- 1 Population-level plant pollination mode is influenced by Quaternary climate and
- 2 pollinators
- 3
- 4 André Rodrigo Rech^{1*} (ORCID 0000-0003-4685-7483)
- 5 Jeff Ollerton² (ORCID 0000-0002-0887-8235)
- 6 Bo Dalsgaard³ (ORCID 0000-0003-2867-2805)
- 7 Leonardo Ré Jorge⁴ (ORCID 0000-0003-4518-4328)
- 8 Brody Sandel⁵ (ORCID 0000-0003-2162-6902)
- 9 Jens-Christian Svenning^{6,7} (ORCID 0000-0002-3415-0862)
- 10 Gudryan J. Baronio¹ (ORCID 0000-0003-2988-9168)
- 11 Marlies Sazima⁸ (ORCID 0000-0002-1017-9281)
- 12
- 13 ¹ Programas de Pós-graduação em Ciência Florestal e em Biologia Animal, Universidade Federal
- dos Vales do Jequitinhonha e Mucuri, Campus JK, Rodovia MGT 367 Km 583, nº 5.000,
- 15 Alto da Jacuba, CEP 39100-000, Diamantina, MG, Brasil
- ² Faculty of Arts, Science and Technology, University of Northampton, Waterside Campus,
- 17 Northampton, NN1 5PH, UK
- ³Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen,
- 19 2100 Copenhagen Ø, Denmark
- ⁴ Department of Ecology, Institute of Entomology, Biology Centre of the Czech Academy of
- 21 Sciences. 370 05 Branišovská 31, České Budějovice, Czech Republic
- ⁵ Department of Biology, Santa Clara University, 500 El Camino Real CA 95053, Santa Clara,
 California, USA.
- ⁶ Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of
- 25 Biology, Aarhus University, 8000 Aarhus C, Denmark.
- ⁷Departamento⁷ Section for Ecoinformatics & Biodiversity, Department of Biology, Aarhus
- 27 University, 8000 Aarhus C, Denmark
- ⁸Laboratório de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas,
- 29 Caixa Postal 6190, CEP: 13083-970, Campinas, Brasil
- 30 * Corresponding author: and rerodrigorech@gmail.com

Received: _____; Revised: _____; Accepted: _____.

31 Abstract

Patterns in ecology are the products of current factors interacting with history. Nevertheless, few 32 studies have attempted to disentangle the contribution of historical and current factors, such as 33 climate change and pollinator presence/activity, on plant reproduction. Here, we attempted to 34 separate the relative importance of current and historical processes on geographical patterns of 35 the mating system of the tree species Curatella americana (Dilleniaceae). Specifically, we asked: 36 1) How do Quaternary and current climate affect plant mating system? 2) How does current 37 pollinator abundance and diversity relate to plant mating system? 3) How does mating system 38 relate to fruit/seed quantity and quality in Curatella americana? We recorded pollinators 39 (richness, frequency and body size) and performed pollination tests in ten populations of C. 40 americana spread over 3,000 km in the Brazilian savannah. The frequency of self-pollination in 41 the absence of pollinators was strongly influenced by historical climatic instability and not by 42 present-day pollinators. In contrast, seed set from hand-cross and natural pollination were 43 affected by pollinators (especially large bees) and temperature, indicating the importance of 44 current factors on out-cross pollination. Two populations at the Southern edge of the species' 45 distribution showed high level of hand-cross-pollination and high flower visitation by large bees, 46 but also a high level of autogamy resulting from recent colonization. Our results indicate that 47 historical instability in climate has favoured autogamy, most likely as a reproductive insurance 48 strategy facilitating colonization and population maintenance over time, while pollinators are 49 50 currently modulating the level of cross-pollination.

51 Key words: Autogamy, Baker's rule, *Curatella americana*, Cerrado, cross-pollination, Last
52 Glacial Maximum.

53

54 **1. INTRODUCTION**

55

56

Animal pollination is estimated to occur in approximately 87.5% of the angiosperms, and is 57 particularly prevalent in the warm and humid tropics (Ollerton et al. 2011, Rech et al. 2016). In 58 general, there is less pollen limitation when the pollination systems are more generalized, 59 exhibiting a higher probability of pollen being transferred to conspecific stigmas (Knight et al., 60 2005; Lopes et al., *submitted*). Generalized pollination systems are therefore more resistant to 61 62 pollinator species loss and, hence, they are hypothesised to predominate in environments where the pollinator fauna is highly variable (Waser et al. 1996) and/or not immediately fitted to the 63 ancestral pollination mode, such as on islands (Armbruster & Baldwin 1998, Rivera-Marchand & 64 Ackerman 2006, Sonne et al. 2019). More diverse sets of pollinators can also be functionally 65 more stable over time and space due to the buffering effect of different species responding in 66 different ways to environmental changes, i.e., the "biodiversity insurance hypothesis" (Loreau 67 2001, Bartomeus et al. 2013). However, we know very little about the influence of current and 68 past climate factors on the functioning of pollination systems. 69 Plants can also show diverse and complex reproductive strategies related to how to find 70

reproductive partners, resulting in mating systems that range from autogamy (independence of
pollen vectors) to exclusively outcrossed, with everything in-between (Goodwillie *et al.* 2005).

73 Although self-incompatibility usually results in higher-quality progeny and genetic diversity

74 (Dart & Eckert 2013, Wright et al. 2013), autogamous self-pollination (hereafter called

autogamy, see Cardoso et al. 2018) may allow species to colonize new areas or survive within

ones where conditions are non-optimal for pollinators (Lloyd & Webb 1992, Grossenbacher *et al.*

2015). The idea of autogamy assuring reproduction was originally proposed by Darwin (1877) 77 and formalized by Baker (1955, 1967), and has been named "Baker's rule" or the "reproductive 78 insurance hypothesis". A similar rationale was later expanded to small populations living at the 79 edges of species distributions, where the lower plant density is likely to reduce cross-pollination 80 (Randle et al. 2009, Levin 2012). Mating systems may therefore influence the geographical 81 range of plants, with autogamous species having larger ranges due to low mate requirement and 82 high reproductive success at the edges of their range or in colonising populations (Grossenbacher 83 et al. 2015). Traditionally, mating systems were considered species-level propeties and few 84 85 comparisons considered differences among populations or individuals (Levin 2012). However, we now know that mating systems may vary among populations according to local 86 environmental conditions (Rech et al. 2018, Whitehead et al. 2018). As with pollination systems, 87 assessing the influence of current and historical factors on mating systems within populations is 88 an untested approach that will improve our understanding of the evolution of plant reproductive 89 strategies. 90 Historical climate dynamics are likely candidates to affect mating systems since we 91 already know of their effect on species distribution and diversity patterns (Cardenas et al. 2011, 92 Sandel et al. 2011, Kissling et al. 2012), population demography and genetic structure 93 (Grazziotin et al. 2006, Cabanne et al. 2007), and previous studies have suggested an influence 94 of historical climate stability on the structure of mutualistic plant-pollinator assemblages 95 96 (Dalsgaard *et al.* 2011, 2013). To understand how historical climate has varied, pollen records have often been used to reconstruct Quaternary paleo-environments, evidencing possible stable 97 areas for genetic diversity increasing after Pleistocene climatic oscillation (Anhuf et al. 2006, 98 99 Buzatti et al. 2018, Bezerra et al. 2019). In South America there is considerable debate whether

currently forested areas such as the Amazon basin may previously have been savannah, and
about the consequences for species diversification in the area (Colinvaux & De Oliveira 2001,
Richardson 2001, Pennington & Ratter 2006). In this study we consider the possible impacts of
these dynamics on the mating system of a widely distributed tree species associated with open,
savannah areas.

