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Human immunodeficiency virus (HIV) infection remains a significant public health burden globally. The role of viral co-infection in
the rate of progression of HIV infection has been suggested but not empirically tested, particularly among children. We extracted
and classified 42 viral species from whole-exome sequencing (WES) data of 813 HIV-infected children in Botswana and Uganda

categorised as either long-term non-progressors (LTNPs) or rapid progressors (RPs). The Ugandan participants had a higher viral
community diversity index compared to Batswana (p = 4.6 x 10~ '), and viral sequences were more frequently detected among
LTNPs than RPs (24% vs 16%; p = 0.008; OR, 1.9; 95% Cl, 1.6-2.3), with Anelloviridae showing strong association with LTNP status (p
=3x10"% g=0.004, OR, 3.99; 95% Cl, 1.74-10.25). This trend was still evident when stratified by country, sex, and sequencing
platform, and after a logistic regression analysis adjusting for age, sex, country, and the sequencing platform (p = 0.02; g = 0.03; OR,
7.3; 95% Cl, 1.6-40.5). Torque teno virus (TTV), which made up 95% of the Anelloviridae reads, has been associated with reduced
immune activation. We identify an association between viral co-infection and prolonged AlDs-free survival status that may have
utility as a biomarker of LTNP and could provide mechanistic insights to HIV progression in children, demonstrating the added

value of interrogating off-target WES reads in cohort studies.
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INTRODUCTION

The rates of new human immunodeficiency virus (HIV) infection in
Eastern and Southern Africa increased by 50% between 2015 and
2019, despite a modest overall decline in new infections
globally'2 As such, this region still holds a disproportionate
burden of new HIV infections in children, representing 53% of the
global burden?.

Two extreme clinical phenotypes characterise HIV-1 progression
in children: (1) long-term non-progressors (LTNPs), who do not
progress to AIDS for more than 10 years without antiretroviral
therapy (ART) and (2) rapid progressors (RPs), who typically
advance to AIDS less than 3 years after initial infection®. Studies
examining the molecular mechanisms underlying HIV-1 disease
progression in adults suggest a complex interplay between host
genetics*®, alongside immunological, virological®, and nutritional
factors'®'% Insights gained from understanding these contribut-
ing factors have heralded the development of new HIV drugs'>.
Most of these studies, however, have focused on Caucasian
populations, even though the underrepresented African popula-
tions that bear the greatest burden of this scourge display some of
the most diverse genetics in addition to unique environmental
exposures', which could yield new insights to HIV-1 pathogen-
esis. In addition, few studies have shed light upon the molecular
regulators of HIV-1 disease progression in children, who are both
immunologically and developmentally distinct from their adult

counterparts. For example, CD4" and CD8" T-cell activation in
HIV-1 infected children correlates significantly with CD4 T-cell
percentage or absolute count, rather than viral load, which
correlates strongly in adults'. Another recent study demonstrated
that paediatric non-progressors exhibited low immune activation
despite high viral loads'S, in contrast to adult elite controllers in
whom the converse is true'®.

Chronic infection by RNA and DNA viruses often results in the
production of antiviral cytokines, including interferons, which can
lead to tightly regulated inflammatory responses in the host'’.
This modified state of host immunity or immune modulation
comprises both increased (immune potentiation) or decreased
(immune suppression) immunity'®, which, in turn, may alter
susceptibility to inflammatory diseases'®?°. Such co-infection may
also offer unexpected benefits to the host, e.g. prior dengue virus
infection may reduce the risk of symptomatic Zika in paediatric
populations?', and there is an established association between
human T-cell lymphotropic virus type Il co-infection and delayed
AIDS progression’*?*. To date, however, there have been no
robust assessments of viral co-infection in disease progression
among HIV positive children.

As a targeted resequencing approach, whole-exome sequen-
cing (WES) allows for the enrichment of the exonic sequences
from genomic DNA (gDNA). An offshoot of such targeted
resequencing approaches are “off-target” reads, i.e. sequencing
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Table 1. Summary of the cohort.

