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High-depth African genomes inform human 
migration and health

  
Ananyo Choudhury1, Shaun Aron1, Laura R. Botigué2, Dhriti Sengupta1, Gerrit Botha3,  
Taoufik Bensellak4, Gordon Wells5,6,49, Judit Kumuthini5,6, Daniel Shriner7, Yasmina J. Fakim8,9, 
Anisah W. Ghoorah9, Eileen Dareng10,11, Trust Odia12, Oluwadamilare Falola12, Ezekiel Adebiyi12,13, 
Scott Hazelhurst1,14, Gaston Mazandu3, Oscar A. Nyangiri15, Mamana Mbiyavanga3,  
Alia Benkahla16, Samar K. Kassim17, Nicola Mulder3, Sally N. Adebamowo18,19,  
Emile R. Chimusa20, Donna Muzny21, Ginger Metcalf21, Richard A. Gibbs21,22,  
TrypanoGEN Research Group*, Charles Rotimi7, Michèle Ramsay1,23, H3Africa Consortium*, 
Adebowale A. Adeyemo7 ✉, Zané Lombard23 ✉ & Neil A. Hanchard22 ✉

The African continent is regarded as the cradle of modern humans and African 
genomes contain more genetic variation than those from any other continent, yet 
only a fraction of the genetic diversity among African individuals has been surveyed1. 
Here we performed whole-genome sequencing analyses of 426 individuals—
comprising 50 ethnolinguistic groups, including previously unsampled populations—
to explore the breadth of genomic diversity across Africa. We uncovered more than 
3 million previously undescribed variants, most of which were found among 
individuals from newly sampled ethnolinguistic groups, as well as 62 previously 
unreported loci that are under strong selection, which were predominantly found in 
genes that are involved in viral immunity, DNA repair and metabolism. We observed 
complex patterns of ancestral admixture and putative-damaging and novel variation, 
both within and between populations, alongside evidence that population from 
Zambia were a likely intermediate site along the routes of expansion of Bantu-
speaking populations. Pathogenic variants in genes that are currently characterized 
as medically relevant were uncommon—but in other genes, variants denoted as ‘likely 
pathogenic’ in the ClinVar database were commonly observed. Collectively, these 
findings refine our current understanding of continental migration, identify gene flow 
and the response to human disease as strong drivers of genome-level population 
variation, and underscore the scientific imperative for a broader characterization of 
the genomic diversity of African individuals to understand human ancestry and 
improve health.

Advances in genomics have empowered the interrogation of the human 
genome across global populations2, with the resulting studies demon-
strating that Africa harbours the most genetic variation and diversity3,4. 
These studies provided insights into medically relevant genetic loci 
and aided in the interpretation of the pathogenicity of genetic vari-
ants5, advancing precision medicine for all populations6. To date, only 
a limited number of the around 2,000 African ethnolinguistic groups 
have been genetically characterized, predominantly using genotyping 
arrays, which contained a limited number of variants that are common 
in European populations. The population distribution of novel, rare and 
medically relevant variation among African individuals thus remains 
largely unknown, which adversely affects our understanding of the 
genetic contributions to Mendelian and complex diseases7,8.

Classically, sub-Saharan African populations have been described in the 
context of four major language families: Afro-Asiatic (AA), Nilo-Saharan 
(NS), Niger–Congo (NC)—which includes the Bantu language family—and 

the Khoe and San (KS) languages3. This broad classification remains as 
a framework, although several language families contain independent 
groups; the Khoe and San families, for example, are contestedly grouped 
together as KhoeSan in the literature despite having distinct histories 
(Supplementary Note 1.1). The Bantu languages are the most widely spo-
ken in sub-Saharan Africa, and this broad dispersion has been ascribed to a 
series of migrations across the continent over the past 5,000 years9. These 
migration events and subsequent admixture with resident populations 
have had a pivotal role in shaping the genomic landscape of Africa, as it 
involved adaptations to new exposures and experiences. The signatures 
of these adaptations are evident in patterns of allelic variation associated 
with key physiological traits or prevalent communicable diseases, exem-
plified by variations in HBB10, LCT11, APOL112 and G6PD13. Recent studies 
have identified signatures of selection that reflect the importance of new 
variation, introduced by admixture, to traits as diverse as diet, height, 
blood pressure and skin pigmentation4,9,14–16.
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Studying the genomes of peoples across the breadth of Africa pre-

sents unique opportunities for understanding the population demog-
raphy of human disease. The Human Heredity and Health in Africa 
(H3Africa) Consortium was conceived to redress the dearth of genomics 
research in Africa8, and, to date, supports 48 projects across 34 coun-
tries. An important mandate of H3Africa is to characterize genetic 
diversity across Africa to facilitate a framewok for genomic research. 
To this end, we analysed whole-genome sequencing (WGS) data gener-
ated in 426 individuals from ongoing H3Africa studies, including 314 
high-depth (average depth of coverage, 30×) and 112 medium-depth 
(average depth of coverage, 10×) whole-genome sequences, encom-
passing 50 ethnolinguistic groups from 13 countries across Africa 
(Fig. 1a and Supplementary Methods Table 1). Some of these groups 
are studied here for the first time, providing a unique overview of the 
diverse landscape of African genomic variation.

Our analyses focused on single-nucleotide variants (SNVs) in 
samples from three African resources: the H3Africa Consortium 
(here H3A-Baylor; http://www.h3africa.org/)8, the Southern African 
Human Genome Programme (SAHGP)17 and the Trypanosomiasis 
Genomics Network of the H3Africa Consortium (TryopanoGEN)18 
(Methods). High depth of coverage WGS data from H3A-Baylor encom-
passing 314 individuals from west (Burkina Faso, Ghana, Mali, Nigeria, 
Benin and Cameroon), central (Zambia) and south (Botswana) African 
countries (Supplementary Methods Table 1) were used for analyses of 
rare and novel variation, and to identify selective sweeps. The full data-
set was used for analyses of population ancestry and admixture, and to 
assess medically relevant variation. A total of 41,645,936 high-quality 
SNVs were identified across all groups; of these, 31,160,639 were found 
in the dataset that had a high depth of coverage (HC-WGS dataset).

Insights into migration and admixture
A major focus of our survey was to bridge the gaps in African 
population-scale WGS data by including samples from understudied 
geographical regions. To examine this, we first contextualized our 
understudied populations alongside previous African WGS efforts2,4,17 
using principal component analysis (Fig. 1b and Supplementary Fig. 1). 
As previously observed4, the first principal component separated the 
NS, AA, and to some extent, east African NC speakers (Bantu-speaking 
individuals from Uganda (UBS)) from other NC speakers. The second 
principal component placed the remaining NC speakers along a cline 
from west to south (Fig. 1b). Individuals from Mali (MAL), which include 
some non-NC-speaking groups, were the notable exception, showing 
more dispersion between individuals. West African populations—the 
Fon from Benin (FNB), Gur speakers from west Africa (WGR), Soussou  
from Guinea (SSG), people living in Côte d’Ivoire (CIV) and MAL— 
projected in proximity to, but often independently of, other west Afri-
can NC speakers such as the Yoruba (YRI) and Esan (ESN) from Nigeria2. 
Eastern (UBS) and southern African (Botswana (BOT)) NC speakers 
clustered with previously studied populations from their respective 
geographical regions.

Five population groups—the Berom of Nigeria (BRN), individals from 
CAM, individuals from the Democratic Republic of the Congo (DRC), 
Bantu speakers from Zambia (BSZ) and NS speakers from Uganda 
(UNS)—showed distinctive principal component localization. BRN sam-
ples localized independently of other west African populations, tending 
towards east African populations (Fig. 1b). Individuals from CAM and 
the DRC, consistent with the geographical proximity of these two coun-
tries, localized together, forming an independent central-west African 
group (Fig. 1b). UNS individuals localized independently of another NS 
population (Gumuz (GUZ)4) (Fig. 1b). Similarly, BSZ were found to be 
largely separate from other NC-speaking groups (Fig. 1b). Even in the 
context of a much wider representation of African populations from 
array-based data (Supplementary Fig. 2), some of these populations 
retained their distinctive localization patterns, demonstrating the 

extensive genomic diversity of the sampled populations. Accordingly, 
we observed a statistically significant positive correlation between geo-
graphical and genetic distances of NC-speaking populations (R = 0.96; 
t-statistic; P < 1 × 10−9) (Methods and Supplementary Fig. 3).

We used an unsupervised clustering approach implemented in 
ADMIXTURE19 to evaluate whether gene flow from non-NC speakers 
differentiated our study populations (Fig. 2a, Extended Data Fig. 1 
and Supplementary Fig. 4). Admixture events were then evaluated 
further using f3-statistics20 (Supplementary Table 1). Results were 
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consistent with our current understanding of admixture patterns across 
the continent, showing KS gene flow in BOT; AA speaker gene flow in 
UBS, and varying degrees of gene flow from rainforest foragers (RFF; 
ethnolinguistically diverse peoples distributed across the forested 
regions of central Africa) in central-west African populations (DRC 
and CAM) (Fig. 2a and Extended Data Fig. 1). In addition, these analyses 
also revealed two interesting and unreported admixture events—RFF 
gene flow in UNS and gene flow from NS speakers in the BRN (Fig. 2a 
and Extended Data Fig. 1). Further analyses using additional population 
datasets (Supplementary Fig. 5 and Supplementary Note 1.2) suggested 
that the distinction between UNS and other NS-speaker populations 
could be due to increased gene flow from RFF as well as the absence of 
AA admixture. Traces of east African ancestry, originating from waves 
of trans-Sahelian migrations in the past few thousand years, have been 
reported in other populations, including the Hausa of Nigeria3; how-
ever, the observation of east African gene flow, possibly from Chad 
(Supplementary Fig. 6, Supplementary Table 2 and Supplementary 
Note 1.2), in the largest autochthonous central Nigerian population 
(BRN) is highly unique.

