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Coherent-scattering two-dimensional cooling in levitated cavity optomechanics
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The strong light-matter optomechanical coupling offered by coherent scattering set-ups have allowed the
experimental realization of quantum ground-state cavity cooling of the axial motion of a levitated nanoparticle
[U. Delić et al., Science 367, 892 (2020)]. An appealing milestone is now quantum two-dimensional (2D)
cooling of the full in-plane motion, in any direction in the transverse plane. By a simple adjustment of the trap
polarization, one obtains two nearly equivalent modes, with similar frequencies ωx ∼ ωy and optomechanical
couplings gx � gy—in this experimental configuration we identify an optimal trap ellipticity, nanosphere size,
and cavity linewidth which allows for efficient 2D cooling. Moreover, we find that 2D cooling to occupancies
nx + ny � 1 at moderate vacuum (10−6 mbar) is possible in a “Goldilocks” zone bounded by

√
κ�/4 � gx, gy �

|ωx − ωy| � κ , where one balances the need to suppress dark modes while avoiding far-detuning of either mode
or low cooperativities, and κ (�) is the cavity decay rate (motional heating rate). With strong-coupling regimes
gx, gy � κ in view one must consider the genuine three-way hybridization between x,y and the cavity light mode
resulting in hybridized bright/dark modes. Finally, we show that bright/dark modes in the levitated set-up have
a simple geometrical interpretation, related by rotations in the transverse plane, with implications for directional
sensing.

DOI: 10.1103/PhysRevResearch.3.023071

I. INTRODUCTION

The coupling between light and matter has led to major
milestones in physics, from the Michelson-Morley experiment
[1] to the detection of gravitational waves by the LIGO col-
laboration [2]. The basic scheme relies on the light acting as a
probe—offering exceptional sensitivities—which is now rou-
tinely done in state-of-the-art optomechanical systems with
high-quality mirrors. The latter are themselves interesting sys-
tems and have led to the field of cavity optomechanics [3]. A
mirror with a motional degree of freedom cooled to its ground
state is of particular interest as it becomes a quantum sensor
and thus can be used as a detector of weak forces and as a
probe of the quantum-to-classical transition [4].

On the other hand, quantum features of an object in
all three spatial dimensions—with applications ranging from
quantum foundations to directional sensing—can be explored
using an optically levitated nanoparticle [5–9]. Initial experi-
mental efforts have been hindered by technical difficulties of
stable trapping in high vacuum [10,11] and several implemen-
tations have been considered such as hybrid tweezer-cavity
traps [12,13], electro-optical traps [14,15], and trapping in the
near field of a photonic crystal [16].
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Recently, a three-dimensional (3D) coherent scattering
(CS) setup was introduced to levitated cavity optomechanics
[17,18] using methods adapted from atomic physics [19–23].
In contrast to experiments that consider dispersive coupling,
here the cavity is driven solely by the dipole radiation of
the optically trapped silica particle. Due to the tight focus of
the optical tweezer this scheme yields unprecedentedly high
optomechanical coupling rates, which subsequently enabled
ground-state cooling of the motion along the cavity axis and
thus opened the door to quantum levitated optomechanics
[24].

For the purpose of prolonging available free fall ex-
periment times [25], an important future milestone for the
coherent scattering setup is the simultaneous ground-state
cooling of all three translational degrees of freedom.

There is strong motivation, however, for investigating the
cavity cooling of 2D motions in the tweezer transverse plane
(x-y plane): The frequencies are similar ωx ≈ ωy and for suit-
able experimental parameters, gx � gy ≡ g = (gx + gy)/2, so
both may be strongly coupled to the light. In contrast, gz ∼ 0
at the favorable configuration of trapping at the node of the
cavity that minimizes optical heating, a key advantage of CS
set-ups. In addition, the frequency of the z motion is typically
ωz � ωx,y, far from the optomechanical resonance. Finally,
since the z motion can be cooled using feedback cooling
[26,27] strong 2D x-y cavity cooling lays a path to 3D mo-
tional ground-state cooling.

We exploit here recently developed theoretical expressions
for the full 3D coherent scattering problem [28]. However,
although the numerics presented below are fully 3D, for anal-
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ysis and understanding we obtain and discuss the 2D x-y
problem. We optimize 2D cooling with respect to particle
size, trap frequencies, tweezer polarization orientation, as
well as detuning between the tweezer frequency and cavity
resonance. For readily achieved experimental pressures of
p = 10−6 mbar we identify a “Goldilocks” region

√
κ�/4 �

gx, gy � |ωx − ωy| � κ , where κ (�) is the cavity decay rate
(heating rate). This set of requirements minimizes the for-
mation of decoupled dark modes and optimizes 2D cooling
for |ωx − ωy| ∼ κ/2 by using a particle of radius ∼80 nm.
While bright/dark modes have been previously investigated
in optomechanical systems [29] in the levitated system they
have a geometric interpretation in terms of the rotation of
the x and y axes of the oscillator, with potential implications
for directional sensing. The importance of nondegenerate me-
chanical frequencies ωx �= ωy for successful 2D cooling is a
well-known fact in experiments with trapped ions and atoms
[22,30].

This work is organized in the following way. We start
by reviewing the coherent scattering setup and introducing
the relevant experimental parameters (Sec. II). We then il-
lustrate how mechanical modes hybridize with the optical
mode, resulting in the formation of bright/dark modes and
three-way mixing. In particular, we show how dark modes
distort the relation between the displacement and heterodyne
spectra, making in general thermometry and sensing nontriv-
ial (Sec. III). In the central part we give a detailed analysis of
2D cooling and discuss how to perform thermometry (Sec. IV)
as well as identify the best parameters for 2D cooling by
numerically scanning the experimental parameters (Sec. V).
We conclude by laying down a path for 3D motional ground-
state cooling in the levitated optomechanics—in particular,
how 2D cavity-optomechanical cooling can be combined with
feedback cooling to achieve the 3D motional ground state of
the optically levitated system (Sec. VI).

II. EXPERIMENTAL SETUP

We consider the 3D coherent scattering setup illustrated in
Fig. 1(a). The nanoparticle is trapped in an optical tweezer
and positioned inside an optical cavity—the cavity is driven
entirely by the tweezer light scattered off the nanoparticle,
namely coherent scattering with a pattern shown in Fig. 1(a).
Such a scheme offers unique versatility with respect to the
customary cavity optomechanical system, since the nanopar-
ticle can be placed at any point inside the cavity by displacing
the tweezer trap. Here we will consider the case when the
nanoparticle is close to a cavity node x(c)

0 ∼ λ/4 (λ: laser
wavelength), where the strongest coupling to the nanoparticle
x and y motions is achieved. In addition, deleterious effects of
cavity photon scattering and recoil heating are minimal.

Linearization of the effective potentials in the CS set-ups
[17,18] has shown that

gx = Ed ksin(θtw)xzpf, gy = Ed kcos(θtw)yzpf, (1)

where Ed = αεcεtwsin(θtw )
2h̄ is the driving amplitude of the cavity,

α = 3ε0Vs
εR−1
εR+2 (ε0 is the permittivity of free space, Vs is the

volume of the nanoparticle, εR is the relative dielectric per-

mittivity,), εc =
√

h̄ωc
2ε0Vc

(ωc is the cavity frequency and Vc is

FIG. 1. (a) Schematic of coherent-scattering experiments: An
adjustment of the tweezer polarization (θtw = π/4, 3π/4) yields two
equivalently coupled x, y mechanical modes, |gx| � |gy| � g. (b) We
find there is a “Goldilocks” region (orange) for 2D ground-state
cooling, i.e., nx + ny � 1, illustrated for the set-up of Ref. [24] but
with θtw = π/4. The optimal region lies below the blue curve to
avoid the formation of decoupled dark modes (i.e., |ωx − ωy|) � g)
and is bounded from above by the constraint to avoid far-detuning
(κ � |ωx − ωy|) and from below by the regime of weak quantum
cooperativities [i.e., C = 4g2/(κγ nB ) � 1, where γ (nB) is the gas
damping (mean thermal occupancy)]. Red lines correspond to differ-
ent particle sizes and indicate R ∼ 80 nm is optimal.

the cavity volume), k = ωc/c, and εtw =
√

4Ptw
wxwyπε0c (Ptw is the

tweezer power and wx,wy is the waist of the Gaussian beam
along the x or y axis, respectively).

The angle θtw between the tweezer polarization axis (y
axis) and the cavity symmetry axis (x(c) axis) can be arbitrarily
set to tune coupling rates gx and gy. Motional 1D ground-state
cooling (of a single mechanical degree of freedom) along
x(c) has been recently achieved by setting θtw ∼ π/2. In this
case thetweezer-based coordinates (x, y) and the cavity-based
coordinates [x(c), y(c)] identify the same point in the 2D plane
orthogonal to the tweezer symmetry axis, z. However, one ob-
tains gx ≈ gy for θtw = π/4 and that is the regime we consider
for 2D cooling.

III. BRIGHT/DARK MODES

Avoided crossings are ubiquitous in physics. For example,
two classical (or quantum) modes, say, x̂ and ŷ, approach-
ing an energy degeneracy are universally described by a
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Hamiltonian represented in terms of Pauli matrices:

V̂int

h̄
= 1

2
[x̂ ŷ][(ωx − ωy)σ̂z + 2gσ̂x]

[
x̂
ŷ

]
, (2)

where g is the coupling. At the degeneracy, ωx = ωy, the
normal modes of the system correspond to the eigenmodes
of σ̂x and thus have the maximally hybridized form x̂ ± ŷ. The
corresponding frequencies are perturbed by ±g.