Variable Overall, n=813 LTNP, n =391° RP, n =422? p value®
Country <0.001
Botswana 450 (55%) 189 (48%) 261 (62%)

Uganda 363 (45%) 202 (52%) 161 (38%)

Sex <0.001
Female 421 (52%) 228 (58%) 193 (46%)

Male 392 (48%) 163 (42%) 229 (54%)

Time to progression (range) in months 36 (16, 155) 156 (138, 177) 17 (10, 25) <0.001
Age at enrolment (range) in months 152 (111, 198) 200 (164, 232) 116 (78, 145) <0.001
Duration of HAART at enrollment (range) in months 63 (17, 106) 19 (2, 63) 98 (61, 125) <0.001
Demographic variables of the sampled populations from Uganda and Botswana.

Statistics presented: n (%); median (IQR).

PStatistical tests performed: Fisher’s exact test; Wilcoxon rank-sum test.

reads that have been captured but do not map to the targeted
regions; over 50% of reads may be “off-target” (including reads
that map to introns and intergenic regions) and may include reads
representative of free viral DNA or viral DNA that is integrated into
the host genome (proviral DNA)?**?*, A recent analysis of whole-
genome sequencing (WGS) from 8000 human genomes found
that ~0.01% of reads mapped to viral reads. Despite the relatively
small fraction, the cumulatively large absolute amount of data was
sufficient for a broad characterisation of the blood virome?®. Other
studies have also utilised off-target viral reads from tumour
sequencing to investigate the association between virus species
and cancer types®’*®. Here, we extract viral reads from often-
ignored unmapped data to explore the role of viral co-infection in
paediatric HIV-1 disease progression in two African cohorts of
LTNPs and RPs recruited through a unique electronic health record
resource in Uganda and Botswana. We provide evidence for a
robust recapitulation of the virome from unmapped WES reads
and demonstrate enrichment of co-infecting viral species based
on geographic location and HIV-1 disease progression.

RESULTS
Overall characteristics of unmapped reads

We analysed unmapped reads from WES data of 813 samples
collected from the CAfGEN cohort (Table 1).

Consistent with earlier reports®?=", ~75% of the reads were on-
target, with 30% mapping exclusively to the targeted exons, and
68% generally mapping to intronic/intergenic regions (66% of
these intronic/intergenic reads also overlapped the exons).
Overall, 1% of the reads had ambiguous alignments or missing
annotations, and 0.6% did not map to the UCSC hg19 human
genome sequence; these unmapped reads potentially contained
reads from viral nucleic acid sequences (Fig. 1).

Across all participants, detected viruses could be mapped to 42
different species (Supplementary Data 1). The median identity
across all detected viruses was over 85% (Fig. 2), which is above
the 70% threshold suggested to target reads from viruses of the
same taxonomical subfamily®2. The mean BLASTN E-value was 1 x
107", and the mean bit-score was 4000 for viral contigs
(excluding phiX174, an intra-experimental control).

Besides phiX DNA, the most common virus was human
herpesvirus (types 1, 4, 5, 6B, 7), detected in 10% of the samples
(Supplementary Data 1). HIV (Retroviridae) was the second most
common virus detected. Although all participants were confirmed
as HIV positive, we were only able to detect HIV in 4.6% (38/812) of
samples, suggesting that most HIV proviral DNA reads are either
outside of the coding region or lost during the exome enrichment
step. Nonetheless, the distribution of HIV proviral reads was not
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Fig. 1 Summary percentage distribution of raw reads after
aligning to the reference genome. WES was carried out in seven
batches, and after aligning raw reads to the human reference
genome (hg19), BAM files were analysed for reads mapping inside
the genomic regions utilising annotations from Ensembl (www.
ensembl.org). Although 30% of the 5.7x10'° raw reads mapped
exclusively to the exons, 66% of the reads that mapped to introns or
intergenic reads also overlapped with exons (not shown). Round 1
batches (inner three rings), sequenced on the lllumina HiSeq 2500
platform, had a higher percentage of unmapped reads (1.2%)
compared to the round 2 batches (outer four rings), sequenced on
the lllumina NovaSeq 6000 platform (0.2%). Overall, 3.0 x 10® reads
(~0.6% of the total reads) did not map to the human reference
genome (inset).

significantly different between LTNPs and RPs (p = 0.408; odds
ratio (OR), 1.4; 95% confidence interval (Cl), 0.7-2.8 by Fisher's
exact test) or between countries (Uganda vs Botswana; p = 0.741;
OR, 1.1; 95% Cl, 0.6-2.3 by Fisher's exact test) (Fig. 3).

