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ABSTRACT Caching in a network of caches has been widely investigated for improving informa-
tion/content delivery efficiency (e.g., for reducing content delivery latency, server load and bandwidth
utilization). In this work, we look into another dimension of network of caches – enhancing resilience in
information dissemination rather than improving delivery efficiency. The underlying premise is that when
information is cached at more locations, its availability is increased and thus, in turn, improve information
delivery resiliency. This is especially important for networks with perturbations (e.g., node failures).
Considering a general network of caches, we present a collaborative caching framework for maximizing
the availability of the information. Specifically, we formulate an optimization problem for maximizing the
joint utility of caching nodes in serving content requests in perturbed networks. We first solve the centralized
version of the problem and then propose a distributed caching algorithm that approximates the centralized
solution. We compare our proposal against different caching schemes under a range of parameters, using
both real-world and synthetic network topologies. The results show that our algorithm can significantly
improve the joint utility of caching nodes. With our distributed caching algorithm, the achieved caching
utility is up to five times higher than greedy caching scheme. Furthermore, our scheme is found to be robust
against increasing node failure rate, even for networks with a high number of vulnerable nodes.

INDEX TERMS Information resilience, caching, network of caches, network with perturbations

I. INTRODUCTION

W ITH the dramatic increase in information/content ac-
cess demand, content caching has now been an inte-

gral part of modern communication networks. Content de-
livery networks (CDNs) (e.g., Akamai) deploy high-capacity
proxy servers for accelerated content distribution [1] while
the impending 5G network exploits caching for enabling
new emerging applications [2]. Cloud and, the more recent,
mobile edge cloud (MEC) [3] exploit network edge caching
capability for improving user experience. With these devel-
opments, cache management has received renewed attention
especially due to the advent of the Information-centric Net-
working (ICN) paradigm [4] [5] which advocates the use
of in-network caching where network elements have content
caching capability [6]. This recent exploding body of work
(e.g., [6] [7]) has shown the benefits of distributed content
caching. However, most of these work mainly focus on
improving content delivery performance in terms of latency,
server load and bandwidth utilization.

Since the cache locations are now geographically dis-
tributed, the availability of content and dependability of the

network of caches as a whole system are also of interest. In
view of this, in-network caching has been advocated for a
different purpose, namely for information resilience [8] [9]
[10] whereby the aim is to improve content availability and
reachability in disruptive network environment rather than
improving content delivery efficiency. The rationale is that
the network management and control under such volatile
operating conditions could benefit from a caching scheme
that considers possible network perturbations which results
in topology changes and even network fragmentation. It has
been highlighted in [11] that there is a clear lack of under-
standing of how much in-network caching improves informa-
tion availability under such a scenario. Network perturbations
could be due to human errors and random equipment failures.
They could also simply be a natural part of the network
(e.g., topology changes due to node movements in mobile
networks). Severe scenarios involve perturbations resulted
from natural disasters or malicious attacks intending to cause
maximum damage.

Information resilience focuses on protecting informa-
tion/content directly. This is in contrast with traditional re-
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silience concept in telecommunication networks which seeks
to ensure continuity of service via protection and recovery of
the physical infrastructure (e.g., maintenance of connectivity,
fault detection, resource redundancy) [12] [13]. Traditionally,
network resilience usually involves physical/link layer pro-
tection mechanisms and redundancy provisioning [12]. When
a path is disrupted, resilience is conventionally achieved via
traffic re-routing [13]. The idea of information resilience
in our context is derived from the ICN paradigm where
content is named and can be explicitly identified independent
of network locations. ICN has already been identified as
particularly suitable in emergency/disruptive scenarios [14]
[15]. The inherent anycast capability of ICN, whereby an
information object can be delivered by multiple sources or
caches, allows continuous reachability of content even when
the source is unavailable as the content is not strictly bounded
to one host.

Here, we consider the problem of providing information
resilience in the general case of a network of caches with
perturbations. We abstract the problem focusing on the net-
work of caches without considering the technical realization
of the networking paradigm/architecture. Specifically, we
consider a network consists of cache-enabled nodes (i.e.,
nodes are equipped with cache capacity, able to cache content
and satisfy content requests). We investigate a collaborative
caching framework for maximizing the joint utility of the
caching nodes in a perturbed network in which the network
topology changes over time. We consider a wide range of
failure scenario (cf. Section III-D). We formulate an integer
programming optimization problem and solve the centralized
version of the problem to obtain the optimal caching solution.
Since the problem is NP-hard, we then proceed to design
and evaluate a distributed collaborative caching algorithm
that closely approximates the performance of the optimal
centralized solution.

The main contributions of this paper are summarized be-
low:

1) We study the problem of collaborative caching in a
network of caches considering possible network pertur-
bations. Specifically, we seek to maximize the caching
utility and considers the effect of network perturbations
(e.g., node failures). We show that the optimization
problem is convex and present a centralized solution.

2) We further study a distributed caching algorithm that
approximates the centralized solution by adopting a
sub-gradient Lagrangian relaxation approximation. In
our distributed solution, each network node makes its
own caching decision in collaboration with its neigh-
bors. We show the utilities given by both the cen-
tralized and distributed solutions are sufficiently close
(i.e., within 2%).

3) We comprehensively evaluated our proposal across dif-
ferent scenarios. We compare our solution against both
random and greedy caching algorithms across both
real and synthetic networks and across a wide range
of failure probability distributions. Our results show

significant improvements even under severe network
perturbations.

The rest of the paper is organized as follows. In Section
II, we review the background and related literature. System
overview and problem formulation are given in Section III.
Section IV is devoted to solving the centralized problem.
In Section V, we derive a distributed solution by adopting
a sub-gradient Lagrange relaxation approximation. For the
distributed solution, we present a distributed caching algo-
rithm to approximate the optimal centralized solution. In
Section VI, we evaluate the performance of the proposed
collaborative caching scheme. We conclude our paper in
Section VII.

II. BACKGROUND AND LITERATURE REVIEW
Most work on content caching and management aim to im-
prove content delivery efficiency (e.g., reducing latency) [7]
[16] [17]. Here, we focus on approaches that can be leveraged
for providing information resilience and latest related works
that directly addressed information resilience.

A. ONLINE REACTIONARY APPROACH
A caching scheme that responds to network dynamics could
be employed for providing information resilience. The de-
fault ICN caching scheme uses an indiscriminate caching
approach [18]. Caching gain1 is obtained opportunistically
along the shortest path. In [11], it is found that when the frac-
tion of broken links grows beyond 50%, such indiscriminate
caching has diminishing returns. Arguing that such approach
unnecessarily limits the potential gain, [19] investigated a
joint forwarding and caching approach that allows content
requests to be forwarded off the default shortest path to find
the requested content. Along the same line, [20] proposed
to improve caching gain by flooding content requests to
discover content cached nearby the shortest path in tandem
with leave copy down (LCD) caching policy [21]. However,
flooding incurs high overhead. To improve scalability, [22]
proposed to limit the flooding scope to three hops and argued
that there is limited improvement when compared against
unconstrained flooding. Also to improve scalability, [23] ex-
ploited hash-routing to route content requests, thus avoiding
the complex problem on efficiently routing requests to cache
nodes.

