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Abstract

In this work, the reliability of complex systems under consideration of imprecision is addressed. By joining two methods
coming from different fields, namely, structural reliability and system reliability, a novel methodology is derived. The
concepts of survival signature, fuzzy probability theory and the two versions of non-intrusive stochastic simulation (NISS)
methods are adapted and merged, providing an efficient approach to quantify the reliability of complex systems taking
into account the whole uncertainty spectrum. The new approach combines both of the advantageous characteristics of its
two original components: 1. a significant reduction of the computational effort due to the separation property of the
survival signature, i.e., once the system structure has been computed, any possible characterization of the probabilistic
part can be tested with no need to recompute the structure and 2. a dramatically reduced sample size due to the adapted
NISS methods, for which only a single stochastic simulation is required, avoiding the double loop simulations traditionally
employed.

Beyond the merging of the theoretical aspects, the approach is employed to analyze a functional model of an
axial compressor and an arbitrary complex system, providing accurate results and demonstrating efficiency and broad
applicability.

Keywords: survival signature, system reliability, complex systems, reliability analysis, epistemic uncertainty,
imprecision, fuzzy probabilities, extended Monte Carlo methods, non-intrusive imprecise stochastic simulation

1. Introduction

Engineering systems constitute a key factor for the state
of development and progress of modern societies. Typical
examples are infrastructure networks, industrial plants or
machines, e.g., gas turbines. Closely integrated into soci-
ety, the functionality of such complex capital goods has a
significant impact on the economy as well as on everyday
life. However, in reality, engineering systems deteriorate
due to environmental and operational influences. As a
result, their overall performance decreases over time or, in
the worst case, they fail entirely. Consequently, for eco-
nomic and safety-related reasons the reliability of a system,
i.e., its continuous functionality, is of utmost importance.
In order to ensure this reliability, appropriate decisions
must be made in both design and maintenance. However,
since societal growth and progress is accompanied by in-
creasing size and complexity of societies’ systems [1] and
since “Global population growth will continue for decades,
reaching around 9.2 billion in 2050 and peaking still higher
later in the century,” [2], this task, i.e., the identification
of appropriate decisions towards maximum reliability, is
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becoming increasingly challenging. For this reason, the
development of sophisticated methods for quantifying and
assessing system reliability gained more and more impor-
tance over the past decades [3, 4, 5, 6] and will receive even
more attention in the future.

Conventional tools in system reliability assessment are
failure mode and effect analyses, see, e.g., [7, 8], as well
as more mathematical representations, such as reliability
block diagrams, see, e.g., [9], fault tree and success tree
methods, see, e.g., [10, 11]. However, as stated in [12], the
calculations for identifying minimal path sets or cut sets
might be too arduous for large complex systems, limiting
the applicability of such methods. Further traditional
approaches are Markov models, see, e.g., [13] and Petri
nets, see, e.g., [14]. In recent research, system reliability
assessment methods are provided, e.g., in [15] and [16]
for multi-state systems, in [17], using Bayesian melding
method, including various available sources on system, as
well as subsystem level and in [18, 19], where Yang et al. as
well as Xiao et al. propose approaches based on an active
learning Kriging model, considering multiple failure modes
and a multiple response model, respectively. Furthermore,
Li et al. propose in [20] a reliability approach for analyzing
systems composed of repairable components with complex
failure distribution structure. A comprehensive review onEmail address: salomon@irz.uni-hannover.de (Julian 
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numerous system reliability methodsand the evolution of
reliability optimization is provided in, e.g., [21, 22, 23].

Various system reliability approaches are based on the
mathematical concept of the structure function that repre-
sents a functional state of a system in dependence on its
components states, i.e., its state vectors, see, e.g., [24, 25].
Nevertheless, not only for large systems the structure func-
tion might become complicated or impractical [26, 27]. For
coherent systems with components of only a single type,
i.e., exchangeable components, the system signature repre-
sents a summarization of the structure function, providing
an advantageous tool, see, e.g., [28].

In current research, the concept of survival signature
is a promising approach to efficiently model the reliability
of systems with multiple component types. The survival
signature was introduced and discussed in [29, 30] as a
generalization of the system signature. Apart from over-
coming the restriction to systems with only one type of
components, similar to the signature, the key feature of
the survival signature is a clear separation between the
structure of a system and the probabilistic properties of
its components [31]. In addition, it summarizes the system
structure by aggregating state vectors into single survival
signature entries with associated reliabilities, resulting in
significantly reduced storage requirements and simplified
data access. Once the system structure has been evaluated
– usually a demanding task – any number of calculations for
various probability properties can be performed without
having to recalculate it. Thus, compared to traditional ap-
proaches, the survival signature reduces the computational
effort associated with repetitive model evaluations that are
typically required in reliability engineering processes. A
direct comparison between fault tree, Markov chain and
survival signature modeling is presented in [32].

As stated in [12], a purely analytical implementation of
the survival signature to real-life complex systems is often
not feasible and simulations are required instead. There-
fore, in [12], Patelli et al. provide simulation algorithms
based on the concept of survival signature and Monte Carlo
simulation (MCS). However, for large systems the compu-
tational effort of determining the survival signature might
be prohibitive. Thus, current research addresses the ap-
proximation of survival signature entries by estimating the
associated reliability values over a subset of correspond-
ing state vectors, reducing computational expense for the
single required topological system evaluation significantly
[33]. Furthermore, in [34] an efficient algorithm for exact
computation of system and survival signatures using binary
decision diagrams is provided. In addition, sub-structuring
the system in serial or parallel subsystems of smaller size
and the subsequent merging of the survival signatures of
these subsystems may be conducted [35]. Further research
combines the notion of survival signature with multiple
failure modes and dependent failures [36], common cause
failures [37], interconnected networks [38] and multi-state
components [12].

In reality, design and maintenance decisions determining

the reliability of a system have to be made under the pres-
ence of uncertain conditions. Gathering precise information
is typically unfeasible, since, for instance, measurements
of lifetime data and subjective assessments by experts are
governed by uncertainty. Thus, comprehensive details,
providing insight into the uncertain system behavior, are
required. Consequently, a challenging task for engineers is
how uncertainty can be integrated into reliability models.
In the systemic context, current approaches to propagate
uncertainty in the model are, e.g., Dempster-Shafer theory
[39, 40], info-gap theory [41], p-boxes [42, 43] and fuzzy
probabilities [44, 45]. It shall be noted that a lot of debate
is present in the literature on various aspects of modeling
uncertainties, such as the terminology and interpretation
[46, 47] as well as their representation [48, 49]. In prac-
tice, the reduction of uncertainty is desired but associated
with unavoidable costs, involving for example experimental
campaigns, destructive testing, etc. Therefore, a trade-off
is required by decision-makers, where a critical level of
uncertainty needs to be identified among various design
and maintenance measures in order to balance uncertainty
and the costs associated with its reduction. This can be
achieved by utilizing fuzzy probabilities as an appropriate
uncertainty representation, as, e.g., Beer et al. propose in
[50].