In regimes of negligible dissipation g 	 κ, γ , the usual op-
tomechanical interaction corresponds to a two-mode avoided
crossing. The two-mode crossing was demonstrated experi-
mentally in optomechanics [31] where it was observed that
the cavity light mode and mechanical modes were hybridized,
with the characteristic 2g splitting, and a more recent study
investigated levitated nanoparticles [32].

In the present case, we have a three-mode avoided crossing.
These are less frequently encountered but may be discussed in
a similar way. In our present case, two mechanical modes, x̂
and ŷ, are coupled to the optical mode, ẐL, according to the
usual position-position form (see Sec. IV for more details):

V̂int

h̄
= gxx̂ẐL + gyŷẐL. (3)

Representing the modes as a vector, [x̂ ẐL ŷ]
, and Eq. (3) in
matrix form we write:

V̂int

h̄
= 1

4

[
x̂ ẐL ŷ

]⎡⎣ ωx 2gx 0
2gx −� 2gy

0 2gy ωy

⎤
⎦

⎡
⎣ x̂

ẐL

ŷ

⎤
⎦, (4)

where we have also included the two mechanical frequencies,
ωx, ωy, and the detuning, −�.

We first consider equal couplings gx = gy ≡ g, and set
−� = (ωx + ωy)/2. Neglecting the term 1

4
ωx+ωy

2 I, where I is
the identity, we write:

V̂int

h̄
= 1

4
[x̂ ẐL ŷ][(ωx − ωy)Ŝz + 2

√
2gŜx]

⎡
⎣ x̂

ẐL

ŷ

⎤
⎦, (5)

where now Ŝx, Ŝz are spin 1 matrices (divided by h̄). The
associated anticrossing has an enhanced width of 2

√
2g.

For the degenerate case, ωx = ωy, the eigenmodes are sim-
ply the textbook eigenvectors of the Ŝx matrix: In that case,
there are two three-way hybridized “bright” eigenmodes (B̂±)
with eigenvalues ±√

2g, and a two-way hybridized “dark”
eigenmode (D̂) with eigenvalue zero:

B̂± = 1

2
[x̂ + ŷ ±

√
2ẐL], (6)

D̂ = 1√
2

[x̂ − ŷ]. (7)

While the pedagogic Eq. (5) was not used to compute the
realistic system eigenmodes, it illustrates the significance of
lifting the frequency degeneracy: ωx �= ωy introduces a Ŝz

component that mixes the bright dark modes D̂, B̂±. The
case gx �= gy (but ωx ∼ ωy) does not eliminate the bright-dark
mode structure: It simply alters the dark eigenvectors at the
center of the crossing to

D̂ = 1

ε
[gyx̂ − gxŷ] (8)

(which is still a dark mode with eigenvalue 0) while the bright
modes are B̂± = 1√

2
[ gx

ε
x̂ + gy

ε
ŷ ± ẐL] (with eigenvalues ε =

±
√

g2
x + g2

y). However, we see that as gy → 0, D̂ → ŷ. This
is the quasi-1D dynamics analyzed in Ref. [28] (using θtw =
85◦). In this limit, the ŷ mode is “dark” simply because it is
very weakly coupled.

The true eigenmodes of the coherent scattering set-up for
arbitrary � were computed numerically from the equations of
motion of the system. The Hamiltonian for the reduced 2D
case can be put in the following form:

Ĥ

h̄
= − �

4

(
Ẑ2

L + P̂2
L

) + ωx

4

(
x̂2 + p̂2

x

)
+ ωy

4

(
ŷ2 + p̂2

y

) + gxx̂ẐL + gyŷẐL, (9)

where ωx, ωy are the frequencies of the two harmonic motions;
x̂, ŷ ( p̂x, p̂y) are the position (momentum) observables; gx,
gy denote the optomechanical couplings [see Eq. (1)]; and ẐL

(P̂L) denote the amplitude (phase) quadrature of the intracavity
field.

The resulting equations of motion, including dissipation
and Gaussian noise baths acting on each mode, yield a set
of linear coupled equations which are represented in the well-
known form:

Ẋ = AX +
√

�Xin(t ), (10)

where A is a drift matrix that includes dissipative terms and
jth element of the vector (AX)( j) = 1

ih̄ [X( j), Ĥ ] − 1
2 (�X)( j).

For our discussion we neglect the z motion (but it is included
in quantum numerics) so can consider A as a 6 × 6 matrix.
X is the vector of the mechanical and optical modes, X =
(x̂, p̂x, ŷ, p̂y, ẐL, P̂L )

T
,

√
� represents the diagonal matrix

of damping coefficients, while Xin(t ) represents the Gaussian
noises (gas collisions and optical shot noises).

To obtain the classical normal modes and frequencies of
the system, we calculated the eigenvalues and eigenvectors of
A as a function of the optical detuning � for the 2D gx = gy

case. It was sufficient for our classical analysis to consider the
case with dissipative terms set to zero (

√
� = 0).

Such eigenmodes can be represented as unit vectors in
the space spanned by the tweezer modes x̂, ŷ, and ẐL, i.e.,
as spherical polar angles on a Bloch sphere [see Fig. 2(a)].
As the detuning is varied from � = −∞ to � ∼ 0 we rep-
resented the resulting trajectory traced by each eigenmode
using the corresponding spherical polar angles—Fig. 2(b)
plots the trajectories as a function of detuning � for two
realistic scenarios. In the first case (orange lines) we employ
the experimental parameters of Ref. [24] and thus a more
elliptical tweezer trap wx = 0.6 μm, wy = 0.705 μm where
tweezer frequencies differ by about 16%. In the second case
(red lines) we set wx = 0.68 μm, so now the frequencies are
near-degenerate (near circular trap) and differ by about 3.5%.

The plots in Fig. 2(b) show that for � = −∞, the modes
tend to the uncoupled x̂, ŷ, and ẐL modes (green arrows). The
red lines (circular trap) approach closely the “dark/bright”
modes of Eq. (7), which represents the gx = gy, ωx = ωy

limit. We see the dark mode simply rotates on the “equator”
(θ = π/2) from φ = 0 at � = −∞ through to φ = −π/4

023071-3
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FIG. 2. Trajectories of the eigenmodes of the 2D system, for
gx = gy, as a function of detuning �. (a) Represents the trajectories
for the ideal ωx = ωy case on a Bloch sphere, where the vector
of unit length n̂ = [x̂, ŷ, ẐL]

.= [θ, φ] represents a mode at a given
�. The dark mode rotates along the “equator” from φ = 0 at � =
−∞, through an angle φ = −π/4 at � → −(ωx + ωy )/2, and thus
evolves from the x̂ mode to D̂. The “bright” modes rotate from ẐL

(ŷ) to B̂+ (B̂−). (b) Shows the θ, φ coordinates of the trajectories for
the three eigenmodes calculated from classical equations of motion,
for realistic parameters: either the elliptical trap (with δω = |ωx −
ωy|/[(ωx + ωy )/2] � 0.16 of recent experiments [24]) (orange lines)
or a more circular trap (with δω = |ωx − ωy|/[(ωx + ωy )/2] � 0.04)
(red lines). The near circular trap follows the idealized dark/bright
modes illustrated in (a), while for the elliptical trap the “dark” mode
still rotates by φ � −π/4 but does not remain on the equator and
thus mixes with the optical mode. The eigenmodes tend to uncou-
pled x̂, ŷ, ẐL modes at � → −∞ (green arrows on the left) but
hybridize into bright/dark modes D̂, B̂±, as � → −(ωx + ωy )/2 ∼
−2π × 400 kHz (green star symbols “*”).

at the centre of the crossing � = ωx � ωy. For the elliptical
trap of the experiments [24], however, the “dark” mode (top
panel) still rotates to φ = −π/4 at the center of the crossing
but mixes appreciably with the optical mode and θ � 0.6π .

FIG. 3. (a) Illustrates heterodyne PSD Shet(ω), in regimes where
the x̂, ŷ and optical modes hybridize to form bright (B̂

±
) and dark

(D̂) modes, i.e., where g 	 |ωx − ωy|, κ, γ . The solid lines overlaid
are the classical modes. The central dark mode reaches near zero
amplitude at the center of the crossing. The bright modes show
an avoided crossing of width enhanced by a factor of

√
2. (b) In

contrast, the displacement PSD, Sxx (ω) + Syy(ω) show that both dark
and bright modes are uncooled and remain hot.

The more general case of gx �= gy (and arbitrary detun-
ing) does not eliminate the bright-dark mode structure. In
contrast lifting the ωx ∼ ωy degeneracy has a pronounced
effect—the bright/dark modes mix and very different trajecto-
ries are obtained. Ultimately, this would lead to a decoupling
to two independent level crossings, with the associated dis-
advantage that both modes might no longer be resonant
simultaneously—this case depends on κ and is investigated
below.

