Camino, E., Cruz-Lopez, F., de Juan, L., Dominguez, L., Shiels, B. and Coultous, R. M. (2020) Phylogenetic analysis and geographical distribution of Theileria equi and Babesia caballi sequences from horses residing in Spain. Ticks and Tick-borne Diseases, 11(6), 101521. (doi: $\underline{10.1016 / j . t t b d i s .2020 .101521) . ~}$

This is the author's final accepted version.
There may be differences between this version and the published version. You are advised to consult the publisher's version if you wish to cite from it.

http://eprints.gla.ac.uk/224440/

Deposited on: 16 September 2021

Enlighten - Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

Original Research
Phylogenetic analysis and geographical distribution of Theileria equi and Babesia caballi sequences from horses residing in Spain.

Eliazar Camino ${ }^{\text {a,b* }}$, Fatima Cruz-Lopez ${ }^{\text {a }}$, Lucia de Juan ${ }^{\text {a,b }}$, Lucas Dominguez ${ }^{\text {a,b }}$, Brian Shiels ${ }^{\text {c }}$ and Robert M Coultous ${ }^{\mathrm{c}}$.

Affiliations

${ }^{a}$ VISAVET Health Surveillance Centre, Universidad Complutense, Madrid, Spain.
${ }^{b}$ Animal Health Department, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain.
${ }^{c}$ Institute of Biodiversity Animal Health and Comparative Medicine. College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom.
*Corresponding author. Eliazar Camino.
E-mail address: eliazar.camino@ucm.es
Present address: VISAVET Health Surveillance Centre, Universidad Complutense, Madrid, Spain. Tel.: +34 13944096. Fax.: +34 13943795.

Abstract

The intraerythrocytic protozoans Theileria equi and Babesia caballi are the causative agents of equine piroplasmosis (EP), one of the most important equine tick-borne diseases due to its significant impact on global international horse trade. Although EP is known to be endemic in Spain, previous phylogenetic studies have only been conducted for limited geographical regions. Therefore, the objective of this study was to evaluate the genetic diversity and distribution of these parasite species nationwide. This was performed by amplification of the 18 S small subunit (SSU) rRNA gene from 100 EP positive equine blood samples using a nested PCR protocol, and sequencing the obtained amplicons. Seventy-seven T. equi and six B. caballi isolates were successfully sequenced and phylogenetic analysis revealed that the T. equi isolates grouped into the previously described clades $\mathrm{A}(\mathrm{n}=21 / 77), \mathrm{D}(\mathrm{n}=1 / 77)$ and $\mathrm{E}(\mathrm{n}=$ $55 / 77$), while B. caballi isolates were placed into clades A $(\mathrm{n}=5 / 6)$ and $B(\mathrm{n}=1 / 6)$. Isolates from T. equi clade D and B. caballi clade B have not previously been reported in Spain. A greater intra-clade diversity (97.3-98.3\% identity) was observed between T. equi clade E isolates compared to those within clade A (99.7-100\% identity). Additionally, a multivariable logistic regression model was used to analyse associations between the clade of T. equi infection and available epidemiological data. Horses residing in Spanish northern regions were statistically more likely to be infected with T. equi clade $\mathrm{E}(\mathrm{p}=0.01$). We conclude that while extensive sequence variation of equine piroplasms exists in Spanish infected horses, a requirement for increased equine movement controls between Spain and EP-endemic countries should be considered.

Keywords: Piroplasmosis; horses; nPCR; genotypes; Spain.

1. Introduction

Theileria equi and Babesia caballi are the primary pathogens of the intra-erythrocytic Apicomplexan parasitic disease, equine piroplasmosis (EP) (Wise et al., 2014). Natural transmission of EP occurs via specific ixodid tick vectors (Scoles and Ueti, 2015), of which Ixodes, Haemaphysalis, Dermacentor and Rhipicephalus species have been described in Spain (Nagore et al., 2004), although iatrogenic infection through the use of contaminated hypodermic needles or blood transfusions is also possible (Short et al., 2012).

EP is widespread worldwide and is of great economic importance to the Spanish equine industry (Camino et al., 2019b), not just due to the impact of acute clinical disease, but also because chronically infected horses often become asymptomatic carriers, a status that limits their movement to EP-free countries (Dewaal, 1992; Friedhoff et al., 1990). Both T. equi and B. caballi cause similar clinical signs (Wise et al., 2014), although a recent survey of Spanish EP cases indicated a greater severity of anaemia associated with B. caballi infection (Camino et al., 2019a).

Phylogenetic analysis based on 18S SSU rRNA gene sequences has revealed the presence of multiple genotypes that segregate in up to five gene clades (A, B, C, D and E) within T. equi (Qablan et al., 2013; Qablan et al., 2012), and three gene clades (A, B and C) within B. caballi (Qablan et al., 2013). Recent work has also indicated the presence of a new species, Theileria haneyi, within clade C of the current T. equi umbrella (Knowles et al., 2018), suggesting that the observed genetic diversity may represent more than intra-species clade multiplicity.

At present, there have been limited reports describing the genetic diversity of EP in Spain. Previously, Nagore et al. (2004) described the presence of two T. equi and two B. caballi genotypes in isolates from Spanish horses. One isolate from each parasite species showed a high degree of identity with previously described Spanish T. equi (Criado-Fornelio et al.,

2003b), and B. caballi (Allsopp et al., 1994) isolates. However, the other T. equi and B. caballi isolates demonstrated greater genetic diversity (96.8 and 97.4\% identity respectively) which suggested the presence of novel genotypes (Criado-Fornelio et al., 2004). Therefore, the main goals of this study were (1) investigate the presence of T. equi and B. caballi clades currently in Spain, (2) describe the distribution of parasite clades within the country and (3) evaluate any potential epidemiological factors associated with detected species' clades.

2. Materials and methods

2.1 Sampling procedures

A total of 100 samples were selected from a larger set of 740 equine blood samples, submitted by private veterinarians from asymptomatic horses across Spain as part of a national EP prevalence survey (unpublished data). This sub-set of 100 samples was selected based on having strongly detectable parasite DNA (<35 quantification cycles $\left(\mathrm{C}_{\mathrm{q}}\right)$) when screened using a previously described multiplex real-time PCR using primers and TaqMan probes to specifically amplify the V4 hypervariable region of the 18 S rRNA gene of T. equi and B. caballi (Camino et al., 2019a). Genomic DNA was extracted from whole blood samples using the QIAamp DNA mini kit (Qiagen, Spain) and stored at $-40^{\circ} \mathrm{C}$ until analysis. A questionnaire to provide basic epidemiological data was completed by the submitting veterinarian from each sampled horse, including information regarding gender, age, breed, aptitude (purpose of use), geographical residence, tick presence at sampling and any history of de-worming or vaccination.

