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A novel pavement transverse cracks detection model using WT-CNN and STFT-CNN
for smartphone data analysis
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ABSTRACT
This paper proposes a novel pavement transverse crack detection model based on time–frequency
analysis and convolutional neural networks. The accelerometer and smartphone installed in the
vehicle collect the vibration response between the wheel and the road, such as pavement transverse
cracks, manholes, and normal pavement. Since the original vibration signal can only contain a one-
dimensional domain (time–acceleration). Time–frequency analysis, including Short-Time Fourier
Transform and Wavelet Transform, can transfer the one-dimensional vibration signal into a two-
dimensional time–frequency-energy spectrum matrix. The energy spectrum matrix obtained from STFT
and WT can effectively obtain different signal features in terms of time and frequency features. If STFT
and WT are further combined with CNN models, STFT-CNN and WT-CNN, respectively, pavement
transverse cracks can be detected more accurately. In this study, the reliability of the developed
pavement transverse cracks detection model was evaluated based on the data collected by
conducting a road driving test. Analysis results of the developed model show that the accuracies of
WT-CNN and STFT-CNN are 97.2% and 91.4%, respectively. The F1 scores to analyse the practicability
and the adaptability of the crack detection model of WT-CNN and STFT-CNN are 96.35% and 89.56%,
respectively.
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1. Introduction

The damage detection such as cracks in infrastructure is an
important research field of smart monitoring (Soga et al.
2015, Pelecanos et al. 2018). The crack detection technology
and road surface maintenance can secure driving safety by
maintaining the road surface in good condition. In actual
pavement maintenance work, the pavement is not able to be
repaired in time due to the vast inspection range, the heavy
workload, and long time for road crack detection, etc. In par-
ticular, traditional manual inspections are time-consuming
and labour-intensive and lack the ability to process infor-
mation. In recent years, research on detecting cracks with ther-
mal infrared cameras is also underway (Seo et al. 2017). 3D
laser scanning is also used to detect cracks and damage of
structures, but it is impossible to analyse images in real time
(Seo 2020, 2021a, 2021b, 2021). Existing pavement manage-
ment systems informationize maintenance and inspection ser-
vices, but they are not able to actively detect abnormal
conditions on the road surface and monitor the entire road
condition in real-time. Semi-rigid base asphalt pavement is
the main form of pavement structure in China, and transverse
cracks account for the vast majority of crack occurrences
(Yang and Zhou 2020). The fully automatic road inspection
vehicle has a high level of automation and high detection accu-
racy, but requires a large initial investment, a long detection
period, and a limited range of applications. The combination

of a large amount of data and deep learning technology that
can be obtained in real-time can complement the shortcom-
ings of the existing pavement damage detection system.
Image based crack recognition methods are most commonly
used. The deep learning-based method has been applied to a
range of applications, such as facial expression recognition
(Wen et al. 2017), medical image classification (Kumar et al.
2017), biomedical image segmentation (Ronneberger et al.
2015), etc. A U-Hierarchical Dilated Network (U-HDN) was
proposed for crack detection by Fan et al. (2020a). The pro-
posed U-HDN method can fuse feature maps of different con-
text sizes and different levels. Fan et al. (2020b) demonstrated
the use of DCNNs to detect and identify cracks as crack defects
with quantified attribute applications for detecting pavement
surfaces. Smartphones have a built-in accelerometer, gyro-
scopes, and GPS (Global Positioning System), allowing to col-
lect acceleration data in real time and estimate a wide range of
road conditions with lots of data. Considering the wide usage
of smartphones, crack detection of pavement is possible
nationwide under the premise that the smartphone’s sensor
data can be used, if a novel technology can analyse a lot of
data on a smartphone. However, the sensors embedded in
smartphones have lower acquisition frequency than pro-
fessional acceleration collection devices (Gupta et al. 2015).
Even if the sensor data of the smartphone has low accuracy,
it can be more effective in detecting cracks than one accurate
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data by obtaining data from a large number of smartphones.
One data obtained by a professional accelerometer can pose
a variety of possibilities, such as the driver’s driving condition,
road conditions, damages of pavement, etc. but if the accelera-
tion data obtained by numerous smartphones are reacted at a
specific location, it can be evaluated as a damage of the pave-
ment. Therefore, an analysis method that can extract vibration
signal characteristics is required. The frequency-domain
analysis method (Frank and Ding 1994, Li et al. 2019) is
based on Fourier transform (Ozaktas et al. 1996) to extract dis-
tinguishable frequency features, and time–frequency analysis
methods such as Wavelet Transform (WT) and Short-Time
Fourier Transform (STFT) are introduced. The transformed
signal as a time–frequency domain can contain specific fre-
quencies expressing road surface conditions, regardless of
the amplitude of the acceleration.