Because we used a DNA sequencing protocol, the presence of
RNA viruses such as Semliki forest virus (Togaviridae) and HIV was
surprising (Supplementary Data 1). The incidental integration of
non-retroviral RNA viruses has been suggested, however, the
mechanism for Togaviridae remains controversial®®, as such, its
presence may be explained by background contamination from
reagents®®. However, the presence of HIV, a retrovirus, may point
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Fig. 2 Boxplots of viral-contig percent identities compared to the reference virus dataset. All viruses had a median identity of >85%. HIV
and Torque-Teno Virus (TTV) show higher variability in the identity of sequences (shaded grey), suggesting higher diversity of these species.
The boxplot represents the median values (centre lines), first and third quartiles (bounds of boxes), and the whiskers indicate 1.5 times the

interquartile range.

to proviruses and possible viral integration events®®. Identifying
host-integration sites is of interest: as such sites play a role in
disease progression®®; however, due to the low number of viral
reads, we could not detect chimeric host-viral reads and,
therefore, could not identify HIV integration sites into the host
genome.

Viral diversity varies with country of origin and time to
progression

We observed a higher frequency of Herpesviridae and Anelloviridae
among Ugandan samples than Batswana (i.e. individuals from
Botswana), with the Uganda cohort showing a higher diversity
index than the Botswana cohort for overall viral reads detected (p
=462 %1073, Supplementary Table 2).

We also found that more LTNP than RP participants had any
virus family detected (Fig. 3b). To investigate this further, we first
excluded viral families that were found in less than 1% of the
samples and then compared the number of samples with any
virus family detected; this confirmed our original observation as
significantly more LTNP than RP samples had a detectable virus
(Table 2) (p =0.008 OR, 1.6; 95% Cl, 1.1-2.3 by Fisher's exact test).
When we stratified this analysis by country, we observed the same
trend; however, it was only statistically significant in Botswana (p
=0.011; OR, 2.07; 95% Cl, 1.2-3.6; Uganda p = 0.726; OR, 1.1; 95%
Cl, 0.7-1.8 by Fisher's exact test) (Table 2). We also identified a
higher diversity of viruses among LTNPs (p = 0.008, Hutcheson t-
test®®, Supplementary Table 2).

Anelloviridae species are enriched among LTNPs

Anelloviridae showed a strong enrichment among LTNPs com-
pared to RPs in our dataset and included 12 different subtypes of
torque teno virus (TTV), one subtype of torque teno mini virus
(TTMV), and one subtype of Torque teno midi virus (TTMDV) in 38
individuals. These were significantly enriched among LTNPs (p =
3x107% g =0.004, OR, 3.99; 95% Cl, 1.74-10.25 by Fisher's exact
test) irrespective of the sequencing platform used (Figs 3b and 4)
and were orthogonally validated using direct PCR (Supplementary
Fig. 1) and Sanger sequencing where the samples clustered with
genogroup 1 TTV (Supplementary Fig. 2).