Figure 3(a) illustrates the characteristics of a heterodyne
power spectral densities (PSD) Shet(ω), in regimes of bright
dark-modes, where g 	 |ωx − ωy|, κ, γ so dissipation is very
low. Specifically, the parameters are set close to experiment
of Ref. [24] but with θtw = π/4, κ → κ/10 and |ωx − ωy| →
|ωx − ωy|/4. The figure illustrates the typical structure of a
three-level crossing with a coupling in the form of Eq. (4)
(two degenerate modes x̂, ŷ couple indirectly via a third). It
also illustrates, however, the difficulty of the usual procedure
for thermometry in optomechanics. Both modes are hot, and
moreover the usual normalization used to relate the hetero-
dyne measured PSD to the underlying displacement spectra
gives very poor results.
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IV. TWO-DIMENSIONAL MOTION MODELING

In Ref. [28] the Langevin equations for the full 3D problem
was solved, both for the full nonlinear trapping potentials as
well as considering linearizations about equilibrium values.
For the linearized case general expressions of quantum linear
theory (QLT) for the optical modes were obtained as well as
the mechanical spectra x̂3D, ŷ3D, and ẑ3D, including hybridiza-
tion and encompassing quantum regimes.

From these, PSDs for Sxx(ω) = 〈|x̂3D(ω)|2〉 or Syy(ω) =
〈|ŷ3D(ω)|2〉 were calculated and thence phonon occupancies
are related to the area under the PSD curve [33]:

n j = 1

2π

∫ ∞

−∞
S j j (ω)dω − 1

2
(11)

for j = x, y, z and compared with optical (heterodyne) PSDs
in order to understand the experimental measurements.

However, in Ref. [28], the analysis of quantum cooling
for particles trapped at the node of the cavity, focused on
quasi-1D experimental scenarios of Ref. [24] where only a
single mode was strong-coupled to the light. Hybridization
with weak-coupled modes, leading to sympathetic cooling or
heating was investigated. In the present work we go beyond
[28] to investigate the case of two strong-coupled modes,
where nontrivial 2D physics arises, including the formation
of dark modes.

In addition, we consider also scattering effects not included
in Ref. [28]. The Hamiltonian of the system, Eq. (9) is a
special case of the Hamiltonians discussed in Refs. [17,28]
where the nanoparticle equilibrium position was primar-
ily determined by the gradient force (∼70-nm particles).
Here, however, we consider also substantially larger particles
(∼100 nm) where the scattering force must be taken into
account. In particular, the latter displaces the nanoparticle
equilibrium position which leads to new couplings of x̂ and ŷ
to the phase quadrature of light, P̂ (in addition, to the coupling
to the amplitude quadrature, Ẑ). In Appendix A we show
that the Hamiltonian can be transformed back to the form in
Eq. (9) by introducing the rotated optical quadratures ẐL (P̂L)
with the rotation angle depending on the size of the nanoparti-
cle. In short, all of the results from Refs. [17,28] remain valid
even when the scattering force is nonnegligible (but still in the
Rayleigh regime) as long as we formally replace Ẑ, P̂ with the
rotated optical quadratures ẐL, P̂L.

For our 2D analysis, we assume the particle is trapped at
the cavity node, i.e., φtw = π/2 that minimizes deleterious
optical heating, and ask the following: What is the optimal
angle θtw between the tweezer polarization axis and the cavity
symmetry axis for efficient 2D cooling? The latter controls
the couplings gx, gy, and the most natural choice is given by
θtw ∼ π/4 where gx ∼ gy—this maximizes the cooperativities
of both the x and y motions. In addition, we have the freedom
in choosing the detuning, � (� < 0 is red-detuned)—in the
first instance this can be set to −� = (ωx + ωy)/2. In particu-
lar, the perfectly degenerate case, ωx = ωy, where we have the
exact relation gx = gy seems the most natural configuration
for 2D cooling; however, we will show this is not the case,
and nondegenerate frequencies are necessary for efficient 2D
cooling.

The 2D equations of motion Ẋ = AX in Eq. (10), explic-
itly, are given by

2 ˙̂x = ωx p̂x, ˙̂px = −ωxx̂ − 2gxẐL, (12)

˙̂y = ωy p̂y, ˙̂py = −ωyx̂d − 2gyẐL, (13)

˙̂ZL = −�P̂L, ˙̂PL = �ẐL − 2gxx̂ − 2gyŷ, (14)

where we have for simplicity of presentation omitted the
nonconservative terms (damping terms and input noises). We
have the optical quadratures, ẐL = â + â† and P̂L = i(â† − â),
x mechanical quadratures, x̂ = b̂x + b̂†

x and p̂x = i(b̂†
x − b̂x ),

and the y mechanical quadratures, ŷ = b̂y + b̂†
y and p̂y =

i(b̂†
y − b̂y). We can express the equations for the modes of the

2D problem in Fourier space:

x̂(ω) =JxZ (ω)ẐL(ω) + x̃in(ω), (15)

ŷ(ω) =JyZ (ω)ẐL(ω) + ỹin(ω), (16)

ẐL(ω) =JZx(ω)x̂(ω) + JZy(ω)ŷ(ω) + Z̃L,in(ω), (17)

which can be solved in closed form as shown in Ref. [28]. The
solutions will be labeled as x̂2D(ω), ŷ2D(ω), and ẐL(ω) [which
in general depend on all three input noises x̃in(ω), ỹin(ω) and
Z̃L,in(ω)]. We recall that our calculations fully include the z
mechanical motion. However, the 2D analysis below is closely
matched by the full 3D theory and thus we can make the
identifications, x̂2D(ω) ≡ x̂3D(ω) and ŷ2D(ω) ≡ ŷ2D(ω), for
the hybridized modes of the system. The frequency-dependent
coupling coefficients are given by

JjZ (ω) = −2g jχ j (ω), (18)

JZ j (ω) = −igbη(ω), (19)

where j = x, y, the susceptibilities are given by

χ j (ω) = ω j

−ω2 + ω2
j − iω jγ

, (20)

η(ω) = 1

−i(ω + �) + κ
2

− 1

i(−ω + �) + κ
2

, (21)

and κ (γ ) is the cavity decay rate (gas damping).
Equations (15)–(17) form a system of coupled equations:

The solutions x̂(ω), ŷ(ω), â(ω) are function of the input noises
x̃in(ω), ỹin(ω), ãin(ω). In addition to gas collisions and photon
shot-noise we also include recoil heating in the model by
adding additional terms to x̃in(ω) and ỹin(ω) [17,34,35]. The
latter can become relevant even at pressure p ∼ 10−6mbar
when we scan over large values of the couplings gx, gy �
100 kHz as we increase the size of the nanoparticle/laser
power.

V. 2D COOLING—NUMERICAL RESULTS

We define the mechanical 2D phonon occupancy as

n̂(2D) = n̂x + n̂y, (22)

where n̂x = b̂†
xb̂x and n̂y = b̂†

yb̂y. The latter were calculated us-
ing QLT by numerically integrating the associated PSDs, Sxx

and Syy (see Sec. IV) and comparing with phonon occupancies
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FIG. 4. Numerical simulation of 2D phonon occupancy as a
function of the tweezer frequencies ωx and ωy. The values are set
as in Ref. [24] but θ = π/4 and with variable tweezer waists along
the x and y axes. Cooling becomes ineffective in two regimes of
δω = |ωx − ωy|: (i) When the trap is near circular and a decoupled
dark mode is formed (diagonal white strip) or (ii) the frequency
difference δω is too large compared to the cavity decay rate κ (white
regions in top left and bottom right corners). Cooling is optimal for
intermediate frequency differences when δω is close to κ/2.

inferred from optical (heterodyne) spectra. We emphasize that
the numerics are all full 3D, but our analysis—for physical
insight—considers the reduced 2D motion.

In the following we consider the condition n̂(2D) < 1 as
a threshold value for 2D motional ground-state cooling.
Alternatively we could have required the less restrictive con-
ditions n̂x, n̂y < 1, i.e., the two motions are separately in the
ground state.

A. Optimal frequency difference

The first question we address is what is the optimal fre-
quency difference, δω = |ωx − ωy|, in order to achieve the
lowest combined phonon occupancy n̂(2D). For concreteness
we will consider the parameters from Ref. [24] (but now with
θ = π/4) and vary the two waists of the tweezer beam, wx and
wy, to scan over the frequencies, ωx, ωy. We find that when
|ωx − ωy| > κ simultaneous cooling of the x̂ and ŷ modes
becomes ineffective—we either cool x motion or y motion but
cannot cool both effectively. More surprisingly, we find that
when |ωx − ωy| ∼ 0 cooling becomes again ineffective. The
optimal frequency difference for efficient 2D cooling is near
the midpoint value—when |ωx − ωy| ∼ κ

2 with the detuning
set to −� ∼ (ωx + ωy)/2 (see Fig. 4).

We can understand qualitatively the reason for the opti-
mal frequency difference |ωx − ωy| ∼ κ

2 by calculating 2D
optomechanical cooling formula:

�opt, j ≡ Im

[
2ig2

jη(ω j )

1 − 2ig2
kχk (ω j )η(ω j )

]
, (23)

where j = x, k = y or j = y, k = x (from Eqs. (15)–(18) one
readily finds the optomechanical cooling formula by calcu-
lating the imaginary part of the self-energy [28,36]). Let us
consider some special cases. Suppose first that gk ∼ 0 such
that we have �opt, j ∼ Im[2ig2

jη(ω j )]—the latter is the usual
optomechanical cooling rate which further reduces to �opt, j ∼
4g2

j/κ . The numerator can be thus associated with the cooling
rate from standard 1D cavity optomechanics. On the other
hand the denominator depends only on the coupling to the
other degree of freedom, ∼gk , and is thus a genuinely 2D
effect affecting the j motion.