For information resilience, [24] defined a recovery process
via alternative content sources when the original one fails by
exploiting ICN feature whereby information is individually
identifiable. In [9], an information resilience scheme for
the NDN architecture [25] is studied in which the scheme
proposed to keep a record of satisfied interest so that a failed
request can be forwarded on an alternative path that has
been successful in the past. Such reactionary event-triggered
approaches do not “prepare” the network in advance to

1We use the generic term “caching gain” to describe the benefit obtained
via caching (e.g., reduction of server load, content delivery latency).
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maximize content availability but rather attempt to find the
requested content replica after perturbations.

B. COOPERATIVE CACHING
An alternative approach to improve information resilience is
via node cooperation. Cooperative caching has been adopted
in several past works. For instance, [26] proposed an on-
line distributed cache management solution for information-
centric networks in which cache “managers” periodically
exchange messages to identify changes needed in their
cache store to improve caching gain. Citing prohibitive sig-
naling overhead in cooperative caching, [27] attempted to
strike a balance between performance and scalability via
a lightweight local cooperation caching design. In [28],
an agent reinforcement learning-based cooperative content
caching policy is proposed for the mobile edge networks
(MENs) when the users’ preference is unknown. Some other
caching policies and algorithms are studied and compared
in MENs in [29]. Delay due to the backhaul and mobility
effect are been considered. In [30], network bottleneck and
interruption problems are raised for the MENs. However, the
issue has not been addressed by any available solution. These
work, however, neglected possible network failures and as
such, could be complementary to our proposal here when
operating under normal network conditions (i.e., no failures).
Since various works pointed to the benefits of having nodes
to cooperate [31] [32] [33] [34] attempted to answer the
question on how much coordination is required to optimize
in-network caching in ICN. The authors concluded that the
level of coordination between nodes is highly dependent on
the content request distribution.

For information resilience, [10] considered implicit co-
operation amongst caching nodes by exploiting features of
network topology and proposed a modularity-based caching
scheme that allows nodes within a community structure to
cache content with origins outside of that community. This
solution does not require explicit communication between
caching nodes but nonetheless, still increases the diversity
of content cached within the community. However, such a
scheme may not offer significant gain when the network
topology does not exhibit strong community structure.

C. CONTENT PLACEMENT
Finally, another approach that can be potentially leveraged is
through adding redundant content replicas through strategic
content placement. Such approach has been adopted in the
past such as in CDNs [1], telco-CDNs [35] and web caching
[36]. Server duplication mechanism is often used for load
balancing when demand is high. Such mechanism involves
the full replication of all content in the server which often re-
quires high-capacity servers. With ICN, new solutions based
directly on information are developed. For instance, [37]
considered how popular content could be distributed across
information-centric networks comprises of access and transit
domains considering the cost and utility of caching content
that is deemed popular. The authors in [38] investigated con-

tent placement for achieving fairness amongst the caching
nodes. It considered each node is owned by a different stake-
holder and are selfish and would individually maximize its
own utility. The authors employed game theory to find stable
caching solutions such that all nodes converge to an optimal
caching solution. Our problem formulation takes this work
as the starting point but we focus on information resilience
instead. Content placement problem over a network of caches
is also studied in [39] where a probabilistic content placement
algorithm is proposed offering a bound of 1−1/e factor from
the optimal solution.

For information resilience, [8] extended [39] and proposed
an optimal distributed content placement algorithm that max-
imizes the caching gain in the presence of failures. In this
work, the network failure probability is explicitly considered
when making a caching decision. However, a priori knowl-
edge of the failure probability of each node is required to
implement the caching decisions. This presents a challenge
as it is difficult to estimate and quantify failure probability
in reality. As shown in [40] [41], node failure probability is
affected by a combination of factors (e.g., variety and varying
operating environment). As such, deriving an exact model
to predict the failure probability is a challenging research
topic on its own. In this work, we instead exploit metrics
from network science [42] as an indicator of failure proba-
bility. Furthermore, our framework also employs cooperative
caching for maximizing the joint utility of caching nodes in
network with perturbations.

D. SUMMARY
We take elements from approaches discussed in Section II-B
and II-C. In our approach, nodes collaborate with their neigh-
bors within a limited radius to maximize cache hit consider-
ing different possible permutations of network perturbations.
We do not “blindly” reduce cache redundancy by simply
caching different content but instead seek to place content op-
timally within limited distance away from requesting nodes.

III. SYSTEM OVERVIEW AND PROBLEM FORMULATION
A. SYSTEM MODEL
We consider an arbitrary undirected network, G(V,E) with
V = {v1, v2, . . . , vN} cache-enabled nodes and E =
{e1, e2, . . . , eM} links where their cardinalities are N = |V |
and M = |E| respectively. Each vi is equipped with a cache
store with capacity Ci. Further, we define l∗i,j as the number
of nodes involved in a content delivery path between vi and
vj inclusive of both these nodes and the set of nodes involved
in this path as ζi,j . Thus, l∗i,j = |ζi,j |. By this definition,
the path length, li,j = l∗i,j − 1. Considering network per-
turbations, we also define pi as the likelihood of failure for
node vi. We consider pi as a function of different factors
and evaluate their implications to information resilience (cf.
Section III-D).

Let O be the content population in the system where ok is
the kth item in the content set. sk denotes the size of content
ok. We assume that there exists an origin server for each
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TABLE 1: Summary of notations
Symbol Description
N The number of nodes in the network, |V |
M The number of links in the network, |E|
Ci The cache capacity of vi
l∗i,j The number of nodes involved in a content delivery path

between vi and vj inclusive of both nodes
li,j The path length between vi and vj
ζi,j The set of nodes involved in the path between vi and vj
pi The likelihood of failure for node vi
O The content set, ok represents the kth item
sk The size of the kth content item ok
wi,k The demand of content ok at vi, requests per second
X xvi,k represents whether vi caches ok locally
Y yvi,j,k represents whether vi retrieves ok from vj where

the cache hit occurred
ri The search radius (in hop count) of node vi
ηi The set of nodes in vi’s neighborhood (within ri hops)
Ui The utility function of node vi

content object and each content request is routed towards this
origin server via a pre-determined shortest path. The content
request can be satisfied by any nodes along the path having
cached the requested content (i.e., a cache hit). In this case,
the requested content is returned without the involvement of
the origin server. Furthermore, we define anN×|O| demand
matrix, W with its element wi,k denoting the expected or
estimated content request arrival rate for content ok at vi.

