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The No-U-Turn Sampler as a Proposal Distribution

in a Sequential Monte Carlo Sampler with a

Near-Optimal L-Kernel
Lee Devlin, Paul Horridge, Peter L. Green, and Simon Maskell

Abstract—Markov Chain Monte Carlo (MCMC) is a powerful
method for drawing samples from non-standard probability
distributions and is utilized across many fields and disciplines.
Methods such as Metropolis-Adjusted Langevin (MALA) and
Hamiltonian Monte Carlo (HMC), which use gradient infor-
mation to explore the target distribution, are popular variants
of MCMC. The Sequential Monte Carlo (SMC) sampler is an
alternative sampling method which, unlike MCMC, can readily
utilise parallel computing architectures and also has tuning
parameters not available to MCMC. One such parameter is the
L-kernel which can be used to minimise the variance of the
estimates from an SMC sampler. In this letter, we show how the
proposal used in the No-U-Turn Sampler (NUTS), an advanced
variant of HMC, can be incorporated into an SMC sampler to
improve the efficiency of the exploration of the target space. We
also show how the SMC sampler can be optimized using both a
near-optimal L-kernel and a Hamiltonian proposal.

Index Terms—Bayesian inference, Markov chain Monte Carlo,
Monte Carlo methods, Sequential Monte carlo

I. INTRODUCTION

Markov Chain Monte Carlo (MCMC) is a common tool

used in Bayesian inference to draw samples from a probability

distribution π(x), where x ∈ R
D . Applications of MCMC

span astronomy [1] to zoology [2]. MCMC involves moving to

a state on the distribution xk at iteration k from a state xk−1 at

the previous iteration, with some acceptance probability such

that the Markov chain is ergodic (i.e., converges to a stationary

distribution), and detailed balance is maintained, such that the

stationary distribution of the Markov chain is equal to the

target distribution. While many variations of MCMC exist,

gradient based methods such as Metropolis-Adjusted Langevin

(MALA) [3] and Hamiltonian Monte Carlo (HMC) [4] have

rapidly grown in popularity due to their ability to efficiently

explore continuous state spaces. HMC introduces a momentum

vector p ∈ R
D to explore states via the numerical integration

of Hamiltonian dynamics and requires two parameters to be

tuned to sample effectively. These are (i) the step-size taken

by the numerical integrator, which must be fixed to satisfy
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detailed balance, and (ii) the number of steps taken between

the start and end point of a trajectory. Tuning of the latter has

been automated with the advent of the No-U-Turn Sampler

(NUTS), first proposed in [5], which calibrates the number of

steps taken by stopping a trajectory once the path begins to

turn back on itself. As a result of its applicability and efficient

operation across a range of specific distributions, NUTS is

used by popular probabilistic programming languages such as

Stan [6], PyMC3 [7] and NumPyro [8].

Sequential Monte Carlo (SMC) samplers, first introduced

in [9], provide a way of realising estimates based on a

population of N weighted hypotheses (often referred to as

samples or particles) which evolve over k iterations. In SMC,

samples are mutated by means of a proposal distribution which

moves the samples around the target space. While the proposal

distribution used in the SMC literature is typically a Gaussian

random-walk kernel, this is not a requirement. In this letter we

show how the method NUTS uses to explore the target space

can be utilised by an SMC sampler. We will refer to this new

approach as SMC-NUTS. Furthermore, we show how this can

be leveraged with a near-optimal L-kernel, thus improving how

the SMC sampler functions.

The rest of this letter is structured as follows. In Section II

we present how SMC samplers operate and in Section III we

show how the proposal for NUTS can be used as the proposal

distribution of an SMC sampler. Section IV presents results in

the context of two examples. Section V concludes the paper.

