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Abstract

Motivated by the recent discoveries of space-time duality of the classical r-matrix, this
thesis explores the role of covariant field theory and multi-dimensional consistency for
field theories in 1 + 1-dimensions.
We obtain for the first time a classical r-matrix in a covariant context for several pro-
totypical examples of integrable field theories. The zero-curvature equations are then
reinterpreted as covariant Hamilton’s equations for the Lax connection. We propose the
notion of Hamiltonian multiforms for integrable hierarchies, which provide the Hamilto-
nian counterpart of Lagrangian multiforms and encapsulate in a single object an arbitrary
number of flows within an integrable hierarchy. This also produces two other important
objects: a symplectic multiform and the related multi-time Poisson bracket. This new
formulation is applied consistently to three hierarchies, i.e. the sine-Gordon hierarchy, the
Korteweg-de Vries hierarchy and the Ablowitz-Kaup-Newell-Segur hierarchy, and gives a
description of conservation laws in terms of Poisson involutivity with the Hamiltonian
multiform. The Ablowitz-Kaup-Newell-Segur hierarchy is analysed in particular detail
and a classical r-matrix structure is identified within the multi-time Poisson bracket for
the complete hierarchy.
Finally, we study the interplay between the classical Yang-Baxter equation and Lagrangian
multiform theory, providing a technique to extract Lagrangians for several hierarchies
in terms of a generating formal Laurent series. We demonstrate how to obtain the
Lagrangian multiform for the Ablowitz-Kaup-Newell-Segur hierarchy, the Lagrangian
for the sine-Gordon equation in light-cone coordinates, and the Lagrangians describing
the zero-curvature equation for any Lax pair of Zakharov-Shabat type with rational
dependence on the spectral parameter with distinct poles.
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Chapter 1

Introduction

Field theories have provided an exceptional framework to describe the fundamental laws
of nature. The standard model, for instance, is a quantum field theory that describes
three of the four known fundamental forces of the universe, electromagnetic, strong
and weak interactions, and it classifies all known elementary particles. Statistical field
theories can describe phase transitions, encompassing models including superconductivity
and superfluidity. Classical field theories are described by Partial Differential Equations
(PDEs) and include famous examples such as the Einstein equations of gravity and the
Navier-Stokes equations, fundamental in the study of fluid dynamics. Within the main
theories, the so-called Integrable Systems have played a crucial role in providing beautiful
theoretical laboratories to understand the mathematical structure of field theories.

The concept of a ‘completely integrable system’ arose initially in the context of of finite-
dimensional classical mechanics in the 19th century. Hamilton reformulated Newton’s law
of a system with n degrees of freedom in terms of canonically conjugated coordinates,
the generalised positions q1, . . . , qn and momenta p1, . . . , pn of the phase space M , and a
smooth real-valued function called Hamiltonian of the system H(q1, . . . , qn, p1, . . . , pn)

[H34]. The power of this reformulation arguably consists in the fact that Hamilton’s
equation

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
(1.1)

for each i = 1, . . . , n are first order ordinary differential equations (ODEs), whilst Newton’s
equations Fi = mq̈i are second order. If we write z = (q1, . . . , qn, p1, . . . , pn), the equations
(1.1) can be written compactly as

ż = −J∇H , J =

(
0n×n −In×n
In×n 0n×n

)
, (1.2)

where J is called ‘standard symplectic matrix’ (or sometimes ‘symplectic unity’) and is
a non-singular and anti-symmetric matrix (JT = −J , det J 6= 0). Any system of ODEs

1



2 Introduction

that can be written in the form (1.2) for an anti-symmetric non-singular matrix J and
such a function H is said to be Hamiltonian. The origin of the name ‘symplectic’ is rather
interesting, and was first proposed by Weyl in [W46]:

The name complex group formerly advocated by me in allusion to line com-
plexes, as these are defined by the vanishing of antisymmetric bilinear forms,
has become more and more embarrassing through collision with the word com-
plex in the connotation of complex number. I therefore propose to replace it
by the corresponding Greek adjective symplectic.

Hamilton’s equations can also famously be reformulated in terms of the Poisson brackets
{F,G} := ∇F · J∇G = ∂F

∂p1
∂G
∂q1

+ . . . + ∂F
∂pn

∂G
∂qn
− ∂F

∂q1
∂G
∂p1
− . . . − ∂F

∂qn
∂G
∂pn

where F and G
are two functions on the phase space. Poisson bracket are bilinear, antisymmetric and
derivations on both arguments, and satisfy the so-called Jacobi identity, and we remark
that {pi, qj} = δij . In fact not only (1.1) can be written

q̇i = {H, qi} , ṗi = {H, pi} , (1.3)

for each i = 1, . . . , n, but we can use the Poisson bracket with the Hamiltonian to compute
the evolution of any smooth real function F on the phase space along the flow of H as

Ḟ = {H,F}. (1.4)

Another way to reformulate this is with symplectic geometry. In its simplest formulation1,
we pickM = T ∗Q as the cotangent bundle of a manifold Q called ‘configuration manifold’,
and we give local coordinates z = (q1, . . . , qn, p1, . . . , pn). We associate toM the following
closed non-degenerate 2-form ω =

∑
i dpi ∧ dqi, called symplectic form. For any function

H : T ∗Q→ R we can write its Hamiltonian vector field as ξH : T ∗Q→ TT ∗Q such that2

ξHyω = dH. Hamilton’s equations can then be written as

ż = −ξH(z) (1.5)

and the Poisson brackets between two F,G : T ∗Q→ R as

{F,G} = −ξF ydG = ω(ξF , ξG) . (1.6)

If a function F is such that {H,F} = 0, then we have that Ḟ = 0: the function is constant
along the flow of H and it is called a first integral (or constant of motion). If in an
n-dimensional Hamiltonian system there are n independent first integrals F1, . . . , Fn such
that {Fi, Fj} = 0 then the system is said to be (completely) integrable. The condition of
mutual vanishing Poisson bracket is called involutivity, and we say that Fi and Fj are

1The literature is immense, so I am just going to reference [C15a], which is where I personally learnt
about this topic.

2( )y( ) is the inner product between a vector field and a differential form ξyω := ω(ξ, . . . )
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‘in involution’, or equivalently that they ‘Poisson-commute’. Liouville-Arnold’s theorem
[L55, A78] ensures that under some circumstances a completely integrable system can be
solved in quadratures in terms of the so-called action-angle variables.

Integrable systems, despite being an old concept, have almost laid dormant until the
second half of the twentieth century with the discovery by Zabusky and Kruskal [ZK65]
of solitons in the Korteweg-de Vries (KdV) equation

ut = uxxx + 6uux . (1.7)

The KdV equation describes the nonlinear evolution of a real-valued field u(x, t), where x
is the space and t is the time. It is arguably one of the most famous examples of integrable
systems, introduced by Boussinesq in 1877 in a footnote [B77] and then later rediscovered
by Korteweg and de Vries in 1895 [KV95] as a mathematical model for shallow water
waves. The works of Gardner, Greene, Zabusky, Kruskal and Miura [GGKM67, MGK68,
KMGZ70] showed that the KdV has an infinite number of conservation laws and conserved
quantities, and mapped the initial value for the KdV Cauchy problem to spectral and
scattering data of the Schrödinger operator. The nonlinear evolution of u essentially
transforms into the linear evolution of these data, and can be obtained by the inverse
transformation, called Inverse Scattering Transform (IST). Zakharov and Faddeev [ZF71]
explained that the KdV equation is indeed a completely integrable infinite-dimensional
system, where the spectral and scattering data can be seen as action-angle variables, and
the infinite number of conserved quantities as the first integrals in involution. It is also
an infinite-dimensional Hamiltonian system in the following sense: the time evolution of
the initial datum u(x, 0) can be obtained as

ut =
∂

∂x

δH

δu
, H =

∫ (
u3 − 1

2
(ux)2

)
dx (1.8)

where δ
δu is called Frechet (or variational) derivative. Moreover one can introduce an

infinite-dimensional version of the Poisson brackets called equal-time Poisson brackets
between two functionals of u, F and G

{F,G} =

∫
δF

δu

∂

∂x

δG

δu
dx . (1.9)

The presence of an infinite number of conservation laws proved that the KdV equation
can be seen as a member of an integrable hierarchy, all its commuting symmetries being
in fact infinite non-linear flows with respect to different time variables t1, t2, . . . .

Other examples of integrable systems include the Non-Linear Schrödinger (NLS) equation

iψt +
1

2
ψxx − |ψ|2ψ = 0 , (1.10)

used in both classical and quantum field theories, and applied for instance to Bose-Einstein
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condensates and nonlinear optics, and many other topics. The ‘focusing’ version allows
the presence of solitons and can be solved using the Inverse Scattering Transform [ZS72],
and can be seen as part of the integrable hierarchy called Ablowitz-Kaup-Newell-Segur
(AKNS) [AKNS74]. In fact, the next member of the AKNS hierarchy produces the
modified Korteweg-de Vries equation

ut +
1

4
uxxx −

3

2
u2ux = 0 , (1.11)

a modification of the KdV equation where we consider a cubic nonlinear term instead of
the usual quadratic one.

Another example of an integrable system is the sine-Gordon (sG) equation

uξη + sinu = 0 (1.12)

(ξ and η are called light-cone coordinates), whose name is a pun on the Klein-Gordon
equation uξη + u = 0 of which the sine-Gordon is a modification. One of its striking
properties is that it is manifestly invariant under spacetime translations and Lorentz
boosts. Systems that behave consistently with respect to the theory of relativity can
be described as covariant. The equal-time description of an integrable system (albeit
extremely successful!) is manifestly not covariant by construction: while x and t have the
same importance in principle in the PDE, we immediately make a distinction between
them, promoting t as the ‘true time’ that generates the Hamiltonian flow, and demoting
x as an ‘accessory coordinate’ that we use to mimic the presence of many degrees of
freedom of the finite-dimensional case. This breaks the initial manifest covariance, as it is
not possible anymore to perform transformations that mix time and space.

Fortunately, the equal-time formalism is not the only available tool at our hands to
describe integrability of a field theory. Lax pairs were introduced by Peter Lax in 1968
[L68] as a general principle to associate nonlinear equations F (u, ut, ux, . . . ) = 0 with
linear operators, so that the eigenvalues of the linear operator are conserved quantities of
the nonlinear equation. In one of its formulations, due to Zakharov and Shabat [ZS72],
we consider a linear system for an auxiliary matrix-valued field Ψ(u, λ) that depends on
u and its derivatives and a spectral parameter λ ∈ C∂xΨ(u, λ) = U(u, λ)Ψ(u, λ)

∂tΨ(u, λ) = V (u, λ)Ψ(u, λ)
(1.13)

where U, V are matrices that also depend on u and its derivatives and λ, and are called
Lax pair. Any nonlinear equation F (u, . . . ) = 0 that can be expressed as the compatibility
condition Ψxt = Ψtx of any such auxiliary system is proved to allow an infinite number of
conserved quantities3 (see e.g. [FTR07]). At this stage we have not made any distinction

3This is weaker than complete integrability as these conserved quantities may not be in involution.
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between ‘time’ and ‘space’, but both are treated with equal footing and have the same
role: we will refer to any formalism with this characteristic as a covariant formalism. The
aim of this thesis is to push this approach even further, and initiate the development of a
true covariant description of integrability for classical field theories, in the above sense.

In a way, the motivation behind this thesis originates from the work [CK15], where
surprising properties of space-time duality of the classical r-matrix were found for the
NLS equation. The classical r-matrix is a solution of one of the fundamental equations in
the theory of integrable systems, the classical Yang-Baxter equation (which was introduced
first in its quantum version independently by Yang and Baxter), and appears when one
takes the equal-time Poisson bracket of the coefficients of the Lax matrix U . It determines
the structure, symmetries and solution content of an integrable system, and it has proved
to be crucial for canonical quantisation, and the Quantum Inverse Scattering Method [S79,
SF78, FST80]. In particular, the authors of [CK15] proved that the classical r-matrix
structure remained unchanged when the roles of the space and time were swapped, thus
surviving this theoretical distortion and pointing to a possible even deeper role played by
this already fundamental object, with respect to a covariant formalism. This belief is also
supported by a series of subsequent results [C15b, ACDK16, AC17, F19, DFS19] that
elaborate on the space-time duality of the r-matrix.

It is worth noticing that the desire to provide a covariant formulation of Hamiltonian
field theory originated early on in the 1930’s (possibly even before its non-covariant
version) with the works of De Donder [D30] and Weyl [W35]. This formalism followed a
less fortunate path that, to the best of our knowledge, never crossed with the theory of
integrable systems with the exception of one author, Dickey. His book [D03] provided us
with the initial setup of this thesis, i.e. the variational bi-complex and his formulation
of the multisymplectic form and covariant Hamiltonian, natural generalisations of the
respective non-covariant objects, both obtained from the Lagrangian formulation of the
PDE. The first question is how to define a covariant Poisson bracket that reproduces the
r-matrix structure found in both the equal-time and the equal-space Poisson brackets,
the latter being the one obtained swapping the roles of time and space. This problem is
tackled successfully in this thesis with content from [CS20a, CSV21a] with the definition
of a covariant Poisson bracket that encodes both the equal-time and equal-space one.

Moreover, a natural observation is that the same role should not only be played by space
and time, but also by all the other times in the integrable hierarchy, that produce the
commuting symmetries that we mentioned above, and a true covariant description of
an integrable system should take this into account as well. This requirement is well
encoded in the recently developed formalism of Lagrangian multiforms, introduced by
Lobb and Nijhoff in [LN09] for discrete integrable systems and then extended to the
continuous case, to describe integrability in a variational fashion. We will prove that one
can use Dickey’s procedure adapted to a Lagrangian multiform and obtain in return the
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covariant Hamiltonian formulation of the complete integrable hierarchy in one strike, called
Hamiltonian multiform description [CS20b]. One can also naturally define the so-called
multi-time Poisson bracket that encapsulates all the single-time (i.e. the equal-time or
space) Poisson brackets of the hierarchy. It will be proved that, for the AKNS hierarchy,
this new object will possess a classical r-matrix structure [CS21].

Structure of the thesis We chose to structure this thesis using a ‘bottom-up’ approach
that follows the journey of this PhD. The reader will find a series of results almost in the
order that they were discovered, with some of the results that generalise other previous
ones. We believe that this approach, despite being admittedly not concise, will improve the
understandability of this work. It was decided to keep the formalism as light as possible,
in an effort to focus the reader’s attention on the new concepts that are introduced.
Other people’s work will sometimes be reported (and rightly attributed) to keep the
thesis as self-consistent as possible, and adapted to the notations and conventions of
this thesis. Despite this, from now on we will assume the reader is familiar with some
fundamental concepts of Mathematical Physics, most of which can be found in [O93,
J99]. In particular we will use classical finite-dimensional Lagrangian and Hamiltonian
mechanics (Hamilton equations, symplectic forms, Poisson brackets, first integrals), and
1 + 1-dimensional classical field theories to some extent (for instance, what an integrable
hierarchy is). We also take for granted some basic knowledge of differential geometry
(manifolds, differential forms, vector fields, Lie groups and algebras). Chapters 1-2 are
introductory and provide the background and motivations of this thesis. The main results
are written in the central Chapters 3-7. Chapter 8 concludes the thesis and describes
possible future research directions and perspectives.

• Chapter 2 illustrates the relevant background. We describe the discovery of the space-
time duality of the classical r-matrix in [CK15] and the subsequent results. Then
we briefly describe the properties of the variational bi-complex [D03, A89], which is
the algebraic framework that we work in. Finally, we give a short introduction to
Lagrangian multiforms for integrable hierarchies of 1 + 1-dimensional field theories.

• In Chapter 3 we extend the work of Dickey [D03], adapting it to the ideas of
Kanatchikov [K98], and illustrate how to describe covariantly a 1 + 1-dimensional
classical field theory. We give the definition of three important objects: the covariant
Hamiltonian, the multisymplectic form and covariant Poisson brackets (the latter
being original of this thesis, albeit adapted from [K98] and [D03]). The two main
original results are Theorem 3.15, which formulates the covariant Hamilton equations
in terms of the covariant Poisson brackets, and Proposition 3.17, which relates the
covariant Poisson brackets with the single-time Poisson brackets.

• In Chapter 4 we apply the covariant description of a 1 + 1-dimensional classical field
theory on many archetypal examples of integrable systems: the sine-Gordon equation
(in both laboratory and light-cone coordinates), the Non-Linear Schrödinger and
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modified Korteweg-de Vries equations, and the Zakharov-Mikhailov action [ZM80].
We consistently find two important results: the presence of an ultra-local classical
r-matrix structure within the covariant Poisson brackets for the Lax connection, and
the formulation of the zero-curvature equation as a covariant Hamilton equation for
the Lax connection under the ‘multisymplectic’ flow of the covariant Hamiltonian.

• In Chapter 5 we introduce and develop the theory of Hamiltonian multiforms,
extending the covariant formulation of Chapter 3 to describe covariantly integrable
hierarchies (as opposed to single PDEs). These new objects are introduced with
a ‘Legendre-like transformation’ from the Lagrangian multiforms. We also define
the symplectic multiform and the multi-time Poisson bracket, that are respectively
the symplectic form and Poisson brackets in a multiform context. They are used
systematically to describe the first few flows of the (potential) Korteweg-de Vries
hierarchy, the sine-Gordon hierarchy in light-cone coordinates, and the Ablowitz-
Kaup-Newell-Segur hierarchy.

• In Chapter 6 we use Hamiltonian multiforms to describe covariantly the whole
AKNS hierarchy. We write a Lagrangian multiform in terms of a generating double
series, from which we obtain (as generating series) both the symplectic and the
Hamiltonian multiforms. We then prove the classical r-matrix structure of the
multi-time Poisson bracket, and we reformulate the whole set of zero-curvature
equations of the AKNS hierarchy as multi-time Hamilton equations for the complete
Lax connection under the flow of the Hamiltonian multiform.

• In Chapter 7 we generalise part of the results of Chapter 6 (i.e. the Lagrangian
multiform aspects) to describe as generating series several integrable hierarchies.
With a uniform approach, we obtain (besides the aforementioned Ablowitz-Kaup-
Newell-Segur hierarchy) integrable hierarchies with a rational r-matrix structure
(i.e. AKNS and the actions included in [D03, Section 20.2] and [ZM80]) and with a
trigonometric structure (sine-Gordon).

• In Chapter 8 we summarise the results of this thesis, and write about the possible
research outcomes and perspectives.

• Appendix A includes material that may be useful to the reader, that for various
reasons we believe would break the natural flow of the thesis. We include a short
review of the s`(2,C) algebra and the auxiliary spaces notation. We also include the
formulation of the Dirac-Poisson brackets for the Non-Linear Schrödinger equation,
and the proof of the 4d Chern-Simons origin of the Zakharov-Mikhailov action.

• Appendix B contains several of the proofs regarding Chapter 6 that are too long or
not necessarily illuminating.
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Chapter 2

Background

In this section we provide the necessary background. We start by explaining the properties
of space-time duality of the classical r-matrix, adapting the content of the original paper
[CK15]. The next section illustrates the construction and general properties of the
variational bi-complex, as described by [D03]. Finally, we give a quick overview of the
new topic of Lagrangian multiforms for field theories.

2.1 Space-time duality of the classical r-matrix

As mentioned in the introduction, in recent years new surprising properties of space-time
duality of the classical r-matrix have been discovered, starting from the paper [CK15].
While studying the presence of integrable defects for the Non-Linear Schrödinger equation,
the authors needed to provide a different formulation from the usual one given by the
Poisson bracket { , }S and the Hamiltonian HS , but of the same partial differential
equation. This was done defining a different Poisson bracket { , }T , and a different
Hamiltonian density HT , that exchanged the roles of time and space. It is worth noticing
that this is not related to a bi-Hamiltonian formulation, as the two Poisson brackets are
not compatible, not even living in the same phase space. The surprising property is that
both Poisson brackets have the same r-matrix structure (up to an overall sign).

We will consider the (unreduced) Non-Linear Schrödinger(NLS) equation of the form

iqt +
1

2
qxx − q2r = 0 , irt −

1

2
rxx + qr2 = 0 (2.1)

for two complex fields q, r dependent on the coordinates (x, t). The actual NLS equation
is obtained, in its focusing or defocusing form with the reduction r = ±q∗. It is well
known that this equation admits a Lagrangian formulation, and a Lagrangian is

L =
i

2
(qtr − qrt)−

1

2
qxrx −

1

2
q2r2 . (2.2)

9
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Indeed, defining the action S[q, r] as being the integral of L over an appropriate 2-
dimensional surface Γ

S[q, r] =

∫
Γ
L(q, r, qx, rx, qt, rt)dxdt ,

we have that its variation reads

δS :=
d

dε

∣∣∣∣
ε=0

S[q + εδq, r + εδr]

=

∫
Γ

(
δL

δq
δq +

δL

δr
δr

)
dxdt .

The quantities

δL

δq
:=

m∑
α,β=0

(−1)α+β∂αx ∂
β
t

∂L

∂(∂αx ∂
β
t q)

,
δL

δr
:=

m∑
α,β=0

(−1)α+β∂αx ∂
β
t

∂L

∂(∂αx ∂
β
t r)

,

are the variational derivatives of L with respect to q and r (we assumed that L only
depends on derivatives of the fields up to a finite order m, as it is the case for the NLS).
We then have

δL

δq
=
∂L

∂q
− ∂

∂x

∂L

∂qx
− ∂

∂t

∂L

∂qt

=− irt
2
− qr2 +

rxx
2
− irt

2

=− irt − qr2 +
rxx
2
,

so by setting δL
δq = 0 one obtains the second equation of (2.1). Similarly, we get the first

equation of (2.1) by setting δL
δr = 0. The Non-Linear Schrödinger is also known to have a

Lax pair formulation [ZS72]. Let us consider the following auxiliary problem:Ψ(x, t, λ)x = U(x, t, λ)Ψ(x, t, λ)

Ψ(x, t, λ)t = V (x, t, λ)Ψ(x, t, λ)
(2.3)

where

U(x, t, λ) =

(
−iλ q

r iλ

)
, V (x, t, λ) =

(
−iλ2 − i

2qr λq + i
2qx

λr − i
2rx iλ2 + i

2qr

)
(2.4)

is called the Lax Pair. Both U and V are 2× 2 complex traceless matrices and therefore
are s`(2,C)-valued fields. The compatibility condition Ψxt = Ψtx is equivalent to the Non-
Linear Schrödinger equation: first we notice that Ψxt = (UΨ)t = UtΨ+Uψt = UtΨ+UVΨ

and similarly Ψtx = VxΨ +V UΨ, so that Ψxt = Ψtx is the famous zero-curvature equation

Ut − Vx + [U, V ] = 0 . (2.5)
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Remark 2.1: The name is quickly understandable. Let W = Udx+V dt be the Lax
connection, then defining its curvature as F (W ) = dW −W ∧W we easily get that
F (W ) = 0 if and only if (2.5) is satisfied:

d(Udx+ V dt) = (−Ut + Vx) dx ∧ dt ,

W ∧W = (UV − V U) dx ∧ dt ,

and so F (W ) = (−Ut + Vx − [U, V ])dx ∧ dt. One could choose another convention
for the curvature and define it as F̃ (W ) = dW +W ∧W . The zero curvature then
becomes F̃ (W ) = (−Ut + Vx + [U, V ])dx ∧ dt = 0. The first convention can be
recovered by sending W → −W .

Let us compute the curvature: we have

−Ut =

(
0 −qt
−rt 0

)
,

Vx =

(
− i

2(qrx + qxr) λqx + i
2qxx

λrx − i
2rxx

i
2(qrx + qxr)

)
,

−[U, V ] =

(
λ3 − λ

2 qr + i
2qrx −λ

2 qx −
i
2q

2r

−λ
2 rx + i

2qr
2 λ3 − λ

2 qr −
i
2qxr

)

+

(
−λ3 + λ

2 qr + i
2qxr −λ

2 qx −
i
2q

2r

−λ
2 rx + i

2qr
2 −λ3 + λ

2 qr −
i
2qrx

)

=

(
i
2qrx + i

2qxr −λqx − iq2r

−λrx + iqr2 − i
2qxr −

i
2qrx

)
.

The diagonal component of the equation reads 0− i
2qrx−

i
2qxr+ i

2qrx+ i
2qxr = 0 identically.

The other two components are −qt + λqx + i
2qxx − λqx − iq

2r = −qt + i
2qxx − iq

2r, and
−rt +λrx− i

2rxx−λrx + iqr2 = −rt− i
2rxx + iqr2 that gives (2.1). Therefore, F (W ) = 0

as a matrix identity is equivalent to the Non-Linear Schrödinger equation.

The usual Hamiltonian formulation is obtained as follows: we take as configuration space
the space of smooth functions of x appropriate to our functional-analytic needs1, and we
let

p1(x) =
∂L

∂qt
=
ir(x)

2
, p2(x) =

∂L

∂rt
= − iq(x)

2
. (2.6)

The experienced reader will have noticed that the Lagrangian L is linear in the velocities qt
and rt, and the usual Legendre transformation is ineffective in obtaining the Hamiltonian
formulation because of its lack of invertibility. This makes the system (2.6) a constraint,
and therefore we may resort to the Dirac-Poisson brackets in order to be able to treat it
correctly. We skip this calculation here, but it can be found for instance in [ACDK16,

1This amounts, amongst other properties, to the requirement that appropriate conditions at infinity
are satisfied to discard the boundary terms after the integration by parts.
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Section 3.1], as well as in Appendix A.3, adapted to our notations in this thesis. The
result is the following equal-time Poisson brackets

{q(x), r(y)}S = iδ(x− y) , (2.7a)

{q(x), q(y)}S = 0 , (2.7b)

{r(x), r(y)}S = 0 , (2.7c)

and the Hamiltonian HS =
∫
HS dx, where

HS = qtp
1 + rtp

2 − L =
1

2
qxrx +

1

2
q2r2 . (2.8)

The NLS time flow (2.1) is then obtained by the Hamilton’s equation (in infinite dimen-
sions) qt = {HS , q}S , as shown in Appendix A.3.

Remark 2.2: This should not confuse the reader, as it is similar to what happens
with an ODE. In its simplest case, we consider a vector field X : U → Rn where
U ⊂ Rn is open. U is called the phase space of the ODE. A solution of the ODE defined
by X is a curve from an interval I ⊂ R → U , t 7→ z(t) such that dz

dt (t) = X(z(t))

∀t ∈ I. In the same way, for an infinite dimensional system we consider the phase
space as being a suitable space of functions { f(x) }, on which we inject the time t
by considering a curve t→ f(x, t).

In order to see the classical r-matrix structure we need to use the so-called auxiliary
spaces2 as explained in Appendix A.2. We calculate the Sklyanin equal-time Poisson
bracket between U(x, λ) and U(y, µ). As seen in equation (2.4) U(x, λ) is valued in
s`(2,C), so we use as a basis {σ3, σ+, σ− }, to write U(x, λ) =

∑
i ui(x, λ)σi. We have

{U1(x, λ), U2(y, µ)}S
=

∑
i,j=3,+,−

{ui(x, λ), uj(y, µ)}S σi ⊗ σj

= {q(x), r(y)}S σ+ ⊗ σ− + {r(x), q(y)}S σ− ⊗ σ+

= iδ(x− y)(σ+ ⊗ σ− − σ− ⊗ σ+) .

(2.9)

It is easy but not straightforward to see that this Poisson bracket can be seen as a
commutator of U1(x, t, λ) +U2(y, t, µ) with another quantity, called the rational r-matrix

r12(λ, µ) =
1

2

P12

λ− µ
, (2.10)

where P12 := σ+ ⊗ σ− + σ− ⊗ σ+ + 1
2(σ3 ⊗ σ3 + I⊗ I) is the permutation operator. The

2We remark that the indices relative to the auxiliary spaces are denoted in boldface as 1,2.
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following identity holds:

{U1(x, λ), U2(y, µ)}S = δ(x− y)[r12(λ− µ), U1(x, λ) + U2(y, µ)] . (2.11)

In fact we have

[r12(λ− µ), U1(x, λ) + U2(y, µ)]

=
1

2

1

λ− µ
[σ+ ⊗ σ− + σ− ⊗ σ+ +

σ3 ⊗ σ3

2
,

(−iλσ3 + q(x)σ+ + r(x)σ−)⊗ I + I⊗ (−iµσ3 + q(y)σ+ + r(y)σ−)]

=
1

2

1

λ− µ
(−iλ[σ+, σ3]⊗ σ− + r(x)[σ+, σ−]⊗ σ− − iµσ+ ⊗ [σ−, σ3] + q(y)σ+ ⊗ [σ−, σ+]

− iλ[σ−, σ3]⊗ σ+ + q(x)[σ−, σ+]⊗ σ+ − iµσ− ⊗ [σ+, σ3] + r(y)σ− ⊗ [σ+, σ−]

+
q(x)

2
[σ3, σ+]⊗ σ3 +

r(x)

2
[σ3, σ−]⊗ σ3 +

q(y)

2
σ3 ⊗ [σ3, σ+] +

r(y)

2
σ3 ⊗ [σ3, σ−])

We now use the commutation relations of σ3, σ± to obtain

1

2

1

λ− µ
(2iλσ+ ⊗ σ− + r(x)σ3 ⊗ σ− − 2iµσ+ ⊗ σ− − q(y)σ+ ⊗ σ3

− 2iλσ− ⊗ σ+ − q(x)σ3 ⊗ σ+ + iµσ− ⊗ σ+ + r(y)σ− ⊗ σ3 + q(x)σ+ ⊗ σ3

− r(x)σ− ⊗ σ3 + q(y)σ3 ⊗ σ+ − r(y)σ3 ⊗ σ−)

=
1

2

1

λ− µ
(−2i(µ− λ)σ+ ⊗ σ− + 2i(µ− λ)σ− ⊗ σ− + (q(x)− q(y))σ+ ⊗ σ3

+ (q(y)− q(x))σ3 ⊗ σ+ + (r(y)− r(x))σ− ⊗ σ3 + (r(x)− r(y))σ3 ⊗ σ−) .

When multiplied by δ(x−y) this becomes the desired i(σ+⊗σ−−σ−⊗σ+). The equation

{U1(x, λ), U2(y, µ)}S = δ(x− y)[r12(λ− µ), U1(x, λ) + U2(y, µ)] (2.12)

was first derived by Sklyanin in [S82] and is the starting point of the (quantum) Inverse
Scattering Method for solving the Non-Linear Schrödinger equation. In fact, if we
introduce the monodromy matrix M(x, λ) as the fundamental solution of (2.3) at t = 0

that is equal to the identity matrix at x = 0, we get for x > 0

{M1(x, λ),M2(x, µ)}S = [r12(λ− µ),M1(x, λ)M2(x, µ)] (2.13)

Under specific conditions, this relation is enough to prove Liouville integrability of the
Non-Linear Schrödinger equation: roughly, the transfer matrix 3 TrM(λ) =

∑
i Iiλ

−i

commutes for different spectral parameters {TrM(λ),TrM(µ)}S = 0, which means that
the coefficients Ii are in involution with each other {Ii, Ij}S = 0 ∀i, j.

Let us now explore the other picture, and exchange the roles of time and space. We choose
3The name ‘matrix’ is a terminology inherited from the quantum case. Here it is just a function.
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as configuration space the appropriate space of functions { f(t) } and we look for the flow
given by x. We consider the alternative choice of momenta obtained by performing the
Legendre transformation with respect to the other independent variable

π1(t) =
∂L

∂qx
= −1

2
rx(t) , π2 =

∂L

∂rx
= −1

2
qx(t) , (2.14)

and consequently the Hamiltonian HT =
∫
HT dt where

HT = qxπ
1 + rxπ

2 − L = − i
2

(qtr − qrt)−
1

2
qxrx +

1

2
q2r2 . (2.15)

From the expressions of π1,2 one can canonically construct the equal-space Poisson brackets,
where the only non-vanishing ones are the following

{q(t), rx(τ)}T = 2δ(t− τ) , (2.16a)

{r(t), qx(τ)}T = 2δ(t− τ) . (2.16b)

The Non-Linear Schrödinger equation can then be obtained as for instance4 (π2)x =

{HT , π2}T :

− 1

2
qxx = {

∫
(− i

2
(qtr − qrt)−

1

2
qxrx +

1

2
q2r2) dτ,−1

2
qx}T

= 2iqt − 2q2r =⇒ iqt +
1

2
qxx − q2r = 0 .

These are two equivalent formulations of the same equation iqt + 1
2qxx − q

2r = 0 that
work on two different phase spaces. The first is the usual one and can be called ‘equal
time’ picture. The second can be seen as the ‘equal-space’ picture.

Remarkably, one can obtain a similar equation to (2.12) for the equal-space bracket { , }T ,
with the caveat that one has to use the other Lax matrix V . In fact we have

{V1(t, λ), V2(τ, µ)}T = −δ(t− τ)[r12(λ− µ), V1(t, λ) + V2(τ, µ)] (2.17)

for the same rational r-matrix r12(λ) = P12
2λ . This is computed with the same technique

as (2.12), but it is more cumbersome because of the less simple expressions of { , }T and
V . We remark the presence of a minus sign in front of the commutator. In the rest of the
thesis we will refer to this property of the classical r-matrix, i.e. its presence (up to a
minus sign) in both Poisson brackets { , }S and { , }T as space-time duality.

This result of space-time duality of the classical r-matrix for the Non-Linear Schrödinger
equation of [CK15] has originated a series of works that explored this direction.
In [C15b] the author proved the same property the sine-Gordon equation in laboratory

4Technically, one would also have to consider qx = {HT , q}T , which returns the Legendre transformation
π2 = − 1

2
qx.
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coordinates utt − uxx + sinu = 0. This equation is another prototype of integrable model,
and is widely recognised as one of the most important examples of integrable relativistic
field theory. In [ACDK16] the authors specialised this approach to the Ablowitz-Kaup-
Newell-Segur hierarchy, to which the NLS equation belongs, and generalised it to the
subsequent level, the modified Korteweg-de Vries equation.
The paper [AC17] gives an algebraic explanation of the space-time duality of the classical
r-matrix for the AKNS hierarchy, in the sense that it comes from a Lie-Poisson bracket
on a suitable coadjoint orbit of the loop algebra s`(2,C)⊗ C(λ, λ−1). This is achieved
following a series of steps. First the authors choose a time tn in the hierarchy and restrict
the dynamical variables in Q(λ) (denoted by L there) to satisfy the n-th time evolution
∂nQ(λ) = [Q(n)(λ), Q(λ)] where Q(n)(λ) = P+(λnQ(λ)) and P+ is the projector onto the
positive loop algebra. With respect to the notations of this chapter, we have

Q(1)(λ) = U(λ) , Q(2)(λ) = V (λ) . (2.18)

In this way the Lax matrix Q(n)(λ) acquires a natural r-matrix structure with respect to
the Poisson bracket { , }n. Then, they construct an auxiliary problem involving the time
tn and a new time tk, k 6= n, associated to the Lax matrix Q(k)(λ). The zero-curvature
equation is shown to be Hamiltonian with respect to the Poisson bracket { , }n. Finally,
they swap the roles of n and k, and prove that the zero-curvature equations obtained
from the two different choices produce the same set of PDEs and are Hamiltonian with
respect to the corresponding Poisson brackets { , }n and { , }k.
Despite investigating the consequences of different choices of ‘time’ and ‘space’, these
papers still have to make this choice. As introduced in Chapter 1, this thesis succeeds
in avoiding this distinction altogether and works in a truly covariant fashion, where all
the times of the hierarchy are treated with equal footing. This will be done using the
framework of the variational bi-complex, which will be introduced in the next section.

2.2 Variational bi-complex

Let M be the base manifold with local coordinates xi, i = 0, 1, 2, . . . , n in a fibered
manifold π : E →M whose sections represent the fields of the theory. M will be called
multi-time manifold. The dimension of M will be n = 2 in Chapters 3 and 4, with x1 = x

and x2 = t hence taking the name space-time manifold. The coordinates xi will be called
horizontal. The variational bi-complex is a double complex of differential forms defined on
the infinite jet bundle of π : E →M . One introduces vertical and horizontal differentials
δ and d which satisfy

d2 = 0 = δ2 , dδ = −δd , (2.19)

so that the operator d+ δ satisfies (d+ δ)2 = 0. Let K = R or C. Consider the differential
algebra with the commuting derivations ∂i, i = 0, 1, 2, . . . , n generated by the commuting
variables u(i)

k , k = 1, . . . , N , (i) = (i0, i1, i2, . . . , in) being a multi-index, and quotiented
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by the relations
∂ju

(i)
k = u

(i)+ej
k , (2.20)

where ej = (0, . . . , 0, 1, 0, . . . ) only has 1 in position j. We simply denote u(0,0,... )
k by

uk, the fields of the theory which would be the local fibre coordinates mentioned above.
We denote this differential algebra by A . The elements of A will be called vertical
coordinates, and represent the fields of our theory and their derivatives with respect to
the multi-time variables. We will need the notation

∂(i) = ∂i00 ∂
i1
1 . . . ∂inn .

We consider the spaces A (p,q), p, q ≥ 0 of finite sums of the following form

ω =
∑

(i),(k),(j)

f
(i)
(k),(j)δu

(i1)
k1
∧ · · · ∧ δu(ip)

kp
∧ dxj1 ∧ · · · ∧ dxjq , f

(i)
(k),(j) ∈ A (2.21)

which are called (p, q)-forms. In other words, A (p,q) is the space linearly generated by
the basis elements δu(i1)

k1
∧ · · · ∧ δu(ip)

kp
∧ dxj1 ∧ · · · ∧ dxjq over A , where ∧ denotes the

usual exterior product. For these reasons p will be referred to as the vertical degree and
q as the horizontal degree of ω. We define the operations d : A (p,q) → A (p,q+1) and
δ : A (p,q) → A (p+1,q) as follows. They are graded derivations

d(ω
(p1,q1)
1 ∧ ω(p2,q2)

2 ) = dω
(p1,q1)
1 ∧ ω(p2,q2)

2 + (−1)p1+q1ω
(p1,q1)
1 ∧ dω(p2,q2)

2 , (2.22a)

δ(ω
(p1,q1)
1 ∧ ω(p2,q2)

2 ) = δω
(p1,q1)
1 ∧ ω(p2,q2)

2 + (−1)p1+q1ω
(p1,q1)
1 ∧ δω(p2,q2)

2 , (2.22b)

and on the generators, they satisfy

df =
∑

∂if dx
i =

∑
(
∂f

∂xi
+

∂f

∂u
(j)
k

u
(j)+ei
k )dxi , f ∈ A , (2.23a)

δf =
∑ ∂f

∂u
(i)
k

δu
(i)
k , f ∈ A , (2.23b)

δ(dxi) = δ(δu
(j)
k ) = d(dxi) = 0, (2.23c)

d(δu
(i)
k ) = −δdu(i)

k = −
∑

δu
(i)+ej
k ∧ dxj . (2.23d)

This determines the action of d and δ on any form as in (2.21). As a consequence, one can
show that d2 = δ2 = 0 and dδ = −δd. For our purpose, it is sufficient to take the following
(simplified) definition for the variational bi-complex: it is the space A ∗ =

⊕
p,q A (p,q)

equipped with the two derivation d and δ. Due to the geometrical interpretation of these
derivations, d is called horizontal differential while δ is called vertical differential.
Note that the direct sum over q is finite and runs from 0 (scalars) to n (volume horizontal
forms) whereas the sum over p runs from 0 to infinity. Of course, each form in A ∗ only
contains a finite sum of elements of the form (2.21) for certain values of p and q. The
bi-complex A ∗ generates an associated complex A (r) =

⊕
p+q=r A (p,q) and derivation
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d+ δ. It is proved that both the horizontal sequence and the vertical sequence are exact,
see e.g. [D03].
Dual to the notion of forms is the notion of vector fields. We consider the dual space of
vector fields TA to the space of one-forms A (1) with elements of the form

ξ =
∑
k,(i)

ξk,(i) ∂u(i)k
+
∑
i

ξ∗i ∂i . (2.24)

In the rest of the thesis we will use ∂i and ∂
∂xi

interchangeably, and the same with ∂
u
(i)
k

and ∂

∂u
(i)
k

. The interior product with a form is obtained in the usual graded way together

with the rule
∂iydx

j = δij , ∂
u
(i)
k

yδu(j)
` = δk`δ(i)(j) .

where δ(i)(j) =
∏
k δikjk . For instance, with i 6= j and (i) 6= (j) or k 6= l,

∂iy(δu
(`)
k ∧ dx

i ∧ dxj) = −δu(`)
k ∧ dx

j ,

∂
u
(i)
k

y(δu(j)
` ∧ δu

(i)
k ∧ dx

m) = −δu(j)
` ∧ dx

m .

We will need the following vertical vector fields

∂̃i =
∑
k,(j)

u
(j)+ei
k

∂

∂u
(j)
k

. (2.25)

If f ∈ A does not depend explicitly on variables xi then ∂if = ∂̃if . Let us also introduce
the notation ∂′i by ∂i = ∂′i + ∂̃i, which has the following interpretation:

• ∂i is the total derivative with respect to the multi-time variable xi;

• ∂′i is the partial derivative with respect to xi, and if f ∈ A does not depend
explicitly on the space-time variables then ∂′if = 0;

• ∂̃i is the derivative with respect to xi only through the fields uk, and if f ∈ A does
not depend explicitly on the space-time variables then ∂if = ∂̃if

In addition to the vector fields (2.24), in general calculations in the variational bi-complex
also require the use of multivector fields of the form ξ1 ∧ · · · ∧ ξr where each ξi is of
the form (2.24). In this thesis, we will only need those multivector fields that are linear
combination of ∂

u
(i)
k

∧ ∂j with coefficients in A and we may simply call them vector fields
as the context should not lead to any confusion. The following example shows the rule
for the interior product of such a multivector field, with (i) 6= (j) or k 6= `,

(∂
u
(i)
k

∧ ∂`)y(δu
(j)
` ∧ δu

(i)
k ∧ dx

m) = ∂
u
(i)
k

y(∂`y(δu
(j)
` ∧ δu

(i)
k ∧ dx

m)) = −δ`m δu
(j)
` .
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Finally, we will need the following useful identity, cf [D03, Corollary 19.2.11].

∂̃i = δ∂̃iy+ ∂̃iyδ . (2.26)

2.3 Lagrangian multiforms

The notion of Lagrangian multiforms was introduced in 2009 by Lobb and Nijhoff [LN09],
motivated by the completely open problem of characterising integrability of (partial)
differential (or difference) equations purely from a variational/Lagrangian point of view.
Initially developed in the realm of fully discrete integrable systems, Lagrangian multiforms
provide a framework whereby the notion of multidimensional consistency [N02, BS02],
which captures the analog of the commutativity of Hamiltonian flows known in continuous
integrable systems, is encapsulated in a generalised variational principle. The latter
contains the standard Euler-Lagrange equations for the various equations forming an
integrable hierarchy as well as additional equations, originally called corner equations
which can be interpreted as determining the allowed integrable Lagrangians themselves.
The set of all these equations is now called multiform Euler-Lagrange equations. The
original work of Lobb and Nijhoff [LN09] stimulated a wealth of subsequent developments,
first in the discrete realm, see e.g. [LNQ09, LN10, BS10, YLN11, BPS14, BPS15], then
progressively into the continuous realm for finite dimensional systems, see e.g. [S13, PS17]
and 1 + 1-dimensional field theories, see e.g. [XNL11], up to more recent developments
in continuous field theory, see e.g. [S16, SV16, V19, SNC19a, PV20], including the first
examples in 2 + 1-dimensions [SNC19b, SNC21].

Since in this thesis we will only deal with continuous 1 + 1-dimensional field theories, we
are going to focus on this case. Assume we have a hierarchy of integrable PDEs, such as
the Ablowitz-Kaup-Newell-Segur hierarchy to which the previously introduced Non-Linear
Schrödinger equation belongs. Suppose we identify x = x1 and call each individual ‘time’
relative to the n-th flow xn. For instance, the Non-Linear Schrödinger equation will be
relative to the times x1, x2. The next equation in the hierarchy (the modified Korteweg-de
Vries equation) will be relative the times x1, x3 and so on. A generic equation in the
hierarchy will be relative to the times x1, xn. Suppose each equation has a Lagrangian
formulation. The Lagrangian will be a scalar function or a 2-form L1n

L1n = L1n dx
1 ∧ dxn , L1n ∈ A (2.27)

where L1n depends on the field5 u and its derivatives, and the action is the result of its
integration

∫
Γ1n

L1n over a plane tangent to the x1 and xn directions. A solution u of the
PDE is required to be a critical value of

∫
Γ1n

L1n. In the new multiform approach, we
encapsulate all these Lagrangian forms into a Lagrangian multiform: a horizontal 2-form

5We only consider a scalar field u for simplicity, but this is easily extended to multi-components fields
too.
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in the larger multi-time manifold with coordinates (x1, x2, x3, . . . )

L =
∑
i<j

Lij dx
i ∧ dxj , Lij ∈ A . (2.28)

The action will be L integrated over a 2-dimensional surface Γ (which now is not
necessarily a plane tangent to any direction),

∫
Γ L . We remark that the action is a

functional of both the fields u and the surface of integration Γ. Of course each L1n is
recovered by specifying Γ = Γ1n, but we remark that not only do we have the coefficients
L1n but we also have to introduce Lij for any pair (i, j). We now require that the action
is not only stationary with respect to the fields u but that it holds the same critical
value for every choice of the surface of integration Γ. This translates in the multiform
Euler-Lagrange equations that can be written as (see [SV16])

δdL = 0 , (2.29)

where d is the horizontal differential and δ is the vertical differential that are introduced
in Section 2.2. Moreover, the requirement of stationarity with respect to each choice of Γ

translates in the closure relation, i.e. dL = 0 on shell of the equations δdL = 0. We are
therefore giving the following definition.

Definition 2.3 The horizontal 2-form

L =
∑
i<j

Lij dx
ij dxij = dxi ∧ dxj

is a Lagrangian multiform if δdL = 0 implies dL = 0.

Remark 2.4: The reader will also find other terminology in literature, which boils
down to different interpretations of the closure relation. Usually, when this is
considered to be a fundamental property of the variational theory of integrable
hierarchies, it is included in the definition (as we do) and the name Lagrangian
multiform is used. When weaker conditions are assumed, such as dL = const, the
term pluri-Lagrangian form is used (e.g. in [BS15, S16, PS17, V19]).

Remark 2.5: Constructing the ‘mixed’ coefficients Lij is possible although often
cumbersome, especially for high values of i and j, and several techniques have been
introduced. The paper [SNC19a] writes the coefficient L23 for the Ablowitz-Kaup-
Newell-Segur hierarchy from the Lagrangians L12 and L13, such that they can be taken
as coefficients of a well defined Lagrangian multiform L(123) = L12 dx

12 + L23 dx
23 +

L13 dx
13. This coefficient was constructed directly, by forcing the closure relation on

the Lagrangian multiform. Other techniques were later introduced using variational
symmetries: the papers [SNC19b] and [PV20] (despite different implementations)
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use variational symmetries of a Lagrangian L12 to compute the coefficients of a new
Lagrangian multiform L13 and L23. This process could in principle be iterated, if
other variational symmetries are known, to construct a L(1234), a L(12345), etc.

Given a Lagrangian multiform L =
∑

i<j Lij dx
ij it is proved [SV16, SNC19a] that

the multiform Euler-Lagrange equations δdL = 0 are equivalent to the following set of
equations

δ(ij)Lij

δu(I)−ek
+
δ(jk)Ljk

δu(I)−ei
+
δ(ki)Lki

δu(I)−ej
= 0 , ∀I, ∀i, j, k. (2.30)

Here (I) = (I1, I2, I3, . . . ) is a multi-index, and by (I)− ek we denote the multi-index

(I1, . . . , Ik, . . . )− (0, . . . 0, 1︸︷︷︸
k

, 0 . . . ) = (I1, . . . , Ik − 1, . . . ) .

δ(ij)/δ is the variational derivative

δ(ij)F [u]

δu(I)

:=
∑
α,β≥0

(−1)α+β∂αi ∂
β
j

∂F [u]

∂u(I)+αei+βej

. (2.31)

Whenever a component of the multi-index (I) is negative, the convention is that δ(`k)Lijδu(I)
= 0.

The subscripts (`k), which are not present in the usual formalism, are needed since we
must specify in which plane (in the case δ(`k)

δ it is the x`, xk plane) we are taking the
variational derivative.
For a Lagrangian multiform L = L12 dx

12 + L23 dx
23 + L13 dx

13 that is dependent on
only one field u and its derivatives up to the second order, they are the following6:

• The usual Euler-Lagrange equations for each Lij:

(I) = (1) =⇒
δ(23)L23

δu
= 0 (2.32a)

(I) = (2) =⇒
δ(13)L13

δu
= 0 (2.32b)

(I) = (3) =⇒
δ(12)L12

δu
= 0 (2.32c)

Equations (2.32b) and (2.32c) are the usual Euler-Lagrange equation one would get
from the variational principles of respectively L13 and L12. Equation (2.32a) is the
Euler-Lagrange equation of L23, that has no counterpart in the usual formalism. It
is often the case that this equation is a differential consequence of (2.32b)-(2.32c),
especially if the Lagrangian L23 was constructed a posteriori from the expressions
of L12 and L13.

6We write here, and in the rest of the thesis when it is convenient to do so, ∂u
∂xk
≡ uk, ∂2u

∂xj∂xk
≡ ujk,

etc.
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• The corner equations:

(I) = (11) =⇒
δ(23)L23

δu1
= 0 (2.33a)

(I) = (12) =⇒
δ(23)L23

δu2
−
δ(13)L13

δu1
= 0 (2.33b)

(I) = (13) =⇒
δ(12)L12

δu1
+
δ(23)L23

δu3
= 0 (2.33c)

(I) = (22) =⇒
δ(13)L13

δu2
= 0 (2.33d)

(I) = (23) =⇒
δ(12)L12

δu2
−
δ(13)L13

δu3
= 0 (2.33e)

(I) = (33) =⇒
δ(12)L12

δu3
= 0 (2.33f)

(I) = (111) =⇒
δ(23)L23

δu11
= 0 (2.34a)

(I) = (112) =⇒
δ(23)L23

δu12
−
δ(13)L13

δu11
= 0 (2.34b)

(I) = (113) =⇒
δ(12)L12

δu11
+
δ(23)L23

δu13
= 0 (2.34c)

(I) = (122) =⇒
δ(23)L23

δu22
−
δ(13)L13

δu12
= 0 (2.34d)

(I) = (123) =⇒
δ(12)L12

δu12
+
δ(23)L23

δu23
−
δ(13)L13

δu13
= 0 (2.34e)

(I) = (133) =⇒
δ(12)L12

δu13
+
δ(23)L23

δu33
= 0 (2.34f)

(I) = (222) =⇒
δ(13)L13

δu22
= 0 (2.34g)

(I) = (223) =⇒
δ(12)L12

δu22
−
δ(13)L13

δu23
= 0 (2.34h)

(I) = (233) =⇒
δ(12)L12

δu23
−
δ(13)L13

δu33
= 0 (2.34i)

(I) = (333) =⇒
δ(12)L12

δu33
= 0 (2.34j)

The equations coming from the cases (I) = (ii) and (I) = (iii), i = 1, 2, 3 are due
to the presence of the so-called alien derivatives : if the Lagrangian Lij depends on
derivatives of the field u with respect to a time-variable that is ‘normal’ to the plane
xi, xj , say uk, then this would be treated, as far as δ(ij)/δ is concerned, as a field
variable on its own right (and not a derivative of u). In the usual formalism this is
not present, as it would not make sense to introduce derivatives with respect to a
variable that is not among the independent variables in consideration. It is of course
possible (and often the case) that these are present in a Lagrangian multiform, as
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we are dealing with all the independent variables at once.
The other equations are called corner equations, because of their origin in the
fully discrete context where they were formulated on the corner of a cube. These
equations are often used as a restriction on the coefficients Lij of a Lagrangian
multiform, which is a technique that will not be explained further in this thesis, as
we will work with Lagrangian multiforms that are ‘ready to use’.

Let us illustrate the notion of Lagrangian multiforms and multiform Euler-Lagrange
equations on some examples.

(potential) Korteweg-de Vries hierarchy A Lagrangian multiform that describes
the first two levels of the potential Korteweg-de Vries hierarchy is L = L12 dx

12 +

L23 dx
23 + L13 dx

13, where

L12 = v1v2 , (2.35a)

L23 = −3v2
1v2 − v1v112 + v11v12 − v111v2 , (2.35b)

L13 = −2v3
1 − v1v111 + v1v3 . (2.35c)

The multiform Euler-Lagrange equations become the following (we do not report the ones
that are trivially satisfied):

δ(23)L23

δv
= 6v1v12 + v1112 = 0

δ(13)L13

δv
= −2v13 + 12v1v11 + 2v1111 = 0

δ(12)L12

δv
= −2v12 = 0

δ(23)L23

δv1
= −6v1v2 − 2v112 = 0

δ(23)L23

δv2
−
δ(13)L13

δv1
= 3v2

1 + v111 − v3 = 0

δ(12)L12

δv1
+
δ(23)L23

δv3
= v2 = 0 .

As the Lagrangian multiform contain also derivatives of the third order, we additionally
have to consider (I) = (1111) that brings the identity δL23

δv111
= v2 = 0 and (I) = (1123)

that brings δL23
δv112

− δL13
δv111

= −v1 + v1 = 0. The multiform Euler-Lagrange equations for L

are then summarised as
v2 = 0 , v3 = v111 + 3v2

1 (2.36)

since some of the other multiform Euler-Lagrange equations are seen to be differential
consequences of these. The Korteweg-de Vries equation is recovered by taking the
differential consequence of the second equation v13 = v1111 + 6v1v11 and by taking u = v1
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in order to get
u3 = u111 + 6uu1 . (2.37)

sine-Gordon hierarchy A Lagrangian multiform L = L12 dx
12 +L23 dx

23 +L13 dx
13

for the sine-Gordon hierarchy in light-cone coordinates is

L12 =
1

2
u1u2 + cosu, (2.38a)

L13 =
1

2
u1u3 +

1

2
u2

11 −
1

8
u4

1, (2.38b)

L23 = −1

2
u2u3 + u11u12 + u11 sinu− 1

2
u2

1 cosu, (2.38c)

and produces the equations:

δ(23)L23

δu
= u23 + u11 cosu+

u2
1

2
sinu = 0

δ(13)L13

δu
= −u13 + u1111 +

3

2
u2

1u11 = 0

δ(12)L12

δu
= −u12 − sinu = 0

δ(23)L23

δu1
= −u1 cosu− u112 = 0

δ(23)L23

δu2
−
δ(13)L13

δu1
= −u3 +

u3
1

2
+ u111 = 0

δ(23)L23

δu11
= u12 + sinu = 0 .

The multiform Euler-Lagrange equations for L are then summarised as

u12 + sinu = 0 , u3 = u111 +
1

2
u3

1 . (2.39)

Ablowitz-Kaup-Newell-Segur hierarchy We start from the Lagrangian multiform
found in [SNC19b]

L = L12 dx
12 + L13 dx

13 + L23 dx
23 , (2.40)

where

L12 =
i

2
(rq2 − qr2)− 1

2
q1r1 −

1

2
q2r2, (2.41a)

L13 =
i

2
(rq3 − qr3)− i

8
(r1q11 − q1r11)− 3iqr

8
(rq1 − qr1), (2.41b)

L23 =
i

4
(q2r11 − r2q11) +

1

2
(q3r1 + r3q1) +

i

8
(q1r12 − r1q12)

+
3iqr

8
(qr2 − rq2) +

1

8
q11r11 −

1

4
qr(qr11 + rq11)

+
1

8
(qr1 − rq1)2 +

1

2
q3r3 .

