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Abstract: Circulating tumour DNA (ctDNA) is widely used in liquid biopsies due to having a
presence in the blood that is typically in proportion to the stage of the cancer and because it may
present a quick and practical method of capturing tumour heterogeneity. This paper outlines a
simple electrochemical technique adapted towards point-of-care cancer detection and treatment
monitoring from biofluids using a label-free detection strategy. The mutations used for analysis were
the KRAS G12D and G13D mutations, which are both important in the initiation, progression and
drug resistance of many human cancers, leading to a high mortality rate. A low-cost DNA sensor was
developed to specifically investigate these common circulating tumour markers. Initially, we report
on some developments made in carbon surface pre-treatment and the electrochemical detection
scheme which ensure the most sensitive measurement technique is employed. Following pre-
treatment of the sensor to ensure homogeneity, DNA probes developed specifically for detection of the
KRAS G12D and G13D mutations were immobilized onto low-cost screen printed carbon electrodes
using diazonium chemistry and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride/N-
hydroxysuccinimide coupling. Prior to electrochemical detection, the sensor was functionalised
with target DNA amplified by standard and specialist PCR methodologies (6.3% increase). Assay
development steps and DNA detection experiments were performed using standard voltammetry
techniques. Sensitivity (as low as 0.58 ng/µL) and specificity (>300%) was achieved by detecting
mutant KRAS G13D PCR amplicons against a background of wild-type KRAS DNA from the
representative cancer sample and our findings give rise to the basis of a simple and very low-cost
system for measuring ctDNA biomarkers in patient samples. The current time to receive results from
the system was 3.5 h with appreciable scope for optimisation, thus far comparing favourably to the
UK National Health Service biopsy service where patients can wait for weeks for biopsy results.

Keywords: electrochemical; DNA biosensors; KRAS; liquid biopsy; cancer point-of-care diagnos-
tic tests

1. Introduction

In recent years, analytical electrochemistry has emerged as a powerful tool for the
rapid in-vitro analysis of biological analytes for the early detection of certain diseases, such
as cancer [1]. Cancer is a genetic disease by nature, caused by mutations in certain genes
thereby resulting in cellular malfunction [2]. Imaging tests can sometimes be inconclusive

Biosensors 2021, 11, 42. https://doi.org/10.3390/bios11020042 https://www.mdpi.com/journal/biosensors

https://www.mdpi.com/journal/biosensors
https://www.mdpi.com
https://orcid.org/0000-0001-8581-9389
https://orcid.org/0000-0002-4647-7483
https://doi.org/10.3390/bios11020042
https://doi.org/10.3390/bios11020042
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/bios11020042
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com/2079-6374/11/2/42?type=check_update&version=2


Biosensors 2021, 11, 42 2 of 15

and broadly do not provide information on the stage or type of cancer, so further biopsy
is needed [3]. Serious medical risks and related metastasis may ensue from gathering
multiple biopsies from different regions of a primary tumour [4].

The period at which a tumour shows clinical symptoms usually corresponds with
the later stages of progression (e.g., Phases III and IV), when the cancer is metastatic
or unresectable, causing surgery and therapy to be less effective. In addition, surgical
biopsy procedures are not possible or recommended for some patients; therefore, liquid
biopsies that are able to detect the presence of tumour DNA hold promise as a non-
invasive alternative.

Most body fluids, including blood, contain tumour biomarkers and short fragments
of cell-free DNA (cfDNA) that can be detectable as shown in Figure 1A below. In cancer
patients, a fraction of cfDNA called circulating tumour DNA (ctDNA) can be found, which
emerges from tumours and may feature the same mutations and genetic modifications as
those present in the primary tumour [5]. While circulating tumour cells (CTCs) that have
been shed into the vasculature of a primary tumour are also transported around the body
in circulation, they are present at quantities of around 10 cells/mL of blood, suggesting that
only very low concentrations are present in clinical samples. In contrast to ctDNA, CTCs
are rare in peripheral blood and are difficult to separate from other cells, increasing the
credibility for the use of ctDNA in liquid biopsy applications. The mechanism of ctDNA
release from tumour cells is poorly understood [6], however it is thought to be released in
small quantities following apoptosis or necrosis. ctDNA typically comprises 0.01–1% of the
circulating free DNA in blood [7] and it is important to note that this can be shed as both
double stranded and single stranded DNA [8]. At present, ctDNA can be detected in blood
and other body fluids like lymph, urine and stool [9]. Due to the small fraction of ctDNA
concealed by large background levels of wild-type cell-free DNA, sensitive amplification
reactions such as polymerase chain reaction (PCR) will need to be implemented to achieve
detection and discrimination above wild type signals. A point of care (PoC) measurement
of circulating tumour DNA (ctDNA) may offer a non-invasive strategy for evaluating
response to treatment, monitoring disease recurrence, capturing tumour heterogeneity and
gaining insights into a tumour’s mutational profile [9,10].

