (λ34): HR = 1.42 respectively). Regarding the time-varying effects of CD4 cell counts on the VL
transition rates, as the VL increased, (λ12 and λ23) the transition rates increased with a decrease in the CD4 cell
counts over time. Regardless of the individual’s VL, the transition rates to become LTFU decreased with a decrease
in CD4 cell counts. We observed a strong shared geographical pattern of 66% spatial correlation between the
relative risks of detectable VL and immune deterioration after ART initiation, mainly in Matabeleland North.
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Conclusion: With high rates of viral rebound, interventions which encourage ART adherence and continual
educational support on the barriers to ART uptake are crucial to achieve and sustain viral suppression to
undetectable levels. Area-specific interventions which focus on early ART screening through self-testing, behavioural
change campaigns and social support strategies should be strengthened in heavily burdened regions to sustain the
undetectable VL. Sustaining undetectable VL lowers HIV transmission in the general population and this is a step
towards achieving zero HIV incidences by 2030.

Keywords: CD4 counts, Viral load, Joint multistate models, Joint spatial maps, Multivariate conditional
autoregressive prior, HIV disease progression

Background
Antiretroviral therapy (ART) has since been the back-
bone of HIV prevention and control as it reduces viral
load (VL) replication in the human host by blocking the
virus life cycle [1]. Once the virus replication has been
inhibited, the CD4 cell counts increase, and the individ-
ual life expectancy is expanded [2]. HIV patients’ man-
agement involves monitoring VL and CD4 cell counts
prognostic markers through laboratory repeated mea-
surements. The immunological markers can be utilized
in understanding the HIV disease progression patterns
among ART patients [2].
Multistate Markov models are mathematical models

which have been used to evaluate HIV disease processes;
however, the number of states, state cuts-off points and
the number of transitions vary across studies [3, 4]. This
explains the flexibility of the multistate models’ imple-
mentation, but the models become complex as the num-
ber of states and transitions increase. These models have
been used extensively in HIV disease progression using
CD4 cell counts states [5, 6] or VL states [7, 8] to define
the model states (categories) separately. Of these two
prognostic markers, VL is the preferred marker in HIV
monitoring due to its high sensitivity. However, there
had been a delay in the implementation and rolling out
of VL testing in most developing countries due to cost-
related challenges [9].
The low-middle-income countries (LMIC) have tradition-

ally relied on the use of CD4 cell counts in HIV disease
progression monitoring as this has been the readily avail-
able laboratory marker; however, if both VL and CD4 cell
counts are available, it is imperative to model these prog-
nostic markers jointly to understand better the HIV disease
progression patterns. Joint modelling of these two prognos-
tic markers helps to explain those effects which one marker
cannot explain in the absence of the other marker.
In HIV disease monitoring programmes, Bayesian

spatial modelling is an emerging tool to analyze spatially
related multidimensional data with an underlying spatial
process to guide policy [8, 10]; however, joint spatial
modelling using the Bayesian intrinsic Multivariate

Conditional Autoregressive (MCAR) prior has not been
fully utilized in this field. The advantage of joint map-
ping is that it gives an understanding of the HIV dynam-
ics and the spatial overlap between the joint mapped
outcomes.
The main objective of our study was to jointly model

HIV disease progression using two 5-stage time-
homogenous multistate Markov models based on CD4
cell counts and VL. We firstly fitted two time-
homogeneous multistate Markov models with states de-
fined by CD4 cell counts and VL. In each multistate
model, we jointly model these prognostic markers with
one marker defining the finite multistate model states
and the other marker forming the covariate matrix com-
ponents of the regression model. The first covariate was
an orthogonal variable generated using the principal
component analysis (PCA) [11]. The second covariate
was the time-varying “incremental transient states” vari-
able to estimate the changes in transition rates over time
with respect to how the marker changes [7]. Uniquely to
this study is the inclusion of these two covariates in a
single multistate model covariate matrix which has been
a gap in previous studies that incorporated either the or-
thogonal variable or the time-varying covariate only [11].
We further performed a joint spatial mapping of HIV
disease progression outcomes (detectable VL (VL ≥
50copies/uL) and immune deterioration (CD4 < 350cells/
uL) at the last observed visit conditional not to have died
or become loss to follow-up (LTFU) to describe the
spatial overlap of the two outcomes.

Methods
Data source, description and study design
This study was a secondary analysis of data from pa-
tients’ records compiled for monitoring and guiding
programme planning. The data used in this study came
from the Zimbabwe National ART programme collected
through the electronic patients’ management system
(ePMS) database described elsewhere [12, 13]. The elec-
tronic system was implemented nationally to improve
and increase efficiency in HIV patients’ management
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and monitor their response to ART. A stratified sam-
pling of health facilities offering HIV services was done;
hence, a representative sample of primary, secondary,
tertiary and quaternary health facilities which provide
HIV services was achieved during the ePMS roll out.
However, a continual up-scale is currently ongoing,
which will ensure that the system covers all health
facilities.
We considered individuals aged 15 years and above,

with at least two repeated measurements of both CD4
cell counts and VL who initiated ART between 2004 and
2017. However, since this was programme data, the
follow-up visits of the patients were intermittent, and
there may have been clinical reasons for requesting CD4
count and VL measurements from patients. Each indi-
vidual had an average follow-up period of 2 years, and
the majority of the patients (79.2%) in the final sample
considered for analysis were enrolled on ART between
2009 and 2015.

