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Abstract

In this thesis we address the problems associated to non-conjugate likelihood Gaussian

process models, i.e., probabilistic models where the likelihood function and the Gaus-

sian process priors are non-conjugate. Such problems include intractability, scalability,

and poor local optima solutions for the parameters and hyper-parameters of the mod-

els. Particularly, in this thesis we address the aforementioned issues in the context

of probabilistic models, where the likelihood’s parameters are modelled as latent pa-

rameter functions drawn from correlated Gaussian processes. We study three ways to

generate such latent parameter functions: 1. from a linear model of coregionalisation;

2. from convolution processes, i.e., a convolution integral between smoothing kernels

and Gaussian process priors; and 3. using variational inducing kernels, an alterna-

tive form to generate the latent parameter functions through the convolution processes

formalism, by using a double convolution integral. We borrow ideas from different

variational optimisation mechanisms, that consist on introducing a variational (or ex-

ploratory) distribution over the model so as to build objective functions that: allow us

to deal with intractability as well as enabling scalability when needing to hand massive

amounts of data observations. Also, such variational optimisations mechanisms grant

us to perform inference of the model hyper-parameters together with the posterior’s

parameters through a fully natural gradient optimisation scheme; a useful scheme for

tackling the problem of poor local optima solutions. Such variational optimisation

mechanisms have been broadly studied in the context of reinforcement and Bayesian

deep learning showing to be successful exploratory-learning tools; nonetheless, they

have not been much studied in the context of Gaussian process models, so we provide

a study of their performance in said context.
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Generalities

P dimensionality of the input space

D number of outputs

M number of inducing points per latent function uq(·)
N number of data observations

Q number of latent functions uq(·)
Jd number of latent parameter functions chained to the d-th likelihood

J total number of latent parameter functions chained to the likelihoods’

parameters, J =
∑D

d=1 Jd

R number of independent and identically distributed samples drawn per
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γt = γ̃t/(1− γ̃t) and υt = υ̃t/(1− υ̃t)

X input training data, X = {xn}Nn=1

y output training data, y = {yd}Dd=1, where yd = [yd,1, ..., yd,N ]>

Zq set of inducing points per latent function uq(·), Zq = {z(m)
q }Mm=1

Zd,j set of inducing points per latent function fd,j(·), Zd,j = {z(m)
d,j }Mm=1

z vector that stacks all inducing points, {Zq}Qq=1 or {Zd,j}D,Jdd=1,j=1 as per

the model that applies
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Operators

Cov[·, ·] covariance function

E[·] expected value

A�B Hadamard product between matrices A and B

diag(·) operator that acts over a diagonal matrix or vector. For instance,

if applied to a diagonal matrix, M ∈ RP×P , the operator maps the

diagonal of the matrix into a vector m ∈ RP×1, i.e., m = diag(M) =

M1P , where 1P is a vector of ones with length P . If applied to a

vector m ∈ RP×1, the operator maps the vector to a diagonal matrix,

i.e., M = diag(m), where the diagonal matrix becomes, M ∈ RP×P ,

with the elements of m in its diagonal.



SYMBOLS AND ABBREVIATIONS xvi

Functions

uq(x) q-th latent function evaluated at x

uiq(·) i-th sample of uq(·) drawn independent and identically distributed

u represents a vector of functions that stacks all R independent and

identically distributed samples uiq(·) of all groups Q, i.e., u =

[u1
1
>
, ..., u1

Q
>
, ..., uR1

>
, ..., uRQ

>
]>

fd,j(x) j-th latent function belonging to the d-th output evaluated at x

fj(x) alternative notation of fd,j(x) used for a single-output model (D = 1),

i.e., fj(x) := f1,j(x)

ǔd,j(x) additional evaluation of the latent function fd,j at x, i.e., ǔd,j(x) :=

fd,j(x)

ǔj(x) alternative notation of ǔd,j(x) used for a single-output model (D = 1),

i.e., ǔj(x) := ǔ1,j(x)

ιq(x) q-th inducing function evaluated at x

ιiq(·) i-th sample of ιq(·) drawn independent and identically distributed

ι continuous inducing function infinitely computed at all possible x ∈
RP×1, it is built as ι = [ι11

>
, ..., ι1Q

>
, ..., ιR1

>
, ..., ιRQ

>
]>

ψd,j(·) j-th parameter belonging to the d-th likelihood function.

ψj(·) alternative notation of ψd,j(·) used for a single-output model (D = 1),

i.e., ψj(·) := ψ1,j(·)
φ(·) general notation of a link function

φd,j(·) link function associated to the likelihood’s parameter ψd,j(·).
φj(·) alternative notation of φd,j(·) used for a single-output model (D = 1),

i.e., φj(·) := φ1,j(·)
kq (x,x′) Gaussian process covariance function of uq(x)

kfd,j ,uq (x,x′) cross-covariance between latent functions fd,j(x) and uq(x
′)

kfd,j ,fd′,j′ (x,x
′) covariance between latent functions fd,j(x) and fd′,j′(x

′)

kfj ,uq (x,x′) cross-covariance between latent functions fj(x) and uq(x
′)

kfj ,fj′ (x,x
′) covariance between latent functions fj(x) and fj′(x

′)
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Vectors and Matrices

fd,j fd,j(x) evaluated at X, fd,j = [fd,j (x1) , ..., fd,j (xN)]>

fj fj(x) evaluated at X, fj = [fj (x1) , ..., fj (xN)]>

f vectors {fd,j}D,Jdd=1,j=1 stacked in a column vector

Kfd,jfd,j covariance matrix with entries kfd,j ,fd,j (x,x′) evaluated at X

Kfjfj covariance matrix with entries kfj ,fj (x,x′) evaluated at X

uq uq(x) evaluated at Zq , uq = [uq(z
(1)
q ), . . . , uq(z

(M)
q )]>

u vectors {uq}Qq=1 stacked in a column vector

Kuquq covariance matrix with entries kq (x,x′) evaluated at Zq

Kuu block-diagonal covariance matrix built with blocks Kuquq

Kfd,juq cross-covariance matrix with entries kfd,j ,uq (x,x′) evaluated between

X and Zq

Kfd,ju cross-covariance matrix constructed with blocks Kfd,juq , i.e., Kfd,ju =

[Kfd,ju1 , ...,Kfd,juQ
]

Kfjuq cross-covariance matrix with entries kfj ,uq (x,x′) evaluated between X

and Zq

Kfju cross-covariance matrix constructed with blocks Kfjuq , i.e., Kfju =

[Kfju1 , ...,KfjuQ
]

