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Diamond Field-Effect Transistors With
V>0s5-Induced Transfer Doping:
Scaling to 50-nm Gate Length
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Abstract— We report on the fabrication and measurement
of hydrogen-terminated diamond field-effect transistors
(FETs) incorporating V,05 as a surface acceptor material to
induce transfer doping. Comparing a range of gate lengths
down to 50 nm, we observe inversely scaling peak output
current and transconductance. Devices exhibited a peak
drain current of ~700 mA/mm and a peak transconductance
of ~150 mS/mm, some of the highest reported thus far for
a diamond metal semiconductor FET (MESFET). Reduced
sheet resistance of the diamond surface after V505
deposition was verified by four probe measurement. These
results show great potential for improvement of diamond
FET devices through scaling of critical dimensions and
adoption of robust transition metal oxides such as V,05.

Index Terms—2-D hole gas (2DHG), diamond metal semi-
conductor field-effect transistor (MESFET), drain-induced
barrier lowering (DIBL), electronic devices, gate length,
power, radio frequency (RF), surface transfer doping, V2O5.

I. INTRODUCTION

NTEREST in the diamond material system for elec-

tronic applications has rapidly increased in recent years,
becoming a global scale area of interest. With its ultrawide
band-gap of 5.47 eV, extremely high thermal conductivity
of >20 W cm™! K~! and intrinsically high breakdown field
of 10 MV/cm, diamond is a promising candidate in achiev-
ing next-generation high-power electronic devices [1]-[4].
Progress in this area has been typically hindered by the lack of
mature doping techniques and on-going development of novel
fabrication strategies to overcome the challenges in working
with diamond [5]. The U.S. Army Research Laboratory is
investing in the development of surface transfer-doped dia-
mond field-effect transistors (FETs) for radio frequency (RF)
and power applications [6]—[8]. Surface transfer doping offers
an alternative to substitutional doping that alleviates the chal-
lenges of introducing impurity dopants into diamond’s tightly
packed carbon lattice. Historically, spontaneous accumulation
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of volatile atmospheric adsorbents on the hydrogen-terminated
diamond surface when exposed to air has provided the nec-
essary surface acceptor states for transfer doping [1], [9].
However, this method of transfer doping is highly sensitive
to environmental conditions such as temperature, humidity,
and molecular composition of the adsorbents [8], [9]. More
recent results demonstrate enhanced surface transfer doping
utilizing high electron affinity transition metal oxides, such as
V,0s. When in intimate contact with the hydrogen-terminated
diamond surface, these high electron affinity materials will
prompt the transfer of electrons from the diamond, acting
as an electron accepter. This process leaves behind corre-
sponding holes within the diamond, forming a 2-D hole gas
(2DHG) beneath the surface [8], [10], [11]. This approach of
encapsulation with a transition metal oxide has been incorpo-
rated into our diamond metal semiconductor FET (MESFET)
designs, improving output current density and stability of
devices. By reducing gate length (L), peak output current
and transconductance are improved significantly.

1. EXPERIMENTAL

A single crystal diamond sample with (100) surface ori-
entation and 4 mm x 4 mm dimensions was obtained from
Element Six. The substrate was first cleaned in H,SO4:NHO3,
to remove any metallic and organic contaminants, and then
hydrogen terminated in a CVD diamond growth reactor. The
substrate was then coated with 100 nm thermally evaporated
Au as a sacrificial layer both to form ohmic contacts and to
protect the hydrogen-terminated surface. Electrical isolation
of devices was performed by patterning and etching the Au
sacrificial layer between regions using a KI, solution. At this
point, the exposed diamond surface is treated in O, plasma
to remove hydrogen termination in these areas. Probe pads
consisting of Ti/Au were written and deposited to overlap
the Au ohmic metal and provide a more robust contact.
The source—drain region of each device was then patterned
and etched using a KI, solution with carefully controlled
dilution and temperature. Gate dimensions of 50, 100, 200,
400, and 800 nm were defined by e-beam lithography and
a metal gate-stack of Al/Pt/Au 50/25/45 nm was deposited.
A similar process flow can be found in [6]. Each device
had two gates with a combined width of 50 um and a
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Fig. 1. Optical image of a diamond MESFET and pictorial cross section
of the channel.

