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Abstract: Acute high-intensity interval training (HIIT) is a time-efficient strategy to improve physical
health; however, the effect of acute HIIT on executive function (EF) is unclear. The aim of this study
was to systematically review the existing evidence and quantify the effect of acute HIIT on overall EF
and the factors affecting the relationship between acute HIIT and EF. Standard databases (i.e., the
PubMed, Medline, Scopus, and CENTRAL databases) were searched for studies that examined
the effect of acute HIIT on EF and were published up until January 2021. The overall EF and
factors grouped by three categories, namely, EF assessment characteristics, exercise intervention
characteristics, and sample and study characteristics, were analyzed by percentage of comparison for
positive or null/negative effects. Overall, 35 of 57 outcomes (61%) across 24 studies revealed that
acute HIIT has a positive effect on overall EF. In terms of factors, the results indicated that among EF
assessment characteristics, groups, inhibition, updating, and the assessment occurring within 30 min
may moderate the effect of acute HIIT on EF, while among exercise intervention characteristics, total
time within 11 to 30 min may moderate the effect. Finally, among sample characteristics, age under
40 years may moderate the effect. Acute HIIT is generally considered a viable alternative for eliciting
EF gains, with factors related to EF components, timing of the assessment, exercise total time, and
age potentially moderating the effect of HIIT on EF.

Keywords: acute exercise; cognitive function; high-intensity interval training; executive function;
exercise; systematic review

1. Introduction

Acute exercise, which refers here to a single bout of exercise, has received considerable
and increasing interest due to its facilitating effect on cognitive function [1–3]. Indeed, it
is currently recommended by both the American College of Sport Medicine guidelines
(ACSM, 2020) and various national physical activity guidelines based in part on its benefi-
cial effects on cognitive function [4]. Along with being positively associated with various
aspects of cognitive function (e.g., attention, information processing, and memory), acute
exercise has been found to have a pronounced effect on executive function (EF), a subset
of top-down cognitive control processes for purposeful and goal-directed behavior [5–8].
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Acute exercise has been observed to improve EF performance behaviorally [9–11], in ad-
dition to positively affecting EF task-associated neuroelectric activity [12–14] and neural
networks [15,16]. The facilitation of EF following acute exercise has been further con-
firmed by several reviews [17–19]. However, such effects on specific modality of exercise
(e.g., high-intensity interval training (HIIT)) remains for further investigation.

HIIT, a unique form of exercise, has been found to improve health in general [4]. HIIT
consists of repeated, brief durations of high-intensity exercise (i.e., exercise resulting in
≥85% maximal heart rate) interspersed with periods of low-intensity exercise or rest [20–22].
Compared to typical exercise (e.g., aerobic exercise, resistance exercise), HIIT appears to
constitute a more effective strategy for eliciting a range of physiological health benefits
such as improved cardiorespiratory fitness [23,24], improved insulin sensitivity [25], and
decreased body fat and blood pressure [26]. In addition to these physiological alterations,
the beneficial effects of HIIT have also been found to extend to EF [27–29].

Recently, Chang and colleagues [30] proposed a “3W1H” framework aimed at further
understanding the effects of acute exercise on cognitive function, in which it is suggested
that the nature of cognitive functions and the exercise characteristics (i.e., what), moderators
linked to sample characteristics and the timing of the assessment (i.e., who and when),
and the potential mechanisms involved (i.e., how) should be considered. Relatedly, it
is expected that the effects of acute HIIT on EF could be further enhanced based upon
the framework. In specific terms, EF can be divided into two sub-domains consisting of
core EF (i.e., inhibition, shifting, and updating/working memory) and higher-order EF
(i.e., planning) [7,31], and the question of whether HIIT affects general EF or these specific
EF sub-domains remains unanswered [19,32]. It is also unclear whether specific HIIT
characteristics affecting EF could be investigated because while the nature of typical exercise
characteristics (e.g., exercise duration, exercise mode, and exercise intensity) have been
observed to affect EF [1,33], HIIT contains different exercise features (i.e., working/recovery
time ratio and rest interval). Lastly, sample and study characteristics (i.e., age, gender,
fitness level, design, and comparison) as well as the timing of the assessment have been
found to influence the effects of acute exercise on cognitive function, but whether these
factors affect the relationship between HIIT and EF has yet to be determined [1].

To extend the existing knowledge regarding the effect of acute HIIT on EF, systematic
evaluations of the available evidence [27–29] and comprehensive reviews of the conse-
quences of overall and moderating factors are required [34,35]. The present systematic
review thus sought to investigate the effect of acute HIIT on EF while also considering
three categories of potentially influential factors, including EF assessment characteristics
(i.e., EF components and the timing of the assessment), exercise intervention characteristics
(i.e., total time, type, modality, work/recovery time ratio, rest interval, and intensity),
and sample and study characteristics (i.e., age, gender, fitness level, study design, and
comparator), in order to further our understanding.