The time-homogeneous Markov multistate model
formulation
A multistate model is a stochastic continuous-time
process {X(t), t ∈ [0, T)years} defined as a finite space X =
{1, 2, 3, 4, 5} based on VL or CD4 cell counts states:

Viral load VLð Þ states copies=uLð Þ

¼

1;VL < 50
2; 50≤VL < 1000
3;VL≥1000
4;Dead
5;Loss to follow‐up

8>>>><
>>>>:

ð1Þ

CD4 cell counts states cells=uLð Þ

¼

1;CD4≥500
2; 350≤CD4 < 500
3;CD4 < 350
4;Dead
5;Loss to follow‐up

8>>>><
>>>>:

ð2Þ

where LTFU was defined as a failure of a patient to re-
port for drug refill for at least 90 days from the last ap-
pointment date or if the patient missed the next
scheduled visit date and never showed up again. The
schematic presentation of the 5-stage multistate model
is shown in Fig. 1. Based on these possible transitions
shown in Fig. 1, the corresponding transition rates are
defined by a 5 × 5 transition matrix Q(t) with λij ele-
ments defining the movement between state i and state j

with properties
P5

j¼1λij ¼ 0 and λii = − ∑i ≠ jλij. In reality,

the individuals who become LTFU can return to the
clinic for continual monitoring. However, in this study,
we could not ascertain any returns of these participants
after they became LTFU. This means the λ5j transition

rates from the LTFU state were not estimated as the
data could not support this.

Q tð Þ ¼

− λ12 þ λ13 þ λ14 þ λ15ð Þ λ12 λ13 λ14 λ15
λ21 − λ21 þ λ23 þ λ24 þ λ25ð Þ λ23 λ24 λ25
λ31 λ32 − λ31 þ λ32 þ λ34 þ λ35ð Þ λ34 λ35
0 0 0 0 0
λ51 λ52 λ53 λ54 − λ51 þ λ52 þ λ53 þ λ54ð Þ

0
BBBB@

1
CCCCA

The effects of the covariates on each model were mod-
elled using the semi-parametric proportionality hazards.
We aimed to describe how the uncorrelated factor of VL
values can explain the component of mortality, LTFU or
HIV disease progression transition rates that cannot be
explained by the CD4 cell counts alone ignoring VL
measurements. To achieve this, we generated an orthog-
onal variable through the PCA technique, which is a
data reduction approach used to combine highly corre-
lated variables into uncorrelated components to improve
model efficiency as described elsewhere [11]. The or-
thogonal variable was then included as a covariate in the
proportionality hazard model. The second covariate was
the time-varying VL measurements variable which was
categorized into “incremental transient states”. The cut-
off points for the time-varying VL covariate were similar
to those defined in equation [2] above, excluding the
mortality and the LTFU states. We simultaneously mod-
elled the effects of these two covariates in a single
model.
Therefore, we fitted two proportional hazard multi-

state models of the generic form:

λij;k=Z tð Þ ¼ λij; 0ð Þ exp β
0
ijZk

� �
; i≠ j ð3Þ

where λij, k/Z(t) is the transition rate between state i and
state j at the time t given a covariate matrix Z and λij, (0)
is the baseline hazard rate of the model. The two multi-
state Markov models fitted were:

λij;k CD4ð Þ=Z tð Þ ¼ λij CD4;0ð Þ exp βij;CD4 1ð ÞP
�
VL kð Þ þ βij;CD4 2ð ÞVLstates;k

� �

ð4Þ

λij;k VLð Þ=Z tð Þ ¼ λij VL;0ð Þ exp βij;VL 1ð ÞP
�
CD4 kð Þ þ βij;VL 2ð ÞCD4states;k

� �

ð5Þ
where equation [4] defines the CD4 cell counts multi-
state Markov model with λij(CD4, 0) as the baseline transi-
tion intensity for an individual k with positive residual
values for the orthogonal effect of VL ðP�

VLðkÞ ¼ 0Þ and
the time-varying VL transient levels (VLstates, k = 1(VL <
50 copies/uL)). Similarly, equation [5] defines the VL
multistate Markov model with λij(VL, 0) representing the
baseline transition intensities for an individual k with
positive residual values for the orthogonal effect CD4
cell counts ðP�

CD4ðkÞ ¼ 0Þ and the time-varying CD4 cell

counts levels (CD4states, k = 1(CD4 ≥ 500 cells/uL)). The
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βij, (CD4)d and βij, (VL)d for d = 1, 2 on both the CD4 cell
count model and the VL model are the log-linear effects
(coefficients) of the corresponding orthogonal and time-
varying covariates.
Since the analyses were purely based on existing mod-

elling approached within the “msm” R library, additional
covariates like baseline CD4 cell counts, baseline VL
values, age, sex and WHO staging could be adjusted for
in the model; however, in this study, we encountered a
convergence warning as more covariates were added.
When the multistate Markov model fails to converge, it
means the optimization criterion could not converge to
the maximum likelihood; hence, the standard errors of
the estimated parameters were not calculated, and the
confidence interval estimates were missing on the print-
out of results. This modelling challenge is normally
faced if there is data sparsity in some cells within the
multistate model. Usually, the scaling factor is increased
to a higher value adjusted to normalize the likelihood
and prevent overflow within the optimization process;
however, in our case, this was not helpful.
The final model selection was based on the Akaike In-

formation Criterion (AIC) values which are defined as
AIC = − 2(Log − likelihood) + 2q, where 2q represents
the variance component, q is the number of parameters
to be estimated in the fitted model and the bias is de-
fined by −2(Log − likelihood). The better fitting model is
the model with the lowest AIC value. The nested models
were assessed using the likelihood ratio test (LRT) de-
fined as:

LRT ¼ −2� loge L1 ϕ̂
� �

=L2 ϕ̂
� �� � ð6Þ

where L1ðϕ̂Þ is the likelihood for the simple (unsatur-

ated) model with few covariates and L2ðϕ̂Þ is the likeli-
hood for the full (saturated) model with additional
covariate(s). A significant p-value < 0.05 for the LRT
leads to the rejection of the null hypothesis (simple

model is better) in favour of the alternative hypothesis
(full model is better). To assess how well the final se-
lected models predict HIV disease, mortality and LTFU,
percentage prevalence in each state were plotted to com-
pare the observed and the expected frequencies.

