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ABSTRACT: We report a new polymorph of lithium aluminum  |LiAPO, v Type Type i Stapiltyrefative o Type ¥
pyrophosphate, LiAIP,O,, discovered through a computationally [
guided synthetic exploration of the Li—Mg—AI-P—O phase field.
The new polymorph formed at 973 K, and the crystal structure, solved
by single-crystal X-ray diffraction, adopts the orthorhombic space
group Cmcm with a = 5.1140(9) A, b = 8.2042(13) A, ¢ = 11.565(3)
A, and V = 48522(17) A3. It has a three-dimensional framework
structure that is different from that found in other LiM™P,O,
materials. It transforms to the known monoclinic form (space group
P2,) above ~1023 K. Density functional theory (DFT) calculations
show that the new polymorph is the most stable low-temperature
structure for this composition among the seven known structure types
in the A'M™P,0, (A = alkali metal) families. Although the bulk Li-ion conductivity is low, as determined from alternating-current
impedance spectroscopy and variable-temperature static ‘Li NMR spectra, a detailed analysis of the topologies of all seven structure
types through bond-valence-sum mapping suggests a potential avenue for enhancing the conductivity. The new polymorph exhibits
long (>4 A) Li—Li distances, no Li vacancies, and an absence of Li pathways in the ¢ direction, features that could contribute to the
observed low Li-ion conductivity. In contrast, we found favorable Li-site topologies that could support long-range Li migration for
two structure types with modest DFT total energies relative to the new polymorph. These promising structure types could possibly
be accessed from innovative doping of the new polymorph.
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1. INTRODUCTION overall no materials have yet to be found that satisfy all of the
requirements.”” It is desired to develop new solid electrolyte
materials by either the appropriate modification of known
materials or the discovery of entirely new ones."”

In this study, we search for new lithium oxide materials
suitable for solid electrolyte applications. In general, compared
to sulfides for example, inorganic oxide solid electrolytes
exhibit better chemical and electrochemical stability against Li-
metal and high-voltage cathodes."® We selected a quinary
oxide material system (compositional phase field) consisting of
light elements, namely, Li, Mg, Al, P, and O, motivated by the
desire for a light electrolyte. The combination of multiple
cations is intended to provide the crystallographic flexibility
that might support complex physicochemical properties.

A multielement phase field as studied here presents a large
chemical composition space that is not feasible to sample

All-solid-state Li batteries are a promising avenue to
significantly advance Li-ion battery technology, particularly
for electric vehicle applications.' Compared to the conven-
tional technology, which utilizes liquid electrolytes, solid-state
batteries with inorganic electrolytes are expected to offer
higher pack-level power and energy densities, along with better
safety performance."”” These desirable features of the
technology are driving a vigorous global research agenda to
enable its commercial realization." The materials aspects of the
current research focus on finding solid electrolytes satisfying
key performance metrics that include high Li-ion conductivity
(=1 mS/cm) at room temperature, stability (electrochemical,
chemical, and thermal), zero/negligible electronic conductiv-
ity, good mechanical properties, and processability for large-
scale industrial manufacturing.” Current inorganic Li solid
electrolytes may be categorized into four broad classes of
materials:’ oxides (e.g, garnets’ and LISICONs’), sulfides Received: May 11, 2021
(e.g, thiophosphates”” and glass ceramics®), halides typically

mixed with a chalcogen (e.g., antiperovskites”), and hydrides

(e.g, borohydrides'® and closo-type complex hydrides'").

There is great variation in the performance of these different

classes of materials against the aforementioned metrics, and
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exhaustively either through experiment or computation.
Instead of sampling compositions from the entire phase field,
we restricted this study to all quinary compositions with 24 O
atoms in the unit cell. This leads to intermediate unit cell sizes
suitable for crystal structure prediction. It should be noted that
the minimum unit cell possible for quinary compositions of
these elements has 6 O atoms and that this and all
compositions with 8 and 12 O atoms are already included in
our sample. Crystal structure prediction computations were
performed within the probe structure framework,"* where the
goal is not to obtain the ground-state structure per se; instead,
the aim is only to obtain a probe structure, defined as a crystal
structure whose coordination environments are representative
of those of the ground state at that composition. Hence, the
approach reduces the computing cost by allowing termination
of the structure search even before the ground state is reached.
A predicted structure qualifies as a probe structure based on
the nearness of its formation energy to the convex hull, but it
appears that “nearness” must be determined by trial-and-error
because it varies from one phase field to another. Once a probe
structure is obtained, laboratory synthesis is then attempted at
that composition to, hopefully, obtain the experimental ground
state.

In this work, we discovered an orthorhombic polymorph of
LiAIP,0, (CCDC 2026861) while attempting to synthesize
LisMgALP,O,,, the composition at which a probe structure
had been identified. The crystal structure was solved and
refined from single-crystal X-ray diffraction (XRD) data. The
new orthorhombic LiAIP,0O, converts into an earlier-reported
monoclinic polymorph upon heating. Li-ion conductivity was
investigated by alternating-current (ac) impedance spectros-
copy and solid-state NMR. Possible Li-ion-conduction path-
ways were mapped by bond-valence-sum (BVS) analysis.
Although the pristine form of the new polymorph exhibits low
Li-ion conductivity, it may be possible to devise routes for
introducing suitable dopants to enhance the conductivity.
Beyond its potential for solid electrolyte applications through
doping, this new phase is particularly interesting because it
belongs to the alkali-metal pyrophosphates, a major subclass of
polyanionic compounds of technological importance in a range
of applications, e.g, battery cathodes,'* electrocatalysis, °
phosphor host materials,"® and nonlinear-optical materials.'”
They are characterized by high chemical and thermal stability,
largely resulting from the robustness of the diphosphate anion,
[P,0,]*,'* and a rich structural diversity, often exhibiting
polymorphism.'® In the case of the A'M"'P,0, series (A =
alkali metal; M = Group 13 or transition metal), rich structural
diversity is reported, but the literature is not consistent in their
labeling."”~*" Adopting the notation of Hamady et al.* as
extended by Khay et al,”* we further extended the structure
types to include type VIII, as summarized in Table 1. Although
NaDyP,0, is reported,” this structure type VII is excluded
from this study because a full structure solution is not available.

