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Abstract

Motivated by the recent discoveries of space-time duality of the classical r-matrix, this
thesis explores the role of covariant field theory and multi-dimensional consistency for
field theories in 1 + 1-dimensions.

We obtain for the first time a classical r-matrix in a covariant context for several pro-
totypical examples of integrable field theories. The zero-curvature equations are then
reinterpreted as covariant Hamilton’s equations for the Lax connection. We propose the
notion of Hamiltonian multiforms for integrable hierarchies, which provide the Hamilto-
nian counterpart of Lagrangian multiforms and encapsulate in a single object an arbitrary
number of flows within an integrable hierarchy. This also produces two other important
objects: a symplectic multiform and the related multi-time Poisson bracket. This new
formulation is applied consistently to three hierarchies, i.e. the sine-Gordon hierarchy, the
Korteweg-de Vries hierarchy and the Ablowitz-Kaup-Newell-Segur hierarchy, and gives a
description of conservation laws in terms of Poisson involutivity with the Hamiltonian
multiform. The Ablowitz-Kaup-Newell-Segur hierarchy is analysed in particular detail
and a classical r-matrix structure is identified within the multi-time Poisson bracket for
the complete hierarchy.

Finally, we study the interplay between the classical Yang-Baxter equation and Lagrangian
multiform theory, providing a technique to extract Lagrangians for several hierarchies
in terms of a generating formal Laurent series. We demonstrate how to obtain the
Lagrangian multiform for the Ablowitz-Kaup-Newell-Segur hierarchy, the Lagrangian
for the sine-Gordon equation in light-cone coordinates, and the Lagrangians describing
the zero-curvature equation for any Lax pair of Zakharov-Shabat type with rational

dependence on the spectral parameter with distinct poles.
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Chapter 1

Introduction

Field theories have provided an exceptional framework to describe the fundamental laws
of nature. The standard model, for instance, is a quantum field theory that describes
three of the four known fundamental forces of the universe, electromagnetic, strong
and weak interactions, and it classifies all known elementary particles. Statistical field
theories can describe phase transitions, encompassing models including superconductivity
and superfluidity. Classical field theories are described by Partial Differential Equations
(PDESs) and include famous examples such as the Einstein equations of gravity and the
Navier-Stokes equations, fundamental in the study of fluid dynamics. Within the main
theories, the so-called Integrable Systems have played a crucial role in providing beautiful

theoretical laboratories to understand the mathematical structure of field theories.

The concept of a ‘completely integrable system’ arose initially in the context of of finite-
dimensional classical mechanics in the 19th century. Hamilton reformulated Newton’s law
of a system with n degrees of freedom in terms of canonically conjugated coordinates,
the generalised positions q1, ..., ¢, and momenta p1,...,p, of the phase space M, and a
smooth real-valued function called Hamiltonian of the system H(q1,...,qn,P1,---Dn)

[H34]. The power of this reformulation arguably consists in the fact that Hamilton’s

equation
0H 0H
— ) = — 1.1
qi op; Di d4; ( )
for each i = 1,...,n are first order ordinary differential equations (ODEs), whilst Newton’s
equations F; = mg; are second order. If we write z = (q1,...,qn,P1,-- ., Pn), the equations
(1.1) can be written compactly as
0 —I
t=—JVH, J=[_"" "™"], (1.2)
]Ian On><n

where J is called ‘standard symplectic matrix’ (or sometimes ‘symplectic unity’) and is

a non-singular and anti-symmetric matrix (J7 = —.J, det J # 0). Any system of ODEs
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that can be written in the form (1.2) for an anti-symmetric non-singular matrix J and
such a function H is said to be Hamiltonian. The origin of the name ‘symplectic’ is rather

interesting, and was first proposed by Weyl in [W46]:

The name complex group formerly advocated by me in allusion to line com-
plexes, as these are defined by the vanishing of antisymmetric bilinear forms,
has become more and more embarrassing through collision with the word com-
plex in the connotation of complex number. I therefore propose to replace it

by the corresponding Greek adjective symplectic.

Hamilton’s equations can also famously be reformulated in terms of the Poisson brackets

— __ OF 0G J0F 0G oOF 0G OF 0G
are two functions on the phase space. Poisson bracket are bilinear, antisymmetric and
derivations on both arguments, and satisfy the so-called Jacobi identity, and we remark

that {p;, ¢;} = 6;;. In fact not only (1.1) can be written

¢ =1{H,q}, pi = {H,pi}, (1.3)

for each i = 1,...,n, but we can use the Poisson bracket with the Hamiltonian to compute

the evolution of any smooth real function F' on the phase space along the flow of H as
F={H,F}. (1.4)

Another way to reformulate this is with symplectic geometry. In its simplest formulation?,
we pick M = T*(@ as the cotangent bundle of a manifold @ called ‘configuration manifold’,
and we give local coordinates z = (¢',..., ¢, p1,...,pn). We associate to M the following
closed non-degenerate 2-form w =), dp; A dq’, called symplectic form. For any function
H:T*Q — R we can write its Hamiltonian vector field as £7: T*Q — TT*Q such that?

¢pow = dH. Hamilton’s equations can then be written as
i=—Eu(z) (1.5)

and the Poisson brackets between two F,G: T*() — R as
{F,G} = —padG = w(ér,&a) - (1.6)

If a function F is such that {H, F'} = 0, then we have that I = 0: the function is constant
along the flow of H and it is called a first integral (or constant of motion). If in an
n-dimensional Hamiltonian system there are n independent first integrals Fi, ..., F;, such
that {F;, Fj} = 0 then the system is said to be (completely) integrable. The condition of

mutual vanishing Poisson bracket is called involutivity, and we say that F; and F}; are

'The literature is immense, so I am just going to reference [C15a], which is where I personally learnt
about this topic.
2()a() is the inner product between a vector field and a differential form ¢_.w = w(é,...)



‘in involution’, or equivalently that they ‘Poisson-commute’. Liouville-Arnold’s theorem
[L55, A78| ensures that under some circumstances a completely integrable system can be

solved in quadratures in terms of the so-called action-angle variables.

Integrable systems, despite being an old concept, have almost laid dormant until the
second half of the twentieth century with the discovery by Zabusky and Kruskal [ZK65]
of solitons in the Korteweg-de Vries (KdV) equation

Up = Ugpge + OUUL . (1.7)

The KdV equation describes the nonlinear evolution of a real-valued field u(z,t), where
is the space and t is the time. It is arguably one of the most famous examples of integrable
systems, introduced by Boussinesq in 1877 in a footnote [B77] and then later rediscovered
by Korteweg and de Vries in 1895 [KV95| as a mathematical model for shallow water
waves. The works of Gardner, Greene, Zabusky, Kruskal and Miura [GGKM67, MGKG68S,
KMGZ70| showed that the KdV has an infinite number of conservation laws and conserved
quantities, and mapped the initial value for the KdV Cauchy problem to spectral and
scattering data of the Schrédinger operator. The nonlinear evolution of u essentially
transforms into the linear evolution of these data, and can be obtained by the inverse
transformation, called Inverse Scattering Transform (IST). Zakharov and Faddeev [ZF71]
explained that the KdV equation is indeed a completely integrable infinite-dimensional
system, where the spectral and scattering data can be seen as action-angle variables, and
the infinite number of conserved quantities as the first integrals in involution. It is also
an infinite-dimensional Hamiltonian system in the following sense: the time evolution of

the initial datum u(zx,0) can be obtained as

_0H B 3 1.0
U= s H = / (u 2(ucg) )dac (1.8)
)

where - is called Frechet (or wvariational) derivative. Moreover one can introduce an
infinite-dimensional version of the Poisson brackets called equal-time Poisson brackets

between two functionals of u, F' and G

OF 0 0G

The presence of an infinite number of conservation laws proved that the KdV equation
can be seen as a member of an integrable hierarchy, all its commuting symmetries being

in fact infinite non-linear flows with respect to different time variables t1,to, . ...

Other examples of integrable systems include the Non-Linear Schrodinger (NLS) equation

1
i+ Ster — [V =0, (1.10)

used in both classical and quantum field theories, and applied for instance to Bose-Einstein
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condensates and nonlinear optics, and many other topics. The ‘focusing’ version allows
the presence of solitons and can be solved using the Inverse Scattering Transform [ZS72],
and can be seen as part of the integrable hierarchy called Ablowitz-Kaup-Newell-Segur
(AKNS) [AKNS74]. In fact, the next member of the AKNS hierarchy produces the

modified Korteweg-de Vries equation

1 3
U + 7 Vawe ~ iungC =0, (1.11)
a modification of the KdV equation where we consider a cubic nonlinear term instead of

the usual quadratic one.

Another example of an integrable system is the sine-Gordon (sG) equation
Ugp +sinu =0 (1.12)

(¢ and n are called light-cone coordinates), whose name is a pun on the Klein-Gordon
equation ug, + u = 0 of which the sine-Gordon is a modification. One of its striking
properties is that it is manifestly invariant under spacetime translations and Lorentz
boosts. Systems that behave consistently with respect to the theory of relativity can
be described as covariant. The equal-time description of an integrable system (albeit
extremely successful!) is manifestly not covariant by construction: while = and ¢ have the
same importance in principle in the PDE, we immediately make a distinction between
them, promoting t as the ‘true time’ that generates the Hamiltonian flow, and demoting
x as an ‘accessory coordinate’ that we use to mimic the presence of many degrees of
freedom of the finite-dimensional case. This breaks the initial manifest covariance, as it is

not possible anymore to perform transformations that mix time and space.

Fortunately, the equal-time formalism is not the only available tool at our hands to
describe integrability of a field theory. Lax pairs were introduced by Peter Lax in 1968
|L68| as a general principle to associate nonlinear equations F'(u, u, Uy, ...) = 0 with
linear operators, so that the eigenvalues of the linear operator are conserved quantities of
the nonlinear equation. In one of its formulations, due to Zakharov and Shabat [ZS72],
we consider a linear system for an auxiliary matrix-valued field ¥(u, A) that depends on

u and its derivatives and a spectral parameter A € C

0¥ (u, A) = U(u, \)¥(u,\)
OV (u, A) = V(u, \)U(u, A)

(1.13)

where U,V are matrices that also depend on w and its derivatives and A, and are called
Laz pair. Any nonlinear equation F'(u,...) = 0 that can be expressed as the compatibility
condition W,; = Wy, of any such auxiliary system is proved to allow an infinite number of

conserved quantities® (see e.g. [FTRO7]). At this stage we have not made any distinction

3This is weaker than complete integrability as these conserved quantities may not be in involution.



between ‘time’ and ‘space’, but both are treated with equal footing and have the same
role: we will refer to any formalism with this characteristic as a covariant formalism. The
aim of this thesis is to push this approach even further, and initiate the development of a

true covariant description of integrability for classical field theories, in the above sense.

In a way, the motivation behind this thesis originates from the work [CK15], where
surprising properties of space-time duality of the classical r-matriz were found for the
NLS equation. The classical r-matrix is a solution of one of the fundamental equations in
the theory of integrable systems, the classical Yang-Baxter equation (which was introduced
first in its quantum version independently by Yang and Baxter), and appears when one
takes the equal-time Poisson bracket of the coefficients of the Lax matrix U. It determines
the structure, symmetries and solution content of an integrable system, and it has proved
to be crucial for canonical quantisation, and the Quantum Inverse Scattering Method [S79,
SF78, FST80]. In particular, the authors of [CK15] proved that the classical r-matrix
structure remained unchanged when the roles of the space and time were swapped, thus
surviving this theoretical distortion and pointing to a possible even deeper role played by
this already fundamental object, with respect to a covariant formalism. This belief is also
supported by a series of subsequent results [C15b, ACDK16, AC17, F19, DFS19] that

elaborate on the space-time duality of the r-matrix.

It is worth noticing that the desire to provide a covariant formulation of Hamiltonian
field theory originated early on in the 1930’s (possibly even before its non-covariant
version) with the works of De Donder [D30] and Weyl [W35|. This formalism followed a
less fortunate path that, to the best of our knowledge, never crossed with the theory of
integrable systems with the exception of one author, Dickey. His book [D03| provided us
with the initial setup of this thesis, 7.e. the variational bi-complex and his formulation
of the multisymplectic form and covariant Hamiltonian, natural generalisations of the
respective non-covariant objects, both obtained from the Lagrangian formulation of the
PDE. The first question is how to define a covariant Poisson bracket that reproduces the
r-matrix structure found in both the equal-time and the equal-space Poisson brackets,
the latter being the one obtained swapping the roles of time and space. This problem is
tackled successfully in this thesis with content from [CS20a, CSV21a| with the definition

of a covariant Poisson bracket that encodes both the equal-time and equal-space one.

Moreover, a natural observation is that the same role should not only be played by space
and time, but also by all the other times in the integrable hierarchy, that produce the
commuting symmetries that we mentioned above, and a true covariant description of
an integrable system should take this into account as well. This requirement is well
encoded in the recently developed formalism of Lagrangian multiforms, introduced by
Lobb and Nijhoff in [LN09] for discrete integrable systems and then extended to the
continuous case, to describe integrability in a variational fashion. We will prove that one

can use Dickey’s procedure adapted to a Lagrangian multiform and obtain in return the
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covariant Hamiltonian formulation of the complete integrable hierarchy in one strike, called
Hamiltonian multiform description [CS20b]. One can also naturally define the so-called
multi-time Poisson bracket that encapsulates all the single-time (i.e. the equal-time or
space) Poisson brackets of the hierarchy. It will be proved that, for the AKNS hierarchy,

this new object will possess a classical r-matrix structure [CS21].

Structure of the thesis We chose to structure this thesis using a ‘bottom-up’ approach
that follows the journey of this PhD. The reader will find a series of results almost in the
order that they were discovered, with some of the results that generalise other previous
ones. We believe that this approach, despite being admittedly not concise, will improve the
understandability of this work. It was decided to keep the formalism as light as possible,
in an effort to focus the reader’s attention on the new concepts that are introduced.
Other people’s work will sometimes be reported (and rightly attributed) to keep the
thesis as self-consistent as possible, and adapted to the notations and conventions of
this thesis. Despite this, from now on we will assume the reader is familiar with some
fundamental concepts of Mathematical Physics, most of which can be found in [093,
J99|. In particular we will use classical finite-dimensional Lagrangian and Hamiltonian
mechanics (Hamilton equations, symplectic forms, Poisson brackets, first integrals), and
1 + 1-dimensional classical field theories to some extent (for instance, what an integrable
hierarchy is). We also take for granted some basic knowledge of differential geometry
(manifolds, differential forms, vector fields, Lie groups and algebras). Chapters 1-2 are
introductory and provide the background and motivations of this thesis. The main results
are written in the central Chapters 3-7. Chapter 8 concludes the thesis and describes

possible future research directions and perspectives.

e Chapter 2 illustrates the relevant background. We describe the discovery of the space-
time duality of the classical r-matrix in [CK15| and the subsequent results. Then
we briefly describe the properties of the variational bi-complex [D03, A89], which is
the algebraic framework that we work in. Finally, we give a short introduction to

Lagrangian multiforms for integrable hierarchies of 1 4 1-dimensional field theories.

e In Chapter 3 we extend the work of Dickey [D03|, adapting it to the ideas of
Kanatchikov [K98|, and illustrate how to describe covariantly a 1 + 1-dimensional
classical field theory. We give the definition of three important objects: the covariant
Hamiltonian, the multisymplectic form and covariant Poisson brackets (the latter
being original of this thesis, albeit adapted from [K98] and [D03]). The two main
original results are Theorem 3.15, which formulates the covariant Hamilton equations
in terms of the covariant Poisson brackets, and Proposition 3.17, which relates the

covariant Poisson brackets with the single-time Poisson brackets.

e In Chapter 4 we apply the covariant description of a 14 1-dimensional classical field
theory on many archetypal examples of integrable systems: the sine-Gordon equation

(in both laboratory and light-cone coordinates), the Non-Linear Schrédinger and



modified Korteweg-de Vries equations, and the Zakharov-Mikhailov action [ZM80].
We consistently find two important results: the presence of an ultra-local classical
r-matrix structure within the covariant Poisson brackets for the Lax connection, and
the formulation of the zero-curvature equation as a covariant Hamilton equation for

the Lax connection under the ‘multisymplectic’ flow of the covariant Hamiltonian.

In Chapter 5 we introduce and develop the theory of Hamiltonian multiforms,
extending the covariant formulation of Chapter 3 to describe covariantly integrable
hierarchies (as opposed to single PDEs). These new objects are introduced with
a ‘Legendre-like transformation’ from the Lagrangian multiforms. We also define
the symplectic multiform and the multi-time Poisson bracket, that are respectively
the symplectic form and Poisson brackets in a multiform context. They are used
systematically to describe the first few flows of the (potential) Korteweg-de Vries
hierarchy, the sine-Gordon hierarchy in light-cone coordinates, and the Ablowitz-

Kaup-Newell-Segur hierarchy.

In Chapter 6 we use Hamiltonian multiforms to describe covariantly the whole
AKNS hierarchy. We write a Lagrangian multiform in terms of a generating double
series, from which we obtain (as generating series) both the symplectic and the
Hamiltonian multiforms. We then prove the classical r-matrix structure of the
multi-time Poisson bracket, and we reformulate the whole set of zero-curvature
equations of the AKNS hierarchy as multi-time Hamilton equations for the complete

Lax connection under the flow of the Hamiltonian multiform.

In Chapter 7 we generalise part of the results of Chapter 6 (i.e. the Lagrangian
multiform aspects) to describe as generating series several integrable hierarchies.
With a uniform approach, we obtain (besides the aforementioned Ablowitz-Kaup-
Newell-Segur hierarchy) integrable hierarchies with a rational r-matrix structure
(i.e. AKNS and the actions included in [D03, Section 20.2| and [ZM80]) and with a

trigonometric structure (sine-Gordon).

In Chapter 8 we summarise the results of this thesis, and write about the possible

research outcomes and perspectives.

Appendix A includes material that may be useful to the reader, that for various
reasons we believe would break the natural flow of the thesis. We include a short
review of the s¢(2,C) algebra and the auxiliary spaces notation. We also include the
formulation of the Dirac-Poisson brackets for the Non-Linear Schrédinger equation,

and the proof of the 4d Chern-Simons origin of the Zakharov-Mikhailov action.

Appendix B contains several of the proofs regarding Chapter 6 that are too long or

not necessarily illuminating.
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Chapter 2
Background

In this section we provide the necessary background. We start by explaining the properties
of space-time duality of the classical r-matrix, adapting the content of the original paper
[CK15]. The next section illustrates the construction and general properties of the
variational bi-complex, as described by [D03|. Finally, we give a quick overview of the

new topic of Lagrangian multiforms for field theories.

2.1 Space-time duality of the classical r-matrix

As mentioned in the introduction, in recent years new surprising properties of space-time
duality of the classical r-matrix have been discovered, starting from the paper [CK15|.
While studying the presence of integrable defects for the Non-Linear Schrodinger equation,
the authors needed to provide a different formulation from the usual one given by the
Poisson bracket { , }s and the Hamiltonian Hg, but of the same partial differential
equation. This was done defining a different Poisson bracket { , }r, and a different
Hamiltonian density Hp, that exchanged the roles of time and space. It is worth noticing
that this is not related to a bi-Hamiltonian formulation, as the two Poisson brackets are
not compatible, not even living in the same phase space. The surprising property is that

both Poisson brackets have the same r-matrix structure (up to an overall sign).

We will consider the (unreduced) Non-Linear Schréodinger(NLS) equation of the form

1 1
i+ S — =0, i = S+ qr? =0 (2.1)
for two complex fields g, dependent on the coordinates (z,t). The actual NLS equation
is obtained, in its focusing or defocusing form with the reduction r = +q¢*. It is well

known that this equation admits a Lagrangian formulation, and a Lagrangian is

7 1 1
L= §(Qtr - QTt) - 5‘]9673: - §q27’2 . (2.2)
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Indeed, defining the action S[g,r| as being the integral of L over an appropriate 2-

dimensional surface I
S[q’ T] = / L(Qa TyQx,Tx, qt, ’rt)dxdt )
N

we have that its variation reads

9S ::i Slq +€dq,r + €dr]
de e=0
oL oL
—/F <(5(15Q+ 57“5T> dxdt .
The quantities
SL i L 5L = L
D B D D G LT e
b, L = a(0707r)

are the variational derivatives of L with respect to ¢ and r (we assumed that L only
depends on derivatives of the fields up to a finite order m, as it is the case for the NLS).
We then have

sL_oL_ 0oL 0oL
8¢ 0q Oxrdq, Otog

oy 9 Tgg Tt

-y 1 2 2
. r

:—zrt—qr2+%,

so by setting % = 0 one obtains the second equation of (2.1). Similarly, we get the first
equation of (2.1) by setting %—f = (0. The Non-Linear Schrodinger is also known to have a

Lax pair formulation [ZS72|. Let us consider the following auxiliary problem:
(2.3)

where

Y —iN2_ i A 2 e
U(m,t,A):( ‘ q), V(x,t,A):( TRt q+2q> (2.4)

roaA Ar — %rm i+ %qr
is called the Lax Pair. Both U and V are 2 x 2 complex traceless matrices and therefore
are sf(2,C)-valued fields. The compatibility condition ¥,; = Uy, is equivalent to the Non-
Linear Schrédinger equation: first we notice that ¥,y = (UW), = Uy W+ Uty = Uy W+UVU

and similarly V;, = VU + VUV, so that ¥,; = WUy, is the famous zero-curvature equation

U — Vo +[U,V]=0. (2.5)
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Remark 2.1: The name is quickly understandable. Let W = Udx + Vdt be the Lax
connection, then defining its curvature as F(W) = dW — W AW we easily get that
F(W) =0 if and only if (2.5) is satisfied:

d(Udz + Vdt) = (~U, + V) dx A dt,
WAW = (UV —VU)dz Adt,

and so F(W) = (=U; + V; — [U, V])dx A dt. One could choose another convention

for the curvature and define it as F(W) = dW + W A W. The zero curvature then
becomes F(W) = (—U; + Vy + [U,V])da: A dt = 0. The first convention can be
recovered by sending W — —W.

Let us compute the curvature: we have

0 _
_U, = ( %) ’
—T¢ 0

Vo —2(qre + @a7) Az + 50zx
= . ‘

ATy — %Txx %(Q’f’x + qu1)
vy = (N R 3=

—4re+5art N = dqr —

n N3+ 3qr + qur 50z — 5¢°r
—3re +iqrt X34 3qr — Lqr,
_(are ¥ gar Mg —igPr
—Ary + igr? —%qxr — %qrx

The diagonal component of the equation reads 0— %qrx — %qxr+ %qrw + %qxr = 0 identically.
The other two components are —q; + Aqy + %qm — N\e — 1% = —q + %qm — i¢®r, and
—1p+ ATy — %rm — g +igr? = —ry — %rm +iqr? that gives (2.1). Therefore, F(W) =0

as a matrix identity is equivalent to the Non-Linear Schrodinger equation.

The usual Hamiltonian formulation is obtained as follows: we take as configuration space
the space of smooth functions of = appropriate to our functional-analytic needs!, and we
let oL i

_ o _ zr(Qx) )

The experienced reader will have noticed that the Lagrangian L is linear in the velocities ¢;

0L igw)

1 —_—=
p ($) N 8rt 2

(2.6)

and r¢, and the usual Legendre transformation is ineffective in obtaining the Hamiltonian
formulation because of its lack of invertibility. This makes the system (2.6) a constraint,
and therefore we may resort to the Dirac-Poisson brackets in order to be able to treat it

correctly. We skip this calculation here, but it can be found for instance in [ACDK16,

!This amounts, amongst other properties, to the requirement that appropriate conditions at infinity
are satisfied to discard the boundary terms after the integration by parts.
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Section 3.1], as well as in Appendix A.3, adapted to our notations in this thesis. The

result is the following equal-time Poisson brackets

{a(z),r(y)}s =id(z —y), (2.7a)
{a(z),q(y)}s =0, (2.7b)
{r(z),r(y)}s =0, (2.7¢)

and the Hamiltonian Hg = f Hg dx, where

1 1
Hs = qp' +rp* = L = Sqare + 50717 (2.8)

The NLS time flow (2.1) is then obtained by the Hamilton’s equation (in infinite dimen-
sions) ¢+ = {Hs,q}s, as shown in Appendix A.3.

Remark 2.2: This should not confuse the reader, as it is similar to what happens
with an ODE. In its simplest case, we consider a vector field X: U — R" where
U C R"isopen. U is called the phase space of the ODE. A solution of the ODE defined
by X is a curve from an interval I C R — U, t — z(t) such that %(t) = X(z(1))
Vt € I. In the same way, for an infinite dimensional system we consider the phase
space as being a suitable space of functions { f(z) }, on which we inject the time ¢

by considering a curve t — f(z,t).

In order to see the classical r-matrix structure we need to use the so-called auziliary
spaces® as explained in Appendix A.2. We calculate the Sklyanin equal-time Poisson
bracket between U(z,\) and U(y, p). As seen in equation (2.4) U(z,\) is valued in

s0(2,C), so we use as a basis { 03,04,0_ }, to write U(z, \) = >, u;(z, A) 05. We have

{Ul (x7 )‘)7 Uz(y, N)}S

- Z {ui(z,\),uj(y, p)}s oi @ o;
§,j=3,4,— (2.9)

={q@),r(y)}sor @ o +{r(zx),qy)}so- @04
=id(r—y)loy ®o_—0_®oy).

It is easy but not straightforward to see that this Poisson bracket can be seen as a

commutator of Uy (z,t, \) + Ua(y, t, ) with another quantity, called the rational r-matriz

1 P2
2N —p’

r12(A, 1) = (2.10)

where Pio =04 ®0_+0_ Qo4 + %(03 ® o3 + 1 ®1) is the permutation operator. The

2We remark that the indices relative to the auxiliary spaces are denoted in boldface as 1, 2.
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following identity holds:

{Us(2,A), Uz(y, p)}s = 6(x — y)lraz(A — p), Ur (2, A) + Uz (y, p)] - (2.11)

In fact we have

1 030
or ®o_+0_Qoy + 2208

[r12(A = ), Ur(@, A) + Uz(y, )]
1
T2

A—p 2
(—idos +q(z)oy +r(x)o-) @I+ 1® (—ipos + q(y)otr +r(y)o-)]
= ;)\iu(_w\[m” o3l @o_ +r(zx)|oy,0-] @ o —iuoy & [o_, 03] + q(y)oy & [o_, 04]
—iNo_, 03] @0y +q(z)[o-,04] R oy —ipo_ ® o4, 03] +r(y)o- @ [0y, 0]
+ (1(296)[03,a+} ® o3+ 7“(23:)[03’ o_]®o3+ Q(23/)0_3 ® [o3,04] + r(2y)03 ® [o3,0-])

We now use the commutation relations of o3, 04 to obtain

1 1 ) )
im(%)\mr QKo_+r(r)osR@o_ —2ipcy @o_ —q(y)os ® o3

—2ido_ @0y —q(x)os @04 +ipo_ @op +1(y)o- @ o3+ q(z)or ® o3
—r(x)o- ®o3+q(y)os@or —r(y)os @ o_)

(2l = N @ 0 + 2 = No— © 0- +(a(x) = )y 9 s
+(a(y) — q(x))oz @ oy + (r(y) —r(x))o- @ o3+ (r(z) —r(Yy))oz @ o).

When multiplied by §(z —y) this becomes the desired i(04 ® 0 —o_ ®04). The equation

{U1(z, ), U2(y, ) }s = 6(x — y)[r12(A — p), Ur(z, A) + Uz (y, p)] (2.12)

was first derived by Sklyanin in [S82] and is the starting point of the (quantum) Inverse
Scattering Method for solving the Non-Linear Schrodinger equation. In fact, if we
introduce the monodromy matrix M (z, \) as the fundamental solution of (2.3) at t =0

that is equal to the identity matrix at « = 0, we get for = > 0

{My(z,A), Ma(z, p)}s = [r12(A — p), Ma(z, \)Mz(z, p)] (2.13)

Under specific conditions, this relation is enough to prove Liouville integrability of the
Non-Linear Schrédinger equation: roughly, the transfer matriz® Tr M(X) = >, LA™
commutes for different spectral parameters {Tr M (\), Tr M (u)}s = 0, which means that

the coefficients I; are in involution with each other {I;, I;}s = 0 Vi, j.

Let us now explore the other picture, and exchange the roles of time and space. We choose

3The name ‘matrix’ is a terminology inherited from the quantum case. Here it is just a function.
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as configuration space the appropriate space of functions { f(¢) } and we look for the flow
given by x. We consider the alternative choice of momenta obtained by performing the
Legendre transformation with respect to the other independent variable

oL 1 s OL 1

—=re(t), m ——q(t), (2.14)

1 = _ e —
T (t)_é?qx 2 ory 2

and consequently the Hamiltonian Hr = f Hrp dt where

i 1 1
Hyp = gur* 4+ rpn® — L = —5(@r —are) = Sare + 5(127'2 : (2.15)

From the expressions of 712 one can canonically construct the equal-space Poisson brackets,

where the only non-vanishing ones are the following

{a(t),ra(T)}r = 20(t — 7), (2.16a)
{r(), qu(1)}r = 20(t — 7). (2.16h)

The Non-Linear Schrédinger equation can then be obtained as for instance* (7?), =
{HT, T 2}T:

1 i 1 1 1
— Sar = {/(—2(th —are) = 50T+ 5(127“2) dr, =5 a:}r

1
=g — 2¢°r = g+ 5 dee — ¢Pr=0.
These are two equivalent formulations of the same equation iq; + %qm — ¢%*r = 0 that
work on two different phase spaces. The first is the usual one and can be called ‘equal

time’ picture. The second can be seen as the ‘equal-space’ picture.

Remarkably, one can obtain a similar equation to (2.12) for the equal-space bracket { , }r,

with the caveat that one has to use the other Lax matrix V. In fact we have

{Va(t, ), Va(7, )} = —0(t — 7)[ria(A — p), Vi(t, A) + Va(7, p)] (2.17)

for the same rational r-matriz ri2(\) = %\2. This is computed with the same technique
as (2.12), but it is more cumbersome because of the less simple expressions of { , }r and
V. We remark the presence of a minus sign in front of the commutator. In the rest of the
thesis we will refer to this property of the classical r-matrix, i.e. its presence (up to a

minus sign) in both Poisson brackets { , }s and { , }r as space-time duality.

This result of space-time duality of the classical r-matrix for the Non-Linear Schrédinger
equation of [CK15| has originated a series of works that explored this direction.

In [C15b] the author proved the same property the sine-Gordon equation in laboratory

4Technically, one would also have to consider ¢, = {Hr, q}r, which returns the Legendre transformation

2 1
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coordinates us — Uze + sinu = 0. This equation is another prototype of integrable model,
and is widely recognised as one of the most important examples of integrable relativistic
field theory. In [ACDK16] the authors specialised this approach to the Ablowitz-Kaup-
Newell-Segur hierarchy, to which the NLS equation belongs, and generalised it to the
subsequent level, the modified Korteweg-de Vries equation.

The paper |[AC17| gives an algebraic explanation of the space-time duality of the classical
r-matrix for the AKNS hierarchy, in the sense that it comes from a Lie-Poisson bracket
on a suitable coadjoint orbit of the loop algebra sf(2,C) ® C(\,A~!). This is achieved
following a series of steps. First the authors choose a time ¢, in the hierarchy and restrict
the dynamical variables in Q(\) (denoted by L there) to satisfy the n-th time evolution
2nQN) = [Q™(N), Q(N)] where QU (X\) = P (A\*Q())) and Py is the projector onto the

positive loop algebra. With respect to the notations of this chapter, we have
QUM =U), QP =vM). (2.18)

In this way the Lax matrix Q™ (\) acquires a natural r-matrix structure with respect to
the Poisson bracket { , },. Then, they construct an auxiliary problem involving the time
t" and a new time t*, k # n, associated to the Lax matrix Q(k)()\). The zero-curvature
equation is shown to be Hamiltonian with respect to the Poisson bracket { , },. Finally,
they swap the roles of n and k, and prove that the zero-curvature equations obtained
from the two different choices produce the same set of PDEs and are Hamiltonian with
respect to the corresponding Poisson brackets { , },, and {, }.

Despite investigating the consequences of different choices of ‘time’ and ‘space’, these
papers still have to make this choice. As introduced in Chapter 1, this thesis succeeds
in avoiding this distinction altogether and works in a truly covariant fashion, where all
the times of the hierarchy are treated with equal footing. This will be done using the

framework of the variational bi-complex, which will be introduced in the next section.

2.2 Variational bi-complex

Let M be the base manifold with local coordinates ¢, i = 0,1,2,...,n in a fibered
manifold 7 : E — M whose sections represent the fields of the theory. M will be called
multi-time manifold. The dimension of M will be n = 2 in Chapters 3 and 4, with 2! =z
and 22 = t hence taking the name space-time manifold. The coordinates z* will be called
horizontal. The variational bi-complex is a double complex of differential forms defined on
the infinite jet bundle of 7 : E — M. One introduces vertical and horizontal differentials
¢ and d which satisfy

d=0=4¢%, ds = —éd, (2.19)

so that the operator d+ J satisfies (d+6)? = 0. Let £ = R or C. Consider the differential

algebra with the commuting derivations 0;, ¢ = 0,1,2,...,n generated by the commuting
(4)

variables u; ', k = 1,..., N, (i) = (i, 11,2, . .. ,%,) being a multi-index, and quotiented
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by the relations

ojul) = w7t (2.20)
where e; = (0,...,0,1,0,...) only has 1 in position j. We simply denote w00 by

uy, the fields of the theory which would be the local fibre coordinates mentioned above.
We denote this differential algebra by 7. The elements of &/ will be called vertical
coordinates, and represent the fields of our theory and their derivatives with respect to

the multi-time variables. We will need the notation
W = dlogit . oin.
We consider the spaces /P9 p.q > 0 of finite sums of the following form

i),(k),(J

which are called (p, ¢)-forms. In other words, &/ (.9) is the space linearly generated by
the basis elements (5u,(f11) A A 6u§:5) AdxIt A --- A dade over o7, where A denotes the
usual exterior product. For these reasons p will be referred to as the vertical degree and
q as the horizontal degree of w. We define the operations d : /P9 — o7 @4t and
§: /P9 — o7 PH14) a5 follows. They are graded derivations

d(wgpl,lh) /\wépz,(m)) _ dwiplyql) A wgpmlp) + (_1)p1+q1w§p1,q1) A dwépmm)’ (2.223,)
5(0.)%01’(11) /\wépz,tp)) _ &nghql) /\wépQﬂQ) + (_1)p1+q1w§p17lh) A 5w§p2#12)’ (2.22b)
and on the generators, they satisfy

df =) 0ifda’ =) | 8{. + 8{.) uTNdet | f e (2.23a)

Ox 8uk]

of < @)
6fzzm5uk , fed, (2.23b)
k

5(da’) = 5(5u)) = d(dat) = 0, (2.23¢)
d(éul(j)) = —6du,(f) =— Z (5u§:)+ej A dx? (2.23d)

This determines the action of d and ¢ on any form as in (2.21). As a consequence, one can
show that d?> = 62 = 0 and d§ = —dd. For our purpose, it is sufficient to take the following
(simplified) definition for the variational bi-complex: it is the space &/* = P, , &/ (.9)
equipped with the two derivation d and 6. Due to the geometrical interpretation of these
derivations, d is called horizontal differential while ¢ is called wvertical differential.

Note that the direct sum over ¢ is finite and runs from 0 (scalars) to n (volume horizontal
forms) whereas the sum over p runs from 0 to infinity. Of course, each form in &* only
contains a finite sum of elements of the form (2.21) for certain values of p and ¢. The

bi-complex «7* generates an associated complex o7 (") = @p ger /P9 and derivation
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d+ 4. It is proved that both the horizontal sequence and the vertical sequence are exact,
see e.g. [DO03|.
Dual to the notion of forms is the notion of vector fields. We consider the dual space of

vector fields T.eZ to the space of one-forms 71 with elements of the form

€= &m0, +Zsz (2.24)

k,(2)

In the rest of the thesis we will use 0; and 5 1- interchangeably, and the same with au@
k

and W. The interior product with a form is obtained in the usual graded way together
Ug
with the rule
8i_nd:c] = (Sij N au](:‘)_lfsuéj) = 5k45(z)(]) .

where 6(;(;y = [1j iy, For instance, with i # j and (i) # (j) or k # [,

8iJ(5U](f) Adzt A da?) = féul(f) Adad
0 ()J((Su( 2N 5u( DA dz™ ) = féuéj) Adx™

We will need the following vertical vector fields

J)te;
E:“k

k,(5) a“k

(2.25)

If f € o/ does not depend explicitly on variables z* then 0;f = d; f. Let us also introduce
the notation 9, by 9; = 0, + d;, which has the following interpretation:

e O; is the total derivative with respect to the multi-time variable z*;

e O/ is the partial derivative with respect to z', and if f € & does not depend
explicitly on the space-time variables then 9, f = 0;

e 0; is the derivative with respect to z* only through the fields wy, and if f € & does
not depend explicitly on the space-time variables then 0; f = (i f

In addition to the vector fields (2.24), in general calculations in the variational bi-complex
also require the use of multivector fields of the form & A --- A & where each &; is of
the form (2.24). In this thesis, we will only need those multivector fields that are linear
combination of aum A 0j with coefficients in &7 and we may simply call them vector fields
as the context should not lead to any confusion. The following example shows the rule
for the interior product of such a multivector field, with (i) # (j) or k # ¢,

@ @ A0 a(6ul? Asul) A da™) = o (Bpa(6u) A Sul) A de™)) = 6 sulD .
Uy, Uy
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Finally, we will need the following useful identity, cf [D03, Corollary 19.2.11].

J; = 68;2+ D; 16 . (2.26)

2.3 Lagrangian multiforms

The notion of Lagrangian multiforms was introduced in 2009 by Lobb and Nijhoff [LN09],
motivated by the completely open problem of characterising integrability of (partial)
differential (or difference) equations purely from a variational/Lagrangian point of view.
Initially developed in the realm of fully discrete integrable systems, Lagrangian multiforms
provide a framework whereby the notion of multidimensional consistency [N02, BS02|,
which captures the analog of the commutativity of Hamiltonian flows known in continuous
integrable systems, is encapsulated in a generalised variational principle. The latter
contains the standard Euler-Lagrange equations for the various equations forming an
integrable hierarchy as well as additional equations, originally called corner equations
which can be interpreted as determining the allowed integrable Lagrangians themselves.
The set of all these equations is now called multiform Fuler-Lagrange equations. The
original work of Lobb and Nijhoff [LN09| stimulated a wealth of subsequent developments,
first in the discrete realm, see e.g. [LNQO9, LN10, BS10, YLN11, BPS14, BPS15], then
progressively into the continuous realm for finite dimensional systems, see e.g. [S13, PS17|
and 1 + 1-dimensional field theories, see e.g. [XNL11], up to more recent developments
in continuous field theory, see e.g. [S16, SV16, V19, SNC19a, PV20|, including the first
examples in 2 4 1-dimensions [SNC19b, SNC21].

Since in this thesis we will only deal with continuous 1 + 1-dimensional field theories, we
are going to focus on this case. Assume we have a hierarchy of integrable PDEs, such as
the Ablowitz-Kaup-Newell-Segur hierarchy to which the previously introduced Non-Linear
Schrédinger equation belongs. Suppose we identify z = x! and call each individual ‘time’
relative to the n-th flow ™. For instance, the Non-Linear Schréodinger equation will be
relative to the times 2!, 2. The next equation in the hierarchy (the modified Korteweg-de

1

Vries equation) will be relative the times x!, 2% and so on. A generic equation in the

1

hierarchy will be relative to the times x*, ™. Suppose each equation has a Lagrangian

formulation. The Lagrangian will be a scalar function or a 2-form .#3,,
Lin=Lipdet Nda™, Ly, € o (2.27)

where Li,, depends on the field® u and its derivatives, and the action is the result of its

integration me P over a plane tangent to the 2! and 2™ directions. A solution u of the

PDE is required to be a critical value of fF An. In the new multiform approach, we
1n

encapsulate all these Lagrangian forms into a Lagrangian multiform: a horizontal 2-form

5We only consider a scalar field u for simplicity, but this is easily extended to multi-components fields
too.
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in the larger multi-time manifold with coordinates (z!, 22, 23,...)
L = ZLij dxt A dx? , Lij € o . (2.28)
1<j

The action will be .Z integrated over a 2-dimensional surface I' (which now is not
necessarily a plane tangent to any direction), fI‘ %. We remark that the action is a
functional of both the fields v and the surface of integration I'. Of course each £, is
recovered by specifying I' = I'y,,, but we remark that not only do we have the coefficients
L1, but we also have to introduce L;; for any pair (¢, j). We now require that the action
is not only stationary with respect to the fields v but that it holds the same critical
value for every choice of the surface of integration I'. This translates in the multiform

Euler-Lagrange equations that can be written as (see [SV16])
§ds =0, (2.29)

where d is the horizontal differential and ¢ is the vertical differential that are introduced
in Section 2.2. Moreover, the requirement of stationarity with respect to each choice of I’
translates in the closure relation, i.e. d.Z = 0 on shell of the equations §dd.¥ = 0. We are

therefore giving the following definition.

Definition 2.3 The horizontal 2-form

L = Z L;; daz¥ dz = dz' A da?

i<j

is a Lagrangian multiform if 6d.Z = 0 implies d.Z = 0.

Remark 2.4: The reader will also find other terminology in literature, which boils
down to different interpretations of the closure relation. Usually, when this is
considered to be a fundamental property of the variational theory of integrable
hierarchies, it is included in the definition (as we do) and the name Lagrangian
multiform is used. When weaker conditions are assumed, such as d.Z = const, the
term pluri-Lagrangian form is used (e.g. in [BS15, S16, PS17, V19]).

Remark 2.5: Constructing the ‘mixed’ coefficients L;; is possible although often
cumbersome, especially for high values of ¢ and j, and several techniques have been
introduced. The paper [SNC19a| writes the coefficient Log for the Ablowitz-Kaup-
Newell-Segur hierarchy from the Lagrangians Lio and Li3, such that they can be taken
as coefficients of a well defined Lagrangian multiform £{;53) = L12 dz'? + Log dx?® +
Lq3dz'. This coefficient was constructed directly, by forcing the closure relation on
the Lagrangian multiform. Other techniques were later introduced using variational

symmetries: the papers [SNC19b| and [PV20] (despite different implementations)
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use variational symmetries of a Lagrangian Lis to compute the coefficients of a new
Lagrangian multiform L3 and Log. This process could in principle be iterated, if

other variational symmetries are known, to construct a Z(1934), a Z{12345), etc.

Given a Lagrangian multiform & = 37, . L;; dz¥ it is proved [SV16, SNC19a] that
the multiform Euler-Lagrange equations 6d.Z = 0 are equivalent to the following set of
equations

dantis  dgmwlik | Okl

0Un—e, 0=, OUD)—;

—0, VI, Vijk (2.30)
Here (I) = (11, I2, I, ... ) is a multi-index, and by (I) — e we denote the multi-index

(I,.... Ig,...) — (0,...0, i 0. ) =T, I —1,...).

d(ij)/0 is the variational derivative

Panll S~ pyersgpge 0T (2.31)
5U(1) 0,550 J 8U(I)+aei+ﬁ€j

(ek)Ldg
The subscripts (¢k), which are not present in the usual formalism, are needed since we
Ser)

)

Whenever a component of the multi-index (I) is negative, the convention is that

must specify in which plane (in the case it is the af, 2* plane) we are taking the
variational derivative.
For a Lagrangian multiform . = Ly dz'? 4+ Loz dz?® + L13 dx!'3 that is dependent on

only one field v and its derivatives up to the second order, they are the following®:

e The usual Euler-Lagrange equations for each L;;:

(=1 = 5(2?523 =0 (2.32a)
(=2 — (M?j”’ —0 (2.32b)
=03 = 5“?512 = (2.32¢)

Equations (2.32b) and (2.32c) are the usual Euler-Lagrange equation one would get
from the variational principles of respectively 213 and Z}2. Equation (2.32a) is the
Euler-Lagrange equation of %53, that has no counterpart in the usual formalism. It
is often the case that this equation is a differential consequence of (2.32b)-(2.32c¢),
especially if the Lagrangian Log was constructed a posteriori from the expressions

of L12 and L13.