Joint mapping of HIV progression based on two
prognostic markers
Furthermore, an intrinsic MCAR prior model by
Besag et al. (1991) [14] was fitted to jointly map the
relative risks of the two HIV disease progression
immunological outcomes (immune deterioration
(CD4 < 350cells/uL) and detectable VL (VL≥50copies/
uL) at the last observed visit) and estimate their
shared geographical pattern. The choice of the VL
immunological outcome cut-off point was based on
the global goal to achieve an undetectable VL to
minimize viral transmission in the general population
[15] while the choice of the CD4 cell counts im-
munological outcome cut-off point was based on earl-
ier studies that have shown that individuals with CD4
cell counts of 200-350cells/uL immune deterioration
patterns are not significantly different from those with
CD4 cell counts less than 200cells/uL [5].
The MCAR model is a special type of Gaussian Mar-

kov random field prior models (GMRF) [14, 16]. Let the
number of observed individuals with detectable VL
(VL≥50copies/uL) beYVL, r, and the number of observed
individuals with immune deterioration (CD4 < 350cells/
uL) be YCD4, r at the last observed visit as reported for
the region Sr, where the set of regions {Sr}, r = 1, 2, 3, …,
R represents a finite number of the areas partitioned
from the entire study area. In this study, we considered
partitioning the Zimbabwe country into 10 provinces,
i.e. R = 10. The geospatial variations are observed
through an aerial map partitioned based on administra-
tive spatial units. For each region, the expected number
of individuals for each prognostic marker outcome (EVL,

Fig. 1 The schematic diagram for the possible transition between the defined state for both the viral load and the CD4 cell counts models [State
1(VL < 50or CD4 ≥ 500), State 2(50≤ VL < 1000 or 350≤ CD4 < 500), State 3(VL ≥ 1000 or CD4 < 350), State 4 (dead) and State 5 (Loss to
follow-up (LTFU)]
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r and ECD4, r)was calculated using the following generic
formula:

Er;q ¼ nr;qrq ≡ nr;q

P
ryr;qP
rnr;q

� �
for r

¼ 1; 2; 3;…;R and q ¼ CD4;VL ð7Þ

where rq is the overall detectable VL (VL ≥ 50copies/uL)
or immune deterioration (CD4 < 350 cell/uL) rate in the
whole study region, nr, q is the at-risk population in the
region r and yr, q is the total counts of individuals ob-
served in the region. This approach is commonly re-
ferred to as “internal standardization”. The observed
frequencies can be considered as the random variables
while the expected frequencies are thought of as fixed
and known functions of the at-risk population nr, q in
the region r. In this study, we assumed that the observed
count data follow a Poisson distribution for the two
prognostic marker outcomes, i.e.

Yq;r � Poisson Eq;rθq;r
� �

for r ¼ 1; 2; 3;…;R and q ¼ CD4;VL log θq;r
� � ¼ log Eq;r

� �þ αq þ Sq;r

ð8Þ
where αq is an intercept term representing the baseline
(log) relative risk of disease progression outcomes q
across the study region. We further assumed that the log
relative risks are spatially correlated across the regions,
and the log relative risks for the two prognostic markers
are also correlated within each region r due to shared
region-level unmeasured risk factors. These assumptions
were supported through the intrinsic bivariate CAR
prior of a 2 × R dimensional matrix of Sq, r values. The
spatial prior is expressed as:

Sq j S1 −qð Þ; S2 −qð Þ � Bivariate Normal Sq;V=nq
� � ð9Þ

where S1(−q), S2(−q) denotes the elements of the 2 × R
matrix, Sr ¼ ðSr;1; Sr;2Þ and Sr;p ¼

P
f in σr Sfp=nr where

σr and nr denote the set of labels of the “neighbours” of
the region r and the number of neighbours, respectively
assuming a p = 2. The matrix V is a 2 × 2 covariance
matrix with diagonal elements v11 and v22 denoting the
conditional variances of S1 and S2 respectively, and an
off-diagonal element v12 denoting the conditional
within-area covariance between S1 and S2.
The MCAR model was performed in the OpenBUGS,

which is open-source statistical software and the code
used is provided in the Additional file 1 section. We ran
10,000 Markov chain Monte Carlo (MCMC) simula-
tions, burn-in of 2000 and thinning of 10. A prior sensi-
tivity analysis was done through varying prior
distributions and parameter values. We ran simultan-
eously two chains and the results reported are based on
the better chain of initial values. Model diagnostics were
assessed through trace plots which should traverse

rapidly in the same region, density plots which should
show a smooth curve and autocorrelation plots which
should show a quick sharp drop in early lags.

Results
A total of 3896 participants contributed 8655 follow-up
observations. There were 2551(65.5%) females and
1345(34.52%) were males. The average age was 38.23 ±
11.37 years and 1388(35.6%) participants were aged 35–
44 years. At baseline, the median CD4 cell count was
211cells/uL with an interquartile range (IQR) of 114-
320cells/uL and 1846 (47.4%) participants had CD4 cell
counts of below 350cells/uL. The median VL was 57cop-
ies/uL (IQR: 48-66copies/uL) and 2557 (65.6%) partici-
pants had VL between 50 and 1000 copies/uL at
baseline. All participants were on three-drug combin-
ation therapy and none were receiving protease inhibi-
tors (PI) or integrase inhibitors INSTI) regimen. Most of
the participants (95%) were on a first-line three-drug
combination therapy which was a combination therapy
of two nucleoside reverse transcriptase inhibitors (NRTI)
namely Tenofovir (TDF) and Lamivudine (3TC); and
one non-NRTI namely Efavirenz (EFV), that is, TDF +
3TC + EFV, while 5% were on second-line drugs.
Table 1 shows the simple regression model results

