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THE TYPE SEMIGROUP, COMPARISON AND ALMOST FINITENESS
FOR AMPLE GROUPOIDS

PERE ARA, CHRISTIAN BÖNICKE, JOAN BOSA, AND KANG LI

Abstract. We prove that a minimal second countable ample groupoid has dynamical com-
parison if and only if its type semigroup is almost unperforated. Moreover, we investigate to
what extent a not necessarily minimal almost finite groupoid has an almost unperforated type
semigroup. Finally, we build a bridge between coarse geometry and topological dynamics by
characterizing almost finiteness of the coarse groupoid in terms of a new coarsely invariant
property for metric spaces, which might be of independent interest in coarse geometry. As a
consequence, we are able to construct new examples of almost finite principal groupoids lack-
ing other desirable properties, such as amenability or even a-T-menability. This behaviour
is in stark contrast to the case of principal transformation groupoids associated to group
actions.

Introduction

Semigroups of equidecomposability types have been of interest ever since Tarski’s seminal
work on the dichotomy between amenability and paradoxicality for discrete groups. Recently,
such a type semigroup has been introduced as a new invariant for ample groupoids by the
second and fourth author in [9] and independently in [32]. In this very general framework,
the type semigroup has attracted significant interest for both the role it plays in the study
of finitely generated conical refinement monoids [2], as well as its connection to the structure
theory of the associated reduced groupoid C∗-algebra. In particular, the following dichotomy
result was proved in [9, 32]: If the type semigroup S(G) of a minimal topologically principal
ample groupoid G with compact unit space is almost unperforated, then its reduced groupoid
C∗-algebra C∗r (G) is a simple C∗-algebra, which is either stably finite or strongly purely
infinite.

Consequently, it is a natural question to ask for conditions under which the type semigroup
is almost unperforated. This is indeed the situation for all the monoids described in [2].
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However, one can also build groupoids whose type semigroup is not almost unperforated via
the (usually non-amenable) groupoids associated to the separated graphs defined in [3].

The first main result of this article is a dynamical analogue of a celebrated result by Rørdam
in [34] on the equivalence between strict comparison and almost unperforation of the Cuntz
semigroup for unital simple separable exact C∗-algebras:

Theorem A. Let G be a second countable minimal ample groupoid. Then G has dynamical
comparison if and only if its type semigroup S(G) is almost unperforated.

In fact, we can even show that the type semigroup S(G) is almost unperforated for a σ-
compact minimal ample groupoid G which has dynamical comparison. As a very special case
we have:

Corollary B. Let Γ be a countable discrete group acting minimally on a locally compact
second countable totally disconnected space X. Then the transformation group X o Γ has
dynamical comparison if and only if its type semigroup S(X o Γ) is almost unperforated.

The novelty here lies in a rather elementary approach, which allows us to drop any freeness
or amenability assumptions that were crucial in previous attempts to prove such a result
for transformation groups (see [21] and [26, Corollary 6.3]). A great range of examples has
been constructed in [13], where the authors prove that every action of a countable group
with local subexponential growth on a zero dimensional compact metric space has dynamical
comparison.

We then study dynamical comparison and almost unperforation of the type semigroup in
the context of other important structural properties of the groupoid. In contrast to the above
result, we do not limit ourselves to the minimal case and investigate two different situations:
In the infinite case, i.e. when there are no non-trivial invariant measures on the unit space,
we show dynamical comparison is equivalent to pure infiniteness of the groupoid, extending
earlier results of Ma [26] (see Section 2.1 for details).

On the other end of the spectrum, we consider almost finite (not necessarily minimal)
groupoids as introduced by Matui in [29]. Recall that in [21], David Kerr specialises to
almost finite group actions and proposes that almost finiteness might play a role in topological
dynamics analogous to the role Z-stability does for simple C∗-algebras (see [21, Theorem 12.4]
and see also [1, 28]). In particular, in the setting of free minimal group actions on zero-
dimensional spaces he shows that almost finiteness always implies almost unperforation of
the type semigroup, which also implies dynamical comparison (see [21, Theorem 13.3]). In the
subsequent work [22], Kerr and Szabó prove that a minimal free action of amenable groups
on compact metrizable zero-dimensional spaces is almost finite if and only if the action has
dynamical comparison.

Studying almost unperforation for the type semigroup of non-minimal almost finite group-
oids leads to new complications. The main obstacle is the different behaviour of almost
finiteness and almost unperforation when passing to open invariant subsets of the unit space.
To circumvent this problem, we call a groupoid G strongly almost finite if every restriction
of G by a compact open subset of the unit space is almost finite in the sense of Matui. It
is worth noticing that when the groupoid is minimal and has a compact unit space, strong
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almost finiteness agrees with the usual almost finiteness (see Proposition 3.6). The second
main result of these notes is the following:
Theorem C. If G is a strongly almost finite ample groupoid, then it has stable dynamical
comparison. In particular, its type semigroup S(G) is almost unperforated.

Note that Theorem C does not require G to be second countable.
In the final section, we establish a link between regularity properties in topological dynamics

(which are in turn inspired by their counterparts in the structure theory of nuclear C∗-
algebras) and a new tiling property in coarse geometry. In fact, inspired by recent results on
the structure of amenable groups in [12], we introduce a tiling property, which is a strong
version of amenability for metric spaces, which asserts that the space can be tiled by uniformly
bounded Følner sets of arbitrary invariance (see Definition 4.3). In order to explain the
promised connection to coarse geometry, we recall that for every discrete metric space X with
bounded geometry (i.e., for any R > 0 there is a uniform upper bound on the cardinalities
of all the R-balls in X), one can construct a principal locally compact σ-compact ample
groupoid G(X) with unit space βX (see [37, Proposition 3.2]). The groupoid G(X) is called
the coarse groupoid of X and it is not minimal in general. It is well-known that this groupoid
reflects many interesting properties in coarse geometry. For instance, X has Yu’s property A
if and only if G(X) is an amenable groupoid (see [37, Theorem 5.3]).

We show that our new tiling property is invariant under coarse equivalences and provide a
link to the main results of this article by proving:
Theorem D (see Theorem 4.5). Let X be a bounded geometry metric space and G(X) be its
coarse groupoid. Then the following are equivalent:

(1) G(X) is almost finite,
(2) X admits tilings of arbitrary invariance.

In particular, G(X) is strongly almost finite if and only if every subspace of X admits tilings
of arbitrary invariance.

In particular, we obtain from Theorem C and Theorem D that the type semigroup S(G(X))
is almost unperforated for any bounded geometry metric space X such that every subspace
of X admits tilings of arbitrary invariance (see Corollary 4.8). Moreover, Theorem D can be
used to provide a range of new examples of (strongly) almost finite groupoids (see Section
4 for details). In particular, the result allows us to construct groupoids that exhibit a be-
haviour which cannot be witnessed in the setting of transformation groupoids. Specifically,
we elaborate on the subtle relationship between almost finiteness and amenability and provide
new examples of principal almost finite groupoids which are non-amenable, in fact not even
a-T-menable. This answers a query of Yuhei Suzuki (see [39, Remark 3.7])1. While for the
purposes of this article we only use our new tiling property for metric spaces to obtain inter-
esting examples of groupoids, we believe that it might be of independent interest in coarse
geometry as well.

We briefly outline the contents of this paper. In section 1, we recall the necessary definitions
concerning groupoids, their type semigroups, and their connection to groupoid homology. In

1Non-amenable minimal almost finite groupoids are independently constructed by Gabor Elek in [14].
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the second section, we study dynamical comparison, and its relation to almost unperforation
of the type semigroups. The main result obtained in this section is Theorem A. In section 3,
we focus our study on almost finite groupoids. In order to ease reading it, we have divided this
part into two subsections. In the first subsection, we recall the definition of almost finiteness
and establish that it is invariant under stable isomorphism. In the second subsection, we prove
Theorem C, and describe some implications on the relation between the type semigroup and
the positive cone of the groupoid homology. As mentioned before, the groupoids in Theorem
C may not be second countable. In order to achieve this level of generality we require some
technical tools concerning extensions of Borel measures, which are developed in Appendix A.
We finish the main body of the paper with section 4, in which we introduce our new tiling
property for metric spaces and prove Theorem D. As a consequence, we provide new examples
of (strongly) almost finite groupoids and particularly construct non-amenable almost finite
groupoids in Corollary 4.14. Finally, we use some of the methods developed in this article to
give a short and conceptual proof of a classical result by Block and Weinberger, characterizing
(non-)amenability of metric spaces in terms of uniformly finite homology (see Corollary 4.20).

1. Preliminaries on groupoids and the type semigroup

Let us start reviewing the terminology and notation related to groupoids that we will use
throughout the text. Given a groupoid G we will denote its unit space by G(0) and write
r, s : G → G(0) for the range and source maps, respectively. Throughout the paper, all
groupoids are always assumed to be equipped with a locally compact, Hausdorff
topology making all the structure maps continuous. A groupoid G is called étale if
the range map, regarded as a map r : G→ G, is a local homeomorphism. It is called ample
if it is étale and the unit space G(0) is totally disconnected. In that case G admits a basis for
its topology consisting of compact and open bisections, i.e. compact and open subsets V ⊆ G
such that the restrictions of the source and range maps to V are homeomorphisms onto their
respective images. Note that a compact open bisection V ⊆ G gives rise to a homeomorphism
θV : s(V )→ r(V ).

For two subsets A,B ⊆ G we will consider their product
AB = {ab ∈ G | a ∈ A, b ∈ B, s(a) = r(b)}.

If B = {x} for a single element x ∈ G(0) we will omit the braces and just write Ax.
For a subset D ⊆ G(0) we use the standard notations GD = {g ∈ G | s(g) ∈ D}, and

GD = {g ∈ G | r(g) ∈ D}. When D = {x} consists of a single point, we will adopt the
customary abuse of notation and just write Gx instead of G{x} and similarly Gx instead of
G{x}.

Constructions of groupoids. Let us briefly review some constructions of groupoids that we
will use frequently throughout the article.

Given a subset D ⊆ G(0) we can consider the subgroupoid G|D := GD ∩ GD called the
restriction of G to D. If D = {x} consists of a single point, then G|D is a group, called the
isotropy group at x ∈ G(0). Assembling all the isotropy groups of G gives rise to the isotropy
groupoid Iso(G) = {g ∈ G | s(g) = r(g)} of G.
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Another construction appearing in this article is the product of two groupoids: Given
groupoids G and H, their product G × H can be equipped with a groupoid structure by
multiplying and inverting elements componentwise. If G and H are étale (resp. ample), then
their product is also étale (resp. ample).

Dynamical notions. We say that a set D ⊆ G(0) is G-invariant if for every g ∈ G we have
r(g) ∈ D ⇔ s(g) ∈ D. Note that in this case G|D = GD = GD so when talking about the
restriction of G to an invariant subset we will often just write GD. Thus, the notation G|D
introduced above will typically indicate the restriction to a non-invariant subset. Note that if
D is G-invariant, then so is its complement G(0) \D. If there are no proper non-trivial closed
G-invariant subsets of G(0) we say that G is minimal.

We say that G is principal if Iso(G) = G(0). Finally, G is called effective if the interior of
Iso(G) coincides with G(0). This is connected with the notion of topologically principal, which
means that the set of points of G(0) with trivial isotropy group is dense in G(0). If G is second
countable and effective, then G is topologically principal. If G is Hausdorff and topologically
principal, then G is effective ([33, Proposition 3.6]).

1.1. Type semigroup. The type semigroup of an ample groupoid was introduced and stud-
ied in [9, 32]. In this section, we recall its definition and study some of its basic properties.
Definition 1.1. Given an ample groupoid G, we define an equivalence relation ∼G on
Cc(G(0),Z)+ by declaring f1 ∼G f2 if there exist compact open bisections W1, . . . ,Wn of
G such that f1 = ∑n

i=1 1s(Wi) and f2 = ∑n
i=1 1r(Wi). We define the type semigroup associated

to G by
S(G) := Cc(G(0),Z)+/ ∼G .

We will write [f ] for the equivalence class of a function f ∈ Cc(G(0),Z)+, and equip S(G)
with the addition induced by pointwise addition in Cc(G(0),Z)+. In particular, S(G) contains
the class of the zero function as a neutral element and can be equipped with the algebraic
preorder (i.e. x ≤ y in S(G) if and only if there exists an element z ∈ S(G) such that
x+ z = y).

The type semigroup is clearly an isomorphism invariant for groupoids and it was shown in
[32] that it is also invariant under all the various (equivalent notions) of groupoid equivalence.
This observation will be important later.

Recall, that a commutative monoid S is called conical, if for all x, y ∈ S, x + y = 0 only
when x = y = 0. We say that S is a refinement monoid if for all a, b, c, d ∈ S such that
a + b = c + d there exist w, x, y, z ∈ S such that a = w + x, b = y + z, c = w + y, and
d = x+ z. It is straightforward to verify, that S(G) is always a conical refinement monoid.

An important part of the structure of a preordered monoid S is the collection of its order
units. Recall, that a non-zero element u ∈ S is called an order unit, provided that for every
x ∈ S there exists n ∈ N such that x ≤ nu. We will write S∗ for the collection of all order
units in S. The monoid S is called simple, provided that every non-zero element of S is an
order unit, in other words S = S∗ ∪{0}. It has already been observed in [9, Lemma 5.9] that
the type semigroup S(G) of an ample groupoid G is simple, provided that G is minimal. The
following Lemma extends this observation by identifying all the order units. To understand
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the statement and its proof, recall that a set D ⊆ G(0) is called G−full if r(GD) = G(0) (i.e.
for every element x ∈ G(0) there exists a g ∈ G with s(g) ∈ D and r(g) = x).

