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Abstract: Electric vehicles (EVs) have a lot of potential to play an essential role in the smart power 

grid. EVs not only can reduce the amount of emission yielded from fossil fuels but also can be con-

sidered as an energy storage system (ES) and a backup system. EVs could support the demand re-

sponse (DR) strategy that is considered as utmost importance to shift electricity demand in peak 

hours. This article aims to assess the impact of the presence of EV on DR strategy in a home-mi-

crogrid (H-MG). In order to reach the optimal set point, our energy management system (EMS) has 

been merged with differential evolution (DE) method. The results were auspicious and showed that 

the proposed method could decrease market clearing price (MCP) by 26% and increase the perfor-

mance of DR by 17%. 

Keywords: electric vehicle; energy management system; demand response; differential evolution; 

home-microgrid 

 

1. Introduction 

One of the biggest advantages of smart grid (SG) is the energy distributed in the con-

sumption location, which provides flexibility to the energy demand response. The strat-

egy of distributing the energy resources is based on consumer demand. One of the major 

power girds that adopts this strategy is the Home microgrid (H-MG). This SG has a sig-

nificant role in reducing pollution besides supporting load demand supply, specifically 

during peak consumption periods [1]. Usually, the generated power in the H-MGs is sup-

plied to the consumers, if the amount of the power demand is more than the generated 

power, the rest of the required power could be bought from the main grid. Since the en-

ergy demanded by the customers is discrete, with no specific time frame, the constant 

load does not exist. Therefore, the demand is changing continuously. For example, during 

the peak time, the consumer's load demand is more than off-peak time. So, H-MG buys 

electricity during peak hours from the grid whereas during non-peak hours, H-MG sells 

its excess power to the grid. In such conditions, using the energy storage (ES) for increas-

ing H-MG reliability can be effective [2–4]. The presence of the ES in the consumer loca-

tions, can reduce the amount of energy required during peak time [5–7]. On the other 

hand, H-MG during off-peak hours can supply the energy required from the ES. As a 

result, the use of ES in supplying the energy required by H-MGs during load peak hours 

and non-peak hours prevents the demand for expensive generator activity. Also, this re-

sult will have a better impact on the environment as pollution caused by generators can 
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be prevented. With this description, from an environmental point of view, using ES will 

be useful for both cost reduction and also reduction of pollutant’s emission. Furthermore, 

Consumers who participate in demand response (DR) programs can reduce the costs of 

buying ES’ expensive resources, where each consumer can communicate with several H-

MGs existing in the grid structure [8–10]. In this programme, each consumer must decide 

the requested energy from the H-MG to maximize its efficiency. On the other hand, the 

H-MGs decide the amount of the generated energy and their prices to maximize the in-

come and the profit [11]. Participating in DR programs and using the advantages such as 

buying power from H-MGs in off-peak (cheap periods) and selling power back in peak 

time (expensive periods) can have a positive effect on H-MGs’ energy management. Many 

strategies in the DR program were provided to support the consumers by maximizing the 

profit amounts that are earned from their participation with the generated power [12]. 

Moreover, EVs with having merits such as low cost in refueling, zero emission, high 

efficiency and high safety and drawbacks such as high cost of their ES for replacing, not 

easy to recycle, low range of efficiency and the danger of heating up the lithium-ion ES, 

are believed to have great potential in DR participation due to vast growth in EVs num-

bers and their geographic distribution. This could be one of the solutions for the rising 

energy consumption as EV is considered an energy storage unit. Many researchers inves-

tigated the possibility of having EV as part of the power grid. Hussain et. al [13–15] pro-

posed a number of fuzzy logic algorithms to improve EV owner’s quality of experience 

and maximize the quality of performance for the parking lot operators under the opera-

tional constraints of the power grid. Uncertain parameters from the electric grid and EVs 

were considered in work mentioned. In paper [16], Artificial Intelligence was also utilized 