used to generate the orthogonal covariates for both the
CD4 cell counts and the VL model. We observed a sig-
nificant correlation between CD4 cell counts and VL for
both models and both slopes were negative as expected.
Table 2 presents a detailed summary of the log-

likelihood values, LRT statistics, LRT p-values and the
AIC values. Using the LRT results for the nested models,
we assessed a better fit model between the no covariate

model ½λijðtÞ ¼ λijð0Þ expðβ
0
ijÞ; i≠ j� and the orthogonal ad-

justed model [λij(t) = λij(0) exp(βij × P∗)] for both the CD4
cell counts and VL multistate models.
Both the CD4 cell count and the VL multistate models

showed that the model with the orthogonal variable (model
2) was a better fit compared to the no variate model (model
1). Similarly, the multistate models which adjusted for the
time-varying effects of the other prognostic marker, [λij,
VL(t) = λij(0) exp(βij ×CD4state)and λij, CD4(t) = λij(0) exp(βij ×
VLstate)] (model 3) were better fit compared to the no
covariate models (model 1). Simultaneously adjusting for
the orthogonal variable and the time-varying effects on
both the CD4 cell count model and VL model (model 4)
further improve the model, P-value< 0.05; hence, the inter-
pretation of results was based on these models (model 4).

Modelling of CD4 cell counts adjusting for the viral load
orthogonal and time-varying effects
The orthogonal and the time-varying VL effects were
regressed in a single model. In this model, the
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movement between state i to state j for i > j defines an
increase in CD4 cell counts which indicates immune re-
covery process while i < j defines a decrease in CD4 cell
counts, which means immune deterioration process.
In Table 3, results show that the rates of decrease in

CD4 cell counts (immune deterioration) among patients
in state 2 (CD4 cell count range of 350–500 cells/uL;
λ23 = 0.0404) were 11.22 times higher than the rates of
increase in CD4 cell counts (immune recovery) among
patients in state 3 (CD4 < 350cells/uL; λ32 = 0.0036). Pa-
tients in state 2 (CD4 cell count range of 350–500 cells/
uL) were more likely to become LTFU (λ25 = 0.0551).
The positive VL log-linear effects showed an increased
risk of immune deterioration for an individual in state 2
(CD4 cell count range of 350–500 cells/uL) to state 3
(CD4 < 350cells/uL) ðβ23P�

VLðkÞ ¼ 0:4762Þ . Similarly, the

log-linear effects of the time-varying VL variable showed
an increased risk of immune deterioration for the λ23
transition (β23VLstates, k = 1.0791).
The time-varying VL values and the negative VL (resid-

uals covariate) had an increasing effect on the risk of death
in this cohort for individuals with CD4 < 350cell/uL (haz-
ard ratio (HR) =1.75 and HR = 1.67, respectively). Regard-
ing the time-varying effects of VL on the CD4 cell counts
transition rates, as the CD4 cell counts increased for an
individual with a CD4 cell count range of 350–500 cells/
uL (λ23), the transition rates increased with an increase in
VL levels over time. Similarly, individuals with CD4 ≥
500cells/uL (λ15) and those with CD4 < 350cell/uL (λ35)
showed an increased risk of becoming LTFU as their VL
increased over time. A comparable trend was observed for
individuals with CD4 < 350cell/uL (λ34) who exhibited an
increased risk of death with an increase in VL over time.

Modelling of viral load adjusting for the CD4 cell counts
orthogonal and time-varying effects
We fitted a time-homogeneous multistate Markov model
to evaluate HIV disease progression based on VL defined
states. The effects of the orthogonal and the time-
varying CD4 cell counts effects were accounted for in a
single model. In this model, the movement between state
i to state j for i > j defines a VL suppression while i < j
defines VL rebound.

In Table 4, the rates of viral rebound among patients
with VL < 50copies/uL) (λ12 = 0.0286) were 1.78 times
higher than the rates of VL suppression among patients
with a VL range of 50-1000copies/uL (λ21 = 0.0161).
However, patients with VL ≥ 1000copies/uL were 7.77
times more likely to die (λ32 = 0.0035 vs λ34 = 0.0272)
and 9.8 times more likely to become LTFU (λ32 =
0.0035 vs λ35 = 0.0343). The time-varying CD4 cell
counts had an increasing effect on the risk of viral in-
crease from a VL range of 50-1000copies/uL to VL ≥
1000copies/uL in this cohort, HR =1.23.
Similarly, the negative CD4 cell count residual was as-

sociated with an increased risk of viral increase from a
VL range of 50-1000copies/uL to VL ≥ 1000copies/uL ð
β23P

�
CD4ðkÞ ¼ 0:6052;HR ¼ 1:83Þ ; and an increased risk

of death among individuals with VL ≥ 1000copies/uL ð
β34P

�
CD4ðkÞ ¼ 0:3475;HR ¼ 1:42Þ . Regarding the time-

varying effects of CD4 cell counts on the VL transition
rates, as the VL increased (λ12 and λ23) the transition
rates increased with a decrease in the CD4 cell counts
over time while as the VL decreased (λ21, λ31 and λ32)
the transition rates decreased with a decrease in the
CD4 cell counts over time. The mortality rates of indi-
viduals with VL < 50copies/uL and those with VL range
between 50-1000copies/uL increased over time as CD4
cell count decreases (λ14 and λ24). Regardless of the indi-
vidual’s VL state, the transition rates to become LTFU
decreased with a decrease in CD4 cell counts. Individ-
uals with high CD4 cell counts were more likely to be-
come LTFU in this cohort (λ15, λ25 and λ35); however,
patients with CD4 ≥ 500cells/uL and a VL range of 50-
1000copies/uL had an increased risk of becoming LTFU.