(2.41c)
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As proved in [SNC19a], the corresponding multiform Euler-Lagrange equations δdL = 0

are the familiar first two levels of the AKNS hierarchy

iq2 +
1

2
q11 − q2r = 0, ir2 −

1

2
r11 + qr2 = 0 , (2.42a)

q3 +
1

4
q111 −

3

2
qrq1 = 0, r3 +

1

4
r111 −

3

2
qrr1 = 0 . (2.42b)

We have the equations

δ(12)L12

δq
= −qr2 +

1

2
r11 − ir2 = 0 ,

δ(12)L12

δr
= −q2r +

1

2
q11 + iq2 = 0 ,

δ(13)L13

δq
= −ir3 +

3i

2
qrr1 −

i

4
r111 ,

δ(13)L13

δr
= iq3 −

3i

2
qrq1 +

i

4
q111 ,

which are the Non-Linear Schrödinger and the modified Korteweg-de Vries equations, and

δ(23)L23

δq
= −1

2
r13 +

ir112

4
+

3i

2
qrr2 −

1

2
qrr11 −

1

4
q11r

2 +
1

4
qr2

1 −
1

4
q1rr1 +

3

2
q2r3 ,

δ(23)L23

δr
= −1

2
q13 +

iq112

4
− 3i

2
qrq2 −

1

2
qrq11 −

1

4
q2r11 +

1

4
q2

1r −
1

4
qq1r1 +

3

2
q3r2 ,

that are differential consequences of the NLS and the mKdV equations. The corner
equations

δ(12)L12

δq1
+
δ(23)L23

δq3
=− 1

2
r1 +

1

2
r1 = 0 ,

δ(12)L12

δr1
+
δ(23)L23

δr3
=

1

2
q1 −

1

2
q1 = 0 ,

δ(12)L12

δq2
−
δ(13)L13

δq3
=
ir

2
− ir

2
= 0 ,

δ(12)L12

δr2
−
δ(13)L13

δr3
=− iq

2
+
iq

2
= 0 ,

δ(13)L12

δq1
−
δ(23)L23

δq2
=
ir11

8
− 3i

8
qr2 +

ir11

8
−
(
ir11

4
− 3i

8
qr2

)
= 0 ,

δ(13)L12

δr1
−
δ(23)L23

δr2
=− iq11

8
+

3i

8
q2r − iq11

8
−
(
− iq11

4
+

3i

8
q2r

)
= 0 .

are all identically satisfied. In [SNC19b] this was extended to the first three levels of the
hierarchy as

L = L12 dx
12 + L13 dx

13 + L14 dx
14 + L23 dx

23 + L24 dx
24 + L34 dx

34 ,
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adding the coefficients

L14 =
i

2
(rq4 − qr4) +

5

16
qr(qr11 + rq11)

+
3

16
(q2r2

1 + q2
1r

2) +
1

4
qrq1r1 −

1

8
q11r11 −

1

4
q3r3 ,

(2.43a)

L24 =
3i

8
q2r2(rq1 − qr1) +

1

16
(q2r1r2 + r2q1q2) +

5

16
qr(qr12 + rq12)

− i

8
qr(rq111 − qr111)− i

8
(q2r1r11 − ir2q1q11)− i

8
q1r1(rq1 − qr1)

+
i

4
qr(r1q11 − q1r11)− 3

8
qr(q1r2 + r1q2) +

1

8
(q111r2 + r111q2)

+
i

16
(q111r11 − r111q11)− 1

8
(q11r12 + r11q12) +

1

2
(q1r4 + r1q4) ,

(2.43b)

L34 =− 1

8
(q11r13 + r11q13) +

1

8
(q111r3 + r111q3) +

1

32
q111r111

− 1

32
(q2r2

11 + r2q2
11)− 1

32
q2

1r
2
1 +

3i

8
qr(rq4 − qr4)− 9

32
q4r4

+
3

16
q2r2(qr11 + rq11) +

1

16
(q2r1r3 + r2q1q3)

+
5

16
qr(qr13 + rq13) +

i

4
(q11r4 − r11q4)− 3

16
qr(q1r111 + r1q111)

− 1

16
qrq11r11 +

1

16
q1r1(qr11 + rq11)

+
15

16
q2r2q1r1 −

3

8
qr(q1r3 + r1q3)− i

8
(q1r14 − r1q14) ,

(2.43c)

which in turn produce, besides the aforementioned NLS and mKdV equations,

iq4 =
1

8
q1111 +

3

4
q3r2 − 1

4
q2r11 −

1

2
qq1r1 − qrq11 −

3

4
q2

1r ,

ir4 = −1

8
r1111 −

3

4
q2r3 +

1

4
r2q11 +

1

2
rq1r1 + qrr11 +

3

4
r2

1q .

(2.44)

The explicit proof of this fact is long and not very elegant, but it was originally shown
using variational symmetry methods.
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Chapter 3

The multisymplectic approach to a
1+1-dimensional field theory

In this Chapter we will describe what we take as the covariant Hamiltonian description
of a 1 + 1-dimension field theory. We work in the algebraic framework of the variational
bi-complex as introduced in Section 2.2, which allows us to use two distinct differentials,
the usual exterior one d (denoted horizontal) and a vertical one δ. Equipped with the
above basic elements of the variational bi-complex, we now write how to describe a
1 + 1-dimensional partial differential equation admitting a Lagrangian formulation into a
covariant Hamiltonian formulation. As will be illustrated, covariant Hamiltonian field
theory is still a topic of open discussion within the scientific community. We take more
of a pragmatic approach, picking and choosing what suits best to our purpose from
two main sources: the first one is the work of Dickey [D03], from where we take the
definitions of multisymplectic form and of covariant Hamiltonian, and we take the idea
behind the definition of covariant Poisson bracket and of admissible forms1 from the work
of Kanatchikov [K98].

3.1 Some context

The geometrisation of Hamiltonian dynamical systems led to a beautiful framework for
classical mechanics, see e.g. [A78] for a modern exposition. The development of an
analogous framework for classical field theories followed a less straightforward path and
still is the object of current studies, see e.g. the recent book [LSV14]. One feature of field
theories is that there are several independent (spacetime) coordinates on which the fields
depend so that, starting from a Lagrangian description, one has to make a choice from
the very beginning. Roughly speaking, one can distinguish two main avenues underlying
the current state of the art.

1In [K98] they were called ‘Hamiltonian forms’.
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On the one hand, one can favour one particular coordinate (the time) to perform the
Legendre transformation and develop the analogous geometrisation of Hamiltonian mech-
anics, resulting in an infinite dimensional Hamiltonian formalism. This point of view
seems arbitrary, especially if one is interested in Lorentz invariant theories for instance.
Nevertheless, it received a large amount of attention, with a boost coming in particular
from the theory of classical integrable systems. The latter provided numerous examples of
infinite dimensional Hamiltonian and Liouville integrable systems, since the early examples
[ZF71, ZM74]. In that area, important developments such as the theory of Poisson-Lie
groups [D83] and the classical r-matrix [S85] have led to an infinite-dimensional version
of geometric Hamiltonian mechanics. In parallel, the ‘algebraisation’ of this framework,
driven for instance by I.M. Gel’fand, L.A. Dickey and I. Dorfman, led to what is sometimes
called formal (algebraic) variational calculus, see e.g. the books [D03, D93]. An important
motivation for generalising the classical Hamiltonian theory to field theory in this way
was the programme of canonical quantisation of integrable field theories into integrable
quantum field theories. The classical r-matrix method proved to be fundamental to
achieve this and it gave rise the notion of quantum R matrix and Quantum Inverse
Scattering Method [S79, SF78, FST80, FT81].

On the other hand, the conceptual disadvantage of picking a special coordinate to
perform the Legendre transformation emerged already in the early 1900’s. The possibility
to generalise the Legendre transformation to define conjugate momenta associated to
each independent variable naturally leads to a generalisation of the standard Hamilton
equations called for short covariant Hamiltonian field theory. This observation is at
the basis of a theory discovered independently by De Donder and Weyl and now called
De Donder-Weyl formalism [D30, W35]. Further developments followed and led to the
Lepage-Dedecker theory, see [HK04] for a more recent exposition of this theory and a
comparison with the de Donder-Weyl formalism. Despite being conceptually the same as
the traditional Hamiltonian theory (Lagrangian and Hamiltonian pictures are related by
a Legendre transformation), its geometrisation shows deep differences. In fact, there is
not one established theory of what should play the role of the usual symplectic form and
associated symplectic geometry, but instead a variety of related approaches (k-symplectic,
polysymplectic or multisymplectic) as described in [LSV14]. Similarly, the familiar notion
of phase space must be promoted to a covariant phase space whose definition and use
come with certain difficulties. Such a successful framework is credited to Kijowski and
Szczyrba [KS76] and later on Zuckerman [Z87]. The relation between multisymplectic
formalism and the covariant phase space is investigated in [FR05] and also [H11] which
contains an excellent review of the historical development of the many facets of this field
and an account of covariant canonical quantization for free field theories. Alongside the
problem of generalising symplectic geometry and the phase space comes the question of
generalising to the field theoretic context the variational complex that one can associate
to a (Lagrangian) system of (ordinary) equations in mechanics. The relevant structure is
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the variational bi-complex [A89], see e.g. [V08] for a review and a guide to the relevant
literature and also [R04] for the relation between covariant phase space and variational
bi-complex. A rigorous approach to the covariant phase space in the framework of jet
spaces and Vinogradov secondary calculus was proposed in [V09].

To the best of our knowledge, these two avenues flourished rather independently, driven by
motivations with little or no overlap, with the exception of one author, L.A. Dickey, who
initiated the investigation of the second, covariant, point of view within the formalism
of integrable systems in [D90]. This was further developed in the book [D03] where the
aforementioned formal algebraic variational calculus was used to describe such objects
as multisymplectic forms and the variational bi-complex. Dickey’s goal was to study
integrable hierarchies from the covariant Hamiltonian point of view, thus breaking the
long tradition of the infinite dimensional Hamiltonian formalism that was used in that
area, as already mentioned. This body of work does not seem to have been followed up,
despite its importance as we now argue. One of the motivations for the endeavour in the
aforementioned geometrisation of field theory is the programme of covariant canonical
quantization as an alternative that would combine the advantages of manifest covariance
(as in Feynman’s path integral techniques) and ‘simple’ quantization rules (as in canonical
quantization) without their disadvantages. Our point of view is that integrable field
theories are the ‘nicest’ field theories one can work with, beyond free field theories, to
test the framework.

3.2 Covariant Legendre transformation and covariant Hamilto-
nian equations

We focus on two-dimensional field theories: we setM = R2 and we start from a Lagrangian
volume 2-form

Λ = Ldx1 ∧ dx2.

L ∈ A is the Lagrangian density and depends on the fields uk, k = 1, . . . , N and their
derivatives with respect to x1 and x2, up to some finite order. In most cases Λ will not
depend explicitly on the space-time variables x1 and x2. Λ is the non-integrated version
of the action S =

∫
Ldx dt of a 1 + 1-dimensional field theory. The following results are

taken from [D03] and specialised to a 2-dimensional space-time manifold, and will be
illustrated with examples as we go along.

Proposition 3.1 Let F = f dx1 ∧ dx2 ∈ A (0,2) be a volume form, then δF can be
represented as

δF =
N∑
k=1

Ak δuk ∧ dx1 ∧ dx2 + dG (3.1)

where G ∈ A (1,1)/dA (1,0).
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Proof. The proof is obtained transforming the expression

δf ∧ dx1 ∧ dx2 =
∑
k,(i)

∂f

∂u
(i)
k

δu
(i)
k ∧ dx

1 ∧ dx2

simply using integration by parts

∑ ∂f

∂u
(i)
k

δu
(i)
k =

∑
(−1)|(i)|∂(i)

(
∂f

∂u
(i)
k

)
δu

(i)
k +

∑
∂αBα

where Bα are vertical forms. One then just sets

Ak =
∑

(−1)|(i)|∂(i)

(
∂f

∂u
(i)
k

)
, G = −B1 dx

2 +B2 dx
1 .

Thanks to the use of the Tulczyjev operator [D03], one can prove that the coefficients Ak
are uniquely determined: they will be denoted δf

δuk
and called variational derivative of

f with respect to uk. The form G is determined up to a horizontally closed form, and
therefore lives in A (1,1)/dA (1,0)

In the case where the volume form is taken as a Lagrangian, we call Ω(1) ≡ −G:

δΛ =
∑
k

δL

δuk
δuk ∧ dx1 ∧ dx2 − dΩ(1) (3.2)

where Ω(1) ∈ A (1,1)/dA (1,0) is only determined up to a total d-differential. One then
obtains the Euler-Lagrange equations by setting δL

δuk
= 0 for every k.

Remark 3.2: The content of this result is simply the local analog of the standard
integration by parts procedure used when varying the action

∫
Λ, where the boundary

term
∫
dΩ(1) is usually discarded. The identification of Ω(1) thus defined with the

field-theoretic analog of the canonical 1-form can be found in [D03]. Despite not
being well-known, this is a rather simple result that holds even in finite dimensional
mechanics. Indeed let us consider an action of the type S[q] =

∫
L(q, q̇)dt. Its

variation brings

δS =

∫ (
∂L

∂q
δq +

∂L

∂q̇
δq̇

)
∧ dt

=

∫ (
∂L

∂q
− ∂t

(
∂L

∂q̇

))
δq ∧ dt+

∫
∂t

(
∂L

∂q̇
δq

)
∧ dt

where in the last term we recognise the canonical momentum ∂L
∂q̇ . The minus sign in

the definition of Ω(1) is merely a convention.

Remark 3.3: From now on, we will only consider Lagrangians that do not depend
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explicitly on the space-time variables. Hence, neither Ω(1) nor any object that will
be derived from Λ and Ω(1) will depend explicitly on the space-time variables.

We can reformulate the well-known fact that Lagrangians are equivalent up to a total
differential (i.e. they bring the same equations of motion).

Proposition 3.4 (Equivalent Lagrangians) The Lagrangian volume forms Λ and Λ′ =

Λ + dϕ, where ϕ ∈ A (0,1) produce the same Euler-Lagrange equations

δΛ = E(Λ)− dΩ(1) , δΛ′ = E(Λ)− dΩ(1)′ ,

with Ω(1)′ = Ω(1) + δϕ.

Proof. By direct calculation:

δΛ′ = δΛ + δdϕ = E(Λ)− dΩ(1) − dδϕ ≡ E(Λ)− dΩ(1)′ .

The next step is the following definition, which shows that for a field theory, Ω(1) realises
the Legendre transformation simultaneously with respect to all independent variables.

Definition 3.5 (Covariant Hamiltonian) The covariant Hamiltonian H ∈ A (0,2) related
to the Lagrangian Λ ∈ A (0,2) and Ω(1) ∈ A (1,1)/dA (1,0) is

H := −Λ +
∑
j=1,2

dxj ∧ ∂̃jyΩ(1) . (3.3)

h ∈ A such that H = h dx1 ∧ dx2 is called covariant Hamiltonian density.

To understand the role played by Ω(1), we remark the following facts. For a classical
finite-dimensional Lagrangian system, the integration by parts provides (the pull-back to
the tangent bundle of) the canonical one form ∂L

∂q̇ δq, and one can obtain the symplectic
form by taking its δ-differential. Similarly, in the case of field theories where Λ is taken to
be a volume form, the form is Ω(1) = ω

(1)
1 ∧dx1 +ω

(1)
2 ∧dx2 where ω(1)

1 and ω(1)
2 each have

a similar structure to the canonical one form of the finite dimensional case. It contains
the usual symplectic structure −ω(1)

1 (if we consider x2 as our ‘time’) but also the dual
structure ω(1)

2 (which would correspond to performing the Legendre transformation when
choosing x1 as the time variable). In fact, the usual Hamiltonian formulation that is
obtained with the choice x2 = ‘time’, is computed as

HS = (−∂̃2yω
(1)
1 − L) dx1 ∧ dx2 (3.4)

and integrating over the x1 axis, whilst the dual one with the choice x1 =‘time’ is the
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integral over the x2 axis of

HT = (∂̃1yω
(1)
2 − L) dx1 ∧ dx2 . (3.5)

Equation (3.3) is in fact a covariant Legendre transformation of Λ: explicitly we have that

H =− Ldx1 ∧ dx2 + dx1 ∧ ∂̃1yΩ
(1) + dx2 ∧ ∂̃2yΩ

(1)

=(∂̃1yω
(1)
2 − ∂̃2yω

(1)
1 − L) dx1 ∧ dx2 .

To make this definition clearer we will consider the following example:

Example: Let Λ = Ldx ∧ dt be

Λ =

(
u2
t

2
− u2

x

2
− V (u)

)
dx ∧ dt

where V (u) is a smooth potential that only depends on the field u. The Euler-Lagrange
equations are easily obtained:

δL

δu
= −utt + uxx − V ′(u) = 0 .

The usual infinite-dimensional Hamiltonian formulation is brought by the following
prescription: roughly, one considers as the phase space the set of space-dependent
functions, and then defines the field momentum as

p(x) =
∂L

∂ut
(x) = ut(x) .

One then finds that the transformation (u, ut) 7→ (u, p) is trivially invertible, and obtains
the Hamiltonian as the integral

HS =

∫
(put − L)dx =

∫
(
p2

2
+
u2
x

2
+ V (u))dx

Alternatively, the ‘dual’ infinite-dimensional Hamiltonian formulation is brought by the
different choice of phase space, now being the time-dependent functions, and the definition
of another, time-dependent momentum as

π(t) =
∂L

∂ux
(t) = −ux(t)

and the definition of the dual Hamiltonian as the following integral

HT =

∫
(πux − L)dt =

∫
(−π

2

2
− u2

t

2
+ V (u))dt .

The covariant Hamiltonian is obtained by performing both Legendre transformations
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simultaneously in the following way. First of all, instead of choosing functions of just one
of the space-time variables we take the differential algebra A as our phase space. Then,
let us compute the δ-differential of Λ

δΛ = (utδut − uxδux − V ′(u)δu) ∧ dx ∧ dt

We want to express δΛ as in (3.2), so we need to express utδut∧dx∧dt and uxδux∧dx∧dt
as total d-differential, which can be done as

utδut ∧ dx ∧ dt =− uttδu ∧ dx ∧ dt+ d(utδu ∧ dx)

−uxδut ∧ dx ∧ dt =uxxδu ∧ dx ∧ dt+ d(uxδu ∧ dt)

so that we have

δΛ = (−utt + uxx − V ′(u))δu ∧ dx ∧ dt− d(−utδu ∧ dx− uxδu ∧ dt)

≡ δL

δu
δu ∧ dx ∧ dt− dΩ(1) .

This defines Ω(1) up to a d-differential. We notice that its coefficients are the single-time
momenta, as in Ω(1) = πδu ∧ dt− pδu ∧ dx. The covariant Hamiltonian is then obtained
as in Definition 3.5

H =− Ldx ∧ dt+ dx ∧ ∂̃xyΩ(1) + dt ∧ ∂̃tyΩ(1)

=(−u
2
t

2
+
u2
x

2
+ V (u))dx ∧ dt+ dx ∧ (−u2

x)dt+ dt ∧ (−u2
t )dx

=(
u2
t

2
− u2

x

2
+ V (u))dx ∧ dt .

Proposition 3.6 (Covariant Hamilton equations and multisymplectic form) The Euler-
Lagrange equations δL

δuk
= 0 are equivalent to

δH =
∑
j=1,2

dxj ∧ ∂̃jyΩ, (3.6)

where Ω ∈ A (2,1) is the multisymplectic form

Ω := δΩ(1) . (3.7)

and H is the covariant Hamiltonian related to L and Ω(1) as in Definition 3.5.

Proof. From the definition of H we get

δH = −δΛ−
∑
j=1,2

dxj ∧ δ∂̃jyΩ(1).
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Thanks to the definition of Ω(1) as in (3.2) the equations of motion are equivalent to

δH =dΩ(1) −
∑
j=1,2

dxj ∧ δ∂̃jyΩ(1)

=
∑
j=1,2

dxj ∧ ∂jΩ(1) −
∑
j=1,2

dxj ∧ δ∂̃jyΩ(1)

where we have also used dΩ(1) =
∑

j dx
j ∧ ∂jΩ(1). We now use ∂j = ∂′j + ∂̃j to write

δH =
∑
j=1,2

dxj ∧ (∂′j + ∂̃j)Ω
(1) −

∑
j=1,2

dxj ∧ δ∂̃jyΩ(1)

=
∑
j=1,2

dxj ∧ (∂′j + ∂̃jyδ + δ∂̃jy)Ω
(1) −

∑
j=1,2

dxj ∧ δ∂̃jyΩ(1)

and we used the property ∂̃j = ∂̃jyδ + δ∂̃jy . Ω(1) does not depend explicitly on the
space-time variables so ∂′jΩ

(1) = 0. We then have

δH =
∑
j=1,2

dxj ∧ (∂̃jyδ + δ∂̃jy)Ω
(1) −

∑
j=1,2

dxj ∧ δ∂̃jyΩ(1)

=
∑
j=1,2

dxj ∧ ∂̃jyδΩ(1) =
∑
j=1,2

dxj ∧ ∂̃jyΩ

and the result is obtained by cancellation.

Remark 3.7: In this thesis we are only dealing with 1 + 1-dimensional field theories,
where only 2 independent variables are considered. In general if a PDE involves k
independent variables and admits a Lagrangian description, Λ and H are volume
k-forms, Ω(1) ∈ A (1,k−1) and Ω ∈ A (2,k−1), as explained in [D03]. We also remark
that the multisymplectic form is vertically closed δΩ = 0 (and more precisely, exact).

Proposition 3.8 Equivalent Lagrangian volume forms define the same covariant Hamilto-
nian and multisymplectic form.

Proof. We know that equivalent Lagrangians Λ and Λ′ = Λ + dϕ bring the same Euler-
Lagrange equations, but respectively Ω(1) and Ω(1)′ = Ω(1) + δϕ. Since δ2 = 0 then
Ω = δΩ(1) and Ω′ = δΩ(1)′ = δ(Ω(1) + δϕ) = Ω + δ2ϕ coincide. It remains to check that
also the covariant Hamiltonians

H = −Λ +
∑
j

dxj ∧ ∂̃jyΩ(1) and H ′ = −Λ′ +
∑
j

dxj ∧ ∂̃jyΩ(1)′
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coincide. In fact we have

H ′ =− Λ− dϕ+
∑
j

dxj ∧ ∂̃jy(Ω(1) + δϕ)

=H − dϕ+
∑
j

dxj ∧ ∂̃jyδϕ ,

and, using ∂̃j = ∂̃jyδ + δ∂̃jy we have

H ′ = H − dϕ+
∑
j

dxj ∧ (∂̃j − δ∂̃jy)ϕ .

We now use the fact that ϕ ∈ A (0,1), and so ∂̃jyϕ = 0, and that it does not depend
explicitly on the space-time variables, so ∂̃jϕ = ∂jϕ. Writing dϕ =

∑
j dx

j ∧ ∂jϕ we
obtain the result.

Example: Let us find the covariant Hamilton equations for the example above. We
found

H = (
u2
t

2
− u2

x

2
+ V (u))dx ∧ dt

Ω(1) = −utδu ∧ dx− uxδu ∧ dt ,

so the multisymplectic form is found as

Ω = δΩ(1) = −δut ∧ δu ∧ dx− δux ∧ δu ∧ dt .

The covariant Hamilton equations are equivalent to utt − uxx + V ′(u) = 0, in fact
δH = dx ∧ ∂̃xyΩ + dt ∧ ∂̃tyΩ brings

(utδut − uxδux + V ′(u)δu) ∧ dx ∧ dt

= dx ∧ (−uxxδu+ uxδux) ∧ dt+ dt ∧ (−uttδu+ utδut) ∧ dx

and therefore
V ′(u)δu ∧ dx ∧ dt = (uxx − utt)δu ∧ dx ∧ dt

which is equivalent to δL
δu = 0.

3.3 Covariant Poisson brackets

Equipped with a multisymplectic form we can consider a covariant Poisson bracket. We
stress that the definition of a covariant Poisson bracket from a multisymplectic form, in
a way that mimics the situation in classical mechanics, has been part of a rich activity
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since the early proposals. In particular, the Jacobi identity is a delicate issue, as well
as the need to restrict to certain forms, called admissible, as we explain below. For our
purpose, we will simply use Kanatchikov’s ideas and adapt them to our needs. The results
of [CS20a] show that, at least in our context, this leads to a satisfactory covariant Poisson
bracket satisfying the Jacobi identity, thanks to the fact that the latter is satisfied by
means of the classical Yang-Baxter equation for the classical r-matrix.

We need to restrict our attention to the a special class of forms called admissible.

Definition 3.9 (Admissible forms) A horizontal form F is admissible with respect to Ω

if there exists a (multi)vector field ξF such that

ξF yΩ = δF . (3.8)

Then ξF is called Hamiltonian vector field related to the admissible form F .

Remark 3.10: In this thesis we only consider horizontal forms as candidates for
being admissible, which is enough for our purposes. This also reflects the natural
interpretation of admissible forms, i.e. a forms F = F1 dx

1 + F2 dx
2 that, when

integrated over one of the space-time axes (x1 = 0 or x2 = 0), become the usual
functionals

∫
F 1 dx1, in the latter case, or the dual

∫
F 2 dx2 in the former. Admissible

forms with a vertical components have been proposed in [FPR03] with the terminology
of Poisson forms.

Contrary to the usual symplectic case, the property of being an admissible form is quite
restrictive. In the finite dimensional case, in fact, if ω is taken to be a symplectic form
(and therefore non-degenerate), there is a one-to-one correspondence between vector fields
and differentials of functions, so given a f , it’s always possible to find a ξf such that
ξfyω = df . In the multisymplectic case, instead, Ω is often degenerate, and therefore
this correspondence is missing. For this reason, from now on, we will always consider
Hamiltonian vector fields modulo the kernel of Ω. On the other hand, thanks to the
presence of two distinct differentials (a horizontal and a vertical one) and the fact that
Ω ∈ A (2,1), we can allow a similar correspondence not only with scalar functions, but
also to horizontal forms of any degree. However, as we soon find out, only 0- and 1-forms
provide non-trivial admissible forms:

Proposition 3.11 Let G ∈ A (0,2). G is an admissible form with respect to Ω ∈ A (2,1)

if and only if G is constant2, with ξG = 0.

Proof. The proof is obtained by a simple counting argument: since Ω ∈ A (2,1), then there
must exist ξG such that ξGyΩ = δG ∈ A (1,2) which happens if and only if both δG = 0

2By constant we mean that G = g dx1 ∧ dx2, with g ∈ K.
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and ξG = 0.

It is often the case that the multisymplectic form is fixed by the theory that we are
considering. In this case, where it is not cause of confusion, we will refer to ‘admissible
forms’, without specifying the multisymplectic form they are related to.

Remark 3.12: We decided to change the terminology from Hamiltonian forms
in [CS20a, CS20b, CS21, CSV21a] to admissible forms. The previous choice was
motivated by its vast presence in the literature, e.g. in [FPR05], but it produces
paradoxical statements such as ‘The Hamiltonian is a form but it is not a Hamiltonian
form’. The new choice, admissible forms, solves this problem and reflects (although
with some changes) the terminology present for instance in the context of Dirac
structures [CGM17, C90].

Let us denote by SΩ the set of elements δu(i)
k that appear in the multisymplectic form.

This is a finite set since we assume finite-jet dependence of Λ. We can therefore assume
some ordering on SΩ and label the δu(i)

k ’s as δvj j = 1, . . . ,#SΩ. We then write

Ω =
∑
i<j
i,j∈I1

ωij1 δvi ∧ δvj ∧ dx
1 +

∑
i<j
i,j∈I2

ωij2 δvi ∧ δvj ∧ dx
2 . (3.9)

where I1, I2 ⊂ { 1, . . . ,#SΩ }.

Proposition 3.13 (Necessary form of an admissible 1-form) Suppose F = F1 dx+F2 dt ∈
A (0,1) is an admissible form related to the multisymplectic form (3.9). Then, F1 can only
depend (at most) on vj, j ∈ I1, and F2 can only depend (at most) on vi, i ∈ I2.

Proof. Assume F1 depends on some u(k)
` /∈ { vj , j ∈ I1 }. On the one hand,

δF =
∑
j∈I1

∂F1

∂vj
δvj ∧ dx1 +

∂F1

∂u
(k)
`

δu
(k)
` ∧ dx

1 +
∑
i∈I2

∂F2

∂vi
δvi ∧ dx2 .

On the other hand, since F is an admissible form, there exists a vector field ξF such that
ξF yΩ = δF . This gives∑

i<j
i,j∈I1

ωij1 ξF y (δvi ∧ δvj) ∧ dx1 +
∑
i<j
i,j∈I2

ωij2 ξF y (δvi ∧ δvj) ∧ dx2

In particular, this requires

∑
j∈I1

∂F1

∂vj
δvj ∧ dx1 +

∂F1

∂u
(k)
`

δu
(k)
` ∧ dx

1 =
∑
i<j
i,j∈I1

ωij1 ξF y (δvi ∧ δvj) ∧ dx1 ,
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so that necessarily ∂F1
∂vj

=
∑

i∈I1 ω
ij
1 ξF yδvi and

∂F1

∂u
(k)
`

= 0. The same argument holds for

F2.

Example: Let us characterise admissible forms for the multisymplectic form

Ω = −δut ∧ δu ∧ dx− δux ∧ δu ∧ dt .

• 0-forms: For a generic K(u, ux, ut) let us assume that ξKyΩ = δK, where ξK is a
generic vector field

ξK = a
∂

∂u
∧ ∂

∂x
+ b

∂

∂u
∧ ∂

∂t
+ c

∂

∂ux
∧ ∂

∂t
+ d

∂

∂ut
∧ ∂

∂x

(up to terms in ker Ω), where a, b, c and d are smooth functions of u, ux and ut
to determine. We have started from a 2-vector field because we want to obtain
δK ∈ A (1,0) by insertion with Ω ∈ A (2,1), so ξK must have one vertical and one
horizontal component. On the right hand-side we have

δK =
∂K

∂u
δu+

∂K

∂ux
δux +

∂K

∂ut
δut ,

while on the left hand-side we have the following

a
∂

∂u
∧ ∂

∂x
yΩ = aδut , b

∂

∂u
∧ ∂

∂t
yΩ = bδux

c
∂

∂ux
∧ ∂

∂t
yΩ = −cδu , d

∂

∂ut
∧ ∂

∂x
yΩ = −dδu

so ξKyΩ = −(c+ d)δu+ bδux + aδut. By comparison we have b = ∂K
∂ux

and a = ∂K
∂ut

,
whilst we see that we have a choice of both c and d, which is to be expected since
∂
∂ux
∧ ∂
∂t −

∂
∂ut
∧ ∂
∂x ∈ ker Ω. We can choose d = 0 and c = −∂K

∂u . Therefore we have
that any K(u, ux, ut) ∈ A is an admissible form, with Hamiltonian vector field

ξK =
∂K

∂ut

∂

∂u
∧ ∂

∂x
+
∂K

∂ux

∂

∂u
∧ ∂

∂t
− ∂K

∂u

∂

∂ux
∧ ∂

∂t
.

• 1-forms: For a 1-form F = F1(u, ut)dx+ F2(u, ux)dt, we proceed in a similar way
starting from a vertical vector field

ξF = a
∂

∂u
+ b

∂

∂ux
+ c

∂

∂ut
,

with coefficients to determine. After insertion with Ω we get

ξF yΩ = aδut ∧ dx+ aδux ∧ dt− bδu ∧ dt− cδu ∧ dx
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that we compare with

δF =
∂F1

∂u
(u, ut)δu ∧ dx+

∂F1

∂ut
(u, ut)δut ∧ dx

+
∂F2

∂u
(u, ux)δu ∧ dt+

∂F2

∂ux
(u, ux)δux ∧ dt ,

getting the following relations

a =
∂F1

∂ut
(u, ut) =

∂F2

∂ux
(u, ux) ,

b = −∂F2

∂u
(u, ux) , c = −∂F1

∂u
(u, ut) .

We therefore see that F ∈ A (0,1) is an admissible form if and only if F1 and F2 are
respectively linear in ut and ux, such that ∂F1

∂ut
= ∂F2

∂ux
, with Hamiltonian vector field

ξF =
∂F1

∂ut

∂

∂u
− ∂F2

∂u

∂

∂ux
− ∂F1

∂u

∂

∂ut
.

• 2-forms and beyond: Any horizontal form G of degree greater or equal than two
is an admissible form if and only if it is constant, i.e. δG = 0.

Only for admissible forms can we define covariant Poisson brackets.

Definition 3.14 (Covariant Poisson brackets) Given two admissible forms P and Q, of
(horizontal) degree respectively r and s, we can define their covariant Poisson bracket as

{(P,Q)} := (−1)rξP yξQyΩ . (3.10)

The covariant Poisson brackets have the following properties:

• They are antisymmetric {(F,G)} = −{(G,F )};

• They are bi-linear in the space of admissible forms.

We delay the discussion of the Jacobi identity to the end of this section.

We now prove the following theorem, which was only obtained explicitly on examples in
[CS20a], but for which no general proof was given.

Theorem 3.15 If the covariant Hamiltonian density h ∈ A is an admissible form, then
we have for any admissible 1-form F that does not depend explicitly on the space-time
variables

dF = {(h, F )} dx1 ∧ dx2. (3.11)
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Proof. Using (3.6) and the antisymmetry of Ω we have

ξF yδH = ξF y

∑
j=1,2

dxj ∧ ∂̃jyΩ

 = −
∑
j=1,2

dxj ∧ ξF y∂̃jyΩ =
∑
j=1,2

dxj ∧ ∂̃jyξF yΩ.

Since ξF yΩ = δF we obtain

ξF yδH =
∑
j=1,2

dxj ∧ ∂̃jyδF.

Using the property ∂̃jyδ = ∂̃j − δ∂̃jy

ξF yδH =
∑
j=1,2

dxj ∧ ∂̃jF −
∑
j=1,2

dxj ∧ δ∂̃jyF.

Since F is purely horizontal ∂̃jyF = 0, and since it does not depend explicitly on the
space-time variables ∂̃jF = ∂jF , so that

ξF yδH =
∑
j=1,2

dxj ∧ ∂jF = dF.

Now we realise the covariant Poisson bracket:

dF = ξF yδH = ξF yδh ∧ dx1 ∧ dx2 = −{(F, h)}dx1 ∧ dx2 = {(h, F )}dx1 ∧ dx2 .

Remark 3.16: This is of course the multisymplectic analog of the well-known
equation in Hamiltonian mechanics ḟ = {H, f} giving the time evolution of a smooth
real-valued function f on the phase space under the Hamiltonian flow of H.

The covariant Poisson brackets have an interesting property in terms of the single-time
Poisson brackets. In particular, we know that

Ω = ω1 ∧ dx1 + ω2 ∧ dx2 , ω1,2 ∈ A (2,0). (3.12)

It may be that ω1,2 are traditional symplectic forms. In this case we can define the
single-time Poisson brackets related to both ω1 and ω2 in the usual way: with respect to
x1

{f, g}1 := −γfy(γgyω1) = −γfyδg , where γfyω1 = δf , γgyω1 = δg , (3.13)

and, with respect to x2

{u, v}2 := −ηuy(ηvyω2) = −ηuyδv , where ηuyω2 = δu , ηvyω2 = δv . (3.14)
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These are traditional Poisson brackets, and in particular satisfy the Jacobi identity
{a, {b, c}k}k + {b, {c, a}k}k + {c, {a, b}k}k = 0 for k = 1, 2.

Proposition 3.17 (Decomposition of the covariant Poisson brackets) Let F = F1 dx
1 +

F2 dx
2 and G = G1 dx

1 + G2 dx
2 be admissible 1-forms with respect to Ω = ω1 ∧ dx1 +

ω2 ∧ dx2. Then, if ω1,2 are symplectic forms,

{(F,G)} = {F1, G1}1 dx1 + {F2, G2}2 dx2 . (3.15)

Proof. On the one hand, by definition

δF = δF1 ∧ dx1 + δF2 ∧ dx2 ,

and on the other hand, since F is an admissible form

δF = ξF y(ω1 ∧ dx1 + ω2 ∧ dx2) = (ξF yω1) ∧ dx1 + (ξF yω2) ∧ dx2 ,

hence δFi = ξF yωi. Next, consider the following chain of equalities

{(F,G)} =− ξF yδG = −ξGy(δG1 ∧ dx1 + δG2 ∧ dx2)

=− ξF y(γG1yω1 ∧ dx1 + ηG2yω2 ∧ dx2)

=γG1y(ξF yω1) ∧ dx1 + ηG2y(ξF yω2) ∧ dx2

={F1, G1}1dx1 + {F2, G2}2dx2

which concludes the proof.

Remark 3.18: In the case where ω1,2 are symplectic forms, then it is immediate to
verify that the covariant Poisson bracket {( , )} also satisfies the Jacobi identity, as it
satisfies it on the coefficients of dx1 and dx2.

The previous proposition provides not only an interpretation of the covariant Poisson
brackets {( , )} between two 1-forms (it is a 1-form with coefficients being the usual and
dual single-time Poisson brackets), but also a way to calculate the two brackets { , }1,2,
which seems to be working even when the usual Legendre transformation is degenerate
(e.g. the Non-Linear Schrödinger equation in Section 4.3) and one therefore should resort
to the use of Dirac brackets [D50], as explained in Section A.3.

Example: We turn to our example, where

h =
u2
t

2
− u2

x

2
+ V (u) ,

Ω = −δut ∧ δu ∧ dx− δux ∧ δu ∧ dt .
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We first compute the covariant Poisson brackets between two admissible 1-forms F =

F1dx+ F2dt and G = G1dx+G2dt, using the definition

{(F,G)} =− ξF yδG =
∂F1

∂ut

∂G1

∂u
dx+

∂F1

∂ut

∂G2

∂u
dt− ∂F2

∂u

∂G2

∂ux
dt− ∂F1

∂u

∂G1

∂ut
dx

=

(
∂F2

∂ux

∂G1

∂u
− ∂F1

∂u

∂G1

∂ut

)
dx+

(
∂F1

∂ut

∂G2

∂u
− ∂F2

∂u

∂G2

∂ux

)
dt

=

(
∂F1

∂ut

∂G1

∂u
− ∂F1

∂u

∂G1

∂ut

)
dx+

(
∂F2

∂ux

∂G2

∂u
− ∂F2

∂u

∂G2

∂ux

)
dt

where in the last line we have used the admissible property ∂F1
∂ut

= ∂F2
∂ux

, ∂G1
∂ut

= ∂G2
∂ux

.
We see that the coefficients of dx and dt are respectively the usual { , }1 and dual
{ , }2 single-time Poisson brackets obtained from the symplectic forms ω1 = δu ∧ δut
and ω2 = δu ∧ δux, as expected from Proposition 3.17. It is immediate to see that the
covariant Poisson bracket between admissible 1-forms is anti-symmetric and bilinear in
the space of admissible 1-forms. The Jacobi identity is a bit more cumbersome to verify,
as we also need to show that the Poisson bracket of two admissible 1-forms is again an
admissible 1-form, i.e.

∂

∂ut

(
∂F1

∂ut

∂G1

∂u
− ∂F1

∂u

∂G1

∂ut

)
=
∂F1

∂ut

∂2G1

∂ut∂u
− ∂2F1

∂u∂ut

∂G1

∂ut

=
∂F2

∂ux

∂2G2

∂ux∂u
− ∂2F2

∂u∂ux

∂G2

∂ux
=

∂

∂ux

(
∂F2

∂ux

∂G2

∂u
− ∂F2

∂u

∂G2

∂ux

)
where we have used the admissible properties of F and G. The Jacobi identity is then
transferred from the Jacobi identities of { , }1 and { , }2.
We now verify the validity of the covariant Hamilton equation in Poisson bracket form
dF = {(h, F )}dx ∧ dt. The left hand-side is computed as

dF =

(
∂F2

∂x
− ∂F1

∂t

)
dx ∧ dt

=

(
∂F2

∂u
ux +

∂F2

∂ux
uxx −

∂F1

∂u
ut −

∂F2

∂ut
utt

)
dx ∧ dt

=

(
∂F2

∂u
ux −

∂F1

∂u
ut +

∂F1

∂ut
(uxx − utt)

)
dx ∧ dt

and the right hand-side is

ξF yδH =

(
∂F1

∂ut

∂

∂u
− ∂F2

∂u

∂

∂ux
− ∂F1

∂u

∂

∂ut

)
y(utδut − uxδux + V ′(u)δu) ∧ dx ∧ dt

=

(
∂F1

∂ut
V ′(u) +

∂F2

∂u
ux −

∂F1

∂u
ut

)
dx ∧ dt

and comparing the two we get uxx − utt = V ′(u).



Chapter 4

Covariant Poisson brackets and
classical r-matrix

In this chapter we illustrate applications of the theory explained in Chapter 3 to several
integrable systems: the sine-Gordon equation (Section 4.1 and 4.2), the Non-Linear
Schrödinger equation (Section 4.3), and the modified Korteweg-de Vries equation (Sec-
tion 4.4), which is content from [CS20a], and the Zakharov-Mikhailov Lagrangian (Sec-
tion 4.5), which is content from [CSV21b].

The starting point of the examples illustrated in this chapter is the Lagrangian form
Λ = Ldx1 ∧ dx2. We then use the procedure explained in Chapter 3 to introduce the
following objects

• the multisymplectic form Ω,

• the covariant Hamiltonian H = h dx1 ∧ dx2,

• the covariant Poisson brackets {( , )},

to consistently obtain the classical r-matrix structure for the Lax connection W (λ) =

U(λ) dx1 + V (λ) dx2 within the covariant Poisson brackets. In short, we provide the
following result which is the covariant version of Sklyanin’s fundamental discovery (2.12)

{(W1(λ),W2(µ))} = [r12(λ, µ),W1(λ) +W2(µ)] .

We also prove the covariant analog of the important fact that the zero-curvature condition
for an integrable PDE can be cast in Hamiltonian form in the following way

dW (λ) = {(H,W (λ))} dx1 ∧ dx2 ⇐⇒ dW (λ) = W (λ) ∧W (λ) .

Extension to glN (A ∗) We naturally extend the formalism of the variational bi-complex
to glN (A ∗), i.e. A ∗-valued glN matrices. Indeed, let {Emn } be a basis for glN , then the

43
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Lax connection (for a given λ) W (λ) ∈ glN (A (0,1)) can be written as1
∑

mnW (λ)mnEmn

where every Wmn(λ) =
∑

iW
i
mn(λ) ∈ A (0,1) is a horizontal 1-form.

Note that the definition of an admissible form extends naturally to the case of matrix
coefficients by requiring that each entry be an admissible form. Then, for each Wmn

we can calculate its Hamiltonian vector field ξmnW yΩ = δWmn and calculate the Poisson
brackets between its coefficients. Moreover we define {(W,F )} := −

∑
mn (ξmnW yδF ) Emn

for any admissible form F .
We also extend the tensor notation used in the Sklyanin bracket, as reviewed in Section 2.1,
to the present situation as follows, denoting by W (λ) =

∑
iW

i(λ)dxi

W1(λ) ≡
∑
i

W i(λ)⊗ I dxi =
∑
i

∑
mn

W i
mn(λ)Emn ⊗ I dxi ≡

∑
mn

Wmn(λ)Emn ⊗ I

W2(λ) ≡
∑
i

I⊗W i(λ) dxi =

∞∑
i=0

∑
mn

W i
mn(λ) I⊗ Emn dxi ≡

∑
mn

Wmn(λ)I⊗ Emn .

We define the multi-time Poisson bracket between W1(λ) and W2(µ) by

{[W1(λ),W2(µ)]} =
∑

m,n,k,`

{[Wmn(λ),Wk`(µ)]}Emn ⊗ Ek` . (4.1)

Finally, we define the commutator of a matrix 0-form r and a matrix 1-form W by

[r,W ] ≡
∑
i

[r,W i] dxi . (4.2)

4.1 sine-Gordon equation in laboratory coordinates

The sine-Gordon model for the real scalar field u(x, t) reads

utt − uxx +
m2

β
sinβu = 0 , (4.3)

where m is the mass and β is the coupling constant. A Lagrangian form for it is given by

Λ = [
1

2
(u2
t − u2

x)− m2

β2
(1− cosβu)] dx ∧ dt . (4.4)

Equation (4.3) is equivalent to the following zero-curvature equation which we set to hold
as an identity in λ

∂tU(λ)− ∂xV (λ) + [U(λ), V (λ)] = 0 ,

1The position of the indices indicating the coefficient of a matrix or of a differential form will not be
important as it may change in the following depending of what makes the notation more understandable.
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where the Lax pair (U, V ) can be taken as

U(λ) = −ik0(λ) sin
βu

2
σ1 − ik1(λ) cos

βu

2
σ2 −

iβ

4
utσ3 , (4.5)

V (λ) = −ik1(λ) sin
βu

2
σ1 − ik0(λ) cos

βu

2
σ2 −

iβ

4
uxσ3 , (4.6)

where k0(λ) = m
4 (λ+λ−1) and k1(λ) = m

4 (λ−λ−1). In the general notations of Section 2.2,
here N = 1 and the only field is u1 = u. We will denote u(i)

k , (i) = (0, 0), (1, 0), (0, 1), etc.
as u, ux, ut, etc. for convenience. It is important to remember that ux, ut, etc. should be
treated as coordinates in the differential algebra A when performing the calculations in
the variational bi-complex.

Proposition 4.1 The sine-Gordon equation (4.3) is the Euler-Lagrange equation for Λ.
The form Ω(1) is given by

Ω(1) = −ut δu ∧ dx− ux δu ∧ dt . (4.7)

and the multisymplectic form reads

Ω = −δut ∧ δu ∧ dx− δux ∧ δu ∧ dt . (4.8)

Proof. The δ-differential of Λ is

δΛ = [utδut − uxδux −
m2

β
sin(βu)δu] ∧ dx ∧ dt.

Now, since d(δu) = −δux ∧ dx− δut ∧ dt, we get that d(utδu ∧ dx) = uttdt ∧ δu ∧ dx+

utd(δu) ∧ dx = uttδu ∧ dx ∧ dt+ utδut ∧ dx ∧ dt, and therefore

utδut ∧ dx ∧ dt = −uttδu ∧ dx ∧ dt+ d(utδu ∧ dx),

and equivalently

−uxδux ∧ dx ∧ dt = uxxδu ∧ dx ∧ dt+ d(uxδu ∧ dt).

Therefore, the variation of Λ brings

δΛ = [−utt + uxx −
m2

β
sinβu]δu ∧ dx ∧ dt+ d(utδu ∧ dx+ uxδu ∧ dt).

By looking at δΛ
δu = 0 we obtain the Sine-Gordon equation. Ω(1) then reads

Ω(1) = −utδu ∧ dx− uxδu ∧ dt.
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Its δ-differential δΩ(1) is defined to be the multisymplectic form Ω

Ω = δΩ(1) = −δut ∧ δu ∧ dx− δux ∧ δu ∧ dt . (4.9)

Equipped with the multisymplectic form Ω we can define the covariant Poisson bracket
and also the two ‘single-time’ Poisson brackets as in Definition 3.14.

Proposition 4.2 A 1-form F = F1(u, ut) dx+F2(u, ux) dt is admissible for the multisym-
plectic form (4.8) if and only if

∂F1

∂ut
=
∂F2

∂ux
. (4.10)

The respective Hamiltonian vector field is

ξF =
∂F1

∂ut

∂

∂u
− ∂F2

∂u

∂

∂ux
− ∂F1

∂u

∂

∂ut
. (4.11)

For any two admissible one-forms F = Adx + B dt and G = C dx + Ddt, we have
following decomposition formula

{(F,G)} = {A,C}1 dx+ {B,D}2 dt (4.12)

where the single-time Poisson Brackets are given by

{A,C}1 =
∂A

∂ut

∂C

∂u
− ∂A

∂u

∂C

∂ut
, (4.13a)

{B,D}2 =
∂D

∂u

∂B

∂ux
− ∂B

∂u

∂D

∂ux
. (4.13b)

Proof. Let us consider the following (vertical) vector field

ξF = A
∂

∂u
+B

∂

∂ux
+ C

∂

∂ut

in the equation δF = ξF yΩ. The left hand-side reads

δF =
∂F1

∂u
δu ∧ dx+

∂F1

∂ut
δut ∧ dx+

∂F2

∂u
δu ∧ dt+

∂F2

∂ux
δux ∧ dt,

while the right hand-side is

ξF yΩ = Aδut ∧ dx+Aδux ∧ dt−Bδu ∧ dt− Cδu ∧ dx.

A direct comparison shows

A =
∂F1

∂ut
=
∂F2

∂ux
, B = −∂F2

∂u
, C = −∂F1

∂u
.
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Then, (4.12) follows by a direct calculation from {(F,G)} = −ξF yδG and recognizing the
single-time Poisson brackets as defined in the Proposition.

Theorem 4.3 The Lax form W (λ) = U(λ) dx+ V (λ) dt satisfies the following covariant
Poisson bracket

{(W1(λ),W2(µ))} = [r12(λ, µ),W1(λ) +W2(µ)] (4.14)

where the classical r-matrix is that of the sine-Gordon model (see e.g. [FTR07])

r12(λ, µ) = f(λ, µ)(I⊗ I− σ3 ⊗ σ3) + g(λ, µ)(σ1 ⊗ σ1 + σ2 ⊗ σ2), (4.15)

with f(λ, µ) = −β2

16
λ2+µ2

λ2−µ2 and g(λ, µ) = β2

8
λµ

λ2−µ2 .

Proof. The proof is done by straightforward but long calculations. We give the details for
this first example. We write W (λ) =

∑
iW

i(λ)σi, where W i(λ) = U i(λ) dx+ V i(λ) dt,
so that

W 1(λ) = −ik0(λ) sin
βu

2
dx− ik1(λ) sin

βu

2
dt ,

W 2(λ) = −ik1(λ) cos
βu

2
dx− ik0(λ) cos

βu

2
dt ,

W 3(λ) = − iβ
4
utdx−

iβ

4
uxdt .

It can be checked that W i, i = 1, 2, 3 are admissible forms. Therefore, using the
decomposition property 4.12, we find that the only non-zero Poisson brackets are

{(W 1(λ),W 3(µ))} =− β2

8
cos

βu

2
(k0(λ)dx+ k1(λ)dt),

{(W 2(λ),W 3(µ))} =
β2

8
sin

βu

2
(k1(λ)dx+ k0(λ)dt),

{(W 3(λ),W 1(µ))} =
β2

8
cos

βu

2
(k0(µ)dx+ k1(µ)dt),

{(W 3(λ),W 2(µ))} =− β2

8
sin

βu

2
(k1(µ)dx+ k0(µ)dt).

Thus we deduce, according to Definition 3.14, and using the auxiliary space notation as
in Section 2.1,

{(W1(λ),W2(µ))} (4.16)

=
β2

8

(
− cos

βu

2
(k0(λ)dx+ k1(λ)dt)σ1 ⊗ σ3 + sin

βu

2
(k1(λ)dx+ k0(λ)dt)σ2 ⊗ σ3

+ cos
βu

2
(k0(µ)dx+ k1(µ)dt)σ3 ⊗ σ1 − sin

βu

2
(k1(µ)dx+ k0(µ)dt)σ3 ⊗ σ2

)
.

On the other hand, we can also compute [r12(λ− µ),W1(λ) +W2(µ)] directly, using the
commutation rules [σi, σj ] = 2iεijkσk and the property [A⊗ I, B ⊗ C] = [A,B]⊗ C. We
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find

[r12(λ− µ),W1(λ) +W2(µ)]

= [−f(λ, µ)σ3 ⊗ σ3 + g(λ, µ)σ1 ⊗ σ1 + g(λ, µ)σ2 ⊗ σ2,W
1(λ)σ1 ⊗ I

+W 2(λ)σ2 ⊗ I +W 3(λ)σ3 ⊗ I +W 1(µ)I⊗ σ1 +W 2(µ)I⊗ σ2 +W 3(µ)I⊗ σ3]

= −2i(f(λ, µ)W 1(λ) + g(λ, µ)W 1(µ))σ2 ⊗ σ3

+ 2i(f(λ, µ)W 2(λ) + g(λ, µ)W 2(µ))σ1 ⊗ σ3

+ 2i(f(λ, µ)W 1(µ) + g(λ, µ)W 1(λ))σ3 ⊗ σ2

− 2i(f(λ, µ)W 2(µ) + g(λ, µ)W 2(λ))σ3 ⊗ σ1

+ 2i(g(λ, µ)W 3(µ)− g(λ, µ)W 3(λ))σ2 ⊗ σ1

+ 2i(g(λ, µ)W 3(λ)− g(λ, µ)W 2(µ))σ1 ⊗ σ2 .

Upon inserting the explicit expressions of W i, f and g one recovers (4.16) and the claim
is proved.

We conclude this section on the sine-Gordon model with its covariant Hamiltonian
formulation. The covariant Hamiltonian H = h dx ∧ dt can be computed as H =

−Λ + dx ∧ ∂̃xyΩ(1) + dt ∧ ∂̃tyΩ(1) and its density is given by

h =
1

2
(u2
t − u2

x) +
m2

β2
(1− cosβu). (4.17)

The corresponding Hamiltonian vector field ξh such that ξhyΩ = δh can be taken as

ξh = ut
∂

∂u
∧ ∂

∂x
− ux

∂

∂u
∧ ∂

∂t
− m2

2β
sinβu(

∂

∂ut
∧ ∂

∂x
+

∂

∂ux
∧ ∂

∂t
). (4.18)

Let us now consider the Lax Form W (λ) = U(λ)dx+ V (λ)dt. On the one hand, we have

dW (λ) =((−ik1(λ) cos
βu

2
ux + ik0(λ) cos

βu

2
ut)σ1

+ (−ik1(λ) sin
βu

2
ut + ik0(λ) sin

βu

2
ux)σ2

+ (
iβ

4
utt −

iβ

4
uxx)σ3)dx ∧ dt
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and on the other hand,

{(h,W (λ))} =ξHyδW (λ)

=ξHy

(
−iβk0(λ)

2
cos

βu

2
δu ∧ dx− ik1(λ)β

2
cos

βu

2
δu ∧ dt)σ1

+ (i
k1(λ)β

2
sin

βu

2
δu ∧ dx+ i

k0(λ)β

2
sin

βu

2
δu ∧ dt)σ2

−iβ
4

(δut ∧ dx+ δux ∧ dt)σ3

)
=(
iβ

2
(k0(λ)ut − k1(λ)ux) cos

βu

2
)σ1

+ (
iβ

2
(k0(λ)ux − k1(λ)ut) sin

βu

2
)σ2 − i

m2

4
sinβuσ3.

Therefore

dW (λ) = {(h,W (λ))} dx ∧ dt ⇔ utt − uxx +
m2

β
sinβu = 0 , (4.19)

which is the desired covariant Hamiltonian form of the sine-Gordon equation. One can
verify with a direct computation that {(h,W (λ))} = [U(λ), V (λ)].