Vibration-based methods to inspect pavements have been
researched for many years and can detect the pavement con-
dition based on the mechanical response of the test vehicle.
Vibration-based methods can be used as a pre-testing method
for detailed inspections under large road networks (Yang and
Zhou 2020). González Arturo (González et al. 2008) proposed
a method to collect data using acceleration sensors fixed to a
specific vehicle and use these data to evaluate road conditions.
In this study, the input-output transfer function of the half-
vehicle model was used to establish the estimated relationship
between pavement power spectral density and vehicle accelera-
tion, and then the estimated road power spectral density was
used to evaluate the road surface smoothness. However, the
road surface smoothness can only comprehensively evaluate
the road condition, and cannot detect detailed damage. Pra-
shanth Mohan et al. (2008) proposed a multi-dimensional sen-
sing system called Nericell based on smartphones that people
carry daily. This system uses the built-in accelerometer, GPS,
microphone, and radio of a smartphone to obtain responses
such as braking, bounce, and whistle while driving, detecting
potholes, rough road conditions, and traffic flow conditions.
Yagi (2010) proposed a method for detecting abnormal points
on the road using mobile phone acceleration sensor data based
on the specified vehicle type and speed. In the study, wooden
sticks with known lengths and diameters were used to simulate
road surface abnormal points to analyse the vehicle response.
The standard deviations of accelerations in the three directions
of X, Y, and Z were used to obtain the identification indexes of
road surface abnormal points recursively.

However, the method of extracting road surface abnormal
points based on a small number of experiments cannot be
popularised. The use of large amounts of labelled data can
compensate for these deficiencies. Islam et al. (2014) proposed
the theory of detecting road conditions using a smartphone,
and converted the detected acceleration data of the smart-
phone sensor into an International Roughness Index (IRI)
through an algorithmic model. The specific elastic and damp-
ing coefficients calculated at a fixed speed are provided to the
algorithm to obtain the International Roughness Index (IRI).
Wang and Guo et al. (2016) converted acceleration data
detected by smartphones into indicators that can characterise
pavement conditions. The existing Bayesian theory was used to
update existing Pavement International Roughness Index (IRI)

data through big data processing. Kumaran et al. (2017) ana-
lysed the influence of vehicle model and speed on the road sur-
face characterisation value of acceleration using data from
mobile phones when different vehicles are driving at different
speeds. At the same time, a road surface roughness measure-
ment method based on crowdsourcing mode applied to high-
ways was proposed. Using big data to evaluate pavement
roughness has been well applied. Meanwhile, vibration-based
structural damage detection has made significant progress
because structural damage leads to changes in dynamic struc-
tural characteristics such as natural frequencies, damping
ratios, and mode shapes (Fan and Qiao 2011, Yang and
Zhou 2020). Real-time monitoring of structural vibration by
sensing devices installed on the structure allows obtaining
the structure’s vibration characteristics at different stages and
then analysing the vibration signals for the purpose of damage
detection. The frequency distribution and energy of the
vibration signal may change due to the occurrence of cracks.
Therefore, cracks can be identified by processing the vibration
signal through Fourier transform (Wang and Deng 1999).
Unfortunately, this method cannot identify the damage
location because the Fourier transform can only reflect the sig-
nal’s statistical average over the whole time period, but cannot
extract the local features of the signal. Yang and Zhou (2020)
proposed a new method to identify transverse cracking of
asphalt pavements based on vehicle vibration signals. The inte-
grated analysis of vibration signals in time domain, frequency
domain and time–frequency domain using short time Fourier
transform (STFT), wavelet transform (WT). The results show
that these methods can be used as a rapid pre-testing method
for conventional asphalt pavement inspection.

Previous studies have usedmobile phone acceleration sensors
to detect transverse cracks on the road surface. The threshold of
acceleration amplitude is mainly used to identify and detect the
cracks. This method is limited by the type of sensor and the
location of the installation and arrangement. The threshold of
amplitude is only based on small sample experiments and it is
not able to be automatically obtained, and hence the detection
accuracy is not high enough. Although the transverse crack
detection method based on time–frequency analysis obtains
the frequency characteristics of the transverse crack, it was not
able to achieve the real-time detection and automation.

This paper proposes a pavement recognition detection
algorithm based on time–frequency analysis and deep convo-
lutional networks which can analyse acceleration sensor data.
This method consists of three parts: data acquisition, spectral
feature extraction and comparison using STFT and WT, and
neural network for classification. Acceleration data were col-
lected by built-in accelerometer of smartphones and a pro-
fessional acceleration collection device to collect the
accelerometer during driving tests. The vibration of the
vehicle, which can be changed due to the roughness of the
road surface, is recorded by the built-in accelerometer of the
smartphone placed in the vehicle. These data were later used
for the extraction of time–frequency features converted from
the time–frequency analysis methods such as Wavelet Trans-
form (WT) and Short-Time Fourier Transform (STFT).
Deep learning works as a kind of machine learning and pro-
vides an effective way to automatically learn representative
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features from the collected signal and the time–frequency fea-
tures converted from WT and STFT can be input data for the
deep learning analysis. Combination of the Convolutional
Neural Network (CNN) and time–frequency information was
utilised in this paper to effectively detect the signals of road
pavement roughness and breakage. The deep convolutional net-
work can recognise and classify information on the road surface
converted to time–frequency. The propose method adopts
mobile phone vibration signal, which is convenient to collect.
The extracted spectrum features have both the energy and fre-
quency characteristics of the vibration signals. The detection
network is driven by a large amount of data, and transverse
cracks on the pavement can be detected without human invol-
vement. This paper proposes a novel pavement transverse
cracks detection model based on acceleration data of smart-
phones analysed by time–frequency analysis and CNN, in
which Visual Geometry Group 16 (VGG16) (Simonyan and Zis-
serman 2015) is used as the basic CNN frame. According to the
difference of the conversion methods of time–frequency, the
two methods proposed in this paper are named STFT-CNN
and WT-CNN, respectively.