2. Methods

This systematic review was designed in accordance with the Preferred Reporting Items
for Systematic Reviews and Meta-analysis (PRISMA) guidelines [36], and the methods
used were selected based on the Cochrane Guidelines for Systematic Reviews for literature
search and selection [37].

2.1. Search Strategy

The literature search consisted of a computer-based search of the PubMed, Medline,
Scopus, and CENTRAL databases for articles published between January 1990 and Jan-
uary 2021. The search query was [“high intensity interval training” (Title/Abstract) OR
“HIIT” (Title/Abstract) OR “high intensity interval exercise” (Title/Abstract) OR “HIIE” (Ti-
tle/Abstract)] AND [“cognition” (Title/Abstract) OR “cognitive function” (Title/Abstract)
OR “executive function” (Title/Abstract) OR “inhibition” (Title/Abstract) OR “updating”
(Title/Abstract) OR “shifting” (Title/Abstract) OR “planning” (Title/Abstract)]. Additional
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articles were added by reviewing previous systematic reviews [24,27], and we also supple-
mented the search using complementary databases (i.e., the Google Scholar database). All
the articles considered in the search were limited to peer-reviewed publications written
in English.

2.2. Selection Criteria

The selection criteria were based on the PICOS criteria in order to define the charac-
teristics of the included studies. Population: studies including healthy participants with
no limitations for age were included; Intervention: studies evaluating the effect of acute
HIIT on executive function and providing clear HIIT protocol were included; Comparator:
studies comparing an active control (e.g., stretching) or passive control (e.g., watching tele-
vision, sitting, and resting) were included; Outcomes: studies assessing EF were included;
Study design: studies with any type of design (i.e., within-subject and between-subject
designs) were included. One reviewer (JYA) initially performed the article search, after
which two reviewers (JYA and FTC) screened the titles and abstracts of studies identified
for potential selection by the search. Any disagreements were discussed with the third
reviewer (YKC), until a consensus was achieved.

2.3. Quality Assessment

The Cochrane Collaborations’ domain-based assessment of risk of bias [38], a seven-
item quality assessment tool, was employed. The seven items assessed can be described
as follows: (1) random sequence generation refers to selection bias due to inadequate
generation of a randomized sequence. (2) Allocation concealment refers to selection bias
due to inadequate concealment of allocations prior to assignment. (3) Blinding refers to
performance bias. (4) Blinding of the outcome assessment refers to detection bias. (5) In-
complete outcome data refers to attrition bias. (6) Selective reporting refers to reporting
bias. (7) Other bias refers to bias due to problems not covered elsewhere in the domain-
based assessment (e.g., a potential source of bias related to the specific study design). The
methodological quality of each study was evaluated by two reviewers (JYA and FTC), and
disagreements were resolved by consulting the third reviewer (YKC).

2.4. Data Extraction

Information on study details (i.e., author, year, and participant location), participants
(i.e., sample size, gender, mean age, and fitness level), design characteristics (i.e., experi-
mental design and comparator), exercise intervention (total time, type (modality), protocol
(i.e., set, work and recovery time, and rest interval), and intensity), and the EF assessment
(i.e., timing of the assessment, task, and components) were extracted from all the included
studies. Data from included studies were extracted independently by two of the reviewers
(JYA and FTC) and any discrepancies were solved by consulting a third reviewer (YKC).

For understanding potential moderators, the review further utilized the percentages of
positive and null/negative effects. EF outcomes were extracted and response time (RT) data
was included, if RT and accuracy were simultaneously coexisting [39]. We further categorized
potential moderators into three groups to examine their possible moderating role in the effects
of acute HIIT on EF (with the three categories being EF assessment characteristics, exercise
intervention characteristics, and sample and study characteristics). The EF assessment
characteristics considered included EF components (i.e., inhibition, updating, shifting, and
planning) and the timing of the assessment (i.e., ≤10 min, 11–20 min, 21–30 min, or >30 min
after the exercise). The exercise intervention characteristics considered included the total
exercise time (i.e., ≤10 min, 11–20 min, 21–30 min, or >30 min), type (i.e., aerobic exercise
or combined exercise), modality (i.e., running, cycling, circuit training, or boxing), rest
interval (i.e., active or passive), work/recovery time ratio (i.e., >1, <1, or = 1), and intensity
(i.e., maximal or submaximal). The sample and study characteristics considered consisted
of age (i.e., ≤18 years old, 19~40 years old, or >40 years old), gender (i.e., >50% male, <50%
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male, or equal), fitness level (i.e., fit or sedentary), study design (i.e., within-subject or
between-subject), and comparator (i.e., active control or passive control).

3. Results
3.1. Search Results and Overall EF

A total of 521 articles for potential inclusion were initially retrieved through the search,
and 338 articles were identified through other sources (n = 859). After removing duplicates,
446 articles remained for further screening of titles and abstracts. Afterward, 152 full-text
articles were assessed for examination of their eligibility. Finally, 24 articles were included
in the systematic review (Figure 1).

Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) flow diagram of each stage of the
study selection.

All of the included articles were studies addressing the effects of an acute HIIT
intervention on EF; an overview of the included studies is provided in Table 1. The present
review found that the number of participants in each study ranged from 11 to 64, and the
studies included studies conducted in twelve countries, including Brazil [40], China [41,42],
Colombia [43], France [44], Germany [45,46], Japan [47–51], Korea [52], Lithuania [53],
Poland [54,55], Spain [56], Switzerland [57], the United States [58–61], and the United
Kingdom [62,63]. Additionally, 13 task-related EF components (i.e., inhibition, updating,
shifting, and planning) were categorized (Table 2). Overall, the results found that 35 of
57 (61%) outcomes showed a positive effect on overall EF and 22 of 57 (39%) outcomes
showed a null/negative effect on overall EF (Table 3).
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Table 1. Overview of characteristics of included studies regarding acute high-intensity interval training and executive function.

Study Participant Design Exercise Intervention EF Assessment

Author (year), Location
N (males %) Mean age

(SD)
Fitness level

Exp. Design
Comparator Total time Type

Protocol:
Set, WRT (rest

interval)
Intensity Time exam. Task Comp.

Alves et al. (2014) [40]
Brazil

N = 22 (41%)
53.7 (4.7)

Fit

Within-subject
Active 20 min Aerobic exercise

(cycling)

10 sets, 1 min
and 1 min

(active)
Submax. Immediate

Digit span
test-backward

Stroop test

Updating
Inhibition

Burin.et al. (2020) [47]
Japan

N = 45 (53%)
23.7 (4.5)

Fit

Within-subject
Passive 8 min Aerobic exercise

(running)
8 sets, 30 s and

30 s (active) Maximal Immediate Stroop test Inhibition

Chang et al. (2017) [52]
Korea

N = 36 (0%)
21.4 (1.6)

Fit

Between-subject
Passive 30 min

Combined
exercise (circuit

training)

3 sets, 1:2
(passive) Submax. 15 min Stroop test Inhibition

Cooper et al. (2016) [62]
UK

N = 44 (48%)
12.6 (0.6)

Fit

Within-subject
Passive 10 min Aerobic exercise

(running)
10 sets, 10 s and

50 s (active) Maximal Immediate, 45
min

Corsi block test
Stroop

test-complex
level

Updating
Inhibition

Dupuy et al. (2018) [44]
France

N = 20 (100%)
28.0 (4.8)

Fit

Within-subject
Passive 36 min Aerobic exercise

(cycling)
6 sets, 3 min and
3 min (passive) Submax. 15, 30, 45, and

60 min
Modified Stroop
test-interference Shifting

Gmiat et al. (2017) [55]
Poland

N = 14 (0%)
22.7 (3), 41.7 (4)

Sedentary

Between-subject
Passive 27 min

Combined
exercise (circuit

training)

3 sets, 30 s and
10 s (passive) Maximal 60 min Corsi block test

Stroop test
Inhibition
Updating

Hashimoto et al. (2018)
[48]

Japan

N = 14 (100%)
24 (1)

Sedentary

Within-subject
Passive 28 min Aerobic exercise

(cycling)
4 sets, 4 min and

3 min (active) Submax.
Immediate, 10,
20, 30, 40, 50

min
Stroop test Inhibition

Kao et al. (2018) [58]
USA

N = 36 (50%)
21.5 (0.5)

Sedentary

Within-subject
Passive 16 min Aerobic exercise

(running)
8 sets, 1 min and

1 min (active) Submax. 12 min
Flanker task-
interference

score
Inhibition

Kao et al. (2017) [59]
USA

N = 64 (42%)
19.2 (0.8)

Sedentary

Within-subject
Passive 7.5 min Aerobic exercise

(running)

3 sets, 1.5 min
and 1 min

(active)
Submax. 20 min Flanker task-

incongruent Inhibition
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Table 1. Cont.

Study Participant Design Exercise Intervention EF Assessment

Kujach et al. (2018) [49]
Japan

N = 25 (64%)
21.0 (1.6)

Sedentary

Within-subject
Passive 8 min Aerobic exercise

(cycling)
8 sets, 30 s and
30 s (passive) Submax. 15 min Stroop test Inhibition

Kujach et al. (2019) [50]
Japan

N = 36 (100%)
21 (1.29)
Fit-low

Between-subject
Passive 30 min Aerobic exercise

(cycling)

6 sets, 30 s and
4.5 min

(passive)
Maximal 20 min Stroop test

TMT-B
Inhibition
Shifting

Lambrick et al. (2016)
[63]
UK

N = 20 (45%)
8.8 (0.8)

