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Presentation Overview Strathclyde

Engineering

1. Overview

Part I: Polynomial Matrices and Decompositions
2. Polynomial matrices and basic operations
2.1 occurence: MIMO systems, filter banks, space-time covariance
2.2 basic properties and operations
3. Polynomial eigenvalue decomposition (PEVD)
4. lterative PEVD algorithms
4.1 sequential best rotation (SBR2)
4.2 sequential matrix diagonalisation (SMD)
5. PEVD Matlab toolbox
Part II: Beamforming & Source Separation Applications
6. Broadband MIMO decoupling
7. Broadband angle of arrival estimation
8. Broadband beamforming
9. Source-sensor transfer function extraction from 2nd order
statistics
10. Summary and materials
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What is a Polynomial Matrix? srm‘;”.;'c{%

Engineering

» A polynomial matrix is a polynomial with matrix-valued
coefficients, e.g.:

A(z):[_i ‘§]+“ _sz[_i _f]zz (1)

» a polynomial matrix can equivalently be understood a matrix with
polynomial entries, i.e.

A(z) = [ (2)

1+z71—272 1427142272
—14+2z 4272 27172

» polynomial matrices could also contain rational polynomials, but
the notation would not be as easily interchangeable as (1) and (2).
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Where Do Polynomial Matrices Arise? g"{",.;‘;'.;‘c[f%

Engineering

» A multiple-input multiple-output (MIMO) system could be made
up of a number of finite impulse response (FIR) channels:

z1[n] D— y1[n]
x2[n] haa[n] B— y2[n]

» writing this as a matrix of impulse responses:

H[n]— hn[n] hu[’ﬂ]
B th[n] h22[n]
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Transfer Function of a MIMO System rie o

Engineering

» Example for MIMO matrix H[n] of impulse responses:

1 1

B 2 .

o |

hn[n]
—o
o

hlg[n]

]

= 05 T ? = 08 T 9 T
& 0 © a0
< l é < l é
-05 -05
0 1 2 3 4 0 1 2 3 4
discrete time index n discrete time index n

» the transfer function of this MIMO system is a polynomial matrix:

H(z)= Y Hln]z"' or H(z)e—oH[n] (4)

n=—oo
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Analysis Filter Bank

» Critically decimated K-channel analysis filter bank:

——— Hi(2) (K)
Hy(2) (K)

Hg(2) @

» equivalent polyphase representation:

Unmmind@

Strathclyde

Engineering

@ H(z)
@ Hl,l(z) Hl,K(z)

-1

@ Hia(2) ... Hix(2)
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Polyphase Analysis Matrix “s"{",.;‘;'.;‘c[f%

Engineering

» With the K-fold polyphase decomposition of the analysis filtet

K
Hi(2) = Hipn(z")z ! (5)
n=1
hu[n] T ‘ K=4
R T I ] T 7 . n
$ 1 = E
» the polyphase analysis matrix is a polynomial matrix:
Hl,l(z) HLQ(Z) HLK(Z)
m = | B R
Hg1(z) Hga(z) ... Hggr(2)
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Synthesis Filter Bank ”s"{"rs‘?ﬁ‘c[i*%

Engineering

» Critically decimated K-channel synthesis filter bank:

®—e0]
— @G0

4K G ()t

» equivalent polyphase representation:

—>
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Polyphase Synthesis Matrix srm‘;ﬁ’c{%

Engineering
» Analoguous to analysis filter bank, the synthesis filters G (z) can
be split into K polyphase components, creating a polyphse
synthesis matrix

G171(2’) GLQ(Z) e Gl,K(Z)
R I G
GKJ(Z) GK72(Z) Ce GK’K(Z)

» operating analysis and synthesis back-to-back, perfect
reconstruction is achieved if

G(2)H(z) =1; (8)

> i.e. for perfect reconstruction, the polyphase analysis matrix must
be invertible: G(z) = H™1(2).
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-

Space-Time Covariance Matrix Strathclyde

Engineering

» Measurements obtained from M sensors are collected in a
vector x[n] € CM:

X1

n] = [ziln] @aln] ... wum(n]] ; (9)

» with the expectation operator £{-}, the spatial correlation is
captured by R = E{x[n|x"[n]};

» for spatial and temporal correlation, we require a space-time
covariance matrix

Rl7] = S{X[n]XH[n — T]} (10)

» this space-time covariance matrix contains auto- and
cross-correlation terms, e.g. for M =2

[ Elmbltin -7} Eeinlesin — 1)
RIV= | eloablailn -} Elmlnlagin—-) | Y
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& f )
Universityof X

Cross-Spectral Density Matrix Strathclyde

Engineering

» example for a space-time covariance matrix R[] € R?*2:

1 “ 1
£ o5 I = 05 T
ERT S | T e £, ?
S < [ L l
-0.5 -0.5
-2 -1 0 1 2 -2 -1 0 1 2

Ty [1]
o
o o
——0
=)
Tzyay [n]
o
o (%]
—o
——0
—o

)
13
Ot

lag 7 lag 7
> the cross-spectral density (CSD) matrix
R(z) o—e R|7] (12)

is a polynomial matrix.
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P )

Parahermitian Operator :Sgﬂrégﬁ'clvde
ineering

> A parahermitian operation is indicated by {-}*, and compar&@
the Hermitian (= complex conjugate transpose) of a matrix

additionally performs a time-reversal;

> example:
1 1
o T ) ) R PR ¢ e o
05 $ ] 05 |
A(Z) — 0 1 2 3 4 0 1 2 3 4
1 1
o | R e 1
-0.5 $ ® -0.5 & ®
0 1 2 3 4 0 1 2 3 4
» parahermitian AP (z) = AM(1/2%):
14})(Z) - 1 1
*olo ) T | PR f
-05 $ S -05 S
-4 -3 -2 -1 0 -4 -3 -2 -1 0
1 1
Bl @ P . 0s T ¢ f
-0.5 l -0.5 ® &
-4 -3 -2 -1 0 -4 -3 -2 -1 0
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— )
Parahermitian Property %"E“ri’iﬁ'c{%

Engineering

» A polynomial matrix R(z) is parahermitian if
R"(2) = R"(1/z") = R(2);

> this is an extension of the symmetric (if R € R) or or Hermitian
(if R € C) property to the polynomial case:
transposition, complex conjugation and time reversal (in any
order) do not alter a parahermitian R(z);

» any CSD matrix is parahermitian;

> example:
05? 1 ! ¢ " ? T
0.5 \)5° L l
R(z) — ‘ 2 1 0 1 2 ‘ 2 -1 0 1 2 —_ RP(z)
05 T ? . O.ST T T
DSL L -05 l l
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-

Paraunitary Matrices Strathclyde

Engineering

> Recall that A € C (or A € R) is a unitary (or orthonormal)
matrix if AAH = AHA =T,

» in the polynomial case, A(z) is paraunitary if
A(2)AP(2) = AP (2)A(z) =1 (13)

» therefore, if A(z) is paraunitary, then the polynomial matrix

inverse is simple:
AT (z) = AP(z) (14)

» example: polyphase analysis or synthesis matrices of perfectly
reconstructing (or lossless) filter banks are usually paraunitary.
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-

Attempt at Gaussian Elimination Strathclyde

Engineering

» System of polynomial equations:

[0 B [RE]-[58] e

» modification of 2nd row:

A11(2) Aqa(2) Xi(z) | Bi(z)
An(z) ‘3;1E§§f122(2) ] ' { Xa(2) ] a ﬁ;ig§§132(2) ] (16)

» upper triangular form by subtracting 1st row from 2nd:

Anlz) - Awe@) _ [ Xi(z) ] _ [ By (2) }
0 11(2) 22(2)21—(Z)12(Z) 21(2) X5(2) Bs(z)
(17)

» penalty: we end up with rational polynomials.
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Further Reading Strathclyde

Engineering

v

General polynomial matrices and operations [45, 52];

\4

polyphase analysis and synthesis matrices in the context of
multirate systems and filter banks [92, 93, 42];

> space-time covariance matrices [93, 58, 76];

v

estimation of space-time covariance matrices [38, 39, 40].
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Polynomial Eigenvalue Decomposition
(McWhirter Decomposition [58]

» Polynomial EVD of the CSD matrix

z) (18)

a0

E 30| 30|
20 20| 20|
10) 10| 10

5 0 o o 3 0 10 g i

40 a0 40)

4B}

% » %
= = 2

1010g,I01 /

10] 10| 9 10

3 o o o o 56 0 i

w0 a0 40)