Analyses based on masking of non-NC ancestry in BOT highlighted 
the contribution of non-NC gene flow to the genetic distance between 
populations (Supplementary Note 1.3 and Supplementary Fig. 7). By 
contrast, BSZ, unlike their geographical neighbours from Angola, the 
DRC and Botswana, did not show evidence for any major gene flow from 
non-NC speakers, such as the RFF or KS groups (Fig. 2a and Extended 
Data Fig. 1). Similarly low levels of local group admixture have been 
noted for Bantu speakers from Malawi16 and Mozambique21. A recent 
attempt to reconstruct the route of Bantu migration across central 
Africa concluded that populations from Angola were the best source 
of Bantu speakers for east and south African Bantu speakers, and 
suggested a westerly route of Bantu-speaker migration via Angola9. 
Inclusion of the DRC and BSZ populations in our dataset, therefore, 
enabled us to further investigate this route (Fig. 2b). Principal com-
ponent analysis and identity-by-descent sharing demonstrated that 
BSZ is genetically closer to both UBS and BOT compared to other cen-
tral African populations (Supplementary Fig. 8). Moreover, formal 
admixture tests supported BSZ as the most likely central African source 
population for Bantu-speaker ancestries in east and south Africa (Sup-
plementary Table 1). Furthermore, the degree of identity-by-descent 
sharing between population groups suggested that populations from 
Angola were the closest central or central-west African population 
to BSZ (Supplementary Fig. 8). Taken together, these estimates lead 
us to posit that Zambia was an intermediate site in the likely route of 
Bantu migration to both east and south Africa (Fig. 2b). An orthogonal 
approach using admixture graphing also supported this hypothesis 
(Supplementary Note 1.4).

Our attempts to estimate the dates of some key admixture events22 
showed that KS gene flow in southern Africa and RFF gene flow in CAM 
were largely in agreement with previous studies4,23 (Fig. 2c and Sup-
plementary Table 2). The date range for RFF admixture in UNS was 
similar to that for CAM and consistent with previous surveys23, hinting 
at a possibility for range alteration of RFF populations both east and 
west of the central rainforest around 60–70 generations ago (Fig. 2c). 
Previous studies on trans-Sahelian migration to west Africa have sug-
gested two distinct waves of migration: one more than 100 generations 
ago (2,900 years ago) and a more-recent wave in the last 35 generations 
(1,015 years ago)24. On the basis of a variety of east African proxy popu-
lations, we estimated that admixture in BRN occurred approximately  
50 to 70 generations ago (1,500–2,000 years ago) (Fig. 2c). These 
distinct dates are suggestive of a previously unknown demographic 
event, either at the local level, or possibly at a wider geographical scale  
(Supplementary Note 1.5).

Additional distinctive trends in the demographic history of some 
of these populations were observed, such as extensive variation in 
inter- and intra-ethnolinguistic groups within the defined geopolitical 

boundaries of Botswana, Cameroon and Mali (Supplementary Note 1.6, 
Supplementary Table 3 and Supplementary Fig. 9), and distinctively 
long segments of runs of homozygosity among MAL individuals 
(Supplementary Note 1.7 and Supplementary Figs. 10, 11). Analyses of 
uniparental markers (mitochondria and Y chromosome) identified a 
predominance of certain uniparental haplogroups in BOT (L0d), BRN 
(L3) and MAL (E1b1b) (Supplementary Note 1.8 and Supplementary 
Fig. 12) that further underlies the complex ancestral contributions to 
these groups.

Revealing further genomic variation
In general, SNV discovery in the H3A-Baylor populations correlated 
with sample size, with between 12 and 20 million SNVs identified per 
population. Variant calling also revealed a total of 190,555 potentially 
multiallelic sites (Methods), most of which (more than 90%, n = 189,900) 
included three alleles in the dataset; the remainder of sites (n = 655) were 
biallelic in the dataset, but had a third allele in the reference genome 
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(GRCh37). Multiallelic sites can provide unique insights into human 
migration and disease; however, more consistent and accurate annota-
tion of such sites is required to capitalize on this potential25.

In total, around 3.4 million SNVs in the H3A-Baylor dataset had not 
been previously reported (Methods and Supplementary Table 4). These 
novel SNVs accounted for 2–5% of all SNVs in each population, and, at 
the single-population level, the vast majority (88%) occurred once. 
Given the modest per-population sample sizes, however, some of these 
singleton variants are likely to be common at the population level, a 
view supported by the observation that 9–20% of population-singleton 
SNVs were shared with at least one other population (Supplementary 
Fig. 13a). Individuals from CAM had the fewest novel SNVs, whereas indi-
viduals from BOT and MAL had the most, both in absolute number and 
when normalized to the fewest number of sampled individuals (Fig. 3a).

To determine whether the discovery of novel variants in our dataset 
was saturated, we plotted the cumulative number of novel variants 
discovered, using BOT as our starting population. With each addi-
tional population, novel variant discovery did not reach a definite 
plateau (Fig. 3b), even after removing singleton novel SNVs—more 
than 6,000 novel SNVs were still observed between the last two popula-
tions (FNB and MAL; Fig. 3c). Given the current overrepresentation of 
individuals with central and west African ancestry (for example, YRI) 
in publicly available genomic databases, we also assessed whether 
novel variant discovery might be improved in ancestries that are not 
as well-represented. We found a strong correlation between variant 
discovery and the proportion of non-central-west African ancestry 
among our populations, particularly KS (R = 0.9, P = 1.4 × 10−9) and RFF 
(R = 0.93, P = 2.6 × 10−11) ancestries (Fig. 3d–g).

Identifying new signatures of selection
Adaptive selection of genomic loci in response to dietary, environ-
mental and infectious-disease exposures, have been well-described 
across the continent26. The distribution of composite likelihood ratio 
(CLR)27 statistic scores for 10-kb windows across the genome in the six 
populations is summarized in Fig. 4a. Outlier windows (CLR score > 49.5; 

P < 0.001; Supplementary Table 5), which are suggestive of recent selec-
tion, were detected in each of the six HC-WGS populations. Collectively, 
these regions mapped to 107 genes, of which 62 (58%) were novel, and  
45 were identified previously4,9 (Supplementary Tables 5–7). Almost half 
of these novel selected loci were outliers in two or more populations, 
which is perhaps a result of ascertaining predominantly NC popula-
tions (Supplementary Tables 5–7). However, there was still discern-
ible heterogeneity in selective pressure between populations—only  
13 loci were detected as outliers in more than four of the six populations 
(Fig. 4a), and some signals (for example, signals that overlap with ART3 
and MAMDC4; Fig. 4a) were only detected as outliers in one or two of 
the sampled populations. Functional annotation of putatively selected 
genes revealed that these genes were predominantly associated with 
immune-related functions (Supplementary Table 8), inclusive of genes 
such as C5AR1 and MYH10 (bacterial infection); ARHGEF1, ERCC2 and 
TRAF2 (viral infection) and IFNGR2 (both viral and bacterial infection). 
In addition, some of the previously characterized selection signals, 
such as APOL1 and LARGE1, were observed at a more liberal threshold 
of P < 0.01 (Extended Data Fig. 2a).

We also analysed the non-coding regions detected as CLR outliers 
(Supplementary Note 2.2), focusing on long contiguous stretches of  
signals (Supplementary Table 5), outliers that coincided with genome- 
wide association study (GWAS) signals (Supplementary Table 9 and 
Supplementary Fig. 14), and signals that overlapped with expres-
sion quantitative trait loci (Supplementary Figs. 15–17). We detected  
evidence for signatures of selection at several regulatory loci, including 
signals that are linked to traits such as chronic kidney disease, uterine 
fibroids and blood cell indices (Supplementary Note 2.2).

Different methods of detecting selection will identify different 
types and timescales of selection. When we compared regions with 
outlier CLR sores with those detected using an orthogonal method28 
based on the integrated haplotype homozygosity score—which detects 
more-recent sweeps29—we found that around 20% of the CLR-identified 
genes were also detected in the analysis based on the integrated hap-
lotype homozygosity score, including the immune genes ERCC2, 
C5AR1 and TRAF2 (Supplementary Table 10). Loci detected using both 
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approaches included 10 previously reported genes and 11 genes for 
which selective sweeps are, to our knowledge, reported for the first 
time in this study (Supplementary Table 10).

To identify selection signals that are unique to southern African 
(proxied by BOT), central African (proxied by CAM) and west Afri-
can (proxied by WGR) populations, we used an approach based on 
the population branch statistic (PBS)30. This analysis identified three 
genes that are involved in metabolism (MRAP2, ARSK and GPD2) among 
those uniquely selected in BOT (Extended Data Fig. 2b, Supplementary 
Note 2.3 and Supplementary Tables 11, 12) and genes that are involved 
in DNA maintenance among those unique to WGR (C12orf65 and FAN1; 
Extended Data Fig. 2b and Supplementary Table 13) and CAM (FZR1, 
TDP1 and KCTD1; Supplementary Note 2.3 and Supplementary Table 14).

We also found evidence for preferential gene flow from KS among 
the selection signals in BOT (Extended Data Fig. 2c and Supplementary 
Table 15, 16). CLR selection outliers GNL1, MYH10 and SMC1B, as well 
as TIGD3 and VDAC3—both of which were identified in the PBS-based 

scan—all had KS ancestry that was substantially higher than the mean 
genome-wide distribution of KS ancestry (+3 s.d.). Although we were 
unable to detect any major differences in KS ancestry at the gene-set 
level for either CLR- or PBS-based outlier genes, the high KS ancestry in 
the aforementioned genes bolsters reports of adaptive introgression 
in southern African selection signals9.