in creating the load model for demand response provisions in distribution systems. The 

model represented the total charging load at an electric vehicle charging station in terms 

of controllable parameters. The benefits of distribution systems from demand response, 

aggregator and EV users are defined in paper [17] where optimal scheduling of an EV 

aggregator for demand response was proposed. Moreover, the work in [18] proposed a 

coordinated optimization strategy considering nighttime deep peak regulation state of 

units and uncertain EV demand response. Whereas the work in [19] proposed a novel 

polynomial-time online algorithm and auction mechanism for emergency demand re-

sponse to jointly incentivize EVs with energy to sell their energy and utilize the charging 

station's local generator to produce energy. 

Based on all that has been discussed, this paper presents an EMS based on the DR 

program for an H-MG having EV as an energy storage unit. The impact of the EV partici-

pation in the DR programme was investigated. Besides, the paper shows the effect of the 

presence and the absence of EV on a H-MG. The EMS was designed to satisfy the main H-

MG power demand using renewable energy resources. The heuristic algorithm differen-

tial evolution (DE) [7] which optimizes a problem to modify the solution in the search 

space with regard to the quality of response was implemented with this EMS to create 

optimal power management and the optimal set points to reduce Market Clearing Price 

(MCP) using dynamic pricing (DP). 

The main contribution of this paper can be summarized as follows: 

 Simulation implementation of optimum energy management based on dy-

namic pricing in an H-MG by considering uncertainty. 

 Providing a comprehensive algorithm based on the participation of a mobil-

ity EV in order to improve the capability of DR. 

The rest of paper layout is as follows: section 2 covers a brief introduction for EV use 

in MG demand response, whereas section 3 is an overview of the proposed EMS. Section 

4 presents the methodology. Section 5 covers all the constraints of  the  H-MG in a problem 

formulation. Section 6 presents the EMS simulation outcomes with the results and discus-

sion. Finally, the paper is concluded in section 7.  
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2. Electric Vehicle (EV) in Home-Microgrids (H-MGs) 

Energy could be stored in many ways such as pumped hydroelectric energy [20], 

compressed air energy [21], flywheel energy [22], batteries and thermal energy [23]. Alt-

hough, Electric Vehicles (EVs) are considered as large batteries and an excellent option for 

energy storage. Besides, Electric Vehicles (EVs) are up on the rise now more than ever. 

Therefore, EVs are a good option to satisfy the grid’s energy demands. As time progresses, 

we are seeing immense changes in our attitude towards the less environmentally friendly 

engines across the world- especially in Europe, China and the US [24]. A requirement of 

an ambitious and overarching policy framework could result in meeting the UK Govern-

ment’s goal of ending the distribution of fossil fueled vehicles and replacing them with 

(zero-emission vehicle) ZEV’s by 2035 or earlier [25]. There are two successful frameworks 

to follow, the Norway model [26] or the California model [27]. Vast amounts of research 

have been dedicated to find good usage of EV in the micro grid demand response beside 

the main purpose being an ecofriendly transport vehicle [28–32]. EV has been considered 

to overcome the power generation fluctuations [33], and smoothed the wind power [34] 

and was part of the stochastic mixed-integer linear programming (MILP) model [35]. The 

research in this paper considers the use of EVs depending on their presence at home. In 

this respect, EVs are not only providing tax incentives and a reduction in the gasoline 

usage but they also increase the H-MGs capability which means better demand-side resil-

iency and electricity continuity [36]. 

3. An Overview of the Proposed Energy Management System (EMS) 

The research in this paper is based on a H-MG that is connected to the global network, 

that enables this H-MG to exchange power and buy/sell from/to the global network. This 

operation will be EMS based on the DR. As observed in Figure 1, the system investigated 

in this paper is designed for an H-MG that has the photovoltaic (PV) cells as the main 

source. Whereas a Micro Turbine (MT) is there as a dispatchable generation resource. We 

consider responsive and non-responsive load demand in this H-MG.  

