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Abstract 

 Only a small fraction of sensory signals is consciously perceived.  The brain’s perceptual systems 

may include mechanisms of feedforward inhibition that protect the cortex from subliminal noise, thus 

reserving cortical capacity and conscious awareness for significant stimuli.  Here we provide a new view of 

these mechanisms based on signal detection theory, and gain control.  We demonstrated that subliminal 

somatosensory stimulation decreased sensitivity for the detection of a subsequent somatosensory input, 

largely due to increased false alarm rates.  By delivering the subliminal somatosensory stimulus and the to-

be-detected somatosensory stimulus to different digits of the same hand, we show that this effect spreads 

across the sensory surface.  In addition, subliminal somatosensory stimulation tended to produce an 

increased probability of responding “yes”, whether the somatosensory stimulus was present or not.  Our 

results suggest that subliminal stimuli temporarily reduce input gain, avoiding excessive responses to further 

small inputs.  This gain control may be automatic, and may precede discriminative classification of inputs 

into signals or noise.  Crucially, we found that subliminal inputs influenced false alarm rates only on blocks 

where the to-be-detected stimuli were present, and not on pre-test control blocks where they were absent.  

Participants appeared to adjust their perceptual criterion according to a statistical distribution of stimuli in the 

current context, with the presence of supraliminal stimuli having an important role in the criterion-setting 

process.  These findings clarify the cognitive mechanisms that reserve conscious perception for salient and 

important signals. 

 

Keywords 

Consciousness; Subliminal stimulation; Somatosensory detection; Signal Detection Theory; Gain Control; 

Signal/noise ratio. 
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Highlights 

• Subliminal stimuli reduce sensitivity to detect stimuli on the same digit 

• Reduced sensitivity spreads to adjacent fingers, suggesting a central mechanism 

• Subliminal stimuli may trigger reductions in sensory input gain 

• Sensory systems may implement an adaptive coding dynamically and preconsciously 
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1. Introduction 

 Subliminal perception is a classic but controversial topic in experimental psychology (Dehaene and 

Changeux, 2011).  Conventional belief that perception of a sensory stimulus is always conscious is 

challenged by considerable evidence that the construction of perceptual awareness depends on cognitive 

processes that operate unconsciously.  Only a small fraction of sensory signals is consciously perceived.  

Neurons in the cerebral cortex respond to thalamic inputs, but weak peripheral stimuli can still produce 

cortical activity that falls short of a complete cortical response, and is insufficient for conscious detection 

(Libet et al., 1967).  On this view, only late levels of processing within the cortical hierarchy are associated 

with conscious awareness: incoming stimuli are filtered by a “signal-or-noise?” process.  This process 

suppresses awareness of stimuli that have insufficient intensity or duration to trigger conscious perception.  

Thus, a gatekeeper function within the cortex selects which inputs will procede to such processing.  

Importantly, this selection may be adaptive, rather than a fixed threshold.  Accordingly, selective attention, 

expectation, stimulus history, and backward masking all influence whether a given near-threshold stimulus 

will be detected or not.  Understanding the differences between processing of subliminal and supraliminal 

stimuli is a crucial step in understanding the mechanisms that produce conscious awareness. 

 As early as in 1885, Pierce and Jastrow suggested that subliminal stimuli might unconsciously 

influence perception.  Here we focus on a recent example in the somatosensory system: subliminal 

stimulation delivered 30 ms before a near-threshold stimulus, caused a decrease in somatosensory detection 

relative to a baseline condition (Blankenburg et al., 2003).  Subliminal stimulation also caused blood 

oxygenation level-dependent (BOLD) signal decreases in somatosensory cortical areas, while suprathreshold 

stimulation normally results in BOLD signal increases (Blankenburg et al., 2003).  Thus the subliminal 

shocks were interpreted as causing transient cortical deactivation, reducing the neuronal response to 

subsequent near-threshold test stimuli.  Recordings from single neurons in animals (Swadlow, 1983) and 

intracranial and EEG recordings in humans (Curio, 2000) suggest that feed-forward thalamocortical or 

corticocortical inhibitory circuits underlie these effects. 
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 The decrease in somatosensory detection caused by subliminal stimuli was interpreted as an 

automatic and unconscious noise-suppression mechanism, arising at a low level of sensory processing, and 

acting to reserve cortical capacity and conscious awareness for significant stimuli (Blankenburg et al., 2003).  

Prior to perceiving an event, a sensory system needs to determine, based on afferent signals, whether any 

sensory event has occurred at all, or whether afferent input is “just noise”.  Sequential information is 

important for this decision: a weak stimulus that is “just noise” may not be followed by further input.  In that 

case, thalamocortical inhibition acts to close the gate to further processing, and raising the threshold for 

future cortical activation.  This prevents unnecessary responding to future noise, but also impairs detection of 

subsequent signals.  This mechanism ensures that only sufficiently strong or sustained afferent inputs reach 

full cortical processing and achieve awareness (Libet et al., 1967).  Crucially, this mechanism imposes an 

early classification of stimuli as signals or noise, on the basis of intensity.  In particular, weak subliminal 

stimuli are classified as irrelevant noise.  The system then raises the detection threshold to exclude such 

noise stimuli (Blankenburg et al., 2003), although the precise mechanism for doing so remains unclear. 

 Previous methods delivered continuous trains of subliminal stimulation at 7 Hz (Blankenburg et al., 

2003; Taskin et al., 2007) in which the to-be-detected near-threshold shocks were embedded.  The regular 

temporal pattern could assist in identifying a subliminal stimulus as task irrelevant, on the basis of its timing 

as well as its energy.  In contrast, when a single low-energy stimulus occurs, the brain faces a challenge in 

distinguishing whether it is merely noise - in which case neural responsivity could be adaptively decreased -, 

or whether it is in fact a relevant and important event - in which case responsivity should be increased. 