Single nucleotide variations (SNV) in the Kirsten rat sarcoma viral oncogene homolog,
commonly abbreviated ‘KRAS’ are present across many human tumour types with KRAS
G12D and G13D being specific variants observed. KRAS is a member of the RAS family of
proteins which are a part of at least six signalling pathways in a healthy human cell and is
the most commonly mutated protein across many human tumour types [11]. KRAS muta-
tions take place in approximately 90% of pancreatic cancers [12], 30% of lung cancers [13],
60% of thyroid cancers and 43% of colorectal cancers [14]. KRAS activated mutations
drive cancer initiation, progression and drug resistance, directly leading to nearly a million
deaths per year. SNVs have been used as biomarkers for predicting disease risk [15,16],
and its combination with liquid biopsies will create innovations in biomarker detection
that will enhance clinical outcomes for patients at all cancer stages [17].

From a PoC viewpoint, Electrochemical DNA biosensors represent an exciting ap-
proach in the detection of clinically important biomarkers due to their rapidity and sim-
plicity [18–20]. Electrochemical biosensors are used to directly convert a biological binding
event to an electronic signal [21]. A range of electrode materials and electrochemical
measurement approaches have been employed for sensitive measurements [8,22–24]. The
possibilities of electrochemical biosensors, once matured as a technology to provide effi-
cient clinical workflows, is vast. In electrochemical DNA biosensing, a change in signal is
obtained when recognition and hybridisation of two opposing strands of DNA occur as a
result of their base-pair complementarity. A double stranded DNA sequence with tumour-
specific mutations can indicate the diagnosis of a specific cancer [24]. As the concentration
of ctDNA is directly proportional to the tumour grade, attaining high sensitivity for the
DNA sensor is key for the early detection of disease, developing tailored therapies and
monitoring therapy efficiency.



Biosensors 2021, 11, 42 3 of 15

Given the continued need for the miniaturization of advanced electronics, the area of
screen printing techniques has been adapted for electronic circuit fabrication. Screen printed
electrodes (SPEs) are evolving as they are easy to use and can be produced on a large scale.
SPEs are also very practical as they are disposable and low cost when manufactured in large
volumes. SPEs are usually composed of working electrodes made of conductive inks like
carbon, platinum, gold or silver. Although, carbon with organic solvents, binding pastes
and some additives that provide functional characteristics are contained in conductive
inks found in Screen Printed Carbon electrodes (SPCEs), they can be modified in order for
their electrochemical properties to be improved [24]. Carbon electrodes are also chemically
inert, specifically at negative potential ranges in all media, making them particularly
suitable electrode sensors for electroanalytical chemistry, providing an advantage over
metal electrodes [25]. SPCEs are simple, sensitive, cost-effective (~£2 each) and disposable,
making them preferable for rapid electrochemical analyses and suitable as electrodes for
characterizing the processes implemented herein, specifically for the detection of ctDNA.

The SPCE sensor shown in this study was developed by characterising the surface of
the electrode chip to determine the treatments and buffers with optimal sensitivity. In order
to make the surface of the SPCE as homogenous as possible, it is important that they are pre-
treated. These pre-treatments remove any binder residues left on the carbon surface after
the curing process [26–29], with well-established electrochemical oxidative pre-treatments
not only showing removal of binder residues left on the surface of SPCE after curing but
also improvement of carbon surface sensitivity [30]. In this study, two common buffers
are compared for pre-treatment: NaOH and NaCl. Up until now, few studies have been
done on electrochemically pre-treating and characterising the surface of activated screen
printed carbon electrodes [28–30]. We make the choice of a characterisation redox buffer
after observing the effect of surface chemistry in relation to electron transfer rates using
an inner-sphere redox mediator (Ferri-ferrocyanide) and an outer-sphere redox mediator
(ruthenium hexaminechloride). Further voltammetric characterisation is performed to
reveal DNA hybridisation effects and thus mutation detection in both potassium ferri-
ferrocyanide (1 mM Fe(CN)6

3−/4− in 0.1× PBS) and ruthenium hexaminechloride (1 mM
Ru(NH3)6Cl3 in 0.1× PBS) solutions.

