
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3111229, IEEE Access

VOLUME XX, 2017 1

 Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

AdaptiveSystems: an integrated
framework for adaptive systems design
and development using MPS JetBrains
domain-specific modelling environment
Sofia Meacham1, Vaclav Pech2, and Detlef Nauck3
1Department of Computing & Informatics, Bournemouth University, Poole, BH12 5BB, UK
2 JetBrains MPS, Prague 140 00, Czech Republic
3 British Telecom, Ipswich IP5 3RE, U.K.

Corresponding author: Sofia Meacham (e-mail: smeacham@bournemouth.ac.uk).

This work was financially supported by research funding allocated directly from British Telecom (Data Science team in BT Research Headquarters in

Adastral Park) to Bournemouth University.

ABSTRACT This paper contains the design and development of an adaptive systems (AdaptiveSystems

Domain-Specific Language - DSL) framework to assist language developers and data scientists in their

attempt to apply Artificial Intelligence (AI) algorithms in several application domains. Big-data processing

and AI algorithms are at the heart of autonomics research groups among industry and academia. Major

advances in the field have traditionally focused on algorithmic research and increasing the performance of

the developed algorithms. However, it has been recently recognized by the AI community that the

applicability of these algorithms and their consideration in context is of paramount importance for their

adoption. Current approaches to address AI in context lie in two areas: adaptive systems research that

mainly focuses on implementing adaptivity mechanisms (technical perspective) and AI in context research

that focuses on business aspects (business perspective). There is currently no approach that combines all

aspects required from business considerations to appropriate level of abstraction. In this paper, we attempt

to address the problem of designing adaptive systems and therefore providing AI in context by utilising

DSL technology. We propose a new DSL (AdaptiveSystems) and a methodology to apply this to the

creation of a DSL for specific application domains such as AdaptiveVLE (Adaptive Virtual Learning

Environment) DSL. The language developer will be able to instantiate the AdaptiveSystems DSL to any

application domain by using the guidelines in this paper with an integrated path from design to

implementation. The domain expert will then be able to use the developed DSL (e.g. AdaptiveVLE DSL) to

design and develop their application. Future work will include extension and experimentation of the

applicability of this work to more application domains within British Telecom (BT) and other areas such as

health care, finance, etc.

INDEX TERMS language composition, reusability, DSL, adaptive systems

I. INTRODUCTION

There is no doubt that the software and systems of the

future will be dominated increasingly by adaptive systems.

The static cases that were used for many years by several

application domains from legacy software to embedded

systems will have to move to more dynamic models. These

dynamic models range from simpler adaptive models where

information is collected and changes are made with human

intervention (human-in-the-loop systems) to more complex

models where information is collected from the

environment at runtime and the system is able to adapt

itself (self-adaptive systems) [1].

There is a lot of controversy in the literature for the terms

adaptive, self-adaptive, autonomic [2], intelligent and smart

systems. Typically, the term smart or intelligent systems is

used for Internet of Things (IoT) applications that contain

physical devices to collect information such as sensors [3]

whereas the rest of the terms have not been associated with

such devices. For simplicity and clarity, we will use the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3111229, IEEE Access

VOLUME XX, 2017 1

term adaptive systems to refer to all the systems that collect

and process data through any means (hardware or software

sensors) with different levels of human intervention.

It has been widely recognised by the AI community and

was repeatedly raised by BT’s data science team through

their twenty years of experience within BT research that a

major issue in the design and development of adaptive

systems is the lack of an overall high-level system

description. This need had been identified early on in

attempts to design adaptive systems such as in [4] were a

high-level design oriented language for an adaptive web

systems framework was developed. Moreover, the technical

complexity of these systems makes them harder to adopt in

different application contexts and a system-level approach is

an emerging area with research interests for complex

domains such as IoT [5] [6] [7]. Although there are solutions

and frameworks that have been developed, they mainly focus

on implementation details - for more refer to Section II.

Therefore, the need to abstract at a higher-level in simple and

comprehensive steps and give an overview of how the

system will operate in context is an area that AI community

is currently identifying as a strong requirement. On the other

hand, research in providing AI in context has emerged

recently – for more please refer to Section II. However, it

mainly focuses on business aspects without tying them with

the corresponding technical implementations. Domain-

specific modelling is an emerging area that started from

MDE and provides a higher-level of abstraction, isolation of

domain-specific aspects with excellent tooling and tailoring

to particular domain requirements that include “intelligent”

systems (machine learning algorithms, adaptive systems) [8]

(DSLs for big data – machine learning) [9].In our previously

published work [10] we defined a framework for developing

adaptive VLEs. In this paper, we raised the level of

abstraction even more by defining an adaptive system

language-framework that can be ported to several application

domains such as the Adaptive VLE application, the education

IoT application, etc. From this high-level description, we

revised the previously developed adaptive VLE framework

to an improved version and complemented it with

corresponding data handling languages. The MPS JetBrains

domain-specific languages (DSLs) development environment

[11] was used to develop a new language. We mainly utilised

its strong language composition characteristics in

combination with the code generation features [12] to create

the path between adaptive systems and specific application

domains. Language extension and composition were the

main elements that provided this further raising of

abstraction.

It is worth noting that in this paper, we focus on the

system level. Specifically, we focus on the adaptive, smart,

intelligent elements that integrate the existing applications

with data science algorithms. The level of autonomicity

and/or human intervention provided is outside the scope of

this work. There is substantial work in the literature for

making systems autonomic but that is at a lower level of

abstraction. Also, the term integrated framework refers to

many different aspects from the tooling that integrates the

design and implementation to the integration of diverse

paths such AI software and traditional static software. A

comprehensive comparison with other related work is

presented in the background section as integration is an

important part of the proposed work.

Concluding, the main steps of our proposed work are

summarized as follows: an adaptive systems language that

will enable AI in context was developed to address to

industrial needs and cover existing research gaps in this

area such as integrated path from design to implementation

and tooling. This language followed MAPE-k loop

architectural elements (block diagram descriptions with

detailed explanations are provided in Figures 1, 2, 4) and

had main purpose to assist and provide a methodology for

language developers of many application domains. The

range of application domains that this work can be applied

will potentially create tremendous positive impact in the

field of adaptavie systems. The adaptive VLE application

domain was used as proof of concept and guidelines for

future application to other domains were provided. Last but

not least, we evaluated the developed DSL through proper

language quality characteristics evaluation method with

feedback from the industrial users (BT) and language

designers (MPS JetBrains).