2.2 Nested PCR

All 100 DNA extractions were analysed by means of a Theileria/Babesia species catch-all nested PCR to amplifying a portion of the hypervariable V4 region of the 18S SSU rRNA gene.

Outer (BT1-F and BTH-1R) and inner (RLB-F2 and RLB-R2) primers were described in Criado-Fornelio et al. (2003a) and Oura et al. (2004) respectively, and the reaction conditions and PCR product visualization were conducted as described by Coultous et al. (2019a).
2.3 Purification and sequencing of PCR amplified products

PCR amplicons were purified using the QIAquick PCR Purification Kit (Qiagen, Spain), before being send to Eurofins Genomics (Germany) for Sanger sequencing.
2.4 Phylogenetic analysis

Species identification of sequences obtained in this study was achieved using the basic local alignment search tool (BLAST) and comparison with sequences deposited in the nonredundant National Center for Biotechnology Information (NCBI) database (https://blast.ncbi.nlm.nih.gov/). The MUSCLE function (Edgar, 2004), within the AliView alignment viewer and editor (Larsson, 2014), was used to compare the study sequences with those previously determined and deposited in GenBank for T. equi and B. caballi.

In order to assess the genetic diversity of both haemoparasites within the study samples, two species specific maximum likelihood phylogenetic trees were constructed using MEGA 7.0.26 software (Kumar et al., 2016). The 18S SSU rRNA gene sequences of Theileria parva (L02366) and Theileria annulata (KX375830) were included in the trees as outgroups. All sequences generated in this study were submitted to the NCBI GenBank database (accession numbers MN818861-MN818863 inclusive and MT563458-MT563531 inclusive for T. equi isolates; accession numbers MN818859, MN818860 and MT563454-MT563457 inclusive for B. caballi).
2.5 Statistical analyses

Potential associations between horse epidemiological data and phylogenetic groups were evaluated by means of a multivariable logistic regression model using the software Small STATA version 12.0, with consideration of the odds ratios (ORs) and their corresponding 95\% confidence intervals (CIs). To construct the model, epidemiological data were considered as individual variables and classified in several categories: sex (male/female), age (1-7/8-15/1626 years), breed (Iberian/cross-breed/Central-European), aptitude (breeding/sport), geographical residence (north/south of Spain), presence of ticks on the horse (yes/no), deworming (previous treatment/never treated) and vaccination programme application (previous vaccination/no vaccination). The initial model contained all variables showing p < 0.25 in the univariable screening analysis along with confounders (sex, breed, age and aptitude). The final model was constructed by retaining the variables with $\mathrm{p}<0.05$ or where their removal resulted in a significant change in the effect of other variables, indicating confounding. Collinearity between variables was checked and excluded. Biologically plausible first-order interactions were determined between significant and confounders variables. Finally, the area under the receiver operating characteristic (ROC) curve and the HosmerLemeshow goodness-of-fit test were calculated to evaluate fitting of the proposed model (Hosmer, 2000).

3. Results

3.1 EP detection by nested PCR

Nested PCR product was successfully generated and EP specific amplicons from 83 of the 100 samples sequenced. Only a single parasite species was detected in each sample.
3.2 Phylogenetic analysis of T. equi 18S rRNA gene

In total, 77 samples produced sequences identified as T. equi, and these were partitioned into three different clades (A, D and E). A representative sequence for each distinct T. equi clade detected in this study (accession numbers MN818861, MN818862 and MN818863) was selected to demonstrate this phylogenetic positioning (Figure 1). The sequences that clustered within clade A $(27.3 \%, n=21 / 77)$ shared 99.7% to 100% identity to each other (representative sequence MN818862). These sequences showed high identity (99.5-100\%) to those from previous studies in Spain (AY150062.2-AY150064.2) (Criado-Fornelio et al., 2003b), and grouped with sequences derived from samples isolated in South Africa, Brazil, Jordan and USA. Sequences clustering in clade E $(71.4 \%, \mathrm{n}=55 / 77)$ demonstrated $97.3-98.3 \%$ identity to each other (representative sequence MN818861), and showed high identity (99.5-100\%) with previous sequences from Spanish isolates (AY534882.1 and DQ287951.1) (Nagore et al., 2004; Criado et al., 2006), as well as isolates from China, Korea, Mongolia, Saudi Arabia and Switzerland. Notably, only one sequence obtained clustered in clade D (MN818863). This clade has not been previously reported in Spanish samples, and grouped with isolates obtained from Turkey, Palestine, Israel and Sudan. An alignment of all T. equi isolates sequenced in this study is available in Appendix A.

3.3 Phylogenetic analysis of B. caballi 18S rRNA gene

Six B. caballi isolates were successfully sequenced in total, and these were distributed across two of the three previously described B. caballi clades, with the positioning demonstrated with a representative sample from each clade (Figure 2). Five isolates (representative sequence MN818860) clustered within clade A, showing 100% identity to each other and a previously reported B. caballi isolate from Spain (AY309955.1) (Criado-Fornelio et al., 2004), and displayed high identity (99.7%) to another sequence previously reported for a Spanish isolate (AY534883.1) (Nagore et al., 2004). This clade also contains isolates in China, Mongolia, South Africa and Italy. Only one isolate (MN818859) was clustered within a second clade,
clade B, and showed high identity (97.9-100\%) to sequences of isolates from Israel, South Africa and Italy, but not with any previously reported Spanish B. caballi isolates. An alignment of all B. caballi isolates sequenced in this study is available in Appendix B.
3.4 Geographic distribution of the isolates and epidemiological data analyses

The samples in this study were collected from 12 of Spain's 17 autonomous communities; Theileria equi was detected in all the autonomous communities studied, but B. caballi was only detected in four communities (Table 1).

Figure 3 shows the geographic distribution of the detected parasite species and their representative clade types. The T. equi isolates grouped in clade E were present in all the sampled communities, however clade A parasites appear to be more restricted to central and southern communities. The singular T. equi isolate belonging to clade D was identified in Asturias, in the north of the country. Within the B. caballi isolates, all clade A sequences were only found in northern communities, whereas the single clade B isolate was detected in the far south in Andalusia.