 In this study we have addressed these questions directly, seemingly for the first time.  We have used 

signal detection theory to investigate how a single subliminal somatosensory stimulus might influence 

conscious perception of a near-threshold shock, either on the same digit, or on neighbouring digits. 
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2. Materials and Methods 

2.1. Experiment 1 

2.1.1.  Participants 

 Eight naïve right-handed participants took part in Experiment 1 (3 male, mean age ± SD: 22.8 ± 3.4 

years).  Participants were recruited by means of the UCL Psychology Subject Pool.  The sample size was set 

in advance of testing based on the average sample size in two previous similar studies (cf. Blankenburg et al., 

2003), and was also used as data-collection stopping rule.  Exclusion criteria include the presence of 

neurological and psychiatric disorders, sensitive skin on the hands (e.g., eczema), and analgesic medication 

(i.e., paracetamol, aspirin, ibuprofen, codeine) or recreational drug consumption in the last 24 hours.  Written 

informed consent was obtained from all participants.  The study was conducted in accordance with the 

principles of the Declaration of Helsinki.  All experimental procedures were approved by the local ethics 

committees. 

 

2.1.2. Stimuli and procedure 

 Somatosensory stimulation was provided by digital nerve shocks via a pair of ring electrodes 

(Digitimer, UK) placed over the distal phalanxes of the left index finger with the cathode 1 cm proximal to 

the anode.  Stimulation was a single rectangular current pulse delivered with a neurophysiological stimulator 

(Stanmore stimulator, Medical Physics Department, UCL, UK), whose current level and pulse duration were 

controlled by a computer.  Within the range used here, shock intensity depends only on the total charge 

transferred from the electrode, which is the product of current pulse amplitude and pulse duration.  Therefore, 

we obtained estimates of somatosensory perception by holding pulse amplitude at 10 mA and varying pulse 

duration. 

 To identify individual somatosensory thresholds, the method of limits was used to estimate the 

lowest shock intensity at which a tactile stimulus could be reliably detected.  Pulses of increasing width were 
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applied until participants reported a sensation.  The pulse intensity obtained was tested in a detection block to 

check that 50% of pulses were reliably detected.  This level was considered as working estimate for near-

threshold electrical stimulation in each participant (mean and standard deviation for subjective threshold are 

reported in Table 1).  Subliminal stimulation was delivered at below threshold intensity (15% less then 

threshold intensity, cf. Blankenburg et al., 2003).  A sensory pre-test detection block with 10 subliminal 

pulses and 10 stimulus-absent trials was conducted to check whether subliminal stimuli were detectable.  

 Participants detected near-threshold shocks on the finger, randomly preceded by a subliminal 

conditioning pulse 30 ms earlier.  The 30 ms delay was chosen because it far exceeds the refractory period of 

peripheral nerve fibers (Swadlow and Gusev, 2000).  Further, somatosensory activation within the primary 

somatosensory cortex persist for at least 60 ms (Allison et al., 1992; Mauguiere et al., 1997).  Thus, the 

processing of both subliminal conditioning pulse and near-threshold test pulse overlapped within the primary 

somatosensory cortex (Chung et al., 2002; Martin-Cortecero and Nunez, 2014; Nakagawa et al., 2014).  The 

rationale behind this specific timing comes from the retention times of the somatosensory signal in the 

primary somatosensory areas, as recently confirmed (Tamè et al., 2015a; Tamè et al., 2015b). 

 The somatosensory detection task consisted of a 2 (somatosensory near-threshold stimulus 

present/absent) x 2 (subliminal stimulus present/absent) design, with the following trial types: 40 trials with 

shock intensity at threshold delivered on the left index finger, 40 trials in which a subliminal shock was 

delivered 30 ms before the near-threshold test pulse on the left index finger, 40 trials in which only the 

subliminal shock was presented on the left index finger, without a near-threshold test pulse and 40 trials in 

which neither subliminal shock nor near-threshold test pulse were present.  Trial order was randomised, so 

that participants could not predict stimulus presence and stimulus intensity.  Participants were blindfolded 

throughout the task.  The beginning of each trial was signalled by an auditory cue.  The shock, if present, 

was delivered after a variable interval of time between 800 ms and 850 ms.  800 ms later, a second auditory 

cue indicated the end of the trial.  Participants were required to indicate whether or not they felt the shock, 

making unspeeded verbal responses.  Data for each trial were recorded and analysed later. 
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  Finger 

 
 Index Middle Ring Little 

 
Experiment 1 

 
M 50.75 

   
 

SD 19.38 
   Experiment 2 M 56.00 55.25 

  
 

SD 14.93 15.59 
  Experiment 3 M 47.00 47.71 45.29 41.71 

 
SD 9.98 6.45 8.60 8.36 

 

Table 1.   

Somatosensory threshold in microsecond pulse duration (means and standard deviations) for a 10mA current delivered 
to each finger in each experiment.  

 

2.1.3. Results 

 For the pre-test detection block, the percentage of “yes” responses to subliminal stimuli was 

compared to the percentage of “yes” responses to stimulus absent trials, using a paired t-test.  A one-tailed 

test was used, since any standard account of perception would predict that “yes” responses should be 

increased by the actual presence of a stimulus, rather than decreased.  Cohen's d for independent samples 

was calculated to estimate effect size, following Dunlap's (1996) recommendation of using the original 

standard deviations of the scores in case of paired t-tests.  Subliminal stimuli did not evoke significantly 

more “yes” responses, strongly suggesting lack of conscious detection (mean percentage of “yes” responses 

to stimulus absent trials = 8.75%, SD= 24.75%; mean percentage of “yes” responses to subliminal stimuli = 

11.25%, SD= 21.01%; t7 = -0.424, p=0.342; Cohen’s d = -0.11; 95% CI for effect size [-1.08, 0.88]).  