A background study on adaptive systems and AI in context

will create the requirements for this research and is presented

in Section II. In Section III, our proposed solution through

the development of an integrated framework will be given in

detail. A case study was used to demonstrate the proposed

language design and development process: the adaptive VLE.

All the DSLs developed will be described with two main

subsections each: language structure and language usage.

The emphasis will be in their reusability and composition.

Five main languages were used: AdaptiveSystems (new

DSL), Adaptive_VLE (new revised DSL) for collecting data,

datamapping (previous publication) [13] for defining the

features and their type, datamapping_Adaptive_VLE (new

revised DSL) for connecting the datamapping with the

Adaptive_VLE application domain language, Classification

Algorithms Framework (CAF) (previous publication) [13]

language for data processing using a range of classification

algorithms. In Section IV, the main benefits from the

proposed solution will be detailed with a separate subsection

on the applicability to other application domains. In Section

V, BT’s and MPS’s language engineers’ evaluation will be

presented. Finally, our conclusions and future plans will be

detailed in Section VI.

II. BACKGROUND STUDY - ADAPTIVE SYSTEMS AND
AI IN CONTEXT

A. Adaptive Systems

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3111229, IEEE Access

VOLUME XX, 2017 1

Adaptive systems have been part of AI research for several

years now. Although there is controversy surrounding the

definition of the terms adaptive, autonomic, self-adaptive,

smart, intelligent the common denominator is that systems of

the future will not be static anymore [14]. They will have to

change both in structure and behavior to adapt to changing

requirements, environment conditions.

The need to support the design and development of

adaptive systems has led to the application of several

software engineering techniques [15]. Specifically,

architectural description languages, adaptation frameworks

and aspect-oriented techniques have been used to achieve

adaptivity. All these techniques were used to incorporate

adaptation mechanisms to enable change during runtime.

The most known approaches that have been published in

this research field are summarized as follows: The Mobility

and Adaptability enabling Middleware (MADAM) [16]

project provides a general component model and

middleware infrastructure that supports various adaptation

styles for mobile applications. Sadjadi et al. developed the

Adaptive CORBA Template (ACT) to enable runtime

improvements to CORBA applications in response to

changing requirements and environmental conditions [17].

ACT transparently weaves adaptive code into an object

request broker (ORB) at run time. The woven code

intercepts and modifies the requests, replies, and exceptions

that pass through the ORBs. One of the advantages of ACT

is that it is language and ORB independent. A dedicated

language called Stitch has been presented in [18] and is

used as part of the Rainbow framework. The Rainbow

framework is the most well-known adaptivity framework

and has been applied to many application domains.

Additionally, tools such as SOTA [19], ACTRESS [20] and

CYPHER [21] have been presented in the literature. The

DSML which is domain specific modelling language for

Dynamic Adaptive Systems is another example of work

that focuses on the adaptivity mechanisms [22]. Similarly in

[23][24], the emphasis is on modelling the adaptivity

mechanisms and their verification.

However, all the above approaches focus on how to

enable adaptivity at a very near to implementation level by

focusing on implementing adaptation mechanisms. A

higher-level of abstraction that will enable to consider the

elements of adaptive systems in context is still missing.

Specifically, all the above approaches either address

specific types of applications such as mobile applications

making them not easy to be reused and/or they lack tool

support for separating implementation and technical details

from the application domain. This would abstract the

development process and make it accessible to non-

technical users (users with domain expertise other than

software development for example such as health,

education professionals, etc.).

However, there are some approaches that overcome the

above-mentioned problems and are nearer to our proposed

solution.

The most remarkable work comes from Arcaini et. al in

[25]. The authors developed MSL (textual DSL) which

stands for MAPE Specification Language and it implements

MAPE-K patterns defined by Weyns in [26] for

decentralized self-adaptive systems. It contains formal

analysis and a case study for smart-home systems

development. However, this work contains a quite abstract

description of MAPE-K and would require the interfacing

with other tools such as verification, analysis and running

platform tools. This would include model to model

transformations which is a difficult process in most cases

therefore making the path from design to implementation

segmented. In our work, we propose a high-level system

architecture description with encapsulated path to

implementation through MPS’s model to model

transformations. We follow the “master-slave” pattern as it is

the most used in the industry and our approach covers a

representative range of adaptive systems applications as was

evidenced by BT’s researchers that participated in this work.

Another work worth mentioning is the MiDAS model-

based environment for adaptive systems proposed by José

Bocanegra in [27]. This work utilises a graphical DSL

representation that would have difficulties scaling as is

recognised for all graphical representations [28]. It is

tailored to the case study developed and its applicability to

other application domains is unclear, mainly referring to

adaptive interfaces.

B. AI in Context

Current literature for enabling AI in context mainly comes

from the business perspective. Mikael Berndtsson in two

recent publications details the nontechnical factors that

should be considered to enable AI adoption. In [29], the

need for nontechnical strategy for scaling analytics in

organisations by proposing an initial plan is presented,

whereas in [30] information gathered from 13 organisations

confirmed the value of nontechnical strategies and

suggested the application of change management

techniques [3]. In these papers, the nontechnical aspects are

addressed through techniques from business related

research anticipating that AI has similar requirements with

other Information Systems (IS) as is also stated in [31]. In

[31] an approach of modelling the AI in context using

formalism from the business processes modelling research

such as Archimate [32] is being proposed. This approach is

closer to the system architecture although still focuses on

business aspects. Other research in the area of AI in context

focuses on technical perspectives such as algorithmic

improvements to provide AI explainability in context

[33][34].

Both the above research areas approach the problem from

different perspectives and solve only part of it. The adaptive

systems part focuses on technical details for implementing

adaptivity and rarely considers its adoption by application

domains. The AI in context part, focuses on the business and

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3111229, IEEE Access

VOLUME XX, 2017 1

nontechnical aspects and doesn’t include the peculiarities that

make AI harder than the usual ISs.