20 30| 0|
20 20| 20|
10] 10 10

o o 0z 03 04 05 06 07 08 09 1
nalised angular frequency ©/(27)

» algorithms eX|st with proven convergence; but we prewously did
not know to what values these converge.

g o -0 5 o 10 0 [
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Source Model for CSD Matrix s B

Strathclyde

» General source model for a CSD matrix with L unit variance,

uncorrelated and mutually independent inputs uy[n], £ =1...L,
and M measurements x,,[n], m =1...M:

w1 [n] Fi(2) —— x1[n]
— w2[n]
u2(n F1 z
] (2) H(2)
ur[n] Fr(2) —— 2 (1]

> source PSDs via innovation filter: S;(2) = Fy(2)F} (2);
» for the CSD matrix:

R(z) = H(2)F(2)FY(2)HY () . (19)

Engineering
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Definitions around the CSD Matrix ?,ﬁﬂfigﬁ"?":
neering
» The innovation filters Fy(z) and H(z) can be polynomials or
rational functions in z, but are assumed to be causal and stable;
» they can be represented as a power series (or matrix of power
series), n € N,
X(z) = anz_"
n
» we have a Laurent series, if n € Z;
» power and Laurent series do not need to converge (=absolutely
summable, Y~ |z,| < o0);
» they are analytic if they converge;
» if the sums are finite, we speak of polynomials (n € N) and
Laurent polynomials (n € Z);
» R(z) is a Laurent series, and analytic in an annulus D;
» analyticity: R(z) is infinitely differentiable.
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Eigenvalue Decomposition (EVD) ??;Eﬁ’c%

Engineering

» A Hermitian matrix R = RH be positive semidefinite
(given for any covariance matrix, or anything arising from
R = AA!Y, with A arbitary);

> eigenvalues and eigenvectors:

Ram = Amam

> eigenvalues A € R, A > 0;

> eigenvectors are chosen to be orthonormal, but have an arbitary
phase shift: q/,, = ¢/?qy, is also an eigenvector;

» in case of an algebraic multiplicity C:
Am = Am41 = - - = Am+c—1, only a C-dimensional subspace is
defined, within which the eigenvectors can form an arbitrary
orthonormal basis, with any unitary V:

A - Amgoa] = lAm; - Gmic-] V, (20)
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)
Problem Statement %"E“ri’iﬁ'c{%

Engineering

» We want to investigate the existence and uniquess of the EVD of
a positive semidefinite parahermitian matrix R(z) [104, 103]:

R(2)=U(2) T(2) U"(2), (21)

» U(z) must be paraunitary;
» T'(z) must be diagonal and parahermitian.
» we call this a parahermitian matrix EVD;

» why do we care about the z-domain representation? If we can
write U(z) and I'(z) as convergent power/Laurent series, we can
immediately derive time domain realisations U[n] and I'[n].
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EVD on the Unit Circle ??;Eﬁ’c{%

Engineering

» Analyticity: R(z) is uniquely definited by its representation O
unit circle, R(e’ = R(2)|,_.se;

> R(e7) is self-adjoint: R(e/}) = RY(e7), i.e. Hermitian for
every €);

» EVD on the unit circle [82, 103]:

R(¢) = Q(Z)A(M)QM () . (22)

> for every 2, Q(e/}) and A(e7%) fulfill the properties of the EVD;

» can we find U(z) and I'(z) such that on the unit circle
U() = Q) (23)
T'(e/?) = A(e?) (24)

> all now depends on the continuity/smoothness of Q(e’*!) and
INCADE
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-

Matrix Perturbation Theory Strathclyde

Engineering

> If we know that R(e’*?) varies smoothly, what can be say
about Q(e’?) and A(e/?)?
» eigenvalues (Hoffman-Wielandt, 1953):

D e = AN < | R(7) — R(Z A |, (25)

> eigenvector subspace [46]:

Q"(e”) (R(@ @A) - R(™)) Q) =

[ Eii(e/2,AQ) B (2, AQ) }

Egl(ejﬂ, AQ) E22 (ejQ, AQ) (26)

C M-C

dist{Ql(ejQ), Ql(ej(Q+AQ))} < %HEzl(ejQ7AQ)||F . (27)
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Weierstrass (1885)

-

Strathclyde

Engineering

As long as Q(e7) is
continuous, it can be
arbitrarily closely
approximated by a
converging series of
polynomials;

the functions may change as
the approximation order
changes;

hence there is not just one
function in the limit;

we would like something
more precise, and ideally
obtain an approximant by
truncating the limit function.
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Analytic EVD c{%

» Franz Rellich (1937) for a
self-adjoint, analytic R(e/):
R(’) = Q(7A()QM (™) ;

> Q(e7?) and A(e7) can be
chosen analytic;

» similarly for an arbitrary (i.e. not necessarily Hermitian or even
square) analytic matrix, Boyd & de Moor (1989) and
Bunse-Gerstner (1991) established an analytic SVD.

26 /132



Overview PART | Basics PEVD lter

Eigenvalue Considerations
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©

.

4

2t L L.
L L L L \‘ -~ L -7
0 /4 /2 37/4 T 57/4 37/2 7wl4 27
5 Pt ‘ ‘ ‘ ‘
’ \\
Aty .
=] . N
L3 \\ 2
£ .
2t A L
.
1 L L L \\ o e - L
0 /4 7/2 /4 T 5/4 3n/2 Trl4 2m
5 T T T T T T
~
.
.
¥ E
\\ ’
A Y
~
~
1 L L L ~ ~ - - I > ~ . L
0 /4 /2 37/4 ™ 5m/4 3n/2 7rl4 2m

norm. angular frequency 2

Universityof

Strathclyde

Engineering

We distinguish three cases:

> non-overlapping
eigenvalues ), (e7%),
where all eigenvalues
have algebraic
multiplicity one for all
frequencies €);

> overlapping, maximally
smooth eigenvalues;

» overlapping, spectrally
majorised PSDs.
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Distinct Eigenvalues — Eigenvalues %"?‘.—Z‘Fﬁ‘c[f%

Engineering

> Since A (e7?) € R we can write

N
AN (79 = Z e’ 4 cre 1 e C (28)
=0
> with AV (e7) = diag{;\gN)(ejQ), ,j\g\]}[)(ejg)}, uniform

convergence implies that for every ey > 0 there exists Ny > 0
such that (Stone-Weierstrass)

sup

AN (@) — A < e, (29)
Qel0,27)

> this requires Holder continuity for A(e/%):
X (M) — X (e7%2)| < Cle/™ — P22 (30)
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-

Analytic Eigenvalues Strathclyde
» We had -
N
AN (D) =3 e 4 e, e
=0

» for absolutely summability », |c¢| < co, we require a slightly
stricter form of Holder with o > %;
> then there exist unique eigenvalues of a parahermitian matrix:

o
Ym(2) = Z ezt
{=—00
» these are generally infinite sums or transcendental functions in z
(Weierstrass);
» an arbitrarily close approximation by Laurent polynomials is
possible via truncation:

(=—N 29/132
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Example of a 2 x 2 Matrix g";“r;‘;'.;'c[f%

Engineering

» Given an arbitrary parahermitian R(z) € C?*2;

> eigenvalues 71 2(2) can be directly computed in the z-domain as
the roots of

det{y(2)I = R(2)} =~*(2) = T(2)7(2) + D(2) =0

» determinant D(z) = det{R(z)} and trace T'(z) = trace{ R(z)};
> this leads to

1a() = 5 T(:) + 5\ [TETP () —4DG) s (31)

» awkward: T'(2)T%(z) — 4D(z) = S(2)SY(2) is parahermitian, but
so must be the result of the square root.