II. SEQUENTIAL MONTE CARLO SAMPLERS

In this work we consider an SMC sampler that does not

target π (x) directly, but rather does so over k iterations such

that the joint distribution π(x1...k) of all previous states is the

target:

π(x1...k) = π(xk)
k∏

k′=2

L (xk′−1|xk′) , (1)

where L (xk′−1|xk′ ) is the L-kernel, also known as the ’back-

wards kernel’, which is chosen such that:
∫

π(x1...k)dx1...k−1 = π (xk) . (2)

Using importance sampling we can attribute a weight to the

ith hypothesis at iteration k, wi
k, which is updated from the

previous iteration’s weight wi
k−1 via:

wi
k = wi

k−1 ·
π(xi

k)

π(xi
k−1)

· L(x
i
k−1|xi

k)

q(xi
k|xi

k−1)
, (3)
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where π(xi
k) and π(xi

k−1) are the target evaluated at the ith

sample’s new and previous state, respectively, and q(xi
k|xi

k−1)
is the forwards proposal distribution. The forwards proposal

distribution and L-kernel are probability distributions asso-

ciated with transformations to the state xi
k from the state

xi
k−1, and vice versa. L(xi

k−1|xi
k) can be any valid probability

distribution function and it is sometimes convenient to set

L(xi
k−1|xi

k) = q(xi
k−1|xi

k). We note, however, that such

an approach may be sub-optimal and that the appropriate

selection of L(xi
k−1|xi

k) allows the variance of the estimates

to be minimised [10].

When degeneracy occurs, where a small subset of samples

have relatively high importance weights, a new set of samples

are selected from the current set with probability proportional

to the normalised weight, w̃, in a process called resampling.

This involves selecting elements, with replacement, from

[x1
k . . .x

N
k ] with probability [w̃1

k . . . w̃
N
k ] into a new vector

xnew
k which then overwrites the old samples, i.e. xk = xnew

k ,

before the weights of the new samples are all set to 1/N .

Resampling is typically set to occur when the effective number

of samples falls below some threshold value, usually half the

total number of samples.

Values of interest, e.g. expected values with respect to

the target distribution, can be realised from the normalised

sample weights, and furthermore, it is possible to use previous

estimates to improve the current estimate at iteration k using

recycling schemes [11].

III. THE NO-U-TURN SAMPLER AS A PROPOSAL

DISTRIBUTION OF AN SMC SAMPLER

When used in MCMC, NUTS generates samples from

a proposal of the form q(xk,pk|xk−1,pk−1). In an SMC

sampler, to calculate (3), we wish to consider a proposal of the

form q(xi
k|xi

k−1). We can address this disparity by considering

the numerical integration of the Hamiltonian dynamics to be

a non-linear function which transforms samples to a new

position by means of the momentum.

HMC and NUTS use a numerical method called Leapfrog to

simulate Hamiltonian dynamics and explore the target space.

Leapfrog has several useful qualities. Firstly it is symplectic,

i.e. it preserves the geometric structure of the phase space

{x,p}, and therefore generates states with high acceptance

probability for sufficiently small step-sizes. Secondly, it is both

reversible and time symmetric such that detailed balance is

maintained. The Leapfrog method over one step of step-size

h is as follows:

pk− 1
2
= pk−1 −

h

2

∂U

∂x

∣∣∣∣
xk−1

(4)

xk = xk−1 + hM−1
pk− 1

2
(5)

pk = pk− 1
2
− h

2

∂U

∂x

∣∣∣∣
xk

(6)

where U is a potential energy function and is related to the

target distribution by U(x) = − log(π(x)), and M ∈ R
D×D

is a diagonal mass matrix.

A. Non-linear transform of the proposal distribution

We wish to evaluate the probability that a random vari-

able Xk−1 transforms to a random variable Xk using a

Hamiltonian based proposal, and vice-versa. We write this

as q(Xk = xk|Xk−1 = xk−1) for the forwards kernel and

L(Xk−1 = xk−1|Xk = xk) for the L-kernel.

First we derive an expression for the forwards kernel.

We generalise Leapfrog to a single function fLF (.) which

transforms a state xk−1 to xk, i.e. xk = fLF (xk−1,pk−1).
We can rewrite the forward kernel as:

q(Xk = xk|Xk−1 = xk−1) =

q(Xk = fLF (xk−1,pk−1)|Xk−1 = xk−1). (7)

In a Hamiltonian proposal the momentum term is the

stochastic term which changes the value of xk . We can

therefore write (7) in terms of a random momentum variable

P by using a change of variables as follows:

q(Xk = fLF (xk−1,pk−1)|Xk−1 = xk−1) =

q(Pk−1 = pk−1|Xk−1 = xk−1)

∣∣∣∣
dfLF (xk−1,pk−1)

dpk−1

∣∣∣∣
−1

.