B. COLLABORATIVE CACHING FRAMEWORK
We consider a collaborative caching framework in which
nodes collaborate with nearby nodes to satisfy content re-
quests. In our evaluation, the request is generated one at a
time and originated from a randomly chosen node that is
not the node hosting the content itself. Once a request is
issued, the request is forwarded over a fixed path to the origin
server. At each hop, the node receiving the request searches
its neighborhood for the requested content if that content is
not cached in its own cache store. We define ri as the search
radius (in hop count) of vi. It indicates that vi will search
all nodes within ri hops away from itself for the requested
content. Furthermore, let ηi be the set of nodes within ri
hops away from vi. As ri increases, the cost of collaboration
grows. Table 1 summarizes the notations.

In a collaborative caching framework, we would like to
fetch the requested content from a node as near to the
requester as possible to reduce content delivery latency and
as this involves fewer nodes, it is also less likely to en-
counter a failed node. This then involves two decisions. The
first decision relates to whether a node decides to cache
a specific content in its cache store and second, whether
a node retrieves a content from another neighboring node
instead of following the pre-computed path to the origin
server. We represent the above with two decision variables,
X and Y . Specifically, x(i,k) ∈ {0, 1} denotes whether vi
caches content ok while y(i,j,k) ∈ {0, 1} denotes whether
vi retrieves the content ok from vj . For both variables, we
follow the convention of denoting a negative decision with
“0” and the alternative with “1”. For instance, xi,k = 1 if
node vi decides to cache content ok.

Considering the total number of network nodes and the
cached objects is large, to reduce the computation complexity
for the caching decision, the integer constraints on X and Y
are relaxed as [0,1]. The details on this relaxation is given in
Section IV.

C. PROBLEM FORMULATION
Given the above system model, we formulate a joint utility
maximization problem to find the optimal caching strategy.

1) Utility
A node derives utility from successfully satisfying a content
request it receives. The utility depends on whether the node
can satisfy the request (e.g., a node may not be able to reach
the origin server in some fragmented perturbed networks)
and how fast it can serve this request (e.g., edge nodes can
directly serve content requesters).

The utility of node vi, Ui, is then given by:

Ui =
∑
ok∈O

skwi,k(1− pi)xi,k

+
∑
ok∈O

∑
vj∈ηi

[
skwi,k
l∗i,j + 1

yi,j,k
∏
n∈ζi,j

(1− pn)

]
(1)

where X = [xi,k]vi∈V,ok∈O ∈ {0, 1}|V |×|O|, and Y =
[yi,j,k]vj∈i,ok∈O ∈ {0, 1}|V |×|V−1|×|O|.

The first term on the right hand side of Eq. 1 computes
the utility derived from satisfying a content request locally
by vi while the second term sums the utility gained from
collaboration with nodes in its neighborhood, ηi. It reflects
that the utility decreases as the distance to retrieve a content
from a remote node increases. The content request is routed
along a computed path towards the origin server until a
cache hit occurs or the request reaches the server. At this
point, the requested content is sent back to the requester via
the reverse of the path taken by the content request. The
product expression

∏
n∈ζi,j (1− pn) in Eq. 1 reflects that the

utility gained reduces when the content delivery path length
increases. It becomes critical especially for the scenarios
with nodes having high failure probability (e.g., malicious
attacks).

To obtain high utility, each node aims to serve its clients
with both the lowest possible delay and the highest content
request satisfaction rate. However, considering the aggre-
gated demands of the entire network, we are seeking the
optimum among all nodes, which points to the need of a
collaborative caching scheme whereby utility is maximized
through satisfaction of content requests via combination of
local caching as well as redirections to nearby neighbors.

2) Optimization Objective
Consequently, we define our utility maximization problem as
follows:

max
∏
vi∈V

Ui (2)

Taking the logarithm of Eq. 2, we obtain the following:

4 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3111699, IEEE Access

D. Wu et al.: Information Resilience in a Network of Caches with Perturbations

ln (max
∏
vi∈V

Ui) = max ln(
∏
vi∈V

Ui). (3)

By taking the negation, Eq. 3 is equivalent to the following:

max
∑
vi∈V

ln(Ui)⇒ min
∑
vi∈V

−ln(Ui) (4)

Substituting Eq. 1 to Eq. 4, we have:

min
∑
vi∈V

−ln
{ ∑
ok∈O

wi,k(1− pi)xi,k

+
∑
ok∈O

∑
vj∈ηi

[
wi,k
li,j

yi,j,k
∏
n∈ζi,j

(1− pi)]
}

(5)

3) Constraints
Our problem is subjected to the following constraints:∑

ok∈O
xi,k ≤ Ci, ∀vi ∈ V, ok ∈ O (6)∑

vj∈ηi

yi,j,k ≤ 1, ∀vi ∈ V, ok ∈ O (7)

xi,k ∈ {0, 1}, ∀vi ∈ V, ok ∈ O (8)

yi,j,k ∈ {0, 1}, ∀vi vj ∈ V, ok ∈ O (9)

0 ≤ pi ≤ 1 (10)

yi,j,k ≤ xi,k, ∀vi vj ∈ V, ok ∈ O (11)

Constraint (6) ensures that content stored at node vi does
not exceed its cache capacity, Ci. Constraint (7) ensures that
a node can only retrieve a maximum of one complete object
per request. Constraints (8) and (9) are the domains of the
decision variables. Constraint (10) defines the probability of
failure for node vi. Constraint (11) means that vi can retrieve
ok from vj if the cache hit occurred at vj and vi can retrieve
the content from vj only if vj cached it.

D. FAILURE PROBABILITY DISTRIBUTIONS
In this paper, we study the impact of various node failure
patterns. We define different node failure probability distri-
butions to represent different network perturbation scenarios.
We differentiate random failure patterns which are usually
modeled with random events from malicious attacks that are
intended to incur maximum disruption [43]. In the following,
we detail the three different failure models considered in this
paper.

1) Uniform model
This node failure probability distribution follows uniform
probability. All nodes have fixed equal failure probability, p.
Each node fails independently. We use this uniform distri-
bution to represent failure scenarios where perturbations are
caused by random events such as equipment failures, human
error or unpredictable natural failure events.