The cation radius ratios were calculated for the indicated
prototype structures based on Shannon ionic radii.”* Note that
ionic radii employed by Vitin$ et al.'” are the Shannon ionic
radii [based on r(O*7) = 1.26 A recalculated for r(0*~) = 1.32
Al

It has been suggested that the r,/ry ratio is an important
indicator of the structure type selection in A'M"'P,0; systems,
with ratios near the lower limit (~1.51) favoring poly-
morphism.21 Furthermore, attempts have been made to
develop a systematic treatment of the structural diversity

Table 1. Structure Types of the Alkali-Metal
Pyrophosphates, A'M"'P,0,, Illustrating the Structural
Flexibility of This Class of Materials

type prototype space group 7 ra/ T ref
I KAIP,0, P2,/c (No. 14) 4 2.97 25
I NaFeP,0, P2,/c (No. 14) 4 1.58 26
I LiFeP,0, P2, (No. 4) 2 091 27
v a-NaTiP,0, P2,/c (No. 14) 4 1.76 28
A% KYP,0, Cmem (No. 63) 4 1.77 29
VI NaYP,0, P2, (No. 4) 2 113 20
VI NaLaP,0, Pnma (No. 62) 4 1.07 30

including structure maps,'” sim%)le considerations of ionic
radii,** and pattern recognition.‘1 However, none of these
approaches appears to reliably predict structure types, in
contrast to related methods in other classes of materials, e.g.,
the Bastide diagram for ABX, compounds (A and B are
cations, and X is an anion).*” As is evident from Table 1, the
radius ratios do not decisively discriminate among the different
structure types (e.g, the values are rather close for types IV
and V); indeed, Vitin$ et al.'” reported significantly over-
lapping ranges for the radius ratios among the different
structure types, demonstrating one limitation of the approach.
In our case, the known polymorph (type III) has a radius ratio
of 1.10, while that of the new (type V) is 1.26, using the less
common Li coordination of S [Li—O bond lengths are 2.042 A
(x4) and 2.174 A (X1)]. Five-coordinate Li has also been
reported in other inorganic solids relevant to battery materials,
e.g, LiBOoF and LiVPO,F.>*** If tetrahedral coordination is
adopted for the Li, then the new polymorph will have the same
radius ratio as its known counterpart. In either case, the radius
ratio of the new polymorph is significantly smaller than the
1.77 value for KYP,O, in Table 1. It is not clear that, by
employing any of the current approaches for these compounds,
it would have been possible to predict the existence of one of
these polymorphs from knowledge of the other. Nonetheless,
the relationships among these structure types are important in
the search for new structural frameworks suited toward Li-ion
conductivity if some structure types within the family exhibit
potential for better Li-site connectivity. In such cases, attempts
at chemical modifications of a composition that forms in one
structure type could be made to achieve a more promising
structure type.

2. EXPERIMENTAL SECTION

2.1. Probe Structure Generation and Energy Calculations.
In order to search for new stable compounds from the Li—Mg—Al—
P—O phase field, we first constructed the convex hull for this phase
field from all ordered phases reported in the Inorganic Crystal
Structure Database (ICSD). This consisted of binary, ternary, and
quaternary compounds (Table S1). No quinary compounds were
found from the ICSD for inclusion in the convex hull. Disordered
phases were only included if it was possible to perform density
functional theory (DFT) calculations on the smallest supercell
containing exact integral numbers of the disordered atoms in the
phase. In such a case, the lowest-energy atomic configuration obtained
from a ChemDASH>® search of up to 1000 different configurations
(on the disordered sublattice) was assumed to approximate the
ground state for the phase. ChemDASH is a publicly available crystal
structure prediction package based on an implementation of the basin
hopping method,*® in which, for a given composition, hops between
the potential energy basins are achieved through swaps in the atomic
positions of selected atoms.

https://doi.org/10.1021/acs.inorgchem.1c01396
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The convex hull is an energy surface defined by compounds that
are thermodynamically stable relative to each of the other phases in
the phase field from 0 K DFT calculations.’” Such compounds are
referred to as stable, and compositions with predicted energies that
are close to the convex hull should be prioritized for experimental
synthesis.

The DFT total energies required for the convex hull were
calculated in the Vienna Ab Initio Simulation Package (VASP),***’
employing the projected-augmented-wave method with the Perdew—
Burke—Ernzerhof (PBE) generalized gradient approximation (GGA)
functional. However, where more accurate energies were required for
polymorph comparisons, the meta-GGA SCAN functional,”® known
to be more accurate,” particularly for oxide polymorph energy
rankings,*” was used instead. A T-point-centered Monkhorst—Pack
grid* was employed for k-point sampling of the Brillouin zone with a
k spacing of 0.2 A™", which, together with a plane-wave basis cutoff of
680 eV, ensured convergence of the total energies to better than 1
meV/atom. Each calculation was initiated from the experimental
structure, and all of the lattice parameters and atomic coordinates
were fully relaxed. The convex hull of the chemically stable
compounds was then constructed using Pymatgen.**

With the convex hull constructed, 188 quinary compositions
compatible with a 24-atom sublattice of close-packed O atoms were
selected. This choice was initially motivated by the objective of
introducing Mg and P into the @-LiAlO, structure, a common cathode
coating in Li-ion batteries.* A probe structure was searched in
ChemDASH for each of the sampled compositions as follows. A
configuration was generated from a particular arrangement of the
cations in the “holes” of the O sublattice. A series of low-precision
DFT calculations of increasing accuracy employing the PBE GGA
functional were then performed to obtain the total energy of the
optimized structure for that configuration. A hop to a new
configuration occurs, and the process is repeated until up to 1000
distinct configurations are visited. More accurate energies, as
described above for convex hull calculations, were then finally
calculated for the three best structures obtained from this process to
select the probe structure.