4.2 sine-Gordon equation in light-cone coordinates

We can also write the sine-Gordon equation (now we set β = m = 1 for simplicity) in
light-cone coordinates x1 = ξ and x2 = η as

uξη + sinu = 0 (4.20)

thanks to the change of coordinates ξ = x+t
2 and η = t−x

2 . This equation is produced by
the zero-curvature equation for the Lax form2 W (λ) = U(λ) dξ + V (λ) dη, where

U(λ) = − i
4

(
uξ

2
λe

iu/2

2e−iu/2 −uξ

)
, V (λ) = − i

4

(
−uη 2e−iu/2

2λeiu/2 uη

)
. (4.21)

In fact we have

∂ξV (λ) = − i
4

(
−uηξ −iuξe−iu/2

iλuξe
iu/2 uηξ

)

− ∂ηU(λ) =
i

4

(
uξη

iuη
λ e

iu/2

−iuηe−iu/2 −uξη

)

[U(λ), V (λ)] =
1

4

(
e−iu − eiu −uη

λ e
iu/2 − uξe−iu/2

λuξe
iu/2 + uηe

−iu/2 eiu − e−iu

)
2We use the same symbols for the Lax matrices as the ones for the laboratory coordinates to avoid

heavy notations.
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and therefore dW (λ) = W (λ) ∧W (λ) is equivalent to (4.20). The sine-Gordon equation
has also a Lagrangian formulation with

Λ = (
1

2
uξuη + cosu)dξ ∧ dη . (4.22)

The following two propositions have proofs that are very similar to the laboratory
coordinate case and therefore will be omitted.

Proposition 4.4 The sine-Gordon equation in light-cone coordinates (4.20) is the Euler-
Lagrange equation for (4.22), and with Ω(1) = −1

2uξδu ∧ dξ + 1
2uηδu ∧ dη and

Ω = −1

2
δuξ ∧ δu ∧ dξ +

1

2
δuη ∧ δu ∧ dη . (4.23)

Proposition 4.5 A 1-form F = F1(u, uξ) dξ+F2(u, uη) dη is admissible for the multisym-
plectic form (4.23) if ∂F1

∂uξ
= −∂F2

∂uη
with Hamiltonian vector field

ξF = 2
∂F1

∂uξ

∂

∂u
− 2

∂F1

∂u

∂

∂uξ
+ 2

∂F2

∂u

∂

∂uη
. (4.24)

The covariant Poisson bracket between two admissible 1-forms F = F1 dξ + F2 dη and
G = G1 dξ +G2 dη is {(F,G)} = {F1, G1}ξ dξ + {F2, G2}η dη where

{F1, G1}ξ = 2

(
∂F1

∂u

∂G1

∂uξ
− ∂F1

∂uξ

∂G1

∂u

)
, (4.25a)

{F2, G2}η = 2

(
∂F2

∂uη

∂G2

∂u
− ∂F2

∂u

∂G2

∂uη

)
. (4.25b)

We are now ready to find the classical r-matrix within the covariant Poisson bracket
{( , )}.

Theorem 4.6 The Lax form W (λ) = U(λ) dξ + V (λ) dη satisfies the following covariant
Poisson bracket

{(W1(λ),W2(µ))} = [r12(λ, µ),W1(λ) +W2(µ)] . (4.26)

where the classical r-matrix is [S08, Eq. (4.22)]

r12(λ, µ) =
µ+ λ

8(µ− λ)

(
σ3 ⊗ σ3 +

1

2
I⊗ I

)
+

µ

2(µ− λ)
σ+⊗σ−+

λ

2(µ− λ)
σ−⊗σ+ . (4.27)

Proof. We use the decomposition of the covariant Poisson bracket in { , }ξ and { , }η. A
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direct calculation brings

{U1(λ), U2(µ)}ξ =− 1

16

(
{uξ,

2

µ
eiu/2}ξσ3 ⊗ σ+ + {uξ, 2e−iu/2}ξσ3 ⊗ σ−

+ { 2

λ
eiu/2, uξ}ξσ+ ⊗ σ3 + {2e−iu/2, uξ}ξσ− ⊗ σ3

)
=
ieiu/2

8
(
σ3 ⊗ σ+

µ
− σ+ ⊗ σ3

λ
) +

ie−iu/2

8
(σ− ⊗ σ3 − σ3 ⊗ σ−)

and an explicit calculation shows that this is equal to

[
µ+ λ

8(µ− λ)
σ3 ⊗ σ3 +

µ

2(µ− λ)
σ+ ⊗ σ− +

λ

2(µ− λ)
σ− ⊗ σ+, U(λ)⊗ I + I⊗ U(µ)] .

Similarly we obtain for the dη coefficient

{V1(λ), V2(µ)}η = [r12(λ, µ), V1(λ) + V2(µ)] .

We can also show the covariant Hamiltonian nature of the zero-curvature equation. The
covariant Hamiltonian form can be obtained as

H = (
1

2
uξuη − cosu) dξ ∧ dη . (4.28)

The covariant Hamiltonian density h = 1
2uξuη − cosu is an admissible 0-form with

Hamiltonian vector field

ξh = −uξ
∂

∂u
∧ ∂

∂η
+ uη

∂

∂u
∧ ∂

∂ξ
+ 2 cosu

∂

∂uξ
∧ ∂

∂ξ
. (4.29)

Applying Theorem 3.15 we know that, since W (λ) = U(λ) dξ + V (λ) dη is admissible,

dW (λ) = {(h,W (λ))} dξ ∧ dη , (4.30)

on the sine-Gordon equation dW = W ∧W . One can verify with a direct computation
that {(h,W (λ))} = [U(λ), V (λ)], so that

dW (λ) = {(h,W (λ))} dξ ∧ dη ⇐⇒ dW (λ) = W (λ) ∧W (λ) . (4.31)

Remark 4.7: Unlike the other examples of this chapter, the sine-Gordon equation
in light-cone coordinates is original of this thesis.
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4.3 Non-Linear Schrödinger equation

By a slight abuse of language, we will call the following system of equations for two
complex scalar fields q, r the nonlinear Schrödinger (NLS) equation

iqt +
1

2
qxx − q2r = 0 , irt −

1

2
rxx + r2q = 0 . (4.32)

Strictly speaking, the NLS appears under the reduction r = ±q∗. We keep using as a
Lagrangian volume form for (4.32)

Λ = (
i

2
(qtr − qrt)−

1

2
qxrx −

1

2
q2r2) dx ∧ dt, (4.33)

The system (4.32) is equivalent to the zero-curvature equation which must hold as an
identity in λ

∂tU(λ)− ∂xV (λ) + [U(λ), V (λ)] = 0 .

where the Lax pair (U, V ) can be taken as

U(λ) = −iλσ3 + qσ+ + rσ− , (4.34)

V (λ) =

(
−iλ2 − i

2
qr

)
σ3 + (λq +

i

2
qx)σ+ + (λr − i

2
rx)σ− . (4.35)

We will denote u(i)
k , k = 1, 2, (i) = (0, 0), (1, 0), etc. as q, r, qx, rx, etc. for convenience.

Proposition 4.8 The NLS equations (4.32) are the Euler-Lagrange equations for Λ. The
form Ω(1) is given by

Ω(1) =
i

2
(qδr − rδq) ∧ dx− 1

2
(qxδr + rxδq) ∧ dt , (4.36)

and the multisymplectic form reads

Ω = iδq ∧ δr ∧ dx+ (
1

2
δr ∧ δqx +

1

2
δq ∧ δrx) ∧ dt . (4.37)

Proof. The δ-differential of the Lagrangian volume form is

δΛ =

(
irt
2
− qr2

)
δq ∧ dx ∧ dt+

(
iqt
2
− q2r

)
δr ∧ dx ∧ dt

+
ir

2
δqt ∧ dx ∧ dt−

iq

2
δrt ∧ dx ∧ dt

− 1

2
rxδqx ∧ dx ∧ dt−

1

2
qxδrx ∧ dx ∧ dt .
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Then, using

ir

2
δqt ∧ dx ∧ dt = d(

ir

2
δq ∧ dx)− irt

2
δq ∧ dx ∧ dt ,

− iq
2
δrt ∧ dx ∧ dt = d(− iq

2
δr ∧ dx) +

iqt
2
δr ∧ dx ∧ dt ,

−1

2
rxδqx ∧ dx ∧ dt = d(

1

2
rxδq ∧ dt) +

1

2
rxxδq ∧ dx ∧ dt ,

−1

2
qxδrx ∧ dx ∧ dt = d(

1

2
qxδr ∧ dt) +

1

2
qxxδr ∧ dx ∧ dt ,

we obtain

δΛ =[(−irt +
1

2
rxx − qr2)δq + (iqt +

1

2
qxx − q2r)δr] ∧ dx ∧ dt

− d((− ir
2
δq +

iq

2
δr) ∧ dx+ (−1

2
rxδq −

1

2
qxδr) ∧ dt)

from which we can read off Ω(1). We then compute Ω = δΩ(1) to get the stated result.

Proposition 4.9 A 1-form F = F1(q, r) dx + F2(q, r, qx, rx) dt is admissible for the
multisymplectic form (4.37) if and only if

∂F1

∂q
= −2i

∂F2

∂qx
,

∂F1

∂r
= 2i

∂F2

∂rx
. (4.38)

The respective Hamiltonian vector field is

ξF = −i∂F1

∂r

∂

∂q
+ i

∂F1

∂q

∂

∂r
− 2

∂F2

∂r

∂

∂qx
− 2

∂F2

∂q

∂

∂rx
. (4.39)

Any two admissible 1-forms F = Adx+B dt and G = C dx+Ddt satisfy the equation

{(F,G)} = {A,C}1 dx+ {B,D}2 dt (4.40)

where the single-time Poisson Brackets are given by

{A,C}1 = −i∂A
∂q

∂C

∂r
+ i

∂C

∂q

∂A

∂r
, (4.41a)

{B,D}2 = 2

(
∂B

∂q

∂D

∂rx
− ∂D

∂q

∂B

∂rx
+
∂B

∂r

∂D

∂qx
− ∂D

∂r

∂B

∂qx

)
. (4.41b)

Proof. We start from the Ansatz ξF = a ∂
∂q + b ∂∂r + c ∂

∂qx
+ d ∂

∂rx
, and we want to find the

coefficients by setting
ξF yΩ = δF. (4.42)
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The right hand-side reads

δF =
∂F2

∂q
δq ∧ dt+

∂F2

∂r
δr ∧ dt+

∂F1

∂qx
δqx ∧ dt+

∂F2

∂rx
δrx ∧ dt

+
∂F1

∂q
δq ∧ dx+

∂F1

∂r
δr ∧ dx,

while the left hand-side is

ξF yΩ = iaδr ∧ dx+
1

2
aδrx ∧ dt− ibδq ∧ dx+

1

2
bδqx ∧ dt−

1

2
cδr ∧ dt− 1

2
dδq ∧ dt.

By matching the coefficients we get

a = −i∂F1

∂r
= 2

∂F2

∂rx
, b = i

∂F1

∂q
= 2

∂F2

∂qx
, c = −2

∂F2

∂r
, d = −2

∂F2

∂q
,

which is the first statement. The second statement then follows by a direct calculation
from {(F,G)} = −ξF yδG and recognizing the single-time Poisson brackets as defined in
the Proposition.

Theorem 4.10 The Lax form W (λ) = U(λ) dx+V (λ) dt satisfies the following covariant
Poisson bracket

{(W1(λ),W2(µ))} = [r12(λ, µ),W1(λ) +W2(µ)] (4.43)

where the classical r-matrix is that of the NLS equation (see e.g. [FTR07] and Section 2.1),
the so-called rational r-matrix,

r12(λ, µ) =
P12

2(µ− λ)
=

1

2(µ− λ)
(σ+ ⊗ σ− + σ− ⊗ σ+ +

σ3 ⊗ σ3

2
+

I⊗ I
2

) . (4.44)

Proof. Again, we give here the proof by direct computation. We writeW1(λ) = W 3(λ)σ3⊗
I+W+(λ)σ+⊗I+W−(λ)σ−⊗I andW2(µ) = W 3(µ)I⊗σ3 +W+(µ)I⊗σ+ +W−(µ)I⊗σ−.
For the right-hand side, we find

[r12(λ− µ),W1(λ) +W2(µ)]

=
1

2(µ− λ)
[(2W 3(µ)− 2W 3(λ))σ+ ⊗ σ− + (W−(λ)−W−(µ))σ3 ⊗ σ−

+ (W+(λ)−W+(µ))σ+ ⊗ σ3 + (2W 3(λ)− 2W 3(µ))σ− ⊗ σ+

+ (W+(µ)−W+(λ))σ3 ⊗ σ+ + (W−(µ)−W−(λ))σ− ⊗ σ3]

= −i(σ+ ⊗ σ− − σ− ⊗ σ+)dx

+ (−i(µ+ λ)(σ+ ⊗ σ− − σ− ⊗ σ+)− r

2
(σ3 ⊗ σ− − σ− ⊗ σ3)

+
q

2
(σ3 ⊗ σ+ − σ+ ⊗ σ3))dt .

(4.45)

For the left-hand side, note thatW 3(λ), W+(λ) andW−(λ) are admissible forms. Thus, a
direct calculation using the decomposition formula shows that the only nonzero covariant
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Poisson bracket relations are the following

{(W+(λ),W−(µ))} =− idx− i(λ+ µ)dt ,

{(W+(λ),W 3(µ))} =− q

2
dt ,

{(W−(λ),W+(µ))} =idx+ i(λ+ µ)dt ,

{(W−(λ),W 3(µ))} =
r

2
dt ,

{(W 3(λ),W+(µ))} =
q

2
dt ,

{(W 3(λ),W−(µ))} =− r

2
dt .

It remains to insert in the definition of {(W1(λ),W2(µ))} to recognize that {(W1(λ),W2(µ))}
is precisely (4.45).

We conclude the NLS example by a description of its covariant Hamiltonian formulation.
The covariant Hamiltonian H = h dx ∧ dt is given by

h =
1

2
(−qxrx + q2r2). (4.46)

Its Hamiltonian vector field ξh, such that ξhyΩ = δh can be taken as

ξh =

(
−iq2r

∂

∂q
+ iqr2 ∂

∂r

)
∧ ∂

∂x
+

(
−qx

∂

∂q
− rx

∂

∂r

)
∧ ∂

∂t
. (4.47)

Equipped with this, we have the following result.

Proposition 4.11 The covariant Hamiltonian formulation of the NLS equation is given
by

dW (λ) = {(h,W (λ))} dx ∧ dt , (4.48)

where W (λ) is the Lax Form.

Proof. On the one hand

dW (λ) = (− i
2

(qrx + rqx)σ3 + (−qt + λqx +
i

2
qxx)σ+ + (−rt + λrx −

i

2
rxx)σ−)dx ∧ dt ,

while on the other hand,

{(h,W (λ))} =ξhyδW (λ)

=ξhy(σ+δq ∧ dx+ σ−δr ∧ dx+ (− i
2
rσ3 + λσ+)δq ∧ dt

+ (− i
2
qσ3 + λσ−)δr ∧ dt+

i

2
σ+δqx ∧ dt−

i

2
σ−δrx ∧ dt

=(iq2r + λqx)σ+ + (−iqr2 + λrx)σ− −
i

2
(qxr + qrx)σ3 .
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Therefore dW (λ) = {(h,W (λ))}dx ∧ dt is equivalent to the NLS equation.

One can verify with direct computation that {(h,W (λ))} = [U(λ), V (λ)].

4.4 Modified Korteweg-de Vries equation

By a slight abuse of language, we call the following system of equations for two complex
scalar fields q, r the modified Korteweg-de Vries (mKdV) equation,

qt +
1

4
qxxx −

3

2
qrqx = 0 , rt +

1

4
rxxx −

3

2
qrrx = 0 . (4.49)

It is the next commuting flow in the so-called AKNS hierarchy [AKNS74] that also
contains the NLS system (4.32). The original (real) modified KdV equation is obtained
as the real reduction r = q with q a real-valued field. A Lagrangian form for (4.49) is
given by

Λ = (
i

2
(qtr − qrt)−

i

8
(qxxrx − rxxqx)− 3i

8
qr(qxr−qrx))dx ∧ dt . (4.50)

Remark 4.12: The reader may find the presence of an overall multiplicative constant
i unnecessary or even confusing. This is only done at this stage for internal consistency
with the rest of the thesis.

The system (4.49) is equivalent to the zero-curvature equation which must hold as an
identity in λ

∂tU(λ)− ∂xV (λ) + [U(λ), V (λ)] = 0 (4.51)

where the Lax pair (U, V ) can be taken as

U(λ) =− iλσ3 + qσ+ + rσ− , (4.52)

V (λ) =(−iλ3 − iλ

2
qr +

1

4
(qxr − qrx))σ3

+ (λ2q + iλqx −
1

4
qxx +

1

2
q2r)σ+ + (λ2r − iλ

2
rx −

1

4
rxx +

1

2
qr2)σ− .

(4.53)

One reason for looking at this model, besides its physical relevance as a prototypical
model related to the famous Korteweg-de Vries equation3, is that it is degenerate both
in the standard Legendre transformation and the dual one [ACDK16]. However, the
method laid out by Dickey produces a multisymplectic form that is not sensitive to the
degeneracy and both single-time forms are indeed symplectic (nondegenerate). In fact,
they coincide with the ones obtained by the Dirac procedure in [ACDK16]. This feature
is quite remarkable but its origin is not understood yet.

3This is obtained by a Miura transformation [M68].
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Proposition 4.13 The mKdV equations (4.49) are the Euler-Lagrange equations for Λ.
The form Ω(1) is given by

Ω(1) =
i

2
(qδr − rδq) ∧ dx (4.54)

+

((
i

4
rxx −

3i

8
qr2

)
δq +

(
− i

4
qxx +

3i

8
q2r

)
δr − i

8
r1δq1 +

i

8
q1δr1

)
∧ dt ,

and the multisymplectic form reads

Ω = iδq∧δr∧dx+

(
i

4
δrxx ∧ δq −

i

4
δqxx ∧ δr +

i

4
δqx ∧ δrx +

3iqr

2
δq ∧ δr

)
∧dt . (4.55)

Proof. By direct calculation as in the previous examples.

Proposition 4.14 A 1-form

F = F1(q, r)dx+ F2(q, r, qx, rx, qxx, rxx)dt ,

is admissible for the multisymplectic form (4.55) if and only if

∂F1

∂q
= −4

∂F2

∂qxx
,

∂F1

∂r
= −4

∂F2

∂rxx
. (4.56)

The corresponding Hamiltonian vector field is

ξF =− i∂F1

∂r

∂

∂q
+ i

∂F1

∂q

∂

∂r
− 4i

∂F2

∂rx

∂

∂qx
+ 4i

∂F2

∂qx

∂

∂rx

+ 4i(
∂F2

∂r
+ 6qr

∂F2

∂rxx
)
∂

∂qxx
− 4i(

∂F2

∂q
+ 6qr

∂F2

∂qxx
)
∂

∂rxx
.

(4.57)

Any two admissible 1-forms F = Adx+B dt and G = C dx+Ddt satisfy the equation

{(F,G)} = {A,C}1 dx+ {B,D}2 dt (4.58)

where the single-time Poisson Brackets are given by

{A,C}1 =− i
(
∂A

∂q

∂C

∂r
− ∂C

∂q

∂A

∂r

)
, (4.59a)

{B,D}2 =− 4i

(
∂B

∂rxx

∂D

∂q
− ∂B

∂q

∂D

∂rxx
− ∂B

∂qxx

∂D

∂r
+
∂B

∂r

∂D

∂qxx

∂B

∂qx

∂D

∂rx
− ∂B

∂rx

∂D

∂qx
− 6qr

(
∂B

∂qxx

∂D

∂rxx
− ∂B

∂rxx

∂D

∂qxx

))
.

(4.59b)

Proof. Inserting ξF = a ∂
∂q + b ∂∂r + c ∂

∂qx
+ d ∂

∂rx
+ e ∂

∂qxx
+ f ∂

∂rxx
into

ξF yΩ , (4.60)
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and matching the coefficients with δF . This gives the first statement. The second
statement then follows by a direct calculation from {(F,G)} = −ξF yδG and recognizing
the single-time Poisson brackets as defined in the Proposition.

Theorem 4.15 The Lax form W (λ) = U(λ) dx+V (λ) dt satisfies the following covariant
Poisson bracket

{(W1(λ),W2(µ))} = [r12(λ, µ),W1(λ) +W2(µ)] (4.61)

where r is the rational classical r-matrix of the NLS equation.

r12(λ− µ) =
1

2(µ− λ)
(σ+ ⊗ σ− + σ− ⊗ σ+ +

σ3 ⊗ σ3

2
+

I⊗ I
2

) . (4.62)

Proof. The direct calculation follows exactly the same idea as before.

Remark 4.16: A comment is in order regarding the fact that the same r-matrix as
for the NLS appears here for the mKdV. In the standard Hamiltonian approach to
the AKNS hierarchy, the only r-matrix structure is that given in (4.44) since all the
higher flows share the same U(λ) matrix Q(1)(λ). In our covariant context, since the
same r-matrix appears for both the Lax matrices U(λ) and V (λ) = Q(2)(λ) for the
NLS and V (λ) = Q(3)(λ) for the mKdV and since both flows share the same U(λ), we
consistently find that the same r-matrix appears in the covariant Poisson structure
for NLS and mKdV. We note however that this points to a deeper connection between
our covariant approach and the notion of integrable hierarchies. Amazingly, this
connection holds and was established in [CS21]. This will be presented in detail in
Chapter 6.

We conclude the mKdV example by a description of its covariant Hamiltonian formulation.
We find that the covariant Hamiltonian H = h dx ∧ dt is given by

h =
i

4
(qxrxx − qxxrx) (4.63)

Its Hamiltonian vector field ξH , such that ξhyΩ = δh can be taken as

ξh =
3

2
qr

(
qx
∂

∂q
+ rx

∂

∂r

)
∧ ∂

∂x

−
(
qx
∂

∂q
+ rx

∂

∂r
+ qxx

∂

∂qx
+ rxx

∂

∂rx

)
∧ ∂

∂t
.

(4.64)

Equipped with this, we have the following result.

Proposition 4.17 The covariant Hamiltonian formulation of the NLS equation is given
by

dW (λ) = {(h,W (λ))} dx ∧ dt , (4.65)
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where W (λ) is the Lax form.

Proof. By direct computation as in the previous examples.

In the same way as in the two previous examples, one can show that {(h,W (λ))} =

[U(λ), V (λ)].

4.5 Zakharov-Mikhailov Lagrangian

The Zakharov-Mikhailov Lagrangian provides a variational principle for a class of integrable
systems encapsulated by the Lax connection of Zakharov-Shabat type W (z) = U(z) dξ +

V (z) dη, where

U(z) = U0 +

N1∑
m=1

Um
z − am

, V (z) = V0 +

N2∑
n=1

Vn
z − bn

, (4.66)

and each Um, Vn ∈ glN (A ) are A -valued glN matrices. We also assume that am 6= bn

∀m = 1, . . . , N1 ∀n = 1, . . . , N2. By taking the residues in am and bn, we can see
that the zero-curvature condition dW (z) = W (z) ∧ W (z), or equivalently ∂ξV (z) −
∂ηU(z) = [U(z), V (z)] is also equivalent to the following equations, for m = 1, . . . , N1

and n = 1, . . . , N2

∂ξV0 − ∂ηU0 = [U0, V0] ,

∂ηUm =

[
V0 +

N2∑
n=1

Vn
am − bn

, Um

]
, ∂ξVn =

[
U0 +

N1∑
m=1

Um
bn − am

, Vn

]
.

(4.67)

These are obtained by taking the regular part in z or the residues in z = am or z = bn of
dW = W ∧W . In [ZM80], the authors proved that these equations have a variational
origin, i.e. they are Euler-Lagrange equations of the Lagrangian form Λ. In the case
where U0 = V0 = 0 this Lagrangian can be written as

Λ = Tr

(∑
m

ϕ−1
m ∂ηϕmU

(0)
m −

∑
n

ψ−1
n ∂ξψnV

(0)
n −

∑
m,n

UmVn
am − bn

)
dξ ∧ dη , (4.68)

where in each sum, m = 1, . . . , N1 and n = 1, . . . , N2, and we have written each Um =

ϕmU
(0)
m ϕ−1

m and Vn = ψnV
(0)
n ψ−1

n . The matrices ϕm, ψn ∈ GLN (A ) (i.e. A -valued non-
singular N×N matrices) are dynamical, and they contain the fields of our theory and their
derivatives. The matrices U (0)

m and V (0)
n are non-dynamical, meaning δU (0)

m = δV
(0)
n = 0,

but in general they may depend on the space time variables (ξ, η). However, to avoid
some technical difficulties we will consider U (0)

m and V (0)
n to be constant, meaning that

U
(0)
m , V

(0)
n ∈ glN .

Remark 4.18: We have set U0 = V0 = 0, which can be done thanks to the
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gauge freedom of U and V . In fact, from (4.67) there exists a non-singular matrix
g ∈ GLN (A ) such that

U0 = ∂ξgg
−1 , V0 = ∂ηgg

−1 . (4.69)

In fact we have

∂ξV0 − ∂ηU0 =∂ξ(∂ηgg
−1)− ∂η(∂ξgg−1)

=∂ξ∂ηg
−1 − ∂ηgg−1∂ξg

−1 − ∂η∂ξgg−1 + ∂ξgg
−1∂ηgg

−1

=[∂ξgg
−1, ∂ηgg

−1]

=[U0, V0] .

It follows that the matrices

Ū = g−1Ug − g−1(∂ξg) =

N1∑
k=1

g−1Ukg

z − ak
∈ glN (A ) ,

V̄ = g−1V g − g−1(∂ηg) =

N2∑
k=1

g−1Vkg

z − bk
∈ glN (A )

also satisfy ∂ξV̄ − ∂ηŪ = [Ū , V̄ ]. Then one can take ϕk → gϕk and ψk → gψk and
rename Ū → U and V̄ → V to eliminate U0 and V0.

Remark 4.19: It was proved in [CSV21a] that the Lagrangian Λ can be obtained
from a 4d Chern-Simons theory, see Appendix A.4. This is a result that follows the
idea of [FSY20, CY19] with the introduction of minimally-coupled surface defects on
the Riemann sphere that provides an additional family of models that can be derived
from a 4d Chern-Simons theory.

Proposition 4.20 The Euler-Lagrange equations of Λ are (4.67) with U0 = V0 = 0 i.e.

∂ηUm +

[
Um,

N2∑
n=1

Vn
am − bn

]
= 0 ∂ξVn +

[
Vn,

N1∑
m=1

Um
bn − am

]
= 0 . (4.70)

and the multisymplectic form is

Ω = Tr

(
N1∑
m=1

ϕ−1
m δϕm ∧ ϕ−1

m δϕmU
(0)
m ∧ dξ +

N2∑
n=1

ψ−1
n δψn ∧ ψ−1

n δψnV
(0)
n ∧ dη

)
. (4.71)
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Proof. We start by taking the δ-differential of Λ, which is

δΛ = Tr
∑
m

[
−∂ηϕmU (0)

m ϕ−1
m δϕmϕ

−1
m + U (0)

m ϕ−1
m δ(∂ηϕm)

]
∧ dξ ∧ dη

+ Tr
∑
n

[
∂ξψnV

(0)
n ψ−1

n δψmψ
−1
n − V (0)

n ψ−1
m δ(∂ξψn)

]
∧ dξ ∧ dη

+ Tr
∑
mn

[
− [Um, Vn]

am − bn
δϕmϕ

−1
m −

[Vn, Um]

am − bn
δψnψ

−1
n

]
∧ dξ ∧ dη

= Tr
∑
m

[
−∂ηϕmU (0)

m ϕ−1
m − ϕm∂η(U (0)

m ϕ−1
m )− [Um, Vn]

am − bn

]
δϕmϕ

−1
m ∧ dξ ∧ dη

+ Tr
∑
n

[
∂ξψnV

(0)
n ψ−1

n + ψn∂ξ(V
(0)
n ψ−1

n )− [Vn, Um]

am − bn

]
δψnψ

−1
n ∧ dξ ∧ dη

− dTr

[
−
∑
m

U (0)
m ϕ−1

m δϕm ∧ dξ −
∑
n

V (0)
n ψ−1

n δψn ∧ dη

]

and we can read the equations (4.70) off the coefficients of δϕm and δψn. We then take

Ω(1) = −Tr

[∑
m

U (0)
m ϕ−1

m δϕm ∧ dξ +
∑
n

V (0)
n ψ−1

n δψn ∧ dη

]
(4.72)

and its δ-differential is Ω = δΩ(1) in (4.71).

Our objective is to compute the covariant Poisson bracket à la Sklyanin for the Lax
connection W = U(z)dξ + V (z)dη in the gauge where U0 = V0 = 0. Specifically, let
{Eij } be the canonical basis for glN and write the Lax connection in this basis as

W (z) =

N∑
i,j=1

Wij(z)Eij , (4.73)

where from now on we shall show the explicit dependence on the spectral parameter.
To compute the covariant Poisson brackets between any two components of the Lax
connection, we first need to show that these are admissible 1-forms.

For this we shall need the following useful identities. If M ∈ GLN (A ) is any A -valued
matrix with components Mij ∈ A , i, j = 1, . . . , N and C is any non-dynamical matrix
(meaning δC = 0), then we have

N∑
k=1

Mik
∂

∂Mjk
yTr

(
M−1δM ∧M−1δMC

)
= δ(MCM−1)ij , (4.74a)

N∑
k=1

Mik
∂

∂Mjk
yδ(MCM−1)kl = δjk(MCM−1)il − δil(MCM−1)kj . (4.74b)

In particular, we can use these with M = ϕn, C = U
(0)
n and M = ψn, C = V

(0)
n . Then a
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direct calculation shows that

Xij(z) =

N1∑
m=1

N∑
β=1

ϕm,iβ
z − am

∂

∂ϕm,jβ
+

N2∑
n=1

N∑
β=1

ψn,iβ
z − bn

∂

∂ψn,jβ
, (4.75)

satisfies δWij(z) = Xij(z)yΩ. Therefore all the components Wij(z) for i, j = 1, . . . , N of
the Lax connection are admissible 1-forms, as required.

Theorem 4.21 The covariant Poisson brackets of the Lax form satisfy the following
relation

{(W1(z),W2(w))} =
[
r12(z − w),W1(z) +W2(w)

]
, (4.76)

where r12(z) = −P12
z is the rational r-matrix.

We have used the permutation operator P12 =
∑N

i,j=1Eij ⊗ Eji with the property

N∑
i,j=1

(δjkAil − δilAkj)Eij ⊗ Ekl = [A1, P12] = −[A2, P12] ,

for any A ∈ glN (A ) with components Aij ∈ A for i, j = 1, . . . , N .

Proof. We turn to the computation of the components on the left hand-side. We have

{(Wij(z),Wkl(w))} =−Xij(z)yδWkl(w)

=−
N1∑
m=1

δjk(Um)il − δil(Um)kj
(z − am)(w − am)

dξ

−
N2∑
n=1

δjk(Vn)il − δil(Vn)kj
(z − bn)(w − bn)

dη .

Noting that for any distinct z, w, a ∈ C we have the identity

1

(z − a)(w − a)
=

1

w − z

(
1

z − a
− 1

w − a

)
, (4.77)

we may rewrite the covariant Poisson bracket as

{(W1(z),W2(w))} =

N1∑
m=1

[P12, (Um)1]

(z − am)(w − am)
dξ +

N2∑
n=1

[P12, (Vn)1]

(z − bn)(w − bn)
dη

=

[
P12

w − z
,W1(z) +W2(w)

]
.
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Following our prescription, the covariant Hamiltonian related to Λ is found to be equal to

H =− Λ +

N1∑
m=1

Tr
(
ϕ−1
m ∂ηϕmU

(0)
m

)
dξ ∧ dη −

N2∑
n=1

Tr
(
ψ−1
n ∂ξψnV

(0)
n

)
dξ ∧ dη

=

N1∑
m=1

N2∑
n=1

Tr
UmVn
am − bn

dξ ∧ dη .

(4.78)

In the same way as the previous examples, we have shown that

dW (z) = {(h,W (z))}dη ∧ dξ , where H = h dη ∧ dξ , (4.79)

in analogy to what one would do in the traditional Hamiltonian formalism, then since we
have

{(h,W (z))}dη ∧ dξ = W (z) ∧W (z) , (4.80)

we can conclude that dW (z) = W (z) ∧W (z). The main steps in the derivation of the
crucial equality (4.80) are as follows. First, we have by definition

{(h,W (z))} =
N∑

i,j=1

(Xij(z)yδh)Eij . (4.81)

Second, we find

Xij(z)yδh =

( N1∑
m=1

N∑
β=1

ϕm,iβ
z − am

∂

∂ϕm,jβ
+

N2∑
n=1

N∑
β=1

ψn,iβ
z − bn

∂

∂ψn,jβ

)
y

( N1∑
p=1

N2∑
q=1

N∑
k,l=1

(δUp)kl(Vq)lk + (Up)lk(δVq)kl
ap − bq

)

=

N1∑
m=1

N2∑
q=1

N∑
k,l=1

(δjk(Um)il − δil(Um)kj) (Vq)lk
(z − am)(am − bq)

+

N2∑
n=1

N1∑
p=1

N∑
k,l=1

(Up)lk (δjk(Vn)il − δil(Vn)kj)

(z − bn)(ap − bn)

=

N1∑
m=1

N2∑
n=1

([Um, Vn])ij
(z − am)(z − bn)

,

where we have used the identity (4.74b) in the second equality and (4.77) in the last
equality. Substituting the above into (4.81) we obtain (4.80).
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4.6 The Korteweg-de Vries equation: an unsuccessful at-
tempt

The above formalism seems to work really well to produce the equation {(W1(λ),W2(µ))} =

[r12(λ, µ),W1(λ)+W2(µ)] for ultralocal field theories, i.e. theories for which the classical r-
matrix is antisymmetric r12(λ, µ) = −r21(µ, λ). We report here our unsuccessful attempt
at applying the same construction to a non-ultralocal theory such as the Korteweg-de Vries
equation (KdV). As the KdV is arguably among the most famous examples of integrable
systems, we think the reader will be interested on the current state of understanding of
this theory and what goes wrong and where. We must remark as well that we are not
expecting a relation such as {(W1(λ),W2(µ))} = [r12(λ, µ),W1(λ)+W2(µ)], as the theory
is non-ultralocal4, but we will see that the problem arises well before, as the Poisson
bracket {(W1(λ),W2(µ))} is already not defined.
We will treat the potential version of the KdV equation

vxt = vxxxx + 6vxvxx (4.82)

where u = vx is the KdV field. As it is now costumary we start from the Lagrangian
volume form5

Λ = (vxvt − 2(vx)3 + (vxx)2) dx ∧ dt . (4.83)

We compute the δ-differential of Λ as

δΛ =(vxδvt + (vt − 6(vx)2)δvx + 2vxxδvxx) ∧ dx ∧ dt

=(−2vxt + 2vxxxx + 12vxvxx)δv ∧ dx ∧ dt

− d(−vxδv ∧ dx+ (vt − 6(vx)2 − 2vxxx)δv ∧ dt+ 2vxxδvx ∧ dt) ,

so that we have

Ω(1) =− vxδv ∧ dx+ (vt − 6(vx)2 − 2vxxx)δv ∧ dt+ 2vxxδvx ∧ dt , (4.84)

Ω =− δvx ∧ δv ∧ dx

+ (δvt ∧ δv − 12vxδvx ∧ δv − 2δvxxx ∧ δv + 2δvxx ∧ δvx) ∧ dt .
(4.85)

If we use the familiar argument to investigate the presence of admissible 1-forms (i.e. start-
ing from a generic vertical vector field and taking its interior product with the multisym-
plectic form) we realise that an admissible 1-form F = F1(v, vx) dx+F2(v, vt, vx, vxx, vxxx) dt

4We would expect an equation similar to [BBT03, Equation (2.10)], such as {(W1(λ),W2(µ))} =
[r12(λ, µ),W1(λ)]− [r21(µ, λ),W2(µ)].

5It differs from L13 of Section 2.3 by a total horizontal differential.
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must satisfy the following requirements:

∂F1

∂vx
= −∂F2

∂vt
=

1

2

∂F2

∂vxxx
, (4.86a)

∂F1

∂v
=

1

2

∂F2

∂vxx
. (4.86b)

Next, we would need to find an admissible Lax connection for this equation, so that we
can calculate the Poisson bracket {(W1,W2)}. Unfortunately, we have not been able to
do so. The only Lax pair we could find, i.e.

U(λ) =

(
iλ −vx
1 −iλ

)
, (4.87)

V (λ) =

(
−4iλ3 + 2ivxλ+ vxx 4vxλ

2 − 2ivxxλ− vxxx − 2(vx)2

−4λ2 + 2vx 4iλ3 − 2ivxλ− vxx

)
, (4.88)

is not admissible. In fact, none of the above relations hold: it is not true that ∂U
∂vx

= −σ+

is equal to − ∂V
∂vt

= 0 or to 1
2

∂V
∂vxxx

= −1
2σ+, and ∂U

∂v = 0 is not equal to 1
2
∂V
∂vxx

= σ3−2iλσ+.
There are two possible strategies that one could take at this stage. The first one is to
extend our covariant Poisson brackets {( , )} to non-admissible forms, allowing to keep
the current Lax pair U, V as in (4.87)-(4.88). The extension of covariant Poisson bracket
to non-admissible forms has been explored in literature, for instance in [FS15], but not in
relation to integrable systems. The second strategy is to investigate other possibilities of
Lax pairs that satisfy the equations (4.86) and are therefore admissible. This is currently
still an open problem.

4.7 Concluding remarks

In this section we have shown for many archetypal examples of integrable systems the
classical r-matrix structure of the Lax connection W (λ) within the covariant Poisson
bracket

{(W1(λ),W2(µ))} = [r12(λ, µ),W1(λ) +W2(µ)] .

These Poisson brackets are only defined for a specific class of forms called admissible,
i.e. forms F for which there exist a vector field ξF such that ξF yΩ = δF . The Poisson
brackets {( , )} were defined from the multisymplectic form Ω, which was obtained from
the Lagrangian following the procedure explained in [D03]. Following [D03] we were also
able to define the covariant Hamiltonian of the field theory in example H = h dx ∧ dt.
We showed consistently that the zero-curvature equations dW (λ) = W (λ) ∧W (λ) can be
recognised as a covariant Hamilton equation for the Lax connection as

dW (λ) = {(h,W (λ))} dx ∧ dt .
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This opens up a series of questions. The Non-Linear Schrödinger and the modified
Korteweg-de Vries equations belong to an integrable hierarchy, i.e. the Ablowitz-Kaup-
Newell-Segur (AKNS) hierarchy. Ideally, it is interesting to see if the same covariant
approach could be applied to more equations of the same hierarchy, and even to the
hierarchy itself as a whole. This will be addressed in the following chapters, with the
introduction of Hamiltonian multiforms in Chapter 5 and with its applications to the
AKNS hierarchy in Chapter 6.
Moreover, as pointed out in Section 4.6, we have only been able to treat ultralocal field
theories. This is because the non ultra-local theories that we tried to treat are expressed
by a Lax connection that does not possess the right properties in order to calculate the
covariant Poisson bracket {(W1(λ),W2(µ))} (i.e. the property of being admissible). These
non-ultralocal field theories are extremely important to treat, as they include famous key
systems such as the celebrated potential Korteweg-de Vries equation. This is a current
issue of our approach, and it needs to be investigated further.
Finally, the consistency of these results points to a deeper generalisation, in terms of
characterisation in terms of endomorphisms of a Lie algebra and Poisson-Lie groups,
in the style of [RS88]. This will help with the generalisation of {(W1(λ),W2(µ))} =

[r12(λ, µ),W1(λ) + W2(µ)] to other field theories, and to understand the theory in a
deeper, non-phenomenological way.



Chapter 5

Hamiltonian multiform description
of integrable hierarchies

In this chapter, which contains content from [CS20b], we aim to describe covariantly
(i.e. treating space and time with equal footing) a whole integrable hierarchy of PDEs in
a Hamiltonian fashion. This procedure generalises Dickey’s construction of a covariant
Hamiltonian (that has been reported and expanded upon in Chapter 3) to the case of a
hierarchy, taking a Lagrangian multiform as a starting point as opposed to a Lagrangian
volume form.
In Section 5.1, by means of what can be described as a ‘covariant Legendre transformation
with respect to all the times of the hierarchy’ we produce the Hamiltonian counterpart
of a Lagrangian multiform, that we call Hamiltonian multiform, and a new object
which generalises the multisymplectic form to a whole hierarchy, that we call symplectic
multiform. The multiform Euler-Lagrange equations are recovered as a natural extension
of the covariant Hamilton equations, and the closure of the Lagrangian multiform is related
to the closure of the Hamiltonian multiform, which resembles the usual conservation of
the Hamiltonian function for finite dimensional mechanics. In Section 5.2 we introduce
the multi-time Poisson brackets, which generalise the covariant Poisson bracket in the
multiform framework. In Section 5.6 we relate our formalism to the results of [V20]
regarding Lagrangian 1-forms (hierarchies of ODEs).
We use this new formalism to describe a few levels of the potential Korteweg-de Vries
hierarchy in Section 5.3, the sine-Gordon hierarchy in light-cone coordinates in Section 5.4
and of the Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy in Section 5.5. We anticipate
that we will be able to describe the whole AKNS hierarchy in a closed form, but we delay
its discussion to Chapter 6.

67
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5.1 The Hamiltonian and symplectic multiform

The main observation at the basis of this chapter is that the objects and results illustrated
in Chapter 4 can be extended to a Lagrangian multiform, i.e. a horizontal 2-form

L =

n∑
i<j

Lij dx
ij , , (5.1)

for Lij ∈ A , required to satisfy a generalised variational principle associated to the action

S[Γ] =

∫
Γ

L , (5.2)

as explained in Section 2.3. Furthermore, we assume that the Lagrangian multiform L

does not depend explicitly on the multi-time variables xi. We can turn our attention to
the generalisation of the form Ω(1) in (3.2). We first use the following result from [V18,
Proposition 6.3] and [V20], which we reproduce here with a little change of notation.

Proposition 5.1 The field u is a critical point of S[Γ] =
∫

Γ L for all (smooth) surfaces
Γ in Rn if and only if there exists a (nonzero) form Ω(1) ∈ A (1,1) such that

δL = −dΩ(1) . (5.3)

We also recall that, as explained in the introduction we have that u is a critical point of
S for all (smooth) surfaces Γ if and only if δdL = 0. Equipped with this, let us write,

E(L ) := δL + dΩ(1) .

Then, a reformulation of the previous discussion is as follows:

δdL = 0⇔

u is a critical point of S[Γ] for all smooth surfaces Γ in Rn

⇔ E(L ) = 0 .

(5.4)

Compared to the case of (3.2), in addition to the non-uniqueness of Ω(1) induced by the
freedom of adding a total differential dω to L (as for a standard Lagrangian volume
form), there is also some freedom in the integration by parts steps which lead to the
expression

δL = E(L )− dΩ(1) . (5.5)

More precisely, in general we could also have another way of writing δL ,

δL = Ẽ(L )− dΩ̃(1) , (5.6)
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with still Ẽ(L ) = 0⇔ δdL = 0, following from Proposition 5.1 and reformulation (5.4).
We will show that these two sources of freedom have no consequence on our constructions.
Equipped with a pair (L ,Ω(1)), we define the Hamiltonian multiform associated to it.

Definition 5.2 (Hamiltonian multiform) The Hamiltonian multiform associated to the
pair (L ,Ω(1)) is defined by

H := −L +

n∑
j=0

dxj ∧ ∂̃jyΩ(1). (5.7)

As announced, this definition looks very similar to the definition of the covariant Hamilto-
nian in (3.5). However note that the sum involves n + 1 terms here (the number of
independent variables included in the Lagrangian multiform) and that H has the form
H =

∑
i<j Hijdx

ij and is in A (0,2), like L . H plays the role of the covariant Hamiltonian
form in the multiform context.

Proposition 5.3 The equivalent Lagrangian multiforms L and L ′ = L + dϕ for some
ϕ ∈ A (0,1) bring the same Hamiltonian multiform.

Proof. Similar to the one of Proposition 3.8. In fact, let H be the Hamiltonian multiform
associated to the pair (L ,Ω(1)). We have that H′ is the one associated to the pair
(L ′,Ω(1) + δϕ). Then we prove that

H′ = H . (5.8)

The relevance of this lemma is related to the symplectic multiform defined below and the
multiform Hamilton equations associated to it and H.

We can easily see that there is a relation between the d-differential of H and the one of
L . The next result is important and connects the closure relation in the Lagrangian
multiform to the Hamiltonian multiform formalism.

Theorem 5.4 dH = −2dL modulo the multiform Euler-Lagrange equations.

Proof. We start from the definition of H:

dH =− dL + d

 n∑
j=0

dxj ∧ ∂̃jyΩ(1)

 = −dL −
n∑
j=0

dxj ∧ d∂̃jyΩ(1)

=− dL +

n∑
j=0

dxj ∧ ∂̃jydΩ(1)
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where we used d∂̃jy+ ∂̃jyd = 0 (cf. [D03, Corollary 19.2.10]). Now we use the equation
δL = −dΩ(1) to obtain

dH =− dL −
n∑
j=0

dxj ∧ ∂̃jyδL = −dL −
n∑
j=0

dxj ∧ (∂̃j − δ∂̃jy)L

=− dL −
n∑
j=0

dxj ∧ ∂̃jL = −2dL .

In the last line we used the property ∂̃j = δ∂̃jy + ∂̃jyδ, and the fact that L is purely
horizontal and does not depend explicitly on the multi-time variables.

Remark 5.5: In [SV16, V20] the closure of a pluri-Lagrangian form L was linked
to the involution of the single-time Hamiltonians (that we will interpret in terms of
Hamiltonian multiforms in Section 5.6), and in [V20] an analogue of Theorem 5.4
for the case of Lagrangian 1-forms was given. In the particular case where the
Hamiltonian multiform is an admissible form in the sense defined below, we expect
Theorem 5.4 to provide a general framework in which to recast these results (with
appropriate modifications for the examples in 0 + 1 dimensions presented in [SV16,
V20]). This point is partially addressed in Section 5.6, but mainly left for future
investigation.

Recalling that a Lagrangian multiform is defined to satisfy the closure relation dL = 0

on the equations of motion, we obtain:

Corollary 5.6 (Closedness of H) The Hamiltonian multiform is horizontally closed on
the multiform Euler-Lagrange equations dH = 0. In other words, H satisfies the closure
relation.

We believe that these results justify our terminology Hamiltonian multiform since we
have the closure relation for H if and only if dδL = 0. This corollary is the multiform
equivalent of the well known fact in finite-dimensional mechanics that the Hamiltonian is
a conserved quantity dH

dt = 0 (recall that we do not include explicit dependence on the
independent variables here).

We are now in a position to introduce the multiform analog of the multisymplectic form
(3.7), again denoting it by Ω.

Definition 5.7 The symplectic multiform associated to Ω(1) is Ω := δΩ(1) ∈ A (2,1).

Remark 5.8: Like the multisymplectic form, the symplectic multiform is vertically
closed (more precisely, exact), has degree (2, 1), in the case of 1+1-dimensional field
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theories considered here, and is of the form

Ω =
n∑
j=0

ωj ∧ dxj , ωj ∈ A (2,0) , 0 ≤ j ≤ n . (5.9)

If we were to consider a Lagrangian multiform for a hierarchy of k-dimensional field
theories, k < n, the Lagrangian multiform would be a horizontal k-form, and the
symplectic multiform (if it exists, and with the same definition) would be of degree
(2, k − 1).

The symplectic multiform Ω achieves an important unification of the various (standard and
dual) symplectic structures appearing in an integrable hierarchy, as originally observed in
[ACDK16]. When x1 is chosen to be the x variable and xj , 2 ≤ j ≤ n to be the higher
times tj of the hierarchy then ω1 represents (up to a sign) the usual symplectic form,
while each ωj , j 6= 1 represents the dual symplectic form related to the time tj . For each
2 ≤ j ≤ n, the multisymplectic form Ω1j which would be obtained by considering the
Lagrangian L1j as a standalone Lagrangian, as in Chapter 3, is simply obtained by taking
ω1 ∧ dx1 + ωj ∧ dxj .

Remark 5.9: The reader will hopefully forgive us for the choice of terminology,
very similar to multisymplectic form. Another candidate, polysymplectic form,
is already in use in the literature (see for instance [K98]). We could not simply
keep multisymplectic form for our new object since, although both objects are
derived in a similar fashion and play a similar role in the theory, they are quite
different in concept. Indeed, the multisymplectic form is related to only a single
field theory, while our symplectic multiform is related to a hierarchy. In the case of
k-dimensional field theory, the multisymplectic form of degree (2, k − 1) is obtained
considering a k-dimensional space-time manifold and a horizontal volume k-form
as a Lagrangian. When we consider a hierarchy of such field theories, we extend
the space-time manifold to a n-dimensional multi-time and therefore consider n
independent variables. Moreover, we consider the k-form (previously taken as a
Lagrangian) only as one of the terms of the Lagrangian multiform (which still is
of degree k). Consequently, the multisymplectic form is extended to a symplectic
multiform, which still has degree (2, k − 1), but contains other terms generated by
the additional n− k times.

Just like in the covariant case, it is clear from Proposition 5.3 that adding a total
differential dϕ to L , which amounts to adding δϕ to Ω(1), has no consequence on Ω.

The following corollary gives support for our terminology as it is reminiscent of the fact
that a symplectic form ω is closed in classical mechanics.
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Corollary 5.10 The symplectic multiform is horizontally closed on the multiform Euler-
Lagrange equations:

δdL = 0 =⇒ dΩ = 0 . (5.10)

Proof. The equations are expressed as δL = −dΩ(1), so

0 = δ2L = −δdΩ(1) = dδΩ(1) = dΩ .

We now use the symplectic multiform to obtain the multiform Hamilton equations.

Proposition 5.11 (multiform Hamilton equations) The multiform Euler-Lagrange equa-
tions for the Lagrangian multiform L are equivalent to

δH =
n∑
j=0

dxj ∧ ∂̃jyΩ. (5.11)

Proof. The proof is a simple adaptation of the similar result obtained in [D03, Chapter
19] and in Proposition 3.6 to the multiform case.

Remark 5.12: Lemma 5.3 ensures that the freedom of adding a total differential to
L has no consequence on the multiform Hamilton equations as it should. The other
source of freedom coming from (5.5)-(5.6) does not affect the result either. Indeed,
suppose that H̃ is the Hamiltonian multiform associated to the pair (L , Ω̃(1)) of
(5.6) and Ω̃ is associated to Ω̃(1) then exactly the same computation as above yields
that the multiform Euler-Lagrange equations for the Lagrangian multiform L are
equivalent to

δH̃ =

n∑
j=0

dxj ∧ ∂̃jyΩ̃ .

5.2 The multi-time Poisson brackets

Continuing with the inspiration given by covariant Hamiltonian field theory, the next
step is to construct a Poisson bracket related to our symplectic multiform and cast the
multiform Hamilton equations into Poisson Bracket form. Similarly to the situation
reviewed in Chapter 3, this can only be done for a restricted class of forms, called
admissible forms. For convenience, we restrict again our attention to horizontal forms as
this is sufficient for our purposes.

Definition 5.13 (Admissible forms) We will say that a horizontal form P is admissible
if there exists a (multi)vector field ξP such that ξP yΩ = δP . ξP is called the Hamiltonian
vector field related to P .
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Proposition 5.14 P can be a non-trivial admissible form only if either P ∈ A or
P ∈ A (0,1).

Proof. The proof follows from a simple counting argument, and it is similar to the one of
Proposition 3.11. Suppose P ∈ A (0,s). Then, since Ω ∈ A (2,1), in order for a (p, q)-vector
field1 ξP to exist such that ξP yΩ = δP , then necessarily 2 − p = 1 and 1 − q = s. So
p = 1 and q = 1− s ≥ 0, and therefore s can only be 0 or 1.

We now produce a statement that is similar to Proposition 3.13, but for the multiform
case. The proof is easily obtained as an extension. We will use this result systematically
without quoting it in our examples below.

Let us denote by SΩ the set of basis elements δu(i)
l that appear explicitly the symplectic

multiform. It is a finite set since Ω is derived from L which is assumed to depend on u(i)
l

with |i| ≤ m for some m (finite jet dependence). Hence, we can assume some ordering on
SΩ such that we can label the δu(i)

l ’s as δvj , j = 1, . . . ,#SΩ. We then write

Ω =

n∑
k=0

∑
i<j
i,j∈Ik

ωijk δvi ∧ δvj ∧ dx
k (5.12)

where Ik ⊆ {1, . . . ,#SΩ} for each k. Note that each ωijk ∈ A so has a dependence on the
local coordinates u(j)

m which we do not show explicitly.

Proposition 5.15 (Necessary form of an admissible 1-form.) Suppose F =
∑n

k=0 Fk dx
k ∈

A (0,1) is an admissible 1-form for the symplectic multiform (5.12). Then, for each
0 ≤ k ≤ n, Fk can only depend (at most) on vj, j ∈ Ik.

We can now define the multi-time Poisson brackets for admissible forms, in analogy with
the covariant Poisson bracket.

Definition 5.16 (multi-time Poisson brackets) For two admissible forms P and Q, of
degree respectively r and s, we define their multi-time Poisson bracket as

{[P,Q]} := (−1)rξP yδQ. (5.13)

Remark 5.17: This definition is formally the same as the one of the covariant
Poisson bracket (3.10). However, we stress that the symplectic multiform of the
hierarchy is different from the the multisymplectic form of a singular field theory, as it
includes additional terms. Therefore, the resulting Poisson bracket of two horizontal
forms will be different. For this reason we have chosen to use two different notations,

1We mean that ξP is obtained with a wedge-product of p vertical vector fields and q horizontal vector
fields.
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i.e. {( , )} for the covariant Poisson bracket, and {[ , ]} for the multi-time Poisson
bracket. The two brackets coincide, in the case of a 1 + 1-dimensional field theory,
when n = 2.

These Poisson brackets are graded antisymmetric and bilinear in the space of admissible
forms. In particular

• P,Q ∈ A (0,1), then {[P,Q]} = −ξP yδQ = −{[Q,P ]} = ξQyδP ;

• P ∈ A (0,1) and H ∈ A , then {[H,P ]} = ξHyδP = −{[P,H]} = ξP yδH.

As mentioned before for the covariant Poisson bracket, our definition may lead to issues
regarding the Jacobi identity for instance. However, we investigate this further in
connection with the r-matrix structure of the multi-time Poisson bracket whereby the
Jacobi identity translates into the classical Yang-Baxter equation.

Theorem 5.18 On the equations of motion

dF = ξF yδH (5.14)

for any admissible 1-form that does not depend on the independent variables.

Proof. The proof is easily obtained as an extension of the proof of Theorem 3.15

If the components Hij of H are admissible 0-forms, then the previous proposition leads
to:

Corollary 5.19 On the equations of motion

dF =

n∑
i<j=1

{[Hij , F ]}dxij . (5.15)

for any admissible 1-form that does not depend on the independent variables.

Proof.

dF = ξF yδH =
∑
i<j

ξF yδHij ∧ dxij = −
∑
i<j

{[F,Hij ]}dxij =
∑
i<j

{[Hij , F ]}dxij .