We are primarily interested in the configuration where both
�opt,x and �opt,y are large. Let us start by considering the
perfectly degenerate case, ωx = ωy = −� with g = gx ∼ gy.
Assuming the regime of strong cooperativity we find that the
optomechanical rate reduces to the simple expression �opt, j ∼
γ . The gas damping, γ , is tiny at the relevant pressures, and
thus we are left only with a negligible optomechanical cooling
rate—here γ arises from the denominator in Eq. (23), i.e.,
from the mechanical susceptibility χk (ω j ) defined in Eq. (20),
and thus the strong suppression of the optomechanical cooling
rate can be identified as a 2D effect. Loosely speaking, the
energy that is extracted from the x motion (y motion) is im-
mediately fed back to the y motion (x motion) with the optical
field mediating this transition. In order to achieve any 2D cool-
ing we thus require some degree of asymmetry, ωx �= ωy, in
order to disrupt the near-perfect exchange of energy between
x̂ and ŷ via the optical field, and allow the latter to instead
carry the energy away from the system.

We finally note that lowering the finesse does not nec-
essarily improve 2D cooling. This is captured by the
optomechanical cooling formula in Eq. (23) through the op-
tical susceptibility η defined in Eq. (21): On the one hand,
when we decrease the value of κ we enhance the 1D cooling
channel (numerator), but, on the other hand, we also amplify
the 2D heating channel (denominator).

B. Optimal particle size

For concreteness we will consider the parameters from
Ref. [24] (but now with θ = π/4) which is close to the op-
timal regime |ωx − ωy| � κ

2 (see Sec. V A), with the detuning
set to −� ∼ (ωx + ωy)/2.

For a given experimental implementation the tweezer
power, Ptw, is a parameter that can be varied readily. However
to minimize deleterious optical heating effects, it is preferable
to use the lowest power that meets experimental requirements.
We restrict ourselves to Ptw � 1 W. Nanoparticles of different
radii R may also be selected.

We express the relevant parameters for 2D cooling, ωx, ωy,
gx, gy as a function of Ptw and R. We then find that if the
particle size is too small (�60 nm) the cooperativity remains
low and one is limited to values above nx + ny ∼ 1—this is
analogous to the requirement for 1D ground-state cooling.
However, if the particle size is too large (�100 nm), then
cooling becomes again ineffective when gx, gy � |ωx − ωy|.
We find that there is a “Goldilocks zone” with the optimal
particle size ∼80 nm (see Fig. 5).

We can understand qualitatively the reason for the opti-
mal particle size by looking again at the 2D optomechanical
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FIG. 5. Numerical simulation of 2D phonon occupancy as a
function of input power (Ptw) and mean optomechanical coupling
[g ≡ (gx + gy )/2]. The values are set as in Ref. [24] but θ = π/4 and
variable power and particle radius (which sets the optomechanical
couplings). Cooling becomes ineffective if the cooperativity is too
low (below the lower green dashed line) as well as if decoupled
dark modes are formed (above the upper green dashed line). The
red dashed lines plot g for different values of the particle radius,
R. We can thus extract the optimal particle size that allows effi-
cient 2D cooling at moderate powers—cooling to the 2D motional
ground state, nx + ny < 1, is feasible already for a ∼80-nm particle
at Ptw ∼ 700 mW.

cooling formula in Eq. (23). We first note that g j ∝ R3/2 and
that g j ∝ P1/4

tw hence g j ∝ R3/2P1/4
tw . For small (large) val-

ues of g j the numerator (denominator) in Eq. (23) is small
(large) and cooling becomes inhibited—this illustrates how
the “Goldilocks zone” emerges from the competition of the
1D effect in the numerator with the 2D effect in the denomina-
tor. In particular, the condition g j � |ωx − ωy| emerges from
the denominator in Eq. (23)—we have χk (ω j ) ∼ |ωx − ωy|−1

as well as η(ω j ) ∼ |ωx − ωy|−1 [since −� ∼ (ωx + ωy)/2]—
and hence the the denominator remains suppressed if |gk| �
|ωx − ωy|, i.e., cooling is not inhibited by the 2D hybridization
effect.

C. Reliable thermometry

In the previous sections we have shown that there exists
an optimal experimental configuration (Sec. V A) and particle
size (Sec. V B) to achieve simultaneous cooling of both x
any y motions. However, inferring phonon occupancies from
optically detected spectra in the presence of hybridization is
not straightforward. Here we show that the same experimental
configuration that allows for optimal 2D cooling also allows
for reliable thermometry.

Experiments exploiting heterodyne detection have access
only to the optical field, â = 1

2 (ẐL + iP̂L ), from which one
then extracts the the mechanical displacement spectra. In par-
ticular, the heterodyne PSD is given by [33]

Shet(ω) ≡ Saouta
†
out

(�LO + ω) + Sa†
outaout

(�LO − ω), (24)

FIG. 6. (a) Compares phonon occupancies for an elliptical trap
used in the quantum cooling experiments [24], δω = |ωx − ωy| >

gx ∼ gy (upper) with occupancies for a near-circular trap with the
same parameters but δω smaller so that |ωx − ωy| < gx ∼ gy (lower).
The elliptical trap allows for 2D ground-state cooling and the
rescaled heterodyne follows occupancies closely, facilitating ther-
mometry. For the near-circular trap, the modes remain hot and it is
difficult to extract occupancies from the optical detection by the usual
methods. The particle is positioned at a node (intensity minimum),
θtw = π/4, R = 80 nm, input power Pin = 0.8 W, and κ = 193 kHz.
(b) Corresponding heterodyne PSDs, with the classical modes over-
laid. For the elliptical trap in the upper panels when the detuning is
set to −� = 400 kHz the modes are cooled to nx + ny < 1.

where �LO is the detuning of the local oscillator and âout =
âin − √

κ â is the output field.
In the presence of hybridization and spectral overlaps,

extracting displacement spectra Sxx(ω) and Syy(ω), from
the experimental heterodyne spectra, Shet(ω), becomes less
straightforward. However, in the optimal case for 2D cooling
(see Sec. V A)—when gx � gy � g, we can write:

â(ω) � η(ω)g[x̂2D(ω) + ŷ2D(ω)]. (25)

The corresponding heterodyne PSD [from Eq. (24)] will
have contributions not only from independent x, y contribu-
tions, but also from interferences. Thermometry is greatly
simplified when we neglect interference effects and are able
to write:

Shet(ω)

|η(ω)|2g2
� Sxx(ω) + Syy(ω), (26)

which can be seen as the 2D extension of the familiar textbook
relation arising in the 1D case. Clearly more elliptical traps,
with less spectral overlap between the x, y terms would be
expected to minimize interference contributions.

We test the approximation in Eq. (26) in Fig. 6: In Fig. 6(a)
we compare the extracted phonon occupancies (using the het-
erodyne spectra) with the actual ones, and in Fig. 6(b) we
show the PSDs for the heterodyne signal with the classical
modes overlaid. The upper panels show the result for an ellip-
tical trap lie within the “Goldilocks zone” where frequencies
are sufficiently far apart so that both modes are in the quantum
regime and moreover, the phonon occupancies inferred from
rescaled heterodyne PSD agree reasonably well with those
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obtained from integrating Sxx(ω) + Syy(ω), in contrast with
the near-circular trap, which lies outside this zone.

In the latter case (near-circular trap) the modes remain hot
and more complicated methods would be required to infer
mode occupancies from the optically detected signal.

D. Understanding 2D cooling in terms of geometric
bright/dark modes

In our effective 2D system, x̂2D and ŷ2D are the mechanical
modes. As shown in the previous section, they in general arise
from hybridization of x̂, ŷ modes and, as we consider regimes
of strong-coupling, they also involve hybridization with the
optical mode ẐL. Unhybridized x̂, ŷ mechanical modes would
correspond physically to motions along the tweezer x and y
axes, respectively (such as in the case the coupling to the
cavity mode would be vanishingly small and we would thus
have two completely decoupled mechanical motions).

However, there is another pair of mechanical modes that
naturally arises in the coherent scattering setup: These are the
bright (dark) modes. We show below that, in our system, the
former have an interesting and useful geometric interpretation
in terms of modes corresponding to the motion along (orthog-
onal) to the cavity axis; together with the cavity mode, ẐL,
they form the cavity-based/geometric modes.

The transformation from the tweezer-based modes to the
geometric/cavity-based modes might, in first instance, be un-
derstood as a pure 2D rotation in the x-y plane by applying a
rotation of angle θtw. However, care is required when we con-
sider traps with significant ellipticity, where ωx �= ωy, where
the zero-point motions distort the 2D rotation as we will now
show. We start by considering the rotated reference frame
where the first (second) axis of the reference frame is parallel
(orthogonal) to the cavity axis (see Fig. 1). Specifically, we
transform to such “cavity reference frame” by applying a
rotation of angle θtw:

[
X (c)

Y (c)

]
=

[
sinθtw cosθtw

−cosθtw sinθtw

]
︸ ︷︷ ︸

≡R(θtw )

[
X
Y

]
, (27)

where X,Y [X (c),Y (c)] are the coordinates in tweezer (cavity)
reference frame. The rotation in Eq. (27) in term induces a
transformation of the canonical (adimensional) modes x̂ and
ŷ. In a nutshell, one first rotates the corresponding physical
positions (X̂ and Ŷ ) to obtain the transformed physical posi-
tions (X̂b and X̂d ) and thence defines the transformed canonical
positions (x̂b and x̂d ) by rescaling them with the transformed
zero-point motions. Specifically, we perform the following
transformations in consecutive order:

[
x̂
ŷ

]
→

[
X̂
Ŷ

]
≡

[
xzpf x̂
yzpfŷ

]
, (28)[

X̂
Ŷ

]
→

[
X̂b

X̂d

]
≡ R(θtw)

[
X̂
Ŷ

]
, (29)[

X̂b

X̂d

]
→

[
x̂b

x̂d

]
≡

[
X̂b/xb,zpf

X̂d/xd,zpf

]
, (30)

where x j,zpf =
√

h̄
2mω j

(ω j) is the zero-point motion (fre-

quency) along the j = b, d axis (for the full details of the
derivation see Appendix B 1 and B 2).