For a geometrical estimation of potential Li-ion migration pathways
and their connectivity, we employed BVS mapping,46 an approach
commonlI applied to screen materials for ionic conductivity
potential.*’

2.2. Synthesis. 2.2.1. Starting Materials. Li,CO; (99.99%, dried
at 523 K), Al,0; (99.997%, dried at 1223 K), MgO (99.99%, dried at
1223 K), and NH,H,PO, (99.999%, dried at 353 K) were purchased
from Sigma-Aldrich and dried at different temperatures for 20 h prior
to weighing.

2.2.2. Exploratory Synthesis in the Li—-Mg—Al—P—0O Phase Field.
Compositions in the Li—Mg—Al—P—O phase field were synthesized
from stoichiometric mixtures of the starting materials using a solid-
state reaction. Precursors were mixed with a mortar and pestle for 30
min with acetone added to form a paste, dried, and pressed into
pellets (uniaxial press, using a 10 mm die with a pressure of 100
MPa). Pellets were transferred to a Au boat, covered with sacrificial
powders (mixtures of the precursors), and heated at 873—1473 K for
40—70 h with heating and cooling rates of 1 and 5 K/min,
respectively. For a selected candidate, to obtain suitable crystals for
single-crystal XRD, a small batch (~0.5 g) of the precursor mixture
powders was placed in a Au boat, heated at 1073 K for 4 h in air, and
cooled very slowly (0.1 K/min).

2.2.3. Synthesis of Orthorhombic (Type V) LiAIP,O, Powder.
LiAIP,0, powders were obtained by a solid-state reaction. A
stoichiometric mixture of Li,CO;, Al,O;, and NH,H,PO, was ball-
milled in ethanol with ZrO, balls (350 rpm for 2 h), dried, and
pressed into pellets (uniaxial press, 125 MPa). Pellets were then
placed in a Au boat with sacrificial powders, covered, and heated at
923-1123 K for 40 h with heating and cooling rates of 1 and 5 K/
min, respectively. The sintered pellets were then ground into powders
for characterization.

2.3. Diffraction. 2.3.1. Powder X-ray Diffraction (PXRD).
Laboratory PXRD data were collected on a PANalytical X'Pert Pro

diffractometer with Co Ka, radiation (4 = 1.78901 A) in Bragg—
Brentano geometry. Patterns were recorded over the range 10—130°.
Rietveld refinements were performed using TOPAS Academic,*®
version S.

2.3.2. Single-Crystal XRD. A suitable crystal was selected and
mounted on a Bruker D8 Venture diffractometer equipped with a Mo
Ka, (1 = 0.71073 A) rotating-anode source and a Bruker PHOTON
100 CMOS detector, and data were collected at room temperature.
Data integration and reduction were carried out with the Bruker
SAINT* software package. Face-indexed absog)tion correction was
performed numerically using Bruker SADABS.>® The structure was
solved by an intrinsic phasing method using SHELXT,*" implemented
in OLEX2,”> and refined via the SHELXL™ package by least-squares
minimization. The assignments of Li, Al, P, and O were determined
based on the interatomic distances and relative displacement
parameters. The structure was checked using the Addsym subroutine
of PLATON® to ensure that no additional symmetry elements could
be applied to the model.

2.4. ac Impedance Spectroscopy. Pellets for impedance
measurements were obtained by first uniaxially pressing the resultant
powders (10 mm, 100 MPa) and further pressing using a cold
isostatic press (200 MPa). The resulting pellets were sintered at their
optimal synthesis temperature, 923 K, for 4 h before opposite faces
were coated with Au electrodes (300 nm thickness) using a Quorum
QISOR sputter coater. The densities of the pellets used for impedance
measurements were 65(3)% of the theoretical density. Impedance
data were recorded in air with a Solartron SI 1260 analyzer with 100
mV ac voltage and a frequency range of 107>—10° Hz. The obtained
data were analyzed and fitted with an equivalent circuit using ZView*
software version 3.3f.

2.5. Solid-State NMR. Variable-temperature "Li NMR experi-
ments were recorded on a 4 mm HX high-temperature magic-angle-
spinning probe on a 9.4 T Bruker Avance III HD spectrometer under
static conditions, with the X channel tuned to "Li at @,/27("Li) = 156
MHz. Spectra were recorded with a pulse length of 1.5 us at an radio-
frequency field amplitude of w,/27 = 83 kHz and referenced to 10 M
LiCl in D,O at 0 ppm. Temperature calibrations were performed
using the chemical shift thermometers Pb(NO,), using 2’Pb NMR
and Cul and CuBr using *Cu NMR.**™ The errors associated with
this method were calculated using the isotropic peak line broadening
and ranged from 5 to 20 K.

3. RESULTS AND DISCUSSION

3.1. Computational/Experimental Study of the Li—
Mg—AI-P—-0 Phase Field. From the ChemDASH study of
the 188 quinary compositions, we found energies above the
convex hull ranging from 34 to 244 meV/atom, Figure la. In
particular, there are 12 compositions lying between 34 and 50
meV/atom separated from a denser band of compositions
between 65 and 167 meV, which, in turn, is separated from
four compositions at higher energies. Previous work'” in our
research group had suggested a high likelihood of synthesiz-
ability for compositions of up to 35 meV/atom above the hull.
However, only two compositions from our sample satisfied this
criterion. Because there is variation in the energy landscapes
among different phase fields, we investigated what could be the
most appropriate synthesizability criterion for this phase field.
We considered the energies of quinary compositions that are
slightly off-stoichiometric from the respective pure binary
oxides (Figure 1b). We assume that the energies of such
compositions do not significantly differ from those of the
parent oxides because the additional metals are at very low
concentrations (<0.12 on a metal-only mole fraction basis).
For the selected compositions, Figure 1b shows energies above
the convex hull ranging from 43 meV to an outlier at 280 meV.
However, the majority of the compositions, especially the Li-
rich ones, lie below 100 meV/atom, suggesting that this energy