In this paper, we will attempt to bridge the gap between

the approaches by creating a new domain-specific language

(DSL) to address the problem. This new DSL will hide the

implementation details from the nontechnical users, address

the most common aspects that adaptive systems design

entail (AI technical requirements), abstract the complexity

of these systems, provide multiple views for all domain

users involved. Although it uses domain-specific

technology to solve the specific problem, our solution is not

specific to an application domain and can be applied easily

to other domains without the need to understand the details.

This seems like a controversy as we use a domain-specific

technology to create a domain-independent framework.

However, it is not the first time that domain-specific

languages have been used in this way [25]. The requirement

to address the research gap of providing AI in context

contains the build of a framework that is domain-

independent or else stated application independent.

Specifically, we will base our work on creating a new

language and toolset for the design and development of

adaptive systems mainly based on the MAPE-K loop model

using a centralized control, architecture-based approach

targeting different application domains for adaptive

systems. The reasons for these choices are that they are

currently used extensively in industrial applications. To

demonstrate the applicability of the proposed method, we

will use a case study: The Adaptive Virtual Learning

Environment (AdaptiveVLE) (IS).

III. PROPOSED SOLUTION – AdaptiveSystems -
INTEGRATED FRAMEWORK FOR ADAPTIVE SYSTEMS

A. CASE STUDY – ADAPTIVE VLE

The AdaptiveVLE case study consists of the design and

development of a fully online VLE that uses adaptivity to

provide personalisation and therefore enhances the online

education provision.

Specifically, the educator will configure what data will

be collected by the AdaptiveVLE, then use the

AdaptiveVLE in the online class and collect learning

analytics data to personalise each student’s learning path.

For example, students with high academic achievements

will be given more advanced resources whereas students

with low achievement will be given more resources for

basic skills.

This falls under the general category of adaptive systems

as it collects, analyses, and processes data and acts on the

results from the data processing. Specifically, it

corresponds to adaptive web systems as the underlying

structure of the VLE is a web development software for the

VLE.

B. PROPOSED ARCHITECTURE - MAPE-K LOOP

In Fig. 1, the MAPE-K loop is presented as was originally

defined by IBM [35]. The IBM blueprint was initiated to

assist the operation and maintenance of complex

Information Technology (IT) systems that require highly

skilled IT professionals to install, configure, operate, tune,

and maintain them. To relieve the constant need of human

intervention, autonomic computing was initiated. This is

achieved by following the main elements of the MAPE-K

loop: Monitor, Analyse, Plan, Execute and Knowledge

base.

FIGURE 1. IBM’s blueprint MAPE-K architecture

C . DSL LANGUAGES

Detailed description of the structure and the usage of

composed languages (AdaptiveSystems, Adaptive_VLE,

datamapping, datamapping_Adaptive_VLE, CAF) with

emphasis on their composability characteristics is presented

in the following subsections.

AdaptiveSystems DSL

Language structure

The AdaptiveSystems DSL is referring to the steps of the

MAPE-K loop with a one-to-one correspondence.

Specifically, in Fig. 2, the main structure of the language

is presented in a diagrammatic form. Each of the blocks

correspond to concepts in MPS JetBrains.

FIGURE 2. IBM’s blueprint MAPE-K architecture and its
correspondence to the AdaptiveSystems DSL

From the figure, we can see that AdaptiveSystem consists

of 1 ManagedSystem (corresponds to MANAGED

ELEMENT of MAPE-K) and 0 or 1 AutonomicManager

(corresponds to AUTONOMIC MANAGER of MAPE-K).

The ManagedSystem is the static part of the system and

the AutonomicManager is the adaptivity part that handles

all data collection, processing, and adaptations. The

distinction between the two parts is one of the most vital

parts of the MAPE-K and along the lines that there is a

strong need to separate the adaptivity functionality from the

main-static system functionality [36]. The adaptive system

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3111229, IEEE Access

VOLUME XX, 2017 1

research community has recognised that if adaptivity

functionality is interleaved with main functionality then

future maintenance and experimentation with different

adaptation mechanisms become extremely hard to

impossible.

The above MAPE-K separation between the

ManagedSystem and the AutonomicManager is reinforced

further and reflected by the AdaptiveSystems DSL structure

in the MPS environment. Different folders were created to

designate the separation between them. This is represented

in Fig. 3.

 FIGURE 3. AdaptiveSystems DSL organization for separation between
AutonomicManager and ManagedSystem

By providing the folder structure in the AdaptiveSystems

DSL, we enforce this separation in all the subsequent

inheriting languages as will be described in the following

sections.

There are more structural elements inside the

AutonomicManager as presented in Fig. 4 (and is also

depicted in part of Fig. 3).

FIGURE 4. AutonomicManager concept structure

In Fig. 4, the direct correspondence between the steps of

the autonomic manager of the MAPE-K loop and MPS

concepts is presented. The Monitor (Monitor concept)

Analyse Process (AnalyseProcess concept) Execute

(Execute concept) – Knowledge (KnowledgeBase concept).

The Monitor concept consists of Sensors that can be

hardware or software sensors. The Execute concept consists

of potentially many AdaptationMechanisms. The

integration with CAF is presented in a following section.

Language usage

The AdaptiveSystems DSL is being extended by the

Adaptive_VLE DSL so the usage of the language is

described in the “inheriting” languages corresponding

sections.

Adaptive_VLE DSL

Language structure

In our previous work [37], we had developed a first version

of an AdaptiveVLE language. In this current publication, we

have extended and modified that initial version to comply

with the general AdaptiveSystems DSL.

First of all, the Adaptive_VLE language is defined as an

extension to the AdaptiveSystems language as is depicted in

Fig. 5. In MPS, one language extending another is used in

the same way as inheritance in object-oriented

programming. Consequently, the Adaptive_VLE language

will inherit all the concepts and their corresponding editors

from the AdaptiveSystems. Once you declare that a low-

level of detail (tailored to an application domain) DSL is

extending another high-level DSL, all concepts of the high-

level DSL can used and extended by the low-level DSL.

Specifically, to create the Adaptive_VLE DSL starting

from the AdaptiveSystems DSL, the following steps were

followed:

1. You declare in MPS that the Adaptive_VLE DSL is an

extension of the AdaptiveSystems DSL. That is

depicted in Fig. 5.