 Somatosensory detection results were analysed using signal detection analysis (Macmillan and 

Creelman, 1991).  According to our experimental design, we considered two experimental conditions: near-

threshold shocks that were preceded by a subliminal conditioning pulse and near-threshold shocks that were 

not.  Subliminal only trials have been considered as signal absent trials for calculating signal detection values 

in the near-threshold preceded by subliminal pulse condition.  Then, we computed the number of hits 
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(number of stimulus-present trials in which participants said “yes”), false alarms (number of stimulus-absent 

catch trials in which participants said “yes”), misses (number of stimulus-present trials in which participants 

said “no”) and correct rejections (number of stimulus-absent catch trials in which participants said “no”) 

independently for both experimental conditions (Table 2).  Hit rates [P(“yes” | stimulus present), proportion 

of hit trials to which subject responded “yes”] and false alarm rates [P(“yes” | stimulus not present), 

proportion of trials in which there is not actually the stimulus to which subject responded “yes”] were 

calculated (Macmillan and Creelman, 1991).  These were used to obtain the perceptual sensitivity (d’) and 

response bias (C) estimates for near-threshold shocks that were preceded by a subliminal conditioning pulse 

and near-threshold shocks that were not.  The difference between these values represents an index of the 

strength of putative subliminal inhibition. 

 Subliminal conditioning pulses significantly reduced sensitivity to the near-threshold shock (near 

threshold sensitivity: mean= 2.06, SD= 1.79; subliminal + near threshold sensitivity: mean= 1.18, SD= 1.70; 

t7 = 2.800, p = 0.027; Cohen’s d = 0.50; 95% CI for effect size [-0.52, 1.47]), and produced a trend (near 

threshold response bias: mean= 1.15, SD= 0.58; subliminal + near threshold sensitivity: mean= 0.73, SD= 

0.47; t7 = 2.060, p = 0.078; Cohen’s d = 0.80; 95% CI for effect size [-0.26, 1.77]) towards liberal response 

bias (i.e., an increased probability of responding that the shock was present, irrespective of actual 

stimulation) (Figure 1A).  

 

2.1.4. Discussion 

 Subliminal stimulation impairs detection of a subsequent somatosensory stimulus, delivered 30 ms 

later.  Importantly, we used signal detection theory to clarify the nature of this impairment.  We found that a 

subliminal stimulus decreased sensitivity for somatosensory signals.  In addition, we also found a trend for 

subliminal stimulation to produce a liberal bias, i.e., an increased probability of responding “yes”, whether 

the near-threshold stimulus was present or not.  Since both subliminal and near-threshold stimuli were 

delivered on the same finger, our results could reflect inhibitory mechanisms at any of several levels, 

including the peripheral receptor, the afferent neuron, the spinal circuitry, brainstem nuclei, thalamus or 
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cortex.  To clarify this issue, we have investigated whether the effect of subliminal stimuli would be found in 

conditions where subliminal and near-threshold information come from different peripheral locations. 

 

 

Figure 1.  Sensitivity and Response Bias results. 

A: Results of Experiment 1.  A preceding stimulus reduces sensitivity to a subsequent near-threshold stimulus, and 
produces a tendency towards liberal bas.   

B: Results of Experiment 2.  Sensitivity reduction is found when the subliminal stimulus is delivered to the adjacent 
finger.   

C: Results of Experiment 3.  The spatial spread of sensitivity modulation shows a clear linear gradient across 
fingers.  There is no linear gradient for bias. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

 

11 

2.2. Experiment 2 

2.2.1.  Participants 

 Eight naïve right-handed participants took part in Experiment 2 (3 male, mean age ± SD: 26.9 ± 5.8 

years).  Participants were recruited by means of the UCL Psychology Subject Pool.  Exclusion criteria 

include the presence of neurological and psychiatric disorders, sensitive skin on the hands (e.g., eczema), and 

analgesic medication (i.e., paracetamol, aspirin, ibuprofen, codeine) or recreational drug consumption in the 

last 24 hours.  Written informed consent was obtained from all participants.  The study was conducted in 

accordance with the principles of the Declaration of Helsinki.  All experimental procedures were approved 

by the local ethics committees. 

 

2.2.2. Stimuli and procedure 

 Ring electrodes were placed over the distal phalanxes of the left index and middle finger.  

Somatosensory thresholds were identified for both the index and middle finger (see Table 1).  The 

somatosensory detection task consisted of 6 trial types: 30 trials with shock intensity at threshold delivered 

on the left index finger, 30 trials in which a subliminal shock was delivered 30 ms before the near-threshold 

test pulse on the left index finger, 30 trials in which a subliminal stimulus was presented on the middle finger 

30 ms before the near-threshold delivered on the index finger, 30 trials in which only the subliminal shock 

was presented on the left index finger, 30 trials in which only the subliminal shock was presented on the 

middle index finger and 30 trials in which no signal was present.  Settings and timings were as in Experiment 

1.  Participants were instructed to detect whether a near-threshold pulse was delivered on the index finger.  A 

sensory pre-test detection block with subliminal pulses and stimulus absent trials was conducted to verify 

whether subliminal stimuli were detectable by participants.  Independent blocks were administered for the 

index finger and middle finger. 
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2.2.3. Results 

 The percentage of “yes” responses to subliminal stimuli was compared to the percentage of “yes” 

responses to stimulus absent trials, collected in the pre-test detection block.  Subliminal stimulus delivered 

on the index finger did not evoke significantly more “yes” responses, confirming lack of conscious detection 

(mean percentage of “yes” responses to stimulus absent trials = 5%, SD= 7.56%; mean percentage of “yes” 

responses to subliminal stimuli = 12.50%, SD= 15.81%; t7 = -1.342, p= 0.111; Cohen’s d = -0.61; 95% CI for 

effect size [-1.57, 0.43], one tail).  Similar results were found for the middle finger (mean percentage of “yes” 

responses to stimulus absent trials = 6.25%, SD= 11.87%; mean percentage of “yes” responses to subliminal 

stimuli = 10%, SD= 11.95%; t7 = 0.753, p= 0.238; Cohen’s d = -0.31; 95% CI for effect size [-1.28, 0.69], 

one tail). 