This work presents a KRAS G12D and G13D DNA oligonucleotide probe modified
sensor array that can accurately detect mutant KRAS amplicons and therefore forms the
basis of a system for the accurate detection of ctDNA in patient samples and monitoring
of response during treatment. This was achieved by amplifying mutant DNA isolated
from a human cancer cell line recovered from clinical samples, using electrochemical tech-
niques and SPCEs to detect a clinically relevant mutation, comparing the signal change
from DNA hybridisation experiments involving amplified KRAS mutant samples and
amplified wild-type KRAS samples, varying concentration of amplified products to deter-
mine concentration effects and establishing a limit of detection for the DNA amplification
reaction. Cyclic Voltammetry (CV), Square Wave Voltammetry (SWV) and Differential
Pulse Voltammetry (DPV) are routinely used electrochemical measurement techniques
that supply information on electron transfer reaction kinetics of any combined chemical
reaction [31]. In these techniques, a potential waveform is applied to the working electrode
(WE). The peak current obtained is directly influenced by hybridisation between target
and immobilised probe DNA strands [32]. In this study, DPV, SWV and CV were used
depending on whether electrodes needed to be cleaned, electrografted, or characterised
during sensor measurement. Considering the choice of steps and ease of use of the assay
being developed, the system can be very easily automated and integrated into a final device
capable of fast and seamless clinical measurements. The presented work builds on a recent
publication [1] showing the possible detection of KRAS G12D mutations, by developing un-
derstanding or surface pre-treatment steps (essential to realising a reproducible analytical
technique) and by introducing the detection of the KRAS G13D mutation which expands
the assay towards a multi-marker assay and permits the analysis of more tumour types.
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Figure 1. (A) Schematic showing circulating tumour DNA (ctDNA) retrieval and analysis [33–35] (B) Image of a screen-
printed electrode array employing eight working electrodes with a common Ag reference and carbon counter electrodes
along with a schematic showing modification steps and DNA functionalisation.

2. Materials and Methods
2.1. Reagents

Supermix for probes, Droplet digital PCR (ddPCR) assays, DG8TM cartridges and
Droplet Generation Oil were obtained from Bio-Rad Laboratories Ltd., Hertfordshire, UK.
Deionized water, sodium chloride, sodium hydroxide, phosphate-buffered saline (PBS),
sodium nitrate, 4-aminobenzoic acid, hydrochloric acid, ethanolamine, 2-(N-morpholino)
ethanesulfonic acid (MES), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride
(EDC), N-hydroxysuccinimide (NHS), hexammineruthenium (III) chloride, potassium
ferricyanide, potassium chloride and potassium ferrocyanide were all purchased from
Sigma–Aldrich, (Dorset, UK). Two hundred and fifty units of HotStarTaq Plus and dNTP
Mix, PCR Grade (200 µL), were purchased from Qiagen, (Manchester, UK). Phusion Direct
PCR kit was purchased from thermo fisher scientific (Renfrew, UK).

2.2. Sensor Development and Set-Up

A multiplex system comprising screen-printed multi-carbon electrodes (DRP 8W110),
a potentiostat, a multiplexer and a connector were set up for electrochemical measurements.
The chip containing eight carbon working electrodes with diameters of 2.95 mm each, a
carbon counter and silver reference electrode as shown in Figure 1B above were obtained
from DropSens (Oviedo, Spain) with chip dimensions of 50 × 27 × 1 mm (L × W × D).
The screen-printed fabrication process was specified by the manufacturers.

2.3. Electrode Preparation and Surface Functionalisation

All electrochemical measurements were recorded using PS-Trace software. DNA
hybridisation experiments were performed using a covalently attached layer of single-
stranded DNA probes. The surface functionalisation protocol is illustrated in Figure 1B. To
prepare the surface of the carbon electrodes for DNA probe attachment, it was necessary to
first use a surface pre-treatment method by applying 1.4 V for 1 min in 0.5 M acetate buffer
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solution (ABS) containing 20 mM NaCl 8 (pH 4.8) via CV. An alternative pre-treatment
technique explored for optimisation comparison required soaking the SPCEs in 3 M NaOH
for 1 h as an initial step and anodizing at 1.2 V using a scan rate of 0.5 V/s via CV. Next,
2 mM NaNO2 solution with 2 mM 4-aminobenzoic acid was prepared in 0.5 M HCl and
stirred for approximately 5 min at room temperature to produce a diazonium compound.
The activated diazonium solution was then scanned using CV from +0.4 to −0.6 V at
a scan rate of 100 mV/s followed by a wash with deionised (DI) water. The resulting
4-carboxyphenyl (AP) film was activated on the electrode’s surface with 100 mM EDC
and 20 mM NHS in 100 mM MES buffer (pH 5.0) for 60 min to form an ester that allowed
for efficient conjugation to the amine-modified ssDNA probe. A 1 mM ruthenium and 1
mM potassium ferri-ferrocynide buffer were compared to analyse electron transfer rates.
Ferricyanide buffer (5 mM) was used to characterise the sensor surface for DNA detection.
All the reported steps and measurements were carried out at room temperature, unless
otherwise stated.