In the context of survival signature, several works, such
as in [35, 51, 26, 12], have already demonstrated how the
numerous advantages of the concept of survival signature
and the consideration of uncertainties can be merged in an
encompassing reliability analysis framework. Accounting
for both aleatoric and epistemic uncertainties requires an
adequate treatment in system analysis. An often conducted
approach is a two-staged simulation, known as “double loop”
approach, where variables with epistemic uncertainty are
propagated in an “outer loop” and variables with aleatoric
uncertainty are sampled in an “inner loop” [52], or, vice
versa, aleatory variables are sampled in an “outer loop” and
epistemic uncertainty is propagated in the “inner loop” [53].
It is obvious that for complex systems this naive approach
leads to an extraordinarily large sample size and thus to
high computational effort, see, e.g., [54]. Consequently,
simulation methods that enhance computational efficiency
and provide high accuracy with minimal sample size are
desired.

Approaches to circumvent the exhaustive double loop
simulation include interval MCS and interval importance
sampling [55, 56], stochastic expansions and optimization-
based interval estimation [57] as well as surrogate modeling
via optimization and approximation techniques [58]. Lat-
est methods to improve computational performance for
uncertainty quantification, for instance, combine p-boxes,
univariate dimension reduction method and optimization
[59], utilize the augmented space integral [60] or apply
line outage distribution factors [43]. Recently, Wei et al.
introduced in [61] the non-intrusive stochastic simulation
(NISS), a promising approach for efficient computation of
imprecise structural models with a drastically reduced sam-
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ple size. The method splits into two basic approaches, the
local extended Monte Carlo simulation (LEMCS) and the
global extended Monte Carlo simulation (GEMCS), coming
along with different advantages in accuracy and variation.

In the present work, two methodologies from different
fields, namely, structural reliability and system reliability,
are joined to derive a novel and comprehensive approach
for system reliability analysis taking into account impreci-
sions. More specifically, both, LEMCS and GEMCS, are
adapted and merged with the concept of survival signature.
Through the complex amalgamation, a new methodology
is derived, combining the advantages of both original meth-
ods: a significant storage reduction of system topological
information and major efficiency advantages in repeated
model evaluations as well as an extensive consideration
of uncertainties with just a single stochastic simulation
needed, reducing the sample size dramatically. The com-
bination of these advantages leads to beneficial synergy
effects, increasing the efficiency even more. The repre-
sentation of uncertainties is achieved by integrating fuzzy
probabilities.

The paper proceeds as follows: Section 2 briefly reviews
the fundamental theory of survival signature, uncertainty,
fuzzy probability and NISS method. Based on this, Section
3 develops the proposed novel approach. In Section 4 the
method is applied to a functional model of a multi-stage
high-speed axial compressor as well as to an arbitrary
complex system. Section 5 summarizes the results and
discusses questions for future research.

2. Theoretical Fundamentals

2.1. Survival Signature

The survival signature according to [29] is a concept
for efficiently determining the time-dependent reliability of
systems that are composed of components of different types.
Detailed information about the concept and its derivation
can be found, e.g., in [29, 30, 51].

2.1.1. Structure Function

Suppose a system composed of m components of a sin-
gle type. Then, x = (x1, x2, . . . , xm) ∈ {0, 1}m defines the
state vector of these components with xi = 1 indicating
a functioning state of the ith component and xi = 0 indi-
cating a non-functioning state. The structure function φ
is a function of the state vector, describing the operating
state of the regarded system: φ = φ(x) : {0, 1}m → {0, 1}.
Accordingly, φ(x) = 1 indicates a functioning system and
φ(x) = 0 indicates a non-functioning system with respect
to the state vector x.

Suppose a system composed of components of multiple
types, i.e., K ≥ 2, then the number of system components
is given by m =

∑K
k=1mk with mk denoting the number of

components of type k ∈ {1, 2, . . . ,K}. Then, the state vec-
tor for each type can be defined, equivalent to systems with
only a single component type, as xk =

(
xk1 , x

k
2 , . . . , x

k
mk

)
.

2.1.2. Survival Signature and Survival Function

The survival signature describes the probability of a
system being in a functioning state, purely depending on
the number of functioning components lk for each type
k. Assuming the failure times of components of the same
type to be independent, identically distributed (iid) or
exchangeable within this type, the survival signature can
be defined as:

Φ (l1, l2, . . . , lK) =[
K∏
k=1

(
mk

lk

)−1]
×

∑
x∈Sl1,l2,...,lK

φ(x),
(1)

with
(
mk

lk

)
denoting the total number of state vectors xk of

type k and Sl1,l2,...,lK denoting the set of all state vectors
of the entire system for which lk =

∑mk

i=1 x
k
i . Thus, the

survival signature only depends on the topology of the
system, regardless of any time-dependent failure behavior
of its components. Note that the notion exchangeability,
following [62], implies the input ordering of the random
quantities being irrelevant. As a consequence in practice,
rearranging the exchangeable assumed components should
be irrelevant to real systems. For components that have
the same functionality, come from the same manufacturer
and operate in the same environment, the assumption of
exchangeability is reasonable. However, as the environment
changes, components of the same kind are exposed to dif-
ferent environmental stresses as, e.g., significantly different
temperatures, affecting their behavior and further their
lifetime probability distribution function. Here, assuming
exchangeability would be inappropriate, see [12].

Let Ck(t) ∈ {0, 1, . . . ,mk} denote the number of com-
ponents of type k in a working state at time t and suppose
the probability distribution for the failure times of type k to
be known with Fk(t), being the corresponding cumulative
distribution function. Then

P

(
K⋂
k=1

{Ck(t) = lk}

)

=

K∏
k=1

P (Ck(t) = lk)

=

K∏
k=1

(
mk

lk

)
[Fk(t)]

mk−lk [1− Fk(t)]
lk

(2)

describes the probabilistic structure of the system, i.e., the
time-dependent failure behavior of the system components,
regardless of its topology. The survival function, describing
the probability of a regarded system being in a functioning
state at time t, results as:

P (Ts > t) =

m1∑
l1=0

. . .

mK∑
lK=0

Φ (l1, l2, . . . , lK)

× P

(
K⋂
k=1

{Ck(t) = lk}

)
,

(3)
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with Ts denoting the random system failure time. Thereby,
the concept of survival signature separates the topology and
the time-dependent probability structure. In addition, the
survival signature is a summary of the structure function
and, therefore, is advantageous compared to traditional
methods when model simulations have to be conducted
repeatedly, especially, if the system failure evaluation is
computational expensive [12, 29]. Note that these are
precisely the features that make the survival signature so
unique and beneficial.

2.2. Uncertainty

In literature, various concepts concerning uncertainty
are spread. Therefore, a brief clarification of the notion
of uncertainty, its interpretation, classification and fur-
ther a hint of how uncertainties can be advantageously
implemented into the probability structure of a system, as
presented in Section 2.1.2, is given in the following.