https://doi.org/10.1021/acs.inorgchem.1c01396
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Figure 1. Energies above the convex hull. (a) Quinary compositions
(expressed only as a Li mole fraction) sampled from the Li—Mg—Al—
P—O phase field. The Li mole fraction basis reflects our interest in Li-
rich phases. Synthesis trials were performed for most compositions
below 95 meV/atom above the hull (diamond, triangle, and square
symbols), and all compositions below the green dashed line are
currently under investigation. Li;MgAlL,P-O,,, the target composition
at which the new LiAIP,0, polymorph was discovered, is indicated by
the blue square. The new polymorph has also been observed in
another targeted composition indicated by a blue triangle
(Li;MgAIP0,,). The dashed vertical line marks the Li mole fraction
for LiAlP,0,. (b) Quinary compositions for synthesizability
benchmarking generated by introducing small amounts of the other
three metal elements into the respective binary oxides. Compositions
are expressed on a metal-only mole fraction basis for the richest metal
in each composition as specified in the legend.

could be a reasonable upper bound for synthesizability in this
phase field. Applying this criterion, we performed synthesis
trials for most compositions below 95 meV/atom (Figure 1a).

In the first stage, synthesis attempts were carried out at
various temperatures (873—1473 K) with a long heat
treatment to ensure reactivity of the precursors, especially
refractory MgO and AL O;. For the initial characterization,
laboratory PXRD data were collected, and several composi-
tions showed evidence of an unknown phase alongside
reported phases available in the ICSD. Figure S1 is an example
XRD pattern of the targeted composition LigMgALP,0,,, in
which the unknown phase appears to be in a relatively high
amount. Following the identification of a promising area of
phase space through the appearance of an unknown phase,
single-crystal growth methods were employed to isolate this
new phase. Single-crystal XRD was used to determine the
composition and crystal structure of the unknown phase found
in sample Li;MgALP,0,,.

3.2. Single-Crystal XRD and Crystal Structure of
LiAIP,0,. 3.2.1. Diffraction. In order to identify the unknown
phase in attempted sample LisMgALP,0,,, a single-crystal
sample was prepared from the high-temperature melt. A
colorless single crystal was selected and measured at room
temperature. The structure of the crystal was solved and
yielded a composition of LiAIP,O,. Final anisotropic atomic

refinement converged to R, = 0.0234 (wR, = 0.0618) for 290
reflections with F, > 40(F,). Crystallographic data and
structural refinements for the LiAIP,O; crystal are summarized
in Table 2. The refined structural parameters and anisotropic

Table 2. Crystal Data and Structure Refinement for a Single
Crystal of LiAlP,0, Measured at 293 K

empirical formula LiAlP,O,
fw/(g/mol) 207.86
temperature/K 293(2)

cryst syst, space group orthorhombic, Cmcm
a/A 5.1140(9)

b/A 8.2042(13)

c/A 11.565(3)
volume/A3 485.22(17)

Zz 4

Peac/ (g/em?®) 2.845

u/mm™! 1.054

F(000) 408.0

radiation Mo Ka (4 = 0.71073)

20 range for data collection/deg  7.046—52.884

index ranges —6<h<6-10<k<10,-12LI1<14
reflns collected 2222

290 [R;, = 0.0254, R, = 0.0153]
completeness to 0 = 25.242 99.2%

data/restraints/param 290/0/34

GOF on F* 1270

final R indexes [I > 26(I)] R, = 0.0234, wR, = 0.0618

final R indexes (all data)” R, = 0.0244, wR, = 0.0630

largest diff peak/hole/(e/A%) 0.30/-0.54

“R, = YNE| — IENl/YIF,| and wR, = [ Y w(F,? — E2)?/ Y wF,*]'/2 for
Fl!>20(F}).

indep reflns

displacement parameters of each atom are given in Tables S2
and S3, respectively. Table S4 shows selected bond distances
and angles.

3.2.2. Structural Description. The sample crystallizes in the
orthorhombic space group Cmcm (No. 63) with four formula
units per unit cell. Figure 2a shows the structure of LiAIP,O,
using the refined structural parameters. The Li atom occupies a
S-fold coordination site, forming a LiO; pseudosquare
pyramid. The AlOg octahedra are isolated from each other,
connected through corner-sharing O with pairs of PO, of
corner-sharing tetrahedra, forming the diphosphate anion
[P,0,]*". BVS calculations confirm the validity of this
structural model,*”®" with results consistent with the expected
valences (Table S2).

The structure can be described as a three-dimensional

framework of D2[A1P207]_ constructed from the corner-sharing

of alternating [P,O,]* and AlOg¢ units. The J[AIRO,]
framework affords a one-dimensional wide straight channel
along the a axis, which is occupied by Li" cations, as shown in
Figure 2a. Each LiOj; unit in the channel connects with two
AlOy octahedra via edge-sharing and three [P,0,]*" groups via
corner-shared O sites, as shown in Figure 2b.