2. Proposed CNN with the time–frequency analysis
method

Figure 1 shows the framework of a novel pavement transverse
cracks detection model for the classification of deep learning
process including three phases: the feature extraction by
STFT and WT; the training data by CNN, and the detection
and classification of pavement conditions. In the feature
extraction stage, the acceleration data expressed in the time–
acceleration domain is transformed into an image with a
time–frequency-energy domain by the WT based on the
morce mother wavelet STFT with a window of 0.5 s, respect-
ively. All data obtained from the driving test are stored as
images converted to STFT andWT and used as a training data-
set for CNN. When the CNN is trained by the STFT and WT
training data sets in the training stage, the trained STFT-CNN
and WT-CNN are created. Finally, in the pavement transverse

cracks detection stage, the data collected from the site are con-
verted by STFT and WT, and then detected and classified by
trained STFT-CNN and WT-CNN. The effectiveness of differ-
ent time–frequency analysis methods combined with CNN is
compared with the detection accuracy of different networks
for the same signal data. The time–frequency analysis for sig-
nal extraction and identification has been applied to EGG sig-
nal identification and mechanical vibration signals (Duan et al.
2019). The proposed WT-CNN and STFT-CNN for pavement
feedback signals are pre-processed with a layer of signal to
convert vibration signals into time–frequency images. And
based on the transfer learning approach (Manikonda and
Gaonkar 2019), the network structure is fine-tuned based on
the VGG16 pre-training model to achieve the detection of
transverse cracks in pavements.

2.1. Methodology: time–frequency domain analysis

The amplitude of the acceleration is peaking up when the
vehicle passes on the transverse cracks of pavement, but the
amplitude of the signal is not able to be a criterion classifying
the transverse cracks types. It depends on the various collision
conditions between the wheels and the transverse cracks of the
pavement. Therefore, the time–amplitude domain was con-
verted to time–frequency domain in this paper to find a
specific signal for each transverse cracks of pavement. Short-
time fast Fourier transform and wavelet transform were used
for time–frequency domain analysis in this paper.

2.1.1. Short-time fast Fourier transform (STFT)
Gabor (1946) improved the Fourier transform by introducing
the ‘window’ concept (Cohn 1995). The short-time Fourier
transform (STFT) is one of the most commonly used methods
that the signal to be transformed is multiplied by a non-zero
window function and the window function shifts along the
axis of time (Chen et al. 2019a, 2019b, 2021). The Fourier
Transform is implemented in every window and the obtained
spectrum can be expanded into a two-dimensional image
which can reflect the frequency change over time. The

Figure 1. Framework of a novel pavement transverse cracks detection model.
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transferred frequency–time domain can be defined as
Equation (1), where, w[n− T] is the window function and
x[n] is the signal to be transformed (Han et al. 2015).

STFT(v, T) =
∑N−1

n=0

x[n].v[n− T]e−jvn (1)

The window size has to be wide enough to ensure that the
input signal’s target portion is contained in the window, but a
wide window size can provide low frequency resolution, and a
narrow window size cannot provide sufficient time separation.
In this paper, the window size was set to 0.5 s to satisfy the two
conditions of including the specific frequency of the response
between the wheel and the road surface in the window and
maintaining an interpretable resolution.

2.1.2. Wavelet transform (WT)
Since the result of the transformed signal in SFTF analysis is
always influenced by the window size, in order to minimise
this effect, wavelet transform (WT) analysis, which can per-
form automatic adjustment of the window size, was used in
this paper as well. After the signal is evaluated by a wavelet
function, the signal is transformed separately for different seg-
ments of the time-domain signal. The wavelet is defined by
Equation (2) (Zheng et al. 2002):

WT(s, u) = 1��
S

√ x [t]c
t − u
s

( )
dt (2)

where, u and s are the shift and scale parameters, respectively.
u is the wavelet’s position along with the signal so that WT(s,
u) can get the similarity between the signals at time t, and the
change of u will affect the position of the timeline in the centre
of the corresponding time–frequency window. If s increases,
the centre frequency of the time–frequency window decreases
and the central time increases (Yoo and Baek 2018). The wave-
let base function csu is defined by Equation (3):

csu(t) =
1��
S

√ c
t − u
s

( )
(3)