2.4. Genomic DNA Sample Preparation, DNA Probe Design, and Sample Amplification

Copies of the KRAS pG12D and pG13D mutant and wild-type DNA were ampli-
fied from genomic DNA (gDNA) isolated from SK-UT-1 cells (pG12D) and HCT116 cells
(pG13D). Levels of both mutant and wild-type DNA were determined using ddPCR
assays in combination with a QX200TM Droplet DigitalTM PCR system (Bio-Rad Lab-
oratories Ltd., Hertfordshire, UK) following the manufacturer’s instructions. Briefly,
5–10 ng of gDNA isolated from SK-UT-1 cells was combined with ddPCR Supermix for
probes (No dUTP) and fluorescein amidite (FAM)-labelled KRAS p.G12D (KRAS p.G12D
c.35G>A, Human (dHsaMDV2510596)) or KRAS p.G13D (KRAS p.G13D c.35G>A, Hu-
man (dHsaMDV2510598)) primers/probe and hexachloro-fluorescein 9 (HEX)-labelled
KRAS WT primers/probes (KRAS WT for p.G12D c.35G>A and KRAS WT for p.G13D
c.38G>A) in the presence of HaeIII restriction enzyme and in a volume of 20 µL. Reaction
samples were loaded onto a DG8TM cartridge with 70 µL of droplet generation oil for
Probes according to the Droplet Generator Instruction Manual (Bio-Rad Laboratories Ltd.,
Hertfordshire, UK). The PCR cycling conditions for the generated droplets were as follows:
initial enzyme activation at 95 ◦C for 10 min, followed by 40 cycles of denaturation at
94 ◦C for 30 s, and annealing/extension at 55 ◦C for 1 min, after which it ended with
a final enzyme deactivation at 98 ◦C for 10 min. Data acquisition after thermal cycling
was performed using the QX200 Droplet Reader and the QuantaSoft Software (Bio-Rad
Laboratories Ltd., Hertfordshire, UK).

The PCR primers and probes designed in this study were based on the published
sequence of KRAS pG12D and pG13D under accession number NC_000012.12 [36]. Amine-
modified synthetic oligonucleotides (KRAS G12D and KRAS G13D) were designed for
use as probes, as shown in Table 1 below, with a concentration of 200 µM obtained from
Sigma–Aldrich, UK, and stored at −80 ◦C prior to aliquoting for use as probes. A wild-
type probe (without the single base mutation) was also designed for use as a negative
control. The DNA probe stocks were diluted to a concentration of 2 µM in 0.1× PBS prior to
immobilisation. Primer-BLAST software was used to design the PCR primers used in this
study. The forward primers and reverse primers had an estimated GC content of 40–55%,
an estimated product length of 88 with low self-complementarity.

Further amplification of extracted wild-type, KRAS G12D and G13D-mutated DNA
samples was carried out using the Phusion Direct PCR kit following the protocol and
reaction set-up guide outlined by Thermo Scientific, UK. Phusion Blood II DNA polymerase
(1 µL), 2× PCR Buffer (25 µL), 50 mM EDTA (2.5 µL), 50 mM MgCl2 solution (1.5 µL) and
100% DMSO (2.5 µL) were all included in the reaction mix and dispensed into appropriate
PCR tubes. 2.5 µL of Template DNA containing 18.4 ng/µL double stranded DNA, 5 µL
forward and reverse primers and 10 µL ultrapure water were added to the master PCR
tube containing the reaction mix, and the thermal cycler was programmed to start with an
initial heat-activation step at 98 ◦C for 300 s. Temperature specifications for denaturing,
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annealing and extending were set at 90 s for 94 ◦C, 65 ◦C and 72 ◦C, respectively. A final
extension for 60 s at 72 ◦C was set, and the PCR conditions were set for 37 cycles. The PCR
amplification of wild-type and KRAS G13D samples was performed using the miniPCR
thermal cycler [37], and amplicon yields of 117 ng/µL were confirmed using the Qubit
4 fluorometer and dsDNA broad range quantification assay [38].