 Sensitivity estimates of near-threshold detection again dropped when the subliminal conditioning 

shock was delivered on the same (index) finger, replicating Experiment 1 (near threshold sensitivity: mean= 

1.93, SD= 1.38; index finger subliminal + near threshold sensitivity: mean= 0.94, SD= 0.93; t7 = 3.098, p = 

0.017; Cohen’s d = 0.84; 95% CI for effect size [-0.22, 1.81]).  A similar effect was also found when the 

subliminal pulse was administered on the adjacent, middle finger (middle finger subliminal + near threshold 

sensitivity: mean= 1.50, SD= 1.46; t7 = 2.764, p = 0.028; Cohen’s d = 0.30; 95% CI for effect size [-0.70, 

1.27]).  The difference in d’ for trials with or without a subliminal conditioning shock was calculated for 

trials in which the subliminal pulse was on the same finger or on the adjacent finger.  A direct comparison 

confirmed that subliminal stimulation similarly affects the detection of subsequent somatosensory stimuli on 

the same finger or on the adjacent finger (t7 = -1.847, p = 0.107; Cohen’s d = -0.78; 95% CI for effect size [-

1.75, 0.27]) (Figure 1B). 

 Response bias estimates showed a liberal trend following subliminal conditioning shocks on the 

same, index finger (near threshold response bias: mean= 0.76, SD= 0.43; index finger subliminal + near 

threshold response bias: mean= 0.23, SD= 0.39; t7 = 2.128, p = 0.071; Cohen’s d = 1.29; 95% CI for effect 

size [0.15, 2.29]).  No significant changes in the response bias were found when subliminally stimulating the 

middle finger (middle finger subliminal + near threshold response bias: mean= 0.60, SD= 0.26; t7 = 1.248, p 
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= 0.252; Cohen’s d = 0.45; 95% CI for effect size [-0.57, 1.42]).  The difference in response bias for trials 

with or without a subliminal conditioning shock was no significantly different across fingers (t7 = -1.782, p = 

0.118; Cohen’s d = -0.65; 95% CI for effect size [-1.62, 0.39]) (Figure 1B). 

 

2.2.4. Discussion 

 Subliminal stimulation affects the detection of subsequent somatosensory stimuli on the same finger 

or on the adjacent finger.  Indeed, sensitivity estimates for near-threshold detection on the index finger 

dropped when the subliminal pulse was delivered on the index finger or middle finger.  To further quantify 

the apparent spread of feed-forward inhibition across digits, we delivered the subliminal shock either on the 

same/index finger or on the middle, ring or little finger of the same hand, at random in a third experiment. 

 

2.3. Experiment 3 

2.3.1.  Participants 

 Eight naïve right-handed participants took part in Experiment 3 (3 male, mean age ± SD: 23.7 ± 3.1 

years).  Participants were recruited by means of the UCL Psychology Subject Pool.  Exclusion criteria 

include the presence of neurological and psychiatric disorders, sensitive skin on the hands (e.g., eczema), and 

analgesic medication (i.e., paracetamol, aspirin, ibuprofen, codeine) or recreational drug consumption in the 

last 24 hours.  Written informed consent was obtained from all participants.  The study was conducted in 

accordance with the principles of the Declaration of Helsinki.  All experimental procedures were approved 

by the local ethics committees.  Data from one participant were lost for technical reasons. 

 

2.3.2. Stimuli and procedure 
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 Ring electrodes were placed over the distal phalanxes of the left index, middle, ring and little finger.  

Somatosensory thresholds were estimated for each finger.  The somatosensory detection task consisted of 10 

trial types: 30 trials with shock intensity at threshold delivered on the left index finger, 30 trials in which a 

subliminal shock was delivered 30 ms before the near-threshold test pulse on the index finger, 30 trials in 

which a subliminal shock was presented on the middle finger 30 ms before the near-threshold delivered on 

the index finger, 30 trials in which a subliminal shock was presented on the ring finger 30 ms before the 

near-threshold delivered on the index finger, 30 trials in which a subliminal shock was presented on the little 

finger 30 ms before the near-threshold delivered on the index finger, 30 trials in which only the subliminal 

shock was presented on the index finger, 30 trials in which only the subliminal shock was presented on the 

middle finger, 30 trials in which only the subliminal shock was presented on the ring finger, 30 trials in 

which only the subliminal shock was presented on the little finger and 30 stimulus absent trials in which no 

signal was present.  Trial features and timing were the same as in Experiment 1.  Participants were instructed 

to detect whether a near-threshold pulse was delivered on the index finger.  A sensory pre-test detection 

block with subliminal pulses and stimulus absent trials was conducted to verify whether subliminal stimuli 

were detectable by participants.  Independent blocks were administered for each finger. 