The morce wavelet was used as the generating function,-
c(t), for time–frequency analysis. For a given signal, the wave-
let coefficient can be expressed as a complex conjugate. The
WT can be used to obtain frequency and spatial information
to better visualise the frequency components of various scales
and resolutions.

c(t) = e
−
t2

2 e−iv0t (4)

c(t) =
����
2p

√
e

(s− u)2

2 (5)

2.2. Overview for convolutional neural network

As a typical end-to-end deep learning model, CNN can take
the original vibration signal as input and adaptively train the
convolution kernel as a filter to extract transverse cracks fea-
tures(Pang et al. 2017). However, CNN can only distinguish

transverse cracks-related feature components by training
different convolution kernels when classifying aliasing signals,
which makes it difficult to distinguish transverse cracks-related
features from other features in the hidden layer. Because time–
frequency analysis can effectively extract the required feature
components from the signal, and CNN is susceptible to inter-
ference from other vibration components when training the
convolution kernel, a detection system combining time–fre-
quency analysis and CNN is proposed.

Deep convolutional neural network(DCNN) usually needs
a large number of annotation of image data sets to achieve
higher prediction precision, but it is difficult to access a
large amount of data for various reasons (Gopalakrishnan
et al. 2017). Therefore, using a DCNN network that has
been pre-trained on an annotated image dataset can avoid
parameter adjustment and other processes. Transfer learning
was proved very useful for solving cross-domain image
classification problems (Shin et al. 2016). It is effective to
use pre-trained deep learning and transfer their learning
capabilities to new classification schemes instead of training
new DCNN classifiers from scratch (Bar et al. 2015). Pre-
trained DCNNs with proper fine-tuning are more applicable
than DCNNs trained by scratch for some imaging appli-
cations (Tajbakhsh et al. 2016).

The model’s parameter scale is greatly reduced by the
structure of the convolutional neural network local connec-
tion and weight sharing. A trainable and adjustable bias
can be added by each channel on the output feature graph
filtered by the convolution layer. The results obtained by
the operation of the convolution layer have to be entered
as a nonlinear activation function in order to ensure that
the convolutional neural network has nonlinear fitting capa-
bilities. Each type of CNN architecture includes nearly the
same core artefacts: convolution layer, pooling layer, full con-
nection layer and softmax layer as shown in Figure 2 (Ibra-
gimov et al. 2020).

Convolutional layer: The convolutional layer, a key com-
ponent of a CNN, has two features: weight sharing and local
connection. These two functions reduce the scale of the net-
work structure parameters, thus reducing machine overfitting
due to many parameters. A convolution kernel is used in the
convolutional layer to perform convolution operations on
the input signal to produce corresponding features.

Activation function: The activation function is an impor-
tant part of the convolutional neural network. The activation
function was introduced to increase the neural network
model’s nonlinearity and is recommended to be applied to
complex projects. The selection of an appropriate activation
function has a positive influence on the improving the training
speed of the convolutional neural network. The main purpose
of the activation function is to enhance the linear divisibility of
the originally linearly indivisible multi-dimensional features in
another space of the map. The ReLU (Rectified Linear Unit)
activation function used in this study is generally used in con-
volutional neural networks and can overcome the gradient dis-
persion phenomenon well.

Pooling layer: The feature map of the input image gener-
ated by convolution is used as input data for classification.
The dimension of the feature vector of the convolution is
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large; hence, the classifier not only computes too much, but
also overfitting. A nonlinear down-sampling method for the
extraction of signals is adopted in the pooling layer (Liu
et al. 2018). In this paper, a pooling process is performed
to reduce the dimensions of the features at different positions
aggregated for statistics in the image. There are usually two
pooling methods: maximum pooling and mean pooling.
The filter size was set to 2 × 2 in sampling because a large
filter causes a large loss of information. Max pooling gener-
ally can retain more detailed features, while mean pooling
can retain more global features. The sampled information
after the mean pooling sampling is multiplied with a train-
able training parameter and then it is added as a trainable
bias. The resulting value can be calculated by the activation
function to obtain the output of the current neuron. One
of the most popular is maximum pooling. The main function
of the pooling layer is to reduce the number of parameters
and computation in the network. In addition, the layer can
control that the over-fitting pooling layer always runs after
each convolution layer.

Fully-connected layer: The main function of the fully-con-
nected output layer is to classify the features extracted from the
front-end network. Each neuron in the full connectivity layer
is fully connected to all neurons in the previous layer. Dropout
can be introduced at the full connection layer to prevent over-
fitting during training (Wu and Gu 2015). Some neurons can
be discarded with a certain probability during each iteration of
training the neural network, and the output of discarded neur-
ons is set to zero and the update is stopped. Based on this pro-
cess, the generalisation ability of the network is improved and
overfitting can be prevented.

Softmax layer: The main role of the Softmax layer is to pre-
dict classes based on features extracted from the full connec-
tion layer. This layer evaluates all the characteristics of the
full connection layer and calculates the probability of each
individual class. Then, the highest probability of a class is
printed as the classification result.