Table 1. List of DNA sequences employed in this study.

KRAS G13D Probe and Primer Sequences

23 Bases Wild-Type Hybridisation Probe TGGAGCTGGTGGCGTAGGCAAGA
23 Bases Mutant Hybridisation Probe TGGAGCTGGTGACGTAGGCAAGA

Forward Primer (Wild-Type) TGTGGTAGTTGGAGCTGGTG
Forward Primer (Mutant) TGTGGTAGTTGGAGCTGATG

PCR Probe (Mutant) TCTTGCCTACGCCACCAGCTCCA
Reverse Primer TTGTGGACGAATATGATCCAACA

KRAS G12D Probe and Primer Sequences

23 bases Wild-type Hybridisation Probe AGTTGGAGCTGGTGGCGTAGGCA
23 bases Mutant Hybridisation Probe AGTTGGAGCTGATGGCGTAGGCA

Forward Primer (Wild-type) TGTGGTAGTTGGAGCTGGTG
Forward Primer (Mutant) TGTGGTAGTTGGAGCTGATG

Reverse Primer TTGTGGACGAATATGATCCAACA

3. Results and Discussion
3.1. Assay Workflow and Development

The use of an SPCE with multiple working electrodes allows each electrode to be
individually modified and rapidly carry out simultaneous measurements of peak currents.
Electrografting using in situ generated diazonium cations is important for modifying the
surface of the SPCE by allowing the formation of covalent bonds between the carbon
surface and organic films [39–41]. The EDC molecule is an established zero-length cross-
linking agent that has been employed in coupling carboxyl groups to primary amines in
various applications [41]. One of the main benefits of EDC coupling is its water solubility
that allows direct bioconjugation without prior organic solvent dissolution. To improve the
stability of the active ester, NHS was introduced to modify the amine-reactive chemical
substance by converting it to an active NHS ester, thus maximising the efficiency of the
EDC-mediated coupling reactions. The reproducibility of this hybridisation sensor was
explored by simultaneously analysing all eight WEs from the multi-electrode chip after
pre-treatment and electrochemical signal changes of similar amplitude, direction and
magnitude were observed. Figure 2A below shows the effect of each modification step on
DPV peak current using ferri-ferrocyanide. The low peak current observed after diazonium
reduction can be attributed to the thickness of the film resulting from the covalent bonds
created on the surface of the electrode. In Figure 2B, this effect is reversed and a higher peak
current with two peaks are noted, suggesting a high sensitivity to the organic films. From
the ferri-ferrocyanide characterisation, the NHS-EDC peak reflects both coupling initiation
and activation on the surface of the electrode which results in an enhanced oxidation due to
a neutrally charged NHS ester, leading to a negative potential shift and an increase in peak
current. DNA is negatively charged and thus resulted in a decrease in peak current when
immobilised on the sensor surface. There is also an electrostatic repulsion between negative
ferri-ferrocyanide ions and the negative phosphate group in the DNA structure. The double
peaks from the ruthenium hexaminechloride characterisation make it more difficult to
identify the correct peak current. In this case, we attribute the right hand peak to the
ruthenium hexamine chloride redox reaction from free solution and the smaller smeared
out left hand peak to the ruthenium redox reactions taking place at higher potentials
because the redox reporter is trapped in organic layers and electrostatically associating
with the DNA strands on the probe modified electrode surface. The multiplexed analysis
we used greatly reduced the analysis time because of the high throughput of samples and



Biosensors 2021, 11, 42 7 of 15

minimised reagent consumption. After introducing the probe solution to the surface of
the modified electrodes, the remaining active groups on the electrode were blocked using
ethanolamine to produce a consistent sensing layer in order to facilitate DNA specificity
and stability in terms of the DNA binding response. Blocking the free surface on the
electrode resulted in an increase in peak current in ferri-ferrocyanide characterisation. A
single but decreased current peak is shown in Figure 2B after blocking and this can be
attributed to the sensitivity of ruthenium hexaminechloride to the consistent layer on the
outer surface of the electrode. The findings from these modification characterisations are
in line with previous studies [42–45] and noting the observations on SPCEs, our optimal
characterisation buffer for these studies is ferri-ferrocyanide.
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on SPCE sensor response characterised using (A) 1 mM ferri-ferrocyanide buffer in 0.1× PBS and (B) 1 mM ruthenium
hexaminechloride in 0.1× PBS.