Multivariable logistic regression analysis was performed to assess the statistical significance between T. equi clade and available epidemiological data. Since a clade D genotype was only represented by a single isolate, only clades A and E were considered in the analysis. The Hosmer-Lemeshow goodness-of-fit test indicated that the multivariable logistic regression analysis fitted the data adequately $(p=0.38)$. The area under the ROC curve was $0.86(95 \%$ CI 0.77 to 0.96), indicating that the model had good overall predictive power. Location of residence was the only variable significantly associated with the distribution of clade types (p $=0.01$). Thus, T. equi clade E was 5.6 times more likely to be detected in horses located in the north of Spain ($O R=5.6,95 \%$ CI 1.50-21.22). Furthermore, a positive association, although not statistically significant, was identified between sport horses and clade E type infection (p
$=0.07 ; \mathrm{OR}=3.70,95 \% 0.89-15.41)$. No statistical association was found between clade group and other variables tested: sex, age, breed, aptitude, presence of ticks on the horse, deworming and vaccination programme application.

The low number of B. caballi isolates obtained prevented meaningful statistical analyses of the sequences derived from these samples.

4. Discussion

This study set out to investigate the diversity and distribution of parasites that cause equine piroplasmosis in Spain. The large proportion of T. equi isolates compared to B. caballi isolates that were detected in the current study confirmed T. equi as the predominant EP parasite in Spain. This matches findings from other EP-endemic European countries such as Italy (Manna et al., 2018), France (Guidi et al., 2015) and Portugal (Ribeiro et al., 2013), as well as the situation seen in non-endemic European countries such as the UK (Coultous et al., 2019a). Although T. equi was overwhelmingly predominant in this study, it should be noted that for B. caballi natural recovery is possible, compared to the life-long asymptomatic carriers seen with T. equi infection, where parasitemia peaks may recrudesce in times of stress or immunocompromise (Bruning, 1996). Therefore, B. caballi infections are more difficult to detect in asymptomatic horses, so the real occurrence in Spain may be underrepresented in this study.

Although equi merozoite antigen (EMA-1), rhoptry associated protein (RAP-1), β-tubulin and mitochondrial cytochrome B (cytB) genes have been targeted by PCR to diagnose EP (Battsetseg et al., 2002; Montes Cortes et al., 2019; Nicolaiewsky et al., 2001), the 18S SSU rRNA gene is the most appropriate target for piroplasm identification and genetic variation analysis, primarily due to a level of sequence conservation that allows meaningful phylogenetic comparisons, and the occurrence of multiple copies within the genome (Allsopp and Allsopp,

2006; Hunfeld et al., 2008). Early studies of EP phylogeny based on this gene initially identified only two genotypes for both equine piroplasms (Nagore et al., 2004). However, further studies rapidly established the current systems of three clades for B. caballi (A-C), and five clades for T. equi (A-E) (Bhoora et al., 2009; Qablan et al., 2013; Salim et al., 2010), although recent authors have suggested combining T. equi clades B and E to give a four clade system (Hall et al., 2013; Alanazi et al., 2014; Coultous et al., 2019b). The present report indicates high heterogeneity for both hemoparasites across Spain, with the identification of isolates from three T. equi clades (A, D and E) and two B. caballi clades (A and B). This genetic variability among the T. equi and B. caballi 18 S SSU rRNA sequences has been observed in previous studies performed in European (Criado-Fornelio et al., 2004; Manna et al., 2018) and non-European countries (Bhoora et al., 2009; Campos et al., 2019).

The majority of T. equi sequences were derived from clade E, showing a relatively higher genetic diversity (97.3-98.3\% identity) between sequences compared to those isolates placed in clade A (99.7-100\% identity). Both these clades have been previously described in Spain (Criado et al., 2006; Criado-Fornelio et al., 2003a; Nagore et al., 2004). As genetic diversity will have occurred over time due to recombination or SNPs within the genome (Mans et al., 2011), the greater sequence diversity of clade E samples, combined with their greater geographical distribution, may suggest that parasites within this clade could be related to the original EP strain that became endemic in Spain. Theileria equi clade E has been notably linked to Asian countries (Alanazi et al., 2014; Munkhjargal et al., 2013; Tian et al., 2013), but has also previously been described in Europe (Liu et al., 2016). A different situation is observed in the Americas, where a predominance of clade A isolates, and absence of clade E isolates, has been reported in studies carried out in North America (Hall et al., 2013) and Brazil (Peckle et al., 2018). An absence of clade E isolates has also been reported in southern and western Africa (Bhoora et al., 2009; Coultous et al., 2019b) and the Middle-East (Ketter-Ratzon et al., 2017).

Interestingly, Criado-Fornelio et al. (2003a) previously reported PCR detection of a T. equi clade A isolate from an asymptomatic Spanish dog (AY150064.2), suggesting a reduced host specificity of the piroplasm. However, this finding has been directly criticized by Uilenberg et al. (2018), arguing that a current trend of over-reliance on highly sensitive PCR detection methods may simply be detecting the transient presence of the parasite in a dead-end host; after all evidence of parasite detection is not evidence of host competence, but may indicate a degree of host persistence.

The present study is the first to report a T. equi clade D isolate from Spain. This clade was first reported in horses in Sudan (Salim et al., 2010), and later described in Tunisia (Ros-Garcia et al., 2013), Israel (Ketter-Ratzon et al., 2017) and Turkey (Ozubek and Aktas, 2018). The known movement of horses between African countries and Spain via Morocco has been cited as a potential route for EP strain introduction (Salim et al., 2010), and may explain the route of incursion for the isolate detected in this study.

Previous Spanish studies have only reported B. caballi isolates from the currently defined clade A (Criado-Fornelio et al., 2004; Nagore et al., 2004). Our results have revealed the existence of two B. caballi clades: clade A as the predominant genotype, and a single previously unreported clade B isolate. The novel presence of this clade may indicate increased incursion of B. caballi in the Spanish horse population, as suggested by our previous work (Camino et al., 2019b). Most likley, incursion occurs as a result of the introduction of asymptomatic carriers, as freedom from piroplasmosis is not a requirement when moving horses within the European Union (EU Directive 2009/156/CE).

Although only a single piroplasmid species was identified in each sample in our study, the detection of co-infected animals was not a study goal, and their existence cannot be discounted with our methods. Equally, the presence of mixed clade infections within single samples, or
indeed the presence of undetected genotypes, cannot be ruled out. Such investigation would require additional cloning of the generated amplicons, or further molecular screening, for example using species or clade-specific probes (Coultous et al., 2019b).