3.2.3. Comparison with Known Structures. Lithium
pyrophosphates, with the general formula of LiM"P,0,,
present cagelike structures built from PO, tetrahedra and
MOy octahedra with corner connectivity similar to those
observed in orthorhombic LiAlIP,0O,. The voids of the one-
dimensional tunnels in the framework are typically occupied by
LiO, tetrahedra. This new polymorph is isostructural with a
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Figure 2. Crystal structure of a newly identified orthorhombic (type
V) LiAlP,0,. (a) Projected views of the LiAIP,O, structure along the
a axis, visualizing the six-membered straight channels in the three-
dimensional framework constructed from four distorted PO,
tetrahedra (purple) and two AlOg octahedra (blue) sharing corners,
and the Li atoms (green) are located in the voids of the channels.
Atoms: Li (green), Al (blue), P (purple), and O (red). (b)
Coordination environment of LiOg octahedra in orthorhombic
LiAIP,0, (type V).

high-temperature phase of KYP,O,”’ a type V structure
(Table 1), and is an isomeric polymorph of the known
monoclinic LiAIP,O, (P2,).°” The monoclinic polymorph
(previously prepared by a solid-state reaction at 1073 K) was
described recently®” and is isotypic with LiFeP,0,, a type III
structure (Table 1), crystallizing in the monoclinic space group
P2, with refined lattice parameters: a = 4.81 A, b = 8.09 A, ¢ =
6.96 A, and f = 109.22°. The monoclinic polymorph can be
described in terms of AlOQg, P,0-, and LiO, units. Because the
experimental atomic coordinates were not reported for
monoclinic LiAIP,0-, our discussion of the bond lengths and
angles refers to values extracted from a DFT-optimized
structure. The LiO, tetrahedra in the monoclinic polymorph
are highly distorted, with Li—O distances ranging from 1.904
and 2.066 A and O—Li—O angles in the range of 80.452—
170.536°. Different from the eclipsed conformation in the
orthorhombic polymorph, the pyrophosphate group of the
monoclinic polymorph is slightly staggered with a dihedral
angle of 9.76°. The smaller P—O—P angle for the known
monoclinic polymorph indicates a bending about the bridging
O atom, slightly compressing the diphosphate ion, consistent
with the ~2% higher density of this polymorph. The distance
between the P atoms of the P—O—P unit is 2.9322 A for the
known polymorph, while that for the new structure is longer at
2.976(1) A. For simplicity of notation, we henceforth adopt
the structure-type notation of Table 1, i.e., type III (known
monoclinic polymorph) and type V (new orthorhombic
polymorph).

Related isostructural compounds of t7ype I LiAIP,0,,%
such as LerP207,63’64 LiFeP,0,,'”*" LiScP,0,,"" and
LiGaP,0,,> can be described as three-dimensional cage
structures constructed from the corner-sharing of alternating
P,0, and MO4 (M = Cr, Fe, Sc, and Ga) units, and the voids

in the framework are occupied by Li cations. All of these type
III structures have wide straight tunnels, which provide
possible pathways for Li-ion diffusion. In addition, the type
IIT polymorph, as well as other lithium pyrophosphates in the
LiM™P,0; family, presents shorter Li—Li distances compared
to the type V LiAlP,0; reported in this work (Figure 3 and
Table 3).

Figure 3. Comparison of the crystal structures of (a) orthorhombic
(Cmcem) LiAIP,O; and (b) monoclinic (P2;) LiAlIP,O,. Labels show
the Li—Li distances between highlighted Li positions.

3.3. Synthesis of Phase-Pure Type V LiAIP,0; and
Phase Stability. 3.3.1. Synthesis, Diffraction, and Structure
Refinements. Because type V LiAIP,0O, was identified as a new
polymorph through the method described above, attempted
powder synthesis and purification were carried out following
single-crystal growth. Multiple firings were performed in the
range of 923—1123 K, and LiAIP,0, was successfully
synthesized via a solid-state reaction route using a heat
treatment at 973 K. Samples prepared at this temperature were
found to be single phase by laboratory PXRD (Figure 4). All
reflections were indexed using the orthorhombic space group
Cmcm, a = 5.112096(19) A, b = 8.21605(3) A, and ¢ =
11.60739(S) A. The crystal structure of powder samples was
confirmed through Rietveld refinement using the single-crystal
model as a starting point. All refinement parameters, including
goodness-of-fit y* = 6.64 and R,, factor = 10.09%, are
acceptable. These results indicate that a single-phase powder of
type V LiAIP,0O; can be reproducibly synthesized using a heat
treatment at 973 K for 40 h.

3.3.2. Reaction Conditions and Phase Transition. The
results of attempted syntheses at different temperatures of
LiAIP,0, are summarized in Table 4. The PXRD patterns of
these samples are shown in Figure S2. The new type V
LiAIP,0; could only be synthesized phase-pure at ~973 K.
Type III LiAIP,0O; is the reaction product at 1023 K and was
previously reported as an isomorphic compound of LiFeP,0O,
by Taher et al.%> However, their samples prepared at 1073 K
were not phase-pure. Here, by sintering a stoichiometric
mixture of precursors at 1023 K for 40 h, the reported®” type
III LiAIP,O, was successfully synthesized as a single phase.
The PXRD data measured from this sample were indexed to a
monoclinic unit cell with dimensions a = 4.71614(2) A, b =
7.80512(3) A, ¢ = 6.81279(2) A, and p = 108.4549(4)°
(Tables S5 and S6). Experimental and calculated XRD patterns
are shown in Figure S3.

As LiAIP,O; is at least dimorphic, in order to explore any
phase transition, a sample sintered at 973 K was reheated at a
higher temperature, 1023 K, for 4 h. Figure 5 gives a
comparison of the XRD patterns before and after reheating,
presenting evidence for a partial phase transformation of the

https://doi.org/10.1021/acs.inorgchem.1c01396
Inorg. Chem. XXXX, XXX, XXX—=XXX


https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.1c01396/suppl_file/ic1c01396_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.1c01396/suppl_file/ic1c01396_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.1c01396/suppl_file/ic1c01396_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c01396?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c01396?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c01396?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c01396?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c01396?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c01396?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c01396?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c01396?fig=fig3&ref=pdf
pubs.acs.org/IC?ref=pdf
https://doi.org/10.1021/acs.inorgchem.1c01396?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Inorganic Chemistry

pubs.acs.org/IC

Table 3. Li—Li Distances in Related Lithium Pyrophosphates along the Li Channels

compound structure space group Li—Li distance (A) ref
LiAlIP,0O, orthorhombic Cmem (No. 63) S5.114 this work
LiAIP,0O, monoclinic P2, (No. 4) 4.710 62
LiFeP,0, monoclinic P2, (No. 4) 4.823 19, 27
LiCrP,0, monoclinic P2, (No. 4) 4.787 63, 64
Li,P,0, monoclinic P2,/c (No. 14) 2.998—3.214 66—69
Li;CsMn(P,0,), orthorhombic Pben (No. 60) 2.490-3.277 70
PXRD o observed x LIAIP,0, (monoclinic)
= calculated
= difference

Intensity / a.u.