ǔd,j ǔd,j := fd,j(x) evaluated at Zd,j, ǔd,j = [fd,j(z
(1)
d,j), ..., fd,j(z

(M)
d,j )]>

ǔj ǔj(x) := fj(x) evaluated at Zj, ǔj = [fj(z
(1)
j ), ..., fj(z

(M)
j )]>

ǔ vectors {ǔd,j}D,Jdd=1,j=1 stacked in a column vector

Vq covariance matrix that belongs to the Gaussian variational posterior

q(uq)

mq mean vector that belongs to the Gaussian variational posterior q(uq)

Vd,j covariance matrix that belongs to the Gaussian variational posterior

q(ǔd,j)

md,j mean vector that belongs to the Gaussian variational posterior q(ǔd,j)

V block-diagonal covariance matrix built with blocks Vq

m vectors {mq}Qq=1 stacked in a column vector

Σ covariance matrix that belongs to the Gaussian exploratory distribu-

tion q(θ) for the CCGP model (D = 1)

µ mean vector that belongs to the Gaussian exploratory distribution q(θ)

for the CCGP model (D = 1)
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η set of mean-parameters that belong to the distribution q(θ), i.e., η =

{µ,µµ> + Σ}
ξ set of natural parameters that belong to the distribution q(θ), i.e.,

ξ = {Σ−1µ,−1
2
Σ−1}

ρq set of mean-parameters that belong to the distribution q(uq), i.e., ρq =

{mq,mqm
>
q + Vq}

µD mean vector that belongs to the Gaussian exploratory distribution q(θ)

for a Multi-Output GP model with an LMC

ΣD covariance matrix that belongs to the Gaussian exploratory distribu-

tion q(θ) for a Multi-Output GP model with an LMC

ηD set of mean-parameters that belong to the distribution q(θ) for a Multi-

Output GP model with an LMC, i.e., ηD = {µD ,µDµD> + ΣD}
µC mean vector that belongs to the Gaussian exploratory distribution q(θ)

for a Multi-Output GP model with a CPM using inducing variables

ǔd,j(·)
ΣC covariance matrix that belongs to the Gaussian exploratory distribu-

tion q(θ) for a Multi-Output GP model with an CPM using inducing

variables ǔd,j(·)
ηC set of mean-parameters that belong to the distribution q(θ) for a Multi-

Output GP model with a CPM using inducing variables ǔd,j(·), i.e.,

ηC = {µC ,µCµC> + ΣC}
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ιiq ιiq(·) evaluated at Zq , i.e., ιiq = [ιiq(z
(1)
q ), . . . , ιiq(z

(M)
q )]>

ι vectors {ιiq}Q,Rq=1,i=1 stacked in a column vector, i.e., ι =

[ι11
>
, ..., ι1Q

>
, ..., ιR1

>
, ..., ιRQ

>
]>

Kfjιiq
is a cross-covariance matrix with entries computed using the covariance

function, Cov
[
fj(x), ιiq (z)

]
, between X and Zq

Kfjι is a covariance matrix constructed as Kfjι =

[Kfjι11
, ...,Kfjι1Q

, ...,KfjιR1
, ...,KfjιRQ

]

Kfι is as a cross covariance matrix built with blocks Kfjι, i.e., Kfι =

[K>f1ι, ...,K
>
fJ ι

]>

Kff is a covariance matrix built with evaluations of Cov[fj (x) , fj′ (x
′)] for

all J Latent Parameter Functions, between all pairs X

Kιiqι
i
q

is a covariance matrix which entries are calculated with kιiq(z, z
′) =

Cov
[
ιiq(z), ιiq (z′)

]
between all pairs Zq

Kιι is a block-diagonal matrix built with blocks Kιiqι
i
q
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Abbreviations

GP Gaussian Process

VO Variational Optimisation

VI Variational Inference

SVI Stochastic Variational Inference

SGD Stochastic Gradient Descent

ADAD Ada-Delta

AGM Adaptive Gradient Method

MDA Mirror Descent Algorithm

VAN Variational Adaptive Newton

LMC Linear Model of Coregionalisation

LPF Latent Parameter Function

LCC Linear Combination Coefficient

SLFM Semiparametric Latent Factor Model

CPM Convolution Processes Model

NG Natural Gradient

FNG Fully Natural Gradient

GN Gauss-Newton

ELBO Evidence Lower Bound

NELBO Negative ELBO

NLPD Negative Log Predictive Density

LL Log Likelihood

NLL Negative Log Likelihood

CGP Chained Gaussian Processes Model

CCGP Correlated Chained Gaussian Processes Model

ACCGP Augmented-output CCGP

MOGP Multi-Output Gaussian Processes

HetMOGP Heterogeneous Multi-Output Gaussian Processes Model

VIK Variational Inducing Kernel

ZIP Zero-inflated Poisson

HG Heteroscedastic-Gaussian likelihood

Bt Beta likelihood

Ga Gamma likelihood

IF Inducing Function

IID Independent and Identically Distributed



Chapter 1

Introduction

Gaussian Processes (GPs) are flexible non-parametric distributions broadly used to

provide prior information over non-linear functions (Rasmussen, 2006). They have

been broadly applied in different scenarios, for instance: for improving sensor networks

with missing signals (Osborne et al., 2008b; Osborne, 2013); in motion capture data

for completing a sequence of missing frames (Zhao and Sun, 2016); in robotics, for

estimating the system dynamics and provide a predictive distribution with uncertainty

quantifications for planning movement trajectories (Chen et al., 2019); for natural

language processing, where annotating linguistic data is often a complex and time

consuming task, and consequently the GPs can learn from the outputs of multiple

annotators and carry out said tasks (Cohn and Specia, 2013). They have been also used

in computer emulation, where a Multiple-Output emulator can be used as a substitute

of a computationally expensive deterministic model (Conti et al., 2009; Conti and

O’Hagan, 2010); for learning the couplings between multiple time series and helping to

enhance their forecasting capabilities (Boyle and Frean, 2005); and for modelling the

temporal or spatial changes in gene expression sequences (BinTayyash et al., 2020).