FIGURE 5. Adaptive_VLE DSL as an extension to the AdaptiveSystems

DSL

2. For concepts in the Adaptive_VLE DSL such as the

main AdaptiveVLE concept, we used the “extends”

relationship in the definition of a concept that refers to

the concept of the high-level language. This is depicted

in Fig. 6.

FIGURE 6. Adaptive_VLE DSL as an extension to the AdaptiveSystems
DSL

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3111229, IEEE Access

VOLUME XX, 2017 1

The consequence of this definition is that the

AdaptiveVLE concept inherits all the concept structure from

the AdaptiveSystems language. Therefore, the usage of the

Adaptive_VLE language should demonstrate that all the

main elements of the AdaptiveSystems are inherited down.

This is depicted in Fig. 7. Note that usages of the language

are represented in MPS using the Solutions sandboxes.

FIGURE 7. Solution for Adaptive_VLE DSL that inherits the structure
from AdaptiveSystems DSL

3. The Adaptive_VLE language developer will have to

develop the concepts and editors that are specific to the

application domain of the low-level language.

For example, the following structures had to be defined

for the Adaptive_VLE that don’t exist in the

AdaptiveSystems DSLs and are depicted in Fig. 8.

FIGURE 8. Domain-specific structure for Adaptive_VLE that is not
inherited by AdaptiveSystems

Also, the ManagedSystem that is inherited by the

AdaptiveSystems language needs to be extended with the

main system functional concepts. For example, in the case

of the Adaptive_VLE case study, the concepts that comprise

a BlendedCourse should be defined under the

ManagedSystem folder. The structure of the concepts is

depicted in Fig. 9.

FIGURE 9. ManagedSystem of the Adaptive_VLE DSL

Language usage

In this subsection, we ‘ll present the solution of the

Adaptive_VLE DSL. Please, note that in MPS, “solution” is

the usage of the developed DSL which is based on the

Abstract Syntax Tree that was defined.

The developed Adaptive_VLE DSL uses a combination

of the inherited AdaptiveSystems language editors and the

new editors that were developed for the specific to the

AdaptiveVLE domain concepts. For example, in Fig. 10,

the editors for the main concepts of AdaptiveSystems are

defined and applied in the solution figure. In Fig. 11, editor

for the learning analytics that need to be collected and is

specific to the Adaptive VLE domain is presented.

FIGURE 10. Editor for AdaptiveSystem concept

FIGURE 11. Editor for concept that is specific to the AdaptiveVLE
domain

The final solution-usage of the Adaptive_VLE language

is depicted in Fig. 12. In this figure, an application of the

AdaptiveSystems DSL editor depicted in Fig. 10 and the

Adaptive_VLE DSL editor in Fig. 11 are presented. The

“green font” main elements of adaptive systems (Fig. 10):

adaptive system, autonomic manager and managed system

are all present. However, for the specific learning analytics

that will need to be collected, new editors (Fig. 11) were

developed in the Adaptive_VLE DSL. These editors’ User

Interface (UI) contained improved drop-down menus

options that appear when we hover over a particular point

in the editor. The MPS feature utilised is a “transformation

menu” that is used to filter-out all entries that have been

already used and the “context assistant menu” of MPS. The

“context assistant menu” is used to provide a menu only

when the cursor is in context. Also, the ManagedSystem

structure is depicted in Fig. 12 and the corresponding editor

was developed in the derived Adaptive_VLE DSL.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3111229, IEEE Access

VOLUME XX, 2017 1

FIGURE 12. Solution for Adaptive_VLE DSL

Data handling languages and CAF datamapping DSL

Language structure

The datamapping DSL is a generic DSL for representing

data structures that are stored and processed and therefore is

not specific to an application domain. It is used to define

features and their datatypes.

Specifically, in Fig. 13, the main structure of the

language is presented in a diagrammatic form. Each of the

blocks correspond to concepts in MPS JetBrains. From the

figure, we can see that Data consist of Features which

consist of a FeatureMapper concept and a DataType

concept. The FeatureMapper is the linking concept that

connects this language with other languages that are

specific to the application domain such as the

Adaptive_VLE in our case. The DataType contains all the

supported types which are CharType, NumberType,

EnumerationType and DateType. Both the FeatureMapper

and the DataType concepts can be modified and extended

in future versions of the language to include more features

and more data types. This provides more dimensions of

extensibility to address the needs of data science teams.

FIGURE 13. datamapping DSL language structure

It is interesting to note that validation has been added

using checking rules for making sure that every feature

defined is unique as depicted in Fig. 14. This is a very useful

aspect for ensuring that the data that will be used for

processing will have unique columns which is a strong

requirement from BT’s data science team.

FIGURE 14. Data validation mechanisms as part of the datamapping
language.

More restrictions through checking rules can be added in

the future to depict validation requirements from all

domains involved in the system (education, data science in

this particular case study).

Language usage

The datamapping language is an essential abstraction that is

required in all applications where data is being handled. Its

main benefit is the raising of abstraction level from the

Excel/arff or any other required file type to a user screen

such as in Fig. 15. In this figure, only names and types are

defined that are required by the domain. The details of the

file types are abstracted to the user. It plays vital linking

role in connecting parts of adaptive systems from

application-specific parts such as the Adaptive_VLE

language to generic data processing parts such as the CAF

language. This can be generalised for any adaptive system

by replacing the application-specific part with a different

language. Finally, this datamapping language can be reused

not only by adaptive systems but by any systems that

require mapping and handling of data.

FIGURE 15. datamapping user interface with cross-validation of
attributes

In the above figure, the features that will be used for data

processing and their corresponding types are being defined.

Cross-validation with the corresponding

LearningAnalyticsItems from the Adaptive_VLE language is

also being performed through the availability or not of in

the dropdown menu. This means that the user can define

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3111229, IEEE Access

VOLUME XX, 2017 1

only features that correspond to data that have been

collected through the Adaptive_VLE language. More on the

linking between datamapping and the Adaptive_VLE

language in the following sections.

datamapping_Adaptive_VLE DSL

Language structure

The datamapping_Adaptive_VLE is an “adaptor” language

that connects the datamapping DSL (language for handling

data structures as described in the previous section) with the

Adaptive_VLE DSL (application-specific language). It

consists of one main concept, the

CollectLearningAnalyticsFeaMapping that contains a

reference to the LearningAnalyticsItem concept of the

Adaptive_VLE DSL. The linking structures between the two

languages are depicted in Fig. 16.