This is a generalisation of the usual Hamilton equations in Poisson Bracket form for
classical finite-dimensional mechanics ḟ = {H, f}. In our context, this result turns out to
be useful in relation to conservation laws within an integrable hierarchy. Indeed, if F is a
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1-form, we have

dF =
n∑
j=0

dxj ∧ ∂jF =
n∑

i,j=0

∂iFjdx
i ∧ dxj =

∑
i<j

(∂iFj − ∂jFi)dxi ∧ dxj

which means that, in fact if dF = 0 on the equations of motion, then

∂iFj = ∂jFi, ∀i 6= j. (5.16)

This suggests the following definition.

Definition 5.20 We say that an admissible 1-form F is a conservation law if dF = 0

on the equations of motion.

The next corollary then follows immediately from Proposition 5.18.

Corollary 5.21 A admissible 1-form F is a conservation law if and only if on the
equations of motion ξF yδH = 0 or, if each Hij is admissible,

{[Hij , F ]} = 0 ∀ij . (5.17)

This is clearly an extension of the concept of first integral in classical mechanics. As we
will show on some examples below, a rather elegant byproduct of our approach is that
the very definition of an admissible form being a conservation law can lead to its explicit
form.

We now address the relationship between the multi-time Poisson bracket that we just
defined and the single-time Poisson brackets that can be derived from the single Lag-
rangians Lij using the usual construction. This generalises Proposition 3.17 to the case
of Hamiltonian multiforms. Starting from the decomposition (5.9), for each 0 ≤ i ≤ n, it
is natural to want to define the i-th Poisson bracket of two 0-forms f, g ∈ A as

{f, g}i := −ξifyδg, where ξifyωi = δf. (5.18)

We remark that there is no sum on the i index.

Theorem 5.22 (Decomposition of the multi-time Poisson Bracket) Let F =
∑n

i=0 Fidx
i

be an admissible 1-form, then for i ≥ 0, Fi is admissible with respect to ωi. Let G =∑n
i=0Gidx

i be another admissible 1-form, then the following decomposition of the multi-
time Poisson bracket holds:

{[F,G]} =
n∑
i=0

{Fi, Gi}idxi. (5.19)
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Proof. The proof is a generalisation of the one of Proposition 3.17 On the one hand, by
definition

δF =

n∑
i=0

δFi ∧ dxi ,

and on the other hand, since F is admissible

δF = ξF y
n∑
i=0

ωi ∧ dxi =
n∑
i=0

ξF yωi ∧ dxi ,

hence δFi = ξF yωi so Fi is admissible with respect to ωi for each 0 ≤ i ≤ n and we can
take ξiFi = ξF for all 0 ≤ i ≤ n (modulo kernel of ωi). Note that this gives an idea of how
restrictive it is for F to be admissible. Next, consider the following chain of equalities

{[F,G]} =− ξF yδG = −ξF y(
n∑
i=0

δGi ∧ dxi) = −ξF y(
n∑
i=0

ξiGiyωi ∧ dx
i)

=

n∑
i=0

ξiGiyξF yωi ∧ dx
i =

n∑
i=0

ξiGiyδFi ∧ dx
i =

n∑
i=0

{Fi, Gi}idxi

which concludes the proof.

This is the generalization to an arbitrary number of flows in an integrable hierarchy of the
decomposition theorem that was obtained in Proposition 3.17. This theorem describes
the relationship between our multi-time Poisson bracket {[ , ]}, encapsulating an arbitrary
number of flows in the hierarchy, and the usual and dual single-time Poisson brackets
{ , }i, which are related to each flow separately.

5.3 Potential Korteweg-de Vries hierarchy

In the following we will see the example of the Korteweg-de Vries (KdV) hierarchy with
respect to its first two times, so in usual hierarchy notations, we would have x1 = x,
x2 = t2 and x3 = t3 (if one consider the KdV alone, t3 is simply the time t). In fact,
since the usual KdV equation does not admit a Lagrangian formulation, we consider its
potential form instead. It is known that for KdV hierarchy the even flows are trivial
v2k = 0 ∀k, so we will also treat the less trivial case of the first three odd times x1 = x,
x3 = t3 and x5 = t5. We use the Lagrangians multiforms presented in [V18].
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5.3.1 Times 1,2 and 3

We formulate the first two levels of the (potential) KdV hierarchy, described by the
Lagrangian multiform L = L12 dx

12 + L23 dx
23 + L13 dx

13, where

L12 = v1v2 , (5.20a)

L23 = −3v2
1v2 − v1v112 + v11v12 − v111v2 , (5.20b)

L13 = −2v3
1 − v1v111 + v1v3 . (5.20c)

In section 2.3 we have checked that the multiform Euler-Lagrange equations δdL = 0

are equivalent to
v2 = 0 , v3 = v111 + 3v2

1 . (5.21)

and differential consequences. The potential KdV from v13 = (v3)1 = v1111 + 6v1v11. We
are now going to show the procedure to obtain the symplectic multiform from L and
(5.21).

The symplectic multiform We start by computing the δ-differential of the Lagrangian
multiform:

δL =v1δv2 ∧ dx12 + v2δv1 ∧ dx12

+ (−6v1v2 − v112)δv1 ∧ dx23 + (−3v2
1 − v111)δv2 ∧ dx23 + v12δv11 ∧ dx23

+ v11δv12 ∧ dx23 − v1δv112 ∧ dx23 − v2δv111 ∧ dx23

+ (v3 − v111 − 6v2
1)δv1 ∧ dx13 + v1δv3 ∧ dx13 − v1δv111 ∧ dx13.

We now use the property dδ = −δd on some of the terms to obtain the desired expression
δL = E(L )− dΩ(1), where E(L ) = 0 is equivalent to (5.21). The reader can verify the
following identities

v1δv2 ∧ dx12 = −v12δv ∧ dx12 − v13δv ∧ dx13 − v1δv3 ∧ dx13 − d(−v1δv ∧ dx1) ,

v2δv1 ∧ dx12 = −v12δv ∧ dx12 + v23δv ∧ dx23 + v2δv3 ∧ dx23 − d(v2δv ∧ dx2) ,

(v3 − v111 − 6v2
1)δv1 ∧ dx13 = −(v3 − v111 − 6v2

1)1δv ∧ dx13

− (v3 − v111 − 6v2
1)2δv ∧ dx23 − (v3 − v111 − 6v2

1)δv2 ∧ dx23

− d((v3 − v111 − 6v2
1)δv ∧ dx3) ,

− v1δv111 ∧ dx13 = v1111δv ∧ dx13 + v1112δv ∧ dx23 + v111δv2 ∧ dx23

− v112δv1 ∧ dx23 − v11δv12 ∧ dx23

+ v12δv11 ∧ dx23 + v1δv112 ∧ dx23

− d(−v1δv11 ∧ dx3 + v11δv1 ∧ dx3 − v111δv ∧ dx3).



78 Hamiltonian multiform description of integrable hierarchies

Using these identities in δL we get

δL =− 2v12δv ∧ dx12 + (−2v13 + 2v1111 + 12v1v11)δv ∧ dx13

+ (2v1112 + 12v1v12)δv ∧ dx23 + (−6v1v2 − 2v112)δv1 ∧ dx23

+ (−v3 + v111 + 3v2
1)δv2 ∧ dx23 + v2δv3dx

23 + 2v12δv11 ∧ dx23

− v2δv111 ∧ dx23

− d
(
− v1δv ∧ dx1 + v2δv ∧ dx2 + (v3 − 2v111 − 6v2

1)δv ∧ dx3

+ v11δv1 ∧ dx3 − v1δv11 ∧ dx3
)

≡E(L )− dΩ(1)

where we define Ω(1) = −v1δv ∧ dx1 + v2δv ∧ dx2 + (v3 − 2v111 − 6v2
1)δv ∧ dx3 + v11δv1 ∧

dx3 − v1δv11 ∧ dx3. We see that E(L ) = δL + dΩ(1) = 0 is equivalent to the equations
(5.21) and differential consequences. The symplectic multiform is then

Ω =− δv1 ∧ δv ∧ dx1 + δv2 ∧ δv ∧ dx2 + δv3 ∧ δv ∧ dx3

− 2δv111 ∧ δv ∧ dx3 − 12v1δv1 ∧ δv ∧ dx3 + 2δv11 ∧ δv1 ∧ dx3.

Multiform Hamilton equations The Hamiltonian multiform is computed as H =∑
i≤j Hij dx

ij , using Hij = ∂̃iyω
(1)
j − ∂̃jyω

(1)
i − Lij , and we find

H12 = v1v2, (5.22a)

H23 = −3v2
1v2 − v111v2 (5.22b)

H13 = v1v3 − 4v3
1 + v2

11 − 2v1v111. (5.22c)

The multiform Hamiltonian equations are obtained as

• δH12 = ∂̃2yω1 − ∂̃1yω2:

v1δv2 + v2δv1 = −v12δv + v2δv1 − v12δv + v1δv2 =⇒ v12 = 0.

• δH23 = ∂̃3yω2 − ∂̃2yω3:

− 3v2
1δv2 − 6v1v2δv1 − v111δv2 − v2δv111

= v23δv − v3δv2 − v23δv + v2δv3 + 2v1112δv − 2v2δv111

+ 12v1v12δv − 12v1v2δv1 − 2v112δv1 + 2v12δv11

which implies the following system of equations

v2 = 0 , v12 = 0 ,

v3 − 3v2
1 − v111 = 0 , v112 + 3v1v2 = 0 ,

v1112 + 6v1v12 = 0 .
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• δH13 = ∂̃3yω1 − ∂̃1yω3:

v1δv3 + v3δv1 − 12v2
1δv1 + 2v11δv11 − 2v1δv111 − 2v111δv1

= −v13δv + v3δv1 − v13δv + v1δv3 + 2v1111δv

− 2v1δv111 + 12v1v11δv − 12v2
1δv1 − 2v111δv1 + 2v11δv11,

which implies v13 − v1111 − 6v1v11 = 0.

This system of equations is equivalent to (5.21) as expected.

Admissible forms and conservation laws We now describe admissible forms for
this case. A 1-form Q = Q1(v, v1) dx1 +Q2(v, v2) dx2 +Q3(v, v1, v3, v11, v111) dx3 for the
symplectic multiform Ω is admissible if and only if

∂Q1

∂v1
= −∂Q2

∂v2
= −∂Q3

∂v3
=

1

2

∂Q3

∂v111
, (5.23a)

∂Q1

∂v
=

1

2

∂Q3

∂v11
. (5.23b)

Its related Hamiltonian vector field is

ξQ =
∂Q1

∂v1
∂v −

∂Q1

∂v
∂v1 +

∂Q2

∂v
∂v2

+

(
∂Q3

∂v
− 6v1

∂Q3

∂v11

)
∂v3 +

(
1

2

∂Q3

∂v1
− 3v1

∂Q3

∂v111

)
∂v11 .

(5.24)

This can be proved as followed: one takes a generic vector field

ξQ = A∂v +B∂v1 + C∂v2 +D∂v3 + E∂v11 +D∂v111

and determines the coefficients comparing the right and left hand-side of ξQyΩ = δQ.
This translates into constraints on the derivatives of Qi with respect to the field and its
derivatives, and determines the coefficients of the vector field.
We also verify that for any admissible 1-form Q and modulo the equations of motion
dQ = ξQyδH, or, more explicitly

• ∂1Q2 − ∂2Q1 = ξQyδH12, which means

∂Q2

∂v
v1 +

∂Q2

∂v2
v12 −

∂Q1

∂v
v2 −

∂Q1

∂v1
v12 = −∂Q1

∂v

∂H12

∂v1
+
∂Q2

∂v

∂H12

∂v2

= −∂Q1

∂v
v2 +

∂Q2

∂v
v1

=⇒ −2v12
∂Q1

∂v1
= 0.



80 Hamiltonian multiform description of integrable hierarchies

• ∂2Q3 − ∂3Q2 = ξQyδH23, which means

∂Q3

∂v
v2 +

∂Q3

∂v1
v12 +

∂Q3

∂v3
v23 +

∂Q3

∂v11
v112 +

∂Q3

∂v111
v1112 −

∂Q2

∂v
v3 −

∂Q2

∂v2
v23

= −∂Q1

∂v

∂H23

∂v1
+
∂Q2

∂v

∂H23

∂v2

= 6v1v2
∂Q1

∂v
− (3v2

1 + v111)
∂Q2

∂v
,

which again is

v2
∂Q3

∂v
+ v12

∂Q3

∂v1
+ 2v112

∂Q1

∂v1
+ (2v112 − 6v1v2)

∂Q1

∂v
+ (−v3 + 3v2

1 + v111)
∂Q2

∂v
= 0.

• ∂1Q3 − ∂3Q1 = ξQyδH13, which means

∂Q3

∂v
v1 +

∂Q3

∂v1
v11 +

∂Q3

∂v3
v13 +

∂Q3

∂v11
v111 +

∂Q3

∂v111
v1111 −

∂Q1

∂v
v3 −

∂Q1

∂v1
v13

= −∂Q1

∂v

∂H13

∂v1
+

(
∂Q3

∂v
− 6v1

∂Q3

∂v111

)
∂H13

∂v3
+

(
1

2

∂Q3

∂v1
− 3v1

∂Q3

∂v111

)
∂H13

∂v11

= (12v2
1 + 2v111 − v3)

∂Q1

∂v
+ v1

∂Q3

∂v
− 6v2

1

∂Q3

∂v11
+ v11

∂Q3

∂v1
− 6v1v11

∂Q3

∂v111
,

which again is (2v13 − 2v1111 − 12v1v11)∂Q3

∂v3
= 0.

We can find a conservation law for the Lagrangian multiform L , i.e. a admissible 1-form
F = F1(v, v1) dx1 +F2(v, v2) dx2 +F3(v, v1, v3, v11, v111) dx3 such that ξF yδH = ξFH = 0:

• ξFH12 = 0 means that −∂F1
∂v v2 + ∂F2

∂v v1 = 0. Since ∂F1
∂v1

= −∂F2
∂v2

, necessarily
F1 = a(v)v1 + b(v) and F2 = −a(v)v2 + c(v) for some a, b, c smooth functions of v.
The condition above then translates to

−a′(v)v1v2 − b′(v)v2 − a′(v)v1v2 + c′(v)v1 = 0 =⇒ a′(v) = b′(v) = c′(v) = 0.

We will set a = 1, and b = c = 0, so we have F1 = v1 and F2 = −v2.

• ξFH23 = 6v1v2
∂F1
∂v − (3v2

1 + v111)∂F2
∂v = 0 automatically.

• Because of the admissibility constraint we have that F3 = −v3 + 2v111 + d(v, v1)

where d is a smooth function of v, v1. Now we solve for d the equation ξFH13 =

(12v2
1 + 2v111 − v3)∂F1

∂v + v1
∂F3
∂v − 6v2

1
∂F3
∂v11

+ v11
∂F3
∂v1
− 6v1v11

∂F3
∂v111

= v1
∂d(v,v1)
∂v +

v11
∂d(v,v1)
∂v1

− 12v1v11 = 0. This implies

∂d

∂v
= 0,

∂d

∂v1
= 12v1, =⇒ d = 6v2

1.
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A conservation law is then

F = v1dx
1 − v2dx

2 + (−v3 + 2v111 + 6v2
1)dx3. (5.25)

In fact its differential dF is

v12dx
21 + v13dx

31 − v12dx
12 − v23dx

32

+ (−v13 + 2v1111 + 12v1v11)dx13 + (−v23 + 2v1112 + 12v1v12)dx23

= −2v12dx
12 + (−2v13 + 2v1111 + 12v1v11)dx13 + (2v1112 + 12v1v12)dx23

which vanishes on the equations of motion.

Another Hamiltonian multiform formulation We now mention how to compute
another symplectic multiform (and its related Hamiltonian multiform). One can perform
an equivalent computation to the one above, making different choices as to what to apply
δd = −dδ on, and obtain

Ω̃(1) =− v1δv ∧ dx1 +
v2

2
δv ∧ dx2

+
1

2
(v3 − 9v2

1 − 3v111)δv ∧ dx3 + v11δv1 ∧ dx3 − v1δv11 ∧ dx3.
(5.26)

Indeed it is easy to check that also δΛ + dΩ̃(1) = 0 is equivalent to (5.21). Moreover, we
notice that d(Ω(1) − Ω̃(1)) = 0 is also equivalent to the equations of motion, as it should
be since dΩ(1) − dΩ̃(1) = δL − δL = 0. We then define

Ω̃ =− δv1 ∧ δv ∧ dx1 +
1

2
δv2 ∧ δv ∧ dx2 +

1

2
δv3 ∧ δv ∧ dx3

− 9v1δv1 ∧ δv ∧ dx3 − 3

2
δv111 ∧ δv ∧ dx3 + 2δv11 ∧ δv1 ∧ dx3.

(5.27)

The coefficients of Hamiltonian multiform H̃ = H̃12 dx
12 + H̃23 dx

23 + H̃13 dx
13 are

H̃12 =
1

2
v1v2 , (5.28a)

H̃23 =− 3

2
v2

1v2 −
1

2
v2v111 , (5.28b)

H̃13 =
1

2
v1v3 + v2

11 −
5

2
v3

1 −
5

2
v1v111 (5.28c)

and the multiform Hamilton equations for H̃ and Ω̃ bring the same set of equations as
expected.

5.3.2 Times 1,3 and 5

In the previous section we considered the times 1 2 and 3 of (potential) KdV hierarchy.
We can also describe the odd-time flows 1, 3 and 5, using the Lagrangian multiform
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L = L13 dx
13 + L15 dx

15 + L35 dx
35, where

L13 =− 2v3
1 + v1v3 − v1v111 , (5.29a)

L15 =− 5v4
1 + 10v1v

2
11 + v1v5 − v2

111 , (5.29b)

L35 =6v5
1 − 10v3

1v3 + 20v3
1v111 − 15v2

1v
2
11 + 3v2

1v5 + 3v2
1v11111

− 10v1v3v111 + 20v1v11v13 − 12v1v11v1111 + 6v1v
2
111

− 5v3v
2
11 + 7v2

11v111 + v1v115 − v3v11111 + v5v111 − v11v15

+ 2v13v1111 − 2v111v113 + v111v11111 − v2
1111 .

(5.29c)

The multiform Euler-Lagrange equations are equivalent to

v3 = v111 + 3v2
1, v5 = v11111 + 10v3

1 + 5v2
11 + 10v1v111 (5.30)

and differential consequences. If we define the form Ω(1) as

Ω(1) =− v1δv ∧ dx1 + (v3 − 2v111 − 6v2
1)δv ∧ dx3 + v11δv1 ∧ dx3 − v1δv11 ∧ dx3

+ (v5 − 20v3
1 − 20v1v111 − 10v2

11 − 2v11111)δv ∧ dx5

+ (20v1v11 + 2v1111)δv1 ∧ dx5 − 2v111δv11 ∧ dx5,

(5.31)

one can check that δΛ + dΩ(1) = 0 is equivalent to (5.30). The symplectic multiform is
then Ω = ω1 ∧ dx1 + ω3 ∧ dx3 + ω5 ∧ dx5, where

ω1 =δv ∧ δv1 , (5.32a)

ω3 =δv3 ∧ δv − 2δv111 ∧ δv + 2δv11 ∧ δv1 − 12v1δv1 ∧ δv , (5.32b)

ω5 =δv5 ∧ δv + (60v2
1 + 20v111)δv ∧ δv1 − 20v1δv111 ∧ δv

− 20v11δv11 ∧ δv − 2δv11111 ∧ δv + 20v1δv11 ∧ δv1

+ 2δv1111 ∧ δv1 − 2δv111 ∧ δv11 .

(5.32c)

The Hamiltonian multiform is obtained in the usual way and reads H = H13 dx
13 +

H35 dx
35 +H15 dx

15 where

H13 =v1v3 + v2
11 − 2v1v111 − 4v3

1 , (5.33a)

H15 =v1v5 − 15v4
1 − 20v2

1v111 − 2v11111v1 + 2v1111v1 − v2
111 , (5.33b)

H35 =− 10v3
1v3 − 10v1v111v3 − 5v2

11v3 − v11111v3 + v111v5

+ 3v2
1v5 − 6v5

1 − 20v3
1v111 + 15v2

1v
2
11 − 3v2

1v11111 + 12v1v11v1111

− 6v1v
2
111 − 7v2

11v111 − v111v11111 + v2
1111 .

(5.33c)
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One can then proceed in a similar way to the 123-times case and verify the validity of the
multiform Hamilton equations:

δH13 =∂̃3yω1 − ∂̃1yω3

δH35 =∂̃5yω3 − ∂̃3yω5

δH15 =∂̃5yω1 − ∂̃1yω5.

We obtain that a 1-form

F = F1(v, v1) dx1 + F3(v, v1, v3, v11, v111) dx3 + F5(v, v1, v5, v11, v111, v1111, v11111) dx5

is admissible if and only if

∂F1

∂v1
=

1

2

∂F3

∂v111
=

1

2

∂F5

∂v11111
= −∂F3

∂v3
= −∂F5

∂v5
, (5.34a)

∂F1

∂v
=

1

2

∂F3

∂v11
=

1

2

∂F5

∂v1111
, (5.34b)

∂F5

∂v111
=
∂F3

∂v1
+ 4v1

∂F5

∂v11111
. (5.34c)

Its related Hamiltonian vector field is

ξF =
∂F1

∂v1
∂v −

∂F1

∂v
∂v1 +

(
∂F3

∂v
+ +10v11

∂F3

∂v111
+ 4v1

∂F3

∂v11
− ∂F5

∂v11

)
∂v3

+

(
∂F5

∂v
− 10v1

∂F5

∂v11
+ 10v11

∂F5

∂v111
+ (70v2

1 − 10v111)
∂F5

∂v1111

)
∂v5

+

(
1

2

∂F3

∂v1
− 3v1

∂F3

∂v111

)
∂v11 +

(
−1

2

∂F5

∂v11
+ 5v11

∂F5

∂v11111
+ 5v1

∂F5

∂v1111

)
∂v111

+

(
1

2

∂F5

∂v1
− 5v1

∂F5

∂v111
+ (35v2

1 − 5v111)
∂F5

∂v11111

)
∂v1111 .

(5.35)

From the equations (5.34) one can obtain an admissible conservation law:

F =v1 dx
1 + (−v3 + 2v111 + 6v2

1) dx3

+ (−v5 + 2v11111 + 20v1v111 + 10v2
11 + 20v3

1) dx5 .
(5.36)

In fact we have that ∂3v1 = ∂1(−v3 + 2v11 + 6v2
1) implies

v13 = (v111 + 3v2
1)1; (5.37)

the second equation ∂5v1 = ∂1(−v5 + 2v11111 + 20v1v111 + 10v2
11 + 20v3

1) instead implies

v15 = (v11111 + 10v3
1 + 5v2

11 + 10v1v111)1; (5.38)
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and then ∂5(−v3 + 2v11 + 6v2
1) = ∂3(−v5 + 2v11111 + 20v1v111 + 10v2

11 + 20v3
1) is satisfied

using the previous equations.

5.4 sine-Gordon hierarchy

In this section we will show another example, i.e. the first two levels of the sine-Gordon
hierarchy in light-cone coordinates. A Lagrangian multiform for this set of equations has
been obtained for the first time in [S16] and is L = L12 dx

12 +L13 dx
13 +L23 dx

23, where

L12 =
1

2
u1u2 + cosu, (5.39a)

L13 =
1

2
u1u3 +

1

2
u2

11 −
1

8
u4

1, (5.39b)

L23 =− 1

2
u2u3 + u11u12 + u11 sinu− 1

2
u2

1 cosu. (5.39c)

The multiform Euler-Lagrange equations dδL = 0 are equivalent to

u12 + sinu = 0 , u3 −
1

2
u3

1 − u111 = 0 (5.40)

and differential consequences.

The symplectic and Hamiltonian multiform An similar computation to the ones
above yields the form Ω(1) as

Ω(1) = −1

2
u1δu ∧ dx1 +

1

2
u2δu ∧ dx2 − (

u111

2
+
u3

1

4
)δu ∧ dx3 + u11δu1 ∧ dx3. (5.41)

The δ-differential of Ω(1) is the symplectic multiform Ω = ω1 ∧ dx1 + ω2 ∧ dx2 + ω3 ∧ dx3,
with

ω1 =
1

2
δu ∧ δu1, (5.42a)

ω2 =
1

2
δu2 ∧ δu, (5.42b)

ω3 =− 1

2
δu111 ∧ δu−

3u2
1

4
δu1 ∧ δu+ δu11 ∧ δu1. (5.42c)

The Hamiltonian multiform H = H12 dx
12 +H13 dx

13 +H23 dx
23 is computed as

H12 =
1

2
u1u2 + cosu , (5.43a)

H13 =− 1

2
u1u111 +

1

2
u2

11 −
1

8
u4

1 , (5.43b)

H23 =− 1

2
u2u111 −

1

4
u3

1u2 + u11 sinu− 1

2
u2

1 cosu . (5.43c)
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The multiform Hamilton equations are obtained as δH =
∑3

j=1 dx
j ∧ ∂̃jyΩ and are

equivalent to the multiform Euler-Lagrange equations, as required. In particular we have
for δH12 = ∂̃2yω1 − ∂̃1yω2

u1

2
δu2 +

u2

2
δu1 + sinu δu =

u2

2
δu1 −

u12

2
δu− u12

2
δu+

u1

2
δu2

which implies u12 + sinu = 0, and for δH23 = ∂̃3yω2 − ∂̃2yω3

(u11 cosu− u2
1

2
sinu)δu+ (−3

4
u2

1u2 + u1 cosu)δu1

+ (−u111

2
− u3

1

4
)δu2 − sinuδu11 −

u2

2
δu111

=
u23

2
δu− u3

2
δu2 +

u1112

2
δu− u2

2
δu111

+
3

4
u2

1u12δu−
3

4
u2

1u2δu1 − u112δu1 + u12δu11

which implies

u12 + sinu = 0 , u3 = u111 +
1

2
u3

1 ,

u112 + u1 cosu = 0 ,
u23

2
+
u1112

2
+

3

4
u2

1u12 + u11 cosu+
u2

1

2
sinu = 0 .

where the last two equations are differential consequences of the first two. Finally
δH13 = ∂̃3yω1 − ∂̃1yω3:

− (
u111

2
+
u3

1

2
)δu1 + u11δu11 −

u1

2
δu111

=
u3

2
δu1 −

u13

2
δu+

u1111

2
δu− u1

2
δu111 +

3

4
u2

1u11δu

− 3

4
u3

1δu1 − u111δu1 + u11δu11

which implies again u3 = u111 + u3
1/2 and its differential consequence u13 = u1111 +

3u2
1u11/2.

Admissible forms and multi-time Poisson brackets One can then investigate the
presence of admissible forms:

• A 0-form H(u, u1, u2, u11, u111) is always admissible, with Hamiltonian vector field

ξH =

(
2
∂H

∂u1
− 3u2

1

∂H

∂u111

)
∂u ∧ ∂1 − 2

∂H

∂u2
∂u ∧ ∂2

+ 2
∂H

∂u111
∂u ∧ ∂3 +

(
3

2
u2

1

∂H

∂u11
− 2

∂H

∂u

)
∂u1 ∧ ∂1 −

∂H

∂u11
∂u1 ∧ ∂3.

We remark that ξH is not unique;

• A 1-form P = P1 dx
1 + P2 dx

2 + P3 dx
3 is admissible if and only if P1 = P1(u, u1),
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P2 = P2(u, u2), P3 = P3(u, u1, u11, u111), and

∂P3

∂u11
= 2

∂P1

∂u
, (5.44a)

∂P3

∂u111
= −∂P2

∂u2
=
∂P1

∂u1
, (5.44b)

and its related vector field is

ξP =2
∂P1

∂u1
∂u − 2

∂P1

∂u
∂u1 + 2

∂P2

∂u
∂u2

+

(
∂P3

∂u1
− 3

2
u2

1

∂P3

∂u111

)
∂u11 +

(
3

2
u2

1

∂P3

∂u11
− 2

∂P3

∂u

)
∂u111 .

(5.45)

• The only admissible 2-forms or 3-forms are the constant ones.

For such forms we can define the multi-time Poisson brackets. The Poisson bracket
between an admissible 0-form H and an admissible 1-form P = P1 dx

1 + P2 dx
2 + P3 dx

3

is ξPH, therefore

{[H,P ]} =2
∂P1

∂u1

∂H

∂u
− 2

∂P1

∂u

∂H

∂u1
+ 2

∂P2

∂u

∂H

∂u2
− 2

∂P3

∂u

∂H

∂u111

+
∂P3

∂u1

∂H

∂u11
− 3

2
u2

1

∂P3

∂u111

∂H

∂u11
+

3

2
u2

1

∂P3

∂u11

∂H

∂u111
.

(5.46)

If P =
∑3

i=1 Pidx
i and Q =

∑3
i=1Qidx

i are admissible 1-forms, then their Poisson
bracket satisfies the decomposition

{[P,Q]} = {P1, Q1}1 dx1 + {P2, Q2}2 dx2 + {P3, Q3}3 dx3, (5.47)

where

{P1, Q1}1 =2
∂P1

∂u

∂Q1

∂u1
− 2

∂P1

∂u1

∂Q1

∂u
, (5.48a)

{P2, Q2}2 =2
∂P2

∂u2

∂Q2

∂u
− 2

∂P2

∂u

∂Q2

∂u2
, (5.48b)

{P3, Q3}3 =2
∂P3

∂u

∂Q3

∂u111
− 2

∂P3

∂u111

∂Q3

∂u
+
∂P3

∂u11

∂Q3

∂u1
− ∂P3

∂u1

∂Q3

∂u11

+
3

2
u2

1

∂P3

∂u111

∂Q3

∂u11
− 3

2
u2

1

∂P3

∂u11

∂Q3

∂u111
.

(5.48c)

Contrary to the potential KdV example (and AKNS example below), for the sine-Gordon
hierarchy we were not able to find a admissible 1-form producing conservation laws in
the sense of Definition 5.20. However, it is possible to find a non-admissible 1-form
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F = F1 dx
1 + F2 dx

2 + F3 dx
3 that is closed on the equations of motion, as follows:

F1 =
1

2
u2

1 , (5.49a)

F2 = cosu , (5.49b)

F3 =
3

8
u4

1 + u1u111 −
1

2
u2

11 . (5.49c)

Then, on the equations of motion, one checks that

∂1F2 = ∂2F1 , ∂1F3 = ∂3F1 , ∂2F3 = ∂3F2 . (5.50)

Thus, the sine-Gordon example points to a need to extend our approach to conservation
laws beyond admissible forms.

5.5 The first four flows of Ablowitz-Kaup-Newell-Segur hier-
archy

Our last example deals with the Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy. For this
example, we include one more time compared to previous example, to remind the reader
that in principle we can keep adding more times in a multiform, corresponding to adding
more and more flows in the hierarchy. However, as becomes clear in this example, the
explicit expression soon becomes cumbersome. How to obtain a Lagrangian multiform for
any number of flows of the AKNS hierarchy will be explained in Chapter 6.

Multiform Euler-Lagrange equations We start from the Lagrangian multiform
adapted from the one in [SNC19b]

L = L12 dx
12 + L13 dx

13 + L14 dx
14 + L23 dx

23 + L24 dx
24 + L34 dx

34 , (5.51)

where

L12 =
i

2
(rq2 − qr2)− 1

2
q1r1 −

1

2
q2r2 , (5.52a)

L13 =
i

2
(rq3 − qr3)− i

8
(r1q11 − q1r11)− 3iqr

8
(rq1 − qr1) , (5.52b)

L23 =
i

4
(q2r11 − r2q11) +

1

2
(q3r1 + r3q1) +

i

8
(q1r12 − r1q12)

+
3iqr

8
(qr2 − rq2) +

1

8
q11r11 −

1

4
qr(qr11 + rq11)

+
1

8
(qr1 − rq1)2 +

1

2
q3r3 ,

(5.52c)
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and

L14 =
i

2
(rq4 − qr4) +

5

16
qr(qr11 + rq11)

+
3

16
(q2r2

1 + q2
1r

2) +
1

4
qrq1r1 −

1

8
q11r11 −

1

4
q3r3 ,

(5.53a)

L24 =
3i

8
q2r2(rq1 − qr1) +

1

16
(q2r1r2 + r2q1q2) +

5

16
qr(qr12 + rq12)

− i

8
qr(rq111 − qr111)− i

8
(q2r1r11 − ir2q1q11)− i

8
q1r1(rq1 − qr1)

+
i

4
qr(r1q11 − q1r11)− 3

8
qr(q1r2 + r1q2) +

1

8
(q111r2 + r111q2)

+
i

16
(q111r11 − r111q11)− 1

8
(q11r12 + r11q12) +

1

2
(q1r4 + r1q4) ,

(5.53b)

L34 =− 1

8
(q11r13 + r11q13) +

1

8
(q111r3 + r111q3) +

1

32
q111r111

− 1

32
(q2r2

11 + r2q2
11)− 1

32
q2

1r
2
1 +

3i

8
qr(rq4 − qr4)− 9

32
q4r4

+
3

16
q2r2(qr11 + rq11) +

1

16
(q2r1r3 + r2q1q3)

+
5

16
qr(qr13 + rq13) +

i

4
(q11r4 − r11q4)− 3

16
qr(q1r111 + r1q111)

− 1

16
qrq11r11 +

1

16
q1r1(qr11 + rq11)

+
15

16
q2r2q1r1 −

3

8
qr(q1r3 + r1q3)− i

8
(q1r14 − r1q14) ,

(5.53c)

As proved in [SNC19b], the corresponding multiform Euler-Lagrange equations δdL = 0

produce the familiar first three levels of the AKNS hierarchy

iq2 +
1

2
q11 − q2r = 0 , ir2 −

1

2
r11 + qr2 = 0 , (5.54a)

q3 +
1

4
q111 −

3

2
qrq1 = 0 , r3 +

1

4
r111 −

3

2
qrr1 = 0 , (5.54b)

iq4 =
1

8
q1111 +

3

4
q3r2 − 1

4
q2r11 −

1

2
qq1r1 − qrq11 −

3

4
q2

1r ,

ir4 = −1

8
r1111 −

3

4
q2r3 +

1

4
r2q11 +

1

2
rq1r1 + qrr11 +

3

4
r2

1q .

(5.54c)

The symplectic and Hamiltonian multiforms As done in the previous two ex-
amples, the computation of the form Ω(1) from δL gives

Ω(1) =

(
− i

2
rδq +

i

2
qδr

)
∧ dx1 +

(
−1

2
q1δr −

1

2
r1δq

)
∧ dx2 (5.55)

+

((
i

4
r11 −

3i

8
qr2

)
δq +

(
− i

4
q11 +

3i

8
q2r

)
δr − i

8
r1δq1 +

i

8
q1δr1

)
∧ dx3

+

((
1

8
r111 +

1

16
q1r

2 − 3

8
qrr1

)
δq +

(
1

8
q111 +

1

16
q2r1 −

3

8
qrq1

)
δr

+

(
−1

8
r11 +

5

16
qr2

)
δq1 +

(
−1

8
q11 +

5

16
q2r

)
δr1

)
∧ dx4 .
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In fact, we have that δL = −dΩ(1) is equivalent to the equations (5.54). The δ-differential
of Ω(1) is the symplectic multiform

Ω = ω1 ∧ dx1 + ω2 ∧ dx2 + ω3 ∧ dx3 + ω4 ∧ dx4, (5.56)

where

ω1 =iδq ∧ δr , (5.57a)

ω2 =− 1

2
(δq1 ∧ δr + δr1 ∧ δq) , (5.57b)

ω3 =
i

4
(δr11 ∧ δq − δq11 ∧ δr) +

i

4
δq1 ∧ δr1 +

3iqr

2
δq ∧ δr , (5.57c)

ω4 =
1

8
δr111 ∧ δq +

1

8
δq111 ∧ δr −

1

8
δr11 ∧ δq1

− 1

8
δq11 ∧ δr1 −

1

4
r2δq1 ∧ δq −

1

4
q2δr1 ∧ δr

− qrδq1 ∧ δr − qrδr1 ∧ δq −
1

2
(q1r − qr1)δq ∧ δr .

(5.57d)

The Hamiltonian multiform H = H12 dx
12 +H13 dx

13 +H14 dx
14 +H23 dx

23 +H24 dx
24 +

H34 dx
34 can now be computed and brings

H12 =
1

2
(−q1r1 + q2r2) , (5.58a)

H13 =
i

4
(r11q1 − q11r1) (5.58b)

H14 =− 1

8
(q2

1r
2 + q2r2

1) +
1

8
(q111r1 + q1r111)

− 1

8
q11r11 − qrq1r1 +

1

4
q3r3 ,

(5.58c)

H23 =− 1

8
q11r11 +

qr

4
(qr11 + q11r)−

1

8
(qr1 − q1r)

2 − 1

2
q3r3 , (5.58d)

H24 =
iqr

8
(rq111 − qr111) +

3i

8
q2r2(qr1 − rq1) +

iq1r1

8
(rq1 − qr1)

+
iqr

4
(q1r11 − r1q11) +

i

16
(q11r111 − q111r11)

+
i

8
(q2r1r11 − r2q1q11) ,

(5.58e)

H34 =− 1

16
(q2r1r3 + r2q1q3)− 1

32
q111r111 +

1

32
(q2r2

11 + q2
11r

2) +
1

32
q2

1r
2
1

+
9

32
q4r4 − 3

16
q2r2(qr11 + q11r) +

3

16
qr(q1r111 + r1q111)

+
1

16
qrq11r11 −

1

16
q1r1(qr11 + q11r)−

15

16
q2r2q1r1 .

(5.58f)

The multiform Hamilton equations are obtained as δH =
∑4

j=1 dx
j ∧ ∂̃jyΩ. One checks

with a direct computation that they indeed reproduce the set of equations (5.54). We
remark that H12 and H13 are the covariant Hamiltonian densities of respectively the NLS
equations and the modified KdV equation already obtained for the first time in [CS20a]
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and reported in Chapter 4.

Admissible forms and multi-time Poisson brackets We have the following facts:

Proposition 5.23 • Any 0-form H is admissible;

• A 1-form

F =F1(q, r) dx1 + F2(q, r, q1, r1) dx2 + F3(q, r, q1, r1, q11, r11) dx3

+ F4(q, r, q1, r1, q11, r11, q111, r111) dx4

is admissible if and only if the following relations hold

∂F1

∂r
= 2i

∂F2

∂r1
= −4

∂F3

∂r11
= −8i

∂F4

∂r111
, (5.59a)

∂F1

∂q
= −2i

∂F2

∂q1
= −4

∂F3

∂q11
= 8i

∂F4

∂q111
, (5.59b)

∂F2

∂r
= 2i

∂F3

∂r1
= −4

∂F4

∂r11
, (5.59c)

∂F2

∂q
= −2i

∂F3

∂q1
= −4

∂F4

∂q11
, (5.59d)

∂F4

∂r1
= − i

4
qr
∂F1

∂r
− i

2

∂F3

∂r
+
i

4
q2∂F1

∂q
, (5.59e)

∂F4

∂q1
=
i

4
qr
∂F1

∂q
+
i

2

∂F3

∂q
− i

4
r2∂F1

∂r
. (5.59f)

and its Hamiltonian vector field is

ξF =− i∂F1

∂r

∂

∂q
+ i

∂F1

∂q

∂

∂r
− 2

∂F2

∂r

∂

∂q1
− 2

∂F2

∂q

∂

∂r1

+ 4i

(
6qr

∂F3

∂r11
+
∂F3

∂r

)
∂

∂q11
− 4i

(
6qr

∂F3

∂q11
+
∂F3

∂q

)
∂

∂r11

+ 8

(
∂F4

∂r
+ 2q2 ∂F4

∂q11
+ 8qr

∂F4

∂r11
+ 4(q1r − r1q)

∂F4

∂r111

)
∂

∂q111

+ 8

(
∂F4

∂q
+ 2r2 ∂F4

∂r11
+ 8qr

∂F4

∂q11
− 4(q1r − r1q)

∂F4

∂q111

)
∂

∂r111
.

(5.60)

Proof. We start by proving that every 0-formH(q, r, q1, r1, q11, r11, q111, r111) is admissible.
This is achieved by starting from a generic multi-vector field (with the right degree) that
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up to elements of the kernel of Ω is

ξH =
(
a1

∂

∂q
+ b1

∂

∂r

)
∧ ∂

∂x1

+
(
a2

∂

∂q
+ b2

∂

∂r
+ c2

∂

∂q1
+ d2

∂

∂r1

)
∧ ∂

∂x2

+
(
a3

∂

∂q
+ b3

∂

∂r
+ c3

∂

∂q1
+ d3

∂

∂r1
+ e3

∂

∂q11
+ f3

∂

∂r11

)
∧ ∂

∂x3

+
(
a4

∂

∂q
+ b4

∂

∂r
+ c4

∂

∂q1
+ d4

∂

∂r1
+ e4

∂

∂q11
+ f4

∂

∂r11
+ g4

∂

∂q111
+ h4

∂

∂r111

)
∧ ∂

∂x4

and we look for its coefficients by imposing ξHyΩ = δH. By using the explicit expression
of Ω we get

ξHyΩ =ia1δq − ib1δr

+
1

2
a2δr1 +

1

2
b2δq1 −

1

2
c2δr −

1

2
d2δq

− i

4
a3δr11 +

3i

2
qra3δr +

i

4
b3δq11 −

3i

2
qrb3δq +

i

4
c3δr1 −

i

4
c3δr1 −

i

4
d3δq1

− 1

8
a4δr111 +

1

4
r2a4δq1 + qra4δr1 −

1

2
(q1r − qr1)a4δr

− 1

8
b4δq111 +

1

4
q2b4δr1 + qrb4δq1 +

1

2
(q1r − qr1)b4δq

+
1

8
c4δr11 −

1

4
r2c4δq − qrc4δq +

1

8
d4δq11 −

1

4
q2d4δr − qrd4δr

− 1

8
e4δr1 −

1

8
f4δq1 +

1

8
g4δq +

1

8
h4δr

=δH .

We must therefore have the following relations

∂H

∂q
=

1

8
g4 − qrd4 −

1

4
r2c4 +

1

2
(q1r − qr1)b4 −

3i

2
qrb3 −

1

2
d2 + ia1

∂H

∂r
=

1

8
h4 − qrc4 −

1

4
q2d4 −

1

2
(q1r − qr1)a4 +

3i

2
qra3 −

1

2
c2 − ib1

∂H

∂q1
=− 1

8
f4 + qrb4 +

1

4
r2a4 −

i

4
d3 +

1

2
b2

∂H

∂r1
=− 1

8
e4 + qra4 +

1

4
q2b4 +

i

4
c3 +

1

2
a2

∂H

∂q11
=

1

8
d4 +

i

4
b3

∂H

∂r11
=

1

8
c4 −

i

4
a3

∂H

∂q111
=− 1

8
b4

∂H

∂r111
=− 1

8
a4

that can be always be solved as there are more variables than equations. Therefore for
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every H we can find a vector field ξH such that ξHyΩ = δH.

We now treat the case of a 1-form F . A generic vertical vector field has the expression

ξF = a
∂

∂q
+ b

∂

∂r
+ c

∂

∂q1
+ d

∂

∂r1
+ e

∂

∂q11
+ f

∂

∂r11
+ g

∂

∂q111
+ h

∂

∂r111
,

The insertion with Ω is

ξF yΩ =− ibδq ∧ dx1 + iaδr ∧ dx1

− 1

2
dδq ∧ dx2 − 1

2
cδr ∧ dx2 +

1

2
bδq1 ∧ dx2 +

1

2
aδr1 ∧ dx2

+ i(
f

4
− 3

2
qrb)δq ∧ dx3 + i(−e

4
+

3

2
qra)δr ∧ dx3 − id

4
δq1 ∧ dx3 +

ic

4
δr1 ∧ dx3

+
ib

4
δq11 ∧ dx3 − ia

4
δr11 ∧ dx3

+ (
1

8
g − qrd− 1

4
r2c+

b

2
(q1r − qr1))δq ∧ dx4

+ (
1

8
h− qrc− 1

4
q2d− a

2
(q1r − qr1))δr ∧ dx4

+ (−1

8
f + qrb+

1

4
r2a)δq1 ∧ dx4 + (−1

8
e+ qra+

1

4
q2b)δr1 ∧ dx4

+
1

8
dδq11 ∧ dx4 +

1

8
cδr11 ∧ dx4 − 1

8
bδq111 ∧ dx4 − 1

8
aδr111 ∧ dx4 .

We have the following equations from ξF yΩ = δF

∂F1

∂q
=− ib ∂F1

∂r
=ia

∂F2

∂q
=− 1

2
d

∂F2

∂r
=− 1

2
c

∂F2

∂q1
=

1

2
b

∂F2

∂r1
=

1

2
a

∂F3

∂q
=
if

4
− 3i

2
qrb

∂F3

∂r
=− ie

4
+

3i

2
qra

∂F3

∂q1
=− id

4

∂F3

∂r1
=
ic

4

∂F3

∂q11
=
ib

4

∂F3

∂r11
=− ia

4

∂F4

∂q
=

1

8
g − qrd− 1

4
r2c+

b

2
(q1r − qr1)

∂F4

∂r
=

1

8
h− qrc− 1

4
q2d− a

2
(q1r − qr1)

∂F4

∂q1
=− 1

8
f + qrb+

1

4
r2a

∂F4

∂r1
=− 1

8
e+ qra+

1

4
q2b

∂F4

∂q11
=

1

8
d

∂F4

∂r11
=

1

8
c

∂F4

∂q111
=− 1

8
b

∂F4

∂r111
=− 1

8
a

for which one can find a solution if and only if the equations (5.59) hold.
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Remark 5.24: Looking at the previous proof, the reader surely realises that the
calculations, albeit still possible, become more and more cumbersome when we
start including more times. As we discovered, this is due to the not ideal although
traditional choice of coordinates q, r, and their derivatives with respect to x1. It will
be rather effortless to reobtain the same results with another choice of coordinates in
Chapter 6, where we deal with the whole hierarchy. We still chose to report these
calculations to show another traditional example of a Hamiltonian multiform.

We can derive the general expression of an admissible 1-form, given the first coefficient
F1(q, r). This is important because it will allow us to find the coefficient of a conservation
law (which is a special admissible 1-form) in a systematic way.

Proposition 5.25 The general expressions of the coefficients of an admissible 1-form
F =

∑4
i=1 Fi dx

i are, in terms the first F1

F2 =
i

2

(
∂F1

∂q
q1 −

∂F1

∂r
r1

)
+ a(q, r), (5.61a)

F3 =− 1

4

∂F1

∂q
q11 −

1

4

∂F1

∂r
r11 −

1

8

(
∂2F1

∂r2
r2

1 +
∂2F1

∂q2
q2

1 − 2
∂2F1

∂q∂r
q1r1

)
+
i

2

∂a

∂q
q1 −

i

2

∂a

∂r
r1 + b(q, r) ,

(5.61b)

F4 =
i

8

(
∂F1

∂r
r111 −

∂F1

∂q
q111

)
+
i

8

(
∂2F1

∂r2
r1r11 −

∂2F1

∂q2
q1q11 +

∂2F1

∂q∂r
(r1q11 − q1r11)

)
− 1

4

(
∂a

∂r
r11 +

∂a

∂q
q11

)
+
i

4

(
qrq1 + q2r1

) ∂F1

∂q
− i

4

(
qrr1 + r2q1

) ∂F1

∂r

+
i

48

(
∂3F1

∂r3
r3

1 −
∂3F1

∂q3
q3

1

)
+

i

16

(
∂3F1

∂q2∂r
q2

1r1 −
∂3F1

∂q∂r2
q1r

2
1

)
− 1

8

(
∂2a

∂q2
q2

1 +
∂2a

∂r2
r2

1 + 2
∂2a

∂q∂r
q1r1

)
+
i

2

(
∂b

∂q
q1 −

∂b

∂r
r1

)
+ c(q, r)

(5.61c)

where a(q, r), b(q, r), and c(q, r) are arbitrary smooth functions of q and r only.

Proof. Since ∂F1
∂r = 2i∂F2

∂r1
and ∂F1

∂q = −2i∂F2
∂q1

we find (5.61a). Then, since ∂F3
∂q11

= −1
4
∂F1
∂q

and ∂F3
∂r11

= −1
4
∂F1
∂r we have

F3 = −1

4

∂F1

∂q
q11 −

1

4

∂F1

∂r
r11 + (. . . )(q, r, q1, r1).

Then we use the fact that ∂F2
∂r = 2i∂F3

∂r1
and ∂F2

∂q = −2i∂F3
∂q1

to obtain

∂F3

∂q1
=

1

4

(
∂2F1

∂q∂r
r1 −

∂2F1

∂q2
q1

)
+
i

2

∂a

∂q
,

∂F3

∂r1
=

1

4

(
∂2F1

∂q∂r
q1 −

∂2F1

∂r2
r1

)
− i

2

∂a

∂r
.
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we then use partial integration and find (5.61b). Similarly we can compute the fourth
coefficient F4, which results in (5.61c).

For admissible forms we can define the multi-time Poisson brackets. The Poisson bracket
between a 0-form H(q, r, q1, r1, q11, r11, q111, r111) and an admissible 1-form P = P1 dx

1 +

P2 dx
2 + P3 dx

3 + P4 dx
4 is ξPH

{[H,P ]} =
∂H

∂q

∂P1

∂r
− ∂H

∂r

∂P1

∂q
− 2i

∂H

∂r1

∂P2

∂q
− 2i

∂H

∂q1

∂P2

∂r

+ 24qr
∂P3

∂q11

∂H

∂r11
− 24qr

∂P3

∂r11

∂H

∂q11
+ 4

∂H

∂r11

∂P3

∂q
− 4

∂H

∂q11

∂P3

∂r

+ 8i

(
∂P4

∂r
+ 2q2 ∂P4

∂q11
+ 8qr

∂P4

∂r11
+ 4(q1r − r1q)

∂P4

∂r111

)
∂H

∂q111

+ 8i

(
∂P4

∂q
+ 2r2 ∂P4

∂r11
+ 8qr

∂P4

∂q11
− 4(q1r − r1q)

∂P4

∂q111

)
∂H

∂r111
.

(5.62)

If P =
∑4

i=1 Pidx
i and Q =

∑4
i=1Qidx

i are admissible 1-forms, then their Poisson
bracket satisfies the decomposition

{[P,Q]} = {P1, Q1}1 dx1 + {P2, Q2}2 dx2 + {P3, Q3}3 dx3 + {P4, Q4}4 dx4 ,

where

{P1, Q1}1 =− i
(
∂P1

∂q

∂Q1

∂r
− ∂P1

∂r

∂Q1

∂q

)
, (5.63a)

{P2, Q2}2 =2

(
∂P2

∂q

∂Q2

∂r1
− ∂P2

∂r1

∂Q2

∂q
+
∂P2

∂r

∂Q2

∂q1
− ∂P2

∂q1

∂Q2

∂r

)
, (5.63b)

{P3, Q3}3 =− 4i

(
∂P3

∂r11

∂Q3

∂q
− ∂P3

∂q

∂Q3

∂r11
− ∂P3

∂q11

∂Q3

∂r
+
∂P3

∂r

∂Q3

∂q11

+
∂P3

∂q1

∂Q3

∂r1
− ∂P3

∂r1

∂Q3

∂q1
− 6qr(

∂P3

∂q11

∂Q3

∂r11
− ∂P3

∂r11

∂Q3

∂q11
)

)
,

(5.63c)

{P4, Q4}4 =− 8

(
∂P4

∂q111

∂Q4

∂r
− ∂P4

∂r

∂Q4

∂q111

)
+ 8

(
∂P4

∂q

∂Q4

∂r111
− ∂P4

∂r111

∂Q4

∂q

)
− 8

(
∂P4

∂q1

∂Q4

∂r11
− ∂P4

∂r11

∂Q4

∂q1

)
+ 8

(
∂P4

∂q11

∂Q4

∂r1
− ∂P4

∂r1

∂Q4

∂q11

)
+ 64qr

(
∂P4

∂q11

∂Q4

∂r111
− ∂P4

∂r111

∂Q4

∂q11
+
∂P4

∂r11

∂Q4

∂q111
− ∂P4

∂q111

∂Q4

∂r11

)
+ 16q2

(
∂P4

∂q11

∂Q4

∂q111
− ∂P4

∂q111

∂Q4

∂q11

)
+ 16r2

(
∂P4

∂r11

∂Q4

∂r111
− ∂P4

∂r111

∂Q4

∂r11

)
+ 32(q1r − r1q)

(
∂P4

∂r111

∂Q4

∂q111
− ∂P4

∂q111

∂Q4

∂r111

)

(5.63d)

Using this decomposition we can read the single-time Poisson brackets: { , }1 is (up to a
sign) the usual equal-time Poisson bracket of the AKNS hierarchy, which in the traditional
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infinite dimensional setting provides the first structure (in the sense of bi-Hamiltonian
theory) for the whole hierarchy, while { , }2,3 are the dual Poisson Bracket of respectively
the NLS and mKdV which can be found in [ACDK16].

Remark 5.26: The multi-time Poisson brackets {[ , ]} satisfy a classical r-matrix
structure, with the rational r-matrix r12(λ) = P12

2λ . This will be explained in Chapter 6
using a different set of coordinates that allows us to prove the r-matrix structure
more elegantly and for the whole hierarchy.

Conservation laws Since the coefficients of the Hamiltonian multiform are admissible,
the multiform Hamilton equations in a Poisson bracket form are

dF = ξF yδH =
4∑

i<j=1

{[Hij , F ]} dxij

for any admissible 1-form F = F1 dx
1 + F2 dx

2 + F3 dx
3 + F4 dx

4. We can also find the
first conservation laws for the AKNS hierarchy, i.e. F is a conservation law if

{[Hij , F ]} = 0 ∀i < j . (5.64)

We can solve the latter equation in the space of admissible forms (see Proposition 5.25 for
the general expression of the coefficients) to find a conservation law. From (i, j) = (1, 2)

we get

{[H12, F ]} = −iqr2∂F1

∂r
+ iq2r

∂F1

∂q
+
i

2

∂2F1

∂q2
q2

1 −
i

2

∂2F1

∂r2
r2

1 +
∂a

∂q
q1 +

∂a

∂r
r1 = 0 .

This translates into r ∂F1
∂r = q ∂F1

∂q and ∂2F1
∂q2

= ∂2F1
∂r2

= 0, and therefore2 F1 = qr, and
∂a
∂q = ∂a

∂r = 0, so therefore a is constant, which we set to zero. The coefficients become
then

F1 =qr , (5.65a)

F2 =
i

2
(rq1 − qr1) , (5.65b)

F3 =− 1

4
rq11 −

1

4
qr11 +

1

4
q1r1 + b(q, r) , (5.65c)

F4 =
i

8
(qr111 − rq111 + q11r1 − q1r11) +

i

2

(
∂b

∂q
q1 −

∂b

∂r
r1

)
+ c(q, r) (5.65d)

with b and c left to determine. From (i, j) = (1, 3) we get

{[H13, F ]} = −3

2
(qr2q1 + q2rr1) + q1

∂b

∂q
+ r1

∂b

∂r
= 0 ,

2The solution F1 = 0 would bring the trivial conservation law so it is rejected.
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and therefore we choose b = 3
4q

2r2. The fourth coefficient becomes then F4 = i
8(qr111 −

rq111) + i
8(q11r1 − q1r11) + 3i

4 qr(q1r − qr1) + c(q, r). It can be verified by looking at the
coefficient (1, 4) that we have a conservation law when c = 0. A conservation law is then

F =qr dx1 +
i

2
(q1r − r1q) dx

2 +
1

4
(3q2r2 + q1r1 − q11r − r11q) dx

3

+

(
i

8
(qr111 − rq111) +

i

8
(q11r1 − q1r11) +

3i

4
qr(q1r − qr1)

)
dx4 ,

(5.66)

which reproduces the known conservation laws and conserved quantities of the AKNS
hierarchy: qr is interpreted as the mass, q1r − qr1 as the momentum, etc.