 

Figure 1. The proposal schematic diagram. 

For the energy storge system design, an ES unit with capacity of 2kWh and EV with 

the capacity of 12kWh has been considered. During implementation, the system was de-

signed based on daily work, time that the EV’s owner goes to work from 09:00 to 18:00, 

and during this time, the EV is not connected to H-MG. EV is tolerant of excess power and 
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as a prosumer, can inject power into loads at needed times. It should be noted that apply-

ing the MT is confined to the power shortage periods. MT during peak load plays a backup 

role in responding to the load’s demands. Calculations related to exhaust gases caused by 

MT and its limitations, such as ramp-up/ down and operation times, have been omitted. 

Besides, the aggregated load profile is related to a real H-MG.  

4. Methodology 

The system considers an uncertainty unit in the design and the implementation. This 

unit is essential to cover the uncertainty in the load demand, power generated PV and 

MCP. The uncertainty unit in this paper is based on Taguchi orthogonal array test (TOAT) 

[37], this testing technique has proven its ability to provide reliable statistical information 

with the minimum number of tests, it has been described as a powerful yet simple tool. 

This feature also has a positive impact on the computing time, more information about 

this method implementation can be found in the authors previous publication [32]. Figure 

2 illustrates the procedure followed in this research. Since extracted power from PV de-

pends on weather conditions, an uncertainty unit is required. The unit will base its deci-

sion on five parameters as shown in the figure 2: PV, Market Clearing Price (MCP), load 

demands, system sell price (SSP), and system buy price (SBP). Predicted data from each 

parameter will be fed to the uncertainty unit for decision making. The uncertainty unit 

have been presented in depth by authors in [13]. The two imaginary keys S1 and S2 in 

Figure 2 illustrates the two scenarios adapted in this research. S1 is linked to EMS-DR 

without the EV usage whereas S2 is linked to EMS-DR with EV usage. The algorithm is 

designed in a way that both switches will never be both closed (running both operations 

at the same time) or open (that means there is no DR system in place) simultaneously. The 

DR system will start to operate when one switch is open while the second is closed. When 

S1 is closed and S2 is open, the DR strategy will be investigated without the presence of 

EV. Unlike the case where S2 is closed and S1 is open, the DR strategy will be investigated 

with the presence of EV. At each state, the DE optimization method is used in order to 

find optimal set points for satisfying the objective function. Finally, power data’s buy and 

sell offers, based on dynamic pricing (DP), is sent to the MCP unit. In this unit, which 

authors discussed widely in [7,37], demand and supply curves intersect with each other 

at one point to create the optimal MCP. 

 

Figure 2. The structure of the proposed system. 
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Differential Evolution (DE) algorithm [38] is the algorithm that supported the DP in 

its decision to enable the MCP to find the optimal offers. DE proved its potential as a 

powerful population-based metaheuristic search algorithm, it makes few or no assump-

tions about the underlying optimization problem and on the other hand DE can quickly 

explore very large design spaces. DE algorithm keeps evolving and optimizing the prob-

lem by iteratively improving a candidate solution. All in all, DE can find the optimal set 

points in other to reach the best amount of objective function. 

The system is designed to prioritize the use of the energy produced by the renewable 

PV cells. The system specifies the amount of the excesses/shortage power based on the 

amount of the PV power and the demand power. The performance conditions of the EMS-

DR (Energy Management System-Demand Response) algorithm are as follows: 

(a) Excess generation: 

As it can be seen from Figure 3, first, ES is charged. If there is still excess power gen-

eration, shifted power from previous intervals will be used to respond. If there is still ex-

cess power generation, it will be allocated to the grid for buying.  

 

Figure 3. The algorithm of excess section. 

(b) Power shortage less than the minimum capacity of micro turbine (MT): 

If power shortage is less than the minimum capacity of MT, first of all, the battery 

will be discharged, and if there is still a power shortage, based on DR constraints, demand 

power will be shifted to future periods to respond.  