Lemma 1.2. Let G be an ample groupoid and [f ] ∈ S(G). Then [f ] is an order unit if and
only if supp(f) is G-full. In particular, G is minimal if and only if S(G) is simple.

Proof. Suppose [f ] ∈ S(G) is an order unit. Let x ∈ G(0) and K be a compact open set
containing x. Then there exists some n ∈ N such that [1K ] ≤ n[f ]. Let m ∈ Z+ be the
maximal value attained by f . Then clearly [1K ] ≤ [nm1supp(f)] and hence there exist compact
open bisections V1, . . . , Vk such that K = ⊔k

i=1 r(Vi) and supp(f) ⊇ ⋃ki=1 s(Vi). It follows that
r(Gsupp(f)) ⊇ K and we are done. For the converse we may proceed as in the proof of [9,
Lemma 5.9]. �

Let us also identify the order ideals of the type semigroup. Recall, that an order ideal of
a monoid S is a submonoid I such that for all x, y ∈ S, we have x + y ∈ I if and only if
x, y ∈ I.

Lemma 1.3. Let G be an ample groupoid. If I is an order ideal in S(G), then there exists
an open invariant subset U ⊆ G(0), such that I ∼= S(GU).

Proof. Suppose I is an order ideal in S(G). Then U := ⋃{supp(f) | [f ] ∈ I} is an open
subset of G(0). To see that it is invariant, let g ∈ G such that s(g) ∈ U . Then there exists
[f ] ∈ I such that s(g) ∈ supp(f). Now f can be written as f = ∑

i 1Ai for suitable clopen
sets Ai and s(g) must be contained in one of these. Since I is an order ideal, each [1Ai ] ∈ I.
Now let V be a compact open bisection containing g such that s(V ) ⊆ Ai. Upon refining the
representation of f if necessary, we may assume s(V ) = Ai. Since [1r(V )] = [1Ai ] ∈ I we get
r(g) ∈ U .

Now let J denote the ideal of S(G) generated by all the elements of S(G) which can be
represented by a function whose support is contained in U . Then we clearly have I ⊆ J .
For the converse inclusion take any [f ] ∈ S(G) such that supp(f) ⊆ U . Since the support
of f is compact, we may find finitely many functions f1, . . . , fn such that [fi] ∈ I with
supp(f) ⊆ ⋃ supp(fi). In particular, we have f ≤ ∑i nifi for suitably large ni ∈ N and hence
[f ] ≤ ∑i ni[fi] ∈ I. Since I is an order ideal, this implies [f ] ∈ I as desired. Clearly, we have
J ∼= S(GU). �

Once we have an order ideal I in a monoid S one can define a congruence on S by declaring
x ∼ y if there exist elements a, b ∈ I such that x + a = y + b. Then S/I := S/ ∼ can
be equipped canonically with a monoid structure induced by S. To identify the quotients
of the type semigroup, note that the set Ga of all compact open bisections of an ample
Hausdorff groupoid G forms a Boolean inverse semigroup and the type semigroup S(G) can
be canonically identified with the type monoid Typ(Ga) of this inverse semigroup (see [2,
Proposition 7.3]).

We shall also need the following construction: For two compact open bisections V1, V2 in
G let E = s(V1) \ (s(V1) ∩ s(V2)) and F = r(V1) \ (r(V1) ∩ r(V2)) and define

V15 V2 = FV1E ∪ V2.
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Then V15 V2 is a compact open bisection in G.
The proof of the following result is essentially contained in [23, Lemma 5.5]. We spell out

a sketch of the proof for the readers convenience.

Proposition 1.4. Let I ⊆ S(G) be an order ideal. If U is the open G-invariant subset of G(0)

corresponding to I, and D = G(0) \U its complement, then the canonical map S(G)→ S(GD)
induced by restriction of functions gives rise to an isomorphism S(G)/I ∼= S(GD).

Proof. Upon identifying S(G) with Typ(Ga), the result follows from [43, Theorem 4.3.2] once
we realize that the canonical semigroup homomorphism Ga → (GD)a is surjective. To see this
proceed as follows: If V ⊆ GD is a compact open bisection, then by definition of the induced
topology and using the fact that being compact does not depend on the ambient space, we
can find finitely many compact open bisections U1, . . . , Un in G such that V = ⋃

i Ui ∩ GD.
Then 5iUi is a compact open bisection in G such that (5iUi) ∩GD = V . �

1.2. Groupoid homology and its relation with S(G). Let us now turn our attention
to understand the relationship between the type semigroup of an ample groupoid G and the
positive cone H0(G)+ of the (integral) groupoid homology H0(G). We refer the reader to [29,
Section 3] for the relevant definitions. The relevant property here is cancellation: Recall that
we say that a semigroup S is cancellative if for a, b, c,∈ S satisfying a + c = b + c, it follows
that a = b.

Lemma 1.5. Let G be an ample groupoid with a compact unit space. Then the quotient map
C(G(0),Z)→ H0(G) induces a surjective semigroup homomorphism

S(G)→ H0(G)+

Proof. We need to show that the map is well-defined. Suppose f, g ∈ C(G(0),Z)+ such that
f ∼ g in S(G). We will show that f − g ∈ im(∂1), where ∂1 : Cc(G,Z) → C(G(0),Z) is
the differential map from the chain complex defining groupoid homology. This immediately
implies [f ] = [g] in H0(G)+. Since f ∼ g in S(G) we can find bisections V1, . . . , Vn such that

f =
n∑
i=1

1s(Vi) and g =
n∑
i=1

1r(Vi).

Let h := ∑n
i=1 1Vi ∈ Cc(G,Z). Then

∂1(h) =
n∑
i=1

s∗(1Vi)− r∗(1Vi) =
n∑
i=1

1s(Vi) − 1r(Vi) = f − g

as desired. �

Before the next result, let us recall the construction of the universal cancellative abelian
semigroup. Let S be an abelian semigroup with 0 ∈ S, and consider the equivalence relation
on S given by x ∼ y if there exists an element z ∈ S such that x+ z = y + z. Then ∼ is an
equivalence relation and C(S) := S/ ∼ is a cancellative abelian semigroup with the (universal)
property, that for every homomorphism Φ : S → P into a cancellative abelian semigroup P
there exists a unique homomorphism C(Φ) : C(S)→ P such that C(Φ)([s]) = Φ(s).
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Proposition 1.6. Let G be an ample groupoid with compact unit space. Then the canonical
map S(G)→ H0(G)+ induces an isomorphism of cancellative abelian semigroups.

C(S(G))→ H0(G)+

Proof. By universality, one can build a well-defined surjective homomorphism C(S(G)) →
H0(G)+. Hence, it remains to check its injectivity. Let f, g ∈ C(G(0),Z)+ such that [f ] = [g]
in H0(G)+. Then f − g ∈ im(∂1), i.e. there exists a function h ∈ Cc(G,Z) such that

f − g = ∂1(h) = s∗(h)− r∗(h)
This implies that f + r∗(h) = g + s∗(h). Since h is compactly supported and G is ample,
we can write h =

m∑
i=1

1Vi for appropriately chosen compact open bisections V1, . . . , Vm, which
implies that r∗(h) ∼ s∗(h). This concludes the proof since if x := [s∗(h)] = [r∗(h)], then
[f ] + x = [g] + x in S(G) and hence [f ] = [g] in C(S(G)). �

2. Dynamical comparison

In this section we study the relation between almost unperforation of the type semigroup
and dynamical comparison, an important regularity property. Since our definition is rather
general and in particular not limited to minimal groupoids we need to recall some facts about
(possibly infinite) Borel measures for locally compact Hausdorff spaces.

For a topological space X, we denote by UM(X) the cone of positive Borel measures on
X. For a given Borel subset B of X, the convex subset UM(X,B) ⊆ UM(X) consists of
those µ ∈ UM(X) such that µ(B) = 1. If X is further locally compact and Hausdorff, we
denote by UMc(X) the cone of all the positive regular Borel measures µ on X such that
µ(K) < ∞ for all compact sets K of X. By [36], if X is in addition σ-finite, then UMc(X)
can be identified with the positive part of the dual space of the space Cc(X). Finally, if X
is compact, we will denote by M(X) the compact convex set of all the positive regular Borel
probability measures on X, which is isomorphic to the positive part of the unit ball of the
dual of C(X).

Now let G be an étale groupoid (so that G(0) is a locally compact Hausdorff space), and
recall that a Borel measure µ on G(0) is called G-invariant if µ(s(V )) = µ(r(V )) for every open
bisection V ⊆ G. Slightly abusing notation, we write UM(G) for the subcone of UM(G(0))
of all the invariant positive Borel measures on G(0). Similarly, we will write UMc(G) for the
subcone of UMc(G(0)) consisting of all the invariant positive regular Borel measures µ on
X such that µ(K) < ∞ for all compact subsets K of G(0). If in addition G(0) is compact,
we denote by M(G) the compact convex set of invariant positive regular Borel probability
measures on G(0).

We now introduce a version of dynamical comparison which also works in the non-minimal
case.

Definition 2.1. Let G be an ample groupoid. For two compact open subsets A,B ⊆ G(0)

we say that A is subequivalent to B and write A - B, if there exist finitely many compact
open bisections V1, . . . , Vn of G such that A = ⊔n

i=1 s(Vi) and the sets {r(Vi)}ni=1 are pairwise
disjoint subsets of B.
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We say that G has dynamical comparison if for all nonempty compact open subsets A,B ⊆
G(0) such that A ⊂ r(GB) and satisfying µ(A) < µ(B) for every µ ∈ UM(G) such that
0 < µ(B) < ∞, we have A - B. We say that G has stable dynamical comparison if Gm has
dynamical comparison for all m ≥ 1, where Gm denotes the product groupoid G×Rm.2

Remark 2.2. If G is a minimal ample groupoid with compact unit space G(0), then G has
dynamical comparison if and only if for all nonempty clopen subsets A,B ⊆ G(0) satisfying
µ(A) < µ(B) for every µ ∈ M(G), then A - B. Hence, it follows from [21, Proposition 3.6]
that our notion of dynamical comparison generalizes Kerr’s dynamical comparison at least in
the ample case.

We now come back to the type semigroup S(G), which is a useful tool to study dynamical
comparison. This is due to the fact that dynamical subequivalence A - B translates to the
inequality [1A] ≤ [1B] in the type semigroup.

Moreover, the invariant Borel measures on the unit space can be canonically identified with
certain functionals on the type semigroup:

For a preordered monoid (S,+,≤) we denote by F (S) the set of all unnormalized states
on S, that is the set of all the monoid homomorphisms S → [0,∞]. Note that F (S) is a
cone, i.e., we can sum and multiply by positive real numbers. If x ∈ S, we define the set of
states on S which are normalized at x as F (S, x) = {f ∈ F (S) : f(x) = 1}. This set might
be empty, but in any case it is a convex subset of F (S).

Given an ample groupoid G, the set K of compact open subsets of G(0) is a ring of subsets of
G(0), that is, it is closed under finite unions and relative complements (meaning that E\F ∈ K
if E,F ∈ K). The type semigroup S(G) can now also be defined (see [2, Proposition 7.3]) as
the commutative monoid with generators [U ] for each U ∈ K subject to the relations:

(1) [∅] = 0,
(2) [A ∪B] = [A] + [B] if A,B ∈ K and A ∩B = ∅,
(3) [s(V )] = [r(V )] for each compact open bisection V of G.

With this description, it is obvious that F (S(G)) is the set of all the finitely additive invariant
positive measures on K.

We can now extend [35, Lemma 5.1] to groupoids as follows.

Lemma 2.3. Let G be an ample second countable groupoid. Then each f ∈ F (S(G)) can be
extended to a Borel invariant measure µf ∈ UM(G). Moreover, the restriction of the measure
µf to the open set V := ⋃

K, where K ranges over all the compact open subsets of G(0) such
that f([1K ]) <∞, is unique and regular.

Proof. As explained above, K is a ring of subsets of G(0). Therefore the set A of all the
subsets A of G(0) such that either A or Ac belongs to K is an algebra of subsets of G(0) (i.e.
it is closed under finite unions and complements). Note that all the members of A are clopen
sets. In particular, since G(0) is second countable and totally disconnected each A ∈ A can
be written as A = ⊔∞

i=1 Ai, where Ai are compact open subsets of G(0).

2 Rm := {1, . . . ,m}2 is the discrete full equivalence relation.
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Given f ∈ F (S(G))), we can define a premeasure µ on A by the rule µ(A) = f([1A]) if
A ∈ K, and µ(A) = ∑∞

i=1 f([1Ai ]) if A = ⊔∞
i=1 Ai where Ai are compact open subsets of G(0),

if Ac ∈ K. It is easy to check that the definition of µ(A) does not depend on the particular
decomposition of A into a disjoint union of a sequence of compact open subsets of G(0), and
that µ is a premeasure on A.

By [17, Theorem 1.14], given f ∈ F (S(G)) there exists a positive Borel measure µf such
that µf (A) = f([1A]) for each A ∈ A. In particular, this holds for every compact open subset
A of G(0). To show that µf is invariant, take an open bisection U . Then since G(0) is second
countable and totally disconnected, we can write U = ⊔∞

i=1 Ui, where Ui are compact open
subsets of U (and thus compact open bisections). Now we get

µf (s(U)) =
∞∑
i=1

µf (s(Ui)) =
∞∑
i=1

f([1s(Ui)]) =
∞∑
i=1

f([1r(Ui)]) =
∞∑
i=1

µf (r(Ui)) = µf (r(U)).

This shows invariance of µf .
Now let V = ⋃

K, where K ranges over all the compact open subsets of G(0) such that
f([1K ]) < ∞. Then V is σ-finite, and thus by [17, Theorem 1.14], there is a unique Borel
measure µ on V such that µ(K) = f([1K ]) for all compact open subset K of V . Hence the
restriction of µf to V is µ, and it is unique.