5.6 Hamiltonian 1-forms and involutivity of single-time Hamilto-
nians

We leave momentarily the realm of classical field theories to look at finite-dimensional
Hamiltonian systems. In particular, we want to connect our results on Hamiltonian
multiforms [CS20b] with the results of [V20], considering the case of a hierarchy of
commuting ordinary differential equations, one for each time xi, 0 ≤ i ≤ n. We consider
the configuration space to be R for simplicity, but this could be extended to other manifolds
in general. In the Lagrangian multiform formalism, the dynamics are encapsulated by a
Lagrangian 1-form L =

∑n
i=1 Lidx

i, where each of the Li ∈ A is dependent on a field q
and its derivatives with respect to the times x1, xi, and a generalised variational principle
δdL = 0. We consider the coefficients used in [V20]

L1 =
1

2
q2

1 − V1(q) , (5.67a)

Li = q1qi − Vi(q, q1) , i = 2, . . . , n . (5.67b)

This corresponds to the common case in which the first Lagrangian L1 is ‘Newtonian’3

and the other Lagrangians are linear in the velocities. In [V20] for instance are listed
some examples, including the Toda lattice and the Kepler problem. The multiform Euler-
Lagrange equations for a generic Lagrangian 1-form L have been explicitly obtained in
[SV16, Theorem 2.5], and in this case are

q11 = −∂V1

∂q
, qi =

∂Vi
∂q1

, q1i = −∂Vi
∂q

. (5.68)

The work [V20] linked the closure relation dL = 0 (modulo these equations) to the
involutivity of the single-time Hamiltonians: if Hi is the Hamiltonian obtained in the
usual way from the Lagrangian Li with a Legendre transformation, and { , } are the

3i.e. of the form L = K − V , where K is quadratic in the velocities and V is a positional potential.



Hamiltonian 1-forms and involutivity of single-time Hamiltonians 97

canonically constructed Poisson brackets, we have that

dL = 0 ⇐⇒ {Hj , Hk} = 0 . (5.69)

This is a rather important results, as it links the closure relation dL = 0 of a Lagrangian
1-form to Liouville integrability. We will re-interpret it as the closure of the Hamiltonian
1-form H =

∑
j Hj dx

j .

Preliminarily, we remark that all the objects introduced in this section for the case of
integrable hierarchies of classical field theories could be extended (or better, reduced) to
the case of integrable hierarchies of ODEs: we keep the same definitions, just changing
Lagrangian multiform from an object in A (0,2) to an object in A (0,1). As a consequence,
we have that Ω(1) ∈ A (1,0), and that δΩ(1) = Ω ∈ A (2,0) will represent the usual, single-
time symplectic form. This is to be expected: as we do not have a 1 + 1-dimensional field
theory but only a ODE, we do not have to make any choice between time and space, but
for each Lagrangian Li we interpret xi (the only possible coordinate) as time. To Ω we
will associate the Poisson bracket

{ , } : A ×A −→ A

which in this case is at the same time a multi-time and a single-time Poisson bracket.
Dickey’s formula H = −L +

∑
j dx

j ∧ ∂̃jyΩ(1) produces a Hamiltonian multiform∑
j Hj dx

j ∈ A (0,1), whose coefficients Hj will be the single-time Hamiltonians.

The first step is to obtain the symplectic multiform Ω = δΩ(1), where (5.68) if and only if
δL = −dΩ(1). We start by computing the δ-differential of L , i.e.

δL =(q1δq1 −
∂V1

∂q
δq) ∧ dx1

+
∑
i>1

(q1δqi + qiδq1 −
∂Vi
∂q

δq − ∂Vi
∂q1

δq1) ∧ dxi.

We now want to turn the terms in δq1 ∧ dx1 into a total d-differential using the identity

q1δq1 ∧ dx1 = −q11δq ∧ dx1 −
∑
i>1

(q1iδq + q1δqi) ∧ dxi − d(q1δq) ,
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and therefore obtaining

δL =(−q11 −
∂V1

∂q
)δq ∧ dx1

+
∑
i>1

(
(q1 − q1)δqi + (qi −

∂Vi
∂q1

)δq1 − (q1i +
∂Vi
∂q

)δq

)
∧ dxi − d(q1δq)

=(−q11 −
∂V1

∂q
)δq ∧ dx1

+
∑
i>1

(
(qi −

∂Vi
∂q1

)δq1 − (q1i +
∂Vi
∂q

)δq

)
∧ dxi − d(q1δq) ,

which implies Ω(1) = q1δq, and therefore Ω = δq1∧δq. The Hamiltonian 1-form (multiform
of degree 1) H =

∑
iHi dx

i is obtained as

H = −L +

n∑
i=1

dxi ∧ ∂̃iyΩ(1) . (5.70)

Since ∂̃iy(q1δq) = q1qi, we obtain Hi = q1qi − Li, and therefore we reobtain the Hamilto-
nians in [V20]:

H1(q, qq) =
q2

1

2
+ V1(q) , (5.71a)

Hi(q, q1) = Vi(q, q1) , i = 2, . . . , n . (5.71b)

Any function F (q, q1) is admissible, i.e. there exists a vector field ξF such that ξF yΩ = δF ,
where

ξF =
∂F

∂q

∂

∂q1
− ∂F

∂q1

∂

∂q
. (5.72)

We can therefore define the Poisson Brackets between two functions F (q, q1) and G(q, q1)

as
{F,G} = −ξFG =

∂F

∂q1

∂G

∂q
− ∂F

∂q

∂G

∂q1
. (5.73)

Moreover, for any function F (q, q1) we have that on the equation of motion (5.68)
dF =

∑n
i=1{Hi, F} dxi, or equivalently

∂iF = {Hi, F} . (5.74)

From the closure relation dH = 0 we can easily recover the involution of the single-time
Hamiltonians:

dH =
∑
i<j

(∂iHj − ∂jHi) dx
ij =

∑
i<j

({Hi, Hj} − {Hj , Hi}) dxij

=2
∑
i<j

{Hi, Hj} dxij = 0 ,
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and therefore {Hi, Hj} = 0, or ∂iHj = 0 ∀i 6= j. The equation ∂iHi = 0 is obtained from
(5.74) by antisymmetry.
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Chapter 6

Multi-time approach to the AKNS
hierarchy and classical r-matrix

In Chapter 5 we showed how to describe integrable hierarchies in a Hamiltonian multiform
fashion. This description could, in principle, be applied to any number of flows of
the hierarchy, or even all the countably many flows. The problem is that, although
theoretically possible, adding flows to a Lagrangian multiform (which is the starting point
of our Hamiltonian description) becomes more and more computationally cumbersome
the further up the hierarchy we go, if we resort to the newly developed techniques that
appeared in [SNC19b, PV20]. In this chapter, including content from [CS21], we overcome
this difficulty providing a Lagrangian and a Hamiltonian multiform for the complete
AKNS hierarchy. We will also construct a multi-time Poisson bracket with a classical
r-matrix structure that will generalise the results of Chapter 4. Our starting point will be
the description of the AKNS hierarchy by Flashka, Newell and Ratiu [FNR83], but it will
involve an equivalent but new approach to a hierarchy, that we call multi-time approach,
as opposed to the traditional field-theoretical approach that has been used in the previous
works.

The results in this chapter cast the results of [AC17] in a new light, realising the underlying
goal of bypassing the need to specify an initial time in the AKNS hierarchy. Here we
provide a multiform explanation for this behaviour, casting the single-time Poisson
brackets in the greater structure of the multi-time Poisson brackets. In Section 6.1
we review the fundamental notions of the AKNS hierarchy, and we introduce the new
multi-time approach. In Section 6.2 we introduce the generating Lagrangian multiform,
and we use it to derive the equations of the hierarchy, and the symplectic and Hamiltonian
multiforms in a compact form. In Section 6.3 we recover the classical r-matrix structure
for the whole hierarchy, and we prove that the complete set of zero-curvature equations for
each Lax pair of the hierarchy can be obtained as a multiform Hamilton equation. Finally,
in Section 6.4 we recover the known results for the first three times of the hierarchy. We

101
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remark that the Lagrangian multiform for the AKNS hierarchy can be obtained from a
generating Lagrangian in Chapter 7, together with other integrable models. Many of the
long and not necessarily illuminating proofs are reported in Appendix B.

6.1 The Ablowitz-Kaup-Newell-Segur hierarchy

6.1.1 The traditional field-theoretical approach

In the 1983 paper [FNR83], Flashka, Newell and Ratiu introduced an algebraic formalism
to cast the soliton equations associated with the AKNS hierarchy into what is known as
the Adler-Kostant-Symes scheme [A79, K79, S80]. At the same time, the Russian school
unraveled the structures underlying this type of construction which culminated in the
classical r-matrix theory [S83], and the introduction of the notion of Poisson-Lie group
[D83]. Here, we review some aspects of this topic, freely adapting and merging notations
and notions coming from different sources. It had been known before [FNR83], since the
work of [AKNS74], that the so-called AKNS hierarchy can be constructed by considering
an auxiliary spectral problem of the form1

∂xψ =

(
−iλ q(x, xn)

r(x, xn) iλ

)
ψ ≡ P (x, xn, λ)ψ ≡ (λP0 + P1(x, xn))ψ , (6.1)

where

P1(x, xn) :=

(
0 q(x, xn)

r(x, xn) 0

)
, P0 := −iσ3 , (6.2)

as well as another equation of the form

∂nψ = Q(n)(x, xn, λ)ψ , ∂n :=
∂

∂xn
, (6.3)

with Q(n)(x, xn, λ) = λnQ0(x, xn) + λn−1Q1(x, xn) + · · ·+Qn(x, xn) where each Qi is a
2× 2 traceless matrix. Then the compatibility condition ∂x∂nψ = ∂n∂xψ translates into
the well-known zero-curvature equation for the Lax pair P (x, xn, λ) and Q(n)(x, xn, λ)

∂nP (x, xn, λ)− ∂xQ(n)(x, xn, λ) + [P (x, xn, λ), Q(n)(x, xn, λ)] = 0 . (6.4)

The usual field-theoretical approach is described as follows. One ‘forgets’ the dependence
on xn (interpreted as the time variable) and considers the coefficients of Pi(x) and Qi(x)

to be fields in x (the space variable). By setting to zero every coefficient of λ one obtains
a series of equations that allow to find Q0(x), . . . , Qn(x) recursively. This produces
Q0(x) = P0, Q1(x) = P1(x) (up to some normalisation constants) and the entries of Qj(x)

1Traditionally, the flows thus defined are associated to ‘time’ variable tn. However, one of the main
points of [FNR83] is that they all play the same role as x which could be viewed as t1 in this hierarchy.
We simply denote them all by xn since whether they play the role of a space or time variable is really up
to interpretation.
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with j ≥ 2 are found to be polynomials in q(x), r(x) and their derivatives with respect to
x. The last of these equations is the AKNS flow

∂nP1(x)− ∂xQn(x) + [P1(x), Qn(x)] = 0 , (6.5)

and produces a partial differential equation for q and r viewed as functions of x and xn

which is integrable (hence effectively ‘injecting’ the dependence on xn at the last stage).
Different values of n gives the successive equations of the AKNS hierarchy. We list them
for n = 0, 1, 2, 3, giving the name of the corresponding famous example (which is usually
obtained by a further reduction, e.g. r = ±q∗ for n = 2 gives the (de)focusing nonlinear
Schrödinger equation).

• Scaling: q0 = −2iq, and r0 = 2ir,

• Translation: q1 = qx, and r1 = rx,

• NLS equation: iq2 + 1
2qxx − q

2r = 0, and ir2 − 1
2rxx + qr2 = 0,

• Modified KdV equation q3 = −1
4qxxx + 3

2qrqx, and r3 = −1
4rxxx + 3

2qrrx.

We will show how to obtain the first three equations in detail.

• We start from the case n = 0: we set Q(0) = Q0 and study the equation ∂0P −
∂xQ

(0) + [P,Q(0)] = 0 which translates to

−iλ∂0σ3 + ∂0

(
0 q

r 0

)
− ∂xQ0 + [−iλσ3 +

(
0 q

r 0

)
, Q0] = 0 .

This is a polynomial in λ, and we set to zero each coefficient, starting from the
highest power λ1 and noticing that ∂0σ3 = 0

−i[σ3, Q0] = 0

which tells us that Q0 is diagonal: we set Q0 = aσ3. The next equation is obtained
setting to zero the coefficient of λ0 = 1:(

0 q0

r0 0

)
+ [

(
0 q

r 0

)
, Q0] = 0 =⇒

(
−a0 q0 − 2aq

r0 + 2ar a0

)
= 0

which in turns gives that a (and therefore Q0) must be constant, and q0 = 2aq,
r0 = −2ar. We obtain the desired equations by setting a = −i, and so Q0 = P0.

• We now treat the case n = 1:

−iλ∂1σ3 + ∂1

(
0 q

r 0

)
− λ∂xQ0 − ∂xQ1 + [−iλσ3 +

(
0 q

r 0

)
, λQ0 +Q1] = 0 .

The equation coming from the coefficient of the highest degree of λ (now λ2) is still



104 Multi-time approach to the AKNS hierarchy and classical r-matrix

the same: −i[σ3, Q0] = 0, which means that we can parametrise Q0 = aσ3. The
next equation in the list, the coefficient of λ1 is

−∂x(aσ3) + [−iσ3, Q1] + [

(
0 q

r 0

)
, aσ3] = 0

which implies that a is constant and we again set Q0 = −iσ3, and that the anti-
diagonal part of Q1 is the matrix qσ++rσ−. We denote the σ3 component of Q1 by ā.
The last equation comes from the coefficient of λ0 and is−∂xQ0+[P0, Q1]+[P1, Q0] =

0, (
0 q1

r1 0

)
−

(
āx qx

rx āx

)
+ [

(
0 q

r 0

)
,

(
ā q

r −ā

)
] = 0 .

The diagonal part of this equation restricts ā to be constant, which we set to zero
ā = 0, while the non-diagonal part brings q1 = qx ad r1 = rx as desired.

• We report now the case n = 2, which generates the Non-Linear Schrödinger equation.
The starting equation is ∂2P (λ)− ∂xQ(2)(λ) + [P (λ), Q(2)(λ)] = 0. The equation
coming from the coefficient of λ3 is again −i[σ3, Q0] = 0, which means that we can
parametrise Q0 = aσ3. The next is, again, −∂xQ0 + [P0, Q1] + [P1, Q0] = 0 which
means that we can set Q0 = P0 and Q1 = āσ3 + qσ− + rσ−. The coefficient of λ1

brings the equation
−∂xQ1 + [P0, Q2] + [P1, Q1] = 0

which again implies that ā is constant (we set it to zero so that Q1 = P1), and
that the matrix Q2 can be parametrised a Q2 = ãσ3 + i

2qxσ+ − i
2rxσ−. The final

equation
∂2P1 − ∂xQ2 + [P1, Q2] = 0

generates the Non-Linear Schrödinger equation. The diagonal part brings ãx =

− i
2(qxr + qrx) that we can solve by setting ã = − i

2qr, and the antidiagonal part
then gives the desired system

iq2 +
1

2
qxx − q2r = 0 ir2 −

1

2
rxx + qr2 = 0 .

It is proved that all these equations can be interpreted as Hamiltonian flows which
commute with each other and can therefore be imposed simultaneously on the variable q
and r. This is ensured by that fact that the following zero-curvature equations hold for
any k, n ≥ 1 (by setting x = x1 and Q(1) = P ),

∂nQ
(k)(λ)− ∂kQ(n)(λ) + [Q(k)(λ), Q(n)(λ)] = 0 . (6.6)

In [FNR83], these facts and several others were cast into the algebraic setup of the Adler-
Kostant-Symes scheme whereby one can introduce integrable Hamiltonian systems based
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on the decomposition of a Lie algebra into two Lie subalgebras which are isotropic with
respect to an ad-invariant nondegenerate symmetric bilinear form on the Lie algebra. For
the AKNS hierarchy, [FNR83] use fields valued in the Lie algebra L := s`(2,C)⊗C((λ−1))

of formal Laurent series in the variable 1/λ with coefficients in the Lie algebra s`(2,C),
i.e. the Lie algebra of elements of the form

X(λ) =

∞∑
j=−N

Xjλ
−j , Xj ∈ s`(2,C) ; for some N ∈ Z , (6.7)

with the bracket given by

[X,Y ](λ) =
∑
k

∑
i+j=k

[Xi, Yj ]λ
k . (6.8)

There is a decomposition of L into Lie subalgebras L = K ⊕N where

K = {
∞∑
j=1

Xjλ
−j } , N = {

0∑
j=−N

Xjλ
−j | N ∈ Z≥0 } .

This yields two projectors P+ on N and P− on K . The following ad-invariant nonde-
generate symmetric bilinear form is used, for all X(λ), Y (λ) ∈ L,

〈X(λ), Y (λ)〉 :=
∑
i+j=0

Tr(XiYj) , (6.9)

Without entering the details of the construction, we present the summarised results of
interest for us. The entire ANKS hierarchy can be obtained by considering an element
Q(λ) of the annihilator of K as the following formal series

Q(λ) =

∞∑
i=0

Qiλ
−i = Q0 +

Q1

λ
+
Q2

λ2
+
Q3

λ3
+ . . . , (6.10)

Qi =

(
ai bi

ci −ai

)
a(λ) =

∞∑
i=0

aiλ
−i , b(λ) =

∞∑
i=0

biλ
−i , c(λ) =

∞∑
i=0

ciλ
−i ,

and introducing the vector fields ∂n by

∂nQ(λ) =[P+(λnQ(λ)), Q(λ)]

=− [P−(λnQ(λ)), Q(λ)] = [R(λnQ(λ)), Q(λ)] ,
(6.11)

where R = 1
2(P+ − P−) is the endomorphism form of the classical r-matrix and we

used Id = P+ + P−. It is well known that this operator satisfies the modified classical
Yang-Baxter equation and allows one to define a second Lie bracket [ , ]R on L (see e.g.
[S08])

[X,Y ]R = [RX,Y ] + [X,RY ] . (6.12)
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The significance of this reformulation is that the authors achieved several important
results:

1. The equations (6.11) are commuting Hamiltonian flows associated to the Hamiltonian
functions

gk(X) = −1

2
(Sk(X), X) , k ∈ Z , (SkX)(λ) = λkX(λ) . (6.13)

which are Casimir functions with respect to the Lie-Poisson bracket associated to
the Lie bracket (6.8). As a consequence, these functions are in involution with
respect to the Lie-Poisson bracket associated to the second Lie bracket (6.12) on L
and their Hamilton equations take the form of the Lax equation (6.11);

2. In this construction, one can get rid of the special role of the x variable, which
is now the variable x1, no different from any of the other xn. They then propose
to define a hierarchy of integrable PDEs as follows: use (6.11) for a fixed n as a
starting point to determine all the Qj . This yields that bj , cj for j > n and aj ,
j > 1 are polynomials in bj , cj , j = 1, . . . , n, which are now viewed as functions
of xn, and in their derivatives with respect to xn. Then, one can use any one of
the other variables xk to induce a Hamiltonian flow on the infinite dimensional
phase space bj(xn), cj(x

n), j = 1, . . . , n. The Hamilton equations take the form of
a zero-curvature equation

∂kQ
(n)(xn, λ)− ∂nQ(k)(xn, λ) + [Q(n)(xn, λ), Q(k)(xn, λ)] = 0 (6.14)

where Q(n)(xn, λ) denotes P+(λnQ(λ)) where the above substitution for aj , bj , cj
in terms of the finite number of fields bj(xn), cj(x

n), j = 1, . . . , n and their xn

derivatives has been performed. See [AC17] for more details about this.

3. There exist generalised conservation laws ∂Fjk
∂x`

= ∂F`k
∂xj

for all j, k, ` ≥ 0 where Fkj
can be obtained efficiently from a generating function. For j = 1, they reproduce
the usual AKNS conservation laws with F1k being the conserved densities and F`k
the corresponding fluxes.

Those results are reviewed in detail in [AC17] where the observation that one can start
from an arbitrary flow xn is used to prove the general result on the r-matrix structure of
dual Lax pairs which was first observed in [CK15] and [C15b].

6.1.2 The multi-time approach

We want to stress that despite the deep observation that all independent variables xj

play the same role, both in [FNR83] and [AC17], the authors still implement the step of
using (6.11) first for a fixed (but arbitrary) xn in order to produce a phase space for a
field theory consisting of a finite number of fields bj(xn), cj(xn) j = 1, . . . , n. This leads
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to a rather complicated construction of the single-time Poisson brackets { , }n and { , }k
in [AC17] whose common r-matrix structure is traced back to the original Lie-Poisson
bracket associated to the second Lie bracket (6.12). In [CS20a] we achieved the goal of
implementing a truly covariant Poisson bracket capable of accommodating any pair of
independent variables xn and xk simultaneously and producing an r-matrix structure for
the associated Lax form W (λ) = Q(n)(λ) dxn +Q(k)(λ) dxk. Another essential question
was still pending, i.e. how to go beyond only a pair of times xn and xk, corresponding to
a single zero-curvature equation, in order to include the entire hierarchy of flows.

In this chapter, we answer these questions by avoiding altogether the first step of fixing a
given time xn, and working with all the equations (6.11) at once using the formalism of
Hamiltonian multiforms. The equations are interpreted as commuting Hamiltonian flows
on a phase space with a countable (but infinite) number of coordinates bj , cj , j ≥ 1. We
claim that this interpretation, that we call multi-time approach, despite being less known
than the standard field theory viewpoint provides a deeper insight into the structure of
the hierarchy. In the author’s opinion, this interpretation is also a true implementation of
the original observation that all independent variables x0, x1, x2 . . . play a symmetric
role, which is better captured by our use of a Lagrangian and Hamiltonian multiform
that do not distinguish any particular independent variable as being special.

Our main objective is to construct a multi-time Poisson bracket {[ , ]} and a Hamiltonian
multiform H =

∑∞
i<j=1Hij dx

i ∧ dxj such that:

1. It is possible to compute {[W1(λ),W2(µ)]} for the Lax formW (λ) =
∑∞

j=0Q
(i)(λ) dxj

associated to the entire hierarchy, and to prove that it possesses the rational r-matrix
structure;

2. The collection of all the equations ∂kQ(λ) = [Q(k)(λ), Q(λ)], k ≥ 0 or, equivalently2,
of all the zero-curvature equations

∂iQ
(j)(λ)− ∂jQ(i)(λ) + [Q(j)(λ), Q(i)(λ)] = 0 , i, j ≥ 0 , (6.15)

can be written in Hamiltonian form as dW (λ) =
∑∞

i<j{[Hij ,W (λ)]} dxi ∧ dxj .

In our exposition, the use of generating functions in the form of formal (Laurent) series
will turn out to be extremely efficient. We use the the Lie algebra L := s`(2,A )⊗C((λ−1))

of formal Laurent series in the variable 1/λ with coefficients being matrices in the Lie
algebra s`(2,A ).
With this in mind, we collect the following set of compatible Lax equations for Q(λ) as
defined in (6.10) (that now is no longer a field, but valued in A ),

∂kQ(λ) = [Q(k)(λ), Q(λ)] , k = 0, 1, 2, . . . , (6.16)
2This equivalence does not seem to be well-known but we use it all along and deal interchangeably

with the FNR equations (6.11) and the zero-curvature equations (6.15). The implication (6.11)⇒(6.15)
is shown for instance in [AC17, Lemma 3.13]. The converse is discussed in [N85, Chapter 5].
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where Q(k)(λ) = P+(λkQ(λ)), into

DµQ(λ) =
[Q(µ), Q(λ)]

µ− λ
, (6.17)

where we introduced the derivation

Dµ :=
∞∑
k=0

1

µk+1
∂k , (6.18)

and used the formal series identity

∞∑
k=0

Q(k)(λ)

µk+1
=
Q(µ)

µ− λ
. (6.19)

It is important not to get confused by the notation Dµ which is not meant to be the partial
derivative with respect to µ, but simply the generating expression (6.18). We remark
that writing the AKNS hierarchy in the generating form (6.17) allows us to reproduce
quickly known results. From the symmetry of the right-hand side in (6.17), we have
DµQ(λ) = DλQ(µ), which in component is

∂kQj+1 = ∂jQk+1 , j, k ≥ 0 . (6.20)

Moreover, by means of the Jacobi identity we have

DλDµQ(ν) = DµDλQ(ν) , (6.21)

which means that the flows ∂j and ∂k commute3. Finally, noting that the generating
function of the Hamiltonian functions (6.13) is given by

g(λ) := −1

2
TrQ2(λ) = −1

2
TrQ2

0 +
∞∑
k=0

1

λk+1
gk , (6.22)

we find
Dµg(λ) = 0 . (6.23)

This shows that the flows take place on the level surface g(λ) = C(λ) where C(λ) is a
series in λ−1 with constant coefficients. Therefore, in line with [FNR83], we fix

TrQ2(λ) = −2 , (6.24)

in the rest of this chapter.
3Of course, this had to be the case in the first place so as to allow us to consider those flows

simultaneously and to define Dµ, but this is a good check of the generating function formalism and an
argument in favour of its efficiency.
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6.2 Lagrangian and Hamiltonian multiform description of
the complete hierarchy

In this Section, we first introduce a Lagrangian multiform which allows us to implement
the strategy reviewed in Section 5 to obtain the associated symplectic and Hamiltonian
multiforms for the Ablowitz-Kaup-Newell-Segur hierarchy. In turn, this will allow us to
show in the next section that Lax form of the entire hierarchy possesses the classical
r-matrix structure with respect to our multi-time Poisson bracket.

6.2.1 Lagrangian multiform

Recall that the collection of flows in the Ablowitz-Kaup-Newell-Segur hierarchy is written
in generating form as

DµQ(λ) =
[Q(µ), Q(λ)]

µ− λ
, (6.25)

where

Dµ =
∞∑
k=0

1

µk+1
∂k , Q(λ) =

∞∑
i=0

Qi
λi
,

Q(λ) =

(
a(λ) b(λ)

c(λ) −a(λ)

)
, Qi =

(
ai bi

ci −ai

)
,

1

2
TrQ(λ)2 = a2(λ) + b(λ)c(λ) = −1 .

We remark that λ and µ are formal parameters. In order to find an appropriate Lagrangian
multiform, it is convenient to note that we can write Q(λ) as

Q(λ) = ϕ(λ)Q0ϕ(λ)−1 (6.26)

with Q0 = −iσ3 being constant and

ϕ(λ) = I +

∞∑
j=1

ϕj
λj
. (6.27)

This has been established independently from various angles, in relation to the factorization
theorem, see e.g. [S08] or in relation to vertex operators, see e.g. [N85, Chapter 5].
Contrary to the parametrisation used in the latter book, we find it useful to use the set
of coordinates e(λ), f(λ) found in [FNR83]4 and defined as

e(λ) :=
b(λ)√
i− a(λ)

=
∞∑
i=1

ei
λi
, f(λ) :=

c(λ)√
i− a(λ)

=
∞∑
i=1

fi
λi

(6.28)

4The authors of [FNR83] use a different notation: the components of Q are called e, f, h (instead of
our b, c, a) and the new coordinates are ẽ, f̃ (instead of our e, f).
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(note that e0 = f0 = 0) and set

ϕ(λ) =
1√
2i

(√
2i− e(λ)f(λ) e(λ)

−f(λ)
√

2i− e(λ)f(λ)

)
. (6.29)

A direct calculation using a2(λ)+b(λ)c(λ) = −1 shows that detϕ(λ) = 1 and−iϕ(λ)σ3ϕ(λ)−1 =

Q(λ) as required. The reader can find more about the coordinates e(λ), f(λ) in Ap-
pendix B.1. Their main property is that they provide Darboux coordinates for all the
single-time Poisson brackets { , }i. We can now formulate the first main result of this
section. We obtain the desired Lagrangian multiform L =

∑∞
i<j=1 Lij dx

ij using the
generating function formalism and collecting the coefficients Lij into a formal series in
λ−1 and µ−1 as follows

L (λ, µ) =
∞∑

i,j=0

Lij
λi+1µj+1

. (6.30)

By a slight abuse of language, we will also call L (λ, µ) a Lagrangian multiform.

Remark 6.1: As mentioned above, most results of this section are going to be
generalised in Chapter 7. For this reason some of the proofs of this section will only
be reported in the appendix.

Theorem 6.2 (Lagrangian multiform and multiform Euler-Lagrange equations) Define
L (λ, µ) = K(λ, µ)− V (λ, µ), where

K(λ, µ) = Tr
(
ϕ(µ)−1Dλϕ(µ)Q0 − ϕ(λ)−1Dµϕ(λ)Q0

)
, (6.31a)

V (λ, µ) =− 1

2

Tr(Q(λ)−Q(µ))2

λ− µ
. (6.31b)

Then L (λ, µ) is a Lagrangian multiform for the AKNS hierarchy equations (6.2.1).

Indeed, the multiform Euler-Lagrange equations δdL = 0 are given by

DµQ(λ) =
[Q(µ), Q(λ)]

µ− λ
, (6.32)

and the closure relation dL = 0 is satisfied on those equations. In generating form, the
latter is equivalent to

DνL (λ, µ) +DλL (µ, ν) +DµL (ν, λ) = 0. (6.33)
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In fact, we have that dL =
∑

i<j<k(∂kLij − ∂jLik + ∂iLjk)dx
ijk and

DνL (λ, µ) +DλL (µ, ν) +DµL (ν, λ)

=
∑
ijk

1

λiµjνk
(∂kLij + ∂iLjk + ∂jLki) =

∑
ijk

1

λiµjνk
(∂kLij + ∂iLjk − ∂jLik).

The proof is given in Appendix B.2.

Remark 6.3: Although we discovered it differently, we soon realised that the
Lagrangian multiform L (λ, µ) bears some striking resemblance with to the Zakharov-
Mikhailov (ZM) Lagrangian appearing in [ZM80], despite the fact that the latter is
a standard Lagrangian and not a multiform. The ZM Lagrangian was introduced
to provide a variational description of the system of compatibility conditions (zero-
curvature equations) corresponding to a Lax pair of matrices which are rational
functions of the spectral parameter with distinct simple poles. We will see in Chapter 7
how the Zakharov-Mikhailov Lagrangian can be obtained from an extension of L (λ, µ)

by taking the appropriate residues in λ and µ.

Remark 6.4: A Lagrangian multiform constructed on the ZM Lagrangian was
obtained in [SNC19a] and used to obtain a variational derivation of Lax pair equations
themselves. In that same paper, the authors presented the first few coefficients of
the Lagrangian multiform for the AKNS hierarchy but it was not clear how these
derive directly from the ZM Lagrangian multiform. Our Lagrangian multiform and
Theorem 6.2 fill in this gap and provides both the complete set of coefficients Lij
of the Lagrangian multiform for the AKNS hierarchy and the Zakharov-Mikhailov
Lagrangian. We note that Lagrangians producing the zero-curvature equations (6.15)
in potential form were obtained in [N86]. They involved a potential function denoted
by H in that paper which produces the Lax matrices Q(k) we use here via the relation
Q(k) = ∂k−1H. However, assembling all those Lagrangians into a two-form does not
seem to provide a Lagrangian multiform for the set of AKNS equations. The closure
relation does not hold for instance.

To help the reader recognize the most familiar models, we write some of the coefficients of
the Lagrangian multiform explicitly using our formula. Using the expansion L (λ, µ) =∑∞

i<j=1 Lijλ
−i−1µ−j−1 we have, for all i, j ≥ 0

Lij =
1

2

j∑
k=1

(fk∂iej+1−k − ek∂ifj+1−k)−
1

2

i∑
k=1

(fk∂jei+1−k − ek∂jfi+1−k)− Vij .

The coefficients Vij are gviven by the following proposition.
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Proposition 6.5 The coefficients of V (λ, µ) =
∑∞

i<j=1 Vijλ
−i−1µ−j−1 are

Vij = Tr
i∑

k=0

QkQi+j−k+1 . (6.34)

Proof. We being proving that the coefficients Vij := Tr
∑i

k=0QkQi+j−k+1 are antisym-
metric Vij = −Vji: in fact we have

Vji = Tr

j∑
k=0

QkQi+j−k+1

= Tr

i+j+1∑
k=0

QkQi+j+1−k − Tr

i+j+1∑
k=j+1

QkQi+j+1−k

The first term vanishes as it is the coefficient of λi+j+1 in TrQ2(λ) = −2. In the second
term we make the substitution m = i+ j + 1− k to obtain

Vji = −Tr

i∑
m=0

QmQi+j+1−m = −Vij .

We now start from V (λ, µ) = −1
2 Tr (Q(λ)−Q(µ))2

λ−µ . Firstly, as Tr(Q(λ)−Q(µ))2 = 0 when
λ = µ, then it is divisible by λ − µ, and V (λ, µ) =

∑∞
i<j=1 Vijλ

−i−1µ−j−1. Then, we
formally use the identity5

1

λ− µ
=

1

2

∞∑
m=0

µm

λm+1
− 1

2

∞∑
m=0

λm

µm+1

to look for the coefficient of λ−i−1µ−j−1 of V (λ, µ)

V (λ, µ) =
1

2

∞∑
m.p,q=0

TrQpQq
λp+m+1µq−m

− 1

2

∞∑
m.p,q=0

TrQpQq
λp−mµq+m+1

,

where we used the fact that the terms proportional to TrQ2(λ) = −2 do not contribute.
The first contributes when p+m = i and q−m = j+1, and the second when p−m = i+1

and q +m = j, and therefore we have that the i, j-th coefficient of V is

1

2
Tr

i∑
p=0

QpQi+j+1−p −
1

2
Tr

j∑
q=0

QqQi+j+1−q =
Vij
2
− Vji

2
= Vij .

Recall that the elements aj , bj and cj of Q can all be expressed in terms of the coordinates
ej and fj (see Appendix B.1). At this stage, no particular choice of time has been made to

5This is easily obtainable as 1
λ−µ = 1

2
1

λ(1−µ
λ
)
+ 1

2
1

µ(λ
µ
−1)

and then using geometric sums. This will be

reformulated in Chapter 7 as 1
2
(ιλ∞ ιµ∞ + ιµ∞ ιλ∞) 1

λ−µ , where ιλ∞ denotes expansion in Laurent series
in λ∞
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write these Lagrangians as field theory Lagrangian, in the spirit of [ACDK16] for instance.
Hence, as an example, we simply have

L12 =
1

2
(f1∂1e2 − e1∂1f2 + f2∂1e1 − e2∂1f1)− 1

2
(f1∂2e1 − e1∂2f1)− V12 , (6.35)

and

L13 =
1

2
(f1∂1e3 − e1∂1f3 + f2∂1e2 − e2∂1f2 + f3∂1e1 − e3∂1f1)

− 1

2
(f1∂3e1 − e1∂3f1)− V13 ,

(6.36)

which produce partial differential equations for the phase space coordinates ej , fj , j =

1, 2, 3.

Remark 6.6: We use here the common choice of not including the time x0 in
our explicit multiforms, which would produce the scaling equations q0 = −2iq and
r0 = 2ir. Therefore, when we talk about the first m flows we will refer to the times
1, . . . ,m.

Now to make contact with the more familiar form of these Lagrangians and the corres-
ponding equations of motion, we express the phase space coordinates in terms of b1 = q,
c1 = r and their x1 derivatives6. Note that this amounts to choosing the x1 equation in
(6.11) and use it to solve for Qj (standard field theory point of view). Doing so yields,

L12 =
i

4
(q2r − qr2) +

1

8
(rq11 + qr11)− 1

4
q2r2 , (6.37)

and
L13 =

i

4
(rq3 − qr3) +

i

16
(q111r − qr111) +

3i

16
qr(qr1 − rq1) , (6.38)

which are known Lagrangians whose Euler-Lagrange equations are

iq2 +
1

2
q11 − q2r = 0 , ir2 −

1

2
r11 + qr2 , (6.39a)

q3 +
1

4
q111 −

3

2
qrq1 = 0 , r3 +

1

4
r111 −

3

2
qrr1 = 0 . (6.39b)

These are the (unreduced) NLS and mKdV systems respectively. We can just as easily
produce the Lagrangian L23, first in the e and f coordinates and then, if desired, in the q

6The reader can find the relations between the ei’s and fi’s and q and r and their derivative with
respect to x1 in Appendix B.1.
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and r coordinates as before. It reads

L23 =
i

16
(rq112 − qr112) +

i

16
(q1r12 − q12r1)− i

16
(q11r2 − q2r11)

− 3i

16
qr(rq2 − qr2)− 1

8
(q13r + qr13) +

1

8
(r1q3 + q1r3)

+
1

16
q11r11 −

qr

8
(qr11 + q11r) +

1

16
(qr1 − q1r)

2 +
1

4
q3r3 ,

(6.40)

and its Euler-Lagrange equations are just consequence of (6.39).

Remark 6.7: The partial Lagrangian multiform thus derived here for the first three
times L12 dx

12 + L23 dx
23 + L13 dx

13 is equivalent to the one used in the previous
sections, as it is the same up to an overall coefficient 2 and a total horizontal
differential. This other normalisation is preferable in this case as it allows us to write
a closed form for the coefficients of the Lagrangian multiform L in terms of the
coordinates e, f used in [FNR83].

6.2.2 Symplectic multiform

Equipped with a Lagrangian multiform for the AKNS hierarchy, we now construct the
associated symplectic multiform Ω. Again, it is very convenient to work with generating
functions so we introduce

Ω(1)(λ) =
∞∑
j=0

ω
(1)
j

λj+1
, (6.41)

Ω(λ) =
∞∑
j=0

ωj
λj+1

, (6.42)

to represent respectively

Ω(1) =

∞∑
j=0

ω
(1)
j ∧ dx

j , (6.43)

Ω =
∞∑
j=0

ωj ∧ dxj . (6.44)

As before, by a slight abuse of language, we also call Ω(λ) symplectic multiform.

Proposition 6.8 The symplectic multiform associated to L (λ, µ) is given by

Ω(λ) = −Tr
(
Q0ϕ(λ)−1δϕ(λ) ∧ ϕ(λ)−1δϕ(λ)

)
. (6.45)

The proof is in Appendix B.3.
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Remark 6.9: The expression for Ω(λ) is reminiscent of the well-known expression
for the (pull-back to the group of the) Kostant-Kirillov symplectic form on a coadjoint
orbit of the loop algebra L through the element Q0. To make this more precise, let
us use for instance the formulas in [BBT03, Section 3.3] giving the expression of the
pull-back to the group of the Kostant-Kirillov form for the orbit through a diagonal
matrix polynomial A(λ),

ω = res
λ=0

Tr
(
A(λ)g−1(λ)δg(λ) ∧ g−1(λ)δg(λ)

)
.

Here, choosing A(λ) = −iλkσ3, k ≥ 0, and g(λ) = ϕ(λ), we get the connection
between our symplectic multiform and the Kostant-Kirillov form

ω = res
λ=0

λkΩ(λ) = ωk .

In particular, each single-time symplectic form ωk corresponds to ω on the orbit of
the element −iλkσ3. Therefore, our symplectic multiform contains in a single object
all those symplectic forms. This is the first time such an object is derived and, to
our knowledge, it is the first time that a Kostant-Kirillov symplectic form is derived
from a Lagrangian perspective.

As a consequence of the explicit formula for Ω, we get the following remarkable result
that the e, f coordinates provide Darboux coordinates.

Corollary 6.10 The symplectic multiform is written in Darboux form as

Ω(λ) = δf(λ) ∧ δe(λ) , (6.46)

and hence, ω0 = 0 and,

ωk =

k∑
i=1

δfi ∧ δek+1−i , ∀k ≥ 1 . (6.47)

Proof. Direct calculation by inserting (6.29) into (6.45). We have

∞∑
j=0

ωj
λj+1

= δ
∞∑
m=1

fm
λm
∧ δ

∞∑
n=1

en
λn

=
∞∑
k=1

k∑
m=1

1

λk+1
δfm ∧ δek+1−m .

6.2.3 Multiform Hamilton equations for the AKNS hierarchy

According to Definition (5.2), the coefficients of the Hamiltonian multiform
H =

∑∞
i<j=1Hij dx

ij associated to L and Ω(1) are given by

Hij = ∂̃iyω
(1)
j − ∂̃jyω

(1)
i − Lij . (6.48)
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As is now customary, we rewrite this in generating form as

H(λ, µ) := D̃λyΩ
(1)(µ)− D̃µyΩ

(1)(λ)−L (λ, µ) , (6.49)

where we introduce the notation D̃λ =
∑∞

i=0 ∂̃i/λ
i+1 in line with (6.18).

Lemma 6.11 The following holds

H(λ, µ) = V (λ, µ) = −1

2

Tr(Q(λ)−Q(µ))2

λ− µ
, (6.50)

Hence, H(λ, µ) satisfies the closure relation.

Proof. A direct calculation shows that D̃λyΩ(1)(µ) − D̃µyΩ(1)(λ) = K(λ, µ) hence
H(λ, µ) = V (λ, µ). Finally, the closure relation of H is a general result that we re-
viewed in Corollary 5.6 but here, we get a direct confirmation from the structure of the
proof of Theorem 6.2 which established that V is closed on the equations of motion,
separately from K.

For completeness, we now check the validity of the general result in Proposition 5.11 in
our case.

Proposition 6.12 The multiform Hamilton equations associated to H and Ω are

DλQ(µ) =
[Q(λ), Q(µ)]

λ− µ
. (6.51)

Proof. The multiform Hamilton equations read δH =
∑

j dx
j ∧ ∂̃jyΩ, or, in components,

δHij = ∂̃jyωi − ∂̃iyωj .

This is reformulated in generating form as,

δH(λ, µ) = D̃µyΩ(λ)− D̃λyΩ(µ) .

We have already computed δH(λ, µ) = δV (λ, µ) as

δH(λ, µ) = Tr

(
1

µ− λ
ϕ(λ)−1[Q(µ), Q(λ)]δϕ(λ)− 1

λ− µ
ϕ(µ)−1[Q(λ), Q(µ)]δϕ(µ)

)
.
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We calculate the right hand-side, that reads

D̃µyΩ(λ)− D̃λyΩ(µ)

= Tr
(
−Q0ϕ(λ)−1Dµϕ(λ)ϕ(λ)−1δϕ(λ) +Q0ϕ(λ)−1δϕ(λ)ϕ(λ)−1Dµϕ(λ)

+Q0ϕ(µ)−1Dλϕ(µ)ϕ(µ)−1δϕ(µ)−Q0ϕ(µ)−1δϕ(µ)ϕ(µ)−1Dλϕ(µ)
)

= Tr
(
ϕ−1(λ)DµQ(λ)δϕ(λ)− ϕ−1(µ)DλQ(µ)δϕ(µ)

)
.

The result follows by reading the coefficient of δϕ(µ) or equivalently δϕ(λ).

6.2.4 The 0th time

In this section we remark that the 0th time x0 can be included as well, by keeping the
relations for Hpq = Tr

∑p
i=0QiQp+1+1−i and ωk =

∑k
i=1 δfi ∧ δek+1−i. Indeed we obtain

H0q = TrQ0Qq+1 = −2iaq+1 = −2i

q∑
i=1

fieq+1−i , (6.52)

ω0 = 0 . (6.53)

The multiform Hamilton equations are δH =
∑∞

i=0 dx
i ∧ ∂̃iyΩ, where the left hand-side

is
∑∞

p<q δHpq ∧ dxpq and the right hand-side reads
∑∞

p<q=1(∂̃qyωp − ∂̃pyωq) ∧ dxpq. This
becomes

∞∑
q=1

δH0q ∧ dx0q +
∞∑

1=p<q

δHpq ∧ dxpq

=
∞∑
q=1

(∂̃qyω0 − ∂̃0yωq) ∧ dx0q +
∞∑

1=p<q

(∂̃qyωp − ∂̃pyωq) ∧ dxpq

where we separated the equations involving the time x0 from the other ones. Since ω0 = 0,
the ones involving the time x0 are then δH0q = −∂̃0yωq, where

δH0q = −2i

q∑
k=1

(
∂aq+1

∂ek
δek +

∂aq+1

∂fk
δfk

)
= −2i

q∑
k=1

(fq+1−kδek + eq+1−kδfk)

and

−∂̃0yωq =− ∂̃0y
q∑

k=1

δfk ∧ δeq+1−k

=

q∑
k=1

(−∂0fkδeq+1−k + ∂0eq+1−kδfk) =

q∑
k=1

(−∂0fq+1−kδek + ∂0eq+1−kδfk)

so that the equations are

∂0fk = 2ifk , ∂0ek = −2iek , (6.54)
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which correspond to the scaling equations in [FNR83] q0 = −2iq and r0 = 2ir.

6.3 Classical r-matrix and zero-curvature equations

6.3.1 Admissible forms and multi-time Poisson bracket

Having the symplectic multiform Ω at our disposal, we can investigate in detail under
which conditions a horizontal form is admissible and then compute the multi-time Poisson
bracket for two such forms. Recall that in our case, only 0- and 1-forms can be non-trivial
admissible forms. We have the following two propositions, the proofs of which are given
in Appendix B.4 and B.5.

Proposition 6.13 A 1-form F =
∑∞

k=0 Fk dx
k is admissible with respect to Ω if

and only if F0 is constant and, for all k ≥ 1, Fk depends only on the coordinates
(e1, . . . , ek, f1, . . . , fk) and

∂Fk
∂ej

=
∂Fk+1

∂ej+1
,

∂Fk
∂fj

=
∂Fk+1

∂fj+1
, j = 1, . . . , k . (6.55)

Its Hamiltonian vector field is given by

ξF =
∞∑
k=1

(
−∂Fk
∂f1

∂ek +
∂Fk
∂e1

∂fk

)
. (6.56)

Proposition 6.14 Every 0-form H(e1, . . . , f1, . . . ) is admissible with respect to Ω, with
admissible vector field given by

ξH =
∞∑
i=1

(
−∂H
∂fi

∂e1 ∧ ∂i +
∂H

∂ei
∂f1 ∧ ∂i

)
. (6.57)

Note that in practice, we will deal with 0-forms that depend only on a finite number of
coordinates ej , fj in which case the sum in (6.57) truncates accordingly.

Remark 6.15: Proposition 6.13 gives an elegant reformulation of the rather complicated-
looking conditions (5.59) in the variables q and r that the coefficients of an admissible
1-form F have to satisfy. They are of course equivalent. The first two lines are easily
obtained respectively by taking

∂F1

∂f1
=
∂F2

∂f2
=
∂F3

∂f3
=
∂F4

∂f4
, and

∂F1

∂e1
=
∂F2

∂e2
=
∂F3

∂e3
=
∂F4

∂e4
.

Let us also take for instance ∂F3
∂e1

= ∂F4
∂e2

and let us write it in the old q and r
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coordinates using the expression in Appendix B.1. We have

∂F3

∂e1
=
∂F3

∂q

∂q

∂e1
+
∂F3

∂q11

∂q11

∂e1
+
∂F3

∂r11

∂r11

∂e1

=
√

2i

(
∂F3

∂q
+ 6ie1f1

∂F3

∂q11
+ 3if2

1

∂F3

∂r11

)
=
√

2i

(
∂F3

∂q
+ 3qr

∂F3

∂q11
+

3

2
r2 ∂F3

∂r11

)
and

∂F4

∂e2
=
∂F4

∂q1

∂q1

∂e2
+

∂F4

∂q111

∂q111

∂e2
+

∂F4

∂r111

∂r111

∂e2

=
√

2i

(
−2i

∂F4

∂q1
+ 20e1f1

∂F4

∂q111
+ 2f2

1

∂F4

∂r111

)
=
√

2i

(
−2i

∂F4

∂q1
− 10iqr

∂F4

∂q111
− ir2 ∂F4

∂r111

)
.

Putting the two together and using the other equations (in particular ∂F4
∂q111

= i
2
∂F3
∂q11

=

− i
8
∂F1
∂q , ∂F4

∂r111
= − i

2
∂F3
∂r11

= i
8
∂F1
∂r ) we get the last of the equations (5.59)

∂F4

∂q1
=
i

2

∂F3

∂q
+
i

4
qr
∂F1

∂q
− i

4
r2∂F1

∂r
.

We can now define the multi-time Poisson bracket with respect to Ω between two admissible
forms F and G as

{[F,G]} = (−1)rξF yδG (6.58)

where r is the horizontal degree of F . We recall Proposition 5.22 which gives the
decomposition of the multi-time Poisson brackets in terms of the single-time Poisson
brackets { , }k. Given that we know the explicit form of the single-time symplectic forms
ωk, see (6.47), we obtain the following specialisation as a consequence.

Proposition 6.16 (Decomposition of the multi-time Poisson brackets) The multi-time
Poisson brackets with respect to Ω of two admissible 1-forms F =

∑∞
k=0 Fk dx

k and
G =

∑∞
k=0Gk dx

k satisfy the following decomposition:

{[F,G]} =

∞∑
k=0

{Fk, Gk}k dxk , where

{Fk, Gk}k =
k∑
j=1

(
∂Fk
∂fj

∂Gk
∂ek−j+1

− ∂Fk
∂ej

∂Gk
∂fk−j+1

)
.

(6.59)

Thanks to the the propositions above, we can prove by direct but long calculations that
the multi-time Poisson bracket {[ , ]} satisfies the Jacobi identity.
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Proposition 6.17 (Jacobi identity) If F,G,K ∈ A (0,1) and H ∈ A are admissible
forms, we have that

1. {[F,G]} and {[F,H]} are respectively an admissible 1-form and an admissible 0-form,

2. {[{[F,G]},K]}+ {[{[K,F ]}, G]}+ {[{[G,K]}, F ]} = 0,

3. {[{[F,G]}, H]}+ {[{[H,F ]}, G]}+ {[{[G,H]}, F ]} = 0.

The proof can be found in Appendix B.6.

Remark 6.18: It is known (see e.g. [FS15]) that the Jacobi identity is not necessarily
satisfied by a covariant Poisson bracket. This problem could therefore be present in
general for a multi-time Poisson bracket (which can be viewed as a generalisation of
a covariant Poisson bracket). This is why the Jacobi identity was not discussed in
[CS20b] and why we checked it here directly.

6.3.2 Classical r-matrix structure of the multi-time Poisson bracket

Definition 6.19 We call Lax form the following horizontal 1-form with matrix coefficient

W (λ) =
∞∑
i=0

Q(i)(λ) dxi (6.60)

where, for i ≥ 0, Q(i)(λ) := P+(λiQ(λ)).

We are now ready to formulate the main result of this section, the proof of which is long
but straightforward and is given in Appendix B.7.

Theorem 6.20 The Lax form W (λ) is admissible, with Hamiltonian vector field

ξW (λ) =

∞∑
k=1

(
−∂Q

(k)(λ)

∂f1
∂ek +

∂Q(k)(λ)

∂e1
∂fk

)
. (6.61)

Its multi-time Poisson brackets possesses the linear Sklyanin bracket structure i.e.

{[W1(λ),W2(µ)]} = [r12(λ− µ),W1(λ) +W2(µ)] , (6.62)

where r12(λ, µ) is the so-called rational classical r-matrix given by

r12(λ) = −P12

λ
. (6.63)

Remark 6.21: We have already shown directly that our multi-time Poisson bracket
{[ , ]} satisfies the Jacobi identity for 0- and 1-forms. In the case of 1-forms, this is
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also a corollary of Theorem 6.20 since W (λ) contains all the coordinates of our phase
space and it is known that the rational r-matrix satisfies the classical Yang-Baxter
equation which implies the Jacobi identity.

6.3.3 Hamiltonian multiform nature of the zero-curvature equations

It is one of the most important results of the theory of integrable classical field theories
that their zero-curvature representation admits a Hamiltonian formulation. In Chapter 4
we cast this result into a covariant framework, for the NLS and mKdV equations separ-
ately: the covariant Hamilton equations for the Lax form associated to each equation
(thus containing only the two relevant Q(j)(x, λ)) produce the respective zero-curvature
condition. Here, we are in a position to prove the analogous result for the whole AKNS
hierarchy at once, thanks to our Hamiltonian multiform and multi-time Poisson bracket.
The following is the main result of this section

Theorem 6.22 The multiform Hamilton equations for the Lax formW (λ) =
∑∞

k=0Q
(k)(λ) dxk,

i.e.
dW (λ) =

∑
i<j

{[Hij ,W (λ)]} dxij , (6.64)

are equivalent to the complete set of zero-curvature equations of the AKNS hierarchy

∂iQ
(j)(λ)− ∂jQ(i)(λ) = [Q(i)(λ), Q(j)(λ)] ∀i < j . (6.65)

The proof is given in Appendix B.8.

6.3.4 Conservation laws

We have introduced conservation laws in the context of Hamiltonian multiforms with
Definition 5.20, and we have given an example of a conservation law for the first four
flows of the AKNS hierarchy in Section 5.5. In this chapter we give the general expression
for the coefficients of a conservation law for the whole hierarchy, which are obtained by
considering the following 1-form.

Proposition 6.23 The form A =
∑∞

k=0Ak dx
k, Ak = ak+1 is a conservation law.

Proof. From (B.2), we find Ak = ak+1 =
∑k

i=1 eifk+1−i so that ∂Ai
∂fj

= ei+1−j = ∂Ai+1

∂fj+1

and ∂Ai
∂ej

= fi+1−j = ∂Ai+1

∂ej+1
. Hence A is Hamiltonian. Now,

dA =ξAyδH =
∑
m<n

∞∑
k=1

(
−∂Ak
∂f1

∂Hmn

∂ek
+
∂Ak
∂e1

∂Hmn

∂fk

)
dxmn

=
∑
m<n

n∑
k=1

(
−ek

∂Hmn

∂ek
+ fk

∂Hmn

∂fk

)
dxmn
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where we have used ∂Ak
∂e1

= fk, ∂Ak∂f1
= ek, and the fact that ∂Hmn

∂ek
= ∂Hmn

∂fk
= 0 if k > n

(without loss of generality, we consider m < n). From the explicit expression of H(λ, µ),
a direct argument shows that each Hmn is in fact a polynomial in e1, . . . , en, f1, . . . , fn of
the form

Hmn =
∑

(i),(j)∈Nn
h(i)(j)(e)

(i)(f)(j) ,

where the sum is finite (only a finite number of coefficients h(i)(j) ∈ C are non zero) and we
have used the notations (e)(i) = ei11 e

i2
2 . . . e

im
m , (f)(j) = f j11 f

j2
2 . . . f jnn , and has the property

that
∑n

k=1 ik =
∑n

k=1 jk. The result then follows since
∑n

k=1 ek
∂
∂ek

and
∑n

k=1 fk
∂
∂fk

are
Euler operators with respect to the coordinates ek and fk respectively.

This result provides a reinterpretation of the known fact the quantities hk = 1
k

∫
ak+1 dx

1,
viewed as the traditional hierarchy of standard, single-time, Hamiltonians are indeed
constant of the motion and in involution with respect to the traditional (single-time)
Poisson bracket { , }1 (see e.g. [D03, Section 9.3]). We will recover the explicit expressions
of the ak+1’s in the next section.

6.4 Recovering previous results and the first three times

It is straightforward to recover our previous results of Chapter 4 by ‘freezing’ all times
except a given pair. This singles out a single 1 + 1-dimensional field theory within the
hierarchy and our Lagrangian multiform, symplectic multiform, Hamiltonian multiform
and multi-time Poisson bracket reduce respectively to a Lagrangian, multisymplectic form,
covariant Hamiltonian and covariant Poisson bracket.