30/132



Overview PART | Basics PEVD lIter. Toolbox PART Il MIMO AoA MVDR Source Extraction Mater
[65°6))
u-nmrsinmt‘-X

Strathclyde

Engineering

Example cont'd
» Colin Maclaurin to the rescue: for every root of S(z),

VI-Bal=3 &p"e"
n=0

1—az! e
:ZXna z " (34)
n=0
» with coefficients
w(3Y DT (L,
a=c0 (3)=SrIG) . e
ey () o EV (L (36)
=0T = U ()
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Universityof

Example cont'd Strathclyde
Engineering

» Coefficients &, and x, for n =0...50:

1
—=O zero approximation
>§ % pole approximation
{50.5* q
2 * %
= *
& *****xx%%x%xxx***x***x
Q006060 0O0000000000000000000000000
H 0 [OREC AR A ARSI, SO0
g 3) *******x*xxx%%x%x%%x%
5} *
X*
0.5 Lx I I I I I
0 5 10 15 20 25 30 35 40 45 50

coefficient index n

> these coefficients additionally dampen a geometric series;
» only if S(z) has double zeros (and double poles) is a polynomial

(rational) solution possible;
> in general, the result are transcendental eigenvalues.
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| [
Numerical Example e 3

()

Example from lcart &

Comon (2012): o ‘ ‘ ‘ ‘ ‘ ‘ ‘

0 /4 w2 3n/4 T 5n/4 3n/2 Trl4 2r
norm. angular freq. Q
1 1 ol ]
R Z)= _ (b)

(2) 1 —22+4+6—22"1 e ]

0 & & $ % & &
» solution on unit circle; N e T
-5 -4 -3 -2 -1 0 1 2 3 4 5

» coefficients of analytic
eigenvalues;

» decay of coefficients.

-400 g8y &
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) 0%
Eigenvectors %"?‘ri’i’ﬁ'c{%

Engineering

> Recall: eigenvectors g,,,(¢’?) have an arbitrary phase response;

» if this phase response is Holder continuous, analytic eigenvectors
exists; some phase ambiguity remains;

» if the phase response is discontiunous at €,

. 1 )
; ~(N) (i) — 15 ( 7(Q0—Q)
i gy, (€70) = 5 Jim (e )+

but this Fourier series does converge neither uniformly nor
absolutely; analytic eigenvalues do not exist;

> there is a grey area (continuous but not Holder) where we cannot
make any statement;

» analytic approximations are possible in both cases.
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-

Overlapping Eigenvalues Strathclyde

Engineering

» We now inspect the case of overlapping eigenvalues:

y M(E)

0+
0
» maximally smooth continuation: analytic case ...same as before;
» spectrally majorised case: eigenvalues \,,(e/*}) can be shown to
be Lipschitz (stronger than Holder) and analytic eigenvalues

Y (2) exis s.t. Ym(2)],—eio = Am (7).
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Universityof

Polynomial Agproxmatlon of Eigenvalues Strathclyde

Engineering

)\k e’

0 T T
0 Qb Q0 Qa
» Maximally smooth / analytic case will generally require a

transcendental solution;
» for the spectrally majorised case, the convergence of the Laurent

series will be slower;
> we expect to need a higher approximation order in case of spectral

majorisation. 36/132
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Eigenvectors for Analytic Eigenvalues g".;“r;“;’d‘yde
)\k(ejﬂ) Engineering

A

(@]
o 4

0 Qo Q.

» For analytic eigenvalues, unique 1-d subspaces for the
eigenvectors can be shown to continuous blend in and out of
algebraic multiplicities;

» the existence of analytic eigenvectors u,,(z) again depends on the
selection of the phase response within each subspace.

37 /132



Overview PART | Basics PEVD lIter. Toolbox PART Il MIMO AoA MVDR Source Extraction Mater

-

Eigenvectors for Spectrally Majorised Eigenvalues st

iy Engineeri
N )\k((i ) ineering

~

0 %
0

v

For spectrally majorised eigenvalues, eigenvectors are
discontinuous in the algebraic multiplicity;

» hence no exact analytic eigenvectors u,,(z) exist in this case,
irrespective of the phase response;

a Fourier series representation can be found if q,,(¢’*?) has only a
finite number of discontinuities;

> the series is not analytic, but a truncation can be.

v
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University of [\%’E\){'

Numerical Example Strathlyde

Engineering

» We take a parahermitian matrix with known factors:

I(2) = [ z+3+z271

—jz+34 5271 ]

U(z) = [un(2), us(z)]  with uLg(z):% [ izl_l} :
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Example — Maximally Smooth Case

> The factors represent the solution for the analytic
eigenvalues and eigenvectors;

\_J_—’ Il

0 /4 /2 3n/4 T 5n/4 3n/2 74 27

/2

37/8

/4

Pm(e’?)

/8

/2 37/4 ™ 57/4 37/2 774 27
norm. angular frequency 2

Mater|

Universityof -

Strathclyde

Engineering
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Example — Spectral Majorisation g"{",;‘;'.;‘c[f}?:
Engineering

» On the unit circle, we end up with piecewise smooth eigenva#¥
and piecewith continuous eigenvectors — analytic solution only
for the former [108, 105, 107]

- -

37/2 774

L S
/ = = m=2
0 | | | | | |

0 /4 /2 37/4 g 57/4 37/2 74 2T 41/132
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Example — Algorithmic Solution gﬁ:?ﬁ:%ﬁ

Engineering
> Using an algorithm to approximate the McWhirter factorisa
(order 24 for I'(z) and order 84 for

U(z)) [58, 76, 81, 79, 22, 20, 95]:

5
g4
)
3
o
=
a
L2
1 I I I ~ = -, - I
0 /4 /2 3n/4 T 5n/4 3n/2 7rl4 27
/2 < s 7~ T
~ ) ’
\\I‘ ,/’ \/Il Phd
& 37/8 [ (b) \ ’ \ ral §
2 ' -7 e
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McWhirter Decomposition

correlation

&G
Universityof S

Strathclyde

Engineering

» John McWhirter et al. (2007): polynomial eigenvalue
decomposition of a parahermitian matrix:

R(2) = Q(2)A(2)Q"(2)

> paraunitary (i.e. lossless) matrix Q(z), s.t. Q(2)QF(z) =1T;
» diagonal and spectrally majorised A(z):

3 . T
—¥— Sy(e’)
: ‘ 25| —o Si(e")] |
i
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<)
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o
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Parahermitian Matrix EVD (PEVD) ??;‘?ﬁc[f%

Engineering

» Franz Rellich (1937): for R(e’*?) analytic, there exist analy
eigenvectors I'(e7?) and analytic eigenvalues U (e7%);
» can be generalised to

R(z) =U(2)T(2)U"(2) ;

D —G —0- —G- —G- —G- —C- —G & —O- —G —C- —G- —C- —G —C —4

=
P o
o
o
N o

correlation

N,
=3

o o —

*

0 1 2 0 1 2 0 0.‘1 0.‘2 O.‘G 0.‘4 0.‘5 O.‘G 0.‘7 0.‘8 D.‘9 1
Q/m
lag 7
» eigenvalues are unique, eigenvectors can be modified by arbitrary

allpass filters H(z) (s.t. H(z)H" (z) = 1),
R(z)u(2)H(z) = v(z)u(2)H(2) .
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Unmmind@

Further Reading Strathclyde

Engineering

» For the existence and uniqueness of analytic eigenvalues and
eigenvectors, please see [104, 103]

» McWhirter decomposition [57, 58].
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lterative PEVD Algorithms srm‘;ﬁ’c{%

Engineering

» Second order sequential best rotation (SBR2, McWhirter 208
> iterative approach based on an elementary paraunitary operation:

SO ) = R(z)

S(i+1) (Z) _ ﬁ(iJrl) (Z)S(z) (Z)H(i+1) (Z)

> H(i)(z) is an elementary paraunitary operation, which at the ith
step eliminates the largest off-diagonal element in s(—1(z);
» stop after L iterations:

L
A)=8P(z) Q) =][HY()
i=1

» sequential matrix diagonalisation (SMD) and
» multiple-shift SMD (MS-SMD) will follow the same scheme ...