(8)

The initial velocity is typically sampled from a normal

distribution pk ∼ N (0,M), we therefore find that:

q(Xk = xk|Xk−1 = xk−1) =

N (pk−1; 0,M)

∣∣∣∣
dfLF (xk−1,pk−1)

dpk−1

∣∣∣∣
−1

. (9)

To evaluate the L-kernel we utilise the fact that Leapfrog

is a reversible integration method, i.e. if we start at a state

{xk−1,pk−1} and then transform this to {xk,pk} then by

applying −pk it follows: xk−1 = fLF (xk,−pk). Following

the same steps to arrive at (9), except this time we start at xk

and with a a velocity -pk we arrive at:

L(Xk−1 = fLF (xk,−pk)|Xk = xk) =

L(Pk = −pk|Xk = xk)

∣∣∣∣
dfLF (xk,−pk)

dpk

∣∣∣∣
−1

. (10)

For each sample in an SMC iteration to calculate (3) we

need to calculate the ratio of (10) and (9). As we will now

explain, it is fairly straightforward to show that the determinant

terms cancel when Leapfrog is used. Writing the updated state

in terms of the initial state and momentum we find that:
∣∣∣∣
∂fLF (xk−1,pk−1)

∂pk−1

∣∣∣∣ = hD

D∏

i=1

M−1
ii . (11)

As Leapfrog is a reversible method, if the the momentum is

reversed and the step-size is equal to that used in the forwards

case we similarly find:

∣∣∣∣
∂fLF (xk,−pk)

∂pk

∣∣∣∣ = hD

D∏

i=1

M−1
ii . (12)

such that the determinants will cancel when calculating (3).

For a reversible method, like Leapfrog, the integrator will

evaluate at all the states that were previously evaluated when
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going forwards. As such, when using the proposal from NUTS,

the determinants cancel when calculating the second fraction

term in (3).

B. A near-optimal L-kernel for an SMC sampler with a NUTS

proposal

We are free to choose the distribution of the L-kernel. One

approach is to assume the reverse of the forward proposal, i.e.

we can assume that pk is sampled from the same distribution

as the proposal for the initial momentum:

L(Pk = −pk|Xk = xk) = N (−pk;0,M). (13)

This approach, however, is sub-optimal. The optimal L-

kernel LOpt is that which minimises the variance of the sample

estimates. It can be shown that LOpt ∝ q(xk|xk−1)η(xk−1)
where η(xk−1) is the distribution of samples at iteration k−1
[9] and, as seen in Section III-A, for the Hamiltonian case

it follows that LOpt ∝ q(−pk|xk−1)η(xk−1). Closed-form

expressions for the optimal L-kernel are often intractable. To

approximate the optimal L-kernel we follow the approach

given in [10], and for the Hamiltonian case take the dis-

tribution of the negative new momentum and new samples,

η(Pk = −pk)q(Xk = xk|Pk = pk), and form a Gaussian

approximation such that:

η(Pk = −pk)q(Xk = xk|Pk = pk) ≈

N
([

−pk

xk

]
;

[
µ−pk

µxk

]
,

[
Σ−pk,−pk

Σ−pk,xk

Σxk,−pk
Σxk,xk

])
, (14)

where µ ∈ R
D are mean vectors, and Σ ∈ R

D×D are block

covariance matrices.