As the simplest example, let use freeze all times except x1 = x and x2 = t: we specialise
to NLS and recover all the results of Section 4.3 by direct calculation. The Lax form is
simply

W (λ) = Q(1)(λ) dx+Q(2)(λ) dt , (6.66)

which can be computed using again the coordinates q, r and derivatives with respect to
x for instance to reproduce the well known NLS Lax pair. The Lagrangian multiform
reduces to L = L12 dx∧ dt where L12 is given in (6.37) while the Hamiltonian multiform
only involves H12. Using our general formula (which is just (6.34) written explicitly),

Hij =
i∑

k=0

(2akai+j+1−k + bkci+j+1−k + ckbi+j+1−k) , (6.67)
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we find

H12 =2a0a4 + b0c4 + c0b4 + 2a1a3 + b1c3 + c1b3

=− 2i(e1f3 + e2f2 + e3f1) + 2ie1(f3 +
i

4
e1f

2
1 ) + 2if1(e3 +

i

4
e2

1f1)

=− 2ie2f2 − e2
1f

2
1

=− 1

4
(q1r1 − q2r2) .

This is the covariant Hamiltonian for NLS found in Equation (4.46) (up to an irrelevant
factor). The symplectic multiform collapses into the following multisymplectic form

Ω = ω1 ∧ dx+ ω2 ∧ dt where (6.68a)

ω1 =
i

2
δq ∧ δr , and ω2 =

1

4
δr ∧ δq1 +

1

4
δq ∧ δr1 , (6.68b)

also found first in [CS20a] and reported in Section 4.3 (up to irrelevant factors). It
gives rise to a covariant Poisson bracket which is simply the reduction of our multi-time
Poisson bracket to only two times and our main results, Theorems 6.20 and 6.22 restrict
accordingly to the results of Section 4.3.

We stress however that we can instead choose any pair of times xn and xk and apply the
same reasoning. Doing so provides a way to unify the results in [AC17] which established
the r-matrix structure of dual Lax pairs for an arbitrary pair of times and the results in
[CS20a] which provided a covariant formulation of this structure but only for the pair of
times (x1, x2) and (x1, x3).

The salient features of the multiform theory appear when at least three times are combined
together. In general, the coefficients L1n (resp. H1n) are not too difficult to construct
but all the other ones are, and indeed up to now it was not known how to obtain them in
general. For instance, freezing all times except x1, x2, x3, the coefficient L23 was first
obtained in [SNC19a] by complicated calculations. Here, we obtain it rather easily, see
(6.40), as well as the associated coefficient H23 in the Hamiltonian multiform which reads

H23 =− 2ie3f3 +
1

2
e1f1(f1e3 + e1f3)− (e1f2 + f1e2)2 +

i

8
e3

1f
3
1

=− 1

16
q11r11 +

qr

8
(rq11 + qr11)− 1

16
(rq1 − qr1)2 − 1

4
q3r3 .

(6.69)

For completeness, let us also give

H13 =− 2i(e2f3 + e3f2)− 3

2
e1f1(f1e2 + e1f2) ,

=
i

8
(q1r11 − r1q11) .

(6.70)

We remark again that these coefficients differ from those in the previous chapters by an
expected factor 1

2 .
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In the rest of this section, we illustrate in every detail the calculations involved in our
general results when restricted to the first three times. This has only pedagogical value.
We hope that this will help the reader familiarise themselves with some of the new
formalism while dealing with the most familiar and easiest levels of the AKNS hierarchy.
We now turn to the symplectic multiform Ω = ω1 ∧ dx1 + ω2 ∧ dx2 + ω3 ∧ dx3, where

ω1 = δf1 ∧ δe1 , (6.71a)

ω2 = δf1 ∧ δe2 + δf2 ∧ δe1 , (6.71b)

ω3 = δf1 ∧ δe3 + δf2 ∧ δe2 + δf3 ∧ δe1 . (6.71c)

As done above for ω1 and ω2, it is interesting to write ω3 using b1 = q, c1 = r and their
derivatives with respect to x1, denoted by q1, r1, q11, r11. We find

ω3 =
i

8
δr ∧ δq11 +

i

8
δr11 ∧ δq +

i

8
δq1 ∧ δr1 +

3iqr

4
δq ∧ δr , (6.72)

and we remark that they also differ from the ones in [CS20b] by the same factor 1
2 , so that

the multiform Hamilton equations δH =
∑

j dx
j ∧ ∂̃jyΩ are the same. Let us compute

them, in the new e and f coordinates. In components we have

• δH12 = ∂2yω1 − ∂1yω2:

∂1f1 = 2if2 , ∂1e1 = −2ie2 ,

∂1f2 − ∂2f1 = 2e1f
2
1 , ∂2e1 − ∂1e2 = 2e2

1f1 .

The top equations give the relations b2 = i
2∂1b1 = i

2q1 and c2 = − i
2∂1c1 = − i

2r1,
and the bottom ones give the NLS equations.

• δH13 = ∂3yω1 − ∂1yω3:

∂1f1 = 2if2 , ∂1e1 = −2ie2 ,

∂1f2 = 2if3 +
3

2
e1f

2
1 , ∂1e2 = −2ie3 −

3

2
e2

1f1 ,

∂1f3 − ∂3f1 =
3

2
e2f

2
1 + 3e1f1f2 , ∂3e1 − ∂1e3 =

3

2
e2

1f2 + 3e1f1e2 ,

where the top four equations give the relations b2 = i
2q1 and c2 = − i

2r1, and
b3 = −1

4q11 + 1
2q

2r and c3 = −1
4r11 + 1

2qr
2, and the bottom ones are the mKdV

equations.
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• δH23 = ∂3yω2 − ∂2yω3:

∂2f1 = 2if3 −
1

2
e1f

2
1 ,

∂2e1 = −2ie3 +
1

2
e2

1f1 ,

∂2f2 − ∂3f1 = 2f2
1 e2 + 2e1f1f2 ,

∂3e1 − ∂2e2 = 2e2
1f2 + 2e1f1e2 ,

∂3f2 − ∂2f3 =
1

2
f2

1 e3 + e1f1f3 +
3i

8
e2

1f
3
1 − 2e1f

2
2 − 2f1e2f2 ,

∂2e3 − ∂3e2 =
1

2
e2

1f3 + e1f1e3 +
3i

8
e3

1f
2
1 − 2f1e

2
2 − 2e1e2f2 ,

which reduce to differential consequences of the previous equations.

The single-time Poisson brackets { , }k for k = 1, 2, 3

{ , }k =
k∑
i=1

(
∂

∂fi

∂

∂ek+1−i
− ∂

∂ek+1−i

∂

∂fi

)
, (6.73)

can be re-expressed in the q and r coordinates as

{ , }1 =2i

(
∂

∂r

∂

∂q
− ∂

∂q

∂

∂r

)
,

{ , }2 =4

(
∂

∂r

∂

∂q1
+

∂

∂q

∂

∂r1
− ∂

∂q1

∂

∂r
− ∂

∂r1

∂

∂q

)
,

{ , }3 =− 8i
( ∂
∂r

∂

∂q11
+

∂

∂r11

∂

∂q
+

∂

∂q1

∂

∂r1
+ 6qr

∂

∂q11

∂

∂r11

− ∂

∂q11

∂

∂r
− ∂

∂q

∂

∂r11
− ∂

∂r1

∂

∂q1
− 6qr

∂

∂r11

∂

∂q11

)
.

These differ from the ones obtained in the previous chapters by an expected factor 2.

We will now show how to reobtain explicitly the classical r-matrix structure within the
multi-time Poisson brackets for the first three times using these new coordinates. We
will use the first three Lax matrices repackaged into the Lax form W (λ) = Q(1)(λ) dx1 +

Q(2)(λ) dx2 +Q(3)(λ) dx3

W+(λ) = b1 dx
1 + (λb1 + b2) dx2 + (λ2b1 + λb2 + b3) dx3 ,

W−(λ) = c1 dx
1 + (λc1 + c2) dx2 + (λ2c1 + λc2 + c3) dx3 ,

W 3(λ) = −iλdx1 + (−iλ2 − i

2
b1c1) dx1 + (−iλ3 − iλ

2
b1c1 −

i

2
(b1c2 + c1b2)) dx3 ,
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which we can also write in terms of the coordinates e and f as in

W+(λ) =
√

2ie1 dx
1 +
√

2i(λe1 + e2) dx2 +
√

2i(λ2e1 + λe2 + e3 +
i

4
e2

1f1) dx3 ,

W−(λ) =
√

2if1 dx
1 +
√

2i(λf1 + f2) dx2 +
√

2i(λ2f1 + λf2 + f3 +
i

4
e1f

2
1 ) dx3 ,

W 3(λ) = −iλdx1 + (−iλ2 + e1f1) dx1 + (−iλ3 + λe1f1 + e1f2 + e2f1) dx3 .

We can then compute the Hamiltonian vector field associated to each component of the
Lax form:

ξW+(λ) =
√

2i

(
∂f1 + λ∂f2 + (λ2 +

i

2
e1f1)∂f3 −

i

4
e2

1∂e3

)
,

ξW−(λ) =
√

2i

(
−∂e1 − λ∂e2 + (−λ2 − i

2
e1f1)∂e3 +

i

4
f2

1∂f3

)
,

ξW 3(λ) = −e1∂e2 + f1∂f2 + (−λe1 − e2)∂e3 + (λf1 + f2)∂f3 .

Let us now compute the multi-time Poisson bracket.

{[W1(λ),W2(µ)]} =
∑

i,j=+,−,3
{[W i(λ),W j(µ)]}σi ⊗ σj

= {[W+(λ),W+(µ)]}σ+ ⊗ σ+ + {[W+(λ),W−(µ)]}σ+ ⊗ σ− + {[W+(λ),W 3(µ)]}σ+ ⊗ σ3

+ {[W−(λ),W+(µ)]}σ− ⊗ σ+ + {[W−(λ),W−(µ)]}σ− ⊗ σ− + {[W−(λ),W 3(µ)]}σ− ⊗ σ3

+ {[W 3(λ),W+(µ)]}σ3 ⊗ σ+ + {[W 3(λ),W−(µ)]}σ3 ⊗ σ− + {[W 3(λ),W 3(µ)]}σ3 ⊗ σ3 .

The reader can check that {[W+(λ),W+(µ)]} = {[W−(λ),W−(µ)]} = {[W 3(λ),W 3(µ)]} =

0, while the other non-zero Poisson brackets are

{[W+(λ),W−(µ)]} = −2i dx1 − 2i(λ+ µ) dx2 − 2i (λ2 + λµ+ µ2 + ie1f1) dx3

{[W−(λ),W+(µ)]} = 2i dx1 + 2i(λ+ µ) dx2 + 2i (λ2 + λµ+ µ2 + ie1f1) dx3

{[W+(λ),W 3(µ)]} = −
√

2ie1 dx
2 −
√

2i((λ+ µ)e1 + e2) dx3 ,

{[W 3(λ),W+(µ)]} =
√

2ie1 dx
2 +
√

2i((λ+ µ)e1 + e2) dx3 ,

{[W−(λ),W 3(µ)]} =
√

2if1 dx
2 +
√

2i((λ+ µ)f1 + f2) dx3 ,

{[W 3(λ),W−(µ)]} = −
√

2if1 dx
2 −
√

2i((λ+ µ)f1 + f2) dx3 .

Adding everything together one realises that {[W1(λ),W2(µ)]} = [ P12
µ−λ ,W1(λ) +W2(µ)],

as desired.

Let us verify that for the first three times∑
i<j

{[Hij ,W (λ)]} = W (λ) ∧W (λ) =
∑
i<j

[Q(i)(λ), Q(j)(λ)] dxij (6.74)
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or, in components,

{[Hij ,W (λ)]} = [Q(i)(λ), Q(j)(λ)] i, j = 1, 2, 3 . (6.75)

We write explicitly the (1, 2) term. The coefficient of the Hamiltonian multiform H12 =

−2ie2f2 − e2
1f

2
1 has Hamiltonian vector field

ξ12 = 2e2
1f1∂e1 ∧ ∂1 − 2e1f

2
1∂f1 ∧ ∂1 + 2ie2∂e1 ∧ ∂2 − 2if2∂f1 ∧ ∂2 , (6.76)

so that the left hand-side reads

{[H12,W (λ)]} =ξ12yδW (λ)

=ξ12y(e1δf1 ∧ dx2 + f1δe1 ∧ dx2)σ3

+ ξ12y(
√

2iδe1 ∧ dx1 +
√

2iδe2 ∧ dx2 +
√

2iλδe1 ∧ dx2)σ+

+ ξ12y(
√

2iδf1 ∧ dx1 +
√

2iδf2 ∧ dx2 +
√

2iλδf1 ∧ dx2)σ−

=2i(e1f2 − f1e2)σ3 +
√

2i(−2e2
1f1 − 2iλe2)σ+ +

√
2i(2e1f

2
1 + 2iλf2)σ−

=[Q(1)(λ), Q(2)(λ)] .

Similarly one obtains {[H13,W (λ)]} = [Q(1)(λ), Q(3)(λ)] and {[H23,W (λ)]} = [Q(2)(λ), Q(3)(λ)].

Remark 6.24: As we pointed out before, the Lagrangian multiform of this chapter
generates the Lagrangians that were previously used up to a total d-differential, and
an overall multiplicative constant 2. This is the same constant that consistently
turns the r-matrix −P12

λ into the previously used one −1
2
P12
λ (4.44). In fact, one

could define L ′ = 2L , and then H′ = 2H and Ω′ = 2Ω would follow. Then,
the new Poisson bracket {[ , ]}′ = 1

2{[ , ]} will be associated to Ω′. The relation
{[W1,W2]} = [ P12

µ−λ ,W1 + W2] will then turn into {[W1,W2]}′ = [1
2
P12
µ−λ ,W1 + W2].

Moreover, dW =
∑

ij{[H ′ij ,W ]}′dxij =
∑

ij{[Hij ,W ]}dxij .

We can also verify that A = a2dx
1 + a3dx

2 + a4dx
3 is indeed a conservation law in the

usual coordinates q and r. In fact, we have that

a2 = e1f1 = − i
2
qr , (6.77a)

a3 = e1f2 + e2f1 =
1

4
(q1r − qr1) , (6.77b)

a4 = e1f3 + e2f2 + e3f1 =
i

8
qr11 +

i

8
q11r −

3i

8
q2r2 − i

8
q1r1 . (6.77c)

Imposing dA = 0 is equivalent to the equations

∂1a3 = ∂2a2 , ∂1a4 = ∂3a2 , ∂2a4 = ∂3a3 , (6.78)

which hold on the equations of motion.
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Chapter 7

Generating Lagrangian multiform
and classical Yang-Baxter equation

In Chapter 6 we provided a generating Lagrangian multiform for the Ablowitz-Kaup-
Newell-Segur (AKNS) hierarchy. This was a formal series in λ−1µ−1 and its coefficients
could be identified with the coefficients of the AKNS Lagrangian multiform. In this chapter,
containing content adapted from [CSV21b], we generalise those results by providing a
generating Lagrangian, that provides the coefficients of a Lagrangian multiform for several
integrable hierarchies other than the AKNS.

Remark 7.1: It will be helpful to review some notation relative to formal power
series.

• C[λ] denotes the ring of complex polynomials in the variable λ, i.e. of the form∑N
j=0 pjλ

j , N ∈ N.

• C[[λ]] denotes the ring of complex formal Taylor series in the variable λ, i.e.
series of the form

∑∞
j=0 fjλ

j , fj ∈ C ∀j.

• C((λ)) denotes the ring of complex formal Laurent series in the variable λ, i.e.
series of the form

∑∞
j=−N fjλ

j , N ∈ Z, fj ∈ C ∀j.

7.1 Algebraic setup

We will start from the Lie algebra La(g) = g⊗C((λa)), a ∈ CP1 = C∪{∞} and g ⊆ glN .
Its elements are formal Laurent series

Xa(λa) =
∞∑

j=−N
Xa
j λ

j
a , Xa

j ∈ g , N ∈ Z , (7.1)

129
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where λa := λ − a if a ∈ C and λ∞ = 1/λ. We use the Lie bracket naturally extended
from the commutator of g

[Xa(λa), Y
a(λa)] :=

∑
r

∑
i+j=r

[Xa
i , Y

a
j ]λra .

For any a ∈ CP1 the residue resλ=a : C((λa))dλa → C returns the coefficient of λ−1
a dλa. If

a =∞ we note that dλ = −λ2
∞dλ∞. In practice, the residue at ∞ returns the opposite

of the coefficient of λ∞.
Then, given a finite S = { a1, . . . , an } ⊂ CP1 with #S = n we define the following Lie
algebra

L(g) :=
⊕
a∈S
La(g)

=La1(g)⊕ La2(g)⊕ · · · ⊕ Lan(g) .

(7.2)

We will denote an element of L(g) as an n-tuple X(λ) = (Xa1(λa1), . . . , Xan(λan)). The
Lie bracket of two elements X(λ) = (Xa(λa))a∈S and Y (λ) = (Y a(λa))a∈S is defined
component-wise as

[X(λ), Y (λ)] := ([Xa(λa), Y
a(λa)])a∈S .

For L(g) we will choose a a pairing, i.e. a nondegenerate bilinear form

〈X(λ), Y (λ)〉(k) :=
∑
a∈S

res
λ=a

TrXa(λa)Y
a(λa)λ

k
adλ (7.3)

for any X(λ), Y (λ) ∈ L(g) and k = 0,−1. The identification of maximally isotropic
subalgebras of L(g) will allow us to identify an endomorphism r : L(g)→ L(g).

We will consider derivations ∂k acting on the matrix elements of g, where tk are the
times of the hierarchy and the coordinates of our multi-time manifold M . We write
M =

⊕
a∈SMa as a direct sum, where we use (t1a, t

2
a, . . . ) as coordinates on Ma. This can

be done thanks to the fact that the number of coordinates of M are countable and that
S is finite. We repackage each ∂tka into the objects

Dλa :=
∞∑
i=0

λia∂tia , a ∈ C , (7.4a)

Dλ∞ :=
∞∑
i=1

λi+1
∞ ∂ti∞ for k = 0 , Dλ∞ :=

∞∑
i=0

λi∞∂ti∞ for k = −1. (7.4b)

The Dλa are generalisations of the similar objects defined in Chapter 6. They also act
like derivations, and are not to be confused with partial derivatives with respect to the
spectral parameters ∂λa . For instance, ∂λXb(µb) = 0, but DλaX

b(µb) 6= 0 in general. In
principle, we could not consider elements Dλa of the form (7.4) if we were not sure that
they would define commuting flows. This will be checked in Lemma 7.9.
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Finally, it will be useful to define Rλ as the space of rational functions of the variable
λ that are regular outside S. The map ιλa : Rλ → C((λa)) associates to each rational
function in Rλ its Laurent series around the point a ∈ S. We will use extensively the
following examples:

ιλ∞
1

µ− λ
= −

∞∑
r=0

λr+1
∞
µr∞

= −
∞∑
r=0

µr

λr+1
, (7.5a)

ιλa
1

µ− λ
=
∞∑
r=0

λra
µr+1
a

. (7.5b)

If we define Rλ(g) := g⊗Rλ we have the embedding

ιλ : Rλ(g)→ L(g) , X ⊗ f 7→ (X ⊗ ιλaf)a∈S . (7.6)

Proposition 7.2 ιλRλ(g) ⊂ L(g) is a maximally isotropic subalgebra with respect to
〈 , 〉(k) for any k ∈ Z.

Proof. The proof is obtained using the residue theorem, the idea being as follows. Let
f, g ∈ Rλ, and X(λ) = ιλf(λ) and Y (λ) = ιλg(λ). Then

〈X(λ), Y (λ)〉(k) =
∑
a∈S

res
λ=S

TrXa(λa)Y
a(λa)λ

kdλ =
∑
a∈S

res
λ=a

Tr(ιλaf(λ))(ιλag(λ))λkdλ

=
∑
a∈S

res
λ=a

Tr ιλa

(
f(λ)g(λ)λk

)
dλ = 0 .

Maximality is obtained by the strong residue theorem [T13, Corollary 1].

The subalgebra ιλRλ(g) will be complemented by another maximally isotropic subalgebra,
denoted L+(g)

L(g) = L+(g)⊕ ιλRλ(g) . (7.7)

The definition of L+(g) will depend on the specific case. The classical r-matrix r12(λ, µ)

is obtained from the endomorphism r in the following way

(rX)(λ) = 〈1
2

(ιλιµ + ιµιλ)r12(λ, µ), X2(µ)〉(k)
2 (7.8)

where the subscripts 1,2 denote the auxiliary spaces, and the bilinear form 〈 , 〉(k)
2 is only

taken on the space 2. It will satisfy the following relations:

• Skew-symmetry: r12(λ, µ) = −r21(µ, λ),

• Classical Yang-Baxter equation: [r12(λ, µ), r13(λ, ν)] + [r12(λ, µ), r23(µ, ν)] +

[r13(λ, ν), r23(µ, ν)] = 0.

Our hierarchy will be identified by choosing the algebra g, a collection S of points in
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CP1, which will turn out to be the poles of the Lax matrices, and the parameter k of the
pairing (7.3).

• The choice k = 0 will bring the rational r-matrix, and either the Ablowitz-Kaup-
Newell-Segur hierarchy, when we pick S = {∞} and g = s`(2,C), or a hierarchy
describing rational Lax matrices of Zakharov Shabat type [ZS79] for distinct and
finite poles, containing the Lagrangian in [D03, Section 20.2] for

S = { a1, . . . , aN1 , b1, . . . , bN2 | am, bn ∈ C, distinct }

for N1, N2 ∈ N, and g = glN that we call Dickey’s Lagrangian, of which the
Zakharov-Mikhailov Lagrangian [ZM80] is a special case.

• The choice k = −1 and g = s`(2,C) instead brings the trigonometric r-matrix and
a hierarchy containing the sine-Gordon Lagrangian in light-cone coordinate with
the choice S = { 0,∞}.

Remark 7.3: Even if we only define the relevant objects for the specific cases of
the integrable systems we aim to obtain, we anticipate that this formalism can be
cast into the framework of adéles and will appear in [CSV21b]. This brings a more
general definition of L(g) and consequently of the generating Lagrangian, and will
allow us to consider a wider class of systems. Here we prefer a more pragmatic and
accessible, albeit less elegant approach.

7.1.1 Rational r-matrix

AKNS case In this section we fix k = 0, g = s`(2,C). We also set S = {∞}, so
effectively L(g) = L∞(g). The maximally isotropic subalgebra playing the role of L+(λ)

will be obtained by considering the following subalgebra of L∞(g)

Lrat
∞ (g) := g⊗ λ∞C[[λ∞]] . (7.9)

Note that we have excluded the constant term from the Taylor series at infinity. We
represent the pole part of X∞(λ) ∈ g⊗ C((λ∞)) as

(X∞(λ∞))− =

0∑
n=−N

X∞n λ
n
∞ ∈ g⊗ C[λ−1

∞ ] , (7.10)

for any X∞(λ∞) =
∑∞

n=−N X
∞
n λ

n
∞. We can decompose L(g) into the maximally isotropic

Lie subalgebras
L∞(g) = Lrat

∞ (g)⊕ ιλ∞Rλ(g) . (7.11)

We have already proved that ιλ∞Rλ(g) is maximally isotropic. The exclusion from Lrat

of the constant term at infinity ensures the isotropy of the latter, and the maximality
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follows from the maximality of ιλ∞Rλ(g). We denote by π+ and π− the projections onto
Lrat
∞ (g) and ιλ∞Rλ(g) respectively1. The projectors act as follows.

Proposition 7.4 (Projectors π± (AKNS case)) For any X∞(λ∞) =
∑∞

n=−N X
∞
n λ

n
∞ ∈

L∞(g) we have

(π+X)∞(λ∞) = res
µ=∞

Tr2

(
ιµ∞ιλ∞

P12

µ− λ
X∞(µ∞)2

)
dµ (7.12a)

(π−X)∞(λ∞) =− res
µ=∞

Tr2

(
ιλ∞ιµ∞

P12

µ− λ
X∞(µ∞)2

)
dµ (7.12b)

Proof. We start by proving (7.12a). Let X∞(λ∞) =
∑∞

n=−N X
∞
n λ

n
∞. Explicitly we have

res
µ=∞

Tr2

(
ιµ∞ιλ∞

P12

µ− λ
X∞(µ∞)2

)
dµ = res

µ=∞
ιµ∞ιλ∞

X∞(µ∞)

µ− λ
dµ

= − res
µ=∞

ιµ∞

∞∑
r=0

λr+1
∞
µr∞

∞∑
n=−N

X∞n µ
n
∞dµ =

∞∑
n=1

X∞n λ
n
∞ ∈ Lrat(g) ,

hence the result. We remark that if X∞(λ∞) = ιλ∞f(λ) for some rational function f ,
then (π+X)∞(λ∞) = 0 by the residue theorem. The relation (7.12b) is obtained similarly:

− res
µ=∞

Tr2

(
ιλ∞ιµ∞

P12

µ− λ
X∞(µ∞)2

)
dµ = − res

µ=∞
ιλ∞ιµ∞

X∞(µ∞)

µ− λ
dµ

= − res
µ=∞

ιλ∞

∞∑
r=0

∞∑
n=−N

µn+r+1
∞
λr+1
∞

X∞(λ∞)dµ = ιλ∞

0∑
n=−N

X∞n λ
n
∞ ∈ ιλ∞Rλ(g) .

(7.13)

Moreover, if X∞(λ∞) ∈ g⊗ λ∞C[[λ∞]], we have (π−X)∞(λ∞) = 0.

Given the expressions of π± it follows that the kernel of the operator r := π+ − π− is

(ιµ∞ιλ∞ + ιλ∞ιµ∞)
P12

µ− λ
. (7.14)

Moreover, the kernel of the identity operator is given by

(ιµ∞ιλ∞ − ιλ∞ιµ∞)
P12

µ− λ
dµ = δ(λ∞, µ∞)P12dµ . (7.15)

We have defined δ(λa, µa) :=
∑

r∈Z λ
r
aµ
−r−1
a .

Zakharov-Shabat case In this section we fix k = 0, g = glN and S = { a1, . . . , aN1 , b1, . . . , bN2 }
where ai, bj ∈ C ∀i, j. We consider the following algebras

Lrat
a (g) = g⊗ C[[λa]] ∀ a ∈ S . (7.16)

1More properly they should be called π∞± , but here L(g) = L∞(g).



134 Generating Lagrangian multiform and classical Yang-Baxter equation

We then define the subalgebra

Lrat(g) :=
⊕
a∈S
Lrat
a (g) ⊂ L(g) (7.17)

that plays the role of L+(g). We represent the pole part of Xa(λa) ∈ La(g), with a ∈ S
as

Xa(λa)− =

−1∑
n=−Na

Xa
nλ

n
a ∈ g⊗ λ−1

a C[λ−1
a ] , (7.18)

for any Xa(λa) =
∑∞

n=−Na X
a
nλ

n
a . As before we can decompose L(g) into the maximally

isotropic Lie subalgebras
L(g) = Lrat(g)⊕ ιλRλ(g) . (7.19)

We denote respectively by π+ and π− the projections onto Lrat(g) and ιλRλ(g) respectively.
The projectors are defined in the following way.

Proposition 7.5 (Projectors π± (Dickey case)) Let S = { a1, . . . , aN1 , b1, . . . , bN2 }. For
any X(λ) ∈ L(g) we have

(π+X)a(λa) =
∑
b∈S

res
µ=b

Tr2

(
ιµbιλa

P12

µ− λ
Xb(µb)2

)
dµ (7.20a)

(π−X)a(λa) =−
∑
b∈S

res
µ=b

Tr2

(
ιλaιµb

P12

µ− λ
Xb(µb)2

)
dµ (7.20b)

Proof. Similar to the AKNS case.

Given the expressions of π± it follows that the kernel of the operator r := π+ − π− is(
(ιµbιλa + ιλaιµb)

P12

µ− λ

)
a,b∈S

, (7.21)

and that the kernel of the identity operator Id = π+ + π− is given by(
(ιµbιλa − ιλaιµb)

P12

µ− λ
dµ

)
a,b∈S

= (P12δabδ(λa, µa))a,b∈S . (7.22)

7.1.2 Trigonometric r-matrix

Let g = s`(2,C). We preliminarily define

ρ+
12 := σ+ ⊗ σ− , ρ0

12 :=
1

2
(I⊗ I + σ3 ⊗ σ3) , ρ−12 := σ− ⊗ σ+ , (7.23)

so that P12 = ρ+
12 + ρ0

12 + ρ−12. We also define P± : g→ n± and P 0 : g→ h where n± are
the nilpotent subalgebras (spanned respectively by σ±) and h is the Cartan subalgebra
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(spanned by σ3). They are given by

P±X := Tr2 ρ
±
12X2 , P 0X := Tr2 ρ

0
12X2 , (7.24)

for any X ∈ g, so that Idg = P+ + P 0 + P−.
To select the sine-Gordon and trigonometric case we choose k = −1 and S = { 0,∞}.
The role played by Lrat(g) is now played by the following subalgebra

B(g) ⊂ (b+ ⊕ g⊗ λC[[λ]])× (b− ⊕ g⊗ λ−1C[[λ−1]]) . (7.25)

Where we also define b± as the Borel subalgebras2. This is the Lie subalgebra consisting of
pairs of Taylor series X0(λ) =

∑∞
n=0X

0
nλ

n and X∞(λ) =
∑∞

n=0X
∞
n λ
−n, with X0

n, X
∞
n ∈

g for all n ≥ 1 but with X0
0 ∈ b+ and X∞0 ∈ b−, and with the constraint P 0X0

0 = −P 0X∞0 .
We also define the pole parts for this trigonometric case as

X0(λ)− := (P− +
1

2
P 0)X0

0 +

−1∑
n=−N0

X0
nλ

n ∈ b− ⊕ g⊗ λ−1C[λ−1] , (7.26)

X∞(λ∞)− := (P+ +
1

2
P 0)X∞0 +

−1∑
n=−N∞

X∞n λ
n
∞ ∈ b+ ⊕ g⊗ λC[λ] , (7.27)

for any X0(λ) =
∑∞

n=−N0
X0
nλ

n and X∞(λ∞) =
∑∞

n=−N∞ X
∞
n λ

n
∞. We will use the

following proposition.

Proposition 7.6 We have a direct sum of vector spaces into maximal isotropic Lie
subalgebras

L(g) = B(g)⊕ ιλRλ(g) . (7.28)

Proof. To show that B(g) is isotropic with respect to 〈 , 〉(−1) let X(λ), Y (λ) ∈ B(g)

be arbitrary and calculate

res
λ=0

TrX0(λ)Y 0(λ)
dλ

λ
+ res
λ=∞

TrX∞(λ∞)Y∞(λ∞)
dλ

λ
= TrX0

0Y
0

0 − TrX∞0 Y∞0

= Tr(P 0(X0
0 )P 0(Y 0

0 )))− Tr(P 0(X∞0 )P 0(Y∞0 )) = 0 .

To show that B(g) is maximally isotropic it is sufficient to prove that it is in direct sum
with ιλRλ(g). To any X(λ) ∈ L(g) we associate

Rλ(g) 3 fX(λ) = X0(λ)− +X∞(λ∞)− . (7.29)

Consider moreover the element X̃(λ) = (X̃a(λa))a=0,∞ defined by

X̃a(λa) := Xa(λa)− ιλafX(λ) , a = 0,∞ .

2In the s`(2,C) case b+ is spanned by σ+ and σ3, and b− is spanned by σ− and σ3.
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As we are subtracting the pole parts around λ = a we have that X̃a(λa) ∈ g⊗ C[[λa]]. At
a = 0 we have

X∞(λ∞)−|λ=0 = (P+ +
1

2
P 0)X∞0

so that X̃0(λ0) ∈ b+ ⊕ g⊗ λC[[λ]] whose leading coefficient is given by

(P+ +
1

2
P 0)(X0

0 −X∞0 ) ∈ b+ .

Likewise at ∞ we have
X0(λ0)−

∣∣
λ=∞ = (P− +

1

2
P 0)X0

0

so that X̃∞(λ∞) ∈ b− ⊕ g⊗ λ−1C[[λ−1]] with leading coefficient given by

(P− +
1

2
P 0)(−X0

0 +X∞0 ) ∈ b− .

We can conclude that X̃(λ) ∈ B(g), or in other words

X(λ) = X̃(λ) + ιλfX(λ)

gives the desired decomposition of X(λ) ∈ L(g) in terms of B(g) and ιλRλ(g). This
decomposition is unique since an element that belongs to both B(g) and ιλRλ(g) must
vanish.

Let π± the projections onto B(g) and ιλRλ respectively, and consider the following rational
function given by

r12(λ, µ) :=
1

2

(
ρ+
12 − ρ

−
12 +

µ+ λ

µ− λ
P12

)
=

1

4

µ+ λ

µ− λ
(I⊗ I + σ3 ⊗ σ3) +

µ

µ− λ
σ+ ⊗ σ− +

λ

µ− λ
σ− ⊗ σ+ .

(7.30)

We have the following proposition.

Proposition 7.7 (Projector π± (sG case)) For any X(λ) ∈ L(g), its projections onto
the subalgebras B and ιλRλ(g) are given respectively by π±X(λ) = ((π±X)a(λa))a=0,∞

where

(π+X)a(λa) =
∑
b=0,∞

res
µ=b

Tr2 ιµbιλar12(λ, µ)Xb(µb)2
dµ

µ
(7.31a)

(π−X)a(λa) = −
∑
b=0,∞

res
µ=b

Tr2 ιλaιµbr12(λ, µ)Xb(µb)2
dµ

µ
. (7.31b)
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Proof. First of all we remark that r12 can be written as

r12(λ, µ) =
µP12

µ− λ
− ρ−12 −

1

2
ρ0
12 . (7.32)

Then, given any X(λ) ∈ L(g) we consider

Rλ(g) 3 fX(λ) =−
∑
b=0,∞

res
µ=b

Tr2 ιµbr12(λ, µ)Xb(µb)2
dµ

µ

=
∑
b=0,∞

res
µ=b

(
ιµbµ

−1(P− +
1

2
P 0)Xb(µb) + ιµb

1

λ− µ
Xb(µb)

)
dµ .

The residue at 0 is

(P− +
1

2
P 0)X0

0 +
−1∑

n=−N0

X0
nλ

n = X0(λ)− ,

while the residue at ∞ is

− (P− +
1

2
P 0)X∞0 +

0∑
n=−N∞

X∞n λ
n
∞

= −(P− +
1

2
P 0)X∞0 +

−1∑
n=−N∞

X∞n λ
n
∞ + (P+ + P 0 + P−)X∞0 = X∞(λ∞)− ,

where we have used Id = P+ +P 0 +P−. By construction then we have that (π−X)a(λ0) =

ιλafX(λ) for every a ∈ S as fX is the function used in (7.29).
Then, if X(λ) ∈ B(g) then X0(λ)− = 1

2P
0X0

0 and X∞(λ∞)− = 1
2P

0
0X
∞
0 = −1

2P
0X0

0 , so
the two terms cancel in the sum, and (π−X)(λ) = 0 for any X(λ) ∈ B(g).
Suppose now X(λ) = ιλf(λ) for some f ∈ Rλ(g). If it has a pole in the origin then its
pole part in this point is given by

X0(λ)− + (P− +
1

2
P 0)X0

0 = X0(λ)− − (P− +
1

2
P 0)X∞0 ,

where X0
0 = −X0

∞ as f only has poles in 0 and ∞. The pole part at infinity is given by

X∞(λ∞)− + (P− +
1

2
P 0)X∞0 .

It follows then that this partial fraction decomposition of f(λ) coincides with the right-
hand side of (7.29), so π−X(λ) = X(λ), for any X(λ) ∈ ιλRλ(g).
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Let us now consider π+. For any X(λ) ∈ L(g) we have at 0

(π+X)0(λ0) =−
∑
b=0,∞

res
µ=b

ιµbµ
−1(P− +

1

2
P 0)Xb(µb)dµ

+
∑
b=0,∞

∞∑
n=0

res
µ=b

ιµb
λn

µn+1
Xb(µb)dµ .

(7.33)

If X(λ) ∈ ιλRλ(g) then both terms vanish by the residue theorem. The same happens at
infinity with

(π+X)∞(λ∞) =−
∑
b=0,∞

res
µ=b

ιµbµ
−1(P− +

1

2
P 0)Xb(µb)dµ

−
∑
b=0,∞

∞∑
n=0

res
µ=b

ιµb
µn

λn+1
Xb(µb)dµ ,

(7.34)

so (π+X)(λ) = 0 for every X(λ) ∈ ιλRλ(g).
Suppose now X(λ) ∈ B(g). The first term of π+X in zero gets the contributions

− res
µ=0

µ−1(P− +
1

2
P 0)X0(µ0)dµ− res

µ=∞
(P− +

1

2
P 0)X∞(µ∞)dµ

= −(P− +
1

2
P 0)X0

0 + (P− +
1

2
P 0)X∞0 = −(P− +

1

2
P 0)X0

0 +
1

2
P 0X∞0

= −(P− +
1

2
P 0)X0

0 −
1

2
P 0X0

0

= (P− + P 0)X∞0 = X∞0 .

The contribution from the second term is X0(λ0)−X∞0 , so in total we get (π+X)0(λ0) =

X0(λ0). Similarly one obtains (π+X)∞(λ∞) = X∞(λ∞). In conclusion

π+X(λ) = X(λ) ∀X(λ) ∈ B(g) .

We can now define the trigonometric r-matrix r := π+ − π−, whose kernel reads

((ιµbιλa + ιλaιµb)r12(λ, µ))a,b=0,∞ . (7.35)

The kernel of the identity operator is instead given by

(
(ιµbιλa − ιλaιµb)r12(λ, µ)µ−1dµ

)
a,b=0,∞ = (P12δabδ(λa, λb)dµa)a,b=0,∞ . (7.36)

7.2 The generating Lagrangian multiform

In the rest of the section, we will keep k fixed to either −1 or 0. We will introduce the
generating Lagrangian in terms of two ingredients:
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1. Q(λ) = (Qa(λa))a∈S ∈ L+(g) is the collection of g-valued Taylor series in λa, a ∈ S,

Qa(λa) =

∞∑
k=Na

Qak λ
k
a , Qak ∈ g . (7.37)

The value of Na depends on a and on the value we choose for k. The coefficients
Qak are independent, but there are conditions on the Qa0 which depend on whether
we are in the rational or trigonometric case. We consider elements Q(λ) where each
Qa(λa) can be factorised as

Qa(λa) = ϕa(λa)X
a(λa)ϕ

a(λa)
−1 . (7.38)

The element ϕa(λa) =
∑∞

j=0 ϕ
a
k λ

k
a is a Taylor series in λa, such that ϕa0 is invertible.

ϕa(λa) is a holomorphic map in a neighbourhood of a with values in G (the Lie
group corresponding to g). ϕa(λa)−1 is its inverse, i.e. ϕa(λa)ϕa(λa)−1 = I. For
each a ∈ S Xa(λa) ∈ L+

a (g) is a given constant element of the loop algebra. The
matrices ϕ(λ) contain the fields of our theory, while X(λ) is non-dynamical and
constant. The elements of S will become poles of the corresponding Lax matrix.

2. A skew-symmetric classical r-matrix r12(λ, µ) = −r21(µ, λ), solution of the classical
Yang-Baxter equation. The explicit expression of r will depend whether we are in
the rational (k = 0) or trigonometric (k = −1) case, but we require that, as was
proved for the specific cases

(ιλaιµb − ιµbιλa)r12(λ, µ)µkdµ = P12δabδ(λa, µb)dµa (7.39)

where δ(λa, µb) :=
∑

n∈Z λ
n
aµ
−n−1
b .

We begin with the following two important lemmas.

Lemma 7.8 We have

[
Tr2

(
ιλιµr12(λ, µ)Q2(µ)

)
, Q1(λ)

]
=
[
Tr2

(
ιµιλr12(λ, µ)Q2(µ)

)
, Q1(λ)

]
.

Proof. Using the identity (7.39) we deduce that for any a, b ∈ S we have

[
Tr2

(
(ιλaιµb − ιµbιλa)r12(λ, µ)Qb2(µb)

)
, Qa1(λa)

]
∝ δ(λa, µa)[Qa(λa), Qa(µa)] .

Since [Qa(λa), Q
a(µa)] vanishes when λa = µa, it is proportional to λa−µa. Then, since3

δ(λa, µa)(λa−µa) = 0, it follows that the right hand side above vanishes, as required.

3Indeed
∑
n∈Z λ

n
aµ
−n−1
a (λa − µa) =

∑
n∈Z λ

n+1
a µ−n−1

a −
∑
n∈Z λ

n
aµ
−n
a = 0.
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Lemma 7.9 Let Dµ := (Dµa)a∈S. The generating Lax equations

DµQ1(λ) = [ιλιµ Tr2 r12(λ, µ)Q2(µ), Q1(λ)] (7.40)

are compatible, in the sense that DνDµQ1(λ) = DµDνQ1(λ).

Proof. The proof follows as a consequence of the classical Yang-Baxter equation for r12.
We have

DνDµQ1(λ) =
[

Tr2
(
ιλιµr12(λ, µ)DνQ2(µ)

)
, Q1(λ)

]
+
[

Tr2
(
ιλιµr12(λ, µ)Q2(µ)

)
, DνQ1(λ)

]
= Tr23

[
ιλιµr12(λ, µ)

[
ιµινr23(µ, ν)Q3(ν), Q2(µ)

]
, Q1(λ)

]
+ Tr23

[
ιλιµr12(λ, µ)Q2(µ),

[
ιλινr13(λ, ν)Q3(ν), Q1(λ)

]]
.

(7.41)

By using the cyclicity of the trace over space 2 in the first term on the right hand side
and the Jacobi identity on the last term, this can be rewritten as

DνDµQ1(λ) = Tr23

[
ιλιµιν

[
r12(λ, µ), r23(µ, ν)

]
Q2(µ)Q3(ν), Q1(λ)

]
+ Tr23

[
ιλιµιν

[
r12(λ, µ), r13(λ, ν)

]
Q2(µ)Q3(ν), Q1(λ)

]
+ Tr23

[
ιλινr13(λ, ν)Q3(ν),

[
ιλιµr12(λ, µ)Q2(µ), Q1(λ)

]]
.

Likewise, exchanging µ↔ ν in (7.41) we obtain

DµDνQ1(λ) = Tr23

[
ιλινr13(λ, ν)

[
ινιµr32(ν, µ)Q2(µ), Q3(ν)

]
, Q1(λ)

]
+ Tr23

[
ιλινr13(λ, ν)Q3(ν),

[
ιλιµr12(λ, µ)Q2(µ), Q1(λ)

]]
= Tr23

[
ιλιµιν

[
r13(λ, ν), r32(ν, µ)

]
Q2(µ)Q3(ν), Q1(λ)

]
+ Tr23

[
ιλινr13(λ, ν)Q3(ν),

[
ιλιµr12(λ, µ)Q2(µ), Q1(λ)

]]
,

where the second equality we used Lemma 7.8 to swap the order of ιν and ιµ in the first
term, along with the cyclicity of the trace over space 3.

It now follows from combining the above that the difference
(
DνDµ −DµDν

)
Q1(λ) is

given by

Tr23

[
ιλιµιν

(
[r12(λ, µ), r13(λ, ν)] + [r12(λ, µ), r23(µ, ν)]

− [r13(λ, ν), r32(ν, µ)]
)
Q2(µ)Q3(ν), Q1(λ)

]
which vanishes using the classical Yang-Baxter equation, as required.

This last result of commutativity of the flows Dλ’s, when they act on our algebra as (7.40),
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and with the identification of the Dλa ’s in terms of linear combinations of the ∂tka ’s, allows
us to consider the coordinates { tka | a ∈ S, k ≥ 0 } as times identifying commuting flows
of an integrable hierarchy. As a result, we can effectively see our loop algebra L(g) as
valued in A , the differential algebra underlying the variational bi-complex, and therefore
we can take g ⊆ glN (A ).

Equations (7.40) will be shown to be variational, and they can be interpreted as multiform
Euler-Lagrange equations for a collection of Lagrangian multiforms. These are introduced
as a generating series in the same spirit of Equations (6.31), as

L (λ, µ) = K(λ, µ)− V (λ, µ) , (7.42)

where we define the kinetic part as

K(λ, µ) = Tr
(
ϕ−1(λ)Dµϕ(λ)X(λ)− ϕ−1(µ)Dλϕ(µ)X(µ)

)
(7.43)

and the potential part as

V (λ, µ) =
1

2
Tr12(ιµιλ + ιλιµ)r12(λ, µ)Q1(λ)Q2(µ) . (7.44)

The above facts make the generating Lagrangian L (λ, µ) a collection of double Laurent
series in λa and µb, a, b ∈ S

L (λ, µ) =

(∑
m,n

Labmn λ
m
a µ

n
b

)
a,b∈S

≡(L ab(λa, µb))a,b∈S , L ab(λa, µb) ∈ g⊗ C((λa, µb)) .

(7.45)

This will define a collection of Lagrangian multiforms, associated to the times t1a, t2a, . . . ,
and t1b , t

2
b , . . . for all a, b ∈ S by using the following prescription

L ab :=
∑
m<n

Labmn dt
m
a ∧ dtnb , (7.46)

by the relation

Labmn = res
λ=a

res
µ=b

L ab(λa, µb)

λma µ
n
b

λkdλµkdµ . (7.47)

In order to prove that this is the case, we need to calculate the corresponding multiform
Euler-Lagrange equations δdL = 0, and prove that on these equations L is horizontally
closed (closure relation) dL = 0. These computations will be carried over in generating
form, i.e. by dealing with the formal series in λ and µ. For example, the coefficients of
dL (as a form) are the coefficients of

DνL (λ, µ) +DµL (ν, λ) +DλL (µ, ν) (7.48)
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as a triple series. We will use the same approach to calculate δdL .

7.2.1 Multiform Euler-Lagrange equation

Proposition 7.10 The multiform Euler-Lagrange equations for L are, in generating
form

DµQ1(λ) = [Tr2 ιλιµr12(λ, µ)Q2(µ), Q1(λ)] , (7.49)

Proof. We compute δdL in generating form as δDνL (λ, µ)+ 	, and separating between
the kinetic and potential terms. We start with the kinetic

DνK(λ, µ) = Tr(−ϕ−1(λ)Dνϕ(λ)ϕ−1(λ)Dµϕ(λ)X(λ)

+ ϕ−1(λ)DνDµϕ(λ)X(λ) + ϕ−1(λ)Dµϕ(λ)DνX(λ)

+ ϕ−1(µ)Dνϕ(µ)ϕ−1(µ)Dλϕ(µ)X(µ)

− ϕ−1(µ)DνDλϕ(µ)X(µ)− ϕ−1(µ)Dλϕ(µ)DνX(µ))

so that DνK(λ, µ)+ 	 is

Tr(−ϕ−1(λ)Dνϕ(λ)ϕ−1(λ)Dµϕ(λ)X(λ) + ϕ−1(λ)Dµϕ(λ)DνX(λ)

+ ϕ−1(λ)Dµϕ
−1(λ)Dνϕ(λ)X(λ)− ϕ(λ)Dνϕ(λ)DµX(λ))+ 	

After we apply the δ-differential we get

“δdK” = Tr((ϕ−1(λ)Dνϕ(λ)ϕ−1(λ)DµQ(λ)− ϕ−1(λ)Dµϕ(λ)ϕ−1(λ)DνQ(λ))δϕ(λ)

− ϕ−1(λ)DµQ(λ)δDνϕ(λ) + ϕ−1(λ)DνQ(λ)δDµϕ(λ))+ 	 .

Let us now compute δdV . Computing DνV (λ, µ) we get, using Dνr12(λ, µ) = 0

DνV (λ, µ) =
1

2
Tr12(ιλιµ + ιµιλ)(r12DνQ1Q2 + r12Q1DνQ2)

where we dropped λ, µ for simplicity. After applying the δ-differential we get

δDνV (λ, µ) =
1

2
Tr12(ιλιµ + ιµιλ)(r12δDνQ1Q2

+ r12DνQ1δQ2 + r12δQ1DνQ2 + r12Q1δDνQ2)

We have the following identities:

Tr12 r12δDνQ1Q2 = Tr12(−Q2r12DνQ1 −Q1Dνϕ1ϕ
−1
1 Q2r12

+Dνϕ1ϕ
−1
1 Q2r12Q1 + ϕ1DνX1ϕ

−1
1 Q2r12)δϕ1ϕ

−1
1

+ Tr12[Q1, r12Q2]δDνϕ1ϕ
−1
1

= Tr12([DνQ1, r12Q2]−Dνϕ1ϕ
−1
1 [Q1, r12Q2])δϕ1ϕ

−1
1

+ Tr12[Q1, r12Q2]δDνϕ1ϕ
−1
1 ,
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Tr12 r12Q1δDνQ2 = Tr12(−r12Q1DνQ2 −Q2Dνϕ2ϕ
−1
2 r12Q1

+Dνϕ2ϕ
−1
2 r12Q1Q2 + ϕ2DνX2ϕ

−1
2 r12Q1)δϕ2ϕ

−1
2

+ Tr12[Q2, r12Q1]δDνϕ2ϕ
−1
2

= Tr12([DνQ2, r12Q1]−Dνϕ2ϕ
−1
2 [Q2, r12Q1])δϕ2ϕ

−1
2

+ Tr12[Q2, r12Q1]δDνϕ2ϕ
−1
2 ,

Tr12 r12δQ1DνQ2 = Tr12[Q1, r12DνQ2]δϕ1ϕ
−1
1 ,

Tr12 r12DνQ1δQ2 = Tr12[Q2, r12DνQ1]δϕ2ϕ
−1
2 .

We look at the terms coming from δϕ1, δDµϕ1 and δDνϕ1. From δdK we have

Tr1(−Dµϕ1ϕ
−1
1 DνQ1 +Dνϕ1ϕ

−1
1 DµQ1)δϕ1ϕ

−1
1

+ Tr1(−DµδDνϕ1ϕ
−1
1 +DνQ1δDµϕ1ϕ

−1
1 )

and from δdV (from δDνV (λ, µ) and δDµV (ν, λ)) and using rij = −rji

1

2
(ιλιµ + ιµιλ) Tr12[Q1, r12Q2]δDνϕ1ϕ

−1
1 −

1

2
(ιλιν + ινιλ) Tr13[Q1, r13Q3]δDµϕ1ϕ

−1
1

+
1

2
(ιλιµ + ιµιλ) Tr12([DνQ1, r12Q2]−Dνϕ1ϕ

−1
1 [Q1, r12Q2] + [Q1, r12DνQ2])δϕ1ϕ

−1
1

+
1

2
(ιλιν + ινιλ) Tr13(−[DµQ1, r13Q3] +Dµϕ1ϕ

−1
1 [Q1, r13Q3]− [Q1, r13DµQ3])δϕ1ϕ

−1
1 .

By setting δdK = δdV , the coefficients of δDµϕ1 and δDνϕ1 bring the desired equations

DµQ1 =
1

2
(ιλιµ + ιµιλ)[Tr2 r12Q2, Q1] , DνQ1 =

1

2
(ιλιν + ινιλ)[Tr3 r13Q3, Q1] .

The other coefficients are just differential consequences, and they follow from the commut-
ativity of flows DµDνQ1 = DνDµQ1. The coefficients of δϕ2, δϕ3 etc. give the equations
with the other choices of spectral parameter and auxiliary space. As they are equivalent
under the interchange of auxiliary space and formal variable, we will only keep the first
one. We then use Lemma 7.8 to write the result.

7.2.2 Closure relation and classical Yang-Baxter equation

In order to prove that L (λ, µ) really generates a Lagrangian multiform we need to prove
that it is horizontally closed under the equations generated by (7.49). We will see that, just
like the commutativity of the flows, this translates in the classical Yang-Baxter equation.
In a way, this result brings for the first time a variational origin of the classical Yang-
Baxter equation, and provides another interesting feature of the Lagrangian multiform
approach to an integrable system.

Proposition 7.11 (Closure relation) On shell of the multiform Euler-Lagrange equations
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(7.49), we have
DνL (λ, µ) +DµL (ν, λ) +DλL (µ, ν) = 0 . (7.50)

Proof. We start with contribution from the kinetic part. We have that

DνK(λ, µ)

= Dν Tr(ϕ−1(λ)Dµϕ(λ)X(λ)− ϕ−1(µ)Dλϕ(µ)X(µ))

= Tr(−ϕ−1(λ)Dνϕ(λ)ϕ−1(λ)Dµϕ(λ)X(λ) + ϕ−1(λ)DνDµϕ(λ)X(λ)

+ ϕ−1(µ)Dνϕ(µ)ϕ−1(µ)Dλϕ(µ)X(µ)− ϕ−1(µ)DνDλϕ(µ)X(µ)) .

After we add DµK(ν, λ) +DλK(µ, ν) we have that the terms with the double derivatives
cancel out, while the others add up to

Tr(DνQ(λ)Dµϕ(λ)ϕ−1(λ) +DλQ(µ)Dνϕ(µ)ϕ−1(µ) +DµQ(ν)Dλϕ(ν)ϕ−1(ν))

Now we use the multiform Euler-Lagrange equations and get, associating the auxiliary
spaces as usual and dropping the dependence on the spectral parameters

Tr13([ιλινr13Q3, Q1]Dµϕ1ϕ
−1
1 )− Tr12([ιλιµr12Q1, Q2]Dνϕ2ϕ

−1
2 )

− Tr23([ιµινr23Q2, Q3]Dλϕ3ϕ
−1
3 )

= −Tr13 ιλινr13Q3DµQ1 + Tr12 ιλιµr12Q1DνQ2 + Tr23 ιµινr23Q2DλQ3

= Tr123(−ιλινr13Q3[ιλιµr12Q2, Q1] + ιλιµr12Q1[ιµινr23Q3, Q1]

− ιµινr23Q2[ιλινr13Q1, Q3])

= Tr123 ιλιµιν([r12, r13] + [r12, r23] + [r13, r23])Q1Q2Q3

which vanishes thanks to the classical Yang-Baxter equation. Let us treat the potential
part V (λ, µ) = Tr12

1
2(ιλιµ + ιµιλ)r12Q1Q2 (dropping the dependence on the spectral

parameters). We have

DνV (λ, µ) =
1

2
Tr12(ιλιµ + ιµιλ)(r12DνQ1Q2 + r12Q1DνQ2)

=
1

2
Tr123((ιλιµ + ιµιλ)r12[ιλινr13Q3, Q1]Q2 + r12Q1[ιµινr23Q3, Q2])

= Tr123 ιλιµιν([r12, r13] + [r12, r23])Q1Q2Q3

where in the last line we used Lemma 7.8. When we add the other terms DµV (ν, λ) +

DλV (µ, ν) we can see that they add up to

2 Tr123 ιλιµιν([r12, r13] + [r12, r23] + [r13, r23])Q1Q2Q3

which again vanishes thanks to the classical Yang-Baxter equation.
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7.2.3 Zero-curvature equations

The equations of motion (7.49) can be written succinctly as

DµQ(λ) = [ιλW (λ;µ), Q(λ)] (7.51)

where we have introduced the generating Lax form

W (λ;µ) := Tr2 ιµr12(λ, µ)Q2(µ) . (7.52)

Note that we do not expand the right hand side in powers of λa for a ∈ S, i.e. we do
not apply the homomorphism ιλ. Instead, this expansion is taken explicitly in (7.51). In
particular, the semi-colon in the notation W (λ;µ) is used to emphasise that λ is just
a formal variable whereas µ is the usual notation used as a shorthand for a collection(
W b(λ;µb)

)
b∈S where

W b(λ;µb) =

∞∑
n=0

W b
n(λ)µnb ∈ Rλ(g)⊗ C[[µb]]. (7.53)

Here W b
n(λ) ∈ Rλ(g) are g-valued rational functions in λ with a pole at λ = b. By the

following proposition, W b(λ;µb) can be seen as a generating series in µb of a hierarchy of
Lax matrices W b

n(λ) associated with the higher times tnb , and to every coefficient of µb is
associated a coefficient of the Lax form W b(λ) =

∑∞
n=0W

b
n(λ) dtnb .