. . . . . . 2
5We write here, and in the rest of the thesis when it is convenient to do so, (,;97“2 = ug, % = ujk,
etc.
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e The corner equations:

0oy L
(H)=Q11) = BB _ (2.33a)
5u1
da3yLos  d(13)L13
I)= (12 — = 2.
()=(12) = 5y S 0 (2.33b)
daz) L1z O3y Las
(1) =(13) = o w0 (2.33¢)
63y L3
I) = (22 = 2.33d
(I)=(22) = 5y (2.33d)
dazyLi2 O3y Lis
_ _ _ 2.
(I) = (23) = o =0 (2.33¢)
012y L
(I)=(33) = U2 _ (2.33f)
5U3
0oy L
(I) = (111) = “ETE g (2.34a)
5U11
da3yLos  d(13)L13
I)=(112 — = 2.34
(1) =(112) = Suts I 0 (2.34b)
daz)Lli2  O23)Las
(I) = (113) = Gu g =0 (2.34c)
da3) L2z O(13) L3
I)=(122 — = 2.34d
(1) =(122) = St Suts 0 (2.34d)
oaz)Liz | dps Loz das)lis
(1) =0123) = du1s - duzs duys 0 (2340
oaz)Li2  d3)Los
(1) = (133) —> e g (2.34f)
(=) — ok, (2.315)
dugo .
dazyLiz O3y Las
I)=(22 — = 2.34h
(1) =(223) = St Suns 0 (2.34h)
dazyLiz Oz Las .
I)=(2 — = 2.34
(1) = (283) — e L (2.341)
Oy L
(I) = (333) = LD _ (2.34))
5U33

The equations coming from the cases (I) = (ii) and (I) = (iii), i = 1,2,3 are due
to the presence of the so-called alien derivatives: if the Lagrangian L;; depends on
derivatives of the field v with respect to a time-variable that is ‘normal’ to the plane
xt, 27, say uy, then this would be treated, as far as d(i5)/0 is concerned, as a field
variable on its own right (and not a derivative of w). In the usual formalism this is
not present, as it would not make sense to introduce derivatives with respect to a
variable that is not among the independent variables in consideration. It is of course

possible (and often the case) that these are present in a Lagrangian multiform, as
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we are dealing with all the independent variables at once.

The other equations are called corner equations, because of their origin in the
fully discrete context where they were formulated on the corner of a cube. These
equations are often used as a restriction on the coefficients L;; of a Lagrangian
multiform, which is a technique that will not be explained further in this thesis, as

we will work with Lagrangian multiforms that are ‘ready to use’.

Let us illustrate the notion of Lagrangian multiforms and multiform Euler-Lagrange

equations on some examples.

(potential) Korteweg-de Vries hierarchy A Lagrangian multiform that describes
the first two levels of the potential Korteweg-de Vries hierarchy is . = Lipdz'? +
Los dx?® + L3 dx'3, where

L12 = V1V2, (235&)
Loz = —3vivg — v1v112 + V11012 — V11102, (2.35b)
L1z = =203 — viv111 + v1v3. (2.35¢)

The multiform Euler-Lagrange equations become the following (we do not report the ones

that are trivially satisfied):

d(23)L23
% = 6v1v12 + v1112 = 0
v
8130 L
% = —2v13 + 12v1011 + 201111 =0
81 L
M = —21}12 == 0
v
oy’
@323 —6v1v2 — 2v112 =0
ouq
Siom Loz O1a L
(23)723  2(3)73 3vf 4 vin1 —v3 =0
dv9 vy
S¢1o L Aoz L
(12)+12 + (23)723 =uv=0.
ovy 0v3

As the Lagrangian multiform contain also derivatives of the third order, we additionally

have to consider (/) = (1111) that brings the identity ngf*"’ =1v9 =0 and (I) = (1123)

1
ng1213; — gfﬁ = —v1 + v1 = 0. The multiform Euler-Lagrange equations for .#

are then summarised as

that brings

vy =0, V3 = V111 + 321% (2.36)

since some of the other multiform Euler-Lagrange equations are seen to be differential
consequences of these. The Korteweg-de Vries equation is recovered by taking the

differential consequence of the second equation v13 = v1111 + 6viv11 and by taking v = v
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in order to get
U3 = ui11 + 6uuy . (237)

sine-Gordon hierarchy A Lagrangian multiform ¢ = L1 dz'? + Log dz®3 + L1z dz'3

for the sine-Gordon hierarchy in light-cone coordinates is

1
Lis = JuLU2 + cosu, (2.38a)
1 1 1
Ly = Surus + 51&1 — gu‘{, (2.38b)
1 1
Los = —§U2U3 4+ ui1uie + ugr sinu — iu% cos u, (2.38¢)

and produces the equations:

O(ozy L 2
(23)723 _ U23 + U171 cOS U + all sinu =0
ou 2
013y L1 3
(l?u L —u13 + U111 + iu%un =0
019\ L
a2 —u1g —sinu =0
ou
O(ozy L
e —upcosu —uyie =0
5U1
023)Los  0a13)L13 u?
— = — — = 0
dus ouy us + 2 + U
O(oa\ L
(23) 723 _ U2 + sinu = 0.
dury

The multiform Euler-Lagrange equations for .Z are then summarised as

1
w1z +sinu =0, ug = u111 + iu? ) (2.39)

Ablowitz-Kaup-Newell-Segur hierarchy We start from the Lagrangian multiform
found in [SNC19b]

L = Lis da? + L3 dz'3 + Log da? R (240)
where
7 1 1
Lis 25(“]2 —qra) — S0~ §q27“2, (2.41a)
7 7 3igr
L3 :i(rqg —qr3) — g(nqu —qiri) — Tq(m —qry), (2.41b)
7 1 7
Los :Z(QQTH — roqi1) + 5(%7”1 +r3q1) + g(W‘lQ —riq12)
3iqr 1 1
+ i(qrz —rg2) + squrin — —qr(grin + rqi) (2.41c)
8 8 4
1 1
+glar - rq1)? + 56137'3 :
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As proved in [SNC19al, the corresponding multiform Euler-Lagrange equations ddL = 0
are the familiar first two levels of the AKNS hierarchy

, 1 , 1
ita + gan — ¢°r =0, iry = g+ g’ =0, (2.42a)
1 3 1 3
qs + ZQHI - iquI = 0, r3 + 17"111 — 5(]7”7“1 =0. (2.421:))
We have the equations
d(1o) L 1
(1%}12 = —q7“2 + 57’11 —1ireg =0,
d12)La2 1 .
- 5) = —¢*r+ Squ +ig =0,
T 2
7(12] S —irg + 52617”7“1 - 27“111 ;
dazyLis 3i i
5 3T 5 + s

which are the Non-Linear Schrodinger and the modified Korteweg-de Vries equations, and

d(23)L23 1 ir2 3 1 I 5 1 5 1 R
5q —5s + 1 + 542 T 59T T qur + 294 T + R
d(23)Las 1 iz 3i 1 1, 1, 1 355
7 —5(113 1 EquQ — §q7’ql1 - Zq ri1 + qur - qum + iq e,
that are differential consequences of the NLS and the mKdV equations. The corner
equations
01 L or ) 1 1
(12)L12 (23423 I
dq g3 2 2
(5 12 L12 6 L23 1 1
&) CIZE g1~ sa1 =0,
5T1 57‘3 2 2
duz)Liz  daglas _ir ir 0
(SQQ (5Q3 - 2 2 o
dupLliz  dugliz  ig g 0
5T2 57‘3 N 2 2 -
dagliz Opyles _irn 30, drn (ira 305\
(5(]1 5QQ 8 8 8 4 8
ki Seylas i B (i S
5T1 57‘2 8 8 8 4 8

are all identically satisfied. In [SNC19b| this was extended to the first three levels of the

hierarchy as

L = Lo dz'? + L3 da'3 + L1y dz'? + Log da? + Loy dz** + L3y dx? ,
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adding the coefficients

7 5
Ly 25(71]4 —qry) + TGW(W‘U +7q11)
(2.43a)
+ i(qQT% + q%TQ) + 1q7“6117’1 — 161117“11 - 1(137’3
16 4 8 4 ’

37 1 5

Loy =§q27“2(7“q1 —qr1) + TG(C]2T17’2 +72q1q2) + Tgr(ars + rai2)
i i Ly i
- gqr(rqm —qrii) — g(q T — irtqiqin) — §Q1T1(T’Q1 —qr1)
; 3 1 (2.43b)

+ ZQT(HQH —qi7r11) — gqr(mrz +rig2) + g(Chn?"Q +711192)

7 1 1
+ E(Qnﬂ“n - 7’1116]11) - é((hlru + 7"116]12) + §(Q17”4 + 7“1614) )

1 1 1
L3y = — g(Q11T13 +711q13) + g(CIlllTS +711143) + §Q1117“111
1 1 3t 9
- 33(@27"%1 +r2qd) — 33Q%T% =+ qu(TfM —qry) — §q4r4

3 1
+ Eq%z(qrn +rqi1) + E(q2r1?”3 +1r2q1q3)
: (2.43¢)

5 7 3
+ Eqr(qus +rq13) + Z(Q11T4 —r11q4) — Eq?"(mﬁn +7r1q111)

1 1
- Eqr(hﬂ“n + T6Q1T1(QT11 +7q11)

15 5, 3 i
+ TR e gqr(th:’) +7r1g3) — é(Q17“14 —r1q14)

which in turn produce, besides the aforementioned NLS and mKdV equations,

. 1 3349 1, 1 3 5
194 = Sq1111 + 747" — ¢ — 911 — qrqir — 91T,
. 1 3 5 3 1, n 1 n n 3 5 '
1rqgy = —=T —_ = T —-Tr —rqg1r rr —-Tr .
4 3 1111 4q 1 q11 B qir1 + qrri 4 194

The explicit proof of this fact is long and not very elegant, but it was originally shown

using variational symmetry methods.
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Chapter 3

The multisymplectic approach to a
14 1-dimensional field theory

In this Chapter we will describe what we take as the covariant Hamiltonian description
of a 1+ 1-dimension field theory. We work in the algebraic framework of the variational
bi-complex as introduced in Section 2.2, which allows us to use two distinct differentials,
the usual exterior one d (denoted horizontal) and a vertical one §. Equipped with the
above basic elements of the variational bi-complex, we now write how to describe a
1+ 1-dimensional partial differential equation admitting a Lagrangian formulation into a
covariant Hamiltonian formulation. As will be illustrated, covariant Hamiltonian field
theory is still a topic of open discussion within the scientific community. We take more
of a pragmatic approach, picking and choosing what suits best to our purpose from
two main sources: the first one is the work of Dickey [D03|, from where we take the
definitions of multisymplectic form and of covariant Hamiltonian, and we take the idea
behind the definition of covariant Poisson bracket and of admissible forms® from the work
of Kanatchikov [K98|.

3.1 Some context

The geometrisation of Hamiltonian dynamical systems led to a beautiful framework for
classical mechanics, see e.g. [A78| for a modern exposition. The development of an
analogous framework for classical field theories followed a less straightforward path and
still is the object of current studies, see e.g. the recent book [LSV14|. One feature of field
theories is that there are several independent (spacetime) coordinates on which the fields
depend so that, starting from a Lagrangian description, one has to make a choice from
the very beginning. Roughly speaking, one can distinguish two main avenues underlying

the current state of the art.

'Tn [K98| they were called ‘Hamiltonian forms’.

27
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On the one hand, one can favour one particular coordinate (the time) to perform the
Legendre transformation and develop the analogous geometrisation of Hamiltonian mech-
anics, resulting in an infinite dimensional Hamiltonian formalism. This point of view
seems arbitrary, especially if one is interested in Lorentz invariant theories for instance.
Nevertheless, it received a large amount of attention, with a boost coming in particular
from the theory of classical integrable systems. The latter provided numerous examples of
infinite dimensional Hamiltonian and Liouville integrable systems, since the early examples
|[ZF71, ZMT74|. In that area, important developments such as the theory of Poisson-Lie
groups [D83] and the classical r-matrix [S85] have led to an infinite-dimensional version
of geometric Hamiltonian mechanics. In parallel, the ‘algebraisation’ of this framework,
driven for instance by I.M. Gel’fand, L.A. Dickey and I. Dorfman, led to what is sometimes
called formal (algebraic) variational calculus, see e.g. the books [D03, D93|. An important
motivation for generalising the classical Hamiltonian theory to field theory in this way
was the programme of canonical quantisation of integrable field theories into integrable
quantum field theories. The classical r-matrix method proved to be fundamental to
achieve this and it gave rise the notion of quantum R matrix and Quantum Inverse
Scattering Method [S79, SF78, FST80, FT81].

On the other hand, the conceptual disadvantage of picking a special coordinate to
perform the Legendre transformation emerged already in the early 1900’s. The possibility
to generalise the Legendre transformation to define conjugate momenta associated to
each independent variable naturally leads to a generalisation of the standard Hamilton
equations called for short covariant Hamiltonian field theory. This observation is at
the basis of a theory discovered independently by De Donder and Weyl and now called
De Donder-Weyl formalism [D30, W35]|. Further developments followed and led to the
Lepage-Dedecker theory, see [HK04| for a more recent exposition of this theory and a
comparison with the de Donder-Weyl formalism. Despite being conceptually the same as
the traditional Hamiltonian theory (Lagrangian and Hamiltonian pictures are related by
a Legendre transformation), its geometrisation shows deep differences. In fact, there is
not one established theory of what should play the role of the usual symplectic form and
associated symplectic geometry, but instead a variety of related approaches (k-symplectic,
polysymplectic or multisymplectic) as described in [LSV14]. Similarly, the familiar notion
of phase space must be promoted to a covariant phase space whose definition and use
come with certain difficulties. Such a successful framework is credited to Kijowski and
Szczyrba [KS76] and later on Zuckerman [Z87]. The relation between multisymplectic
formalism and the covariant phase space is investigated in [FR05| and also [H11]| which
contains an excellent review of the historical development of the many facets of this field
and an account of covariant canonical quantization for free field theories. Alongside the
problem of generalising symplectic geometry and the phase space comes the question of
generalising to the field theoretic context the variational complex that one can associate

to a (Lagrangian) system of (ordinary) equations in mechanics. The relevant structure is
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the variational bi-complex [A89], see e.g. [VO08] for a review and a guide to the relevant
literature and also [R04] for the relation between covariant phase space and variational
bi-complex. A rigorous approach to the covariant phase space in the framework of jet

spaces and Vinogradov secondary calculus was proposed in [V09].

To the best of our knowledge, these two avenues flourished rather independently, driven by
motivations with little or no overlap, with the exception of one author, L.A. Dickey, who
initiated the investigation of the second, covariant, point of view within the formalism
of integrable systems in [D90|. This was further developed in the book [D03| where the
aforementioned formal algebraic variational calculus was used to describe such objects
as multisymplectic forms and the variational bi-complex. Dickey’s goal was to study
integrable hierarchies from the covariant Hamiltonian point of view, thus breaking the
long tradition of the infinite dimensional Hamiltonian formalism that was used in that
area, as already mentioned. This body of work does not seem to have been followed up,
despite its importance as we now argue. One of the motivations for the endeavour in the
aforementioned geometrisation of field theory is the programme of covariant canonical
quantization as an alternative that would combine the advantages of manifest covariance
(as in Feynman’s path integral techniques) and ‘simple’ quantization rules (as in canonical
quantization) without their disadvantages. Our point of view is that integrable field
theories are the ‘nicest’ field theories one can work with, beyond free field theories, to

test the framework.

3.2 Covariant Legendre transformation and covariant Hamilto-

nian equations

We focus on two-dimensional field theories: we set M = R? and we start from a Lagrangian

volume 2-form
A = Ldz' A da?.

L € o/ is the Lagrangian density and depends on the fields v*, k = 1,..., N and their
derivatives with respect to 2! and 22, up to some finite order. In most cases A will not
depend explicitly on the space-time variables ! and x2. A is the non-integrated version
of the action S = [ Ldzdt of a 1 + 1-dimensional field theory. The following results are
taken from [D03] and specialised to a 2-dimensional space-time manifold, and will be

illustrated with examples as we go along.

Proposition 3.1 Let F = fdz* A dz? € /02 be a volume form, then 6F can be

represented as
N

OF = Ay duy, Ada' Ada® +dG (3.1)
k=1

where G € o/ WY /de7(10)
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Proof. The proof is obtained transforming the expression

Sf Ndz' Nda? =) a{)(Suk Adzt A da?

k(i) Uk

simply using integration by parts

3 5l = 3 ()l ((JZ) +3 0B,
Uy,

au,(j

where B, are vertical forms. One then just sets

(2 (2 8f
A=Y= )()la)<au<>>’ G = —Bida® + By da’ . 0
k

Thanks to the use of the Tulczyjev operator [D03], one can prove that the coefficients Ay
are uniquely determined: they will be denoted % and called wvariational derivative of

f with respect to ug. The form G is determined up to a horizontally closed form, and
therefore lives in .o/ /d.or (10)

In the case where the volume form is taken as a Lagrangian, we call Q) = —G:

oA = Z—(su Adat A da? — doW) (3.2)

where Q) ¢ %(171)/d,0f(1’0) is only determined up to a total d-differential. One then
obtains the Euler-Lagrange equations by setting (;STLk = 0 for every k.

Remark 3.2: The content of this result is simply the local analog of the standard
integration by parts procedure used when varying the action [ A, where the boundary
term [ dQW is usually discarded. The identification of Q) thus defined with the
field-theoretic analog of the canonical 1-form can be found in [DO03]. Despite not
being well-known, this is a rather simple result that holds even in finite dimensional
mechanics. Indeed let us consider an action of the type S[g] = [ L(q,q)dt. Its

variation brings

08 = /((5 +6)/\dt
oL oL
[ (i = (5) rans [ (Ggoa) vt

where in the last term we recognise the canonical momentum %—2. The minus sign in

the definition of Q) is merely a convention.

Remark 3.3: From now on, we will only consider Lagrangians that do not depend
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explicitly on the space-time variables. Hence, neither QW por any object that will

be derived from A and QM) will depend explicitly on the space-time variables.

We can reformulate the well-known fact that Lagrangians are equivalent up to a total

differential (i.e. they bring the same equations of motion).

Proposition 3.4 (Equivalent Lagrangians) The Lagrangian volume forms A and A’ =

A+ dyp, where ¢ € OV produce the same Euler-Lagrange equations
SA = E(A) —dW | A = E(A) — M’

with QW = Q) 0.

Proof. By direct calculation:

SA' = 6A + ddp = E(A) — dQW) — dép = E(A) — d®)'. 0

The next step is the following definition, which shows that for a field theory, Q) realises

the Legendre transformation simultaneously with respect to all independent variables.

Definition 3.5 (Covariant Hamiltonian) The covariant Hamiltonian H € 7% related
to the Lagrangian A € o702 and QM) e d(l’l)/dd(l’o) 18

Hi=—-A+ > da? A0;QW (3.3)
j=1,2

h € o such that H = hdz' A dx? is called covariant Hamiltonian density.

To understand the role played by Q) we remark the following facts. For a classical
finite-dimensional Lagrangian system, the integration by parts provides (the pull-back to
the tangent bundle of) the canonical one form %5(1, and one can obtain the symplectic
form by taking its d-differential. Similarly, in the case of field theories where A is taken to
be a volume form, the form is Q1) = wgl) Adz? +w£l) Adz? where wil) and wgl) each have
a similar structure to the canonical one form of the finite dimensional case. It contains

(1) (

the usual symplectic structure —w,

structure wél) (which would correspond to performing the Legendre transformation when

if we consider z9 as our ‘time’) but also the dual

choosing x; as the time variable). In fact, the usual Hamiltonian formulation that is

obtained with the choice 2% = ‘time’, is computed as
Hg = (=9l — L) da* A da? (3.4)

and integrating over the z! axis, whilst the dual one with the choice z' =‘time’ is the
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integral over the 2?2 axis of
Hy = (01w — L) dz' A da?. (3.5)
Equation (3.3) is in fact a covariant Legendre transformation of A: explicitly we have that

H = — Ldaz' Ada? + dat A 912QW + da? A 9y QD)
:(51_10.:51) - 52_1w£1) — L)da' A da?.

To make this definition clearer we will consider the following example:

Example: Let A = Ldx A dt be

u? ou?
A= 2t - 22
<2 5 V(u)> dx A dt

where V' (u) is a smooth potential that only depends on the field u. The Euler-Lagrange

equations are easily obtained:

0L
S0 = —Ut + Ugy — V’(U) =0.

The usual infinite-dimensional Hamiltonian formulation is brought by the following
prescription: roughly, one considers as the phase space the set of space-dependent
functions, and then defines the field momentum as

o) = 5o () = (o).

One then finds that the transformation (u,u;) — (u,p) is trivially invertible, and obtains

the Hamiltonian as the integral

2 u2
Hg = /(put — L)dz = /(1’2 + 55+ V(u))da

Alternatively, the ‘dual’ infinite-dimensional Hamiltonian formulation is brought by the
different choice of phase space, now being the time-dependent functions, and the definition
of another, time-dependent momentum as

7(0) = 5 (1) = —ua(0)

and the definition of the dual Hamiltonian as the following integral

7 ul
Hr = /(Wux — L)dt = /(—2 — ?t + V(u))dt.

The covariant Hamiltonian is obtained by performing both Legendre transformations
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simultaneously in the following way. First of all, instead of choosing functions of just one
of the space-time variables we take the differential algebra o7 as our phase space. Then,

let us compute the §-differential of A
SA = (uduy — uzpdu, — V'(u)du) A dx A dt

We want to express JA as in (3.2), so we need to express uzduy Adz Adt and u,0u, Ada Adt

as total d-differential, which can be done as

uduy A dx A dt = — ugdu A dz A dt + d(udu A dx)
—ugdus A dz A dt =ugou A de A dt + d(ugdu A dt)

so that we have
SA = (—ug + gy — V'(w))du A dx A dt — d(—udu A dz — ugdu A dt)

= 5—L(5u/\dx Adt —dQW
ou

This defines Q) up to a d-differential. We notice that its coefficients are the single-time
momenta, as in Q) = wdu A dt — pdu A dz. The covariant Hamiltonian is then obtained

as in Definition 3.5

H = — Ldx A dt + dz A 9y QY + dt A 9,00

2 2
Z(—u?t + % + V(u))dx A dt + dz A (—u2)dt 4 dt A (—u?)dx
2 2

T
=( 5 5 + V(u))dz Ndt.

Proposition 3.6 (Covariant Hamilton equations and multisymplectic form) The Euler-
oL

Lagrange equations 5% = 0 are equivalent to
0H =Y dal A 0;Q, (3.6)
j=1,2

where Q € /1) is the multisymplectic form

Q=60 (3.7)
and H is the covariant Hamiltonian related to £ and Q) as in Definition 3.5.
Proof. From the definition of H we get

0H = —0A =Y da’ 760,00,
j=1,2
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Thanks to the definition of Q1) as in (3.2) the equations of motion are equivalent to

0H =dQW — > dad A 69,00
j=1,2

=" da? n 9, QW = N dad A 69,00
j=12 =12

where we have also used dQ(* =2, dz? A 9;Q1). We now use 9; = 9 + 8 to write

=" da? A9+ 0,)QW = > dal A 5000

Jj=1,2 j=1,2
= > da? A9+ D20 + 00, 2)QW = Y~ da? A 60,00
7j=1,2 7=1,2

and we used the property 5} = 5j45 + 55j_| . QW does not depend explicitly on the

space-time variables so 6}9(1) = 0. We then have

=" dad A (920 + 00, )QW = Y~ dad A 60,00
7j=1,2 7=1,2
= da! N9;u00W = " dad A 9; 0
Jj=1,2 j=1,2
and the result is obtained by cancellation. ]

Remark 3.7: In this thesis we are only dealing with 1+ 1-dimensional field theories,
where only 2 independent variables are considered. In general if a PDE involves k
independent variables and admits a Lagrangian description, A and H are volume
k-forms, Q1) € &7(LE=1) and Q € &2+~ as explained in [D03]. We also remark

that the multisymplectic form is vertically closed 02 = 0 (and more precisely, exact).

Proposition 3.8 Equivalent Lagrangian volume forms define the same covariant Hamilto-

nian and multisymplectic form.

Proof. We know that equivalent Lagrangians A and A’ = A + dy bring the same Euler-
Lagrange equations, but respectively Q) and Q0 = o 4 d¢. Since §%2 = 0 then
Q =600 and O = 500" = §(QW 4+ 5p) = Q + 6% coincide. It remains to check that

also the covariant Hamiltonians

H=-A+Ydd n0;500 and H' = —A'+ Y dad 78,00
J J
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coincide. In fact we have

H =-A—dp+ dal A9;js(QY + dp)
j
:H—dga—l—Zdajj /\5j_|5cp,
j

and, using 5] = 5]-_:5 + 55j_| we have

H =H—dp+Y_da? A(0;— 00;0)¢.
J

We now use the fact that ¢ € O and so 5j4g0 = 0, and that it does not depend
explicitly on the space-time variables, so @g@ = 0. Writing dp = Zj dz? A Ojp we
obtain the result. O

Example: Let us find the covariant Hamilton equations for the example above. We

found
2 2
H= (%’f - “7 +V(w))dx A dt

o = —ugdu A dr — ugdu A dt
so the multisymplectic form is found as
Q =600 = —guy A du A de — Suy Adu A dt .

The covariant Hamilton equations are equivalent to uy — ugze + V'(u) = 0, in fact
0H =dx N 53;_1(2 + dt A 5tJQ brings

(urduy — ugdug + V' (u)du) A dz A dt
=dx A (—Ugedu + ugduy) A dt + dt A\ (—ugdu + ugdug) A dz

and therefore
V'(w)du Adz A dt = (ugy — u)du A dz A dt

C 1 . 5L _
which is equivalent to 5z = 0.

3.3 Covariant Poisson brackets

Equipped with a multisymplectic form we can consider a covariant Poisson bracket. We
stress that the definition of a covariant Poisson bracket from a multisymplectic form, in

a way that mimics the situation in classical mechanics, has been part of a rich activity
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since the early proposals. In particular, the Jacobi identity is a delicate issue, as well
as the need to restrict to certain forms, called admissible, as we explain below. For our
purpose, we will simply use Kanatchikov’s ideas and adapt them to our needs. The results
of |[CS20a| show that, at least in our context, this leads to a satisfactory covariant Poisson
bracket satisfying the Jacobi identity, thanks to the fact that the latter is satisfied by

means of the classical Yang-Baxter equation for the classical r-matrix.

We need to restrict our attention to the a special class of forms called admissible.

Definition 3.9 (Admissible forms) A horizontal form F' is admissible with respect to
if there exists a (multi)vector field &g such that

EpaQ)=0F. (3.8)

Then &g is called Hamiltonian vector field related to the admissible form F.

Remark 3.10: In this thesis we only consider horizontal forms as candidates for
being admissible, which is enough for our purposes. This also reflects the natural
interpretation of admissible forms, i.e. a forms F = F;dx' + Fdz? that, when
integrated over one of the space-time axes (z' = 0 or 22 = 0), become the usual
functionals [ Fldx!, in the latter case, or the dual i F? dz? in the former. Admissible
forms with a vertical components have been proposed in [FPR03| with the terminology

of Poisson forms.

Contrary to the usual symplectic case, the property of being an admissible form is quite
restrictive. In the finite dimensional case, in fact, if w is taken to be a symplectic form
(and therefore non-degenerate), there is a one-to-one correspondence between vector fields
and differentials of functions, so given a f, it’s always possible to find a & such that
§fow = df. In the multisymplectic case, instead, €1 is often degenerate, and therefore
this correspondence is missing. For this reason, from now on, we will always consider
Hamiltonian vector fields modulo the kernel of €2. On the other hand, thanks to the
presence of two distinct differentials (a horizontal and a vertical one) and the fact that
Qe /%Y we can allow a similar correspondence not only with scalar functions, but
also to horizontal forms of any degree. However, as we soon find out, only 0- and 1-forms

provide non-trivial admissible forms:

Proposition 3.11 Let G € &/©2. G is an admissible form with respect to Q € o/ 1)
if and only if G is constant®, with £ = 0.

Proof. The proof is obtained by a simple counting argument: since Q € o1 then there
must exist &g such that £Q = G € o712 which happens if and only if both 6G = 0

2By constant we mean that G = gdz' A d2?, with g € K.
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and £g = 0. O

It is often the case that the multisymplectic form is fixed by the theory that we are
considering. In this case, where it is not cause of confusion, we will refer to ‘admissible

forms’, without specifying the multisymplectic form they are related to.

Remark 3.12: We decided to change the terminology from Hamiltonian forms
in [CS20a, CS20b, CS21, CSV2la| to admissible forms. The previous choice was
motivated by its vast presence in the literature, e.g. in [FPRO5|, but it produces
paradoxical statements such as ‘The Hamiltonian is a form but it is not a Hamiltonian
form’. The new choice, admissible forms, solves this problem and reflects (although
with some changes) the terminology present for instance in the context of Dirac
structures [CGM17, C90].

Let us denote by Sq the set of elements (5u,(f) that appear in the multisymplectic form.

This is a finite set since we assume finite-jet dependence of A. We can therefore assume

some ordering on S and label the 5u,(:)’s as 0v; j = 1,...,#Sq. We then write

Q= E W 6v; A vy A dat + g Wi dv; A Suj A da? . (3.9)
i<j i<j
(XIS (VS

where I1,Io C {1,...,#5q }.

Proposition 3.13 (Necessary form of an admissible 1-form) Suppose F' = Fy dx+ Fy dt €
OV s an admissible form related to the multisymplectic form (3.9). Then, Fy can only

depend (at most) on vj, j € I, and Fy can only depend (at most) on v;, i € Io.

Proof. Assume F; depends on some uék) ¢ {vj, Jj€I}. On the one hand,

OF, Sv; A dx? .
8’[)1‘

F F
6F:Z%5vj/\dxl+ o 5ugk)/\d331+z

ir (k)
jen Y duy icls

On the other hand, since F' is an admissible form, there exists a vector field £¢ such that

Ep ) = 0F. This gives

Z wijfp_: (6v; A Sv;) A dat + Z ngfF_: (6v; A Sv;) A da?
— —
i,ZjGJI1 7:7736]]2

In particular, this requires

OF OF g

Z 871;61)]‘ A dxl + (]1) 5ugk) A dl‘l _ Z W?gF—‘ (5% A 5Uj) A d$17

jen Y Ou, =)
Z?JG 1
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aFl _

so that necessarily 3 8F Bl =D e n wij Eradv; and = 0. The same argument holds for

Fy. O

Example: Let us characterise admissible forms for the multisymplectic form
Q= —dus ANdu AN dx — duz N du A dt.

e O-forms: For a generic K (u,uy,u;) let us assume that {12 = JK, where i is a

generic vector field

eemad D390 00 9,0, ;9,9
K=oz " ou" ot " “ou, ot “ou " oz

(up to terms in ker ), where a, b, ¢ and d are smooth functions of u, u, and u;
to determine. We have started from a 2-vector field because we want to obtain
0K € o719 by insertion with Q € &1 so £k must have one vertical and one

horizontal component. On the right hand-side we have

oK 0K 0K

6Ut N

while on the left hand-side we have the following

0 0 o 0
(I/% A %JQ = G6Ut y b% A aJQ = b5um
0 0 0 0
AN —_Q =—cd d— N —_0Q = —do
Caux ot~ o Ouy ox” Y
s0 Ex 10 = —(c+ d)du + bdu, + aduy. By comparison we have b = 2K and o = g—fft,

Whilst we see that we have a choice of both ¢ and d, which is to be expected since

8% A E — W A a € ker Q2. We can choose d = 0 and ¢ = —%>. Therefore we have

that any K (u,ug,u;) € o is an admissible form, with Hamlltonlan vector field

Ko 0 oKo 0 oK 0
Ous Ou  Oxr OuyOu Ot Ou Ou, Ot

€k =

e 1-forms: For a 1-form F = F(u,u;)dz + Fa(u,uy)dt, we proceed in a similar way

starting from a vertical vector field

0,0 0
ou Oug 8ut

with coefficients to determine. After insertion with 2 we get

Ep Q) = aduy A dx + adug A dt — bdu A dt — codu N dx
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that we compare with

OF: OF
OF za—ul(u, ug)ou A dx + 6—1;(10, ug)ouy A dx
8F2 6F2
+ %(u, Uz )ou A dt + aTL:E(U, Ug)OUy A dt
getting the following relations
F F:
a= ?)ui(u, up) = gi(u,ux),

_ 0F B
b——%(u,ux), c= a—(u,ut).

We therefore see that F' € /(O is an admissible form if and only if F} and F are

respectively linear in w; and u,, such that % = 27%7 with Hamiltonian vector field

AR 9 R 8 OF 9

5F—aut%_ ou Ouy  Ou Ouy

e 2-forms and beyond: Any horizontal form G of degree greater or equal than two

is an admissible form if and only if it is constant, i.e. 6G = 0.

Only for admissible forms can we define covariant Poisson brackets.

Definition 3.14 (Covariant Poisson brackets) Given two admissible forms P and Q, of

(horizontal) degree respectively r and s, we can define their covariant Poisson bracket as
{(P,Q)} = (=1)"¢pagn Q2. (3.10)

The covariant Poisson brackets have the following properties:
e They are antisymmetric {(F, G)} = —{(G, F)};
e They are bi-linear in the space of admissible forms.
We delay the discussion of the Jacobi identity to the end of this section.

We now prove the following theorem, which was only obtained explicitly on examples in

[CS20al, but for which no general proof was given.

Theorem 3.15 If the covariant Hamiltonian density h € <7 is an admissible form, then
we have for any admissible 1-form F that does not depend explicitly on the space-time

variables

dF = {(h, F)} dz' A da?. (3.11)
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Proof. Using (3.6) and the antisymmetry of {2 we have
EpadH =Epa | D dal N9 | == ) da? AEpad; Q= dal NOjaEp Q.
j=1,2 j=1,2 §=1,2

Since £p ) = §F we obtain

€pa0H =Y da’ A DjdF.
j=1,2

Using the property 5]-_:5 = 5j — 55j_|

EpadH = Y da? NOF — Y da? AGD;LF.

=12 =12

Since F' is purely horizontal 5j_lF = 0, and since it does not depend explicitly on the

space-time variables 5JF = 0;F, so that

§pa6H = Y dal N O;F = dF.
j=1,2

Now we realise the covariant Poisson bracket:

dF = €p6H = Epadh A dat A da? = —{(F, h)}da! Ada® = {(h, F)}dz' Adz?. O

Remark 3.16: This is of course the multisymplectic analog of the well-known
equation in Hamiltonian mechanics f = {H, f} giving the time evolution of a smooth

real-valued function f on the phase space under the Hamiltonian flow of H.

The covariant Poisson brackets have an interesting property in terms of the single-time

Poisson brackets. In particular, we know that
O =w Ada' +wy Ada?, wio € ot (20) (3.12)

It may be that wy o are traditional symplectic forms. In this case we can define the

single-time Poisson brackets related to both w; and ws in the usual way: with respect to

:L'l

{f.9hr == —y5a(vgowr) = —yf2dg, where ypawi =0f, vy4w1 =g, (3.13)

and, with respect to 2

{u,v}e = —nya(nyows) = —myadv, where nyowe = du, Myaws = dv. (3.14)
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These are traditional Poisson brackets, and in particular satisfy the Jacobi identity
{a,{b,c}i}r + {b,{c,a}tr}tr + {c,{a,b}x}r =0 for k =1,2.

Proposition 3.17 (Decomposition of the covariant Poisson brackets) Let F' = Fydx! +
Fydx? and G = G1dx' + Goda? be admissible 1-forms with respect to Q = wi A dx' +

wy Adxz?. Then, if w12 are symplectic forms,
{(F,G)} = {F1,G1}1da’ + {Fp, Ga}oda?. (3.15)
Proof. On the one hand, by definition
OF = 6F) Ada! + 6F5 A da?,
and on the other hand, since F' is an admissible form
OF = €pa(wi Adat +wy Adz?) = (Epowy) Ada! + (Epows) A da?

hence §F; = £pow;. Next, consider the following chain of equalities

{(F,G)} = — £pa6G = —£qo(6Gy A dxt + 6G A da?)
=—¢ra(ye, swi A det + NGy w2 A de)
=76, 2(Epowr) A da’ 4+ ngys(Epows) A da?
={Fy,G1h1dz' + {Fy, Go}oda?

which concludes the proof. O

Remark 3.18: In the case where wy 2 are symplectic forms, then it is immediate to
verify that the covariant Poisson bracket {(, )} also satisfies the Jacobi identity, as it

satisfies it on the coefficients of dz! and dz?.

The previous proposition provides not only an interpretation of the covariant Poisson
brackets {(, )} between two 1-forms (it is a 1-form with coefficients being the usual and
dual single-time Poisson brackets), but also a way to calculate the two brackets { , }1 2,
which seems to be working even when the usual Legendre transformation is degenerate
(e.g. the Non-Linear Schrodinger equation in Section 4.3) and one therefore should resort

to the use of Dirac brackets [D50], as explained in Section A.3.

Example: We turn to our example, where

2 2
Uy Uz
=Lt T,y

Q= —dus ANdu ANdx — dug N du A dt.
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We first compute the covariant Poisson brackets between two admissible 1-forms F' =
Fidx + Fodt and G = Gidx + Godt, using the definition

B _ 0F; 0G4 OF 0G5 OF5 0Go OF; 0G4
{(F G} == £padCG = Oouy Ou de + Oou; Ou dt ou Ouy di ou Ouy

F: F F F:
:<6 20G; 0 18G1>dm+<8 100Gy 0 28G2>dt

dx

Ouy Ou C ou ouy Ou; Ou - Ou Ouy

_ <8F1 0G1 B 8F1 3G1> d + (6F2 0G2 8F2 8G2> di

Ouy Ou ou Ouy Ouy Ou  Ou Ouy

Ouy ~— Oug’ Ouy ~ Oug
We see that the coefficients of dz and dt are respectively the usual { , }; and dual

where in the last line we have used the admissible property on _ 0F 090G, _ 0Ga

{, }2 single-time Poisson brackets obtained from the symplectic forms w; = du A Jus
and w9 = du A du,, as expected from Proposition 3.17. It is immediate to see that the
covariant Poisson bracket between admissible 1-forms is anti-symmetric and bilinear in
the space of admissible 1-forms. The Jacobi identity is a bit more cumbersome to verify,

as we also need to show that the Poisson bracket of two admissible 1-forms is again an
admissible 1-form, i.e.

i OF, 0G4 B 0 oG\  O0F 0%Gy B O’F, 0G4
Oou; Ou ou Ouy ) Oug Oudu  Ouduy Ouy

But
0B 9%Gy B O?Fy 0Gy 0 (0F,0G, B OFy 0G5
© Ouy QugOu  Ouduy Ouy  Oup \ Ouy Ou ou Ouy

where we have used the admissible properties of F' and G. The Jacobi identity is then
transferred from the Jacobi identities of { , }; and {, }a.

We now verify the validity of the covariant Hamilton equation in Poisson bracket form
dF = {(h, F)}dx A dt. The left hand-side is computed as

_(0F, OR

B <6F2 OF; OF  OF

9 Uy + D, Uy P U — Bu, utt> dr A dt
OF: oF oF
— < a; Uy — 3u1 up + aui (Ugy — utt)> dr Ndt

and the right hand-side is

_ _ 7 _ !
0w, 90 ou 0w, ou 6Ut>4(ut5ut Ugduy + V' (u)du) A dx A dt

_(OF_, 0F, 0F,
_(aUtV(u)+ 70~ Ba ut> dx N dt

and comparing the two we get uz, — uy = V' (u).

¢p0H <6F1 0 O0F, 0 oFy 0
Fa0H =



Chapter 4

Covariant Poisson brackets and

classical r-matrix

In this chapter we illustrate applications of the theory explained in Chapter 3 to several
integrable systems: the sine-Gordon equation (Section 4.1 and 4.2), the Non-Linear
Schrodinger equation (Section 4.3), and the modified Korteweg-de Vries equation (Sec-
tion 4.4), which is content from [CS20a], and the Zakharov-Mikhailov Lagrangian (Sec-
tion 4.5), which is content from [CSV21b].

The starting point of the examples illustrated in this chapter is the Lagrangian form
A = Ldx' A dz?. We then use the procedure explained in Chapter 3 to introduce the

following objects
e the multisymplectic form §2,
e the covariant Hamiltonian H = hdz!' A dz?,
e the covariant Poisson brackets {( , )},

to consistently obtain the classical r-matrix structure for the Lax connection W(\) =
U()\) dx' + V()\) do? within the covariant Poisson brackets. In short, we provide the

following result which is the covariant version of Sklyanin’s fundamental discovery (2.12)

{W1 (), Wa ()} = [raz(A, ), Wa(A) + Wa ()] -

We also prove the covariant analog of the important fact that the zero-curvature condition

for an integrable PDE can be cast in Hamiltonian form in the following way

AW = {(H, W) da' Adz? = dW(\) =W AW(N).

Extension to gly(</*) We naturally extend the formalism of the variational bi-complex
to gly(27*), i.e. o/ *-valued gl matrices. Indeed, let { E,,,, } be a basis for gly, then the

43
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Lax connection (for a given \) W(\) € gl («7(®Y) can be written as' 3 W(A)mn Emn
where every Wi, (\) = 32, Wi (\) € &7V is a horizontal 1-form.

Note that the definition of an admissible form extends naturally to the case of matrix
coefficients by requiring that each entry be an admissible form. Then, for each W,,,
we can calculate its Hamiltonian vector field &3 22 = W, and calculate the Poisson
brackets between its coefficients. Moreover we define {(W, F)} :== =" ({3 20F) Epmn

for any admissible form F'.

mn

We also extend the tensor notation used in the Sklyanin bracket, as reviewed in Section 2.1,
to the present situation as follows, denoting by W (\) = >°. W¥(\)dz*

Wi(d) =) W) @Tda' =) > Wi (A) Bpn @Tda' = Winn(A) Emn ® T

Wa(d) =) T W(\)da' = f: S Wi N I® Eppda’ =Y Winn(NI@ Ep -
i =0 mn mn

We define the multi-time Poisson bracket between W7 () and Wa(u) by
(), W)k = > {IWinn(A)s Wie (1)l Eyn © Eie (4.1)

m,n,k,l

Finally, we define the commutator of a matrix O-form r and a matrix 1-form W by

[r, W] = Z[r, W' dz* . (4.2)

7

4.1 sine-Gordon equation in laboratory coordinates

The sine-Gordon model for the real scalar field u(x,t) reads

2

Ut — Ugy + % sin Bu =0, (4.3)

where m is the mass and f is the coupling constant. A Lagrangian form for it is given by

1 5 9 m?
A=]z(uf —ui)— ﬁ(l — cos fu)] dz A dt. (4.4)
Equation (4.3) is equivalent to the following zero-curvature equation which we set to hold
as an identity in A

AU(N) — 0.V (\) +[UN), VIN] =0,

!The position of the indices indicating the coefficient of a matrix or of a differential form will not be
important as it may change in the following depending of what makes the notation more understandable.
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where the Lax pair (U, V) can be taken as

U()\) = —iko(A) sin %O’l - ijl()\) COS %02 - %utag N (45)
V(A) = —ik1 () sin %01 — iko(\) cos %02 - %uxag , (4.6)

where ko(A) = Z(A+ A1) and ki (A) = Z:(A—A"1). In the general notations of Section 2.2,
here N =1 and the only field is u; = u. We will denote ug), (1) = (0,0), (1,0), (0,1), etc.
as u, Ug, U, etc. for convenience. It is important to remember that u,, us, etc. should be
treated as coordinates in the differential algebra 7 when performing the calculations in

the variational bi-complex.

Proposition 4.1 The sine-Gordon equation (4.3) is the Euler-Lagrange equation for A.
The form Q) is given by

QW = —wy du A do — uy Ou A dt . (4.7)
and the multisymplectic form reads
Q = —0ug A du A dx — duy A odu Adt. (4.8)

Proof. The é-differential of A is

2
A = [upduy — ugduy — % sin(fu)ou] A dx A dt.

Now, since d(du) = —duy A dx — dus A dt, we get that d(uidu A dr) = updt A du A dx +
ud(0u) A dx = ugdu A dx A dt + udug A dx A dt, and therefore

udur A dz A dt = —ugdu A dx A dt + d(ugdu A dz),
and equivalently
—UzpOUuy A dx A dt = ugzdu A dx A dt + d(ugdu A dt).

Therefore, the variation of A brings

2
0N = [—uy + Ugy — % sin Suldu A dx A dt + d(udu A dz + ugdu A dt).

By looking at % = 0 we obtain the Sine-Gordon equation. Q) then reads

oM = —ugdu N dr — uzdu A dt.
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Its d-differential Q1) is defined to be the multisymplectic form €

Q=000 = —§uy AduAdr — Suy ASuAdt.

(4.9)
]

Equipped with the multisymplectic form §2 we can define the covariant Poisson bracket

and also the two ‘single-time’ Poisson brackets as in Definition 3.14.