Highly differentiated variants in African genomes
The complex population structures and variable selection pressures 
observed in our dataset are known to promote differentiation in allele 
frequencies between populations. We therefore sought to identify 
highly differentiated variants (HDVs) with substantially different 
(more than 40%) allele frequencies between H3A-Baylor populations 
(Methods). For this analysis, HDVs across the β-globin gene cluster 
(chromosome 11) and the HLA region (chromosome 6), both of which 
are known to have extensive linkage disequilibrium between markers, 
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Fig. 4 | Selection and medically relevant variants in African populations.  
a, Circular Manhattan plot showing the CLR score distribution in 10-kb 
windows in the six HC-WGS populations (Supplementary Tables 5, 6). Loci with 
CLR scores > 49.5 (corresponding to a P < 0.001) are shown as red dots. Genes 
within regions with significant outlier scores in four or more groups (FRRS1, 
ITSN2, WDPCP, SNX24, METTL22 and HMCN2) or two or fewer groups (ART3, 
F11R, CD79A, COX7A2, HPSE and MAMDC4) are highlighted. b, Burden of 
pathogenic (class 5) ClinVar SNVs in H3Africa cohort. c, Density plot of 
frequencies of pathogenic and likely pathogenic ClinVar SNVs (n = 262) 

differentiated by the most commonly associated inheritance pattern of the 
monogenic disease gene in cases in which a gene has been implicated;  
three variants with allele frequency > 5% are shown, illustrated as gene 
name:chromosome-base pair position-reference allele-variant allele.  
d, Distribution of disease alleles common to Africa across H3Africa populations. 
The map was created using R43. In each population, the corresponding bar 
graphs show the relative proportions of the specific disease-associated alleles 
(Supplementary Table 21). HbS in CAM and FNB are omitted as they include 
individuals with homozygous sickle cell disease (HbSS).
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were masked (Methods). Among the remaining HDVs (n = 2,497), more 
than 40% (n = 1,106) were observed between BOT (southern Africa) and 
MAL (northwest Africa) (Supplementary Table 17), and this geographi-
cal separation also generated the most divergent allele frequencies. 
Some of these HDVs probably also reflect the high proportion and 
historically deeper KS ancestry among BOT31. Empirically, 275 HDVs 
were located within 50 kb of genome-wide significant single-nucleotide 
polymorphisms (P < 5 × 10−8) in the NHGRI-EBI GWAS Catalog, and these 
primarily mapped to genes implicated in cardiometabolic traits, such 
as systolic blood pressure and type 2 diabetes (Methods and Extended 
Data Fig. 3a). Even though the vast majority of GWAS have been con-
ducted in populations of European ancestry, GWAS hits proximal to 
HDVs were from studies that included participants of diverse ancestries 
(Extended Data Fig. 3a).

The site frequency spectra of variants that are predicted to be dam-
aging and or likely to be benign in our populations (Supplementary 
Fig. 18) were consistent with expectations of purifying selection, but 
also revealed a substantive number of shared and common putative 
loss-of-function (LOF) variants (Extended Data Fig. 3b and Supplemen-
tary Fig. 18) of likely relevance to variant curation efforts (Extended Data 
Fig. 3c, Supplementary Fig. 19 and Supplementary Note 3). In addition 
to its role in rare Mendelian disease, putative protein-damaging varia-
tion has also been associated with common multifactorial diseases32. 
Given the burden of infectious diseases on the African continent, we 
explored the relationship between putative LOF variation in genes 
implicated in specific infectious diseases and regional differences in dis-
ease mortality as an available proxy for disease outcome. We calculated 
a putative LOF burden ratio for each population using putative LOF vari-
ants in genes designated as ‘directly’ (n = 181) and ‘indirectly’ (n = 1,842) 
implicated in influenza (Methods and Supplementary Table 18), and 
plotted this against the 2016 country-specific influenza mortality rates 
from the World Health Organization (WHO)33. We observed a modest 
inverse correlation (R2 = 0.33, Pearson’s correlation) between the puta-
tive LOF burden ratio and country-specific influenza mortality rates 
(Extended Data Fig. 3d) that was significantly different from random 
(mean R2 = 0.165, s.e.m. = 0.006, Pearson; P = 1.45 × 10−102, Wilcoxon 
signed-rank test; Extended Data Fig. 3d). Among west African groups, 
the resulting correlation was even more striking (R2 = 0.99; random 
iteration mean R2 = 0.235, s.e.m. = 0.008; P = 9.33 × 10−302, Wilcoxon 
signed-rank test; Extended Data Fig. 3d, e). A strong correlation was also 
seen with mortality associated with infection with human immunode-
ficiency virus (HIV) (R2 = 0.501, random mean R2 = 0.187, s.e.m. = 0.006; 
P = 6.86 × 10−209, Wilcoxon signed-rank test), but not with infection with 
malaria (R2 = 0.120; random mean R2 = 0.165, s.e.m. = 0.006; P = 0.99, 
Wilcoxon signed-rank test) or hepatitis C virus (HCV) (R2 = 0.0002; ran-
dom mean R2 = 0.174, s.e.m. = 0.006; P = 1.00, Wilcoxon signed-rank test) 
(Extended Data Fig. 3e). Although environmental and socioeconomic 
factors remain important contributors to country-reported mortality, 
these data provide further support for a host genetic contribution to 
outcomes in some infectious diseases.

Context for medically relevant variation
To provide a more global context for medically relevant genetic varia-
tion, we annotated our dataset with the American College of Medical 
Genetics and Genomics (ACMG) Secondary Findings gene panel (ACMG 
2.0) of reportable variants in 59 genes34. Only eight individuals carried 
any reportable ACMG variants, and these were limited to singleton vari-
ants (one per participant) in TINF2, KCNQ1 and RYR1 (associated with 
dominantly inherited disorders), as well as ATP7B and PKP2 (associated 
with recessively inherited disorders). By contrast, almost everyone in 
our HC-WGS cohort carried at least one variant designated as ‘patho-
genic’ (level 5) in the ClinVar Database (v.20181028) (http://www.ncbi.
nlm.nih.gov/clinvar/), with each person carrying a median of 7 (range, 
2–14) alleles (Fig. 4b and Supplementary Table 19). Among the 262 

unique variants annotated as pathogenic or likely pathogenic (level 4), 
around 21% (54 out of 262) had a minor allele frequency (MAF) > 0.05 in 
at least one HC-WGS population (Fig. 4c and Supplementary Table 20) 
and, of these, 13 (4.9%) had a MAF < 0.05 across all population groups 
in gnomAD (Extended Data Fig. 4a and Supplementary Note 4). We 
interpret this finding as most suggestive of variant misclassifications 
in ClinVar and other databases.

Finally, we surveyed the frequency of select, well-described, 
disease-associated alleles commonly found in populations of Afri-
can descent (Methods). Consistent with expectations for a locus that 
protects against malaria mortality, estimates of the G6PD A− 202A 
and 376G alleles were generally consistent with the distribution of 
endemic malaria across the continent. Eleven single-nucleotide poly-
morphisms in G6PD associated with protection against severe malaria 
in heterozygotic female participants35 also showed similarly divergent 
frequencies across our populations (Extended Data Fig. 4b). Similarly, 
the common sickle cell disease mutation (rs334; HbS; MIM 603903) 
was found at typically high allele frequencies in malaria-endemic west 
and east African populations36 (Fig. 4d and Supplementary Table 21). 
HbS frequencies ranged from 10% (BRN) to 19% (SSG), but was nearly 
absent from south African (BOT, XHS and SOT) genomes. Notably, HbS 
showed widely divergent allele frequencies in the two populations 
from Uganda, with the Bantu-speaking (UBS) population having one 
of the highest frequencies (20%) whereas the allele was not observed 
in the UNS population.

APOL1 G1 and G2 alleles in the homozygous or compound heterozy-
gous state (G1/G1, G1/G2 or G2/G2) confer protection against Trypa-
nosoma brucei gambiense infection but also increase susceptibility 
to nephropathy in non-trypanosomiasis endemic areas, especially 
in the presence of HIV infection12. G1 and G2 allele frequencies varied 
widely across our populations, and were the highest among west African 
groups (for example, the G1 frequency was 43% in CIV and 34% in FNB), 
but were significantly lower elsewhere on the continent (Fig. 4d). This 
is consistent with previous reports of geographical correlation with the 
prevalence of sleeping sickness12. The frequency of G1 was also highly 
differentiated between the two Uganda population groups (UBS, 14%; 
UNS, 2%)37, and this was in contrast to the frequencies of G2 in the two 
groups (UBS, 10.6%; UNS, 11.5%). The overall frequency of the APOL1 
risk genotype (that is, the recessive state for the diplotype: G1/G1, G1/
G2 or G2/G2) varied substantially among the groups in which it was 
present (Fig. 4d and Supplementary Table 21), suggesting that the 
risk of APOL1-associated nephropathy is appreciably high across the 
continent, with the highest burden in west Africa.

Previously, the Maasai in Kinyawa, Kenya38 were the only African 
population noted to have an appreciable frequency of HLA-B*5701, 
which mediates hypersensitivity to the antiretroviral drug abacavir. In 
our expanded dataset, the allele was absent from west African popula-
tions, but observed in BSZ (1.5%), UNS (3.3%) and XHS (6.3%) (Supple-
mentary Table 21), at frequencies typically observed in populations of 
European or Asian ancestry.