We chose Curatella americana L. (Dilleniaceae) as our species model as it is one of the 105 main pollen types used to reconstruct the history of South American savannah environments 106 (Behling 1995, Absy et al. 1997). Moreover, the association of this species with savannahs and 107 its mixed mating system (Rech et al. 2018) makes C. americana a suitable model to address 108 ecological questions about spatial variability and historical climate stability on plant mating 109 systems. Previous studies have shown that areas of South American savannah have varied in size 110 111 throughout the Neogene (Ledru et al. 2006, Pennington & Ratter 2006), and that the disjunct areas of savannah present nowadays in Pará, Roraima and other areas of Brazil were probably 112 connected and separated many times over the Quaternary (Adrian Quijada-Mascareñas et al. 113 2007, Werneck 2011). At the present time, C. americana is likely to be found in most areas of the 114 savannah, also known as the Cerrado, in Brazil (Ratter et al. 2003). It is reported even in small 115 116 areas of savannah surrounded by forest at the Amazon region (Ratter et al. 2003, Magnusson et al. 2008), thought have been isolated at least from the mid Holocene onwards (Mayle & Power 117 2008, Werneck 2011). 118

Despite the potential for an important relationship among plant-pollinator interactions, mating system, and past and current climate, this relationship has never previously been empirically tested and addressed. To gain insight into current and historical drivers of population-level plant mating systems, in this study we investigated the spatial structure and the

123	determinants of the pollination and mating systems of C. americana across a latitudinal gradient
124	of Brazilian savannah areas, considering both historical and current climates. Specifically, we
125	ask: 1) How do Quaternary and current climates affect the level of cross- and autogamous-
126	pollination)? 2) How does current pollinator abundance and functional diversity relate to plant
127	mating system? 3) How does mating system relate to fruit and seed quantity and quality in
128	Curatella americana?
129	
130	2. METHODS
131	
132	2.1. Study sites and species
133	
134	We studied ten populations of Curatella americana in three disjunct areas of savannah (Table S1,
135	Figure 1). Vegetation physiognomies are very similar among sites, but in general plant species
136	diversity decreases northwards (Ratter et al. 2003, Bridgewater et al. 2004). We observed animal
137	pollinators and performed experiments on C. americana at all the studied sites. The species
138	flowers from June to September in Central Brazil, mid-August to early October in Pará state, and
139	October and November at Roraima state. Flowers are white, pentamerous and grouped into dense
140	inflorescences, and each flower stays receptive for three to five hours for one single day (see
141	Rech et al. 2018 for more details).
142	
143	2.2. Mating system
144	In order to study the reproductive system of C. americana in situ we applied the following
145	pollination tests: hand-cross-pollination, hand-self-pollination, autogamous self-pollination and

146 natural pollination. All pollination tests were performed with flowers previously bagged using

cloth insect exclusion bags, except for natural pollination, which involved counting and tagging 147 flowers exposed to flower visitors. In order to mitigate possible differences related to resource 148 allocation we always performed the pollination tests in the same branch (considered as a 149 functional unit). The number of tested flowers was always higher than 20 flowers per individual 150 and a mean of 15 different individuals per test per population. In two of the studied areas (Nova 151 Xavantina and Caldas Novas) we chose 12 individuals and compared the fruit weight from self 152 (n = 107) and cross (n = 102) pollinated flowers, which may represent seed quality (Coomes & 153 Grubb 2003). 154

155

- 156 **2.3. Flower visitation and pollination**
- 157

158 For all populations we recorded daily flower visitors (species richness and abundance) from anthesis until the end of visitation. In order to quantify visitation, we counted all visits to an 159 observable (and counted) set of flowers for ten minutes each half an hour for at least 20 hours 160 (120 x ten minute sessions) in each population. All the visitors touching anthers and/or stigmas 161 were considered and scored as potential pollinators. After observing behaviour, flight distance 162 and pollinator size, we grouped the pollinators into two categories: 1) Large-sized bees, and 2) 163 Others, which includes bees the same size or smaller than Apis mellifera, beetles, flies and 164 wasps. We separated pollinators according to size because flight range correlates with body size 165 166 (Gathmann & Tscharntke 2002, Araújo et al. 2004, Greenleaf et al. 2007). Based on this premise, we expected a higher level of cross-pollination by large-sized bees. 167

168

169 2.4. Statistical analysis

170

To test for differences in fruit set related to the mating system and the regions, we used a 171 Generalised Linear Mixed Model assuming a binomial distribution. The fixed factors were 172 region, pollination experiment treatment, and the interaction between them. The random factors 173 were the individuals nested within sites and these nested within regions. Our response variable 174 was the production of a fruit from each flower. We performed the models with all fixed factor 175 combinations and only a fixed intercept (Null Model), always keeping the random factor. For the 176 fruit weight comparison we used pollination treatment (self- and cross-pollination) as predictors 177 178 and generated models using individuals as random factors. All the alternative models were built removing factors or interactions between factors from the full model. A null model using only the 179 intercept was also considered. In order to compare the generated models we used the Akaike 180 181 Information Criterion - AIC (Burnham & Anderson 2004). All tests and models were performed in the R environment (R Core Team 2018). 182 For each studied site, we modelled the climate changes since Last Glacial Maximum 183 (LGM) by estimating the mean annual temperature (MAT LGM) and annual precipitation 184 (MAP LGM) at each location for 21ky, according to the Community Climate System Model 185 (CCSM) (Gent et al. 2011). We also extracted the current values of temperature (MAT Current) 186 and precipitation (MAP Current) from the Global Climate Data (Worldclim 1.4 -187 http://www.worldclim.org/). For each site, we calculated the anomalies and velocities of change 188 189 in temperature (MAT Velocity 21) and precipitation (MAP Velocity 21), as the long-term average over the last 21ky. Both climate anomaly and velocity are measures of climate stability 190 (or climate change), but they are calculated in two different ways. Whereas climate anomaly 191 192 simply is the difference in climatic conditions between two time periods (here today and 21,000

years ago), climate velocity integrates macroclimatic shifts (i.e. anomalies) with local spatial
topoclimate gradients. Velocity is calculated by dividing the rate of climate change through time
(i.e. anomaly) by the local rate of climate change across space (Sandel et al. 2011). All
calculations are based on a 2.5 minutes geographical resolution.