Multistate Markov models assessment
We performed a post-estimation test to assess which of
the two multistate models fit better on this data in de-
scribing the HIV disease progression, mortality and be-
coming LTFU. We used the prevalence plot to compare
the observed and the expected percentage prevalence for
CD4 cell counts and VL multistate models. The VL mul-
tistate model showed a perfect fit for state 3(VL ≥
1000copies/uL) and fair (moderate) fit for state 1 (VL <
50copies/uL) and state 4 (died). State 3 (VL ≥

Table 1 Estimated regression coefficients for the simple linear regression model for the viral load on CD4 cell counts and CD4 cell
counts on viral load

Parameter Estimate R-adjusted P > |t| VIFa

Viral load on CD4 cell counts β1 333.0816 (321.51–344.66) 0.5134 < 0.001 2.29

β2 −0.003955 (− 0.008 to − 0.0003) 0.035

CD4 cell counts on viral load β1 62.86 (5.19–120.52) 0.5646 0.033 1.03

β2 −0.12 (− 0.21 to − 0.04) 0.006
avariance inflation factor
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1000copies/uL) and state 5 (LTFU) of this model were
not perfectly fitted by this model (Fig. 2).
Regarding the CD4 cell counts multistate model,

state 1 (CD4 ≥ 500cell/uL) was perfectly fitted while
state 2 (350 ≤ CD4 < 500) and state 4 (died) were
fairly fitted. State 3 (CD4 < 350cell/uL) was perfectly
fitted between time 0 and time 5 years only while
state 5 (LTFU) was not perfectly fitted (Fig. 3). Since
the percentage prevalence plots could not give con-
clusive results on the better model and the LRT was
not appropriate as the models were not nested, we

used the AIC values. The VL multistate model had
an AIC = 7002.71 while the CD4 cell counts multi-
state model had an AIC = 7337.46; hence, the VL
multistate model was a better fit model.

Sub-analysis of the spatial covariate (province of ART
enrolment) on the multistate models and joint mapping
of the two immunological HIV conditions using the
multivariate intrinsic CAR model
We further assessed the effects of the region variable
(province) on the VL and CD4 cell count multistate

Table 2 Model selection process for the various model fitted for both viral load and CD4 cell counts multistate models

Covariate −2*LLa AICb Models compared LRT c statistic Dfd P-value

Viral load multistate model

Model 1-
No covariates

7074.605 – – – –

Model 2-
CD4 effects

7014.406 7062.99 Model 1 vs Model 2 59.61457 12 2.65e-08**

Model 3-
CD4 time-varying effects

7007.724 7055.72 Model 1 vs Model 3 66.88163 12 1.22e-09**

Model 4-
CD4 effects+ CD4 time-varying effects

6930.714 7002.71 Model 2 vs Model 4 83.69604 12 8.10e-13**

Model 3 vs Model 4 77.01372 12 1.53e-11**

CD4 cell counts multistate model

Model 1-
No covariates

7334.08 – – – –

Model 2-
VL effects

7298.644 7342.64 Model 1 vs Model 2 35.36379 11 2.16e-04**

Model 3-
VL time-varying effects

7256.166 7344.17 Model 1 vs Model 3 77.84109 33 1.74e-05**

Model 4-
VL effects + VLtime-varying effects

7227.461 7337.46 Model 2 vs Model 4 71.18325 33 1.28e-04**

Model 3 vs Model 4 28.70595 11 2.52e-03**

aLog-likelihood bAkaike’s information criterion cLikelihood ratio test ddegrees of freedom **Significant at 5%

Table 3 The joint effects of time-varying viral load and orthogonal viral load variables on the CD4 cell counts transition rates
Markov model

Transition
Rate λij

Baseline Log-linear
βij

Hazard
exp(βij)

Time-varying viral load (VL) levels VLstates, k

λij(CD4, 0) VLstates, k P�VLðkÞ VLstates, k P�VLðkÞ State 1 State 2 State 3

State 1 to 2 λ12 0.0192 0.1678 0.1739 1.0827 1.1899 0.0182 0.0161 0.02763

State 1 to 3 λ13 0.2856 − 0.3505 −1.8298 0.7044 0.1604 0.7431 0.4755 1.3939

State 1 to 5 λ15 0.0381 0.5612 0.5131 1.7528 1.6704 0.0245 0.0333 0.0535

State 2 to 1 λ21 0.0114 − 0.6837 0.6186 0.5048 0.8563 0.0168 0.0068 0.0088

State 2 to 3 λ23 0.0404 0.4762 1.0791 1.6099 2.9419 0.0239 0.0261 0.0948

State 2 to 4 λ24 0.0086 − 1.0434 − 0.6853 0.3663 0.5039 0.0283 0.0067 0.0126

State 2 to 5 λ25 0.0551 0.5786 −0.0711 1.7836 0.9314 0.0338 0.0729 0.0416

State 3 to 1 λ31 0.0062 − 1.6657 − 0.5138 0.1891 0.5982 0.0235 0.0055 0.0077

State 3 to 2 λ32 0.0036 0.2016 −0.3475 1.2233 0.7064 0.0039 0.0032 0.0131

State 3 to 4 λ34 0.0079 0.1820 0.1034 1.1996 1.1089 0.0057 0.0069 0.0421

State 3 to 5 λ35 0.0195 0.2806 −0.1784 1.3239 0.8366 0.0156 0.0217 0.0305

model information: −2*log-likelihood = 7227.461; Akaike information criterion = 7337.461
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models to identify any association between the observed
transition processes and the region. We estimated the
HR summarised in Table 5. In general, we observed that
there was an association between the transition

intensities and the province administrative level. We
found that 57.6% of the transition rates for CD4 cell
count and VL models adjusting for province covariate
showed the same effect direction (risk or protective

Table 4 The joint effects of time-varying CD4 cell counts levels and orthogonal CD4 cell counts variables on the viral load transition
rates Markov model