Discussion
This study represents one of the most-extensive studies of high- 
depth-sequenced African genomes to date. We deliberately focused 
on SNVs—which could be confidently inferred—but a similar wealth of 
diversity and novelty is likely to be found within other variant classes. 
Despite drawing individuals from ongoing genomics studies on the 
continent, care was taken to avoid possible systematic biases and the 
patterns of variation are thus expected to be largely representative of 
the respective groups.

Our results reveal a genetic continuum of NC speaker populations 
across the continent and extend our current understanding of the 
routes, timing and extent of the Bantu migration—the defining demo-
graphic event of African genetic diversity. The proposed route overlaps 

http://www.ncbi.nlm.nih.gov/clinvar/
http://www.ncbi.nlm.nih.gov/clinvar/
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with the spread of the Kalundu pottery tradition, which has also been 
associated with the Bantu expansion in these regions39,40. However, 
the estimated dates for the spread of Kalundu pottery predate our 
admixture dates, and the association between this tradition and Bantu 
migration has been questioned, leaving the proposed parallels between 
the archaeological and genetic migrations unresolved.

Nigeria, in keeping with its tremendous linguistic diversity, is cur-
rently the best-represented African country in terms of genomic data. 
Our observations of substantial NS admixture in the Berom, and both 
HDVs and novel variation in both NC and non-NC speakers, suggest that 
Nigerian populations in existing public databases are not only likely to 
underrepresent the genomic diversity of Nigeria, but are almost cer-
tainly poor general proxies of African continental groups. Additional 
deep sequencing in multiple African populations will be needed to 
provide a more-comprehensive compendium of variation across the 
continent.

Viral epidemics, including outbreaks of HIV, Ebola and Lassa fever, 
have been reported across Africa. Against this backdrop, our obser-
vations of selected loci that overlap genes that are important to viral 
infection support the potential for a hitherto undescribed role for 
resistance and/or susceptibility to viral infections in shaping the 
genomes of human populations across Africa. This was partially bol-
stered by strong correlations between putative LOF variants in genes 
implicated in influenza and HIV and their respective disease mortalities, 
although the latter observations require replication and confirmatory 
analyses in cohorts of individuals with the diseases. Alongside immune 
genes, we also observed positive selection in genes associated with 
DNA repair, reproduction, and carbohydrate and lipid metabolism, as 
well as geographical-region-specific positive selection in genes such 
as PLAT and SERPINA1 within NC speakers.

The combined effect of ancestral events and exposure to infec-
tious agents on the diversity and variation of African genomes was 
perhaps best exemplified by the stark allele frequency differences 
observed between the UNS and UBS groups from Uganda. Despite 
their shared geography, the two groups varied significantly in the 
frequencies of three of the four medically relevant variants surveyed, 
including HbS and G6PD alleles. These two loci are known to be protec-
tive against severe malaria, which is endemic in Uganda. Historically, 
differences in HbS frequencies between these groups were attributed 
to the relatively recent spread of malaria to NS populations; how-
ever, our results, and other recent findings41, suggest that recent 
migration from northern regions, where malaria is less common 
(UNS), as opposed to from malaria-endemic western regions (UBS) 
is another plausible explanation42. A similar argument can be made 
for the APOL1 high-risk G1 and G2 alleles, which have been shown to 
provide protection against specific Trypanosoma species12. These 
alleles are commonly observed in trypanosomiasis-endemic regions 
such as Uganda and west Africa (UBS), but less so in northeastern 
geographies including Sudan (UNS). Similarly, HLA-B*5701 was previ-
ously only observed among northeast African populations; its high 
frequency among the UNS, yet absence from the UBS, probably also 
reflects this ancestral divergence.

Our findings indicate that the implementation and use of genome- 
level sequence data in Africa will require a broadly ascertained and 
comprehensive compendium of variation, alongside high-level 
curation of variants. African genome variation is likely to be a bet-
ter representation of variant distribution for both African diaspora 
and global populations, and, therefore, a full repertoire of African 
genomic variation could provide a better genomic reference for 
both medical and population genetics. The data generated have 
facilitated the development of a microarray genotyping chip and 
imputation panel, and are being made available to researchers in the 
field (see Methods, ‘Data availability’) as important springboards 
for future studies of demography, migration, ancestry and genetic 
variation in Africa.
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Methods

Data reporting
No statistical methods were used to predetermine sample size. The 
experiments were not randomized and the investigators were not 
blinded to allocation during experiments and outcome assessment.

Samples, datasets and sequencing platforms
The primary analysis datasets were derived from three sources: The 
H3Africa Consortium (referred to as H3A-Baylor)8, The TrypanoGEN 
Collaborative Centre of the H3Africa Consortium (TrypanoGEN)18 and 
the SAHGP17. All samples were collected after appropriate approvals 
had been obtained from local Ethics Boards and Committees in each 
of the represented countries, and participants gave informed consent 
(see Supplementary Note 5 for details). Sequencing was performed on 
Illumina platforms and—after alignment and baseline quality control to 
account for the different platforms and coverage depths (Supplemen-
tary Methods Table 2)—data were combined to create a single merged 
file (Supplementary Methods Fig. 1) to facilitate downstream analyses.

The H3Africa Consortium. The principal investigators of each of the 19 
projects funded during the first 5-year funding cycle of H3Africa were 
invited to submit samples for WGS, provided the existing consent for 
recruited individuals included the broad use of samples for WGS, and 
the project had existing ethics approval for such a study. In addition, 
a broader request was made to consortium researchers with other 
samples from African populations that would be similarly eligible for 
inclusion, even if they were not recruited through a formal H3Africa 
project. A total of 519 samples from 8 projects were submitted for con-
sideration. Submitted samples were predominantly ascertained from 
control datasets recruited from the respective studies, with the excep-
tion of samples from case-only studies in Cameroon, Botswana, Mali 
and Benin (Fig. 1 and Supplementary Methods Table 1). These samples 
were prioritized to include population and ethnolinguistic groups 
that had not previously been sequenced. Samples were shipped to 
the Human Genome Sequencing Center at Baylor College of Medicine, 
Houston, USA, under signed material transfer agreements from each 
project. A total of 348 samples were prepared using the TruSeq Nano 
DNA Library Prep Kits and underwent WGS on an Illumina X-Ten to a 
minimum depth of coverage of 30×. The resulting dataset was labelled 
H3A-Baylor (Supplementary Methods Table 2).

The TrypanoGEN Collaborative Centre of the H3Africa Consortium. 
The TrypanoGEN project is a collaborative centre funded by the Well-
come Trust to study the host and parasite genetics and genomics of 
trypanosomiasis across Africa18. Ethical approval for the use of samples 
for genomic studies of trypanosomiasis was obtained in participating 
countries and informed consent for genomic studies and sharing of 
data with researchers working on other diseases was obtained from 
participating individuals. A total of 300 individuals were recruited 
from five countries (Uganda, Zambia, the DRC, Cameroon and Côte 
d’Ivoire) of which 200 had been sequenced for inclusion in this project 
(Supplementary Methods Table 2). DNA was extracted from blood 
samples in the respective countries of collection with the exception 
of samples from Guinea and Côte d’Ivoire, for which DNA extraction 
was performed at CIRDES in Burkina Faso. WGS was subsequently per-
formed on an Illumina Hiseq 2500 to an average depth of 10× using 
the Illumina TruSeq PCR-free kit at the Centre for Genomic Research, 
University of Liverpool, UK.

SAHGP. SAHGP is a multi-ethnic project to investigate the genomic 
diversity of the peoples of Southern Africa and build genomics ca-
pacity in that region (https://sahgp.sanbi.ac.za/)17. The use of SAHGP 
samples for this study was approved by the Human Research Ethics 
Committee (HRECΞMedical) of the University of the Witwatersrand, 

Johannesburg (protocol number: M120223). Three groups of partici-
pants were enrolled and venous blood was collected using EDTA tubes. 
Inclusion criteria were as follows: male, over the age of 18 years, four 
grandparents who speak the same language as the participant, not 
known to be related to the other participants in the study and willing 
to provide broad informed consent (including consent to share data 
and DNA for future studies approved by the HREC (Medical)). Two 
main Bantu-speaking ethnolinguistic groups were included: the So-
tho (Sotho–Tswana-speaking individuals; n = 8) were recruited from 
in and around the town of Ventersburg in the Free State Province and 
the Xhosa-speaking individuals (Nguni language; n = 7) were recruited 
from the Eastern Cape Province. One individual spoke Zulu (Nguni 
language) and was from Johannesburg. The DNA samples were normal-
ized to around 60 ng μl−1 and approximately 5 μg DNA was submitted 
to the Illumina Service Centre in San Diego, USA, for sequencing on 
the Illumina HiSeq 2000 instrument (around 100-bp paired-end reads, 
about 314-bp insert size) with a minimum read depth of coverage of 30×.

Data processing and merging
See Supplementary Table 23 for a full list of references for databases 
and software used.

Alignment and pre-processing of reads. Raw FASTQ reads generated 
by sequencing were mapped to the human reference genome GRCh37 
(also known as hs37d5) using the BWA-MEM algorithm of the BWA soft-
ware package44. Optical and PCR duplicate reads were marked with 
Picard MarkDuplicates on a per-sample basis45 and reads were sorted 
by coordinate using SAMtools v.0.1.1946.