We then estimated the effect of climate and pollinator activity on pollination mode. Due 197 to the modest sample size of populations (n = 10) and some predictor variables being strongly 198 correlated (i.e. $r \ge 0.6$; Table S2), we took the following modelling approach. First, we modelled 199 the effect of climate on pollination mode using current and past climate predictors, identifying 200 201 minimum adequate models (MAMs) using the approach outlined in Diniz-Filho et al. (2008). As the temperature and precipitation anomalies used as a measure of past climate stability were 202 strongly correlated, we modelled the effect of temperature and precipitation anomaly separately. 203 204 The effect of past climate stability was also tested using modelled temperature and precipitation velocity instead of anomaly, giving qualitatively the same results (not shown). Second, we tested 205 whether the four pollinator variables (pollinator richness, visitation frequency, and proportion of 206 large bee visitation calculated both with and without the exotic honey bee) were significantly 207 related to pollination mode. To do this we used single correlation tests using traditional non-208 spatial correlation analysis and correcting the degrees of freedom using Dutilleul's (1993) 209 method (Table 1), followed by models testing whether each of these pollinator activity variables 210 may have other or additional effects from climate. We examined this by again following the 211 212 approach of Diniz-Filho et al. (2008) to identify MAMs, but this time only considering climate variables included in the above-identified MAMs and each of the four pollinator variables. 213 For all analyses, MAP, MAP anomaly, MAP velocity and MAT velocity were Log₁₀-214 215 transformed, pollination visitation frequency was square root transformed, and all proportional

216	measures (i.e., pollination mode variables and large bee predictors) were arcsine-square root
217	transformed. All other variables were left untransformed. All analyses were conducted using the
218	software Spatial Analysis in Macroecology, SAM 4.0 (Rangel et al. 2010).
219	
220	3. RESULTS
221	
222	3.1 Pollination and mating system variation
223	
224	The main flower visitors and potential pollinators of C. americana flowers were bees of different
225	sizes (more details in Rech et al. 2018). Beetles were also recorded at all populations, but they
226	only ate anthers and copulated on the flowers, with little, if any, importance as pollinators. In
227	eight out of ten populations, flies and wasps were also recorded as flower visitors; however, they
228	were visiting with a very low frequency; only in Jatai, Caldas Novas and Santarém did they
229	perform more than 1% and never more than 5% of total visits. During their visits, they ate pollen
230	directly from the anthers (flies) and did not always touch anthers and stigmas (flies and wasps).
231	In all populations, cross-pollinated flowers set more fruit than self-, natural- or
232	autogamously-pollinated flowers (Table 2). Cross-pollination (measured by fruit set) was
233	negatively correlated with self-pollination (r = -0.87 , p = 0.009). Fruit set from cross- and self-
234	pollination were more contrasting in the southern and more similar in the northern populations,
235	showing that out-crossing decreases from south to north (Table 2). The analysis of fruit weight
236	according to pollination test and site showed that only pollination treatment was important, with
237	hand cross-pollination producing heavier fruit than self-, natural- or autogamously-pollinated
238	flowers (Figure 2, Table 3). This tells us that the populations that were studied are pollen

limited and therefore that the reproductive success of plants is more likely to be influenced byclimate variables, if those variables in turn affect pollinator numbers.

The results of pollination tests in C. americana were best explained by the full model 241 including region, pollination treatments, and the interaction between them (Table 4). Considering 242 only the additive effects of region and reproductive system makes the model nearly as likely as 243 including only the reproductive system regardless of region, reinforcing that these factor are 244 interacting. The reproductive system of the species was structured on a regional scale, and 245 although there are differences among populations inside a region, differences among regions 246 were greater. Although there is a strong difference in the reproductive tests among regions, it is 247 possible to see that the level of autogamous pollination is highly variable among individuals 248 within a given region and, even in the North region it is possible to find some individuals with 249 250 very low fruit set inside bagged inflorescences (Figure 3).

251

252 **3.2.** Historical and current climate analyses

253

Both current and past climate influenced the reproductive system of *C. americana*. Natural pollination was highly related to the yearly seasonality, i.e., current fluctuations in temperature. This was significant both in non-spatial and spatial correlation analysis, and alone explained 91% of the variation in natural pollination (Table 5). Natural pollination was also positively related to visitation by large bees (79%), and negatively correlated to mean annual temperature (63%) and mean annual temperature velocity (76%). Autogamous pollination was higher in areas with more temperature anomaly, i.e., historical climatically unstable areas.

261

4. DISCUSSION

264	The current pollination mode and mating system of C. americana in the Brazilian savannah is the							
265	result of both historical and contemporary factors. Quaternary climate instability has clearly							
266	influenced the level of autogamous self-pollination in populations, whereas contemporary							
267	temperature seasonality and proportion of large bee visitation determined the level of cross-							
268	pollination. This indicates that autogamous self-pollination is likely to occur in areas that have							
269	experienced higher climate variability that subjected populations to local extinctions and re-							
270	colonization events. This has occurred many times in the past, as pollen records indicate in the							
271	northern (Rodrigues 2006) and southern edge of C. americana distribution in Brazil (Salgado-							
272	Labouriau et al. 1997). In agreement with this, genetic data on the phylogeography of C.							
273	americana indicated recent expansion in most populations (Canuto 2011). Most of the literature							
274	on Brazilian savannah biogeography agrees that its area varied considerably during the							
275	Quaternary (Anhuf et al. 2006, Pennington & Ratter 2006, Adrian Quijada-Mascareñas et al.							
276	2007, Werneck 2011), and this has impacted the mating systems of C. americana populations.							
277	Higher levels of autogamy in the northern populations were the results of a weaker							
278	restriction to self-pollen germination and a shorter distance between stigma and anthers (low							
279	herkogamy), probably in response to mismatches to pollinator distributions during historical							
280	fluctuations in climate (Rech et al. 2018). The occurrence of autogamous self-pollination as a							
281	reproductive assurance mechanism has been suggested in many other plant species (reviewed in							
282	Eckert et al. 2006). For natural pollination, current temperature and the proportion of the total							
283	visits carried out by large bees were more important factors. Moreover, the proportion of large							
284	bees was correlated to several historical and current climate variables (MAT, MAT seasonality							

and velocity), preventing us from separating the effect of temperature on pollinators or,alternatively, direct temperature effects on natural pollination.

Most of the studied populations in central Brazil (Populations 5, 6, 7 and 8 - Figure 1) 287 occur in a geologically old savannah area (Terribile et al. 2012), where the longer distance pollen 288 flow mediated by large bees and climate stability may be acting to promote the reproduction of 289 individuals better able to cross-pollinate (Koski et al. 2018, Sirois-Delisle & Kerr 2018). 290 Considering that cross-pollination produces heavier - and presumably higher quality - fruit, the 291 progeny from this fruit will be expected to outcompete or survive longer periods of unfavourable 292 conditions than the ones from self-pollination (Coomes & Grubb 2003). However, increased 293 dispersal is selected when there is local adaptation to climate instability, thus, self-fertilization 294 may be favoured between expansion and contraction of the range margins by providing 295 296 reproductive assurance (Hargreaves & Eckert 2014). In line with this rationale, the two populations in the southern edge of the Brazilian savannah (Caldas Novas and Jatai) both showed 297 moderate levels of autogamous self-pollination, consistent with recent colonization events 298 299 followed by east and south expansion of savannah limits (Salgado-Labouriau et al. 1997, Souza et al. 2017). In addition, the high levels of cross-pollination are supported by a greater proportion 300 of large bee pollination found in southern populations. Hand pollination of plants in the 301 population from Jatai (pop 9, Figure 1) resulted in high fruit set, while natural pollination was 302 low. We suspect that this may be due to the large numbers of honey bees (Apis mellifera), which 303 were responsible for around 90% of the flower visits, as this species is often a poor pollinator for 304 many plant species (Westerkamp 1996, Rech et al. 2018). 305

A gradient of pollinator species richness and abundance reducing from south to north was
 previously reported for woody plants in Brazilian savannahs (Bridgewater *et al.* 2004). There is a