Widespread distribution of T. equi clade E throughout Spain was demonstrated, a result that agrees with the findings of previous work (Criado et al., 2006). In contrast, a more restricted geographic distribution of T. equi clade A was observed with these parasites detected in just four communities (Andalusia, Castile and Leon, Extremadura and Madrid) in central and southern Spain. This geographic division was shown to be statistically significant with horses residing in Spanish northern regions more likely to be infected with T. equi clade E genotypes $(\mathrm{p}=0.01)$. Clade A also had greatest occurrence in the community of Madrid, home to the country's capital, which has a higher risk of infectious disease transmission due to the frequent movement of horses for trade and equestrian competitions (Camino et al., 2018). Due to the high trafficking of horses in this region, it is possible that clade A was first introduced through this region, and subsequently spread to neighboring regions as a result of the continued national movement of horses. However, further investigation of the isolates with additional markers and epidemiological modeling would be required to fully investigate this hypothesis.

To evaluate whether any of the T. equi clades detected present a particular risk of disease to horses in Spain we tested for association of clade type with a number of risk factors. A previous study by Manna et al. (2018) reported a statistical correlation between horse clinical status (symptomatic and asymptomatic) and the phylogenetic clades, suggesting that clade A is more associated with horses showing clinical signs. In our study, no statistically significant correlations were obtained relating to biological parameters of the horses (sex, age or breed), or the management associated factors of vaccination, deworming and tick presence. However, our results did show that infections associated with T. equi clade E are more likely to be found in horses residing in northern regions. This might be related to the species of tick vectors
endemic to these regions, as speculated by previously (Hall et al., 2013). However, no studies have been carried out to date recording the distribution of tick vectors in Spain, or the possible affinity of different T. equi competent tick species for certain parasite genotypes. Additionally, the model suggested a trend $(\mathrm{p}=0.07)$ for clade E to be more associated with sport horses than breeding animals, a result which could be explained by the frequent trips of sport horses to national competitions and the widespread distribution of clade E parasites throughout the country.

5. Conclusions

This is the first study to assess the genetic diversity of equine piroplasmid isolates circulating within the national horse population of Spain. Our results indicate the presence of T. equi and B. caballi clades previously described in other limited Spanish studies, as well as identifying new circulating T. equi and B. caballi genotypes. These newly identified genotypes are likely a consequence of the currently uncontrolled equine movement between EP-endemic countries and Spain. Following multivariable logistic regression analysis, T. equi clade E was significantly more associated with Spanish northern regions, with clade A having a more restricted geographic distribution in the south of the country. Further large-scale epidemiological studies of EP in Spain are recommended to investigate risk factors association with the different parasite genotypes and whether the horse population is at risk from incursion of parasites from clades that are not regionally common. Additionally, a national survey of tick vector distribution would be beneficial for identification of any association between parasite genotype and tick species. The currently identified genetic diversity in both T. equi and B. caballi will help to further inform both clinicians, horse owners and government officials in the selection of appropriate diagnostic tools for the detection of infected carrier horses, helping to reduce the future risk of introducing new genotypes into parasite free or endemic regions of Spain.

Acknowledgments

We are grateful to all the veterinary surgeons and stud farm owners that participated in this study.

Funding

Eliazar Camino was supported by the Grants for Predoctoral Researchers of the Complutense University of Madrid (CT27/16). Robert Coultous at the University of Glasgow is currently supported by a Horserace Betting Levy Board (HBLB) research fellowship (VET/EPDF/20191).

Animal welfare

This study was exempt from undergoing the Ethical Committee of the Veterinary Faculty, Universidad Complutense, Madrid. However, all the owners from the horses included in the study received an information sheet with the details of the study and signed an informed consent for the collection and use of the blood sample.

Conflict of interest statement

The authors declare no conflict of interest in the subject, matter or materials discussed in this manuscript.

Appendices

Appendix A. Alignment of all T. equi isolate sequences.

Appendix B. Alignment of all B. caballi isolate sequences.