2.2.1. Interpretation of Uncertainty

Initially, a fundamental notion of uncertainty must be
established. Following Nikolaidis in [63], uncertainty can
be defined indirectly by the definition of certainty known
from decision theory and its absence. This interpretation
and its associated states are illustrated in Fig. 1(a). In
this sense but extended to a more general interpretation,
certainty, represented by state 4 in Fig. 1, is the state in
which complete knowledge, e.g., concerning model input,
is given. This state is ideal and a deterministic model can
be utilized. Accordingly, uncertainty implies incomplete
knowledge concerning, e.g., corresponding measures of a
decision and their outcome as addressed in [63] or com-
ponent behavior. Further, maximum uncertainty refers
to complete ignorance, i.e., state 1, in which no knowl-
edge is available at all. This is the worst case scenario yet
appearing only in the theoretical sense. In practice, the
present state of information, shown as state 2, typically
includes both knowledge and uncertainty. The gap between
complete ignorance and the present state of information
relates to knowledge stated to be certain, i.e., it can be
implemented in the model deterministically, while the gap
between the present state and certainty corresponds to
remaining uncertainty. Concerning decision-making, stake-
holders intend, among other things, a maximum reduction
of hazardous uncertainties, i.e., shifting the present state
of information as close to certainty as cost and feasibility
allow.

2.2.2. Classification of Uncertainty

In order to deal with uncertainties in analyses prop-
erly, e.g., Der Kiureghian & Ditlevsen propose a two-part
classification of uncertainty in [47]: “The advantage of
separating the uncertainties into aleatory and epistemic
is that we thereby make clear which uncertainties can be
reduced and which uncertainties are less prone to reduction,
at least in the near-term, i.e., before major advances occur

maximum uncertainty

knowledge uncertainty

(imprecision)
reducible uncertainty

pirreduciblep
uncertainty

1. 2. 4.

2. 3. 4.

fcompletef
ignorance

present state of
information

certaintyf

present state of
information

state of precise
information

certainty

(a)

(b)

Figure 1: Interpretation of uncertainty; adapted from [63] and [46].

in scientific knowledge”. Nikolaidis remarks in [63] that fur-
ther uncertainty taxonomies can be found in the literature.
However, a broad consensus exists that in engineering prac-
tice a distinction between these two types of uncertainty
is beneficial and sufficient [64, 46, 47]. Focusing on this
two-part classification, for the first type frequently used
terms are irreducible, aleatoric or objective uncertainty and
the second is denoted as imprecision, epistemic uncertainty,
reducible or subjective uncertainty. These terms are respec-
tively utilized interchangeably among literature [65, 46].
However, the terminologies are up for debate as can be seen
by comparing, e.g., [66, 46, 67]. Aughenbaugh & Paredis
clarify in [46] the existence of aleatoric uncertainty as a
controversial but philosophical issue and emphasize the
terms irreducible uncertainty and imprecision with regard
to practical application. Accordingly, these terms are used
in the following.

Fig. 1 (b) illustrates the distinction into the above-
mentioned two uncertainty types. Here, the state of precise
information, shown as state 3, delimits irreducible uncer-
tainty and imprecision. Thereby, the gap between state
3 and certainty denotes uncertainty that is claimed to be
irreducible from the current perspective. This type arises
from presumed variability and randomness and impedes
the analyst from being certain throughout the evaluation
process [64]. In contrast, the gap between the present state
of information and state of precise information denotes im-
precision. Imprecision arises, e.g., as only a limited amount
of samples or subjective and, thus, fuzzy assessments of ex-
perts on component behavior are available. Further sources
of imprecision and their consideration are discussed in [47]
and [68]. Measures can be implemented to increase the
quality of information and, therefore, reduce imprecision
[64]. However, these are typically associated with effort
and reaching the state of precise information may even be
unfeasible.

2.2.3. Implementation of Uncertainty

Concepts to deal with uncertainty in a model can be
distinguished into three groups, namely, non-probabilistic
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approaches, precise probability approaches and imprecise
probability approaches [61]. In order to propagate a clear
distinction between irreducible uncertainty and imprecision
throughout analysis only the latter appears appropriate
[69, 61]. Thereby, set-theoretical concepts describing im-
precision, such as intervals or fuzzy sets, and probability
distributions from traditional probability theory that repre-
sent irreducible uncertainty are combined [46, 70]. Among
various alternatives, in this context fuzzy sets are beneficial
[71, 50]. For instance, Beer et al. utilize fuzzy sets in
reliability analyses and propose two approaches to evaluate
these. For more information see [72] as well as [50].

2.3. Fuzzy Probability

In system reliability engineering, imprecisions frequently
occur, e.g., due to scarcity of data or vague expert knowl-
edge regarding the underlying probability distribution types
and distribution parameters of component lifetimes. Fuzzy
probability theory enables to take these imprecisions into
account.

Let F (x) be a probability distribution function, describ-
ing the failure probability of a system component up to time
x. Further, assume that the knowledge of the parameters of
this distribution function is imprecise. Then Fig. 2 shows
the fuzzy probability distribution function F̃ (x) describing
this phenomenon, with µ(F (x)) denoting the membership
function of F (x) and supp(F̃ (x)) = [Fα0(x), F

α0
(x)] de-

noting the support of F̃ (x). Note that for µ(F (x)) = 1,
corresponding to an α-level of α = 1, F̃ (x) = F (x).

In this work, all imprecise distribution parameters are
modeled by triangular fuzzy numbers θ̃ = (a/b/c), with
a < b < c, [a, c] denoting the base of θ̃ and b denoting its
vertex. In practice, the fuzzy probability model can be
learned from (precise or censored) lifetime data by using
either frequentist or Bayesian statistical inference methods.
For example, given a small number of precise lifetime data,
the (100 · α)% confidence intervals can be inferred for θ̃
with either confidence interval estimation or bootstrap
approach, where α can be taken as the membership level.
Comprehensive information on fuzzy probability and its
practical applications is provided, e.g., in [73, 74].

2.4. Non-Intrusive Imprecise Stochastic Simulation

The NISS, according to [61] and [75], provides a general
methodological framework for propagating parameterized
imprecise probability models through a black-box simulator
with only one stochastic simulation. Indeed, any stochastic
simulation algorithm can be injected into this framework
to tackle different types of problems.

The original extended Monte Carlo simulation (EMCS)
method was introduced in [76] for parametric global sen-
sitvity analysis as well as parametric optimization and was
further developed in [61] and [75] into the NISS framework
for efficient evaluation of moments of imprecise response
functions in a structural context. For the classical EMCS,

the unbiased estimators are derived by sampling from prob-
ability distribution functions of input variables with im-
precise distribution parameters fixed at a particular point,
hence, it has been referred to as LEMCS in further work.
In [61], the GEMCS was established, where no fixed point
of distribution parameter is required, but rather an aux-
iliary sampling distribution. Further, the combination of
the LEMCS and GEMCS with high-dimensional model rep-
resentation (HDMR) was presented in order to efficiently
apply the NISS method to more sophisticated and high-
dimensional models. Additionally, improvements for rare
failure events were introduced to NISS in [75] and further
developed in [77, 78].