FIGURE 16. Concept structure of the datamapping_Adaptive_VLE that
contains a reference to the LearnignAnalyticsItem concept of the
Adaptive_VLE language.

Language usage

The datamapping_Adaptive_VLE language is an adaptor-

linking language that is not directly accessed by the user

and therefore it doesn’t provide a user interface. This is

implemented in MPS by not defining any rootable concept

in the language.

However, to demonstrate the usage of the overall

language composition, we created a sandbox that includes

all the data-related languages. In this sandbox, changes in

the Adaptive_VLE defined learning analytics constructs are

immediately reflected in the options available in the

datamapping language. You can observe this if you

compare the drop-down options available in Fig. 15 and the

corresponding configuration of the Adaptive_VLE learning

analytics options in Fig. 12.

All DSLs composition with CAF

Languages’ composition with CAF structure

At the heart of any adaptive system, data processing through

algorithms such as classification algorithms is performed.

This is implemented through the CAF DSL language that we

developed in our previous publication [10]. The CAF DSL

takes as an input a data arff file (this is the type required by

the weka libraries implementation that are being called). The

datamapping_Adaptive_VLE language that contains the data

structure adapted to particular application domain (the

AdaptiveVLE in our case), is used as an input in the CAF

DSL in order to validate that the input arff file is correct and

according to the datamapping structure that was defined by

the user.

This is implemented through an MPS code structure as

part of MPS’s automatic code generation and is depicted in

the following Fig. 17.

FIGURE 17. Data Validation through language composition.

In the above code, mechanisms by MPS such as the

inspector are utilised to check the types and the names of the

corresponding structures. Although there is some initial

learning curve to be able to use these mechanisms, the code

to implement and link elements is very concise, and it is all

happening in one environment.

Languages’ composition with CAF usage

To perform the composition between CAF and the rest of

the languages, MPS’s sandbox import mechanism was

used. In CAF sandbox we imported the Adaptive_VLE

sandbox as is depicted in Fig. 18. The Adaptive_VLE

sandbox includes the other three languages for data

collection (Adaptive_VLE, datamapping,

datamapping_Adaptive_VLE).

FIGURE 18. MPS sandbox for language composition diagram.

Finally, in the CAF sandbox, we can see the following user

interface for data processing. Beyond the previous CAF

interface, a new field has been added that validates the

datamapping language instance (AdaptiveVLEMapping) in

comparison with input data file (arff format) that is used and

is declared by its location (files/train.arff).

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3111229, IEEE Access

VOLUME XX, 2017 1

FIGURE 19. Usage of composition of all languages.

All the above sections described in detail the

composition of four languages that were developed to

provide a systematic design and development for an

adaptive VLE. The above modularity enables generalisation

to other adaptive systems application domains by

modifying only a small part and is being described in the

following section.

IV. BENEFITS OF THE DEVELOPED AdaptiveSystems
DSL – GUIDANCE FOR FUTURE WORK

The main benefits from the developed AdaptiveSystems

DSL is its applicability to several application domains

through its higher-abstraction level, language composition

and reusability and its strong validation characteristic.

A. APPLICABILITY TO OTHER APPLICATION DOMAINS

Summarizing, in this paper we proposed a high-level

description language for adaptive systems based on the

MAPE-K loop, the AdaptiveSystems DSL. We also provided

a method for instantiating this language in several application

domain taking as an example the AdaptiveVLE application

domain.

A set of DSL languages have been used and MPS

JetBrains’s strong language composability feature has been

exploited.

These languages were as follows:

• Adaptive_VLE: application domain language for

configuring learning analytics that will be collected.

• datamapping: language for high-level description of

the data.

• datamapping_Adaptive_VLE: adaptor language that

links datamapping to a specific application domain.

• CAF (Classification Algorithms Framework): language

for data processing with validation that the correct

features are being processed.

To reuse this in a different application domain only two

languages from the above need to be rewritten/modified

and they are the ones that are related to the application

domain: Adaptive_VLE and datamapping_Adaptive_VLE.

Generalising those, we will name them DataCollection

and datamapping_DataCollection languages and the

methodology to construct them is as follows:

• DataCollection language: The Adaptive_VLE consists

of a domain-specific user interface for defining the data

that need to be collected and it produces XML file

output. This XML is used as an input to configure the

VLE website development. It is straightforward to

apply the same method when the application domain

consists of the development of a website that is used

for data collection. However, the XML format output

can used by many other environments as an input and

therefore can ensure interoperation with other tools

beyond web-development environments.

• datamapping_DataCollection language: The

datamapping_Adaptive_VLE connects the

LearningAnalyticsItem concept from the configuration

of the data that will be collected. That can be declared

as a child concept of the main concepts of the

DataCollection language and be referenced by the

datamapping_DataCollection. All the other structures

that are used by the other languages and for their

composition remain the same.

.

It is important to emphasize that this use of a domain-

specific language environment seems to attempt to generalise

and therefore contradict to domain-specific aspect of these

environments. However, this is only appearing to be the case.

It has been attempted before as one of the ways to use the

MPS domain-specific language environment for framework

development due to the strong code generation features and

language composition structures [12].

B. OTHER BENFICIAL CHARACTERISTICS

The set of languages that were used and their composition

enables strong validation for the data and their types that are

being collected and processed.

It also provides a higher-level of abstraction for the data

which is closer to the domain user. Consequently, the level

of complexity that a user must deal with is less, as the

abstraction level is higher, enabling a system overview of

adaptive systems design and development. This was all

“enforced” using the higher-abstraction level language for

adaptive systems, the AdaptiveSystems DSL.

V. EVALUATION

We evaluated the AdaptiveSystems DSL according to the

Quality characteristics defined in the paper [38] and using

the feedback from MPS’s language developers and BT’s

data scientists in the first instance.