Particularly, Gaussian Processes are a robust alternative for modelling parameters

as latent functions in the context of probabilistic models. For instance, in a Generalised

Linear Model (GLM) (Murphy, 2013) the likelihood’s mean parameter can be chained

to a GP latent function for providing a non-parametric modelling flexibility over such

parameter (Duvenaud et al., 2011; Adam et al., 2016; Nguyen and Bonilla, 2014). Also,

their use has been extended to modelling not only the likelihood’s mean parameter,

but each of the likelihood’s parameters by chaining multiple GP latent functions; thus

allowing to improve the predictive capabilities of the model due to appropriately cap-

turing heteroscedasticity (Gujarati and Porter, 2009); i.e., the possibly non-constant

1
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standard deviations throughout the data (Saul, 2016). There exist different ways to

generate such GP latent functions, in this thesis we study three of them: 1. when each

latent function follows an independent GP prior (Saul et al., 2016); 2. when each latent

function is generated from a linear model of coregionalisation (LMC), i.e., a weighted

sum of GP priors (Álvarez et al., 2012; Moreno-Muñoz et al., 2018); and 3. from convo-

lution processes, i.e., a convolution integral between smoothing kernels and GP priors

(Boyle and Frean, 2005; Álvarez et al., 2010; Álvarez and Lawrence, 2011). The above

generative alternatives for the latent functions have been broadly used to model either

a single or multiple outputs in diverse application scenarios (Álvarez et al., 2012); par-

ticularly, the independent GP priors have been used in applications that require the

modelling of only a single output (Saul, 2016).

A probabilistic model based on any of the above generative GP latent functions

involves issues of intractability for computing the posterior distribution, this is due

to the general non-conjugate relationship between the likelihood and the GP priors.

Since a posterior distribution is proportional to the likelihood’s distribution multiplied

by the prior distribution, such a non-conjugate relationship happens when the multipli-

cation does not result in the form of an already known distribution. Therefore we can

not directly access the posterior distribution of the model in a closed form. A way to

deal with such intractability issues includes the use of variational inference, a method

that transforms our model into an optimisation problem, it consists on finding a sur-

rogate posterior distribution, also known as a variational posterior distribution, that

best maximises a bound to the Log marginal likelihood. Though, using the variational

inference approach for a GP model implies a necessity of dealing with issues regarding

poor local optima solutions. Also, a single-output GP model presents problems of scal-

ability caused by its high computational complexities, this is due to the need to invert

a covariance matrix ∈ RN×N , where N represents the number of data observation as-

sociated to the model. Commonly, the way to scale a GP model bases on the inducing

variables framework (Quiñonero-Candela and Rasmussen, 2005; Snelson and Ghahra-

mani, 2006). This is a framework that relies on the idea of augmenting the GP prior

probability space, through the inclusion of a set of inducing points that change the full

GP covariance matrix by a low-rank approximation (Snelson and Ghahramani, 2006;

Titsias, 2009). Such inducing points help reducing significantly the GP’s computational

costs from O(N3) to O(NM2) and storage from O(N2) to O(NM), where M � N

represents the number of inducing points (Rasmussen, 2006; Álvarez and Lawrence,

2011). Though the inducing variables framework significantly reduces the computa-
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tional complexities, the use of a low-rank GP model can still be prohibitive in a context

of large data observations. Likewise, in a multi-output Gaussian processes (MOGPs)

context, such inducing points help reducing significantly the MOGP’s computational

costs from O(D3N3) to O(DNM2) and storage from O(D2N2) to O(DNM), where

D represents the number of outputs (Rasmussen, 2006; Álvarez and Lawrence, 2011).

The adequate performance of a GP model based on variational inference depends on

a suitable optimisation process able to find rich local optima solutions for maximising

a bound to the Log marginal likelihood. Variational GP models generally suffer from

strong conditioning between the variational posterior distribution, the multiple hyper-

parameters of the GP prior and the inducing points (Van der Wilk, 2018). For instance,

a GP model based on LMC or convolutions processes depends on mathematical opera-

tions that include Q latent functions, where each latent function demands a treatment

based on the inducing variables framework. Therefore, such strong conditionings are

enhanced even more due to the dependence of inducing points per underlying latent

function; and by the presence of additional hyper-parameters associated to the type

of generative model for the GP latent functions that are chained to the likelihood’s

parameters. For the case of a MOGP model, the presence of multiple likelihoods aug-

ment such conditioning issues, even more when the outputs follow different statistical

data types, i.e., we need to deal with the strong conditionings of the multiple parame-

ters and hyper-parameters of a GP model with multiple non-conjugate heterogeneous

likelihoods (Moreno-Muñoz et al., 2018). Accordingly, during the inference process of

those types of GP models, stochastic gradient updates in combination with adaptive

gradient methods (AGMs, e.g. Adam) tend to drive the optimisation to poor local

minima.

With the purpose to overcome the optimisation problems present in variational GP

models, there has recently been a growing interest in alternative optimisation schemes

that adopt the natural gradient (NG) direction (Amari, 1998). For instance, in Hens-

man et al. (2013) the authors derived a mathematical analysis that suggested we can

make better progress when optimising a variational GP along the NG direction, but

without providing any experimental results of its performance. The authors in Khan

et al. (2015) propose to linearise the non-conjugate terms of the model for admit-

ting closed-form updates which are equivalent to optimising in the natural gradient

direction. The work by Khan and Lin (2017) shows how to convert inference in non-

conjugate models as it is done in the conjugate ones, by way of expressing the posterior

distribution in the mean-parameter space. Furthermore, it shows that by means of ex-
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ploiting the mirror descent algorithm (MDA) one can arrive to NG updates for tuning

the variational posterior distribution. Those works coincide in improvements of train-

ing and testing performance, and also fast convergence rates. Nonetheless, they only

show results in a full GP model where the kernel hyper-parameters are fixed using

a grid search. On the other hand, the work by Salimbeni et al. (2018) does show a

broad experimental analysis of the NG method for sparse GPs. The authors conclude

that the NG is not prone to suffer from ill-conditioning issues in comparison to the

AGMs. Also the NG has been used to ease optimisation of the variational posterior

over the latent functions of a deep GP model (Salimbeni et al., 2019). However, in

those two latter cases the NG method only applies for the latent functions’ posterior

parameters, while an Adam method performs a cooperative optimisation for dealing

with the hyper-parameters and inducing points. The authors in Salimbeni et al. (2018)

call this strategy a hybrid between NG and Adam, and termed it NG+Adam.