Quality control before variant calling and BAM file augmentation. 
Before variant calling, the percentage of aligned reads was found to be 
90% or greater in each sample. The resulting BAM files were merged on 
a per-sample basis and these sample-level BAM files were recalibrated 
using GATK45. This process consisted of a per-sample realignment of 
reads around known and discovered insertions and deletions (indels) 
using the known indels from the gold datasets of the Mills Devine and 
1000 Genomes Project (1000G), as well as the low-coverage dataset 
of 1000G phase 1. GATK (v.3.3-0) RealignerTargetCreator and Indel-
Realigner were used for alignment, in addition to base quality score 
recalibration with GATK BaseRecalibrator and PrintReads (using 
known variant sites from dbSNP v.138 and the same indels used in lo-
cal realignment). SAMtools was used to generate a base quality score 
and MD tag (that is, a string describing the mismatching positions of 
a read to the reference used for reference-free SNV and indel calling), 
which helped to improve calling quality. Additional quality checks for 
cross-sample contamination were performed using VerifyBamID from 
1000G Omni2.5 VCF, requiring that the calculated FREEMIX was less 
than 0.05. One H3A-Baylor sample did not pass these quality controls 
and was not included in the downstream analysis.

Variant annotation. Variant annotations were obtained using SnpEff 
(version 4.3-3) (Supplementary Table 23) with human genome build 
GRCh37.75 (October 2016). We used the SnpEff default parameters 
including the -lof argument to annotate for LOF and nonsense-mediated 
decay predictions. We also included annotations for variant labels 
from dbSNP (v.150), for clinical importance from ClinVar Database 
(v.20181028) and for GWAS hits from the GWAS catalogue (v.2019-10-
14) (Supplementary Table 23). In addition to functional annotations, 
variants were also annotated for allele frequencies in the 1000G, ExAC 
(r.2.0.1), gnomAD (v.2.0.2), African Genome Variation Project (AGVP)4, 
SAHGP and TryopanoGEN datasets.

Variant discovery. The choice of software for variant calling of both 
low- and high-depth of coverage WGS data was based on the evaluations 
of the AGVP4. We used HaplotypeCaller (Supplementary Table 23) to 
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call per-sample SNVs and indels from SAHGP, H3A-Baylor and Trypano-
GEN datasets in gVCF mode. As the TrypanoGEN dataset had a lower 
depth of coverage (around 10×), a minimum confidence threshold 
at which variants were called and included was set to 10; for both of 
the datasets with a high depth of coverage (SAHGP and H3A-Baylor), 
a minimum confidence threshold at which variants were called and 
included was set to 30. Joint variant calling was done on each dataset 
using GenotypeGVCFs in GATK.

Variant filtering of autosomal genes. Variant quality score recalibra-
tion (VQSR) was performed for each dataset separately. SNVs were 
filtered using VariantRecalibrator and ApplyRecalibration in GATK. 
For SNVs, we used overlapping sites from HapMap III and 1000G 
phase 1 Omni2.5 sites as truth and training sets (prior probabilities 
of 15 and 12, respectively for HapMap III and 1000G phase 1 Omni2.5 
sites). High-confidence 1000G phase 1 SNVs were used as an additional 
training set (prior probability of 10). dbSNP v.138 was used as a set of 
known sites (prior probability of 2). To build the VQSR Gaussian mix-
ture model, we used annotations at each site related to coverage (QD 
(QualByDepth) and DP—where DP is the approximate read depth after 
filtering reads with poor mapping quality and bad mates and QD is the 
variant confidence normalized by the unfiltered depth for the variant 
allele); strand bias (FS (FisherStrand) and SOR (StrandOddsRatio)—
where FS is a Phred-scaled P value using Fisher’s exact test and SOR is the 
odds ratio of a 2 × 2 contingency table of positive/negative strand and 
reference/alternative allele), mapping quality (MQ, MQRankSum and 
ReadPosRankSum—where MQ is the root mean square of the mapping 
qualities), which serves to average across reads and samples; MQRank-
Sum is the Z-score from a Wilcoxon rank-sum test of alternative versus 
reference mapping qualities; and ReadPosRankSum is the Z-score from 
a Wilcoxon rank-sum test of alternative versus reference read-position 
biases) and likelihood-based Hardy–Weinberg equilibrium tests (In-
breedingCoeff). The resulting receiver operating characteristic curves 
were filtered by the variant quality score log odds ratios calculated 
by VariantRecalibrator, and all SNVs below the VQSLOD threshold of 
99.5% were removed. To facilitate faster joint calling between high- and 
low-coverage datasets, a union of all of the high-coverage SNV sites of 
each individual dataset was created. As SNVs in the individual datasets 
were already ‘known’ from previous alignments, joint variant calling 
was done across all the datasets only at the union using Genotype gVCF 
in GATK to create a merged final dataset (Supplementary Methods 
Fig. 1). For the sex and mitochondrial chromosomes, the X chromo-
some followed the same VQSR filter approach as the autosomes; Y and 
mitochondrial chromosomes, however, were not filtered using the 
VQSR model. The pseudoautosomal regions on the X chromosome were 
called as diploid and other X chromosome regions were called haploid 
in female participants. The Y chromosome pseudoautosomal regions 
were called diploid and the remaining regions were called haploid in 
male participants. The mitochondrial chromosomes were called as 
diploid for ease of processing.

Multiallelic variants and haplotype phasing. After curation of in-
dividual (unphased) VCF files from each dataset and the subsequent 
merged dataset, data for each chromosome were independently phased 
to provide two haplotypes per individual. We first opted to decom-
pose multiallelic variants in the VCF file before phasing as follows: (1) 
decomposing the VCF file such that variants with multiple alleles were 
expanded into distinct variant records—one record for each reference/
alternative allele combination; and (2) normalizing the decomposed 
VCF file so that variants were represented using the most-parsimonious 
alleles from the human genome reference (GRCh37).

Combining (1) and (2) resulted in some genotypes being split over two 
VCF records, such as missing/alt1, missing/alt2 or ref/alt1 and ref/alt2. 
To improve the accuracy of low-pass and low-coverage whole-genome 
data, we leveraged population linkage disequilibrium, haplotype 

information and genotype likelihoods from initial calls using Mar-
vin47 (Supplementary Table 23), with default parameters to perform 
the genotype refinement at sites shared by multiple individuals. This 
approach has been used for the 1000G2. We conducted further qual-
ity control on autosomal chromosomes by removing individuals and 
sites with high missingness (>5%); this resulted in the removal of 17 
samples and around 500,000 sites. Checks for heterozygosity or relat-
edness were left for downstream analysis. Owing to the unavailability 
of haplotype scaffold panels, we independently phased and inferred 
haplotypes without reference haplotypes using both Eagle2.048 and 
SHAPEIT247(Supplementary Table 23). We also enabled SHAPEIT2 to 
produce the graph structures on which to generate the final phased 
haplotypes; this resulted in a pair of phased haplotypes per dataset. 
For each pair of haplotypes, we compared sites discordant between 
haplotypes generated by SHAPEIT2 (91.2%) versus Eagle2.0 (98.6%) 
and the VCF file before phasing. Because the estimated switch error in 
phasing was lower in Eagle (0.26%) than SHAPEIT2 (0.71%), we opted 
to use the Eagle phase panel as the default for downstream analyses.

All downstream analyses were carried out on biallelic sites only, but 
we did investigate multiallelic sites to gain an appreciation of their 
relative abundances and patterns of variation. Multiallelic variation is 
a largely unexplored topic in genome surveys, in part because it is dif-
ficult to discern between true multiallelic sites and sequencing errors. 
For this reason, we imposed fairly stringent measures to conservatively 
call such sites. We focused on multiallelic sites from the high cover-
age H3A-Baylor dataset, and discarded multiallelic sites embedded 
in repetitive regions or regions adjacent to known copy-number vari-
ation, as well as those for which the third allele was observed in fewer 
than six reads.

Data analyses
The resulting ‘clean’ dataset was analysed by teams arranged around 
four main study areas: (1) population structure and admixture;  
(2) signatures of selection; (3) rare variation; and (4) medically  
relevant genes and variants. Each of these study areas are described in 
more detail below. Studies of selection and rare variation were limited 
to the 314 individuals in the H3A-Baylor dataset that had sequencing 
data with a high depth of coverage to improve calling confidence for 
rare sequence variants. The full dataset was used for the remaining 
analyses (population structure and admixture, and medically relevant 
variants). See Supplementary Table 23 for a full list of references for 
databases and software used.

Population structure and admixture
Primary datasets. The primary datasets for the population structure 
and admixture analyses included WGS data generated from the merged 
H3A-Baylor–TryopanoGEN–SAHGP dataset (hereafter referred to as 
the joint dataset; Supplementary Table 22).

Sample-level quality control. The initial dataset consisted of 564 
individuals, and these were subjected to additional quality control: we 
excluded individuals with >1% missing data (n = 86—all from the Tryp-
anoGEN dataset) and identified duplicate samples and familial-related 
samples using the identity-by-descent (IBD) approach in PLINK (v.1.90, 
http://www.cog-genomics.org/plink/1.9/)49. IBD was calculated af-
ter removing SNVs in strong linkage disequilibrium by pruning SNVs 
with r2 > 0.15 within a window of 1,000 bp. A total of 93 individuals 
with PiHAT > 0.25 with at least one other sample (Mali, 57; Uganda, 2; 
Zambia, 19; Mossi, 3; Fon, 12) were identified; a subset of 51 unrelated 
individuals were randomly selected for inclusion from the pairs of 
related individuals (Mali, 26; Uganda, 2; Zambia, 12; Mossi, 2; Fon, 9).