The decision to use this approach was after extensive

literature review on the evaluation methods for domain-

specific languages. We mainly used the information that

was provided in the survey [39] and specifically for the

evaluation part in Table 4. Four main methods were

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3111229, IEEE Access

VOLUME XX, 2017 1

identified for evaluating domain-specific languages: Case

studies as in [40] which didn’t include

questionnaires/feedback and the results were presented as

logical technical arguments; Questionnaire & Experiments

as in [41] which were tailored to the particular application

domain and didn’t contain domain-specific language

metrics; Usability Testing as in [42] which contained

general usability methods again not tailored to language

development; Use Case as in which again focuses on

application-specific characteristics. Overall and to the best

of our knowledge, the approach we followed was the best

for evaluating domain-specific language tailored to the

language’s characteristics.

A. EVALUATION PROCESS

We evaluated the developed DSL from the domain

perspective of the adaptive systems developer. The reason

for not including educators is that we have evaluated that

part of the languages in our previous publications and the

emphasis and innovation here lies in the general adaptive

systems development or equally stated providing AI in

context. In this current paper, the main aim is to provide

tools/automation for the adaptive systems developer and the

language developer. For the evaluation we followed the

quality characteristics as defined in [43].

Specifically, a questionnaire was constructed and

distributed online. The questionnaire collected quantitative

information by asking participants to rate the language

using a score from 0 to 10 (0 stands for not addressed at all

and 10 stands for addressing the issue perfectly). The

questionnaire also contained open-ended questions so that

qualitative information could be collected. An example of

an open-ended question for the data science perspective

was as follows: “(Functional Suitability) Does the

language contain all the data validation functionality you

would like to have. If you answered no, what should be

included?”. We also have some mixed scoring and open-

ended questions such as the following in all perspectives

“(Usability) How much would you rate (in a scale of 0 to

10) the language as regards to its usability? If you rated the

usability over 5, can you please give a couple of good

points that you found? If you rated the usability under 5,

can you please add suggestions for improvements?”.

The sample of the responses collected consisted of a total

of 25 participants of which 15 were BT’s data scientists,

and 10 were DSL language developers.

B. RESULTS - DISCUSSION

The results from the two different users were very similar

between them and therefore are collectively presented as

follows:

Functional suitability: The language scored very high

according to its suitability for all the functionality required

by all and especially the data scientists. The data validation

was an impressive characteristic and more validation

options were suggested such as restricting users with only

permitted options in all parts of the interface. It also scored

high by the language developers as “it provided the

necessary structure” that enables the development of DSLs

for adaptive systems.

Usability: Regarding usability, the language scored medium

as it takes some time to get used to the different features.

Reliability: The language was more reliable than the typical

adaptive system operation. However, many suggestions to

add validation characteristics were made by BT’s

engineers.

Productivity: The use of this language enabled a quick turn-

around time for an adaptive system that included the use of

two screens and one integrated development environment.

Compatibility: The Java code generation enabled extensive

deployment options.

Expressiveness: The language is very expressive. However,

more work could be done to improve the interface and

therefore the user experience.

Reusability: This set of languages provides an excellent

reusability element as it can be used as part of any adaptive

system.

Maintainability: It scored medium for maintainability and a

separate interface for extensibility was the dominating

suggestion.

It is anticipated that this method will be applicable in

many research and commercial projects at BT and other

domains such as health care.

The scoring for all individual elements is included in the

Excel file with the results in Fig. 20.

FIGURE 20. Evaluation through feedback by BT’s engineers.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a generic approach to the design

and development of an adaptive system. We developed a

framework for adaptive systems based on the main elements

of the MAPE-K loop. From the generic AdaptiveSystems

DSL, we derived (MPS’s language extension feature) the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3111229, IEEE Access

VOLUME XX, 2017 1

Adaptive_VLE DSL for the adaptive VLE case study. We

also developed several reusable languages for the various

stages required by adaptive systems mainly tailored to data

handling such as the datamapping,

datamapping_Adaptive_VLE and CAF. Following the

proposed approach, the enforcement of the MAPE-K

blueprint architecture, a full path to implementation and data

validation were ensured. We evaluated the resulting

composed language through feedback from BT’s adaptive

systems and MPS’s language engineers. Finally, we believe

that this work significantly contributes to the effective design

and development of adaptive systems which is a significant

part of the greater problem of providing AI in context.

In the immediate future, we plan to extend the developed

language to more application domains such as health care,

etc. and to IoT applications.

Within our long-term plans, many extensions can follow

this initial work ranging from adding adaptivity patterns,

extending the architecture to decentralised approaches to

adding formal methods capabilities to ensure properties

such as safety, fairness, robustness.

ACKNOWLEDGMENT

We would like to acknowledge BT for funding this research

through financial support to the University and in-kind

support of staff time and effort.

REFERENCES
[1] B. H. C. Cheng et al., “Software engineering for self-adaptive

systems: A research roadmap,” in Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 2009, vol.

5525 LNCS, pp. 1–26, doi: 10.1007/978-3-642-02161-9_1.

[2] P. Lalanda, J. A. McCann, and A. Diaconescu, Autonomic
Computing. London: Springer London, 2013.

[3] “Making Sense of Change Management: A Complete Guide to

the Models, Tools and ... - Esther Cameron, Mike Green - Βιβλία
Google.” https://books.google.co.uk/books?hl=el&lr=&id=LX-

5DwAAQBAJ&oi=fnd&pg=PP1&dq=change+management+mo

dels&ots=v-
fHPi1Pzr&sig=SigKvbpUhbXX_gZPQO81a01rxpo&redir_esc=

y#v=onepage&q=change management models&f=false
(accessed Oct. 20, 2020).

[4] S.-M. Hossein and G. A., “A language for high-level description

of adaptive web systems,” J. Syst. Softw., vol. 81, no. 7, pp.
1196–1217, Jul. 2008, doi: 10.1016/J.JSS.2007.08.033.

[5] C. R. Teeneti et al., “System-Level Approach to Designing a

Smart Wireless Charging System for Power Wheelchairs,” IEEE
Trans. Ind. Appl., pp. 1–1, 2021, doi:

10.1109/TIA.2021.3093843.

[6] A. Moin, A. Badii, and S. Günnemann, “A Model-Driven
Engineering Approach to Machine Learning and Software

Modeling,” Jul. 2021, Accessed: Jul. 18, 2021. [Online].