46 /132



Overview PART | Basics PEVD lIter. Toolbox PART Il MIMO AoA MVDR Source Extraction Mater

Elementary Paraunitary Operation g"{",;‘;'.;‘c[f%

Engineering

v

An elementary paraunitary matrix [Vaidyanathan] is defined as
HO(2) =1 vOyOH L =150 y@.H ;| Iv@e =1

we utilise a different definition:

v

HY(2) = DO ()QW
» D@ (2) is a delay matrix:
DW(z) =diag{l ... 12771 ... 1}

» QU(2) is a Givens rotation.
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Sequential Best Rotation Algorithm (McWhirter) [Rsenites

Engineering

> At iteration i, consider SC~1(z) o—e S(—1)[7]
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Sequential Best Rotation Algorithm (McWhirter) [Rsenites

Engineering

» DY ()80 () DO (2)
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Sequential Best Rotation Algorithm (McWhirter) “s"{",;‘;'.;‘c[f;?e

Engineering

> b(i)(z) advances a row-slice of S~ (z) by T
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Sequential Best Rotation Algorithm (McWhirter) “s"{",;‘;'.;‘c[f;?e

Engineering

> the off-diagonal element at —7" has now been translated to lag
zero
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Unmmind@

Sequential Best Rotation Algorithm (McWhirter) [Rsenites

Engineering

» D (z) delays a column-slice of S0~V (z) by T
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Sequential Best Rotation Algorithm (McWhirter) g";';;‘;;';‘cﬁ

Engineering

> the off-diagonal element at —7" has now been translated to #8
zero
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. . . . [
Sequential Best Rotation Algorithm (McWhirter) g";';;:;';‘c[;*ﬁ

Engineering

> the step ﬁ(i)(z)S(i_l)(z)D(i)(z) has brought the largest
off-diagonal elements to lag 0.
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[g@

Sequential Best Rotation Algorithm (McWhirter) g"r,;:'ﬁclgﬁ,

Engineering

» Jacobi step to eliminate largest off-diagonal elements by Q(*)
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Sequential Best Rotation Algorithm (McWhirter) g";';;:;';‘c[;*ﬁ

Engineering

> iteration ¢ is completed, having performed

SO (z) = QD (2)S¢ () D (2)Q (=)
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SBR2 Outcome %"E“ri’iﬁ'c{%

Engineering

» At the ith iteration, the zeroing of off-diagonal elements achieved
during previous steps may be partially undone;

» however, the algorithm has been shown to converge, transfering
energy onto the main diagonal at every step (McWhirter 2007);

» after L iterations, we reach an approximate diagonalisation
A(z) = 8P (2) = Q(2)R(2)Q(2)
with

HD (=1Q"

» diagonalisation of the previous 3 x 3 polynomial matrix . ..
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SBR2 Example — Diagonalisation

40 40 40
30 30 30
20 20 20
10 10 10
o ¢t % o o
-10 0 10 10 0 10 10 0 10
40 40 40
30 30 30
w
=20 20 20
E
10 10 10
0 0 WWWV\@QT%WVWW o
-10 0 10 10 0 10 10 0 10
40 40 40
30 30 30
20 20 20
10 10 10
-10 0 10 10 0 10 10 0 10
lat 7
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SBR2 Example — Spectral Majorisation

» The on-diagonal elements are spectrally majorised

Mater|

Universityof
Strathclyde

Engineering

20

o
T

10log,o[Ti[ / [dB]
o

T
[ARIE

~10 | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

normalised angular frequency Q/(27)

0.9
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SBR2 — Givens Rotation ??;Eﬁ’c?.;

Engineering
» A Givens rotation eliminates the maximum off-diagonal ele
once brought onto the lag-zero matrix;

> note I: in the lag-zero matrix, one column and one row are
modified by the shift:

» note Il: a Givens rotation only affects two columns and two rows
in every matrix;

» Givens rotation is relatively low in computational cost!
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SBR2 — Givens Rotation ??;Eﬁ’c?.;

Engineering
» A Givens rotation eliminates the maximum off-diagonal ele
once brought onto the lag-zero matrix;

> note I: in the lag-zero matrix, one column and one row are
modified by the shift:

» note Il: a Givens rotation only affects two columns and two rows
in every matrix;

» Givens rotation is relatively low in computational cost!
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Universityof

Sequential Matrix Diagonalisation (SMD) smmc?dl

Engineering

(Redif et al., IEEE Trans SP 2015, [79])
» Main idea — the zero-lag matrix is diagonalised in every step;
» initialisation: diagonalise R[0] by EVD and apply modal matrix to
all matrix coefficients —s S(©;
> at the ith step as in SBR2, the maximum element (or column
with max. norm) is shifted to the lag-zero matrix:

» an EVD is used to re-diagonalise the zero-lag matrix;
» a full modal matrix is applied at all lags — more costly than
SBR2 53 /132
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Multiple Shift SMD (SMD) sm‘.*'hl;@f

Engineering

» SMD converges faster than SBR2 — more energy is
transfered per iteration step [22, 20, 25, 21];

» SMD is more expensive than SBR2 — full matrix multiplication at
every lag;

» this cost will not increase further if more columns / rows are
shifted into the lag-zero matrix at every iteration

» MS-SMD will transfer yet more off-diagonal energy per iteration;
> because the total energy must remain constant under paraunitary
operations, SBR2, SMD and MS-SMD can be proven to converge.s: iz
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Multiple Shift SMD (SMD) sm:'h?;

Engineering

» SMD converges faster than SBR2 — more energy is
transfered per iteration step [22, 20, 25, 21];

» SMD is more expensive than SBR2 — full matrix multiplication at
every lag;

» this cost will not increase further if more columns / rows are
shifted into the lag-zero matrix at every iteration

» MS-SMD will transfer yet more off-diagonal energy per iteration;
> because the total energy must remain constant under paraunitary
operations, SBR2, SMD and MS-SMD can be proven to converge.s: iz
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SBR2/SMD/MS-SMD Convergence QF;TJC%

Engineering

» Measuring the remaining normalised off-diagonal energy
over an ensemble of space-time covariance matrices:

0 T T
— —&— SBR2
8 8 —%— SMD
=2 57 MS-SMD §

—6— C-MS-SMD
b%o — — -95% conf. intervals
= —10r |
<]
=1
(<]
= -15
=1
&
& 20
"Cli ~%
o
3 S 3
S _o5} ~ — SIS 7
- 25 ‘o\\ '..\\\\i - 'z\\\
o) ~ T s
2 S < Te—
= =30 ~ 5 4
: e
= -35r o il
-40 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

iteration index i
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SBR2/SMD/MS-SMD Application Cost 1

» Ensemble average of remaining off-diagonal energy vs. orde
of paraunitary filter banks to decompose 4x4x16 matrices:

0 ;
— —— SBR2
m —#%—— SMD
g MS-SMD
N -5r : : —6— C-MS-SMD ]
20
—
=
o 10 Bl
=
=
53
= 15 1
N
BT
o
o -20f .
(]
2 3
= =
= S SN
5 25 ‘ ' ' o= 1
& =,
f"
-30 i i i il
0 5 10 15 20 25

paraunitary filter bank order

Universityof @
Strathclyde

Engineering
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SBR2/SMD/MS-SMD Application Cost 2 s S8
Engineering
» Ensemble average of remaining off-diagonal energy vs. orde
of paraunitary filter banks to decompose 8x8x64 matrices:

-

= = =SMDv2
= SMD
30 T T T i i i i i i i i

10 15 20 25 30 8 40 45 50 55 60
paraunitary filter bank order
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Further Reading ra—

>
>

Strathclyde

Engineering

second order sequential best rotation (SBR2) algorithm [58]F
the SBR2 family of algorithms includes various modifications,
such as to the cost function to maximise the coding gain: [76, 81];
multiple shift SBR2 [95, 94]; efficient implementation [49, 50];
sequential matrix diagonalisation (SMD) algorithm [79], and
various SMD family versions to undertake multiple

shifts [22, 23, 20], apply search space reduction [25, 21, 30, 31],
numerical efficiences [90, 19, 26, 27, 34, 37, 28, 33, 35]; a
Householder approach to SMD [75];

DFT domain algorithms to extract analytic solution — separate
extraction of eigenvalues [108, 107] and eigenvectors [105] based
on smoothness criteria [102, 109, 111]; a similar attempt had
been undertaken in [91] with analysis in [32, 36];

not shown here, but similar algorithms have been applied to other
linear algebraic operations such as the QR

decomposition [43, 44, 29] and the generalised EVD [18].
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MATLAB Polynomial EVD Toolbox

» The MATLAB polynomial EVD toolbox can be downloaded
pevd-toolbox.eee.strath.ac.uk

.| Polynomial EVD To

< @ [ pevd-toolbox.eee.strath.ac.uk =
PEVD Toolbox Index Polynomial EVD Toolbox
Overview This toolbox contains a number of Matiab impl i of iterative to approximate the polynomial
(EVD) of a p: matrix. Parahermitian matrices arise e.g. when formulating
« About this toolbox covariance matrices for broadband array signals, and the term parahermitian hints as an extension of the
« PEVD and iterative algorithms || (narrowband) Hermitian property to an generalised symmetry property of the polynomial matrix case.
= Licence
« Download The toolbox files are organised in four subdirectories:
« Acknowledgements . .
« Feedback and contact » "General" contains a number of utility functions to generate, manipulate and display polynomial matrices;

"Decompositions"” contains the two decomposition algorithms, SBR2 and SMD;
Directories evolve with various options, and are provided within this toolbox as p-code, .
viewed;

; these algorithms continue to
. are executable but cannot be

4. Decompositions » "Demos" provides a number of examples of how to apply the PEVD i to @ number of
4. Demos « "Docs” contains an auto-generated himl documentation of the tool box. This manual can be navigated uslng
4. General the lower menu in the left sidebar.
- || Tofind out more about the PEVD, the contained algorithms, the toolbox license and related issues, please follow
Generated by m2html © 2005 the links provided on the left.