3. Data acquisition and raw signal labelling and
segmentation

In order to identify a novel pavement crack detection model
proposed in this paper, the signals regarding road surface con-
dition were collected during the driving test on the selected
route. The test route is located in Suzhou Industrial Park,
China as shown in Figure 3. In the designated test route,
there were structures inevitably installed on the road as well
as transverse cracks of pavement, and the reaction of sensors
by these road conditions was collected during the driving test.

In order to better distinguish road conditions in the selected
route, a camera was mounted on the rear of the vehicle to
record road images. At the same time, it is possible to collect
vibration information from the pavement during a driving
test by three smartphones each equipped with an acceler-
ometer and an accurate accelerometer installed next to the
vehicle wheel. As shown in Figure 4, the phone is secured to
the second row of seats in the vehicle, positioned close to the
vehicle chassis. Before the data collection, the position of the
device is adjusted to ensure that the mobile phone is placed
horizontally so as to fully collect the change of Z-axis accelera-
tion. In order to record the actual vibration of the vehicle body

Figure 2. The architecture of the proposed CNN model.

Figure 3. Experimental area.
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more accurately and verify the accuracy of the vibration signal
collected by the phone, an accelerometer is installed on the
chassis of the vehicle to ensure that the vibration signal from
the chassis is fully captured. The sampling rate of acceler-
ometers in smartphones and an accurate acceleration are
100 Hz. The installation of the equipment is shown in Figure
4. The amplitude and frequency of the signal can be affected
by the vehicle speed (Sun 2003), the test vehicle was driven
at a speed of about 30 km/h to acquire uniform data.

Figure 5 shows the segmentation procedure of acceleration
data to label the ground truth of the crack data. After collecting
the acceleration signal from each type of road surface, the time
through which the transverse cracks to the pavement and man-
hole has passed can be displayed by manually checking the
image frame by frame. This time can be compared with the
time of acceleration data to segment transverse cracks or accel-
eration signals of road structures. Then, each acceleration sig-
nal has been labelled with corresponding road condition. After
collection and segmentation of data, around 2700 acceleration
signals including transverse cracks and pavement structures
were stored as a data set.

3.1. Performance comparison between smartphone
sensor and professional sensors

There are differences in their measurement sensitivity and
acquisition stability as well as sampling frequency depending
on the type of accelerometer. Figure 6 shows samples data
from three smartphone sensors and a professional sensor,
which is to verify that the same feature spectrum can be
obtained after the Time–frequency analysis even though
there are differences in acquisition accuracy and range
between different sensors. The placement of three mobile
phones are approximately the same location on the seats
during the experiment, but the sensitivity of the sampling is
not same due to different data collection frequency. The ampli-
tude of the different sensors is not the same as shown in Figure
6 when the vehicle passed on the same crack, and hence the
vibration signal is not able to distinguish simply different
types of signals. In contrast, the signal coherence and the

sensitivity of the professional sensor is better. However, after
time–frequency analysis, these different vibration signals can
be extracted and the characteristic frequency with the maxi-
mum energy is around 10 Hz. Yang and Zhou (2020) also ver-
ified that the appearance of transverse cracks leads to a sharp
increase in energy in the sensitive frequency band of 10∼
20 Hz. The results of this paper also proved that the sensors
of the mobile phone are also sufficient for the detection and
identification of cracks in the road surface after the data trans-
formation into the time–frequency domain.

3.2. Time–frequency analysis results comparing STFT
and WT

The acceleration is not only affected by the field conditions and
vehicle type, but also the amplitude of the acceleration is chan-
ged depending on the collision conditions between the wheels
and cracks of the pavement. Therefore, vibration data
expressed in the time–amplitude domain is not able to provide
appropriate for each type of crack in CNN analysis. However,
when the vibration data expressed in the time–amplitude
domain is transformed in the time–frequency domain, the fea-
tures of the data can be derived with a specific frequency gen-
erated by the collision between the wheel and each crack.
Therefore, in this paper, data transform was attempted by
the STFT and WT methods, and the transformed data was
used as an input for CNN analysis.

Figure 4. Layout of equipment.

Figure 5. Schematic diagram of the signal labelling method.
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A fixed window function is used in STFT analysis, but once
the window function is selected, its size is not able to be chan-
ged, which means that the resolution of the STFT is deter-
mined. STFT is mainly used to analyse segmented stationary
signals or approximate stationary signals, which are mainly a
waveform. However, for non-stationary signals such as road
transverse cracks signals, when the signal changes drastically,
the window function with a smaller window size of the
STFT is required to have a higher time resolution. Window
function with a larger window size is required to have a higher
frequency resolution when the low frequency signal is changed
relatively gently. Therefore, the STFT is not able to take into
account both the frequency and the time resolution require-
ments during the computation. However, wavelet transform
is possible to use a cluster of wavelet functions to represent
or approximate the signal and hence it can take into account
both frequency and time resolution in signal analysis. In
order to compare the performance of different time–frequency
analysis methods in this paper, STFT and WT were used to
extract the time–frequency spectrum matrix of road signals.