R, =10.09%

wp

PRV IR | L

Ll I T IIiIIIIII'IIIIIIIIII;IIIIIIIII[IIIIIIIIII' I
1 2 3 4 5 6
Q/A"

Figure 4. Experimental (black circles), calculated (red line), and
difference (gray line) profiles illustrating the quality of the Rietveld fit
to PXRD (Co Ka, radiation) of the as-synthesized orthorhombic type
V polymorph of LiAIP,0O..

Table 4. Phases Present in Samples Heated at Different
Temperatures as Determined by PXRD

no. temperature (K) phases present

1 923 type V LIAIP,0,, LiPO,, Al(PO,),
2 973 type V LIAIP,0,

3 1023 type III LAIP,0,

4 1073 AIPO,, LiPO;

s 1123 AIPO,, LiPO,

type V low-temperature form into the type III high-
temperature form occurring at temperatures above ~1023 K.
Our DFT results show that the type V polymorph is lower in
energy at 7.2 meV/atom (PBE functional) and 9.5 meV/atom
(SCAN) compared to the type III polymorph. For quaternary
systems, the median total energy of polymorphs above the
“ground-state polymorph” is 3.4 meV/atom,”" suggesting that
the type V polymorph is substantially more stable than the type
IIT phase at 0 K. This is consistent with the type V polymorph
being accessible experimentally at lower temperature. Two
aspects of the phase transition between the polymorphs can be
noted. First, the qualitative DFT relative stability of the
polymorphs is considered reliable because comparisons
between the PBE and SCAN functionals show the latter
giving results closer to experiment for many oxides,”” even in
such challenging cases as the anatase/rutile phase transition of
TiO,.”* Although we found no DFT reports of polymorph
relative stabilities for the more closely related A'M™P,0,
family of compounds (M = Al, Ga, and In) for comparison,

reheat 1023 K4 h

X X
. X

S X
©
~ X X
= xl 2o 1 x
B A " x 11 Afﬁ(
o 973K 40 h
=

I | O T

10 20 30 40 50
2Theta / degree

Figure 5. XRD patterns, Co Ka; radiation, of the as-synthesized
orthorhombic LiAIP,0; and the same powder after reheating to 1023
K for 4 h. Crosses indicate reflections from the monoclinic type III
polymorph of LiAIP,O,.

examples have been reported for transition-metal pyrophos-
phates and for phosphates in general. Apart from the added
complexity of d orbitals in transition-metal-based pyrophos-
phates, polymorph relative energies qualitatively alongside
experiment have been reported for these compounds, e.g,
Na,FeP,0,”* and Na,CoP,0,.”> Similar findings are also
reported for phosphates (containing transition metals) in
general, e.g,, VOPO,,”® BaM,(PO,), (M = Mn, Fe, and Co),”’
and NaNiPO,.”® Except for highly correlated oxides (e.g,,
Co0” and MnO®’) requiring higher-level theories,*’ DFT
employing semilocal or hybrid functionals is commonly
successful in obtaining qualitatively correct ordering of
polymorph energies in simple oxides, e.g, MgO,” Al,0,*
and ZnO.**

Second, while P2, is a subgroup of Cmcm, they are not
connected by a single irreducible representation (irrep) order
parameter (i.e, it is not a simple Landau-type phase
transition);** instead, the two structures have a complex
maximal subgroup structure, suggesting a first-order transition.
The phase transition could involve multiple irrep order
parameters, but it is more likely to be completely
reconstructive. The exact path for phase transitions of this
type can be quite complex and counterintuitive. For example,
Bianchini et al*® recently reported the somewhat counter-
intuitive observation of a DFT ground-state polymorph
forming at a higher temperature than those of the polymorphs
predicted to be metastable. This was rationalized from direct in
situ observation of the progress of the solid-state reaction,
where the interplay between the exact experimental thermody-
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Figure 6. Impedance data for type V LiAIP,O, sintered at 973 K

part a.

and measured in air. (a) Impedance plots at 673 K. (b and ¢) Z"/M"
spectroscopic plots at 673 and 473 K. (d) Arrhenius plots of the total conductivity data. The equivalent circuit used to model the data is inset in

namics and kinetics selected a multiple-step pathway involving
the metastable polymorphs as intermediate phases.

3.4. Li Conductivity. 3.4.1. ac Impedance Spectroscopy.
The electrical properties of type V LiAlP,0, were determined
by ac impedance spectroscopy on a sintered pellet with ~65%
relative density. Typical impedance data sets recorded at 673
and 473 K are shown in Figure 6.

The impedance complex plane plots (Figure 6a) show a
single arc at high frequencies and an inclined spike with some
curvature at low frequencies. The high-frequency arc is
attributed to the sample bulk because the corresponding Z"/
M" spectra (Figure 6b,c) show single and almost overlapping
peaks, which is clearer at lower temperature. The low-
frequency spike is attributed to the electrode double-layer
phenomenon. In general, the material is electrically homoge-
neous, and the impedance response is mainly dominated by the
sample bulk. Thus, the high-frequency impedance data could
be represented by the parallel R-CPE element shown in Figure
6a (inset), in which CPE is a constant phase element
responsible for the dispersion seen in both the C’ (Figure
S4) and Z"/M” data. The conductivity data were extracted
from the low-frequency intercepts in the Z* plot and plotted in
an Arrhenius format in Figure 6d. Almost linear behavior was
observed in the temperature range 473—673 K. Type V
LiAIP,O; is, therefore, a modest Li-ion conductor with a
conductivity of 6 X 1077 S/cm at 673 K and an activation
energy of 0.87(5) eV.