Published in partnership with CEGMR, King Abdulaziz University

We tested for an association of Anelloviridae detection with
age, using age at sampling rather than age at diagnosis, and
found that although individuals that had Anelloviridae detected
were older than individuals that did not have Anelloviridae
detected, this difference was non-significant, albeit marginally
(median age, 14 years vs 12 years; Wilcoxon rank-sum test p =
0.05). Nevertheless, the association between LTNP status and
Anelloviridae presence remained apparent even after a logistic
regression analysis using a generalised linear model (GLM) with
a binomial distribution, incorporating age at sample collection,
sex, country of origin, and sequencing platform as covariates (p
=0.02; g=0.03; OR, 7.3; 95% Cl, 1.6-40.5). When we stratified
our data according to the country of origin, we observed some
evidence of replication between both country groups (p =9 X
10~% OR, 3.6; 95% Cl, 1.6-9.3; by the Cochran-Mantel-Haenszel
(CMH) chi-squared test), with substantial supporting evidence in
Botswana (p=5x%10"% OR, 16.0; 95% Cl, 2.3-691.3) and the
same directional trend in Uganda (i.e. more in the LTNPs than
RPs), although the latter did not meet our threshold for
statistical significance (p =0.140; OR, 2.0; 95% Cl, 0.8-5.9) (Fig.
4). In addition, the same trend was observed after stratifying by
sex (p=2x10"% OR, 4.1; 95% Cl, 1.8-10.6; by the CMH chi-
squared test) in both females (p=0.014; OR, 4.5; 95% Cl,
1.2-24.3) and males (p = 0.012; OR, 3.9; 95% Cl, 1.3-14.2) (Fig. 4)
and after stratifying by the different sequencing platforms; (p =
0.0001; OR, 4.2; 95% Cl, 2.0-o0; by the CMH chi-squared test); in
both the HiSeq 2500 (p = 0.003; OR, 5.0; 95% Cl, 1.6-21.2) and
the NovaSeq 6000 (p = 0.045; OR, 3.4; 95% Cl, 1.0-14.3), (Fig. 4).
To account for potential differences in temporal viral exposure
among the older LTNP group (see “Methods”), we also evaluated
the frequency of Anelloviridae among an external WGS dataset
of 33 adults from Uganda of unknown HIV status. We did not
find any evidence that these adults had a higher frequency of
Anelloviridae than paediatric populations, with the frequency
among adult controls (0.03) being similar to that observed in
paediatric RPs (0.04) and comparable to, although slightly lower
than, the combined paediatric LTNP group (0.12, n.s.), even after
stratifying by country. (Supplementary Fig. 3).
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Fig. 3 A comparison of the distribution of viral reads between
Uganda (UGR, n = 117) and Botswana (BWR, n = 64) cohorts and
between LTNPs (n=104) and RPs (n=77). a Compared to
Botswana, more Ugandan samples had reads from Anelloviridae,
Herpesviridae, Paramyxoviridae, Siphoviridae, and Togaviridae. b LTNPs
had a higher frequency of Anelloviridae, with this trend being
consistent across all the virus families, though not statistically
significant. Bubble size is proportional to the number of virus
subtypes. Only viral families that were found in more than 1% of the
samples were considered. Fisher's exact test was used to compute p
values and adjusted p values (g-values) were calculated using FDR
method.

Table 2. Number of samples with a virus (of any family) detected in
LTNPs and RPs.

Dataset LTNP (n=391) RP (n=422) p value® OR (95% Cl)

Uganda 59/202 (29%) 44/161 (27%) 0.73 1.10 (0.68-1.79)
Botswana 34/189 (18%) 25/261 (10%) 0.01 2.07 (1.19-3.61)
Combined 93/391 (24%) 69/422 (16%) 0.01 1.60 (1.13-2.26)

p values and odds ratios were computed to compare LTNPs and RPs for
differences in the distribution of samples with a virus detected. Frequency
comparisons are based on viral families found in more than 1% of the
study samples.

“Statistical tests performed: Fisher’s exact test.

DISCUSSION

Previous studies of HIV-infected individuals as they progress to
AIDS have observed alterations in the virome, and more
specifically, a reported increase in TTV viral loads*’8, However,
there is limited information on how the host-virome of otherwise
healthy HIV-infected children may influence the rate at which
progression to AIDS occurs, given that viral co-infection has been
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consistently reported to influence the host's immune state'3394°,

WES has and is being used to interrogate a variety of common and
complex disease traits*' ~*3; however, the full potential of the data
generated has only rarely been leveraged to understand disease
pathogenesis. Here, we demonstrate the added value of utilising
off-target WES reads to investigate underlying differences in the
blood viral-composition between individuals with varying rates of
disease progression. Our observations of differences in WES-
derived viral populations and Anelloviridae species between LTNP
and RP groups provide an essential contribution to understanding
the potential drivers of disease progression in HIV and a working
framework for similar interrogations in other disease states.

We observed that the Uganda samples had higher viral diversity
than the Botswana samples. However, this could be due to
differences in the blood virome due to geography?®**. It may also
suggest subtle upstream differences during sample preparation
even though both study sites followed the same protocols and
reagents for DNA collection.

We found LTNPs to have a significantly higher burden of viral
reads than RPs, suggesting a possible role for the virome
composition in AIDS progression. Commensal bacteria have been
reported to prime the immune response in a way that offers cross-
protection against pathogenic infections; similarly, viruses may
delay HIV disease progression'®®. Our approach offers the
potential for an agnostic interrogation that allows for the
identification of significantly enriched species that might be
specific to the population under study—much as genome-wide
association studies have surpassed candidate gene studies. The
growing utility of whole-genome datasets for complex trait studies
suggests that exploring off-target reads for virome typing will
yield even more comprehensive appraisals and become more
commonplace over time.