In this thesis we address the problems of intractability, scalability, and poor local

optima solutions associated to non-conjugate likelihood Gaussian process models. Par-

ticularly, in this thesis we address the aforementioned issues in a context where the

likelihood’s parameters are modelled as latent parameter functions drawn from corre-

lated Gaussian processes. We focus on three ways to generate such latent parameter

functions: 1. from a linear model of coregionalisation (Journel and Huijbregts, 1979);

2. from convolution processes (Boyle and Frean, 2005), i.e., a convolution integral be-

tween smoothing kernels and Gaussian process priors; and 3. using variational induc-

ing kernels (Álvarez et al., 2010), an alternative form to generate the latent parameter

functions through the convolution processes formalism, by using a double convolu-

tion integral. We borrow ideas from different variational optimisation mechanisms like

Staines and Barber (2013); Khan et al. (2017a), and Khan and Lin (2017); Khan et al.

(2018), that consist on introducing a variational (or exploratory) distribution over the

model so as to build objective functions that: allow us to deal with intractability as well

as enable scalability when handling massive amounts of data observations. Also, such

optimisations mechanisms grant us to perform inference of the model hyper-parameters

together with the posterior’s parameters through a fully natural gradient optimisation;

a useful scheme for tackling the problem of poor local optima solutions.

Outline of the thesis and contributions

• This thesis is built upon the idea of using various optimisation mechanisms for

dealing with intractability issues present in non-conjugate likelihood Gaussian



CHAPTER 1. INTRODUCTION 5

process models, i.e., GP models where the likelihood function and the GP priors

are non-conjugate. Such optimisation mechanisms help us to construct scalable

objective functions that grant us the use of our correlated GP models in scenarios

with large amounts of data observations. Likewise, we benefit from said mecha-

nisms for improving the inference processes of the different GP models presented

in this thesis. Thus, in chapter 2, we introduce such optimisation mechanisms.

• In chapter 3, we introduce a Single-Output model that assumes by construction

that the likelihood’s parameters follow multiple GP priors that can be corre-

lated through a linear model of coregionalisation; we termed it as the Correlated

Chained Gaussian Processes (CCGP) model. Our approach bases on the so-

called inducing variables framework and scales by means of stochastic variational

inference. We run experiments in different real databases, we show that our

method, based on an LMC, generally achieves richer predictive distributions that

better quantify the uncertainty than the classical setting of a Chained Gaussian

Processes model that builds upon independent GP priors.

• Also, in chapter 3, we propose a strategy of model training that augments a

single-output GP in order to treat it as a multi-output one. We found that such

strategy enhances the generalisation properties of the model accomplishing a high

predictive performance.

• In chapters 3, 4 and 5 we propose a fully natural gradient (FNG) scheme for

jointly tuning the hyper-parameters, inducing points and variational posterior

parameters of the single-output CCGP model, and its multi-output version when

having heterogeneous outputs. To this end, we borrow ideas from different vari-

ational optimisation (VO) mechanisms (or strategies) like Staines and Barber

(2013); Khan et al. (2017a) and Khan et al. (2018), by introducing an exploratory

distribution over the hyper-parameters and inducing points. Such VO strategies

have shown to be successful exploratory-learning tools able to avoid poor local

optima solutions; they have been broadly studied in the context of reinforcement

and Bayesian deep learning, but not much in the context of GPs.

• In chapter 5, we provide an extension of the Heterogeneous MOGP (HetMOGP)

based on a Convolution Processes model (CPM), rather than an LMC approach

as in the original model by Moreno-Muñoz et al. (2018). This is a novel con-

tribution since there are no former MOGP models with convolution processes

that involve stochastic variational inference (SVI), nor a model of heterogeneous
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outputs that relies on convolution processes. Likewise, we provide a FNG scheme

for optimising the new model extension, the HetMOGP with CPM.

• To the best of our knowledge the NG method has not been performed over any

MOGP model before. Hence, in this work we also contribute to show how a NG

method used in a full scheme over the MOGP’s parameters and kernel hyper-

parameters alleviates the strong conditioning problems. This, by achieving bet-

ter local optima solutions with higher test performance rates than Adam and

stochastic gradient descent. Also, we explore for the first time in a MOGP model

the behaviour of the hybrid strategy NG+Adam, and provide comparative results

to our proposed scheme.

• In chapter 6, we apply the correlated chained GP models based on a linear model

of coregionalisation and convolution processes for modelling the citizens mobility

in the Chinese city of Guangzhou, through the use of a ZIP likelihood. To the best

of our knowledge, a ZIP likelihood has not been previously implemented together

with a GP model. Unlike previous works based on GPs that mainly model the

mean parameter of the likelihood with a unique GP prior, here we propose that

each of those likelihood’s parameters are modelled as Latent Parameter Functions

that follow correlated GPs as detailed in chapters 3, 4 and 5; thus, allowing a

higher flexibility to model heteroscedasticity.

• Also in chapter 6, we derive an SVI framework that allow us to use two types

of convolution process models in the context of large datasets: 1. CCGP with a

convolution processes model, and 2. CCGP with Variational Inducing Kernels.

Former works have not developed GP models based on a Convolution Processes

Model and Variational Inducing Kernels for other type of likelihoods beyond a

Gaussian. In this work, we derive equations that can be used for any type of

likelihood. Particularly, we provide results for both CCGP models based on a

Convolution Processes Model and Variational Inducing Kernels for ZIP and Pois-

son likelihoods.
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Chapter 2

Mechanisms for Optimisation

This chapter introduces various mechanisms for improving optimisation of an objec-

tive function. We introduce the Variational Optimisation method as a mechanism for

introducing exploration in the parameter space of an objective function by means of a

free parametrised variational distribution (Staines and Barber, 2013). Also, we show

how Variational Inference (VI) can be seen as a particular case of variational optimi-

sation. Another optimisation mechanism is the Mirror Descent Algorithm (Khan and

Lin, 2017), which allows to easily derive natural gradient updates (Amari, 1998) of the

variational posterior parameters by solving iterative sub-problems in the mean-space

of the variational distribution. Likewise, we describe the Variational Adaptive-Newton

(VAN) (Khan et al., 2017a), a method that benefits from a Gaussian posterior distribu-

tion to easily express the parameters updates in the NG direction. And we also present

the concept of natural-momentum (Khan et al., 2018), which takes advantage of the

KL divergence for providing extra memory information to the iterative sub-problems

of the mirror descent algorithm.