Note that all NISS methods (including both LEMCS
and GEMCS), although inspired by importance sampling,
have significant different features, compared to the classi-
cal importance sampling including the one developed in
[56]. The specific features of NISS can be summarized as
follows: First, global NISS methods utilize samples gener-
ated from the joint space of component lifetimes and their
imprecise parameters and show better global performance
than the classical importance sampling, especially for the
cases with large imprecision. Second, when applied to
the cases with high-dimensional imprecise parameters, two
types of HDMR decomposition are injected into LEMCS
and GEMCS with proper truncation for substantial allevi-
ating the expansion of variations of estimators, which is a
common phenomenon appeared in all importance sampling
based algorithms. Third, all classical stochastic simulation
techniques for stochastic analysis, such as subset simulation
and line sampling, developed for rare event analysis, can
be injected into the NISS framework, following same ra-
tionale. This has substantially expended the suitability of
NISS framework to different types of imprecise probability
analysis tasks.

In this work, the LEMCS and GEMCS are reviewed,
where LEMCS is the basis of all local NISS methods, while
GEMCS provides a basis for all global NISS methods. The
NISS methods are originally developed for performance
and reliability estimation of structures simulated with a
black-box model, such as a finite element model.
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Figure 2: Fuzzy probability distribution function of a continuous fuzzy random variable; adapted from [73].

3. Proposed Methodology

In the following, the two basic NISS methods, LEMCS
and GEMCS, are adapted and merged with the concept
of survival signature allowing for efficient system reliabil-
ity analyses under the constraint of imprecision. These
two methods form the basis for all further developments
included in the NISS framework.

Let t = (t1, t2, . . . , tm)
>

denote the failure times of the
components of a system and Ts indicates the failure time
of the system. For a coherent system a non-decreasing de-
terministic function, denoted as Ts = g (t), can be uniquely
derived for modeling the relationship between system and
component failure times. The failure times of all com-
ponent functions are intrinsically random variables and
the conditional joint density function is assumed to be
f (t |θ ), where θ indicates the q-dimensional vector of non-
deterministic distribution parameters. The imprecision
embodied through θ might result from a lack of life data on
components or expert knowledge and supports can be in-
ferred by, e.g., confidence interval estimation. Based on the
above setting, the system failure time is also a random vari-
able with non-deterministic distribution parameters, where
the probability distribution reflects the natural variability
of system failure time and the bounds of probability reflect
the degree of unknown on this variability. The system
survival function can then be formulated as:

Rs (t, t|θ) =

∫
R+

I [g (t) > t] f (t|θ) dt, (4)

where R+ indicates the space of non-negative real numbers
and I [·] is the indicator function with the values being
either one if the argument is true or zero if it is false. With
the above setting, the system survival function can be
reformulated as:

Rs (t, t|θ) =∫
R+

I [g (t) > t]
f (t|θ)

f (t|θ∗)
f (t|θ∗) dt,

(5)

where θ∗ can be any fixed and crisp point of θ. Then,
given a set of random samples t(n) (n = 1, 2, . . . , N) follow-
ing f (t|θ∗), the LEMCS estimator of the system survival
function is given as:

R̂s (t, t|θ) =

1

N

N∑
n=1

I
[
g
(
t(n)

)
> t
] f (t(n)|θ)
f
(
t(n)|θ∗

) . (6)

This estimator is unbiased and its variance can be easily
derived. Given the above estimator, the bounds of the sur-
vival function can be computed by any global optimization
algorithm, such as genetic and particle swarm algorithms.

The GEMCS method involves first attributing auxiliary
distributions for θ, which, in the simplest case, can be
uniform distributions within [θlow,θup]. Let p (θ) denote
the joint density function of these auxiliary distributions
and p (θi) the marginal density function of θi. Then a

set of joint random samples (t(n),θ(n)) can be generated
following the joint density function f (t,θ) = f (t|θ) p (θ)
of t and θ, based on which the GEMCS estimator for the
system survival function results as:

R̂s (t, t|θ) =

1

N

N∑
n=1

I
[
g
(
t(n)

)
> t
] f

(
t(n)|θ

)
f(t(n)|θ(n))

.
(7)

Both the LEMCS and GEMCS performance might vary
for different types of probability distributions or different
distribution parameters and can depend on an appropri-
ate choice for θ∗ and p (θ), respectively. More detailed
information is provided in [61].

Another key feature of the classical NISS method is the
HDMR, see [61, 75], based on which the behavior of the
system survival function with respect to θ can be learned
visibly and the variation of estimators can be substantially
reduced, especially when the number of components with
imprecise distribution parameters is large. However, in
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this paper, the LEMCS and GEMCS estimator are solely
utilized without HDMR decomposition.

3.1. LEMCS Algorithm

A modified version of the MCS algorithm 2 in [12] is
utilized as the stochastic simulation module for implement-
ing LEMCS and GEMCS. The LEMCS algorithm is then
described as follows:

Step A1. Discretize the support [0, t̄] of system failure time
uniformly as 0 = tz1 < tz2 < · · · < tzd = t̄ and
initialize the value of θ∗ and the number N of
deterministic simulations. Let n = 1.

Step A2. Sample the failure times t(n) = (t
(n)
1 , t

(n)
2 , . . . , t

(n)
m )

for all components following f (t|θ∗) randomly.

Step A3. At each time instant tzi, count the number of
components working for each component type
as Ck (tzi), where k = 1, 2, . . . ,K denotes the
component type.

Step A4. Evaluate the survival signature at each time in-

stant as Φ
(n)
zi = Φ (C1 (tzi) , C2 (tzi) , . . . , CK (tzi)).

Step A5. Define the weight function for the sample t(n)

as w(n) (θ) =
f(t(n)|θ)
f(t(n)|θ∗)

. If n = N , finish the

simulation; else, let n = n + 1 and go back to
Step A2.

Based on the samples Φ
(n)
zi , the LEMCS estimator for the

system survival function at time tzi is formulated as:

R̂s (tzi,θ) =
1

N

N∑
n=1

Φ
(n)
zi w

(n) (θ). (8)

Computing at each time instant the minimum and max-
imum values of the estimator in Eq. 8, by utilizing any
global optimization algorithm, leads to the estimated upper
and lower bound of the system survival function.

3.2. GEMCS Algorithm

The GEMCS algorithm is similar to the LEMCS al-
gorithm except that the stochastic simulation needs to
be implemented in the joint space of t and θ. Given the
auxiliary density function p (θ), the GEMCS algorithm is
described as follows:

Step B1. Discretize the support [0, t̄] of system failure time
uniformly as 0 = tz1 < tz2 < · · · < tzd = t̄ and
initialize the number N of deterministic simula-
tions. Let n = 1.

Step B2. Generate a joint random sample (t(n),θ(n)) fol-
lowing the joint density f (t|θ) p (θ).

Step B3. Same as Steps A3 and A4.

Step B4. Evaluate the weight function for the joint sample

(t(n),θ(n)) as w(n) (θ) =
f(t(n)|θ)
f(t(n)|θ(n))

. If n = N ,

finish the simulation; else, let n = n+ 1 and go
back to Step B2.

The GEMCS estimator for the system survival function is
formulated equivalently to the LEMCS estimator in Eq. 8
and the estimated upper and lower bound of the system
survival function can be computed at each time instant by
utilizing any optimization algorithm. Note that the upper
and lower distribution parameter vectors θ(tzi) and θ(tzi),
corresponding to the maximum and minimum survival
function values at time tzi, are time-dependent and might
vary for different time points.