The Hamiltonian from Eq. (3) in terms of the new rotated
coordinates reduces to

V̂int

h̄
= gbd x̂bx̂d + gbx̂bẐL, (31)

and thus only the mode x̂b is coupled to the light field while
x̂d is completely decoupled—we will refer to them as the geo-
metric bright and dark mode, respectively. A similar coupling
to the above was obtained in a previous experimental study of
hybridization between two mechanical modes [29] leading to
bright/dark modes (albeit not in a strong coupling regime and
without strong cooling).

However, what is new is that in the present case the result-
ing modes, x̂b and x̂d , have a simple geometric interpretation
as the motion along and orthogonal to the cavity axis, re-
spectively. Without the geometric interpretation as a guide
one can consider also alternative definitions for bright/dark
modes—these do not have a geometric interpretation but are
otherwise equally valid (see Appendix B 4 for a comparison
with the bright/dark mode considered in Ref. [29]).

The couplings in Eq. (31) are given by

gbd = sinθtwcosθtw(ω2
y − ω2

x )

2
√

ωbωd
, (32)

gb = gx

√
ωx

ωb
sinθtw + gy

√
ωy

ωb
cosθtw, (33)

and the frequencies are given by

ω2
b = ω2

x sin2θtw + ω2
y cos2θtw, (34)

ω2
d = ω2

x cos2θtw + ω2
y sin2θtw. (35)

Importantly, the above derivation of the geometric bright/dark
modes is valid for any value of the angle θtw (see Appendix B 3
for the special case θtw = π/4 where the expressions simplify
further). This is a specific feature of the coherent scattering
setup where one can always decompose the motions in the
transverse tweezer plane into the motion along/perpendicular
to the cavity axis—the corresponding geometric bright/dark
modes are by construction coupled/decoupled from the cavity
mode.

We note that the classical bright/dark eigenmodes of the
drift matrix presented in Sec. III correspond closely to x̂b, x̂d

in the limit ωx = ωy where gbd = 0 and there is no coupling
between them. In such a case D̂ can be identified with x̂d while
B̂± corresponds to the hybridization of x̂b and ẐL. In general,
and in the “Goldilocks zone,” gbd �= 0, and thus the relation
between B̂±, D̂ and x̂b, x̂d , ẐL becomes increasingly distorted
(as both x̂b, x̂d start to hybridize with ẐL).

In Appendix B 5 we also solve for the spectra of the
hybridized mechanical modes of the system, x̂2D

b and x̂2D
d ,

analogously to Eqs. (15) and (16), but now given in terms
of motions along x̂b, x̂d (and ẐL) rather than motions along
the tweezer axes x̂, ŷ (and ẐL). The exact closed form solu-
tions yields completely equivalent heterodyne spectra, but as
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we show below decomposing the spectra in terms of x̂b, x̂d

mechanical contributions can be less straightforward.
Although the “Goldilocks zone” is not in the strongly hy-

bridized regime, it is still in an intermediate regime where
hybridization nonetheless plays a critical role. It is instructive
to reexamine the 2D cooling behavior, but now in terms of the
x̂2D

b and x̂2D
d modes. We see from Eq. (31) that the geometric

dark mode, x̂d , is decoupled from the cavity mode—the op-
tomechanical cooling mechanism must rely on hybridization
due to the coupling gbd to the bright mode. In other words, we
expect to sympathetically cool x̂2D

d only when it is significantly
hybridized and contains contributions from x̂b, x̂d , and ẐL. We
see from Eq. (32) that the coupling gbd depends on |ωx − ωy|:
Only when |ωx − ωy| is large can we can expect to cool both
x̂2D

d and x̂2D
b . In contrast, when ωx = ωy the x̂2D

d mode cannot
be cooled.

The emergence of the “Goldilocks zone” can, in fact also
be be analyzed in terms of the 2D optomechanical cooling
rates for x̂2D

b and x̂2D
d (see Appendix B 5 for the derivation):

�opt,b ≡ Im
[
2ig2

bη(ωb) + 4g2
bdχd (ωb)

]
, (36)

�opt,d ≡ Im

[
4g2

bdχb(ωd )

1 − 2ig2
bχb(ωd )η(ωd )

]
, (37)

where χ j is the mechanical susceptibility defined in Eq. (20)
with j = b, d . In particular, we consider the ideal case θtw =
π/4 where we find simple expressions �opt,b ∼ 4g2

b/κ and
�opt,d ∼ g2

bdκ/g2
b. In order to cool effectively in 2D both

�opt,b and �opt,d have to be larger than a certain minimum
threshold value, �opt,b,d � 2�; these two conditions give rise
to the Goldilocks zone. Let us suppose g ≡ gx ∼ gy—we find
gb ∼ √

2g and gbd ∼ (ωy − ωx )/2—which further reduces the

2D optomechanical formulas to �opt,b ∼ 8g2

κ
and �opt,d ∼

κ
8g2 (ωy − ωx )2. Combining the two constraints we find the
condition for the Goldilocks zone:√

κ�/4 � g �
√

κ/(16�)|ωy − ωx|, (38)

where � can be loosely identified with the total motional heat-
ing rate. The motional heating rate has a constant contribution
(due to gas collisions) and a power-dependent contribution
(from recoil heating). In first instance we can neglect recoil
heating for moderate powers at the considered pressure of
p ∼ 10−6 mbar [17], and estimate � ∼ γ nB, where γ is the
gas damping and nB is the mean thermal occupancy. Using
the values in Table I we estimate for �/(2π ) ∼ 15 kHz and
find a qualitative agreement of Eq. (38) with the Goldilocks
boundaries shown in Fig. 5 (the lower and upper dashed green
lines).

The phonon occupancy of the modes x̂b, x̂d is, however,
quantitatively different from the one of the modes x̂, ŷ—the
two sets of modes have different frequencies (ωx, ωy versus
ωb, ωd ) which makes a direct comparison of the number of
phonons difficult. Even disregarding the modest numerical
discrepancies from the frequency differences, estimating the
dark mode phonon occupancy from the heterodyne spectra is
a nontrivial task. To see this we note that the optical field is
proportional to the bright mode (but not to the dark mode):

â(ω) � η(ω)gbx̂2D
b (ω). (39)

TABLE I. Values used in numerical simulations adapted from
the experiment [24]. The last four parameters (R, Ptw, wx , wy) are
the nominal values which are modified in the numerical simulations
to scan the different regimes of three-way hybridization and 2D
cooling/thermometry (see Figs. 1–6).

Parameter Symbol Value

Gas pressure p 10−6 mbar
Gas temperature T 300 K
Cavity decay rate κ/2π 193 kHz
Cavity length L 1.07 cm
Cavity waist wc 41.1 μm
Optical wavelength λ 1064 nm
Silica density ρ 2000 kgm−3

Particle radius R 71.5 nm
Input tweezer power Ptw 400 mW
x tweezer waist wx 0.600 μm
y tweezer waist wy 0.705 μm

One can then directly extract the bright mode displacement
PSD from the normalized heterodyne PSD:

Shet(ω)

g2
b|η(ω)|2 � Sxbxb (ω), (40)

where Sxbxb (ω) = 〈|x̂2D
b (ω)|〉. We can thus obtain an occu-

pancy nb by integrating the area under the heterodyne PSD
rescaled by the factor g2

b|η(ω)|2 [see Eq. (11) with j = xb, xd

and define n j ≡ nxj ]. On the other hand, from the measured
heterodyne spectra one is not able to measure Sxd xd (ω) =
〈|x̂2D

d (ω)|〉 and thus one cannot directly obtain an estimate
for the corresponding phonon occupancy nd . However, by
comparing Eqs. (25) and (40) (and using gb ∼ √

2g at θtw =
π/4) we find Sxbxb (ω) ∼ [Sxx(ω) + Syy(ω)]/2 and thus nb ∼
(nx + ny)/2. When both the bright/dark mode are cooled
with the same optomechanical rate (i.e., �opt,b ∼ �opt,d ) one
has nb ∼ nd , and one can indirectly infer that the area under
Sxd xd (ω) = 〈|x̂2D

d (ω)|〉 will give nd ∼ (nx + ny)/2. We thus
find nx + ny ∼ nb + nd . This explains why both the tweezer-
based and the cavity-based modes approximately agree about
the total phonon occupancy and lead to roughly the same
Goldilocks zone.