We hope that you find this toolbox useful, and we look forward to any comments or feedback.

Stephan Weiss, Jamie Corr and Keith Thompson (University of Strathclyde, Glasgow, Scotland)
John G. McWhirter (Cardiff University, Wales)
lan K. Proudler (Loughborough University, England)

> the toolbox contains a number of iterative algorithms to calculate
an approximate PEVD, related functions, and demos. 50 /132
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Narrowband MIMO Communications g";‘;;:';;‘cﬁ

Engineering

» a narrowband channel is characterised by a matrix C containing
complex gain factors;

» problem: how to select the precoder and equaliser?

» overall system;
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)

Narrowband MIMO Communications Strathclyde

Engineering

» a narrowband channel is characterised by a matrix C contai
complex gain factors;
» problem: how to select the precoder and equaliser?

» the singular value decomposition (SVD) factorises C into two
unitary matrices U and VH and a diagonal matrix 3;
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Narrowband MIMQO Communications

» a narrowband channel is characterised by a matrix C contai

complex gain factors;
» problem: how to select the precoder and equaliser?

vi : b : U

UH

» we select the precoder and the equaliser from the unitary matrices

provided by the channel's SVD;

> the overall system is diagonalised, decoupling the channel into
independent single-input single-output systems by means of

unitary matrices.
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Broadband MIMO Channel ??;‘ic;y.;e

Engineering

» The channel is now a matrix of FIR filters; example for a 3 x 4
MIMO system C[n]:

i 1@?;T@;?T

0 0

=2 2 2 2

)

‘ | I

Q

SN 0 9 0 0 T o
o 1 2 3 o 1 2 3 o 1 2 3 o 1 2 3
2 2 2 2
1 1 T 1 1 ?
oo 00 . . P R i %
o 1 2 3 o 1 2 3 o 1 2 3 o 1 2 3

discrete time index n

» the transfer function C(z) e—o C[n] is a polynomial matrix;

» an SVD can only diagonalise C[n] for one particular lag n.
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Standard Broadband MIMO Approaches ??;Eﬁ’c?.;

Engineering

» OFDM (if approximate channel length is known):
1. divide spectrum into narrowband channels;
2. address each narrowband channel independently using
narrowband-optimal techniques;
drawback: ignores spectral coherence across frequency bins;
» optimum filter bank transceiver (if channel itself is known):
1. block processing;
2. inter-block interference is eliminated by guard intervals;
3. resulting matrix can be diagonalised by SVD;
» both techniques invest DOFs into the guard intervals, which are
generally not balanced against other error sources.

62

132



Overview PART | Basics PEVD Iter. Toolbox PART Il MIMO AoA MVDR Source Extraction Mater

Standard Broadband MIMO Approaches ??;Eﬁ’c?.;

Engineering

» OFDM (if approximate channel length is known):
1. divide spectrum into narrowband channels;
2. address each narrowband channel independently using
narrowband-optimal techniques;
drawback: ignores spectral coherence across frequency bins;
» optimum filter bank transceiver (if channel itself is known):
1. block processing;
2. inter-block interference is eliminated by guard intervals;
3. resulting matrix can be diagonalised by SVD;
» both techniques invest DOFs into the guard intervals, which are
generally not balanced against other error sources.

62

132



Overview PART | Basics PEVD Iter. Toolbox PART Il MIMO AoA MVDR Source Extraction Mater

Standard Broadband MIMO Approaches g"{“,;‘{ﬁ’c?.;

Engineering

» OFDM (if approximate channel length is known):
1. divide spectrum into narrowband channels;
2. address each narrowband channel independently using
narrowband-optimal techniques;
drawback: ignores spectral coherence across frequency bins;
» optimum filter bank transceiver (if channel itself is known):
1. block processing;
2. inter-block interference is eliminated by guard intervals;
3. resulting matrix can be diagonalised by SVD;
» both techniques invest DOFs into the guard intervals, which are
generally not balanced against other error sources.

62 /132



Overview PART | Basics PEVD Iter. Toolbox PART Il MIMO AoA MVDR Source Extraction Mater

Standard Broadband MIMO Approaches ??;Eﬁ’c?.;

Engineering

» OFDM (if approximate channel length is known):
1. divide spectrum into narrowband channels;
2. address each narrowband channel independently using
narrowband-optimal techniques;
drawback: ignores spectral coherence across frequency bins;
» optimum filter bank transceiver (if channel itself is known):
1. block processing;
2. inter-block interference is eliminated by guard intervals;
3. resulting matrix can be diagonalised by SVD;
» both techniques invest DOFs into the guard intervals, which are
generally not balanced against other error sources.

62

132



Overview PART | Basics PEVD Iter. Toolbox PART Il MIMO AoA MVDR Source Extraction Mater

Standard Broadband MIMO Approaches g"{“,;‘{ﬁ’c?.;

Engineering

» OFDM (if approximate channel length is known):
1. divide spectrum into narrowband channels;
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narrowband-optimal techniques;
drawback: ignores spectral coherence across frequency bins;
» optimum filter bank transceiver (if channel itself is known):
1. block processing;
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-

Polynomial Singular Value Decompositions Strathelyde

Engineering

> lterative algorithms have been developed to determine a
polynomial eigenvalue decomposition (EVD) for a parahermitian
matrix R(z) = RY(z) = RY(271):

R(z) ~ H(2)['(2)HY (2)

> paraunitary H(z)HF (z) =1, diagonal and spectrally majorised
I'(2);
» polynomial SVD of channel C(z) can be obtained via two EVDs:

Q

(2)C(2) =U () =" ()3 (2)U"(2)
C(2)C(z) = V()T ()= (2)VF(2)

finally:

63 /132



Overview PART | Basics PEVD lter

MIMO Application Example
> Polynomial SVD of the previous C(z) € C3*# channel matr

|z, [n]|

PSD / [dB]

Toolbox PART Il MIMO AoA MVDR Source Extraction Mater

Universityof

Strathclyde

Engineering
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discrete time index n
» the singular value spectra are maiorised:
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Further Reading %"E“ri’iﬁ'c{%

v

Engineering

General precoding and
equalisation [86, 89, 87, 88, 55, 54, 85, 2, 68];

joint source-channel coding [97, 96, 110];
subband coding [77, 76, 81];
polynomial Wiener filter as optimum receiver [56, 53, 112]

non-linear precoding for broadband MIMO
systems [1, 4, 3, 61, 62, 5, 7, 6, 8, 64, 66, 63, 65, 67, 59, 60];

combination with filter bank multicarrier
methods [113, 69, 70, 71, 17];

related using a polynomial generalised SVD [47].
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Universityof @

Narrowband Source Model Strathclyde

Engineering

» Scenario with sensor array and far-field sources:

sin] o >> O—— z1[n]
O—— a2[n]
O—— z3[n]

O—— znn]
» for the narrowband case, the source signals arrive with delays,
expressed by phase shifts in a steering vector

» data model:
x[n] =
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@

Narrowband Source Model Strathclyde

Engineering

» Scenario with sensor array and far-field sources:
/

/D amln

» for the narrowband case, the source signals arrive with delays,
expressed by phase shifts in a steering vector s

» data model:
x[n] = s1[n] - s1
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Universityof @

Narrowband Source Model Strathclyde

Engineering

» Scenario with sensor array and far-field sources:

sin] o >> O—— z1[n]
O—— a2[n]
O—— z3[n]

san] @ >>>
O— zm[n]

» for the narrowband case, the source signals arrive with delays,
expressed by phase shifts in a steering vector s;

» data model:
x[n] = s1[n] - s1
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Universityof @

Narrowband Source Model Strathclyde

Engineering

» Scenario with sensor array and far-field sources:

s1ln] .>> R ]

\ \ \ \
\ ) \

SN oSS
\\ \ \\

O a3[n
SR

Voo Ny

\ \
san] @ >> NN N
\ NI
O auln]
» for the narrowband case, the source signals arrive with delays,
expressed by phase shifts in a steering vector si, so

» data model:
x[n] = s1[n] - s1 + s1[n] - s2
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Universityof @

Narrowband Source Model Strathclyde

Engineering

» Scenario with sensor array and far-field sources:

i .>>> o—» xﬂ
srn] @ >>> O——» 23[n]

san] @ >>>
O— zm[n]