References

Alanazi, A.D., Said, A.E., Morin-Adeline, V., Alyousif, M.S., Slapeta, J., 2014. Quantitative PCR detection of Theileria equi using laboratory workflows to detect asymptomatic persistently infected horses. Vet Parasitol 206, 138-145. https://doi.org/10.1016/j.vetpar.2014.09.019
Allsopp, M.T., Cavalier-Smith, T., De Waal, D.T., Allsopp, B.A., 1994. Phylogeny and evolution of the piroplasms. Parasitology 108 (Pt 2), 147-152. https://doi.org/10.1017/S0031182000068232
Allsopp, M.T.E.P., Allsopp, B.A., 2006. Molecular sequence evidence for the reclassification of some Babesia species. Annals of the New York Academy of Sciences 1081, 509-517. https://doi.org/10.1196/annals. 1373.076
Battsetseg, B., Lucero, S., Xuan, X., Claveria, F.G., Inoue, N., Alhassan, A., Kanno, T., Igarashi, I., Nagasawa, H., Mikami, T., Fujisaki, K., 2002. Detection of natural infection of Boophilus microplus with Babesia equi and Babesia caballi in Brazilian horses using nested polymerase chain reaction. Vet Parasitol 107, 351-357. https://doi.org/10.1016/S0304-4017(02)00131-0
Bhoora, R., Franssen, L., Oosthuizen, M.C., Guthrie, A.J., Zweygarth, E., Penzhorn, B.L., Jongejan, F., Collins, N.E., 2009. Sequence heterogeneity in the 18S rRNA gene within Theileria equi and Babesia caballi from horses in South Africa. Vet Parasitol 159, 112-120. https://doi.org/10.1016/j.vetpar.2008.10.004
Bruning, A., 1996. Equine piroplasmosis an update on diagnosis, treatment and prevention. Br Vet J 152, 139-151.
https://doi.org/10.1016/S0007-1935(96)80070-4
Camino, E., de la Cruz, M.L., Dominguez, L., Carvajal, K.A., Fores, P., de Juan, L., Cruz-Lopez, F., 2018. Epidemiological situation of the exposure to agents causing equine piroplasmosis in Spanish purebred horses in Spain: seroprevalence and associated risk factors. J Equine Vet Sci 67, 8186. https://doi.org/10.1016/j.jevs.2018.03.012
Camino, E., Dorrego, A., Carvajal, K.A., Buendia-Andres, A., de Juan, L., Dominguez, L., Cruz-Lopez, F., 2019a. Serological, molecular and hematological diagnosis in horses with clinical suspicion of equine piroplasmosis: pooling strengths. Vet Parasitol 275, 108928. https://doi.org/10.1016/j.vetpar.2019.108928
Camino, E., Pozo, P., Dorrego, A., Carvajal, K.A., Buendia, A., Gonzalez, S., de Juan, L., Dominguez, L., Cruz-Lopez, F., 2019b. Importance of equine piroplasmosis antibody presence in Spanish horses prior to export. Ticks Tick Borne Dis, 101329. https://doi.org/10.1016/j.ttbdis.2019.101329
Campos, J.B.V., Andre, M.R., Goncalves, L.R., Freschi, C.R., Santos, F.M., de Oliveira, C.E., Piranda, E.M., de Andrade, G.B., Macedo, G.C., Machado, R.Z., Herrera, H.M., 2019. Assessment of
equine piroplasmids in the Nhecolandia sub-region of Brazilian Pantanal wetland using serological, parasitological, molecular, and hematological approaches. Ticks Tick Borne Dis 10, 714-721.
https://doi.org/10.1016/j.ttbdis.2019.03.002
Coultous, R.M., Phipps, P., Dalley, C., Lewis, J., Hammond, T.A., Shiels, B.R., Weir, W., Sutton, D.G.M., 2019a. Equine piroplasmosis status in the UK: an assessment of laboratory diagnostic submissions and techniques. Vet Rec 184, 95. http://dx.doi.org/10.1136/vr. 104855
Coultous, R. M., McDonald, M., Raftery, A. G., Shiels, B. R., Sutton, D. G. M., Weir, W. 2019b. Analysis of Theileria equi diversity in The Gambia using a novel genotyping method. Transbound Emerg Dis, 53, 385. https://doi.org/10.1111/tbed. 13454
Criado, A., Martinez, J., Buling, A., Barba, J.C., Merino, S., Jefferies, R., Irwin, P.J., 2006. New data on epizootiology and genetics of piroplasms based on sequences of small ribosomal subunit and cytochrome b genes. Vet Parasitol 142, 238-247. https://doi.org/10.1016/j.vetpar.2006.07.004
Criado-Fornelio, A., Gonzalez-del-Rio, M.A., Buling-Sarana, A., Barba-Carretero, J.C., 2004. The "expanding universe" of piroplasms. Vet Parasitol 119, 337-345. https://doi.org/10.1016/j.vetpar.2003.11.015
Criado-Fornelio, A., Martinez-Marcos, A., Buling-Sarana, A., Barba-Carretero, J.C., 2003a. Molecular studies on Babesia, Theileria and Hepatozoon in southern Europe. Part I. Epizootiological aspects. Vet Parasitol 113, 189-201. https://doi.org/10.1016/S0304-4017(03)00078-5
Criado-Fornelio, A., Martinez-Marcos, A., Buling-Sarana, A., Barba-Carretero, J.C., 2003b. Molecular studies on Babesia, Theileria and Hepatozoon in southern Europe. Part II. Phylogenetic analysis and evolutionary history. Vet Parasitol 114, 173-194. https://doi.org/10.1016/S0304-4017(03)00141-9
DeWaal, D.T., 1992. Equine Piroplasmosis - a Review. Brit Vet J 148, 6-14. https://doi.org/10.1016/0007-1935(92)90061-5
Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res, 32(5), 1792-1797. https://doi.org/10.1093/nar/gkh340
Friedhoff, K.T., Tenter, A.M., Muller, I., 1990. Haemoparasites of equines: impact on international trade of horses. Rev Sci Tech 9, 1187-1194. http://dx.doi.org/10.20506/rst.9.4.535
Guidi, E., Pradier, S., Lebert, I., Leblond, A. (2015). Piroplasmosis in an endemic area: analysis of the risk factors and their implications in the control of Theileriosis and Babesiosis in horses. Parasit Res, 114(1), 71-83. https://doi.org/10.1007/s00436-014-4161-9
Hall, C.M., Busch, J.D., Scoles, G.A., Palma-Cagle, K.A., Ueti, M.W., Kappmeyer, L.S., Wagner, D.M., 2013. Genetic characterization of Theileria equi infecting horses in North America: evidence for a limited source of U.S. introductions. Parasit Vectors 6, 35. https://doi.org/10.1186/1756-3305-6-35
Hosmer, D.W., Lemeshow, S., 2000. Applied Logistic Regression. Second Ed. Wiley Interscience Press, New York, USA, pp.143-188.
Hunfeld, K.P., Hildebrandt, A., Gray, J.S., 2008. Babesiosis: recent insights into an ancient disease. Int J Parasitol 38, 1219-1237. https://doi.org/10.1016/j.ijpara.2008.03.001
Ketter-Ratzon, D., Tirosh-Levy, S., Nachum-Biala, Y., Saar, T., Qura'n, L., Zivotofsky, D., Abdeen, Z., Baneth, G., Steinman, A., 2017. Characterization of Theileria equi genotypes in horses in Israel, the Palestinian Authority and Jordan. Ticks Tick Borne Dis 8, 499-505.
https://doi.org/10.1016/j.ttbdis.2017.02.010