VI. DISCUSSION

A previous theoretical study that investigated hybridiza-
tion due to optomechanical interaction via coherent scattering
by levitated nanoparticles, left an important gap in under-
standing: that study [28] investigated the quasi-1D dynamics
arising for trapping at a node, relevant to recent quantum
ground-state cooling experiments. However, the quasi-1D be-
havior gx 	 gy of one strong-coupled mode, hybridising with
one weak coupled mode, obtained for θtw → π/2, differs
fundamentally from the 2D scenario of two strong-coupled
modes that arises as θtw → π/4, where gx � gy.

Here we have shown that simultaneous quantum ground-
state cooling of both strong coupled modes is no longer
achievable simply by the usual 1D strategy of increasing the
coupling strengths/cooperativities of the individual modes:
One must also factor in the essentially 2D phenomenon of the
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TOROŠ, DELIĆ, HALES, AND MONTEIRO PHYSICAL REVIEW RESEARCH 3, 023071 (2021)

formation of dark modes that decouple from the optical field,
as well as other requirements.

We have investigated the levitated nanoparticle motion in
the tweezer transverse (x-y) plane with an optical cavity. We
showed that efficient cooling of the x̂ and ŷ motion to their
quantum ground state must obey certain constraints relating
the difference of mechanical frequencies |ωx − ωy| to the
coupling rates gx, gy as well as the cavity decay rate κ . We
found that cooling and standard thermometry are efficient for
a sufficiently elliptical optical trap, while for a more spherical
trap the cooling will be hindered by strong three-way mode
hybridization with the cavity mode. We found also the optimal
particle size that satisfies the conditions, thus allowing for 2D
ground-state cooling in the current experimental setup.

The analysis of the 2D levitated nanoparticle problem also
found that the dark/bright modes have a geometric inter-
pretation in terms of rotations in the x-y plane. Importantly,
the transformation is not a trivial rotation because of the
nonequivalence of the x̂, ŷ phononic modes (we assume trap
ellipticity) so the modification for ωx �= ωy is discussed. In
addition, we also considered in the calculations the effects
of scattering force so as to be able to reliably simulate larger
particles.

Free-fall experiments that propose recycling of particles—
where particles would be trapped again after a sufficiently
long free-fall time—require the nanoparticle energy to be low
in all three translational motions. The motion along the optical
tweezer axis can be cooled to its ground state via feedback
cooling [26,27], thus extending our 2D scheme to fully pre-
pare nanoparticles for free-fall experiments. In addition, the
uncoupled three degrees of freedom can be used as a (quan-
tum) sensor of forces acting along a specific direction, such as
terrestrial gravity fluctuations [37].

Note added. Recently, we became aware of a new in-
teresting experimental study by Ranfagni et al. [38] which
for θtw � 0.4π exhibits a scenario intermediate between the
quasi-1D limit and the 2D regimes we investigate here.
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APPENDIX A: NOTES ON SCATTERING FORCE

In this Appendix we look at the modification of the
optomechanical interaction due to the shifted equilibrium po-
sition of the nanoparticle along the z axis (with respect to
the tweezer trap center). In particular, such a shifted equilib-
rium arises from the scattering radiation pressure force as we
increase the particle size. We first find the new equilibrium
position (Sec. A 1) and then calculate the new optomechan-

ical couplings (Sec. A 2). We finally show that by using
appropriately rotated optical quadratures the optomechanical
formulas derived for the case of negligible scattering force—
appropriate for small nanoparticles—extend also to the case
with with a shifted equilibrium position (Sec. A 3).

1. z-Axis equilibrium position

The competition between the gradient force, Fgrad, and the
scattering force, Fscatt, modifies the nanoparticle’s equilibrium
position, z0, along the z axis (the tweezer symmetry axis). In
particular, the gradient and scattering force are given by [39]:

Fgrad = −2πR3

c

εR − 1

εR + 2
∂zI (z), (A1)

Fscatt = 8πk4R6

3c

(
εR − 1

εR + 2

)2

I (z), (A2)

respectively, where εR is the relative dielectic permittivity, c is
the speed of light, k = 2π

λ
, λ is the wavelength, and R is the

particle radius. The laser intensity along the tweezer axis is
given by

I (z) ≡ 2Ptw

πwxwy

[
1 + (

z
zR

)2
] , (A3)

where Ptw is the laser power at the center of the trap, wx,
wy are the beam waists, and zR = πwxwy/λ is the Rayleigh
range. We readily find the equilibrium position, z0, from the
condition Fgrad + Fscatt = 0. Assuming z0/zR � 1 we find a
simple result:

z0 = εR − 1

εR + 2

2k4z2
R

3
R3, (A4)

but can otherwise numerically solve for the equilibrium posi-
tion. Importantly, the larger the particle radius, R, the more the
equilibrium position, z0, is displaced from the Gaussian beam
focus [40].

2. Optomechanical couplings

We start from the coherent scattering interaction potential
[17]:

V̂int

h̄
= − Ed cos{φ + k[x̂sin(θtw) + ŷcos(θtw)]}

× (âe−iξ + â†eiξ ), (A5)

where ξ = kz + �(z) and �(z) = −arctan(z/zR) is the Gouy
phase. The equilibrium position of the nanoparticle with re-
spect to the tweezer trap center will be denoted by (x0, y0, z0),
where we assume x0 = y0 = 0, while z0 is given by Eq. (A4)
(for z0/zR � 1) or obtained by solving numerically for the
equilibrium position.

Expanding the interaction potential in Eq. (A5) to quadratic
order we find the following couplings:

V̂int

h̄
= gξ

xZ x̂Ẑ + gξ
xPx̂P̂ + gξ

yZ ŷẐ + gξ
yPŷP̂ + gξ

zZ ẑẐ

+ gξ
zPẑP̂ + gξ

xyx̂ŷ + gξ
xzx̂ẑ + gξ

yzŷẑ. (A6)
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Assuming kzR 	 1, neglecting terms of order O(z0/zR), while
still retaining the phase ξ ∼ kz0, we find simple couplings

2gξ
xZ = gxZcos(ξ ), gξ

xP = gxZsin(ξ ), (A7)

gξ
yZ = gyZ cos(ξ ), gξ

yZ = gyZ sin(ξ ), (A8)

gξ
xy = gxy

Y0
[Z0cos(ξ ) + P0sin(ξ )]. (A9)

where

gxZ = Ed ksin(θtw)sin(φ)xzpf, (A10)

gyZ = Ed kcos(θtw)sin(φ)yzpf, (A11)

gxy =Ed k2Z0sin(θtw)cos(θtw)cos(φ)xzpfyzpf, (A12)

and Z0, P0 denote the mean values of the optical quadratures.
For completeness we list also the z couplings:

gξ
zZ = −gzPsin(ξ ), gξ

zP = gzPcos(ξ ), (A13)

gξ
xz = gxz

P0
[P0cos(ξ ) − Z0sin(ξ )], (A14)

gξ
yz = gyz

P0
[P0cos(ξ ) − Z0sin(ξ )], (A15)

where

gzP = −Ed kcos(φ)zzpf, (A16)

gxz = Ed k2P0sin(θtw)sin(φ)xzpfzzpf, (A17)

gyz = Ed k2P0cos(θtw)sin(φ)yzpfzzpf. (A18)

The couplings gxZ , gyZ , gxy, gzP, and gxz, gyz have been previ-
ously obtained by neglecting the scattering force and are valid
for small nanoparticles [28].

3. Rotated optical quadratures

It is instructive to compare the case with negligible scatter-
ing force (i.e., z0 = 0 and ξ = 0) with the case of an arbitrary
z axis displacement from the tweezer trap center (i.e., z0 > 0
and thus ξ > 0). In particular, we introduce the rotated optical
quadratures: [

Ẑξ

P̂ξ

]
=

[
cos(ξ ) −sin(ξ )
sin(ξ ) cos(ξ )

][
Ẑ
P̂

]
, (A19)

where the angle of rotation is ξ ∼ kz0, and Ẑξ , P̂ξ (Ẑ , P̂)
denote the optical quadratures in the case with (without) the
z0 displacement.

Let us first consider the mean values. From Eq. (A5),
writing the corresponding classical equations of motion, we
find that the mean value of the optical quadratures are
given by

Zξ
0 = − Ed cos(φ)

�2 + (
κ
2

)2 [2�cos(ξ ) − κsin(ξ )], (A20)

Pξ
0 = − Ed cos(φ)

�2 + (
κ
2

)2 [2�sin(ξ ) + κcos(ξ )]. (A21)

where � is the detuning, and κ the cavity decay rate. If we
set z0 = 0 (and hence ξ = 0), then we find the simplified

expression for the amplitude and phase quadratures, which we
denote by Z0 and P0, respectively. From Eqs. (A20) and (A21)
we readily see that Zξ

0 , Pξ
0 and Z0, P0 are related by the rotation

introduced in Eq. (A19).
Using now the rotated quadratures,Ẑξ , P̂ξ , and the rotated

mean values, Zξ
0 , Pξ

0 , the interaction potential in Eq. (A6)
reduces to the expression:

V̂int

h̄
= + gxZ x̂Ẑξ + gyZ ŷẐξ + gzPẑP̂ξ

+ gξ
xyx̂ŷ + gξ

xzx̂ẑ + gξ
yzŷẑ, (A22)

where

gξ
xy = Ed k2Zξ

0 sin(θtw)cos(θtw)cos(φ)xzpfyzpf, (A23)

gξ
xz = Ed k2Pξ

0 sin(θtw)sin(φ)xzpfzzpf, (A24)

gξ
yz = Ed k2Pξ

0 cos(θtw)sin(φ)yzpfzzpf. (A25)

We note that the potential in Eq. (A22) has the same form
of the potential previously obtained for the case of small
nanoparticles [28] (i.e., where one can neglect the displace-
ment, z0, due to the scattering force): One formally replaces
Ẑ → Ẑξ and P̂ → P̂ξ . Thus all the formulas obtained in
Ref. [28] remain valid also when we consider a significant
nonzero displacement along the z axis (displacement from the
tweezer trap center), provided we use the rotated mean values,
Zξ

0 and Pξ
0 , given in Eqs. (A20) and (A21), respectively.