2) Linear model
We further define two failure probability distributions in
which node failure probability is linearly proportional to
some centrality measures reflecting the node’s relative im-
portance in the network. This mimics malicious attacks on
the network where the perpetrator, with the intention to cause
maximum damage, logically targets nodes that are deemed to
be important. Such attacks may come in physical form, via
equipment tampering or electronically via computer viruses.
We assume a node with higher centrality will have higher
chance of being targeted. We choose two widely used central-
ity measures, namely degree and betweenness centrality [44].
For the case where we use degree centrality, we first limit
the maximum failure probability of the node with the highest
degree to pmax. Then, we compute a base failure probability
with pbaseD = pmax

max(D(vi);∀i) where D(vi) is the degree of
node, vi. Finally, we compute vi’s failure probability by
pi = pbaseD × D(vi). We use the same methodology for
betweenness centrality case by replacing D(vi) with the
betweenness of each node, B(vi). Figure 1 shows the cu-
mulative distribution functions (CDF) of failure probability
based on degree and betweenness of nodes in a sample ER
and SF network each and three real-world networks, namely
L3, Sprint and AT&T networks (cf. Section VI). From Figure
1(a), we note that the ER network has comparatively higher
node failure probability with almost all nodes having failure
probability higher than 0.25. In contrast, AT&T has approx-
imately 80% of the nodes with 0.04 failure probability or
lower. Meanwhile, the failure probability distribution based
on betweenness showed two groups of networks. The ER,
SF and AT&T networks have high number of nodes with
similar betweenness (i.e., many nodes have similar failure
probability). L3 and Sprint networks have “wider” between-
ness spread.

3) Non-Linear model
In real networks, failure probabilities often do not follow
linear models. Correspondingly, we also define node fail-
ure probability to be proportional to degree or betweenness
of node but in a non-linear fashion. In this scenario, the
failure probability increases non-linearly with the degree or
betweenness. For a given node vi, its failure probability is
then defined using a Sigmoid function as follow:

pi(x) =
σ0

1 + e−(µ0+µ1x)
. (12)

where x is either D(vi) or B(vi) of the node. We use the
first half of the Sigmoid function. When σ0 = 1, then
the midpoint of the function equals 0.5 which, in our case,
means pmax = 0.5. µ1 controls the slope of the Sigmoid
function whereby µ1 → 0 leads to gradual increase in pi
with increasing x while conversely, pi will have a steep sharp
transition as x increases. The ratio−µ0/µ1 defines where the
midpoint of the function (i.e., determines the “shift” of the
Sigmoid function along the x-axis). Hence, we can get the x
value at the midpoint of the function via this ratio. Using the
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FIGURE 1: The failure probability distribution of different
networks based on node degree (a) and betweenness (b) of
each network.

maximum degree/betweenness of the network, we find the µ0

value that satisfy pmax.

IV. SOLVING THE CENTRALIZED PROBLEM
Equations (5) to (11) are affine functions and thus, are all log-
concave. Since their composite with logarithmic functions
preserves concavity, the problem is a convex optimization
problem over a set of convex constraints. For such problems,
a unique Pareto efficient solution exists [45].

Our optimization problem above is a typical Integer Pro-
gramming (IP) problem which is NP-complete. It has been
shown in [46] [47] that no pseudoplolynomial algorithm is
likely to exist for the general integer programming prob-
lem as this problem is strongly NP-complete. Since the
centralized problem of Eq. (5) is NP-complete, we apply
the Lagrangian relaxation. The Lagrangian relaxation uses
Lagrange multipliers to reduce a part of the constraints by
including the constraints in the utility function and divides
the original primal problem into sub problems independent
of respective variables. The optimal solution is then obtained
by solving its dual problem. Solving the relaxed version
of the problem gives us the lower bound of the original
problem. Specifically, we relax the constraints (8) and (9) as
xi,k ∈ [0, 1] and yi,j,k ∈ [0, 1]. Then the caching decision
variables X and Y can be further achieved by rounding xi,k
and yi,j,k for the approximated integer solution.

To solve our problem here, we first apply Lagrangian re-
laxation to derive the Lagrangian dual of the primal problem
(5) with regard to constraint (11), as follows:

L(x, y, λ) =
∑
vi∈V

[
− ln(Ui)

+
∑
ok∈O

∑
vj∈ηi

λi,j,k(yi,j,k − xj,k)
]

(13)

where λ ≥ 0 is the non-negative Lagrangian multiplier,
associated with xj,k and yi,j,k. However, xj,k is constrained
by cache capacity of the node, given in (6), and yi,j,k is
constrained by (7) which ensures that a node only retrieve
one maximum of one complete object per request. Applying
Lagrangian multipliers and substituting (6) and (7), we have

L(x, y, λ, u, v, α, β) =
∑
vi∈V

[
− ln(Ui)

+
∑
ok∈O

∑
vj∈ηi

λi,j,k(yi,j,k − xj,k) +
∑
ok∈O

ui,k(xi,k − Ci)

+
∑
vj∈ηi

vj,k(yi,j,k − 1)
]

(14)

where ui,k ≥ 0 and vj,k ≥ 0 are two Lagrangian multipliers
associated with the problem (5). The constraints (8), (9) and
(11) can be combined and relaxed as: 0 ≤ yi,j,k ≤ xi,k ≤
1, ∀vi vj ∈ V, ok ∈ O. xi,k ≤ 1 and yi,j,k ≥ 0 are further
relaxed from (8) and (9) based on (11). Applying Lagrangian
multipliers and substituting these two constraints, we get:

L(x, y, λ, u, v, α, β) =
∑
vi∈V

[
− ln(Ui)

+
∑
ok∈O

∑
vj∈ηi

λi,j,k(yi,j,k − xj,k) +
∑
ok∈O

ui,k(xi,k − Ci)

+
∑
vj∈ηi

vj,k(yi,j,k − 1) +
∑
ok∈O

αi,k(xi,k − 1)

−
∑
ok∈O

∑
vj∈ηi

βi,j,kyi,j,k

]
(15)

where α ≥ 0, β ≥ 0 are nonnegative Lagrangian multipliers.
The objective function is concave and continuously differ-

entiable. All constraints on the variables are affine. Hence,
Karush-Kuhn-Tucker (KKT) conditions which are necessary
and sufficient for the existence of an optimal solution apply
[48]. Thus, the optimal caching strategy X and Y can be
derived by solving the set of equations below for all nodes:

λi,j,k(yi,j,k − xj,k) = 0, ∀ vi, vj ∈ V, ok ∈ O∑
ok∈O

ui,k(xi,k − Ci) = 0, ∀ vi ∈ V, ok ∈ O∑
vj∈ηi

vj,k(yi,j,k − 1) = 0, ∀ vj ∈ V, ok ∈ O

αi,k(xi,k − 1) = 0, ∀ vi ∈ V, ok ∈ O
βi,j,kyi,j,k = 0, ∀ vi, vj ∈ V, ok ∈ O

(16)
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The centralized solution for Eq. (5) requires the in-
formation from all nodes to compute the optimal so-
lution. A standard solver needs the demand matrix of
each node, cache size, content set, node failure probabil-
ity set and network topology as inputs. Equation (15) has
3|O|×|V |2+2|O|×|V |+|V | variables and the same number of
equations. For a large |O| andN , the computation overhead is
prohibitive and generally infeasible for standard off-the-shelf
processors. Thus, a distributed solution is next proposed as a
more scalable method.