 

2.3.3. Results 

 The percentage of “yes” responses to subliminal stimuli was compared to the percentage of “yes” 

responses to stimulus absent trials, collected in the pre-test detection block.  Subliminal stimulus delivered 

on the index finger did not evoke significantly more “yes” responses, suggesting lack of conscious detection 

(mean percentage of “yes” responses to stimulus absent trials = 22.86%, SD= 29.28%; mean percentage of 

“yes” responses to subliminal stimuli = 20%, SD= 34.16%; t6 = -0.420, p=0.345, Cohen’s d = 0.09; 95% CI 

for effect size [-0.96, 1.13], one tail).  No differences emerged for the middle finger (mean percentage of 

“yes” responses to stimulus absent trials = 11.43%, SD= 21.93%; mean percentage of “yes” responses to 

subliminal stimuli = 15.71%, SD= 15.12%; t7 = 0.596, p= 0.286; Cohen’s d = -0.23; 95% CI for effect size [-

1.26, 0.84] one tail), ring finger (mean percentage of “yes” responses to stimulus absent trials = 15.71%, 
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SD= 20.70%; mean percentage of “yes” responses to subliminal stimuli = 17.14%, SD= 17.04%; t7 = 0.213, 

p= 0.419; Cohen’s d = -0.07; 95% CI for effect size [-1.12, 0.98] one tail) and little finger (mean percentage 

of “yes” responses to stimulus absent trials = 12.86%, SD= 18.90%; mean percentage of “yes” responses to 

subliminal stimuli = 28.57%, SD= 26.09%; t7 = 1.908, p= 0.060; Cohen’s d = -0.69; 95% CI for effect size [-

1.72, 0.43] one tail). 

 Sensitivity data showed a decreasing spatial gradient across the fingers (near threshold sensitivity: 

mean= 1.25, SD= 0.98; index finger subliminal + near threshold sensitivity: mean= 0.74, SD= 0.79; middle 

finger subliminal + near threshold sensitivity: mean= 0.89, SD= 0.77; ring finger subliminal + near threshold 

sensitivity: mean= 1.07, SD= 0.64; little finger subliminal + near threshold sensitivity: mean= 1.27, SD= 

0.85).  The difference in d’ for trials with vs without a subliminal conditioning shock was calculated.  We 

first performed an ANOVA on these values with Finger for the subliminal conditioning shock (Index, 

Middle, Ring, Little) as within-subjects factor.  The main effect of Finger for the conditioning shock did not 

reach the significance level (F(3,1)=2.063, p=0.141).  However, we had a prior hypothesis regarding a spatial 

somatotopic gradient of decreasing inhibition across the fingers, corresponding to decreasing difference in d’ 

between trials with vs without a subliminal conditioning shock.  This hypothesis is driven by physiological 

evidence showing that inhibitory mechanisms in the somatosensory system follow a somatotopic 

organization.  For instance, suppressive interactions are stronger when simultaneously stimulating the digital 

nerves of the index and middle fingers compared with index and little fingers (Ishibashi et al., 2000).  We 

therefore used a planned contrast approach to capture this specific prediction about the pattern of differences 

between fingers.  In particular, linear trend analysis was used to determine whether subliminally induced 

inhibition decayed linearly across fingers.  While other patterns (exponential, quadratic) might potentially 

also be present, we had a prior in favour of the simpler, linear pattern.  Further, a linear pattern would be 

consistent with recent high-field neuroimaging results indicating roughly equi-spaced projections of 

individual fingers onto the somatosensory cortical sheet (Martuzzi et al., 2014), at least for the index, middle, 

ring and little fingers.  The null hypothesis, of no linear gradient for subliminal inhibition would be reflected 

by the absence of trend.  The linear contrast coefficients -3, -1, 1, 3 were used for index, middle, ring and 

little fingers respectively.  A clear linear trend was found t6 = 5.337, p < 0.001, one tailed), with reduction in 
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sensitivity due to subliminal stimulation decreasing for more remote digits.  This result is consistent with the 

view that feed-forward inhibition from the subliminal stimulus spreads in a linearly-decreasing fashion 

across a topographic skin map.   

 No reliable spatial gradient for bias was observed (near threshold response bias: mean= 0.65, SD= 

0.53; index finger subliminal + near threshold response bias: mean= 0.50, SD= 0.46; middle finger 

subliminal + near threshold response bias: mean= 0.45, SD= 0.46; ring finger subliminal + near threshold 

response bias: mean= 0.48, SD= 0.32; little finger subliminal + near threshold response bias: mean= 0.75, 

SD= 0.68).  A linear trend analysis confirmed the absence of spatial gradient in response bias values (t6 = 

1.001, p = 0.178, one tailed) (Figure 1C).   

 

2.3.4.  Discussion 

 The somatosensory evoked response elicited by two stimuli applied simultaneously to adjacent skin 

regions, or to different nerves, is reduced relative to the sum of responses evoked by stimulating each skin 

region or nerve independently.  This result has been explained in terms of lateral inhibition mechanisms 

(Gandevia et al., 1983; Hsieh et al., 1995; Ishibashi et al., 2000).  This suppression follows the somatotopic 

organization of the receptive fields.  That is, suppressive interactions are stronger when simultaneously 

stimulating the digital nerves of the index and middle fingers compared with index and little fingers 

(Ishibashi et al., 2000).  Accordingly, our data revealed a linear spatial gradient in subliminally-induced 

inhibition.   

 

2.4. Subliminal detection across the three experiments 

 In all three experiments the subliminal stimulation was set clearly below the threshold intensity for 

conscious detection (cf. Blankenburg et al., 2003).  This was checked prior to each experiment in a pre-test 

detection block with subliminal pulses and stimulus absent trials.  In these pre-test detection blocks, the 
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percentage of “yes” responses to subliminal stimuli was compared to the percentage of “yes” responses to 

stimulus absent trials, using paired t-tests.  We found no significant evidence that presence of a subliminal 

stimulus increased “yes” responses in pre-test detection blocks, consistent with lack of conscious detection.  

Similarly, combining the subjects of the three experiments showed that “yes” responses were no more likely 

for subliminal stimuli than for stimulus absent trials (mean percentage of “yes” responses to stimulus absent 

trials = 11.74%, SD= 22.49%; mean percentage of “yes” responses to subliminal stimuli = 14.35%, SD= 

23.51%; one-tailed paired t-test, t22 = -0.758; p=0.229; Cohen’s d = -0.11; 95% CI for effect size [-0.69, 

0.45]).  In principle, this null result might just reflect low statistical power.  We performed a power 

calculation to estimate the number of participants required to get a significant difference between the "yes" 

responses for subliminal trials and for stimulus absent trials.  The sample size calculation for one-tailed 

paired t-test, with alpha = 0.05 and power = 0.95, gave a total sample of 843 subjects.   