Proposition 4.2 A 1-form F = Fi(u,u;) de+ Fy(u, uy) dt is admissible for the multisym-

plectic form (4.8) if and only if
oFy  0F,

Ouy  Ouy

The respective Hamiltonian vector field is

OFy 0 0F; 0 oFy 0
Ou; Ou  Ou Ouy  Ou Oup

{r =

(4.10)

(4.11)

For any two admissible one-forms F' = Adx + Bdt and G = Cdx + Ddt, we have

following decomposition formula
{(F,G)} ={A,C}1dx+ {B, D} dt

where the single-time Poisson Brackets are given by

0A0C 0AOC
Acy, =28% 980
{4, Ch Our Ou  Ou Ouy’

oD 0B 0B 0D
{B7D}2 =

Ouduy  Oudu,’
Proof. Let us consider the following (vertical) vector field

0 0 0
=A—+B —_—
&k ou + Oy + C@ut

in the equation 6 F = £r 12, The left hand-side reads

oF, oF, OFy
OF = — de + =15 d T 25uAdt
9 ou A +3t U N\ l‘+a ANdt + —=

while the right hand-side is

Ep ) = Adur N dx + Aduy Adt — Béu N\ dt — Cdu A dzx.

A direct comparison shows

_om _on . on
 Oup Ouy’  du’

(4.12)

(4.13a)

(4.13b)
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Then, (4.12) follows by a direct calculation from {(F,G)} = —£p10G and recognizing the

single-time Poisson brackets as defined in the Proposition. O

Theorem 4.3 The Lax form W(X) = U(X) dz + V(\) dt satisfies the following covariant

Poisson bracket
{W1(N), Wa ()} = [r12(A, ), Wi (A) + Wa ()] (4.14)

where the classical r-matriz is that of the sine-Gordon model (see e.g. [FTR0O7])

riz(A p) = fFA p)I@T - 03 @ 03) + g(A, p) (01 ® 01 + 02 ® 02), (4.15)

. 2 )\2 2 2 by
with f(A\, p) = —%/\Qf‘le and g(\, p) = %f#lﬁ

Proof. The proof is done by straightforward but long calculations. We give the details for
this first example. We write W(X) = Y, Wi(\)o;, where Wi(A) = U'(\) dz + Vi(\) dt,
so that

WL\ = —iko(\) sin %“dm — ik (\) sin %dt ,

W2(\) = —iki()\) cos %“d:c — iko(\) cos %dt,
W3\ = —%utdx - %umdt.

It can be checked that W% i = 1,2,3 are admissible forms. Therefore, using the

decomposition property 4.12, we find that the only non-zero Poisson brackets are

(WA W20 = - 2 cos 2% (ko) + k(1))
(20w =L sin 220 () + ko))
(0 =2 cos 2 k(o + ks (1)
(3. W20 = = 2 sin 22 ks (o + ko).

Thus we deduce, according to Definition 3.14, and using the auxiliary space notation as

in Section 2.1,

{(Wa(A), Wa(p))} (4.16)
— 52( _ @(k A . Bu
=3 cos — o(N)dx + k1(N)dt) o1 ® o3 + sin 5 (k1(N)dx + ko(N)dt) o2 ® o3

+ cos B—Qu(k:g(,u)dx + ki(p)dt) o3 ® o1 — sin %(lﬁ (n)dx + ko(p)dt) o3 ® 02) .

On the other hand, we can also compute [r12(\ — ), W1 () + Wa ()] directly, using the
commutation rules [0}, 0] = 2ig;j,04 and the property [A® I, B® C| = [A, B] ® C. We
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find

[r12(A = p), Wi () + Wa(u)]
= [—f(\, )03 ® 03 + g(\, 1)o1 @ o1 + g(\, p)og ® o9, W (Ao @1
+ W2\ o @ T+ W3 (N o3 @ T+ WH ) ® o1 + W ()@ o9 + W3 () @ o3

= —2i(f(A )W) + g\, p) W ()02 @ 3
+2i(fO\ WW2N) + g\, W2 (n) o1 ® o3
+2i(f O\ W (1) + g\ W (V)03 @ 02
= 2i(f(\ )W (1) + g\, W2 (N))o3 @ 01
+2i(g WP (i) — g\ WP (X)) o2 @ 0y
+2i(g\ WP (N) = g\, )W (n)or © o2

Upon inserting the explicit expressions of W, f and g one recovers (4.16) and the claim

is proved. O

We conclude this section on the sine-Gordon model with its covariant Hamiltonian
formulation. The covariant Hamiltonian H = hdx A dt can be computed as H =

—A + dx A 0y QW + dt A 8,u0W and its density is given by
— (1 — cos fu). (4.17)

The corresponding Hamiltonian vector field &, such that £, = dh can be taken as

f—ug/\g—u2/\g—m—231115u(i a+ 9 6)
P ou " 0 Cou ot 28 ou, "\ or T ouw, ot

(4.18)
Let us now consider the Lax Form W () = U(\)dz + V(A)dt. On the one hand, we have
dW (X) =((—ik1 () cos é—uux + iko(A) cos %uut)al

+ (—iky(A) sin %ut + iko(\) sin %ux)ag

)
+ (Zutt - Zﬁum)ag)d:v A dt
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and on the other hand,

{(h, W(X)} =Ear20W (X)

:fH_I< Bko(A) o Bu ki(N)B

—{——— CO0s 7(5u/\dx —1 cos %(M/\dt)al

2

k1(N\)B
2

B (dug A dz + dugy A dt)a;;)

2
ko(A\)B
2

+ (i sin g—uéu/\da: +i sin %&L/\dt)ag

_ZZ
:(g(kg()\)ut — k1(XN)ug) cos ﬂQ—u)al

; 2
+ (g(ko()\)ugC — k1(N)uy) sin %u)az - ij sin fuos.
Therefore
m2
dAWA) ={(h, WA} dz Adt < Uy — Upg + 5 sin fu =0, (4.19)

which is the desired covariant Hamiltonian form of the sine-Gordon equation. One can
verify with a direct computation that {(h, W(X))} = [U(X), V(N)].
4.2 sine-Gordon equation in light-cone coordinates

We can also write the sine-Gordon equation (now we set 5 = m = 1 for simplicity) in

light-cone coordinates ! = ¢ and 2 =9 as

Ugy +sinu = 0 (4.20)
thanks to the change of coordinates & = %‘H and n = t_Tg’ This equation is produced by
the zero-curvature equation for the Lax form? W()\) = U(\) d¢ + V() dn, where

. 2 jiu/2 . _ ) —iu/2
i ug se i Uy e
UN =—- . , V(N =—- A . 4.21
) 4 (26_1”/2 —ug ) ) 4 <2Ae’“/2 Uy ) (4.21)

In fact we have

. _ _ —iu/2
1 U 13 ZU£€
OV (M) = —= ( o )

iAuge Upg
) U, i /2
—oUMN) = § ( P )
—tuye —Ugr
1 e—iu _ 6iu _Uleiu/Q —u e—iu/?
UN), VO] = =~ . . T ¢
[ ( ) ( )] 4 </\U£€w/2 +une’l“/2 el _ o—iu

2We use the same symbols for the Lax matrices as the ones for the laboratory coordinates to avoid
heavy notations.
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and therefore dW(X) = W(X) A W()) is equivalent to (4.20). The sine-Gordon equation
has also a Lagrangian formulation with

1
A= (§ugun + cosu)dg A dn. (4.22)

The following two propositions have proofs that are very similar to the laboratory

coordinate case and therefore will be omitted.

Proposition 4.4 The sine-Gordon equation in light-cone coordinates (4.20) is the Euler-
Lagrange equation, for (4.22), and with Q) = —%ugéu AdE + %unéu Adn and

1 1
Q= —§5u€/\5u/\d§+ 55%/\5“/\6177- (4.23)

Proposition 4.5 A 1-form F' = Fy(u, u¢) d§+F(u, uy) dn is admissible for the multisym-

plectic form (4.23) if % = fg% with Hamiltonian vector field

oF, 0 oF, 0 oF; 0
S Rt S it SR b S 4.24
&k Oug Ou Ou Oug + Ou Ouy ( )

The covariant Poisson bracket between two admissible 1-forms F = Fy d§ + Fydn and
G =G1d§+ Gadn is {(F,G)} = {F1,G1}¢ d§ + {Fo, Ga}yy dn where

L [(0F10G: OF; 0G,

{Fl,Gl}g =2 ( 8u au§ — 8u§ 8u > y (425&)
L [(OF0Gy  OF;0G,

{Fy, G}y =2 ( o, B0 ou 8%) : (4.25b)

We are now ready to find the classical r-matrix within the covariant Poisson bracket

{C:

Theorem 4.6 The Lax form W (X) = U(X) d€ 4+ V(X) dn satisfies the following covariant

Poisson bracket

{W1(A), Wa(p))} = [r1z(A, w), Wi (A) + Wa(p)] . (4.26)

where the classical r-matriz is [S08, Eq. (4.22)]

JT P 1 W A
M) = —F— “IQI |4+ ——+ —t———0_ . (4.27
r12(A, 1) STESY <03®03+ 5 ® )+2(M_)\)U+®0’ +2(M—)\)0 ®oy . (4.27)

Proof. We use the decomposition of the covariant Poisson bracket in { , }¢ and {, },. A
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direct calculation brings

1 2 .
{U1(N), U2()}e = = = ({ue, =€ }eo3 @ 0y + {ug, 27" *}eoz @ 0
16 o

2 . |
{56 uheo s ® 03 +{2e 7 ugheo @ a3)

ie? o3 ® oy 04+ ® 03) je~ /2
8 I A 8

(0- ®o03 —O’3®U_)

and an explicit calculation shows that this is equal to

A

[m o_®op, UN)@I+IU(p)].

03 ® 03 + oy ®o_ +

_r A
2(p—A) 2(p—A)

Similarly we obtain for the dn coefficient

(Vi(N), Va(i) by = [ra2(A ), Va(A) + Va(p)] - O

We can also show the covariant Hamiltonian nature of the zero-curvature equation. The

covariant Hamiltonian form can be obtained as

1
H= (§u§un —cosu)dé Ndn. (4.28)
The covariant Hamiltonian density h = %ugun — cosu is an admissible O-form with
Hamiltonian vector field
0 0 0 0 0 0
= e A F Uy A == + 2008 U= A — | 4.29
h= e, N oy T a0 o T2 G0, " b (4.29)

Applying Theorem 3.15 we know that, since W(\) = U(\) d€ + V() dn is admissible,
AW (N) = (b, W(N)} dé A dy. (4:30)

on the sine-Gordon equation dW = W A W. One can verify with a direct computation
that {(h, W(\))} = [U(N), V(XN)], so that

AW(N) = {(h, W) EdEndy =  dWN) =WA)AW(N). (4.31)

Remark 4.7: Unlike the other examples of this chapter, the sine-Gordon equation

in light-cone coordinates is original of this thesis.
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4.3 Non-Linear Schrodinger equation

By a slight abuse of language, we will call the following system of equations for two

complex scalar fields ¢, the nonlinear Schrédinger (NLS) equation

1 1
i+ 5 — Pr=0,  ir— 5Taw + r’qg=0. (4.32)

Strictly speaking, the NLS appears under the reduction r = +¢*. We keep using as a

Lagrangian volume form for (4.32)

i 1 1
A= (5(%7” —qre) — 59Tz — §q27“2) dx A dt, (4.33)

The system (4.32) is equivalent to the zero-curvature equation which must hold as an
identity in A
OUN) — 0 V(N) +[UN),V(N)]=0.

where the Lax pair (U, V') can be taken as
U(N) = —ido3 +qop +ro_, (4.34)

V(A) = (—M2 — ;qr> o3+ (A + %qu + (W — %Tx)a_ . (4.35)

We will denote u,(f), k=1,2, (i) = (0,0), (1,0), etc. as q, T, guz, Tz, etc. for convenience.

Proposition 4.8 The NLS equations (4.32) are the Euler-Lagrange equations for A. The
form QW is given by

oW (gdr — rég) Ndx — %(qxér + rz0q) A dt, (4.36)

i
2

and the multisymplectic form reads
) 1 1
Q =1idg A or Ndzx + (557“ N dqy + iéq Adry) Adt. (4.37)

Proof. The o-differential of the Lagrangian volume form is

5A:(th—qr2> og Ndx A dt + (th—q27“> or Ndx Adt

—i—%éthdx/\dt—%ért/\da:/\dt

1 1
— 5%5% Adx Adt — §qgc<57"m Adx Adt.
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Then, using
%5% ANdx A dt = d(%éq Ndx) — %5q ANdx A dt,
—%qért Adx Adt = d(—%qér Adx) + %& Adx Adt,
f%rzéqx ANdxr Adt = d(%rzéq Adt) + %rmcsq Adz Adt,
—%qxérx ANdxr Adt = d(%qxér A dt) + %qmér Adzr Adt,
we obtain

1 1
OA =[(—iry + oTwe = qr?)oq + (ig + 5w — *r)or] A dx A dt
i 1q 1 1
d(( 5 dq + 5 or) Ndz + ( 2rx(5q 2qx57“) A dt)

from which we can read off Q). We then compute Q = 6Q(1) to get the stated result. [

Proposition 4.9 A 1-form F = Fi(q,r)dz + F»(q,7,qs,72) dt is admissible for the
multisymplectic form (4.37) if and only if
O0F; O0F, o0F; an

1 __9 = 4.
Oq ! 0q,’ or 8% (4.38)

The respective Hamiltonian vector field is

OF, 0  0F; 0 0Fy 0 oFy 0

=it —92 2 o2 T 4.
&F or Oq e dq Or or 0qy 0q Ory (4.39)

Any two admissible 1-forms F' = Adx + Bdt and G = Cdx + D dt satisfy the equation

{F,G)} ={A,C}1dx+ {B,D}adt (4.40)

where the single-time Poisson Brackets are given by

0A0C  0CO0A

A = —7—— 4.41

W Ch =~ o Y g o (441a)
oBoD o0Do0B o0BoD 0D OB

B, D}y =2 (252 2222 441

{B, D} <8q or,  0q Ory o or dqy  Or 8qx> ( )

Proof. We start from the Ansatz &g = aaq + bar + Caq + dar , and we want to find the

coefficients by setting
Ep ) =GF. (4.42)
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The right hand-side reads

12 I2 I3 I2
57 =085 nat + 250 nar + Psg, nar + 222
dq or 04y Ory

F: F:
béq Adx + bdr A dx,
dq or

Ory N\ dt
_I_
while the left hand-side is
. 1 . 1 1 1
EpaQ =iadr Adx + 5@5@ A dt —ibdg A dx + §b5qx Adt — 5057“ Adt — §d5q A dt.

By matching the coefficients we get

OF,  0F, ,  OF  0F O ,OF:

9 —i221 9 — 9272
or ory’ b=i 0q 0q, ' ¢ or’ 0q

a=—1

which is the first statement. The second statement then follows by a direct calculation
from {(F,G)} = —€r10G and recognizing the single-time Poisson brackets as defined in
the Proposition. O

Theorem 4.10 The Lax form W(X) = U(X) dz+V (\) dt satisfies the following covariant

Poisson bracket
{W1(N), Wa ()} = [ra2(A, ), Wa(A) + Wa ()] (4.43)

where the classical r-matriz is that of the NLS equation (see e.g. [FTR07] and Section 2.1),
the so-called rational r-matriz,
Po 1 03 X 03 I®I

A = = —_ —
r12(A, p) 21— N Q(M—)\)(G+®G to-®oy+—— 5

). (4.44)

Proof. Again, we give here the proof by direct computation. We write Wy (\) = W3(A\)o3®
I+WFTNoyr@I+W~(N)o_ @I and Wa(u) = W3 (p)l@os+WH (oo, + W= (p)leo_.
For the right-hand side, we find

[r1i2(A — p), Wa(X) + Wa(p)]
1 _ _
= m[@w?’(u) —2WP(N)or @ o— + (W™ (A) = W™ (1))os @ o
+(WH) = WH(W)or @ o5+ 2W3 () = 2W3(n)o— @ oy
+ (WH () = WH(\)os @ o + (W™ () = W™ (XN)o- @ 03]
=—i(0L ®o_ —0_ ®oy)dx

+(—i(p+N(or R0 —0_®oy) — g(ag Ro_—0o_R®03) (4.45)

+ %(0'3 ®op — 04 ®o03))dt.

For the left-hand side, note that W3()\), W+ (\) and W~ ()) are admissible forms. Thus, a

direct calculation using the decomposition formula shows that the only nonzero covariant
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Poisson bracket relations are the following

{(WH ), W™ ()} = — ide — i(A + p)dt,
v+ > B} == Gt

{(W=(N), W ()} =idz +i(A + p)dt,
W= (), W)y =5t

{300, W ()} gdt

(W30 W™ ()} = = St

It remains to insert in the definition of {(W1(X), Wa(u))} to recognize that {(Wq(\), Wa(u))}
is precisely (4.45). O

We conclude the NLS example by a description of its covariant Hamiltonian formulation.

The covariant Hamiltonian H = hdx A dt is given by
1
h = 5(—(]1% + ¢*r?). (4.46)
Its Hamiltonian vector field &, such that £, = §h can be taken as

0 0 0 0 0 0
& = (—zq ra— +iqr 8> A E. + ( " g —Teg > e (4.47)

Equipped with this, we have the following result.

Proposition 4.11 The covariant Hamiltonian formulation of the NLS equation is given

by
AW (N) = {(h, W(\))}dz A dt | (4.48)

where W () is the Laz Form.

Proof. On the one hand

AW (A) = (—%(qrx +742)03 + (=g + Mgz + %m)m + (=7 + Ay — %rm)a,)d:@ Adt,
while on the other hand,

{(h, W(A))} =Epa6W (N)
—£,2(04.0q A dx + o_6r A dz + (—%7“03 Ao )dq A d

+ (—%qo’g + Ao_)dr Adt + %mﬁqw A dt — %a_érm Adt

=(iq*r + Agz)o4 + (—igr® + Arp)o_ — 5 (@7 + ar2)os
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Therefore dW () = {(h, W(\))}dz A dt is equivalent to the NLS equation. O

One can verify with direct computation that {(h, W(\))} = [U(X), V(A)].

4.4 Modified Korteweg-de Vries equation

By a slight abuse of language, we call the following system of equations for two complex

scalar fields ¢, the modified Korteweg-de Vries (mKdV) equation,

1 3 1 3
qr + Zq:szz - 561?”% =0, rt + Zrmxm - 5617“7’3: =0. (449)

It is the next commuting flow in the so-called AKNS hierarchy [AKNS74| that also
contains the NLS system (4.32). The original (real) modified KdV equation is obtained
as the real reduction r = ¢ with ¢ a real-valued field. A Lagrangian form for (4.49) is
given by
i i 3i
A= (5(%7‘ - th) - g(Q:Ea:Tx - meQz) - gQT(quLQTx))dl‘ Adt. (4'50)
Remark 4.12: The reader may find the presence of an overall multiplicative constant
i unnecessary or even confusing. This is only done at this stage for internal consistency
with the rest of the thesis.

The system (4.49) is equivalent to the zero-curvature equation which must hold as an
identity in A
HU(X) — 0, VA +[UN),V(N)] =0 (4.51)

where the Lax pair (U, V') can be taken as

UN) =—idos+qoy +10_, (4.52)
I 1
V(A) =(—ix* — %qr + 3 (67 — arz))os
. (4.53)
+ (A\%q +iNgy — 1q + 1qzr)a + (N — @r - lr + 1qr2)a
LD + 9 T T ey —-

One reason for looking at this model, besides its physical relevance as a prototypical
model related to the famous Korteweg-de Vries equation?, is that it is degenerate both
in the standard Legendre transformation and the dual one [ACDK16|. However, the
method laid out by Dickey produces a multisymplectic form that is not sensitive to the
degeneracy and both single-time forms are indeed symplectic (nondegenerate). In fact,
they coincide with the ones obtained by the Dirac procedure in [ACDK16|. This feature

is quite remarkable but its origin is not understood yet.

3This is obtained by a Miura transformation [M68].
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Proposition 4.13 The mKdV equations (4.49) are the Euler-Lagrange equations for A.
The form QM) is given by

Q) :%(qér —rdq) Ndx (4.54)
t ((Erae =2 s+ (=L + 220 ) 61— Lrisa + Laquor ) A dt
—Typp — —qr —— —q°r | 6r — =r —q16r
4 Tx 861 q 4Q1‘x 861 ] 1041 86]1 1 )
and the multisymplectic form reads
. 1 1 ] 3iqr
Q =g Ndr Ndx+ Zérm Adq — qum A or + Zéqw AOry + Téq Adr ) Adt. (4.55)
Proof. By direct calculation as in the previous examples. O

Proposition 4.14 A 1-form
F = Fl(Q7 T)dl‘ + FQ(C], T4z, Tz, 4xx, Tmc)dt )

is admissible for the multisymplectic form (4.55) if and only if

8F1 8F2 8F1 8F2
dq 0zs or Oz (4.56)

The corresponding Hamiltonian vector field is

O0F 0 0F 0 4 0F, 0 i 0F, 0

=i e T ag or  Yor. 0 T M og, or, )
+4¢(8F —|—6r8F2) 9 4(aF2+6raF2) 9 '
or 1 ara:x 8Qxa: 8(] 1 8‘]&:&: ar:cx .

Any two admissible 1-forms F' = Adx + Bdt and G = Cdx + D dt satisfy the equation
{(F,G)} ={A,C}1dx+{B,D}2dt (4.58)

where the single-time Poisson Brackets are given by

0A 80 o0C 0A
{A,C} = <aq o o 87“) (4.59a)
0B 0D 3B oD 0B 0D 0B 0D
{B, D}z = <8rm 0q  0q Oryy  Oquy OF o Or 0qzy
(4.59b)

oBoD 0BoD . (0B 9D 0B oD
0qy Ory  Ory Oqu 0Qrz Orze  OTww OQus '

Proof. Inserting gF—aaq+bar+Caq +dar +eaq +f6r into

EraQ, (4.60)
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and matching the coefficients with dF. This gives the first statement. The second
statement then follows by a direct calculation from {(F,G)} = —{F10G and recognizing

the single-time Poisson brackets as defined in the Proposition. O

Theorem 4.15 The Lax form W (X) = U(X) dz+ V' (\) dt satisfies the following covariant

Poisson bracket

{(W1(A), Wa ()} = [riz(A, p), Wi(A) + Wa(p)] (4.61)

where r is the rational classical r-matrixz of the NLS equation.

1 03 X 03 I®I
A—p)=—— _ _ . 4.62
T12( //J) Q(N_)\)(UJr@U +o_®o4 + 2 + 92 ) ( )
Proof. The direct calculation follows exactly the same idea as before. O

Remark 4.16: A comment is in order regarding the fact that the same r-matrix as
for the NLS appears here for the mKdV. In the standard Hamiltonian approach to
the AKNS hierarchy, the only r-matrix structure is that given in (4.44) since all the
higher flows share the same U()) matrix Q) (\). In our covariant context, since the
same r-matrix appears for both the Lax matrices U(A) and V(\) = Q) (\) for the
NLS and V(\) = Q®)()\) for the mKdV and since both flows share the same U()), we
consistently find that the same r-matrix appears in the covariant Poisson structure
for NLS and mKdV. We note however that this points to a deeper connection between
our covariant approach and the notion of integrable hierarchies. Amazingly, this
connection holds and was established in [CS21]. This will be presented in detail in
Chapter 6.

We conclude the mKdV example by a description of its covariant Hamiltonian formulation.
We find that the covariant Hamiltonian H = hdx A dt is given by

h = i(QmTzz - qgjmrz) (463>

Its Hamiltonian vector field &7, such that &, = éh can be taken as

h =54 qxaq T or Ox

4.64
0 0 0 0 0 ( )
N GmF+rerF Qar— + 27— | AN

dq or 0q ory ot
Equipped with this, we have the following result.

Proposition 4.17 The covariant Hamiltonian formulation of the NLS equation is given

by
AW (A) = {(h, W)} dz A dt (4.65)
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where W () is the Lax form.
Proof. By direct computation as in the previous examples. O

In the same way as in the two previous examples, one can show that {(h, W(\))} =
[UA), V(A

4.5 Zakharov-Mikhailov Lagrangian

The Zakharov-Mikhailov Lagrangian provides a variational principle for a class of integrable
systems encapsulated by the Lax connection of Zakharov-Shabat type W(z) = U(z) d§ +
V(2) dn, where

Vn
z—by’

N1 U
Uz)=Tp+ »  — (4.66)
m=1

N2
) V(z) =W+
S ERCELIDY
and each Up,,V,, € gly(&) are «7/-valued gl matrices. We also assume that a,, # by,
Ym =1,...,N; Vn = 1,..., Ny. By taking the residues in a,, and b,, we can see
that the zero-curvature condition dW(z) = W(z) A W(z), or equivalently 0:V (z) —
ohU(2) = [U(2),V(z)] is also equivalent to the following equations, for m =1,..., Ny
andn=1,..., N

0:Vo — 0yUo = [Uo, Vo,

No v
\% n Un
0+; bn’

A, —

(4.67)

Uy, = , OV =

>l
Uo + V|
mzlbn_am

These are obtained by taking the regular part in z or the residues in z = a,, or z = b, of
dW =W AW. In [ZM80], the authors proved that these equations have a variational
origin, i.e. they are Euler-Lagrange equations of the Lagrangian form A. In the case

where Uy = Vi = 0 this Lagrangian can be written as

A=Te (Z el OemUD = S 0, VO — 3 U’”V> dEndy,  (168)

am — b
mmn n

where in each sum, m =1,..., Ny and n = 1,..., N2, and we have written each U,, =
gme,S?)gp;} and V,, = z/)nVVEO)i/)gl. The matrices ¢, v, € GLN(&) (i.e. o/ -valued non-
singular NV x N matrices) are dynamical, and they contain the fields of our theory and their
derivatives. The matrices Uy(,? ) and Vrfo) are non-dynamical, meaning 5U,§g ) — 6VTSO) =0,
but in general they may depend on the space time variables (£, 7). However, to avoid
some technical difficulties we will consider Uq(T? ) and V,SO) to be constant, meaning that
U v e gly.

Remark 4.18: We have set Uy = Vj = 0, which can be done thanks to the
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gauge freedom of U and V. In fact, from (4.67) there exists a non-singular matrix
g € GLy(47) such that

Up=0e99" ",  Vo=0,99 ". (4.69)

In fact we have

65% - 877U0 :aﬁ(angg_l) - an(aégg_l)
=009t — 0y99 ' 0cg™ — 9,0e99 ™ + Oegg 9997

S
:[U[)a ‘/0] .

It follows that the matrices

= 1 1 al g_lng

U=g'Ug—g '(Oc9) =) o, SIW(),
k=1

& 1 1 ak g Wiy

V=g"Vg—g 09 =) b © aly (<)
k=1

also satisfy 9¢V — 8,U = [U,V]. Then one can take o — gpr, and 9, — gy, and
rename U — U and V — V to eliminate Uy and Vj.

Remark 4.19: It was proved in [CSV21a| that the Lagrangian A can be obtained
from a 4d Chern-Simons theory, see Appendix A.4. This is a result that follows the
idea of [FSY20, CY19| with the introduction of minimally-coupled surface defects on
the Riemann sphere that provides an additional family of models that can be derived

from a 4d Chern-Simons theory.
Proposition 4.20 The Euler-Lagrange equations of A are (4.67) with Uy = Vo =0 i.e.
No

Va
Un, -

n—y m - bn

O Un + =0 OV, + = 0. (4.70)

Ny
Un
Vo, Z_:l by — am

and the multisymplectic form is

N1 N2
Q=Tr (Z O 00m A o 8omUS) A dE + ) 0t Aty 010 VIO A dn) . (4.71)

m=1 n=1
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Proof. We start by taking the J-differential of A, which is

oA = Trz [—ameéS)ga;nl&pm«p;nl + Uég)@;l&(angom)} NdE N dn

m

+T) Ot VO St — VIO (Betn) | A d Al

+TYZ[ Um,v msofnl—g/”’U}cwnw ]Adé/\dn

m

U, V) ‘2"]] Smpm' N dE A dn
p—

[VmU ]

:Trz [—&IgomU,(,g)SOml - @man(Ufr?)‘P;@l) -

m

+Tr) [c‘)gwnv(o U+ Ynde(VOp, ) —

n

]wnwn AdE A dn

—dTr

=Y U et Som NdE =D VO o A dn]
and we can read the equations (4.70) off the coefficients of dp,, and d1b,. We then take

QM = —Tr

S UW g oo Ade+ > VO s, A dn] (4.72)

and its d-differential is Q = QM) in (4.71). O

Our objective is to compute the covariant Poisson bracket a la Sklyanin for the Lax
connection W = U(z)d¢ + V(z)dn in the gauge where Uy = V) = 0. Specifically, let

{ Eij } be the canonical basis for gly and write the Lax connection in this basis as

N

i,j=1

where from now on we shall show the explicit dependence on the spectral parameter.
To compute the covariant Poisson brackets between any two components of the Lax

connection, we first need to show that these are admissible 1-forms.

For this we shall need the following useful identities. If M € GLy(47) is any «7-valued
matrix with components M;; € &7, ¢,j5 = 1,...,N and C is any non-dynamical matrix

(meaning 6C' = 0), then we have
Z Mig o - Tr (MM AM™'MC) = §(MCM )5, (4.74a)
d _ _ _
Z Mikaé(MCM Y = 6p(MCM ™)y — 8y(MOM ™)y . (4.74b)
k=1

In particular, we can use these with M = ¢,, C = U7(ZO) and M =, C = Vn(o). Then a
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direct calculation shows that

Yy Yoo

m=1p=1 Opm s

wn B 0
Z Z E T Mg (4.75)

satisfies 6Wj;(2) = Xi;(2)2Q. Therefore all the components Wi;(z) for 4,5 =1,..., N of

the Lax connection are admissible 1-forms, as required.

Theorem 4.21 The covariant Poisson brackets of the Lax form satisfy the following

relation
{(Wa(2), Wa(w))} = [r12(2 — w), Wi (z) + Wa(w)] (4.76)

where r12(2) = =12 s the rational r-matriz.

We have used the permutation operator Pya = 223:1 E;; ® Ej; with the property

N
Z (0jkAit — 0uAy;) Eij @ By = [Aq, Pr2] = —[A2, P12],
ij=1

for any A € gly (o) with components A;; € & fori,j=1,...,N.
Proof. We turn to the computation of the components on the left hand-side. We have
{Wi;(2), Wia(w))y = — Xij(Z)J5Wkl(w)

Z (z — am)(w — am) ¢

am

_Z z—nb (w— o "))k di.

TL

Noting that for any distinct z,w,a € C we have the identity

g e (e @

we may rewrite the covariant Poisson bracket as

N
P12, (Un)d] [P12, (Vi)
= LUPizz’ Wi (z) + Wz(w)] O
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Following our prescription, the covariant Hamiltonian related to A is found to be equal to

Ny
H=-A+> Tr(pp OppomU) ds A dn — ZTr 2L, VD)) de A dn
m=1 =
- (4.78)
_ZZﬁ UV d§/\d77
m=1n=1

In the same way as the previous examples, we have shown that
dW (z) = {(h,W(2))}dn ANd§, where H = hdnAdE, (4.79)

in analogy to what one would do in the traditional Hamiltonian formalism, then since we

have
{h,W(2))}dn Nd& = W (z) AW (z), (4.80)

we can conclude that dW(z) = W(z) A W(z). The main steps in the derivation of the

crucial equality (4.80) are as follows. First, we have by definition

N

(W = 3 (Xig(=)0h) By (4.81)

Second, we find

S Pmis Ynis 0
;mawm,yﬂ Zzz _b”a”‘/’"ﬁ)J

(i ok i <6Up>kl<vq>5; + (bqupm(avz,m)

N
_ 0k (Unm)it = 0a(Um)rs) (Vo)ik
=222 (2 — am)(am — by)

N
(Up)ik (6 (Vin)it — 6t (Vi) j)
n=1p=1 k,%:l (2 — bn)(ap — bn)

where we have used the identity (4.74b) in the second equality and (4.77) in the last
equality. Substituting the above into (4.81) we obtain (4.80).
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4.6 The Korteweg-de Vries equation: an unsuccessful at-

tempt

The above formalism seems to work really well to produce the equation {(W1 (), Wa(u))} =
[r12(A, ), W1 (A)+Wa ()] for ultralocal field theories, i.e. theories for which the classical r-
matrix is antisymmetric r12(\, 1) = —r21 (g, A). We report here our unsuccessful attempt
at applying the same construction to a non-ultralocal theory such as the Korteweg-de Vries
equation (KdV). As the KdV is arguably among the most famous examples of integrable
systems, we think the reader will be interested on the current state of understanding of
this theory and what goes wrong and where. We must remark as well that we are not
expecting a relation such as {(W1(\), Wa(u))} = [riz(A, p), Wi () + Wa(u)], as the theory
is non-ultralocal®, but we will see that the problem arises well before, as the Poisson
bracket {(W1(X), Wa(u))} is already not defined.

We will treat the potential version of the KdV equation

Vgt = Vpggr + OUzVpa (4.82)

where u = v, is the KdV field. As it is now costumary we start from the Lagrangian

volume form®
A = (vpvr — 2(v2)? + (Vez)?) d A dt . (4.83)

We compute the §-differential of A as

0N =(vg0vy + (vp — 6(vx)2)5vx + 20350054 ) Adx A dt
=(—20zt + 2Vpz + 120,052)00 A dx A dt
—d(—vzov Adx + (vp — 6(1)3;)2 — 2Up22)00 A dt + 20,500, A dt)

so that we have

O = — 60 Ade + (ve — 6(1)95)2 — 20z22)00 A dt + 203,00, A dt, (4.84)

Q =—0v, Nov Adx
(4.85)
+ (0vg A dv — 120,00, A 6V — 20V00 A OV + 20055 A dV;) A dt .

If we use the familiar argument to investigate the presence of admissible 1-forms (i.e. start-
ing from a generic vertical vector field and taking its interior product with the multisym-

plectic form) we realise that an admissible 1-form F' = Fj (v, v,) dx+F5(v, vt Vg, Vg, Ugag ) db

*We would expect an equation similar to [BBT03, Equation (2.10)], such as {(Wi()\), Wa(u))} =

[riz(A, 1), Wi(N)] = [r21(p, A), Wa(p)].
5Tt differs from L1 of Section 2.3 by a total horizontal differential.
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must satisfy the following requirements:

OF,  OF, 1 0F,

= — [ 4.
Ovy, Oovy  20Upps (4.86a)
OF, 10F,
o 2004, (4.86b)

Next, we would need to find an admissible Lax connection for this equation, so that we
can calculate the Poisson bracket {(W1, W2)}. Unfortunately, we have not been able to

do so. The only Lax pair we could find, 7.e.

U = (Zf :j;) : (4.87)

— 4403 + 2iv A+ v 40N — 2000 N — Vage — 2(v2)?
—4)\* + 20, 45N° — 200\ — Vgy
is not admissible. In fact, none of the above relations hold: it is not true that STZ =—04
is equal to —g—q‘)/t =0 orto %63:;1 = —%mr, and %—g = 0 is not equal to %% =03—2i\0+.

There are two possible strategies that one could take at this stage. The first one is to
extend our covariant Poisson brackets {(, )} to non-admissible forms, allowing to keep
the current Lax pair U,V as in (4.87)-(4.88). The extension of covariant Poisson bracket
to non-admissible forms has been explored in literature, for instance in [FS15|, but not in
relation to integrable systems. The second strategy is to investigate other possibilities of
Lax pairs that satisfy the equations (4.86) and are therefore admissible. This is currently

still an open problem.

4.7 Concluding remarks

In this section we have shown for many archetypal examples of integrable systems the
classical r-matrix structure of the Lax connection W () within the covariant Poisson
bracket

{Wi(A), Wa ()} = [r12(A, ), Wi(A) + Wa(p)] .

These Poisson brackets are only defined for a specific class of forms called admissible,
i.e. forms F' for which there exist a vector field {r such that £_Q2 = §F. The Poisson
brackets {(, )} were defined from the multisymplectic form 2, which was obtained from
the Lagrangian following the procedure explained in [D03|. Following [D03] we were also
able to define the covariant Hamiltonian of the field theory in example H = hdx A dt.
We showed consistently that the zero-curvature equations dW(X) = W(AX) A W () can be

recognised as a covariant Hamilton equation for the Lax connection as

AW (\) = {(h, W(\))} dz A dt .
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This opens up a series of questions. The Non-Linear Schrédinger and the modified
Korteweg-de Vries equations belong to an integrable hierarchy, i.e. the Ablowitz-Kaup-
Newell-Segur (AKNS) hierarchy. Ideally, it is interesting to see if the same covariant
approach could be applied to more equations of the same hierarchy, and even to the
hierarchy itself as a whole. This will be addressed in the following chapters, with the
introduction of Hamiltonian multiforms in Chapter 5 and with its applications to the
AKNS hierarchy in Chapter 6.

Moreover, as pointed out in Section 4.6, we have only been able to treat ultralocal field
theories. This is because the non ultra-local theories that we tried to treat are expressed
by a Lax connection that does not possess the right properties in order to calculate the
covariant Poisson bracket {(W1(\), Wa(u))} (i.e. the property of being admissible). These
non-ultralocal field theories are extremely important to treat, as they include famous key
systems such as the celebrated potential Korteweg-de Vries equation. This is a current
issue of our approach, and it needs to be investigated further.

Finally, the consistency of these results points to a deeper generalisation, in terms of
characterisation in terms of endomorphisms of a Lie algebra and Poisson-Lie groups,
in the style of [RS88|. This will help with the generalisation of {(W1(\), Wa(u))} =
[r12(A, p), W1 (X) + Wa(p)] to other field theories, and to understand the theory in a

deeper, non-phenomenological way.



Chapter 5

Hamiltonian multiform description

of integrable hierarchies

In this chapter, which contains content from |[CS20b|, we aim to describe covariantly
(i.e. treating space and time with equal footing) a whole integrable hierarchy of PDEs in
a Hamiltonian fashion. This procedure generalises Dickey’s construction of a covariant
Hamiltonian (that has been reported and expanded upon in Chapter 3) to the case of a
hierarchy, taking a Lagrangian multiform as a starting point as opposed to a Lagrangian
volume form.

In Section 5.1, by means of what can be described as a ‘covariant Legendre transformation
with respect to all the times of the hierarchy’ we produce the Hamiltonian counterpart
of a Lagrangian multiform, that we call Hamiltonian multiform, and a new object
which generalises the multisymplectic form to a whole hierarchy, that we call symplectic
multiform. The multiform FEuler-Lagrange equations are recovered as a natural extension
of the covariant Hamilton equations, and the closure of the Lagrangian multiform is related
to the closure of the Hamiltonian multiform, which resembles the usual conservation of
the Hamiltonian function for finite dimensional mechanics. In Section 5.2 we introduce
the multi-time Poisson brackets, which generalise the covariant Poisson bracket in the
multiform framework. In Section 5.6 we relate our formalism to the results of [V20]
regarding Lagrangian 1-forms (hierarchies of ODESs).

We use this new formalism to describe a few levels of the potential Korteweg-de Vries
hierarchy in Section 5.3, the sine-Gordon hierarchy in light-cone coordinates in Section 5.4
and of the Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy in Section 5.5. We anticipate
that we will be able to describe the whole AKNS hierarchy in a closed form, but we delay

its discussion to Chapter 6.

67
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5.1 The Hamiltonian and symplectic multiform

The main observation at the basis of this chapter is that the objects and results illustrated

in Chapter 4 can be extended to a Lagrangian multiform, i.e. a horizontal 2-form
n ..
L = Z Ll‘j dl‘”, y (5.1)
1<j

for L;; € 4/, required to satisfy a generalised variational principle associated to the action

S[r] = /F.z, (5.2)

as explained in Section 2.3. Furthermore, we assume that the Lagrangian multiform .
does not depend explicitly on the multi-time variables #*. We can turn our attention to
the generalisation of the form QM) in (3.2). We first use the following result from [V18,

Proposition 6.3] and [V20], which we reproduce here with a little change of notation.

Proposition 5.1 The field u is a critical point of S[U]| = [ £ for all (smooth) surfaces
T in R™ if and only if there exists a (nonzero) form QM e 7LD such that

8. = —dW . (5.3)

We also recall that, as explained in the introduction we have that wu is a critical point of
S for all (smooth) surfaces I' if and only if §d.Z = 0. Equipped with this, let us write,

(L) =62 +doW)
Then, a reformulation of the previous discussion is as follows:

0dZ? =0 <
u is a critical point of S[I'] for all smooth surfaces I" in R" (5.4)

< E(X)=0.

Compared to the case of (3.2), in addition to the non-uniqueness of QW induced by the
freedom of adding a total differential dw to . (as for a standard Lagrangian volume
form), there is also some freedom in the integration by parts steps which lead to the

expression

0.8 =E(L) —doV (5.5)

More precisely, in general we could also have another way of writing §.Z,

8.8 =E(L) —dW) (5.6)
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with still £(£) = 0 < 6d.% = 0, following from Proposition 5.1 and reformulation (5.4).
We will show that these two sources of freedom have no consequence on our constructions.

Equipped with a pair (.Z, Q(l)), we define the Hamiltonian multiform associated to it.

Definition 5.2 (Hamiltonian multiform) The Hamiltonian multiform associated to the
pair (Z,QW) is defined by

H=—2L+Y dad N300, (5.7)
j=0

As announced, this definition looks very similar to the definition of the covariant Hamilto-
nian in (3.5). However note that the sum involves n + 1 terms here (the number of
independent variables included in the Lagrangian multiform) and that H has the form
H= Ziq H;;jdx" and is in o/ 02) like 2. H plays the role of the covariant Hamiltonian

form in the multiform context.

Proposition 5.3 The equivalent Lagrangian multiforms £ and ' = £ + dp for some

¢ € O bring the same Hamiltonian multiform.

Proof. Similar to the one of Proposition 3.8. In fact, let H be the Hamiltonian multiform
associated to the pair (.Z,Q(1)). We have that 7’ is the one associated to the pair
(&', QW + 5p). Then we prove that

W =H. (5.8)
O

The relevance of this lemma is related to the symplectic multiform defined below and the

multiform Hamilton equations associated to it and H.

We can easily see that there is a relation between the d-differential of H and the one of
Z. The next result is important and connects the closure relation in the Lagrangian

multiform to the Hamiltonian multiform formalism.

Theorem 5.4 dH = —2d.¥ modulo the multiform Euler-Lagrange equations.

Proof. We start from the definition of H:

dH=—dZ+d (> dd N9 QW | = —dg =" da? A dd; 00
j=0 j=0

=—dZ+  da) AJj.d)

=0
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where we used dgj_n + @qd =0 (cf. [D03, Corollary 19.2.10]). Now we use the equation
0.2 = —dQW to obtain

dH =—d L =Y de) Nju6L = —dL = dal N (0 — 60;0).L
j=0 j=0

=—dZ - di/ NO;L = —2dL.
=0

In the last line we used the property 5] = 55j_n + 5j_l(5, and the fact that £ is purely

horizontal and does not depend explicitly on the multi-time variables. O

Remark 5.5: In [SV16, V20| the closure of a pluri-Lagrangian form . was linked
to the involution of the single-time Hamiltonians (that we will interpret in terms of
Hamiltonian multiforms in Section 5.6), and in [V20] an analogue of Theorem 5.4
for the case of Lagrangian 1-forms was given. In the particular case where the
Hamiltonian multiform is an admissible form in the sense defined below, we expect
Theorem 5.4 to provide a general framework in which to recast these results (with
appropriate modifications for the examples in 0 4+ 1 dimensions presented in [SV16,
V20]). This point is partially addressed in Section 5.6, but mainly left for future

investigation.

Recalling that a Lagrangian multiform is defined to satisfy the closure relation d.Z = 0

on the equations of motion, we obtain:

Corollary 5.6 (Closedness of H) The Hamiltonian multiform is horizontally closed on
the multiform Euler-Lagrange equations dH = 0. In other words, H satisfies the closure

relation.

We believe that these results justify our terminology Hamiltonian multiform since we
have the closure relation for H if and only if d0.Z = 0. This corollary is the multiform

equivalent of the well known fact in finite-dimensional mechanics that the Hamiltonian is
dH
dt
independent variables here).

a conserved quantity = 0 (recall that we do not include explicit dependence on the

We are now in a position to introduce the multiform analog of the multisymplectic form

(3.7), again denoting it by .
Definition 5.7 The symplectic multiform associated to QW) is Q == Q1) ¢ 72D,

Remark 5.8: Like the multisymplectic form, the symplectic multiform is vertically

closed (more precisely, exact), has degree (2,1), in the case of 1-+1-dimensional field
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theories considered here, and is of the form
n .
Q:ij/\dxj, Wjed(Q’o), 0<j<n. (5.9)
j=0

If we were to consider a Lagrangian multiform for a hierarchy of k-dimensional field
theories, k < n, the Lagrangian multiform would be a horizontal k-form, and the
symplectic multiform (if it exists, and with the same definition) would be of degree
(2,k—1).