spacing of ~300 nm from gate to source/drain. Dimensions
were verified by scanning electron microscopy (SEM). The
substrate was then encapsulated with 40 nm V,0s by thermal
evaporation, provided by Blue Wave Semiconductors Inc.
A 350 °C in situ anneal was performed prior to deposition
to drive off atmospheric molecules from the diamond surface.
Evidence suggests this anneal step is crucial for stability of
the V,0s work function [8]. Fig. 1 shows an optical image
and cross section of one FET device.

I1l. RESULTS

Plots of peak drain current and transconductance for
37 devices with gate lengths ranging from 50 to 800 nm are
shown in Fig. 2. DC characterization was carried out using
GGB Industries ground-signal-ground probes with 50-um
pitch and a Keysight B1500 parametric analyzer. Measure-
ment of peak values were taken at Vgg = —4 V and
Ve = —3 V. A clear trend between reduced gate length and
increased current (/;)/transconductance (g,,) is observed, with
small dispersion between data points indicating good yield
across the substrate relative to what is typically observed on
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Fig. 2. Summary of peak output current and transconductance for
37 devices of various gate lengths. Vgs = —4 V, Vgs = -3 V.

hydrogen-terminated diamond. The highest /; and g,, values
plotted are 525 mA/mm and 153 mS/mm, respectively. Four
probe measurement of a van der Pauw (VDP) structure on the
substrate showed a reduction in sheet resistance from 14.2 to
6.8 kQ/[ after deposition of V,0s, a decrease consistent with
other such reported results [11], [12]. Measurement of the
V,0s5 film resistance via an isolation structure on the substrate
showed ~20 GQ/mm.

Fig. 3 shows normalized /-V output characteristics for four
FET devices with gate lengths of 50, 100, 200, and 400 nm.
Peak output current at Voo = —3 V and V4 = —4 V for each
device scaled inversely with gate length, ranging from ~500 to
~270 mA/mm, due to reduced L, resulting in a decreased
depletion region beneath the Al gate contact [13]. Likewise,
OFF-state behavior significantly worsens as L, moves toward
smaller dimensions due to a reduced ability to deplete the
diamond 2DHG.

Gate leakage for the 50-nm device at peak output current
was ~1 uA/mm. A sharp increase in gate current was observed
when attempting to reach the pinch-off state, increasing to
~4.8 mA/mm at Vo = 2 V. This effect was permanent,
resulting in increased gate leakage for any subsequent sweeps.
Although the exact mechanism is unclear, this could be related
to hot carrier injection in which carriers gain sufficient energy
to overcome the potential barrier formed by the diamond:Al
interface [14]. Other reported work has suggested the forma-
tion of a native oxide under the Al contact, evidenced by a
TEM cross section of the gate showing a 7-nm amorphous
layer between the Al and diamond [15]. In this instance,
the gate interface may have been compromised to some extent
by the preanneal of 350 °C used in the deposition of V,Os.
Further work will be needed to investigate. This may be
improved by incorporation of a high-quality gate dielectric,
as shown here [16].
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Fig. 3. -V output plots for devices of four different gate lengths of (a) 50, (b) 100, (c) 200, and (d) 400 nm. Vgs =2to -3V and Vys =0to —4 V.

Fig. 4 shows transfer characteristics for the same four FET
devices shown in Fig. 3, with gate lengths of 50, 100, 200, and
400 nm. Again, transconductance is seen to scale inversely
with gate length. Although g, is similar between the 100-
and 50-nm gated devices at ~140 mS/mm, some instability
can be seen in the trace for the smaller gate length. Increasing
Ly beyond 100 nm showed reduced transconductance, down
to ~100 mS/mm and with a flatter distribution for the 400-
nm gate. Interestingly, measurements shown in Fig. 4 exhibit
higher peak drain current than those in Fig. 3. This phenom-
enon was consistent and repeatable, in which sweeping the
gate voltage at a constant drain bias would produce higher
drain current than the reverse. This effect is potentially related
to charge trapping. By satisfying trap states with a constant
value of Vy, a small increase in output current is seen.