308	suggestion that this pattern, which contrasts to the expected tendency of increasing diversity
309	towards the Equator, could be related to climatic instability in the past (Werneck et al. 2012).
310	Our results for pollinator richness also point out the importance of historical climate for the
311	number of bee species (see Table SI1). This reversed latitudinal pattern of diversity is also found
312	in other invertebrate groups, such as ants (Vasconcelos et al. 2018). Therefore, perhaps the
313	patterns observed for woody plant species diversity in Brazilian savannah could also be
314	applicable to other groups of organisms, such as the ones that interact with plants (pollinators,
315	seed dispersers and herbivores), as observed in some systems (Schemske et al. 2009, Moreira et
316	al. 2018, Chen et al. 2019).
317	Although the absence of biotic pollination may reduce plant species distribution in
318	isolated environments (Lord 2015), higher cross-pollination in cooler and more seasonal places
319	is in accordance with the pattern of global bee diversity, which peaks in subtropical areas with
320	higher seasonality (Michener 2007, Ollerton 2017). Reinforcing the idea of the mediating role of
321	bees to promote cross-pollination, both hand-self- and autogamous-pollination showed no
322	relationship with any of the variables related to the pollinators. Moreover, cross- and natural
323	pollination were related to the proportion of large bees, and not to pollinator species richness and
324	visitation frequency, indicating that not all visitors are equally good pollinators and not all
325	proxies are equally realistic for pollinator quality (Popic et al. 2013, Sakamoto & Morinaga
326	2013). Moreover, it was already experimentally shown that functional complementarity is far
327	more important than the simple increment in pollinator species number (Fründ et al. 2013).
328	In conclusion, our results indicate that historical instability in climate has favoured
329	autogamy, while pollinators are currently modulating the level of cross-pollinationAlthough, the
330	direct impact of historical climate on pollinator communities should be examined in future

331 studies, this association of historical climate instability to autogamy suggests a reproductive assurance strategy that may have benefitted the species during unstable conditions in the past 332 (Rech et al. 2018). This strategy could be a key factor explaining why C. americana is one of the 333 most conspicuous and widely distributed woody species in Neotropical savannahs (Ratter et al. 334 2003). We also corroborate here the already proposed effect of high functional diversity of 335 pollinators buffering influences of climate dynamics, since places with more species of large 336 sized bees were more likely to remain functional when the environment changed and provide 337 current higher levels of cross pollination (Bartomeus et al. 2013). Although there are many 338 aspects of pollination and historical climate relationships to be clarified, our results support the 339 idea that historical climate dynamics are fundamental in determining pollination mode (level of 340 autogamy), suggesting that plant-pollinator interactions may be even more sensitive to climate 341 instability than species themselves (Bartomeus et al. 2013). 342

Table 1. Multiple regression models using contemporary and historical climate stability to predict pollination mode. The standardized regression coefficients are reported for ordinary least square (OLS) regression, and reported for both an averaged model based on weighted *wi* and minimum adequate models (MAMs) (Diniz-Filho et al. 2008). For all MAMs, we give AICc , the Condition Number (CN), Moran's I (significance tested using 5 distance classes and applying a permutation test with 10,000 iterations), and coefficients of determination (R² and R²adj). We did not assign any MAM if all variables in the best-fit model were non-significant. Notice that historical climate stability is represented by temperature and precipitation anomaly between 21000 years ago and now. As these two estimates of climate stability were strongly intercorrelated (Table S2), we separately modelled temperature anomaly (grey columns) and precipitation anomaly (white columns) effects on the output of each pollination experiments. The results are qualitatively the same if using temperature and precipitation velocity as estimates of climate stability (results not shown).

Autogamous pollination								Natural pollination					
	Σw_i	Averaged	MAM	Σw_i	Averaged	MAM	Σw_i	Averaged	MAM	Σw_i	Averaged	MAM	
MAT	0.06	+0.14	_	0.09	+0.11	_	0.04	-0.04	_	0.04	-0.04	_	
MAP	0.08	+0.05	_	0.11	-0.23	—	0.05	+0.04	_	0.05	+0.03	_	
MAT seas	0.11	-0.30	_	0.15	-0.36	_	0.99	+0.91	$+0.91^{**}$	0.99	+0.91	$+0.91^{**}$	
MAP seas	0.21	+0.53	_	0.61	+0.62	_	0.05	+0.09	_	0.05	+0.09	_	
MAT anomaly	0.79	+0.73	$+0.74^{*}$				0.06	-0.12	_			_	
MAP anomaly				0.22	-0.45	_				0.08	+0.16		
AICc			-3.821						-11.098			-11.098	
Moran's I			$\leq 0.39^{\rm NS}$						${\leq}0.01^{\rm NS}$			${\leq}0.01^{\rm NS}$	
CN			1						1			1	

\mathbb{R}^2	0.55	0.83	0.83
R^2_{adj}	0.55	0.83	0.83

		Ha	and-cross	-polli	nation	Hand-self-pollination						
	Σw_i	Averaged	MAM^{\dagger}	Σw_i	Averaged	MAM^{\pounds}	Σw_i	Averaged	MAM	Σw_i	Averaged	MAM
MAT	0.56	-0.72	-0.78**	0.31	-0.66	_	0.10	-0.06	_	0.14	-0.08	_
MAP	0.09	+0.14	_	0.08	-0.10	_	0.13	-0.25	_	0.19	-0.31	—
MAT seas	0.51	+0.74	_	0.64	+0.64	$+0.59^{*}$	0.13	-0.29	_	0.18	-0.31	—
MAP seas	0.06	-0.21	_	0.04	-0.12	_	0.29	+0.47	_	0.47	+0.50	_
MAT anomaly	0.14	-0.32	-				0.53	+0.58	—			
MAP anomaly				0.59	+0.54	$+0.51^{*}$				0.19	-0.29	—
AIC _c			-6.997			-8.84						
Moran's I			$\leq 0.27^{\rm NS}$			$\leq 0.22^{\rm NS}$						
CN			1			1.5						
\mathbb{R}^2			0.61			0.82						
R^2_{adj}			0.61			0.80						

**P < 0.01; *P < 0.05; ^{NS}non-significant. † One model was equally fit (i.e. $\Delta AIC_c \le 2$) containing the following variables: 1) MAT seas.

[£]two models were equally fit: 1) MAT; 2) MAT Seas.

Table 2. Population means of the proportion of fruit set in the pollination treatments of *Curatella americana* L. at ten studied populations in Brazil. At the region of Roraima - BV: Boa Vista, Faz: Fazenda Bamerindus, Ama: Amajari; Pará region - Stm: Santarém; Mato Grosso region - Cui: Cuiabá, Man: Manso, Poc: Poconé, Nxav: Nova Xavantina, and Goiás region – Jat: Jatai, Cnov: Caldas Novas.

	Ama	Faz	BV	Stm	Cui	Man	Poc	Nxav	Cnov	Jat
Cross-pollination	0.52	0.54	0.33	0.66	0.66	0.83	0.81	0.79	0.82	0.73
Hand selfing	0.53	0.29	0.22	0.06	0.13	0.37	0.08	0.17	0.43	0.20
Autogamous self	0.21	0.24	0.23	0.05	0.06	0.06	0.05	0.02	0.29	0.20
Natural pollination	0.32	0.15	0.23	0.28	0.65	0.48	0.62	0.63	0.72	0.34

Table 3. Result of the model selection using Δ AIC for fruit weight considering pollination treatment (cross and self-pollination) and site (Nova Xavantina and Caldas Novas). Individuals were considered random factors.