» for the narrowband case, the source signals arrive with delays,
expressed by phase shifts in a steering vector si, so

» data model:
x[n] = s1[n] - s1 + s1[n] - s2
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Narrowband Source Model g"r,;‘:.:‘c[f%

Engineering

» Scenario with sensor array and far-field sources:

5] >>> L O—— @1[n]

O

» for the narrowband case, the source signals arrive with delays,
expressed by phase shifts in a steering vector si, so, ...Spg;
» data model:

R
x[n] = si1[n] -s1 + s1[n] -s2 + -+ sg[n] -sp = Zsr[n] - Sy
r=1
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Steering Vector Strathclyde

Engineering

» A signal s[n| arriving at the array can be characterised by
the delays of its wavefront (neglecting attenuation):

xo[n) s[n — 79| g[n — 79
:m[n] _ s[n — 1] _ [n — 1] 5[] e a(2)S(2)
:L'M_l[n] S[TL—TM_l] (5[71—7’1\1_1]

» if evaluated at a narrowband normalised angular frequency §2;, the
time delays 7,,, in the broadband steering vector ay(z) collapse to
phase shifts in the narrowband steering vector ay .,

e~ I8

e_jTlQi
ag 0, = ay(2)],—po; =
eI —182
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Data and Covariance Matrices Strathel

)
de
Engineering y

» A data matrix X € CM*L can be formed from L measurem&
X=[x[n] x[n+1 ... x[n+L—-1]]

» assuming that all z,,[n], m =1,2,... M are zero mean, the
(instantaneous) data covariance matrix is

R= E{X[n]XH[n]} a2 %XXH

where the approximation assumes ergodicity and a sufficiently
large L;

» Problem: can we tell from X or R (i) the number of sources and
(i) their orgin / time series?

» w.r.t. Jonathon Chamber's introduction, we here only consider the
underdetermined case of more sensors than sources, M > K, and
generally L > M.
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SVD of Data Matrix grr;itwl':ﬁ?e

Engineering

» Singular value decomposition of X:

X = |vU > VH

> unitary matrices U =[uj...uy]and V = [vy...vL];
» diagonal X contains the real, positive semidefinite singular values
of X in descending order:

op O 0 0 0
5 — 0 g9
0
0 0 om O 0

with o1 > 09> -+ > oy > 0.
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. &)
Singular Values Strathlyde

Engineering

> If the array is illuminated by R < M linearly independent so
the rank of
the data matrix is
rank{X} = R
» only the first R singular values of X will be non-zero;
> in practice, noise often will ensure that rank{X} = M, with

M — R trailing singular values that define the noise floor:
1 T

0.8f |
06f 1
S
04f 1

0.2 4

0 @ Q @ o &
1 2 3 4 5 6 7 8 9 10

ordered index m

» therefore, by thresholding singular values, it is possible to estimate
the number of linearly independent sources R.
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Subspace Decomposition “s"{",;‘;'.;‘cl}fe
Engineering
» If rank{X} = R, the SVD can be split:

w5 2[4

0 X

» with U, € CM*R and VI € CR*L corresponding to the R
largest singular values;

» U, and VI define the signal-plus-noise subspace of X:

X = E Umumv E Umumv

» the complements U,, and Vg,
U};IUn =0 ) VSV'rI—LI =

define the noise-only subspace of X.
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SVD via Two EVDs ??Siﬁ'c%

Engineering

» Any Hermitian matrix A = A" allows an eigenvalue
decomposition
A =QAQY
with Q unitary and the eigenvalues in A real valued and positive
semi-definite;
» postulating X = UXVH therefore:

xxt = (uzvi)vziul) = vuaut (38)
xix = (viul)yuzvl) =vavt (39)

» (ordered) eigenvalues relate to the singular values: \,, = 02 ;

» the covariance matrix R = %XX has the same rank as the data
matrix X, and with U provides access to the same spatial
subspace decomposition.
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Narrowband MUSIC Algorithm ??;Eﬁ’c{%

Engineering

» EVD of the narrowband covariance matrix identifies
signal-plus-noise and noise-only subspaces
A; 0 ] [ Ut ]
0 A, || UH
» scanning the signal-plus-noise subspace could only help to retrieve

sources with orthogonal steering vectors;
» therefore, the multiple signal classification (MUSIC) algorithm
scans the noise-only subspace for minima, or maxima of its

~1v. v

reciprocal
1

SMUSIC (79) = m

Snusic(?) /[dB]
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. )
Narrowband Source Separation ??;Eﬁ’c{%

Engineering

» Via SVD of the data matrix X or EVD of the covariance matrix
R, we can determine the number of linearly independent sources
R;

» using the subspace decompositions offered by EVD/SVD, the
directions of arrival can be estimated using e.g. MUSIC;

> based on knowledge of the angle of arrival, beamforming could be
applied to X to extract specific sources;

» overall: EVD (and SVD) can play a vital part in narrowband
source separation;

» what about broadband source separation?
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Universityof @

Broadband Array Scenario Strathclyde

s1[n) \?soﬂ e

» Compared to the narrowband case, time delays rather than phase
shifts bear information on the direction of a source.
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Broadband Steering Vector “s"{",;‘;'.;‘cfyde

Engineering

» A signal s[n| arriving at the array can be characterised by
the delays of its wavefront (neglecting attenuation):

xo[n) s[n — 79| g[n — 79
x1[n] _ s[n — 1] _ [n — 1] 5[] e a(2)S(2)
:L'M_l[n] S[TL—TM_l] (5[71—7’1\1_1]

» if evaluated at a narrowband normalised angular frequency §2;, the
time delays 7,,, in the broadband steering vector ay(z) collapse to
phase shifts in the narrowband steering vector ay .,

e~ I8

e_jTlQi
ag 0, = ay(2)],—po; =
eI —182
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Space-Time Covariance Matrix ”s"{“.;‘{'ﬁ‘c[f%

Engineering

» If delays must be considered, the (space-time) covariance
matrix must capture the lag 7:

R[r] = S{X[n] . xH[n — 7']}

» R|[7] contains auto- and cross-correlation sequences:

20 20 20
15 15 15
10 10 10
XA I N S A R A N O A A
0 0 0
-2 0 2 -2 0 2 -2 0 2
20 20 20
15 15 15

=

510 10 10
1T i b 1
0 0 0 ? 9
L [

o
o
~
!
o
o
~
|
o

o 3
—o
o
—o

o 5

)
ob——o
o

0?‘?TU<P
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Cross Spectral Density Matrix “s"{",;‘;'.;‘c[f%

Engineering

» z-transform of the space-time covariance matrix is given by
R[r] = E{xpxh_,} o— ZSZ z)ay, (= a@l( 2)+o%1

with ¥; the direction of arrival and S;(z) the PSD of the [th
source;

» R(z) is the cross spectral density (CSD) matrix;

» the instantaneous covariance matrix (no lag parameter 7)

R = 8{xnxg} = RJ[0]
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Polynomial MUSIC (PMUSIC) gﬁ:‘ﬁ”ﬁ'ﬁ%
[Alrmah, Weiss, Lambotharan, EUSIPCO (2011)] -
» Based on the polynomial EVD of the broadband covariance matrix
Az) 0 ] [ QP(2) }

R(z) ~ [Qs(z(l(?n(z)] [ 0 An(2) QP (2)

A(2)

» paraunitary Q(z2), s.t. Q(2)QF(z) =1T;
» diagonalised and spectrally majorised A(z):

|
3 8 8 8 8
=Y
=
S o o
10logy || / [dB]
5 b o o 3
ILT
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PMUSIC cont'd ”s"?‘.%‘?ﬁ‘c[i*%

Engineering

» Idea —- scan the polynomial noise-only subspace @, (z) with
broadband steering vectors

L(z,9) = ay(2)Qs, (2)Qu(2)ag(2)
» looking for minima leads to a spatio-spectral PMUSIC
Spss—music (¥, Q) = (T(z,9)] ,—p0) ™"

» and a spatial-only PMUSIC

Sps nusic() = (27r f P(z,fﬁ)|zejnd(2> i

with Ty[r] o—e T'(2,9).