In our dataset, Anelloviridae identification was strongly asso-
ciated with LTNPs. Anelloviridae is a family of highly prevalent and
genetically diverse viruses discovered relatively recently®. In
humans, there are three reported genera: TTV, TTMDV, and
TTMV?*. There are up to seven reported phylogenetic clades, or
phenogroups, of TTV*~>°, of which the species identified in our
dataset clustered with genogroup 1. Anelloviridae is ubiquitous,
being found in >90% of (otherwise healthy) adults worldwide,
with no known cases of human pathogenicity*®; however, recent
studies have found a strong association with immune suppression
or exposure to new antigens®', and have propositioned this family
of viruses as a marker for immune function®?~>. In this regard, the
statistical association of Anelloviridae with LTNP may appear
somewhat paradoxical since an increased Anelloviridae viral load is
associated with immune suppression®>. This may be due to a
subtle immune deficiency that is not present in RPs who have had
longer ART. It may also in part be explained by recent findings that
in children, reduced immune activation is associated with LTNP'®,
presumably via reduced expression of CCR5, a primary HIV-1
target. As such, we postulate that the higher Anelloviridae
presence could be a marker of reduced immune activation in
the paediatric HIV context.

Because of the time-dependent nature of disease progression,
there are inherent confounders to this study; at the time of sample
collection, the median age of LTNPs was, as expected, 7 years
older than RPs (Table 1). This age difference makes it difficult to
know whether our findings are primary (viral burden contributes
to infection control) or secondary—the more prolonged environ-
mental exposure of older LTNPs allowed for a more significant
burden than the younger RPs. Although adults may have a higher
TTV prevalence than children®®, this association may depend on
the study population. The TTV association with age primarily
occurs within the first few years after birth, thereafter decreasing
or stabilising into adulthood”*%; as such, in communities with a
high prevalence of TTV, such as in developing countries, adults do
not exhibit a higher TTV frequency since most individuals would
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and RPs (top right). Only viral families found in more than one sample were considered; p values, odds ratios, and 95% Cl were calculated

using Fisher’s exact test.

have been infected during the first years of life**°, Similarly, the
frequency of Anelloviridae in our external adult Ugandan dataset
suggests that temporal exposure may not be a major confounder
of our result. However, at the time of sample collection, the
median duration of HAART was significantly longer in the RPs than
LTNPs (Table 1), which may influence host-viral diversity, and more
specifically, Anelloviridae viral load. Although antivirals can affect
the human virome structure, antiretrovirals should, in theory,
only affect RNA viruses. Although we cannot completely discount
indirect methods by which prolonged HAART duration could
affect Anelloviridae viral load, a recent study showed a lack of
correlation between Anelloviridae viral load and increased T-cell
counts or activated T cells in patients receiving ART®. There is also
a theoretical possibility of LTNP misclassification due to a
misdiagnosis of HIV-2 as HIV-16", as HIV-2 is less virulent than
HIV-1; we detected HIV-2 in 7 samples, 5 of which were LTNPs;
however, none of the samples with Anelloviridae also had HIV-2
detected.

Our expectation is that our findings are most likely to reflect
true viral infection, as opposed to potential environmental
contaminants®; however, as we cannot completely rule out the
latter potential, the influence of the blood virome on HIV-1 disease
progression would benefit from a longitudinal prospective, rather
than retrospective cohort study, in which the blood virome at
baseline is known. In addition, the viral reads in this study were
detected through sequence alignment, which limited our ability to
detect viruses that may not be adequately represented by the
reference sequences in the databases®?. Such a study could
therefore benefit from more recent viral capture panels such as
ViroCap®® and VirCapSeq-VERT®* that increase viral reads by
100-10,000-fold and by using bioinformatics approaches that do
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not depend on sequence similarity for virus detection®%”. That
said, such a longitudinal study is currently not feasible given
changes to antiretroviral treatment guidelines whereby paediatric
patients now receive ART at diagnosis, meaning LTNP cohorts
similar to ours can no longer be clearly identified.