Sedentary

Within-subject
Passive 15 min Aerobic exercise

(running)
6 sets, 55 s and

95 s (active) Maximal 1 min, 15 min,
and 30 min Stroop test Inhibition

Ligeza et al. (2018) [54]
Poland

N = 18 (100%)
24.9 (2.2)

Fit

Within-subject
Passive 24 min Aerobic exercise

(cycling)
4 sets, 3 min, 3

min (active) Submax. 13 min Flanker task-
incongruent Inhibition

Ludyga et al. (2019)
[57] Switzerland

N = 94 (100%)
13.9 (0.7)

Sedentary

Between-subject
Passive 16 min

Combined
exercise (circuit

training)

10 sets, 60 s and
30 s, 30 s and 30

s (passive)
Maximal Immediate, 30

min, 60 min
Flanker task-
incongruent Inhibition

Martínez et al. (2020)
[56] Spain

N = 25 (100%)
(2.1)
Fit

Within-subject
Passive 20 min Aerobic exercise

(cycling)

10 sets, 1 min
and 1 min
(passive)

Submax. Immediate, 30
min Digit span test Updating

Miller et al. (2019) [60]
USA

N = 25 (48%)
23 (2.79)

Fit

Within-subject
Passive

10 min
(LV) and
20 min
(MV)

Aerobic exercise
(cycling)

5 sets, 1 min and
1 min (active)
(LV); 10 set, 1

min and 1 min
(active) (MV)

Submax. 1 min Stroop test Inhibition

Quintero et al. (2018)
[43]

Colombia

N = 36 (100%)
23.55 (3.4)
Sedentary

Between-subject
Passive 32 min Aerobic exercise

(running)
4 sets, 4 min and

4 min (active) Submax. Immediate Stroop
test-interference Inhibition

Schwarck et al. (2019)
[45] Germany

N = 39 (100%)
23.33 (3.23)

Fit

Between-subject
Passive 25 min Aerobic exercise

(running)
5 sets, 2 min and

3 min (active) Submax. 10 min
Stroop test-
incongruent

TMT-B

Inhibition
Shifting

Slusher et al. (2018) [61]
USA

N = 13 (100%) 23.62
(1.06)

Sedentary

Within-subject
Passive 5 min Aerobic exercise

(cycling)
10 sets, 20 s and

10 s. (active) Maximal Immediate Wisconsin card
sorting task Updating
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Table 1. Cont.

Study Participant Design Exercise Intervention EF Assessment

Solianik et al. (2020)
[53] Lithuania

N = 11 (100%)
22.8 (2.9)

Fit

Within-subject
passive 12 min Aerobic exercise

(boxing)
3 sets, 3 min and
1 min (passive) Maximal 21–30 min

Go/No-Go task
Procedural

reaction time
Mathematical

processing

Inhibition
Shifting

Updating

Sun et al. (2019) [42]
China

N = 20 (50%)
23.9 (2.5)

Sedentary

Within-subject
Passive 6 min Aerobic exercise

(cycling)
10 sets, 6 s and
30 s (passive) Maximal Immediate Go/No-Go task Inhibition

Tsukamoto et al. (2016)
[51] Japan

N = 12 (100%)
22.9 (0.4)

Fit

Within-subject
Passive 28 min Aerobic exercise

(cycling)
4 sets, 4 min and

3 min (active) Submax. Immediate, 10,
20, and 30 min

Stroop test-
incongruent Inhibition

Wilke et al. (2020) [46]
Japan

N = 35 (49%)
26.7 (3.6)

Fit

Between-subject
Passive 15 min

Combined
exercise (circuit

training)

30 sets, 20 s and
10 s (passive) Maximal Immediate

Stroop
TMT-B

Digit span test

Inhibition
Shifting

Updating

Xie et al. (2020) [41]
China

N = 16 (100%)
24.5 (5.09)
Sedentary

Within-subject
Passive 20 min Aerobic exercise

(cycling)

10 sets, 1 min
and 1 min

(active)
Submax. 15 min Flanker task-

incongruent Inhibition

Note: WRT = work and recovery time; NR = not report; TMT-B = trail making test-B; UK = United Kingdom; USA = United States; Immediate ≤10 min; Exam. = Examination; Comp. = Component; Submax. =
Submaximal.
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Table 2. Overview of component-specific executive function tasks.

Inhibition Updating Shifting Planning

Go/No-Go task
Flanker task
Stroop test

Corsi blocks test
Digit span test-backward
Mathematical processing
Symbol digits modality

Wisconsin card sorting task

Modified Stroop test
Procedural reaction time

Switching task-costs
Trail making task-B

None

Table 3. The positive and null/negative comparison of effects on overall executive function and associated factors
categorized into three groups.