V. DISTRIBUTED SOLUTION
A. DISTRIBUTED COLLABORATIVE CACHING WITH
CONSTRAINTS
Equation (16) gives the centralized solution. In this section,
by decomposition, we derive a distributed solution where
each node optimizes its utility locally as a subsystem, to
supply an approximated solution with significant lower com-
plexity. Our solution simultaneously considers the effect of
collaboration with the neighboring nodes in ηi for each node.

From the set of constraints (6) to (11), constraint (11)
is a complicating or coupling constraint [49]. We apply
Lagrangian relaxation as before to simplify constraint (11)
and obtain (13). Then we define the Lagrange dual function
g as:

g(λ) = inf
x∈X,y∈Y

L(x, y, λ) (17)

When the Lagrange dual is unbounded below in x and
y, the dual function takes on the value -∞. Since the dual
function is the point-wise infimum of a family of affine
functions of λ, it is concave. The dual function Eq. (17) yields
lower bounds on the optimal p∗ of the problem Eq. (5), for
λ ≥ 0, we have:

g(λ) ≤ p∗ (18)

Hence, we have a lower bound that depends on λ. To seek
the best lower bound from the Lagrange dual function, the
optimization problem below needs to be addressed.

max g(λ), s.t. λ ≥ 0. (19)

Eq. (5) is the primal problem and Eq. (13) is the Lagrange
dual problem associated with Eq. (5). The problem (13)
is a convex optimization problem since the object to be
maximized is concave and the constraints are convex. This
is the case regardless whether the primal problem is convex
[50] [51].

We denote the optimal value of the Lagrange dual problem
as d∗. By definition, the best lower bound on p∗ can be
obtained from the Lagrange dual function. Therefore, the
following inequality can be obtained:

d∗ ≤ p∗ (20)

which holds even if the original problem is not convex.

The difference d∗ − p∗ is referred to as the duality gap. If
d∗ = p∗, then strong duality holds, which means that the best
bound obtained from the Lagrange dual function is tight. The
Slater’s theorem states that strong duality holds if duality gap
is zero and the problem is convex [52]. Therefore, we have:

max g(λ) ⇐⇒
d∗=p∗

inf
x∈X,y∈Y

L(x, y, λ) s.t. λ ≥ 0. (21)

By standard sub-gradient optimization method, we iter-
atively seek the best lower bound [52]. The sub-gradient
method minimizes a non-differentiable convex function. It
uses step lengths that are fixed ahead of time, instead of an
exact or approximate line search as in the gradient method.
By combining the sub-gradient method with primal or dual
decomposition techniques, we develop a simple distributed
caching algorithm for our problem (detailed in Section V-B).

After decomposition, each node only needs to optimize its
utility locally for a given λ by calculating:

minLi(x, y, λ) = −ln(Ui)

+
∑
ok∈O

∑
vj∈ηi

λi,j,k(yi,j,k − xj,k) (22)

Problem (13) is convex and convex relaxation technique is
used to produce an approximated solution to the primal prob-
lem. However, this solution may not satisfy the constraints
(8) and (9) of the original problem as it may include solutions
with fractional values rather than binary values [53]. To re-
solve this, we adopt the rounding scheme introduced in [39].
The approximation process consists of two steps: we first
relax the integer program to a convex optimization problem
and produce a solution within a constant approximation from
the optimal. In our problem, we relax the constraints (8) and
(9) as xi,k ∈ [0, 1] and yi,j,k ∈ [0, 1]. Then, the (possibly)
fractional solution is rounded by rational approximation to
produce a solution to the original integer program. To solve
the problem (13), a projected sub-gradient method is used.
Each node computes individually to achieve the optimal so-
lution and the utility function converges to the optimal point.
Hence, given a solution x∗i,k and y∗i,j,k with fractional values,
we approximate the solution with binary values, rounding the
fractional variable to its closest integer value 0 or 1.

B. DISTRIBUTED CACHING ALGORITHM
We detail our distributed caching algorithm with the cor-
responding pseudo code presented in Algorithm 1. At the
initialization stage, a node, vi, takes the W and λ matrices
and its search radius, ri as inputs. The outputs are caching
decision Xi and collaboration decision Yi. The algorithm
searches outwards from vi until the search radius, ri is
reached. As shown in Lines 1-2 in Algorithm 1, the search
path distance gradually increases and in each iteration (in-
dexed by n), the distributed optimal solution for problem (13)
is derived subject to constraints (Lines 4-5). δ is a constant of
small value. In each iteration, y∗i,j,k−x∗j,k is calculated (Line
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6). If the condition y∗i,j,k − x∗j,k ≤ δ is satisfied, then the
defined objective function is convergent where the updated
optimal solution is achieved.

Algorithm 1: Distributed caching algorithm of node
vi
Input : Demand matrix W , Dual variables matrix λ,

Path distance starts at l = 0, Search radius ri
Output: Caching decision Xi, Collaboration decision

Yi
1 while l ≤ ri do
2 l = l + 1; n = 0; Set fi(λ0);
3 while fi(λ

n) > δ do
4 Solve for xni , y

n
i = argminx,y(Li(x, y, λ

n))
5 Subject to∑

ok∈O
xi,k ≤ Ci,∑

vj∈ηi
yi,j,k ≤ 1,

and xvi,k yi,j,k ∈ [0, 1];
6 fi(λ

n) = y∗i,j,k − x∗j,k ;
7 for vj ∈ ηi do
8 Retrieve fj ;
9 fi = fi +

∑
vj∈ηi

fj ;

10 λ = (λ+ γnfi(λ
n))+;

11 end
12 n = n+ 1;
13 end
14 end

The projected sub-gradient solves the following (Line 3-
13),

Solve for xni , y
n
i = argminx,y(Li(x, y, λ

n))

λn+1 = (λn + γnfi(λ
n))+, i = 1, ...m

(23)

where fi(λn) = y∗i,j,k − x∗j,k is the sub-gradient of Li which
is given by: fi(λn) ∈ ∇ g(λ) and γn > 0 is the nth step
size which can be determined by several standard methods
[52]. In this work, a non-summable diminishing step size is
used [52]. Further, (.)+ is the projection. In each iteration,
node vi need to solve the subsystem to update dual variable λ.
Projected sub-gradient method projects λ on its constraint (λ
≥ 0) in each iteration. The primal solution can be constructed
from optimum λ. We assume that Slater’s condition holds
(convex problems with the Slater’s condition), and each λn

is a unique minimizer. Then the limit point of λn is primal
feasible, which is also the optimal. The dual variable matrix
λ is taken into account in the algorithm. λ is updated after
each iteration. For each fi, vi retrieves ok from neighboring
node vj where the ‘cache hit’ occurred and updates λ while
l grows. After each iteration locally, the adjustment fi will
be updated by removing information that is not included in
λ. It is noted that vi exchanges the updated fi within its
neighborhood and λ contains the aggregated popular content
in the neighborhood. This process is shown in Lines 7-11.