Transition
Rate λij

Baseline Log-linear
βij

Hazard
exp(βij)

Time-varying CD4 cell counts levels CD4states, k

λij(VL, 0) CD4states, k P�CD4ðkÞ CD4states, k P�CD4ðkÞ State 1 State 2 State 3

State 1 to 2 λ12 0.0286 0.0434 −0.3383 1.0443 0.713 0.0305 0.0321 0.0337

State 1 to 3 λ13 0.0025 − 1.0072 − 0.3336 0.3652 0.7163 0.0167 0.0059 0.0021

State 1 to 4 λ14 0.0082 0.0288 0.0247 1.0292 1.0243 0.0078 0.0081 0.0083

State 1 to 5 λ15 0.0159 − 0.7155 −1.1045 0.4889 0.3312 0.1774 0.0422 0.0206

State 2 to 1 λ21 0.0161 − 0.3926 − 0.2849 0.6762 0.7521 0.0351 0.0237 0.0161

State 2 to 3 λ23 0.0008 0.2065 0.6052 1.2293 1.8315 0.0004 0.0005 0.0006

State 2 to 4 λ24 0.0057 0.0725 −0.2381 1.0752 0.7881 0.0056 0.0061 0.0066

State 2 to 5 λ25 0.0305 − 0.7458 − 0.9312 0.4744 0.3941 0.3372 0.0759 0.0361

State 3 to 1 λ31 0.0266 − 0.9855 −0.7571 0.3733 0.4691 0.1926 0.0728 0.0275

State 3 to 2 λ32 0.0035 − 1.4092 −2.8306 0.2443 0.0589 0.1359 0.0324 0.0077

State 3 to 4 λ34 0.0272 − 0.0811 0.3475 0.9221 1.4155 0.0255 0.0237 0.0221

State 3 to 5 λ35 0.0343 − 0.5176 0.0947 0.5959 1.0993 0.1273 0.0457 0.0273

model information: −2*log-likelihood = 6930.71; Akaike’s information criterion = 7002.71

Fig. 2 The percentage prevalence plot of orthogonal CD4 cell counts and the time-varying CD4 cell counts values on the viral load multistate
model [State 1(VL < 50), State 2 (50≤ VL < 1000), State 3(VL≥ 1000), State 4 (dead) and State 5 (Loss to follow-up (LTFU)]
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effect) of the hazard ratios; however, there were varia-
tions in the magnitude of the risk of transitions among
provinces. Immune deterioration (decrease in CD4 cell
counts) was evident among patients belonging to Ma-
shonaland East (P4) (state 1 to 3 and state 2 to 3) and
Matabeleland North (P7) (state 1 to 2), while the im-
mune recovery was most evident among patients from
Masvingo (P6).
Becoming LTFU was observed to be highest among

patients from Mashonaland East (P4) regardless of their
CD4 cell count. We found that the risk of viral rebound
to above 50copiels/uL was high among patients from
Matabeleland North (P7) (state 1 to 2), Mashonaland
East (P4) (state 1 to 3) regions. In contrast, viral sup-
pression to undetectable levels (VL < 50copies/uL) was
evident among patients from Masvingo (P6) (state 2 to
1) and Matabeleland North (P7) (state 3 to 1). The risk
of becoming LTFU was high among patients from Ma-
shonaland East (P4) if their VL < 50copiels/uL, Masvingo
(P6) if their VL range was between 50-1000copies/uL
and Mashonaland West (P5) if their VL ≥ 1000copies/uL.
To get a pictorial view of the spatial patterns and cor-

relation between the CD4 cell counts marker and the VL
measurements, we fitted the multivariate intrinsic CAR
prior model with the province as the spatial unit. We

jointly modelled those patients who had a VL ≥ 50copies
/uL (VL state 2 and 3 combined) at the end of the
follow-up to define that group that might not have
attained undetectable VL or have a VL rebound to de-
tectable levels, and those patients who had a CD4 <
350cells/uL (CD4 state 3) to define that group that is
still in the immune-deterioration phase at the end of the
follow-up period.
Table 6 shows the posterior estimates after the joint

mapping of the two immunological outcomes for HIV
disease progression among ART patients based on CD4
cell counts and VL. The posterior correlation between
the spatially structured risk components of having a de-
tectable VL (VL ≥ 50copies/uL) and immune deterior-
ation (CD4 < 350cells/uL) was 61.3% (95% credible
interval (CI): 47–97%). This strong correlation suggests
strong shared geographical patterns of the risk of im-
mune deterioration defined by these two prognostic
markers. The baseline (log) relative risk of the HIV dis-
ease progression based on detectable VL (VL ≥ 50copies/
uL) was estimated at − 0.472 while that of immune de-
terioration (CD4 < 350cells/uL) was − 0.043.
The joint mapping of the posterior relative risk of the

HIV disease progression defined by the VL (RR1) and
CD4 cell counts (RR2) under the MCAR model is shown

Fig. 3 The percentage prevalence plot of orthogonal viral load variable and the time-varying viral load variables on the CD4 multistate model
[State 1(CD4≥ 500), State 2 (350≤ CD4 < 500), State 3 (CD4 < 350), State 4 (dead) and State 5 (Loss to follow-up (LTFU)]
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in Fig. 4. The dark blue or deep grey colours indicate
areas with high relative risk while the light blue or light
grey colours show regions with the lowest relative risks
of the defined conditions. These maps show a geograph-
ical overlap of detectable VL (VL ≥ 50copies/uL) and im-
mune deterioration (CD4 < 350cells/uL) in seven
provinces. Patients in Matabeleland North province bor-
dering Botswana and Zambia; and Mashonaland East
province toward the Mozambique border had higher
relative risks of detectable VL (VL ≥ 50copies/uL), and

immune deterioration (CD4 < 350cells/uL) outcomes in
addition to Bulawayo and Harare metropolitan
provinces.