Model	Δ AIC value	Degrees of Freedom
Pollination treatment	0.0	4
Null model	6.3	3
Pollination treatment + Site	6.4	5
Site	12.3	4
Pollination treatment + Site + Interaction	15.0	6

Table 4. Results of the selection of models using Δ AIC for fruit set in *Curatella americana*. The full model included region (South, Middle and North) and reproductive systems (cross, self, autogamous and natural pollination) as fixed factors, the interaction between them and individuals and sites (replication) as random factors. "Full without interaction" was similar to the full model except for the interaction between fixed factors. "Only reproductive system" did not considered region, whilst "Only region" did not considered reproductive system, and the null model is only the intercept and the random factors (individual and population)

Model	ΔΑΙΟ	Degrees of Freedom
Full	0.0	13
Full without interaction	1523.9	7
Only reproductive system	1545.7	5
Only region	4813.5	4
Null	4846.8	2

Table 5. Single correlations of climate and pollinator visitation variables with mating system tests. Statistically significant relationships are marked in bold.

	Pollination tests						
	Hand-cross	Hand-self	Spontaneous-self	Natural			
MAT	- 0.78 [†]	$+0.00^{NS}$	$+0.19^{NS}$	-0.63 [†]			
MAP	-0.22 ^{NS}	-0.24 ^{NS}	-0.16 ^{NS}	-0.50 ^{NS}			
MAT seas	+ 0.78 [†]	-0.24 ^{NS}	-0.36 ^{NS}	+0.91*			
MAP seas	-0.36 ^{NS}	$+0.51^{NS}$	+ 0.62 [†]	-0.23 ^{NS}			
MAT anomaly	-0.37 ^{NS}	$+0.59^{NS}$	+ 0.74 [†]	-0.23 ^{NS}			
MAP anomaly	+ 0.72 [†]	-0.32 ^{NS}	-0.49 ^{NS}	$+0.47^{NS}$			
MAT velocity	-0.65†	$+0.07^{NS}$	$+0.06^{NS}$	-0.76†			
MAP velocity	+ 0.68 [†]	-0.50 ^{NS}	-0.52^{NS}	$+0.45^{NS}$			
Pollinator richness	$+0.52^{NS}$	-0.30 ^{NS}	-0.47^{NS}	$+0.54^{NS}$			
Pollinator visitation frequency	$+0.40^{NS}$	-0.13 ^{NS}	$+0.09^{NS}$	$+0.17^{NS}$			
% Large bee visits, incl. honey bee	+ 0.70 [†]	-0.37 ^{NS}	-0.53 ^{NS}	+ 0.79 [†]			
% Large bee visits, natives only	+ 0.84 [†]	-0.15 ^{NS}	-0.25 ^{NS}	+ 0.79 [†]			

* $\overline{P < 0.05}$ both when using non-spatial statistics and when significance level is based on degrees of freedom corrected for spatial auto-correlation using Dutilleul's (1993) method; [†] P < 0.05when using non-spatial statistics, but non-significant when using Dutilleul's (1993) method; ^{NS} non-significant.

Figure legends

Figure 1. Distribution of ten populations of *Curatella America* on Brazilian savannahs (adapted from Rech *et al.* 2018). Numbers follow Table S1.

Figure 2. Fruit weight comparison between self and cross-pollinated fruit in *Curatella americana*.

Figure 3. Box plot comparing mean fruit set according to the mating system of *Curatella americana* in controlled pollination tests. Region names follow Table S1.

Figure 1

RECH et al.

Figure 2

Acknowledgements

ARR was supported by FAPESP (Proc. 2009/54591-0), CAPES, CNPq, Unicamp and Santander Universities. BD was supported by the Carlsberg Foundation, and thanks the Danish National Research Foundation for its support of the Center for Macroecology, Evolution and Climate. GJB is grateful for a postdoctoral fellowship awarded by CAPES/PNPD/UFVJM (process number 88887.352134/2019-00). JCS considers this work a contribution to his VILLUM Investigator project "Biodiversity Dynamics in a Changing World" funded by VILLUM FONDEN (grant 16549). We also thank a huge number of people that helped with field work logistics when covering large distances in Brazil. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001. MS thanks CNPq for the support (grant 302781/2016-1).

Author Contribution Statement

Conceptualization (ARR, JO, MS), Data curation (ARR, GB), Writing – original draft (ARR), Methodology (ARR), Formal Analysis (BD, LRJ, BS, J-CS), Funding acquisition (ARR, MS and JO), Project administration (ARR), Supervision (MS and JO), Writing – review & editing (ARR, JO, LRJ, GJB, BD, BS, MS)

Disclosure Statements

The corresponding author confirms on behalf of all authors that there have been no involvements that might raise the question of bias in the work reported or in the conclusions, implications, or opinions stated.

References

- ABSY, M. L., G. PRANCE, M. SERVANT, and I. MIRANDA. 1997. Registro palinológicos em sedimentos do holoceno e vegetação atual de Roraima. *In* R. Barbosa, E. Ferreira, and E. Castellon (Eds.) Homem, Ambiente e Ecologia no estado de Roraima. pp. 462–479, Instituto Nacional de Pesquisas da Amazônia, Manaus.
- ADRIAN QUIJADA-MASCAREÑAS, J., J. E. FERGUSON, C. E. POOK, M. D. G. SALOMÃO, R. S. THORPE, and W. WÜSTER. 2007. Phylogeographic patterns of trans-Amazonian vicariants and Amazonian biogeography: the Neotropical rattlesnake (*Crotalus durissus* complex) as an example. J. Biogeogr. 34: 1296–1312. Available at: http://doi.wiley.com/10.1111/j.1365-2699.2007.01707.x.
- AIZEN, M. A., and L. D. HARDER. 2007. Expanding the limits of the pollen-limitation concept: Effects of pollen quantity and quality. Ecology 88: 271–281.
- ANHUF, D., M. LEDRU, H. BEHLING, F. DA CRUZ, R. CORDEIRO, T. VAN DER HAMMEN, I.
 KARMANN, J. MARENGO, P. DE OLIVEIRA, L. PESSENDA, A. SIFFEDINE, A. ALBUQUERQUE, and P. DA S. DIAS. 2006. Paleo-environmental change in Amazonian and African rainforest during the LGM. Palaeogeogr. Palaeoclimatol. Palaeoecol. 239: 510–527.
- ARAÚJO, E. D., M. COSTA, J. CHAUD-NETTO, and H. G. FOWLER. 2004. Body size and flight distance in stingless bees (Hymenoptera: Meliponini): inference of flight range and possible ecological implications. Brazilian J. Biol. 64: 563–568. Available at: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1519-69842004000400003&lng=en&tlng=en.
- ARMBRUSTER, W. S., and B. G. BALDWIN. 1998. Switch from specialized to generalized pollination. Nature 394: 632–632. Available at: http://www.nature.com/articles/29210.