Knowles, D.P., Kappmeyer, L.S., Haney, D., Herndon, D.R., Fry, L.M., Munro, J.B., Sears, K., Ueti, M.W., Wise, L.N., Silva, M., Schneider, D.A., Grause, J., White, S.N., Tretina, K., Bishop, R.P., Odongo, D.O., Pelzel-McCluskey, A.M., Scoles, G.A., Mealey, R.H., Silva, J.C., 2018. Discovery of a novel species, Theileria haneyi n. sp., infective to equids, highlights exceptional genomic diversity within the genus Theileria: implications for apicomplexan parasite surveillance. Int J Parasitol 48, 679-690.
https://doi.org/10.1016/j.ijpara.2018.03.010
Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33, 1870-1874.
https://doi.org/10.1093/molbev/msw054
Larsson, A. (2014). AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics, 30(22), 3276-3278. https://doi.org/10.1093/bioinformatics/btu531
Liu, Q., Meli, M. L., Zhang, Y., Meili, T., Stirn, M., Riond, B., Weibelb, B., Hofmann-Lehmann, R., 2016. Sequence heterogeneity in the 18 S rRNA gene in Theileria equi from horses presented in Switzerland. Vet Parasitol 221, 24-29. http://doi.org/10.1016/j.vetpar.2016.03.003
Manna, G., Cersini, A., Nardini, R., Bartolome Del Pino, L.E., Antognetti, V., Zini, M., Conti, R., Lorenzetti, R., Veneziano, V., Autorino, G.L., Scicluna, M.T., 2018. Genetic diversity of Theileria equi and Babesia caballi infecting horses of Central-Southern Italy and preliminary results of its correlation with clinical and serological status. Ticks Tick Borne Dis 9, 12121220. https://doi.org/10.1016/j.ttbdis.2018.05.005
Mans, B.J., Pienaar, R., Latif, A.A., Potgieter, F.T., 2011. Diversity in the 18 S SSU rRNA V4 hypervariable region of Theileria spp. in Cape buffalo (Syncerus caffer) and cattle from southern Africa. Parasitology 138, 766-779. https://doi.org/10.1017/S0031182011000187
Montes Cortes, M.G., Fernandez-Garcia, J.L., Habela Martinez-Estellez, M.A., 2019. A multinested PCR for detection of the equine piroplasmids Babesia caballi and Theileria equi. Ticks Tick Borne Dis 10, 305-313. https://doi.org/10.1016/j.ttbdis.2018.11.008
Munkhjargal, T., Sivakumar, T., Battsetseg, B., Nyamjargal, T., Aboulaila, M., Purevtseren, B., Bayarsaikhan, D., Byambaa, B., Terkawi, M.A., Yokoyama, N., Igarashi, I., 2013. Prevalence and genetic diversity of equine piroplasms in Tov province, Mongolia. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases 16, 178-185. https://doi.org/10.1016/j.meegid.2013.02.005
Nagore, D., Garcia-Sanmartin, J., Garcia-Perez, A.L., Juste, R.A., Hurtado, A., 2004. Detection and identification of equine Theileria and Babesia species by reverse line blotting: epidemiological survey and phylogenetic analysis. Vet Parasitol 123, 41-54. https://doi.org/10.1016/j.vetpar.2004.04.010
Nicolaiewsky, T.B., Richter, M.F., Lunge, V.R., Cunha, C.W., Delagostin, O., Ikuta, N., Fonseca, A.S., da Silva, S.S., Ozaki, L.S., 2001. Detection of Babesia equi (Laveran, 1901) by nested polymerase chain reaction. Vet Parasitol 101, 9-21. https://doi.org/10.1016/S0304-4017(01)00471-X
Oura, C.A., Bishop, R.P., Wampande, E.M., Lubega, G.W., Tait, A., 2004. Application of a reverse line blot assay to the study of haemoparasites in cattle in Uganda. Int J Parasitol 34, 603-613. https://doi.org/10.1016/j.ijpara.2003.12.012
Ozubek, S., Aktas, M., 2018. Genetic diversity and prevalence of piroplasm species in equids from Turkey. Comp Immunol Microbiol Infect Dis 59, 47-51.
https://doi.org/10.1016/j.cimid.2018.08.005
Peckle, M., Pires, M.S., Silva, C.B.D., Costa, R.L.D., Vitari, G.L.V., Senra, M.V.X., Dias, R.J.P., Santos, H.A., Massard, C.L., 2018. Molecular characterization of Theileria equi in horses from the state of Rio de Janeiro, Brazil. Ticks Tick Borne Dis 9, 349-353. https://doi.org/10.1016/j.ttbdis.2017.11.011
Qablan, M.A., Obornik, M., Petrzelkova, K.J., Sloboda, M., Shudiefat, M.F., Horin, P., Lukes, J., Modry, D., 2013. Infections by Babesia caballi and Theileria equi in Jordanian equids: epidemiology and genetic diversity. Parasitology 140, 1096-1103. https://doi.org/10.1017/S0031182013000486
Qablan, M.A., Sloboda, M., Jirku, M., Obornik, M., Dwairi, S., Amr, Z.S., Horin, P., Lukes, J., Modry, D., 2012. Quest for the piroplasms in camels: identification of Theileria equi and Babesia caballi in Jordanian dromedaries by PCR. Vet Parasitol 186, 456-460. https://doi.org/10.1016/j.vetpar.2011.11.070
Ribeiro, A. J., Cardoso, L., Maia, J. M., Coutinho, T., \& Cotovio, M. (2013). Prevalence of Theileria equi, Babesia caballi, and Anaplasma phagocytophilum in horses from the north of Portugal. Parasit Res, 112(7), 2611-2617. https://doi.org/10.1007/s00436-013-3429-9
Ros-Garcia, A., M'Ghirbi, Y., Hurtado, A., Bouattour, A., 2013. Prevalence and genetic diversity of piroplasm species in horses and ticks from Tunisia. Infect Genet Evol 17, 33-37. https://doi.org/10.1016/j.meegid.2013.03.038
Salim, B., Bakheit, M.A., Kamau, J., Nakamura, I., Sugimoto, C., 2010. Nucleotide sequence heterogeneity in the small subunit ribosomal RNA gene within Theileria equi from horses in Sudan. Parasitol Res 106, 493-498. https://doi.org/10.1007/s00436-009-1691-7
Scoles, G. A., \& Ueti, M. W. (2015). Vector ecology of equine piroplasmosis. Annu Rev Entomol, 60(1), 561-580. https://doi.org/10.1146/annurev-ento-010814-021110
Short, M. A., Clark, C. K., Harvey, J. W., Wenzlow, N., Hawkins, I. K., Allred, D. R., et al. (2012). Outbreak of equine piroplasmosis in Florida. J Am Vet Med Assoc, 240(5), 588-595. https://doi.org/10.2460/javma.240.5.588
Tian, Z.C., Liu, G.Y., Yin, H., Luo, J.X., Guan, G.Q., Luo, J., Xie, J.R., Shen, H., Tian, M.Y., Zheng, J.F., Yuan, X.S., Wang, F.F., 2013. RPS8--a new informative DNA marker for phylogeny of Babesia and Theileria parasites in China. PloS one 8, e79860. https://doi.org/10.1371/journal.pone. 0079860
Uilenberg, G., Gray, J., Kahl, O. 2018. Research on Piroplasmorida and other tick-borne agents: Are we going the right way? Ticks Tick-Borne Dis, 9(4), 860-863. https://doi.org/10.1016/j.ttbdis.2018.03.005
Wise, L.N., Pelzel-McCluskey, A.M., Mealey, R.H., Knowles, D.P., 2014. Equine piroplasmosis. Vet Clin North Am Equine Pract 30, 677-693. https://doi.org/10.1016/j.cveq.2014.08.008