Proposition 7.12 We have the zero-curvature equation in generating form

DνW (λ;µ)−DµW (λ; ν) +
[
W (λ;µ),W (λ; ν)

]
= 0.

Equivalently, in components we have

∂tbnW
a
m(λ)− ∂tamW

b
n(λ) +

[
W a
m(λ),W b

n(λ)
]

= 0

for every a, b ∈ S and m,n ≥ 0.

Proof. Using Proposition 7.49 we find

DνW (λ;µ) = Tr2 ιµr12(λ, µ)DνQ2(µ)

= Tr23 ιµr12(λ, µ)
[
ιµινr23(µ, ν)Q3(ν), Q2(µ)

]
= Tr23 ιµιν

[
r12(λ, µ), r23(µ, ν)

]
Q2(µ)Q3(ν),

where in the last equality we used the cyclicity of the trace in space 2. Likewise, we also
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have

DµW (λ; ν) = Tr3 ινr13(λ, ν)DµQ3(ν)

= Tr23 ινr13(λ, ν)
[
ινιµr32(ν, µ)Q2(µ), Q3(ν)

]
= Tr23 ιµιν

[
r13(λ, ν), r32(ν, µ)

]
Q2(µ)Q3(ν).

where in the final step we used Lemma 7.8 to swap the order of ιν and ιµ, before using
the cyclicity of the trace in space 3. Finally, we have

[
W (λ;µ),W (λ; ν)

]
= Tr23

[
ιµr12(λ, µ)Q2(µ), ιλινr13(λ, ν)Q3(ν)

]
= Tr23 ιµιν

[
r12(λ, µ), r13(λ, ν)

]
Q2(µ)Q3(ν).

The result now follows by the classical Yang-Baxter equation.

7.3 The AKNS hierarchy

7.3.1 Lax matrices and zero-curvature equations

Lemma 7.13 Let X(µ) =
∑∞

n=−N X
∞
n λ

n
∞ ∈ Lrat

∞ (g). Then we have

ιµ∞
X∞(µ∞)

µ− λ
=

∞∑
r=−N

µr+1
∞
(
λ−r∞X∞(λ∞)

)
− . (7.54)

Proof. Obtained by direct calculation. We have

ιµ∞
X∞(µ∞)

µ− λ
=
∞∑
r=0

∞∑
n=−N

µn+r+1
∞
λr∞

X∞n =
∞∑

n=−N

∞∑
s=n

X∞n µ
s+1
∞ λn−s∞

=

∞∑
s=−N

µs+1
∞

s∑
n=−N

λn−s∞ X∞n =

∞∑
r=−N

µr+1
∞
(
λ−r∞X∞(λ∞)

)
− .

We can find the generating Lax form W (λ;µ) explicitly for the AKNS. Introducing
Q∞(λ∞) ∈ Lrat(g) we have that

W∞(λ;µ∞) = Tr2 ιµ∞r12(λ, µ)Q∞(µ∞)2 = Tr2 ιµ∞
P12

µ− λ
Q∞(µ∞)2

=

∞∑
r=1

µr+1
∞ (λ−r∞ Q∞(λ∞))− = Q∞1 µ

2
∞ + (Q∞2 +Q∞1 λ

−1
∞ )µ3

∞ + . . .
(7.55)

As announced, the points in S (which only contains ∞ in this case), have become poles of
the Lax matrices, i.e. the coefficients of W∞. The zero-curvature equations in generating
form become

∞∑
k=1

µk+1
∞ ∂t∞k Q

∞(λ∞) = [W∞(λ∞, µ∞), Q∞(λ∞)] . (7.56)
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This means that for every r ≥ 1 we have

∂t∞r Q
∞(λ∞) =

[
r∑

n=1

Q∞n λ
n−r
∞ , Q∞(λ∞)

]
. (7.57)

Expanding both sides we get

∞∑
n=1

λn∞∂t∞r Q
∞
n =

∞∑
n=1

r∑
s=1

λs−r+n∞ [Q∞s , Q
∞
n ]

=

∞∑
n=1

r−1∑
k=0

λn−k∞
[
Q∞r−k, Q

∞
n

]
=

r−1∑
k=1

k∑
n=1

λn−k∞
[
Q∞r−k, Q

∞
n

]
+

r−1∑
k=0

∞∑
n=k+1

λn−k∞
[
Q∞r−k, Q

∞
n

]
=

r−1∑
k=1

k−1∑
p=0

λ−p∞
[
Q∞r−k, Q

∞
k−p
]

+
r−1∑
k=0

∞∑
s=1

λs∞
[
Q∞r−k, Q

∞
s+k

]
=

r−1∑
p=0

λ−p∞

r−1∑
k=p+1

[
Q∞r−k, Q

∞
k−p
]

+
∞∑
n=1

λn∞

r−1∑
k=0

[
Q∞r−k, Q

∞
n+k

]

Note that
∑r−1

k=p+1

[
Q∞r−k, Q

∞
k−p

]
= 0 so we are left with the equations

∂t∞r Q
∞
n =

r−1∑
k=0

[
Q∞r−k, Q

∞
n+k

]
.

We are now ready to connect with the results of [FNR83]: let us define Q(λ) := λQ∞(λ−1),
so that Qn = Q∞n+1, and redefine xn := t∞n+1. Setting x1 = x, we obtain the familiar

∂xQn = [Q1, Qn] + [Q0, Qn+1] , (7.58)

which for each n ≥ 1 we can solve recursively and obtain the AKNS hierarchy in the
traditional fashion. Moreover, the generating Lax form becomes µ∞(µ∞Q0 + µ2

∞(Q1 +

λQ0) + µ3
∞(Q2 + λQ1 + λ2Q0) + . . . ) that is

W∞(λ;µ∞) = µ∞

∞∑
r=0

Q(r)(λ)

µr+1
, (7.59)

where Q(r)(λ) are the Lax matrices of the AKNS.

7.3.2 Extracting the AKNS multiform

The generating Lagrangian introduced in Chapter 6 is essentially the same as the one of
this chapter, so we will only need to reformulate the procedure described there in terms
of this more general language. Since we chose S = {∞} we only need to factorise Q(λ)
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and Q(µ) around infinity

Q∞(λ∞) = ϕ∞(λ∞)X∞(λ∞)ϕ∞(λ∞)−1 =

∞∑
i=1

Q∞i λ
∞
i (7.60)

where ϕ∞(λ∞) =
∑∞

k=0 ϕ
∞
k λ

k
∞ and ϕ∞(λ∞)−1 =

∑∞
k=0 ϕ̃

∞
k λ

k
∞, and similarly with µ.

The Lagrangian of Chapter 6 is obtained as follows (in terms of the old notation). We set
Qn = Q∞n+1 and consistently

X∞(λ∞) =
Q0

λ
, ϕ∞(λ∞) = ϕ(λ) , Dλ∞ =

Dλ

λ
. (7.61)

The kinetic term K∞∞(λ∞, µ∞) then becomes, in terms of the old notation

K∞(λ∞, µ∞) = Tr

[
ϕ−1(λ)

(
Dµ

µ

)
ϕ(λ)

(
Q0

λ

)
− ϕ−1(µ)

(
Dλ

λ

)
ϕ(µ)

(
Q0

µ

)]
= −

∞∑
m,n=0

Kmn

λm+1µn+1
,

(7.62)

where the Kmn’s are the coefficient of the kinetic part of Chapter 6. The coefficients of
the potential part are obtained as follows. We take the residues

res
λ=∞

res
µ=∞

V∞∞(λ∞, µ∞)

λm+1
∞ µn+1

∞
dλdµ

= res
λ=∞

res
µ=∞

1

2
Tr12(ιλ∞ιµ∞ + ιµ∞ιλ∞)

P12Q
∞(λ∞)1Q

∞(µ∞)2

(µ− λ)λm+1
∞ µn+1

∞
dλdµ

= −1

2
Tr res

λ=∞

(
Q∞(λ∞)

λn+1
∞

)
−

Q∞(λ∞)

λm+1
∞

dλ+
1

2
Tr res

µ=∞

(
Q∞(µ∞)

µm+1
∞

)
−

Q∞(µ∞)

µn+1
∞

dµ

= −1

2
Tr res

λ=∞

n+1∑
i=1

Q∞i λ
i−n−1
∞

∞∑
j=1

Q∞j λ
j−m−1
∞ +

1

2
Tr res

µ=∞

m+1∑
j=1

Q∞j µ
j−m−1
∞

∞∑
i=1

Q∞i µ
i−n−1
∞

=
1

2
Tr

m+n+2∑
j=m+2

Q∞m+n−j+3Q
∞
j −

1

2
Tr

m+n+2∑
j=n+2

Q∞m+n−j+3Q
∞
j

=
1

2
Tr

m+n+1∑
j=m+1

Qm+n−j+1Qj −
1

2
Tr

m+n+1∑
j=n+1

Qm+n−j+1Qj

= −1

2
Tr

m∑
j=0

Qm+n−j+1Qj +
1

2
Tr

n∑
j=0

Qm+n−j+1Qj = −Vmn .

Overall we get

L∞∞(λ∞, µ∞) = −
∞∑

m,n=0

Kmn

λm+1µn+1
+

∞∑
m,n=0

Vmn
λm+1µn+1

(7.63)

which is the generating Lagrangian of Chapter 6 up to an overall minus sign.
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7.4 Zakharov-Shabat Lax pairs and Dickey’s Lagrangian

7.4.1 Lax matrices and zero-curvature equations

Lemma 7.14 Let X(µ) ∈ Lrat(g). Then we have

ιµa
X(µ)

µ− λ
= −

∞∑
r=0

µra

(
Xa(λa)

λr+1
a

)
−
, ∀a ∈ S . (7.64)

Proof. Obtained by direct calculation.

We can now find the generating Lax form explicitly for this case. LetQ(λ) = (Qa(λa))a∈S ∈
Lrat(g), where

Qai(λai) =

∞∑
k=0

Qaik (λ− ai)k , i = 1, . . . , N1 , (7.65a)

Qbj (λbj ) =

∞∑
k=0

Q
bj
k (λ− bj)k , j = 1, . . . , N2 . (7.65b)

We compute W ai(λ;µ− ai) = Tr ιµai
Q(µ)
µ−λ and we find

Tr ιµai
Q(µ)

µ− λ
= −

∞∑
ni=0

(µ− ai)ni
(
Qai(λ− ai)
(λ− ai)ni+1

)
−

= −
∞∑
ni=0

(µ− ai)
ni∑
k=0

Qaik
(λ− ai)ni+1−k , i = 1, . . . , N1 ,

Tr ιµbj
Q(µ)

µ− λ
= −

∞∑
mj=0

(µ− bj)
mj∑
`=0

Q
bj
`

(λ− bj)mj+1−` , j = 1, . . . , N2 .

Therefore

W ai
ni (λ) = −

ni∑
k=0

Qaik
(λ− ai)ni+1−k , W

bj
mj (λ) = −

mj∑
`=0

Q
bj
`

(λ− bj)mj+1−` . (7.66)

Now, introducing the times taini and t
bj
mj we get that the zero-curvature condition in
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generating form is

∂
t
bj
mj

W ai
ni (λ)− ∂tainiW

bj
mj (λ) + [W ai

ni (λ),W
bj
mj (λ)]

= ∂taini

mj∑
`=0

Q
bj
`

(λ− bj)mj+1−` − ∂tbjmj

ni∑
k=0

Qaik
(λ− ai)ni+1−k

+

[
ni∑
k=0

Qaik
(λ− ai)ni+1−k ,

mj∑
`=0

Q
bj
`

(λ− bj)mj+1−`

]
≡ ∂tainiVj(λ)− ∂

t
bj
mj

Ui(λ) + [Ui(λ), Vj(λ)] = 0 , (7.67)

where we have defined

Ui(λ) :=

ni∑
k=0

Qaik
(λ− ai)ni+1−k , Vj(λ) :=

mj∑
`=0

Q
bj
`

(λ− bj)mj+1−` . (7.68)

Performing the sums
∑N1

i=1

∑N2
j=1 we obtain (for given values of N1, N2, ni i = 1, . . . , N1

and mj j = 1, . . . , N2)

∂ξV (λ)− ∂ηU(λ) + [U(λ), V (λ)] = 0 , (7.69)

where

U(λ) :=

N1∑
i=1

Ui(λ) , V (λ) :=

N2∑
j=1

Vj(λ) (7.70)

and ∂ξ :=
∑N1

i=1 ∂taini
and ∂η :=

∑N2
j=1 ∂t

bj
mj

. This corresponds to the auxiliary system

of Zakharov-Shabat type studied by Dickey in [D03, Section 20.2], in the case where
U0 = V0 = 0 and ai 6= bj ∀i, j. The special case where ni = mj = 0 ∀i, j corresponds to
the ZM case [ZM80].

Remark 7.15: The case with coinciding poles ai = bj is obtained by choosing some
of the times taini and t

bj
mj both in ∂ξ and ∂η. This, and the case with generic U0, V0

are still under current investigation and are objects of future research.

Remark 7.16: Equations (7.69) are the zero-curvature equations dW (λ) +W (λ) ∧
W (λ) = 0 for the Lax connection W (λ) = U(λ)dξ + V (λ)dη, where we note the
different sign in the definition of the curvature with respect to the rest of the thesis.
This will bring a different sign in the ZM Lagrangian with respect to [ZM80] that
uses the convention F (W (λ)) = dW (λ)−W (λ) ∧W (λ), that can be recovered by
sending W (λ) 7→ −W (λ).
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7.4.2 Extracting the Zakharov-Mikhailov Lagrangian

Our target is to obtain the Zakharov-Mikhailov (ZM) Lagrangian [ZM80] (see also
Sections 4.5 and A.4) from the generating Lagrangian multiform L (λ, µ). It will not be
obtained as a coefficient a Lagrangian multiform, but a linear combination of coefficients

LZM =

N1∑
i=1

N2∑
j=1

L
aibj
00 .

As before we write Q(λ) = (Qa(λa))a∈S as in (7.65), where S = { a1, . . . , aN1 , b1, . . . , bN2 }.
Then, for each ai we write

Qai(λai) = ϕai(λai)X
ai(λai) (ϕai(λai))

−1 ,

ϕai(λai) =

∞∑
k=0

ϕaik (λai)
k , (ϕai(λai))

−1 =

∞∑
k=0

ϕ̃aik (λai)
k ,

Xai(λai) =

∞∑
k=0

Xai
k λ

k
ai ,

(7.71)

and for each bj

Qbj (λbj ) = ψbj (λbj )X
bj (λbj )(ϕ

bj (λbj ))
−1 ,

ψbj (λbj ) =
∞∑
k=0

ψ
bj
k (λbj )

k , (ψbj (λbj ))
−1 =

∞∑
k=0

ψ̃
bj
k (λbj )

k ,

Xbj (λbj ) =
∞∑
k=0

X
bj
k λ

k
bj
.

(7.72)

We remark that ϕ̃ai0 = (ϕai0 )−1 and ψ̃
bj
0 = (ψ

bj
0 )−1 for all i, j. Then, we obtain the

Zakharov-Mikhailov Lagrangian by taking the following sums and residues

LZM =

N1∑
i=1

N2∑
j=1

res
λ=ai

res
µ=bj

L aibj (λai , µbj )

λaiµbj
. (7.73)
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Indeed we have

N1∑
i=1

N2∑
j=1

res
λ=ai

res
µ=bj

Kaibj (λai , µbj )

λaiµbj

=

N1∑
i=1

N2∑
j=1

res
λ=ai

res
µ=bj

1

λaiµbj
Tr

(
(ϕai(λai))

−1
∞∑
k=0

µkbj∂t
bj
k

ϕai(λai)X
ai(λai)

−(ψbj (µbj ))
−1
∞∑
k=0

λkai∂taik
ψbj (µbj )X

bj (µbj )

)

=

N1∑
i=1

N2∑
j=1

Tr

(
(ϕai0 )−1∂

t
bj
0

ϕai0 X
ai
0 − (ψ

bj
0 )−1∂tai0

ψ
bj
0 X

bj
0

)

≡ Tr

 N1∑
i=1

ϕ−1
i ∂ηϕiU

(0)
i −

N2∑
j=1

ψ−1
j ∂ξψjV

(0)
j


and it corresponds to the kinetic part of the ZM Lagrangian under the identifications

ϕi := ϕai , U
(0)
i := Xai

0 , Ui := Qai0 , ∂ξ =

N1∑
j=0

∂tai0
,

ψj := ψbj , V
(0)
j := X

bj
0 , Vj := Q

bj
0 , ∂η =

N2∑
j=0

∂
t
bj
0

.

(7.74)

The potential part instead brings

N1∑
i=1

N2∑
j=1

res
λ=ai

res
µ=bj

V aibj (λai , µbj )

λaiµbj

=

N1∑
i=1

N2∑
j=1

res
λ=ai

res
µ=bj

1

2
Tr12(ιλai ιµbj + ιµbj ιλai )

P12Q
ai(λai)1Q

bj (µbj )2

(µ− λ)λaiµbj

=

N1∑
i=1

N2∑
j=1

res
λ=ai

res
µ=bj

Tr12 ιλai ιµbj
P12

µ− λ
Qai(λai)1

λai

Qbj (µbj )2

µbj

where we used the fact that ai 6= bj and so ιλai ιµbj = ιµbj ιλai , and then, using Tr2 P12A2 =

A1 and ιµbj
1

µ−λ = −
∑∞

r=0 µ
r
bj
λr−1
bj

we get

−
N1∑
i=1

N2∑
j=1

res
λ=ai

res
µ=bj

ιλai Tr

∞∑
r=0

∞∑
k=0

∞∑
`=0

Qaik Q
bj
` λ

k−1
ai λ−r−1

bj
µr+l−1
bj

= −
N1∑
i=1

N2∑
j=1

res
λ=ai

Tr

∞∑
k=0

Qaik Q
bj
0 λ

k−1
ai λ−1

bj

= −
N1∑
i=1

N2∑
j=1

Tr
Qai0 Q

bj
0

ai − bj
= −

N1∑
i=1

N2∑
j=1

Tr
UiVj
ai − bj



Zakharov-Shabat Lax pairs and Dickey’s Lagrangian 153

that is the ZM potential with the right sign according to the convention F (W ) =

dW +W ∧W .

7.4.3 Extracting Dickey’s Lagrangian

We now extract the more general Lagrangian of [D03, Section 20.2], which describes the
zero-curvature condition V (λ)ξ − U(λ)η + [U(λ), V (λ)] = 0 where

U(λ) =

N1∑
i=1

Ui(λ) , Ui(λ) =

ni∑
r=0

U ir
(λ− ai)r+1

, (7.75a)

V (λ) =

N2∑
j=1

Vj(λ) , Vj(λ) =

mj∑
r=0

V j
r

(λ− bj)r+1
, (7.75b)

which generalises the ZM system by allowing Lax matrices with poles of arbitrary degree.
Similarly to the ZM case, it will not be obtained as a coefficient a Lagrangian multiform,
but a linear combination of coefficients

LD =

N1∑
i=1

N2∑
j=1

L
aibj
nimj .

We take the following sums and residues

LD =

N1∑
i=1

N2∑
j=1

res
λ=ai

res
µ=bj

L ai,bj (λai , µbj )

λni+1
ai µ

mj+1
bj

, (7.76)

proceeding similarly to the previous case (ZM): the kinetic part brings

N1∑
i=1

N2∑
j=1

res
λ=ai

res
µ=bj

Kaibj (λniai , µ
mj
bj

)

λni+1
ai µ

mj+1
bj

=

N1∑
i=1

N2∑
j=1

res
λ=ai

res
µ=bj

1

λni+1
ai µ

mj+1
bj

Tr

(
(ϕai(λai))

−1
∞∑
k=0

µkbj∂t
bj
k

ϕai(λai)X
ai(λai)

−(ψbj (µbj ))
−1
∞∑
k=0

λkai∂taik
ψbj (µbj )X

bj (µbj )

)

=

N1∑
i=1

res
λ=ai

Tr(ϕai(λai))
−1

N2∑
j=1

∂
t
bj
mj

ϕai(λai)
Xai(λai)

λ
nj+1
ai

−
N2∑
j=1

Tr res
µ=bj

(ψbj (µbj ))
−1

N1∑
i=1

∂taini
ψbj (µbj )

Xbj (µbj )

µ
mj+1
bj
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We now call ∂η =
∑N2

j=1 ∂t
bj
mj

, and ∂ξ =
∑N1

i=1 ∂taini
, and truncate ϕai(λai) and λ−ni−1Xai(λai)

at ni to obtain respectively

gi(λ) =

ni∑
r=0

girλ
r
ai , Ai(λ) =

ni∑
r=0

Airλ
−r−1
ai (7.77)

and similarly ψbj (λbj ) and λ−mj−1Xbj (λbj ) at mj to obtain respectively

hj(λ) =

mj∑
r=0

hjrλ
r
bj
, Bi(λ) =

mj∑
r=0

Bi
rλ
−r−1
bj

(7.78)

connecting our notation with the one of [D03]. The potential part then follows from the
same identifications. In fact we have

N1∑
i=1

N2∑
j=1

res
λ=ai

res
µ=bj

V aibj (λai , µbj )

λni+1
ai µ

mj+1
bj

=

N1∑
i=1

N2∑
j=1

res
λ=ai

res
µ=bj

1

2
Tr12(ιλai ιµbj + ιµbj ιλai )

P12Q
ai(λai)1Q

bj (µbj )2

(µ− λ)λni+1
ai µ

mj+1
bj

=

N1∑
i=1

N2∑
j=1

res
λ=ai

res
µ=bj

Tr12 ιλai ιµbj
P12

µ− λ
Qai(λai)1

λni+1
ai

Qbj (µbj )2

µ
mj+1
bj

= −
N1∑
i=1

N2∑
j=1

res
λ=ai

res
µ=bj

ιλai Tr
∞∑
r=0

∞∑
k=0

∞∑
`=0

(
Qaik

λni+1−k
ai

) Q
bj
`

µ
mj+1−`
bj

λ−r−1
bj

µrbj .

We now take the residues in µ and take the pole parts in λ to obtain Dickey’s potential
identified as

= −
N1∑
i=1

N2∑
j=2

res
λ=ai

(giAig
−1
i )−(hjBjh

−1
j )− . (7.79)

7.5 sine-Gordon equation

7.5.1 Lax matrices and zero-curvature equations for the sine-Gordon
case

We have the following lemma.

Lemma 7.17 Let X(µ) ∈ L(g), with X0(λ) =
∑∞

n=−N0
X0
nλ

n and X∞(λ) =
∑∞

n=−N∞ X
∞
n λ

n
∞.
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We have

ιµ0 Tr2 r12(λ, µ0)X0(µ0)2 = −
∞∑

r=−N0

µr(λ−rX0(λ))− (7.80a)

ιµ∞ Tr2 r12(λ, µ)X∞(µ∞)2 =
∞∑

r=−N∞

µr∞(λ−r∞X∞(λ∞))− . (7.80b)

Proof. Obtained by direct calculation.

We start with Q(λ) ∈ B(g), where we parametrise the first few matrices of the expansion
of Q0(λ) and Q∞(λ∞) in the following way

Q0
0 =

i

2

(
0 eiu/2

0 0

)
∈ b+ , Q0

1 =
i

2

(
v eiu/2

e−iu/2 −v

)
∈ g , (7.81a)

Q∞0 =− i

2

(
0 0

eiu/2 0

)
∈ b− , Q∞1 =− i

2

(
−w e−iu/2

eiu/2 w

)
∈ g . (7.81b)

The coordinate u will play the part of the sine-Gordon field, while v and w will be
respectively uξ and uη, ξ, η being the light-cone coordinates. We can then calculate the
first terms of of the expansion of the generating Lax form. In zero we have

W 0(λ;µ0) = Tr2 ιµ0r12(λ, µ0)Q0(µ)2

=−
∞∑
r=0

µr0(λ−rQ0(λ))−

=− (P− +
1

2
P 0)Q0

0 − µ(λ−1Q0
0 − (P− +

1

2
P 0)Q0

1) + . . .

We then get W 0
0 (λ) = 0 and

U(λ) := W 0
1 (λ) = − i

4

(
v 2

λe
iu/2

2e−iu/2 −v

)
. (7.82)

At infinity on the other hand

W∞(λ;µ∞) = Tr2 ιµ∞r12(λ, µ∞)Q∞(µ)2

=

∞∑
r=0

µr∞(λ−r∞ Q∞(λ∞))−

=(P+ +
1

2
P 0)Q∞0 + µ(λQ∞0 + (P− +

1

2
P 0)Q∞1 + . . .

and so W∞0 (λ) = 0 and

V (λ) := W∞1 (λ) = − i
4

(
−w 2e−iu/2

2λeiu/2 w

)
. (7.83)
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U(λ), V (λ) are, under the identification v = uξ and w = uη, precisely the Lax matrices
(4.21) for the sine-Gordon equation in light-cone coordinates.

We now consider the zero-curvature equations for these coefficients, i.e.

∂t∞1 W
0
1 (λ)− ∂t01W

∞
1 (λ) + [W a

1 (λ),W b
1 (λ)]

≡ ∂ηU(λ)− ∂ξV (λ) + [U(λ), V (λ)] = 0
(7.84)

under the identifications ∂ξ := ∂t01 and ∂η := ∂t∞1 . This corresponds to the zero-curvature
equation dW (λ) = W (λ)∧W (λ) for the Lax formW (λ) = U(λ) dξ+V (λ) dη as calculated
in Section 4.2, the only difference being that now this is equivalent to the system

uη = w

uξ = v

vη + wξ + 2 sinu = 0

(7.85)

that implies uηξ + sinu = 0.

7.5.2 Extracting the sine-Gordon Lagrangian

We parametrise Q0(λ) = ϕ0(λ)X0(λ)(ϕ0(λ))−1 and therefore

(ϕ0
0 + ϕ0

1λ+ . . . )X0(λ)(ϕ̃0
0 + ϕ̃0

1λ+ . . . ) = Q0
0 +Q0

1λ+ . . . (7.86)

where ϕ̃0
0 = (ϕ0

0)−1 and ϕ̃0
1 = −ϕ̃0

0ϕ
0
1ϕ̃

0
0. We choose

X0(λ) =
i

2
(σ+ + λσ−) ∈ b+ ⊕ g⊗ λC[[λ]] , (7.87)

and we obtain, by setting ϕ0
0( i2σ+)ϕ̃0

0 = Q0
0

ϕ0
0 =

(
eiu/4 k

0 e−iu/4

)
, ϕ̃0

0 =

(
e−iu/4 −k

0 eiu/4

)
(7.88)

for any k smooth function of the field u and its derivatives. At this stage k is arbitrary.
Let us consider the next step, and set

ϕ0
1 =

(
a b

c d

)
, ϕ̃0

1 =

(
ã b̃

c̃ d̃

)
= −ϕ̃0

0 ϕ
0
1 ϕ̃

0
0 . (7.89)

We can partially fix the undetermined parameters using the following conditions.
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1. detϕ0(λ) = 1:

det

(
eiu/4 + λa+ . . . k + λb+ . . .

λc+ . . . e−iu/4 + λd+ . . .

)
= 1 + λ(deiu/4 + ae−iu/4 + ck) +O(λ2)

which implies ck + deiu/4 + ae−iu/4 = 0.

2. ϕ0
0σ−ϕ̃

0
0 + ϕ0

1σ+ϕ̃
0
0 + ϕ0

0σ+ϕ̃
0
1 = ( v eiu/2

e−iu/2 −v ):

(
ke−iu/4 −k2

e−iu/2 −ke−iu/4

)
+

(
0 aeiu/4

0 ceiu/4

)
+

(
c̃eiu/4 d̃eiu/4

0 0

)

=

(
ke−iu/4 + c̃eiu/4 −k2 + aeiu/4 + d̃eiu/4

e−iu/2 −ke−iu/4 + ceiu/4

)
=

(
u0 eiu/2

e−iu/2 −u0

)
,

which implies the system
ke−iu/4 + c̃eiu/4 = v

−ke−iu/4 + ceiu/4 = −v

−k2 + aeiu/4 + d̃eiu/4 = eiu/2

.

3. Finally, ϕ̃0
1 = −ϕ̃0

0 ϕ
0
1 ϕ̃

0
0:

ã = kce−iu/4 − a−iu/2

b̃ = k(ae−iu/4 + deiu/4 − kc)− b

c̃ = −c

d̃ = kceiu/4 − deiu/2

.

This would not lead to a complete determination: the first and second equation of point 2
imply the third equation of point 3, and therefore we have (at most) only seven equations
for nine parameters. However, all we need to do to obtain the desired Lagrangian is to set

k =
v

2
eiu/4

and as a consequence
c = −v

2
e−iu/4 = −c̃ .

We fix all the other parameters but b consequently. We will see that we do not need the
explicit expressions.

In a similar way we can construct the parametrisation around infinity Q∞(µ∞) =
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ϕ∞(µ∞)X∞(µ∞)(ϕ∞(µ∞)−1. We choose

X∞(µ) = − i
2

(σ− +
σ+

µ
) ∈ b− ⊕ g⊗ λ−1C[[λ−1]] , (7.90)

and obtain

ϕ∞0 =

(
e−iu/4 0

m eiu/4

)
, ϕ̃∞0 =

(
eiu/4 0

−m e−iu/4

)
(7.91)

ϕ∞1 =

(
p q

r s

)
, ϕ̃∞1 =

(
p̃ q̃

r̃ s̃

)
. (7.92)

Similarly as before, we set

m =
w

2
eiu/4 , q =− w

2
e−iu/4 ,

and we leave r undetermined.

We can now obtain a Lagrangian for the sine-Gordon equation by taking the residues

LsG := res
λ=0

res
µ=∞

L 0∞(λ0, µ∞)

λ0µ∞

dλ

λ

dµ

µ
= res

λ=0
res
µ=∞

1

λ2
L 0∞(λ0, µ∞)dλdµ . (7.93)

We start by calculating the kinetic part. We note that as we chose the pairing with
k = −1, we take Dµ∞ =

∑∞
k=0 µ

k
∞∂t∞k . The first term brings

res
λ=0

res
µ=∞

1

λ2
Tr(ϕ̃0

0 + ϕ̃0
1λ+ . . . )

∞∑
k=0

1

µk
∂t∞k (ϕ0

0 + ϕ0
1λ+ . . . )X0(λ)

= − i
2

Tr(ϕ̃0
0∂ηϕ

0
0σ− + ϕ̃0

0∂ηϕ
0
1σ+ + ϕ̃0

1∂ηϕ
0
0σ+) =

uξuη
4

(7.94)

where we have already imposed v = uξ. The other kinetic term brings, imposing w = uη,

res
λ=0

res
µ=∞

1

λ2
Tr(ϕ̃∞0 +

ϕ̃∞1
µ

+ . . . )
∞∑
k=0

λk∂t0k
(ϕ∞0 +

ϕ∞1
µ

+ . . . )X∞(µ)

=
i

2
Tr(ϕ̃∞0 ∂ξϕ

∞
0 σ+ + ϕ̃∞0 ∂ξϕ

∞
1 σ− + ϕ̃∞1 ∂ξϕ

∞
0 σ−) = −

uηuξ
4

.

(7.95)

We now treat the potential part, starting from the contribution of the term ρ+
12 − ρ

−
12 of

the r-matrix. We have

1

2
res
λ=0

res
µ=∞

1

λ2
Tr12(ρ+

12 − ρ
−
12)Q0

1(λ)Q∞2 (µ∞)

= −1

2
Tr12(σ+Q

0
1)⊗ (σ−Q

∞
1 ) + Tr12(σ−Q

0
1)⊗ (σ+Q

∞
1 ) = −e

−iu

8
+
eiu

8
.

(7.96)
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The other contribution comes from

1

2
res
λ=0

res
µ=∞

1

λ2
Tr12 ιλιµ

µ+ λ

µ− λ
P12Q

0
1(λ)Q∞2 (µ∞)

=
1

2
res
λ=0

res
µ=∞

1

λ2
Tr

( ∞∑
k=0

λk

µk
+
∞∑
k=1

λk

µk

) ∞∑
i=0

Q0
iλ

i
∞∑
j=0

Q∞j
µj

= −Tr(Q0
0Q
∞
0 +

1

2
Q0

1Q
∞
1 ) =

uηuξ
4
− 3eiu

8
− e−iu

8
.

(7.97)

Adding everything together we get

LsG =
uηuξ

4
+

1

2
cosu (7.98)

which is indeed the Lagrangian for the sine-Gordon equation in light-cone coordinates.

Remark 7.18: The Lagrangians overall multiplicative factor 2 between the two
trigonometric r-matrices of this and Chapter 4, which creates (or is explained by,
which at this stage is really up to interpretation), the factor 1

2 between the Lagrangians
(4.22) and (7.98).
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Chapter 8

Conclusions and perspectives

Few can foresee whither their
road will lead them, till they
come to its end.

J. R. R. Tolkien

This thesis constitutes progress towards the understanding of the role played by multi-
dimensional consistency and the application of covariant Hamiltonian field theory to
integrable systems. We have developed a covariant formulation of integrable field theories
in 1 + 1 dimensions, and its generalisation to integrable hierarchies, called Hamiltonian
multiforms, providing multiple examples. Moreover, we have proved that our formulation
reproduces and generalises the classical r-matrix structure of the Poisson bracket via the
formula

{[W1(λ),W2(µ)]} = [r12(λ, µ),W1(λ) +W2(µ)] ,

where W (λ) is the Lax connection of the integrable field theory. Using the r-matrix
structure and the classical Yang-Baxter equation we have also developed a technique that
generates Lagrangian multiforms for several integrable hierarchies from a common object.

These results point to some interesting open questions, that will be object of future
research.

A covariant H = TrL2 formula Firstly, we remark that thanks to our formalism
one can write the covariant equivalent for the famous H = TrL2 relation that holds in
classical finite-dimensional mechanics between the Hamiltonian function and the trace of
the square of the Lax matrix. In fact, as it was first noticed in [CSV21a], we have that
the covariant Hamiltonian for the ZM action can be written as

HZM =

N1∑
m=1

N2∑
n=1

res
λ=am

res
w=bn

Tr
W (λ) ∧W (µ)

λ− µ
.
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In fact, we have that

N1∑
m=1

N2∑
n=1

res
λ=am

res
w=bn

Tr
W (λ) ∧W (µ)

λ− µ

=

N1∑
m=1

N2∑
n=1

res
λ=am

res
w=bn

1

λ− µ
Tr

(
N1∑
k=1

N2∑
`=1

Uk
λ− ak

V`
µ− b`

− V`
λ− b`

Uk
µ− ak

)
dξ ∧ dη

=

N1∑
m=1

N2∑
n=1

Tr
UmVn
am − bn

dξ ∧ dη = HZM .

Surprisingly, a similar relation holds for the AKNS hierarchy as well, and we have that
the AKNS Hamiltonian multiform can be obtained as

H = res
λ=∞

res
µ=∞

1

2

TrW (λ) ∧W (µ)

λ− µ

= res
λ=∞

res
µ=∞

1

2

1

λ− µ
Tr(
∑
m≥0

Q(m)(λ) dxm) ∧ (
∑
n≥0

Q(n)(µ) dxn)

= res
λ=∞

res
µ=∞

1

2

1

λ− µ
Tr
∑
m<n

(Q(m)(λ)Q(n)(µ)−Q(n)(λ)Q(m)(µ))dxmn

= res
λ=∞

res
µ=∞

1

2

1

λ− µ
Tr
∑
m<n

m∑
i=0

n∑
j=0

(λm−iµn−jQiQj − λn−jµm−iQjQi)dxmn

= res
λ=∞

res
µ=∞

1

4

∑
p≥0

µp

λp+1
−
∑
p≥0

λp

µp+1

∑
m<n

m∑
i=0

n∑
j=0

Tr(λm−iµn−jQiQj − λn−jµm−iQjQi)dxmn

=
1

4
res
λ=∞

res
µ=∞

∑
m<n

∑
p≥0

m∑
i=0

n∑
j=0

Tr
( QiQj
λi+p+1−mµj−n−p

− QjQi
λj+p+1−nµi−m−p

− QiQj
λi−m−pµj+p+1−n +

QjQi
λj−n−pµi+p+1−m

)
.

We apply the residue:

=
1

4

∑
m<n

 m∑
p=0

Tr(Qm−pQp+n+1 +Qp+n+1Qm−p)−
n∑
p=0

Tr(Qn−pQp+m+1 +Qp+m+1Qn−p)

 dxmn

=
∑
m<n

(
1

2

m∑
k=0

QkQm+n+1−k −
1

2

n∑
k=0

QkQm+n+1−k

)
dxmn

=
∑
m<n

Hmn dx
mn

as desired. This is definitely aesthetically pleasing, and it is interesting to see whether it
holds for other hierarchies, possibly with other r-matrix structures besides the rational
one, and its consequences on the integrable properties of the system. The conjecture is
that the Hamiltonian multiform can be repackaged in a generating series (similarly to the
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AKNS case in Chapter 6), in a formula such as

H(λ, µ) = Tr12 r12(λ, µ)W1(λ) ∧W2(µ) .

Generating Hamiltonian multiform and multi-time Poisson brackets In the
spirit of Chapter 7, one would like to define a generating Hamiltonian multiform, which
we suspect could take the form

H(λ, µ) =
1

2
Tr12(ιλιµ + ιµιλ)r12(λ, µ)Q(λ)1Q(µ)2 ,

and a Poisson bracket between the generating Lax forms

{W (λ; ν)1,W (µ;σ)2}

as a double Laurent series in ν and σ, where λ and µ play the role of the spectral parameters.
We would want this definition to reproduce {[W (λ)1,W (µ)2]} = [r12(λ, µ),W (λ)1 +

W (µ)2] and to be consistent with an equation as dW (λ) = {[H,W (λ)]}. This is currently
still under investigation.

Covariant (quantum) integrable systems The Hamiltonian multiform description
of the Ablowitz-Kaup-Newell-Segur hierarchy cf. Chapter 6 has proved efficient in obtaining
the infinite series of conservation laws, which are identified in a 1-form A =

∑
k Akdx

k,
with dA = 0, and characterised by the familiar-looking requirement

dA = 0 ⇐⇒ {[Hij , A]} = 0 ∀i, j

where H =
∑

ij Hijdx
ij is the Hamiltonian multiform and {[ , ]} are the multi-time

Poisson brackets of the hierarchy. This points to a description of the hierarchy and its
conservation laws that is more similar to the traditional approach to finite dimensional
systems than to field theories, and opens a series of questions. Firstly, the conservation
laws are obtained without resorting to the monodromy matrix [S82], and apparently
without involving the r-matrix structure at the group level, which is the starting point of
the traditional and well-known (quantum) Inverse Scattering Method. This is definitely
remarkable, but it leaves us to understand if this is really the case, and if so, why.
Then, for 1-dimensional multiforms (i.e. hierarchies of ODEs), recent results ([V20] and
Section 5.6) has linked the closure relation of the Lagrangian multiform dL = 0 to the
involution of the Hamiltonians. It would be interesting to understand if we can relate the
closure relation to the mutual involution of the single-time Hamiltonians in the case of
field theories.
Moreover, we only managed to work with ultra-local field theories (i.e. where the classical
r-matrix is skew-symmetric), since the non ultra-local theories that we tried to study are
expressed by a Lax connection that is not admissible cf. Section 4.6. These non-ultralocal
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field theories are extremely important to treat, as they include famous key systems such
as the celebrated potential Korteweg-de Vries equation. This problem of extending the
covariant Poisson brackets to non-Hamiltonian forms has been addressed in the literature
(see for instance [FS15]), but not in relation to Integrable Systems.

This line of research is going towards the introduction of a notion of ‘covariant integrabil-
ity’, which would relate covariant Hamiltonian field theory, multisymplectic geometry,
Lagrangian multiforms and classical r-matrix theory. This offers the hope of carrying out
a program of covariant canonical quantisation for integrable field theories, thus realizing
the initial hope behind the effort of the Polish School for instance [K73] and attempted
e.g. by Kanatchikov [K01]. We wish to remark that this thesis (and the works [CS20a,
CS20b, CS21] and partly [CSV21a]) belongs to a programme whose overarching goal is a
new approach to canonical covariant quantisation of an integrable system, and builds an
important step towards this objective. We believe that the classical r-matrix structure
within the covariant (and multi-time) Poisson bracket can provide a new outlook on how
to perform this canonical quantisation in a covariant fashion.



Appendix A

Miscellanea

A.1 Matrix algebras

In this section we shall use Einstein’s notation on repeated indices. Let GL(2,C) the
general linear group of invertible 2× 2 (i.e. with non-zero determinant) matrices over C.
Its corresponding Lie algebra is the algebra of 2× 2 matrices M2×2 = gl2 over C with the
usual commutator

A,B ∈M2×2 , [A,B] := AB −BA . (A.1)

We use as a basis of the gl2 algebra the set {Eij , i, j = 1, 2 } where each Eij is defined as
the 2× 2 matrix with the only non-zero entries being at the place (i, j), i.e.

(Eij)mn = δimδjn . (A.2)

They act on the canonical basis of C2 { ei } as Eijek = δjkei, and they have the following
multiplication rule:

EijEmn = δjmEin . (A.3)

Let now SL(2,C) ⊂ GL(2,C) be the special linear group of invertible 2× 2 matrices over
C with determinant 1. It is a well-known fact that its corresponding Lie algebra is the
one of traceless complex 2× 2 matrices s`(2,C)(

a b

c −a

)
∈ s`(2,C) , a, b, c ∈ C , (A.4)

with the Lie bracket given by the usual commutator. It is then easy to see that a matrix
A ∈ s`(2,C) can be expressed as

A =

(
a b

c −a

)
=
b+ c

2

(
0 1

1 0

)
+
c− b

2i

(
0 −i
i 0

)
+ a

(
1 0

0 −1

)
. (A.5)
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The matrices

σ1 :=

(
0 1

1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0

0 −1

)
, (A.6)

are the famous Pauli matrices, and form a basis for s`(2,C). They satisfy the following
properties:

• σ2
1 = σ2

2 = σ2
3 = I2.

• detσm = −1 and Trσm = 0.

• The s`(2,C) algebra rules
[σ`, σm] = 2iε`mnσn (A.7)

where ε`mn is the Levi-Civita symbol.

We often prefer a different choice of basis, i.e.

σ+ :=

(
0 1

0 0

)
, σ− :=

(
0 0

1 0

)
, σ3 :=

(
1 0

0 −1

)
. (A.8)

These matrices satisfy the following properties:

• σ2
+ = σ2

− = 0, σ3 = I2.

• detσ+ = detσ− = 0, detσ3 = −1, and Trσ+ = Trσ− = Trσ3 = 0.

• The s`(2,C) algebra rules

[σ+, σ−] = σ3 , [σ3, σ+] = 2σ+ , [σ3, σ−] = −2σ− . (A.9)

Using the basis {σ+, σ−, σ3 } we can quickly write the commutator between two s`(2,C)

matrices Q1 = ( a1 b1
c1 −a1 ) and Q2 = ( a2 b2

c2 −a2 )

[Q1, Q2] =a1b2[σ3, σ+] + a1c2[σ3, σ−] + b1a2[σ+, σ3]

+ b1c2[σ+, σ−] + c1a2[σ−, σ3] + c1b2[σ−, σ+]

=2a1b2σ+ − 2a1c2σ− − 2b1a2σ+ + b1c2σ3 + 2c1a2σ− − c1b2σ3

=

(
b1c2 − c1b2 2(a1b2 − b1a2)

2(c1a2 − a1c2) c1b2 − b1c2

)
.

(A.10)

A.2 Auxiliary spaces notation and classical r-matrix

Let g = glN with basis {Eij }, so we can write its elements as A =
∑

ij aijEij . We shall
the Lie algebra g⊗ g with basis {Eij ⊗ Ek` }, with bracket extended from the one of g
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(i.e. the usual commutator). If we consider g = gl2, and in coordinates we have

A =

(
a11 a12

a21 a22

)
, B =

(
b11 b12

b21 b22

)
, (A.11)

then we can view their tensor product as a 4× 4 matrix, as

A⊗B =

(
a11B a12B

a21B a22B

)

=


a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22


(A.12)

In the same way, the tensor product of two C2 vectors u =
∑

i uiei and v =
∑

k vjej can
be seen as a C4 vector as

u⊗ v =

(
u1v

u2v

)
=


u1v1

u1v2

u2v1

u2v2

 . (A.13)

For each A ∈ g define A1 = A⊗ I and A2 = I⊗A where I is the 2× 2 identity matrix.
Note that for instance A ⊗ B = A1B2. Matrices related to different auxiliary spaces
commute: A ⊗ B = A1B2 = B2A1. We remark the well-known fact that not every
element C12 of g⊗g can be written as A⊗B, with some A,B ∈ g, but it is more generally
C12 =

∑
ij cij,k`Eij ⊗ Ek`.

The following definition of Sklyanin Poisson bracket [S82] is crucial in this thesis, since it
allows us to identify classical r-matrix structures within various Poisson brackets.

Definition A.1 (Sklyanin Poisson bracket) Given a Poisson bracket { , } : g× g→ g

we define the Sklyanin Poisson bracket [S82] between two matrices A =
∑

ij AijEij and
B =

∑
k`Bk`Ek` as

{A1, B2} :=
∑
ij,kl

{Aij , Bkl}Eij ⊗ Ekl ∈ g⊗ g . (A.14)

In other words, the Sklyanin Poisson bracket of two elements of g allows us to calculate
Poisson brackets of the different coefficients of these elements with respect to a given
basis, casting them into an element of g ⊗ g. Of course, if we are computing Sklyanin
Poisson bracket of elements of s`(2,C) and are using the basis {σ3, σ+, σ− } as

A = a3σ3 + a+σ+ + a−σ− , B = b3σ3 + b+σ+ + b−σ− , (A.15)
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we can compute it as
{A1, B2} =

∑
i,j=3,+,−

{ai, bj}σi ⊗ σi . (A.16)

P12 is the so-called permutation operator on C2 ⊗ C2: P12u ⊗ v = v ⊗ u. For glN this
can be written as P12 =

∑
ij Eij ⊗ Eji: in fact, we have that

P12u⊗ v =(
∑
ij

Eij ⊗ Eji)(
∑
k`

ukvl ek ⊗ e`) =
∑
ij,k`

(ukEijek)⊗ (v`Ejie`)

=
∑
ij,k`

(ukδjkei)⊗ (v`δi`ej) =
∑
ij

(viei)⊗ (ujej) = v ⊗ u .

In the case of gl2 we have

P12 =E11 ⊗ E11 + E12 ⊗ E21 + E21 ⊗ E12 + E22 ⊗ E22

=

(
1 0

0 0

)
⊗

(
1 0

0 0

)
+

(
0 1

0 0

)
⊗

(
0 0

1 0

)

+

(
0 0

1 0

)
⊗

(
0 1

0 0

)
+

(
0 0

0 1

)
⊗

(
0 0

0 1

)

=


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 (A.17)

For g = s`(2,C) we have that the permutation operator can be written as P12 =

(σ+ ⊗ σ− + σ− ⊗ σ+ + I⊗I
2 + σ3⊗σ3

2 ).

Proposition A.2 The permutation operator P12 =
∑

ij Eij ⊗ Eji satisfies the following
properties:

1. P 2
12 = IdC2⊗C2 .

2. P12A1B2P12 = A2B1, where A,B ∈ gl2. As a consequence we have that P12A1 =

A2P12 and P12B2 = B1P12, and then

[P12, A1] = −[P12, A2] . (A.18)

Proof. 1. Directly from the definition, or

P12P12 =
∑
ij

(Eij ⊗ Eji)
∑
mn

(Emn ⊗ Enm) =
∑
ijmn

EijEmn ⊗ EjiEnm

=
∑
ijmn

δjmδinEin ⊗ Ejm =
∑
ij

Eii ⊗ Ejj = I⊗ I = IdC2⊗C2 .
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2. We have that

P12A1B2P12 =
∑
ijmn
k`pq

(Eij ⊗ Eji)(amnEmn ⊗ I)(bk`I⊗ Ek`)(Epq ⊗ Eqp)

=
∑
ijmn
k`pq

amnbk`EijEmnEpq ⊗ EjiEk`Eqp =
∑
ijmn
k`pq

δjmδik amnbk`EinEpq ⊗ Ej`Eqp

=
∑
ijmn
k`pq

δjmδikδnpδ`q amnbk`Eiq ⊗ Ejp =
∑
ijln

ejnbi`Ei` ⊗ Ejn = A2B1 .

The relation P12A1 = A2P12 is obtained by choosing B = I and multiplying by
P12 on the right hand-side. In a similar way we have P12B2 = B1P12. Finally,

[P12, A1] = P12A1 −A1P12 = A2P12 − P12A2 = −[P12, A2] .

We indicate with Trk the usual trace taken on the space k, so that, for instance, Tr1A1 =

Tr1(A⊗ I) = (TrA)I. The following identities hold:

• Symmetry of the auxiliary spaces: Tr1A21 = Tr2A12.

• Cyclic property of the trace: Tr1A1B12C1 = Tr1C1A1B12 and Tr2A2B21C2 =

Tr2C2A2B21.

Moreover, we have that Tr1 P12A1 = Tr2 P12A2 = A. In fact

Tr1 P12A2 = Tr1
∑
ij

Eij ⊗ Eji
∑
k`

ak`I⊗ Ek` = Tr1
∑
ij

∑
k`

aklδikEij ⊗ Ek`

= Tr1
∑
ij`

ai`Eij ⊗ Ej` =
∑
ij`

δijai`Ej` =
∑
i`

ai`Ei` = A

and similarly Tr2 P12A2 = A.

Let S12 be an operator C2 ⊗ C2 → C2 ⊗ C2.

S12 =
∑
ij,k`

sij,k`Eij ⊗ Ek` . (A.19)

S12 will induce operators acting naturally on C2 ⊗ C2 ⊗ C2:

S12 =
∑
ij,k`

sij,k`Eij ⊗ Ek` ⊗ I , (A.20a)

S23 =
∑
ij,k`

sij,k`I⊗ Eij ⊗ Ek` , (A.20b)

S13 =
∑
ij,k`

sij,k`Eij ⊗ I⊗ Ek` . (A.20c)

We use the same name for the operator S12 acting on C2 ⊗ C2 and C2 ⊗ C2 ⊗ C2 with a
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little abuse of notation. Such an operator is often non-constant, and it may depend on
spectral parameters λ, µ ∈ C in the following way

S12(λ, µ) =
∑
ij,k`

sij,k`(λ, µ)Eij ⊗ Ek` . (A.21)

An operator r12(λ, µ) : C2⊗C2 → C2⊗C2 such that r12(λ, µ) = −r21(µ, λ), that satisfies
the classical Yang-Baxter equation

[r12(λ, µ), r13(λ, ν)] + [r12(λ, µ), r23(µ, ν)] + [r13(λ, ν), r23(ν, µ)] = 0 (A.22)

is called an ultralocal classical r-matrix. Here are some examples:

• The rational r-matrix
r12(λ, µ) =

P12

λ− µ
, . (A.23)

• The trigonometric r-matrix [FTR07]

r12(λ, µ) = −1

2

λ2 + µ2

λ2 − µ2
(I⊗ I− σ3 ⊗ σ3) +

λµ

λ2 − µ2
(σ1 ⊗ σ1 + σ2 ⊗ σ2) . (A.24)

The name trigonometric comes from the fact that when we perform the change of
variables λ = eiα and µ = eiβ we have that r12 becomes

r12(α, β) = − i
2

cos(α− β)

sin(α− β)
(I⊗I−σ3⊗σ3)− i

2 sin(α− β)
(σ1⊗σ1+σ2⊗σ2) . (A.25)

• Another trigonometric r-matrix [S08, Section 4.5]

r12(λ, µ) =
1

4

µ+ λ

µ− λ
(σ3 ⊗ σ3 + I⊗ I) +

µ

µ− λ
σ+ ⊗ σ− +

λ

µ− λ
σ− ⊗ σ+ . (A.26)

These two trigonometric r-matrices are related by a ‘gauge/twist’ transformation,
but we do not enter in further details here.

A.3 Dirac-Poisson brackets for the Non-Linear Schrödinger
equation

This section is adapted from [ACDK16, Section 3.1]. We start with the Lagrangian for
the (unreduced) Non-Linear Schrödinger (NLS) equation in the following form

L =
i

2
(qtr − qrt)−

1

2
qxrx −

1

2
q2r2 . (A.27)
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which produces the Non-Linear Schrödinger equation in the form

iqt +
1

2
qxx − q2r = 0 , irt −

1

2
rxx + qr2 = 0 . (A.28)

We compute the momenta conjugated to q and r in the usual way:

p1 =
∂L

∂qt
=
ir

2
, p2 =

∂L

∂rt
= − iq

2
. (A.29)

We see that these equations cannot be used to eliminate qt and rt in favour of the momenta
p1,2, but they relate variables that are supposed to be independent: they are therefore
constraints

C1 = p1 − ir

2
, C2 = p2 +

iq

2
, (A.30)

and the ‘constrained Hamiltonian’, which takes these constraints into account, is

H∗ =H + λ1C1 + λ2C2 ,

=p1qt + p2rt − L+ λ1C1 + λ2C2 .
(A.31)

The canonical Poisson brackets are given by:

{p1, q} = 1 , {p2, r} = 1 . (A.32)

At this stage, we have two possibilities: either we use the Poisson brackets { , } with the
constrained Hamiltonian H∗, or we use the usual Hamiltonian H with the famous Dirac
brackets { , }D [D50]. Let us explore the second scenario. We compute

{C1, C2} = {p1 − ir

2
, p2 +

iq

2
} = i , (A.33)

which shows that these primary constraints are second class. The values of λ1,2 are
completely fixed by the requirement that the constraints are constant under the flow of
H∗, in fact we have

{H∗, C1} = {H,C1}+ λ2{C2, C1} = {H,C1} − λ2 = 0 =⇒ λ2 = {H,C1} ,

{H∗, C2} = {H,C2}+ λ1{C1, C2} = {H,C2}+ λ1 = 0 =⇒ λ1 = −{H,C2} ,

which means that there are no more constraints besides C1,2. We need the matrix M of
the Poisson brackets between the constraints, such that Mij = {Ci, Cj}, and its inverse

M =

(
0 i

−i 0

)
, M−1 =

(
0 i

−i 0

)
. (A.34)
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The Dirac-Poisson brackets { , }D are defined as

{f, g}D = {f, g} −
2∑

j,k=1

{f, Cj}(M−1)jk{Ck, g} (A.35)

for any f, g smooth functions of the dynamical variables. The Dirac-Poisson brackets
between q and r therefore become

{q, r}D ={q, r} − {q, C1}(M−1)12{C2, r}

=0− i{q, C1}{C2, r} = i .
(A.36)

This allows us to use the Poisson bracket {q, r}D = i (from now on renamed { , }), and
the Hamiltonian

H = p1qt + p2rt − L =
1

2
qxrx +

1

2
q2r2 , (A.37)

to compute the Non-Linear Schrödinger equations as

qt ={
∫
Hdx, q} =

∫
(
1

2
{qxrx, q}+

1

2
{q2r2, q})dx =

i

2
qxx − iq2r ,

rt ={
∫
Hdx, r} =

∫
(
1

2
{qxrx, r}+

1

2
{q2r2, r})dx = − i

2
rxx + iqr2 .
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A.4 4d Chern-Simons origin of the Zakharov-Mikhailov Lag-
rangian

The setup Let Σ := R2 be the plane with light-cone coordinates ξ and η, and X :=

Σ× CP1. In CP1 we use the coordinates (z, z̄) We start from the regularised 4d action

S4d(A) = − i

4π

∫
X
zTr(F (A) ∧ F (A)) , (A.38)

where A = Aξ dξ +Aη dη +Az̄ dz̄ is a glN -valued 1-form on X. The components of A are
taken to be smooth functions anywhere on X but on a set of marked points { am }N1

m=1 and
{ bn }N2

n=1. Specifically we require Aξ and Aη to be singular at these points, and that they
can be written locally as Aξ = (z − am)−1Bm,ξ near each am and Aη = (z − bn)−1Bn,η

near each bn. A will be often referred to as the bulk field, and S4d as the bulk action.
F (A) = dA−A ∧A is the curvature of A and has components

F (A) =(∂ξAη − ∂ηAξ − [Aξ, Aη]) dξ ∧ dη

+ (∂ξAz̄ − ∂z̄Aξ − [Aξ, Az̄]) dξ ∧ dz̄

+ (∂ηAz̄ − ∂z̄Aη − [Aη, Az̄]) dη ∧ dz̄ + dz ∧ ∂zA .