Now observe that every open subset of V is σ-compact and that µ(K) <∞ for each compact
set K of V . Hence, it follows from [36, Theorem 2.18] that µ is a regular measure. �

The following Lemma gives some justification that our definition of dynamical comparison
is a sensible one for non-minimal groupoids.

Lemma 2.4. Let G be an ample groupoid. Then G has dynamical comparison if and only if
GU has dynamical comparison for every open G-invariant subset U ⊆ G(0).

Proof. We only need to show that dynamical comparison passes to restrictions of G to open
G-invariant subsets. Let U ⊆ G(0) be such an open G-invariant subset, and let A,B ⊆ U be
compact open subsets of U such that A ⊆ r(GUB). Moreover, assume that ν(A) < ν(B) for
every ν ∈ UM(GU) such that 0 < ν(B) < ∞. Let µ ∈ UM(G) such that 0 < µ(B) < ∞.
Then µ restricts to a measure µU ∈ UM(GU) such that 0 < µU(B) < ∞ and so µ(A) =
µU(A) < µU(B) = µ(B). Since G has dynamical comparison and using again that U is
G-invariant, we obtain the desired conclusion. �

As mentioned in the introduction, in [9, 32] it turned out that almost unperforation of the
type semigroup is a very desirable property. Recall, that a preordered monoid S is called
almost unperforated if whenever x, y ∈ S and n ∈ N satisfy (n + 1)x ≤ ny, then x ≤ y.
One of the main goals of this paper is to relate almost unperforation of the type semigroup
with certain properties of the underlying groupoid. We can now relate stable dynamical
comparison with almost unperforation of S(G).

Lemma 2.5. Let G be an ample groupoid. If G satisfies stable dynamical comparison, then
S(G) is almost unperforated. If we require additionally that G is second countable, then the
converse is also true.
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Proof. Suppose that G satisfies stable dynamical comparison, and let x, y ∈ S(G) be such
that (k + 1)x ≤ ky. Then there is some m such that x, y are represented by compact open
subsets of (Gm)(0). Therefore since we are assuming that Gm has dynamical comparison, we
may assume that m = 1. With this assumption we have x = [1A] and y = [1B], where A
and B are compact open subsets of G(0). Now we clearly have A ⊆ r(GB) and µ(A) < µ(B)
for each µ ∈ UM(G) such that 0 < µ(B) < ∞. It follows from dynamical comparison that
[1A] ≤ [1B], as desired.

Now suppose G is second countable and let A,B be compact open subsets of G(0) such
that A ⊆ r(GB). Then there are compact open bisections V1, V2, . . . , Vm in G such that
A = ⊔m

i=1 r(Vi) and s(Vi) ⊂ B. Therefore we get [1A] ≤ m[1B]. Assume in addition that
µ(A) < µ(B) for every measure µ such that µ(B) = 1. Then by Lemma 2.3 we get that
f([1A]) < f([1B]) for all f ∈ F (S(G), [1B]). Now it follows from [31, Proposition 2.1] that
there is some k ∈ N such that (k+ 1)[1A] ≤ k[1B]. Since S(G) is almost unperforated, we get
that [1A] ≤ [1B], as desired. The proof for Gm is similar. (Note that S(Gm) = S(G).) �

The above result begs the following natural question:

Question 2.6. Is stable dynamical comparison equivalent to dynamical comparison?

The remainder of this section is dedicated to provide an affirmative answer of this question
in the minimal setting, which then leads to the proof of Theorem A. In fact, in Proposition
2.10 we show that in the minimal setting, both notions are also equivalent to the following:

Definition 2.7 ([13]). Let G be an ample minimal groupoid with compact unit space. We
say that G satisfies weak dynamical comparison if there exists a constant C ≥ 1 such that
whenever A,B ⊆ G(0) are non-empty compact open subsets satisfying supµ∈M(G) µ(A) <
1
C

infµ∈M(G) µ(B), then A - B.

Remark 2.8. For any ample groupoid G with compact unit space, the set M(G) of G-
invariant regular Borel probability measures is compact in the weak*-topology. Consequently,
if A and B are compact open sets such that µ(A) < µ(B) for all µ ∈ M(G), we can use the
continuity of the function µ 7→ µ(B)−µ(A) to see that infµ∈M(G)(µ(B)−µ(A)) ≥ ε for some
suitably small ε > 0.

Before we state and prove the desired equivalence between the different notions in Propo-
sition 2.10, let us make the following elementary observation which plays a crucial role in the
proof:

Lemma 2.9. Let G be a minimal ample groupoid with compact unit space. Suppose G has
weak dynamical comparison, with constant C ≥ 1. Then, wheneverm ∈ N and A1, . . . , Am, B ⊆
G(0) are compact open subsets such that

sup
µ∈M(G)

( m∑
i=1

µ(Ai)
)
<

1
2m−1C

inf
µ∈M(G)

µ(B)

for all µ ∈M(G), then ⊔mi=1 Ai × {i} - B × {1}.
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Proof. The proof proceeds by induction on the number of levels m. The case m = 1 is
immediate from the fact that G has weak dynamical comparison. Now if m > 1 and the
hypothesis of the lemma are fullfiled, then we have

sup
µ∈M(G)

µ(Am) ≤ sup
µ∈M(G)

m∑
i=1

µ(Ai) <
1

2m−1C
inf

µ∈M(G)
µ(B) < 1

C
inf

µ∈M(G)
µ(B),

so by weak dynamical comparison there exists A′m such that Am ∼ A′m ⊆ B.
For each µ ∈M(G), we have, by our assumption,

1
2m−2C

µ(B \ A′m) = 1
2m−2C

µ(B)− 1
2m−2C

µ(Am)

≥ 1
2m−2C

µ(B)− µ(Am)

≥ 1
2m−2C

µ(B)− 1
2m−1C

µ(B)

= 1
2m−1C

µ(B) ≥ 1
2m−1C

inf
µ′∈M(G)

µ′(B).

Hence we obtain

sup
µ∈M(G)

m−1∑
i=1

µ(Ai) <
1

2m−1C
inf

µ∈M(G)
µ(B) ≤ 1

2m−2C
inf

µ∈M(G)
µ(B \ A′m),

Thus, we can apply the induction hypothesis so conclude that tm−1
i=1 Ai×{i} - B \A′m×{1}.

Since we also had Am ∼ A′m ⊆ B, the result follows. �

Proposition 2.10. Let G be a σ-compact ample groupoid which is minimal and has a compact
unit space. Then the following conditions are equivalent:

(1) G satisfies stable dynamical comparison.
(2) G satisfies dynamical comparison.
(3) G satisfies weak dynamical comparison.

Proof. It is clear that (1) =⇒ (2) =⇒ (3).
(3) =⇒ (1). Suppose that G satisfies weak dynamical comparison and let C ≥ 1 be such

that whenever A,B ⊆ G(0) are non-empty compact open subsets satisfying supµ∈M(G) µ(A) <
1
C

infµ∈M(G) µ(B), then A - B. Given m ≥ 1, we show that Gm has dynamical comparison.
Observe that, up to normalization, we can identifyM(G) andM(Gm). Hence we will work

with M(G), with the understanding that each µ ∈M(G) gives rise to the invariant measure
on (Gm)(0) defined by

µ
( m⊔
i=1

Ai × {i}
)

=
m∑
i=1

µ(Ai)

for Borel subsets Ai of G(0).
Suppose A and B are non-empty compact open subsets of (Gm)(0) such that µ(A) < µ(B)

for every µ ∈M(G). By Remark 2.8, there is 1 ≥ ε > 0 such that
inf

µ∈M(G)
(µ(B)− µ(A)) ≥ ε.
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Since Gm is σ-compact, we can find a countable cover (Vn)n of Gm by compact open bisections.
Let us use the shorthand notation θn for the corresponding homeomorphism θVn : s(Vn) →
r(Vn). Now let A1 = A ∩ θ−1

1 (B) and B1 = θ1(A1). For each n > 1, define inductively

An = (A \ (
n−1⋃
i=1

Ai)) ∩ (θ−1
n (B \

n−1⋃
i=1

Bi)),

and Bn = θn(An). Then all the sets An and Bn are (possibly empty) compact open disjoint
subsets of A and B respectively. Moreover, we have µ(An) = µ(Bn) for every n ∈ N and
every G-invariant measure µ. Consider the remainder sets A0 = A \ (⋃n≥1 An) and B0 =
B \ (⋃n≥1 Bn). We clearly have µ(B0) ≥ ε for all µ ∈M(G). Note also, that by construction,
whenever s(g) ∈ A0 for some g ∈ Gm, then r(g) can not be an element of B0. So r(GmA0) ⊆
(Gm)(0) \ B0, or equivalently, B0 ⊆ (Gm)(0) \ r(GmA0). We claim that µ(A0) = 0 for all
µ ∈M(G). It is enough to consider ergodic measures3.

If we suppose µ(A0) > 0, then µ(r(GmA0)) > 0 and by ergodicity it follows that µ(B0) ≤
µ((Gm)(0) \ r(GmA0)) = 0, a contradiction. Now for a fixed µ we have

lim
n→∞

µ(A \ (
n⋃
i=1

Ai)) = 0.

Since the limit is decreasing and the above measure values viewed as functions on the set
M(G) are continuous, the above convergence is uniform on M(G) by Dini’s Theorem. Now
let δ < ε

2m−1mC
. Using the uniform convergence we conclude that there exists an n0 such that

for all µ ∈M(G) we have

µ(A \ (
n0⋃
i=1

Ai)) ≤ δ <
ε

2m−1mC
≤ 1

2m−1mC
µ(B \ (

n0⋃
i=1

Bi)).

We can further arrange B \ (⋃n0
i=1 Bi) ∼

⊔m
j=1 Dj×{j} for clopen subsets Dj of G(0) such that

D1 ⊇ D2 ⊇ · · · ⊇ Dm. Then we get for every µ ∈M(G) that

µ(A \ (
n0⋃
i=1

Ai)) ≤ δ <
ε

2m−1mC
≤ 1

2m−1mC
µ(B \ (

n0⋃
i=1

Bi)) ≤
1

2m−1C
µ(D1)

and hence we can pass to the supremum on the left and infimum on the right to get

sup
µ∈M(G)

µ(A \ (
n0⋃
i=1

Ai)) ≤ δ <
ε

2m−1mC
≤ 1

2m−1C
inf

µ∈M(G)
µ(D1).

Now write A \ (⋃n0
i=1 Ai) = ⊔m

j=1 Cj × {j}, with Cj a clopen subset of G(0). From the last
inequality we conclude that

sup
µ∈M(G)

( m∑
j=1

µ(Cj)
)

= sup
µ∈M(G)

µ(A \ (
n0⋃
i=1

Ai)) <
1

2m−1C
inf

µ∈M(G)
µ(D1).

3Recall that µ ∈M(G) is called ergodic if every Borel G-invariant subset E ⊆ G(0) either has µ(E) = 0 or
µ(G(0)\E) = 0. Similar to the group action case (see e.g. [19, Theorem 8.1.8]), µ ∈ M(G) is ergodic if and
only if it is an extreme point in M(G). As its proof is essentially a repetition of the arguments used in the
proof of [19, Theorem 8.1.8], we omit the details here.
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Now apply Lemma 2.9 to conclude that A \ (⋃n0
i=1 Ai) = ⊔m

j=1 Cj × {j} - D1 × {1}. Since we
also have D1×{1} -

⊔m
j=1 Dj ×{j} ∼ B \ (⋃n0

i=1 Bi) and
⋃n0
i=1 Ai -

⋃n0
i=1 Bi, we obtain A - B

as desired. �

We can finally prove Theorem A stated in the introduction.

Proof of Theorem A. Let us first assume that G(0) is compact. By Proposition 2.10, dynam-
ical comparison implies stable dynamical comparison for G. Hence the result follow from
Lemma 2.5.

If G(0) is just locally compact, we pick a compact open subset K ⊆ G(0). Since G is
minimal, G and the restriction G|K are Morita equivalent. In particular, G|K is minimal
itself and still has dynamical comparison. Indeed, suppose A,B ⊆ K such that µ(A) < µ(B)
for all µ ∈ M(G|K). Then if ν ∈ UM(G,B), by minimality of G and compactness of K,
0 < ν(K) < ∞. So the measure 1

ν(K)ν|K ∈ M(G|K). Hence ν(A) < ν(B). Since ν was
arbitrary we can use dynamical comparison for G to conclude A - B in G. But then the
compact open bisections implementing this subequivalence have range and source in K since
A,B ⊆ K. So we actually get A - B in G|K as desired. The result now follows from the fact
that S(G|K) ∼= S(G) [32, Corollary 5.8], and the first paragraph of this proof. �

2.1. Absence of invariant measures. We call a measure µ ∈ UM(G) trivial provided that
µ(A) ∈ {0,∞} for all compact open subsets A ⊆ G(0). In this short section we characterize
almost unperforation of the type semigroup when every measure in UM(G) is trivial.

Recall that an element x of a semigroup S is called properly infinite if 2x ≤ x.

Proposition 2.11. Let G be an ample second countable groupoid such that every measure in
UM(G) is trivial. Then G has dynamical comparison if and only if every element in S(G) is
properly infinite.