2.1 Variational Optimisation

The goal in optimisation is to find a proper set of parameters that minimise a possibly

non-convex function g(θ) by solving, θ∗ = arg minθ g(θ), where θ∗ represents the

set of parameters that minimise the function. The classical way to deal with the

above optimisation problem involves deriving the objective w.r.t θ and solving in a

closed-form, or through a gradient descent method. Usually, gradient methods tend to

converge to the closest local minima from the starting point without exploring much

the space of solutions (Chong and Zak, 2013) (see Appendix A for an example when

8
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using the optimisation Newton’s method). Alternatively the variational optimisation

method proposes to solve the same problem (Staines and Barber, 2013), but introducing

exploration in the parameter space of a variational (or exploratory) distribution q(θ|ξ)

by bounding the function g(θ) as follows:

min
θ
g(θ) ≤ Eq(θ|ξ)[g(θ)] := L̃(ξ), (2.1)

where ξ represents a set of variables that parametrise the distribution q(θ|ξ), and L̃(ξ)

is an upper bound to the function g(θ). Therefore the main goal is to minimize the

above equation w.r.t the new set ξ. If we start an optimisation process to solve the

last problem using an exploratory Gaussian distribution q(θ|µ,Σ), where the set ξ is

composed by the mean µ and covariance Σ, we would expect the following: at the

beginning of such optimisation process our covariance initialisation should be Σ 6= 0,

meaning that the space of solutions can be explored around the initial mean µ (Wierstra

et al., 2014); after the optimisation time elapses, the mean µ will be approaching to a

local minima θ∗ that best reduces the expectation in Eq. (2.1), while the covariance Σ

will be collapsing to zero (Σ → 0). Thereby the exploratory distribution will become

a Dirac’s delta q(θ) = δ(θ − µ), where µ = θ∗ (Hensman et al., 2015b).

With the aim to better understand the behaviour of the exploratory distribution, let

us introduce an experiment inspired by the one in Khan et al. (2017a); we define g(θ) =

2 exp(−0.09θ2) sin(4.5θ), a function with multiple local minima, and an exploratory

distribution over θ, q(θ) = N (θ|µ, σ2), with parameters mean µ and variance σ2. We

built the graph of Figure 2.1 to show what happens at each iteration of the optimisation

process for g(θ); we present three perspectives of such an experiment, where we initialise

the parameters θ = µ = −3.0 and σ = 3.0. We can notice from Figure 2.1 that the

initial value of θ = µ = −3.0 is close the the poor minimum at θ ≈ −3.114 and far

away from better minima solutions like the one at θ ≈ −1.729 and θ ≈ −0.346 (the

global minimum). Looking at the third row in Figure 2.1, we realise that, when the

inference process starts, the exploratory distribution q(θ) modifies its variance and

moves its mean towards a better region in the space of θ. We can also see that q(θ)

initially behaves as a broad distribution (in light-gray colour) with a mean located at

µ = −3.0, while the iterations elapse, the distribution q(θ) modifies its shape in order

to reach a better local minima solution (at µ ≈ −1.729). The distribution presents

such behaviour in spite of being closer to other poor local minima like the one between

the interval (−4,−3). Additionally, when the mean µ is close to the local minimum

at θ ≈ −1.729, the variance parameter reduces constantly making the distribution

look narrower, which means the variance parameter tends to collapse to zero (σ2 → 0)
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Figure 2.1: First row shows what happens from the perspective of the

original function g(θ) = 2 exp(−0.09θ2) sin(4.5θ), the black dots represent

the position of θ = µ at each iteration. Second row shows a contour graph

of the space of solutions w.r.t σ and µ, here the black dots refer to the

position of σ and µ at each iteration, and the low and high colour inten-

sities relate to low and high values of Eq(θ)[g(θ)]. Third row shows q(θ)’s

behaviour, for each Gaussian bell we use a colour code from light-gray to

black for representing initial to final stages of the inference. All sub-graphs

present vertical lines for aligning iterations, i.e., from left to right the lines

represent the occurrence of an iteration. To avoid excessive overlapping,

the third row only shows q(θ) every two iterations.
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increasing the certainty of the solution. This behaviour implies that in the long term

the distribution will become a Dirac’s delta q(θ) = δ(θ − µ), where µ = θ. Therefore,

a feasible minima solution for the original objective function g(θ) is θ = Eq(θ)[θ] = µ.

This can be seen in the first sub-graph where at each iteration θ = µ; in fact, at the end

of the optimisation, µ is fairly close to the value θ ≈ −1.729, a local minima. Though

we could notice, in Figure 2.1, an exploratory behaviour of q(θ) that helped avoiding the

poor local minima at θ ≈ −3.114, the rapid collapsing effect of the variance parameter

limits the exploration of θ’s space. In the next subsection we will describe how to

reduce such a collapsing effect of q(θ) and gain additional exploration by introducing

a Kullback-Leibler (KL) diverge penalisation to Eq. (2.1) (see Appendix A where

we reproduced the same example of the function g(θ) = 2 exp(−0.09θ2) sin(4.5θ), but

optimising with the Newton’s method).

2.2 Variational Optimisation with Penalisation

The work of VO by Staines and Barber (2013) does not introduce the KL term in

the equation (2.1), i.e. L̃(ξ) = Eq(θ|ξ)[g(θ)], this implies that during an inference

process, the exploratory distribution is free to collapse to zero becoming a Dirac’s delta

q(θ) = δ(θ − µ), where µ = θ∗ and µ represents the q(θ)’s mean (Wierstra et al.,

2014; Hensman et al., 2015b). The covariance’s collapsing behaviour is an indicator

of how the exploration reduces while the objective is converging to a local minimum.

Nevertheless, this collapsing effect limits the exploration of θ’s space. To gain wider

exploration, we can avoid Σ to collapse by imposing a regularization term to the latter

bound in Eq. (2.1):

L̃(ξ) = Eq(θ|ξ)[g(θ)] + DKL

(
q(θ|ξ)||p(θ)

)
, (2.2)

where DKL(·||·) is a Kullback-Leibler divergence that forces the exploratory distribution

q(θ|ξ) to trade-off between minimising the expectation Eq(θ|ξ)[g(θ)] and not going far

away from the imposed p(θ) penalization (Khan et al., 2017b). Indeed, the KL term in

Eq. (2.2) reduces the collapsing effect of q(θ) and helps to gain additional exploration

when an inference process is carried out.

In order to better understand the behaviour when introducing the KL divergence,

we follow the same experiment used in the previous section to optimise the function

g(θ) = 2 exp(−0.09θ2) sin(4.5θ), a function with multiple local minima. Figure 2.2

shows three perspectives of a such experiment, where we initialise the parameters
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Figure 2.2: First row shows what happens from the perspective of the

original function g(θ) = 2 exp(−0.09θ2) sin(4.5θ), the black dots represent

the position of θ = µ at each iteration. Second row shows a contour graph of

the space of solutions w.r.t σ and µ, here the black dots refer to the position

of σ and µ at each iteration, and the low and high colour intensities relate

to low and high values of Eq(θ)[g(θ)], notice that here we do not include

the KL term information for easing the visualisation of the multiple local

minima. Third row shows q(θ)’s behaviour, for each Gaussian bell we use a

colour code from light-gray to black for representing initial to final stages of

the inference. All sub-graphs present vertical lines for aligning iterations,

i.e., from left to right the lines represent the occurrence of an iteration.