N of Outcome N of Positive Effect (%) N of Null Effect (%)

Overall 57 35 (61%) 22 (39%)
EF assessment

Component
Inhibition 39 27 (69%) 12 (31%)
Updating 11 6 (55%) 5 (45%)
Shifting 7 2 (29%) 5 (71%)

Planning – – –
Time examination

≤10 min 24 16 (67%) 8 (33%)
11–20 min 11 9 (88%) 2 (12%)
21–30 min 10 7 (70%) 3 (30%)
>30 min 12 3 (25%) 9 (75%)

Exercise intervention
Total time
≤10 min 8 3 (38%) 5 (62%)

11–20 min 24 17 (71%) 7 (29%)
21–30 min 20 13 (65%) 7 (35%)
>30 min 5 2 (40%) 3 (60%)

Type
Aerobic exercise 43 28 (65%) 15 (35%)

Combined exercise 14 7 (50%) 7 (50%)
Modality
Running 12 7 (58%) 5 (42%)
Cycling 28 19 (69%) 9 (31%)

Circuit training 14 7 (50%) 7 (50%)
Boxing 3 2 (67%) 1 (33%)

Rest interval
Active 30 21 (70%) 9 (30%)
Passive 27 14 (52%) 13 (48%)

Work recovery ratio
>1 25 16 (64%) 9 (36%)
<1 13 7 (54%) 6 (46%)
=1 19 12 (63%) 7 (37%)

Intensity
Maximal 21 12 (57%) 9 (43%)

Submaximal 36 23 (64%) 13 (36%)
Sample and study characteristics

Age
≤18 years 13 7 (54%) 6 (46%)

19~40 years 40 27 (68%) 13 (32%)
>40 years 4 1 (25%) 3 (75%)
Gender

>50% male 33 22 (67%) 11 (33%)
<50% male 23 12 (52%) 11 (48%)

Equal 1 1 (50%) 1 (50%)
Fitness level
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Table 3. Cont.

N of Outcome N of Positive Effect (%) N of Null Effect (%)

Fit 53 33 (62%) 20 (38%)
Sedentary 4 2 (50%) 2 (50%)

Study Design
Within-subject 38 25 (66%) 13 (34%)

Between subject 19 10 (53%) 9 (47%)
Comparator

Active control 2 1 (50%) 1 (50%)
Passive control 55 34 (62%) 21 (38%)

Note: EF = executive function.

3.2. EF Assessment

In terms of individual EF components, we found greater percentages of positive effects
for inhibition (69% vs. 31%) and updating (55% vs. 45%), whereas the results revealed
that the number of null/negative effects was greater than the number of positive effects
for shifting (29% vs. 71%). No EF outcomes for planning were included in the reviewed
studies. In the terms of the timing of assessment, the number of positive effects was greater
than the number of null/negative effects when the assessment was performed less than
10 min (67% vs. 33%), 11–20 min (88% vs. 12%), or 21–30 min (70% vs. 30%) after the
exercise. In contrast, the number of null/negative effects was greater than the number of
positive effects when the assessment was conducted more than 30 min (25% vs. 75%) after
the exercise.

3.3. Exercise Intervention

This systematic review also examined the effects of acute exercise on EF through
consideration of six exercise intervention characteristics, including typical exercise features
(i.e., total time, type, and modality) and HIIT features (i.e., rest interval, work/recovery
time ratio, and intensity).

Regarding typical exercise features, the analysis indicated that greater percentages
of positive effects were found for total time between 11 and 20 min (71% vs. 29%) and
total time between 21 and 30 min (65% vs. 35%), but not for total time of less than 10 min
(38% vs. 62%) or total time of more than 30 min (40% vs. 60%). Regarding exercise
type, the percentage of positive effects was greater than that of null/negative effects for
aerobic exercise (65% vs. 35%), while the percentages of positive effects and null/negative
effects were similar for combined exercise (50% vs. 50%). In terms of exercise modality, the
percentage of positive effects was greater than that of null/negative effects for running (58%
vs. 42%), cycling (69% vs. 31%), and boxing (67% vs. 33%). In addition, similar percentages
of positive and null/negative effects were found for circuit training (50% vs. 50%).

Regarding HIIT features, the percentage of positive effects was greater than the
percentage of null/negative effects for active interval control (70% vs. 30%) and for passive
control (52% vs. 48%) during the rest interval. In terms of work/recovery time ratio,
the analysis indicated that the percentage of positive effects was greater than that of
null/negative effects for all categories, including >1 (64% vs. 36%), <1 (54% vs. 46%),
and = 1 (63% vs. 37%). In terms of intensity, the percentage of positive effects was greater
than the percentage of null/negative effects for maximal intensity (57% vs. 43%) and
submaximal intensity (64% vs. 36%).

3.4. Sample and Study Characteristics

This systematic review considered also another five factors, including sample char-
acteristics (i.e., age, gender, and fitness level) and study characteristics (study design and
comparison type).