80 /132



Overview PART | Basics PEVD Iter. Toolbox PART Il MIMO AoA MVDR Source Extraction Mater

Simulation | — Toy Problem %"i".;’{’ﬁ‘c[i%

Engineering

» Linear uniform array with critical spatial and temporal samp

» broadband steering vector for end-fire position:
a,(z) = [1 L1 Z~MHT
> covariance matrix
1 28 M
R(z) = a,r/z(z)aiﬂ(z) = & L
z_]\:/”l . 1
» PEVD (by inspection)
Q(2) = Tpprdiag{l »~' --- z""*} o A(z) = diag{10 - 0
» simulations with M =4 ...
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Simulation | — PSS-MUSIC

Spss(9,€7?)/[dB]

Saige (0, ') /[dB]

MIMO AoA MVDR Source Extraction

Mater|

Universityof <&

Strathclyde
Engineering
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Simulation Il g".;‘;;‘;'.;'d‘yde
Engineering
» M = 8 element sensor array illuminated by three sources;
> source 1: ¥y = —30°, active over range Q € [3Z; nJ;
» source 2: Y9 = 20°, active over range Q) € [%; 7);
> source 3: 3 = 40°, active over range Q) € [ . ; *]; and
[¢) m
%
-90 -60 -30 0 20 40 60 90

B —

/(]

» filter banks as innovation filters, and broadband steering vectors
to simulate AoA;

> space-time covariance matrix is estimated from 10* samples. .
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Simulation Il — PSS-MUSIC iy O

T 0
~
=3
Q—i
2
T ()
=
%{ 40 il j‘v (W —
ii/ 20 ! """A",",““1“‘1“‘,15&11‘&]‘1‘\‘1‘1‘1‘1“4‘\“«14-;-»;,;:‘—13 ==t
& oL g1

-80 -60 _40 oo

?/o
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PS-MUSIC Comparison

MIMO AoA MVDR Source Extraction

» Simulation | (toy problem): peaks normalised to unity:

Mater|

2

Universityof

Strathclyde

Engineering

T T -

g [~ = —AF-MUSIC (@ = 7/2) L SN
2 AF-MUSIC (integrated)| / \
= 08p PS-MUSIC (SBR2) / \ q
g — — —PS-MUSIC (ideal) , \
o061 - , \ g
=l \
[ /
£ 041 7 ) g
g ’ s
£ 02 Pt N i
=} _ - -

0 _—— = = 1 I I e R

87 88 89 90 91 92 93

d/o
» Simulation |I: inaccuracies on PEVD and broadband steering
vector
. 0 T
Q sources
= ol - — —AF-music
E - —— PS-MUSIC
3
S 20
el
2 / N 7 S
s -30f e S~ S~
£ _- -——__
5 -
< 4o — L ! ! ! ! ! !
-80 -60 —40 -20 0 20 40 60 80
0o
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AoA Estimation — Conclusions EE’EEHE?":

» We have considered the importance of SVD and EVD for _
narrowband source separation;

» narrowband matrix decomposition real the matrix rank and offer
subspace decompositions on which angle-of-arrival estimation
alhorithms such as MUSIC can be based;

» broadband problems lead to a space-time covariance or CSD
matrix;

» such polynomial matrices cannot be decomposed by standard

EVD and SVD;

» a polynomial EVD has been defined;

iterative algorithms such as SBR2 can be used to approximate the
PEVD;

this permits a number of applications, such as broadband angle of
arrival estimation;

broadband beamforming could then be used to separate

broadband sources.
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. &)
Further Reading Strathclyde

Engineering

» Multiple signal classification (MUSIC) algorithm [83] and
polynomial MUSIC [12, 9];

» comparisons to other broadband AoA approaches:[10, 14, 98];

» construction of accurate steering vectors using fractional delay
filters [51, 84]: [11, 13];

» polynomial MUSIC applied in an echoic speech scenario [48], and
compared to an independent frequency-bin approach [106];

» impact of source model conditioning [24], algorithmic issues [33],
and estimation errors [38, 41].
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Narrowband Minimum Variance Distortionless Strathelyde
Engineering
Response Beamformer

» Scenario: an array of M sensors receives data x[n], containing a
desired signal with frequency )5 and angle of arrival ¥, corrupted
by interferers;

» a narrowband beamformer applies a single coefficient to every of
the M sensor signals:

x1[n] o
ol e . e
xp[n] L
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Narrowband MVDR Problem iy O

Strathclyde

Engineering

» Recall the space-time covariance matrix:
R[r] = E{X[n]xH[n — T]}

» the MVDR beamformer minimises the output power of the
beamformer:

mving{|e[n]|2} = n}"ilanR[O]w (40)
st al(ds, Q)w=1, (41)

> this is subject to protecting the signal of interest by a constraint
in look direction ¥g;

> the steering vector ay_ o, defines the signal of interest’s
parameters.
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Broadband MVDR Beamformer ”s“{",;‘i'ﬁ‘c[i%

Engineering

» Each sensor is followed by a tap delay line of dimension L, giving
a total of ML coefficients in a vector v € CML
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Broadband MVDR Beamformer g";;;‘;n;@

)
de
Engineering y

v

A larger input vector x,, € CML is generated, also including lags;

» the general approach is similar to the narrowband system,

minimising the power of e[n] = viix,;

> however, we require several constraint equations to protect the
signal of interest, e.g.

C= [S(ﬁs,ﬂo), S(ﬁs,Ql) N S(ﬁS,QL_l)] (42)

» these L constraints pin down the response to unit gain at L
separate points in frequency:

clv=1; (43)

» generally C € CMLXL byt simplifications can be applied if the
look direction is towards broadside.
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- . &)
Generalised Sidelobe Canceller g";“,;‘;ﬁ’c{%

Engineering

> A quiescent beamformer v = (CH)Jr 1 € CML picks the
signal of interest;

» the quiescent beamformer is optimal for AWGN but generally
passes structured interference;

» the output of the blocking matrix B contains interference only,
which requires [BC] to be unitary; hence B € CMEx(M-1)L,

(M-1)L

» an adaptive noise canceller v, € C aims to remove the

residual interference:

ol (2) d[n]
B u[n] VI(2) y[n]_% e[n]
(

» note: all dimensions are determined by {M, L}.
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Polynomial Matrix MVDR Formulation Strathelyde

Engineering

» Power spectral density of beamformer output:

Re(2) = w(z)R(z)w(z)
» proposed broadband MVDR beamformer formulation:

. dz
W) 7{41 Rele) “
sit. a(vs, 2)w(z) = F(z) . (45)

» precision of broadband steering vector, |a(Vs, z)a (s, z) — 1],
depends on the length T of the fractional delay filter:

0

-10H = = - T=100

201og; | By (e7?)]

i
0 005 01 015 02 025 03 035 04 045 05
normalised angular frequency Q/(2)
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- . &)
Generalised Sidelobe Canceller Strathelyde

Engineering

» Instead of performing constrained optimisation, the GSC projects
the data and performs adaptive noise cancellation:

by () ——
x[n] —] /
afn] | /| i) A
B(z) W (z) Dy €l
(/

> the quiescent vector wq(z) is generated from the constraints and
passes signal plus interference;

» the blocking matrix B(z) has to be orthonormal to wq(z) and
only pass interference.
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. . . )
Design Considerations Strathclyde

Engineering

» The blocking matrix can be obtained by completing a parau
matrix from wq(2);

» this can be achieved by calculating a PEVD of the rank one
matrix wq(2)Wq(2);

> this leads to a block matrix of order N that is typically greater

than L;
» maximum leakage of the signal of interest through the blocking
matrix:
-25 T T T T
truncation le-4, N = 164
_30H = = =truncation le-3, NV = 140 : : M

20logy | Es (GJQ)‘

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
normalised ancular freauency Q/(27)
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Computational Cost ??Siﬁ'c?‘;

Engineering

» With M sensors and a TDL length of L, the complexity of a
standard beamformer is dominated by the blocking matrix;

> in the proposed design, w, € CM~! has degree L;
» the quiescent vector wq(z) € CM has degree T';
> the blocking matrix B(z) € CM=D*M has degree N;

» cost comparison in multiply-accumulates (MACs):

GSC cost
component polynomial ‘ standard
quiescent beamformer MT ML
blocking matrix M(M-1)N | M(M-1)L?
adaptive filter (NLMS) | 2(M-1)L 2(M-1)L
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-

Example Strathclyde

Engineering

» We assume a signal of interest from 9 = 30°;
> three interferers with angles 0; € {—40°, —10°,80°} active over
the frequency range 2 = 27 - [0.1; 0.45] at signal to interference
ratio of -40 dB;
T m

Q

0 —

—90° —40° —10° 0° 30° 80° 90°

» M = 8 element linear uniform array is also corrupted by spatially
and temporally white additive Gaussian noise at 20 dB SNR;

» parameters: L = 175, T = 50, and N = 140;

» cost per iteration: 10.7 kMACs (proposed) versus 1.72 MMACs
(standard).
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Quiescent Beamformer Strathclyde

Engineering

» Directivity pattern of quiescent standard broadband beamformer:

-30 —

201log,, |A(9, e’?)| / [dB]
7

-40 —

-50 —

40 20 0 20

40 80 g

angle of arrival ¥ /[°]
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Quiescent Beamformer %"E".—Z‘{’ﬁ‘c[i%

Engineering

» Directivity pattern of quiescent proposed broadband beamformer:

201log,, |A(9, e’?)| / [dB]
7

20
° 40 80 g

angle of arrival ¥ /[°]
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Adaptation ”s"{".-Z‘E'ﬁ‘c[l,?e

Engineering

» Convergence curves of the two broadband beamformers, showing

the residual mean squared error (i.e. beamformer output minus
signal of interest):

E T T T T T T T T T
S ol standard broadband GSC [
~ v .