SNV level quality control. Of the initial 41,645,936 SNVs, we removed 
1,801,483 with call rate <99%; 84,758 SNVs with a significant deviation 
from Hardy–Weinberg equilibrium (P < 1 × 10−6); 25,352,806 SNVs with 
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MAF < 0.01; and all A/T and C/G (ambiguous) SNVs, to facilitate merg-
ing with additional datasets (see below). After sample- and SNV-level 
quality control, a total of 426 individuals and 14,406,889 SNVs were 
available for analyses.

Additional datasets. The cleaned joint dataset was merged with data 
from four additional African datasets (Supplementary Table 22). We ap-
plied the same individual and SNV quality control parameters as above 
to each of the additional datasets, retaining SNVs that were common to 
all datasets in subsequent merging. To maximize the number of SNVs 
available for each of the subsequent analyses, we merged a variety of 
different populations for the various studies outlined below.

Principal component analysis. For the initial principal component 
analysis (PCA), we merged all currently available WGS data for African 
populations regardless of depth of coverage (Supplementary Table 22). 
We performed linkage disequilibrium pruning on our merged dataset 
using PLINK (v.1.90)49 to remove correlated (r2 > 0.15) single nucleotide 
polymorphisms (SNPs) in a 1,000-SNP window, advancing by 10 SNPs 
at a time. The pruned dataset contained 1,013,758 SNPs and 1,253 in-
dividuals with a genotype call rate of 99.9%. We used the smartPCA 
program from EIGENSOFT50 to perform PCA on the pruned dataset and 
the Genesis software51 for PCA visualization (Supplementary Table 23).

Admixture analysis. For the admixture analysis, in addition to the 
African WGS data, we merged our joint dataset with existing African 
genotyping array datasets (Supplementary Table 22). We carried out 
quality control and pruning of the merged dataset as described above. 
We ran ADMIXTURE (v.1.3.0)19 50 times with a random seed for each 
value of K from 2 to 15. We generated ADMIXTURE cross-validation 
error estimates to determine the optimal value of K. Admixture runs 
were merged and summarized using both the FullSearch and Greedy 
algorithm and G pairwise similarity statistic in CLUMPP (v.1.1.2)52. The 
results of the greedy algorithm are shown. The Genesis software was 
used for PCA and admixture visualization of this dataset.

Procrustes and FST analyses. We used FST to estimate the pairwise dis-
tance between the various African populations (Supplementary Fig. 3), 
and then implemented PROCRUSTES53 using an in-house-generated 
script (see ‘Code availability’) to evaluate the correlation between 
geographical distances and FST-based genetic distances. We used the 
function distVincentyEllipsoid in the R package geosphere (v.1.5-7) to 
estimate great circle distances between the geographical midpoints 
of those countries for which individuals were recruited from across 
the country, and regional or city midpoints for recruitments that were 
limited to a specific geographical location. FST was estimated using 
smartPCA for the joint dataset in EIGENSOFT50, principal coordinate 
analysis was performed on the geographical and genetic distance ma-
trices, and then the test statistic was constructed as described pre-
viously53. Finally, we established the null distribution by randomly 
permuting the labels on the FST matrix. For the test of all populations, 
we generated 1 x 107 permutations; for the test of only NC speakers, we 
generated 1 × 109 permutations. Permuted distributions were used to 
derive empirical P values.

Testing for the presence of admixture. We next tested for the pres-
ence of admixture. To further explore and corroborate the admixture 
events observed in the previous approaches we used a formal test for 
admixture using the f3-statistic. As we were interested in exploring 
admixture events on a regional scale, and to maintain the highest reso-
lution in terms of the number of SNPs, we generated four datasets for 
this analysis. The datasets represented population groups from west, 
central-west, east and south Africa; f3-statistics were generated for all 
possible combinations of populations using both TreeMix threepop 
(v.1.13)54 and Admixtools qp3pop (v.1.0)20. In both cases, a negative 

f3-statistic coupled with a corresponding high negative z-score was 
considered to be supporting evidence for the admixture event.

Admixture dating. To provide further insights into the historical con-
text of the admixture events, we attempted to date some of the events 
based on the four regional datasets described in the previous section. 
We used MALDER (v.1.0) (https://github.com/joepickrell/malder)55—a 
modified version of ALDER22—which is able to predict the occurrence of 
multiple admixture events in a test population. We tested for specific 
admixture events between our joint population dataset and additional 
reference populations informed by the results from the admixture 
analysis. The minimum genetic distance to start curve fitting was set 
to 0.005 cM to account for short-range linkage disequilibrium between 
African populations, together with the (Rutgers v.3) recombination ge-
netic map. Significant results were assessed based on the amplitude of 
the fitted linkage disequilibrium curves and the corresponding z-scores.

IBD sharing distance. To investigate the distribution of IBD segments 
shared between the different NC populations, we used the program Re-
fined IBD56 in Beagle 4.1 (Supplementary Table 23). The merged dataset 
(consisting of 590,914 SNPs and 396 individuals) used in this analysis 
included select populations from Trypanogen, H3A-Baylor, and two 
previously published studies9,14. Default refined IBD parameters were 
used to estimate the shared IBD segments between pairs of individuals. 
The IBD segments were further filtered by implementing the program 
merge-ibd-segments, to remove breaks and short gaps in IBD segments 
(>0.6 cM in length). The output of merge-ibd-segments was used to 
compute the average pairwise IBD sharing between the different NC 
groups by using the previously described expression57.

Admixture masking. To identify the contribution of non-Bantu- 
speaking ancestry in the observed population structure, we estimated 
non-NC local ancestry in BOT using an estimate from RFMix_v258. Phas-
ing of the dataset was done using the Sanger imputation server (https://
imputation.sanger.ac.uk/) and the African Genome Resource reference 
panel. Data from the Juǀ’hoansi, the Gǀwi, Gǁana and baKgalagadi, the 
ǂKhomani and Karretjie populations14, were used as the KS source, YRI as 
the Bantu-speaking source and CEU as the Eurasian source (parameters 
used: -forward-backward -e 2). Regions with high KS ancestry (>20%, 
and at least 25 SNPs) in BOT were identified and masked from the full 
dataset, after which the PCA was regenerated. Similarly, we identified 
and masked regions with more than 20% east African ancestry in BRN 
(identified using Tubu from Chad59 as the east African source popula-
tion) and repeated the PCA. As the number of SNVs included in the analy-
sis had the potential to affect the principal component estimates, we 
thinned the whole dataset to 150,000, linkage-disequilibrium-pruned 
SNVs for comparisons with the masked datasets.

Admixture model testing. We next tested the admixture model. We 
used qpGraph20 to test various alternative models of gene flow to iden-
tify the best possible central African NC-speaker population for ad-
mixture in southern and east African populations (see Supplementary 
Note 1.3 for details.)

Mitochondrial and Y-chromosome haplogroups. We then analysed 
the mitochondrial and Y-chromosome haplogroups. Haplogrep260 
was used to identify mitochondrial haplotypes for each individual. 
Y-chromosome haplogroup analysis was done using the AMY-tree al-
gorithm and tool61. For each sample, the variants detected from the 
WGS VCF files were extracted and converted into the correct format 
before input into the AMY-tree program.

Runs of homozygosity. We also investigated runs of homozygosity 
(autozygosity). For the identification of runs of homozygosity (ROHs), 
PLINK v.1.949 was used with the following parameters: a minimum of 
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100 SNVs with at least one SNV per 50 kb on average and a maximum of 1 
heterozygous call and 5 missing calls. A window size of 100 kb was used 
to scan for ROHs across the genome. Following a previously published 
approach62, the ROH segments—depending on genomic length—were 
separated into three classes: short ROHs (<500 kb, class A), which most 
likely represent homozygosity for ancient haplotypes; intermediate 
ROHs (500 kb–1.5 Mb, class B), which are most likely the result of distant 
relatedness within a population; and long ROHs (>1.5 Mb, class C), which 
are suggestive of assortative mating. To provide a comparison of the 
ROH distribution across Africa in addition to the seven populations 
from our study, five African populations (YRI, LWK, ESN, MSL and GWD 
(see Supplementary Table 22 for definitions)) from the 1000G dataset 
and populations (BAG, ZUL and Ethiopian) from AGVP were included 
in the analysis. As the number of samples for both 1000G and AGVP 
datasets were around 100 per population, we randomly downsampled 
each population for these two datasets to 50 individuals per population. 
We generated an additional dataset with the modified PLINK param-
eter set (--homozyg-kb 300 and --homozyg-window-het 3) for better 
homogenization of the combined datasets with low and high depths 
of coverage. FHAT1 and FHAT2 were also estimated using PLINK v.1.9 
with default parameters.

Signatures of selection
Datasets. Our dataset included samples with different sequencing 
depths, which can adversely affect nucleotide diversity and allele 
frequency estimates63; therefore, the identification of signatures of 
selection was limited to samples from the H3A-Baylor dataset with a 
high depth of coverage. Samples that appeared as outliers for each 
population in the PCA and outliers in the full dataset were removed. 
Similarly, related individuals identified using the method described 
above were also excluded. Owing to a smaller sample size and high 
within-group diversity, the MAL group was excluded from this analysis. 
Genes in selected regions were identified using the Ensembl database64 
and assessed for (predicted) functional impact using the Ensembl, 
OMIM65 and GeneCards databases66 (Supplementary Table 23).

CLR scores. CLR scores were calculated using SweepFinder (imple-
mented in SWEED)27 for 10 kb non-overlapping sliding windows in each 
population. Genomic regions which have been previously shown to 
produce false-positive hits in WGS data (a custom list based on https://
sites.google.com/site/anshulkundaje/projects/blacklists and a pre-
viously published study67) along with a 1-Mb flanking sequence on 
either side were excluded to minimize the effect of sequencing-related 
artefacts. To identify a threshold for identifying extreme outliers, we 
randomly sampled 10,000 10-kb regions from the 6 populations. On 
the basis of the distribution of CLR scores in this set, we identified CLR 
scores > 49.5 to correspond a P-value cut-off of P < 0.001 and took this 
as our significance threshold.