- BAKER, H. G. 1955. Self-Compatibility and Establishment After "Long-Distance" Dispersal. Evolution (N. Y). 9: 347. Available at: https://www.jstor.org/stable/2405656?origin=crossref.
- BAKER, H. G. 1967. Support for Baker's law as a rule. Evolution (N. Y). 21: 853–856. Available at: http://doi.wiley.com/10.1111/j.1558-5646.1967.tb03440.x.
- BARTOMEUS, I., M. G. PARK, J. GIBBS, B. N. DANFORTH, A. N. LAKSO, and R. WINFREE. 2013.
 Biodiversity ensures plant-pollinator phenological synchrony against climate change M.
 Eubanks (Ed.). Ecol. Lett. 16: 1331–1338. Available at: http://doi.wiley.com/10.1111/ele.12170.
- BEHLING, H. 1995. A high resolution Holocene pollen record from Lago do Pires, SE Brazil: vegetation, climate and fire history. J. Paleolimnol. 14: 253–268. Available at: http://link.springer.com/10.1007/BF00682427.
- BEZERRA, M. A. DE O., A. A. MOZETO, P. E. DE OLIVEIRA, C. VOLKMER-RIBEIRO, V. V. RODRIGUES, and R. ARAVENA. 2019. Late Pleistocene/Holocene environmental history of the southern Brazilian Pantanal Wetlands. Oecologia Aust. 23: 712–729. Available at: https://revistas.ufrj.br/index.php/oa/article/view/21017.
- BRIDGEWATER, S., J. A. RATTER, and J. FELIPE RIBEIRO. 2004. Biogeographic patterns, -diversity and dominance in the cerrado biome of Brazil. Biodivers. Conserv. 13: 2295–2317. Available at: http://link.springer.com/10.1023/B:BIOC.0000047903.37608.4c.
- BURNHAM, K. P., and D. R. ANDERSON. 2004. Model Selection and Multimodel Inference K. P. Burnham and D. R. Anderson (Eds.). Springer New York, New York, NY Available at: http://link.springer.com/10.1007/b97636.

BUZATTI, R. S. DE O., T. R. PFEILSTICKER, R. F. DE MAGALHÃES, M. L. BUENO, J. P. LEMOS-

FILHO, and M. B. LOVATO. 2018. Genetic and Historical Colonization Analyses of an Endemic Savanna Tree, *Qualea grandiflora*, Reveal Ancient Connections Between Amazonian Savannas and Cerrado Core. Front. Plant Sci. 9. Available at: https://www.frontiersin.org/article/10.3389/fpls.2018.00981/full.

- CABANNE, G. S., F. R. SANTOS, and C. Y. MIYAKI. 2007. Phylogeography of *Xiphorhynchus fuscus* (Passeriformes, Dendrocolaptidae): vicariance and recent demographic expansion in southern Atlantic forest. Biol. J. Linn. Soc. 91: 73–84. Available at: https://academic.oup.com/biolinnean/article-lookup/doi/10.1111/j.1095-8312.2007.00775.x.
- CANUTO, J. Z. 2011. Filogeografia de *Curatella americana* L. (Dilleniaceae): uma espécie arbórea das savanas da Amazônia e Brasil Central. Instituto Nacional de Pesquisas da Amazônia. Available at:

https://bdtd.inpa.gov.br/bitstream/tede/709/1/Dissertacao_Jaqueliny_Canuto.pdf.

- CARDENAS, M. L., W. D. GOSLING, S. C. SHERLOCK, I. POOLE, R. T. PENNINGTON, and P. MOTHES. 2011. The Response of Vegetation on the Andean Flank in Western Amazonia to Pleistocene Climate Change. Science (80-.). 331: 1055–1058. Available at: http://www.sciencemag.org/cgi/doi/10.1126/science.1197947.
- CARDOSO, J. C. F., M. L. VIANA, R. MATIAS, M. T. FURTADO, A. P. DE S. CAETANO, H.
 CONSOLARO, and V. L. G. DE BRITO. 2018. Towards a unified terminology for angiosperm reproductive systems. Acta Bot. Brasilica 32: 329–348. Available at:
 http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0102-33062018000300329&lng=en&tlng=en.
- CHEN, S., R. TAMME, F. J. THOMSON, and A. T. MOLES. 2019. Seeds tend to disperse further in the tropics R. Nathan (Ed.). Ecol. Lett. 22: 954–961. Available at:

https://onlinelibrary.wiley.com/doi/abs/10.1111/ele.13255.

- COLINVAUX, P. A., and P. E. DE OLIVEIRA. 2001. Amazon plant diversity and climate through the Cenozoic. Palaeogeogr. Palaeoclimatol. Palaeoecol. 166: 51–63. Available at: https://linkinghub.elsevier.com/retrieve/pii/S0031018200002017.
- COOMES, D. A., and P. J. GRUBB. 2003. Colonization, tolerance, competition and seed-size variation within functional groups. Trends Ecol. Evol. 18: 283–291. Available at: https://linkinghub.elsevier.com/retrieve/pii/S0169534703000727.
- DALSGAARD, B., E. MAGÅRD, J. FJELDSÅ, A. M. MARTÍN GONZÁLEZ, C. RAHBEK, J. M. OLESEN,
 J. OLLERTON, R. ALARCÓN, A. CARDOSO ARAUJO, P. A. COTTON, C. LARA, C. G. MACHADO,
 I. SAZIMA, M. SAZIMA, A. TIMMERMANN, S. WATTS, B. SANDEL, W. J. SUTHERLAND, and J.C. SVENNING. 2011. Specialization in Plant-Hummingbird Networks Is Associated with
 Species Richness, Contemporary Precipitation and Quaternary Climate-Change Velocity A.
 Traveset (Ed.). PLoS One 6: e25891. Available at:
 http://dx.plos.org/10.1371/journal.pone.0025891.
- DALSGAARD, B., K. TRØJELSGAARD, A. M. MARTÍN GONZÁLEZ, D. NOGUÉS-BRAVO, J.
 OLLERTON, T. PETANIDOU, B. SANDEL, M. SCHLEUNING, Z. WANG, C. RAHBEK, W. J.
 SUTHERLAND, J.-C. SVENNING, and J. M. OLESEN. 2013. Historical climate-change
 influences modularity and nestedness of pollination networks. Ecography (Cop.). 36: 1331–
 1340. Available at: http://doi.wiley.com/10.1111/j.1600-0587.2013.00201.x.
- DART, S., and C. G. ECKERT. 2013. Experimental and genetic analyses reveal that inbreeding depression declines with increased self-fertilization among populations of a coastal dune plant. J. Evol. Biol. 26: 587–599. Available at: http://doi.wiley.com/10.1111/jeb.12075.
- DARWIN, C. 1877. The different forms of flowers on plants of the same species. John Murray,

London.

- DINIZ-FILHO, J. A. F., T. F. L. V. B. RANGEL, and L. M. BINI. 2008. Model selection and information theory in geographical ecology. 479–488.
- DUTILLEUL, P., P. CLIFFORD, S. RICHARDSON, and D. HEMON. 1993. Modifying the t Test for Assessing the Correlation Between Two Spatial Processes. Biometrics 49: 305. Available at: https://www.jstor.org/stable/2532625?origin=crossref.
- ECKERT, C., K. SAMIS, and S. DART. 2006. Reproductive assurance and the evolution of uniparental reproduction in flowering plants. *In* L. Harder and S. Barrett (Eds.) The Ecology and Evolution of Flowers. pp. 183–203, Oxford University Press.
- FRÜND, J., C. F. DORMANN, A. HOLZSCHUH, and T. TSCHARNTKE. 2013. Bee diversity effects on pollination depend on functional complementarity and niche shifts. Ecology 94: 2042–2054. Available at: http://doi.wiley.com/10.1890/12-1620.1.
- GATHMANN, A., and T. TSCHARNTKE. 2002. Foraging ranges of solitary bees. J. Anim. Ecol. 71: 757–764. Available at: http://doi.wiley.com/10.1046/j.1365-2656.2002.00641.x.
- GENT, P. R., G. DANABASOGLU, L. J. DONNER, M. M. HOLLAND, E. C. HUNKE, S. R. JAYNE, D. M. LAWRENCE, R. B. NEALE, P. J. RASCH, M. VERTENSTEIN, P. H. WORLEY, Z.-L. YANG, and M. ZHANG. 2011. The Community Climate System Model Version 4. J. Clim. 24: 4973–4991.
 Available at: http://journals.ametsoc.org/doi/abs/10.1175/2011JCLI4083.1.