Available: https://arxiv.org/abs/2107.02689v1.
[7] S. Al-Fedaghi and M. Alsaraf, “High-Level Description of

Robot Architecture,” IJACSA) Int. J. Adv. Comput. Sci. Appl.,

vol. 11, no. 10, 2020, Accessed: Jul. 18, 2021. [Online].
Available: www.ijacsa.thesai.org.

[8] L. Shen, X. Chen, R. Liu, H. Wang, and G. Ji, “Domain-Specific

Language Techniques for Visual Computing: A Comprehensive
Study,” Arch. Comput. Methods Eng. 2020 284, vol. 28, no. 4,

pp. 3113–3134, Oct. 2020, doi: 10.1007/S11831-020-09492-4.

[9] I. Portugal, P. Alencar, and D. Cowan, “A Survey on Domain-

Specific Languages for Machine Learning in Big Data,” Feb.

2016, Accessed: Jul. 18, 2021. [Online]. Available:

https://arxiv.org/abs/1602.07637v2.
[10] S. Meacham, V. Pech, and D. Nauck, “Classification Algorithms

Framework (CAF) to Enable Intelligent Systems Using JetBrains

MPS Domain-Specific Languages Environment,” IEEE Access,
vol. 8, pp. 14832–14840, 2020, doi:

10.1109/ACCESS.2020.2966630.

[11] “MPS: The Domain-Specific Language Creator by JetBrains.”
https://www.jetbrains.com/mps/ (accessed Nov. 01, 2019).

[12] M. Voelter and V. Pech, “Language modularity with the MPS

language workbench,” in Proceedings - International
Conference on Software Engineering, 2012, pp. 1449–1450, doi:

10.1109/ICSE.2012.6227070.

[13] S. Meacham, V. Pech, and D. Nauck, “Classification Algorithms
Framework (CAF) to Enable Intelligent Systems Using JetBrains

MPS Domain-Specific Languages Environment,” IEEE Access,

vol. 8, pp. 14832–14840, 2020, doi:
10.1109/ACCESS.2020.2966630.

[14] S. Meacham, “Towards Self-Adaptive IoT Applications:

Requirements and Adaptivity Patterns for a Fall-Detection
Ambient Assisting Living Application,” in Components and

Services for IoT Platforms, Cham: Springer International

Publishing, 2017, pp. 89–102.
[15] P. Lalanda, J. A. McCann, and A. Diaconescu, “Future of

Autonomic Computing and Conclusions,” 2013, pp. 263–278.
[16] M. Mikalsen, J. Floch, E. Stav, N. Paspallis, G. A.

Papadopoulos, and P. A. Ruiz, “Putting context in context: The

role and design of context management in a mobility and
adaptation enabling middleware,” in Proceedings - IEEE

International Conference on Mobile Data Management, 2006,

vol. 2006, doi: 10.1109/MDM.2006.129.

[17] S. M. Sadjadi and P. K. McKinley, “ACT: An adaptive CORBA

template to support unanticipated adaptation,” in Proceedings -

International Conference on Distributed Computing Systems,
2004, vol. 24, pp. 74–83, doi: 10.1109/icdcs.2004.1281570.

[18] S. W. Cheng and D. Garlan, “Stitch: A language for architecture-

based self-adaptation,” J. Syst. Softw., vol. 85, no. 12, pp. 2860–
2875, Dec. 2012, doi: 10.1016/j.jss.2012.02.060.

[19] D. B. Abeywickrama, N. Hoch, and F. Zambonelli, “SimSOTA:

Engineering and simulating feedback loops for self-adaptive
systems,” in ACM International Conference Proceeding Series,

2013, pp. 67–76, doi: 10.1145/2494444.2494446.

[20] F. Křikava, P. Collet, and R. B. France, “ACTRESS: Domain-
specific modeling of self-adaptive software architectures,” in

Proceedings of the ACM Symposium on Applied Computing,

2014, pp. 391–398, doi: 10.1145/2554850.2555020.
[21] M. D’Angelo, M. Caporuscio, and A. Napolitano, “Model-

driven engineering of decentralized control in cyber-physical

systems,” in Proceedings - 2017 IEEE 2nd International
Workshops on Foundations and Applications of Self* Systems,

FAS*W 2017, Oct. 2017, pp. 7–12, doi: 10.1109/FAS-

W.2017.113.
[22] F. Fleurey and A. Solberg, “A domain specific modeling

language supporting specification, simulation and execution of

dynamic adaptive systems,” in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 2009, vol.

5795 LNCS, pp. 606–621, doi: 10.1007/978-3-642-04425-0_47.
[23] A. Bucchiarone, A. Cicchetti, and M. De Sanctis, “Towards a

domain specific language for engineering collective adaptive

systems,” in Proceedings - 2017 IEEE 2nd International
Workshops on Foundations and Applications of Self* Systems,

FAS*W 2017, Oct. 2017, pp. 19–26, doi: 10.1109/FAS-

W.2017.115.
[24] F. Alvares, E. Rutten, and L. Seinturier, “A domain-specific

language for the control of self-adaptive component-based

architecture,” J. Syst. Softw., vol. 130, pp. 94–112, Aug. 2017,
doi: 10.1016/j.jss.2017.01.030.

[25] P. Arcaini, R. Mirandola, E. Riccobene, and P. Scandurra,

“MSL: A pattern language for engineering self-adaptive
systems,” J. Syst. Softw., vol. 164, p. 110558, Jun. 2020, doi:

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3111229, IEEE Access

VOLUME XX, 2017 1

10.1016/j.jss.2020.110558.

[26] D. Weyns et al., “On patterns for decentralized control in self-

adaptive systems,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), 2013, vol. 7475 LNCS, pp.

76–107, doi: 10.1007/978-3-642-35813-5_4.
[27] J. Bocanegra, J. Pavlich-Mariscal, and A. Carrillo-Ramos,

“DMLAS: A Domain-Specific Language for designing adaptive

systems,” in 2015 10th Colombian Computing Conference,
10CCC 2015, Nov. 2015, pp. 47–54, doi:

10.1109/ColumbianCC.2015.7333411.

[28] S. Meliá, C. Cachero, J. M. Hermida, and E. Aparicio,
“Comparison of a textual versus a graphical notation for the

maintainability of MDE domain models: an empirical pilot

study,” Softw. Qual. J., vol. 24, no. 3, pp. 709–735, Sep. 2016,
doi: 10.1007/s11219-015-9299-x.