The symplectic multiform € achieves an important unification of the various (standard and
dual) symplectic structures appearing in an integrable hierarchy, as originally observed in
[ACDK16|. When z; is chosen to be the x variable and z;, 2 < j < n to be the higher
times t; of the hierarchy then w; represents (up to a sign) the usual symplectic form,
while each wj, j # 1 represents the dual symplectic form related to the time t;. For each
2 < j < n, the multisymplectic form €2;; which would be obtained by considering the
Lagrangian Li; as a standalone Lagrangian, as in Chapter 3, is simply obtained by taking
wi Ada! + wj N

Remark 5.9: The reader will hopefully forgive us for the choice of terminology,
very similar to multisymplectic form. Another candidate, polysymplectic form,
is already in use in the literature (see for instance [K98|). We could not simply
keep multisymplectic form for our new object since, although both objects are
derived in a similar fashion and play a similar role in the theory, they are quite
different in concept. Indeed, the multisymplectic form is related to only a single
field theory, while our symplectic multiform is related to a hierarchy. In the case of
k-dimensional field theory, the multisymplectic form of degree (2, k — 1) is obtained
considering a k-dimensional space-time manifold and a horizontal volume k-form
as a Lagrangian. When we consider a hierarchy of such field theories, we extend
the space-time manifold to a n-dimensional multi-time and therefore consider n
independent variables. Moreover, we consider the k-form (previously taken as a
Lagrangian) only as one of the terms of the Lagrangian multiform (which still is
of degree k). Consequently, the multisymplectic form is extended to a symplectic
multiform, which still has degree (2,k — 1), but contains other terms generated by

the additional n — k times.

Just like in the covariant case, it is clear from Proposition 5.3 that adding a total

differential dy to £, which amounts to adding d¢ to Q) has no consequence on .

The following corollary gives support for our terminology as it is reminiscent of the fact

that a symplectic form w is closed in classical mechanics.
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Corollary 5.10 The symplectic multiform is horizontally closed on the multiform Euler-
Lagrange equations:

0dZ =0 = d2=0. (5.10)
Proof. The equations are expressed as 6.2 = —dQM), so

0=02% = —6d00 = 45N = 4. O

We now use the symplectic multiform to obtain the multiform Hamilton equations.

Proposition 5.11 (multiform Hamilton equations) The multiform FEuler-Lagrange equa-

tions for the Lagrangian multiform £ are equivalent to

0H = da) N ;.. (5.11)
=0

Proof. The proof is a simple adaptation of the similar result obtained in [D03, Chapter

19| and in Proposition 3.6 to the multiform case. O

Remark 5.12: Lemma 5.3 ensures that the freedom of adding a total differential to
% has no consequence on the multiform Hamilton equations as it should. The other
source of freedom coming from (5.5)-(5.6) does not affect the result either. Indeed,

suppose that H is the Hamiltonian multiform associated to the pair (£, Q1)) of
(5.6) and Q is associated to Q1) then exactly the same computation as above yields
that the multiform Euler-Lagrange equations for the Lagrangian multiform .# are
equivalent to
n
(5ﬁ = Zdl’j A 83'_1@ .
j=0

5.2 The multi-time Poisson brackets

Continuing with the inspiration given by covariant Hamiltonian field theory, the next
step is to construct a Poisson bracket related to our symplectic multiform and cast the
multiform Hamilton equations into Poisson Bracket form. Similarly to the situation
reviewed in Chapter 3, this can only be done for a restricted class of forms, called
admissible forms. For convenience, we restrict again our attention to horizontal forms as

this is sufficient for our purposes.

Definition 5.13 (Admissible forms) We will say that a horizontal form P is admissible
if there exists a (multi)vector field Ep such that Ep Q2 = §P. Ep is called the Hamiltonian
vector field related to P.
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Proposition 5.14 P can be a non-trivial admissible form only if either P € & or
PcoOb,

Proof. The proof follows from a simple counting argument, and it is similar to the one of
Proposition 3.11. Suppose P € «7(%5). Then, since Q € /Y in order for a (p, q)-vector
field! £p to exist such that £puQ = 6P, then necessarily 2 —p =1 and 1 — ¢ = 5. So
p=1and ¢ =1—s > 0, and therefore s can only be 0 or 1. O

We now produce a statement that is similar to Proposition 3.13, but for the multiform
case. The proof is easily obtained as an extension. We will use this result systematically

without quoting it in our examples below.
Let us denote by Sq the set of basis elements du, ’ that appear explicitly the symplectic

multiform. It is a finite set since (2 is derived from .# which is assumed to depend on ul(i)

()
l

with |i| < m for some m (finite jet dependence). Hence, we can assume some ordering on
Sq such that we can label the 6ul(2)’s as 0vj, j = 1,...,#Sq. We then write

Q= E E wzj&)i A dvj A daF (5.12)
k=0 i<j

where I, C {1,...,#Sq} for each k. Note that each wzj € o/ so has a dependence on the
local coordinates u,(%) which we do not show explicitly.
Proposition 5.15 (Necessary form of an admissible 1-form.) Suppose F'=Y}_, Fy dz* €

OV s an admissible 1-form for the symplectic multiform (5.12). Then, for each
0 <k <n, Fj can only depend (at most) on vj, j € Ij.

We can now define the multi-time Poisson brackets for admissible forms, in analogy with

the covariant Poisson bracket.

Definition 5.16 (multi-time Poisson brackets) For two admissible forms P and Q, of

degree respectively r and s, we define their multi-time Poisson bracket as
P, Q} = (-1)"¢padQ. (5.13)

Remark 5.17: This definition is formally the same as the one of the covariant
Poisson bracket (3.10). However, we stress that the symplectic multiform of the
hierarchy is different from the the multisymplectic form of a singular field theory, as it
includes additional terms. Therefore, the resulting Poisson bracket of two horizontal

forms will be different. For this reason we have chosen to use two different notations,

1We mean that £p is obtained with a wedge-product of p vertical vector fields and ¢ horizontal vector
fields.
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i.e. {(', )} for the covariant Poisson bracket, and {[, |} for the multi-time Poisson
bracket. The two brackets coincide, in the case of a 1 + 1-dimensional field theory,

when n = 2.

These Poisson brackets are graded antisymmetric and bilinear in the space of admissible

forms. In particular

o P.Q € /™, then {{P,Q}} = ~£p6Q = —{Q, P}y = g0 P;
e Pco/OY and H € o/, then {{H, P} = (0P = —{{P,H]} = £padH.

As mentioned before for the covariant Poisson bracket, our definition may lead to issues
regarding the Jacobi identity for instance. However, we investigate this further in
connection with the r-matrix structure of the multi-time Poisson bracket whereby the

Jacobi identity translates into the classical Yang-Baxter equation.

Theorem 5.18 On the equations of motion

dF = &pi0H (5.14)
for any admissible 1-form that does not depend on the independent variables.
Proof. The proof is easily obtained as an extension of the proof of Theorem 3.15 O

If the components H;; of ‘H are admissible O-forms, then the previous proposition leads

to:

Corollary 5.19 On the equations of motion
n ..
dF = > {Hy, Flyda". (5.15)
i<j=1

for any admissible 1-form that does not depend on the independent variables.

Proof.

dF = &po0H =Y Epa6Hiyy Ada = =) {[F, Hylda' = {{Hy, Flyda . O

1<j 1<J 1<j

This is a generalisation of the usual Hamilton equations in Poisson Bracket form for
classical finite-dimensional mechanics f = {H, f}. In our context, this result turns out to

be useful in relation to conservation laws within an integrable hierarchy. Indeed, if F' is a
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1-form, we have
dF = Zdl‘j A 8]'F = Z &Fjdﬂ Adz? = Z(&F‘J - BJF,)de A da?
7=0 4,j=0 1<J

which means that, in fact if dF' = 0 on the equations of motion, then
0;F; = 0;Fj;, Vi # j. (5.16)
This suggests the following definition.

Definition 5.20 We say that an admissible 1-form F' is a conservation law if dF' = 0

on the equations of motion.
The next corollary then follows immediately from Proposition 5.18.

Corollary 5.21 A admissible 1-form F is a conservation law if and only if on the

equations of motion §p10H = 0 or, if each H;j; is admissible,

{Hj, Fly =0  Vij. (5.17)

This is clearly an extension of the concept of first integral in classical mechanics. As we
will show on some examples below, a rather elegant byproduct of our approach is that
the very definition of an admissible form being a conservation law can lead to its explicit

form.

We now address the relationship between the multi-time Poisson bracket that we just
defined and the single-time Poisson brackets that can be derived from the single Lag-
rangians L;; using the usual construction. This generalises Proposition 3.17 to the case
of Hamiltonian multiforms. Starting from the decomposition (5.9), for each 0 < i < n, it

is natural to want to define the i-th Poisson bracket of two O-forms f,g € & as

{f.9}i = —fjc_nég, where 5}4% =4f. (5.18)

We remark that there is no sum on the 7 index.

Theorem 5.22 (Decomposition of the multi-time Poisson Bracket) Let F =) " F;da’
be an admissible 1-form, then for i > 0, F; is admissible with respect to w;. Let G =
Yoo Gidx' be another admissible 1-form, then the following decomposition of the multi-

time Poisson bracket holds:

{F,Gl} = {F,Gi}ida'. (5.19)
i=0
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Proof. The proof is a generalisation of the one of Proposition 3.17 On the one hand, by

definition

OF = Zn:m Adzt,
=0

and on the other hand, since F' is admissible
n ) n .
OF = fF_anui Adx' = Z&F_nwi Adx',
i=0 i=0

hence 0 F; = £pow; so F; is admissible with respect to w; for each 0 < i < n and we can
take f}}i = ¢ for all 0 < i < n (modulo kernel of w;). Note that this gives an idea of how

restrictive it is for F' to be admissible. Next, consider the following chain of equalities

{F,G == £p0G = —£pa(D_6Gi Nda') = —Epa(D | 6, wi A da’)

i=0 i=0
= Z fZGZ,_lfF_lwi ANdxt = Z flGi_l(SFi ANdxt = Z{F” Gi}idxz
i=0 i=0 i=0
which concludes the proof. O

This is the generalization to an arbitrary number of flows in an integrable hierarchy of the
decomposition theorem that was obtained in Proposition 3.17. This theorem describes
the relationship between our multi-time Poisson bracket {[, [}, encapsulating an arbitrary
number of flows in the hierarchy, and the usual and dual single-time Poisson brackets

{, }i, which are related to each flow separately.

5.3 Potential Korteweg-de Vries hierarchy

In the following we will see the example of the Korteweg-de Vries (KdV) hierarchy with
respect to its first two times, so in usual hierarchy notations, we would have z; = =,
x9 = to and x3 = t3 (if one consider the KdV alone, t3 is simply the time t). In fact,
since the usual KdV equation does not admit a Lagrangian formulation, we consider its
potential form instead. It is known that for KdV hierarchy the even flows are trivial
vor, = 0 Vk, so we will also treat the less trivial case of the first three odd times z; = x,

x3 = t3 and x5 = t5. We use the Lagrangians multiforms presented in [V18].
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5.3.1 Times 1,2 and 3

We formulate the first two levels of the (potential) KdV hierarchy, described by the
Lagrangian multiform . = Lis dz'? 4+ Log dz*® + L3 dz', where

Ly = vv2, (5.20a)
Log = —3vive — v1v112 + V11012 — V11102, (5.20b)
L3 = —Q’U% — V1V111 + V103 . (5.200)

In section 2.3 we have checked that the multiform Euler-Lagrange equations dd.Z = 0
are equivalent to
v9 =0, v3 = V111 + 31)% . (5.21)

and differential consequences. The potential KAV from vi3 = (v3)1 = v1111 + 6v1v11. We
are now going to show the procedure to obtain the symplectic multiform from % and

(5.21).

The symplectic multiform We start by computing the d-differential of the Lagrangian

multiform:

8L =v16vs A dz'? + vadvy A da'?
+ (—67)11)2 — '1)112)(51)1 A dz® + (—3’0% — ’U111)(57)2 A dz? + v190v11 A dx*
+ v110v12 A dz?3 — v10v112 A dz?3 — V900111 A dz?3

+ (’1)3 — U111 — 61}%)(51}1 A dz'3 + v10v3 A do'3 — v10v111 A dx'3.

We now use the property dé = —dd on some of the terms to obtain the desired expression
0L = E(L) — dW) | where £(Z) = 0 is equivalent to (5.21). The reader can verify the

following identities

0100 A dz'? = —v190v A dz'? — vi30v A dz'? — v1dvg A dzt? — d(—v1dv A d:pl) ,
v20u1 A dz'? = —v190v A dz'? 4 vagdv A dz?? + vadug A dz® — d(vadv A d:c2) ,
(v3 —v111 — 603)dv1 A da'® = —(vg — w111 — 60%)16v A da'?
— (v3 —v111 — 61}%)251} Adz?3 — (v3 — V111 — 61)%)51)2 A dz?3
—d((v3 — vi11 — 60%)6v A dx?),
—v10vi A dz'? = 0111100 A dz' + vi1120v A dz® + vi116v9 A dz?B
— 0119001 A da®® — v110v19 A dz?®
+ v120v11 A dz? + v16v112 A dz?

— d(—U151)11 A dz? + v110v1 A dz® — 11100 A dl’S).
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Using these identities in 6.Z we get

8.L = — 201900 A dz'? + (—2v13 + 201111 + 12v1011)0v A dz'3
+ (201112 4+ 1201v12)6v A dz®3 + (—6v1vy — 20112)dv; A dz??
+ (=3 4 v111 + 30%)dvg A dz®3 + vedvsdr®® + 2u120v17 A dz
— vydvy1l A dz
— d( —v16v A dat + vadv A da® 4 (v3 — 2u111 — 6vF)6v A da®
+ 11001 A dz — vidvi A da:3)
=£(.%) — doW

where we define Q) = —v;6v A dzt + vadv A dz? + (v3 — 20111 — 60%)0v A da® + v110v1 A
dxz3 — v1dv11 A dx3. We see that E(L)=0%+ dQM =0 is equivalent to the equations

(5.21) and differential consequences. The symplectic multiform is then

Q = — du1 Adv Adzt + Sy A dv A da? + dvg A dv A da®
— 260111 A dv A dx® — 1201601 A dv A dx® + 26v11 A dvqg A da.

Multiform Hamilton equations The Hamiltonian multiform is computed as H =
Zigj H;; dz | using H;; = 51'JOJ§1) - 5j_nw(1) — L;j, and we find

i

Hyz = vy, (5.22a)
Has = —3vivy — vi1102 (5.22b)
Hi3 = vivg — 4?}% + ?)%1 — 2U1v111- (5.220)

The multiform Hamiltonian equations are obtained as

L] 5H12 = 52_10.)1 — 51_10)21

v10V9 + V20V] = —v120V + V20U — V120V + V10V — v19 = 0.

[ ] 5H23 = 53_10.12 — 52_1(4)31

— 31}%5’1}2 — 6’1)11}251)1 — 1}111(51}2 — ’1)2(51}111
= ’1)2351} — U351)2 — 1}23(5’0 + ’1)2(51}3 + 21}111251} — 21}2(5’0111

+ 12v1v120v — 120109001 — 20112001 + 2v120vV11
which implies the following system of equations
vg =0, v12 =0,

2
v3 —3v] —v111 =0, vi12 + 3vive =0,

v1112 + 6v1v12 = 0.
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[ ] (5H13 = 53_1(,01 - 51_1(,«}3:

1)15213 + 1)351)1 - 12’0%5111 + 21}11(57)11 - 21}151)111 — 2111115111
= —7)1351) + U3(5U1 - U13(51) + Ulfgvg + 21}111150
— 2u10v111 + 120101160 — 121)%(51)1 — 20111001 + 20110011,
which implies v13 — v1111 — 6viv11 = 0.
This system of equations is equivalent to (5.21) as expected.
Admissible forms and conservation laws We now describe admissible forms for

this case. A 1-form Q = Q1(v,v1) dx! + Qa(v,ve) dz? + Q3(v,v1,v3,v11,v111) do? for the

symplectic multiform €2 is admissible if and only if

0Q1 Q2 0Q3 1 0Q3

_ - i 2
81)1 82}2 81}3 2 81)111 ’ (5 3&)
0Q1 10Q3
—_— = = .2
81) 28’011 (5 Sb)
Its related Hamiltonian vector field is
0 0 0
o= Q1 o, Q1 By, + Q2 o,
ovy ov ov (5.24)
+ 0Qs _ 6v 0Qs Oy + 10Qs _ 3v 0Qs 0, |
v ! ovyy ) 2 0uy ! ovin )

This can be proved as followed: one takes a generic vector field
g = A0y + B0y, + COy, + DOy, + EOy,, + DOy,

and determines the coefficients comparing the right and left hand-side of {o_) = 0Q).
This translates into constraints on the derivatives of (); with respect to the field and its
derivatives, and determines the coeflicients of the vector field.

We also verify that for any admissible 1-form ) and modulo the equations of motion

dQ = {gadH, or, more explicitly

o 01Q2 — 02Q1 = {0 H2, which means

3Q2v +8QQU _3Q1v _8Q1v __0Q10Hy; | 9Q20H1z
ov ! 0vg 12 ov 2 ovy 12 ov 0Ov Oov 0Ovy
Qi 09
T v 2 ov 1
— —21}12@:0.

8’01
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o 0bQ3 — 03Q2 = {0 Hoz, which means
0Q3 0Q3 0Q3 0Q3 0Q2 0Q2
vy + oy v12 + v Va3 + avnvlm + 81}111@1112 BN V3 90, V23

~ 0Q1 0Has N 0Q2 OHy;
ov Ovy ov  Ovg

an 2 8@2
" (3vi +1}111)W7

0Q3
ov

= 6v1v2

which again is

0Q3 0Q3 0Q1 Q1 2 0Q>
s T3 L 2=t + (20112 — Tl 2 .
v2 g +v12 o, + 20112 Dor + (20112 — 6v1v2) 50 + (—v3 + 3v] + v111) 50 0
[ 81@3 - 83@1 = fQ_léng, which means
%v + —an'v + %U + —GQ?’U + LQS v - —anv — @v
5y LT Gy, Bus 13 Gy VLT gy VI T g Y T
_ 0@ oHys  (0Qs o 0Qs \OHis  (10Qs  0Qs \ 0Hus
81) 81)1 8’0 ! 81}111 87)3 2 81}1 ! 37)111 81}11
oQ1 0Q3 0Qs3 0Qs3 0Qs3
o 2 o Yo 2 %9
— (121)1 + 2v111 Ug)iav —+ 1 BN 67)1 81)11 =+ V11 81)1 61)11)1181)111,
which again is (2013 — 201111 — 1201011) 52 = 0.

We can find a conservation law for the Lagrangian multiform .Z, i.e. a admissible 1-form
F = Fl(U, ’Ul) da? —|—F2(U, UQ) dx? —|—F3(’U, U1, V3, V11, U111) dx3 such that Ep0H =EpH = 0:

e ({pxHis = 0 means that —%Uz + %vl = 0. Since g—fll = —‘g—%, necessarily
Fy = a(v)vy + b(v) and Fy = —a(v)vy + ¢(v) for some a, b, ¢ smooth functions of v.

The condition above then translates to

—d' (v)vivg — b (V)vy — d' (V)vive + (V)1 =0 = d'(v) =b(v) = (v) =0.

We will set a =1, and b = ¢ = 0, so we have I} = v; and Fy = —uvo.
o (pHog = 61)1112% — (302 + 0111)% = 0 automatically.
e Because of the admissibility constraint we have that F3 = —vs + 2v111 + d(v,v1)
where d is a smooth function of v,v;. Now we solve for d the equation épHi3 =
od
(126 + 2011 — 05) 85+ 0250 — R o B8 — Gy 2, = )
Un%ﬂ’fl) — 12v1v1; = 0. This implies
od od
=0, — =12u, — d = 603

% - 8’1)1
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A conservation law is then
F = vidz' — voda?® + (—vs + 2v111 + 6’0%)6[.7}3. (5.25)

In fact its differential dF is

1)12d.7321 + U13d.7j31 - U12d$12 — U23d$32
+ (—vi3 + 2v1111 + 1201v11)dm13 + (—v23 + 2v1112 + 121)12)12)d:623
= —2up0dx'? + (—2v13 + 201111 + 12v1v11)d9513 + (2u1112 + 122}1v12)dx23

which vanishes on the equations of motion.

Another Hamiltonian multiform formulation We now mention how to compute
another symplectic multiform (and its related Hamiltonian multiform). One can perform
an equivalent computation to the one above, making different choices as to what to apply

dd = —dd on, and obtain

QM) = — 60 Adat + U—;év A da?
(5.26)

1
+ 5(1}3 — 91}% — 3v111)0v A dz® + v110v1 A dzd — v1dvg A daB.

Indeed it is easy to check that also JA + dQ(1) = 0 is equivalent to (5.21). Moreover, we
notice that d(Q) — QM) = 0 is also equivalent to the equations of motion, as it should

be since dQM) — dND) = §.% — §.% = 0. We then define

~ 1 1

Q =—6vy Adv Adx! 4+ =6va A dv A da? + =dus A dv A da®
2 5 2 (5.27)

— 9v16v1 A dv Ada® — 557)111 Adv A dx® + 20011 A dvy A da®.

The coefficients of Hamiltonian multiform H = E[lg dz'? + flgg dz? + ﬁ13 dz'3 are

~ 1

Hip =512, (5.28a)
Hys = — 57)17)2 - 5”2’0111 ) (5'28b)
~ 1 5 5

Hiz =50103 + % — 51}% ~ Ui (5.28c¢)

and the multiform Hamilton equations for H and Q bring the same set of equations as

expected.

5.3.2 Times 1,3 and 5

In the previous section we considered the times 1 2 and 3 of (potential) KdV hierarchy.

We can also describe the odd-time flows 1, 3 and 5, using the Lagrangian multiform
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L = L3 dx' + Lqs dx'® + L35 da:35, where

Lig=— 2’1)% + v1v3 — V1111, (5.29&)
Lis = — 5v] 4+ 10v1v} + viv5 — v}, (5.29b)
Lss 261)? — 101}%’03 + 201}%1)111 — 151)%1}%1 + 31)%1}5 + 31}%’011111

2
— 10v1v3v111 + 20v1v11v13 — 120101101111 + 6V1V71g

) ) (5.29¢)
— 5v3vy; + Tv{10111 + V1V115 — V3V11111 + VsU111 — V11V15
2
+ 2v13v1111 — 201110113 + V111011111 — VY1171 -
The multiform Euler-Lagrange equations are equivalent to
v3 = U111 + 30%, Vs = V11111 + 101)? + 5'0%1 + 10v1v111 (5.30)

and differential consequences. If we define the form QM) as

QIS — v10v A dzt + (v3 — 20111 — 61}%)(51} A dz3 4 v110v1 A dzd — vi6v1q A da?
+ (1)5 — 20’0% — 20vv111 — 101)%1 — 21)11111)51) A da?® (5.31)
+ (201)1@11 + 21)1111)(57)1 Adz® — 2v1110v11 A dl‘5,

one can check that 6A 4+ dQ() = 0 is equivalent to (5.30). The symplectic multiform is
then Q = wy Adz! + w3 A dz3 + ws A da®, where

wy =0v A vy, (5.32a)
w3 =0vz A 0v — 20v111 A dv + 20011 A dv1 — 1201001 A dv, (5.32b)
ws =0vs A Jv + (60@% + 20v111)0v A dvg — 200100111 A v
— 20v110v11 A dv — 20011111 A 0v + 2001 6v11 A dvq (5.32¢)
+ 20v1111 A dv1 — 200111 N OV .

The Hamiltonian multiform is obtained in the usual way and reads H = Hi3dx'® +
Hss dx3d + Hys dz'® where

His =viv3 + v%l — 2010111 — 41){’ , (5.33a)
His =vqv5 — 151}‘11 — 20@%1}111 — 201111101 + 2v1111v1 — U%H , (5.33b)
Hss = — 10v}v3 — 1001011103 — 50f1v3 — V1111103 + V11105

+ 31)%1)5 — 6@? — 201}%1}111 + 151)%?)%1 — 31)%1}11111 + 12v1v1101111 (5.33¢)

2 2 2
— 6v1viy; — "o v — v + Vi -
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One can then proceed in a similar way to the 123-times case and verify the validity of the

multiform Hamilton equations:

6H13 :53_1(,01 - 51_1(4}3
6H35 :55_10.)3 - 53_1005

(5H15 :55_10.)1 - 51_1(,05.
We obtain that a 1-form
F = Fy(v,v1) dz' + F3(v,v1,v3, 011, v111) de® + Fs(v, v1, v5, 011, V111, V1111, V11111 )

is admissible if and only if

OF; 1 0F3 1 OF; OF3 OF;
= — = - = — = — 5 (534&)
8111 2 8’0111 2 81}11111 61/3 81)5
OF' 1 OF: 1 OF
1_ 1ok 10k (5.34b)
v 20v;;  20viin
OF} OF; OF;
= + 4v . 5.34c
Oviin On 13011111 ( )
Its related Hamiltonian vector field is
oF oF OF3 OF3 OF;  0F;5
=——0, — —0, — 10 4 - 0
gF 61)1 v ov vl < ov + v 8’1)111 T e 81}11 6’011 s
6F5 8F5 8F5 2 aF5
— —10 10 70vy — 10 — 0
+ < 50 Vg + 1001y Jorns + (7007 Ulll)avlln s
10F;3 OF3 1 0F5 OF5 OF5
- -3 19) ———+5 5 19)
* <2 ou, 8@111> o ( 2 0vy o dv11111 on vy ) M
1 8F5 8F5 ) 8F5
—— =5 35v7 — 5 — | 0, .
(2 ovi oo (8507 = i) v )
(5.35)
From the equations (5.34) one can obtain an admissible conservation law:
F =vy dzt + (—v3 + 2v111 + 61}%) da? (5.36)
+ (—v5 + 2011111 + 20010111 4 1002 + 2008) da® . ‘
In fact we have that d3vy = 01(—v3 + 2v11 + 6v]) implies
vz = (V111 + 31}%)1; (5.37)

the second equation d5v1 = 01 (—vs + 2v11111 + 20010111 + 101)%1 + 2()1;?) instead implies

V15 = (’011111 + 101}? + 5’0%1 + 101}121111)1; (5.38)
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and then 95(—v3 + 2v11 + 6v3) = d3(—v5 + 2v11111 + 20010111 + 1003 + 2003) is satisfied

using the previous equations.

5.4 sine-Gordon hierarchy

In this section we will show another example, i.e. the first two levels of the sine-Gordon
hierarchy in light-cone coordinates. A Lagrangian multiform for this set of equations has
been obtained for the first time in [S16] and is .Z = L1o dz'? + L13 d2' + Log da?3, where

1
Lo :§U]_U2 —+ cos u, (539&)
1 1 1
L3 =gtus + 5”?1 - gu%’ (5.39b)
1 1
Loz = — iugu;:, + ui1uqe + Uy sinu — iu% COS U. (5.39¢)

The multiform Euler-Lagrange equations d§.Z = 0 are equivalent to
. 14
w19 +sinu =0, uz — Hui U111 = 0 (5.40)
and differential consequences.

The symplectic and Hamiltonian multiform An similar computation to the ones
above yields the form QW) as

3
u u
v U

1 1
0 = —§U15U Adxt + §uQ5u Adx? — ( 1 du A dz® + upduq A da®. (5.41)

The d-differential of QM) is the symplectic multiform Q = wy A dzt + wa A da? + w3 A da?,
with

1
w1 :§5u A duq, (5.42a)
1
w2 25(51@ A du, (5.42b)
1 3u?
w3 = — 55’&111 A du — T(Sul A odu + duqr A duq. (5.420)

The Hamiltonian multiform H = His dz'? + Hiz dz'® + Hos dz?? is computed as

1
His =5 U1t + cosu, (5.43a)
1 1 1
Hiz3 =— §U1U111 + iufl — guzll, (543b)
1 1
Hoz = — §U2U111 — ZU?UQ + uyp Sinu — iu% COS U . (5.430)
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The multiform Hamilton equations are obtained as dH = Z?Zl dz? A 5j_lQ and are
equivalent to the multiform Euler-Lagrange equations, as required. In particular we have
for (5H12 = 52le — 51JW2

—51@—1— 5u1+smu(5U——5 1_%5 _%5 “1‘76@62

which implies u12 + sinw = 0, and for § Hoz = 53_:(,02 — 52_:w3

2
3
(u11 cosu — % sinu)du + (—ZU%UQ + ug cosu)dug

(_@ _ j)
2 4

u23 1112
U5, s 5
g U 5 ouzt

3

2 2
+ Zululgéu — ZuluQéul — U1125U1 + U125U11

dug — sinuduil — —(5u111

Uz
u — —5u111
2

which implies

. 1
u12 +sinu =0, U3:u111+§u‘i’,

2
ug3 w2 3 u? .
u112 +upcosu =0, 74— 9 +1u%u12—|—uncosu—|——lsmu:0.

where the last two equations are differential consequences of the first two. Finally

(5H13 = 53J(U1 — 51JW32

u
(—— L 5 )5u1 + u1dur; — *51&111

U13 Uil
= Do — = ou+

3
5 ou — %(5’11411 + Zu%unéu

- ZU15U1 —u1110u; + urduiy

which implies again us = w11 + uz{’ /2 and its differential consequence w3 = w1111 +
3ufuiy /2.

Admissible forms and multi-time Poisson brackets One can then investigate the

presence of admissible forms:

o A O-form H (u,uq,us,uir,uirr) is always admissible, with Hamiltonian vector field

OH 5 OH OH
=(2—— e —2—0,
§H < ou, 3u 8u111)8 A Oy 9us Oy N\ Oy

0H

Uil

H H H
3 28 9 >8u1/\al 0 aul/\ﬁg.
Ou1y

2
+ 8U11 ou

Oy, /\834-(

We remark that g is not unique;

e A l-form P = P dz' + Py dx? + Py da? is admissible if and only if P, = Py (u,u1),
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Py = Py(u,us2), Ps = P3(u,u1,u11,u111), and

oP; oP;
— =2— 44
aun B’LL ’ (5 a)
oP; or, 0P
= — = 44b
8u111 8u2 811,1 ’ (5 )
and its related vector field is
e =210, 2510, +25 20,
(5.45)

— == 0 —2—=) Ouyyy-
+ (8U1 b 8u11 v + ul auu ou e
e The only admissible 2-forms or 3-forms are the constant ones.

For such forms we can define the multi-time Poisson brackets. The Poisson bracket
between an admissible O-form H and an admissible 1-form P = P, dz!' + P, dz? + Ps da®
is EpH, therefore

oP, 0H oP, 0H or, 0H oP; 0H

H P} =2-—-"——2_—~ 22— 92— °
{[ ’ ]} E)ul ou ou 8u1 + ou 8u2 ou 8u111

oP; OH _3 0Py OH 3 ,0P, OH
Auy Ouyy Yourty duyy 2" YOuyy Ouiny

(5.46)

If P= 2?21 Pidx' and Q = 2?21 Q;dx' are admissible 1-forms, then their Poisson

bracket satisfies the decomposition

{P,Q} = {P1,Q1}1dz" + {P, Q2}2 da” + {P3,Qs}3 da®, (5.47)

where

S0P 0Q1 0P 0Qy
(P, Qih =27 o, 28u1 B (5.48a)

3P2 0Q2 0P 0Q)2

P. = -2 4
{ 2)@2}2 au ou au2 5 (5 8b)
aP 0 oP; 0 OP; 0 0P3; 0
(Py, Q)5 =221 Qs , 9P 9Qs L o Qs 0P 0Q3
ou 8U111 6U111 ou 8U11 8“1 8u1 8’11,11 (5 48(?)
3u2 oPy 0Q5 §u2 OPs 00s :
LOui1y Ouiy Louyy dupyy

Contrary to the potential KdV example (and AKNS example below), for the sine-Gordon
hierarchy we were not able to find a admissible 1-form producing conservation laws in

the sense of Definition 5.20. However, it is possible to find a non-admissible 1-form
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F = Fydz' + F» dx? + F3 dz3 that is closed on the equations of motion, as follows:

L o

= gup, (5.49a)

Fy = cosu, (5.49b)
3 4 L o

F3 = gul + uiu111 — §u11 . (5.49(3)

Then, on the equations of motion, one checks that
81F2 = 82F1 s 81F3 = 83F1 R 82F3 = 83F2 . (5.50)

Thus, the sine-Gordon example points to a need to extend our approach to conservation

laws beyond admissible forms.

5.5 The first four flows of Ablowitz-Kaup-Newell-Segur hier-
archy

Our last example deals with the Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy. For this
example, we include one more time compared to previous example, to remind the reader
that in principle we can keep adding more times in a multiform, corresponding to adding
more and more flows in the hierarchy. However, as becomes clear in this example, the
explicit expression soon becomes cumbersome. How to obtain a Lagrangian multiform for

any number of flows of the AKNS hierarchy will be explained in Chapter 6.

Multiform Euler-Lagrange equations We start from the Lagrangian multiform
adapted from the one in [SNC19b]

L = Lo dz'? + L3 da'3 + L1y dz't + Log da? + Loy dz** + L3y dz3* R (551)
where
) 1 1
L2 25(7”% —qr2) — ST~ §q27‘2 ; (5.52a)
1 1 3iqr
L3 =§(TQ3 —qr3) — g(ﬁCJu —qir) — ?q(”h —qr), (5.52b)

/) 1 )
Los :Z(%Tll —Tr2qu1) + 5(%7”1 +73q1) + §(91T12 —T1412)

3iqr 1 1
+ ?(QW —rge) + g — qu(qrn +7q11) (5.52¢)
1 1
+glan —ra) + 5,
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and

7 5
Ly 25(7‘(14 —qry) + EQT(QTM +7q11)
(5.53a)
+ i((127‘% +a@r?) + lqrmn — 1(1117’11 — }q?’r?’
16 4 8 4 ’
3% 9 9 1, ., 9 5
Loy qu r(rq1 — qri) + Tﬁ(q rire + r°qiq2) + TGQT(QT12 +7q12)
i iy Ly i
- gqr(rqln —qrin) — é(q T — T qIqin) — gqm(rql —qr)
4 (5.53b)

) 3 1
+ ZQT(HQH —qir) — qu(QN“Q +rige) + g(Q1117“2 +r11192)

1 1 1
+ E(Qnﬂ’u - ?”111(111) - g(Qule + r11Q12) + 5(6]1?”4 + 7“16]4) )

1 1 1
L3y =— g(CI117’13 + 7’11(]13) + g(Chn?“g + 7“111Q3) + 3*2(]1117“111

1 1 37
- @(QQT% +7qd) — EQ%T% + qu(WM —qry) — 39

9
g

3 1
+ Eq%z(qm +rq1) + E(cfm"a +72q1g3)
. (5.53¢)

5 ) 3
+ EQT(QH:}, +rqi3) + Z(Qum —r11q4) — TGQT(Q17“111 +riqii1)

1 1
- TquanH + E(h?"l(qul +7q11)

15 , 3

+ —*r?qr — Sqr(qirs +r1gs) — 3.(Q17’14 —Tr1q14) ,
16 8 8

As proved in [SNC19b], the corresponding multiform Euler-Lagrange equations ddL = 0
produce the familiar first three levels of the AKNS hierarchy

) 1 . 1
W2t ¢°r=0, ry = gt gr? =0, (5.54a)
1 3 1 3
g1 — —qrqr = Sr — —qrr = 54
g3 + 70— Sara 0, r3 + LT 5 0, (5.54b)
1 34549 1, 1 3,
194 = Sq1111 + 747" — ¢ — g1 — qrqir — 91T,
8 4 4 2 4
(5.54c)
, 1 320, L2 1 N L3,
irqgy = —=T - — T —-T —rqg1r rr —-T .
4 3 1111 4(1 1 qi1 B qir1 T qrri 4 19

The symplectic and Hamiltonian multiforms As done in the previous two ex-

amples, the computation of the form QM) from 6.% gives

Q) = <—2r5q + Zq5r> Adzt + (—1q15r - 1r15q) A da? (5.55)
2 2 2 2
? 3, 1 31, 1 1 3
+ <<4T11 -] ) oq + (—4Q11 + 54 7“) or — §T15q1 + 8q16r1> A dz
1 1 5 3 1 1, 3
+ < <87“111 T 8(1?“?“1) 0q + (861111 Tl — 8q7“ql> or

1 5 1 5 4 .
—= — ) —= — ) dx* .
+ < 8T11 + 16q7“ > q + ( 8(111 + 16q T) 7‘1) A ax
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In fact, we have that .2 = —dQ() is equivalent to the equations (5.54). The ¢-differential

of QW is the symplectic multiform

Q= w Adz! + wy A dx?® + ws A dx® + wy A da?, (5.56)
where
w1 =idq N\ or, (5.57a)
Wy = — %(6(11 A Or + 6r1 ANdq), (5.57b)
w3 :i(érn Adq — dqu1 N or) + i&h Aory + ?)Zﬂéq Ao, (5.57¢)

1 1 1
Wy =§57"111 Ndq + §5Q111 N or — §57“11 Noq
1 1 1
- §5CJ11 Aory — ZTQ&B Adq — Zq2c5r1 A or (5.57d)

1
—qréqy N\ or — qréry A dq — Q(fh?“ —qr1)dg A or.

The Hamiltonian multiform H = Hjs dx'? + Hyz da'® + Hyg dx' + Hos da?3 + Hoy dz?* +

H3, dz3* can now be computed and brings

1
Hyy =5 (a1 +¢*r%), (5.58a)
)
His ZZ(T11Q1 —qur) (5.58b)
1 1
Hyy = — g(Q%T2 +¢*r}) + g((hn?‘l +qiri11)
) X (5.58¢)
1 B 133
8(1117“11 qrqir1 + 461 T,
1 r 1 1
Hyz = — g + qz(qrn +qur) - g(qu —qir)® - 56137“37 (5.58d)
qr 37 1q1r
Hyy Z%(“Jm —qrin) + §q27“2(q7“1 —rq1) + q; Lrq1 — qr1)
qr )
+ %(Ch?”n —71q11) + TG(Q117“111 — q111711) (5.58¢)

7
+ g(qzrlrn — 7 q1q11),

1 1 1 1
Hyy = — T6(q2T1T3 +r%qig3) — i+ 372((]27%1 +ahr?) + 3—2(1%7*%
9 3 3
+ §q4r4 — Eq27’2(q7“11 +qur) + Tqu(qerl +71q111) (5.58f)
+ i i ( + ) g 2.2
16Q"”Q117“11 166117"1 qrii + quir 16@ rUqiri -

The multiform Hamilton equations are obtained as dH = Z?Zl dx? A @JQ. One checks
with a direct computation that they indeed reproduce the set of equations (5.54). We
remark that Hio and Hi3 are the covariant Hamiltonian densities of respectively the NLS

equations and the modified KdV equation already obtained for the first time in [CS20a]
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and reported in Chapter 4.
Admissible forms and multi-time Poisson brackets We have the following facts:
Proposition 5.23 e Any 0-form H is admissible;

o A I-form

F :Fl(q7r) dxl + FQ(q7T7 q1, 7’1) dxz + F3(q7 r,q1,71,411, rll) dxg

+ Fu(q, 7, q1,71, q11, 711, Quit, m111) dat

18 admissible if and only if the following relations hold

%};1 — ngfl? = _4253; = _Siaiill , (5.59a)
8;;1 _ _27;‘31:12 _ _4(‘§§’i Y aii , (5.59D)
% = 21212” = —437%, (5.59¢)
8;;2 = —2igi” = —42&, (5.59d)

OFy i OF) i0F3 i 40F)
— = —qr——t+ - — -7 —. .59f
oq 41 dq + 2 0q 4" or (5.59%)

and its Hamiltonian vector field is

(o _ QR0 0RO 0RO 0RO
E= or Odq dq Or or Oqi 0q Orq

i <6qraF3 n 8F3> 0 4 (6 0F3 8F3> 0

T +
orin  Or ) Oqun 1 Ogn  0Oq ) Orn (5.60)
+8<8F4+228F4+8r6F4+4( r—r )8F4> 0 |
or 1 0q11 1 orn N 1 ori11 ) 9qin
oFy 9 OFy 0Fy OFy > 0
+8| - +2r +8qr— —4(qir —mq) 57— .
( dq ori1 1 dq11 (@ 19) Oqi11 ) Orin

Proof. We start by proving that every 0-form H(q,r,q1,71,q11,711,q111,7111) is admissible.
This is achieved by starting from a generic multi-vector field (with the right degree) that
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up to elements of the kernel of € is

9 0 o
5H_( 19q +bla) 9zl
P P 0 o 0
+<a287q+b26 +62871+d267a1>/\@
P P P o o P P
+ (a?’a*q thag, t g, Ty teg o +f3787~11) Py
P P

+(a—+b—+c A P P L AL AR A )/\i
! q Yor T Moq T o 48Q11 Yorn 94361111 Yorm ozt

and we look for its coefficients by imposing £ 1) = §H. By using the explicit expression
of © we get
Eg Q) =ia16q — ibyor
1 1 1 1
+ 5(1257“1 + §b25q1 — 50257“ — 5(125(]

: y ) Y . . .
- 360357‘11 + iq7‘a357’ + 263&]11 — Equb35q + 20357’1 - 26357’1 — %d35Q1

4 2
1 1, 1
- §a457’111 + d a40q1 + qrasory — 5(6117’ — qr1)aq0r
1 1 1
- §b45CI111 + Zq2b46ﬁ + qrbsdgr + 5((]1?“ — qr1)badg
1 1 1 1
+ §C457‘11 — 17‘2645(] — qreqdq + §d46q11 - 1q2d45r — qrdor

1 1 1 1
— esbr1 — = f40q1 + = gabq + ~had
40T 8f4 Q1+894 q+847’

=0H .

We must therefore have the following relations

OH 1 1 1 37 1
Dg 8h T qrdy — 17”264 + 2(611?“ —qri)by — Equb?, - §d2 +iay
OH 1 1 1 37 1
B §h4 —qresa — Zq2d4 - 5((117‘ —qri)as + Elqm:a 30~ iby
OH 1 1 7 1
— = by + -r%ay — —ds + =b
a0 8f4+q7’4+47“a4 43+22
oH _ 1 ol i1
— =—=e ras + — - =
e geatarast 1+ jost gan
OH 1 7
R LT
o0, 8 4+ 1%
OH 1 7
=—c4— —a
ory 8 ¢ 48
OH 1
0q111 8
OH 1
=——a
ori g

that can be always be solved as there are more variables than equations. Therefore for
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every H we can find a vector field & such that {7 Q2 = 6H.

We now treat the case of a 1-form F'. A generic vertical vector field has the expression

£ —ag+b£+ci+di+ea +fa + 0 +h 0
F dq or oqn or 0q11 orn gamn orinn’

The insertion with € is
EpaQ = — ibdg A da' + iadr A dzt
1 1 1 1
— §d5q Adz? — 5057“ Adx? + §b6q1 Adz? + §a5r1 A dz?
+ z(i _3 rb)oq A dx> + i(—E + 3 ra)or A da® — ﬁé Adx® + i—c&“ A da?
4 2‘] q 1 2q 4 q1 1 1
" .
+ Z2(5(111 Adx® — %67’11 A da?

1 1 b
+ (=g —qrd— ZT‘2C + =(q1r —qr1))og A dx?

3 2
1 1
+ (gh —qrc— Zq2d — %(qlr —qr1))or A da?

1 1 1 1
+ (—gf +qrb+ ZT2G)5Q1 Adzt + (—=e+ qra+ —¢*b)ory A dzt

8 4

1 1 1 1
+ gdéqn A dx? + 5657“11 Adxt — gb(sqnl Adzt — §G5T111 Adzt.

We have the following equations from £p Q) = §F

on _ _ b on =ia
dg or
8F2 1 8F2
— =——d — =——c
dq or
oFy 1 o, 1
—= ==b — =—qa
o 2 or
oy if % OF, __ic 3
dqg 4 2 1 or 4 21
oF, __id oF, _ic
6q1 N 4 37"1 - 4
OF3 _@ or3 B La
aCIll 4 87“11 - 4
— =—qg—qrd — - - — —— =—h— — —qg°d — = -
T L ctglar—an) - =gh—qre—q 5 (@ —ar1)
—_— = b+ = —_— = —q°b
aa 8f+qr + e e 8e+qra+ 14
oF, 1 oF, 1
— =—d =—c
afhl 8 ory1 8
o0F, 1 0Fy 1
- — 7b = — —Q
Oqin 8 ori11 8

for which one can find a solution if and only if the equations (5.59) hold.
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Remark 5.24: Looking at the previous proof, the reader surely realises that the
calculations, albeit still possible, become more and more cumbersome when we
start including more times. As we discovered, this is due to the not ideal although
traditional choice of coordinates ¢, 7, and their derivatives with respect to z!. It will
be rather effortless to reobtain the same results with another choice of coordinates in
Chapter 6, where we deal with the whole hierarchy. We still chose to report these

calculations to show another traditional example of a Hamiltonian multiform.