To avoid excessive overlapping, the third row only shows q(θ) every two

iterations.
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θ = µ = −3.0 and σ = 3.0, and p(θ) = N (θ|0, λ−1) with λ = 1.0. We can notice from

Figure 2.2 that the initial value of θ = µ = −3.0 is far away from g(θ)’s global minimum

at θ ≈ −0.346. When the inference process starts, the exploratory distribution q(θ)

modifies its variance and moves its mean towards a better region in the space of θ.

From the third row we can also see that q(θ) initially behaves as a broad distribution

(in light-gray colour) with a mean located at µ = −3.0, while the iterations elapse, the

distribution q(θ) modifies its shape in order to reach a better local minima solution

(at µ ≈ −0.346). The distribution presents such behaviour in spite of being closer to

other poor local minima like the ones between the intervals (−4,−3) and (−2,−1).

Additionally, when the mean µ is close to θ ≈ −0.346 (the global minimum), the

variance parameter reduces constantly making the distribution look narrower, which

means it is increasing the certainty of the solution. This behaviour implies that in the

long term q(θ)’s mean will be much closer to θ∗. Therefore, a feasible minima solution

for the original objective function g(θ) is θ = Eq(θ)[θ] = µ. This can be seen in the

first sub-graph where at each iteration θ = µ, in fact, at the end µ is fairly close to the

value θ ≈ −0.346.1

2.3 Variational Inference: VO for the Negative Log

Likelihood

A common way to build a probabilistic model for a set of observations X = {xn}Nn=1 ∈
RN×P is to assume that each observation is drawn independently and identically dis-

tributed (IID) from a probability distribution p(X|θ), commonly known as a likelihood.

Fitting the model consists on finding the parameter θ that makes the distribution ap-

propriately explain the data. This inference process is called maximum likelihood

estimation, given that is equivalent to the optimisation problem of maximising the

log likelihood function log p(X|θ), i.e., minimising the negative log likelihood (NLL)

function − log p(X|θ) (Murphy, 2013). From a Bayesian perspective, we can introduce

a prior distribution p(θ) over the parameter of interest, which implies that there also

exists a posterior distribution, p(θ|X) ∝ p(X|θ)p(θ), over such parameter, useful to

1Given that in practise we usually do not have any idea about the landscape of the objective

functions that we are interested in optimising, then our suggestion for a practitioner is to initialise the

penalisation distribution p(θ) = N (θ|0, λ−1) with λ = 1.0; this value presents a stable performance in

diverse types of landscapes, or use even a smaller value if more aggressive exploration is desired. (see

Appendix B for a detailed analysis of the influence of λ during optimisation).
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render future predictions of the model. When the likelihood and prior are conjugate,

the posterior distribution can be computed in closed form, but that is not always

the case. Hence, if the likelihood and prior are non-conjugate, it is necessary to ap-

proximate the posterior (Bishop, 2006). Variational inference is a powerful framework

broadly used in machine learning, that allows to estimate the posterior distribution

by minimising the KL divergence DKL

(
q(θ|ξ)||p(θ|X)

)
between an approximate vari-

ational posterior q(θ|ξ) and the posterior distribution p(θ|X) (Blei et al., 2017). Since

we do not have access to the posterior, minimising such KL divergence is equivalent

to maximising a lower bound to the marginal likelihood. It emerges from the equality:

logEq(θ|ξ)

[
p(X|θ)p(θ)
q(θ|ξ)

]
= log p(X), in which, after applying the Jensen’s inequality we

arrive to,

−L̃(ξ) = Eq(θ|ξ)

[
log

p(X|θ)p(θ)

q(θ|ξ)

]
≤ log p(X), (2.3)

where log p(X) represents the log marginal likelihood and −L̃(ξ) is an evidence lower

bound (ELBO) (Jordan et al., 1999). It is noteworthy that if we replace g(θ) =

− log p(X|θ) in Eq. (2.2), we end up with exactly the same lower bound of Eq. (2.3).

Therefore, VI can be seen as a particular case of VO with a KL divergence penalisa-

tion, where the objective g(θ) is nothing but the NLL. We can distinguish from two

perspectives when using VO for maximum likelihood: from the Bayesian perspective

we are not only interested in a point estimate for the parameter θ, but in the un-

certainty codified in q(θ)’s (co)variance for making future predictions; and from the

non-Bayesian perspective the main goal in maximum likelihood estimation is to op-

timise the function g(θ) = − log p(X|θ). For this case, if q(θ|µ,Σ) is a Gaussian

distribution, we can make use of only the posterior’s mean Eq(θ|ξ)[θ] = µ as a feasi-

ble solution for θ∗ without taking into account the uncertainty. This is also known

as the maximum a posteriori (MAP) solution in the context of VI, due to the fact

that θMAP = arg maxθ p(θ|X) ≈ q(θ|µ,Σ), where the maximum of the distribution

q(θ|µ,Σ) is located at its mean, thereby θMAP = µ (Bishop, 2006) (see Appendix H

for details on MAP in the context of VI).

2.4 Exploiting the Mirror Descent Algorithm

Direct update equations for the parameters of a (posterior) distribution using natural

gradients involve the inversion of a Fisher information matrix, which in general it



CHAPTER 2. MECHANISMS FOR OPTIMISATION 15

is computationally complex to do. The purpose of this section is to show how an

alternative formulation of the NG updates can be derived from the MDA (Khan and

Lin, 2017). We describe the Variational Adaptive-Newton, a method that benefits

from a Gaussian posterior distribution to easily express the parameters updates in

the NG direction. And we also detail the concept of natural-momentum which takes

advantage of the KL divergence for providing extra memory information to the iterative

sub-problems of the MDA (Khan et al., 2018).