WT has high resolution characteristics and it is able to charac-
terise the local characteristics of signals in both the time and
frequency domains. The fundamental wave of the Fourier
transform is a sine wave, and the transformed signal is regular
and predictable without selected a window. The wavelet base
of the wavelet transform is different from the Fourier trans-
form, so that it is necessary to select a suitable wavelet base
when using the wavelet transform. Wavelet bases have irregu-
larities, and the shape and regularity of different wavelet bases
vary widely. The results are different because the same signal is
processed with different wavelet bases. Therefore, the selection
of wavelet basis is an important factor in obtaining the appro-
priate result in signal processing using wavelet analysis. The
linear transform has an appropriate result when analysing a
signal that frequency changes gradually. In practical appli-
cations, since the wavelet basis and decomposition scale of
the wavelet transform need to be based on different character-
istics of the signal to be processed, it can be finally selected by
many experiments. The classification basis examples of
vibration signal is shown in Figure 7 and the segmented

Figure 6. Performance comparison between smartphone sensor and professional sensors.
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original vibration signal is shown in Figure 8. In a time-
domain vibration signal, the horizontal and vertical axes rep-
resent time and amplitude, respectively. The unit is gravity
(g), which represents the acceleration of gravity, and is com-
monly used to define the amplitude. The vibration signal
caused by vehicles passing on pavement damage contains
information that can be used to predict road transverse cracks.
However, since the amplitude can be changed according to the
collision pattern between the transverse cracks of the road sur-
face and the vehicle wheel, it is not able to be a standard for
transverse cracks detection.

The original vibration signal is transferred by STFT to
extract the feature of the signal. In this paper, in order to deter-
mine the optimal STFT window size to include a signal that
reflects transverse cracks without the resolution reduction,
segmented signals were analysed by STFT, and the window
size that best reflects the two conditions was 0.5 s. Figure 9
shows the result of STFT transform of the original data with
a window size of 0.5 s, and examples of the results for the pave-
ment transverse cracks, the manhole, and the normal road. In
order to show more distribution characteristics of the low-
energy spectrum, the power spectral density (PSD) obtained

after the Fourier transform is transformed to 20*log10(PSD),
which is presented as the signal energy value in Figure 9. In
normal roads, the increase in energy for each frequency is
not noticeable. However, in the case of the manhole, the
energy change occurs between the frequency of 10–15 Hz,
and the energy increases over the entire region of 1 s. In the
case of transverse cracks, a change in energy occurs for 0.5 s
at a frequency of about 12 Hz. When vehicle passed on the
damaged road, the amplitude of the signal is increased up to
1.2 G, but it can be variable due to the damaged types and con-
ditions. Therefore, transverse cracks types are not able to be
distinguished by the amplitude of signal. But in the time–fre-
quency domain, a unique frequency range can be found
according to the condition of the road surface.

The wavelet power spectrum generated by morce-based
WT is applied this this paper as well. Figure 10 shows the
transferred signal for three cases: transverse crack surface;
the manhole; and the normal road surface, in time–frequency
domain, which can show the energy distribution of vibration
signals based on image features as well. Figure 10 shows that
the amplitude of collected signal is relatively low when passing
on a normal road, and there is no apparent periodicity of the

Figure 7. Classification basis examples of vibration signal.

Figure 8. Raw acceleration data.
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energy distribution. However, when passing on a damaged
pavement, it will have a visible characteristic frequency of
the spectrum, which is mainly distributed between 10 and
20 Hz and also there are some high-frequency scattered
characteristic signals in the spectrum. When passing through
the manhole, the characteristic frequency of the vibration is
relatively scattered and has a longer duration. Comparing
the ability of STFT and WT to extract time–frequency signals
as shown in Figures 9 and 10, it can be clearly found that the
frequency ofWT extraction clearly distinguishes the transverse
cracks types. Because the spectrum of the STFT is limited by
the window size, the information of frequency and energy
are dispersed on the time axis, which makes the spectrum

loss the ability to distinguish the changes with the time. It is
also difficult to distinguish the signal from the damaged
road. However, it is still difficult to distinguish manually by
the characteristic distribution of the signals in both methods.

4. Results and discussion

In the raw data processing phase, data cutting by recorded time
and establishing dataset was done. Then, when constructing
the time–frequency model, the original signal set needs to be
extracted the time–frequency matrix features of the samples
by time–frequency transformation methods such as STFT
and WT. MATLAB 2019b is used for the data analysis.

Figure 9. Spectrum of STFT time–frequency analysis.