 However, the responses to subliminal stimuli delivered alone differed dramatically between these 

pre-test detection blocks and the main experimental blocks.  In the main experimental blocks, subliminal 

stimulation delivered alone frequently triggered a false alarm (Table 2), while in the pre-test detection blocks, 

the identical subliminal stimulation did not.  That is, false alarm errors were more frequent in blocks when 

perceptible near-threshold stimuli were delivered, than in blocks when no perceptible stimuli were ever 

delivered, such as the pre-test detection block.  We hypothesised that the context provided by readily 

perceptible stimuli could increase the probability of responding ‘yes’ to a subliminal stimulus.  We therefore 

investigated whether this increase in false alarm rate for subliminal-only stimuli relative to stimulus absent 

trials was larger in the experimental somatosensory detection blocks than in the pre-test detection block.  We 

therefore computed the difference between false alarm rate for subliminal-only stimuli and false alarm rate 

for stimulus absent trials for both detection blocks.  Since no significant differences emerged comparing 

these values across experiments (all p>0.05; see Table 2), a paired t-test was performed combining the data 

across all experiments, with the null hypothesis that [False Alarm (subliminal only, somatosensory detection 

block) – False Alarm (no stimulus, somatosensory detection block)] = [False Alarm (subliminal only, pre-

test detection block) – False Alarm (no stimulus, pre-test detection block)].  A one-tailed test was used to test 

the directional hypothesis, derived from the above putative contextual influence of supra-threshold stimuli on 
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perceptual processing, that false-alarm rate was greater in blocks when perceptible near-threshold stimuli are 

delivered (i.e. somatosensory detection block), than in blocks when no perceptible stimuli are ever delivered 

(i.e. pre-test detection block).  The hypothesis was supported (t22 = -1.823; p=0.041, Cohen’s d = 0.51; 95% 

CI for effect size [-0.08, 1.09]).  False alarms to exactly the same subliminal stimuli thus increased when 

detectable stimuli were presented in the same block, compared to when they were not. 

 

 Somatosensory Signal detection Task 
 Hits 

(%) 
Misses 

(%) 
Correct Rejections 

(%) 
False Alarms 

(%) 
Experiment 1     
Near-Threshold M: 45.63 M: 54.38 M: 90.00 M: 10.00 
 SD: 22.94 SD: 22.94 SD: 14.39 SD: 14.39 
Subliminal + Near-threshold M: 45.00 M: 55.00 M: 82.81 M: 17.19 
 SD: 26.76 SD: 26.76 SD: 16.00 SD: 16.00 
Experiment 2     
Near-Threshold M: 56.67 M: 43.33 M:90.00 M: 10.00 
 SD: 16.71 SD: 16.71 SD: 9.76 SD: 9.76 
Subliminal + Near-threshold M: 57.08 M: 42.92 M: 73.33 M: 26.67 
 SD: 22.71 SD: 22.71 SD: 15.01 SD: 15.01 
Experiment 3     
Near-Threshold M: 46.19 M: 53.81 M: 82.38 M: 17.62 
 SD: 11.29 SD: 11.29 SD: 21.75 SD: 21.75 
Subliminal + Near-threshold M: 45.24 M: 54.76 M: 76.19 M: 23.81 
 SD: 14.51 SD: 14.51 SD: 23.92 SD: 23.92 
Combined     
Near-Threshold M: 49.64 M: 50.36 M: 87.68 M: 12.32 
 SD: 17.85 SD: 17.85 SD: 15.43 SD: 15.43 
Subliminal + Near-threshold M: 49.28 M: 50.72 M: 77.50 M: 22.50 
 SD: 21.99 SD: 21.99 SD: 18.06 SD: 18.06 

 

Table 2.   

Hits, misses, correct rejections and false alarms rates (means and standard deviations) averaged across the three 
experiments as a function of the experimental condition.  

 

 Subliminal stimulation decreased sensitivity for somatosensory signal detection.  We present here all 

and only the studies that we have conducted on this topic.  Importantly, the main finding was replicated in 

three different experiments, involving three different groups of participants.  Across three experiments and 

23 subjects, we consistently found that a single subliminal stimulus decreased sensitivity for somatosensory 

signal detection.  Pooling the relevant conditions across experiments revealed a reliable subliminally-induced 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

 

19 

reduction of sensitivity (t22 = 4.847, p < 0.001, Cohen’s d = 0.62; 95% CI for effect size [0.019, 1.201]).  We 

also used meta-analysis to investigate the effect size across our three experiments, using random effects 

models (Borenstein et al., 2011).  This approach allowed us to investigate two questions.  First, whether the 

subliminally-induced decrease in somatosensory sensitivity is reliable across experiments.  Second, whether 

there is heterogeneity among experiments.  We found a significant overall effect of subliminal stimulation 

across the three experiments (p = 0.033; 95% CI = [0.06 1.395]).  Measures of heterogeneity were used to 

estimate whether the observed variability in effect size might just be explained by chance, or whether other 

factors might be involved.  Results indicated negligible heterogeneity among studies, Q (2) = 0.439, 

p = 0.803. 

 In addition, we also found a trend for subliminal stimulation to produce a liberal bias, i.e., an 

increased probability of responding “yes”, whether the near-threshold stimulus was present or not.  Although 

this effect on bias reached only trend levels in any single experiment, pooling the relevant conditions across 

experiments revealed a reliable bias effect (t22 = 3.207, p = 0.004, Cohen’s d = 0.73; 95% CI for effect size 

[0.12, 1.32]).   