For the special case considered in the main text the interac-
tion potential remains of the same form as in the case without
any z axis displacement:

V̂int

h̄
= gxx̂ẐL + gyŷẐL, (A26)

where we have defined ẐL ≡ Ẑξ , gx ≡ gxZ , and gy ≡ gyZ .

APPENDIX B: BRIGHT/DARK MODES
AND GEOMETRIC ROTATIONS

In this section we introduce bright/dark modes and show
that they have a simple geometric interpretation as the mo-
tion along/perpendicular to the cavity axis (in the transverse
tweezer plane). We first recall the usual 2D matrix that rotates
the reference frames – we show how it induces a rotation
of the physical positions and momenta while it leads to a
distorted transformation of the associated canonical position
and momenta (Sec. B 1). We then proceed to define the ge-
ometric bright/dark modes – we obtain the coupling of the
bright mode to the optical field as well as the induced coupling
to the dark mode (Sec. B 2) and provide the simplified geo-
metric bright/dark mode couplings at θtw = π/4 (Sec. B 3).
For completeness we also compare the geometric bright/dark
modes with the alternative bright/dark modes used in Ref. [29]
(Sec. B 4). Finally, we derive the 2D optomechanical cooling
formulae for the bright/dark modes (Sec. B 5).

1. Geometric and canonical rotations

The geometric rotation introduced in Eq. (27) relates
the coordinates of the “tweezer reference frame” with the
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coordinates of the “cavity reference frame” (see Fig. 1).
Such a rotation induces a transformation of the position
and momenta—we will label physical positions (momenta)
with capital letters (X̂ , Ŷ (P̂X , P̂Y ) for the tweezer frame and
X̂ (c), Ŷ (c)[P̂(c)

X , P̂(c)
Y ] for the cavity frame). Specifically, the

physical positions transform as[
X̂ (c)

Ŷ (c)

]
=

[
sinθtw cosθtw

−cosθtw sinθtw

][
X̂
Ŷ

]
, (B1)

and the physical momenta transform as[
P̂(c)

X

P̂(c)
Y

]
=

[
sinθtw cosθtw

−cosθtw sinθtw

][
P̂X

P̂Y

]
. (B2)

We recall that the physical positions/momenta are related
to the canonical positions/momenta (denoted by lowercase
letters) through a simple multiplicative rescaling:

2X̂ = xzpfx̂, Ŷ = yzpfŷ, (B3)

P̂X = px,zpf p̂x, P̂Y = py,zpf p̂y, (B4)

X̂ (c) = x(c)
zpfx̂

(c), Ŷ = y(c)
zpfŷ

(c), (B5)

P̂(c)
X = p(c)

x,zpf p̂(c)
x , P̂Y = p(c)

y,zpf p̂(c)
y , (B6)

where the zero-point motions are given by

2xzpf =
√

h̄

2mωx
, yzpf =

√
h̄

2mωy
, (B7)

px,zpf =
√

h̄mωx

2
, py,zpf =

√
h̄mωy

2
, (B8)

x(c)
zpf =

√
h̄

2mω
(c)
x

, y(c)
zpf =

√
h̄

2mω
(c)
y

, (B9)

p(c)
x,zpf =

√
h̄mω

(c)
x

2
, p(c)

y,zpf =
√

h̄mω
(c)
y

2
, (B10)

where ωx, ωy, and [ω(c)
x , ω(c)

y ] are the oscillation frequencies
along the axis of the tweezer frame (cavity frame). Hence the
rotations in Eqs. (B1) and (B2) can be recast in terms of the
canonical positions and momenta:

[
x̂(c)

ŷ(c)

]
=

⎡
⎢⎣

√
ω

(c)
x

ωx
sinθtw

√
ω

(c)
x

ωy
cosθtw

−
√

ω
(c)
y

ωx
cosθtw

√
ω

(c)
y

ωy
sinθtw

⎤
⎥⎦[

x̂
ŷ

]
, (B11)

and

[
p̂(c)

x
p̂(c)

y

]
=

⎡
⎣

√
ωx

ω
(c)
x

sinθtw

√
ωy

ω
(c)
x

cosθtw

−
√

ωx

ω
(c)
y

cosθtw

√
ωy

ω
(c)
y

sinθtw

⎤
⎦[

p̂x

p̂y

]
, (B12)

respectively. We thus see that a geometric rotation of the coor-
dinates introduces a distorted transformation for the canonical
variables. Only when the optical trap is perfectly degener-
ate [i.e., ωx = ωy which implies ωx = ωy = ω(c)

x = ω(c)
y ] we

find that the transformations of the canonical variables in
Eqs. (B11) and (B12) reduce to geometric rotations.

2. Definition of bright/dark modes

We start from the Hamiltonian in Eq. (9) which we recast
in terms of the physical positions/momenta (see previous
Sec. B 1):

Ĥ = 1

2m

[
P̂2

X + P̂2
Y

] − �

4

(
Ẑ2

L + P̂2
L

)
+ mω2

x

2
X̂ 2 + mω2

y

2
Ŷ 2 +

(
h̄gx

xzpf
X̂ + h̄gy

yzpf
Ŷ

)
ẐL. (B13)

We first note that the terms on the first line of Eq. (B13) remain
of the same form under the action of a geometric rotation and
will thus be omitted in the following analysis [using Eq. (B2)
one can readily show that P̂2

X + P̂2
Y changes to P̂(c)2

X + P̂(c)2
Y ,

while the term Ẑ2
L + P̂2

L is not affected].
We now rewrite Eqs. (B13) in terms of the trans-

formed positions/momenta [using the inverse transformation
of Eq. (B1)]:

Ĥ = m

2

(
ω2

x sin2θtw + ω2
y cos2θtw

)
X̂ (c)2

+ m

2

(
ω2

x cos2θtw + ω2
y sin2θtw

)
Ŷ (c)2

+ m
[
sinθtwcosθtw

(
ω2

y − ω2
x

)]
X̂ (c)Ŷ (c)

+
[

h̄gx

xzpf
sinθtw + h̄gy

yzpf
cosθtw

]
X̂ (c)ẐL

+
[
− h̄gx

xzpf
cosθtw + h̄gy

yzpf
sinθtw

]
Ŷ (c)ẐL. (B14)

We now make the key observation—the coupling between
Ŷ (c) and ẐL in the last line of Eq. (B14) vanishes [we recall
from Eq. (1) that gx ∼ sinθtw/xzpf and gy ∼ cosθtw/yzpf] while
the coupling between Ŷ (c) and ẐL reduces to −h̄Ed k [the
driving amplitude Ed and the wave-vector k are defined below
Eq. (1)]. It is thus appropriate to identify Ŷ (c) as the dark
mode (motion orthogonal to the cavity axis), and X̂ (c) as the
bright mode (motion parallel to the cavity axis), namely the
geometric bright/dark modes.

In summary, we have found that the geometric rotation of
the reference frame (with the angle of rotation matching the
angle between the tweezer polarization and cavity symmetry
axis) leads to the bright/dark mode. We thus relabel the me-
chanical modes in the cavity reference frame as:

X̂ (c), Ŷ (c), x̂(c), ŷ(c) → X̂b, X̂d , x̂b, x̂d , (B15)

P̂(c)
X , P̂(c)

Y , p̂(c)
x , p̂(c)

y → P̂b, P̂d , p̂b, p̂d . (B16)

From the first two lines of Eq. (B14) we can read the trans-
formed mechanical frequencies:

ω2
b ≡ (

ω(c)
x

)2 = ω2
x sin2θtw + ω2

y cos2θtw, (B17)

ω2
d ≡ (ω(c)

y )2 = ω2
x cos2θtw + ω2

y sin2θtw. (B18)

Furthermore, we can then rewrite the interaction terms of
Eq. (B14) (third and fourth lines) as:

Ĥ

h̄
= gbd x̂bx̂d + gbx̂bẐL, (B19)
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where

gbd = sinθtwcosθtw(ω2
y − ω2

x )

2
√

ωbωd
, (B20)

gb = gx

√
ωx

ωb
sinθtw + gy

√
ωy

ωb
cosθtw. (B21)

Using Eq. (1) we can rewrite the coupling in Eq. (B21) as gb =
−Ed k

√
h̄

2mωb
[the driving amplitude Ed and the wave-vector k

are defined below Eq. (1)].

3. Dark/bright mode couplings at θtw = π/4

The analysis in Appendix B 1 and B 2 is valid for any angle
θtw. We now write the couplings for the special case θtw = π/4
considered in the main text where one has sinθtw = cosθtw =
1/

√
2. From Eqs. (B17) and (B18) we first note that ωb = ωd

and define

ω2
bd ≡ ω2

b = ω2
d = ω2

x + ω2
y

2
. (B22)

The couplings in Eqs. (B20) and (B21) simplify to

gbd =ω2
y − ω2

x

4ωbd
, gb = gx

√
ωx

2ωbd
+ gy

√
ωy

2ωbd
, (B23)

respectively.