A growing demand for reliable detection devices motivates much biosensor devel-
opment [44], so it is therefore necessary to improve assay reproducibility and one crucial
aspect of this is surface pre-treatment. A high level of consistency in the peak current,
potential and width was observed after repeated cycling of each bare electrode, however
optimisation work was carried out to ensure that our assay was as sensitive as possible.
In Figure 3, it was noted that although the bare SPCE exhibited an admirable sensitivity
with the highest peak current of those presented (Figure 3A), after all surface modification
steps and DNA hybridisation was carried out, the SPCE pre-treated using acetate buffer
containing NaCl showed the most suitable response. As previous studies have shown
an increase in surface roughness after pre-treating screen printed electrodes [29,30], we
can infer that the improved electrochemical performance after DNA hybridisation on pre-
treated electrodes resulted from the ability of the target DNA strands to bind readily to the
surface of the probe modified electrode. A high percentage signal change directly implies
that a significant reduction in peak current upon target hybridisation has occurred. For a
ferri-ferrocyanide characterisation buffer, this can be attributed to the repulsion between
negative charges of target DNA, probe DNA and negative ferri-ferrocyanide ions. A wider
peak separation (∆Ep) than that predicted by the Nernst equation is also observed in SPCEs
characterised by ferri-ferrocyanide (due to surface effects). Both redox buffers exhibited
acceptable reversibility on pre-modified SPCEs. From Figure 3B, the changes in buffer
characterisation observed on the DNA modified SPCEs confirms ruthenium hexaminechlo-
ride is an outer-sphere electron transfer mediator that is only affected by changes in the
electroactive area, while the redox couple ferri-ferrocyanide is useful for determining the ex-
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istence of functional groups due to its inner sphere sensitivity. The ferri-ferrocyanide buffer
gave the most consistent signal change upon DNA hybridisation on the modified SPCEs,
particularly when pre-treated with NaCl, therefore giving us a system which could be
taken through to a full assay development stage. Upon hybridisation, NaOH pre-treatment
indicated a lower sensitivity and a higher variation of sensor surface, thus raising doubts
on the suitability of NaOH treatment for SPCEs in DNA hybridisation work.
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3.2. DNA Sensor Hybridisation Specificity

After observing consistent behaviour of modified electrodes on the same chip, the
next step was to test the assay’s response to incubation in a representative KRAS sample
using the designed probes. We explored the ability of the probe-modified electrodes to dis-
criminate between G13D mutant and wild-type KRAS sequences in representative samples.
To investigate specificity levels and gain an initial impression of assay sensitivity, a series
of electrodes were functionalised with KRAS G13D mutant and wild-type probe sequences.
The results of these experiments are summarised in Figure 4A, which shows the percentage
change in the CV peak current following target hybridisation. For macroscale electrodes
functionalised with biological molecules, such as DNA or antibodies, the expectation is
that differential pulse voltametric peak currents will reduce upon target hybridisation. It
has been observed that these effects can be reversed when micro- or nanoscale electrodes
are employed [20,46], but for this study, the electrodes used were comfortably on the macro
scale (diameter = 2.95 mm). For nanomolar (>10 nM) and micromolar concentrations, an in-
crease in the peak current following hybridisation was consistently observed (and has also
been observed in other data from our lab involving SPCEs) [1] for carbon electrodes which
is likely explained by the high surface density of hybridised DNA amplicons changing the
interfacial properties of the electrode and, therefore, altering the electrochemical response.
The underlying physical mechanism of this effect is actively under investigation. Figure 4A
shows that when mutant and wild-type oligonucleotide probe sequences functionalised
SPCEs were incubated in a representative sample containing the G13D mutation, there
was hybridisation in both cases; the signal change was greater for the wild-type probe
because of the high background of wild-type DNA and the comparatively low fraction
of mutated KRAS G13D present in the representative sample. Similar behaviour was
observed for KRAS G12D probe functionalised electrodes for a representative sample for
that particular mutation, showing the wild-type KRAS DNA hybridised strongly to the
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nucleic acid modified carbon surfaces. As a result of these findings and the inability to
electrochemically discriminate between positive and negative samples owing to the strong
influence of background DNA in the sample, DNA amplification strategies were developed
and tested in order to ensure the production of unequivocal detection of ctDNA mutations.
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3.3. KRAS G13D Amplification and Negative Control