(c) Power shortage within the micro turbine (MT) capacity: 

If the value of power shortage is within the MT capacity, then the MT will be operated 

and MT will be part of the circuit. If the MT excess generation occurs, then it returns to 

condition a). If there is still a power shortage, then it will return to condition b). Figure 4 

represents the algorithm of power shortage. The “Excess generation” section in Figure 4 

has been referred to Figure 3. 
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Figure 4. The algorithm of shortage power section. 

When EV as a prosumer, is connected to H-MG, in a case of excess generation, it will 

be charged like ES. Furthermore, if there is power shortage, before shifting power to future 

intervals, EV as an energy storage should be discharged and respond to the load demand 

as possible. 

5. Problem Formulation 

The equations involved in the algorithm coding and setting are presented in this sec-

tion, where the objective’s function being considered is the maximization of profit. The 

objective function is written from the ownership of H-MG perspective.  

��� �(�� − ��) × ∆�

��

���

 

� ∈ {��, ��−, ��−, ��, ���� −} 

� ∈ {��+, ��+, ���� +} 

(1)

Equation (1) represents the profit maximization formula, where R is the product rev-

enue for the income (�), and produced energy from: PV cells, discharged ES (�� −), dis-

charged EV (�� −), MT, or/and selling power from the National Grid (���� −). C indicates 

the costs of electricity consumption (�) by PV cells, charged ES (�� +), charged EV (�� +), 

or/and buying power to the National Grid (���� +). ∆� is the time step (hourly); which 

was considered as 1 h in this study. Therefore, the maximum profit could be calculated by 

summing the difference between R and C multiplied by ∆� for one day (24 h).  

The constraints related to setting the power generation units (PV and MT) are pre-

sented in Equation (2). Minimum amount for PV and MT is zero and 3 kW, and maximum 

amount is 6 kW and 12 kW. 

����
�

≤ �� ≤ ����
�

 (2)
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� ∈ {��, ��} 

According to the existing energy storage (�) units; the ES and EV, the energy capacity 

(��) is represented in (3). 

�����
� ≤ ��� ≤ �����

�  

      � ∈ {��, ��} 
(3)

State of charge is a fundamental and essential parameter that reflects the battery’s 

performance [3]. Therefore, the maximum and minimum limitation of �� is determined 

by the state of charge through the time (����) which was set as shown in (4).  

����
��� ≤ ���� ≤ ����

��� (4)

In addition, Equation (5) expresses the new state of charge ������ at time t + 1 based 

on the absolute value of ���� at time t summed with the difference between the charged 

and discharged power, through the time divided by at the �����
�  which is the battery total 

capacity (which is a constant number). Therefore, the ������ will always be updated after 

each period t using Equation (5) and the new charge condition of ES is identified. 

������% = ����� +
(��

� − ��
�) × ∆�

�����
� � × 100 (5)

The ������ percentage is one of the important evaluation parameters used in this 

study. ��
� is the discharge power at time t, ��

� is the charge power at time t, ∆� is the 

time step, and �����
�  is the total capacity of the battery which is 2 kWh. As mentioned 

before, this parameter measures the state of charge for both ES and EV. When EV is part 

of the smart power network it will be treated the same as ES and it will satisfy the condi-

tion in Equation (5) but if EV was disseminated for a period of time from that network 

and then rejoins again then EV’s state of charge ( �����) should be calculated. That will 

provide the network with realistic information. 

As mentioned in Section 2, since EV is away from home from 09:00 until 18:00, then 

it will not be connected to H-MG, and that will definitely affect the vehicle’s state of charge 

because of the vehicle driving mileages. Therefore, Equation (6) [33] has been used in this 

paper to calculate the EV’s present SoC (State of Charge). It depends on the distance trav-

elled (∆�), the efficiency coefficient (�), and the battery’s total capacity (�����). This equa-

tion has been used in Europe and the USA to calculate the SoC for EV. It is implemented 

only at 18:00 pm before EV is connected to H-MG again. 