One of the factors when performing the GEMCS method
is the pre-specification of the auxiliary density p (θ). It has
been demonstrated that the type of auxiliary distribution
has minor effect on the performance of GEMCS estimators
[79]. In this work, it is set as the uniform distribution
within the support of θ.

The most appealing aspect of both the LEMCS and
GEMCS algorithm is that only a single stochastic simu-
lation is required in order to deal with the imprecisions.
Therefore, the traditional utilized double loop simulation
can be avoided. For both LEMCS and GEMCS, the interval
analysis and stochastic analysis has been successfully de-
coupled and the computational cost is mainly governed by
the one stochastic simulation performed. Furthermore, due
to the merging with the survival signature, the stochastic
analysis has been separated from the system topology, thus,
only one reliability analysis with respect to the topology
is required for generating the survival signature. Besides
these advantageous properties of the survival signature, it is
precisely the feature of only a single required stoachstic sim-
ulation, that makes the proposed methodology so efficient
and clearly distinguishes it from traditional approaches.
Due to this approach, for any NISS method combined with
the concept of survival signature, the imprecise stochas-
tic analysis for estimating the bounds of system survival
function has been simplified significantly.

3.3. Repeated p-box Analysis for Fuzzy Probability Approx-
imation

In order to compute the survival function of a system
with components whose random failure times are based on
distribution functions with imprecise distribution parame-
ters modeled by independent fuzzy numbers with support
[a, c], a procedure is needed to handle these in probabilistic
models. In [50] such a procedure is provided, that is based
on a repeated p-box analysis. The procedure is shown in
Fig. 3. Each xα denotes an α-level set of the fuzzy num-
ber x̃, representing an interval parameter of a probability
distribution and, therefore, defining a p-box. This leads
to an interval Pαf associated with the same α-level. Re-
peating this p-box analysis with different α-levels leads to
the fuzzy failure probability P̃f . For more detailed infor-
mation, see [50]. Note that the combined advantages of
the proposed methodology, orginating from the advantages
of both the NISS methods and the concept of survival
signature, as well as the beneficial synergy effects emerging
from this combination, facilitate the nested p-box analysis
with significantly reduced computational effort.
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Figure 3: Nested p-box analysis to determine a fuzzy failure probability; adapted from [50].

3.4. Decision-Making Procedure

In reality, decision-makers typically encounter situa-
tions of imprecise knowledge about component behavior
as starting point. This might be the case in design and
maintenance, if, e.g., only insufficient information on the
installed components has been collected so far. Depending
on the budget, gathering precise information for each com-
ponent type, e.g., via experimental campaigns, might not
be feasible, impeding proper reliability analyses. In fact, a
complete elimination of imprecision is in most cases neither
necessary nor cost-efficient. Thus, a procedure for identify-
ing a critical level of imprecision is crucial for cost-efficient
decision-making, balancing the amount of imprecision and
costs associated with its reduction. Integral parts of such
a procedure are illustrated in Fig. 4.

To establish a basis for this procedure, the spectrum of
imprecision can be represented by means of nested p-boxes,
as proposed in Section 3.3. Further, a certain number
of α-levels is determined. Note that a higher number of
α-levels yields a more comprehensive imprecision analy-
sis. In the simplest case, each upper and lower param-
eter bound is relatively changed to the same extent per
α-level. Then, each θα = (θα1 , θ

α
2 , ..., θ

α
q ), with α ∈ [0, 1]

and the number of distribution parameters q, is a tuple of
parameter intervals θαi of the fuzzy distribution parameters
θ̃i. Such an implementation allows the identification of
a global critical imprecision level, as the imprecisions for
each component type are altered simultaneously. A more
detailed critical imprecision identification can be conducted
by considering various mixed combinations of imprecision
levels or, in a more sophisticated manner, e.g., by means
of importance measures in a sensitvity analysis. However,
this is beyond the scope of this paper. According to the
simplest case, for each θα the imprecise model is evalu-
ated, resulting in the lower survival functions R̂

α

s (tzi) =

R̂αs (tzi,θ
α(tzi)) and upper survival functions R̂

α

s (tzi) =
R̂αs (tzi,θ

α
(tzi)) at each time step tzi. Correspondingly, the

time-dependent upper and lower distribution parameter
vectors are θ

α
(tzi) ∈ I = {(θ1, θ2, ..., θq)|θi ∈ θαi ∀ i =

1, 2, ..., q} and θα(tzi) ∈ I. Further, a set of reliability
requirements R = {(t1, R1), (t2, R2), ..., (tr, Rr)} is estab-
lished, where the tuple (tj , Rj), with j = 1, 2, ..., r, specifies
a pair of time and reliability values for r requirements. Typ-
ically, in practice, only R̂

α

s (tzi) is relevant with respect to

R. Then, R̂
cr

s (tzi)) = min
α
{R̂

α

s (tzi)|R̂
α

s (tj) ≥ Rj , (tj , Rj) ∈
R∀ j = 1, 2, ..., r} is the critical, i.e., last acceptable, lower

survival function. Thereby, αcr = arg min
α
{R̂

α

s (t)|R̂
α

s (tj) ≥
Rj , (tj , Rj) ∈ R∀ j = 1, 2, ..., r} ∈ [0, 1] indicates the criti-
cal α-level. Note that lower distribution bounds not neces-
sarily yield lower response function bounds and vice versa.
In accordance, θcr = [θαcr ,θ

αcr
] is the interval of accept-

able imprecision. As a consequence, imprecision has to be
reduced at least up to the bounds of θcr. This reduction
can be achieved for instance by investing more budget in
experimental campaigns, destructive testing, etc.

The procedure allows decision-makers the straightfor-
ward and reliable identification of acceptable levels of im-
precision in the underlying failure probabilities, e.g., in
the design of new systems. Corresponding to the require-
ments defined in the right graph of Fig. 4, the acceptable
α-level is αcr = 0.7 with the tuple of parameter intervals
θcr = (θ0.71 , θ0.72 , θ0.73 ) contained in the tuple of fuzzy num-
bers θ̃ = (θ̃1, θ̃2, θ̃3). This decision-making procedure is
demonstrated for the case study in Section 5.3.
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Figure 4: Decision-making procedure.

4. Multi-Stage High-Speed Axial Compressor

Axial compressors are complex multi-component ma-
chines that are employed in major sectors of society, e.g.,
in the industrial sector, as a key component of gas turbines
for electricity production or as part of aircraft engines in
the public transport or military sector. Therefore, in both
design and maintenance, it is critical to consider as many
system performance influencing, certain and uncertain, in-
formation as possible to maximize the reliability of the
compressor efficiently. In order to illustrate this, the pro-
posed method is applied to a functional model of an axial
compressor.

4.1. Model

In [80] a functional model of an axial compressor is
developed as the foundation for a reliability analysis. This
model has been created to represent the reliability char-
acteristic and functionality of the four-stage high-speed
axial compressor of the Institute for Turbomachinery and
Fluid Dynamics at Leibniz Universität Hannover. Detailed
information about this axial compressor is provided in [81].

The functional model captures the dependence of the
overall compressor performance, namely, the total-to-total
pressure ratio and the total-to-total isentropic efficiency,
on the surface roughness of the individual blades, arranged
in rotor and stator rows. It is based on the results of a
sensitivity analysis of an aerodynamic model of the com-
pressor. A network representation of the functional model
is shown in Fig. 5. Each component represents either a
stator (S1 — S4) or rotor row (R1 — R4).