A summary of extracted parameters for each device dis-
cussed is displayed in Table . Values for ON-resistance (Roy)
were calculated from the linear low-field region of each device
at Vo = —3 V. Contact resistance (R.) and sheet resistance
(Rsheet) were measured from TLM and VDP structures on the
substrate. From this, access resistance (Raccess) Was determined
by the dimensions of the device. The resistance beneath the
gate contact (R ) was calculated as

Rch = RON_(ZRC + 2Raccess) (1)

TABLE |
SUMMARY OF EXTRACTED PARAMETERS FOR EACH GATE LENGTH
L, (nm) 50 100 200 400
Ron (Q.mm) 6 6.8 7.7 10.4
R. (2.mm) 0.9
Riheet (/D) 6813
Raccess (€2.mm) 2.04
Ren (Q.mm) 0.1 0.92 1.82 4.42
L4 peak (MA/mm) 500 450 380 270
Em peak (MS/mm) 141 138 125 100
Vi (V) 1.51 0.96 0.69 0.28

This assumes contact resistance is identical between con-
tacts and access resistance is mirrored on either side of the gate
due to the self-aligned nature of the fabrication process used.
Threshold voltage (Vy,) was extrapolated from the linear region
of the transfer characteristics in Fig. 4. As L, moves toward
lower values, an increase in Vy, is observed as channel pinch-
off becomes harder to achieve. In this instance, Vi, is more
representative of the ON—OFF ratio for smaller devices that do
not pinch-off. These values are relatively in close agreement
for a V,0s-doped MOSFET with L, of 250 nm, reported
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Fig. 4. Transfer characteristics for devices of four different gate lengths of (a) 50, (b) 100, (c) 200, and (d) 400 nm. Vgs =210 -3V, Vygs = 0

to —4 V. Dashed line shows Iy and solid line shows g,,,.

here [17]. While the substrate for this MOSFET exhibited
lower sheet resistance, ON-resistance was notably higher due
to increased contact and access resistance.

A capacitance—voltage curve (C—V) was taken for a 400-nm
gate length device, plotted in Fig. 5. Arrows indicate the direc-
tion of the sweep. Maximum gate capacitance was measured
at 1.15 uFlem? for V, = —3 V. A relatively small hysteresis
shift between sweeps indicates a moderate amount of charge
trapping at the gate:diamond interface. This may be influenced
by the hydrogen termination, resulting in an increased density
of states at the surface if hydrogen is lost. Defects within either
the diamond surface or the gate material may also impact
trapping.

Equation (2) shows the relationship between R,y and effec-
tive mobility (zesr) [18], [19], where C, is the measured
gate capacitance and R is the sum of contact and access
resistances. For a capacitance of 1.15 uF/cm? extracted from
a 400-nm L, device, effective mobility can be estimated as
23.5 cm? V7! 57!, Ideally, a much larger gate length would
provide greater accuracy when calculating effective mobility
in this manner due to uniformity of carriers beneath the gate.
As such, the calculated value remains an estimate.
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Fig. 5. C-Vmeasurement for a device of Ly = 400 nm. Vg = —-3to 2 V.
Arrows indicate direction of the sweep.

For traditionally doped semiconductors, in which resistivity
remains relatively consistent across the substrate, sheet hole
density (p) can then be determined by the following equation:

1
qP Rspeet

3)

Meff =
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Taking the measured value for Rgnee and the electron
charge constant ¢ (1.6 x 107! C), sheet hole density is
then estimated as 3.9 x 10" cm™2. These values for carrier
density and mobility are within the typical ranges reported
for transition metal oxide doping of hydrogen-terminated
diamond [8]. However, the value for carrier density calculated
from (3) is an approximation due to the probable difference
in sheet resistance between the access regions and beneath
the gate contact. In a transfer-doped diamond MESFET, the
electron accepting medium (in this case V,0Os) is not present
under the gate. Therefore, while unknown, the carrier density
beneath the gate is very likely to differ from that of the access
regions.