Regarding the sample characteristics, the results for age indicated that the percentage
of positive effects was greater than the percentage of null/negative effects for participants



Int. J. Environ. Res. Public Health 2021, 18, 3593 10 of 17

aged less than 18 years (54% vs. 46%) and participants aged 19 to 40 years old (68% vs.
32%), whereas the percentage of null/negative effects was greater than percentage of
positive effects for participants aged more than 40 years old (25% vs. 75%). In terms of
gender, regardless of the percentage of male participant, the percentage of positive effects
was greater than that of null/negative effects (52~67% vs. 33~48%). In terms of fitness
level, the percentage of positive effects was greater than that of null/negative effects for fit
participants (62% vs. 38%), whereas the percentages were similar for sedentary participants
(50% vs. 50%). In terms of study characteristics, the percentage of positive effects was
greater than that of null/negative effects for within-subject designs (66% vs. 34%) and
between-subject designs (53% vs. 47%). In terms of comparators, the percentage of positive
effects was greater than that of null/negative effects for passive control (62% vs. 38%) and
similar for active control (50% vs. 50%).

3.5. Quality Assessment

Most of the studies revealed unclear risks of bias in terms of selection bias, perfor-
mance bias, and detection bias, as well as low risks of bias in terms of attrition bias,
reporting bias, and other bias. High risks of bias were reported in terms of performance
bias, detection bias, reporting bias, and other bias, but with relative low percentages. These
results demonstrated that the included studies were of low to moderate quality in general.
The risk of bias results are summarized in Figure 2.

Figure 2. Domain-based assessments of risk of bias across studies based on the Cochrane Collaborations Handbook for
Systematic Review.

4. Discussion

This systematic review identified 57 outcomes across 24 articles in order to investigate
the effect of acute HIIT on EF and to examine whether factors grouped into three categories,
namely, EF assessment characteristics, exercise intervention characteristics, and sample
and study characteristics, affect the relationship between HIIT and EF. Specifically, we
used percentage of comparison (positive effects or null/negative effects) as an operational
definition to identify the effect of acute HIIT on EF. Overall, the results revealed that
acute HIIT generally tends to have a positive effect on EF. Moreover, they indicated
that EF assessment characteristics (i.e., components, timing of the assessment), exercise
intervention characteristics (i.e., total time) and sample characteristics (i.e., age) may all
moderate the relationship between acute HIIT and EF.

4.1. Overall Effect

Sixty-one percent (35 of 57) outcomes from our analysis suggested that acute HIIT
tends to have a positive effect on overall EF. The observed beneficial effect on EF effect of
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acute HIIT extends previous studies that utilized acute types of aerobic and resistance exer-
cises [1] as well as high-intensity exercise [19] to determine their effects on EF. Remarkably,
the results indicating the facilitation of EF following acute HIIT were provided by more
updated, comprehensive (e.g., multiple exercise modality), and objective evaluations in
this review compared to a previous systematic review [27].

The facilitation of EF possibly results from physiological alterations induced by HIIT
(e.g., heart rate, lactate, catecholamine, and blood flow alterations), which in turn lead to
an individual increasing his or her attentional sources when engaging in cognitive perfor-
mances [64,65]. Previous studies have also provided evidence indicating that acute HIIT
affects the prefrontal cortex, the brain region associated with EF, by increasing prefrontal
cortex activation and oxygenation [59,63]. Furthermore, the observed EF facilitation might
be associated with exercise-induced brain-derived neurotrophic factor (BDNF), a biomarker
associated with EF [61,66]. Specifically, a single bout of HIIT induces higher brain H2O2
and TNF-α levels [67], after which these molecules activate the signaling of peroxisome
proliferator-activated receptor-γ coactivator (PGC-1α) to enhance neuron BDNF synthe-
sis [61,67]. It should be noted that these potential mechanisms have not been directly
examined in terms of their role in the relationship between acute HIIT and EF, so more
studies are needed to clarify their influence.

4.2. EF Assessment

Few studies have examined how acute HIIT affects EF from the perspectives of specific
EF components and timing of the assessment. Our review reveals that acute HIIT tends
to have positive effects on two specific components (i.e., inhibition and updating, but not
shifting) and based on the timing of the assessment (i.e., within 30 min of the exercise but
not more than 30 min after the exercise), implying that experimental variations affect the
observed effects of acute HIIT on EF.

Most of the studies included in this review focused on inhibition (n = 39), and 69%
of the outcomes indicated a positive effect of acute HIIT on EF. Inhibition is believed to
reflect the ability to inhibit automatic responses when engaged in cognitive processes and
has been observed to be positively linked to acute high-intensity exercise [68]. Given that
inhibition was assessed by the studies in our review through multiple EF tasks including
the Stroop test, the Flanker task, and the Go/No-Go task, our results suggest a positive
effect of acute HIIT on inhibition regardless of the assessment task employed.