[29] M. Berndtsson and T. Svahn, “Strategies for Scaling Analytics:

A Nontechnical Perspective.”
[30] M. Berndtsson, C. Lennerholt, T. Svahn, and P. Larsson, “13

organizations’ attempts to become data-driven,” Int. J. Bus.

Intell. Res., vol. 11, no. 1, pp. 1–21, Jan. 2020, doi:
10.4018/IJBIR.2020010101.

[31] K. Sandkuhl, “Putting AI into context-Method support for the

introduction of artificial intelligence into organizations,” in
Proceedings - 21st IEEE Conference on Business Informatics,

CBI 2019, Jul. 2019, vol. 1, pp. 157–164, doi:
10.1109/CBI.2019.00025.

[32] “What is ArchiMate?” https://www.visual-

paradigm.com/guide/archimate/what-is-archimate/ (accessed
Oct. 20, 2020).

[33] V. Beaudouin et al., “Flexible and Context-Specific AI

Explainability: A Multidisciplinary Approach,” SSRN Electron.
J., Apr. 2020, doi: 10.2139/ssrn.3559477.

[34] Z. Chaczko, M. Kulbacki, G. Gudzbeler, M. Alsawwaf, I. Thai-

Chyzhykau, and P. Wajs-Chaczko, “Exploration of Explainable
AI in Context of Human-Machine Interface for the Assistive

Driving System,” in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), Mar. 2020, vol. 12034 LNAI,

pp. 507–516, doi: 10.1007/978-3-030-42058-1_42.

[35] “An architectural blueprint for autonomic computing,” 2005.
[36] M. Luckey, B. Nagel, C. Gerth, and G. Engels, “Adapt cases:

Extending use cases for adaptive systems,” in Proceedings -

International Conference on Software Engineering, 2011, pp.
30–39, doi: 10.1145/1988008.1988014.

[37] S. Meacham, V. Pech, and D. Nauck, “AdaptiveVLE: an

integrated framework for personalised online education using
MPS JetBrains domain-specific modelling environment,” IEEE

Access, pp. 1–1, 2020, doi: 10.1109/ACCESS.2020.3029888.

[38] M. Challenger, G. Kardas, and B. Tekinerdogan, “A systematic
approach to evaluating domain-specific modeling language

environments for multi-agent systems,” Softw. Qual. J., vol. 24,

no. 3, pp. 755–795, Sep. 2016, doi: 10.1007/s11219-015-9291-5.
[39] A. J. Salman, M. Al-Jawad, and W. Al Tameemi, “Domain-

Specific Languages for IoT: Challenges and Opportunities,” IOP

Conf. Ser. Mater. Sci. Eng., vol. 1067, no. 1, p. 012133, Feb.
2021, doi: 10.1088/1757-899X/1067/1/012133.

[40] J. Verriet et al., “Virtual Prototyping of Large-scale IoT Control

Systems using Domain-specific Languages,” pp. 229–239, May
2019, doi: 10.5220/0007250402290239.

[41] “A User-Oriented Language for Specifying Interconnections

Between Heterogeneous Objects in the Internet of Things | IEEE
Journals & Magazine | IEEE Xplore.”

https://ieeexplore.ieee.org/document/8606175 (accessed Aug.

17, 2021).
[42] T. Eterovic, E. Kaljic, D. Donko, A. Salihbegovic, and S. Ribic,

“An Internet of Things visual domain specific modeling

language based on UML,” 2015 25th Int. Conf. Information,
Commun. Autom. Technol. ICAT 2015 - Proc., Nov. 2015, doi:

10.1109/ICAT.2015.7340537.

[43] M. Challenger, G. Kardas, and B. Tekinerdogan, “A systematic
approach to evaluating domain-specific modeling language

environments for multi-agent systems,” Softw. Qual. J., vol. 24,

no. 3, pp. 755–795, Sep. 2016, doi: 10.1007/s11219-015-9291-5.

SOFIA MEACHAM Dr Sofia Meacham received her

Diploma in Computer and Informatics Engineering, in

1994, and her PhD degree, in 2000, from the
University of Patras, Greece. She is currently a Senior

Lecturer in Software Engineering at Bournemouth

University, U.K. Her PhD research interests fell in the
area of system-level design for embedded systems,

and include specification techniques for complex

embedded telecommunication systems, hardware-
software co-design, formal refinement techniques,

and reuse practices. Dr. Meacham has been working in EU-funded projects

as a researcher/embedded software engineer both in Industry and in
University since 1995, and have accomplished a large amount of teaching

experience in several institutions (UK and Greece) since 2000. Her latest
research interests involve methodologies (processes, tools and methods) to

improve the design and development of systems such as model-based

design, domain-specific modelling for several applications from business
processes to education. She has strong links with British Telecom

Research Headquarters in Adastral Park and currently working in cutting-

edge research in Explainable AI.

VACLAV PECH Vaclav Pech is a seasoned

software developer and a programming enthusiast
with 22 years of Java development and

consultancy experience. He received his Master's

Degree in Computer Science in 1999 from the
Faculty of Mathematics and Physics of the

Charles University in Prague. Since then he has
participated as a developer and consultant in

various projects across Europe working mainly

with server-side Java technologies and domain-specific languages.
Currently he is involved in the MPS project with JetBrains.

DETLEF NAUCK Detlef Nauck is Chief

Research Scientist for Data Science with BT's
Research and Innovation Division located at

Adastral Park, Ipswich, UK. He is leading a

group of international scientists working on
research into Data Science, Machine Learning

and AI. Detlef focuses on establishing best

practices in Data Science for conducting
analytics professionally and responsibly leading

to new ways of analyzing data for achieving better insights. Part of his role

is leading the initiative on the development and use of responsible and
ethical AI in the company. Detlef is a computer scientist by training and

holds a PhD and a Postdoctoral Degree (Habilitation) in Machine Learning

and Data Analytics. He is a Visiting Professor at Bournemouth University
and a Private Docent at the Otto-von-Guericke University of Magdeburg,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3111229, IEEE Access

VOLUME XX, 2017 1

Germany. He has published 3 books, over 120 papers, holds 10 patents and

has 30 active patent applications.