C. COMPUTATION COMPLEXITY AND OVERHEAD
ANALYSIS
For the centralized solution, Equation (15) has 3|O|×|V |2+2|O|×|V |+|V |
variables and the same number of equations. This opti-
mal centralized solution comprises of |O| matrices of size
|V |2, which has a computation complexity of Θ(|O||V |2).
However, since we consider only ri-hops neighbourhood of
each node, our proposed Algorithm 1 does not scale with
increasing network size but rather scale with the expected
number of nodes within their neighbourhood. Specifically, in
Algorithm 1, the collaboration distance of the neighborhood
is restricted by ri, as shown in Line 1 of Algorithm 1. We
denote with Ni as the neighbourhood of node vi with a
limited collaboration distance ri and |N i| is the expected
size of Ni. Further, following [38], let |O′| be the truncated
content set size according to the Zipf-like distribution. For
instance, for a Zipf distribution with α = 1.0, with a content
set of 106, we are able to cover 72.8% of the requests
by caching only 2% of |O|, which translate to 98% (i.e.,
|O′| = 0.02|O|) reduction. The complexity of Algorithm 1
is then significantly reduced to Θ(|O′||V ||N i|). Comparing
with the centralized solution, Algorithm 1 has reduced the
computation complexity by |O

′|
|O| ×

|Ni|
|V | .

In collaboration schemes, there is additional communica-
tion overhead for nodes to gain knowledge on the content
distribution within its neighborhood to make better caching
decisions. Having nodes to collect information from all nodes
in the network is clearly prohibitive for network with large
size. Therefore, it is important for the collaboration to be
restricted to a small neighborhood. In our proposed Algo-
rithm 1, we can see that the communication overhead due to
computing λ originates from two parts: (1) replies to queries
from nodes having vi in their neighborhood, N+

i and (2)
information collection from nodes in vi’s own neighborhood,
Ni. The communication overhead is measured by the number
of exchanged messages, and the overhead φi of node vi is
given by [38]:

φi = c× |O| × (|N+
i |+ |Ni|) (24)

Scalar c represents a constant factor for communication
overhead, and the system communication overhead Φ due
to collaboration for calculating optimal caching strategy can
then be written as follows [38]:

Φ = 2c× |O| ×
∑
vi∈V

|Ni| (25)

where node vi has a neighborhood Ni uniquely determined
by its search radius ri. In a network G(V,E) where a node’s
average neighborhood size equals |Ni|, system communica-
tion overhead equals:

Φ = 2c× |O| × |V | × |Ni| (26)

For a node vi, we can organize its neighborhood Ni into
ri concentric circles according to the neighbor’s distance to
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vi. We denote zr as the average number of r-hop neighbors
on the rth circle, where, |Ni| = z1 + z2 + ... + zr. In
a random network where nodes have average search radius
r, the induced system overhead ∆r+1

r Φ by increasing the
average search radius by 1 is given by [38]:

∆r+1
r Φ = 2c× |O| × |V | × [

z2
z1

]r × z1 (27)

It shows that the increase in overhead depends on the ratio
between the number of two-hop and one-hop neighbors.
This applies to any general network with arbitrary degree
distribution. The overhead only converges if there are less
two-hop neighbors than first-hop ones, i.e., [ z2z1 ] < 1,
which actually implies the graph is not connected and has
multiple components [54]. This is important for collaborative
caching, and shows that the collaboration overhead grows
exponentially on general connected topologies. Therefore,
collaboration is suggested to be restricted to a very small
neighborhood to keep overhead reasonable [52].

VI. EVALUATION
In our evaluation, we use both synthetic topologies based on
well-known graph models as well as real-world networks.
For synthetic topologies, we use the Erdos-Renyi (ER) ran-
dom graph model [55] and the Barabasi-Albert (BA) scale-
free (SF) graph model [56]. We set the synthetic network
size, N = 100 nodes. For ER model, given N , a link
randomly connects a pair of nodes with probability pERr
independent of other links. This results in binomial degree
distribution. For generating the ER graph, we set pERr =
2pERc = 2× ln(N)/N (i.e., two times the sharp threshold for
connectedness, pERc ). This ensure the generated topology is
connected at the start of the evaluation while simultaneously
having low link density to avoid highly meshed topology.
For SF graph, preferential attachment [56] is used and in
each step, three new nodes are attached based on the degree
of current nodes whereby the probability of a existing node
chosen is proportional to its current degree. This results in
power-law degree distribution. Hence, ER and SF graphs
offer two different topological structures with distinct degree
distributions. For real-world networks, we use the dataset
from [57] and extract three topologies with L3 (AS1), Sprint
(AS1239) and AT&T (AS7018) as the root domain. Their
respective sizes are 42, 52 and 113 nodes.

The content population is randomly distributed in the
network with each content object persistently hosted in one
server. We set the entire content catalogue to be 100,000.
Content popularity follows Zipf-distribution with popularity
factor, α = 0.9537 [58]. In a similar manner as in [38], we
truncate the content population and consider the top 500 most
popular content to reduce computational complexity. Further,
without loss of generality, we assume all nodes have the same
cache capacity, i.e., Ci = Cj ;∀{i, j} ∈ V and Ci is defined
as a fraction of the overall content population. We set it to
10% of the truncated content population. For the rest of the

paper, we also assume unit object size, sk = 1. Finally, unless
otherwise specified, the default flooding scope is set to three.

We investigate different node failure probability distribu-
tions as detailed in Section III.C. We compare our solution
(labeled as Optimized) with two common caching ap-
proaches:
• Random – A node caches a content at random. This

algorithm is simplistic and does not require keeping any
information about the content access history.

• Greedy – A node caches a content without collabo-
rating with its neighbor nodes. The caching decision
is aimed at maximizing its own utility. The algorithm
makes its caching decisions based on its local knowl-
edge of content popularity. This then involves the over-
head of tracking the access frequency of content at the
node. This algorithm closely resembles the popularity-
based caching approach studied in the information-
centric networking (ICN) literature (e.g., [59]).