We can derive the general expression of an admissible 1-form, given the first coefficient
Fi(q,r). This is important because it will allow us to find the coefficient of a conservation

law (which is a special admissible 1-form) in a systematic way.

Proposition 5.25 The general expressions of the coefficients of an admissible 1-form
F = 2?21 F;dx' are, in terms the first Fy

h :% <%};1q1 - aalilrl> +a(q,r), (5.61a)
P loR - 10F _1(3217172 PF L O0'F T>
5 4 dq M=y Mg o 0¢? N 8q87“Q1 ! 5 61b
i 0a i 0a (5.61b)
+ §%Q1 T 5t +b(q,7),
Fy ! <8Fl7’111 — 8Flfhn)
8\ Or dq
i (0*Fy 0’F 0’F
+ 3 (Wﬁrll - 67(12(11(111 + w(rlfhl - Q17”11)>

L @r +@ —i—i(r + 2r)@—i(rr +r? )@ (5.61c)
487"11 8q£]11 4QQ1 Q1aq 4(11 q1 .blc

or
w5 (et G et) + 15 (aaerin — gggror

1 /0% 5, 0% , d%a i (Ob b
— g aiqqu + er + 2@6117“1 + 5 8*(}‘11 - Erl + c(q,?“)

where a(q,r), b(q,r), and c(q,r) are arbitrary smooth functions of ¢ and r only.

Proof. Since % = 21"?)—512 and 88—121 = —2@'%% we find (5.61a). Then, since % = —iaa—zl
dF3 _ _10F
and oy = —18—7} we have
10F; 10F;
Fs=——q1—-——ru1+ (.. )qg,rq,r).
3 48qczn iy St (.. ), qu,71)
Then we use the fact that % = 2@'% and % = —22’% to obtain
1 q q1

OF, 1 (PR 0B\ ida  OF_1(0R PR\ it
o1 4 \ogor ' 0g? « 20q’ or1 4 8q8rq1 or2 1 20r
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we then use partial integration and find (5.61b). Similarly we can compute the fourth
coefficient F;, which results in (5.61c). O

For admissible forms we can define the multi-time Poisson brackets. The Poisson bracket
between a 0-form H(q,r,q1,71,q11,711,49111,7111) and an admissible 1-form P = P; dxt +
P dx? + P3 dx3 + Py dx?t is ¢EpH

OHOP, O0HOP BH 0P aH 0P

O s N N -
{l#, Pl Oq Or or Oq 87’1 dq 8q1 or
+24gr oP; OH . oP; OH +43H 0P; _43H 0P
dqu1 Or11 Or11 Oqnu oru 0q O0qi1 Or 5 62
+8i <8P4+226P4+8rap4+4( r—r )8P4> o 02
0 0 411 1 orn N 1 orin 8C]111
(0P, _ 0P oP,s oPs ) oH
+ 8 + 2r + 8gr—— —4(qg1r —r .
(361 iy " O0q11 (a1 lq)afhn ori

If P = Zf‘zl Pidx! and Q = 2?21 Qidz® are admissible 1-forms, then their Poisson

bracket satisfies the decomposition

{P,Q} = {P1,Q1}1dz" + {P, Qa}a da® + {P3,Q3}3 da® + { Py, Qu}ada’,

where
0P 0Q1 0P 0@y
{P17Q1}1 ( aq (97“ 87’ 8(] > ) (5633‘>
o, [(O0P20Q2 0P 0Q2 0P 0Q2 0P 0Q:
{P2, Qa}s _2<8q or1  Or Oq + or 01 Oq 8r> (5.63D)
B OP3 0Qs 0P30Q3 0P3 0Q3 0P 0Qs
{75, Qs}s = (87"11 dq dq Ori1 Ogip Or * or 0qi1 (5.63¢)
0P 0Q3  0P;0Qs3 _6 r(ap?) 0Q3  0P3 0Q3 > .
0q1 Or1  Or1 Oqu 1 Oqi1 Or11 Ori1 Oqia
0Py 0Q4 OFy 3@4) <3P4 0Q4 0Py 3Q4>
Py Qi)s=—8 - +8 -
{F1, Qaka <3Q111 or or dqin Oq Ori11 Orinn Oq
_g <3P4 0Qs  OPy 6@4) 48 (5134 0Qs 0Ky 5@4)
Oq1 Or11 Orir Oq Oqi1 Or1 Or1 Oqu
0Py 0Qqs 0Py 0Q4 0Py 0Q4 0Py 0Q4
R L N P S SN MU, R P W
qd11 07111 111 0411 11 04111 q111 OTri11 (5.63d)

0Py 0Q4 0Py 8Q4>
+ 164¢° ( —
1 0qi1 Oq111 0q111 0q11
4162 <3P4 0Qs OB 8@4)

Or11 Oriin - Orinn Ornn

oPy 0 oP; 0
+32(ql7‘—r1q)< 4 0Qs 0Py Q4>

orin athn 3(1111 orin

Using this decomposition we can read the single-time Poisson brackets: { , }1 is (up to a

sign) the usual equal-time Poisson bracket of the AKNS hierarchy, which in the traditional
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infinite dimensional setting provides the first structure (in the sense of bi-Hamiltonian
theory) for the whole hierarchy, while { , }2 3 are the dual Poisson Bracket of respectively
the NLS and mKdV which can be found in [ACDK16].

Remark 5.26: The multi-time Poisson brackets {[ , [} satisfy a classical r-matrix

E S5+ This will be explained in Chapter 6

structure, with the rational r-matrix r12(\) =
using a different set of coordinates that allows us to prove the r-matrix structure

more elegantly and for the whole hierarchy.

Conservation laws Since the coefficients of the Hamiltonian multiform are admissible,

the multiform Hamilton equations in a Poisson bracket form are

dF = &p i0H = Z{ i, I} da'd

1<j=1

for any admissible 1-form F = F} da' + Fy dx? + F3 dz® + Fy dz*. We can also find the

first conservation laws for the AKNS hierarchy, i.e. F' is a conservation law if
{[Hij,F]} =0 Vi<j. (5.64)

We can solve the latter equation in the space of admissible forms (see Proposition 5.25 for

the general expression of the coefficients) to find a conservation law. From (i,7) = (1,2)

we get
2 OF) or, i 0°h i 0°Fy da da
Hy, Fl} = - ro— P- = =0.
{{H12, F} iqr 8r+q 9 +26q2q1 5 5,2 1+8q1+8
This translates into 7’831? =4q 83};1 and 5 = 83121 = 0, and therefore? Fy = gr, and
%‘qL = % = 0, so therefore a is constant, which we set to zero. The coefficients become
then
Fyo=qr, (5.65a)
1
Fy =5 (ras —qr) (5.65D)
1 1 1
Iy =— 7 T gt g+ b(g,7), (5.65¢)
1 1 (0b ob
Fy =3 (griin —rqui1 +qurr — qirun) + B (8 q1 — 87”1) +c(q,7) (5.65d)

with b and c left to determine. From (i, j) = (1,3) we get

0b ob

3
{{H3, F}} = —§(qr2q1 +@*rr1) + qra + 11

dq o~ O

2The solution F; = 0 would bring the trivial conservation law so it is rejected.
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and therefore we choose b = %q2r2. The fourth coefficient becomes then Fy = %(qnn —

rqi11) + é(anl —qir11) + %qr(qlr —qr1) + c(gq,r). It can be verified by looking at the

coefficient (1,4) that we have a conservation law when ¢ = 0. A conservation law is then

i 1
F =qrdz' + §(Q17“ —riq) da® + 1(34127“2 +qir1 — qur — r1q) da?
. . . (5.66)
1 ) 3t 4
+ <8(q7"111 —rqu) + g(qllrl —qir11) + ZQT‘(QN" - qu)) dz”,
which reproduces the known conservation laws and conserved quantities of the AKNS

hierarchy: gr is interpreted as the mass, qir — gry as the momentum, etc.

5.6 Hamiltonian 1-forms and involutivity of single-time Hamilto-

nians

We leave momentarily the realm of classical field theories to look at finite-dimensional
Hamiltonian systems. In particular, we want to connect our results on Hamiltonian
multiforms [CS20b] with the results of [V20], considering the case of a hierarchy of
commuting ordinary differential equations, one for each time z?, 0 < i < n. We consider
the configuration space to be R for simplicity, but this could be extended to other manifolds
in general. In the Lagrangian multiform formalism, the dynamics are encapsulated by a
Lagrangian 1-form % = >I' | L;dz’, where each of the L; € & is dependent on a field ¢

L 2, and a generalised variational principle

ddZ = 0. We consider the coefficients used in [V20]

and its derivatives with respect to the times x

1
Ly = 54t = Vila), (5.67a)
Li=qq —Vilg,q1), i=2,...,n. (5.67b)

This corresponds to the common case in which the first Lagrangian Ly is ‘Newtonian’

and the other Lagrangians are linear in the velocities. In [V20] for instance are listed
some examples, including the Toda lattice and the Kepler problem. The multiform Euler-
Lagrange equations for a generic Lagrangian 1-form .Z have been explicitly obtained in
[SV16, Theorem 2.5|, and in this case are

ooV _ 9V
dq y 4 = da y  qli = g .

qu = (5.68)

The work [V20] linked the closure relation d.¥ = 0 (modulo these equations) to the
involutivity of the single-time Hamiltonians: if H; is the Hamiltonian obtained in the

usual way from the Lagrangian L; with a Legendre transformation, and { , } are the

34.e. of the form L = K — V', where K is quadratic in the velocities and V is a positional potential.
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canonically constructed Poisson brackets, we have that
d¥ =0 <~ {Hj,Hk} =0. (5.69)

This is a rather important results, as it links the closure relation d.Z = 0 of a Lagrangian
1-form to Liouville integrability. We will re-interpret it as the closure of the Hamiltonian
I-form H =Y, H; da’.

Preliminarily, we remark that all the objects introduced in this section for the case of
integrable hierarchies of classical field theories could be extended (or better, reduced) to
the case of integrable hierarchies of ODEs: we keep the same definitions, just changing
Lagrangian multiform from an object in &2 to an object in «7(®'1). As a consequence,
we have that Q) € @10 and that Q1) = Q € 729 will represent the usual, single-
time symplectic form. This is to be expected: as we do not have a 1 + 1-dimensional field
theory but only a ODE, we do not have to make any choice between time and space, but
for each Lagrangian L; we interpret ¢ (the only possible coordinate) as time. To Q we

will associate the Poisson bracket
{,}: Ixog — o

which in this case is at the same time a multi-time and a single-time Poisson bracket.
Dickey’s formula H = —.% + Zj dx? A @JQ(I) produces a Hamiltonian multiform
> i H; del € o/ OV whose coefficients H ; will be the single-time Hamiltonians.

The first step is to obtain the symplectic multiform Q = 6Q(!), where (5.68) if and only if
0.2 = —dQM). We start by computing the d-differential of .2, i.e.

0L =(qndq1 — %(5(]) A dz!

9q
oV; aV;
+ > (0160 + idq1 — —-0q —

5q1) A dz'.
i>1 0q On

We now want to turn the terms in dq; A dz! into a total d-differential using the identity

qdq A dat = —quidg Adat = (quidq + q10g;) A da’ — d(qi18q)
i>1
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and therefore obtaining

0L =(—qu 94 )ogq A dx

oV; V; i
+ 3 (= )b+ (= 5e050 — (s + 510960) ' — dlandi

i1
oy
——)0 dx?
=(—qu1 aq) qNax
ov; Z.
+ ; ( - 5Q1 (qui + 34 )5Q> Ndz' — d(qi6q),

which implies Q) = ¢1¢, and therefore Q = d¢; Adg. The Hamiltonian 1-form (multiform
of degree 1) H =", H; dz* is obtained as

H=-2L+Y da' AW (5.70)
=1

Since 5i_|(q15q) = q14;, we obtain H; = q1q; — L;, and therefore we reobtain the Hamilto-
nians in [V20]:

2

q
Hi(g.q1) = Vilg, @),  i=2,....n. (5.71b)

Any function F'(q, q1) is admissible, i.e. there exists a vector field £z such that g Q = 0 F,

where

OF 9 OF 9
9q 9q1  9q1 g

We can therefore define the Poisson Brackets between two functions F'(q, ¢1) and G(q, q1)

§r = (5.72)

as

OF 9G  9F 9G
dq1 dq g Oq1

Moreover, for any function F(q,q;) we have that on the equation of motion (5.68)
dF =" {H;, F}dz', or equivalently

{F,.G} = —&pG = (5.73)

0,F = {H;, F}. (5.74)

From the closure relation dH = 0 we can easily recover the involution of the single-time

Hamiltonians:
dH = Z(@Hj — 8sz~) dx = Z({H“ Hj} _ {Hj, H;}) dat
1<j i<j

=2 {H; H;}dx" =0,

1<j
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and therefore {H;, H;} =0, or 0;H; = 0 Vi # j. The equation 0;H; = 0 is obtained from
(5.74) by antisymmetry.
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Chapter 6

Multi-time approach to the AKNS

hierarchy and classical r-matrix

In Chapter 5 we showed how to describe integrable hierarchies in a Hamiltonian multiform
fashion. This description could, in principle, be applied to any number of flows of
the hierarchy, or even all the countably many flows. The problem is that, although
theoretically possible, adding flows to a Lagrangian multiform (which is the starting point
of our Hamiltonian description) becomes more and more computationally cumbersome
the further up the hierarchy we go, if we resort to the newly developed techniques that
appeared in [SNC19b, PV20]. In this chapter, including content from [CS21]|, we overcome
this difficulty providing a Lagrangian and a Hamiltonian multiform for the complete
AKNS hierarchy. We will also construct a multi-time Poisson bracket with a classical
r-matrix structure that will generalise the results of Chapter 4. Our starting point will be
the description of the AKNS hierarchy by Flashka, Newell and Ratiu [FNR83|, but it will
involve an equivalent but new approach to a hierarchy, that we call multi-time approach,
as opposed to the traditional field-theoretical approach that has been used in the previous

works.

The results in this chapter cast the results of [AC17] in a new light, realising the underlying
goal of bypassing the need to specify an initial time in the AKNS hierarchy. Here we
provide a multiform explanation for this behaviour, casting the single-time Poisson
brackets in the greater structure of the multi-time Poisson brackets. In Section 6.1
we review the fundamental notions of the AKNS hierarchy, and we introduce the new
multi-time approach. In Section 6.2 we introduce the generating Lagrangian multiform,
and we use it to derive the equations of the hierarchy, and the symplectic and Hamiltonian
multiforms in a compact form. In Section 6.3 we recover the classical r-matrix structure
for the whole hierarchy, and we prove that the complete set of zero-curvature equations for
each Lax pair of the hierarchy can be obtained as a multiform Hamilton equation. Finally,

in Section 6.4 we recover the known results for the first three times of the hierarchy. We

101
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remark that the Lagrangian multiform for the AKNS hierarchy can be obtained from a
generating Lagrangian in Chapter 7, together with other integrable models. Many of the

long and not necessarily illuminating proofs are reported in Appendix B.

6.1 The Ablowitz-Kaup-Newell-Segur hierarchy

6.1.1 The traditional field-theoretical approach

In the 1983 paper [FNRS83|, Flashka, Newell and Ratiu introduced an algebraic formalism
to cast the soliton equations associated with the AKNS hierarchy into what is known as
the Adler-Kostant-Symes scheme [A79, K79, S80]. At the same time, the Russian school
unraveled the structures underlying this type of construction which culminated in the
classical r-matrix theory [S83|, and the introduction of the notion of Poisson-Lie group
[D83]. Here, we review some aspects of this topic, freely adapting and merging notations
and notions coming from different sources. It had been known before [FNR83], since the
work of [AKNS74|, that the so-called AKNS hierarchy can be constructed by considering

an auxiliary spectral problem of the form?

am"l} - (T(;Zin> Q(I'Z;\:L‘n)> w = P(:L‘,:Cn, >\W = ()‘PO + P (mv$n))¢v (6'1)

where

Pi(z,z") = (T( 0 q(z,xn)) . Py=—ioy, (6.2)

x,x") 0

as well as another equation of the form

Oty = QM (z, 2" N\,

— % B (6.3)

with Q) (z, 2™, \) = A"Qo(z, 2™) + N 'Qq(,2") + - - - + Qn(z, 2™) where each Q; is a
2 x 2 traceless matrix. Then the compatibility condition 0,0,% = 0,0, translates into

the well-known zero-curvature equation for the Lax pair P(z,z™, A) and Q™ (z,z", \)
OnP(x, 2", \) — 8,Q" (z, 2™, \) + [Pz, 2", \), Q"™ (z,2™,\)] = 0. (6.4)

The usual field-theoretical approach is described as follows. One ‘forgets’ the dependence
on z" (interpreted as the time variable) and considers the coefficients of P;(z) and Q;(z)
to be fields in z (the space variable). By setting to zero every coefficient of A one obtains
a series of equations that allow to find Qo(z), ..., Qn(z) recursively. This produces

Qo(z) = Py, Q1(x) = Pi(x) (up to some normalisation constants) and the entries of Q;(x)

!Traditionally, the flows thus defined are associated to ‘time’ variable ¢t". However, one of the main
points of [FNRS83] is that they all play the same role as 2 which could be viewed as t' in this hierarchy.
We simply denote them all by ™ since whether they play the role of a space or time variable is really up
to interpretation.
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with j > 2 are found to be polynomials in ¢(z), r(x) and their derivatives with respect to
x. The last of these equations is the AKNS flow

nPi(2) = 0:Qn () + [P1(2), Qu(2)] = 0, (6.5)

and produces a partial differential equation for ¢ and r viewed as functions of x and z"
which is integrable (hence effectively ‘injecting’ the dependence on z™ at the last stage).
Different values of n gives the successive equations of the AKNS hierarchy. We list them
for n =0,1,2,3, giving the name of the corresponding famous example (which is usually
obtained by a further reduction, e.g. r = £¢* for n = 2 gives the (de)focusing nonlinear

Schrodinger equation).

e Scaling: gy = —2iq, and r¢ = 2ir,

e Translation: ¢ = ¢, and 7 = r,,

e NLS equation: igs + %qm —¢*r =0, and iry — %rm +qr? =0,

e Modified KdV equation g3 = *%qu + %qrqz, and r3 = —%rmx + %qrrx.
We will show how to obtain the first three equations in detail.

e We start from the case n = 0: we set Q©) = Qu and study the equation dyP —
9:Q0) 4+ [P, Q)] = 0 which translates to

0 0
—iAOpo3 + Op ( q) — 0, Q0 + [—i)\03 + ( q) ,Qo] =0.
r 0 r 0

This is a polynomial in A, and we set to zero each coefficient, starting from the

highest power A! and noticing that dyoz = 0

—Z'[O'3, QO] =0

which tells us that Qg is diagonal: we set Qg = ao3. The next equation is obtained

setting to zero the coefficient of A0 = 1:

0 0 - -2
q0 +[ q ;QO]:O — ao q0 aq -0
ro 0O r 0 ro + 2ar ao

which in turns gives that a (and therefore QQy) must be constant, and gy = 2agq,

ro = —2ar. We obtain the desired equations by setting a = —i, and so Q¢ = Fj.

e We now treat the case n = 1:
. 0 ¢ . 0 ¢
—iAO 03 + 04 o ~ A0 Qo — 0, Q1 + [—ido3 + 0 JAQo + Q1] =0.
r r

The equation coming from the coefficient of the highest degree of A (now A?) is still
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the same: —ifo3, Qo] = 0, which means that we can parametrise Q)9 = aos. The

next equation in the list, the coefficient of \! is

_ax(aa3) + [—iUg, Ql] + [(S g) 7aa3] =0

which implies that a is constant and we again set Qo = —io3, and that the anti-
diagonal part of ()1 is the matrix qo +ro_. We denote the o3 component of ()1 by a.
The last equation comes from the coefficient of \° and is —0,Qo+[Po, Q1]+[P1, Qo] =

0,
(3 963 )
rt 0 Ty Qg r 0 r —a

The diagonal part of this equation restricts a to be constant, which we set to zero

a = 0, while the non-diagonal part brings ¢; = g, ad r; = r,, as desired.

o We report now the case n = 2, which generates the Non-Linear Schrodinger equation.
The starting equation is 9o P(A) — 3,Q@ (\) + [P()\), QP (\)] = 0. The equation
coming from the coefficient of A3 is again —i[o3, Qo] = 0, which means that we can
parametrise Qg = aos. The next is, again, —0,Q¢ + [Fo, Q1] + [P1, Qo] = 0 which
means that we can set Qo = Py and Q1 = @os + qo_ + ro_. The coefficient of \!

brings the equation
—0;Q1 + [Po, Q2] + [P1,Q1] =0

which again implies that a is constant (we set it to zero so that @1 = P;), and
that the matrix Qo can be parametrised a Qo = aog + %qma+ — %rxa_. The final
equation

0oPy — 0;Q2+ [P1,Q2] =0

generates the Non-Linear Schrédinger equation. The diagonal part brings a, =
—%(qxr + qr,) that we can solve by setting a = —%qr, and the antidiagonal part

then gives the desired system
. 1 2 . 1 2
g2+ S0ee — T =0 irz = Sras+qr” = 0.

It is proved that all these equations can be interpreted as Hamiltonian flows which
commute with each other and can therefore be imposed simultaneously on the variable ¢
and r. This is ensured by that fact that the following zero-curvature equations hold for
any k,n > 1 (by setting z = ' and QW) = P),

9.QM (N) = Q™M (M) + [QM (1), QM (V)] = 0. (6.6)

In [FNR83|, these facts and several others were cast into the algebraic setup of the Adler-

Kostant-Symes scheme whereby one can introduce integrable Hamiltonian systems based
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on the decomposition of a Lie algebra into two Lie subalgebras which are isotropic with
respect to an ad-invariant nondegenerate symmetric bilinear form on the Lie algebra. For
the AKNS hierarchy, [FNR83] use fields valued in the Lie algebra £ := s£(2,C) ® C(A~1))
of formal Laurent series in the variable 1/\ with coefficients in the Lie algebra s¢(2,C),

i.e. the Lie algebra of elements of the form
o .
X(\) = Z X; 77, X;€s02,C); for some N €Z, (6.7)
j=—N

with the bracket given by
Y1) =3 3 XLy, (6.8)
k itj=k

There is a decomposition of £ into Lie subalgebras £ = . @ .4 where

00 0
A ={)_X Ty, 4 ={> X V| NeZx}.
j=1 Jj==-N
This yields two projectors Py on .4 and P_ on J# . The following ad-invariant nonde-
generate symmetric bilinear form is used, for all X(\),Y(\) € £,

(XOLYON) = 3 X)), (6.9)
i+j=0

Without entering the details of the construction, we present the summarised results of
interest for us. The entire ANKS hierarchy can be obtained by considering an element

Q(A) of the annihilator of % as the following formal series

B B R S |
Q(A)—ngA =Qu+ s byt (6.10)
Qi = < bi) aA) =D ad™ b)) =D AT N =D A,
G —ai i=0 i=0 i—0

and introducing the vector fields 9, by

(6.11)
=—[P-(A"Q(N), Q(N)] = [R(A"Q(N)), Q(N)],

where R = 1(Py — P_) is the endomorphism form of the classical r-matrix and we
used Id = P, + P_. It is well known that this operator satisfies the modified classical
Yang-Baxter equation and allows one to define a second Lie bracket [ , |r on £ (see e.g.
[S08])

[X,Y]g = [RX,Y] + [X, RY]. (6.12)
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The significance of this reformulation is that the authors achieved several important

results:

1. The equations (6.11) are commuting Hamiltonian flows associated to the Hamiltonian

functions
r(X) = —%(S""(X),X) L keZ, (SFX)N) =NX(N).  (6.13)

which are Casimir functions with respect to the Lie-Poisson bracket associated to
the Lie bracket (6.8). As a consequence, these functions are in involution with
respect to the Lie-Poisson bracket associated to the second Lie bracket (6.12) on £

and their Hamilton equations take the form of the Lax equation (6.11);

2. In this construction, one can get rid of the special role of the = variable, which
is now the variable 2!, no different from any of the other ™. They then propose
to define a hierarchy of integrable PDEs as follows: use (6.11) for a fixed n as a
starting point to determine all the @;. This yields that b;, ¢; for j > n and ay,
J > 1 are polynomials in b;,c;, j = 1,...,n, which are now viewed as functions
of 2™, and in their derivatives with respect to ™. Then, one can use any one of
the other variables z* to induce a Hamiltonian flow on the infinite dimensional
phase space b;(z"),cj(z"), j = 1,...,n. The Hamilton equations take the form of

a zero-curvature equation
QM (", 3) = 0,QW (a", 2) + Q™ (x", 1), QW (", )] = 0 (6.14)

where Q™ (2", \) denotes Py (A"Q())) where the above substitution for aj, bj, c;
in terms of the finite number of fields b;(z"),¢;(z™), j = 1,...,n and their 2"

derivatives has been performed. See [AC17] for more details about this.

a;;,-ek = 9% for all j,k,¢ > 0 where Fy;

can be obtained efficiently from a generating function. For j = 1, they reproduce

3. There exist generalised conservation laws

the usual AKNS conservation laws with Fy; being the conserved densities and Fyy

the corresponding fluxes.

Those results are reviewed in detail in [AC17| where the observation that one can start
from an arbitrary flow z” is used to prove the general result on the r-matrix structure of
dual Lax pairs which was first observed in [CK15] and [C15b].

6.1.2 The multi-time approach

We want to stress that despite the deep observation that all independent variables x7
play the same role, both in [FNR83| and [AC17|, the authors still implement the step of
using (6.11) first for a fixed (but arbitrary) 2™ in order to produce a phase space for a

field theory consisting of a finite number of fields b;(z™), ¢j(z™) j = 1,...,n. This leads
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to a rather complicated construction of the single-time Poisson brackets { , }, and {, }«
in [AC17] whose common r-matrix structure is traced back to the original Lie-Poisson
bracket associated to the second Lie bracket (6.12). In [CS20a] we achieved the goal of
implementing a truly covariant Poisson bracket capable of accommodating any pair of
independent variables 2™ and x* simultaneously and producing an r-matrix structure for
the associated Laz form W ()\) = QU (\)dz™ + Q™ (\) dz*. Another essential question
was still pending, i.e. how to go beyond only a pair of times ™ and z*, corresponding to

a single zero-curvature equation, in order to include the entire hierarchy of flows.

In this chapter, we answer these questions by avoiding altogether the first step of fixing a
given time x", and working with all the equations (6.11) at once using the formalism of
Hamiltonian multiforms. The equations are interpreted as commuting Hamiltonian flows
on a phase space with a countable (but infinite) number of coordinates b;, ¢, j > 1. We
claim that this interpretation, that we call multi-time approach, despite being less known
than the standard field theory viewpoint provides a deeper insight into the structure of
the hierarchy. In the author’s opinion, this interpretation is also a true implementation of
the original observation that all independent variables z°, z!, 2 ... play a symmetric
role, which is better captured by our use of a Lagrangian and Hamiltonian multiform

that do not distinguish any particular independent variable as being special.

Our main objective is to construct a multi-time Poisson bracket { , [} and a Hamiltonian
multiform H = Y772, H;jdz’ A dz’ such that:

1. It is possible to compute {{W1(A), W (u)]} for the Lax form W(A) = 3772, QW(\) da?

associated to the entire hierarchy, and to prove that it possesses the rational r-matrix

structure;

2. The collection of all the equations dQ(\) = [Q*)(X), Q(N\)], k > 0 or, equivalently?,

of all the zero-curvature equations
2,09 (\) = 9, (N + [V (N, QPN =0, i,j>0, (6.15)

can be written in Hamiltonian form as dW(\) = > 272 {[Hy;, W(\)]} dz’ A dad .

In our exposition, the use of generating functions in the form of formal (Laurent) series
will turn out to be extremely efficient. We use the the Lie algebra £ = s/(2, &) @ C(A™1))
of formal Laurent series in the variable 1/ with coefficients being matrices in the Lie
algebra sl(2,.27).

With this in mind, we collect the following set of compatible Lax equations for Q()\) as
defined in (6.10) (that now is no longer a field, but valued in &7),

9:0\) =[P (N),QN)], k=0,1,2,..., (6.16)

2This equivalence does not seem to be well-known but we use it all along and deal interchangeably
with the FNR equations (6.11) and the zero-curvature equations (6.15). The implication (6.11)=-(6.15)
is shown for instance in [AC17, Lemma 3.13]. The converse is discussed in [N85, Chapter 5|.
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where Q) (\) = P, (A\*Q())), into

A
Do) - 12000 o)
W= A
where we introduced the derivation
=1
D, = Z T O (6.18)
k=0
and used the formal series identity
=0 M e g A

It is important not to get confused by the notation D,, which is not meant to be the partial
derivative with respect to p, but simply the generating expression (6.18). We remark
that writing the AKNS hierarchy in the generating form (6.17) allows us to reproduce
quickly known results. From the symmetry of the right-hand side in (6.17), we have
D,Q(\) = D \Q(p), which in component is

OkQj+1 = 0jQi+1, J.k>0. (6.20)
Moreover, by means of the Jacobi identity we have
Dy\D,Q(v) = D, D»\Q(v), (6.21)

which means that the flows 9; and 0y commute?. Finally, noting that the generating

function of the Hamiltonian functions (6.13) is given by
1 ) 1 S |
g(A) = 3 Tr@°(\) = —5 I Qo+ Z Nt gk (6.22)
k=0

we find

Dyug(A) = 0. (6.23)

This shows that the flows take place on the level surface g(\) = C'(\) where C'()) is a

series in A1 with constant coefficients. Therefore, in line with [FNR83|, we fix
TrQ*(\) = -2, (6.24)

in the rest of this chapter.

30f course, this had to be the case in the first place so as to allow us to consider those flows
simultaneously and to define D,,, but this is a good check of the generating function formalism and an
argument in favour of its efficiency.
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6.2 Lagrangian and Hamiltonian multiform description of

the complete hierarchy

In this Section, we first introduce a Lagrangian multiform which allows us to implement
the strategy reviewed in Section 5 to obtain the associated symplectic and Hamiltonian
multiforms for the Ablowitz-Kaup-Newell-Segur hierarchy. In turn, this will allow us to
show in the next section that Lax form of the entire hierarchy possesses the classical

r-matrix structure with respect to our multi-time Poisson bracket.

6.2.1 Lagrangian multiform

Recall that the collection of flows in the Ablowitz-Kaup-Newell-Segur hierarchy is written

in generating form as

D,Q() = SR (6.25)

where

We remark that A and p are formal parameters. In order to find an appropriate Lagrangian

multiform, it is convenient to note that we can write Q(\) as

Q) = p(N)Qop(N) ™ (6.26)
with Q9 = —io3 being constant and
o) =1+5 (6.27)
> o .
j:

This has been established independently from various angles, in relation to the factorization
theorem, see e.g. [SO8| or in relation to vertex operators, see e.g. [N85, Chapter 5|.
Contrary to the parametrisation used in the latter book, we find it useful to use the set

of coordinates e(\), f(A\) found in [FNRS3|* and defined as
OV < 1 N fi
e(\) = N ; e f= a0y 2 x (6.28)

=1
4The authors of [FNR83| use a different notation: the components of @Q are called e, f, h (instead of
our b, ¢,a) and the new coordinates are €, f (instead of our e, f).
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(note that eg = fo = 0) and set

L (VA e
o ( ) 2@'—e<A>f<A>>' (629

A direct calculation using a?(A)+b(\)c(A) = —1 shows that det () = 1 and —ip(\)asp(\) !

Q(A) as required. The reader can find more about the coordinates e(A), f(A) in Ap-
pendix B.1. Their main property is that they provide Darboux coordinates for all the
single-time Poisson brackets { , };. We can now formulate the first main result of this
section. We obtain the desired Lagrangian multiform . = "7 j=1 Lij dz¥ using the
generating function formalism and collecting the coefficients L;; into a formal series in

A1 and p! as follows
i,j=0

By a slight abuse of language, we will also call Z(\, u) a Lagrangian multiform.

Remark 6.1: As mentioned above, most results of this section are going to be
generalised in Chapter 7. For this reason some of the proofs of this section will only

be reported in the appendix.

Theorem 6.2 (Lagrangian multiform and multiform Euler-Lagrange equations) Define
g()‘nu’) = K()‘a ,LL) - V()\,/L), where

KA\ p) =Tr (o) "' Dag()Qo — ¢(N) "' Dpp(N)Qo) (6.31a)
T o 2
Vo - - DO =) o

Then £ (X, ) is a Lagrangian multiform for the AKNS hierarchy equations (6.2.1).

Indeed, the multiform Euler-Lagrange equations 6d.Z = 0 are given by

[Qw), Q(V)] (6.32)

D;LQ()‘) = L — \ ,

and the closure relation d.Z = 0 is satisfied on those equations. In generating form, the

latter is equivalent to

D, Z(\ p) + DrxZ(pn,v) + D, ZL(v,\) =0. (6.33)
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In fact, we have that d.Z =) O Lij — 0jLiy, + 9;Ljx)da* and

i<j<i(
D, L\ ) + DL (pu,v) + DL (v, \)

1 1
=> Nk (OkLij + OiLjk + 0;Lii) = Y NIk (OkLij + 0iLji, — O;Lig).
ijk ijk

The proof is given in Appendix B.2.

Remark 6.3: Although we discovered it differently, we soon realised that the
Lagrangian multiform .Z(\, ) bears some striking resemblance with to the Zakharov-
Mikhailov (ZM) Lagrangian appearing in [ZM80], despite the fact that the latter is
a standard Lagrangian and not a multiform. The ZM Lagrangian was introduced
to provide a variational description of the system of compatibility conditions (zero-
curvature equations) corresponding to a Lax pair of matrices which are rational
functions of the spectral parameter with distinct simple poles. We will see in Chapter 7
how the Zakharov-Mikhailov Lagrangian can be obtained from an extension of -Z'(\, )

by taking the appropriate residues in A and u.

Remark 6.4: A Lagrangian multiform constructed on the ZM Lagrangian was
obtained in [SNC19a] and used to obtain a variational derivation of Lax pair equations
themselves. In that same paper, the authors presented the first few coefficients of
the Lagrangian multiform for the AKNS hierarchy but it was not clear how these
derive directly from the ZM Lagrangian multiform. Our Lagrangian multiform and
Theorem 6.2 fill in this gap and provides both the complete set of coefficients L;;
of the Lagrangian multiform for the AKNS hierarchy and the Zakharov-Mikhailov
Lagrangian. We note that Lagrangians producing the zero-curvature equations (6.15)
in potential form were obtained in [N86|. They involved a potential function denoted
by H in that paper which produces the Lax matrices Q™) we use here via the relation
Q™) = 9,_1H. However, assembling all those Lagrangians into a two-form does not
seem to provide a Lagrangian multiform for the set of AKNS equations. The closure

relation does not hold for instance.

To help the reader recognize the most familiar models, we write some of the coefficients of
the Lagrangian multiform explicitly using our formula. Using the expansion .Z(\, u) =
doiciz1 LA™ tp=7=1 we have, for all i,j > 0

j i
1
Lij = E (fr0iejr1—k — exOifjr1-k) — 5 E (fr0jeiv1—k — ex0j fix1—k) — Vij -
k=1 k=1

DN =

The coefficients V;; are gviven by the following proposition.
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Proposition 6.5 The coefficients of V(A u) = Z;’Zj:l Vi A" =71 are

Vij =Tr Y QuQitjii- (6.34)
k=0

Proof. We being proving that the coefficients V;; := Tr 22:0 QrQitj—k+1 are antisym-

metric V;; = —Vj;: in fact we have

J
Vi =T Y QkQiyj ki1

k=0
itj+1 it+j+1

=Tr Z QkQitjr1—k —Tr § QrQitj+1-k
k=0 k=j+1

The first term vanishes as it is the coefficient of A"+ in Tr Q?(\) = —2. In the second

term we make the substitution m =i+ j + 1 — k to obtain
i
Vii=—Tr Z QmQitjt1-m = —Vij .
m=0

We now start from V(A p) = —4 Tr W Firstly, as Tr(Q(\) — Q(u))? = 0 when

A = p, then it is divisible by A — p, and V(A u) = Ziozj:l Vi A"y =3=1 Then, we
formally use the identity®

—u 2 Al 9 L
A p 2m:0)\m 2m:OMm

to look for the coefficient of A="=1u=7=1 of V(\, p)

o=t s T@Q 1o TR0,
) 9 s Ap—i—m—i—luq—m 2 o )\p—muq-i-m-i-l )

where we used the fact that the terms proportional to Tr Q%(\) = —2 do not contribute.

The first contributes when p+m = ¢ and ¢g—m = j+1, and the second when p—m =i+1
and g +m = j, and therefore we have that the i, j-th coefficient of V' is

Ly Ly Vi Vi
B Trz QpQitjt1—p — B Trz QqQitjt1—q = 5 "5 Vij . 0
p=0 q=0

Recall that the elements a;, b; and ¢; of @ can all be expressed in terms of the coordinates

ej and f; (see Appendix B.1). At this stage, no particular choice of time has been made to

1 1 1 1
3B T Ie

5This is easily obtainable as A% =
I

and then using geometric sums. This will be

reformulated in Chapter 7 as %(L)\OQLHDO + lpoo L,\x)ﬁ, where ¢y, denotes expansion in Laurent series
in Ao
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write these Lagrangians as field theory Lagrangian, in the spirit of [ACDK16| for instance.

Hence, as an example, we simply have

1 1
Ly = §(f131€2 — €101 f2 + faOre1 — €201 f1) — §(f18261 —e102f1) — Viz, (6.35)
and

1
L1z ==(f101e3 — €101 f3 + fa01e2 — €201 f2 + f301€1 — e301 f1)
2 (6.36)

1
— 5(fidser —e183f1) = Vis,
which produce partial differential equations for the phase space coordinates e;, f;, j =
1,2,3.
Remark 6.6: We use here the common choice of not including the time z° in
our explicit multiforms, which would produce the scaling equations ¢y = —2iq and
ro = 2ir. Therefore, when we talk about the first m flows we will refer to the times

1,....,m.

Now to make contact with the more familiar form of these Lagrangians and the corres-
ponding equations of motion, we express the phase space coordinates in terms of b; = ¢,
c1 = r and their 2! derivatives®. Note that this amounts to choosing the z! equation in

(6.11) and use it to solve for @Q; (standard field theory point of view). Doing so yields,

7 1 1
Lo = 1((127" —qrg) + g(TQH +qri1) — Zqer’ (6.37)
and
Lis = 4 )+ )+ g ) (6.39)
= —\T — ar — T —agr —qrgr1 —r .
13 1 q3 — qrs 16 q111 qriii 16¢] qri q1),

which are known Lagrangians whose Euler-Lagrange equations are

, 1 _ 1

i + a1 = ¢'r =0, iry — g+ ar?, (6.392)
1 3 1 3

43+ 01— 54 = 0, T3t T S = 0. (6.39Db)

These are the (unreduced) NLS and mKdV systems respectively. We can just as easily
produce the Lagrangian Log, first in the e and f coordinates and then, if desired, in the ¢

6The reader can find the relations between the e;’s and fi’s and ¢ and r and their derivative with
respect to z' in Appendix B.I.
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and r coordinates as before. It reads

Lo 21*16(7“(1112 —qriz2) + 12*6(6117‘12 — qi271) — TZ6(Q11T2 — qor11)
3 1 1
— Eqr(rqz —qra) — g(CIlBT + qriz) + §(7"1Q3 + q173) (6.40)
1 1 1
+ TGqHTH - %(qrn +qur) + T6(QT1 - Q17")2 + Zq37"3 )

and its Euler-Lagrange equations are just consequence of (6.39).

Remark 6.7: The partial Lagrangian multiform thus derived here for the first three
times Lo dz'? 4+ Loz dx®® + L3 dx'® is equivalent to the one used in the previous
sections, as it is the same up to an overall coefficient 2 and a total horizontal
differential. This other normalisation is preferable in this case as it allows us to write
a closed form for the coefficients of the Lagrangian multiform .Z in terms of the
coordinates e, f used in [FNR83|.

6.2.2 Symplectic multiform

Equipped with a Lagrangian multiform for the AKNS hierarchy, we now construct the
associated symplectic multiform 2. Again, it is very convenient to work with generating

functions so we introduce

W =S Y
Q) =) N (6.41)
§=0
_ wj
QN = VR (6.42)
7=0
to represent respectively
QW =" WiV A da, (6.43)
§=0
Q= ij Ada? . (6.44)
§=0
As before, by a slight abuse of language, we also call Q(\) symplectic multiform.
Proposition 6.8 The symplectic multiform associated to £ (\, p) is given by
QA) = = Tr (Qop(N)H0p(A) A p(N) " 1op(N)) - (6.45)

The proof is in Appendix B.3.
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Remark 6.9: The expression for €(\) is reminiscent of the well-known expression
for the (pull-back to the group of the) Kostant-Kirillov symplectic form on a coadjoint
orbit of the loop algebra £ through the element ()y. To make this more precise, let
us use for instance the formulas in [BBT03, Section 3.3] giving the expression of the
pull-back to the group of the Kostant-Kirillov form for the orbit through a diagonal
matrix polynomial A()),

w = yes T (AN~ (V39N A g7 (N)dg()

Here, choosing A(\) = —iMo3, & > 0, and g(\) = ¢(\), we get the connection

between our symplectic multiform and the Kostant-Kirillov form
= res \"Q(\) = wy, .
IR =

In particular, each single-time symplectic form wj corresponds to w on the orbit of
the element —i\fo3. Therefore, our symplectic multiform contains in a single object
all those symplectic forms. This is the first time such an object is derived and, to
our knowledge, it is the first time that a Kostant-Kirillov symplectic form is derived

from a Lagrangian perspective.

As a consequence of the explicit formula for €2, we get the following remarkable result

that the e, f coordinates provide Darboux coordinates.

Corollary 6.10 The symplectic multiform is written in Darboux form as

Q) =0f (M) Ade(N), (6.46)
and hence, wg = 0 and,
k
Wy = Z Ofi N 66k+1—i , Vk>1. (6.47)
i=1

Proof. Direct calculation by inserting (6.29) into (6.45). We have

n=1 k=1m=1

00 0 S x K
IR M) B EDU) Ip LAY AT
Jj= m=

6.2.3 Multiform Hamilton equations for the AKINS hierarchy

According to Definition (5.2), the coefficients of the Hamiltonian multiform
H= Z?ij:l H;j dz¥ associated to £ and QM) are given by

Hij = 0pa0\Y — 80 — Ly;. (6.48)
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As is now customary, we rewrite this in generating form as
HA, 1) == DrsQW (1) — D, sQM(N) — L\, ), (6.49)
where we introduce the notation Dy = Yoo 9; /N1 in line with (6.18).

Lemma 6.11 The following holds

T _ 2

Hence, H(\, ) satisfies the closure relation.

Proof. A direct calculation shows that Dy Q™M () — ﬁ“_lQ(l)()\) = K(\ ) hence
H(A, p) = V(A ). Finally, the closure relation of H is a general result that we re-
viewed in Corollary 5.6 but here, we get a direct confirmation from the structure of the
proof of Theorem 6.2 which established that V is closed on the equations of motion,

separately from K. O

For completeness, we now check the validity of the general result in Proposition 5.11 in

our case.

Proposition 6.12 The multiform Hamilton equations associated to H and € are

(@), Q)]

DAQw) = = (6.51)

Proof. The multiform Hamilton equations read dH = > g dzd A 5]-4(2, or, in components,

0H;; = @_nwi — 0;owj .
This is reformulated in generating form as,
SH(A, 1) = DyuaQ(N) — Dys(p) .

We have already computed 0H (A, u) = 6V (A, p) as

1
P

1

OYHQW%QMWW@)—ﬂM‘W%M&%MW%M)-

67—[(>\,,u):Tr< P
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We calculate the right hand-side, that reads

D, sQ(\) — Dy2(p)

= Tr (—=Qop(N) ' Dup(N)e(N) 13p(X) + Qop(A) 1 p(A)p(N) ™ Dup(N)
+Qop(1) " Dap (i) o (1)~ op(p) — Qop(p) ™ 8o (1)p (1)~ Dagp())

=Tr (' (N)DuQNIP(N) = o~ (1) DAQ(1)80 (1)) -

The result follows by reading the coefficient of do(u) or equivalently dp(N). O

6.2.4 The Oth time

0

In this section we remark that the Oth time z” can be included as well, by keeping the

relations for Hyg = Tr Y " QiQpt14+1—; and wy, = Ele 0fi N dekr1—;. Indeed we obtain

q
H()q =Tr QOQq+1 = —2iaq+1 = -2 Z fieq+1_i, (6.52)
i=1
wo=0. (6.53)

The multiform Hamilton equations are dH = >0 dz’ A 9;2Q), where the left hand-side

is > p<q 0Hpg A daP? and the right hand-side reads > % 1 (0gowp — 9pwy) A dazP?. This

becomes
e e} o
> 0Hog Ada® + > 6Hpy A da?
q=1 1=p<q

(o.9] oo
= Z(gq_nwo - 50_an) A dz + Z (5q_nwp — Np_:wq) A dxP?
q=1 1=p<q

where we separated the equations involving the time z° from the other ones. Since wy = 0,

the ones involving the time z° are then 0Hy, = —50_10.:(1, where

q q

. Oa Oa .