Proof. Suppose first that G has dynamical comparison. We first consider the case of a G-full
compact open subset A ⊆ G(0). Since every measure in UM(G) is trivial it follows from
Lemma 2.3 that F (S(G), [1A]) = ∅. By Tarski’s Theorem (see for example [42, Theorem 9.1])
we conclude that a multiple of [1A] is properly infinite. By [30, Theorem 4.3] there exist order
units u, v ∈ S(G) such that [1A] = u + v. Pick representative functions u = [f ] and v = [g]
and let U = supp(f) and V = supp(g). Note, that the sets U, V are both compact open and
G-full subsets of G(0). Consequently, [1V ] and [1U ] are order units themselves by Lemma 1.2,
so that [1A] ≤ l[1U ] and [1A] ≤ k[1V ] for some k, l ≥ 1. This implies that A ⊆ r(GU)∩r(GV ).
Since there exist no G-invariant measures on G(0) which are non-trivial in U or V , we may use
dynamical comparison to conclude that in fact already [1A] ≤ [1U ] and [1A] ≤ [1V ]. Putting
everything together we compute 2[1A] ≤ [1U ] + [1V ] ≤ u + v = [1A] and reach our desired
conclusion.

Now if [f ] ∈ S(G) is an arbitrary order unit, write f = ∑n
i=1 1Ai and let A = ⋃n

i=1 Ai be its
support. Then [1A] is an order unit as well. Hence we can apply the first step above (multiple
times) and conclude 2[f ] ≤ 2n[1A] ≤ [1A] ≤ [f ].

Suppose now that [g] is an arbitrary element of S(G). Let I ⊆ S(G) be the order ideal
generated by [g]. By Lemma 1.3 we have that I ∼= S(GU) for some G-invariant open subset
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U ⊆ G(0). Note that [g] is an order unit for I = S(GU), and that GU also has dynamical
comparison (Lemma 2.4). Let µ ∈ UM(GU). Then we can extend µ to an invariant measure
µ̃ ∈ UM(G) by the rule µ̃(T ) = µ(T ∩ U) for each Borel set T of G(0). It follows by our
hypothesis that µ̃ is trivial and hence so is µ. Therefore every measure in UM(GU) is trivial
and so it follows from the above argument that [g] is properly infinite in S(GU) and hence
also in S(G).

Conversely, assume that every element in S(G) is properly infinite. Let A,B ⊆ G(0)

be compact open subsets, such that A ⊆ r(GB). Then [1B] is a properly infinite order
unit in the order ideal S(Gr(GB)) of S(G). It follows that there exists an n ∈ N such that
[1A] ≤ n[1B] ≤ [1B], as desired. �

Remark 2.12. Note that the equivalent properties in the previous proposition are also equiv-
alent to every compact open subset of the unit space being (2, 1)-paradoxical in the sense of
[9, Definition 4.5]. The reader might also want to compare these results with those obtained
independently by Ma in section 5 of [27].

The following generalizes [26, Proposition 6.2] and gives an affirmative answer to Question
2.6 in the absence of interesting invariant measures.
Proposition 2.13. Let G be an ample second countable groupoid such that every measure in
UM(G) is trivial. Then the type semigroup S(G) is almost unperforated if and only if G has
dynamical comparison.
Proof. One implication follows from Lemma 2.5. Conversely, we assume that G has dynamical
comparison. Suppose we are given [f ], [g] ∈ S(G), such that (n+1)[f ] ≤ n[g]. It follows from
Proposition 2.11 that [g] is properly infinite in S(G). We conclude that [f ] ≤ (n + 1)[f ] ≤
n[g] ≤ [g], as desired. �

3. Almost Finite groupoids

In this section we study the type semigroups associated with almost finite groupoids. Our
main results reveal that almost finiteness is not strong enough of a condition to prove almost
unperforation of the type semigroup in the non-minimal setting. The reason for this lies in a
different behaviour of the permanence properties of these two notions: almost unperforation
passes to order ideals, while almost finiteness does not pass to restrictions of G to arbitrary
open invariant subspaces of G(0). Prompted by this, we will show that a strong version of
almost finiteness, which basically asks for every such restriction to be almost finite, indeed
provides us with an almost unperforated type semigroup.

We use this characterization of almost unperforation to clarify the relationship between
the type semigroup and the positive cone of the homology group H0(G).

3.1. Definition and Properties. We begin by recalling the definition of almost finiteness
and proving some immediate consequences.
Definition 3.1. [29, Definition 6.2] Let G be an ample groupoid with compact unit space.

(1) We say that K ⊆ G is an elementary subgroupoid if it is a compact open principal
subgroupoid of G such that K(0) = G(0).
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(2) Given a compact subset C ⊆ G and ε > 0, a compact subgroupoid K ⊆ G with
K(0) = G(0) is called (C, ε)-invariant, if for all x ∈ G(0) we have

|CKx \Kx|
|Kx|

< ε.

(3) We say that G is almost finite if for every compact set C ⊆ G and every ε > 0 there
exists a (C, ε)-invariant elementary subgroupoid K ⊆ G.

From now on, whenever we say that a groupoid G is almost finite, we also
assume that G is ample and has a compact unit space.

Definition 3.2. [39, Definition 3.2] Let K be a compact groupoid. A clopen castle for K is
a partition

K(0) =
n⊔
i=1

Ni⊔
j=1

F
(i)
j

into non-empty clopen subsets such that the following conditions hold:
(1) For each 1 ≤ i ≤ n and 1 ≤ j, k ≤ Ni there exists a unique compact open bisection

V
(i)
j,k of K such that s(V (i)

j,k ) = F
(i)
k and r(V (i)

j,k ) = F
(i)
j .

(2)

K =
n⊔
i=1

⊔
1≤j,k≤Ni

V
(i)
j,k .

The pair
(
{F (i)

j | 1 ≤ j ≤ Ni}, {V (i)
j,k | 1 ≤ j, k ≤ Ni}

)
is called the i-th tower of the castle and

the sets F (i)
j are called the levels of the i-th tower.

Remark 3.3. Note that the uniqueness of the bisections in (2) above has some important
consequences: If θ(i)

j,k : F (i)
k → F

(i)
j denotes the partial homeomorphism corresponding to the

bisection V
(i)
j,k , i.e. θ

(i)
j,k = r ◦ (s|V (i)

j,k

)−1, then we have (θ(i)
j,k)−1 = θ

(i)
k,j, θ

(i)
j,k ◦ θ

(i)
k,l = θ

(i)
j,l , and

θ
(i)
j,j = id

F
(i)
j
.

Recall that, as mentioned in [39], since compact ample principal groupoids always admit
a clopen castle, Definition 3.1 is equivalent to the definition of almost finiteness given in [39,
Definition 3.6]. We point out that due to this fact we will be using both equivalent notions
of almost finiteness throughout the paper.

The following small lemma shows how to refine a castle as in Definition 3.2 and will be
used frequently throughout the rest of this article:

Lemma 3.4. Let K be a compact groupoid admitting a clopen castle. Given finitely many
clopen subsets A1, . . . , Ar ⊆ K(0) there exists a clopen castle for K such that every level of
every tower of the castle is either contained in or disjoint from Al for every 1 ≤ l ≤ r.

Proof. Let us consider the case that we only have one clopen subset A ⊆ K(0). We will
replace every tower of the castle by finitely many thinner towers, such that each level of the
new towers is either contained in or disjoint from A. Let θ(i)

j,k : F (i)
k → F

(i)
j be the partial



THE TYPE SEMIGROUP, COMPARISON AND ALMOST FINITENESS FOR AMPLE GROUPOIDS 17

homeomorphism associated to the compact open bisection V (i)
j,k . Consider the compact open

subsets θ(i)
1,k(A ∩ F

(i)
k ) ⊆ F

(i)
1 of the base of the i-th tower. Taking a clopen refinement

we can find a decomposition F
(i)
1 =

Li⊔
t=1

X
(i)
t,1 such that each X

(i)
t,1 is either contained in or

disjoint from every θ
(i)
1,k(A ∩ F

(i)
k ). Let X(i)

t,j := θ
(i)
j,1(X(i)

t,1) ⊆ F
(i)
j . Then we clearly have

K(0) = ⊔n
i=1

⊔Li
t=1

⊔
1≤j≤Ni X

(i)
t,j . Moreover, the sets V (i)

j,k,t := V
(i)
j,k ∩ s−1(X(i)

t,k) are compact
open bisections such that s(V (i)

j,k,t) = X
(i)
t,k and r(V (i)

j,k,t) = X
(i)
t,j and one easily checks, that

K = ⊔n
i=1

⊔Li
t=1

⊔
1≤j,k≤Ni V

(i)
j,k,t. Hence we have constructed a finer clopen castle. In this new

castle, for every k we have θ(i)
1,k(X

(i)
t,k ∩ A) = X

(i)
t,1 ∩ θ

(i)
1,k(A ∩ F

(i)
k ). By construction, the latter

set is either empty or all of X(i)
t,1 . Hence by applying θ(i)

k,1 we obtain that X(i)
t,k ∩ A is either

empty or all of X(i)
t,k , as desired. Applying the above process successively to finitely many sets

A1, . . . , Ar yields the desired result. �

We continue this first part of the section showing important features and permanence
properties of almost finiteness. To state them we need to recall some terminology, and well-
known facts about almost finite groupoids:

(1) If G is almost finite, then M(G) 6= ∅ [39, Lemma 3.9].
(2) If G is almost finite and minimal, then G is topologically principal [39, Remark 3.10].
(3) If G is an almost finite groupoid and D ⊆ G(0) is a closed G-invariant subset, then

the restriction GD is almost finite [39, Lemma 3.13].
(4) If G admits a proper surjective groupoid homomorphism π : G → H onto an almost

finite groupoid H, such that the restriction to every source fibre Gx → Hπ(x) is
bijective, then G is almost finite [39, Lemma 5.1].

We would like to add another crucial and natural permanence property of almost finiteness
to the above list: invariance under stable isomorphism. Recall that two étale groupoids G and
G′ are stably isomorphic if G×R ∼= G′ ×R, where R = N2 is the (discrete) full equivalence
relation on N. It is well-known that stable isomorphism agrees with Morita equivalence for
ample (Hausdorff) groupoids with σ-compact unit spaces (see [10, Theorem 2.19]). In fact,
there are a number of notions of equivalence for groupoids, and they all coincide for ample
(Hausdorff) groupoids with σ-compact unit spaces (see [15, Theorem 3.12]).

Lemma 3.5. Let G be an almost finite groupoid and K be an elementary groupoid. Then
G×K is almost finite.

Proof. Let C ⊆ G×K be a compact subset and ε > 0. Then C is contained in C̃ ×K for a
compact subset C̃ ⊆ G. By almost finiteness of G, there exists a (C̃, ε)-invariant elementary
subgroupoid K̃ of G. Then L := K̃ ×K is clearly an elementary subgroupoid of G×K and
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for every (x, y) ∈ G(0) ×K(0) we have
|CL(x, y) \ L(x, y)| ≤ |(C̃ ×K)(K̃ ×K)(x, y) \ (K̃ ×K)(x, y)|

≤ |C̃K̃x \ K̃x||Ky|

< ε|K̃x||Ky| = ε|L(x, y)|.
�

Proposition 3.6. Let G and G′ be ample groupoids with compact unit spaces. Suppose that
G and G′ are stably isomorphic. Then G is almost finite if and only if G′ is almost finite.
Proof. Let us fix an isomorphism Φ : G×R → G′ ×R. For each n ∈ N consider the clopen
subgroupoid Gn := G × {1, . . . , n}2 of G × R. If G is almost finite, then so is each Gn

by Lemma 3.5. Let Hn := Φ(Gn) ⊆ G′ × R. By definition, each Hn is almost finite and
G′ × R = ⋃

nHn. Consider the compact open subset W := G′(0) × {1} ⊆ G′ × R. Then
W is clearly a G′ × R-full subset of (G′ × R)(0) = G′(0) × N such that (G′ × R)|W ∼= G′.
Hence it is enough to show that the restriction groupoid (G′ × R)|W is almost finite. But
this follows from a slight adaptation of [39, Lemma 3.12]: If C ⊆ (G′ × R)|W is a compact
subset and ε > 0, then there exists an n ∈ N such that C ∪W ⊆ Hn. Using the compactness
of H(0)

n and the fact that W is G′×R-full, there exist finitely many compact open bisections
V1, . . . , Vl ⊆ G′×R such that ⋃li=1 s(Vi) = H(0)

n and r(Vi) ⊆ W for each i. For each 1 ≤ i ≤ l,
we have Vi ⊆ Hn. Indeed, since s(Vi), r(Vi) ⊆ H(0)

n we have s(Φ−1(Vi)), r(Φ−1(Vi)) ⊆ G(0)
n .

But then we must have Φ−1(Vi) ⊆ Gn, which implies our claim.
Now let C̃ := C ∪ V1 ∪ . . . ∪ Vl ⊆ Hn and use almost finiteness of Hn to find a (C̃, ε2l)-

invariant elementary subgroupoidK ofHn. Then we can literally copy the argument from [39,
Lemma 3.12] to show that K|W is a (C, ε)-invariant elementary subgroupoid of (G′ ×R)|W .
This completes the proof. �

3.2. Almost finiteness and dynamical comparison. In this subsection we will study the
implications of almost finiteness for the type semigroup of not necessarily minimal ample
groupoids. The main observation is contained in the following Lemma, which says that
the algebraic preorder on S(G) is witnessed by the G-invariant measures on the unit space
G(0). The lemma is essentially a version of [21] for ample groupoids obtained by combining
techniques from [29] and [39].
Lemma 3.7. Let G be an almost finite groupoid and let f, g ∈ C(G(0),Z)+. If µ(f) < µ(g)
for all µ ∈M(G), then [f ] ≤ [g] in S(G).
Proof. Passing to Gm for m big enough, we can assume that f = 1A and g = 1B for clopen
subsets A and B of G(0), with µ(A) < µ(B) for all µ ∈M(G).