Discussion
The main objective of our study was to jointly model
HIV disease progression using two 5-stage time-
homogenous multistate Markov models based on CD4
cell counts and VL. The multistate models accounted for
the orthogonal and the time-varying covariates

Table 5 The spatial effects (province-level) on the viral load and CD4 cell counts multistate model adjusted for time-varying effects
and residual effect of the other prognostic marker with Harare province as a reference category

Province
Hazard
Ratio

Transition processes for Viral load (VL) and CD4 cell counts multistate models

State 1
to State
2

State 1
to State
3

State 1
to State
4

State 1
to State
5

State 2
to State
1

State 2
to State
3

State 2
to State
4

State 2
to State
5

State 3
to State
1

State 3
to State
2

State 3
to State
4

State 3
to State
5

P1: VL 0.004 0.405 3.711 0.311 0.327 1.296 26.41 0.089 0.042 0.162 0.047 0.089

CD4 0.912 0.854 ____ 0.794 1.253 0.996 1.001 0.972 1.821 1.181 1.683 1.089

P2: VL 0.056 0.514 0.001 0.109 5.611 1.834 0.021 0.721 1.729 1.981 0.022 0.071

CD4 1.705 0.615 ____ 1.019 0.831 1.595 0.866 0.614 0.899 0.561 0.347 0.151

P3: VL 0.342 0.313 6.096 0.001 0.885 1.033 0.778 0.206 0.301 0.704 0.003 0.007

CD4 0.958 1.861 _____ 0.869 0.945 1.364 0.961 0.775 1.493 1.204 1.469 0.854

P4: VL 3.191 0.208 5.524 2.625 3.933 0.028 3.066 2.082 1.041 2.447 0.043 0.064

CD4 0.709 9.371 _____ 1.664 0.732 6.099 1.019 2.636 2.186 2.279 2.894 2.743

P5: VL 0.002 0.411 2.101 1.671 0.172 0.974 0.347 2.155 0.537 0.925 0.013 1.759

CD4 1.216 1.125 _____ 1.159 0.974 1.058 0.981 0.844 1.358 1.459 1.114 2.543

P6: VL 0.256 1.633 0.019 0.379 9.378 2.479 0.081 3.455 2.525 9.423 0.094 0.138

CD4 0.934 1.263 ____ 0.967 1.747 3.451 0.928 1.046 6.262 5.288 1.241 1.439

P7: VL 1.198 16.68 2.564 0.428 3.145 0.025 2.984 0.568 9.323 0.653 0.225 0.398

CD4 1.744 0.331 _____ 0.712 1.509 0.269 1.519 0.479 0.439 0.851 2.565 0.585

P8: VL 0.013 0.507 6.321 0.834 0.414 1.677 0.701 0.133 0.705 0.924 0.455 0.029

CD4 0.968 1.641 _____ 0.915 0.975 2.006 1.229 1.047 1.711 1.489 1.766 1.231

P9: VL 0.001 0.101 0.005 0.087 0.095 0.816 0.177 0.026 0.036 0.153 0.001 0.095

CD4 0.978 1.249 _____ 0.934 0.907 0.652 0.932 0.953 0.618 0.764 0.654 0.355

Bold-faced values are hazard ratios above 1;
CD4 model information: −2*Log-likelihood = 6932.39; CD4 model AIC = 7196.39; Viral load model information: − 2*log-likelihood = 6429.69; Viral load
model AIC = 6716.69;
P1 = Bulawayo, P2 = Manicaland, P3 = Mashonaland Central, P4 = Mashonaland East, P5 = Mashonaland West, P6 = Masvingo, P7 = Matabeleland North, P8 =
Matabeleland South, P9 = Midland;
___indicates no observed transition for that particular multistate model

Table 6 The posterior estimates for the multivariate conditional autoregressive model for the two HIV disease progression
prognostic markers

Parameter Estimate Standard deviation 95% Credible interval

Alpha [VL ≥ 50 copies/uL] −0.472 0.0628 −0.60 to − 0.35

Alpha [CD4 < 350 cells /uL] −0.043 0.0314 −0.11 to 0.02

Correlation 0.613 0.3815 0.47 to 0.97

Sigma [VL ≥ 50 copies/uL 1.226 0.3505 0.72 to 2.08

Sigma [CD4 < 350 cells /uL] 0.147 0.0668 0.06 to 0.31
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simultaneously which has been a gap in previous studies.
The spatial overlap of the HIV disease progression out-
comes (detectable VL (VL ≥ 50copies/uL) and immune
deterioration (CD4 < 350cells/uL) at the last observed
visit conditional not to have died or become loss to
follow-up (LTFU) was also described.
We fitted different time-homogeneous multistate Mar-

kov models and observed that multistate models with
both the orthogonal and the time-varying variables were
the best fitting models to describe the HIV disease pro-
gression. The VL multistate model was superior in pre-
dicting the HIV disease progression patterns in this
cohort compared to the CD4 cell count multistate
model. These findings support what earlier studies have
reported on the superiority of VL in monitoring HIV
disease progression patterns compared to CD4 cell
counts [7, 18]. Our findings further support the global
guidelines on the use of VL as the primary laboratory
marker to routinely monitor HIV disease progression
amongst ART patients.