A total of 55% of outcomes indicated a positive effect of HIIT on updating, but only
29% of outcomes showed a positive effect on shifting, implying that acute HIIT has varying
effects on specific EF components. Although updating and shifting are recognized as
aspects of core EF, the concepts and involved brain regions of these two EF components
seem to be different. Specifically, updating (also known as working memory), a capacity for
processing and restoring temporary information [69,70], is associated with the dorsolateral
prefrontal cortex of the middle frontal gyrus, while shifting (also known as cognitive
flexibility), which refers to the ability to perceive alternative explanations for occurrences
and to modify responses while overriding automatic behaviors [71], is associated with the
anterior cingulate (located at anterior and posterior regions). Our findings suggest that
acute HIIT may affect these two components differently. Notably, however, given that
the numbers of outcomes regarding updating (n = 11) and shifting (n = 7) were relatively
limited, the results should be interpreted with caution. Furthermore, it is noteworthy that
there were no studies focused on planning. Planning is believed to reflect an ability to
manage a strategy and set goals and is considered a higher-level and primary component
of EF [7]. Our results therefore call for caution in examining the specific EF components to
further our understating regarding the impacts of acute HIIT on EF.

In terms of timing of the assessment, our findings indicate that positive effects of
acute HIIT on EF were observed for assessments conducted within 30 min of the exercise
(i.e., ≤10 min, 11–20 min, 21–30 min) but not for assessments conducted more than 30 min
after the termination of the exercise suggest that the beneficial effects of acute HIIT on EF
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were diminished after 30 min. The finding of decreased effects on EF with longer time
following acute exercise is partially supported by a previously conducted meta-analysis [1],
in which larger positive effects on cognitive function were observed within 11 to 20 min
following acute exercise (effect size (ES) = 0.26) and smaller effects were showed after 20 min
(ES = 0.17). Indeed, Cooper, Bandelow, Nute, Dring, Stannard, Morris and Nevill [62]
hypothesized that the attenuated magnitude of the improvement of cognitive performance
at 30 min following the cessation of HIIT is likely associated with higher neuromuscular
fatigue during exercise at 95% of maximal power output. It is thus possible that the
beneficial effect on EF would be diminished along with the passing of time following the
termination of acute HIIT.

4.3. Exercise Intervention

The present review included past studies that investigated both typical exercise char-
acteristics (i.e., total time, type, and modality) and specific HIIT characteristics (i.e., rest
interval, work/recovery time ratio, and intensity) in order to examine the role of these
exercise characteristics in the relationship between acute HIIT and EF.

Acute HIIT interventions with total time between 11 and 20 min (17 of 24 outcomes,
71%) or between 21 and 30 min (13 of 20 outcomes, 65%) tended to have positive effects on
EF, but those with total time of less than 10 min or more than 30 min did not consistently
have positive effects on EF (38~40% for positive effects). These findings confirm previous
empirical studies indicating that acute exercise durations of 11 to 30 min are required
to increase EF. For example, Chang et al. [72] focused on younger adults to examine the
dose–response relationship between acute exercise duration and EF and found that acute
exercise for 30 min (i.e., 5 min warm-up, 20 min main exercise, and 5 min cool-down) has
beneficial effects on EF, whereas acute exercise for 10 min or 45 min showed negligible
effects. Their follow-up study focused on late-middle-aged adults further demonstrated
that acute exercise bouts for 30 min show more enhanced EF compared to those of less than
20 min [73]. However, given that these studies focused on acute aerobic exercise, whether
or not there is a dose–response relationship between HIIT duration and EF requires further
examination.

Interestingly, HIIT types (i.e., aerobic exercise and combined exercise) and HIIT modal-
ity (i.e., running, cycling, and boxing) favor positive effects (i.e., 58 to 69%) on EF, wherein
HIIT types (i.e., combined exercise) and HIIT modality (i.e., circuit training) show 50%
outcomes favor positive effects. Along with a study by Hsieh, Chueh, Huang, Kao, Hillman,
Chang, and Hung [27] indicating that HIIT with aerobic exercise type facilitates EF, our
review extends previous findings by suggesting that HIIT type and modality generally
have positive influences on EF.

Regarding rest interval, 70% positive outcomes for active rest (e.g., low-intensity
exercise) and 52% positive outcomes for passive rest (i.e., full rest) were observed. The
results suggest that while both rest types benefit EF, HIIT with active rest may lead to more
positive effects. Indeed, the beneficial effects of acute HIIT with active rest were observed
not only immediately after [63] but also at 60 min after acute HIIT [57]. Our review also
examined the role of work/recovery time ratios categorized into “>1” (i.e., exercise time
is greater than rest time), “<1” (i.e., rest time is greater than exercise time), and “=1”
(i.e., exercise time and rest time are equal) and observed that all the categories showed
greater positive percentages (i.e., from 54% to 64%). While Hsieh, Chueh, Huang, Kao,
Hillman, Chang, and Hung [27] have suggested that a ratio of 1 is better than other ratios
based upon a specific empirical study [57], our results from other objective evaluations
demonstrate that the work/recovery time ratio of HIIT is not a sensitive factor in terms of
the effects of HIIT on EF.