Given a pair (C, ε) we can find a (C, ε)-invariant elementary subgroupoid K by almost
finiteness. Using Lemma 3.4 we may assume that it admits a castle ((F (i)

j )1≤j≤Ni , (V
(i)
j,k )1≤j,k≤Ni)ni=1,

such that every level in every tower is either contained in or disjoint from each of the sets
A,B. For each 1 ≤ i ≤ n let Ei = {k | F (i)

k ⊆ A} and Fi = {j | F (i)
j ⊆ B} be the sets

counting how many levels of the i-th tower are contained in A and B respectively. Note that
these sets depend on (C, ε) (although we do not include this in our notation).
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Claim. There exists (C, ε) such that for any (C, ε)-invariant elementary subgroupoid K ⊆ G
(admitting a castle for K as described above), it follows that

|Ei| ≤ |Fi| for each 1 ≤ i ≤ n. (3.1)

Proof of Claim. Suppose this is not the case. Then we can write G as a directed union of
symmetric compact subsets C = C−1, and for each λ := (C, ε) find (C, ε)-invariant compact
subgroupoids Kλ ⊆ G such that there exists a tower Fλ := (F (iλ)

j , V
(iλ)
j,k )1≤j,k≤Lλ in the

corresponding clopen castle for Kλ with the property that
|Eiλ| > |Fiλ|.

For each λ, let xλ be any element in F (iλ)
1 (the basis of Fλ), and define a probability measure

µλ on G(0) by

µλ(D) = 1
Lλ

Lλ∑
j=1

δxλ(θ(iλ)
1,j (D ∩ F (iλ)

j )).

Now let U be a compact open bisection such that U ⊆ C, and note that r(Kλxλ) = {θiλj,1(xλ) |
1 ≤ j ≤ Lλ} and |Kλxλ| = Lλ. Then, we get that :

µλ(r(U)) = |r(U) ∩ r(Kλxλ)|
|Kλxλ|

= |U
−1Kλxλ|
|Kλxλ|

.

Similarly, we get

µλ(s(U)) = |s(U) ∩ r(Kλxλ)|
|Kλxλ|

= |UKλxλ|
|Kλxλ|

.

Now
|UKλxλ| = |UKλxλ ∩Kλxλ|+ |UKλxλ \Kλxλ|.

Since |UKλxλ ∩Kλxλ| = |U−1Kλxλ ∩Kλxλ|, we also get
|U−1Kλxλ| = |UKλxλ ∩Kλxλ|+ |U−1Kλxλ \Kλxλ|.

Putting all of this together we obtain

|µλ(s(U))− µλ(r(U))| = ||UKλxλ \Kλxλ| − |U−1Kλxλ \Kλxλ||
|Kλxλ|

≤ 2 |CKλxλ \Kλxλ|
|Kλxλ|

< 2ε.

Now let µ be a weak-∗ cluster point of this net. Then µ ∈ M(G). Indeed, passing to a
subnet, we can assume that µ = limλ µλ. Now if U is any compact open bisection and ε > 0
is arbitrary, we can find λ = (C, δ) such that U ⊆ C, δ < ε

6 and moreover |µ(r(U)) −
µλ(r(U))| < ε/3 and |µ(s(U)) − µλ(s(U))| < ε/3. By the above computation, we have
|µλ(s(U))− µλ(r(U))| < 2δ < ε/3.

Then
|µ(s(U))− µ(r(U))| ≤ |µ(s(U))− µλ(s(U))|+ |µλ(s(U))− µλ(r(U))|

+|µλ(r(U))− µ(r(U))| < ε.
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As ε > 0 was arbitrary, we conclude that µ(s(U)) = µ(r(U)), and regularity implies that µ
is indeed a G-invariant probability measure on G(0).

Now, using the fact that each level F (iλ)
j is either contained in or disjoint from each of the

sets A,B (Lemma 3.4) we compute:

µ(A) = lim
λ
µλ(A) = lim

λ

1
Lλ
|Eiλ|

≥ lim
λ

1
Lλ
|Fiλ|

= lim
λ
µλ(B) = µ(B).

So we obtain that µ(A) ≥ µ(B), contradicting the hypothesis. �
From the inequality (3.1) we obtain injections of sets

Ei ↪→ Fi, (1 ≤ i ≤ n),
and from this it is straightforward to see that [1A] ≤ [1B] in S(G). This concludes the
proof. �

As a first immediate application of this, we obtain an easy way to identify the order units
in S(G):

Corollary 3.8. Let G be an almost finite groupoid. Then [f ] ∈ S(G) is an order unit if and
only if µ(f) > 0 for all µ ∈M(G).

Proof. If µ(f) > 0 for all µ ∈ M(G), then by compactness of M(G) there exists N > 0 such
that 1/N < µ(f) for all µ ∈ M(G). Therefore, if [g] ∈ S(G) is an arbitrary element, then
there exists some n ∈ N such that µ(g) < nµ(f) = µ(nf) for all µ ∈ M(G). By Lemma
3.7 we conclude that [g] ≤ [nf ] = n[f ]. Conversely, if [f ] ∈ S(G) is an order unit, then
[1G(0) ] ≤ N [f ] for some N ∈ N. Hence 1 = µ(1G(0)) ≤ Nµ(f), which implies our claim. �

We can now apply this result to come back to the study of almost unperforation of the
type semigroup S(G). We will denote by S(G)∗ the subsemigroup of S(G) consisting of all
the order-units of S(G). In the following we will denote the algebraic preorder on S(G)∗∪{0}
by ≤∗. We are now ready to prove our first main result in this section:

Theorem 3.9. If G is almost finite, then S(G)∗ ∪ {0} is almost unperforated. In particular,
if G is almost finite and minimal, then S(G) itself is almost unperforated.

Proof. Let [f ], [g] ∈ S(G)∗ ∪ {0} such that (n + 1)[f ] ≤ n[g]. We may assume [g] 6= 0
since the result is obvious otherwise. Then, for every µ ∈ M(G), we have µ(g) > 0 and
(n + 1)µ(f) ≤ nµ(g). We conclude that µ(f) < µ(g) and hence [f ] ≤ [g] in S(G) by
Lemma 3.7. Thus, there exists some [h] ∈ S(G) such that [f ] + [h] = [g]. It follows that
µ(h) = µ(g) − µ(f) > 0 for all µ ∈ M(G) and hence [h] is an order unit by the previous
Lemma. It follows that in fact we have [f ] ≤∗ [g] which completes the proof of the first
statement.

For the second statement, we see that S(G) is simple by Lemma 1.2. Hence, S(G) =
S(G)∗ ∪ {0} is almost unperforated. �
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This can be used to determine the groupoid homology of G when combined with the
following result:

Lemma 3.10. If G is almost finite and no restriction GD, for a closed invariant set D ⊆ G(0),
is isomorphic to Rn for some n ∈ N, then S(G)∗ ∪ {0} is cancellative.

Proof. We will use some results from [6, 7, 30]. Recall that an element x of a monoid M is
weakly divisible if it can be written as x = 2a + 3b for a, b ∈ M . If all order-units of M are
weakly divisible, then M is said to have weak divisibility for order-units ([30, Definition 2.2]).
An element x of a conical monoid M is said to be irreducible if it is nonzero and given any
decomposition x = a + b in M we have that either a or b are zero. If follows easily from [7,
Theorem 6.7] that an order-unit u of a conical refinement monoid M is weakly divisible if
and only if u is not irreducible in any simple quotient M/I of M .

Now, by Lemma 1.3, any simple quotient of S(G) is of the form S(G)/S(GG(0)\D) ∼= S(GD)
for a closed invariant subset D ⊆ G(0). Since GD is different from Rn and almost finite,
it follows that D is the Cantor set, implying the lack of irreducible elements in the simple
quotients of S(G). Therefore, all the order-units of S(G) are weakly divisible and thus S(G)
has weak divisibility for order-units.

Now, we deduce from [30, Theorem 3.4] that S(G)∗ ∪ {0} is a simple refinement monoid,
and, by Theorem 3.9, that S(G)∗ ∪ {0} is almost unperforated. Hence, it follows from [30,
Theorem 3.8] and [6, Corollary 1.8] that S(G)∗ is cancellative. To show that S(G)∗ ∪ {0} is
cancellative it is thus enough to show that for a fixed element u ∈ S(G)∗ and a ∈ S(G)∗∪{0},
the relation u+a = u implies a = 0. But this is obviously implied by the fact thatM(G) 6= ∅,
and the fact that µ(x) > 0 for any order-unit x in S(G) and any µ ∈M(G). �

Corollary 3.11. Let G be a minimal almost finite groupoid. Then S(G) is a cancellative
monoid and S(G) ∼= H0(G)+.

Proof. If G is elementary i.e. G ∼= Rn for some n ∈ N, we have S(G) = N0 which is obviously
cancellative. So let us assume that G � Rn. In this case, we apply Lemma 3.10 to obtain
that S(G) is cancellative. In both cases the result now follows from Proposition 1.6. �

The results of this section so far indicate that almost finiteness itself does not lead to
interesting properties of the whole type semigroup, but just to the subsemigroup of order
units.

This is largely due to the following fact: In contrast to the permanence property shown in
Lemma 2.4 for dynamical comparison, almost finiteness does not pass to the restrictions of G
to arbitrary compact open subsets of G(0) in general. In fact, we will build examples exhibiting
this behaviour in section 4. To remedy this situation, we make the following definition:

Definition 3.12. We say that an ample groupoid G is strongly almost finite if the restriction
G|A is almost finite for all compact open subsets A of G(0).

We remark that our notion of strong almost finiteness should not be confused with [14,
Definition 1.4], which is related but ultimately different.
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Clearly, every AF groupoid is strongly almost finite. If G is minimal and has a compact
unit space, then our notion is equivalent to almost finiteness in the usual sense by Proposition
3.6. However, in general, our notion is strictly stronger than almost finiteness.

The remaining part of the section is dedicated to show that strong almost finiteness implies
dynamical comparison of G and almost unperforation of S(G) (i.e. Theorem C). We need
the following elementary lemma. Note that the lemma follows from [32, Corollary 5.8] in case
the set U in its statement is σ-compact.
Lemma 3.13. Let G be an ample groupoid, and let B be a compact open subset of G(0). Then
S(G|B) ∼= S(GU), where U = r(GB) is the open invariant subset of G generated by B.
Proof. We will use the generators and relations picture of the type semigroup introduced prior
to Lemma 2.3 to define a semigroup homomorphism ϕ : S(GU)→ S(G|B) as follows. Let A be
a compact open subset of U = r(GB). Then there are compact open bisections W1, . . . ,Wn

such that A = ⊔n
i=1 r(Wi) and s(Wi) ⊆ B. Then set ϕ([A]) = ∑n

i=1[s(Wi)] ∈ S(GB). Suppose
that A = ⊔m

j=1 r(W ′
j) for compact open bisections W ′

j such that s(W ′
j) ⊆ B. Then for each

1 ≤ i ≤ n, we have s(Wi) = ⊔m
j=1 θ

−1
Wi

(r(Wi) ∩ r(W ′
j)) and for each 1 ≤ j ≤ m, we have

s(W ′
j) = ⊔n

i=1 θ
−1
W ′j

(r(Wi) ∩ r(W ′
j)). Moreover [θ−1

Wi
(r(Wi) ∩ r(W ′

j))] = [θ−1
W ′j

(r(Wi) ∩ r(W ′
j))] in

S(GB). Therefore we get
n∑
i=1

[s(Wi)] =
n∑
i=1

m∑
j=1

[θ−1
Wi

(r(Wi) ∩ r(W ′
j))] =

m∑
j=1

n∑
i=1

[θ−1
W ′j

(r(Wi) ∩ r(W ′
j))] =

m∑
j=1

[s(W ′
j)].

This shows that ϕ([A]) does not depend of the particular decomposition of A. It is straight-
forward to show that ϕ induces a semigroup homomorphism. Indeed, if A ∩ A′ = ∅, then
we clearly get that ϕ([A ∪ A′]) = ϕ([A]) + ϕ([A′]). If V is a compact open bisection and
s(V ) ⊆ U , then write s(V ) = ⊔n

i=1 r(Wi) for compact open bisections such that s(Wi) ⊆ B.
Then r(V ) = ⊔n

i=1 r(VWi) and s(VWi) = s(Wi) ⊆ B. Therefore we obtain

ϕ([r(V )]) =
n∑
i=1

[r(VWi)] =
n∑
i=1

[s(VWi)] =
n∑
i=1

[s(Wi)] = ϕ([s(V )]),

and so the relation [r(V )] = [s(V )] is also preserved by ϕ.
In the other direction, we can clearly define a homomorphism ψ : S(G|B) → S(GU) by

ψ([D]) = [D] for a compact open subset D of B. The maps ϕ and ψ are easily seen to be
mutually inverse. This concludes the proof. �

Lemma 3.14. If G is a strongly almost finite ample groupoid, then G satisfies dynamical
comparison.
Proof. Let A,B be compact open subsets of G(0) such that A ⊆ r(GB), and assume that
µ(A) < µ(B) for each µ ∈ UM(G) such that 0 < µ(B) < ∞. We will show that [1A] ≤ [1B]
in S(G).

Since A ⊆ r(GB), there exist compact open bisections V1, V2, . . . , Vm in G such that A =⊔m
i=1 r(Vi) and s(Vi) ⊆ B for all i. Now observe that A× {1} ∼ D := ⊔m

i=1 s(Vi)× {i} within
Gm. Note that D is a compact open subset of Bm = ((G|B)m)(0), and that (G|B)m is almost
finite, because G is strongly almost finite and almost finiteness is Morita invariant.



THE TYPE SEMIGROUP, COMPARISON AND ALMOST FINITENESS FOR AMPLE GROUPOIDS 23

We next show that µ(D) < µ(B × {1}) for all µ ∈ M((G|B)m). For this, we will use the
results about Borel measures developed in Appendix A.