The VL multistate model with CD4 cell counts in the
covariate matrix showed that VL rebound and VL in-
crease transition rates (state 1 to 2; state 1 to 3 and state
2 to 3) were higher than the VL suppression transition
rates (state 2 to 1; state 3 to 2 and state 3 to 1). This
means viral rebound was more likely compared to viral
suppression in this cohort. We also found that as the VL
increased (λ12 and λ23) the transition rates increased
with a decrease in the CD4 cell counts over time while
as the VL decreased (λ21, λ31 and λ32) the transition rates
decreased with a decrease in the CD4 cell counts de-
creased over time. This finding aligns with the negative
correlation which exists between these two prognostic
markers that as CD4 cell count levels decreases, VL in-
creases. These finding could be explained by poor ART
adherence which remains a challenge among ART pa-
tients [19]. Moreover, treatment failure or treatment
side-effects may be possible underlying factors to explain
these results [18]. With effective and potent ART; and
without non-adherence challenges, the VL is expected to

Fig. 4 The joint mapping of the posterior relative risk of the HIV disease progression defined by the viral load (RR1) and CD4 cell counts (RR2)
under the multivariate conditional autoregressive model. The maps were generated from OPENBUGS version 3.2.3
[17] https://www.mrc-bsu.cam.ac.uk/software/bugs/openbugs/
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decrease as the CD4 cell counts increase. Therefore, in-
terventions that support ART adherence like support
groups, quick identification of treatment failure and con-
tinual education of the effectiveness of ART should be
strengthened.
Becoming LTFU and mortality were more likely among

patients with a VL ≥ 1000copies/uL (state 3 to 4 and state
3 to 5). Patients with CD4 cell counts lower than expected
(negative orthogonal variable) were associated with an in-
creased VL and mortality if VL > 50copies/uL. This means
as patients with high VL immune deteriorate, the risk of
death becomes higher. These findings support other earl-
ier studies that once the immune system deteriorates, the
chances of immune recovery become slim, and thus when
most deaths occur [20–22]. The risk of becoming LTFU
was high among patients with VL ≥ 50copies/uL and
CD4 < 350cells/uL. This can be explained by the fact that
more ill patients tend to drop out from the ART
programme and are classified as LTFU [5]. However, some
of these patients if tracked, would have died, which may
result in a misclassification error of the LTFU outcome. In
contrast, patients with higher CD4 cell counts were associ-
ated with becoming LTFU. This could be explained by the
fact that much sicker patients are more likely to be bedrid-
den; hence, they are hospital-bound while healthier pa-
tients may become LTFU as a result of “silent-transfers”
to nearby health [23, 24].
Adjusting for the spatial covariate in the VL multistate

model, as expected, the regions with a high risk of viral re-
bound were also more likely to have a high risk of low
CD4 cell counts. The intrinsic MCAR prior model further
confirmed a strong overlapping geographical correlation
between individuals with a detectable VL (VL ≥ 50copies/
uL) and immune deterioration (CD4 < 350cells/uL) of
66%; hence, a shared geographical pattern of relative risks
between these two outcomes exists. Patients staying in
provinces that border with nearby countries had high rela-
tive risks of immune deterioration and detectable VL, par-
ticularly, those from Matabeleland North province in the
northern part of Zimbabwe. Matabeleland North province
has a busy truck route to neighbouring countries and high
mobility of local and tourists. Earlier studies looking at
spatial heterogeneity of viral suppression in this province
reported similar results [8, 25]. People in this province are
likely to present late for health care [26], delay ART initi-
ation [27] or engage in sexual activities with multiple part-
ners which subsequently compromise viral suppression
among HIV patients [28, 29]. Therefore, interventions
such as self-testing [30], pre-exposure prophylaxis (PrEP)
pills for high-risk groups [31] should be intensified in such
regions.
The reported results should be inferred in light of some

limitations. Firstly, the dataset used in this study is very
small and might not be an accurate representation of the

Zimbabwean HIV population. We included only health fa-
cility data liked to the ePMS with both VL and CD4 cell
counts repeated measurements. In this regard, the MCAR
assumption might not have been fully satisfied. The spatial
effects were observed at a higher level which might not
precisely pinpoint the marginalized areas to guide policy.
This was as a result of our small sample size in this study;
however, future studies should consider lower administra-
tive level spatial units. Moreover, the MCAR model only
describes the spatial interaction across the error terms to
explain spatial autocorrelation; however, this model falls
short when a more direct presentation of spatial inter-
action is desired. The VL and CD4 cell counts measure-
ments were not randomly done rather differential
monitoring was implemented due to resource constraints.
The joint model could not account for the biological order
of the association between VL and CD4 cell count, that is,
VL change may precede CD4 change. We could not adjust
for ART adherence, comorbidities (tuberculosis, diabetes
and hypertension); and demographic characteristics (age
and gender) due to model convergence issues. Multistate
Markov models can estimate multiple transition rates and
outcomes simultaneously compared to the Cox propor-
tional hazard models. However, the assumption of con-
stant hazard function does not reflect reality and also the
Markov process has a memory loss property which may
be a limitation in HIV studies [6]. Despite these limita-
tions, this study managed to provide useful information in
HIV monitoring through jointly modelling two HIV prog-
nostic markers and identifying regions with poor im-
munological outcomes.

Conclusion
In conclusion, the findings from this study provide a
foundation on the HIV disease progression patterns in
Zimbabwe to guide policy going forward and motivate
future statistical modelling to consider such modelling
approaches in infectious disease to guide policy and
programme management. We found that VL models
were much more superior compared to CD4 cell count
models in HIV monitoring. We also observed that after
joint modelling of CD4 cell counts and VL in a single
model, the rates of VL rebound risks are still higher than
viral suppression. We observed that having a high VL
(VL ≥ 1000copies/uL) increased the risk of becoming
LTFU and death. The spatial overlap between VL and
CD4 cell counts indicates the inter-linkages between
these two markers in HIV monitoring and the shared
geographical correlation of HIV disease progression im-
munological outcomes was high. With the global efforts
to achieve zero HIV incidence, interventions which en-
courage ART adherence like support groups and contin-
ual educational support on the barriers for ART uptake
is crucial. Region-specific interventions which focus on
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behavioural change, social support, increased uptake of
HIV preventions like PrEP should be strengthened
among high-risk groups all in the quest to achieve zero
HIV incidences by 2030.
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