4. Nongeometric bright/dark mode

It is instructive to compare the geometric bright/dark
modes introduced above with the alternative bright/dark
modes introduced in Ref. [29] which are obtained by rotations
of the abstract space spanned by the canonical positions and
momenta—we will refer to the latter as the nongeometric
bright/dark modes. Specifically, in place of Eqs. (B11) and
(B12) we now consider a simple rotation of the canonical
positions, [

x̂(c)

ŷ(c)

]
=

[
sinθng cosθng

−cosθng sinθng

][
x̂
ŷ

]
, (B24)

and of the canonical momenta,[
p̂(c)

x
p̂(c)

y

]
=

[
sinθng cosθng

−cosθng sinθng

][
p̂x

p̂y

]
, (B25)

where θng is the angle of the abstract rotation.
We now express Eq. (9) in the transformed coordinates to

find:

Ĥ

h̄
= 1

4
(ωxsin2θng + ωycos2θng)

[
x̂(c)2 + p̂(c)2

x

]
+ 1

4
(ωxsin2θng + ωycos2θng)

[
ŷ(c)2 + p̂(c)2

y

]
+ 1

2
(ωy − ωx )sinθngcosθng

[
x̂(c)ŷ(c) + p̂(c)

x p̂(c)
y

]
+ [gxsinθng + gycosθng] x̂(c)ẐL

+ [gxsinθng − gycosθng] ŷ(c)ẐL. (B26)

Unlike for the geometric bright/dark construction we note
that the last line of Eq. (B26) does not vanish for θng ≡ θtw

[we recall from Eq. (B14) that gx ∼ sinθtw/xzpf and gy ∼

cosθtw/yzpf]. To obtain the bright/dark mode structure in this
construction we must rather set θng such that

tanθng ≡ gx

gy
=

√
ωy

ωx
tanθtw. (B27)

In other words the nongeometric bright/dark modes cannot
be interpreted as the motion along/perpendicular to the cavity
axis.

Using trigonometric identities we also find

sinθng = gx√
g2

x + g2
y

, cosθng = gy√
g2

x + g2
y

. (B28)

We can thus recast Eq. (B26) in the form

Ĥ

h̄
= 1

4
ωb

[
x̂2

b + p̂2
b

] + 1

4
ωd

[
x̂2

d + p̂2
d

]
+ gbd [x̂bx̂d + p̂b p̂d ] + gbx̂bẐL, (B29)

where the frequencies are given by

ω2
b = g2

xωx + g2
yωy

g2
x + g2

y

, (B30)

ω2
d = g2

xωy + g2
yωx

g2
x + g2

y

, (B31)

and the couplings reduce to

gb =
√

g2
x + g2

y, (B32)

gbd = (ωy − ωx )gxgy

2
√

g2
x + g2

y

. (B33)

Comparison with the geometric case

The note that the geometric [Eqs. (B11) and (B12)] and
nongeometric transformation [Eqs. (B24) and (B25)] approx-
imately match if the frequency differences are not too large.
Let us see how to explicitly recover Eqs. (B32) and (B33) in
the limit ωx ∼ ωy from Eqs. (B11) and (B12). We start from
the last line of Eq. (B14) and using the fact that it vanishes we
can express the angle as:

tan(θtw) =
√

ωx

ωy

gx

gy
. (B34)

Using trigonometric formulas we also find:

sin(θtw) =
√

ωxgx√
ωxg2

x + ωyg2
y

, (B35)

cos(θtw) =
√

ωygy√
ωxg2

x + ωyg2
y

. (B36)

We now insert Eqs. (B35) and (B36) in Eqs. (B21) and (B20)
[where we use the explicit expressions for the frequencies in
Eqs. (B17) and (B18)]. We now finally write ωx = ωy + δω
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and Taylor expand the couplings in δω:

gbd ≈ gxgy(ωy − ωx )(
g2

x + g2
y

) + O(δω2), (B37)

gb ≈
√

g2
x + g2

y +
(
g2

y − g2
x

)
(ωy − ωx )

4ωx

√
g2

x + g2
y

+ O(δω2). (B38)

The couplings arising from the nongeometric transformation
can be thus seen as a limiting case of the couplings induced
by the geometric transformation [compare with in Eqs. (B20)
and (B21)]. There are however important differences. First,
we note that the expression of gbd in Eq. (B33) is larger by
a factor 2 with respect to the coupling obtained in Eq. (B37).
Loosely speaking, this difference arises as the coupling gbd

in Eq. (B29) couples both x̂b, x̂d and p̂b, p̂d (i.e., two terms
using the nongeometric construction) while in Eq. (B19) it
couples only x̂b, x̂d (a single term in the geometric construc-
tion). Second, we note that gd in Eq. (B32) contains only
the lowest-order term of the expansion in Eq. (B38) which
contains also a contribution ∼δω.

5. Two-dimensional cooling formulas for bright/dark modes

In this section we derive the 2D optomechanical cooling
rates for the dark/bright mode. We start from the Hamiltonian
in Eq. (31) and write Hamilton’s equations of motion:

˙̂xb = ωb p̂b, (B39)

˙̂pb = −ωbx̂b − 2gbd x̂d − 2gbẐL, (B40)

˙̂xd = ωd p̂d , (B41)

˙̂pd = −ωd x̂d − 2gdbx̂b, (B42)

˙̂ZL = −�P̂L, (B43)

˙̂PL = �ẐL − 2gbx̂b. (B44)

where we have introduced gdb = gbd to ease the reading of the
equations.

In the following we will consider also nonconservative
terms (damping and input noise) which we have previously
omitted for clarity of presentation. We transform Eqs. (B41)–
(B44) to second-order differential equations by eliminating
the momenta, and express the resulting equations in Fourier
space:

x̂b(ω) = Jbd (ω)x̂d (ω) + JbY (ω)ẐL(ω) + x̃b,in(ω), (B45)

x̂d (ω) = Jdb(ω)x̂b(ω) + x̃d,in(ω), (B46)

ẐL(ω) = JY b(ω)x̂b(ω) + Z̃L,in(ω), (B47)

which can be readily solved. The solutions will be labeled as
x̂2D

b (ω), x̂2D
d (ω), and ẐL(ω) [each solution in general depends

on all three input noises x̃b,in(ω), x̃d,in(ω), and Z̃L,in(ω)]. The
frequency-dependent coupling coefficients are given by

Jbd (ω) = −2gbdχb(ω), (B48)

Jdb(ω) = −2gdbχd (ω), (B49)

JbY (ω) = −2gbχb(ω), (B50)

JY b(ω) = −igbη(ω), (B51)

where the susceptibilities are given by

χb,d (ω) = ωb,d

−ω2 + ω2
b,d − iωb,dγ

, (B52)

η(ω) = 1

−i(ω + �) + κ
2

− 1

i(−ω + �) + κ
2

. (B53)

To find the self-energy for the bright mode, x̂b, we need
to solve (B46) and (B47) for x̂d ≡ x̂d (x̂b) and ẐL ≡ ẐL(x̂b)
and insert the expression in Eq. (B45) for the bright mode.
To find the self-energy for the dark mode, x̂d , we proceed
in a completely analogous way—we solve (B45) and (B47)
for x̂b ≡ x̂b(x̂d ) and ẐL ≡ ẐL(x̂d ) and insert the expression in
Eq. (B46) for the bright mode. From the imaginary parts of the
self-energies we can then readily extract the optomechanical
cooling rates:

�opt,b ≡ Im

[
Jbd (ωb)Jdb(ωb) + JbY (ωb)JY b(ωb)

χb(ωb)

]
, (B54)

�opt,d ≡ Im

{
1

χd (ωd )

[
Jdb(ωd )Jbd (ωd )

1 − JbY (ωd )JY b(ωd )

]}
. (B55)

We now consider the ideal case θ = π/4 where ωbd ≡ ωb =
ωd (see Appendix B 3) and set the detuning to � = −ωbd .
After some algebra we eventually find

�opt,b ≡ Im
[
2ig2

bη(ωbd ) + 4g2
bdχd (ωbd )

] ≈ 4g2
b

κ
, (B56)

�opt,d ≡ Im

[
4g2

bdχb(ωbd )

1 − 2ig2
bχb(ωbd )η(ωbd )

]
≈ g2

bdκ

g2
b

. (B57)

The corresponding phonon occupancies can be roughly esti-
mated as n j ∼ �/�opt, j , where � is the motional heating rate
and j = b, d (as such a procedure gives only a crude estimate
for the phonon occupancy we assume the motional heating
rate is approximately equal for the bright/dark mode).

To obtain a quantitative estimate for the phonon occupan-
cies one has to consider the PSDs: Sxbxb (ω) = 〈|x̂2D

b (ω)|2〉 and
Sxd xd (ω) = 〈|x̂2D

d (ω)|2〉. These are related to the corresponding
phonon occupancies as the area under the PSD curve [33]:

n j = 1

2π

∫ ∞

−∞
Sxj x j (ω)dω − 1

2
, (B58)

where j = b, d . We finally note that nb can be reliably ex-
tracted from the optical (heterodyne) PSD, but extracting nd

is nontrivial and requires an indirect inference method (see the
last paragraph of Sec. V D).
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