The rows are classified into four component types. This
classification as well as the component arrangement is
chosen based on the effect of their blade roughness on the
two performance parameters of the axial compressor. More
specifically, a connection between start and end implies a
functioning state of the compressor and an interruption
of this connection means exceeding a roughness-related

performance variation of at least 25%, corresponding to
a non-functioning state. More detailed information on
the functional model and its formulation can be obtained
from [80].

4.2. Reliability Analysis

For the time-dependent reliability analysis, each row,
i.e., each component of the functional model, is character-
ized by a failure probability depending on its component
type. Note that the model is thus formally a reliability block
diagram (RBD) [9]. In practice, the underlying distribution
functions have to be derived from existing operational data.
However, in order to prove the usability of the proposed
method and the capability of dealing with imprecisions, ex-
ponential functions with imprecise parameters are assumed
for all components. The imprecise parameters are modeled
by triangular fuzzy numbers. Depending on the respective
component type, the following parameters are assumed:
λ1 = (0.1/0.15/0.2) for type 1; λ2 = (0.2/0.25/0.3) for
type 2; λ3 = (0.4/0.5/0.6) for type 3; λ4 = (0.6/0.7/0.8)
for type 4.

After determining the survival signature of the com-
pressor, in a first step, the imprecise parameters are taken
into account by approximating them with a single p-box,
being the base of each triangle fuzzy parameter, corre-
sponding to an α-level of α = 0. The imprecise parameters
result as: λ1 ∈ [0.1, 0.2] for type 1; λ2 ∈ [0.2, 0.3] for type 2;
λ3 ∈ [0.4, 0.6] for type 3; λ4 ∈ [0.6, 0.8] for type 4. Based on
the functional compressor representation, shown in Fig. 5,
the upper and lower bounds of the survival function of the
compressor are obtained and displayed in Fig. 6: 1. via
traditional double loop approach; 2. via LEMCS algorithm
with λ∗1 = 0.1, λ∗2 = 0.2, λ∗3 = 0.4, λ∗4 = 0.6 as the best fits
for λ∗i ; 3. via GEMCS algorithm with p(λ) assumed to be
uniform; 4. analytically. Note that the sampling density
for LEMCS estimation is generated by setting λ∗i at their
lower bounds. For exponential distribution, only with this
setting, the support of the sampling density will coincide
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Figure 5: Functional model of the multi-stage high-speed axial compressor.

with the support of the imprecise probability models when
their distribution parameters vary in their imprecise inter-
vals. This principle for specifying the sampling density is
referred to in [61]. The double loop approach is conducted
with 5 000 samples (failure times) on the inner loop and
1 000 samples (λ-values) on the outer loop. In other words:
1 000 λ-vectors are sampled (epistemic space), representing
1 000 different probabilistic models. Each model is solved
by MCS algorithm 2 in [12], generating 5 000 failure time
vectors per model, i.e., a total of 5 000 000 samples. Then
the enveloping system reliability is determined by identify-
ing the minimum and maximum survival function value for
each time step. Note that the number of samples for the
double loop approach, i.e., the number of failure times as
well as the number of samples in epistemic space, is adopted
from [12]. For both LEMCS and GEMCS where only one
simulation is required, 100 000 samples (failure times) are
generated each, i.e., only 1/50th of the sample size com-
pared to the double loop approach. Time discretization is
set to ∆t = 0.05. Furthermore, the precise survival func-
tion of the axial compressor model, i.e., with distribution
parameters λi = bi, is determined and displayed in Fig. 6
as well.

Clearly, both the LEMCS and GEMCS algorithm
approximate the analytically calculated upper and lower
bound of the survival function accurately with relative
errors of: δLEMCS = 0.23%, δLEMCS = 0.23% and
δGEMCS = 0.29%, δGEMCS = 0.3%, where δ relates to the
upper and δ to the lower bound of the survival function.
Despite a 50-times increased sample size, the double loop
approach performs significantly worse and does not capture
the outer boundaries of the survival function correctly, see
Fig. 6. Correspondingly, the relative errors are larger with:
δDoubleLoop = 0.98% and δDoubleLoop = 2.58%. To achieve
the same quality of results with the double loop approach
as with the LEMCS or GEMCS, significantly more samples
than the 5 000 000 would be required.
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Figure 6: Survival function bounds of the functional compressor model
via double loop approach, LEMCS algorithm, GEMCS algorithm and
analytically.

It shall be noted, that, in general, the GEMCS algo-
rithm has better global performance than the LEMCS
algorithm, as demonstrated and discussed in the following,
second case study. Further, the approximation quality of
the LEMCS algorithm highly depends on the choice, re-
spectively, on the knowledge of the preselected distribution
parameters λ∗i .

In a second step, by performing a nested p-box anal-
ysis to determine fuzzy failure probabilities, described in
Section 3.3, further bounds of the survival function for
different imprecision levels can now be determined, based
on various α-levels. With regard to the survival signature,
these only represent a change in the probability structure.
Due to the separation between topological and probability
structure, the survival signature does not have to be recal-
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Figure 7: Survival function bounds of a functional compressor model
via LEMCS algorithm with fuzzy probability approximation.

culated, neither for parameter variations within an α-level,
nor for each new α-level, only the probability structure has
to be adapted. This results in a substantial reduction of
the computational effort.

The results of the LEMCS algorithm for different α-
levels are shown in Fig. 7. Note that for each α-level just
one single stochastic simulation, according to Section 3.1,
has to be performed. Clearly, these results support decision-
makers in design and maintenance processes of complex
capital goods to estimate the level of imprecision that is
bearable and still ensures acceptable reliability.

5. Complex System

In [12] the authors test their introduced simulation
approaches for reliability analysis on an arbitrary complex
system. In order to demonstrate the broad applicability as
well as efficiency of the method proposed in this work, the
complex system from [12] is considered and a reliability
analysis is conducted, taking into account imprecisions.

5.1. Model

The complex system consists of 14 components each
of which is assigned to one of six component types. Fig-
ure 8 illustrates the complex system and the assignment
of components to their types. A connection between the
start and destination node indicates a functioning and an
interruption of this connection a non-functioning state of
the system.

5.2. Reliability Analysis

Each system component is characterized by a specific
time-dependent failure behavior depending on its assigned
component type. Again, in practice, the underlying dis-
tribution functions, describing this behavior, need to be

derived from existing operational data. However, for the
purpose of proof of concept and applicability, the arbi-
trary distributions and corresponding imprecise parameters
shown in Tab. 1 are assumed. Note that thus the complex
system is formally an RBD. As for the reliability analysis in
the previous section, the imprecise distribution parameters
are modeled by triangular fuzzy numbers.

The survival signature of the complex system is provided
in Tab. 2 and Tab. 3. For the sake of conciseness, only
the non-trivial survival signature values are shown, i.e., all
values that are not equal to zero or one.