A. CENTRALIZED SOLUTION
Using the centralized solution described in Eqs. 15 and 16,
the joint utility of the problem in Eq. 5 is evaluated. Con-
straints 8 and 9 are relaxed to xi,k ∈ [0, 1] and yi,j,k ∈ [0, 1].
Then the caching decision variables X and Y are further
rounded up/down to obtain the approximated solution.

As the centralized solution has high computational com-
plexity, we are restricted to evaluate its performance on a
small network. We chose to use the L3 network with 42
nodes. In Figure 2, we compare our solution (Optimized)
against Random and Greedy caching schemes across three
failure probability distributions (i.e., Uniform, Degree-based
Linear and Betweenness-based Linear). All achieved util-
ities are normalized against the utility achieved by our
Optimized in a no failure scenario (i.e., when pmax = 0).
As such, in an unperturbed network, the normalized utility
achieved by Optimized equals 1.0.

We see that Optimized consistently achieves the best
utility against other caching schemes across different failure
distributions, with Random performing the worst in all cases.
The utility achieved by Optimized is up to 68% and 11%
better against Random and Greedy respectively. In general,
when the failure probability is increased (i.e., the network
suffers more perturbations), the utility achieved decreases.
This applies to all schemes. This is most obvious for the case
when failures are set proportional to node degrees (Figure
2(b)). The performance gain achieved by Optimized is
consistent for the uniform and betweenness-based failure
probability distribution cases but decreases for degree-based
failure probability distribution. This behavior could be un-
derstood from studying Figure 1. In the case of betweenness-
based linear failure probability distribution, most node fail-
ure probabilities concentrate to small values (e.g., ≈ 75%
of nodes have failure probability less than 0.1 for the L3
network) while comparatively, the failure probabilities under
the degree-based linear failure probability distribution have
higher values.
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FIGURE 2: The utility in L3 with different cache schemes for (a) uniform, (b) degree-, (c) betweenness-based linear failure
probability distributions.

Next, we investigate the impact of scope flooding content
request on the achieved utility (see Figure 3 for L3 network)
where we vary the flooding scope between one and four from
each node to its neighbors. This experiment is computed
using the same centralized approach in Eq. 2. The achieved
utility increases as the flooding scope increases. However,
the normalized utility for Scope=3 and Scope=4 overlaps
for all three different failure probability distributions. This
means that the caching gain has diminishing return and
saturates at three hops (i.e., expanding the flooding scope
further will not significantly improve the achieved utility).
This observation validates the findings reported in [22]. This
also indicates that there is no necessity to increase the node
collaboration neighborhood beyond three hops away since
the additional benefit will be minimal while the overhead
increases.

We repeat the experiment on L3 with non-linear failure
probability distributions as detailed in Section III-D3. Figure
4 shows the results. Our solution consistently achieves the
best utility. Compared to the results in Figure 2, we note
that with increasing pmax, the utility of the degree-based
linear model reduces more rapidly than the non-linear one.
However, for the betweenness-based failure models, both
linear and non-linear cases have similar performance. The
improvement by Optimized is generally stable for differ-
ent pmax.

B. CENTRALIZED VS. DISTRIBUTED SOLUTIONS
We compare in Figure. 5 the normalized utility achieved by
both our centralized solution and distributed caching algo-
rithm for L3 network. We are restricted to use a small net-
work because the computation for centralized solution is not
feasible for large networks. For the distributed solution, we
show the utility achieved for one sample node as an example
(v4 in this case). In the figure, the normalized utility achieved
by the centralized and distributed approaches across the
three different failure distributions (Set1 - uniform, Set2
- degree-based linear and Set3 - betweenness-based linear
failure probability distribution). Both approaches achieve
results that closely agree with each other. Our distributed
solution mostly underestimates the utility by a small margin.

The difference is consistently small (i.e., greater than 96%
accuracy).

C. DISTRIBUTED CACHING ALGORITHM WITH
UNIFORM AND LINEAR FAILURE PROBABILITY
DISTRIBUTION
In this section, we evaluate our distributed caching algorithm.
We first focus on both uniform (cf. Section III-D1) and
linear (cf. Section III-D2) failure distributions. We follow
the proposed algorithm (cf. Section V-B) by using a sub-
gradient method to find an optimized distributed caching
solution for each individual node. We repeat our analysis
with the same input parameters over five networks (i.e.,
ER, SF, L3, Sprint and AT&T networks). The normalized
caching utility achieved are given in Figure 6 and Figure 7 for
synthetic and real world networks respectively (Solid lines
for our Optimized solution and dashed lines for Greedy
caching scheme.)2. Our distributed solution achieves highest
normalized utility for all the cases. With our distributed
caching algorithm, we have the additional benefit of having
lower complexity compared to the centralized solution yet
obtaining similar caching gain.

We further investigate the impact of cache size, Ci, on
our proposed distributed caching algorithm. Figure 8 shows
the normalized utility achieved with cache sizes ranging
between 2% and 12% of the size of the total content for
the L3 network. The failure probability is set based on
uniform, degree-based linear and betweenness-based linear
distributions respectively with pmax = 0.5. For this set of
results, we normalize all achieved utilities against the highest
utility achieved by Optimized scheme. The figure shows
the normalized utility of a sample node in the network.
The results shows that the utility achieved using distributed
optimized algorithm is much higher than the Greedy and
Random caching schemes. The gain in utility achieved by
Optimized increases initially for smaller cache sizes (e.g.,
between 2%–8%) after which the gain achieved stabilizes, all
the time maintaining better caching utility against Greedy
and Random schemes.

2We omit Random here as it consistently performs significantly worse.
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FIGURE 3: The utility in L3 with different scope-flooding radii for (a) uniform, (b) degree-, (c) betweenness-based linear
failure probability distributions.

FIGURE 4: Normalized utility achieved in L3 network: (a)
degree- and (b) betweenness-based non-linear failure proba-
bility distributions.

Figure 9 presents the normalized utility achieved with
different flooding scope for pbase = {0.0, 0.02, 0.04} across
uniform and linear failure probability distributions. The
utility does not increase significantly when flooding scope
increases beyond three hops, which corroborates with the
results for centralized solution (see Figure 3). Further ex-
panding the flooding scope will significantly increase the
computational complexity. Hence, we recommend that the
flooding scope is limited to three when Optimized is
applied. Moreover, the highest increase in the achieved utility

FIGURE 5: Centralized and distributed results closely match.

happens when the flooding scope is increased from one hop
to two hops. This property could be exploited for the cases
when computation resource is highly constrained whereas
sub-optimal utility could be accepted. The overall achieved
utility is negatively affected when the failure probability
increases (from pbase=0 to pbase=0.04).