We then use the properties of Gaussians to define a near-

optimal L-kernel:

LOpt(Pk = −pk|Xk = xk) ≈ N (−pk;µ−pk|xk
,Σ−pk|xk

),
(15)

where:

µ−pk|xk
= µ−pk

+Σ−pk,xk
Σ

−1
xk,xk

(xk − µxk
) (16)

and

Σ−pk|xk
= Σ−pk,−pk

−Σ−pk,xk
Σ

−1
xk,xk

Σxk,−pk
. (17)

Returning to the incremental weights (3), updates are found

via:

wi
k = wi

k−1 ·
π(xk)

π(xk−1)
· L(Pk = −pk|Xk = xk)

q(Pk−1 = pk−1|Xk−1 = xk−1)
,

(18)

where xk−1 and pk−1 are the initial position and momentum,

and xk and −pk are the position and negative momentum

after a NUTS iteration. The right numerator can be evaluated

from either (13) or (15) and the right denominator can be

evaluated from the initial momentum distribution. Algorithm

1 shows how the near-optimal L-kernel is used within SMC-

NUTS for N samples over a total of T iterations. Algorithm 3

in [5] can be used to generate new samples for the NUTS step.

For the sub-optimal symmetric L-kernel, steps 10 and 11 are

replaced by (13). For the resampling step, several methods may

be employed, see [13] and references therein for a discussion

on resampling in the context of particle filters (which may be

applied here).

Algorithm 1 SMC-NUTS with a near-optimal L-kernel for T
iterations and N samples.

1: for i=1. . . N do

2: Sample xi
1 from q(xi)

3: Set initial weights to wi
1 =

π(xi
1)

q(xi
1
)

4: end for

5: for k = 2 to T do

6: for i=1. . . N do

7: Sample an initial momentum vector pi ∼ N (0,M)
8: (xi

k,p
i
k) = NUTS(xi

k−1,p
i)

9: end for

10: Calculate parameters of (14)

11: Calculate (15) using (16) and (17).

12: for i=1. . . N do

13: Update sample weights wi
k using (18)

14: end for

15: for i=1. . . N do

16: Calculate normalised weights: w̃i
k =

wi
k

Σ
j=N

j=1
w

j

k

17: end for

18: Calculate effective number of samples:

Neff = 1

Σj=N

j=1
w̃

j2

k

19: if Neff < N/2 then

20: Resample [x1
k . . .x

N
k ] with probability [w̃1

k . . . w̃
N
k ]

21: Reset all weights to 1
N

22: end if

23: end for

IV. RESULTS

We now demonstrate SMC-NUTS in two example cases.

In both examples the mass matrix is set equal to an identity

matrix.

A. Penalised Regression with Count Data

We first compare our method against a state-of-the-art SMC

sampler with a random walk proposal which was used to

estimate parameters of a penalised regression model with

count data in [14].

This problem makes use of Lasso regression [15] whereby

a penalty constraint γ
∑D

j=1 |βj | is placed on the size of

the regression coefficients β ∈ R
D. We follow [14] (with

associated details from [16]) by using the exponential power

distribution bridge framework for our regularizing prior:

f(β; γ, z) =

D∏

j=1

z

2γΓ(1/z)
exp

(
−
∣∣∣∣
βj

γ

∣∣∣∣
z)

, (19)

where z ∈ (0, 2). Our aim is to estimate coefficients used to

generate count data. The likelihood is a Poisson distribution

yi ∼ p(yi|µi) for the ith observation, where:

µi = exp



β0 +

D∑

j=1

βjΦ
j
i (xi,j)



 . (20)

To aid comparison with [14], we likewise generate 100

observations with a 12-Dimensional β vector where β0 = 1,

β2 = 1.5, β4 = −2, β6 = 1, β7 = −2, β9 = 1.2 and all other
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TABLE I
AVERAGE MEAN SQUARED ERROR FOR ESTIMATED MODEL PARAMETERS

FOR AN SMC SAMPLER USING A NUTS AND RESULTS FROM [16] USING A

RANDOM WALK PROPOSAL.

T=100 T=200
N=25 N=50 N=200 N=25 N=50 N=200

Random Walk - 5.92 5.17 - 5.49 4.9
NUTS 0.51 0.471 0.420 0.324 0.306 0.267

TABLE II
AVERAGE RUNTIME IN SECONDS FOR AN SMC SAMPLER WITH A NUTS

PROPOSAL AND A RANDOM WALK PROPOSAL SIMPLER THAN THAT IN [14]

T=100 T=200
N=25 N=50 N=200 N=25 N=50 N=200

Random Walk 0.235 0.898 0.461 0.234 0.461 1.85
NUTS 1.50 3.08 13.40 3.05 6.41 24.0

values are set to zero. The basis function Φ is a Gaussian

kernel Φ = exp
(
− (xi−cj)

2

2r2
j

)
with 11 equispaced centres cj

and all rj values set to 0.5. In our case, we run the SMC-

NUTS based proposal but, unlike the method in [14], choose

not to run the sampler with any form of tempering or step

adaption. However, we do use the [14]’s recycling scheme.