= polynomial GSC
(0]

» 5

e

g -10

c

3

€ -15

discrete time index n
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Adapted Beamformer Strathclyde

» Directivity pattern of adapted proposed broadband beamformer:

201log,, |A(9, e’?)| / [dB]

Engineering

angle of arrival ¥ /[°]
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University

Adapted Beamformer Strathclyde

» Directivity pattern of adapted standard broadband beamformer:

201log,, |A(9, e’?)| / [dB]

Engineering

angle of arrival ¥ /[°]
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Gain in Look Direction Strathclyde

Engineering

» Gain in look direction ¥ = 30° before and after adaptation:

w2 T TT T TT T a) R |

% 151 "| " I T '|,'|'
<'5 L TR B T I R I R BT B
= 1 [NETR TN TE 0 TR B0 TRULEE TS LU T
S Ty e o by

05 [T R T WS T LR

2 [ T T T T A L
s 0 + h
= 05 standard quiescent -

o - = =standard adapted ! 1al
g -1 % point constraints i1 "
< 15k polynomial quiescent |" u
S - = =polynomial adapted '

_2 Il Il
0 005 01 o015 02 025 03 035 04 045 05
normalised angular frequency Q/(2)

» due to signal leakage, the standard broadband beamformer after
adaptation only maintains the point constraints but deviates

elsewhere.
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Broadband Beamforming Conclusions g";“,;‘;ﬁ’c?,;

Engineering

» Based on the previous AoA estimation, beamforming can help to
extract source signals and thus perform “source separation”;

» broadband beamformers usually assume pre-steering such that the
signal of interest lies at broadside;

» this is not always given, and difficult for arbitary array geometries;

» the proposed beamformer using a polynomial matrix formulation
can implement abitrary constraints;

» the performance for such constraints is better in terms of the
accuracy of the directivity pattern;

» because the proposed design decouples the complexities of the
coefficient vector, the quiescent vector and block matrix, and the
adaptive process, the cost is significantly lower than for a
standard broadband adaptive beamformer.
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Further Reading Strathclyde

Engineering

» Basic idea of a polynomial MVDR/GSC beamformer: [99];

> investigation of constrained optimisation in the polynomial
domain: [15];

» polynomial GSC for arbitrary 3d arrays: [16];

» polynomial matrix-based source separation is not discussed here
but directly related: [80, 78];

» broadband subspace-based techniques: [100].
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Source-Sensor Transfer Functions Strathclyde

Engineering

» We take M-array measurements of a single source:
7

sensor 1 sensor m sensor M

> 2nd order stats: R;(2) = S(2)a;(2)al (2) = vi(2)ui(2)u?.
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Transfer Functions and PEVD g"{';;‘;'.;‘c[f%

Engineering

» 2nd order stats: R;(z) = S(2)a;(2)al (2) = vim(2)ui(2)ul;

%

> difference: u;(z) is normal, u! (2)u;(2) = 1, while a;(2) is not:

af (2)ai(2) = A; ()(2)Ai ) (2) = AT (2)As (1) (2)
with minimum-phase A()(2);
» therefore:

_ai(2)
Ai,(—l—) (2)
7(2) = Ai ) (2)S(2) A4 (2) -

» from a single measurement R;(z), we cannot say anything about
a;(z) or S(z).

107 /132



Overview PART | Basics PEVD Iter. Toolbox PART Il MIMO AoA MVDR Source Extraction Mater
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Engineering

» If we have several measurements ¢ =1...1:

_ai(2)
Az’,(+) (2)
%i(2) = Ai (1) (2)S(2) A7 (1 (2)

» we can extract S(z) as the greatest common divisor
S(2) = GCD{n(2) ... v(2)};

> we can then extract the terms A; (,y(2), and hence determine the
vectors a;(z) save of an arbitrary phase response due to the
allpass H;(z):

Hi(z)ui(z) =

108 /132



Overview PART | Basics PEVD Iter. Toolbox PART Il MIMO AoA MVDR Source Extraction Mater

Alternative DFT Domain Attempt

» As an alternative, we take measurements in independent

frequency bins ;, = %:

R; = Ri(e/F) = a;(e/™)5(e/F)aj! (/)
= Qi pNif g -

» principal eigenvectors and eigenvalues for the measurement
campaigns are

o a;(e’S%)
CIz,k - |al(€]Qk)| )
Aige = S(7%)|ai(e™)]? .

» because of the normalisation, nothing can be extracted about the
source or the transfer functions.
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Numerical Example Strathclyde

Engineering

» Source with power spectral density

15 1
S(Z)—§Z+Z+§Z

» vector of transfer functions during campaign i = 1:

w@=[3 1]

4

» based on these: PEVD computations for R;(z) and Ra(z), and
GCD calculation based on eigenvalues.
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Numerical Results — Source PSD ”s";';;:',;‘c@fe

Engineering

» Eigenvalues / source PSD for both measurements ¢ = {1, 2

04

-2

-6

-10

normalised power spectral density / [dB]

1 1 1 1 1 1
0 005 0.1 015 02 025 03 035 04 045 05
normalised angular frequency Q/(2n)

I
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Numerical Result — Magnitude Responses | ”s";‘;;:',;‘d;,fe

Engineering

» Eigenvectors / magnitude response for measurement ¢ = {1

0

normnalised magnitude / [dB]

_15 z | | | | | | | T T
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

normalised angular frequency Q/(2n)
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Numerical Result — Magnitude Responses || Strathclyde

Engineering

Lecy

2

» Eigenvectors / magnitude response for measurement i = {2

normalised magnitude / [dB]

K L L L L L L L T T

0 005 0.1 015 02 025 03 035 04 045 05
normalised angular frequency Q/(2n)
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Application Summary and Critique ??;Eﬁ’c?.;

Engineering

» We can extract the source PSD and the magnitude responses
once we have at least two measurements [101];

» an independent frequency bin approach does not yield anything;

» the polynomial approach rests on an accurate parahermitian EVD,
and an accurate root finding / GCD algorithm;

» root finding is numerically challenging: research since Euclid
(300BC), with robust root-finding methods still on-going
(Grobner bases, algebraic geometry);

» nevertheless the approach gives a glimpse of the type of
advantages that a coherent broadband approach can offer.
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Further Reading Strathclyde

Engineering

» This approach is discussed in [101];

» an additional application not elaborated here is speech
dereverberation [75, 72, 74, 73].
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Additional Material ??Smc?d:
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» Key papers:

1 J.G. McWhirter, P.D. Baxter, T. Cooper, S. Redif, and J. Foster:
“An EVD Algorithm for Para-Hermitian Polynomial Matrices,”
IEEE Trans SP, 55(5): 2158-2169, May 2007.

2 S. Redif, J.G. McWhirter, and S. Weiss: “Design of FIR
Paraunitary Filter Banks for Subband Coding Using a Polynomial
Eigenvalue Decomposition,” |IEEE Trans SP, 59(11): 5253-5264,
Nov. 2011.

3 S. Redif, S. Weiss, and J.G. McWhirter: “Sequential matrix
diagonalisation algorithms for polynomial EVD of parahermitian
matrices,” |IEEE Trans SP, 63(1): 81-89, Jan. 2015.

» If interested in the discussed methods and algorithms, please
download the free Matlab PEVD toolbox from
pevd-toolbox.eee.strath.ac.uk
» for questions, please feel free to ask:

e Stephan Weiss (stephan.weiss@strath.ac.uk) or

e  Connor Deloasa (connor.delaosa@strath.ac.uk)

e Faizan Khattak (faizan.khattak@strath.ac.uk)
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