GOODWILLIE, C., S. KALISZ, and C. G. ECKERT. 2005. The Evolutionary Enigma of Mixed Mating Systems in Plants: Occurrence, Theoretical Explanations, and Empirical Evidence. Annu. Rev. Ecol. Evol. Syst. 36: 47–79. Available at: http://www.annualreviews.org/doi/10.1146/annurev.ecolsys.36.091704.175539.

GRAZZIOTIN, F. G., M. MONZEL, S. ECHEVERRYGARAY, and S. L. BONATTO. 2006.

Phylogeography of the *Bothrops jararaca* complex (Serpentes: Viperidae): past fragmentation and island colonization in the Brazilian Atlantic Forest. Mol. Ecol. 15: 3969– 3982. Available at: http://doi.wiley.com/10.1111/j.1365-294X.2006.03057.x.

- GREENLEAF, S. S., N. M. WILLIAMS, R. WINFREE, and C. KREMEN. 2007. Bee foraging ranges and their relationship to body size. Oecologia 153: 589–96. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17483965 [Accessed July 11, 2014].
- GROSSENBACHER, D., R. BRISCOE RUNQUIST, E. E. GOLDBERG, and Y. BRANDVAIN. 2015.
 Geographic range size is predicted by plant mating system J. Pannell (Ed.). Ecol. Lett. 18: 706–713. Available at: http://doi.wiley.com/10.1111/ele.12449.
- HARGREAVES, A. L., and C. G. ECKERT. 2014. Evolution of dispersal and mating systems along geographic gradients: implications for shifting ranges J. Bailey (Ed.). Funct. Ecol. 28: 5–21.
 Available at: http://doi.wiley.com/10.1111/1365-2435.12170.
- KISSLING, W. D., W. L. EISERHARDT, W. J. BAKER, F. BORCHSENIUS, T. L. P. COUVREUR, H. BALSLEV, and J.-C. SVENNING. 2012. Cenozoic imprints on the phylogenetic structure of palm species assemblages worldwide. Proc. Natl. Acad. Sci. 109: 7379–7384. Available at: http://www.pnas.org/cgi/doi/10.1073/pnas.1120467109.
- KNIGHT, T. M., J. A. STEETS, J. C. VAMOSI, S. J. MAZER, M. BURD, D. R. CAMPBELL, M. R.
 DUDASH, M. O. JOHNSTON, R. J. MITCHELL, and T.-L. ASHMAN. 2005. Pollen Limitation of Plant Reproduction: Pattern and Process. Annu. Rev. Ecol. Evol. Syst. 36: 467–497.
 Available at:

http://www.annualreviews.org/doi/abs/10.1146/annurev.ecolsys.36.102403.115320 [Accessed November 13, 2014].

KOSKI, M. H., J. L. ISON, A. PADILLA, A. Q. PHAM, and L. F. GALLOWAY. 2018. Linking

pollinator efficiency to patterns of pollen limitation: small bees exploit the plant–pollinator mutualism. Proc. R. Soc. B Biol. Sci. 285: 20180635. Available at: http://rspb.royalsocietypublishing.org/lookup/doi/10.1098/rspb.2018.0635.

- LEDRU, M.-P., G. CECCANTINI, S. E. M. GOUVEIA, J. A. LÓPEZ-SÁEZ, L. C. R. PESSENDA, and A. S. RIBEIRO. 2006. Millenial-scale climatic and vegetation changes in a northern Cerrado (Northeast, Brazil) since the Last Glacial Maximum. Quat. Sci. Rev. 25: 1110–1126.
 Available at: https://linkinghub.elsevier.com/retrieve/pii/S027737910500274X.
- LEVIN, D. A. 2012. Mating system shifts on the trailing edge. Ann. Bot. 109: 613–620. Available at: https://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcr159.
- LLOYD, D. G., and C. J. WEBB. 1992. Evolution and Function of Heterostyly S. C. H. Barrett (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg Available at: http://link.springer.com/10.1007/978-3-642-86656-2_6.
- LOPES, S., P. BERGAMO, S. QUEIROZ, J. OLLERTON, T. SANTOS, and A. RECH. High frequency of heterospecific pollen deposition is positively associated with plant fitness in a diverse hummingbird-pollinated plant community. Ann. Bot. in press.
- LORD, J. M. 2015. Patterns in floral traits and plant breeding systems on Southern Ocean Islands. AoB Plants 7: plv095. Available at: https://academic.oup.com/aobpla/articlelookup/doi/10.1093/aobpla/plv095.

LOREAU, M. 2001. Biodiversity and Ecosystem Functioning: Current Knowledge and Future Challenges. Science (80-.). 294: 804–808. Available at: https://www.sciencemag.org/lookup/doi/10.1126/science.1064088.

MAGNUSSON, W. E., A. P. LIMA, A. L. K. M. ALBERNAZ, T. M. SANAIOTTI, and J.-L. GUILLAUMET. 2008. Composição florística e cobertura vegetal das savanas na região de

Alter do Chão, Santarém - PA. Rev. Bras. Botânica 31. Available at: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-84042008000100015&lng=pt&nrm=iso&tlng=pt.

MAYLE, F. E., and M. J. POWER. 2008. Impact of a drier Early–Mid-Holocene climate upon Amazonian forests. Philos. Trans. R. Soc. B Biol. Sci. 363: 1829–1838. Available at: http://www.royalsocietypublishing.org/doi/10.1098/rstb.2007.0019.

MICHENER, C. D. 2007. The bees of the world. John Hopkins University Press, Baltimore.

- MOREIRA, X., B. CASTAGNEYROL, L. ABDALA-ROBERTS, J. C. BERNY-MIER Y TERAN, B. G. H.
 TIMMERMANS, H. H. BRUUN, F. COVELO, G. GLAUSER, S. RASMANN, and A. J. M. TACK.
 2018. Latitudinal variation in plant chemical defences drives latitudinal patterns of leaf
 herbivory. Ecography (Cop.). 41: 1124–1134. Available at:
 http://doi.wiley.com/10.1111/ecog.03326.
- OLLERTON, J., R. WINFREE, and S. TARRANT. 2011. How many flowering plants are pollinated by animals? Oikos 120: 321–326. Available at: http://doi.wiley.com/10.1111/j.1600-0706.2010.18644.x.
- PENNINGTON, R., and J. A. RATTER. 2006. Neotropical Savannas and Seasonally Dry Forests: Plat Diversity, Biogeography, and Conservation. CRC Press, Florida.
- POPIC, T. J., G. M. WARDLE, and Y. C. DAVILA. 2013. Flower-visitor networks only partially predict the function of pollen transport by bees. Austral Ecol. 38: 76–86. Available at: http://doi.wiley.com/10.1111/j.1442-9993.2012.02377.x.
- R CORE TEAM. 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Au. Available at: http://www.r-project.org/.

RANDLE, A. M., J. B. SLYDER, and S. KALISZ. 2009. Can differences in autonomous selfing

ability explain differences in range size among sister-taxa pairs of *Collinsia* (Plantaginaceae)? An extension of Baker's Law. New Phytol. 183: 618–629. Available at: http://doi.wiley.com/10.1111/j.1469-8137.2009.02946.x.