Furthermore, we use N (−pk;0, I) as our L-kernel (i.e. we

investigate the benefits of the SMC-NUTS proposal without

the use on an approximately optimal L-kernel).

Table I shows the mean-squared-error (MSE) using SMC-

NUTS compared to the random walk approach [16], where

results were available, for different numbers of samples and

iterations for z = 0.5. The MSE for SMC-NUTS is 13-18

times smaller than for SMC with a random walk proposal for

the same number of samples and iterations.

It should be noted that the NUTS proposal is more com-

putationally expensive than a random walk proposal. This is

demonstrated in Table II where we compare the average time it

takes for SMC with NUTS to complete compared to SMC with

a basic random walk proposal, i.e. with no cooling strategy,

covariance adaption, or parallel implementation. While the

NUTS variant takes longer to complete for an equal number

of samples and iterations, with fewer samples and fewer

iterations, the runtime is more competitive and still achieves

substantially better accuracy. This is exemplified in the case

of 25 samples for 100 iterations with a NUTS proposal which

was quicker than 200 samples for 200 iterations with a random

walk and achieves almost 10 times smaller mean-squared-

error. The random walk algorithm used to generate results for

Table I is more complex that the algorithm used to generate

Table II and, therefore, our runtime for the random walk is

likely to be an underestimation.

B. Multivariate Student-t Distribution

In this example we aim to show how a near optimal L-kernel

can improve the performance of the SMC-NUTS sampler. We

compare the simple symmetric L-kernel we used in the pre-

vious example with a near optimal L-kernel and purposefully

initialise the samples away from the target’s probability mass.

0 10 20 30 40 50
Iteration

0
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4

6

8

10

M
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n 
va
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e 
of
 sa

m
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L=Near Optimum L-kernel
L=(−p;0, I)
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Fig. 1. Mean of samples in each dimension using a near optimal L-kernel and
a single Gaussian L-kernel targeting a 5-dimensional Student-t distribution.
Black dashed lines show the true value.

For our target distribution we choose a Student’s-t distribution,

i.e:

π(x) =
Γ
(
ν+1
2

)
√
νπ Γ

(
ν
2

)
(
1 +

x2

ν

)− ν+1

2

, (21)

where ν is the number of degrees of freedom (set to 5 in

this example). We set the mean vector of the distribution to

µ = [0, 2, 4, 6, 8] and run the SMC-NUTS for both L-kernel

strategies for 200 samples and 50 iterations. The estimation

of the mean vector µ is shown in Fig 1.

Using the near-optimal L-kernel it is clear that, through the

use of an approximately optimal L-kernel, the SMC sampler

is able to find the true values more rapidly than when using

the symmetric L-kernel. This shows that it is possible to run

the sampler for fewer iterations and achieve better results.

V. CONCLUSIONS

We have shown how the proposal from the No-U-Turn

Sampler (NUTS) can be used as a proposal in an SMC

sampler. This allows efficient exploration of a wide variety

of distributions, using gradient information whilst at the same

time having the benefits SMC samplers offer in terms of being

readily parallelisable. We have also shown that SMC-NUTS

can benefit from the use of a near optimal L-kernel. An SMC

sampler utilising NUTS as a proposal distribution is observed

to give better results compared to a Gaussian proposal. It has

also been demonstrated that it is possible to realise estimates

that converge to true values in fewer iterations when this

approach is taken. We recommend further work to extend the

near optimal L-kernel to be applicable in a wider class of high-

dimensional settings than have been considered to date (e.g. n

[10]) such that SMC can be applied in contexts where NUTS

is likely to deliver significant benefit.
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