2.4.1 Connection between Natural-Gradient and Mirror De-

scent

The NG allows to solve an optimisation problem like the one in Eq. (2.2), where the

goal consists on finding an optimal distribution q(θ) that best minimises the objective

bound (Amari, 1998). The method takes advantage of the inverse Fisher information

matrix, F−1, associated to the random variable θ, by iteratively weighting the gradient

updates, ξt+1 = ξt − αtF
−1
t ∇̂ξL̃t, where αt is a positive step-size parameter and ξt

represents the natural (or canonical) parameters of the distribution q(θ). Such natural

parameters can be better noticed by expressing the distribution in the general form of

the exponential family,

q(θ) = h(θ) exp
(
〈ξ, φ(θ)〉 − A(ξ)

)
,

where A(ξ) is the log-partition function, φ(θ) is a vector of sufficient statistics and h(θ)

is a scaling constant (Murphy, 2013). Such exponential family relies on the equation

above in order to gather a parametric set of probability distributions, it includes the

distributions: Gamma, Exponential, Beta, Bernoulli, Normal (or Gaussian), Poisson,

etc (Bishop, 2006). For instance, one might express the Normal distribution, q(θ) =

N (θ|µ,Σ), in said exponential family by having a set of natural parameters ξ =

{Σ−1µ,−1
2
Σ−1}; a log-partition function A(ξ) = 1

2

(
µTΣ−1µ+ ln |Σ|

)
; a vector of

sufficient statistics φ(θ) = {θ,θθT}; and a scaling constant h(θ) = 1
(2π)P/2 . With

respect to the NG updates, ξt+1 = ξt − αtF−1
t ∇̂ξL̃t, it is worth mentioning that they

are expensive due to involving the computation of the inverse Fisher matrix at each

iteration. Since an exponential-family distribution has an associated set of mean-

parameters η = E[φ(θ)], then an alternative way to induce the NG updates consists

on formulating a MDA in such mean-parameter space. Hence, the algorithm bases on
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solving the following iterative sub-problems:

ηt+1 = arg min
η
〈η, ∇̂ηL̃t〉+

1

αt
DKL(q(θ)||qt(θ)), (2.4)

where η is the set of q(θ)’s mean-parameters, L̃ is a VO bound of a function g(θ),

∇̂ηL̃t := ∇̂ηL̃(ηt) denotes a stochastic gradient, qt(θ) := q(θ|ηt) and αt is a positive

step-size parameter (Khan and Lin, 2017). The intention of the above formulation is

to exploit the parametrised distribution’s structure by controlling its divergence w.r.t

its older state qt(θ). Replacing the distribution q(θ) in its exponential-form, in the

above KL divergence, and setting Eq. (2.4) to zero, let us express,

〈η, ∇̂ηL̃t〉+
1

αt

[
〈ξ,η〉 − A(ξ)− 〈ξt,η〉+ A(ξt)

]
= 0,

and by deriving w.r.t η, we arrive to ξt+1 = ξt−αt∇̂ηL̃t, where ξt+1 := ξ and ∇̂ηL̃t =

F−1∇̂ξL̃t as per the work in Raskutti and Mukherjee (2015), where the authors provide

a formal proof of such equivalence. The formulation in Eq. (2.4) is advantageous

since it is easier to compute derivatives w.r.t η than computing the inverse Fisher

information matrix F−1. Therefore, the MDA for solving iterative sub-problems in the

mean-parameter space is equivalent to updating the canonical parameters in the NG

direction (see Appendix C for more details).

2.4.2 Variational Adaptive-Newton and

Natural-Momentum

The VAN method aims to solve the problem in Eq. (2.4) using a Gaussian distribu-

tion q(θ) := q(θ|µ,Σ) as the exploratory mechanism for optimisation (Khan et al.,

2017a). This implies that if µ and Σ represent the mean and covariance, respectively,

then q(θ)’s mean-parameters are η = {µ,Σ + µµ>}, and also its analogous natural-

parameters are ξ = {Σ−1µ,−1
2
Σ−1}. When linking these parametrisations and solving

for the MDA in Eq. (2.4), we end up with the following updates:

Σ−1
t+1 = Σ−1

t + 2αt∇̂ΣL̃t,
µt+1 = µt − αtΣt+1∇̂µL̃t,

where µt and Σt are the mean and covariance parameters at the instant t respectively;

the stochastic gradients are ∇̂µL̃t := ∇̂µL̃(µt,Σt) and ∇̂ΣL̃t := ∇̂ΣL̃(µt,Σt). These

latter updates represent a NG descent algorithm for exploring the space of solutions of
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the variable θ through a Gaussian distribution (Khan and Lin, 2017). It is possible to

keep exploiting the structure of the distribution q(θ), this by including an additional

KL divergence term in the MDA of Eq. (2.4) as follows:

ηt+1 = arg min
η
〈η, ∇̂ηL̃t〉+

1

α̃t
KL(θ)t −

γ̃t
α̃t

KL(θ)t−1, (2.5)

where qt(θ) := q(θ|µt,Σt) represents the exploratory distributions q(θ) with the pa-

rameters obtained at time t, and KL(·)t := DKL(q(·)||qt(·)). Such additional KL term,

called as a natural-momentum by Khan et al. (2018), provides extra memory informa-

tion to the MDA for potentially improving its convergence rate. This momentum can

be controlled by the relation between the positive step-sizes α̃t and γ̃t. When solving

for Eq. (2.5), we arrive to the following NG update equations:

Σ−1
t+1 = Σ−1

t + 2αt∇̂ΣL̃t (2.6)

µt+1 = µt−αtΣt+1∇̂µL̃t + γtΣt+1Σ
−1
t (µt − µt−1), (2.7)

where αt = α̃t/(1 − γ̃t) and γt = γ̃t/(1 − γ̃t) are positive step-size parameters (Khan

et al., 2017b, 2018).

2.5 Summary

In this chapter, we have introduced various mechanisms for improving optimisation

of an objective function, like the variational optimisation method as a mechanism for

inducing exploration in the parameter space of an objective function, by means of a free

parametrised variational distribution. Also, we showed how variational inference can be

seen as a particular case of variational optimisation. Another optimisation mechanism

was the mirror descent algorithm, which allows to easily derive natural gradient updates

of the variational posterior parameters by solving iterative sub-problems in the mean-

space of the variational distribution. Likewise, we introduced the variational adaptive-

Newton, a method that benefits from a Gaussian posterior distribution to easily express

the parameters updates in the NG direction. And we also introduced the concept

of natural-momentum, which takes advantage of the KL divergence for providing an

extra memory information to the MDA. In the following chapters, we will apply the

different optimisation mechanisms over Gaussian process models, for instance using

VO we will derive their objective functions. Usually, training the objective function

of such GP models involves problems associated to poor local optima solutions, due

to strong conditionings between the parameters and hyper-parameters of the model.
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Therefore, with the aim to improve the inference of said Gaussian process models

and to deal with the issues of poor local optima solutions, we will make use of the

optimisation mechanisms MDA and VAN for deriving model parameters and hyper-

parameters updates in the direction of the natural gradient.