For the time-dependent reliability analysis, the impre-
cise distribution parameters are first assumed to be precise
by considering just the vertex b of each triangular fuzzy
number. Second, the analysis is conducted by approxi-
mating the distribution parameters with a single p-box,
corresponding to the base boundaries a and c of the fuzzy
numbers. Third, the full imprecision is addressed in Sec-
tion 5.3 by considering the fuzzy numbers according to the
repeated p-box analysis described in Section 3.3.

In Fig. 9 the resulting survival function bounds of the
complex system are displayed: 1. via traditional double
loop approach; 2. via LEMCS algorithm with θ∗i cor-
responding to the upper base bounds ci of each fuzzy
parameter for all two-parametric distributions and with
θ∗i corresponding to the lower base bounds ai for both
exponential distributions, see Tab. 1; 3. via GEMCS al-
gorithm with p(θ) assumed to be uniform; 4. analytically.
Again, the double loop approach is conducted with 5 000
samples (failure times) on the inner loop and 1 000 sam-
ples (θ-values) on the outer loop. As in the previous case
study, the number of samples for the double loop approach
is adopted from [12]. For the one required LEMCS and
GEMCS simulation, 200 000 samples (failure times) are gen-
erated each, i.e., only 1/25th of the sample size compared
to the double loop approach. Time discretization is again
set to ∆t = 0.05. In addition, the precise survival function
of the complex system, i.e., with distribution parameters
θi = bi, is determined and displayed in Fig. 9.

As in the previous analysis of the axial compressor,
both the LEMCS and GEMCS algorithm approximate the
analytically determined bounds of the survival function
of the complex system with high accuracy, see Fig. 9.
However, considering the relative errors of both algo-
rithms, it is noticeable that the GEMCS approximates
both bounds equally well, with errors of δGEMCS = 0.15%
and δGEMCS = 0.12%, whereas the LEMCS algorithm
provides a deviation in the quality of the bound approx-
imation that is more significant with δLEMCS = 0.06%
and δLEMCS = 0.32%. The different bound qualities
provided by the LEMCS are due to its locality property
that is determined by the choice of the preselected θ∗.
The LEMCS performs locally, i.e., in the region of θ∗

excellent but worse on a global scale. However, since with
the GEMCS all failure times are sampled uniformly over
the entire range of θ, it has better global performance,
as shown by these results. It shall be noted that in case
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Figure 8: Representation of the arbitrary complex system with 14 components, adapted from [12].

Table 1: Distribution functions and parameters for each component type of the complex system.

Component type Distribution Parameters Triangular fuzzy numbers
1 Weibull [scale, shape] [(3.6/4.0/4.4), (2.1/2.25/2.4)]
2 Exponential [λ] [(0.1/0.15/0.2)]
3 Weibull [scale, shape] [(2.9/3.05/3.2), (0.8/0.95/1.1)]
4 Log-normal [µ, σ] [(2.2/2.35/2.5), (3.3/3.4/3.5)]
5 Exponential [λ] [(0.2/0.25/0.3)]
6 Gamma [scale, shape] [(2.1/2.2/2.3), (3.2/3.35/3.5)]
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Figure 9: Survival function bounds of the complex system, displayed
in Fig. 8, via double loop approach, LEMCS algorithm, GEMCS
algorithm and analytically.

of rare failure events, as stated in [61] for both original
NISS methods, also for the adapted method proposed
in this work, instabilities may occur, depending on the
sample size. Guidance on selecting an appropriate sample
size is provided at the end of this section. If rare failure
events are of special concern, it is recommended to use the
NISS methods driven by advanced stochastic simulation
techniques such as subset simulation and line sampling,
see [75, 77, 78] for more details.

The difference between both algorithms is especially
apparent for complex systems such as the one considered
in Fig. 8, with various component types and various under-
lying multi-parametric and imprecise failure distribution
functions. However, for less complex systems with single-
parametric distribution functions of the same type as given
for the axial compressor model in the previous section, the
LEMCS performs equally well at both bounds and the er-
rors are barely different from those of the GEMCS. Similar
to the previous analysis of the axial compressor, the tradi-
tional double loop approach provides substantially worse
approximations despite a significantly larger sample size, as
clearly shown in Fig. 9, with errors of δDoubleLoop = 2.07%
and δDoubleLoop = 1.93%. Again, as in the previous case
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Table 2: Non-trivial survival signature values of the complex system,
shown in Fig. 8 — Part 1.

l1 l2 l3 l4 l5 l6 Φ (l1, . . . , l6)
3 1 [1,2] 0 1 0 1/20
3 1 [0,1,2] [0,1] 0 1 1/20
3 1 0 1 1 [0,1] 1/20
3 1 0 0 1 1 1/20
3 2 [1,2] [0,1] 0 1 1/10
3 2 [1,2] 0 1 0 1/10
3 2 0 1 1 [0,1] 1/10
3 2 0 1 0 1 1/10
3 2 0 0 [0,1] 1 1/10
3 1 [1,2] 1 1 [0,1] 1/10
3 1 [1,2] 0 1 1 1/10
3 3 [0,1,2] [0,1] 0 1 3/20
3 3 [1,2] 0 1 0 3/20
3 3 0 1 1 [0,1] 3/20
3 3 0 0 1 1 3/20
3 4 [0,1,2] [0,1] 0 1 1/5
3 4 [1,2] 0 1 0 1/5
3 4 0 1 1 [0,1] 1/5
3 4 0 0 1 1 1/5
3 2 [1,2] 1 1 [0,1] 1/5
3 2 [1,2] 0 1 1 1/5
4 1 [1,2] [0,1] 0 1 1/5
4 1 [1,2] 0 1 0 1/5
4 1 0 1 1 [0,1] 1/5
4 1 0 0 [0,1] 1 1/5
4 1 0 1 0 1 1/5
3 3 [1,2] 1 1 [0,1] 3/10
3 3 [1,2] 0 1 1 3/10

study, to achieve the same quality of results with the double
loop approach as with the LEMCS or GEMCS, significantly
more samples than the 5 000 000 would be required.

In Fig. 10 a convergence study for the complex system,
illustrated in Fig. 8, is shown. Both algorithms are consid-
ered: On the left, the results of the GEMCS and, on the
right, the results of the LEMCS algorithm are depicted.
The graphs display the relative error between the results
of the proposed estimator algorithms and the analytically
evaluated survival function bounds, plotted over various
sample sizes with 500 evaluations each, reaching from 100
up to 250 000 samples. On the top, the relative error is
evaluated for the upper survival function bound and, on
the bottom, the relative error is evaluated for the lower
survival function bound. The errors decrease signficantly
with increasing sample size and, clearly, for both algorithms
and both bounds convergence is to observe. For the upper
bound of the survival function via LEMCS algorithm, even
small sample sizes are sufficient to yield low median errors
and variances compared to the GEMCS results due to the
specific choice of θ∗. In contrast, for the lower bound, the
LEMCS performs significantly worse than the GEMCS.