In order to selectively amplify the mutant target from a pool of mutant and wild-type
sequences in a sample, primers used for the PCR amplification were tailored by varying
the single nucleotide responsible for the mutation in the primer sequence. Adopting this
approach allowed us to effectively enrich the number of mutated DNA sequences in the
sample without amplifying the wild-type in order to produce a signal change above the
background signal generated by the KRAS wild-type DNA non-specifically associating with
the oligonucleotide probe sequences for KRAS G13D. In selecting the approach reported
here, ctDNA detection could potentially be coupled to a DNA amplification reaction,
because it allows the possibility of developing a multiplexed panel of DNA sequences on a
single chip, meaning that commonly mutated genes could all be identified in parallel (e.g.,
KRAS, TP53, BRCA1/2, IDH-1). This concept of developing biomarker “panels” is thought
to be one of the key advantages of this approach [47]. From Figure 5A, when the wild-
type probe-sequence modified electrodes were hybridised with KRAS G13D amplicons,
alterations in the peak current were not observed, indicating no significant hybridisation.
The mutant amplicons when incubated with mutant probe modified electrodes gave rise to
a very significant signal change (~350%), indicating hybridisation with ultra-concentrated
DNA samples (nano–micromolar concentration ranges) because of the strong positive
signal change. An opposite response is noted in Figure 5B where wild-type amplicons
resulting from DNA amplification using wild type primers are hybridised using wild-type
probe modified electrodes. In this case, the wild-type hybridisation exhibited a significant
signal change while mutant probe modified electrodes showed no significant hybridisation,
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representing an additional control. These findings were thoroughly satisfying, i.e., that the
surface-tethered KRAS G13D mutant probe sequence could, in fact, discriminate between
the mutant and wild-type samples based on the presence or absence of PCR amplicons for
KRAS G13D with high sensitivity. This in fact represented a type of double specificity for
the PCR-based assay, because the primer design had already been shown to specifically
amplify the mutated sequence so coupling in the specificity of the electrochemical probe
sequence meant that the assay would be able to successfully discriminate mutant amplicons
from the sample. Having established the specificity of the assay and the nature of the
electrochemical change, the next step involved verifying the sensitivity of the assay and
dose–response effects for the KRAS G13D mutant PCR product.
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3.4. Concentration Dose Response

After establishing PCR primer specificity, ssDNA probe specificity and electrochemical
signal changes in the correct direction and magnitude, it was important to investigate dose–
response effects. In these experiments, non-amplified and amplified samples were diluted
and a dose-response curve was constructed (see Figure 6A,B). We expected a reduction in
the peak current when specific DNA hybridisation had taken place, and this was found to be
the case for lower concentrations of DNA (pico-to-low nanomolar concentrations). For the
unamplified sample (Figure 6A), the lowest concentration (0.85 ng/µL) demonstrated the
lowest reduction in oxidative peak current post-hybridisation with signal change increasing
as sample concentration increased. The problem here, however, was the specificity of
the probe–target interaction (as shown earlier) and the relatively small signal change
brought about by incubation with unamplified samples. The signal changes were negative,
due to the fact that these were relatively low concentrations of DNA, leading to limited
hybridisation. On the other hand, the amplified sample produced a dose–response curve
with higher signal changes which were positive in direction due to the specific enrichment
of the mutant sequence concentration with smaller standard deviations because of the
hybridisation of strands with high complementarity (the unamplified samples contained
fewer point mutations) and, in effect, the full fraction of cfDNA from the sample.

Achieving good sensitivity is very important as the concentration of circulating free
DNA released by tumour cells is usually in proportion to the stage of cancer [48]. We
were able to detect as low as 4.4 mutated copies per ng of DNA against a genomic DNA
background also containing the wild type at levels of 565 copies/ng of DNA. We saw assay
signal increases of as much as 300% as shown in Figure 5 with these quantities of mutated