Let µ ∈ M((G|B)m), and let µ′ ∈ M(G|B) be the invariant measure defined by µ′(T ) =
mµ(T ×{1}). Then, by Proposition A.3 there exists µ̂ ∈ UM(G) such that µ′(V ) = µ̂(V ) for
all open subsets V ⊆ B. Since µ̂ is G-invariant, we have that

mµ(D) =
m∑
i=1

µ′(s(Vi)) =
m∑
i=1

µ̂(s(Vi)) =
m∑
i=1

µ̂(r(Vi)) = µ̂(A) < µ̂(B) = µ′(B) = mµ(B × {1}),

as desired. Therefore we get that µ(D) < µ(B×{1}) for all µ ∈M((GB)m). If we show that
D - B × {1} within (G|B)m, then clearly we will get that A - B within G.

Therefore, changing notation we can assume that A,B are compact open subsets of G(0),
that B is G-full, and that µ(A) < µ(B) for all µ ∈M(G). In this situation, the result follows
from Lemma 3.7. �

We can now obtain our second main result of this section, i.e. Theorem C.
Proof of Theorem C. By Lemma 2.5, it suffices to show that G satisfies stable dynamical
comparison. Now by Lemma 3.14, it suffices to show that Gm is strongly almost finite for
each m ≥ 1. Let B = ⊔m

i=1 Bi × {i} be a compact open subset of (Gm)(0), where each Bi is a
compact open subset of G(0). Let D = ⋃m

i=1 Bi. Then D is a compact open subset of G(0) and
clearly (Gm)|B and G|D are stably isomorphic. Hence (Gm)|B is almost finite by Proposition
3.6. This shows that Gm is strongly almost finite, and the proof is complete. �

4. Coarse geometry

In this section we establish a new link between regularity properties in topological dynamics
and coarse geometry. The starting point is the following recent result on the structure of
amenable groups:
Theorem 4.1. ([12]) Let Γ be a countable amenable group. Then Γ admits an exact tiling
into Følner sets of arbitrary invariance, i.e. for every finite subset K ⊆ Γ and ε > 0 there exist
a number n ∈ N, finite (K, ε)-invariant subsets S1, . . . , Sn ⊆ Γ (the shapes) and F1, . . . , Fn of
Γ (the centers), such that

Γ =
n⊔
i=1

⊔
γ∈Si

γFi.

Amenability for groups has a straightforward generalization to more general metric spaces.
For the purposes of this work we restrict ourselves to those metric spaces (X, d) with bounded
geometry (meaning that for any radius R > 0 we have supx∈X |BR(x)| <∞) for reasons that
will become clear shortly. To define amenability, we need the following notation: For a finite
subset F ⊆ X we will write

∂+
R(F ) = {x ∈ X \ F | d(x, F ) ≤ R}

for what is often called the outer R-boundary of F .
Definition 4.2. Let X be a bounded geometry metric space. Then X is called amenable if
for every R > 0 and ε > 0 there exists a finite set F ⊆ X, such that |∂+

R(F )| < ε|F |.
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A set F as in the definition above is often referred to as an (R, ε)-Følner set. Now The-
orem 4.1 says that every amenable group does not just admit Følner sets of arbitrary in-
variance, but can be completely decomposed into Følner sets of arbitrary invariance. The
following definition is a version of the latter property for arbitrary metric spaces of bounded
geometry.
Definition 4.3. Let X be a bounded geometry metric space. We say that X admits tilings
of arbitrary invariance, if for all R > 0 and ε > 0 there exists a partition X = ⊔

i∈I Xi of X,
such that |∂+

R(Xi)| < ε|Xi| for all i ∈ I and supi∈I diam(Xi) <∞.
Let us illustrate this property by considering the following elementary example:

Example 4.4. We will show that the integers Z viewed as a discrete metric space with
respect to the euclidean metric admits tilings of arbitrary invariance. The main point is that
if I is an interval in Z then the number |∂+

R(I)| is at most 2R, and hence independent of the
size and position of the chosen interval. Hence, given R > 0, ε > 0, fix a natural number
N > 2R

ε
and partition Z into intervals Z = ⊔

n In such that |In| = N for all n ∈ N. Then each
In is an (R, ε)-Følner set by our choice of N and diam(In) ≤ N since each In is an interval,
so we are done.

Clearly, admitting tilings of arbitrary invariance is a very strong form of amenability. As
already explained, it was the tiling result for amenable groups that inspired the definition
above. Indeed, every countable discrete group Γ can be equipped with a proper left-invariant
metric d that is unique up to bijective coarse equivalence [41, Lemma 2.1]. The simplest
examples are finitely generated discrete groups equipped with word metrics.

In particular, in the case of a countable discrete group equipped with any proper left-
invariant metric, Theorem 4.1 tells us that admitting tilings of arbitrary invariance is in fact
equivalent to amenability of the group.

We are ready to establish the connection of this tiling property to regularity properties
in topological dynamics. To this end, we use a construction of Skandalis, Tu, and Yu in
[37], which associates to every (discrete) metric space X of bounded geometry a groupoid
G(X) over the Stone-Čech compactification βX of X. Let us recall this construction: For
any radius R ≥ 0 let ∆R = {(x, y) ∈ X × X | d(x, y) ≤ R} be the R-neighbourhood of the
diagonal in X ×X and let ∆R denote its closure in β(X ×X). Recall that we identify any
subset S ⊂ X ×X as the corresponding set of principal ultrafilters in β(X ×X). Then, as a
set, one defines

G(X) =
⋃
R≥0

∆R.

Equip G(X) with the weak topology it inherits from the union of compact open sets ∆R and
with the groupoid structure it inherits as a subset of the pair groupoid βX × βX. It was
shown in [37, Proposition 3.2] that with the structure described above, G(X) is a principal
ample locally compact σ-compact Hausdorff groupoid with G(X)(0) = βX. We call G(X)
the coarse groupoid associated to the metric space X.

The following is the main result of this section:
Theorem 4.5. Let X be a bounded geometry metric space. Then the following are equivalent:
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(1) G(X) is almost finite,
(2) X admits tilings of arbitrary invariance.

In particular, G(X) is strongly almost finite if and only if every subspace of X admits tilings
of arbitrary invariance.

For the proof we need to recall some terminology and facts from [38] and we are in-
debted to Rufus Willett for pointing us towards this article. A partial translation is a
bijection t : dom(t) → ran(t) between two subsets dom(t) and ran(t) of X such that
supx∈dom(t) d(x, t(x)) < ∞. A partial translation t is called compatible with ω ∈ βX if
ω(dom(t)) = 1 (i.e. ω ∈ dom(t) ⊂ βX). Given ω ∈ βX, and t : dom(t) → ran(t) ⊆ X a
compatible partial translation, we use the notion of limit along the ultrafilter to define

t(w) := lim
ω
t ∈ βX.

In particular, for a fixed ω ∈ βX, we say that an ultrafilter α ∈ β(X) is compatible with ω if
there exists a partial translation t which is compatible with ω and satisfies t(ω) = α. We write
X(ω) for the set of all α ∈ βX which are compatible with ω. Note that there is a canonical
bijection F : X(ω) → G(X)ω, given by F (α) = (α, ω). The set X(ω) can be equipped with
a canonical metric. Let (tα)α∈X(ω) be a compatible family of partial translations for ω, i.e.
each tα is compatible with ω and tα(ω) = α. Then one can define

dω(α, β) = lim
x→ω

d(tα(x), tβ(x)).

It was shown in [38, Proposition 3.7] that dω does indeed define a metric on X(ω) which
does not depend on the choice of the compatible family. Using this freedom in choosing the
compatible family we observe the following:

Lemma 4.6. Let ω ∈ βX and R ≥ 0. If (α, ω) ∈ ∆R, then dω(α, ω) ≤ R.

Proof. Since ∆R is compact and open we may choose a compatible family such that
sup
x∈X

d(tα(x), x) ≤ R

for all α ∈ X(ω) with (α, ω) ∈ ∆R and such that tω is the identity map on a suitable
neighbourhood of ω in βX. It follows that

dω(α, ω) = lim
x→ω

d(tα(x), tω(x)) = lim
x→ω

d(tα(x), x) ≤ R.

�

In the following proof we will also use a different picture of the coarse groupoid via the
pseudogroup of partial translations on X. To be more specific, for each partial translation t :
dom(t)→ ran(t) we can consider its extension t : dom(t)→ ran(t) to the respective closures
in βX. Then G(X) can also be realized as the quotient of {(t, ω) | t partial translation, ω ∈
dom(t)} by the equivalence relation (t1, ω1) ∼ (t2, ω2) iff ω1 = ω2, and t1 and t2 coincide
on a small neighbourhood of ω1 = ω2. We will denote the equivalence class of (t, ω) by
[t, ω]. The topology can be described by specifying a basis of compact open bisections as
Ut = {[t, ω] | ω ∈ dom(t)}. We refer the reader to [37] for further details.
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Proof of Theorem 4.5. Suppose first, that G(X) is almost finite. Given R > 0 and ε > 0
we can find a (∆R, ε)-invariant elementary subgroupoid K ⊆ G(X). Let {xi | i ∈ I} be
a family of representatives for the action of K on X and Xi := r(Kxi). Then X = ⊔

Xi

and since K is compact, we must have K ⊆ ∆S for some S ≥ 0, from which it follows that
sup diam(Xi) ≤ S. Since K is (∆R, ε)-invariant we get

|∂+
R(Xi)| = |∆RKxi \Kxi| < ε|Kxi| = ε|Xi|,

obtaining the desired implication.
For the converse, let C ⊆ G(X) be a compact subset and ε > 0. By compactness of C

there exists an R > 0 such that C ⊆ ∆R. An application of condition (2), described in the
statement, provides a partition X = ⊔

i∈I Xi of X, such that |∂
+
R (Xi)|
|Xi| < ε for all i ∈ I and

supi∈I diam(Xi) < ∞. Define an equivalence relation R ⊆ X × X by xRy if and only if
there exists an i ∈ I such that x, y ∈ Xi, i.e. R is precisely the equivalence relation which
has the Xi as its equivalence classes. Since the diameters of the Xi are uniformly bounded,
there exists an S ≥ 0 such that R ⊆ ∆S. We let K be the closure of R in β(X ×X). Then
K ⊆ ∆S ⊆ G(X) is a compact open principal subgroupoid of G(X) by construction. It
remains to show, that K is (C, ε)-invariant. For this we differentiate two situations:

(1) For x ∈ X ⊆ G(X)(0) fix i ∈ I such that Kx = Xi. Then

|CKx \Kx| ≤ |∆RKx \Kx| = |∂+
R(Xi)| < ε|Xi| = ε|Kx|;

hence, the claim follows.
(2) If ω ∈ βX \ X we need some more work. Let (tα)α∈X(ω) be a compatible family.

Using that K is compact and open in G(X), we may (replacing finitely many tα, if
necessary) assume that :
• for each α ∈ X(ω) such that (α, ω) ∈ K we have: Utα ⊆ K, where Utα = {[tα, γ] |
γ ∈ dom(tα)} is a basic compact open bisection.
• r(Utα) ∩ r(Utβ) = ∅ whenever α 6= β and (α, ω), (β, ω) ∈ K.
• tω is the identity on a neighbourhood of ω.
• s(Utα) = s(Utβ) for all (α, ω), (β, ω) ∈ K.
Using that the map βX → N, given by ω 7→ |Kω| is continuous (apply continuity

of the Haar system on G(X) to the characteristic function 1K), we may shrink the Utα
further to assume that |Ky| = |Kω| for all y ∈ dom(tα) for all α such that (α, ω) ∈ K.

Now let F : X(ω) → G(X)ω be the bijection from [38, Lemma C.3]. Then apply
[38, Proposition 3.10] to the finite set F−1(∆RKω) ⊆ X(ω) to find a subset Y ⊆ X
with ω(Y ) = 1, and for each y ∈ Y an isometry fy : F−1(∆RKω) → X given by
fy(α) = tα(y). Then we claim that for all y ∈ Y there exists a (unique) i ∈ I, such
that fy(F−1(Kω)) = Xi.
Proof of Claim. Given α, β ∈ X(ω) such that (α, ω), (β, ω) ∈ K we have that

[tα, y] ∈ Utα ⊆ K and [tβ, y] ∈ Utβ ⊆ K. Since K is a subgroupoid, it follows that
[tβ ◦ t−1

α , tα(y)] ∈ K. But this means that (tβ(y), tα(y)) ∈ R and hence fy(α) and
fy(β) are in the same Xi.
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Conversely, we have y, ω ∈ dom(tα) for every α ∈ F−1(Kω). Using our choice of
the tα we get |Kω| = |Ky| = |Xi|. Since fy is an injection defined on a finite set, our
claim follows. �

Using Lemma 4.6 and the fact that fy is an isometry, it is easy to check that
fy(F−1(∆RKω \Kω)) ⊆ ∂+

R(Xi). Putting everything together we obtain

|CKω \Kω| ≤ |∆RKω \Kω|
= |fy(F−1(∆RKω \Kω)|
≤ |∂+

R(Xi)|
< ε|Xi| = ε|Kω|.

This completes the proof of the first statement. For the second one, we first notice that
G(X)|K = G(K ∩X) for every compact open subset K of βX. In fact, this is the canonical
one-to-one correspondence between subsets of X and compact open subsets of βX. Hence,
the second statement follows from the first. �

We have the following immediate consequence, which indicates that admitting tilings of
arbitrary invariance is a useful notion from a coarse geometric point of view.

Corollary 4.7. Admitting tilings of arbitrary invariance is a coarse invariant. Moreover, if
f : X → Y is a coarse equivalence between two bounded geometry metric spaces then G(X) is
strongly almost finite if and only if G(Y ) is strongly almost finite.