Table 3: Non-trivial survival signature values of the complex system,
shown in Fig. 8 — Part 2.

l1 l2 l3 l4 l5 l6 Φ (l1, . . . , l6)
4 2 [0,1,2] [0,1] 0 1 11/30
4 2 [1,2] 0 1 0 11/30
4 2 0 1 1 [0,1] 11/30
4 2 0 0 1 1 11/30
3 4 [1,2] 1 1 [0,1] 2/5
3 4 [1,2] 0 1 1 2/5
4 1 [1,2] 1 1 [0,1] 2/5
4 1 [1,2] 0 1 1 2/5
4 3 [0,1,2] [0,1] 0 1 1/2
4 3 [1,2] 0 1 0 1/2
4 3 0 1 1 [0,1] 1/2
4 3 0 0 1 1 1/2
5 1 [0,1,2] [0,1] 0 1 1/2
5 1 [1,2] 0 1 0 1/2
5 1 0 1 1 [0,1] 1/2
5 1 0 0 1 1 1/2
4 4 [0,1,2] [0,1] 0 1 3/5
4 4 [1,2] 0 1 0 3/5
4 4 0 1 1 [0,1] 3/5
4 4 0 0 1 1 3/5
4 2 [1,2] 1 1 [0,1] 2/3
4 2 [1,2] 0 1 1 2/3
4 [3,4] [1,2] 1 1 [0,1] 4/5
4 [3,4] [1,2] 0 1 1 4/5
5 2 [0,1,2] [0,1] 0 1 5/6
5 2 [1,2] 0 1 0 5/6
5 2 0 1 1 [0,1] 5/6
5 2 0 0 1 1 5/6

This demonstrates the superior global performance of the
GEMCS algorithm compared to the LEMCS, while the
LEMCS algorithm shows better local performance. How-
ever, considering the GEMCS algorithm, the slightly larger
upper median error indicates the upper survival function
bound as a more challenging region for the global estimator.
As stated in Section 4.2 for exponential distributions, this
observation relates to the point that the support of the
sampling density should ideally coincide with the support
of the density with parameters varying in their imprecise
intervals, see [61]. However, this condition is not given
for the majority of GEMCS samples at the upper bound,
leading to the slightly worse results compared to the lower
bound.

As a supplementary decision-making indicator, the coef-
ficient of variation can be considered to adaptively specify
the required sample size. For instance, a threshold can
be set for the coefficient of variation, e.g., (5%). If the
estimated coefficient is above this threshold, more samples
should be considered in order to reduce the variation.
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(a) GEMCS algorithm for upper bound
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(c) GEMCS algorithm for lower bound
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Figure 10: Convergence study of the GEMCS and LEMCS algorithms with the relative error of the corresponding survival function bounds
with respect to the sample size over 500 evaluations each.

5.3. Imprecision Decision-Making

Given the fuzzy numbers specified in Tab. 1, the spec-
trum of imprecision is represented by means of a repeated
p-box analysis as described in Section 3.3. The nested p-
box analysis conducted via the GEMCS algorithm provides
further survival function bounds of the complex system,
corresponding to different α-levels, as shown in Fig. 11.
Due to the separation between topological and probability
structure, the survival signature does not have to be recal-
culated, neither for parameter variations within an α-level,
nor for each new α-level, only the probability structure has

to be adapted. Consequently, for each α-level only a single
stochastic simulation, according to Section 3.2, has to be
performed. This enables comprehensive reliability analyses
with substantially reduced cost compared to traditional ap-
proaches. In order to perform decision-making concerning
the reduction of system components inherent imprecision,
reliability requirements can be establised, according to
Section 3.4. In this case study, requirements are arbi-
trarily assumed with R = {(t1, R1), (t2, R2), (t3, R3)} =
{(1.5, 0.76), (2, 0.49), (3, 0.21)}, as illustrated in Fig. 11.

Due to αcr = arg min
α
{R̂

α

s (t)|R̂
α

s (tj) ≥ Rj , (tj , Rj) ∈
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Figure 11: Survival function bounds of the complex system, displayed
in Fig. 8, via GEMCS algorithm with fuzzy probability approximation.

R∀ j = 1, 2, 3} = arg min
α
{R̂

α

s (t)|R̂
α

s (1.5) ≥ 0.76, R̂
α

s (2) ≥

0.49, R̂
α

s (3) ≥ 0.21} = arg min
α
{R̂

0.8

s (t), R̂
1

s(t)} = 0.8. Note

that R̂
1

s(t) = R̂1
s(t) = R̂

1

s(t). Imprecision should be re-
duced at least up to a level of α = 0.8 for all component
types corresponding to the tuple of parameter inter-
vals of θcr = (θ0.81 , θ0.82 , . . . , θ0.810 ) with θ0.81 = [3.92, 4.08],
θ0.82 = [2.22, 2.28], θ0.83 = [0.12, 0.18], θ0.84 = [3.02, 3.08],
θ0.85 = [0.92, 0.98], θ0.86 = [2.32, 2.38], θ0.87 = [3.38, 3.42],
θ0.88 = [4.00, 4.33], θ0.89 = [3.32, 3.38], θ0.810 = [2.18, 2.22].

6. Conclusion and Outlook

The present paper introduces a novel methodology sup-
porting decision-making in the context of system reliability
analysis, taking into account imprecisions. It allows to
efficiently estimate the system reliability in design and
maintenance processes, considering uncertainty in various
levels, underlying the system component behavior. Thereby,
decision-makers are enabled to identify a bearable level of
imprecision that still ensures acceptable system reliability.

The proposed method consists of the sophisticated
union of the concept of survival signature with two adapted
extended MCS methods (NISS methods), thus representing
a novel development combining two approaches from two
different fields. Considering imprecision into the probabilis-
tic structure by means of fuzzy probabilities and utilizing
a nested p-box analysis for approximating this fuzziness
allows for the ability of critical imprecision identification.
The provided method combines both tremendous advan-
tages of its two main components: 1. the application of
the concept of survival signature dramatically reduces the
computational effort for the analysis, since once it has been
computed, any number of probability structures can be
tested without having to recompute it and 2. the utilization

of both adapted NISS methods is accompanied by the ne-
cessity of only a single stochastic simulation per considered
uncertainty level and consequently a substantially reduced
sample size compared to traditional approaches, leading
to another significant improvement of efficiency. Precisely
these two characteristics and the symbiosis between them
make the proposed methodology so efficient and widely
applicable.

The novel approach is employed to the functional model
of an axial compressor as well as to an arbitrary complex
system. A comparison of analytical and numerical results
proves the applicability of the method. However, in gen-
eral, the LEMCS exhibits more local accuracy, while the
GEMCS possesses better global performance and leads to
superior results, especially for systems with complex impre-
cise probability structure. In terms of choice of method and
application area, the LEMCS is preferable if accurate local
performance is required and the knowledge for an educated
guess of θ∗ is available. While GEMCS should be applied
if no prior knowledge about the uncertain system behavior
is present. Further, a combination of both methods can be
practical as well. First, GEMCS can be utilized to evaluate
the neighborhood in which the parameter vector θ yields
the critical survival function bound. Second, LEMCS can
be applied to compute the results in the desired area of
interest more accurately.

Further research should address the challenge of com-
puting the survival signature for lifelike, large and complex
systems with components of various types since it is highly
demanding or even unfeasible. Thus, improved methods for
determining the survival signature or enhanced methods
for approximations are required. In addition, future work
of the authors will address an improved rare failure event
estimation and further performance improvements, such as
the utilization of an HDMR.
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