Given that TTV infections can occur as soon as 3 months
postpartum®®™>° and TTV is a T-lymphotropic virus®*®, we
speculate that early TTV infection could play an active role in
paediatric HIV disease progression by reducing the levels of
immune activation and viral replication'>'®. In vitro studies have
demonstrated that TTV microRNA can interfere with interferon
signalling®, a pathway important in inflammation and progres-
sion to AIDS during chronic HIV infection”®72, In addition, TTV has
two main open reading frames (ORFs), ORF1 and ORF2, of which
ORF2 suppresses the NF-kB pathways via interaction with IkB
kinases”*. Because the NF-kB signalling pathway is central to HIV-1
gene expression’?, suppression of NF-kB activity could slow the
rate of HIV-1 replication”>”®. ORF2-mediated suppression of NF-kB
activity could also lead to fewer activated CD4 T cells”””3, resulting
in LTNP'®7%, or may result in reduced pro-inflammatory cytokines
such as TNFa slowing the disease progression®. Understanding
the mechanistic underpinnings of this association between
Anelloviridae and LTNP thus has the potential to catalyse research
in this area further.

In conclusion, among extracted viral sequences from WES data,
we identify an association between the viral species TTV and LTNP
status. Our results are consistent with previous studies suggesting
TTV as a biomarker for immune status and should stimulate
consideration of TTV as a potential biomarker for HIV long-term
non-progression.
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METHODS

Study participants

The study characteristics of the Collaborative African Genomics Network
(CAfGEN) cohort have been previously described®', but, in brief, it includes
children (aged 0-18 years) with laboratory-confirmed evidence of HIV-1
infection who were registered for care at the Baylor College of Medicine
Children’s Foundation in Kampala, Uganda, or the Botswana-Baylor
Children’s Clinical Centre of Excellence in Gaborone, Botswana, both of
which are the major centres for paediatric HIV care in their respective
countries. Potential participants meeting clinical criteria were retrospec-
tively identified from electronic health records dating back more than 20
years in the two centres of excellence. After obtaining informed consent
and assent, participants were enrolled as part of a retrospective
case-control study investigating the genetics of paediatric HIV disease
progression as part of CAfGEN®'~#—a collaborative centre of the Human
Heredity and Health in Africa (H3Africa) Consortium®*. Electronic health
records in both centres were retrospectively queried to identify individuals
meeting World Health Organization (WHO) clinical and immunologic
criteria for RPs, i.e. those with (1) two or more CD4 T-cell proportion values
<15% within 3 years after birth, with no value > 15% afterwards in the
absence of ART; (2) ART initiated within 3 years after birth, and at least one
preceding CD4 < 15%; and (3) AIDS-defining illness (CDC Cat 3 or WHO
Stage 3/4) and LTNPs—children asymptomatic > 10 years after initial
infection (birth) who had not met the criteria for ART initiation.

Whole-exome sequencing

Peripheral blood was collected from LTNPs (n = 391) or RPs (n =422) and
gDNA extracted using the PAXgene Blood DNA kit (Qiagen, USA). Exome
reads were captured and enriched from gDNA and subsequently
sequenced at the Human Genome Sequencing Center, Baylor College of
Medicine, as previously described® ™. Briefly, gDNA samples were
processed and quantified to meet quality control criteria and were then
fragmented prior to exon enrichment using NimbleGen VCRome 2.1
(rebalanced probe) capture reagent and subsequent ligation of indexed
adaptors to allow for multiplexed sequencing. The libraries were
sequenced in seven batches using a paired-end, 100 base-pair read
length protocol on a HiSeq 2500 (round 1, batches 1-3) and subsequently,
a NovaSeq 6000 lllumina platform (round 2, batches 4-7) (lllumina, San
Diego, CA) using the TruSeq SBS Kits (lllumina, San Diego, CA) per
manufacturer’s instructions, and base-calling files were converted to
FASTQ files using bclToFastq (version 1.8.3). There were no differences in
the distribution of sex, country of origin, and phenotype across the
sequencing platforms (Supplementary Data 1).

Virus detection

VirusFinder 2 workflow®® was used to extract viral reads from WES data
with additional parameters summarised in Supplementary Table 1. Raw
sequencing reads (FASTQ files) were aligned to the human reference
genome (UCSC hg19) using Bowtie2®®. All unmapped reads were then
used for virus detection by BLAST-searching against a virus dataset® that
contains viruses of all known classes (n=32,102). Viral reads were
assembled de novo into contigs, and non-human viral contigs were
mapped to the virus dataset and ranked based on the alignment scores.