3.4.2. Solid-State NMR. The temperature dependence of the
static "Li NMR spectra of type V LiAIP,0, over the 295—583
K temperature range is shown in Figure 7 and shows a

295 K

T T T T 1
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Figure 7. (a) Static "Li NMR spectra as a function of the temperature
for type V LiAlP,O,. Spectra at temperatures of 523 and 583 K were
recorded with half the number of transients and have been scaled up
by a factor of 2 for comparison. (b) Temperature dependence of the
’Li NMR central transition line width.

resonance at 0 ppm corresponding to the “Li central transition
("Li is spin */,) as well as the corresponding satellite
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Table 5. Structural Symmetry, Unit Cell Volume, Li—Li Distances, and Ionic Conductivities of A'M™P,0.-Type

Pyrophosphates and Selected Lithium Phosphates

compound structure space group V/Z (A%)
LiAIP,O, orthorhombic Cmem (No. 63) 121.3
LiAlP, 0, monoclinic P2, (No. 4) 135.4
LiScP,0, monoclinic P2, (No. 4) 137.1
LiFeP,0O, monoclinic P2, (No. 4) 143.9
Li,P,0, monoclinic P2,/c (No. 14) 142.5
Li},Zn,(P,0,)s monoclinic P2,/c (No. 14) 141.6
LiZr,(PO,), rhombohedral R3¢ (No. 167) 250.6
LiGd(PO,), monoclinic C2/c (No. 15) 226.1
LiMg;(PO,)P,0, orthorhombic Pnma (No. 62) 199.1
Li;CsMn(P,0,), orthorhombic Pben (No. 60) 315.8

“Values in italic type are interpolated from Arrhenius plots.

Grorat at 573 K* (S/cm)  minimum Li—Li distance (A) E, (eV) ref
5.0x 1078 5.114 0.87 this work
8.1 x 107° 4710 0.84 62
4.1 x 1077 4.940 1.06 19
8.3 x 1077 4.823 1.23 19, 27
32 x 10° 2.998 0.99 66—69
3.9 x 10 2.607 0.79 68, 69, 86
12 x 1072 1.457 0.42 87, 88
9.5 x 10°% 5.622 1.76 89
2.1 x 107 6.87 1.17 90
1.3 x 107° 2.490 0.42 70

transitions spanning hundreds of parts per million. In static
solid-state “Li NMR spectra and in the absence of Li-ion
mobility, this central transition is broadened by the strong
homonuclear "Li—"Li dipolar coupling interactions (so-called
rigid lattice regime). Type V LiAlP,O, remains in this regime
until roughly 500 K and has a line width of approximately 3.7
kHz. As the temperature is increased to 523 and 583 K, a small
decrease of the NMR line width of only 0.7 kHz was observed,
indicating limited averaging of the "Li—"Li dipolar interactions
due to a slight increase in the Li-ion motion. Higher
temperatures were not accessed because of restrictions on
the temperature range of the available NMR probe hardware.
This absence of significant NMR line narrowing suggests that
Li-ion mobility in type V LiAIP,O, is minimal in the measured
temperature range and consistent with the large Li—Li distance
(Table S) and conductivity measured from ac impedance.

3.4.3. Conduction Mechanism of Pyrophosphates. Com-
pared to other reported pyrophosphates (Table S), type V
LiAIP,0, exhibits a lower but comparable ionic conductivity. A
clear correlation between the measured ionic conductivity and
minimum Li—Li distance emerges from this comparison, as
shown in Figure 8. This probably indicates that all of these
pyrophosphates share a similar primary Li-conduction
mechanism, suggested to be associated with the cage
frameworks common to all of these structures.'”*>”" As
shown in Figure 9, it is likely that Li-ion transport in
pyrophosphates occurs primarily by a hopping mechanism of
Li ions along these channels. However, despite their generic
framework structure, the different structure types of these
pyrophosphates exhibit varying structural characteristics,
potentially leading to different topologies for the Li sublattices.
Some of these topologies could be more favorable to long-
range Li-ion migration than others. Accordingly, we examine
seven of the structure types in Table 1 (Figure 9) by BVS
mapping to assess the prospect for favorable Li-ion
conductivity of LiAlP,O, forming in each of the structure
types.

The BVS maps, calculated for crystal structures optimized in
DFT, are plotted in Figure 10a—g. Note that, except for the
type III and V polymorphs, the rest of the structures are
hypothetical for the composition LiAIP,O,. We have also
included their energies relative to the type V polymorph, the
most stable form at low temperature, to provide a rough
estimate of the minimum energy barriers for structural
transition to the higher-energy forms. The BVS maps show
that only types I and III exhibit three-dimensional isosurface
connectivity (Figure 10a,c), although the c-direction con-

log(c,,,,) /S cm”

. 8 1 | 1 | 1 | 1 | 1 | 1 |

1 2 3 4 5 6 7
Minimum Li-Li distance / A

Figure 8. Comparison of Li-ion conductivity at 573 K against the
minimum Li—Li distance for the A"™M™P,O-type pyrophosphates and
selected lithium phosphates (black squares) given in Table
5.276267,7087=90 Type V LiAIP,0, reported in this work is highlighted
(red circle). Reproduced with permission from ref 27. Copyright 2016
Elsevier. Reproduced with permission from ref 62. Copyright 2016
Elsevier. Reproduced with permission from ref 67. Copyright 2014
Elsevier. Reproduced with permission from ref 70. Copyright 2003
Royal Society of Chemistry. Reproduced with permission from ref 87.
Copyright 2003 American Chemical Society. Reproduced with
permission from ref 89. Copyright 2006 Elsevier. Reproduced with
permission from ref 90. Copyright 2015 Elsevier.