Integrated haplotype homozygosity scores. Integrated haplotype 
homozygosity scores (iHS) for SNVs with MAF > 0.05 were estimated 
using SelScan28 in each population. For each population, the scores 
were then normalized across 40 allele frequency bins. As advised in 
previous analyses68,69, instead of focusing on maximum iHS variants, we 
aimed to identify genomic regions with the highest fraction of extreme 
iHS-containing variants. For this, based on the background distribu-
tion of the normalized iHS scores in all of the populations we identified 
|iHS| > 2.6 to correspond to P < 0.01. For each 10-kb window that was 
scanned for the CLR analysis in a population, we measured the percent-
age of SNPs with outlier iHS scores (|iHS| > 2.6). The top 1% of windows 
with the highest percentage of outlier iHS score were considered to be 
outlier windows for each population.

PBS analysis. For the PBS analysis, we used WGR as the representa-
tive west African population, CAM as the representative central-west 

African population and BOT as the representative south African popu-
lation. FST scores for exonic SNVs with MAF > 0.01 in the dataset were 
estimated between pairs of the representative populations as well as 
with CHB (downsampled to 50 individuals) from the 1000G dataset 
using VCFtools70. We then used a previously published method30 to es-
timate population PBS between WGR and BOT, between BOT and CAM, 
and between WGR and CAM. The SNVs with highest branch lengths 
(P < 0.001) in a population compared to the other populations (one at 
a time) were considered as signals.

Integration with GTEx. Analyses for the integration with the 
Genotype-Tissue Expression (GTEx) dataset were performed as follows. 
Chromosomal positions for selected loci falling in non-coding regions 
were intersected with significant cis-expression quantitative trait loci 
(cis-eQTLs) of 49 tissues in the GTEx project by downloading version 
8 of the per-tissue cis-eQTL data from the GTEx portal71. Non-coding 
outlier regions were each annotated for the number of eQTLs contained 
for each tissue (range, 0–2). Non-coding regions with CLR scores below 
the fifth centile (n = 14,088), were then used as a ‘neutral’ (non-selected) 
background control dataset. For each tissue, a subset of regions equal 
to the number of non-coding outlier regions (n = 152) was randomly 
selected and the number of contained eQTLs tabulated. This process 
was repeated 1,000 times for each tissue to generate a quantitative 
distribution of eQTL overlaps. Then, for this initial iteration, a t-score 
was calculated for each tissue. To rank the tissues, we then repeated 
the initial iteration 1,000 times to generate a distribution of t-scores 
for each tissue. The same process was used to generate non-coding 
outlier region–eQTL distributions for each tissue in each population.

Rare and novel variation
To minimize the effect of false SNV discovery related to the low depth of 
coverage and biases that arise from use of different datasets, analyses 
of rare and novel variation were carried out using only the data with 
a high depth of coverage (HC-WGS) found in the H3A-Baylor dataset. 
Comparisons among populations were made between countries rather 
than regions or ethnic groups. For each variant, we recorded the ances-
tral allele, its derived allele frequency both at the dataset level and 
for the seven populations, its predicted effect on biological function 
following sequence ontology terms, and the predicted effect of the 
mutation using SNPEff v.4.372 (Supplementary Table 23).

Rare variant definition. We defined a rare variant as a SNV with a de-
rived allele frequency of ≤0.01; in most populations this corresponded 
to a single variant event. Allele counts were orientated as ancestral or 
derived rather than reference or alternative to avoid biases that arise 
from the construction of the reference genomes. Owing to differences 
in sample size across populations, we subsampled 24 individuals for 
each population and then built the relative site frequency spectrum 
for each effect category.

Novel variants. By definition, novel variants have not been previously 
discovered and are generally rare and often private; however, given 
the dearth of data from Africa, such variants may well be common in 
a population or set of populations. For the purposes of this analysis, 
we focused on the high-coverage H3A-Baylor dataset and defined a 
variant as ‘novel’ if the variant was not present in the dbSNP v.15073, 
ExAC5 or gnomAD v.2.0.274 databases, or the TryopanoGEN18 or SAHGP17 
datasets or if the variant was not identified in the AGVP4 dataset. We 
also excluded SNVs that were fixed in all populations but for which 
the derived allele was inferred to be the reference allele, as possible 
technical artefacts (incorrect ancestral status).

To visualize the contribution of novel variant discovery for each 
population, we plotted the number of unique novel variants identi-
fied per individual within each population, as well as the number of 
population-specific novel variants for each population. Novel variant 
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discovery was also represented as a cumulative function, in which we 
sequentially plotted the number of novel variants that were discovered 
each time a new population was included. To discriminate between 
rare and common variant discovery, we also plotted the cumulative 
number of novel variants discovered using common novel variants 
only (that is, all novel variants except the ones that were observed 
only once). Correlation between novel variant discovery and ancestry 
was calculated for the KS ancestry in BOT, RFF ancestry in CAM, east  
African ancestry in Berom and non-NC ancestry in MAL. Individual-based 
ancestry proportions were obtained from ADMIXTURE K = 6 results and 
Pearson’s correlations were determined in R.

Highly differentiated variants. Highly differentiated variants (HDVs) 
were identified by first calculating the derived allele frequency for 
variants for which the ancestral state was known and then assessing 
pairwise differences in allele frequency between populations. Al-
though a 25% frequency difference threshold has been used to identify 
HDVs across different continents1, we opted for a more-conservative 
threshold of a 40% difference in the derived allele frequency, con-
sistent with the modest population sample sizes. We visualized the 
distribution of HDVs by grouping the difference in derived allele fre-
quencies between any two populations into bins representing 0.1 
frequency and plotting the number of variants that fell in each bin. 
We also created a table of the total number of HDVs between each 
pairwise population comparison and the number of HDVs once we 
removed variants linked to HBB on chromosome 11 and HLA on chro-
mosome 6 (two regions with a large number of HDVs related to known 
selection and strong linkage disequilibrium). To infer the biological 
relevance of HDVs, the GWAS Catalog75 available on 14 October 2019 
was downloaded (https://www.ebi.ac.uk/gwas/api/search/down-
loads/alternative) under hg37 and formatted using Bedtools76. We 
then intersected HDV positions with SNP positions of genome-wide 
significant (P < 5 × 10−8), replicated GWAS hits within 50 kb of the HDV. 
The results were visualized using Circa (http://omgenomics.com/
circa/) (Supplementary Table 23). Overlapping GWAS hits and their 
corresponding experimental trait factors were then further analysed 
for biological relevance (see below).

GWAS Catalog experimental trait factor analysis. We next performed 
an experimental trait factor analysis using the GWAS Catalog. Genetic 
variants influence changes in phenotype and physiology in different 
population groups. As these groups often share similar environment 
conditions, we expect changes that are essential to adaptation to be 
conserved, even though this may be constrained by genetic capacity. At 
a molecular level, this could lead to the divergence (variation) or conver-
gence (conservation) of protein function or structure between groups. 
Experimental Factor Ontology (EFO) annotations were retrieved from 
the European Bioinformatics Institute (EBI) website (https://www.ebi.
ac.uk/ols/ontologies/efo) and those mapping to GWAS SNVs within 
50 kb of HDVs were extracted from https://www.ebi.ac.uk/gwas/docs/
file-downloads.

To elucidate potential divergent EFO annotations associated with the 
identified HDVs, we computed Kappa Statistic similarity scores between 
EFO annotations based on the population in which the associated SNV 
was found77. These similarity scores were computed on a collapsed 
EFO at level 4 with the root of the ontology assumed to be located at 
the level 0, and using only ‘process’, ‘material property’ and ‘material 
entity’ upper level concepts. Although a similarity score threshold of 
0.3 or 0.4 has been often used to identify convergent (>0.3) or divergent 
(<0.3) annotations, we opted for a stricter threshold of 0.2 based on the 
similarity score dataset of all EFO annotation pairs. Finally, we mapped 
different divergent EFO annotations to their associated proteins to 
identify enriched biological processes and molecular functions that 
reflect genomic variations among different population groups using 
the ClueGO s of tw ar e 78.

Putative LOF variation. For the analysis of putative LOF variants, 
we used a local pipeline—ALOFT79—to provide annotations for puta-
tive protein-damaging variants in protein-coding genes, including 
stop-loss, stop-gain and canonical splice sites. This class of variants 
includes those in the penultimate and last exons of genes (predicted 
to escape nonsense-mediated decay), but are most similar to vari-
ants labelled as putative LOF variants in the literature. These vari-
ants were then mapped to their respective genes using BioMart80. 
Downstream analysis was performed using online databases of dis-
ease–gene associations, including DisGenet81, eDGAR82, OMIM65 
and CTDbase83.

For the putative LOF burden analysis, lists of genes that are associated 
with or that influence influenza, HIV, malaria and hepatitis C infections 
were extracted using GeneCards66 (Supplementary Table 18). These 
lists are largely populated by genes involved in the host transcriptional 
response to infection. For each population group, we first determined 
the number of putative LOF variants in human genes directly implicated 
in the infection as defined by genecards (direct genes). The majority 
(75.3%) of putative LOF variants in influenza-associated direct genes 
were apparent population-singleton variants, with only around 13% 
being shared between populations (Supplementary Table 18). After 
extensive benchmarking (Supplementary Methods Figs. 2, 3), we chose 
to normalize the putative LOF burden in direct genes by dividing by the 
number of putative LOF variants in ‘indirect’ genes associated with the 
same infection. This was done to account for potential differences in 
mutation rate and any uncharacterized gene biases between popula-
tions. The putative LOF ratio for each population was then plotted 
against the mortality rates reported by WHO in 201633 for the infec-
tion being surveyed. The correlation between the two values was then 
calculated, and its significance measured against 1,000 iterations of 
calculated ratios using a set of random genes similar in data size to the 
direct gene list for that disease.