Figure legends

Figure 1. A maximum likelihood tree of Theileria equi isolates based on sequences derived from the amplified 18S SSU rRNA V4 hypervariable region; Theileria equi sequences reported previously are denoted by GenBank accession number and country of isolation. Bold triangles refer to sequences obtained from the present study. Numbers above the branches correspond to bootstrap values (1000 replications). Previously described clades (A-E) are highlighted.

Figure 2. A maximum likelihood tree of Babesia caballi isolates based on sequences derived from the amplified 18S SSU rRNA V4 hypervariable region; Babesia caballi sequences reported previously are denoted by GenBank accession number and country of isolation. Bold triangles refer to sequences obtained in the present study. Numbers above the branches correspond to bootstrap values (1000 replications). Previously described clades (A-C) are highlighted.

Figure 3. The geographic distribution of Theileria equi and Babesia caballi clade types within the sampled communities across Spain. The abbreviations of the autonomous communities are expanded in Table 1.

Table 1. A breakdown by community of the total number of samples analysed, and the parasite clades detected.

Communities	Number of samples collected	T. equi-clade	B. caballi-clade
Andalusia	22	$\mathrm{~A}, \mathrm{E}$	B
Asturias	17	D, E	A
Basque Country	4	E	-
Canary Islands	1	E	A
Cantabria	12	E	A, E
Castile and Leon	16	E	A
Catalonia	2	$\mathrm{~A}, \mathrm{E}$	-
Extremadura	5	E	-
Galicia	4	$\mathrm{~A}, \mathrm{E}$	-
Madrid	9	E	E
Navarre	2	-	
Valencia			

Appendix A - Alignment of all T. equi isolate sequences

MN818863_D MT563469_A MT563458 A MT563459_A MT563460_A MT563461_A MN818862 A MT563462_A MT563463 A MT563464_A MT563465_A MT563466_A MT563467 ${ }^{\text {-A }}$ MT563468_A MT563470_A MT563471_A MT563472 ${ }^{\text {A }}$ MT563474 A MT563475_A MT563476 A MT563477_A MT563473_A MT563493_E MT563527 ${ }^{-}$E MT563503_E MT563526_E MT563478_E MT563479_E MT563480_E MT563481_E MT563482_E MT563483_E MT563484_E MT563485_E MT563486 E MT563487_E MT563489_E MT563491_E MT563492_E MT563494_E MT563495_E MT563496_E MT563497_E MT563498_E MT563499_E MT563500_E MT563501_E MT563502 E MT563504_E MT563505_E MT563506_E MT563507_E MT563508_E MT563509_E MT563510_E MT563511_E MT563512_E MT563513_E MT563514_E MT563515_E MT563516_E MT563517_E MT563518_E MT563519_E MN818861_E MT563520_E MT563521_E MT563522_E MT563523 E MT563524_E MT563525_E MT563528_E MT563529_E MT563530_E MT563531_E MT563488_E MT563490_E
\qquad

GGAGGGCAAGTCTGGTGCCAGCAGCCGCGGTAATTCCAGCTCCA GGAGGGCAAGTCTGGTGCCAGCAGCCGCGGTAATTCCAGCTCCA

Appendix A - Alignment of all T. equi isolate sequences

MN818863_D MT563469 ${ }^{-}$A MT563458_A MT563459_A MT563460_A MT563461_A MN818862 A MT563462_A MT563463 A MT563464_A MT563465_A MT563466_A MT563467 ${ }^{\text {-A }}$ MT563468 A MT563470 A MT563471_A MT563472_A MT563474 A MT563475_A MT563476_A MT563477_A MT563473_A MT563493_E MT5 63527^{-}E MT563503_E MT563526 E MT563478_E MT563479_E MT563480_E MT563481_E MT563482-E MT563483_E MT563484_E MT563485_E MT563486 E MT563487_E MT563489_E MT563491_E MT563492_E MT563494_E MT563495_E MT563496 E MT563497 ${ }^{\text {E }}$ MT563498_E MT563499_E MT563500_E MT563501_E MT563502 E MT563504_E MT563505_E MT563506_E MT5 63507^{-}E MT563508_E MT563509 ${ }^{-}$E MT563510_E MT563511_E MT563512_E MT563513_E MT563514_E MT563515_E MT563516 E MT563517_E MT563518 E MT563519_E MN818861_E MT563520_E MT563521 ${ }^{-}$E MT563522_E MT563523 E MT563524_E MT563525_E MT563528_E MT563529_E MT563530 E MT563531_E MT563488 E MT563490_E

ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGTATCGI ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGTTCG ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGTTTCGI ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGTTTCGT ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGTTTCGT ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGTTTCGT ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGTTTCGI ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGTTTCGT ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGTTTCG ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGTTTCG ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGTTTCGT ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGTTTCG ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGTTTCGT ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGTTTCG ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGTTTCGT ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGTTTCGT ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGTTTCGT ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGTTTCGT ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGTTTCGI ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGTTTCGI ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGTTTCGT ATAGCGTATATTAAACTCGTCGCAGTTAAAAAGCTCGTAGTCGAATTTCTGCTGCATCGT ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCG ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCGI ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCGI ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCG ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCGT ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCGI ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCGT ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCGT ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCGT ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCGI ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCGI ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCGT ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCGT ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCG ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCGI ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCG ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCGI ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCGI ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCGI ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCG ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCGI ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCGI ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCGT ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCGT ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCGI ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCGI ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCGI ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCGI ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCG ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCGI ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCG ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCGI ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCG ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCGT ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCG ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCGI ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCGI ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCGI ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCGT ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCGI ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCGT ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCGT ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCGI ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCGT ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCGI ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCG ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCGT ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCGI ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCGI ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCGT ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCGI ATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCGT ATAGCGTATATTAAACTCGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCGI ATAGCGTATATTAAACTCGTTGCAGTTAAAAAGCTCGTAGTTGAATTTCTGCTGCATCGT