nectivity for the latter is significantly limited. T'ype II has no
connected pathways (Figure 10b), while types IV, V, and VIII
all lack c-direction connectivity (Figure 10d,e,g). For types I—
111, V, and VIII, the Li—Li distances for long-range connectivity
are >4 A, suggesting alongside the correlation between the Li—
Li distance and conductivity shown in Figure 8 that an effective
strategy to enhance Li conduction will likely require reduction
of these Li—Li distances, i.e., introducing interstitial Li atoms.
This approach could be particularly effective for the type I case
because it offers a more open structure (Figure 10a) provided
the energetics are favorable. Types IV and VI are intriguing;
while introducing Li vacancies into the zigzag chains in the b
direction (Figure 9d,f) might enhance Li conduction, the
SCAN energies for both structure types are too close to that
for type II, which might make structure-type selectivity
challenging. Nonetheless, if innovative doping schemes could
be devised to realize type IV and VI structures for LiAIP,0O,,
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Figure 9. Structure types from Table 1 depicting the Li channels that
result from cage frameworks formed from different arrangements of
corner-sharing PO, tetrahedra (purple) and AlO4 octahedra (blue).
Types 1II (c) and V (e) are the known and new polymorphs of
LiAIP,O,, respectively, while the rest are hypothetical structure types
for LiAIP,O,. Both types IV and VI have zigzag Li chains in the b
direction as shown.

they would likely yield the best Li conductivity among all seven
structure types. A caveat to this discussion of the energetics of
the structure types is that, because the actual energy barriers
for structural transition are unknown, only a naive consid-
eration of the energetics is possible. Furthermore, dopants
could be introduced to the type III polymorph instead of the
type V polymorh, thus improving the overall energetics
according to this naive analysis.

3.4.4. Comparison with Known Phosphates. Although the
above A'M"'P,0,-type pyrophosphates have a framework with
wide tunnels for Li*-ion transportation, the ionic conductivities
in these materials are low, 107°~107% S/cm at 573 K (Table
5). Appreciable Li-ion conductivity is always found in open-
framework or layered materials containing mobile Li cations.
In particular, many 1phosphates are good ionic conductors,
notably NASICON,” = which is widely known to be a fast

a) Type | b) Type Il

h) Relative DFT total energies
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Figure 10. Isosurfaces (yellow) at a Li BVS of 1.0 valence unit to
highlight potential pathways for Li-ion conduction in the different
structure types (a—g) and DFT total energies relative to the new
polymorph (h). Type I: three-dimensional connectivity of the
isosurfaces, but the Li—Li distances (>4 A) are too long. Type II:
no connected pathways; the Li sublattice consists of Li “dimers” (Li—
Li distance of 2.8 A) that are >5.2 A apart. Type III: weak c-direction
connectivity; Li—Li distances >4 A are too long. Type IV: no ¢
direction connectivity; the Li—Li distance in the b-direction zigzag
chains is 3.1 A and could be favorable for Li-ion conductivity; a-
direction isosurfaces connect Li sites ~7 A apart. Type V: no ¢
direction connectivity; Li—Li distances >4 A are too long. Type VI:
no a-direction connectivity; b-direction zigzag Li chains (Li—Li
distance ~2.8 A) could be favorable to Li migration; isosurfaces in the
[101] direction connect Li sites ~8.3 A apart. Type VIII: no ¢
direction connectivity; Li—Li distances >4 A are too long. The SCAN
(PBE) energies vary from 9.5 meV (7.2 meV) for type III to 137.1
meV (110.4 meV) for type VIII relative to the new polymorph. Type
V is the most stable structure type for the composition LiAlP,O, at
low temperature. The SCAN energies for types II, IV, and VI are
remarkably close to each other. At almost 2.5X larger than the SCAN
value, the PBE energy for type II presents an apparent anomaly
among the energy results, but the reason for this is unclear. Dashed
lines indicate the unit cell, and atom colors are green, blue, purple,
and red for Li, Al, P, and O, respectively.

ion conductor. Different from NASICON-related structures, it
is clear that the framework structures of pyrophosphates are, in
general, not suited to fast ion conductivity.
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The most likely reasons for the low conductivity observed in
both type III and V LiAIP,0O, polymorphs despite their wide
one-dimensional Li channels include the following: (i) a lack of
disordered or partially ordered sites and the absence of Li
defects (vacancies and interstitials) in the structure, whereas in
comparison with a structure like NASICON, both Li site
disordering and partial occupancy of a large number of possible
sites play a key role in the high mobility;”*~* (i) Li—Li
distances that are too long to ensure continuous transport
pathways between Li sites available for Li-ion hopping (Table
5). In contrast, shorter Li—Li distances are observed in
compounds such as Li;;Zn,(P,0,); and LisCsMn(P,0,),,
which show higher conductivities (1—3 orders of magnitude)
than other pyrophosphates.'””%>%~7%%=%0 Accordingly and
supported by calculation, we have suggested the introduction
of Li vacancies in the two structure types with comparatively
short Li—Li distances.

4. CONCLUSIONS

We reported a new polymorph of LiAlP,0O,, guided by a
workflow incorporating crystal structure prediction. The
structure was indexed to an orthorhombic unit cell with
parameters a = 5.1140(9) A, b = 8.2042(13) A, ¢ = 11.565(3)
A, and V = 48522(17) A’ Static solid-state 'Li NMR
spectroscopy on powdered samples revealed minimum Li-ion
mobility up to 583 K. Impedance measurements on sintered
pellets showed a homogeneous bulk response with no
significant grain boundary impedance and a poor Li-ion
conductivity of 6 X 1077 S/cm at 673 K, likely not competitive
as an electrolyte for all solid-state batteries. However, by
examining the structure types observed for the A'™M™P,0,
family of compounds, we have suggested potential avenues for
enhancing the Li-ion conductivity within this broad materials
family. Finally, future work could also focus on an in-depth
study of the structural phase transition between the new and
known polymorphs to gain insight into the mechanisms
involved.
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