Figure 10. Spectrum of WT time–frequency analysis.
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During each round of training, 70% of the total 7680
samples are randomly selected as the training set, and the
remaining samples constitute the test set. The details of the
dataset are shown in Table 1. These samples will not be
used for model training, but only used to evaluate model
performance. The proposed deep learning network used
Matlab 2019b to build the model with Intel Core i5 9400 f
(6 cores) microprocessor, 32 GB of RAM and NVIDIA
GeForce GTX1070 graphics processing unit (GPU) to carry
out the training of the classification model. Two-dimensional
data based on the time–frequency domain characteristic
matrix of samples are trained and classified by the proposed
CNN model. Image batch size is set to 16, and for all the
training of the model for a period of up to 100 epochs
using the early stop standard, the final model is the vali-
dation of low loss model using pre-trained VGG16 DCNN
with Adam optimiser. The curve of training and validation
accuracy and loss of STFT-CNN and WT-CNN are shown
in Figures 11 and 12. The mean accuracy of the WT-CNN
model is 97.2%, and with the loss value 0.22. The mean accu-
racy of STFT-CNN is 91.4%, which is slightly lower than that
of WT-CNN, and the loss is 0.25. If the loss is smaller, the
network optimisation is generally higher. At the same time,
it is sufficient to enable real-time analysis in terms of the
detection efficiency in the network. It takes 160 min and
28 s to train the WT-CNN detection network and 157 min
and 57 s to train the STFT-CNN detection network on a
single Nvidia GTX1070 GPU card. However, in the inference

stage, the calculation is almost real-time. WT-CNN and
STFT-CNN are used to infer two thousand sets of data. It
takes 20.26 and 20.17 s, respectively and hence the average
inference time is about 0.01 s. This results show that the
WT-CNN has higher accuracy for detecting transverse cracks
of the pavement, that also proves the validity of the combi-
nation of the time–frequency domain feature matrix and
CNN proposed in this paper.

Figure 13 shows the confusion matrix for WT-CNN and
STFT-CNN. Figure 13(a) shows that the WT-CNN can
accurately determine the signal type and achieved an accu-
racy of 97.2%. Since features of the spectrum between the
transverse cracks signal and the signal of the normal road
are clearly distinguished, it is possible for the transverse
cracks signal to be accurately classified from the signal of
the normal road. However, the signal of manhole tends to
be classified as the transverse cracks, and the normal road
as well. The accuracy of STFT-CNN is 91.4%, which is
more misclassified than WT-CNN (see Figure 13(b)). The
tendency to misclassify signal types in STFT-CNN is similar
to that of WT-CNN, but with a higher probability of mis-
classification. The manhole and the normal road are incor-
rectly classified as transverse cracks, resulting in lower
classification accuracy for each category. It means that the
information of signals in the STFT-CNN is lost more than
that of WT-CNN. It is also verified that the WT method
has a better effect of signal feature extraction compared
with the STFT method.

Table 1. Samples of each dataset.

Method STFT-CNN WT-CNN

Categories Transverse cracks Manhole Normal Transverse cracks Manhole Normal

Number of training samples 1792 1792 1792 1792 1792 1792
Number of validation samples 768 768 768 768 768 768
Total 2560 2560 2560 2560 2560 2560

Figure 11. Training and validation accuracy and loss with ImageNet pre-trained VGG-16 DCNN deep image extractors with STFT feature for transverse cracks detection.

Figure 12. Training and validation accuracy and loss with ImageNet pre-trained VGG-16 DCNN deep image extractors with WT feature for transverse cracks detection.

10 C. CHEN ET AL.



(a) Confusion matrix of WT-CNN
(b) Confusion matrix of STFT-CNN

In order to evaluate the classification effectiveness of the
model, the Recall, Precision, Accuracy and F1-score are used
as the evaluation indicators in this paper. The accuracy
shows the ability to accurately distinguish road transverse
cracks signals and non-transverse cracks signals. The Precision
reflects that detection ability of the system, and also means
whether it effectively identify the transverse cracks signal.
The recall is the standard of ability to find out of whole trans-
verse cracks signal. F1-score is a composite indicator of the
detection system, and the high value of F1-score means the
detection ability is high. The indicators are calculated by the
confusion matrix of these Variables calculated by the
Equations (6)–(9), respectively, the real positive (TP) classifier
said the number of correctly predicted pavement signal types,
false positives (FP) corresponding to the vibration signal was
mistakenly classified the number of false negatives (FN)
instructions to predict several other categories.

Recall = TP
TP+ FN

(6)

Precision = TP
TP + FP

(7)

Accuracy = TP + TN
TP+ FP+ TN + FN

(8)

F1− score = 2× Precision× Recall
Precision+ Recall

(9)

Table 2 shows the performance evaluation of the two
methods in detail and all the indicator of WT-CNN is higher
than STFT-CNN for the transverse cracks detection task.
The WT-CNN has a 97.53% of accuracy in distinguishing
the transverse cracks signals, which performs better than the

STFT-CNN with 91.02% of accuracy. It means that the WT-
CNN has the ability to accurately classify the signal. The pre-
cision of the WT-CNN is 94.72% higher than 88.15% of the
STFT-CNN, which means the WT-CNN can detect the trans-
verse cracks better than the STFT-CNN. The recall to show the
ability to find out all the transverse cracks of WT-CNN is
98.05% also higher than 92.93% of STFT-CNN. The F1-score
of WT-CNN is 96.35% higher than 89.56% of STFT-CNN,
which means that the WT-CNN has a better balance between
the Precision and the Recall. Therefore, the performance of the
WT-CNN is higher than that of STFT-CNN which can accu-
rately and thoroughly find out transverse cracks.