 Inspection of the detection results (Table 2) suggested that both sensitivity and response bias 

changes arose because preceding subliminal stimulation increased the false alarm rate.  These false alarms 

following subliminal stimulation occurred despite the fact that the subliminal stimuli alone were 

imperceptible.  Because our results show a strong spatial gradient of subliminal shock efficacy, the false 

alarm rates presumably reflect a central rather than a peripheral effect.  Importantly, we always delivered 

subliminal shocks and near-threshold stimuli as single pulses, in separate, independent and randomised trials.  

This arrangement had three advantages: first, it meant that subliminal stimulation did not predict near-

threshold stimulation; second, it minimised the possibility that the effect depends on the temporal pattern of 

subliminal stimuli, as opposed to their energy; and finally it allowed us to apply signal detection theory 

methods. 
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3. General Discussion 

 Awareness in human perception has been widely debated by philosophers, psychologists, and 

neuroscientists (Chalmers, 2000; Dennett, 2001; Singer, 1998).  Only a subset of sensory signals enters 

awareness.  However, even stimuli that do not enter into consciousness can nevertheless be processed by our 

brain (Libet, 1967).  Our results clearly show that subliminal stimuli do not simply generate weak, 

subthreshold responses, but rather alter subsequent perception of later stimuli.  In particular, we 

demonstrated that subliminal stimulation decreased sensitivity for detecting a subsequent somatosensory 

input.  This effect was largely due to increased false alarm rates.   

 Importantly, we found that the reduction in sensitivity decreased when the subliminal and near-

threshold shocks were giving to different fingers.  This decrease had a linear pattern across the somatotopic 

space of the digits, although we did not systematically investigate whether other component patterns, such as 

quadratic trends, might also be present.  Subliminal inhibition from remote fingers rules out accounts based 

on peripheral receptor mechanisms, such as receptor adaptation.  Similarly, filtering mechanisms at spinal 

level also seem unlikely, since the effect was also present when subliminal and near-threshold shocks were 

delivered to digits that project to different spinal segments (dermatomes).  Previous work comparing 

conscious and unconscious processing emphasised that subliminal stimuli have only local effects.  For 

example, subliminal stimuli do not activate large-scale inter-areal cortical networks (Dehaene et al., 2006).  

Our data suggest that subliminal stimuli can produce activation beyond the immediate projection site, at least 

within a single somatotopic cortical area.  Neuroimaging studies estimate the distance between 

somatosensory cortical representations of digits 2 and 5 at around 13 mm (Duncan, 2007), suggesting 

substantial spread of our subliminal activations across the cortical map.  Lateral projection of inhibitory 

interneurons is an important mechanism of inhibitory interaction in the somatosensory cortex.  However, 

because of interneurons’ limited axon length, this interaction spreads only around 350 µm, at least in rodent 

barrel cortex, and never crosses barrel boundaries (Swadlow, 2002; Harris and Woolsey, 1983).  Inhibitory 

interaction might therefore take place in primary somatosensory cortices, where receptive fields are digit-
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specific.  However, beyond those areas, multidigit receptive fields are also found.  Thus, we cannot exclude 

the possibility that our results rely on sensory integration at these higher levels. 

 Blankenburg and colleagues (2003) suggested that subliminal stimuli down-regulate areas involved 

in stimulus processing.  On this view, subliminal inhibition could enhance cortical selection of significant 

stimuli, by raising thresholds (Figure 2A), and thus suppression of input noise in the somatosensory system 

(Blankenburg et al. 2003; Taskin et al. 2008).  Our use of signal detection theory identifies specific 

subliminal effects on sensitivity and bias, and suggests a different view.  We found that subliminal stimuli 

impair cortical perceptual processing.  In particular, our data show that subliminal stimuli strongly increase 

false alarm rates, leading to both reduced sensitivity and liberal bias.  In contrast, raising the noise threshold 

should reduce false alarms, without affecting sensitivity to signals above that threshold (Figure 2A). 

 We have investigated how simple cognitive models of sensory signal detection could reproduce 

subliminally-triggered changes in sensitivity and in false alarm rate.  According to one account, subliminal 

stimulation might reduce the overall input gain of the sensory input pathway (Figure 2B).  This would limit 

the output of a putative sensory detector unit without affecting central noise.  Therefore, sensitivity to near-

threshold shocks would be reduced because the range of outputs for a given range of inputs would be 

compressed, leading to greater overlap between the distributions of responses evoked by near-threshold 

signals and by internal noise alone.  If observers would additionally adjust their criterion in line with the 

altered gain, to maintain a consistent correct detection rate for near-threshold stimuli on interleaved trials 

with and without subliminal stimulation (Figure 2B, bottom row), then this mechanism would also lead to 

the increase in the false alarm rate that we observed.  Thus, a combination of gain reduction and a liberal 

shift in response criterion could explain our results. 

 According to an alternative account, the subliminal prime might transiently increase the level of 

central noise (Figure 2C).  This would reduce sensitivity directly by increasing the overlap between the 

distributions of neural activity evoked by the near-threshold stimulus, and by noise alone.  In our 

experiments the average correct detection rate for near-threshold stimuli was close to 50%, placing the 

typical decision criterion near the centre of the signal and noise distribution.  Thus, any factor, such as 
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increased central noise, that broadened the distributions would leave the hit and miss rates unchanged, while 

increasing the false alarm rate, as our data show.  However, this model cannot readily explain why 

subliminal stimuli presented alone lead to false alarm rates only in experimental blocks where near-threshold 

stimuli were also presented, and not in catch trials of pre-test blocks where near-threshold stimuli were not 

presented.  If the subliminal prime were simply to increase central noise, one should experience more false 

alarms in both types of block, independent of context.  By contrast, our initial model of reduced input gain 

might increase the false alarm rate only if observers also adjusted their response criterion to match the 

experienced distribution of near-threshold activity. 