- RANGEL, T. F., J. A. F. DINIZ-FILHO, and L. M. BINI. 2010. SAM: a comprehensive application for Spatial Analysis in Macroecology. Ecography (Cop.). 33: 46–50. Available at: http://doi.wiley.com/10.1111/j.1600-0587.2009.06299.x.
- RATTER, J. A., S. BRIDGEWATER, and J. F. RIBEIRO. 2003. Analysis of the floristic composition of the Brazilian Cerrado vegetation III: Comparison of the woody vegetation of 376 areas.
 Edinburgh J. Bot. 60. Available at: http://www.journals.cambridge.org/abstract_S0960428603000064.
- RECH, A. R., B. DALSGAARD, B. SANDEL, J. SONNE, J.-C. SVENNING, N. HOLMES, and J.
 OLLERTON. 2016. The macroecology of animal versus wind pollination: ecological factors are more important than historical climate stability. Plant Ecol. Divers. 9: 253–262.
 Available at: https://www.tandfonline.com/doi/full/10.1080/17550874.2016.1207722.
- RECH, A. R., L. R. JORGE, J. OLLERTON, and M. SAZIMA. 2018. Pollinator availability, mating system and variation in flower morphology in a tropical savanna tree. Acta Bot. Brasilica 32: 462–472. Available at: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0102-33062018000300462&lng=en&tlng=en.

RICHARDSON, J. E. 2001. Rapid Diversification of a Species-Rich Genus of Neotropical Rain Forest Trees. Science (80-.). 293: 2242–2245. Available at: http://www.sciencemag.org/cgi/doi/10.1126/science.1061421.

RIVERA-MARCHAND, B., and J. D. ACKERMAN. 2006. Bat Pollination Breakdown in the Caribbean Columnar Cactus *Pilosocereus royenii*. Biotropica 38: 635–642. Available at:

http://doi.wiley.com/10.1111/j.1744-7429.2006.00179.x.

- SAKAMOTO, R. L., and S.-I. MORINAGA. 2013. Poor correlation between the removal or deposition of pollen grains and frequency of pollinator contact with sex organs.
 Naturwissenschaften 100: 871–876. Available at: http://link.springer.com/10.1007/s00114-013-1087-5.
- SALGADO-LABOURIAU, M. L., V. CASSETI, K. R. FERRAZ-VICENTINI, L. MARTIN, F. SOUBIÈS, K. SUGUIO, and B. TURCQ. 1997. Late Quaternary vegetational and climatic changes in cerrado and palm swamp from Central Brazil. Palaeogeogr. Palaeoclimatol. Palaeoecol. 128: 215–226. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0031018296000181.
- SANDEL, B., L. ARGE, B. DALSGAARD, R. G. DAVIES, K. J. GASTON, W. J. SUTHERLAND, and J.-C. SVENNING. 2011. The Influence of Late Quaternary Climate-Change Velocity on Species Endemism. Science (80-.). 334: 660–664. Available at: http://www.sciencemag.org/cgi/doi/10.1126/science.1210173.
- SCHEMSKE, D. W., G. G. MITTELBACH, H. V. CORNELL, J. M. SOBEL, and K. ROY. 2009. Is There a Latitudinal Gradient in the Importance of Biotic Interactions? Annu. Rev. Ecol. Evol. Syst. 40: 245–269. Available at:

http://www.annualreviews.org/doi/10.1146/annurev.ecolsys.39.110707.173430.

- SIROIS-DELISLE, C., and J. T. KERR. 2018. Climate change-driven range losses among bumblebee species are poised to accelerate. Sci. Rep. 8: 14464. Available at: http://www.nature.com/articles/s41598-018-32665-y.
- SONNE, J., T. B. ZANATA, A. M. MARTÍN GONZÁLEZ, N. L. CUMBICUS TORRES, J. FJELDSÅ, R. K. COLWELL, B. A. TINOCO, C. RAHBEK, and B. DALSGAARD. 2019. The distributions of morphologically specialized hummingbirds coincide with floral trait matching across an

Andean elevational gradient. Biotropica 51: 205–218. Available at: http://doi.wiley.com/10.1111/btp.12637.

- SOUZA, H. A. V. E, R. G. COLLEVATTI, M. S. LIMA-RIBEIRO, J. P. DE LEMOS-FILHO, and M. B. LOVATO. 2017. A large historical refugium explains spatial patterns of genetic diversity in a Neotropical savanna tree species. Ann. Bot. 119: 239–252. Available at: https://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcw096.
- TERRIBILE, L. C., M. S. LIMA-RIBEIRO, M. B. ARAÚJO, N. BIZÃO, R. G. COLLEVATT, R.
 DOBROVOLSKI, A. A. FRANCO, F. GUILHAUMON, J. DE S. LIMA, D. M. MURAKAMI, J. C.
 NABOUT, G. DE OLIVEIRA, L. K. DE OLIVEIRA, S. G. RABELO, T. F. RANGEL, L. M. SIMON, T.
 N. SOARES, M. P. DE C. TELLES, and J. A. F. DINIZ FILHO. 2012. Areas of climate stability of species ranges in the Brazilian Cerrado: disentangling uncertainties through time. Nat.
 Conserv. 10: 152–159. Available at: http://doi.editoracubo.com.br/10.4322/natcon.2012.025.
- VASCONCELOS, H. L., J. B. MARAVALHAS, R. M. FEITOSA, R. PACHECO, K. C. NEVES, and A. N. ANDERSEN. 2018. Neotropical savanna ants show a reversed latitudinal gradient of species richness, with climatic drivers reflecting the forest origin of the fauna. J. Biogeogr. 45: 248– 258. Available at: http://doi.wiley.com/10.1111/jbi.13113.
- WASER, N. M., L. CHITTKA, M. V. PRICE, N. M. WILLIAMS, and J. OLLERTON. 1996.Generalization in Pollination Systems, and Why it Matters. Ecology 77: 1043–1060.Available at: http://doi.wiley.com/10.2307/2265575.
- WERNECK, F. P. 2011. The diversification of eastern South American open vegetation biomes: Historical biogeography and perspectives. Quat. Sci. Rev. 30: 1630–1648. Available at: https://linkinghub.elsevier.com/retrieve/pii/S0277379111000813.

WERNECK, F. P., C. NOGUEIRA, G. R. COLLI, J. W. SITES, and G. C. COSTA. 2012. Climatic

stability in the Brazilian Cerrado: implications for biogeographical connections of South American savannas, species richness and conservation in a biodiversity hotspot. J. Biogeogr. 39: 1695–1706. Available at: http://doi.wiley.com/10.1111/j.1365-2699.2012.02715.x.

- WESTERKAMP, C. 1996. Pollen in bee-flower relations Some considerations on melittophily. Bot. Acta 109: 325–332. Available at: http://www.mendeley.com/research/pollen-beeflowerrelations-some-considerations-melittophily/.
- WHITEHEAD, M. R., R. LANFEAR, R. J. MITCHELL, and J. D. KARRON. 2018. Plant Mating Systems Often Vary Widely Among Populations. Front. Ecol. Evol. 6. Available at: http://journal.frontiersin.org/article/10.3389/fevo.2018.00038/full.
- WRIGHT, S. I., S. KALISZ, and T. SLOTTE. 2013. Evolutionary consequences of self-fertilization in plants. Proc. R. Soc. B Biol. Sci. 280: 20130133. Available at: http://rspb.royalsocietypublishing.org/cgi/doi/10.1098/rspb.2013.0133.