Table 3 shows the comparison with other detection method
in detection accuracy and cost. The laser sensor with its high
data precision can better obtain the detailed size and depth
characteristics of the cracks. Stereo vision can also obtain its
depth information. Zhang et al. (2018a) used Kinect to capture
its 3D information and obtained 89.09% segmentation accu-
racy. Its cost was well controlled with the $199 equipment

Figure 13. Confusion matrix.

Table 2. Comparison of pavement transverse cracks detection results using WT-
CNN and STFT-CNN.

Standard for evaluation WT-CNN STFT-CNN

Accuracy 97.53% 91.02%
Precision 94.72% 88.15%
Recall 98.05% 92.93%
F1-sore 96.35% 89.56%

Table 3. Comparison with pavement crack method.

Methods Data type
Accurancy

(%)
Equipment cost

(estimate)

Zhang et al.
(2018a)

RGB image (Kinect-
Based)

89.09 $199

Zhou and Song
(2020)

laser-scanned range
images

99.6
(average)

none

Zhang et al.
(2018b)

3D laser scaning Over 98 none

Ours method vibration signal 97.20 none
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cost. Zhou and Song (2020) used deep learning to detect cracks
using laser-scanned range images and obtained an average
accuracy of 99.6%. Zhang et al. (2018b) used laser sensors to
capture 3D data of pavement and achieved an average detec-
tion accuracy of 98%. However, the detailed equipment prices.
In proposed method, as it does not require new equipment to
be purchased. The detect task can be done entirely using a
smart phone and achieved 97.2% recognition rate. The STFT
as well as the WT can extract the time–frequency features
well, allowing to distinguish the vibration signals for recog-
nition. It is possible to use low-cost equipment to detect pave-
ments within an effective range of detection accuracy under
the driving of big data.

5. Conclusion and future work

In this paper, a novel pavement crack detection model is pro-
posed to detect cracks based on acceleration data collected by
smartphones. Since the features of cracks is not able to be accu-
rately expressed by acceleration data, the acceleration-time
domain data is transformed to the frequency–time-energy
domain using the STFT and WT methods in this paper. The
transformed data was used as input data to distinguish cracks,
manholes, and normal roads, and the STFT-CNN and WT-
CNN models were compared with each other. The detailed
conclusions of this paper are as follows:

1. 7680 data sets obtained from smartphones were collected
for transverse cracks, manholes, and normal roads during
the driving test. The gravitational acceleration, which rep-
resents the amplitude of the acquired raw data, was not
used as a criterion for detecting cracks because it changes
according to the collision conditions between the vehicle’s
wheels and transverse cracks. In the result transformed by
STFT, the energy change of the manhole continued for
about 1 s at a frequency between 10 and 15 Hz, and in
the case of transverse cracks, the energy changed at about
12 Hz for about 0.5 s. In the result of the WT method,
the energy change between the manhole and the transverse
cracks occurred between 10 and 20 Hz, but it was main-
tained for a longer time in the manhole. The data trans-
formed by STFT and WT were used as input data of
STFT-CNN and WT-CNN, which classifies transverse
cracks, manholes, and general roads.

2. The mean accuracy of the WT-CNN model is 97.2%, and
with the loss value 0.22. The accuracy of the STFT-CNN
is 91.4%, which is slightly lower than that of WT-CNN,
and the loss is 0.25. This results show that the WT-CNN
has higher accuracy for detecting transverse cracks of the
pavement, that also proves the validity of the combination
of the time–frequency domain feature matrix and CNN
proposed in this paper.

3. Since features of the spectrum between the transverse
cracks signal and the signal of the normal road are clearly
distinguished, it is possible for the transverse cracks signal
to be accurately classified from the signal of the normal
road. However, the signal of manhole tends to be classified
as the transverse cracks, and the normal road as well. This
tendency to misclassify signal types is similar for both the

STFT-CNN and the WT-CNN, but STFT-CNN is lower
accuracy to classify each type. It is verified that the WT
method has a better effect of signal feature extraction com-
pared with the STFT method.

4. The F1-score of WT-CNN is 96.35% higher than 89.56% of
STFT-CNN, which means that the WT-CNN has a better
balance between the Precision and the Recall. This result
is reflected that the WT-CNN has a better performance
of pavement transverse cracks detection than STFT-CNN.

This paper has conducted numerous experiments with a
single vehicle. However, there are still various factors that
affect acceleration, such as the type and condition of the
vehicle and the driving condition of the driver. Therefore,
the analysis method of this paper needs to be used under a
wider range of vehicle, pavement and driving conditions.
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