����� = 100 −
∆�

� × �����

,     �� ���� 18: 00 (6)

The value of shifted demand power in each time interval is presented in (7). Where 

� is the ratio between the maximum shiftable power and the load demand, ��
�  is the 

power load demand at time t, and ��
��� is the available shifted power at time t. 

��
��� ≤ � × ��

� (7)

Equation (8) presents the available shifted power range; (��
��� − ����

���) which is the 

difference in the available shifted power at time t and t − 1, and upper bounds (-��) and 

lower bounds (��) of the shiftable power variations. The amount of sp is considered 5 kW. 

Equation (8) sets the limitation for the power transmission as it should be between the two 

variation values. 

−�� ≤ ��
��� − ����

��� ≤ �� (8)

H-MG and global network can transfer power with each other if Equations (9) and 

(10) are fulfilled. 

��
�� ≤ � × (��

�� + ��
�� + ��

��� + ��
���)                             (9)
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In Equation (9), the ��
�� is the exchange power at time t and � is the coefficient of 

total microgrid capacity. This coefficient is multiplied by the power produced from MT, 

PV cells, discharged ES (�� −), and discharged EV (�� −). As H-MG exchanges power 

with the national grid, Equation (10) is crucial to determine the power sold or bought 

to/from the grid for better use of the resources available and to control the exchanging 

process. 

��
������ ≤ ��

�� (10)

Equation (11) provides a prevention from too much shifted power and accumulating 

non-responded power, the proposed EMS can buy power from the grid if the needed 

power is greater than a specific value. ��
∗ is the limit coefficient when buying from the 

grid at time t which is 3 kW, and ��
�����is the bought power from the grid. As mentioned 

before, (���� +) represents the selling to the Grid condition whereas (���� −) represents 

buying from the Grid condition. 

��
����� ≥ ��

∗ (11)

The constraints related to dynamic pricing are defined in (12) to (13). The offered 

price (�) should be between no value (zero) and market clearing price (MCP) at time t. 

                            0 ≤ ��
��� ≤ ��� 

��� ∈ {��+, ��−, ��+, ��−, ��, ��, ��+, �� −} 
(12)

The buying offer ��,�
�����will be between zero and the system selling price (���) as 

shown in Equation (12) where ��
����� will be between zero and the system purchase price 

(���) as shown in Equation (13). 

0 ≤ ��
����� ≤ ��� 

0 ≤ ��
����� ≤ ��� 

(13)

6. Simulation Results 

The simulations were performed on an Intel Core i5-3320M @ 2.60 GHz computer 

with 8 GB RAM. Pure MATLAB software was used to solve the optimization problems 

without using any special toolbox. The performance of the system proposed was investi-

gated in 24-h intervals. As it can be observed from Figure 3, when there is no EV, ES plays 

an essential role in responding to load demands. This is when EV is part of the H-MG, EV 

manages to answer the load demands as an adjunct assistant. As it can be seen in Figure 

5b, ES could be in fully charged mode for 80% of the day with the presence of EV, whereas 

based on Figure 5a the number is 65% when EV is not present there. In other words, EV 

manages to lower the pressure on ES.  
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Figure 5. SoC during system daily performance. (a) is representing the SoC (State of Charge) of ES 

related to the H-MG. (b) is the SoC of ES, when the EV is connected to the H-MG. (c) is the SoC of 

EV in general.  

Figure 6 which represents the DR profile, clearly shows that the presence of EV re-

duces the amount of the shifted power and helps the H-MG to increase its independence 

and profit, in that, once H-MG faces shortage power, it has to use MT or buy power from 

the grid to be able to answer to its shifted power which will cost the H-MG’s, meaning the 

H-MG finds it hard to earn profit by selling power to the grid. The amount of shifted 

power when EV is/isn’t connected to H-MG is presented in Table 1. 
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Figure 6. The profile related to DR+ and DR-. (a) is representing the DR status without presence of 

EV while (b) is with presence of EV. 