Further biasing a 50-nm device to V43 = —10 V achieved a
peak drain output of ~700 mA/mm (Fig. 6). OFF-state perfor-
mance significantly worsens as the small gate length struggles
to modulate the high current. These values for drain current
are substantially higher than those reported elsewhere for a
diamond V,05 FET [17], [20], [21]. Both I; saturation and
channel pinch-off could not be achieved prior to gate failure.
In this instance, performance is limited by gate instability and
short channel effects as evidenced by the change in Vi, with
decreased gate length. As L, is reduced, the device turns on
at a more positive gate voltage. This is in part due to the
relatively small access regions resulting in trapezoidal regions
at both the source and drain forming a channel below the
depletion region of the small gate contact. In a planar FET,
decreasing gate length also results in drain-induced barrier
lowering (DIBL) [22]. This effect is further exacerbated by
increased drain voltage, as can be seen for Vg, = 2 V
in Fig. 6. An example of DIBL is shown in Fig. 7. At these
small dimensions, increasing drain bias can result in V-
induced shift of V4, for the device. As Vy, increases further,
the drain will have a growing influence on the OFF-state
performance. A comparative study of MESFET devices on
diamond, down to 50-nm gate length, has previously been
reported [23]. In that work, the smallest device exhibited

Fig. 7. Diagrammatic example of DIBL, showing smaller (solid line) and
larger (dashed line) gate lengths. For the small gate length, increasing
drain bias will begin to reduce the potential barrier formed by the gate.
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Fig. 8. I~V output for a 200-nm Lg device, 17 iterations of Vgs = -4V,
Vgs = —3 V with 5-min intervals.

better control of the OFF-state leakage current. However,
this was likely due to the significantly larger access regions
and lower carrier density which resulted in 54% lower peak
drain current.

To demonstrate stability of the V,0s-induced transfer dop-
ing with repeat measurement, a device of 200-nm L, was
swept 17 times at intervals of 5 min between sweeps. Plotted
in Fig. 8, at peak Iy (Vgs = —4 V, Vg = —3 V) a standard
deviation of 3.1 mA/mm was observed. This stability of the
V,0s-doped channel under electric fields is highly promising
and was also suggested here [21].

Prior work has demonstrated the hygroscopic nature of
transition metal oxides such as V;Os, resulting in reduced
work function of the material over time when exposed to
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ambient atmosphere [8], [24]. To observe any degradation in  [6]
transfer doping of the diamond, sheet resistance measurements

were taken over a period of 11 days while the sample was
periodically moved between a probe station and N, box. The  [7]
results showed a 12% increase in sheet resistance over the

time period measured. This effect of reduced transfer doping (4
efficiency for V,0s and MoOs has been discussed here [8],
with an observed reduction in carrier concentration of the
diamond due to the oxides degrading work function in ambient
air. Hermetic encapsulation of the transition metal oxide to
isolate from atmosphere is thus recommended to maintain [10]
conductivity.

[9]

IV. CONCLUSION [11]

Diamond FETs with V,0s as a transfer doping medium
and a range of gate lengths down to 50 nm were fabricated [12]
and characterized. We observe a significant improvement in
peak output current up to ~700 mA/mm and a peak transcon-
ductance of ~150 mS/mm, when compared to what has been
reported thus far. Due to encapsulation with V,0s, device
stability with repeat measurement is achieved. However, iso-
lation of the oxide film from atmosphere is still required.
This work demonstrates the performance gains which can be
achieved through scaling of critical dimensions and adoption
of transition metal oxides for the production of diamond
FET devices. Further work will look to improve upon gate
formation and combat short channel effects, which have a
detrimental impact on OFF-state performance at such small
gate lengths.

[13]

[14]

[15]

[16]
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