Appendix A - Alignment of all T. equi isolate sequences
MN818863_D MT563469_A MT563458_A MT563459_A MT563460 A MT563461_A MN818862 A MT563462_A MT563463_A MT563464_A MT563465_A MT563466_A MT563467 A MT563468_A MT563470_A MT563471_A MT563472_A MT563474_A MT563475_A MT563476_A MT563477_A MT563473 A MT563493_E MT563527_E MT563503_E MT563526_E MT563478_E MT563479_E MT563480_E MT563481_E MT563482 E MT563483_E MT563484_E MT563485_E MT563486 E MT563487_E MT563489 E MT563491_E MT563492_E MT563494_E MT563495-E MT563496 E MT563497_E MT563498_E MT563499_E MT563500_E MT563501-E MT563502 E MT563504_E MT563505 E MT563506_E MT563507 ${ }^{-}$ MT563508_E MT563509 E MT563510_E MT563511-E MT563512_E MT563513_E MT563514_E MT563515 ${ }^{-}$E MT563516_E MT563517_E MT563518 E MT563519_E MN818861_E MT563520_E MT563521_E MT563522_E MT563523-E MT563524 ${ }^{\text {E }}$ MT563525 E MT563528_E MT563529-E MT563530 E MT563531_E MT563488 E MT563490_E

Appendix A - Alignment of all T. equi isolate sequences

MN818863_D MT563469 ${ }^{-}$A MT563458_A MT563459﹎A MT563460_A MT563461_A MN818862 A MT563462_A MT563463_A MT563464_A MT563465_A MT563466_A MT563467A MT563468 A MT563470_A MT563471 A MT563472_A MT563474_A MT563475_A MT563476 A MT563477_A MT563473 A MT563493_E MT563527 E MT563503_E MT563526 ${ }^{-}$E MT563478_E MT563479_E MT563480_E MT563481_E MT563482 ${ }^{-}$E MT563483_E MT563484_E MT563485_E MT563486 E MT563487_E MT563489 E MT563491_E MT563492_E MT563494_E MT563495 E MT563496_E MT563497_E MT563498_E MT563499-E MT563500 E MT563501_E MT563502 E MT563504_E MT563505 E MT563506_E MT563507_E MT563508_E MT563509 ${ }^{-}$E MT563510_E MT563511_E MT563512_E MT563513_E MT563514_E MT563515_E MT563516_E MT563517_E MT563518 E MT563519_E MN818861_E MT563520_E MT563521 ${ }^{-}$E MT563522_E MT563523_E MT563524_E MT563525_E
MT563528 E
MT563529-E
MT563530_E
MT563531_E
MT563488_E
MT563490_E

177
176
176
176
176
176
176
176
176
176
176
176
176
176
176
176
176
176
176
176
76
176
 77 177
77
177
 CTCGACGTTTACTTTGAGAAAATTAGAGTGC CTCGACGTTTACTTTGAGAAAATTAGAGTGCT CTCGACGTTTACTTTGAGAAAATTAGAGTGCI CTCGACGTTTACTTTGAGAAAATTAGAGTGCT CTCGACGTTTACTTTGAGAAAATTAGAGTGCT CTCGACGTTTACTTTGAGAAAATTAGAGTGCT CTCGACGTTTACTTTGAGAAAATTAGAGTGCT CTCGACGTTTACTTTGAGAAAATTAGAGTGCT CTCGACGTTTACTTTGAGAAAATTAGAGTGCT CTCGACGTTTACTTTGAGAAAATTAGAGTGCT CTCGACGTTTACTTTGAGAAAATTAGAGTGCT CTCGACGTTTACTTTGAGAAAATTAGAGTGCI CTCGACGTTTACTTTGAGAAAATTAGAGTGCT 177 CTCGACGTTTACTTTGAGAAAATTAGAGTGCT 179
178

Appendix B - Alignment of all Babesia caballi isolate sequences

MN818859_B	61	CCGCGGTAATTCCAGCTCCAATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAG
MT563454_A	61	CCGCGGTAATTCCAGCTCCAATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAG
MT563455_A	61	CCGCGGTAATTCCAGCTCCAATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAG
MT56345_A	61	CCGCGGTAATTCCAGCTCCAATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAG
MT563457_A	61	CCGCGGTAATTCCAGCTCCAATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAG
MN818860_A	61	CCGCGGTAATTCCAGCTCCAATAGCGTATATTAAACTTGTTGCAGTTAAAAAGCTCGTAG

MN818859	121	
MT563454 A	121	TTGAACTTTTGCGTTGTCCTTTTCCTGCTTTGTGCGGGTTATTGACTTCGCTTTTTCTTT
MT563455	121	TTGAACTTTTGCGTTGTCCTTTTCCTGCTTTGTGCGGGTTATTGACTTCGCTTTM
MT563456_A	121	TTGAACTTTTGCGTTGTCCTTTTCCTGCTTTGTGCGGGTTATTGACTTCGCTTTT
MT563457 A	121	TTGAACTTTTGCGTTGTCCTTTTCCTGCTTTGTGCGGGTTATTGACTTCGC
MN818860 ${ }^{-}$A	121	TTGAACTTTTGCGTTGTCCTTTTCCTGCTTTGTGCGGGTTATTGACTTCGCTTTT

MN818859_B 181 TTACTTTGAGAAAATTAGAGTGTTTATCGCAGACTTTTGTCTTGAATACTTCAGCATGGA MT563454 A 181 TTACTTTGAGAAAATTAGAGTGTTTATCGCAGACTTTTGTCTTGAATACTTCAGCATGGA MT563455_A 181 TTACTTTGAGAAAATTAGAGTGTTTATCGCAGACTTTTGTCTTGAATACTTCAGCATGGA MT563456_A 181 TTACTTTGAGAAAATTAGAGTGTTTATCGCAGACTTTTGTCTTGAATACTTCAGCATGGA MT563457_A 181 TTACTTTGAGAAAATTAGAGTGTTTATCGCAGACTTTTGTCTTGAATACTTCAGCATGGA
MN818860_A 181 TTACTTTGAGAAAATTAGAGTGTTTATCGCAGACTTTTGTCTTGAATACTTCAGCATGGA

MN818859_B 241
MT563454 A 241
MT563455_A 241
MT563456_A 241
MT563457 A 241
MN818860_A 241
ATAACATAGTAGGACCTTGGTTCTATTTTGTTGG-TTTGGGACCTTGGTAATGG
ATAATAGAGTAGGACTTTGGTTCTATTTTGTTGGTTTTGGAACCTTGGTAATGG
ATAATAGAGTAGGACTTTGGTTCTATTTTGTTGGTTTTGGAACCTTGGTAATGG
ATAATAGAGTAGGACTTTGGTTCTATTTTGTTGGTTTTGGAACCTTGGTAATGG
ATAATAGAGTAGGACTTTGGTTCTATTTTGTTGGTTTTGGAACCTTGGTAATGG
ATAATAGAGTAGGACTTTGGTTCTATTTTGTTGGTTTTGGAACCTTGGTAATGG