We standardised viral nomenclature using the International Committee
on Taxonomy of Viruses Master Species Lists (https:/talk.ictvonline.org/
files/master-species-lists/). Because phiX DNA (from Enterobacteria phage
phiX174 (Microviridae)) was spiked-in as a sequencing control, we excluded
Microviridae from downstream analyses; however, we used the equal
distribution of Microviridae reads between LTNPs and RPs and between
Uganda and Botswana samples (Supplementary Data 1) as a quality check
for potential sequencing biases between cases and controls, or between
the different countries of origin.

Validation and phylogenetic analysis of Anelloviridae

To validate the Anelloviridae reads, we carried out PCR amplification using the
following primers as previously described; TTxsense: 5-CACTTCCGAATGGYW-
GAGTTT-3' and TTxrev: 5-TCCCGAGCCCGAATTGCCCCT-3"", modified to use
1 uM of both forward and reverse primers, and HotStar HiFidelity Polymerase
(Qiagen, USA) according to the manufacturer's recommendations. The
expected PCR product was 110-120bp, depending on the viral strain
amplified. The PCR product was purified using the QIAquick Gel Extraction
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Kit (Qiagen, USA) according to the manufacturer's recommendations and
sequenced using Dideoxy (Sanger) sequencing, followed by a BLAST search to
confirm that the sequences were from TTV.

To determine the phylogenetic relationship of TTV, we performed a
CLUSTALW multiple sequence alignment (Unipro UGENE v34.0 software) of
the study samples with other known TTV genogroups consisting of 17
GenBank sequences representing TTV genogroups 1-5*%° (Supplemen-
tary Data 1). We trimmed ambiguous alignments on 5’-end and 3’-end and
inferred the phylogenetic relationship using the maximum likelihood
method and Tamura-Nei model in MEGA v10.1.8.

External control dataset

Because LTNPs were older than the RPs, and thus, would have had a longer
temporal exposure to environmental viruses (see “Results”), we utilised an
external dataset of WGS from 33 adults from central Uganda, collected
under the TrypanoGEN study®>3, and similarly sequenced on the lllumina
HiSeq 2500 (lllumina, San Diego, CA) as age-related controls. Unmapped
reads from this dataset were also run through the VirusFinder v2.0 pipeline
with identical parameters to the WES dataset. Tae et al?’ looked at
individuals who had been sequenced using both WES and WGS and found
the ratios of unmapped to mapped reads to be the same between WGS
and WES.

Ethics declarations

Institutional Review Board (IRB) approval for the CAfGEN project was
obtained from the School of Biomedical Sciences Higher Degrees Research
and Ethics Committee (SBS-REC) (Ref no: SBS 112), Uganda National
Council for Science and Technology (Ref no: HS 1566), Health Research and
Development Committee, Ministry of Health and Wellness, Botswana (Ref
no: HPDME 13/18/1 IX (484), and the IRB for Human Subject Research for
Baylor College of Medicine and Affiliated Hospitals (BCM IRB) (Ref no: H-
32788). We obtained written informed consent from all adult study
participants and the primary caregivers of children. In addition, children
from appropriate age groups gave assent to participate in the study.

Statistical analyses

We compared the means or medians for continuous variables using the
Welch’s two-sample t-test or Wilcoxon rank-sum test, respectively, and a
two-tailed Fisher’s exact test with ORs and 95% Cl for categorical variables.
We used the false-discovery rate (FDR) method®* to correct for multiple
comparisons and, where appropriate, a two-tailed CMH chi-squared test to
calculate the common ORs to control for confounding. Where applicable,
we estimated the OR and 95% Cl from the GLMs by exponentiating the
coefficients. The t-test, Fisher's exact test, CMH, and GLM were computed
in R (version 3.6.3). The Hutcheson t-test®® was used to compare the
Shannon diversity index of the viral communities between groups®. The
statistical significance level was set at 0.05.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY

The virus list that was generated for analysis is available in Supplementary Data 1.
The WES datasets generated and analysed during the current study will be deposited
into the European Genome-phenome Archive (https://www.ebi.ac.uk/ega/) [phase
1 samples are currently in EGA (accession number: EGAS00001002656) and available
for download https://ega-archive.org/studies/EGAS00001002656], consistent with the
H3Africa Consortium consensus agreement. Data will be made available through the
H3Africa Data and Biospecimen Access Committee upon reasonable request from
validated researchers (https://www.h3abionet.org/resources/h3africa-archive).

CODE AVAILABILITY

Scripts  used for data
savannahmwesigwa/CAFGEN.

analysis are available at https://github.com/
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