0Hog = =21 E ( 8215% + 8;:5,}%) = —2i E (for1-kbex + eqr1-k0 fi)
k=1 k=1

and
. - q
—0pawg = — Oy Z Ofr Ndegr1—k
k=1

q q
= Z (=00 froeqi1—k + Ooeqy1—k0 fr) = Z (=00 fy+1-kber + Ooegi1—k0 fr)
—1 k=1

so that the equations are

80fk = 2ifk s 8()6k = —Qiek y (6.54)
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which correspond to the scaling equations in [FNR83| g9 = —2iq and ro = 2ir.

6.3 Classical r-matrix and zero-curvature equations

6.3.1 Admissible forms and multi-time Poisson bracket

Having the symplectic multiform €2 at our disposal, we can investigate in detail under
which conditions a horizontal form is admissible and then compute the multi-time Poisson
bracket for two such forms. Recall that in our case, only 0- and 1-forms can be non-trivial
admissible forms. We have the following two propositions, the proofs of which are given
in Appendix B.4 and B.5.

Proposition 6.13 A 1-form F = Y 7 F dz® is admissible with respect to Q0 if
and only if Fy is constant and, for all k > 1, F} depends only on the coordinates

(617”'7ek7f17"'7fk) and

OF,  O0Fpp OF,  OFpq
— = , — = , 1=1,...,k. 6.55
dej  Oejia af;  0fin (6.55)
Its Hamiltonian vector field is given by
[ OF; OFy,
=2 <— 57 O+ e, %) - (6.56)

k=1

Proposition 6.14 FEvery 0-form H (e, ..., f1,...) is admissible with respect to 0, with

admissible vector field given by

([ O0H oH
5[—[ - ZZ; <_6f2-861 VAN al + Giezafl VAN 3Z> . (657)

Note that in practice, we will deal with O-forms that depend only on a finite number of

coordinates ej, f; in which case the sum in (6.57) truncates accordingly.

Remark 6.15: Proposition 6.13 gives an elegant reformulation of the rather complicated-

looking conditions (5.59) in the variables ¢ and r that the coeflicients of an admissible
1-form F have to satisfy. They are of course equivalent. The first two lines are easily
obtained respectively by taking

oFy 0F, 0F; O0F, oFy O0Fy, O0F; 0Fy

= = = and = = =

ofi  0f2 0Ofs  Ofs’ dey ey Oez ey’

Let us also take for instance g—ff = % and let us write it in the old ¢ and r
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coordinates using the expression in Appendix B.1. We have

0F3 8F3 8(] O0F3 0(111 0F3 0r1y
861 8q 861 8(]11 861 87“11 Oeq

=/2i < + 6Z€1f1 3if2 OF, )

! 87“11
B 8F3 8F3 3 9 OF3
\/>< + 3 8 q11 + 2 87’11>

and

OFy 0F,0q1 | OFy Oquu1 | OFy Orin
deg  Dq1 Deg aQ111 Oes 57”111 Oea

_\F< z—+2061f1 +2f2 am)

9q111 L orin
F 0F, 0Fy
=v?2 ( — 10iqr — ir? .
“oq Oq111 Orin
Putting the two together and using the other equations (in particular aaq%l = %g;; b=
—é%—? , 82%1 = ;gfﬁ =1 aa}:}) we get the last of the equations (5.59)

OFy i0Fy i OF i ,0F

=t qr—— 7
o1 2 Oq 4q g 4 or
We can now define the multi-time Poisson bracket with respect to 2 between two admissible

forms F' and G as

{F.G}} = (-1)"¢padG (6.58)

where r is the horizontal degree of F. We recall Proposition 5.22 which gives the
decomposition of the multi-time Poisson brackets in terms of the single-time Poisson
brackets { , }r. Given that we know the explicit form of the single-time symplectic forms

wp, see (6.47), we obtain the following specialisation as a consequence.

Proposition 6.16 (Decomposition of the multi-time Poisson brackets) The multi-time
Poisson brackets with respect to Q of two admissible 1-forms F = Y 72 Fy, dz* and
G=3 710Gk dz® satisfy the following decomposition:

{F,Gl} = Z{Fk, Gy i da® where
k=0

K (OF, 0G OF, 0G (6:59)

F F

{FkaGk}k:Z< L > :
j=1

Ofj Oer—jr1  0ej Ofp—jp

Thanks to the the propositions above, we can prove by direct but long calculations that
the multi-time Poisson bracket {[ , ]} satisfies the Jacobi identity.
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Proposition 6.17 (Jacobi identity) If F,G, K € &/®Y and H € & are admissible

forms, we have that
1. {{F,G]} and {{F, H]} are respectively an admissible 1-form and an admissible 0-form,
2. {{F. GI}, K} + {{lK, F}, Gl + {{{G, KT}, F[} = 0,
5. {{F. Gl 7 + {{{H#, FI}, Gl + {{G, H]}, Fl} = 0.

The proof can be found in Appendix B.6.

Remark 6.18: It is known (see e.g. [FS15]) that the Jacobi identity is not necessarily
satisfied by a covariant Poisson bracket. This problem could therefore be present in
general for a multi-time Poisson bracket (which can be viewed as a generalisation of
a covariant Poisson bracket). This is why the Jacobi identity was not discussed in
[CS20b] and why we checked it here directly.

6.3.2 Classical r-matrix structure of the multi-time Poisson bracket

Definition 6.19 We call Lax form the following horizontal 1-form with matriz coefficient
W) =Y QW) da' (6.60)
i=0

where, fori >0, QW (\) == P, (NQ(N)).

We are now ready to formulate the main result of this section, the proof of which is long

but straightforward and is given in Appendix B.7.

Theorem 6.20 The Lax form W (X) is admissible, with Hamiltonian vector field

= QM (A Q") (X
Ewh) =) <_Qafl()aek + Qael()afk) : (6.61)
k=1

Its multi-time Poisson brackets possesses the linear Sklyanin bracket structure i.e.

{1 (N), Wa ()} = [raz(A — p), Wa(A) + Wa ()], (6.62)

where r12(A, 1) s the so-called rational classical r-matriz given by

_ D2

7“12(/\) = \

(6.63)

Remark 6.21: We have already shown directly that our multi-time Poisson bracket

{[, ]} satisfies the Jacobi identity for 0- and 1-forms. In the case of 1-forms, this is
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also a corollary of Theorem 6.20 since W (\) contains all the coordinates of our phase
space and it is known that the rational r-matrix satisfies the classical Yang-Baxter

equation which implies the Jacobi identity.

6.3.3 Hamiltonian multiform nature of the zero-curvature equations

It is one of the most important results of the theory of integrable classical field theories
that their zero-curvature representation admits a Hamiltonian formulation. In Chapter 4
we cast this result into a covariant framework, for the NLS and mKdV equations separ-
ately: the covariant Hamilton equations for the Lax form associated to each equation
(thus containing only the two relevant QU)(z, X)) produce the respective zero-curvature
condition. Here, we are in a position to prove the analogous result for the whole AKNS
hierarchy at once, thanks to our Hamiltonian multiform and multi-time Poisson bracket.

The following is the main result of this section

Theorem 6.22 The multiform Hamilton equations for the Lax form W(X) = 332, Q) () da®,
1.€.
dW(A) = > {[Hij, W\ da (6.64)
i<j

are equivalent to the complete set of zero-curvature equations of the AKNS hierarchy
2:QY (N - ;0" () = [QUM, QU] i<y (6.65)
The proof is given in Appendix B.8.

6.3.4 Conservation laws

We have introduced conservation laws in the context of Hamiltonian multiforms with
Definition 5.20, and we have given an example of a conservation law for the first four
flows of the AKNS hierarchy in Section 5.5. In this chapter we give the general expression
for the coefficients of a conservation law for the whole hierarchy, which are obtained by

considering the following 1-form.

Proposition 6.23 The form A=) ;" Ak dz®, Ay = a1 is a conservation law.

Proof. From (B.2), wai find A, = ag41 = > ;4 €ifrt1—i so that = Citl-j = gro
0A; _ ». L it1 : : :
and de; = fiv1—j = Derir” Hence A is Hamiltonian. Now,

dA_fAJéﬂ—n;;( 9fi Oex T Oe;  Ofg )dx

" OH o, OH o, .
:ZZ(ek der + fr aF: > dx
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where we have used %ﬁf = fks % = eg, and the fact that aggzn = % =0ifk>n

(without loss of generality, we consider m < n). From the explicit expression of H(\, i),

a direct argument shows that each H,,, is in fact a polynomial in ey,...,en, f1,..., fn of
the form
Hpn =Y Tl (HY,
(),(7)EN™
where the sum is finite (only a finite number of coefficients h;y(;) € C are non zero) and we
have used the notations (e)(®) = e’f 622 Lem (£ = fflfgz ... fI* and has the property
that Y p_; ik = Y p_q jk- The result then follows since Y, ek% and > p_; fk% are

Euler operators with respect to the coordinates e, and fi respectively. ]

This result provides a reinterpretation of the known fact the quantities hy = % J akt1 dzt,
viewed as the traditional hierarchy of standard, single-time, Hamiltonians are indeed
constant of the motion and in involution with respect to the traditional (single-time)
Poisson bracket { , }1 (see e.g. [D03, Section 9.3]). We will recover the explicit expressions

of the agy1’s in the next section.

6.4 Recovering previous results and the first three times

It is straightforward to recover our previous results of Chapter 4 by ‘freezing’ all times
except a given pair. This singles out a single 1 + 1-dimensional field theory within the
hierarchy and our Lagrangian multiform, symplectic multiform, Hamiltonian multiform
and multi-time Poisson bracket reduce respectively to a Lagrangian, multisymplectic form,

covariant Hamiltonian and covariant Poisson bracket.

As the simplest example, let use freeze all times except ! = = and 22 = t: we specialise
to NLS and recover all the results of Section 4.3 by direct calculation. The Lax form is
simply

W) = QYN de + QP (N dt, (6.66)

which can be computed using again the coordinates ¢, r and derivatives with respect to
x for instance to reproduce the well known NLS Lax pair. The Lagrangian multiform
reduces to £ = Lis dx A dt where Lis is given in (6.37) while the Hamiltonian multiform
only involves Hio. Using our general formula (which is just (6.34) written explicitly),
i
H;; = Z(2akai+]’+1—k + bCitjr1—k + Ckbitjri—k) (6.67)
k=0
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we find
Hio =2apa4 + bocs + cobs + 2a1a3 + bicg + c1b3
= —2i(e1f3 + eafo +e3f1) + 2ie1(f3 + Zelff) + 2if1(e3 + ZG%fl)
= - 2i62f2 - 6%f12

1
=— 4@ —¢*r?).

This is the covariant Hamiltonian for NLS found in Equation (4.46) (up to an irrelevant

factor). The symplectic multiform collapses into the following multisymplectic form

Q=wi ANdz +wy Adt where (6.68a)

] 1 1
wp = %5q Adr, and wy= 157“ Nbqr + 1541 Adry, (6.68b)

also found first in [CS20a| and reported in Section 4.3 (up to irrelevant factors). It
gives rise to a covariant Poisson bracket which is simply the reduction of our multi-time
Poisson bracket to only two times and our main results, Theorems 6.20 and 6.22 restrict

accordingly to the results of Section 4.3.

We stress however that we can instead choose any pair of times 2™ and z* and apply the
same reasoning. Doing so provides a way to unify the results in [AC17| which established
the r-matrix structure of dual Lax pairs for an arbitrary pair of times and the results in
[CS20a| which provided a covariant formulation of this structure but only for the pair of

times (z',22) and (2!, 23).

The salient features of the multiform theory appear when at least three times are combined
together. In general, the coefficients Lj,, (resp. Hj,) are not too difficult to construct
but all the other ones are, and indeed up to now it was not known how to obtain them in

2 23, the coefficient Lo3 was first

general. For instance, freezing all times except z!, x
obtained in [SNC19a| by complicated calculations. Here, we obtain it rather easily, see

(6.40), as well as the associated coefficient Ha3 in the Hamiltonian multiform which reads

. 1 9
Hyz = — 2ie3 f3 + §€1f1(f163 +e1fs) — (erfo+ frea)? + ge‘?fl?’

(6.69)
= i+ B (ran o+ am) - e - an)? -
= 16(1117"11 3 rq11 T qri1 16 rq1 —qr 461 .
For completeness, let us also give
. 3
Hiz = —2i(eafs +esfa) — §€1f1(f162 +e1f2),
(6.70)

)
:g (Q17"11 - 7"1Q11) .

We remark again that these coefficients differ from those in the previous chapters by an

expected factor % .
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In the rest of this section, we illustrate in every detail the calculations involved in our
general results when restricted to the first three times. This has only pedagogical value.
We hope that this will help the reader familiarise themselves with some of the new
formalism while dealing with the most familiar and easiest levels of the AKNS hierarchy.

We now turn to the symplectic multiform Q = w; A da! + wy A dz? + w3 A do3, where

w1 =6 f1 Adeq, (6.71&)
wo =6 f1 Adeg + 6 fa Adeq, (6.71b)
w3 =0f1 Adeg + dfa Adea + 5 fg Adey . (6.710)

As done above for w; and wo, it is interesting to write w3 using b; = ¢, ¢; = r and their

derivatives with respect to x', denoted by q1, r1, qi1, r11. We find

1

8

1

<Ori A dg + ééql Aty + ?5(; NSt (6.72)

w3 = =0r A 5q11 +
and we remark that they also differ from the ones in [CS20b] by the same factor 3, so that
the multiform Hamilton equations dH = > j dx? A 5]-_19 are the same. Let us compute

them, in the new e and f coordinates. In components we have

° 5H12 = 82_1001 — 614&)2:

o f1=2ifa, Ore1 = —2iey,
O fo— Oaf1 = 2e1f7, Doer — Orea = 2e3 f1 .
The top equations give the relations by = %albl = %ql and ¢y = —%8101 = —%Tl,

and the bottom ones give the NLS equations.

[ ] 5H13 = 83_10.)1 — 614(4)31

O1f1=2ifs, Ore1 = —2ieg,

Ofe=2ifs+ gelf%a Ore2 = —2ieg — ;effl,

Ofs—0sf1 = %6’2]}2 + 3e1f1f2, O3e1 — Orez = g€%f2 + 3e1 fiez,
where the top four equations give the relations by = %ql and ¢y = —%rl, and
bs = —%qn + %qQT and c3 = —%7“11 + %qr2, and the bottom ones are the mKdV

equations.
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[ ] (5H23 = 63_1(,02 - 82_1(,«}3:

. 1
Oaf1 = 2if3 — §€1f12 ,
1
Ooey = —2ie3 + §€%f1 ;

ofo — O3 f1 = 2ffes + 2e1f1fa,
Ose1 — Daea = 2¢3 fo + 2e1 frea,

1 37
O3fa — Oaf3 = §f12€3 +eififs+ geffig’ —2e1f3 — 2fieafa,

1 37
Ooe3 — Ozep = §€%f3 + ey fies + gei’f% —2f1€3 — 2e1eafa,

which reduce to differential consequences of the previous equations.

The single-time Poisson brackets { , }x for £ =1,2,3
Pro 0 o 0
R < - 2, 6.73
{ b ; <8fi Oept1—i  Oepti—i 8fi> (6:73)

can be re-expressed in the ¢ and r coordinates as

0 0 0 0
:2‘ —_—— — —
Lo h Z<8T8q 8q8r>’

(20, 00 90 00
» 270\ 0rdq, | 9g0r O or 0riog)’

70 0 o d 0 d 0
G =85 g * arrag * aan gy o
0 0 o d 0 d o 0
~ Gendr " g0~ O on o o)

These differ from the ones obtained in the previous chapters by an expected factor 2.

We will now show how to reobtain explicitly the classical r-matrix structure within the
multi-time Poisson brackets for the first three times using these new coordinates. We
will use the first three Lax matrices repackaged into the Lax form W (\) = QW (\) dz! +
QP (\) dz? + QB (\) da®

WT(A) = by dzt + (Aby + b2) da® 4 (A2by + by + b3) d
W=\ =¢ dr' + (Ae1 + ¢2) dz? + ()\201 + Acg + ¢3) daz?

. o .
W3(\) = —iddz! + (—iA2 — %blcl) dat + (—iN® — %blc1 - %(blcQ + b)) da,



126 Multi-time approach to the AKNS hierarchy and classical r-matrix

which we can also write in terms of the coordinates e and f as in

W (\) = V2iey dz' + vV2i( ey + e) da? + V2i(A2er + Aea + e3 + elfl) ,
W‘()\):@fldx1+@(Af1~|—f2)dx2+@(A2f1+Af2+f3+Zelf1)dx :

W3(\) = —idda! + (=iN2 4+ er f1) dat 4 (—i\3 + Ner fi1 + erfo + eaf1) da?.

We can then compute the Hamiltonian vector field associated to each component of the

Lax form:
Ew+(A) = V2i (afl + A0, + (N + %el f1)0p, — ie%aeg> :
Ew-(N) = V2i <—3e1 — Ay + (=N — %elfl)aeg + iffaf3> ,
§ws(A) = —€10e, + f10p, + (=Ae1 — €2)0cy + (A f1 + f2)0y; -
Let us now compute the multi-time Poisson bracket.

{Wi(n), W Z WA (Wloi @ o;
ij=+,—3
= W), WH (o @ oy + W), W (w)hoy @ - + W), W (w)}oy ® o3
W), WH(ho- @ o +{W- (A, W (who- @ o +{W~ (), W (u)}o- @ o3
+{WP ), WH (o @ o + WP (N, W (w)hos @ o + W2 (A), W (u)]os © o3

The reader can check that {{W+(\), WT(u)} = {W =), W= ()]} = {W3(\), W3 (u)]} =

0, while the other non-zero Poisson brackets are

W), W ()]} = —2ido’ — 2i(\ + p) do® — 20 (N + A\ + p? + deq f1) da®
W=\, WH ()]} = 2ida + 2i(\ + p) da® + 20 (N2 + A + p? +de fr) da®
W), W3l = —v2ie1 dz® — V2i(A+ p)er + ea) da®

{W3N), WH ()l = V2ier da® + V2i(A + p)er + e2) da®

W=, W3 = V2ifi da® + V2i(A+ p) fi + f2) da®

WP, W™ ()]} = =V2i fi da® = V2i(A + p) fr + fo) da®.

Adding everything together one realises that {W1(\), Wa(u)]} = [512)\, Wi(A) + Wa(p)],

as desired.

Let us verify that for the first three times

Y Hip, WO = W) AW = [V (A), QY (\)] da* (6.74)

1<j 1<j
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or, in components,
{Hyp, WO =RV, QW] ij=1.2.3. (6.75)

We write explicitly the (1,2) term. The coefficient of the Hamiltonian multiform Hyo =

—2ieafo — e} f? has Hamiltonian vector field
&0 = 26%]01861 A0 — 261f128f1 A0+ 2i€28€1 A Oy — 2z‘f28f1 A Oy, (6.76)

so that the left hand-side reads

{{Hi2, WA} =€1226W (A)
=&124(e10f1 A dz? + fide; A d$2)0'3
+ 512_1(\/%561 A dx' + V2ides A dz® + V2iNdey A dz*)o,
+ E190(V2i6 f1 A dat +V2ib fo A da® + V2iNS f1 A da?)o—
=2i(ey fo — frea)os + V2i(—2e2f1 — 2iXes)oy + V2i(2e1 2 + 2iNfo)o
=M M), P M.

Similarly one obtains {{Hiz, W (M)} = [QW(X), Q¥ (A)] and {[Haz, W(\)]} = [QP (A), QP (A)].

Remark 6.24: As we pointed out before, the Lagrangian multiform of this chapter
generates the Lagrangians that were previously used up to a total d-differential, and
an overall multiplicative constant 2. This is the same constant that consistently
turns the r-matrix —£22 into the previously used one —1£12 (4.44). In fact, one

could define ¢ = 2.%, and then H' = 2H and @ = 2Q would follow. Then,

the new Poisson bracket {{, [} = 3{{, [} will be associated to €. The relation
Wi, Waly = [213, W1 + W] will then turn into {W1, Wal}’ = [3 223, W1 + Wa.

Moreover, dW = Y-, {[H;, Wl dz'/ = 3 {[H;j, Wda".

We can also verify that A = asda! + asdz? + asdz® is indeed a conservation law in the

usual coordinates ¢ and r. In fact, we have that

as = e f1 = —%qr, (6.77a)
1
ag =e1fo+eaf1 = Z<QIT —qr1), (6.77b)
) ) 3t 1
ag =e1fs+eafo+esfr = gqr + gaur — §q27‘2 —gur- (6.77¢)

Imposing dA = 0 is equivalent to the equations
81(13 = 82a2 s 81@4 = 83(12 5 82@4 = 83@3 y (678)

which hold on the equations of motion.
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Chapter 7

Generating Lagrangian multiform

and classical Yang-Baxter equation

In Chapter 6 we provided a generating Lagrangian multiform for the Ablowitz-Kaup-

1

Newell-Segur (AKNS) hierarchy. This was a formal series in A='x~! and its coefficients

could be identified with the coefficients of the AKNS Lagrangian multiform. In this chapter,
containing content adapted from [CSV21b]|, we generalise those results by providing a
generating Lagrangian, that provides the coefficients of a Lagrangian multiform for several
integrable hierarchies other than the AKNS.

Remark 7.1: It will be helpful to review some notation relative to formal power

series.

e C[)] denotes the ring of complex polynomials in the variable A, i.e. of the form
S opiM, N eN.

e C[A] denotes the ring of complex formal Taylor series in the variable A, i.e.

series of the form Z;”;U fiN, fj € CVj.

e C((A\)) denotes the ring of complex formal Laurent series in the variable A, i.e.
series of the form Z;’;fN fiN, N €Z, fj € CVj.

7.1 Algebraic setup

We will start from the Lie algebra £4(g) = g ® C((A\a)), @ € CP! = CU{ o0} and g C gly.

Its elements are formal Laurent series

XNa) = > XIN, Xteg, NEez, (7.1)
j=—N

129
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where A\, = A —a if a € C and A, = 1/\. We use the Lie bracket naturally extended

from the commutator of g

[(X%(\a), =)0 ) [XL YA
T itj=r
For any a € CP! the residue resy—_q C((X\a)dAq — C returns the coefficient of A\;td\,. If
a = 0o we note that d\ = —\2 d\. In practice, the residue at oo returns the opposite
of the coefficient of Ay
Then, given a finite S = {ay,...,a, } C CP! with #S = n we define the following Lie
algebra

= @ Ea(g)

aesS (7.2)
=L, (8) ® Loy (9) D ® Lo, ().

We will denote an element of £(g) as an n-tuple X (\) = (X (Ag,),..., X% (Aa,)). The
Lie bracket of two elements X () = (X%(Aa))acs and Y (A) = (Y%(\,))aes is defined
component-wise as

[X(A), Y (V)] = ([X“Na), Y(Aa))aes -

For L(g) we will choose a a pairing, i.e. a nondegenerate bilinear form

(XN, YWY = Z)l\rgs Tr X*(Aa)Y (o) AEdA (7.3)
a€esS -

for any X(\),Y(\) € L(g) and £ = 0,—1. The identification of maximally isotropic
subalgebras of £(g) will allow us to identify an endomorphism r: £(g) — L(g).

We will consider derivations ), acting on the matrix elements of g, where t* are the
times of the hierarchy and the coordinates of our multi-time manifold M. We write
M = @, cq M, as a direct sum, where we use (tL,#2,...) as coordinates on M,. This can

be done thanks to the fact that the number of coordinates of M are countable and that
S is finite. We repackage each 9 into the objects

=> Ny, a€eC, (7.4a)
=0
D, = Z /\glﬁtgo for k=0, Dy = Z )\éoatgo for k = —1. (7.4b)
i=1 '

The D), are generalisations of the similar objects defined in Chapter 6. They also act
like derivations, and are not to be confused with partial derivatives with respect to the
spectral parameters dy,. For instance, 9y X°(up) = 0, but Dy, X?(up) # 0 in general. In
principle, we could not consider elements D), of the form (7.4) if we were not sure that

they would define commuting flows. This will be checked in Lemma 7.9.
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Finally, it will be useful to define Ry as the space of rational functions of the variable
A that are regular outside S. The map ¢y, : Ry — C((\y)) associates to each rational
function in R) its Laurent series around the point a € S. We will use extensively the

following examples:

S i A i W (7.5a)
OOM —A r=0 Mgo r=0 ATt
1 =\
L, = - 7.5b
,Ll, - )\ ; /J/a+1 ( )

If we define Ry(g) := g ® R) we have the embedding

ta: Ra(g) — L(g) , X®f= (X ®un,faes - (7.6)

Proposition 7.2 (\R)(g) C L(g) is a mazimally isotropic subalgebra with respect to
(VR for any k € Z.

Proof. The proof is obtained using the residue theorem, the idea being as follows. Let

f,9 € Ry, and X(X\) =ty f(A) and Y (X)) = txg(N\). Then

(X, Y () =3 res Tr X(Aa)Y* (o) A'dA = ) ves Ta(e, £(X)(22,9() A dA

acs a€es
=3 res Troy, (f(A)g()\)/\k> d\=0.
a€esS A=a
Maximality is obtained by the strong residue theorem [T13, Corollary 1]. O

The subalgebra 1) R)(g) will be complemented by another maximally isotropic subalgebra,
denoted L1 (g)
L(g) = LT (g) ® \Ra(g) - (7.7)

The definition of £7(g) will depend on the specific case. The classical r-matrix r12(A, p)

is obtained from the endomorphism r in the following way

(mX0)0) = Gy loats + a)raz (A ) Ko (7.9

where the subscripts 1,2 denote the auxiliary spaces, and the bilinear form ( , >(2k) is only
taken on the space 2. It will satisfy the following relations:
o Skew-symmetry: r13(\, 1) = —ra1 (s, A),

e Classical Yang-Baxter equation: [r12(\, i), m13(\, v)] + [ri2(A, 1), ras(p, v)] +
[7413()‘7 l/)7 T23(ﬂ7 V)] = 0.

Our hierarchy will be identified by choosing the algebra g, a collection S of points in
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CP!', which will turn out to be the poles of the Lax matrices, and the parameter k of the

pairing (7.3).

e The choice k = 0 will bring the rational r-matrix, and either the Ablowitz-Kaup-
Newell-Segur hierarchy, when we pick S = {00} and g = s¢(2,C), or a hierarchy
describing rational Lax matrices of Zakharov Shabat type [ZS79] for distinct and
finite poles, containing the Lagrangian in [D03, Section 20.2| for

S={ai,...,an,,b1,...,bn, | am, b, € C, distinct }

for N1, N2 € N, and g = gly that we call Dickey’s Lagrangian, of which the
Zakharov-Mikhailov Lagrangian [ZM80] is a special case.

e The choice k = —1 and g = s/(2, C) instead brings the trigonometric r-matrix and
a hierarchy containing the sine-Gordon Lagrangian in light-cone coordinate with
the choice § = {0,00}.

Remark 7.3: Even if we only define the relevant objects for the specific cases of
the integrable systems we aim to obtain, we anticipate that this formalism can be
cast into the framework of adéles and will appear in [CSV21b|. This brings a more
general definition of £(g) and consequently of the generating Lagrangian, and will
allow us to consider a wider class of systems. Here we prefer a more pragmatic and

accessible, albeit less elegant approach.

7.1.1 Rational r-matrix

AKNS case In this section we fix £ = 0, g = s£(2,C). We also set S = {0}, so
effectively £(g) = Loo(g). The maximally isotropic subalgebra playing the role of £1(\)
will be obtained by considering the following subalgebra of L (g)

L2(g) = 99 AocClA] - (7.9)

Note that we have excluded the constant term from the Taylor series at infinity. We
represent the pole part of X*°(\) € g ® C((A\)) as

0
(X®(As))_= > XML € g@CRAY, (7.10)
n=—N

for any X®°(A\so) = > 00y X°AL. We can decompose £(g) into the maximally isotropic
Lie subalgebras
Loo(9) = L2(9) ® tr, Ra(g) - (7.11)

We have already proved that ¢y Rx(g) is maximally isotropic. The exclusion from £

of the constant term at infinity ensures the isotropy of the latter, and the maximality
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follows from the maximality of ¢y Rx(g). We denote by 71 and 7_ the projections onto

Lr2%(g) and ) Rx(g) respectively!. The projectors act as follows.

Proposition 7.4 (Projectors my (AKNS case)) For any X®°(Aoo) = > oo Ny XL €
Loo(g) we have

P
(71 X)*°(Ao) = res Tra (LuOOL)\OOM 12)\X°°(,u00)2> du (7.12a)
M:m J—
0o - Pr2 19
(m_X)®(Aso) = — res Tra ( ey tpoe )\X (Hoo)2 | dpt (7.12b)
H=0C 'LL —

Proof. We start by proving (7.12a). Let X®°(A\x) = > ooy Xo°AZ . Explicitly we have

P, X
e T (ein e P2 X ) i = s i
0 \rl 2 0o
e XS = Y X < £,
n= r=0 Poo n=—N n=1

hence the result. We remark that if X*°(\s) = ¢ f(A) for some rational function f,
then (71 X)>(Ax) = 0 by the residue theorem. The relation (7.12b) is obtained similarly:

P2 X (poo)
- NIEEO TI'2 (L)\oo[’ﬂoo ow— )\X (/"LOO)2> dlu = - HIEEO LAooLMoo ﬁdu
= — 1es i, >y §7+1 X®Noo)dp = tr, > X°AZ € ta Ralg).
H= r=0n=—N & n=—N
Moreover, if X®°(Ax) € g ® AooC[Ao], we have (7_X)>° () = 0. O

Given the expressions of 7 it follows that the kernel of the operator r == 7y — 7_ is

P,
(tpootre + L)\ool’ﬂoo)ﬁ . (7.14)

Moreover, the kernel of the identity operator is given by

P,
(bppoo s — L)\OOLMOO)ﬁd/L = 0(Aoos floo) Pr2d i . (7.15)

We have defined §(Aq, tta) = >,z )\Zﬂgr_l'

Zakharov-Shabat case In thissectionwefixk =0,g=glyand S ={a1,...,an,,b1,.
where a;, b; € C Vi,j. We consider the following algebras

L2%(g) =g®@C[\] VYaces. (7.16)

!More properly they should be called 73°, but here £(g) = Loo(g)-

b}
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We then define the subalgebra

L (g) == P L () C L(g) (7.17)

a€sS

that plays the role of £*(g). We represent the pole part of X*(\,) € L4(g), with a € S

as

—1
X*Na)o= Y XpAreg@ ) 'CIN ', (7.18)
n=—Ng,

for any X%(Xa) = D02 _n, XnAi. As before we can decompose £(g) into the maximally
isotropic Lie subalgebras

L(g) = L™(g) ® 1 R(9) - (7.19)
We denote respectively by 4 and 7_ the projections onto £ (g) and ¢y R)(g) respectively.

The projectors are defined in the following way.

Proposition 7.5 (Projectors m1 (Dickey case)) Let S ={as,...,an,,b1,...,bn, }. For
any X (X) € L(g) we have

P,
(1 X)*(Aa) = Y res Try (LubLAaiz)\Xb(Mbh) du (7.20a)
bes M H
P,
(m_X)4(Ng) = — Z res Tra (L)\a[’p,blsz(,ub)Z) du (7.20b)
bes M0 g A
Proof. Similar to the AKNS case. O

Given the expressions of 74 it follows that the kernel of the operator r := 7" — 7~ is
P12
(Lpptn, + tagt )> , (7.21)
( Ho Ho e Y abes

and that the kernel of the identity operator Id = 77 + 7~ is given by

P2

((LHbLAa - LAaLMb))\d:UJ> = (P126ab5()‘anua))a,bes : (7.22)
K= a,bes

7.1.2 Trigonometric r-matrix
Let g = s¢(2,C). We preliminarily define
+ . o ._ 1 - .
Pl =0+ Q0_, plg = 5(}1 @I4+03®03), pla=0_Roy, (7.23)

so that Pio = pfz + 095 + p12- We also define P*:g—ny and P°: g — b where ny are
the nilpotent subalgebras (spanned respectively by o) and b is the Cartan subalgebra
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(spanned by o3). They are given by
PEX = Try pi, X2, P°X :=Trgpl5X2, (7.24)

for any X € g, so that Idg = PT + P% + P~.
To select the sine-Gordon and trigonometric case we choose k = —1 and S = {0, 00 }.

The role played by £(g) is now played by the following subalgebra
B(g) C (b2 ® g @ AC[A]) x (b- ® g@ A'C[[A7']]). (7.25)

Where we also define b as the Borel subalgebras®. This is the Lie subalgebra consisting of
pairs of Taylor series XO(X) = 3% ) XUA™ and X*°(\) = > _0° ) X2°A ™", with X0, X° €
g for all n > 1 but with X € b, and X§° € b_, and with the constraint P'X{ = —P°X§°.

We also define the pole parts for this trigonometric case as

—1
1
X'\ = (P + 5PO)Xg + > XpA"eb_@geA'CAT, (7.26)
n=—Ng
1 —1
X®(Aoo)— = (Pt + §P0)X§° + D XML by @g@AC[N, (7.27)
n=—Nso

for any XO(\) = Y02y XpA" and X® () = D2 XA . We will use the

n—= n=—Noo

following proposition.

Proposition 7.6 We have a direct sum of vector spaces into mazimal isotropic Lie
subalgebras
L(g) = B(g) & talR\(9) - (7.28)

Proof. To show that B(g) is isotropic with respect to ( , Y=V let X(\), Y (\) € B(g)

be arbitrary and calculate

d
res Tr XO(A)YO(A)% + res Tr X"O()\OO)Y"O()\OO)T)‘ = Tr XJYY — Tr X§°Yg©
= Te(PY(Xg) P°(YY))) — Te(PY(X5°) PO(Y5®)) = 0.

To show that B(g) is maximally isotropic it is sufficient to prove that it is in direct sum
with ¢y Rx(g). To any X(\) € L(g) we associate

Rx(g) 2 fx(N) =X\ + X®°(Noo)— . (7.29)
Consider moreover the element X (\) = ()Nf‘l()\a))a:o’OO defined by

X%Na) = X%Na) —ta, fx(A), a=0,00.

’In the s€(2,C) case by is spanned by o4 and o3, and b_ is spanned by o_ and o3.
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As we are subtracting the pole parts around A = a we have that X%(\,) € g ® C[A\,]. At
a = 0 we have )
X(Noo)=lrmo = (P + §P0)X(C)>O

so that X%(\g) € by & g ® AC[\] whose leading coefficient is given by
1
(Pt + 5PO)(XS —X®) €by.

Likewise at oo we have )
0 _ (p— 0\ v0
X°No)-| oo = (P + §P )Xo

so that )A(ZOO()\OO) € b_ @ g® A IC[A\"!] with leading coefficient given by

1
(P~ + 5PO)(—Xg + X3°) eb_.

We can conclude that X (\) € B(g), or in other words
X(A) = X(\) +ufx(N)

gives the desired decomposition of X (\) € L(g) in terms of B(g) and tyRx(g). This
decomposition is unique since an element that belongs to both B(g) and ¢\ R (g) must

vanish. O

Let w4 the projections onto B(g) and ¢) Ry respectively, and consider the following rational

function given by

1 _ + A
r1z(A, 1) 325 (sz — P12t Z_)\PH)

T+ A !
=——(I®I _
4M—)\(® +03®03)+M_)\0+®a +H—)\

(7.30)

o_® g4 .
We have the following proposition.

Proposition 7.7 (Projector my (sG case)) For any X(\) € L(g), its projections onto
the subalgebras B and txRx(g) are given respectively by 1+ X (X) = ((7+X)*(Aa))a=0,00

where
d
(4 X)" () = D 1es Try %uanzu,mxb(ub)z;’”‘ (7.31a)
b=0,00 N
d
(m_X)¥(N\g) = — Z iisb Tro L)\aLubrlz()\,,U,)Xb(,U,b)zju. (7.31b)

b=0,00
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Proof. First of all we remark that r12 can be written as

pPr2 — 1,
A p) = — — — —pio- .32
r12(A, () A\ P12 2P12 (7.32)

Then, given any X (\) € L(g) we consider

d
Rx(g) 2 fx(N) g res Trz LuyT12(A, ,u)Xb(,ub)z—'u
b=0, oo

| 1
= g ves ( Lp (P~ + = PO)X () + 1y~ X () ) dpe.
b pn=>b 2 A— o

=0,00

The residue at 0 is
1 -1
(P~ + 5 P)X) + > X=X,
=—Np
while the residue at oo is
— (P~ + P0 ) X5 + Z XN
1 -1
SPOXE+ Y XML+ (PH+PY 4+ P)XGE = X®(Ao)-

(P~
(P™+5
= Noo

where we have used Id = P*+ PY+ P~. By construction then we have that (7_X)%(\g) =
i, Jx(A) for every a € S as fx is the function used in (7.29).

Then, if X(A) € B(g) then X°(\)_ = 3POX{ and X®(A\s)- = $PIX§ = -1 POX, s0
the two terms cancel in the sum, and (7_X)(\) = 0 for any X (\) € B(g).

Suppose now X (A) = ¢y f(A) for some f € Ry(g). If it has a pole in the origin then its
pole part in this point is given by

1 1
X'\ + (P + 5PO)Xg =X\ — (P + 5PO)XgO ,
where X = —X2, as f only has poles in 0 and co. The pole part at infinity is given by
1
X®(Ao)— + (P~ + §P0)X§° .

It follows then that this partial fraction decomposition of f(\) coincides with the right-
hand side of (7.29), so m_X(A) = X (), for any X (\) € txRa(g).
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Let us now consider 7. For any X(\) € £(g) we have at 0

_ _ 1
(meX)° (o) == Y res i u” (P + 5 PO)X () dps
b:O,oou_
- " (7.33)
b
D0 D ety X ().
b=0,00 n=0

If X(X) € taxRx(g) then both terms vanish by the residue theorem. The same happens at
infinity with

. 1
(e X)*Ooo) == 3 res v (P7+ 5P X (u)dp
b=0,00
00 n (7.34)
— Z ZreSL LXb(,ub)d,u
b=0,00 n=0"=" e 7

so (m4X)(A) = 0 for every X(A) € tARA(g)-
Suppose now X (A) € B(g). The first term of 71 X in zero gets the contributions

— res p (P + %PO)XO(uo)du — res (P~ + %PO)X‘”(uoo)du
=—(P + %PO)X(? + (P~ + %PO)X{]’O = (P + %PO)XS + %POX@”
=—(P + %PO)X{} - %POX(?
= (P~ + PY)X5 = X5°.

The contribution from the second term is X°(X\g) — X§°, so in total we get (71 X)%(\o) =
XO%(Xg). Similarly one obtains (74 X)®(Aso) = X*(Aso). In conclusion

X)) =X\ VX(\) eB(g). O

We can now define the trigonometric r-matrix r := 7y — w_, whose kernel reads

(([’MbLAa + LAaLMb)TIZ()‘a M))a,b:(),oo . (7-35>

The kernel of the identity operator is instead given by

((mtra = txati)rizO i) g o = (Pr20asd(Aas )dpia) g pg e - (7-36)

7.2 The generating Lagrangian multiform

In the rest of the section, we will keep k fixed to either —1 or 0. We will introduce the

generating Lagrangian in terms of two ingredients:
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1. Q(\) = (Q%(Na))acs € LT (g) is the collection of g-valued Taylor series in A, a € S,

Q"Ma)= > QiXNe,  Qfes. (7.37)

k=Ng

The value of N, depends on a and on the value we choose for k. The coefficients
Q4 are independent, but there are conditions on the Qf which depend on whether
we are in the rational or trigonometric case. We consider elements Q(\) where each
Q*(\a) can be factorised as

Q"(Aa) = 9" (Aa) X (Na) " (Na) - (7.38)

The element ©%(\,) = > 22, ¥4 AF is a Taylor series in A4, such that @ is invertible.
©*(\g) is a holomorphic map in a neighbourhood of a with values in G (the Lie
group corresponding to g). ¢(A,) ! is its inverse, i.e. 0*(\g)¢®(Aq)"t = 1. For
each a € S X%(\,) € L} (g) is a given constant element of the loop algebra. The
matrices p(A) contain the fields of our theory, while X (\) is non-dynamical and

constant. The elements of S will become poles of the corresponding Lax matrix.

2. A skew-symmetric classical r-matriz r12(\, ) = —ra1(p, A), solution of the classical
Yang-Baxter equation. The explicit expression of r will depend whether we are in
the rational (k = 0) or trigonometric (k = —1) case, but we require that, as was

proved for the specific cases

(taa by — tuytrg)r12(N ) dp = Pr2aband(Nas i) dpta (7.39)

where 6(Ag, f1p) = ez Ay "L

nezZ a

We begin with the following two important lemmas.
Lemma 7.8 We have

[Tra (aaturi2(N, 1) Q2 (1)), Q1(N)] = [Trz (tueariz(A, 1)Q2(w)), Q1 (N)] -
Proof. Using the identity (7.39) we deduce that for any a,b € S we have

[Trz ((bxat, = tupira)r12(0 Q3 (11)) s Q1 ()] ¢ 8(Aas 1a) [Q%(Na), Q% (h1a)] -

Since [Q%(\a), Q*(j1q)] vanishes when A, = 4, it is proportional to A, — f1q. Then, since?

0(Aas pa)(Aa — pa) = 0, it follows that the right hand side above vanishes, as required. [

*Indeed ZnGZ A2N57L71(Aa — fa) = ZnGZ Ao gt - ZnGZ Aapa " =0.
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Lemma 7.9 Let D, = (D,,) The generating Lax equations

acs”
DuQ1(A) = [eaty Trari2(A, 1) Q2(p), Q1(N)] (7.40)
are compatible, in the sense that D, D, Q1(\) = D, D,Q1(N).

Proof. The proof follows as a consequence of the classical Yang-Baxter equation for rq2.
We have

DVD,qu()\) = [T‘r2 (LAL;LTIZ()HM)DVQ2(M))>Ql()‘)]
+ [ Tra (eaturi2(X, 1)Q2(p)), DQ1(N)]
= Trag [L,\L,ﬂ”lz()\,,u, [LMLVT'23(,U,, V)Q3(V),Q2(,U)],Q1()\)}

+ Trag [L)\Lur12()‘v w)Q2(1), [LALVT13(>‘a v)Qs(v), Ql()‘)ﬂ :

(
)
(7.41)

By using the cyclicity of the trace over space 2 in the first term on the right hand side

and the Jacobi identity on the last term, this can be rewritten as

DVDMQI(A) = Trag |:[')\L;,L[’I/ [T12(>‘7 H)v 7"23(% V)] Q2(/~L)Q3(V)v Ql(A)}
+ Trag [tatuts [r12(0 1), T13(0, )] Q2 (1) Qs (v), Q1 ()|
+ Trag {LALVTI3(A7 V)Q3(V)7 [L)\[’Mr12(A7 N)Q2 (M)J Ql(A)]] :

Likewise, exchanging p <> v in (7.41) we obtain

D,D,Q1(A) = Trag [L)\LVT13()‘7 V) [wiprse (v, 1) Q2(p), Qs (v)], Q1(/\)]
+ Trag |:L)\LI/T13 A v)Qs(v), [taturiz(A, 1) Q2 (p )an(A)]]
= Tras |ty [ras(0v), raz(v, 1)) Q2(1)Qs (1), QN |

+ Trag [b,\éﬂ’m A v)Q3(v), [iaturiz( A, 1)Q2(p )an()\)]],

where the second equality we used Lemma 7.8 to swap the order of ¢, and ¢, in the first

term, along with the cyclicity of the trace over space 3.

It now follows from combining the above that the difference (D,,Du - DMDV)Ql (N) is
given by

Tras |atuty ([ri2(h 1), 71 )] 4 [raz(X ), ras (i, v)]
= [ras(A\ v), raa(v, u)])Qz(M)Qs(V), Q1(/\)}

which vanishes using the classical Yang-Baxter equation, as required. ]

This last result of commutativity of the flows D)’s, when they act on our algebra as (7.40),
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and with the identification of the D),’s in terms of linear combinations of the J;x’s, allows
us to consider the coordinates {t* | a € S,k > 0} as times identifying commuting flows
of an integrable hierarchy. As a result, we can effectively see our loop algebra L(g) as
valued in 7, the differential algebra underlying the variational bi-complex, and therefore

we can take g C gly (/).