D. DISTRIBUTED CACHING ALGORITHM WITH
NON-LINEAR FAILURE PROBABILITY DISTRIBUTION
In the previous section, the failure probability of a node,
pi, is either uniform or linearly proportional to its degree
or betweenness centrality. We now proceed to study the
performance of our distributed caching algorithm when the
node failure probability distributions follow those described
in Section III-D3 (i.e., node failure probability distribution
follows a non-linear Sigmoid function).

We first present the normalized utility for degree- and
betweenness-based non-linear models for ER and SF net-
works with pmax between 0.1 and 0.5. The settings of
the Sigmoid function are listed in Table 2. σ0 is set as
{0.2, 0.4.0.6, 0.8, 1.0} according to different pmax. Figure 10
shows the results for degree-based and betweenness-based
non-linear failure models. We see that the Optimized
caching scheme has better utility than the Greedy algorithm
for both ER and SF topologies. Furthermore, the improve-
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FIGURE 6: The utility of Greedy and Optimized in ER and SF for (a) uniform (b) degree and (c) betweenness based linear
failure probability distributions.

FIGURE 7: The utility of Greedy and Optimized in L3, Sprint, AT&T for (a) uniform, (b) degree, (c) betweenness-based
linear failure probability distributions.

FIGURE 8: The utility with different cache sizes in L3 for (a) uniform (b) degree and (c) betweenness-based linear failure
probability distribution (pmax = 0.5).

TABLE 2: Sigmoid function settings for experiments with
different pmax

degree-based betweenness-based
Topology µ0 µ1 µ0 µ1

ER -10 0.5 -10 200
SF -15 0.5 -10 40
L3 -6.4 0.8 -8.75 12.5

Sprint -6 0.4 -5 12.5
AT&T -5 0.2 -8.75 12.5

ment is stable with increasing pmax. This is because with
the non-linearity, only a few nodes have very high failure

probability while the rest have small failure probability.

For real-world networks (i.e., L3, Sprint and AT&T),
we show the results in Figure 11 for degree-based and
betweenness-based non-linear models. Our Optimized al-
gorithm still consistently achieves higher utility. However,
compared to their linear counterparts (see the linear case
in Figure 7(b)–(c)), the utility achieved for L3 network de-
creases at a rate much faster in the linear case. This is due to
the different failure distribution where in the non-linear case,
there are only several nodes with very high failure probability
but the rest of the network has low failure probability.

In the previous results, we gradually increase pmax. Since
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FIGURE 9: The utility with different flooding scope in L3 network for (a) uniform, (b) degree-based and (c) betweenness-based
failure probability distributions.

FIGURE 10: The utility in ER and SF: (a) degree- and
(b) betweenness-based non-linear failure probability distri-
butions with different pmax.

pi no longer forms a linear relationship with node degree
or betweenness, the skewness of the Sigmoid function also
influences the utility. Hence, we further provide the normal-
ized utility for a set of Sigmoid functions by varying µ0

and µ1 parameters to get increasing mean failure probability,
pmean. The settings are given in Table 3. With a fixed pmax,
the Sigmoid function becomes increasingly more skewed
(i.e., most nodes having almost zero failure probability while
a few nodes with highest degree or betweenness having
pi ≈ pmax) when µ0 is increasingly more negative. Con-

FIGURE 11: The utility in L3, Sprint, AT&T: (a) degree-,
(b) betweenness-based non-linear failure probability distri-
butions with different pmax.

versely, the Sigmoid curve increasingly becomes a linear
line graph when µ0 → 0 (see Figure 13). Figure 12 shows the
normalized utility for degree- and betweenness-based non-
linear failure patterns for L3, Sprint and AT&T.

For the degree-based non-linear failure model, our
Optimized caching scheme achieves better utility than
Greedy. However, the improvement generally decreases
when pmean increases. This implies that when the network is
increasingly volatile, the achievable utility tends to converge
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TABLE 3: Sigmoid function settings for analysis with dif-
ferent pmean

degree-based betweenness-based
Network µ0/µ1 µ1 µ0/µ1 µ1

L3 -8 {10, 4, 2, 0.8,
0.35}

-0.5 {100, 50, 25,
12.5, 6 }

Sprint -15 {2, 0.8, 0.6, 0.4,
0.2}

-0.35 {200, 100, 40,
20, 8}

AT&T -25 {0.8, 0.6, 0.4,
0.2, 0.1}

-0.63 {100, 50, 30, 10,
5}

FIGURE 12: The utility in L3, Sprint, AT&T: (a) degree-,
(b) betweenness-based non-linear failure probability distri-
butions with different pmean.

regardless of the failure pattern. The improvement of Sprint
and AT&T are more significant than L3. From the failure
probability distribution, we notice that this improvement
depends on the non-linearity of the Sigmoid function. Com-
pared to Sprint and AT&T, L3 has a more uniform failure
distribution.

Finally, we show how different failure patterns impact
the utility across different cache sizes. Figure 14 shows
the normalized utility achieved for the L3 network. For
degree-based non-linear failure probability distribution, we
use pmax = 0.5, σ0 = 1, µ1 = 10 and µ0/µ1 = −8 while
for betweenness-based pattern we use µ1 = 20 and µ0/µ1 =
−0.7. For both cases, Optimized caching schemes gen-
erally achieve higher utility than others. Comparing against

FIGURE 13: Example failure probability curves using a non-
linear model for L3, σ0 = 1, µ0/µ1 = −8.

FIGURE 14: The comparison of a (a) degree-based and (b)
betweenness-based linear and non-linear failure probability
distributions.

itself, Optimized achieves higher utility for the non-linear
case. This is again due to the non-linearity in the failure
probability distribution.

VII. CONCLUSIONS
In this paper, we focus on enhancing resilience in informa-
tion/content delivery. Specifically, we investigate how col-
laborative caching could improve information resilience in
perturbed networks (considering both random and targeted
failures). We first formulate a convex optimization problem
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for maximizing the joint utility of caching nodes in serving
content requests. We solve the problem in a centralized man-
ner by adopting a sub-gradient Lagrangian relaxation approx-
imation, showing significant improvement in the achieved
caching utility over greedy and random caching approaches.
For scalabiity, we further developed a distributed caching
algorithm and show it approximates the performance of the
centralized solution. We study the performance in terms of
utility across different networks and failure patterns, the
impact of cache size and request flooding scope. While the
achievable utility generally decreases when the failures in
the network increase, our solution consistently achieves sig-
nificantly higher caching utility compared to other schemes.
Our results show that with the proposed optimized caching
scheme, the utility is up to five times higher when compared
against a greedy caching scheme for different networks. The
performance of our scheme is also robust against increasing
failure rate, even for networks with nodes having high failure
probability.
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