Biosensors 2021, 11, 42 11 of 15

and wild type DNA. The specificity and sensitivity results are not complete and cannot be
fully stated but the data presented and discussed here show that we can get appreciable
changes in the electrochemical signal from relatively low copy numbers of the mutated gene
compared to the highly abundant wild type gene also present in the sample. Further work
will involve fully defining the assay sensitivity and specificity. As circulating nucleic acids
are present in blood at ng/mL levels, which based on the fragment length is analogous
to a picomolar concentration, a minimum of femtomolar sensitivity will be beneficial for
detection of tumour-specific sequences [17]. Many published biosensor studies realised
such sensitivity levels through the use of exotic electrode modifications, typically involving
the fabrication of electrodes modified with graphene, nanoparticles, carbon nanotubes,
etc. In our case, we opted to keep the electrode substrate low cost, easy to produce and
coupled to a PCR reaction to achieve the desired sensitivity and specificity. Whilst our
approach leads to a trade-off in terms of time to result, it establishes specific amplification
and sensitive and specific hybridisation signals, giving confidence in the result whilst
achieving an overall time to result which is a significant improvement over the current
clinical practice. The ctDNA concentration response shown in Figure 6 shows a clear
dose–response effect which predicts that an increase in ctDNA, per unit concentration, will
result in a larger electrochemical signal response in the positive direction (i.e., increasing
DPV peak current). Since levels of ctDNA are strongly correlated with tumour stage and
response to therapy [49], there is a clear potential for this system to be applied in measuring
how a patient’s cancer treatment is progressing.
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The findings of this study on ctDNA amplification are in agreement with several
previous studies that were also able to successfully detect ctDNA KRAS mutations in
patient samples using the ddPCR technique [50,51]. Electrochemical detection will quickly
and accurately screen for cancer so treatment can be initiated as quickly as possible.
Compared to other low-cost mutation detection technique like StripAssay, our sensor
device is more reproducible, sensitive, and easier to manufacture and operate, especially
from a clinical point of view. In addition, this study shows that electrochemical sensors can
be directly coupled to a PCR reaction that uses standard primers and reagents and does not
require optimisation, meaning that amplification reactions for other ctDNA markers can be
developed off-chip and transferred directly into the assay to produce a ctDNA panel.

The current time to result for cancer detection in a clinical setting is two–three days
(including sample transportation) for a non-complicated biopsy analysis and 7–10 days for
a complicated biopsy analysis [52]. In the UK, the National Health Service mutation typing
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following biopsy can take up to nine weeks [52]. In summary, the DNA isolation from blood,
clean up and PCR amplification took around 150 min. The ctDNA target incubation took
approximately 60 min, while the CV and DPV pre- and post-hybridisation measurements
for each electrode took less than 10 min. This gives a sum total of 3.5 h. However, through
optimisation and device integration, we believe there is considerable room for optimisation
in terms of time to result. The current analysis time of 3.5 h is a big stride towards PoC
provision for ctDNA profiling in a healthcare setting. Further optimisation can be made
using isothermal amplification which can cut down the number of thermal cycles and, in
turn, decrease the overall amplification time from 1 h to 30 min [53]. As our previously
published work shows that we were able to detect KRAS amplicons in plasma to mimic a
‘clinical sample’ [54], near future work will explore the detection of non-specified clinical
samples containing different KRAS mutations and mutations in other genes involved in
cancer, e.g., P53 and BRCA1. Analysing multiple mutations simultaneously in a given
sample without prior knowledge of the alterations using multiplex techniques and direct
detection of ctDNA from cancer patient samples will support the future direction of PoC
clinical testing.

4. Conclusions

We were able to successfully produce a simple DNA sensor requiring no labelling pro-
cesses or external indicators using a multi-carbon electrode. An electrochemical detection
scheme involving a DNA hybridisation technique and screen-printed carbon electrodes
were developed and shown through a series of comparative measurements to be sensi-
tive and specific for the KRAS G12D and G13D mutations. The DNA modified sensors
demonstrated superior performance to electrochemical pre-treatment with acetate buffer
containing NaCl and characterisation using ferri-ferrocyanide buffer. Improved sensor
sensitivity was achieved by designing a PCR reaction capable of amplifying either mutant
KRAS G13D or wild-type KRAS through primer choice from representative patient samples.
Cyclic voltammetry and Square Wave measurements were very sensitive for charactering
the surface of the modified SPCEs and Differential Pulse voltammetry measurements pro-
vided the desired response and indicated detection was possible from samples containing
as few as 0.58 ng/µL concentrations of amplicons. In addition, the response was found to
be consistent with previously observed results, i.e., large signal decreases being evident
upon amplification of the mutant allele, offering the promise of quantitation of mutant
sequences from clinical samples. Both non-complementary DNA probes and wild-type
DNA amplification reaction was successfully used as control. These results increase the
prospect of simple, rapid and cost-effective measurement of nucleic acid tumour markers
from blood and other body fluids. The current time to result of the electrochemical sensor
was 3.5 h, providing notable scope for optimisation. It is essential to note that the sensor
being developed can be potentially used for both early detection of cancer and monitoring
the response to cancer treatment.
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