Our findings indicated that acute HIIT tends to have a positive effect on EF regardless
of its intensity (i.e., submaximal or maximal), which is in contrast with previous hypotheses,
such as the inverted-U theory [74], reticular-activation hypofrontality theory [75], and
neurochemical hypotheses [64], which suggest that acute exercise of high intensity seems
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to impair EF. It is worth noting, however, that those hypotheses were proposed based
upon aerobic exercises with continuous rhythms, which are different from HIIT containing
numerous short bouts of high-intensity exercise and rest, suggesting that the special form
of HIIT might result in different effects on EF.

4.4. Sample and Study Characteristics

Three individual sample characteristics including age, gender, and fitness level were
analyzed. We categorized age so as to present the adolescents, adults, and middle-aged to
older adults. We believe the ages would be considered as main moderators between HIIT
and EF. Greater percentages of positive effects were found, for both populations under
18 years of age, and between 19 to 40 years of age (i.e., 54% and 68%, respectively), but
not for those of more than 40 years of age (i.e., 25%). However, these results should be
interpreted with caution, because the number of studies focusing on individuals older than
40 years was limited (n = 4), and none of the selected studies targeted older adults. The
limited numbers of such studies may be linked to HIIT features, namely, the high-intensity
and quick rhythm of HIIT, which raise safety issues and are a major exercise barrier for
its (more) widespread implementation, particularly among older individuals [76]. Clearly,
optimal HIIT in terms of duration, intensity, type, and modality, must be considered for
middle-aged or older populations.

The results for all genders (i.e., >50% male, <50% male) and fitness levels (i.e., fit,
sedentary) showed greater percentages of positive effect, with males and individuals
with fit status showing higher positive percentages (62 to 67%). These findings suggest
that acute HIIT might have both general and specific effects on EF in terms of these two
individual characteristics.

Study characteristics were categorized into two dimensions (i.e., study design and
comparator). More studies (n = 38) employed within-subject designs than between-subject
designs (n = 19), which was consistent with previous studies regarding the effects of acute
exercise on cognitive function indicating that cross-over designs are typical employed [1].
Although within-subject designs showed greater percentages of positive effects (i.e., 66%)
compared to between-subject designs (i.e., 53%), the results of within-subject and between-
subject study designs should be interpreted differently, given that a within-subject design
has more power but potentially suffers from confounds, while a between-subject design is
more conservative but has limitations in some cases [77]. We therefore suggest the choice
of design should be further considered. Lastly, we also included both active and passive
controls to confirm whether the observed effects of acute HIIT on EF were affected by
comparator, and the results indicated that passive control is showed more effects on EF
(62%) compared to active control (50%). This finding is important because it indicates
that acute HIIT tends to have positive effects regardless of the comparator. However,
further studies are needed to replicate these findings because only a small number of active
controls were utilized (n = 2).

4.5. Strength and Limitations

This was first systematic review to have examined the effects of HIIT on EF with
consideration of multiple factors, as well as considering evaluations by using objective
approaches; however, it also had some limitations. The first was the small number of
studies included overall. HIIT is a relatively new exercise modality and was initially
utilized mainly to improve athletic performance [78]. Most studies of HIIT have thus
focused on its effects on physical health [4,79], while the examination of its effects on mental
health, including cognitive function, began relatively recently, which limited the number
of studies included in this review. Additionally, for fully understanding the research
issue, unpublished articles could be further considered, in order to reduce publication
bias (e.g., file drawer problem). Secondly, only a few studies were judged as low risk,
and the associated methodological restrictions increased the possibility that the results
were swayed by confounding variables, meaning that caution should be used in drawing
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any conclusions. Furthermore, we excluded several studies (n = 11) because the details of
HIIT intervention (e.g., work/recovery time, intensity) were missing. Future studies are
suggested in order to provide competed information about HIIT intervention. Lastly, while
the percentages of positive verses negative effects provide a relatively objective means
for evaluating the results, statistical analysis of effect sizes, obtained via meta-analysis,
provides more precise conclusions, and therefore is suggested for use in future studies.

5. Conclusions

The current systematic review indicated that the majority of HIIT analyses indicated
positive effects of HIIT on EF, and that the beneficial effects on EF associated with acute
HIIT occurred regardless of exercise type, modality, rest interval, work/recovery time ratio,
intensity, gender, fitness level, and comparator, with various EF assessment characteristics
(i.e., components, timing of the assessment), exercise intervention characteristics (i.e., total
time), and sample characteristics (i.e., age) potentially moderating the observed relationship
between acute HIIT and EF. We believe our findings have important applications for
enhancing the effects of acute HIIT on EF, especially for those seeking time-efficient designs
of HIIT interventions to immediately facilitate EF.
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