(A.39)

We used the notation

Tr

∑
(I)

u(I)dx
(I) ∧

∑
(J)

v(J)dx
(J)

 =
∑

(I),(J)

Tr(u(I)v(J))dx
(I) ∧ dx(J) (A.40)

for glN valued forms on X, where (I) and (J) are multi-indices.

Remark A.3: Note that we do not include a z-component in A, as the action
is invariant with respect under local transformations A 7→ A + χdz for any χ ∈
C∞(X, glN ). In fact we have that the curvature transform as

F (A+ χdz) =d(A+ χdz)− (A+ χdz) ∧ (A+ χdz)

=F (A) + dχ ∧ dz −A ∧ χdz + χ ∧Adz

=F (A) + (dχ− [A,χ]) ∧ dz .

and therefore zTrF (A) ∧ F (A) transforms as

zTrF (A) ∧ F (A) + 2zTrF (A) ∧ (dχ− [A,χ]) ∧ dz

= zTrF (A) ∧ F (A) + 2d(zdz ∧ TrF (A)χ) ∧ dz ,

where we used dF (A) = A ∧ F (A)− F (A) ∧A.
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Remark A.4: The action S4d is also invariant under gauge transformations

A 7→ gAg−1 − dgg−1 (A.41)

for any g ∈ C∞(X,GLN ) thanks to the invariance of the trace.

We now couple the 4d bulk field A to a collection of 2d fields localised on the surface
defects Σ × { am } and Σ × { bn }. We use the embeddings ιam : Σ × { am } ↪→ X and
ιbn : Σ × { bn } ↪→ X for m = 1, . . . , N1 and n = 1, . . . , N2. To each point am we
associate a Lie group valued field ϕm ∈ C∞(Σ, GLN ) and to each bn we associate
ψn ∈ C∞(Σ, GLN ). We also fix non-dynamical matrices U (0)

m , V
(0)
n ∈ glN for each

m = 1, . . . , N1 and n = 1, . . . , N2. We remark that we take them to be constant for
simplicity, but in principle they may be elements of C∞(Σ, glN ). In the next, we always
mean

∑
m =

∑N1
m=1 and

∑
n =

∑N2
n=1, and ϕ = {ϕm }N1

m=1, ψ = {ψn }N2
n=1. We define

Sdef (A,ϕ, ψ) =−
∑
m

∫
Σ×{ am }

Tr(ϕ−1
m (dΣ − ι∗amA)ϕmU

(0)
m ) ∧ dξ

−
∑
n

∫
Σ×{ bn }

Tr(ψ−1
n (dΣ − ι∗bnA)ψnV

(0)
n ) ∧ dη ,

(A.42)

where dΣ is the horizontal (de Rham) differential on Σ.

Remark A.5: In order to maintain gauge invariance we need to let the fields
transform as ϕm 7→ gϕm and ψn 7→ gψn.

We finally couple the bulk field A with the defects by considering the action

S(A,ϕ, ψ) = S4d(A) + Sdef (A,ϕ, ψ) . (A.43)

From Chern-Simons to Zakharov-Mikhailov We can compute the bulk equations
of motion and consider bulk variations A 7→ A+ εa, where a = aηdη + aξdξ + az̄dz̄ is a
glN valued 1-form on X of compact support

δaS(A,ϕ, ψ) =
d

dε

∣∣∣∣
ε=0

S(A+ εa, ϕ, ψ)

= − i

2π

∫
X
dz ∧ Tr(a ∧ F (A))

−
∑
m

∫
Σ×{ am }

Tr(aηUm)dξ ∧ dη +
∑
n

∫
Σ×{ bn }

Tr(aξVn)dξ ∧ dη

= − i

2π

∫
X
dz ∧ Tr(a ∧ F (A))

−
∑
m

∫
X

Tr(aηUm)δ(z − am)dξ ∧ dη ∧ dz ∧ dz̄ +
∑
n

∫
X

Tr(aξVn)δ(z − bn)dξ ∧ dη ∧ dz ∧ dz̄ .
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We have introduced Um := ϕmU
(0)ϕ−1

m and Vn := ψnV
(0)ψ−1

n . In the last line we used
the δ-function, satisfying the property∫

CP1
f(ξ, η, z)δ(z − x) dz ∧ dz̄ = f(ξ, η, x) (A.44)

for any x ∈ C and any smooth function f on X. The equations are the following:

∂ξAη − ∂ηAξ = [Aξ, Aη] , (A.45a)

∂ξAz̄ − ∂z̄Aξ − [Aξ, Az̄] = 2πi
∑
m

Umδ(z − am) , (A.45b)

∂ηAz̄ − ∂z̄Aη − [Aη, Az̄] = 2πi
∑
n

Vnδ(z − bn) . (A.45c)

We are now ready to turn A into the Lax connection. The first main issue is that the Lax
connection has no dz̄ component, which can be fixed by focusing on a field configuration
of A where Az̄ = 0.

Remark A.6: This operation will break the gauge invariance, since now we must
impose that A 7→ gAg−1 − dgg−1 does not recreate a dz̄ component. In other words,
we need a g such that ∂z̄gg−1 = 0. This can be achieved by picking a g ∈ C∞(Σ, GLN )

only, i.e. that does not depend on CP1. These residuals gauge transformations will
correspond to the allowed gauge transformations of the Lax connection.

The second issue is that while A = Aξ dξ +Aη dη is smooth on CP1, with singularities on
{ am } and { bn }, the Lax connection is meromorphic on CP1. This issue can be solved by
focusing on a subset of the fields that satisfy the equations of motion. Using the identity
∂z̄

1
z = −2πiδ(z) we can solve the aξ and aη equations above as

Aξ =U0 +

N1∑
m=1

Um
z − am

=: U , (A.46a)

Aη =V0 +

N2∑
n=1

Vn
z − bn

=: V . (A.46b)

We can also compute the defect equations of motion, and consider the variation of the
action S with respect to the 2d fields ϕm and ψn. We consider variations ϕm 7→ eεαmϕm

and ψn 7→ eεβnψn for arbitrary αm, βn ∈ C∞(Σ, glN ). This gives

δ(α,β)S(A,ϕ, ψ) =
d

dε

∣∣∣∣
ε=0

S(A, { eεαmϕm } , { eεβnψn })

=−
∑
m

∫
Σ×{ am }

Tr(−αmdΣUm + αm[ι∗amA,Um]) ∧ dξ

−
∑
n

∫
Σ×{ bn }

Tr(−βndΣVn + βn[ι∗bnA, Vn]) ∧ dη .
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The defect equations of motions are then, once we use Aξ = U , Aη = V and Az̄ = 0, the
expected zero-curvature equations for the Lax connection W = U dξ + V dη:

∂ηUm =[V0 +
∑
n

Vn
am − bn

, Um] , (A.47a)

∂ξVn =[U0 +
∑
m

Um
bn − am

, Vn] . (A.47b)

We now substitute the solution (A.46a)-(A.46b) for A into the action S to obtain the
Zakharov-Mikhailov action. The bulk term becomes

S4d(W ) =− i

4π

∫
X
zTr(F (W ) ∧ F (W ))

=
1

2πi

∫
X
z(∂z̄U∂zV − ∂zU∂z̄V )dξ ∧ dη ∧ dz ∧ dz̄ . (A.48)

Using the explicit expressions of U, V and ∂z̄ 1
z = −2πiδ(z) we get

S4d(W )

=

∫
X
z
∑
mn

Tr
UmVn

(am − bn)2
(δ(z − am)− δ(z − bn))dξ ∧ dη ∧ dz ∧ dz̄

=
∑
mn

∫
Σ

Tr
UmVn
am − bn

dξ ∧ dη . (A.49)

On the other hand, the defects action becomes

Sdef (A,ϕ, ψ)
∣∣
A=W

= −
∑
m

∫
Σ×{ am }

Trϕ−1
m (dΣ − ι∗amV dη)ϕmU

(0)
m ∧ dξ

−
∑
n

∫
Σ×{ bn }

Trψ−1
n (dΣ − ι∗bnUdξ)ψnV

(0)
n ∧ dη

= −
∑
m

∫
Σ

Trϕ−1
m (∂η − V0 −

∑
n

Vn
am − bn

)ϕmU
(0)
m dη ∧ dξ

−
∑
n

∫
Σ

Trψ−1
n (∂ξ − U0 −

∑
m

Um
bn − am

)ψnV
(0)
n dξ ∧ dη

=

∫
Σ

Tr

(∑
m

ϕ−1
m (∂η − V0)ϕmU

(0)
m

−
∑
n

ψ−1
n (∂ξ − U0)ψnV

(0)
n − 2

∑
mn

UmVn
am − bn

)
dξ ∧ dη .

(A.50)

The Zakharov-Mikhailov action is obtained by adding the bulk and the defects action
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and we get the desired

SZM (ϕ,ψ) =

∫
Σ

Tr

(∑
m

ϕ−1
m (∂η − V0)ϕmU

(0)
m

−
∑
n

ψ−1
n (∂ξ − U0)ψnV

(0)
n −

∑
mn

ϕmU
(0)
m ϕ−1

m ψnV
(0)
n ψ−1

n

am − bn

)
dξ ∧ dη .

(A.51)
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Appendix B

Proofs of Chapter 6

B.1 The e and f coordinates

In this section we discuss some of the properties of the coordinates e and f , which are
defined as

e(λ) =
b(λ)√
i− a(λ)

, f(λ) =
c(λ)√
i− a(λ)

. (B.1)

We remember that we are restricting to the subset where a2(λ) + b(λ)c(λ) = −1, which
means that a(λ) = e(λ)f(λ)− i, in fact

e(λ)f(λ) =
b(λ)c(λ)

i− a(λ)
=
−1− a2(λ)

i− a(λ)
= i+ a(λ) . (B.2)

The coefficients of e and f can be computed in the following way. First we write our
series as Taylor series substituting x = λ−1, as (with a slight abuse of notation)

b(x) =
∑
j≥0

bjx
j , c(x) =

∑
j≥0

cjx
j , a(x) =

∑
j≥0

ajx
j .

Then, we find

ek =
1

k!

dk

dxk

∣∣∣∣
x=0

b(x)√
i− a(x)

, fk =
1

k!

dk

dxk

∣∣∣∣
x=0

c(x)√
i− a(x)

. (B.3)
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We list the first few in the following, using in (B.3) that b0 = c0 = a1 = 0:

e0 = 0 , f0 = 0 , (B.4a)

e1 =
1√
2i
b1 , f1 =

1√
2i
c1 , (B.4b)

e2 =
1√
2i
b2 , f2 =

1√
2i
c2 , (B.4c)

e3 =
1√
2i

(b3 −
1

8
b21c1) , f3 =

1√
2i

(c3 −
1

8
b1c

2
1) , (B.4d)

e4 =
1√
2i

(b4 −
1

4
b1c1b2 −

1

8
b21c2) , f4 =

1√
2i

(c4 −
1

4
b1c1c2 −

1

8
c2

1b2) , (B.4e)

Conversely, we have that

b(λ) = e(λ)
√

2i− e(λ)f(λ) , c(λ) = f(λ)
√

2i− e(λ)f(λ) , (B.5)

and therefore

b1 =
√

2ie1 , c1 =
√

2if1 , (B.6a)

b2 =
√

2ie2 , c2 =
√

2if2 , (B.6b)

b3 =
√

2i(e3 +
i

4
e2

1f1) , c3 =
√

2i(f3 +
i

4
e1f

2
1 ) , (B.6c)

b4 =
√

2i(e4 +
i

2
e1f1e2 +

i

4
e2

1f2) , c4 =
√

2i(f4 +
i

2
e1f1f2 +

i

4
f2

1 e2) . (B.6d)

Also a = ef − i, so ak =
∑k−1

i=1 eifk−i:

a0 = −i , a1 = 0 , a2 = e1f1 ,

a3 = e1f2 + e2f1 , a4 = e1f3 + e2f2 + f1e3 , . . .

and

a2 = − i
2
b1c1 , a3 = − i

2
(b1c2 + b2c1) ,

a4 = − i
2

(b1c4 + b2c2 + b4c1 −
3

8
b21c1c2 −

3

8
b1c

2
1b2) , . . .

It is also useful to express these relations in terms of the usual q and r coordinates (and
their derivatives with respect to x1 = x) we have the following identities

b1 = q , c1 = r , (B.7a)

b2 =
i

2
q1 , c2 = − i

2
r1 , (B.7b)

b3 = −1

4
q11 +

1

2
q2r , c3 = −1

4
r11 +

1

2
qr2 , (B.7c)

b4 = − i
8
q111 +

3i

4
qrq1 , c4 =

i

8
r111 −

3i

4
qrr1 . (B.7d)
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e1 =
1√
2i
q , f1 =

1√
2i
r , (B.8a)

e2 =
1√
2i

i

2
q1 , f2 = − 1√

2i

i

2
r1 , (B.8b)

e3 =
1√
2i

(
−1

4
q11 +

3

8
q2r

)
, f3 =

1√
2i

(
−1

4
r11 +

3

8
qr2

)
, (B.8c)

e4 =
1√
2i

(
− i

8
q111 +

5i

8
qrq1 +

i

16
q2r1

)
, f4 =

1√
2i

(
i

8
r111 −

5i

8
qrr1 −

i

16
q1r

2

)
.

(B.8d)

Conversely:

q =
√

2ie1 , r =
√

2if1 , (B.9a)

q1 = −
√

2i2ie2 , r1 =
√

2i2if2 , (B.9b)

q11 =
√

2i
(
−4e3 + 3ie2

1f1

)
, r11 =

√
2i
(
−4f3 + 3ie1f

2
1

)
, (B.9c)

q111 =
√

2i
(
8ie4 + 20e1f1e2 − 2e2

1f2

)
, r111 =

√
2i
(
−8if4 − 20e1f1f2 + 2f2

1 e2

)
.

(B.9d)

We can also write the expressions for the derivatives of Q with respect to the coordinates
e and f :

∂Q(λ)

∂ek
=

λ−k√
i− a(λ)

(
c(λ) i−3a(λ)

2

− c2(λ)
2(i−a(λ)) −c(λ)

)
, (B.10a)

∂Q(λ)

∂fk
=

λ−k√
i− a(λ)

(
b(λ) − b2(λ)

2(i−a(λ))
i−3a(λ)

2 −b(λ)

)
. (B.10b)

Therefore we have that the derivatives of the coefficients of Q(λ) with respect to ej are

∂ai
∂ej

= fi−j , (B.11a)

∂bi
∂ej

=

(
i− 3a(λ)

2
√
i− a(λ)

)
i−j

, (B.11b)

∂ci
∂ej

=

(
−f2(λ)

2
√
i− a(λ)

)
i−j

=

(
−c2(λ)

2(i− a(λ))3/2

)
i−j

, (B.11c)
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while the ones with respect to fj are

∂ai
∂fj

= ei−j , (B.12a)

∂bi
∂fj

=

(
−e2(λ)

2
√
i− a(λ)

)
i−j

=

(
−b2(λ)

2(i− a(λ))3/2

)
i−j

, (B.12b)

∂ci
∂fj

=

(
i− 3a(λ)

2
√
i− a(λ)

)
i−j

. (B.12c)

B.2 Proof of Theorem 6.2

This proof is generalised by the results of Section 7.2 that hold for a generic ultra-local
r-matrix. However, we decided to keep this proof for completeness.

Proof. We need to calculate δdK and then δdV . We do so with the help of the generating
functions as follows. Note that

dK =
∑
i<j<k

(∂iKjk + ∂kKij + ∂jKki) dx
ijk , (B.13)

hence we associate to it the generating function1 DνK(λ, µ)+ 	. To obtain δdK, we
simply calculate DνK(λ, µ)+ 	. The same holds for δdV . We will need the following
identities:

TrQ(λ)δ(DνQ(µ)) = Trϕ(µ)−1 ([DνQ(µ), Q(λ)]

+Dνϕ(µ)ϕ(µ)−1[Q(λ), Q(µ)]
)
δϕ(µ)

− Trϕ(µ)−1[Q(λ), Q(µ)]δ(Dνϕ(µ)) ,

(B.14)

TrDνQ(λ)δQ(µ) = Trϕ(µ)−1[Q(µ), DνQ(λ)]δϕ(µ) . (B.15)

We have that

DνK(λ, µ) = Tr(−ϕ(µ)−1Dνϕ(µ)ϕ(µ)−1Dλϕ(µ)Q0 + ϕ−1(µ)DνDλϕ(µ)Q0

+ ϕ(λ)−1Dνϕ(λ)ϕ(λ)−1Dµϕ(λ)Q0 − ϕ−1(λ)DνDµϕ(λ)Q0) .

1With 	 we mean the cyclic permutations of (ν, λ, µ).
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We now apply the δ-differential.

δDνK(λ, µ)

= Tr(ϕ(µ)−1δϕ(µ)ϕ(µ)−1Dνϕ(µ)ϕ(µ)−1Dλϕ(µ)Q0 − ϕ(µ)−1δ(Dνϕ(µ))ϕ(µ)−1Dλϕ(µ)Q0

+ ϕ(µ)−1Dνϕ(µ)ϕ(µ)−1δϕ(µ)ϕ(µ)−1Dλϕ(µ)Q0 − ϕ(µ)−1Dνϕ(µ)ϕ(µ)−1δ(Dλϕ(µ))Q0

− ϕ(µ)−1δϕ(µ)ϕ(µ)−1DνDλϕ(µ)Q0 + ϕ(µ)−1δ(DνDλϕ(µ))Q0 − (λ↔ µ))

= Tr(ϕ(µ)−1
(
Dνϕ(µ)ϕ(µ)−1Dλϕ(µ)ϕ(µ)−1Q(µ)

+Dλϕ(µ)ϕ(µ)−1Q(µ)Dνϕ(µ)ϕ(µ)−1 −DνDλϕ(µ)ϕ(µ)−1Q(µ)
)
δϕ(µ)

− ϕ(µ)−1Dλϕ(µ)ϕ(µ)−1Q(µ)δ(Dνϕ(µ))− ϕ(µ)−1Q(µ)Dνϕ(µ)ϕ(µ)−1δ(Dλϕ(µ))

+ ϕ(µ)−1Q(µ)δ(DνDλϕ(µ))− (λ↔ µ)) .

We add the cyclic sum and we select the coefficients of δϕ(µ), δDνϕ(µ), etc. adding the
corresponding terms from δDλK(µ, ν).

δdK = Tr(ϕ(µ)−1
(
Dµϕ(µ)ϕ(µ)−1DλQ(µ)−Dλϕ(µ)ϕ(µ)−1DµQ(µ))δϕ(µ)

− ϕ(µ)−1DλQ(µ)δ(Dµϕ(µ)) + ϕ(µ)−1DµQ(µ)δ(Dλϕ(µ))

+
(
ϕ(µ)−1Q(µ)− ϕ(µ)−1Q(µ)

)
δ(DµDλϕ(µ))+ 	)

= Tr(ϕ(µ)−1
(
Dµϕ(µ)ϕ(µ)−1DλQ(µ)−Dλϕ(µ)ϕ(µ)−1DµQ(µ))δϕ(µ)

− ϕ(µ)−1DλQ(µ)δ(Dµϕ(µ)) + ϕ(µ)−1DµQ(µ)δ(Dλϕ(µ))+ 	) .

We do the same for V (λ, µ) = −1
2

Tr(Q(λ)−Q(µ))2

λ−µ = 2
λ−µ + TrQ(λ)Q(µ)

λ−µ .

DνV (λ, µ) =
1

λ− µ
Tr(DνQ(λ)Q(µ) +DνQ(µ)Q(λ)) .

We now apply the δ-differential.

δDνV (λ, µ) =
1

λ− µ
Tr (DνQ(λ)δQ(µ) +Q(λ)δ(DνQ(µ)))− (λ↔ µ)

and using the identities above we get

δDνV (λ, µ)

=
1

λ− µ
Tr
(
− ϕ(µ)−1[Q(λ), Q(µ)]δ(Dνϕ(µ))

+ ϕ(µ)−1
(
[DνQ(µ), Q(λ)] +Dνϕ(µ)ϕ(µ)−1[Q(λ), Q(µ)]

)
δϕ(µ)

+ ϕ(µ)−1[Q(µ), DνQ(λ)]δϕ(µ)
)
− (λ↔ µ)

=
1

λ− µ
Tr
(
− ϕ(µ)−1[Q(λ), Q(µ)]δ(Dνϕ(µ))

+ ϕ(µ)−1
(
[DνQ(µ), Q(λ)] + [Q(µ), DνQ(λ)] +Dνϕ(µ)ϕ(µ)−1[Q(λ), Q(µ)]

)
δϕ(µ)

)
− (λ↔ µ) .
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We add the cyclic sum and we select the coefficients of δϕ(µ), δDνϕ(µ), etc. adding the
corresponding terms from δDλV (µ, ν).

δdV

=
1

λ− µ
Tr
(
− ϕ(µ)−1[Q(λ), Q(µ)]δ(Dνϕ(µ))

+ ϕ(µ)−1
(
[DνQ(µ), Q(λ)] + [Q(µ), DνQ(λ)] +Dνϕ(µ)ϕ(µ)−1[Q(λ), Q(µ)]

)
δϕ(µ)

)
+

1

ν − µ
Tr
(
ϕ(µ)−1[Q(ν), Q(µ)]δ(Dλϕ(µ))

− ϕ(µ)−1
(
[DλQ(µ), Q(ν)] + [Q(µ), DλQ(ν)] +Dλϕ(µ)ϕ(µ)−1[Q(ν), Q(µ)]

)
δϕ(µ)

)
+ 	 .

By comparing the coefficients of δDνϕ(µ) and of δDλϕ(µ) we get the desired equations
(6.2.1). The equations coming from the coefficients of δϕ(µ) are differential consequences
of them.

We turn to the closure relation. We are going to use the following identities:

1

µ− ν
− 1

λ− ν
=

λ− µ
(µ− ν)(λ− ν)

, (B.16a)

1

(µ− ν)(λ− ν)
+

1

(ν − λ)(µ− λ)
+

1

(ν − µ)(λ− µ)
= 0 , (B.16b)

Tr[Q(λ), Q(µ)]Q(λ) = 0 , (B.16c)

Tr[Q(λ), Q(ν)]Q(µ) = Tr[Q(µ), Q(λ)]Q(ν) . (B.16d)

A direct computation shows that the kinetic term vanishes, in fact

DνK(λ, µ) +DλK(µ, ν) +DµK(ν, λ) = Tr(Dνϕ(λ)ϕ(λ)−1DµQ(λ)+ 	)

= Tr(
1

λ− µ
DνQ(λ)Q(µ)+ 	)

= Tr(
1

(λ− µ)(λ− µ)
[Q(λ), Q(ν)]Q(µ)+ 	)

= Tr

((
1

(λ− µ)(λ− µ)
+ 	

)
[Q(λ), Q(ν)]Q(µ)

)
= 0 .

The potential term on the other hand brings

DνV (λ, µ) =
1

λ− µ
Tr(DνQ(λ)Q(µ) +Q(λ)DνQ(µ))

=
1

λ− µ
Tr[Q(ν), Q(λ)]Q(µ)

ν − λ
+

1

λ− µ
TrQ(λ)[Q(ν), Q(µ)]

ν − µ

=
1

λ− µ

(
1

λ− ν
− 1

µ− ν

)
Tr[Q(λ), Q(ν)]Q(µ)

=
1

(λ− ν)(ν − µ)
Tr[Q(λ), Q(ν)]Q(µ) ,
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So that the cyclic sum then reads(
1

(λ− ν)(ν − µ)
+

1

(ν − µ)(µ− λ)
+

1

(µ− λ)(λ− ν)

)
Tr[Q(µ), Q(λ)]Q(ν) = 0

and we conclude that the Lagrangian multiform satisfies the closure relation dL = 0.

B.3 Proof of Proposition 6.8

Proof. First, we claim that Ω(1) is given by the generating function

Ω(1)(λ) = Tr
(
Q0ϕ(λ)−1δϕ(λ)

)
. (B.17)

We need to show that δL + dΩ(1) = 0 on the multiform Euler-Lagrange equations
DµQ(λ) = [Q(µ),Q(λ)]

µ−λ . For convenience, let us denote ψ(λ) := ϕ−1(λ). A direct computa-
tion shows that

δK(λ, µ) = Tr

(
Dλϕ(µ)Q0δψ(µ) +Q0ψ(µ)δ(Dλϕ(µ))

−Dµϕ(λ)Q0δψ(λ)−Q0ψ(λ)δ(Dµϕ(λ))

)
,

and

δV (λ, µ) = Tr

(
1

λ− µ
ψ(λ)[Q(λ), Q(µ)]δϕ(λ)− 1

λ− µ
ψ(µ)[Q(λ), Q(µ)]δϕ(µ)

)
.

The coefficient of the generating function Ω(1)(λ) =
∑∞

k=0 ω
(1)
k /λk+1 are obtained as (note

that ω(1)
0 = 0)

ω
(1)
k = Tr

k∑
i=1

Q0ψiδϕk+1−i . (B.18)

Hence, for the corresponding form, we have using the variational bicomplex calculus,

dΩ(1)

= d

( ∞∑
k=1

ω
(1)
k ∧ dx

k

)

= Tr

∞∑
k=0

k∑
i=1

d(Q0ψiδϕk+1−i) ∧ dxk

= −Tr
∞∑
k=0

∞∑
j=0

k∑
i=1

(∂jψiδϕk+1−i + ψiδ(∂jϕk+1−i)) ∧ dxj ∧ dxk

= Tr
∞∑

j<k=1

k∑
i=1

(∂kψiδϕj+1−i + ψiδ(∂kϕj+1−i)− ∂jψiδϕk+1−i − ψiδ(∂jϕk+1−i)) ∧ dxjk .
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The associated generating function is given by

dΩ(1)(λ, µ) = Tr

(
Q0Dµψ(λ)δϕ(λ) +Q0ψ(λ)δ(Dµϕ(λ))

−Q0Dλψ(µ)δϕ(µ)−Q0ψ(µ)δ(Dλϕ(µ))

)
.

So the sum δK(λ, µ)− δV (λ, µ) + dΩ(1)(λ, µ) reads

Tr

(
Dλϕ(µ)Q0δψ(µ) +Q0ψ(µ)δ(Dλϕ(µ))−Dµϕ(λ)Q0δψ(λ)−Q0ψ(λ)δ(Dµϕ(λ))

− 1

λ− µ
ψ(λ)[Q(λ), Q(µ)]δϕ(λ) +

1

λ− µ
ψ(λ)[Q(λ), Q(µ)]δϕ(µ)

+Q0Dµψ(µ)δϕ(λ) +Q0ψ(λ)δ(Dµϕ(λ))−Q0Dλψ(µ)δϕ(µ)−Q0ψ(µ)δ(Dλϕ(µ))

)
= Tr

(
ψ(λ)DµQ(λ)δϕ(λ)− 1

λ− µ
ψ(λ)[Q(λ), Q(µ)]δϕ(λ)

− ψ(µ)DλQ(µ) +
1

λ− µ
ψ(λ)[Q(λ), Q(µ)]δϕ(µ)

)
.

This vanishes on the multiform Euler-Lagrange equations

DµQ(λ) =
[Q(µ), Q(λ)]

µ− λ
, DλQ(µ) =

[Q(λ), Q(µ)]

λ− µ
,

thus completing the argument. As a consequence,

Ω(λ) = δΩ(1)(λ) = −Tr
(
Q0ϕ(λ)−1δϕ(λ) ∧ ϕ(λ)−1δϕ(λ)

)
, (B.19)

as required.

B.4 Proof of Proposition 6.13

Proof. We start with the general expression of the vertical vector field

ξF =
∞∑
j=1

(
Aj∂fj +Bj∂ej

)
,

and determine Aj , Bj such that ξF yΩ = δF holds, or equivalently,

ξF yωk = δFk , ∀k ≥ 0 .
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Since ω0 = 0 we instantly get that F0 has to be constant. The left-hand side reads

ξF yωk =
k∑
i=1

∞∑
j=1

(Ajδi,jδek−i+1 −Bjδj,k−i+1δfi) =
k∑
i=1

(Aiδek−i+1 −Bk−i+1δfi)

=
k∑
i=1

(Ak−i+1δei −Bk−i+1δfi) ,

whilst the right hand-side is

∞∑
i=1

(
∂Fk
∂ei

δei +
∂Fk
∂fi

δfi

)
.

Comparing the two we get

∂Fk
∂ei

=
∂Fk
∂fi

= 0 , ∀i > k ,

∂Fk
∂ei

= Ak−i+1 ,
∂Fk
∂fi

= −Bk−i+1 , ∀i ≤ k .

The latter brings that

∂Fk
∂ei

= Ak−i+1 = A(k+1)−(i+1)+1 =
∂Fk+1

∂ei+1
,

and similarly for fi. These conditions are necessary and sufficient.

B.5 Proof of Proposition 6.14

Proof. We will show that

ξHyΩ = δH where Ω =
∞∑
k=1

k∑
m=1

δfm ∧ δek+1−m ∧ dxk . (B.20)

We start with the left hand-side

ξHyΩ =
∞∑
i=1

∞∑
k=1

k∑
m=1

(
−∂H
∂fi

∂e1 ∧ ∂i +
∂H

∂ei
∂f1 ∧ ∂i

)
y
(
δfm ∧ δek+1−m ∧ δxk

)
=

∞∑
i=1

∞∑
k=1

k∑
m=1

(
∂H

∂fi
δikδk+1−m,1δfm

)
+

∞∑
i=1

∞∑
k=1

k∑
m=1

(
∂H

∂ei
δikδm,1δek+1−m

)

=

∞∑
i=1

∂H

∂fi
δfi +

∞∑
i=1

∂H

∂ei
δei = δH .
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B.6 Proof of Proposition 6.17

Proof. 1. The multi-time Poisson bracket {[F,G]} is an admissible 1-form. In fact we
have that

∂

∂fm+1
({[F,G]})k+1 =

∂

∂fm+1
{Fk+1, Gk+1}k+1

=
∂

∂fm+1

k+1∑
j=1

(
∂Fk+1

∂fj

∂Gk+1

∂ek+2−j
− ∂Fk+1

∂ej

∂Gk+1

∂fk+2−j

)

=
k+1∑
j=1

(
∂2Fk+1

∂fm+1∂fj

∂Gk+1

∂ek+2−j
+
∂Fk+1

∂fj

∂2Gk+1

∂fm+1∂ek+2−j

− ∂2Fk+1

∂fm+1∂ej

∂Gk+1

∂fk+2−j
− ∂Fk+1

∂ej

∂2Gk+1

∂fm+1∂fk+2−j

)

=

k+1∑
j=1

(
∂2Fk
∂fm∂fj

∂Gk
∂ek+1−j

+
∂Fk+1

∂fj

∂2Gk
∂fm∂ek+2−j

− ∂2Fk
∂fm∂ej

∂Gk
∂fk+1−j

− ∂Fk+1

∂ej

∂2Gk
∂fm∂fk+2−j

)

=
k+1∑
j=1

(
∂2Fk
∂fm∂fj

∂Gk
∂ek+1−j

− ∂2Fk
∂fm∂ej

∂Gk
∂fk+1−j

)

+
k+1∑
j=1

(
∂Fk+1

∂fj

∂2Gk
∂fm∂ek+2−j

− ∂Fk+1

∂ej

∂2Gk
∂fm∂fk+2−j

)
.

Now we use the fact that the (k + 1)-th term of the first sum vanishes as ∂Fk
∂fk+1

=
∂Fk
∂ek+1

= 0 and in the second sum we substitute j → j + 1

∂

∂fm+1
({[F,G]})k+1 =

k∑
j=1

(
∂2Fk
∂fm∂fj

∂Gk
∂ek+1−j

− ∂2Fk
∂fm∂ej

∂Gk
∂fk+1−j

)

+

k∑
j=0

(
∂Fk+1

∂fj+1

∂2Gk
∂fm∂ek+1−j

− ∂Fk+1

∂ej+1

∂2Gk
∂fm∂fk+1−j

)

=

k∑
j=1

(
∂2Fk
∂fm∂fj

∂Gk
∂ek+1−j

− ∂2Fk
∂fm∂ej

∂Gk
∂fk+1−j

)

+

k∑
j=0

(
∂Fk
∂fj

∂2Gk
∂fm∂ek+1−j

− ∂Fk
∂ej

∂2Gk
∂fm∂fk+1−j

)

=
∂

∂fm
({[F,G]})k

because the 0-th term of the second sum vanishes for the same reason. The proof of
∂
∂em

({[F,G]})k = ∂
∂em+1

({[F,G]})k+1 works in the same way.
The multi-time Poisson bracket {[F,H]} is admissible because it is a 0-form.
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2. The proof follows from the Jacobi identity of the single-time Poisson bracket { , }k
(which is easy to prove as it is already written in Darboux form).

3. This part of the proof is the most laborious, and it is performed by computing the
three terms separately and adding them together. We have

{[{[F,G]}, H]} =− ξ{[F,G]}yδH

=

∞∑
k=1

k∑
j=1

(
∂2Fk
∂f1∂fj

∂Gk
∂ek−j+1

∂H

∂ek
+
∂Fk
∂fj

∂2Gk
∂f1∂ek−j+1

∂H

∂ek

− ∂2Fk
∂f1∂ej

∂Gk
∂fk−j+1

∂H

∂ek
− ∂Fk
∂ej

∂2Gk
∂f1∂fk−j+1

∂H

∂ek

− ∂2Fk
∂e1∂fj

∂Gk
∂ek−j+1

∂H

∂fk
− ∂Fk
∂fj

∂2Gk
∂e1∂ek−j+1

∂H

∂fk

+
∂2Fk
∂e1∂ej

∂Gk
∂fk−j+1

∂H

∂fk
+
∂Fk
∂ej

∂2Gk
∂e1∂fk−j+1

∂H

∂fk

)
,

{[{[H,F ]}, G]} =ξGyξF yδH

=
∞∑
k=1

k∑
j=1

(
∂2Fk
∂ej∂f1

∂Gj
∂f1

∂H

∂ek
− ∂2Fk
∂ej∂e1

∂Gj
∂f1

∂H

∂fk

− ∂2Fk
∂fj∂f1

∂Gj
∂e1

∂H

∂ek
+

∂2Fk
∂fj∂e1

∂Gj
∂e1

∂H

∂fk

)
+

∞∑
j,k=1

(∂Fk
∂f1

∂Gj
∂f1

∂2H

∂ej∂ek
− ∂Fk
∂e1

∂Gj
∂f1

∂2H

∂ej∂fk

− ∂Fk
∂f1

∂Gj
∂e1

∂2H

∂fj∂ek
+
∂Fk
∂e1

∂Gj
∂e1

∂2H

∂fj∂fk

)
,

{[{[G,H]}, F ]} =− {[F, {[G,H]}]} = ξF y{[G,H]}

=− ξF yξGyδH

=−
∞∑
k=1

k∑
j=1

(∂Fj
∂f1

∂2Gk
∂ej∂f1

∂H

∂ek
− ∂Fj
∂f1

∂2Gk
∂ej∂e1

∂H

∂fk

− ∂Fj
∂e1

∂2Gk
∂fj∂f1

∂H

∂ek
+
∂Fj
∂e1

∂2Gk
∂fj∂e1

∂H

∂fk

)
−

∞∑
j,k=1

(∂Fj
∂f1

∂Gk
∂f1

∂2H

∂ej∂ek
− ∂Fj
∂f1

∂Gk
∂e1

∂2H

∂ej∂fk

− ∂Fj
∂e1

∂Gk
∂f1

∂2H

∂fj∂ek
+
∂Fj
∂e1

∂Gk
∂e1

∂2H

∂fj∂fk

)
,

We add the last two together, simplifying the terms with the double derivative of
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H, to obtain the expression for {[{[H,F ]}, G]}+ {[{[G,H]}, F ]}

=
∞∑
k=1

k∑
j=1

( ∂2Fk
∂ej∂f1

∂Gj
∂f1

∂H

∂ek
− ∂2Fk
∂ej∂e1

∂Gj
∂f1

∂H

∂fk
− ∂2Fk
∂fj∂f1

∂Gj
∂e1

∂H

∂ek
+

∂2Fk
∂fj∂e1

∂Gj
∂e1

∂H

∂fk

− ∂Fj
∂f1

∂2Gk
∂ej∂f1

∂H

∂ek
+
∂Fj
∂f1

∂2Gk
∂ej∂e1

∂H

∂fk
+
∂Fj
∂e1

∂2Gk
∂fj∂f1

∂H

∂ek
− ∂Fj
∂e1

∂2Gk
∂fj∂e1

∂H

∂fk

)
.

We now use ∂Fj
∂f1

=
∂Fj+k−j
∂f1+k−j

= ∂Fk
∂fk−j+1

, etc.

=
∞∑
k=1

k∑
j=1

( ∂2Fk
∂ej∂f1

∂Gk
∂fk−j+1

∂H

∂ek
− ∂2Fk
∂ej∂e1

∂Gk
∂fk−j+1

∂H

∂fk
− ∂2Fk
∂fj∂f1

∂Gk
∂ek−j+1

∂H

∂ek

+
∂2Fk
∂fj∂e1

∂Gk
∂ek−j+1

∂H

∂fk
− ∂Fk
∂fk−j+1

∂2Gk
∂ej∂f1

∂H

∂ek
+

∂Fk
∂fk−j+1

∂2Gk
∂ej∂e1

∂H

∂fk

+
∂Fk

∂ek−j+1

∂2Gk
∂fj∂f1

∂H

∂ek
− ∂Fk
∂ek−j+1

∂2Gk
∂fj∂e1

∂H

∂fk

)
,

that is also

=

∞∑
k=1

k∑
j=1

( ∂2Fk
∂ej∂f1

∂Gk
∂fk−j+1

∂H

∂ek
− ∂2Fk
∂ej∂e1

∂Gk
∂fk−j+1

∂H

∂fk
− ∂2Fk
∂fj∂f1

∂Gk
∂ek−j+1

∂H

∂ek

+
∂2Fk
∂fj∂e1

∂Gk
∂ek−j+1

∂H

∂fk
− ∂Fk
∂fj

∂2Gk
∂ek−j+1∂f1

∂H

∂ek
+
∂Fk
∂fj

∂2Gk
∂ek−j+1∂e1

∂H

∂fk

+
∂Fk
∂ej

∂2Gk
∂fk−j+1∂f1

∂H

∂ek
− ∂Fk
∂ej

∂2Gk
∂fk−j+1∂e1

∂H

∂fk

)
=− {[{[F,G]}, H]}

as desired.

B.7 Proof of Theorem 6.20

Lemma B.1 For each k ≥ 0, the only non-zero single-time Poisson of ai, bi and ci,
0 ≤ i ≤ k, are given by

{ai, bj}k = bi+j−k−1 , (B.21a)

{ai, cj}k = −ci+j−k−1 , (B.21b)

{bi, cj}k = 2ai+j−k−1 . (B.21c)

For convenience, we use the convention that a coefficient in a series vanishes when its index
is negative. Hence, it is understood that {ai, bj}k = {ai, cj}k = {bi, cj}k = 0 whenever
i+ j < k + 1.
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Proof. We start with the fact that for any power series α and β we have

k∑
`=1

αi−`βj+`−k−1 = (αβ)i+j−k−1 . (B.22)

In fact, by limiting the sum only to the non-zero terms:

k∑
`=1

αi−l βj+`−k−1 =

i∑
`=k+1−j

αi−` βj+`−k−1 =

i+j−k−1∑
m=0

αi+j−k−1−m βm = (αβ)i+j−k−1 .

We study the case where k + 1− j ≤ j, namely i+ j ≥ k + 1. If i+ j < k + 1 then the
sum is empty, and the result is zero. We are now ready to compute the following Poisson
brackets using the formulas in Appendix B.1.

{ai, bj}k =
k∑
`=1

(
∂ai
∂f`

∂bj
∂ek+1−`

− ∂bj
∂f`

∂ai
∂ek+1−`

)

=
k∑
`=1

(
ei−`

(
i− 3a

2
√
i− a

)
j+`−k−1

−
(
−e2

2
√
i− a

)
j−`

fi+`−k−1

)

=

(
ie− 3ae+ e2f

2
√
i− a

)
i+j−k−1

=

(
ie− 3ae+ (i+ a)e

2
√
i− a

)
i+j−k−1

=(e
√
i− a)i+j−k−1 = bi+j−k−1 .

{ai, cj}k =

k∑
`=1

(
∂ai
∂f`

∂cj
∂ek+1−`

− ∂cj
∂f`

∂ai
∂ek+1−`

)

=

k∑
`=1

(
ei−`

(
−f2

2
√
i− a

)
j+`−k−1

−
(
i− 3a

2
√
i− a

)
j−`

fi+`−k−1

)

=

(
−ef2 − f(i− 3a)

2
√
i− a

)
i+j−k−1

=

(
−f(i+ a)− if + 3af

2
√
i− a

)
i+j−k−1

=− (f
√
i− a)i+j−k−1 = −ci+j−k−1 .

{ai, aj}k =

k∑
`=1

(
∂ai
∂f`

∂aj
∂ek+1−`

− ∂aj
∂f`

∂ai
∂ek+1−`

)

=
k∑
`=1

((
−e2

2
√
i− a

)
i−`

(
−f2

2
√
i− a

)
j+`−k−1

−
(
i− 3a

2
√
i− a

)
j−`

(
i− 3a

2
√
i− a

)
i+`−k−1

)

=

(
e2f2 − (i− 3a)2

4(i− a)

)
i+j−k−1

=

(
(i+ a)2 − (i− 3a)2

4(i− a)

)
i+j−k−1

=2ai+j−k−1 .

Remark B.2: These Poisson bracket coincides with the { , }−k in [AC17]. In this
instance we do not take the Poisson brackets of ai, bi, ci for i > k because they do
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not belong to the k-th single-time phase space.

Proof of Theorem 6.20. We start by proving that

∂Q

∂ek
(λ) = λ

∂Q

∂ek+1
(λ) ,

∂Q

∂fk
(λ) = λ

∂Q

∂fk+1
(λ) . (B.23)

This is done for each matrix element. In fact

∂Q

∂ek
=
∂Q

∂e

∂e

∂ek
= λ−k

∂Q

∂e
= λλ−k−1∂Q

∂e
= λ

∂Q

∂e

∂e

∂ek+1
= λ

∂Q

∂ek+1
,

∂Q

∂fk
=
∂Q

∂f

∂f

∂fk
= λ−k

∂Q

∂f
= λλ−k−1∂Q

∂f
= λ

∂Q

∂f

∂f

∂fk+1
= λ

∂Q

∂fk+1
.

By virtue of the previous result, and since Q0 is constant, we have the following:

∂Q

∂ek
=
∞∑
j=0

∂Qj
∂ek

λ−j (B.24a)

λ
∂Q

∂ek+1
= λ

∞∑
i=0

∂Qi
∂ek+1

λ−i =
∞∑
i=0

∂Qi
∂ek+1

λ−i+1 =
∞∑
j=0

∂Qj+1

∂ek+1
λ−j . (B.24b)

If we look at the coefficients in λ we see that, for all j and k, ∂Qj∂ek
=

∂Qj+1

∂ek+1
. Similarly one

can obtain that ∂Qj
∂fk

=
∂Qj+1

∂fk+1
.

Finally, we check that the Lax form is admissible, using Proposition 6.13, i.e. that

∂Q(i)

∂ej
=

i∑
k=0

λi−k
∂Qk
∂ej

=
i∑

k=0

λi−k
∂Qk+1

∂ej+1
=

i∑
k=0

λ(i+1)−(k+1)∂Qk+1

∂ej+1

=
i+1∑
k=1

λi+1−k ∂Qk
∂ej+1

=
∂Q(i+1)

∂ej+1
− λi+1 ∂Q0

∂ej+1
=
∂Q(i+1)

∂ej+1
,

where we used that Q0 is constant. Similarly ∂Q(i)

∂fj
= ∂Q(i+1)

∂fj+1
.

We now turn to the proof of (6.62). Thanks to the decomposition of the multi-time
Poisson bracket into single-time Poisson brackets, we have that {[W1(λ),W2(µ)]} =

[r12(λ, µ),W1(λ) +W2(µ)] if and only for all k ≥ 0,

{Q(k)
1 (λ), Q

(k)
2 (µ)}k = [r12(λ, µ), Q

(k)
1 (λ) +Q

(k)
2 (µ)] . (B.25)
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Writing Q(k)(λ) = Q
(k)
+ (λ)σ+ +Q

(k)
− (λ)σ−+Q

(k)
3 (λ)σ3, the right hand-side of (B.25) reads

[r12(λ, µ), Q
(k)
1 (λ) +Q

(k)
2 (µ)] (B.26)

=
2(Q

(k)
3 (µ)−Q(k)

3 (λ))

µ− λ
(σ+ ⊗ σ− − σ− ⊗ σ+) +

Q
(k)
+ (µ)−Q(k)

+ (λ)

µ− λ
(σ3 ⊗ σ+ − σ+ ⊗ σ3)

+
Q

(k)
− (λ)−Q(k)

− (µ)

µ− λ
(σ3 ⊗ σ− − σ− ⊗ σ3) ,

while the left hand-side is given by

{Q(k)
1 (λ), Q

(k)
2 (µ)}k

=
k∑

i,j=0

(λµ)k

λiµj
({ai, aj}kσ3 ⊗ σ3 + {bi, bj}kσ+ ⊗ σ+ + {ci, cj}kσ− ⊗ σ−

+ {bi, cj}kσ+ ⊗ σ− + {ci, bj}kσ− ⊗ σ+ + {ai, bj}kσ3 ⊗ σ+

+{bi, aj}kσ+ ⊗ σ3 + {ai, cj}kσ3 ⊗ σ− + {ci, aj}kσ− ⊗ σ3) .

(B.27)

We now invoke Lemma B.1 which gives the necessary single-time Poisson brackets and
allows us to check directly that (B.26) is equal to (B.27). We show it for the σ+ ⊗ σ−
component, as the others are obtained similarly. In the left hand-side we have

2

µ− λ
(Q

(k)
3 (µ)−Q(k)

3 (λ)) =
2

µ− λ

k∑
j=0

(µk−j − λk−j)aj = 2
k∑
j=0

k−j−1∑
i=1

λiµk−i−j−1aj ,

while right hand-side is equal to

2

k∑
i,j=0

(λµ)k

λiµj
ai+j−k−1 = 2

k∑
i=0

i−1∑
m=0

am
λi−kµm+1−i = 2

k∑
n=0

k−n−1∑
m=0

λnµk−n−m−1am .

This concludes the proof.

B.8 Proof of Theorem 6.22

Proof. Note the set of zero-curvature equations can be written as

dW (λ) = W (λ) ∧W (λ) , (B.28)

where the right-hand side is understood as

W (λ) ∧W (λ)

=

( ∞∑
i=0

Q(i)(λ)dxi

)
∧

 ∞∑
j=0

Q(j)(λ)dxj

 =
∑
i<j

[Q(i)(λ), Q(j)(λ)] dxij ,
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and the left-hand side is dW (λ) =
∑

i<j(∂iQ
(j)(λ)− ∂jQ(i)(λ)) dxij . Thus, we will prove

that
W (λ) ∧W (λ) =

∑
i<j

{[Hij ,W (λ)]} dxij . (B.29)

By definition ∑
i<j

{[Hij ,W (λ)]} = ξW (λ)yδH =
∑
i<j

(ξW (λ)yδHij) dx
ij ,

where, using the expression (6.61) for ξW (λ), we find

ξW (λ)yδHij =

j∑
k=1

(
∂Q(k)(λ)

∂e1

∂Hij

∂fk
− ∂Q(k)(λ)

∂f1

∂Hij

∂ek

)
.

Hence (B.29) is equivalent to, for i < j,

[Q(i)(λ), Q(j)(λ)] =

j∑
k=1

(
∂Q(k)(λ)

∂e1

∂Hij

∂fk
− ∂Q(k)(λ)

∂f1

∂Hij

∂ek

)
. (B.30)

We prove the latter in generating form as follows. We multiply both sides by µ−i−1ν−j−1

and form the following sums over i and j

∞∑
j=0

j∑
i=0

1

µi+1νj+1
[Q(i)(λ), Q(j)(λ)]

=
∞∑
j=0

j∑
i=0

1

µi+1νj+1

j∑
k=1

(
∂Q(k)(λ)

∂e1

∂Hij

∂fk
− ∂Q(k)(λ)

∂f1

∂Hij

∂ek

)
.

We can rearrange the sums in the right-hand side to get

∞∑
k=1

∞∑
j=k

j∑
i=0

1

µi+1νj+1
(· · · ) =

∞∑
k=1

∞∑
j=0

j∑
i=0

1

µi+1νj+1
(· · · ) ,

where we have used the fact that Hij depends only on e1, . . . , ej and f1, . . . , fj in the
second step to extend the sum over j from 0 instead of k. We can similarly form the sums
with µ↔ ν and use the same trick to rearrange the sums in the right-hand side. Using
the anti-symmetry of both left and right-hand side of (B.30), we come to the following
generating form of (B.30)

∞∑
i,j=0

1

µi+1νj+1
[Q(i)(λ), Q(j)(λ)]

=
∞∑
k=1

∂Q(k)(λ)

∂e1

∂

∂fk

∞∑
i,j=0

Hij

µi+1νj+1
− ∂Q(k)(λ)

∂f1

∂

∂ek

∞∑
i,j=0

Hij

µi+1νj+1

 ,
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i.e. ,

[Q(µ), Q(ν)]

(µ− λ)(ν − λ)
=
∞∑
k=1

∂Q(k)(λ)

∂e1

∂H(µ, ν)

∂fk
−
∞∑
k=1

∂Q(k)(λ)

∂f1

∂H(µ, ν)

∂ek
, (B.31)

where we have used
∞∑
i=0

Q(i)(λ)

µi+1
=
Q(µ)

µ− λ
.

We now show that (B.31) holds by computing its right-hand side recalling that

H(µ, ν) = −1

2

Tr(Q(µ)−Q(ν))2

µ− ν
=

2

µ− ν
+

TrQ(µ)Q(ν)

µ− ν
.

For convenience, denote a(µ), a(ν), a(λ) by a, a′, a′′ respectively and similarly for b and c.
We have

∂H(µ, ν)

∂fk
=

1

(µ− ν)
Tr

(
∂Q(µ)

∂fk
Q(ν) +

∂Q(ν)

∂fk
Q(µ)

)
(B.32)

and

1

µ− ν

∞∑
k=1

∂Q(k)(λ)

∂e1
Tr

∂Q(µ)

∂fk
Q(µ)

=
1

µ− ν

∞∑
k=1

∂Q(k)(λ)

∂e1

1

µk
√
i− a

Tr

(
b − b2

2(i−a)
i−3a

2 −b

)(
a′ b′

c′ −a′

)

=
1

µ− ν

∞∑
k=1

∂Q(k)(λ)

∂e1

1

µk
√
i− a

(
2ba′ − b2c′

2(i− a)
+

(i− 3a)b′

2

)
=

µ

(µ− ν)

(
∂

∂e1

Q(µ)

µ− λ

)
1√
i− a

(
2ba′ − b2c′

2(i− a)
+

(i− 3a)b′

2

)
=

1

(µ− ν)(µ− λ)

1

i− a

(
2ba′ − b2c′

2(i− a)
+

(i− 3a)b′

2

)(
c i−3a

2

− c2

2(i−a) −c

)
,

where we have used that
∑∞

k=1
Q(k)

µk
= µ(Q(µ)

µ−λ −
Q0

µ ) and that Q0 is constant. Similarly,
we have

1

µ− ν

∞∑
k=1

∂Q(k)(λ)

∂e1
Tr

∂Q(ν)

∂fk
Q(µ) =

1

(µ− ν)(ν − λ)

1

i− a′
(2b′a− b′2c

2(i− a′)
+

(i− 3a′)b

2
)

(
c′ i−3a′

2

− c′2

2(i−a′) −c′

)
,

1

ν − µ

∞∑
k=1

∂Q(k)(λ)

∂f1
Tr

∂Q(µ)

∂ek
Q(ν) =

1

(ν − µ)(µ− λ)

1

i− a
(2ca′ − c2b′

2(i− a)
+

(i− 3a)c′

2
)

(
b − b2

2(i−a)
i−3a

2 −b

)
,
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and

1

ν − µ

∞∑
k=1

∂Q(k)(λ)

∂f1
Tr

∂Q(ν)

∂ek
(Q(µ)) =

1

(ν − µ)(ν − λ)

1

i− a′
(2c′a− c′2b

2(i− a′)
+

(i− 3a′)c

2
)

(
b′ − b′2

2(i−a′)
i−3a′

2 −b′

)
.

We collect all the contributions on the σ3 component for instance (the other two are
obtained similarly). The numerator of N1

(µ−ν)(µ−λ)(i−a) is

N1 =2bca′ − b2cc′

2(i− a)
+ b′c

i− 3a

2
− 2bca′ +

c2bb′

2(i− a)
− bc′ i− 3a

2

=
1

2(i− a)
(bc(b′c− bc′) + (i− 3a)(i− a)(b′c− bc′))

=
b′c− bc′

2
(i+ a+ i− 3a)

=(b′c− bc′)(i− a)

where in the last equality, we have used that bc = −1− a2 = (i− a)(i+ a). Similarly, the
numerator of N2

(µ−ν)(ν−λ)(i−a′) is −(i− a′)(b′c− bc′), by simply swapping µ and ν. So, in
total the σ3 component of the right-hand side of (B.31) is given by

bc′ − b′c
ν − µ

(
1

µ− λ
− 1

ν − λ

)
=

bc′ − b′c
(µ− λ)(ν − λ)

.

This is exactly the coefficient of the σ3 component of [Q(µ),Q(ν)]
(µ−λ)(ν−λ) as is readily seen. The

other components are dealt with in the same way, and are omitted for brevity.
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