Proof. The first statement follows from Theorem 4.5 and Proposition 3.6, once we note that
coarsely equivalent metric spaces have Morita equivalent coarse groupoids (see [37, Corol-
lary 3.6]). The second statement follows from Theorem 4.5 and the first statement, since A
and f(A) are coarsely equivalent for every A ⊆ X. �

Moreover, we can now reap the fruits of the additional work we put in to prove Theorem C
for not necessarily second countable groupoids to get the following immediate consequence:

Corollary 4.8. Let X be a bounded geometry metric space such that every subspace of X
admits tilings of arbitrary invariance. Then the type semigroup S(G(X)) of the associated
coarse groupoid is almost unperforated.

In the setting of countable discrete groups, we get the following result:

Corollary 4.9. Let Γ be a countable discrete group. Let M ⊆ βΓ be the universal minimal
Γ-space. Then the following are equivalent:

(1) Γ is amenable.
(2) G(|Γ|) = Γn βΓ is almost finite.
(3) ΓnM is almost finite.
(4) Γn (βΓ\Γ) is almost finite.

Proof. Suppose first that Γ is amenable. Applying the main result of [12], we obtain an exact
tiling of Γ whose tiles are (K, ε)-invariant, i.e. we obtain a number n ∈ N, finite subsets
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S1, . . . , Sn ⊆ Γ and subsets F1, . . . , Fn of Γ, such that

Γ =
n⊔
i=1

⊔
γ∈Si

γFi.

This verifies the condition in Theorem 4.5, so G(|Γ|) is indeed almost finite. If G(|Γ|) is
almost finite, then so is its restriction to the closed Γ-invariant subset M ⊆ βΓ (see [39,
Lemma 3.13.]). But G(|Γ|)|M ∼= ΓnM . Similarly, (2)⇒ (4).

The implications (3)⇒ (1) and (4)⇒ (1) now follow from [24, Proposition 4.7]. �

Example 4.10. Let Γ be a countable discrete amenable group and M ⊆ βΓ be the universal
minimal Γ-space. Then S(ΓnM) ∼= H0(ΓnM)+ is cancellative and almost unperforated by
Corollary 4.9, Corollary 3.11 and Theorem 3.9.

Let us now use the above characterization to treat another class of bounded geometry
metric spaces that has attracted a lot of attention in geometric group theory, namely the so-
called box spaces associated to any countable discrete residually finite group. Let us recall the
relevant definitions: Suppose Γ is a countable discrete residually finite group and σ = (Ni)i∈N
is a decreasing sequence of finite index normal subgroups of Γ whose intersection ⋂i∈NNi is
trivial. Equip Γ with a proper right-invariant metric d. For each i ∈ N let πi : Γ→ Γ/Ni be
the canonical quotient map, and equip Γ/Ni with the quotient metric. Then the box space
2σΓ is defined as the coarse disjoint union ⊔i Γ/Ni (see e.g. [45, Definition 6.3.2]). In this
setting, the following is our main result.

Proposition 4.11. Let Γ be a countable discrete residually finite group with any nested
decreasing sequence σ = (Ni)i∈N of finite index normal subgroups of Γ. Then the following
are equivalent:

(1) Γ is amenable;
(2) 2σΓ admits tilings of arbitrary invariance;
(3) G(2σΓ) is almost finite.

Proof. ((1)⇒(2)) Fix an arbitrary radius R > 0, a tolerance ε > 0 and a nested decreasing
sequence σ = (Ni)i∈N. By a classical result of Weiss [44] (see also [11, Proposition 5.5] for the
version we are using), we can find a (large) number i0 ∈ N and a finite subset T ⊆ Γ such
that
(i) Γ = ⊔

γ∈Ni0
Tγ (i.e. T is a monotile and Ni0 is the set of tiling centers), and

(ii) |∂+
R(T )| < ε|T |.

Moreover, by the definition of a box space and [40, Lemmas 3.7, 3.11], we may choose
i1 ≥ i0 such that
(iii) d(Γ/Ni,Γ/Nj) > R for all i ≥ i1 and j < i1, and
(iv) for every i ≥ i1 the quotient map πi : Γ → Γ/Ni has large isometry radii, in the sense

that each πi is isometric on BR+L(γ) for all γ ∈ Ni0 , where L := max{d(t, e) | t ∈ T}
and e the identity.
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Now for each i ≥ i1, let Ci be a complete family of representatives for the quotient Ni0/Ni.
Set X0 := ⊔

i<i1 Γ/Ni. Then we have a decomposition

2σΓ = X0 t
⊔
i≥i1

⊔
c∈Ci

πi(Tc). (4.1)

Note that the latter union is indeed disjoint by our choice of Ci and property (i) above.
We claim that for every i ≥ i1 and every c ∈ Ci, the quotient map πi restricts to an

isometric bijection ∂+
R(Tc) → ∂+

R(πi(Tc)). Indeed, using right-invariance of the metric on Γ,
we have ∂+

R(Tc) ⊆ BR+L(c). It follows from item (iv) that πi is isometric on BR+L(c); hence,
one has that πi(∂+

R(Tc)) ⊆ ∂+
R(πi(Tc)). To see the converse inclusion, let xNi ∈ ∂+

R(πi(Tc))
and observe that ∂+

R(πi(Tc)) ⊆ Γ/Ni by item (iii). Also, let t ∈ T such that d(xNi, tcNi) =
d(xNi, πi(Tc)). Then we have

R ≥ d(xNi, tcNi) = inf
m,n∈Ni

d(xn, tcm) = inf
m,n∈Ni

d(xnm−1, tc).

Therefore, there exists a y ∈ Γ such that xNi = yNi and d(y, T c) ≤ R. Clearly, we have
y /∈ Tc and hence y ∈ ∂+

R(Tc) such that πi(y) = xNi.
Combining the above, that the metric on Γ is right-invariant and item (ii), we obtain

|∂+
R(πi(Tc))| = |∂+

R(Tc)| = |∂+
R(T )| < ε|T | = ε|πi(Tc)|.

Notice that by (iii) we also have ∂+
R(X0) = ∅, so every set in the decomposition (4.1) is

(R, ε)-invariant, as desired.
Finally, combining item (iv) and the fact that the metric on Γ is right-invariant, we deduce

diam(πi(Tc)) = diam(Tc) = diam(T ). So
S := max{diam(T ), diam(X0)}

is a uniform bound on the diameters of the sets appearing in the decomposition (4.1).
((2)⇒(3)) Provided by Theorem 4.5.
((3)⇒(1)) For ease of notation, we set X := 2σΓ. Then G(X)|βX\X = (βX\X) o Γ by

[16, Proposition 2.50 and Example 2.6]. Since βX\X is a closed G(X)-invariant subset of
βX, it follows that (βX\X) o Γ is almost finite as well. The claim now follows from [24,
Proposition 4.7]. �

We conclude from the above Proposition that admitting tilings of arbitrary invariance is
indeed a much stronger property than amenability if one considers metric spaces beyond
groups: any box spaces are always (supr)amenable for rather trivial reasons. However, there
exist many examples of finitely generated residually finite groups which are not amenable
(e.g. the free groups Fn or SLn(Z) for n ≥ 2).

We will now proceed to present a construction that starting from any bounded geometry
metric space X produces another bounded geometry metric space Y containing X, such that
Y admits tilings of arbitrary invariance. This will be very useful later in order to exhibit our
examples.

Proposition 4.12. Let X be a discrete metric space with bounded geometry. Then the metric
space Y := X ×N with the graph metric (i.e. dY ((x, n), (y,m)) = n+m+ dX(x, y) whenever
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x 6= y and dY ((x, n), (x,m)) = |n−m|) has bounded geometry and admits tilings of arbitrary
invariance.

As a consequence, admitting tilings of arbitrary invariance does not imply Yu’s property A.

Proof. We start by showing that Y has bounded geometry. To this end let BR(x, k) ⊆ Y de-
note the ball of radius R around (x, k) ∈ Y . Now given R ≥ 0, we have C := supx∈X |BR(x)| <
∞ since X has bounded geometry, and then |BR(x, k)| ≤ 2dRe|BR(x)| ≤ 2dReC. Next we
will prove that Y admits tilings of arbitrary invariance. Let R > 0 and 1 ≥ ε > 0 be given.
Since increasing the radius R only makes to problem harder, we may replace R by dRe and
thus assume without loss of generality that R ∈ N. Using that Y has bounded geometry,
there exists an S ≥ 0 such that supx∈X |BR(x, 0)| ≤ S. Now let N > max{S,R}+R

ε
. For x ∈ X

and k ∈ N write Yx,k := {x} × {kN, . . . , ((k + 1)N)− 1}. Then we obtain a partition

Y =
⊔
x∈X

∞⊔
k=0

Yx,k.

The cardinality of each Yx,k is precisely N and its diameter is N − 1 independent of x
and k. It remains to show that the outer boundary of each of the sets in this partition
is small relative to its cardinality. If k 6= 0 then |∂+

R(Yx,k)| ≤ 2R < εN = ε|Yx,k|. If
k = 0, then we have ∂+

R(Yx,0) ⊆ BR(x, 0) ∪ ({x} × {N, . . . , N +R− 1}). It follows that
|∂+
R(Yx,0)| ≤ S +R < εN = ε|Yx,0|.
The last statement follows from the fact that Yu’s property A passes to subspaces (see [41,

Proposition 4.2]). �

Note that the above shows in particular that the property of admitting tilings of arbitrary
invariance suffers the same shortcoming as amenability: It does not pass to arbitrary sub-
spaces. Combined with Theorem 4.5 and using the identification G(X ×N)|

X
β(X×N) ∼= G(X),

our constructions show that almost finiteness for groupoids does not pass to restrictions to
arbitrary compact open subsets.

Moreover, we can use it to produce a lot of examples which show that admitting tilings of
arbitrary invariance is independent from other notions frequently studied in coarse geometry.

Example 4.13. (1) Let X be a bounded geometry metric space without Yu’s property
A. Then Y = X × N defined as in Proposition 4.12 contains X as a subspace by the
construction. Hence, Y admits tilings of arbitrary invariance and cannot have Yu’s
property A. Conversely, the free group on two generators F2 has Yu’s property A, but
can not admit tilings of arbitrary invariance, since it is non-amenable. Recall that F2
has asymptotic dimension one, so even finite asymptotic dimension does not imply
tilings of arbitrary invariance.

(2) Let X be a bounded geometry metric space which does not coarsely embed into a
Hilbert space. Then Y = X×N does not coarsely embed into a Hilbert space as well,
but Y admits tilings of arbitrary invariance.

The above examples are also very interesting when combined with Theorem 4.5. Most
examples of almost finite groupoids known so far are amenable. In fact, for a transformation
groupoid Γ n X associated to a topologically free action of a discrete group Γ acting on a
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totally disconnected compact space X, almost finiteness implies amenability of the acting
group and a posteriori amenability of ΓnX by [24, Proposition 4.7]. Our results yield new
examples of almost finite groupoids which lack other desirable properties like amenability or
a-T-menability. In particular, this shows that almost finiteness for general ample groupoids
behaves very differently from the transformation groupoid case.

Corollary 4.14. There exist almost finite ample principal groupoids G which lack at least
one of the following properties:

(1) amenability,
(2) a-T-menability,

Moreover, there exist ample groupoids with finite dynamic asymptotic dimension (see [20] for
the definition) which are not almost finite.

Proof. To obtain the desired examples just take the coarse groupoid for the metric spaces
described in Example 4.13 and combine them with the following facts:

(1) G(Y ) is amenable if and only if Y has property A [37, Theorem 5.3];
(2) G(Y ) is a-T-menable if and only if Y coarsely embeds into a Hilbert space [37, The-

orem 5.4]; and
For the final statement, we consider βF2 o F2 = G(F2). From [20, Theorem 6.4] we know
that the dynamic asymptotic dimension of G(F2) equals one, but as seen above G(F2) is not
almost finite. �

We should mention that Gabor Elek has independently found examples of non-amenable
almost finite groupoids using a different approach (see [14] for further details).

Finally, prompted by the results in section 3, we want to give some examples of strongly
almost finite groupoids.

Example 4.15. The coarse groupoids G(Z) and G(N) are strongly almost finite. In partic-
ular, their type semigroups are almost unperforated by Theorem C. Let us focus on the case
of the integers N (the result for Z follows the same line of argument by doing everything in
two "directions"). In view of Theorem 4.5 it is enough to show that every subspace A ⊆ N
admits tilings of arbitrary invariance. If A ⊆ N is bounded, it is finite and hence there is
nothing to do. So let us assume that A is unbounded. Write A = {an | n ∈ N} as an in-
creasing sequence. Then there are two options: If supn∈N|an − an+1| <∞, then A is coarsely
equivalent to N itself and hence admits tilings of arbitrary invariance. We can deal with the
remaining case supn∈N|an− an+1| =∞ by hand: Let R > 0 and ε > 0 be given. Let N > 2R

ε
.

First, since the above supremum is infinite, we can find a subsequence (anm)m in A such that
|anm+1 − anm | > R for all m ∈ N and |an+1 − an| ≤ R for all n 6∈ {nm | m ∈ N}. Now let
A1 = {a1, . . . , an1} and form > 1 we let Am := {anm−1+1, . . . , anm}. These sets form a disjoint
partition of A into (R, ε)-Følner sets such that diam(Am) ≤ R|Am|. So if supm|Am| < ∞
we are done. This need not be the case however, so assuming that the sequence (|Am|)m
is unbounded, we need to refine our partition further. Now pick the subsequence consisting
of all Amk such that |Amk | ≥ N ≥ 2R

ε
. We may assume that the maximal element of Amk

is strictly smaller than the smallest element of Amk+1 for all k ∈ N. Now, writing Amk as
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an increasing sequence we can easily partition each Amk as Amk = ⊔Lmk
l=1 Bmk,l, where Bmk,1

consists of the first N elements of Amk , Bmk,2 of the next N elements and so on, such that
N = |Bmk,l| for all 1 ≤ l < Lmk and N ≤ |Bmk,Lmk

| ≤ 2N . Then, we clearly have
|∂R(Bmk,l)|
|Bmk,l|

≤ 2R
N

< ε.