Table 1. The effectiveness of EV on DR. 

 DR+ (kW) DR− (kW) Responsiveness Percentage 

Without EV 4.9 9.2 −87% 

With EV 0.8 1.1 −41% 

Based on these results, there are two main achievements. First, the amount of shifted 

power has been decreased from 9.2 kW to 1.1 kW. Next, the responsiveness percentage to 

the shifted load reduced from −87% to −41%; minus means that the amount of responded 

power is less than requested. 

Figure 7 illustrates the buy/sell amount of power from/to the grid with and without 

the presence of EV. As it was mentioned before, EV’s performance could substantially 

reduce buying from the grid which means increasing the independency of H-MG. One of 

the reasons for selling too much power to the grid is the absence of EV. Since the H-MG 

is not able to fulfill the requirement beside considering DR constraints, H-MG will not be 

able to shift more power to the future intervals. Therefore, H-MG has to operate MT. Thus, 

after starting MT, the amount of production exceeds consumption, and H-MG has to sell 

the excess generation power. Although MT manages to respond to the required power, it 

should be noticed that one of the side effects of that is air pollution.  
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Figure 7. Power bought/sold to/from the grid in the 24-h time intervals with and without the pres-

ence of EV. (a) is representing the Grid status without presence of EV in H-MG while (b) is with 

presence of EV. 

Figure 8 shows the amount of the MPC. In this Figure, ��
~���, ��,�

���, and ��,�
���repre-

sent the MPC prediction value during each time interval, calculated MPC without consid-

ering EV, and calculated MPC with considering EV, respectively. Although in some inter-

vals the amount of the calculated MCP by applied algorithm is more than the predicted 

MCP, in general, calculated MCP in accordance with predicted MCP shows cost reduc-

tions. In the presence of EV, calculated MCP illustrates 26% cost reduction while when EV 

is not connected to the H-MG, the cost reduced by 17%. 

 

Figure 8. Market Clearing Price (MCP) during system daily performance. 
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7. Conclusions 

Electric vehicles for smart homes could be compared to a pump storage hydropower 

plant for power networks. They can store energy during low load hours, particularly dur-

ing the night and answer loads during peak hours. On the other hand, customers’ partic-

ipation in DR strategy can contribute to a balance in supply and demand. Making a profit 

and reducing costs are the other advantages of DR for consumers. In this article, the im-

pact of EV presence on DR in H-MG has been investigated. The proposed EMS has applied 

the DE optimization method to find optimum set points. The priority is using renewable 

resources. Yielded results show that proposed EMS manages to reduce the value of MCP 

and shifted power. 

The model proposed showed great potential, therefore this encourages further inves-

tigation to consider other constraining parameters and create a robust system, such as 

considering the inter-temporal dependencies between the EV charging (or discharging) 

and the need to use the EV at a given time where the strategy for managing the EVs is to 

link the EV usage and lifestyle of the persons. For the future work, concentrating on the 

contract between customers and the providers can be of paramount importance. Partial 

participation for consumers in DR is more reflective of real-life situations.  
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DE Differential evolution  

DP Dynamic pricing 

DR+/− Amount of responsive load demand that goes/comes to/from other time period 

EMS Energy management system 

EMS-DR Energy management system based on demand response 

ES Energy storage 

EV Electric vehicle 

EWH Electric water heater 

H-MG Home microgrid 

MILP Mixed-integer linear programming 

MPC Market clearing price 

MT Micro turbine 

PV Photovoltaic 

RLD Responsive load demand 

NRLD Non-responsive load demand 

SG Smart grid 

SoC State of charge 

SSP System sell price 

SBP System buy price 

TOAT Taguchi orthogonal array test 

ZEV Zero-emission vehicl 
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