 Blankenburg et al. (2003) presented their subliminal stimuli in continuous trains.  In principle, the 

brain might extract the regular temporal pattern of subliminal stimuli.  If subliminal stimuli could be 

classified as non-targets on the basis of their timing alone, then thresholds for conscious detection (Figure 

2A) could be raised accordingly.  Thus, those stimulus parameters and analysis methods may have favoured 

discriminative mechanisms that selectively suppress weak stimuli.  Importantly, this mechanism does not 

involve any general adjustment of sensory processing within the sensory pathway, it merely prevents weak 

stimuli from entering the pathway.  In contrast, we delivered single subliminal stimuli, with or without a to-

be-detected near-threshold shock, and we analysed the results using signal detection theory.  Therefore, 

threshold adjustments based on stimulus timing cannot account for our data.  Rather, an automatic and 

preconscious process appears to identify a single weak stimulus, and trigger appropriate adjustments to 

cortical perceptual machinery, even though the subliminal stimulus itself remains imperceptible.  Any 

sensate organism must balance the need to respond to unexpected, faint, but potentially-relevant stimuli, with 

the need to focus processing capacity on those stimuli that are currently most important or most salient.  Our 

results suggest that gain modulation of sensory pathways is one key mechanism for achieving this balance.   

 Subliminal somatosensory inhibition is often attributed to inhibitory thalamocortical (feed-forward) 

and intracortical interneuronal (feedback) connections (Blankenburg et al., 2003), though other circuits may 

also contribute.  Our data provide new and important findings about such mechanisms.  First, this mechanism 

operates by changing the gain of the somatosensory pathway.  Second, gain regulation operates 
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automatically under bottom-up influence, since it is caused by subliminal stimuli that are not consciously 

perceived.  Third, our results raise the intriguing possibility that gain regulation is intensity-dependent.  

Reducing the gain in response to a near-threshold stimulus occurring alone would scarcely be a functional 

process in a detection task, yet reducing gains in response to a subliminal stimulus may protect against 

excessive responsivity to minimal stimuli.  We suggest that afferent signals trigger an initial, pre-perceptual 

classification of stimuli based on their energy level.  The output of this classifier could then be immediately 

used to regulate gains within the somatosensory pathway.  The subliminal shock itself must trigger a specific 

set of neural processes which alters signal detection, for example by gain reduction.  This triggering process 

must be bottom-up, rapid, automatic, but also context-sensitive. 

 Most importantly, we show that processing of subliminal somatosensory signals depends on context 

and stimulus distribution.  We found that subliminal shocks increased false alarm rates in experimental 

blocks where near-threshold shocks were also present.  However, the same subliminal shocks did not 

increase false alarm rates in pre-test detection blocks containing only subliminal shocks and catch trials, and 

in which no readily perceptible stimuli were present.  The presence of some detectable stimuli appeared to be 

necessary for subliminal shocks to influence somatosensory signal processing.  We proposed above that 

subliminal shocks might automatically trigger a reduction of the input gain in the somatosensory pathway.  

This reduction in gain would only translate into increased false alarms, and thus altered sensitivity and bias, 

when observers lowered their detection criteria to match the reduced gain.  However, lowering the detection 

criterion would not be a functional strategy in our pre-test blocks, where no clearly detectable stimulus ever 

occurred, and accordingly, we found no increase in false alarms to subliminal stimuli in pre-test blocks.  

Thus, we suggest that subliminal somatosensory inhibition involves at least two quite distinct effects.  The 

subliminal stimulus leads to an automatic reduction in input gain.  When some detectable stimuli were 

present, participants also appear to strategically lower their response criterion, perhaps reflecting a belief that 

detection rates should be roughly constant.  The mechanisms underlying these responses are different.  

Signal detection theory has the advantage of clearly separating them. 
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Figure 2. Functional Models.  

Upper row: simplified flow-diagram of conscious perception and stimulus-response functions of a hypothetical sensory 
channel. Gi=Input Gain; Nc=Central Noise: Gc=Central Gain; C=Criterion.  Lower row: effects of a preceding 
subliminal shock on the signal detection scenario.  

Increased Threshold Model (A): on this model, subliminal stimuli increase thresholds for detecting subsequent 
stimuli.  The signal detection scenario shows that the two distributions shift toward the left but the criterion (i.e. the 
threshold) is stable, causing decreasing in hit rate and in false alarm rate, and thus increased sensitivity.   

Overall Gain Reduction (B): on this model, subliminal stimuli cause an overall gain decrease, while leaving central 
noise unaffected.  The overlap between signal-induced responses and low-amplitude noise is thus greater, implying 
increased false alarm rate and decreased sensitivity.  The criterion may shift leftward (more liberal), to maintain a 
consistent response rate to near-threshold stimuli.   

Increased Central Noise (C): on this model, subliminal stimuli trigger an increase in the central noise. The response to 
low-amplitude noise stimuli is increased, and the distribution is substantially broader because of the central noise.  This 
produces greater overlap, implying a higher false alarm rate and decreased sensitivity.  
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4. Conclusions 

 Our data suggest that subliminal stimuli can have two important, dynamic effects on sensory 

processing.  On the one hand, they can automatically trigger a reduced somatosensory gain.  On the other 

hand, they trigger a criterion adjustment that appears to be contextual and strategic, based on the range of 

signals present in a given context.  Taken together, these mechanisms suggest that subliminal stimuli could 

trigger complex processes for dynamic range adaptation.  Automatic processes that are nevertheless context- 

and distribution-sensitive have been identified before.  In particular, studies of implicit sensory learning 

(Garrido et al., 2013) suggest that automatic predictive learning depends on the distribution of stimulation.  

Such learning can occur even in the absence of conscious awareness of the pattern, although it is generally 

studied with suprathreshold stimuli, which are readily perceived.  We believe ours may be the first study to 

show that the neural processing of subliminal stimuli also depends on the statistics of stimulus distribution.  
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