Thus,

A =
⊔

m:|Am|≤N
Am t

∞⊔
k=1

Lmk⊔
l=1

Bmk,l

is a partition of A into (R, ε)-Følner sets of diameter at most 2RN .

We finish this subsection by extending the above example to some groups with asymptotic
dimension one. Recall the following definition:

Definition 4.16. Let X be a metric space. We say that the asymptotic dimension of X
does not exceed n and write asdim(X) ≤ n provided for every R > 0 there exist R-disjoint
families U0, . . . ,Un of uniformly bounded subsets of X such that ∪iU i is a cover of X.

It is trivial to see that every bounded geometry metric space X with asdim(X) = 0 admits
tilings of arbitrary invariance. Hence, its coarse groupoid G(X) is strongly almost finite by
Theorem 4.5.

Proposition 4.17. Let Γ be a finitely presented amenable group with asdim(Γ) = 1. Then
G(Γ) is strongly almost finite.

Proof. By [18, Theorem 2] Γ must be virtually cyclic. In particular, Γ and Z are coarsely
equivalent. From Corollary 4.7 we only have to show that G(Z) is strongly almost finite,
which is done in Example 4.15. �

4.1. Non-amenable spaces. Non-amenable metric spaces are well-studied in terms of their
connections with properly infinite Roe-algebras [4, 5]. Using the type semigroup of the coarse
groupoid and the dichotomy between amenability and paradoxicality for discrete metric
spaces, we will in this section recover a celebrated Theorem by Block and Weinberger by
a rather easy and conceptual proof.

Proposition 4.18. Let X be a bounded geometry metric space and G(X) be the coarse
groupoid of X. Then the following are equivalent:

(1) X is non-amenable;
(2) every order unit in S(G(X)) is properly infinite;
(3) H0(G(X)) = 0.

Proof. (1) ⇒ (2) Since a non-amenable space admits a paradoxical decomposition (in the
sense of [4, Definition 2.5]), the element [1βX ] is properly infinite in S(G(X)) by [9, Corol-
lary 4.9]. Now if K ⊆ βX is G(X)-full, then K ∩X is cobounded in X and hence coarsely
equivalent to X itself. Since paradoxicality is a coarse invariant, K ∩X is paradoxical itself
and hence [1K ] is properly infinite in S(G(K ∩X)) = S(G(X)|K) ∼= S(G(X)).
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(2) ⇒ (3): First of all [1A]0 = 0 in H0(G(X)) for all cobounded A ⊆ X, since a properly
infinite element in S(G(X)) actually satisfies 2[1A] = [1A] and so we can just cancel in
H0(G(X)). Now if A ⊆ X is arbitrary, follow the arguments in the proof of [25, Lemma 5.4]
to get [1A]0 = 0. The claim follows.

(3) ⇒ (1): Let H0(G(X)) = 0 and suppose X is amenable. Then there exists a G(X)-
invariant Borel probability measure µ ∈ M(G(X)). Denoting by µ̂ the corresponding func-
tional on H0(G(X)), it follows that 0 = µ̂(0) = µ̂([1βX ]) = µ(βX) = 1, which is a contradic-
tion. �

The remaining step is the identification of the 0-th groupoid homology group of the coarse
groupoid with the 0-th uniformly finite homology group of X. Recall that Huf

n (X) is ob-
tained from the chain complex (Cuf

n (X,Z), ∂ufn )n, where Cuf
n (X,Z) consists of formal linear

combinations c = ∑
n cxx, where x denotes an (n+ 1)-tuple (x0, . . . , xn) ∈ Xn+1, cx ∈ Z such

that
(1) c has finite propagation, in the sense that there exists a constant Pc > 0 such that

cx = 0, provided that max d(xi, xj) ≥ Pc,
(2) and c is bounded, meaning that supx∈Xn+1|cx| <∞.

The boundary map ∂ufn : Cuf
n (X,Z)→ Cuf

n−1(X,Z) is defined on simplices by ∂ufn (x0, . . . , xn) =∑n
i=0(−1)i(x0, . . . , x̂i, . . . , xn), where hat denotes omission of the term. One extends ∂ufn to

the whole of Cuf
n (X,Z) by linearity.

Lemma 4.19. There is a canonical isomorphism Huf
0 (X,Z) ∼= H0(G(X)).

Proof. Using the universal property of the Stone-Čech compactification it is easy to see that
there is a canonical linear bijection

Φ0 : Cuf
0 (X,Z)→ C(βX,Z)

given by extension of functions. Indeed, every element c ∈ Cuf
0 (X,Z) can be viewed as a

bounded (continuous) function c : X → Z and can hence be extended to a bounded continuous
function βX → Z. Restriction of functions clearly gives an inverse to Φ. To complete the
proof we need to check that the respective boundary maps are compatible. Similarly to the
above observation, we can view a chain c ∈ Cuf

1 (X,Z) as a bounded function c : X×X → Z.
Since c has finite propagation, it is supported on ∆Pc . Again, we can extend c continuously to
a (compactly supported) function on ∆Pc ⊆ G(X), thus obtaining a well-defined linear map
Φ1 : Cuf

1 (X,Z)→ Cc(G(X),Z). Conversely, every function f ∈ Cc(G(X),Z) is bounded and
its support is contained in ∆R for some R > 0. Hence, restricting it to to ∆R (and extending
by zero on X × X \ ∆R) gives rise to a chain in Cuf

1 (X,Z). One easily verifies that these
constructions are inverse to each other. For c ∈ Cuf

1 (X,Z) let ci = ∑
x cxxi, i = 0, 1. Then

we compute

Φ0(∂ufn (c)) = Φ0(c1)− Φ0(c0)
= s∗(Φ1(c))− r∗(Φ1(c)) = ∂1(Φ1(c)),
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where the second equation clearly holds when checking only for elements in X ⊆ βX and
hence by continuity on the whole of βX. Thus we have verified Φ(im(∂uf1 )) ⊆ im(∂1), and a
similar computation using the inverses of the Φi shows equality. �

The following corollary was first proved by Block and Weinberger in [8, Theorem 3.1].

Corollary 4.20. Let X be a bounded geometry metric space. Then X is non-amenable if
and only if Huf

0 (X,Z) = 0.

Proof. It follows directly from Proposition 4.18 and Lemma 4.19. �

Appendix A. Extending measures

For a compact open subset U of G(0), we would like to extend measures in M(G|U) to
invariant (possibly unbounded) measures defined on the whole of G(0).

Let µ ∈ M(G|U). We begin by defining a function ρ on compact open subsets of G(0).
First consider a compact open subset K of the G-invariant open subset Y := r(GU) ⊆ G(0)

generated by U . Then we can write K = ⊔n
i=1 r(Wi) for compact open bisections W1, . . . ,Wn

such that s(Wi) ⊆ U . We then set

ρ(K) =
n∑
i=1

µ(s(Wi)).

By the proof of Lemma 3.13, we see that ρ(K) does not depend on the particular decom-
position as above. It follows that ρ(K1 ∪K2) = ρ(K1) + ρ(K2) if K1, K2 are compact open
subsets of Y such that K1 ∩K2 = ∅.

If K is a compact open subset of G(0) such that K * Y , then we set ρ(K) = ∞. The
additivity formula above obviously holds also for any two compact open subsets K1 and K2
of G(0).

The second step is to define ρ for all open subsets of Y . Note that if V is an open subset
of U then

µ(V ) = sup µ(K),
where the supremum is taken over all the compact open subsets of V . This follows from inner
regularity of µ and the fact that U is totally disconnected.

Thus, for an open subset V of G(0) it is natural to define
ρ(V ) := sup ρ(K),

where K ranges over all the compact open subsets of V . We then have that ρ(V ) = µ(V ) for
each open subset V of U . It is trivial that ρ(V ) ≤ ρ(W ) for V and W open subsets of G(0)

such that V ⊆ W . Note also that ρ(V ) =∞ for each open subset of G(0) such that V * Y .
We now define an outer measure µ∗ on P(G(0)) by

µ∗(A) = inf
{ ∞∑
j=1

ρ(Vj) : A ⊆
∞⋃
j=1

Vj, Vj open subsets of G(0)
}

(see [17, Proposition 1.10]).
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Lemma A.1. For any open subset V of Y we have µ∗(V ) = ρ(V ). In particular, we have
µ∗(V ) = ρ(V ) = µ(V ) for any open subset V of U .

Proof. The inequality µ∗(V ) ≤ ρ(V ) is obvious. For the other inequality, take any compact
open set K such that K ⊆ V , and let {Vj} be a sequence of open subsets such that V ⊆⋃∞
j=1 Vj. Note that we have K ⊆ ⋃N

j=1 Vj for some N ≥ 1. For each x ∈ K we can select a
small compact open neighborhood W ′

x of x such that W ′
x ⊆ Vl∩K for some 1 ≤ l ≤ N . Since

K is compact we can then write K = ⋃M
i=1 W

′
xi

for some xi ∈ K, i = 1, . . . ,M . Refining this
decomposition, we can assume that the sets W ′

i are mutually disjoint. Collecting terms, we
can write

K =
N⊔
i=1

Wi,

where Wi are compact open subsets of K such that Wi ⊆ Vi for i = 1, . . . , N . We now have

ρ(K) =
N∑
i=1

ρ(Wi) ≤
N∑
i=1

ρ(Vi) ≤
∞∑
i=1

ρ(Vj).

This shows that ρ(V ) ≤ ∑∞i=1 ρ(Vj). It follows that ρ(V ) ≤ µ∗(V ), as desired. �

Lemma A.2. Let K be a compact open subset of an open subset V of Y . Then ρ(V ) =
ρ(K) + ρ(V \K).

Proof. Note that
ρ(V ) = sup {ρ(K ′) : K ⊆ K ′ ⊆ V,K ′ compact open }

= ρ(K) + sup {ρ(K ′′) : K ′′ ⊆ V \K,K ′′ compact open }
= ρ(K) + ρ(V \K).

�

Recall that a subset A of G(0) is called µ∗-measurable if
µ∗(E) = µ∗(E ∩ A) + µ∗(E ∩ Ac) for all E ⊆ G(0).

By Caratheodory’s Theorem [17, Theorem 1.11], the collectionM of all µ∗-measurable sets
is a σ-algebra, and the restriction of µ∗ toM is a complete measure.

It remains to show that all open subsets of G(0) belong toM. Let V be an open subset of
G(0) and let E ∈ P(G(0)). We only need to check that

µ∗(E) ≥ µ∗(E ∩ V ) + µ∗(E ∩ V c).
We can obviously assume that µ∗(E) <∞. In particular this implies that E ⊆ Y .

Given ε > 0, we can take a sequence {Vj} of open subsets of G(0) such that E ⊆ ⋃∞
j=1 Vj

and ∑∞j=1 ρ(Vj)− µ∗(E) < ε. In particular, we get that Vj ⊆ Y for each j.
Using Lemma A.1 and the fact that µ∗ is an outer measure, we have

ρ(
∞⋃
j=1

Vj) = µ∗(
∞⋃
j=1

Vj) ≤
∞∑
j=1

µ∗(Vj) =
∞∑
j=1

ρ(Vj),

so we can indeed replace the sequence {Vj} by just one term, namely W := ⋃∞
j=1 Vj.
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We can now take a compact open subset K of W such that

µ∗(W ) = ρ(W ) < ρ(K) + ε.

Now observe that E ∩ V ⊆ W ∩ V , and since W ∩ V is open, we get

µ∗(E ∩ V ) ≤ µ∗(V ∩W ) = ρ(V ∩W ).

We can choose a compact open subset K ′ of Y such that K ′ ⊆ V ∩W and

ρ(V ∩W ) ≤ ρ(K ′) + ε.

Consider now K ′′ := K ∩K ′, which is a compact open subset of Y such that K ′′ ⊆ V ∩W .
Note that

ρ(K ′′) = ρ(K ∩K ′) = ρ(K ′)− ρ(K ′ \K ∩K ′)
≥ ρ(K ′)− ρ(W \K) = ρ(K ′)− (ρ(W )− ρ(K))
> ρ(K ′)− ε,

where we have used Lemma A.2 for the third equality and the inequality ρ(W ) − ρ(K) < ε
for the last inequality.

Now observe that E ∩ V c ⊆ W \K ′′ because K ′′ ⊆ V . Therefore we have

µ∗(E ∩ V c) ≤ µ∗(W \K ′′) = ρ(W )− ρ(K ′′) < ρ(W )− ρ(K ′) + ε,

and thus

µ∗(E ∩ V ) + µ∗(E ∩ V c) < ρ(K ′) + ε+ ρ(W )− ρ(K ′) + ε = ρ(W ) + 2ε ≤ µ∗(E) + 3ε.

This shows the result.
Thus, we can obtain the following:

Proposition A.3. Let µ ∈ M(G|U), where U is a compact open subset of G(0). Then there
exists µ′ ∈ UM(G) such that µ′(T ) = µ(T ) for each Borel subset T of U .

Proof. By the above, we obtain a positive Borel measure µ′ on G(0) such that µ′(V ) = µ(V )
for each open subset V of G(0). The measure µ′ is just the restriction to the σ-algebra of
Borel subsets of G(0) of the outer measure µ∗ considered above. Since µ is a regular Borel
measure we obtain that µ′ extends µ. Finally if is clear from the definition of ρ above that
µ′ is an invariant measure. �
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