Medically relevant variants
The full dataset (both low- and high-coverage WGS data) was used to 
catalogue medically relevant variants.

Medically actionable variants. SNVs were first annotated against 
the list of genes included in the ACMG recommendations for report-
ing of incidental findings in clinical exome- and genome-sequencing 
data34,84. These recommendations are based on the recognition that 
in whole-exome sequencing or WGS, incidental or secondary findings 
that are unrelated to the indication for ordering the sequencing but 
of potential relevance to patient care may be found. We estimated the 
burden of ACMG gene panel version 2.0 variants, including the total 
number of alleles observed, median and range of number of alleles 
per sample, number (%) of samples that carried at least one allele, and 
genes in which variants were identified.

Clinical annotation of variants. SNVs were also annotated for clini-
cal importance using the NCBI ClinVar database (http://www.ncbi.
nlm.nih.gov/clinvar/; 20181028 version)85. ClinVar provides a freely 
available report archive of relationships between medically relevant 
variants and phenotypes. The terms for clinical significance reported 
by ClinVar are those recommended by the ACMG. These range from 
‘0-Uncertain significance’ to ‘5-Pathogenic’ and include codes such as 
‘255-Other’. In the present study, variants of interest were those clas-
sified by ClinVar as ‘Pathogenic’, which corresponds to ‘5-Pathogenic’ 
in the ASN.1 set of terms. Frequencies were estimated for the whole 
dataset and by country. Similar to the analysis of ACMG variants, the 
burden of these variants was also computed, including the total num-
ber of alleles observed, median (range) number of alleles per sample, 
number (%) of samples that carried at least one allele and genes in which 
variants were identified.
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Variants of clinical importance to African populations. We also de-
fined the burden of variants of particular clinical importance to African 
populations. Population burden and inter-population differentiation 
were determined for genetic variants related to (1) sickle cell anae-
mia (HBB); (2) trypanosomiasis and end-stage renal disease (APOL1); 
(3) glucose-6-phosphate dehydrogenase deficiency (G6PD); and  
(4) response to antiretroviral therapy with abacavir (HLA-B*5701).

Sickle cell anaemia is an autosomal recessive disorder determined 
principally by a missense mutation in the HBB gene (rs334; HbS). The 
disorder is most common in Africa, in particular west and central 
Africa, and remains one of the most-important monogenic disorders 
of clinical and public health relevance on the continent. Two cohorts 
from the H3A-Baylor dataset included individuals with homozygous 
(HbSS) sickle cell disease (CAM and FNB), and these were excluded 
from frequency estimates of the HbS allele.

Variants in APOL1 are associated with various forms of kidney dis-
ease, primarily in individuals of African ancestry and is protective 
against severe disease caused by infection with Trypanosoma brucei. 
The two major risk variants (haplotypes) are labelled G1 (defined by 
rs73885319, often in complete linkage disequilibrium with rs60910145 
(T > G)) and G2 (a 6-bp indel, rs143830837). The risk genotype is the 
recessive state for the diplotype that includes two risk variants: that 
is, G1/G1, G1/G2, G2/G2.

G6PD deficiency is an X-linked red cell enzymopathy that increases 
the risk of haemolysis in affected individuals. It is an important risk fac-
tor for neonatal jaundice and drug-related haemolysis. Male individuals 
have the disorder if they carry a G6PD mutation on their X chromosome 
(that is, hemizygous), whereas most affected female individuals carry 
mutations on both X chromosomes (homozygous). Although there are 
over 180 known mutations in the gene, including several deleterious 
mutations, most of these mutations are rare or have a low frequency. 
The current analysis focused on the common variants definitively 
associated with G6PD deficiency in sub-Saharan Africa, namely, the 
202A/376G G6PD A allele (that is, the G6PD A-deficiency states associ-
ated with either rs1050828 (c.202G>A) or rs1050829 (c.376A>G). We 
also examined a set of 11 G6PD variants recently shown to be associated 
with protection from severe malaria34.

The rs2395029 SNP in HLA-B*5701 mediates an adverse allergic 
response to HIV therapy with abacavir and is found in up to 5% of indi-
viduals of European ancestry.

For each of the vignette variants, overall African frequencies and 
frequencies by country or ethnolinguistic grouping were estimated.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
WGS data used in this paper are available through the European 
Genome-phenome Archive (EGA) under study accession number: 
EGAS00001002976. The data include genomic (BAMs and VCFs) and 
minimal phenotypic data from appropriately consented individuals. 
In compliance with current international standards to protect par-
ticipant confidentiality, the H3Africa-generated data are available to 
bona fide researchers within the wider scientific community through 
a controlled access process. Some of the DNA samples are archived in 
H3Africa biorepositories as part of the H3Africa Consortium agree-
ment. To gain access to data in the EGA or biospecimens in the biore-
positories, requests must be submitted to dbac@h3africa.org, or 
requested through the H3Africa Data and Biospecimen Catalogue 
(https://catalogue.h3africa.org). Requests are subject to approval by 
an independent H3Africa Data and Biospecimen Access Committee 
(DBAC). Novel SNVs identified and reported here will be deposited 

into dbSNP. The H3Africa Initiative is committed to providing research 
data generated by the H3Africa research projects to the entire research 
community. H3Africa research seeks to promote fair collaboration 
between scientists in Africa and those from elsewhere. The H3Africa 
Consortium Data Sharing, Access and Release Policy outlines a policy 
framework that places a firm focus on African leadership and capac-
ity building as guiding principles for African genomics research. The 
policy and related documents are available here: https://h3africa.org/
index.php/consortium/consortium-documents/.

Code availability
Code for the implementation of PROCRUSTES is available at https://
github.com/dshriner/Procrustes, licensed under the GNU General 
Public License v.3.0.
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Extended Data Fig. 1 | ADMIXTURE clustering analysis of H3A-WGS 
samples. Existing African datasets from AGVP4, 1000 Genomes project2, 
SAHGP17 and previously published studies9,14 and a representative European 

population (CEU) from the 1000 Genomes Project are included as reference 
panels. K values from 2 to 10 are shown. See Supplementary Table 22 for 
definitions of abbreviations.



Extended Data Fig. 2 | Characteristics of known and regional selected loci. 
a, CLR score distributions in known selected genes (significant 
population-specific outlier scores (that is, with P < 0.01) for the window 
overlapping the gene are indicated by an asterisk). b, Summary of PBS 
comparisons. Genes with longer branch lengths in WGR compared to BOT and 

CAM are circled in blue; longer branch lengths in BOT and CAM in comparison 
to the other two populations are encircled in brown and dark green, 
respectively. c, Overlap between the proportion of KS ancestry (%) and CLR 
score across chromosome 6 in BOT.
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Extended Data Fig. 3 | See next page for caption.



Extended Data Fig. 3 | Highly divergent and putative LOF variants. a, EFO 
traits from the GWAS catalogue reflected by highly divergent SNVs within 50 kb 
of GWAS hits. From left to right, ribbons illustrate the relative representation of 
variants across pairwise population comparisons, GWAS ancestry, EFO top 
label, EFO trait or disease label, and disease or traits mapped to the EFO label.  
b, Distribution and sharing of common (MAF > 5%) putative LOF variants 
between two or more populations (coloured bars) and between all populations 
surveyed (red bars). c, Specific disease classes to which 5% or more genes  
with putative LOF variants shared between all populations were mapped.  
d, Correlation (Pearson) between WHO mortality rates for influenza and ratio 
of putative LOF variants in direct (n = 181) compared with indirect (n = 1842) 
influenza-associated genes (red solid line, all populations; red dotted line,  

west African populations). The blue dotted line represents the mean 
correlation for the same correlations generated using 1,000 permutations of 
random genes; the s.e.m. for all populations is shown in grey. e, Correlation 
statistics (adjusted R2) for the putative LOF ratio for genes related to hepatitis  
C (HCV, n = 190 direct genes, n = 1837 indirect genes), HIV(n = 724 direct genes, 
n = 1351 indirect genes), influenza in west African countries (CAM, MAL, FNB 
and BRN), and malaria (n = 484 direct genes, n = 1554 indirect genes) are shown 
as red dots against the box plot distributions of correlation statistics (adjusted 
R2) generated using 1,000 permutations of random genes (Supplementary 
Table 18). Box plots show the median value (centre line), whiskers indicate the 
limits of the highest (fourth) and lowest (first) quartiles of the data; distribution 
outliers are shown as dots.
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Extended Data Fig. 4 | Distribution of G6PD variants and ClinVar 
pathogenic variants across H3Africa populations. a, Frequency distribution 
of pathogenic and likely pathogenic variants (n = 287) in H3Africa HC-WGS 
populations. Disease genes with variants that had an allele frequency > 5% 
across multiple populations (shown in Fig. 4c) are highlighted. Box plots show 
the median value (centre line), whiskers indicate the limits of the highest 

(fourth) and lowest (first) quartiles of the data; distribution outliers are shown 
as dots. b, Relative frequencies of 11 G6PD deficiency-associated alleles within 
each population separated by sex. G6PD A− 202A and 376G refer to the 
A-deficiency associated with either rs1050828 (c.202G>A) or rs1050829 
(c.376A>G) (MIM 305900).
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