Equations (7.40) will be shown to be variational, and they can be interpreted as multiform
Euler-Lagrange equations for a collection of Lagrangian multiforms. These are introduced

as a generating series in the same spirit of Equations (6.31), as
LA p) = KA p) =V(Ap), (7.42)
where we define the kinetic part as
K\ p) =Tr (7 (N)Dup(N)X (V) = ¢~ (1) Dap(u) X (1) (7.43)
and the potential part as
VOR) = 5 Traalouin + )raz(h m)Qs (V) Qal0). (7.44)

The above facts make the generating Lagrangian .Z(\, i) a collection of double Laurent

series in A\, and up, a,b € 5

L0up) = (z s Azmz)
a,bes

m,n (7.45)
=(L" (Nas 1) )apes » L% (Na 1p) € §® C(Aas 1) -

This will define a collection of Lagrangian multiforms, associated to the times ¢, 2 ...,

and tll), tg, ... for all a,b € S by using the following prescription
L= L dty Aty (7.46)

m<n
by the relation
gab()\[“ ,U*b)

L% = res res =220 \RdX Ry (7.47)

A=a p=b )\Z”M}}
In order to prove that this is the case, we need to calculate the corresponding multiform
Euler-Lagrange equations dd.Z = 0, and prove that on these equations .Z is horizontally
closed (closure relation) d. = 0. These computations will be carried over in generating
form, i.e. by dealing with the formal series in A and u. For example, the coefficients of

dZ (as a form) are the coefficients of

D, L\ ) + Dy L (v, \) + D\ZL(u,v) (7.48)
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as a triple series. We will use the same approach to calculate dd.Z.

7.2.1 Multiform Euler-Lagrange equation

Proposition 7.10 The multiform FEuler-Lagrange equations for £ are, in generating

form

D@1 (A) = [Tra tarpriz(A, )Q2(n), Q1(N)] (7.49)

Proof. We compute §d.Z in generating form as dD,.Z (A, u)+ O, and separating between

the kinetic and potential terms. We start with the kinetic
DK (N i) =Tr(—=¢ (AN DN (M) Dup(A) X ()
Dy Dyup(NX(A) + ¢ (A Dup(N) Dy X (N)

) Do) (1) Dap(1) X (1)
— ¢ (1) Dy Drp(p) X (1) — @~ (1) Dagp(p) Dy X (11))

so that D, K(\, p)+ O is
Tr(—¢ ™ (N DN (N Dup(NX (V) + ¢ (A Dup(A) Dy X (A)
+ 97 VD™ (N DN X () = 9(\) Dup(N) Dp X (V) + O

After we apply the d-differential we get

“WaK” =Tr((¢~ (N DupNe ™ (N DuQ(N) — ¢~ (M) DN~ (M) DuQ(N))dp(A)
— @ (N DLQNID(N) + (A ) vQA)Dup(A)+ O

Let us now compute 6dV. Computing D,V (A, u) we get, using D,r12(A, pn) =0

1
D, V(A p) = 3 Tri2(exty + tutr)(r12D,Q1Q2 + r12Q1 D, Q2)

where we dropped A, u for simplicity. After applying the d-differential we get

1
D,V (A p) = 3 Trig(eaty + tuin)(r120D,Q1Q2

+7r12D,Q10Q2 + 1120Q1 D, Q2 + r12Q10 D, Q2)
We have the following identities:

Tr127126D,Q1Q2 = Tr12(—Q2r12D,Q1 — Q1 Duip17 ' Qar12
+ Dyip197 'Qar12Q1 + 91D, X107 ' Qar12)601607 "
+ Tr12[Q1,712Q2]0Dyip1p7
=Tr12([DyQ1,r12Q2] — Dyp1p7 ' [Q1,712Q2]) 50107
+ Tr12[Q1,712Q2]6Dup1oy '
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Tr12712Q10D,Q2 = Tr12(—r12Q1 D, Q2 — Q2D,p205 '12Q1
+ Dypapy 'r12Q1Q2 + 92Dy Xap5 ' 112Q1) 50205 !
+ Tr12[Q2,712Q1]6 Dyp2py !
=Tr12([DyQ2,r12Q1] — Dyp2ipy ' [Q2,m12Q1]) 5205 "
+ Tr12[Q2,m12Q1]0Dup2s

Tri2 1120Q1D,Q2 = Tr12(Q1, 712D, Q2]5 0107 ',
Tri2 112D,Q16Q2 = Tr12(Q2, 712D, Q150205 " .

We look at the terms coming from dp1, dD,p1 and 6D, 1. From ddK we have

Try(—Dup197 ' DyQ1 + Dyp107 ' D,uQ1)d0107
+ Tr1(—=DudDyp1p7 + DuQ16D,p107 )

and from 6dV (from 0D,V (A, ) and dD,V (v, \)) and using r;; = —rj;

1 _ 1 _
3 (b + 1u0x) Traz[Q1,112Q2]0 Doprioy T 5 (b + 1ix) Tras[Q1, 113Qs]0 Dupripy !
+ = (taty + tuty) Tri2([DyQ1,712Q2] — D197 H[Q1,712Q2] + [Q1,712D,Q2]) 5107 *

(txty + tyey) Triz(—[DuQ1,713Q3] + Dupr197 HQ1,713Qs] — [Q1,713D,Qs]) 00107 " -

N =N -

_l’_

By setting ddK = ddV/, the coefficients of 6D ,¢1 and D, 1 bring the desired equations

1 1
D,Q1 = i(bxbu + 1)) [Tra r12Q2,Q1), D,Q1 = §(L,\Lu + ten)[Trg m113Q3, Q1] -

The other coefficients are just differential consequences, and they follow from the commut-
ativity of flows D, D, Q1 = D, D, Q1. The coefficients of @2, dp3 etc. give the equations
with the other choices of spectral parameter and auxiliary space. As they are equivalent
under the interchange of auxiliary space and formal variable, we will only keep the first

one. We then use Lemma 7.8 to write the result. O

7.2.2 Closure relation and classical Yang-Baxter equation

In order to prove that .Z(\, p) really generates a Lagrangian multiform we need to prove
that it is horizontally closed under the equations generated by (7.49). We will see that, just
like the commutativity of the flows, this translates in the classical Yang-Baxter equation.
In a way, this result brings for the first time a variational origin of the classical Yang-
Baxter equation, and provides another interesting feature of the Lagrangian multiform

approach to an integrable system.

Proposition 7.11 (Closure relation) On shell of the multiform Euler-Lagrange equations
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(7.49), we have
D,Z(\ )+ DL (v,\) + D& (p,v) =0. (7.50)

Proof. We start with contribution from the kinetic part. We have that

DyK(A, p)
= Dy Tr(p () D)X () — () Dap(1) X (1))
= Tr(—¢~ ' (N Dup(Ne ™ (A Dup(N) X (A) + ¢~ (A) Dy Dup(M) X (A)
+ o (W) Dup()e™ (1) Dap(n) X (1) — ¢~ (1) Dy Dagp (1) X () -

After we add D, K (v, \) + D\K (p1,v) we have that the terms with the double derivatives

cancel out, while the others add up to

Tr(DyQ(A) DN~ (A) + DAQ (1) Dysp(p) o (1) + DpQ(v) Dap(v) ™ (v))

Now we use the multiform Euler-Lagrange equations and get, associating the auxiliary

spaces as usual and dropping the dependence on the spectral parameters

Tris([tatm13Q3, Q1] D107 ) — Triz([tatur12Q1, Q2] D2y ')
— Tras([tutur23Q2, Q3] Drpsps ')
= —Tr13 tAat,r13Q3D Q1 + Tr12 tatuyr12Q1 Dy Q2 + Trag 1yt 23Q2D)Q3
= Tri23(—ixtwr13Q3[tatur12Q2, Q1] + tatur12Q1[tptr23Q3, Q1]
— tutyr23Q2[iat,r13Q1, @3))

= Tri23 txtpt([r12, r13]) + [r12, r23] + [r13,723]) Q1Q2Q3

which vanishes thanks to the classical Yang-Baxter equation. Let us treat the potential

part V(A u) = Trig %(L)\L“ + tutn)r12Q1Q2 (dropping the dependence on the spectral

parameters). We have

1
D,V (A, ) =3 Trig(exey + tutr)(r12D,Q1Q2 + r12Q1 D, Q2)

1
=3 Tri23((taty + tuin)ri2liatr13Q3, Q1]Q2 + 112Q1 Lt r23Q3, Q2))

=Tri23 txtptv([riz, r13] + [r12,723])Q1Q2Q3

where in the last line we used Lemma 7.8. When we add the other terms D,V (v, \) +
D)V (u,v) we can see that they add up to

2Try23 tatutu([r12, 713) + [r12, 723] + [r13,723])Q1Q2Q3

which again vanishes thanks to the classical Yang-Baxter equation. O
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7.2.3 Zero-curvature equations

The equations of motion (7.49) can be written succinctly as

DuQ(A) = [baW(A; ), Q(N)] (7.51)

where we have introduced the generating Lax form

W(A; 1) = Trg tur12(A, p)Q2(p) - (7.52)

Note that we do not expand the right hand side in powers of A\, for a € S, i.e. we do
not apply the homomorphism ¢y. Instead, this expansion is taken explicitly in (7.51). In
particular, the semi-colon in the notation W (A; u) is used to emphasise that A is just
a formal variable whereas p is the usual notation used as a shorthand for a collection
(Wb()\;ub))bes where

W) = Y Wa(Npg € Ra(g) ® Clu)- (7.53)
n=0

Here W2(\) € Ry(g) are g-valued rational functions in A with a pole at A = b. By the
following proposition, WP(\; 1) can be seen as a generating series in j, of a hierarchy of
Lax matrices W2 ()) associated with the higher times 7, and to every coefficient of 1 is
associated a coefficient of the Lax form WP(X\) = S°°° W2(\) dtp.

Proposition 7.12 We have the zero-curvature equation in generating form
DyW(X; 1) = DuW (N v) + [W(X; ), W(Asv)] = 0.
Equivalently, in components we have

Du, Wi (N) — g, WEN) + [ (N), WE(V)] = 0

for every a,b € S and m,n > 0.

Proof. Using Proposition 7.49 we find

DVW()\; N) = TI"z L/ﬂ”12()" ,U,)Dsz (N)
= Tra3 LM12(>\7 1) [LMLVT23(H’ v)Qs(v), Qz(ﬂ)}
= Trag vty [r12(A, 1), 23 (1, v) | Q2 (1) Q3 (v),

where in the last equality we used the cyclicity of the trace in space 2. Likewise, we also
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have

D W (X;v) = Trg 1,113(\, v) DuQs(v)
= Traz 1,713(A, V) [toturse (v, 1) Q2 (1), Qs (V)]
= Trag tutw [r18(A, V), r32(v, 1) | Q2 (1) Q3 (V).

where in the final step we used Lemma 7.8 to swap the order of ¢, and ¢,, before using

the cyclicity of the trace in space 3. Finally, we have

[W(/\;u), W(/\;V)] = Trog [LMT12<)\,,U,)Q2(,U,>, ixtur1s(A, V)Q3(y)]
= Trag tutw [r12(A, 1), r13(A, )| Q2(1) Q3 (V).

The result now follows by the classical Yang-Baxter equation. ]

7.3 The AKNS hierarchy

7.3.1 Lax matrices and zero-curvature equations

Lemma 7.13 Let X(p) = >0 v X°NY € L7%(g). Then we have

%o Z uidt AT X (Aeo)) _ - (7.54)
Proof. Obtained by direct calculation. We have

LNOOXOO(MOO) :i > ng?drl Z ZXOO s+1)\n s

g A r=0n=—N Abo —N s=n
_ Z Merl Z )\Zostoo _ Z :U'T+1 TXOO()\OO))_ . ]
n=—N

We can find the generating Lax form W(A; ) explicitly for the AKNS. Introducing
Q> (Aso) € L1 (g) we have that

W0 ) = T 7120 0)Q ()2 = Trz s 2 Q ()
(7.55)
= ZM“ 0 Q% (Noo))— = Qe + (Q3° + QA g + -

As announced, the points in S (which only contains oo in this case), have become poles of
the Lax matrices, i.e. the coeflicients of W. The zero-curvature equations in generating

form become

Zuk“@ Q% (Aso) = [W (Moo, o), Q™ (Aso)] - (7.56)
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This means that for every r > 1 we have

D122 Q™ (Aoo) = | D QAL Q% (M) | - (7.57)

n=1

Expanding both sides we get

D A0 Qi =Y Y ATTOX, Q)
n=1

n=1 s=1
co r—1
—k
=D D AR, Q]
n=1 k=0
r—1 k
k k
=2 > e Qv +Z > [ 0]
k=1n=1 k=0n=k+1
r—1k—1 r—1 oo
:Z )‘oop[ r— k?Qk —p +ZZAS ?ikﬂ gj—k]
k=1 p=0 k=0 s=1
r—1 r—1 r—1
= AL [ ﬁlm@k —-p +Z)‘ZOZ r— k?on-Hc]
p=0 k=p+1 n=1 k=0

Note that Zk il [Qf‘ik, on_p] = 0 so we are left with the equations

r—1
Ogee QY :Z [Q7 1, Q5r] -
k=0

We are now ready to connect with the results of [FNR83|: let us define Q(\) :== AQ>® (A1),

so that @, = Q2%,, and redefine 2™ := 9% . Setting 2 = z, we obtain the familiar

arQn = [le Qn] + [QOv Qn—i—l] > (758)

which for each n > 1 we can solve recursively and obtain the AKNS hierarchy in the

traditional fashion. Moreover, the generating Lax form becomes jioo (t10o@Qo + 12, (Q1 +
AQo) + .Ugo(Q2 + AQ1 + AN2Q) + ...) that is

W53 ) = e > L

(7.59)
r=0 K

7"+1 ’
where Q(")()\) are the Lax matrices of the AKNS.

7.3.2 Extracting the AKNS multiform

The generating Lagrangian introduced in Chapter 6 is essentially the same as the one of
this chapter, so we will only need to reformulate the procedure described there in terms

of this more general language. Since we chose S = { 0o } we only need to factorise Q(\)
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and Q(u) around infinity

Q% (Moo) = X (Ae0) X (o)™ (o) TH = D QAT (7.60)
i=1
where ®°(Aso) = D re o AR and ¢ (Aso) ™t = D52, AL, and similarly with p.
The Lagrangian of Chapter 6 is obtained as follows (in terms of the old notation). We set
Qn = Q;° 1 and consistently

X*¥(o) =0 () =9V, Dag =77 (7.61)
The kinetic term K°°%°(Ax, fioo) then becomes, in terms of the old notation
- D Qo - Dy Qo
K% (Asos o) = Tr [ M) [ =2 ) W) [ 2 ) =97 M) [ =2 =
(o) r[so ()(ﬂ)w()<A> e () et (2]
(7.62)

- Z )\m+ n+1’

m,n=0

where the K,,,’s are the coefficient of the kinetic part of Chapter 6. The coefficients of

the potential part are obtained as follows. We take the residues

V2 (Ao, o)

e A
1 P12Q™ (M\o0)1Q™ (Moo )2
= T 2 i\
Jyes res o 112 (Lo Lpine T oo bhoo) (M SNV K
1 QOO()\oo) QOO( ) QOO(MOO) QOO(:UOO)
n+1 m—+1

:_7’I‘I.reSZQOO)\ZTL12QOO)\jm1+ T‘I‘TGSZQOO leQooznl

m-+n—+2 m+n—+2

1
5 T‘I' Z Qm+n_j+3 f:[\r Z Qm—i—n ]+3
Jj=m+2 j=n-+2
1 m+n+1 1 m+n+1
= ) Tr Z QernfjJrle ) Tr Z Qm+n*j+1QJ'

j—m+1 j—n+1

**TI"ZQm+n ]Jrle+ TTZQern ]+1Q] Vinn -

Overall we get

o0

L% (Nee, o) = — (7.63)

)\m-‘rl n—l—l + Z )\m—‘r n+1

m,n=0 m,n=0

which is the generating Lagrangian of Chapter 6 up to an overall minus sign.
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7.4 Zakharov-Shabat Lax pairs and Dickey’s Lagrangian

7.4.1 Lax matrices and zero-curvature equations

Lemma 7.14 Let X (p) € L™ (g). Then we have

X(p) - X(Aa)
=— g T Ya e S. .64
L,Ua o \ par M ( >\Z+1 B P a < (7 6 )
Proof. Obtained by direct calculation. O

We can now find the generating Lax form explicitly for this case. Let Q(\) = (Q%(Ag))acs €
L£%(g), where

Q"(Na) =D QA —a)F, i=1,...,Ny, (7.65a)
k=0
. S b; .
Q" () =D QA =b))F, j=1,...,N,. (7.65b)
k=0
We compute W (A; p — a;) = Trey,, % and we find

T, 2 == 3 - o (S0

I\ — . \nit+l

ni:() ()\ a’L)

[ee) g QZZ )
:—Z(M—ai)ZWa i=1,..., N1,

n;=0 k=0 ¢

00 m; b;
Q1) - Q/ .
TI‘L S = — (M—b) N N 17 ]:1,...,]\72.
Hb; w— A rrg::[] J ;; ()\ _ bj)m]Jrl 0
Therefore
n; a; mj bj
WaEW ==Y e W= (7.66)

()\ _ ai)”i+1_k ’ (>\ _ bj)mj+1—é )

k=0 /=0

Now, introducing the times ¢3¢ and t?ﬁj we get that the zero-curvature condition in
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generating form is

9y, Wii) = 0y Wfi{j (N) + W (A), Wi, ()]

g a;
Ope ’ZE: nz+4 7~ O ji: iv+1—k
7 J tmj =0 (>\ — ai) T

n; a; mj ij
+ e el —
kzo (A — a;)mit1i=Fk % (A — by)ma+1="
= 0,0 Vi(N) — 9, Ui(N) + [U:(N), V;(M)] = 0, (7.67)
mj
where we have defined
ng Qai mj ij
U=y —k )=y —2L (7.68)
kzzo ()\ _ ai)”l"'l_k J ; ()\ _ bj)m]—&—l—f
Performing the sums vazll ;El we obtain (for given values of N1, No, n; i =1,...,N;
and m; j=1,...,Na)
IV (A) = HUN) + [UN), V()] =0, (7.69)
where N N
1 2
U =D Ui(A), V) =) Vi (7.70)
i=1 j=1

and 0¢ = vall ﬁtal and 0, = ZN 8b . This corresponds to the auxiliary system

of Zakharov-Shabat type studied by chkey in [D03, Section 20.2], in the case where
Up = Vo = 0 and a; # b; Vi, j. The special case where n; = m; = 0 Vi, j corresponds to
the ZM case [ZM80].

Remark 7.15: The case with coinciding poles a; = b; is obtained by choosing some
of the times i and t%j both in O¢ and &,. This, and the case with generic Uy, Vo

are still under current investigation and are objects of future research.

Remark 7.16: Equations (7.69) are the zero-curvature equations dW (\) + W(\) A
W(A) = 0 for the Lax connection W(\) = U(X)d€ + V(A\)dn, where we note the
different sign in the definition of the curvature with respect to the rest of the thesis.
This will bring a different sign in the ZM Lagrangian with respect to [ZM80] that
uses the convention F(W (X)) = dW (X\) — W(A) A W (), that can be recovered by
sending W(X) — —W ().
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7.4.2 Extracting the Zakharov-Mikhailov Lagrangian

Our target is to obtain the Zakharov-Mikhailov (ZM) Lagrangian [ZM80]| (see also
Sections 4.5 and A.4) from the generating Lagrangian multiform .2 (A, x). It will not be

obtained as a coefficient a Lagrangian multiform, but a linear combination of coefficients

N1 No
a;b;
Lz =Y > Lgy’ .

i=1 j=1

As before we write Q(A) = (Q%(A\a))aes as in (7.65), where S = {a1,...,an,,b1,...,bN, }.

Then, for each a; we write
Qai()‘lli) = @ai(Aai)Xai ()‘Cbi) (‘pai ()\ai>)_1 ’

0" (Aa,) = Zsozw)’“, (@ (ha) T =D Fh ()",

k=0
X (A Z Xk

(7.71)

and for each b;
Q% (Ab;) = 1% (Ao, ) X% (Mo, ) (0% (Mo,)) 71
_ = bj k b
—;Owk (Mo,)F, (1% (M) Zwk A,)F (772

o0
b.
) = YK
k=0

We remark that g5' = (p57)" ! and Jgj = (¢gj)_1 for all 4,7. Then, we obtain the

Zakharov-Mikhailov Lagrangian by taking the following sums and residues

N1 N» a;b;
L4 (N, s Mo,
Lz = Z res res M. (7.73)

s i Aa; b,
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Indeed we have

N1 N»

N1 N> 1 0o
= ZZ res res Tr ( -1 Z,ubj (Aa;) X% (Na;)

o1 g T e bj Aa; b,

— (9% () IZAI“ Oy " (1, ) X (i, )>

k=0
WERRLE b; b bj
= ZZTI‘ < 165 QDOZXgZ — (Tﬂoj)latginJXO])
=1 j=1

29071877301 Zd) 18!;”/’]

and it corresponds to the kinetic part of the ZM Lagrangian under the identifications
" N
i = ¥, U~ =Xy, U, = , Ot = E 8t8¢ ,

=0

(7.74)
w obj V(O) ._ ij V. = bj o = < o
Yy =, i =0 i=Qq ”_thj'

The potential part instead brings

ii res res M

i=1 j=1 A=ai p= )‘ai:u’bj

N1 N A .

Zl i Tes Tes o Tr (¢ Sy, )P12Qaz()‘ai)1QbJ (1b;)2
B A=a; p= 12850, Pt b “Xa TSI

i=1 j=1 b,

N1 N _
= ii Piz Q%(Na,)1 Q% (1,)2

res res Triz e, b,
i=1 ] 1 7@1 Mf J M )\ )\ai /“LbJ

where we used the fact that a; # b; and so Uaa, by, = Uiy, Uha, and then, using Trg P1o A =

Az and L, ui/\ =—=> quAZ;l we get
N1 N2 00 o0 00
— ZZ res 1es iy, TrzZZQZiQEjA];;l)\;_T_lM?l_l
=1 j= 1>\au r=0 k=0 (=0 ’ ’
1 2
= _ZZ res TrZQ ng)\’;i_l/\b_jl
=1 j=1 A=as
N1 No N1 N

—- 3> mde =) = ==Yy T

=1 j5=1 =1 j=1
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that is the ZM potential with the right sign according to the convention F(W) =
AW +W AW.
7.4.3 Extracting Dickey’s Lagrangian

We now extract the more general Lagrangian of [D03, Section 20.2|, which describes the
zero-curvature condition V(X)¢ — U(A), + [U(N), V(A)] = 0 where

Ny - -
= Z Ui\, U =) m : (7.75a)
11;21 7;]0 Vj
=2 Vi, vy =) m : (7.75b)
=1 r=0 J

which generalises the ZM system by allowing Lax matrices with poles of arbitrary degree.
Similarly to the ZM case, it will not be obtained as a coefficient a Lagrangian multiform,

but a linear combination of coefficients

N1 N3

Lp=>_3"Ly..

=1 j=1

We take the following sums and residues

Al L0 (A
_ awlufbj)
o= 353 ey Lot )
=1 j=1 a; Mbj

proceeding similarly to the previous case (ZM): the kinetic part brings

N1 N Kb (Anlaﬂb )
res res

N1 No 1
_ZZ)\FGE Hres WT ( i Z'ub] tJ (M)Xa ()\ )

i=1j=1" " My,

—(W" () Z/\k Oyei " (v, ) X" (s, )>
k=0
N1 N2 g
i X(\)

= Z)\rfzszTr( "(Aa;)) Z@t%@a (Aa) A\t

=1 j=1 ’ “

N M X ()
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We now call 9,, = Zj\f:zl 6tbj ,and 0¢ = Sh Oyei , and truncate % (Aq,) and DD CIO W
’mj 7

at n; to obtain respectively
=D ogN,. A=) A (7.77)
r=0 r=0
and similarly ¢ (X\y;) and A" 71 X (\,,) at m; to obtain respectively
my . mj )
\) = Z_;) WAL, Bi(A) = z_:o B, (7.78)

connecting our notation with the one of [D03]. The potential part then follows from the

same identifications. In fact we have

N1 Na b
Va J()\G/N/"Lbj)
2.2 N syt ML
i=1 j=1" "H= Aa; oy,
N1 N ‘ .
Z 30" s res Llvuaton it + s 2, P22 010 i)
g N 12 Aa 'LLb ,U‘b )\a - —
=a; p=b; _ n;+1 m;+
i=1 j=1 =a; h=0; 2 (M A)Aai Mbj
N1 N2 b
Tr Pz Q%(Xay)1 Q% (1w, )2
N ZZ gy by 2 ety N T myl
_al = i
i=1 j=1 1=b; N a; Mbj
N1 No 0o 00 00 b;
= T Qf )\—7‘—1 r
= res res iy, Ir n+1 - R
A=a; ,U‘* /\az [ j
=1j=1 r=0 k=0 ¢=0 i

J

We now take the residues in p and take the pole parts in A to obtain Dickey’s potential

identified as
N1 N

= —ZZ res gZ i (thjhj_l)_. (7.79)

=1 j= 2
7.5 sine-Gordon equation

7.5.1 Lax matrices and zero-curvature equations for the sine-Gordon
case

We have the following lemma.

Lemma 7.17 Let X (p) € L(g), with X°(X) = Y02y, XA and X°(X) =302 XONL .

n=—
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We have
tuo Trar12(X, 10) XO(mo)2 = — > " (AXO(\)- (7.80a)
=N
bioo Tr2 1120 ) X ¥ (foc)z = D (A X ™ (Aao)) - (7.80b)
r=—Noo
Proof. Obtained by direct calculation. O

We start with Q(\) € B(g), where we parametrise the first few matrices of the expansion
of QY(A\) and Q> ()\s) in the following way

. iu/2 ; iu/2
o © [0 e o ¢ v e
QO 9 <0 0 ) € b+, Ql 92 <€_w/2 v ) € g, (7 8 a)
7 0 0 i [ —w e /2
o _ [ cb_, A €g. 7.81b

The coordinate u will play the part of the sine-Gordon field, while v and w will be
respectively ug and w,, 7 being the light-cone coordinates. We can then calculate the

first terms of of the expansion of the generating Lax form. In zero we have
WO(A; o) = Trz LMOT12()‘ 10)Q° ()2
S WL
_ _ _ 1
~ (P4 P@ - w8~ (P + PR +

We then get W{(A\) = 0 and

0 i v % /2
U0 =W = =5 (s . (7.82)

—v
At infinity on the other hand
W (X; poo) = Tra 1 T12(N, Hoo) Q™ (1) 2
= Zuoo Q% (Aoo))—
=(P* 4 LPOQE + QG + (P + L POQR +

and so W§°(A) = 0 and

- i —w 9 —iu/2
V) = W) = - <2Aew b > . (7.83)
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U(X),V(A) are, under the identification v = u¢ and w = u,), precisely the Lax matrices

(4.21) for the sine-Gordon equation in light-cone coordinates.
We now consider the zero-curvature equations for these coefficients, i.e.

e WP(A) = B Wi (N) + [WE(N), WP (N)]
= U\) =8V (N + [UN), V(N =0

(7.84)

under the identifications J¢ := 9y and 9, := . This corresponds to the zero-curvature
equation dW () = W(A) AW (A) for the Lax form W(A) = U(X) d§+V (A) dn as calculated

in Section 4.2, the only difference being that now this is equivalent to the system

Uy =W
Ue = v (7.85)

vy + we +2s8inu =0

that implies u,¢ + sinu = 0.

7.5.2 Extracting the sine-Gordon Lagrangian

We parametrise Q°(\) = @”(A)X°(\)(©°(\))~! and therefore

(@0 +PIA+ . )X NG+ PN+ ) = Q0+ QA+ ... (7.86)
where 38 = (¢) 7! and &9 = —589%Y. We choose
XO(\) = %(a+ +Ao_) € by ®g®AC[N], (7.87)

and we obtain, by setting ¢J(404)@) = QJ

iu/4 k —iu/4 —k

for any k smooth function of the field v and its derivatives. At this stage k is arbitrary.

Let us consider the next step, and set

a b a b
so?=<c d>7 @‘f=<~ ~)=—95890?90o- (7.89)

We can partially fix the undetermined parameters using the following conditions.
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1. det®(\) = 1:

et 4 a+ ... k+Ab+...
det )
e+ ... e~/ L Nd + ...

=14 Mde™* + ae™™* + ck) + O(\?)

which implies ck + de®™/* + qe~™/* = 0.

iu/2
2. pgo-30 + Po @ + 0o B = (2 <L)

ke—tu/4 _k2? N 0 aqetw/4 N celu/4 Jetu/4
e—iu/2 _k,e—iu/4 0 Ceiu/4 0 0
B <k,eiu/4 + ’é’eiu/él — k2 + aeiu/4 + Jeiu/4> B ( m eiu/2>

e—iu/2 _ke—iu/ll + ceiu/4 e—iu/Q —ug

which implies the system

ke—iu/4 +E€iu/4 =

_ke—iu/4 + C€iu/4 = —U

_kQ 4 aeiu/4 + Jeiu/4 = eiu/z
3. Finally, 39 = —33 9 &:

( . .
U = kee— /4 _ g—u/2

b = k(ae™™/* 4 det/* — ke) — b

C = —¢C

d = keel/4 — deiu/?

This would not lead to a complete determination: the first and second equation of point 2
imply the third equation of point 3, and therefore we have (at most) only seven equations

for nine parameters. However, all we need to do to obtain the desired Lagrangian is to set

k= Be’iu/ll
2
and as a consequence
v -
c=——e WA = _¢,
2

We fix all the other parameters but b consequently. We will see that we do not need the

explicit expressions.

In a similar way we can construct the parametrisation around infinity Q% (ue) =
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0> (oo ) X (oo ) (0™ (1100) ~L. We choose

X%(p) = —%(a, + %*) cb_@gaA'CAT], (7.90)
and obtain
—iu/4 0 iu/4 0
e
S - , O = 7 91
Yo ( m zu/4> Yo (_m —zu/4> ( )

Similarly as before, we set

W /4
m=—e , = —
9 q

and we leave r undetermined.

We can now obtain a Lagrangian for the sine-Gordon equation by taking the residues

L% (N, pioe) A\ dps L
We start by calculating the kinetic part. We note that as we chose the pairing with

k= —1, we take D, = > 72, ,u'éoatzo. The first term brings

1 1
)1:9% Mr:eso 2 Tr(&g Z ﬁa ‘PO + ‘Pl)‘ +. )XO()‘)
= k=0 (7.94)

where we have already imposed v = ug. The other kinetic term brings, imposing w = uy,

1
res res — Tr({g° +—+ E Neh (05 LD L x> ()
Aonme N : (7.95)

{ ~ ~ ~ Upl
= 5 TH(EFOep o + B3 0o + Foepy o) = ——~ .

We now treat the potential part, starting from the contribution of the term p'fz — p1o of

the r-matrix. We have

1 1 - 00
5 Ies res Tri2(pfa — P12)QT (N QS (too)

= =3 Tr1a(04Q%) @ (7-QF) + Tria(0- Q) © (7. QF) = ~ S~ + -
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The other contribution comes from

1 1 + A
2 T P05 )
:lres res iTr Z +Z ZQO ZZQOO
2 A=0 p=00 \2 w
k= 0 =0 7=0
1 upug 3 e
= = Tr(QOQF + 5QIQT) =~ = - 5 —

Adding everything together we get

1
Lo = u774u5 + 5 cosu

(7.97)

(7.98)

which is indeed the Lagrangian for the sine-Gordon equation in light-cone coordinates.

Remark 7.18: The Lagrangians overall multiplicative factor 2 between the two

trigonometric r-matrices of this and Chapter 4, which creates (or is explained by,

which at this stage is really up to interpretation), the factor % between the Lagrangians

(4.22) and (7.98).
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Chapter 8

Conclusions and perspectives

Few can foresee whither their
road will lead them, till they

come to its end.

J. R. R. Tolkien

This thesis constitutes progress towards the understanding of the role played by multi-
dimensional consistency and the application of covariant Hamiltonian field theory to
integrable systems. We have developed a covariant formulation of integrable field theories
in 1 + 1 dimensions, and its generalisation to integrable hierarchies, called Hamiltonian
multiforms, providing multiple examples. Moreover, we have proved that our formulation
reproduces and generalises the classical r-matrix structure of the Poisson bracket via the

formula

W1 (N), Wa ()]} = [riz(As 1), Wa(A) + Wa(p)],

where W () is the Lax connection of the integrable field theory. Using the r-matrix
structure and the classical Yang-Baxter equation we have also developed a technique that

generates Lagrangian multiforms for several integrable hierarchies from a common object.

These results point to some interesting open questions, that will be object of future

research.

A covariant H = Tr L? formula Firstly, we remark that thanks to our formalism
one can write the covariant equivalent for the famous H = Tr L? relation that holds in
classical finite-dimensional mechanics between the Hamiltonian function and the trace of
the square of the Lax matrix. In fact, as it was first noticed in [CSV21a|, we have that

the covariant Hamiltonian for the ZM action can be written as

N1 Ny
WMANAW
Hzy = ZZ)\reS res Trw
m=1n=1 —m W=bn o

161
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In fact, we have that

N1 No

A

ZZ res res Trw
el N om w=bn K

N1 Ny

Vi Ug

= déENd

Ny N2
= ZZTr UV dgAdn_HZM

m=1n=1

Surprisingly, a similar relation holds for the AKNS hierarchy as well, and we have that

the AKNS Hamiltonian multiform can be obtained as

= res res ,71} Z QU (A ) A (Z Q™

m>0 n>0

= res res Lt T 30 QAR () — QUIA)QM ())da™

1 1 m—i, n—j n—j, m—i mn
= jres xes *ﬁTfZZ‘ A" QiQy — AT TQ;Qi)dw

1 ur I
R R DR S 3 35 S G M A
p>0 p>0 m<n =0 5=0

_ QiQj Q;Q;
1 r_e(fo Al > ZZ ZT NPy j—n—p  N\jFprloni-m—p
m<n p>0 i=0 j=0
QiQ; Q;Q; )

_)\ifmfpuj#erlfn N —n—pitp+i-m

We apply the residue:

n

1 m
=1 Z Z Tr(Qm—pQptn+1 + Qpint1Qm—p) — Y Tr(Qn—pQprm+1 + Qprm+1Qn—p) | dz™"

m<n \ p=0 p=0
=> ( ZQka+n+1 k5 ZQka—i—n-‘rl k) dz™"
m<n k=0
=Y Hppdax™
m<n

as desired. This is definitely aesthetically pleasing, and it is interesting to see whether it
holds for other hierarchies, possibly with other r-matrix structures besides the rational
one, and its consequences on the integrable properties of the system. The conjecture is

that the Hamiltonian multiform can be repackaged in a generating series (similarly to the
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AKNS case in Chapter 6), in a formula such as

H(A, 1) = Triz raz(A, ) Wa(A) A Wa(p) .

Generating Hamiltonian multiform and multi-time Poisson brackets In the
spirit of Chapter 7, one would like to define a generating Hamiltonian multiform, which

we suspect could take the form

H\ p) = %Trlz(bxbu + tpea)riz(A, 1) Q(N)1Q ()2,

and a Poisson bracket between the generating Lax forms
{W(\iv)1, W(p;0)2}

as a double Laurent series in v and o, where A and p play the role of the spectral parameters.
We would want this definition to reproduce {{W(X)1, W ()2} = [riz(A,p), W(A)1 +
W (u)2] and to be consistent with an equation as dW (X)) = {{H, W(A)]}. This is currently

still under investigation.

Covariant (quantum) integrable systems The Hamiltonian multiform description
of the Ablowitz-Kaup-Newell-Segur hierarchy cf. Chapter 6 has proved efficient in obtaining
the infinite series of conservation laws, which are identified in a 1-form A =5, Apda®,

with dA = 0, and characterised by the familiar-looking requirement
dA=0 <<= {H;;A} =0 Vij

where H = 3, H,;dz" is the Hamiltonian multiform and {[ , ]} are the multi-time
Poisson brackets of the hierarchy. This points to a description of the hierarchy and its
conservation laws that is more similar to the traditional approach to finite dimensional
systems than to field theories, and opens a series of questions. Firstly, the conservation
laws are obtained without resorting to the monodromy matrix [S82], and apparently
without involving the r-matrix structure at the group level, which is the starting point of
the traditional and well-known (quantum) Inverse Scattering Method. This is definitely
remarkable, but it leaves us to understand if this is really the case, and if so, why.
Then, for 1-dimensional multiforms (i.e. hierarchies of ODEs), recent results ([V20] and
Section 5.6) has linked the closure relation of the Lagrangian multiform d.¥ = 0 to the
involution of the Hamiltonians. It would be interesting to understand if we can relate the
closure relation to the mutual involution of the single-time Hamiltonians in the case of
field theories.

Moreover, we only managed to work with ultra-local field theories (i.e. where the classical
r-matrix is skew-symmetric), since the non ultra-local theories that we tried to study are

expressed by a Lax connection that is not admissible cf. Section 4.6. These non-ultralocal
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field theories are extremely important to treat, as they include famous key systems such
as the celebrated potential Korteweg-de Vries equation. This problem of extending the
covariant Poisson brackets to non-Hamiltonian forms has been addressed in the literature

(see for instance [F'S15]), but not in relation to Integrable Systems.

This line of research is going towards the introduction of a notion of ‘covariant integrabil-
ity’, which would relate covariant Hamiltonian field theory, multisymplectic geometry,
Lagrangian multiforms and classical r-matrix theory. This offers the hope of carrying out
a program of covariant canonical quantisation for integrable field theories, thus realizing
the initial hope behind the effort of the Polish School for instance [K73] and attempted
e.g. by Kanatchikov [K01|. We wish to remark that this thesis (and the works [CS20a,
CS20b, CS21] and partly [CSV21a]) belongs to a programme whose overarching goal is a
new approach to canonical covariant quantisation of an integrable system, and builds an
important step towards this objective. We believe that the classical r-matrix structure
within the covariant (and multi-time) Poisson bracket can provide a new outlook on how

to perform this canonical quantisation in a covariant fashion.



Appendix A

Miscellanea

A.1 Matrix algebras

In this section we shall use Einstein’s notation on repeated indices. Let GL(2,C) the
general linear group of invertible 2 x 2 (i.e. with non-zero determinant) matrices over C.
Its corresponding Lie algebra is the algebra of 2 x 2 matrices Maxo = gl; over C with the
usual commutator

A,B € My, [AB]=AB-BA. (A1)

We use as a basis of the gly algebra the set { E;j, i,j = 1,2} where each Ej; is defined as

the 2 x 2 matrix with the only non-zero entries being at the place (i, 7), i.e.

They act on the canonical basis of C? {e; } as E;jer, = djre;, and they have the following
multiplication rule:

Let now SL(2,C) C GL(2,C) be the special linear group of invertible 2 x 2 matrices over
C with determinant 1. It is a well-known fact that its corresponding Lie algebra is the

one of traceless complex 2 x 2 matrices s¢(2,C)

b
<“ ) € s0(2,C), abeceC, (A.4)

c —a

with the Lie bracket given by the usual commutator. It is then easy to see that a matrix

A € s0(2,C) can be expressed as
b 0 1 — 0 —2 1 0
A (@ :b+c +c ‘b . ? ta . (A5)
c —a 2 10 2t \i 0 0 -1
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o1 = <(1) ;) , 09 = <(Z) _OZ> . 03:= <; _01> , (A.6)

are the famous Pauli matrices, and form a basis for sf(2,C). They satisfy the following

The matrices

properties:
° a%:a%:ag):]lg.
e deto,, = —1 and Tro,, = 0.

e The s/(2,C) algebra rules

(00, 0m] = 2icpmnon (A.7)
where 4, is the Levi-Civita symbol.

We often prefer a different choice of basis, i.e.

(o) == (0 0) = (5 1) as)
These matrices satisfy the following properties:
° ai:UE:O, o3 = Is.
o detor =deto_ =0, detos =—1, and Troy = Tro_ = Troz = 0.
e The s/(2,C) algebra rules
[o4,0_| =03, lo3,04] =204, [03,0-]=—20_. (A.9)

Using the basis { 04+, 0_, 03 } we can quickly write the commutator between two s¢(2, C)
matrices Q; = (9 % ) and Qo = (92 2 )

c1 —aj C2 —a2

[Q1, Q2] =a1b2]o3, 04 ] + a1calos, 0| + brasfoy, 03]
+ bicaoy,0-] + craglo—, 03] + ciba[o—, 04 ]
=2a1byo4 — 2a1c00_ — 2b1as04 + biceos + 2c1a00— — c1baos (A.10)

_ ( b162 — Clbg 2(@1[)2 — b1a2)>
9 .

(Clag — alcg) Clbg — blcQ

A.2 Auxiliary spaces notation and classical r-matrix

Let g = gl with basis { Ej; }, so we can write its elements as A =3, a;; E;j. We shall
the Lie algebra g ® g with basis { Ej; ® Ej }, with bracket extended from the one of g
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(i.e. the usual commutator). If we consider g = gly, and in coordinates we have

a a b b
A [0 o2 . B= 11 b12 ’ (A.11)
as1  a92 b21 622
then we can view their tensor product as a 4 x 4 matrix, as

B B
A® B — a11 a2
ang CLQQB

ai1bir  aitbiz  aisbir  aisbio (A.12)
a11ber  a11bay  ai2be1  aisbaa
az1bir  az1biz  agebir  assbio
as1bo1  ag1bay  azbo1  asoba

In the same way, the tensor product of two C? vectors u = >, u;e; and v = >, vjej can

be seen as a C* vector as

uiv1
ulv U1V
UR V= = . (A.13)
usv U2v1
U202

For each A € g define A; = A® 1 and A2 =1 ® A where I is the 2 x 2 identity matrix.
Note that for instance A ® B = A1 Ba. Matrices related to different auxiliary spaces
commute: A ® B = A1Bs = B2A;. We remark the well-known fact that not every
element Cha of g® g can be written as A® B, with some A, B € g, but it is more generally
Ci2 =), CijreEij © Ep.

The following definition of Sklyanin Poisson bracket [S82| is crucial in this thesis, since it

allows us to identify classical r-matrix structures within various Poisson brackets.

Definition A.1 (Sklyanin Poisson bracket) Given a Poisson bracket { , }: gxg—g
we define the Sklyanin Poisson bracket [S82] between two matrices A = Zij Ai; B and
B = Zké BMEM as

{A1, B2} = Z{Aija BulE;; @ Epycg®g. (A.14)
ikl

In other words, the Sklyanin Poisson bracket of two elements of g allows us to calculate
Poisson brackets of the different coefficients of these elements with respect to a given
basis, casting them into an element of g ® g. Of course, if we are computing Sklyanin

Poisson bracket of elements of s/(2,C) and are using the basis { 03, 04, 0_ } as

A=azo3+ar0 +a_o_, B =bso3+biror +b_o_, (A.15)
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we can compute it as

{Al,Bz} = Z {ai,bj}ai@)ai. (A16)
%,j=3,+,—

P15 is the so-called permutation operator on C? @ C?: Piau® v = v ® u. For gl this
can be written as Pjp = Z E;; ® Ej;: in fact, we have that

Piou®uv = Z Eij ® Eji Zuk’(}l e & 6[) = Z(ukEWEk) & (ngﬂeg)
et ikl

= Z ukéjkel Ug(slgej) Z(viei) & (ujej) =vQu.
ij7,kl ij

In the case of gly we have

P12 =E11 Q@ E11 + E12 @ Eo1 + E21 @ B + E2a @ Eao
1 0 1 0 01 0 0
= & + &
0 0 1 0
00 01 0 0 0 0
®
1 0 0 1 0 1
0
1
0
0

10 0
0 0 0
_ (A.17)
0 1 0
0 0 1
For g = s£(2,C) we have that the permutation operator can be written as P12 =

(0+ ®o_+0_@oy + G 4 %8s,

Proposition A.2 The permutation operator Pio = ZZ-]- E;; ® Ej; satisfies the following

properties:
1. P122 = Idc2gc2-
2. P1agA1BaP1a = AaB1, where A, B € gly,. As a consequence we have that PigA1 =
A2P12 and Plsz = Bl-P12; and then

Proof. 1. Directly from the definition, or

P1aPra =) (Eij @ Eji) > (Eyin @ Enm) = Y EijEpn @ Eji Enm

i mn iymn

= Z 5Jm5mEm & Ejm = Z E;® Ejj =I®Il= Id@2®(c2 .

iymn i
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2. We have that

P12A1B2Pyo = Z (Eij @ Eji)(amnEmn @ 1) (brel @ Ege)(Epg @ Eqp)

iymn
kepq
= Z Amnbie EijEmnqu ® EjiEkéEqp = Z 5]m5zk Amnbie Einqu X EjﬁEqp
ymn ymn
klpq kepq
= Z 5jm5ik5np5€q amnbkﬁ Ez'q ® Ejp = Z ejnbiﬁ Eié & Ejn = A2Bl .
iymn ijln

kepq
The relation PioA; = AsPja is obtained by choosing B = I and multiplying by

P32 on the right hand-side. In a similar way we have Py3Bs = By Pi2. Finally,

(P12, A1] = P12A1 — A1 P12 = A3 P1a — Pi12As = —[Pi2, A2]. [

We indicate with Try, the usual trace taken on the space k, so that, for instance, Tr; A1 =
Tr1(A®1I) = (Tr A)L. The following identities hold:

e Symmetry of the auxiliary spaces: Try A2; = Trg A1s.

[ ] CyCliC property of the trace: Tl"l A131201 = TI‘1 ClAlBl2 and TI‘2 A2321C’2 =
TI'z CzAszl.

Moreover, we have that Trq PjgA; = Trg P1gAs = A. In fact

Trq P12 Ag = Trq Z E;; ® Ej; Z apl @ Egg = Trp Z Z apldipEij @ Eig
i Kt ij ke

=Tr1 Y ayEij® Ejp =Y ijauBj =Y agEq=A
il il il

and similarly Tro PigAs = A.

Let Si2 be an operator C? ® C? — C? @ C2.

S12 = Z Sij,kZEij QR Eryp. (A.19)
ij kel

S12 will induce operators acting naturally on C? e C%eC2%

Slz = Z Sij,kéEij X Ekg X ]I, (A.QOa)
ij k0

Sog = Z Sij’kg]l & Eij ® Fiyp, (A.QOb)
ij kb

S13 = Z Sz’j,kZEij RI® Ekg . (A.QOC)
ij kb

We use the same name for the operator S1z acting on C? ® C? and C? ® C? ® C? with a
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little abuse of notation. Such an operator is often non-constant, and it may depend on

spectral parameters A, 4 € C in the following way

S12(\ 1) = sijre(A, 1) Bij ® g (A.21)
.

An operator r12(\, 1) : C2®C? — C?®C? such that 712(\, ) = —ra1 (1, \), that satisfies

the classical Yang-Bazxter equation

[r12(A, 1), r13(A, v)] + [ri2(A, p), m23(p, v)] + [r1s(A, v), re3(v, 1)) = 0 (A.22)

is called an ultralocal classical r-matriz. Here are some examples:

e The rational r-matrix

P2
A—p

7'12()\, 'u) = - (A.23>

e The trigonometric r-matrix [FTRO7|

1 A2 + p?

A
r12(A, p) = %Mz(m ®o1+02®02). (A.24)

>\2

The name trigonometric comes from the fact that when we perform the change of

variables \ = ¢'® and W= e® we have that r12 becomes

i cos(a — B)

“2sin(a— ) (01®01402®07) . (A.25)

ri2(a, B) = (I®l—0o3®03)—

i
2sin(a — f)

e Another trigonometric r-matrix [SO8, Section 4.5]

lpu+ A
TIZ()‘vM) = 7IUI

10 o_®oy. (A.26)

(3®@03+1R1) +

oL ®o_ +

1
W= A W= A

These two trigonometric r-matrices are related by a ‘gauge/twist’ transformation,

but we do not enter in further details here.

A.3 Dirac-Poisson brackets for the Non-Linear Schrodinger
equation

This section is adapted from [ACDK16, Section 3.1]. We start with the Lagrangian for
the (unreduced) Non-Linear Schrédinger (NLS) equation in the following form
i 1 1,

L= S = ar0) = 50— 50, (A.27)
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which produces the Non-Linear Schréodinger equation in the form

1 1
1q; + qu - q27“ =0, iry — §rm + qr2 =0. (A.28)

We compute the momenta conjugated to ¢ and r in the usual way:

1 OL  ar o OL g

P PR i

s (A.29)

We see that these equations cannot be used to eliminate ¢; and 74 in favour of the momenta
pb2, but they relate variables that are supposed to be independent: they are therefore
constraints . .

Clzpl—%, ngp%%, (A.30)

and the ‘constrained Hamiltonian’, which takes these constraints into account, is

H, =H + M\ Ci + \Cs,

) ) (A.31)
=p q +p°re — L+ X\ C1 4+ X2Cs.
The canonical Poisson brackets are given by:
pha=1, {Pry=1 (A.32)

At this stage, we have two possibilities: either we use the Poisson brackets { , } with the
constrained Hamiltonian H,, or we use the usual Hamiltonian H with the famous Dirac

brackets { , }p [D50]. Let us explore the second scenario. We compute

ir iq .
{01,02} = {pl_ §,p2+§}22, (A33)
which shows that these primary constraints are second class. The values of A1 2 are

completely fixed by the requirement that the constraints are constant under the flow of

H,, in fact we have

{H*,Cl} = {I’I7 Cl} + )\2{02,01} = {H, 01} — X =0 = Ay = {H, 01},
{H*,CQ} = {H7 Cg} + )\1{C1,CQ} = {H, CQ} +X1 =0 = A\ = —{H, CQ},

which means that there are no more constraints besides C1 2. We need the matrix M of

the Poisson brackets between the constraints, such that M;; = {C;, C;}, and its inverse

M:(O, Z) M1:<0, Z) (A.34)
—1 0 —i 0
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The Dirac-Poisson brackets { , }p are defined as

{f,9yp =1{f.9} = D _{f,C;}(M ") {Ck, g} (A.35)

J,k=1

for any f, g smooth functions of the dynamical variables. The Dirac-Poisson brackets

between ¢ and r therefore become

{¢,7}p ={q,7} — {a. CL}(M~")12{Cs, 7}

(A.36)
=0 — i{q, 1} Co, 1} = i.

This allows us to use the Poisson bracket {¢q,7}p =i (from now on renamed { , }), and
the Hamiltonian

1 1
H=plg+p'r—L=5qr.+ 50", (A.37)

to compute the Non-Linear Schrodinger equations as

1 1 i .
o= [ Hdooa) = [ Glarsah + S a))do = Ja — id*r,

1 1 ]
ro={ [ Haoary = [(Glasrar) + (% r)do = = Jrow + iar®.
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A.4 4d Chern-Simons origin of the Zakharov-Mikhailov Lag-
rangian

The setup Let ¥ := R? be the plane with light-cone coordinates ¢ and 7, and X =
¥ x CP!. In CP! we use the coordinates (z, 2) We start from the regularised 4d action

Sia(A) = —ﬁ /X STe(F(A) A F(A)) | (A.38)

where A = A¢ d§ 4 A, dn + Az dZ is a gly-valued 1-form on X. The components of A are
taken to be smooth functions anywhere on X but on a set of marked points { a,, }2., and
{bn }ivil Specifically we require A¢ and A, to be singular at these points, and that they
can be written locally as A¢ = (2 — am)_le,g near each a,, and A4, = (z — bn)_anm
near each b,. A will be often referred to as the bulk field, and Syq as the bulk action.
F(A) =dA — AN A is the curvature of A and has components

F(A) =(0¢Ay — 0n A — [Ag, Ap]) d§ N dn
+ (Oc Az — 0:A¢ — [Ag, As]) dE N dz (A.39)
+ (877145 — (951477 — [AU’ Ag]) dn ANdzZ+dz A GZA .

We used the notation

Tr Zu([)da:([) A ZU(J)dJ:(J) = Z Tr(u(I)U(J))da:(l) A dz) (A.40)
() () (1),(J)

for gl valued forms on X, where (/) and (J) are multi-indices.

Remark A.3: Note that we do not include a z-component in A, as the action
is invariant with respect under local transformations A — A + xdz for any x €

C*(X,gly). In fact we have that the curvature transform as

F(A+ xdz) =d(A+ xdz) — (A+ xdz) A (A + xdz)
=F(A)+dx Ndz— AN xdz+ x N Adz
—F(A) + (dx — [A,x]) A dz.

and therefore z Tr F'(A) A F'(A) transforms as

2Tr F(A)ANF(A) +22Tr F(A) A (dx — [A, x]) Adz
=zTr F(A) AN F(A) 4+ 2d(zdz N Tr F(A)x) Ndz,

where we used dF(A) = AN F(A) — F(A) A A.



174 Miscellanea

Remark A.4: The action Syq is also invariant under gauge transformations
A gAg~t —dgg? (A.41)
for any g € C*°(X,GLy) thanks to the invariance of the trace.

We now couple the 4d bulk field A to a collection of 2d fields localised on the surface
defects ¥ X {a;, } and ¥ x {b, }. We use the embeddings ¢,,,: ¥ X {ap, } — X and
th,: XX {bp} — X for m = 1,...,N; and n = 1,...,Ny. To each point a,, we
associate a Lie group valued field ¢, € C*(X,GLy) and to each b, we associate
Yy, € C®(X,GLy). We also fix non-dynamical matrices UT(,EL)), 0 ¢ gly for each
m=1,...,Ny and n = 1,..., Ny. We remark that we take them to be constant for

simplicity, but in principle they may be elements of C*°(X, gly ). In the next, we always
mean 3, =M and 3, =302 and ¢ = {0 IV, 0 = {9, }02 . We define

Sur(Aev) == 3 [ T s A U)

" (A.42)

S [ s g, A Ad,
n Ex{bn}

where dy, is the horizontal (de Rham) differential on X.

Remark A.5: In order to maintain gauge invariance we need to let the fields

transform as ., — g, and ¥, — g,.
We finally couple the bulk field A with the defects by considering the action

S(A, ¢, ¢) = Saa(A) + Saer(A, 0, 0) . (A.43)

From Chern-Simons to Zakharov-Mikhailov We can compute the bulk equations
of motion and consider bulk variations A + A + ca, where a = a,dn + acd§ + azdz is a

gl valued 1-form on X of compact support

6aS(A, 0,0) = — S(A+ea, p,v)
d e=0
i
=3 dz/\Tr(a/\F(A))
—Z/ Tr(a,U, dgAdn+Z/ Tr(agVy)dé A dn
Ex{am} Ex{bn

i
=g dz/\Tr(a/\F(A))

- Z/ Tr(ayUpm)8(2 — am)dé Adn A dz A dZ + Z/ Tr(agVp)d(z — bp)dE Adn Adz Adz .
X o JX
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We have introduced Uy, = ¢, U1 and V,, == an(O)wgl. In the last line we used

m

the d-function, satisfying the property

P! f(ga m, Z)(S(Z - ZC) dz Ndz = f(§7 7, JJ) (A44)

for any x € C and any smooth function f on X. The equations are the following:

851477 - 877145 = [Ag, AU] y (A45a)
0cAsz — D:A¢ — [Ag, As] = 2mi Y Upd(z — am), (A.45b)
OnAz — 0z Ay — [Ap, Al = 2mi Y Vod(z — by). (A.45¢)

We are now ready to turn A into the Lax connection. The first main issue is that the Lax
connection has no dz component, which can be fixed by focusing on a field configuration
of A where A = 0.

Remark A.6: This operation will break the gauge invariance, since now we must

I — dgg=! does not recreate a dz component. In other words,

impose that A — gAg~
we need a g such that 9:gg~! = 0. This can be achieved by picking a g € C*°(X%, GLy)
only, i.e. that does not depend on CP'. These residuals gauge transformations will

correspond to the allowed gauge transformations of the Lax connection.

The second issue is that while A = A¢ d§ + A, dn is smooth on CP!, with singularities on
{ @} and {b, }, the Lax connection is meromorphic on CP*. This issue can be solved by

focusing on a subset of the fields that satisfy the equations of motion. Using the identity

9:1 = —2mi§(z) we can solve the a¢ and a, equations above as
Ag =Uy + i U =U, (A46a)
Lz —am
N2y
A, =V + nz_:l . _"bn = V. (A.46D)

We can also compute the defect equations of motion, and consider the variation of the
action S with respect to the 2d fields ,, and v,,. We consider variations ¢, — "¢,
and 1, — e5Prapy, for arbitrary auy,, B, € C®(%, gly). This gives

S(A { e om },{ eaﬁn@bn 3]
e=0

S / Tr(—ndssUp, + i, A, Up]) A de
m JEx{am}

d
5(&,5)5(‘47 ©, T;Z)) :£

- Z/ Tr(_ﬁndEVn + 5n[LZnA7 Vn]) A d77 :
n JEx{bn}
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The defect equations of motions are then, once we use A¢ = U, A, =V and A; = 0, the

expected zero-curvature equations for the Lax connection W = U d€ + V dn:

=Vo+> Un 5 Unls (A.47a)

am — On

Un
OV =[Uo+ . Val. (A.ATD)

We now substitute the solution (A.46a)-(A.46b) for A into the action S to obtain the
Zakharov-Mikhailov action. The bulk term becomes
1

Sua(W) =~ — . 2 Te(F(W) A F(W))

1
=— [ 2(0:U0,V — 0, U0V )d§E Ndn ANdz Ndz. (A.48)
27TZ X

Using the explicit expressions of U,V and 82% = —27id(z) we get

S1a(W)

UnVa _
_/Xz;Tr(am_bn)Q(é(z—am)—5(z—bn))d§/\d17/\dz/\dz

_Z/ Tr Unn d{/\dn (A.49)

On the other hand, the defects action becomes

Sdef <A7 P, w) ‘A:W

= — Z/ Tr gogll(dg — Lszdn)gomUTS?) A dE
Sx{am}
- Z / Trop, (ds — o, UdE)Y, VO Adn
Sx{bn}
Vi (0)
=—Z Twm (0 — Vo — Z - )emUdn A dé
_ Tro~ N0 — Un — _zm (0)
Z/E (0 — Vo ijbn_amwnvn e A d
—/Tr <Z<pm1(3n—%)<me£?)
X m
_Zw (9 — Uo)ton V! —22 >d§/\d77.

The Zakharov-Mikhailov action is obtained by adding the bulk and the defects action

(A.50)
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and we get the desired

Szu(p,) = /ZTr (Z%l(an — Vo) emUWY
m (A.51)

Am — by,

0) -1 0),,—1
=3 (0 — U)oV — 37 Emm fom Unn ) aé A dn.
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Appendix B

Proofs of Chapter 6

B.1 The e and f coordinates

In this section we discuss some of the properties of the coordinates e and f, which are

defined as b\
e(A) = Ji—a)’ fAA) = ——=. (B.1)

We remember that we are restricting to the subset where a?()\) + b(\)c(\) = —1, which
means that a(\) = e(\)f(A\) — 4, in fact
b(AN)e(A) =1 —a?(N)

e()\)f()\):i—a()\) = TZaly =i+a(}N). (B.2)

The coefficients of e and f can be computed in the following way. First we write our

series as Taylor series substituting # = A™!, as (with a slight abuse of notation)

b(x) = ij:z:j, c(z) = chxj, a(z) = Zajmj.

>0 >0 >0
Then, we find

1 d* b(x)

1 dr c(x)
e = ——— _— = —
S My R

= —— —_— B.3
k! Cl.%'k =0 i — CL(J,‘) ( )

179
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Proofs of Chapter 6

We list the first few in the following, using in (B.3) that by = co = a1 = 0:

eg =0,

er = \/12751 ;

ep = \/127,52,

€3 = \/:lﬂ(bg — %b%cl),

e = \/1%(@1 - iblclbg - %b%cz) :

Conversely, we have that
b(A) = e(M)v2i —e(A)f(A),

and therefore

b1 = @61,
by = V2ies,

- 1
by = V/2i(e3 + Ze%fl) ,
by = V2i(es + §€1f162 + Z€%f2> .
Alsoa=ef — 1,50 a = Zf;ll € fru_i:

aoz—i,

a3 = e1 f2 +eaf1,
and

7
az = —55161 )

CL1:O,

ag = e1fz +eafa + fres,

f():Oa

fle

1= \/27,017

oL

2 = \/27627

fi= (e~ 5hiéd)

3 = \/Z C3 3 1€1),

fa= 12i(04 - 3510102 - 50%52) ,
c(A) = f(M)V2i —e(N)f(N),

C1:\/272.f17

02:@]027

es = V2fs+ e fD).

o = V2i(f1+ %elf1f2 + if%ez) -

az = ey f1,

(B.4a)

(B.4b)
(B.4c)
(B.4d)

(B.4e)

(B.6a)
(B.6b)

(B.6¢)

(B.6d)

7
as = —5(5162 + bacy),

) 3 3
a4 = —5(5104 + b2€2 + b461 — gb%ClCQ — gblc%bz) ,

It is also useful to express these relations in terms of the usual ¢ and r coordinates (and

their derivatives with respect to z! = 2) we have the following identities

by =gq,
7

b2 = 5(117

1 1
by = ——qui + ~q°
3 4Q11 + 2q T,

7 37
by = —ghn + Jaras

clL=rT,
7
Co = —-T
2 )
1 +1 9
€3 = —7 T+ 5qr
1 241 )
) 31
Cq4 = ST111 — —qrry .

8 4

(B.7a)

(B.7b)
(B.7¢)

(B.7d)



The e and f coordinates 181

el = —q, = —r, B.8a
1 \/Zq fi 5; (B.8a)
1 2 1 3
€= ——=qi, -y, B.8b
? 2 2Tt Fa V2i 2 1 ( )
1 1 3, 1 1 3
= (-= e R 2 B
€3 5 < 1t ga 7“> ; I3 5; ( gt g ) ) (B.8c)
4 = 5; 8f1111 3 qarqi 1661 1] 4= 9; \ 8 111 861 1 16611
(B.8d)
Conversely:
q = V2iey, r=2if1, (B.9a)
@ = —V2i2ies = V2i2ifs, (B.9b)
g1 = V/2i (—4es + 3ielf1) ri = V2i (—4fs + 3ie1 1) | (B.9¢)
qi11 = V'2i (8ieq + 20e1 frea — 2e1fo) . 111 = V20 (—8ifs — 20e1 f1f2 + 2fes) .
(B.9d)

We can also write the expressions for the derivatives of () with respect to the coordinates
e and f:

9er i—a(}) _Q(E_gx()A)) —c(N) ) '
0QMN) _ At b(\) _%
ofc — i—a(\) (H);(A) Sy ) (B.10b)

Therefore we have that the derivatives of the coefficients of Q()) with respect to e; are

8ai e

87% = fiij, (B.11a)
6bi _ 17— 3&()\) (B.llb)
Oe; i—a(N) i ’

ac; . ﬂ B ﬂ C
Ocj (2 i@()\)>i_j a (2(2’—@(/\))3/2>‘ o (B.11c)
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while the ones with respect to f; are

gaf% S (B.12a)
Obi _ () ) _(_ZP

of; N ( 17— a()\)>i_j B (2(1' - a()\)):a/z)ij ) (B.12b)
Oci _ [ _1-3alh) C
() .

B.2 Proof of Theorem 6.2

This proof is generalised by the results of Section 7.2 that hold for a generic ultra-local

r-matrix. However, we decided to keep this proof for completeness.

Proof. We need to calculate 6dK and then 6dV. We do so with the help of the generating

functions as follows. Note that

dK = Z (azK]k; + ak;Kij + GJK;W) d{Eijk , (B_lS)
1<j<k

hence we associate to it the generating function! D, K (X, u)+ . To obtain §dK, we
simply calculate D, K (A, u)+ ©. The same holds for §dV. We will need the following

identities:

Tr Q(N)3(DyQ(n)) =Tr (1)~ ([D1Q(1), Q)]

+D,p()p (1) QAN), Q(1)]) Sep (1) (B.14)
— Tro() M QN), Q()]S(Dup (i) ,
Tr D,Q(A)0Q(1) = Tr (1) "' [Q(1), Dy QNS (1) - (B.15)

We have that

Dy K (A, p) =Tr(—o(1) " Dup(p)p (1)~ Dap()Qo + ¢~ (1) Dy Do (1) Qo
+ 0N DN e(N) T Due(MN)Qo — ¢~ (A Dy Dyuip(M) Qo) -

"'With 9 we mean the cyclic permutations of (v, A, ).
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We now apply the d-differential.

6Dy K (A, 1)
= Tr(p(p) " S () (1)~ Dosp(p)p (1)~ Dag(p)Qo — (1)~ 8(Duip (1)) (1)~ Dagp(11)Qo
+ ()T Dy(p)e(p) = o) (1)~ Dae (1) Qo — (1) ™ Dyo(p) (1)~ (Dagp(p)) Qo
— () (1) e (1) T Dy Dagp(1) Qo + ¢(1) ' 6(Dy Dap(1)) Qo — (A 4+ 1))
=Tr(p() " (Do) (1)~ Dagp () (1)~ Q1)
+ Dagp () (1)~ Q) Dup (1) o (1) ™t = Dy Dap(i) (1) ™' Q1)) o (1)
- (>1Dw(u)sv (1) ' Q(w)S(Dup(p)) — o(1) " Q1) Do (i) (1)~ 6 (Dap(p))
o(1) ' Q)8 (Dy Dagp(p)) — (A 4> ).

We add the cyclic sum and we select the coefficients of d¢(u), 0D, p(p), etc. adding the
corresponding terms from D)\ K (p, v).

0dK =Tr(p(p) (D)) ' DaQ (1) — Dagp(p)p(p) " DuQ(1))dp(11)
— (1) T DAQ()S(Dyp (1)) + (1) " DuQ(1)(Dap (1))
+ (2(1)71Q1) — o(1) ' Q1)) (D Dap(p))+ ©)
=Tr(p(1) " (Dup(w)p(1) " DaQ(1) — Dagp(p)p (1)~ DuQ(1))dp(12)
— (1) T DAQ()3(Dyp (i) + (1)~ DuQ (1) (Dagp (1)) + ©) -

We do the same for V(\, u) = 1 —Tr(Q(’\) Q) /\L + TTQ/\(/Y;?(“).

DLV (A1) = —— Tr(D,QNQ() + DuQ()Q(N)) -
We now apply the d-differential.

0D,V (\, ) =

Tr (D,Q(A)0Q (1) + Q(N)I(DyQ(1))) — (A <> )
and using the identities above we get

dDLV (A, )

:Aluﬂ(—ﬂM”@O%meDwWD

+ () ([DvQ(1), QIN)] + D)o (1) M Q(N), Q()]) S (1)

+ () Q) DRI (1)) = (A < 1)

zkluﬁ(—mmlwu»mMWwa»

+ 2(1) ™ (ID,Q(), QN + [Q(), DQN] + Dusp(mp ()~ [RIN) Q(w)]) (1))
— (A p).
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We add the cyclic sum and we select the coefficients of dp(u), 0D, (1), ete. adding the

corresponding terms from dD)\V (p, v).

0dV

1

= 5= T (= #0710, QUAIB(Dre()

+ ()~ ([DQ), Q] + [Q(1), DuQN)] + Dy () p(1) " 1Q(N), Q(ua)]) o) )

1
V=

o T (0(0) QW) QUUIB(Drp ()

= ()™ (IDAQ), Q)] + [Q(1), DAQW)] + Do)~ [Q(w), Q) (1))

+O .

By comparing the coefficients of D, (1) and of dDyp(p) we get the desired equations

(6.2.1). The equations coming from the coefficients of dp(u) are differential consequences

of them.

We turn to the closure relation. We are going to use the following identities:

1 I A—p
i—v v - —0)

1 1 1 _ 0
=) —1) - NE-N  mph—m
TQ(N), QU)]Q(N) =0,

TQ(N), Q)]Q(1) = TH{Q(1), QNIQ(Y)

A direct computation shows that the kinetic term vanishes, in fact

Dy K (X 1) + DAK (1, v) + Dy K (v, X) = Tr(Dyp(N)e(A) "' DuQ(A)+ O)

T D,QNQ()+ )

A—p
1
T 00N, QU+ )
1
:ﬂ<<u—ﬂx»wo+0)@“*Q@W%”>:0'

The potential term on the other hand brings

DV (A, 1) =

\ i i Tr(D,Q(N)Q(1) + Q(N) D, Q (1))

I TR, eWIQW . 1 Tre(W)QW), Q)
A—pu v—A A— U V=

1 1 1
(55 - o ) mem.eeiew)

1

= =8 Tr[Q(N), QW)]Q(1)

(B.16a)

(B.16b)

(B.16¢)
(B.16d)
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So that the cyclic sum then reads

1 1 1
(()\ —v)(v—p) * (v —p)(pu—N) + (=N — V)) Tr[Q(w), QN)]Q(v) =0

and we conclude that the Lagrangian multiform satisfies the closure relation d.Z = 0. O

B.3 Proof of Proposition 6.8

Proof. First, we claim that Q) is given by the generating function
QW (A) = Tr (Qop(N) 155 (N) - (B.17)

We need to show that 6.Z + dQM) = 0 on the multiform Euler-Lagrange equations
D,Q(\) = W For convenience, let us denote 1/(\) := ¢~ *(\). A direct computa-
tion shows that

5K (A p) = Tr (DMO(M)QOCW(M) - Qui(n)S(Dae(1)
DN Qud(A) — QW(A)é(DW(A))) ,
and

3V i) =T (52 QW). QUIBAN) — 5T v Q). QUldel) ).

The coefficient of the generating function Q()(\) = >72° wl(:) /AF+1 are obtained as (note
that w{" = 0)

k
w;(gl) =Tr Z QoYidpr+1—i - (B.18)

i=1

Hence, for the corresponding form, we have using the variational bicomplex calculus,

a0

=d (Z w,(cl) A d:z:k>
k=1
oo k
=Tr) > d(Qotiderri—i) Ada®
k=0 i=1
oo oo k ‘
==Tr) > ) (05ibrpi—i + $id(0jrr1-i)) A da? A da”
k=0 j—=0 i—1
[e'¢) k '
=Tr > D (Oidpisi—i+ id(Okpisi—i) — 0thibni1—i — Vi (Djons1-i)) A da?* .

j<k=1i=1
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The associated generating function is given by

40\ 1) = Tr (QODMA)MA) T QuE(NF(Dp(V)

— QoDxyp(p)dp (1) — Qotp(p)d (Dw(ﬂ))) :

So the sum 6K (X, ) — 6V/(A, 1) + dQM (A, 1) reads

v (Dw(u)Qoéw(u) T Qui)3(Drp(1)) — Dyp(NQodib(A) — Quib(N3(Dp(N))

_ Aiuwm[czm, QUu)1Sp(N) + Aiﬂ“) QU QUmlowe(r)

+ QoD (1)dp(A) + Qo (N)S(Dpup(N)) — QoD (1)dp(p) — QOIZJ(M)(S(DMO(H)))

= Tr (VDL — 5B QN. QoY)
VDI + 3. QIS

This vanishes on the multiform Euler-Lagrange equations

[Q(w), Q(N)]
w—A

[QN), Q(p)]

D/JQ()‘) = ) D)\Q(/’L) = A\ — L y

thus completing the argument. As a consequence,

Q) = 6QM () = = Tr (Qop(N) 1op(M\) A p(\)Hop(N)) |

as required.

B.4 Proof of Proposition 6.13

Proof. We start with the general expression of the vertical vector field

§r = Z (Ajafj + Bjaej) )

j=1

and determine A;, B; such that {r_€) = 6 F holds, or equivalently,

Epowg = 0F}, Vk > 0.

(B.19)
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Since wg = 0 we instantly get that Fy has to be constant. The left-hand side reads

k oo k
Erwy, = Z Z(Ajfsi,j(sekfz#l — Bjbjp—it10fi) = Z(Aiéekfzﬁrl — By—i+10 f3)

i=1 j=1 i=1

k
= (Ap—ir10e; — By_is16f)

i=1
whilst the right hand-side is
— [ OF, . 9F
oe; + ——0f;i | .
3 (et 7o)

Comparing the two we get

oF,  O0F .
= =0 Vi >k
e Of; o
0Fy, 0Fy, .
- = Ag—it1, -7 = —Bi-it1, Vi <k.
de; k—i+1 a7, k—it+1 v
The latter brings that
OF}, OFy 41
e = Ag—it1 = AQpy1)—(i+1)+1 = Beins
and similarly for f;. These conditions are necessary and sufficient. O
B.5 Proof of Proposition 6.14
Proof. We will show that
oo k
&g Q) =06H where Q= Z Z 8 fm A Gepy1m A dzh (B.20)
k=1m=1

We start with the left hand-side

£raQ = Z Z Z ( 5f dar MO+ ggafl A al-) J <5fm A B€pi1—m A M)

i=1 k=1m=1

—zzzgﬂmmm@+iii<zmmm@

i=1 k=1m=1 i=1 k=1m=1

:Z‘Lﬂaf + . gHae,_(SH
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B.6 Proof of Proposition 6.17

Proof. 1. The multi-time Poisson bracket {{F, G]} is an admissible 1-form. In fact we

have that
D F.CY)r = =2 {Fo1. Crn)

0 ’il <aFk+1 OChs1  OFi aGkH)
0 fm+1 = Of; Oegia—j dej Ofpyo—j

:g:l O*Fri1 0Gria +8Fk+1 Gl
O fm+10f; Oegyo_j Of; Ofmi10epi2—;

PP 0Gry R 9PGrn
Ofm+10€; Ofpro—j  Oej Ofmi10fri2-—j

_’§ 0°F, 0G,  OF.. 0°Gy
— \ 0fm0f; Oext1—5  Of; OfmOeria—j

PR 0Gy  0Fy  9°G)
0fmoe; O fri1-; 0ej OfmO frio—j

_’“Z*:l OF,  0G,  PF, 3G,
afmafj 86k+1—j 3fma€j afk+17j

+’§ OFis1  0°G,  0Fu,  9°Gy
Of; O0fmOerya—; dej  Ofm0frya—j

Now we use the fact that the (k + 1)-th term of the first sum vanishes as 6?’31 =
£F k- =0 and in the second sum we substitute j — j + 1
k+
k
0 82Fk 0G 82Fk 0G},
F.G = _
3 P = 2 <afmafj Gere—s  O5nde; D
. " (0Fu  8Gn  0F.  9°Gy
= Ofjr1 OfmOepr1—j  Oejy1 OfmOfri1-;
Z’“: O°F,  0Gy O°F,  0G,
= \9f 3f] 36’k+1 ~j Ofm0Oe; Ofii1-;
. z’“: OF, 9°G,  0F,  9°Gy
T\ 90J; OfmOerti—j  0ej OfmOfi41-;
0
- 52 UF.GD),
because the 0-th term of the second sum vanishes for the same reason. The proof of
8em ({IF,G}), = ﬁﬂ ({{F',G]} )41 works in the same way.

The multi-time Poisson bracket {[F, H]} is admissible because it is a 0-form.
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2. The proof follows from the Jacobi identity of the single-time Poisson bracket { , }x

(which is easy to prove as it is already written in Darboux form).

3. This part of the proof is the most laborious, and it is performed by computing the
three terms separately and adding them together. We have

{{F.C) H} = — &qp.cy0H

& ([ @R, G, 0H OF, 0°G, OH
_Z (6f18fj Oey—j+1 Ok * 0f; 0f10ey_j+1 De
PF, 0G, 0H 0F, &Gy, OH
 0f10¢; Ofr—jp1 0er,  Dej Df10 fr_j1 Dey
2F, 090G, OH 0F, 0°Gy OH
 9e10f; Dey_ji1 Ofy,  Of; Derde_ji1 Of
0°F, Gy OH , 0F, Gy 8H>
De10e; Ofp—jy1 0fr  Oej 0e10fr—jr10fk |’

k=17=1

{[{[H7 F]}a G]} :gGJgFJéH
< I [ 82F, 0G;0H  9%F, 0G; 0H
»

8€j6f1 8f1 8ek 86j861 8f1 8fk
_ O 06,01 0%Fi 0G; OH)
ijé?fl 861 86k 6fjé?el 861 @fk
i (8Fk 0G; 9*H  0F,0G; 9*H
jh=1 3f1 8f1 8€ja€k 661 8f1 8ejc’9fk
_ 8Fk an 82H i 8Fk an 82H )
df1 Oey Of;j0e,  Dey dey Of;0fi/’

{{lG, H]}, Fl} = = {{F {{G, HI}} = £roAIG, HI}
= —&pafga0H

&L (OF; 8*Gy OH  OF; 9°Gy OH
22l

df1 De;Of1 Dey  Dfr Dejder Ofy
OF; 0°Gy OH | OF; 9°Gy 8H)

~ Oe1 0f;0f10ex | ey Of ;e Dfx
B i (aFj 0Gy 9*H  OF;0Gy 0°H
e 6f1 8f1 8ej86k 8f1 661 aej'afk
7,k=1
| 9F;0G, 0°H  OF; G, 9°H )
(961 8f1 ijﬁek 661 861 8f]afk ’

We add the last two together, simplifying the terms with the double derivative of
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H, to obtain the expression for {{{H, F|}, G]} + {{|G, H]}, F|}

0’F, 0G; 0H

863 8f1 3f1 aek

>

2F, 0G; OH
6€ja€1 8f1 afk

0*F, 0G; O0H
8fj8f1 (961 6€k

OF; 9*Gy OH OF; 0°Gy 0H OF; 0°Gy OH OF; 0°Gy OH

8f1 aej 8f1 8ek

oF; _ O9Fjik—j _ _9F,

8f1 Oejdey Ofy,

We now use 57 f1

_iz’“: ( 0F, 0G, OH
k1 j=1 8€]af1 afk —j+1 aek
0°F, 0G, OH

+ k k

oF, 0°Gy 0H

dep_jr1 Of;0f1 dex

that is also

T Ofivk—;  Ofk—jy1’

df;der dey_ji1 Ofp

etc.
OB, 0Gy OH
 DejOer Dfy_ji1 Ofi
OF,  9°Gy OH
0 fr—j+1 0e;0f1 Oey,
oF, 0*Gy O0H

Oeg—jy1 0f;0eq1 O fy

dey 0f;j0f1 Oey,

861 8f] 861 8fk

0*F,  0G, OH
0f;j0f1 Oeg_jq1 Oey,
0F, 0°Gy OH

O fr_jr1 OejOer Ofy,

).

_iz’“: ( O°F,  8G, O0H *F, 0G, 0H &F, 090Gy 0H
i M99 Ok der, OejOer Ofi—j1 0fc  0f;0f1 Der_ji1 Dey,
L PR G, OH _OF. _9G, OH OF %G, 0H

0fj0e1 Oe_jy1 0f  Ofj Oex—j110f1 Oex,  Of; Oeg—j110e1 O f
8Fk OQGk ajH _ 6Fk 62Gk 87H)
Oej Ofr—j110f10ex  Oej Ofyp_ji10e1 Ofy

—{{lF, G}, H]}

as desired.

B.7 Proof of Theorem 6.20

Lemma B.1 For each k > 0, the only non-zero single-time Poisson of a;, b; and c¢;,

0 <1<k, are given by

{ai, bjt

{ah Cj}k

=bitj k-1,

—Citj—k—1>

{bi,citn = 2054511

(B.21a)
(B.21b)
(B.21c)

For convenience, we use the convention that a coefficient in a series vanishes when its index

is negative. Hence, it is understood that {a;,b;}r = {ai,cj}r = {bi,c;}x = 0 whenever

i1+7<k+1.

0*F, 0G; OH
8]2861 (961 afk

).
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Proof. We start with the fact that for any power series o and § we have

k
Z Qi—tBjro—k—1 = (@B)ipj—k—1- (B.22)

(=1

In fact, by limiting the sum only to the non-zero terms:

i+j—k—1
Zaz 1 Bjre—k—1 = Z it Bjre—k—1 = Z it j—k—1-m Bm = (aB)itj—k-1.
l=k+1—j m=0

We study the case where k+1—j < j,namely i +j > k+ 1. If i +j < k + 1 then the
sum is empty, and the result is zero. We are now ready to compute the following Poisson

brackets using the formulas in Appendix B.1.

k
B da; 0b; 9b; _ dai
{ai b}k —Z <6fg Oepy1—1 B dfe 8ek+1_z>

_Z (ez ‘ (22\/ﬂ>3+£ k-1 <2\/_i€i7a>j—efi+g_k_l>

_<ze—3ae—|—62f) _<i6—3ae—i—(i+a)e>
2Vi—a k-1 2Vi—a itj—k—1
=(eVi—a)iyj_k—1 = bz‘+j—k—1 :

k
b=y (G 00
{aucj}kg_zl (afg 8€k+1 ¢ af@ 8ek:-i-l €>

B (e (67, (75, o)
-(

fli+a) —zf—i—3af>
i+j—k—1

l—CL

<—ef2 z—3a>
2Vi—a i+j—k—1
fV )erJ k—1 = —Citj—k-1-

B Oa; aaj aCL] Oa;
{“““J}k_;<6fmek+1 ¢ 8fg 8€k+1 E>

S (). ), - G, G, )

(PR, ()

=20i4j—k—1 -

O]

Remark B.2: These Poisson bracket coincides with the { , }_j in [AC17]. In this

instance we do not take the Poisson brackets of a;, b;, ¢; for i > k because they do
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not belong to the k-th single-time phase space.

Proof of Theorem 6.20. We start by proving that

oQ aQ ) oQ

90 20
Oey, 36k+1 ’ O fr

O frs1

—\) = (A). (B.23)

This is done for each matrix element. In fact

0Q _9Q e _ | 4IQ _ 5 10Q _,0Q de _, 9Q

dex  Oe ey, Oe Oe e dej1q ey’
0Q 0Q of /\71437@:)\/\ k-10Q _ 3@ of ) 0Q _
Ofx  Of Of of of 8f O frs1 0 frt1

By virtue of the previous result, and since Qg is constant, we have the following:

0Q;
A7 B.24
86k JZ 8€k ( a>
o0 [o.¢]
0Q: - 0Qi i1 0Qj41 |
=\ L= " — B.24b
36k+1 Z 36k+1 Z 3€k+1 Z 3€k+1 ( )
If we look at the coefficients in A\ we see that, for all j and k, %?j = %. Similarly one
k €41

. 0Q; _ 9Qjq1
can obtain that Tf,j = 8f;+1 .

Finally, we check that the Lax form is admissible, using Proposition 6.13, i.e. that

QM _ Xi:)\ikan _ XZ: i~k 0Qk+1 Z)‘ (i+1)—(k+1) OQr11

86j k=0 86.7 k=0 3€]+1 86]+1
i+1 -
Y en D@ 09Uy, 0G0 00
a€j+1 a€j+1 a€j+1 8€j+1 ’
h d that Qp i tant. Similarly 292 — 9Q“+D
where we use a 0 1S constant. osimilarly of; — 0fj41 "

We now turn to the proof of (6.62). Thanks to the decomposition of the multi-time
Poisson bracket into single-time Poisson brackets, we have that {W1(\), Wa(u)]} =
[r12(A, i), W1 (X) + Wa(p)] if and only for all k£ > 0,

QP 0N, QP ()} = [r12(0 1), QP (V) + QP ()] (B.25)
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Writing QW (\) = QP (Wor +QW (N)o_ + QY (A)os, the right hand-side of (B.25) reads

[ri2 (s 1), Q7 (V) + Q87 ()] (B.26)
(k) ® N — o)
_ 2(Q3 (l;)_ N 3 (V) (04 ®@0_—0_®oy)+ Qi ('LZ — ?Jr ¥ (03 @04 — 01 ®03)
® iy — o)
+ Q— ()\'L)L — f- (/‘L) (0_3 ® o —o0_ ® 0.3)’

while the left hand-side is given by

{Q&’“(A)@é’“(u)}k

k
b, b; -
Z: )\ZW {auaa}k03®03+{u itkos @ oy +{ci,cilro- @0 (B.27)

+{bi,cjtpoy @ o+ {ci, b ko @ oy +{ai, bj}roz @ oy
—i—{bi, aj}k0+ ® o3 + {CLi, cj}kdg ®XRo_ + {Ci, aj}ka_ X 0'3) .
We now invoke Lemma B.1 which gives the necessary single-time Poisson brackets and

allows us to check directly that (B.26) is equal to (B.27). We show it for the o4 ® o_

component, as the others are obtained similarly. In the left hand-side we have

9 . . 9 k k k—j—1
@700 = Q) = = DT - ey =237 T N ey,
W= A =4 ;
]:O =0 =1
while right hand-side is equal to
k (A ) k k—n—1 .
— n n—m-— 1
2 Z )\zuj Qitj—k—1 = 22 Z Ni— Ni—k, m4+1—i m+1 —3 22 Z A
1,j=0 1=0 m=0 n=0 m=0
This concludes the proof. ]

B.8 Proof of Theorem 6.22
Proof. Note the set of zero-curvature equations can be written as

dW(A) =WA)AW(N), (B.28)
where the right-hand side is understood as

W) AW

= (Z Q%)dmi) ARV | =D [RW (), QY (V)] da
i=0 Jj=0

1<j
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and the left-hand side is dW(X) = >, _; (0;QY)(N) — 9;QW (N)) dx™. Thus, we will prove
that
W(A) A = {Hij, W)} da™. (B.29)
1<J

By definition

D {H;, WL = éw(A\)oadH = (6w (N)s0Hy) da?

i<j 1<j

where, using the expression (6.61) for &y (A), we find

J
§w(\)a0H; =Y

k=1

oQ™ (\) 0H,; _ Q") (\) 0H;
Oer  Of ofi  Oey |

Hence (B.29) is equivalent to, for i < j,

& (9QWN) 0l 9QW (N) 9H,
Z( G Of  oh o) B30

We prove the latter in generating form as follows. We multiply both sides by p =1y =7~!

and form the following sums over ¢ and j

ZZ e R0, QU ()

7=0 i= 0
Z Z N 0H;;  0Q™ (X\) 9H;;
Z“I/JJr1 361 fk oft  Oey |~

7=0 =0

We can rearrange the sums in the right-hand side to get

3P ) PENLEITERIES o o} g AN

k=1 j=k i=0 k=1 7=0 i=0

where we have used the fact that H;; depends only on eq,...,e; and fi,..., f; in the
second step to extend the sum over j from 0 instead of k. We can similarly form the sums
with u <> v and use the same trick to rearrange the sums in the right-hand side. Using
the anti-symmetry of both left and right-hand side of (B.30), we come to the following
generating form of (B.30)

o0

1 X )
,ZOM[Q@(A),@@(A)]
1,]=

— [ 0QW(\) 9 i Hi; _8@“%)1% H;
dey afk pitlyi+l f1 3ekij:0m+1w‘+1 )
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Q). QW) _ ~9QWM) 0H(p.v) =~ 9QM(N) OH(u, v)
m N ; 861 8fk l; 3f1 86k ) (B31)

where we have used

— QU() _ Qw)
; et =

We now show that (B.31) holds by computing its right-hand side recalling that

— v 2 v
(o) = S QU QU _ 2, TeQ0IQ0),

For convenience, denote a(u), a(v),a(\) by a,d’,a” respectively and similarly for b and ¢
We have

OH(p,v) _ 1 Tr(aQ(u)Q( )+ 8Q(V)Q(M))

o/, =) o/, v o7 (B.32)

and

L 5~ 9QW0) . 9Qw)

v e o/, Q)
oo 2
_ 1 3 QM (N 1 ~e b —qiay | (¢ OV
p-vi= der pki—a =ha —b d —d
I =0Q®1N) 1 < , b (i — 3a)b’>
= 2ba” — —— +
u—y; der  pkvi—a ¢ 2(i — a) 2
_ o (3 Q(p) > 1 <2ba’ I U 3a)b’>
(m—v)\Oderp—XA) Vi—a 2(i—a) 2

_ 1 1 o b (i — 3a)b’ ¢ =5
_(M—V)(M—)\)i—a<2b Ai-a) 2 ><_2CQ )

2(i—a) €

where we have used that > 72, QM _ (LB Qo

we have
1 =0QW(\) .. 9Q(v) _
M_V; 9 T as Qu) =
1 1 ) bc (1 —3a")b ¢ =
——Ni—d > T si—a) T )<—wfm ‘)
1 =9QM(\) . 0Q(u) _
v—p ;1 dfr o dey, )=
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and

I/—MIC . afl Bek (Q( ))—
72
1 1 , b (i —3ad)e b’ —ﬁ
o Ni—d Tt e )

We collect all the contributions on the o3 component for instance (the other two are

obtained similarly). The numerator of 0 Ny

= -Ni—a)

blecd i—3a vy i—3a
N1 =2bca’ — b — 2bcad’ —bc
1 ca 2(@,_@)4— c 5 ca +2(i—a) & 5
1
:m(bc(b/c —b) + (i — 3a)(i — a)(b'c — b))
b'e—bd
- 02 “li+a+i-3a)

=('c—bc)(i — a)

where in the last equality, we have used that be = —1 —a? = (i — a)(i + a). Similarly, the
numerator of wxﬁ% is —(i —d)(t/c — bc), by simply swapping p and v. So, in

total the o3 component of the right-hand side of (B.31) is given by

b —b'c 11 B b —be
vep \p=XA v=X) (p=Nr—-N"

This is exactly the coefficient of the o3 component of % as is readily seen. The

other components are dealt with in the same way, and are omitted for brevity. O
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