Chapter 3

Correlated Chained Gaussian

Processes Model

A Gaussian process is a non-parametric stochastic process that extends a multivari-

ate normal probability distribution from finite dimensional vectors to functions (Ras-

mussen, 2006). They have become a robust alternative for modelling parameters as

latent functions in the context of probabilistic models. For instance, in a Generalised

Linear Model (Murphy, 2013) a GP can be plugged to the likelihood’s mean parameter

through a link function so as to provide strong prior information over such parameter.

Also, with the aim to improve the predictive capabilities, their use has been extended

to modelling the likelihood’s parameters by means of multiple GP priors. Such multi-

GPs idea has been motivated by the notion that a function can be formed through

the addition of multiple underlying components (Duvenaud et al., 2011; Adam et al.,

2016), with the aim to find strong posterior approximations (Nguyen and Bonilla, 2014;

Adam, 2017; Adam et al., 2018), and/or with the purpose of inducing higher modelling

flexibilities to capture heteroscedasticity when chaining (or linking) GP priors to each

parameter of the likelihood function (Saul et al., 2016). All these multi-GPs frame-

works rely on constructing a joint probabilistic model where the GP latent functions

are assumed independent a priori, thereby lacking of a correlation structure betweeen

GPs. In general, modeling the likelihood’s parameters as independent is unrealistic,

because in practice one would expect the parameters to be correlated as part of a latent

process that affects the model parameters. In this chapter we introduce the Correlated

Chained Gaussian Processes model; this type of model introduces correlations between

the likelihood’s parameters based on ideas from the context of a Multi-Output GPs

regression (Álvarez et al., 2012). In such a model, introducing correlations between the

19



CHAPTER 3. CORRELATED CHAINED GAUSSIAN PROCESSES MODEL 20

outputs has shown to improve predictions of one output given the others (Álvarez and

Lawrence, 2009; Osborne et al., 2008a; Boyle and Frean, 2005). In our case, we do not

have multiple outputs, but multiple latent functions chained to the likelihood’s param-

eters. Therefore, in order to introduce correlations between those latent functions, we

assume by construction that each latent function is derived from an LMC, i.e, a linear

combination of Q functions uq, where each function uq follows a GP (Journel and Hui-

jbregts, 1979). We show how the model scales using the so-called inducing variables

framework (Titsias, 2009; Álvarez et al., 2010) together with stochastic variational

inference (Blei et al., 2017).

Furthermore, since the multiple latent functions chained to likelihood’s parameters,

make the model suffer from poor local optima solutions due to a strong conditioning

between the variational posterior distribution, the multiple hyper-parameters of the

GP prior and the inducing points (Van der Wilk, 2018); in this chapter we make use of

the mechanisms for optimisation introduced in chapter 2, by deriving a fully natural

gradient scheme that allows us to jointly fit the parameters and hyper-parameters of

the CCGP model for improving its inference process. We provide comparisons between

our proposed optimisation scheme and adaptive gradient methods. Also, we propose a

model training strategy that consists on augmenting the CCGP model by duplicating

its output and train it as a multi-output model. The strategy benefits from stochastic

inference where we randomly sample mini-batches of data observations per training

iteration. The intention is that at every iteration of the stochastic inference process,

we can distribute mini-batches of the data thinking of those mini-batches as partially

different input-output collections, as it happens in a multi-output context. This strat-

egy present similarities to previous works that consist on distributing data for building

products of GP experts (Cao and Fleet, 2014; Deisenroth and Ng, 2015). Though

our motivation relies on improving the model performance by inducing correlations

between mini-batches, instead of scaling up processing.

3.1 Gaussian Process

A Gaussian process is a non-parametric stochastic process that extends a multivari-

ate normal probability distribution from finite dimensional vectors to functions (Ras-

mussen, 2006). Let us define a collection of N data observations with a matrix of

inputs X = [x1, ...,xN ]> ∈ RN×P and a vector of outputs y = [y1, ..., yN ]>, where,

for instance, each xn might represent a spatio-temporal observation associated to a
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measurement yn. Usually, for a regression model, each observation yn is modelled as a

noisy version of a latent function evaluated at the n-th input observation, f(xn). All

data observations can be modelled by means of a likelihood function,

p(y|f ,X) =
N∏

n=1

p(yn|f(xn)),

where the latent function follows a GP prior, i.e., f(x) ∼ GP(m(x), k(x,x′)), and

consequently, f = [f(x1), ..., f(xN)]>. The GP is characterised by a mean func-

tion m(x) = E[f(x)] and a kernel covariance function k(x,x′) = Cov[f(x), f(x′)] =

E[f(x)f(x′)]− E[f(x)]E[f(x′)]; here Cov [·, ·] represents a covariance function. Such a

kernel determines the nature of the latent functions involved in a GP model, for in-

stance, through the kernel we can induce latent functions with: smoothness, periodicity,

stationarity, non-stationarity, etc. It is important to emphasize that a kernel is a co-

variance function that depends on a set of hyper-parameters, that generally have to be

fitted during an optimisation process when training the model. For example, a popular

covariance option is the exponentiated quadratic kernel, k(x,x′) = σ2
f exp

(
−‖x−x′‖2

2l2

)
,

which depends on the hyper-parameters σ2
f and l that control the amplitude and length-

scale of the latent functions, respectively (Álvarez et al., 2012).

3.2 Likelihood Parametrisation Using Chained GPs

Using Gaussian processes for modelling an input-output data collection D = {X,y},
where X = {xn}Nn=1 is the input data with xn ∈ RP and y = {yn}Nn=1 is the output data,

consists on constructing a joint distribution between an arbitrary likelihood function

and one (or multiple) Gaussian process priors (Nguyen and Bonilla, 2014; Saul et al.,

2016). In such model, the likelihood’s parameters are chained to the GP priors as

follows,

p(y, f |X) =
N∏

n=1

p(yn|ψ1(xn), ..., ψJ(xn))
J∏

j=1

N (fj|0,Kfjfj), (3.1)

where each fj = [fj(x1), ..., fj(xN)]> represents a vector of latent parameter functions

(LPFs) that follows a GP prior, J represents the number of such latent functions,

and each ψj(xn) = φj(fj(xn)) represents a likelihood’s parameter chained to the GP

priors through a link function φj(·). For instance, if the likelihood is a Heterocedastic

Gaussian then its parameters mean and variance are respectively chained as ψ1(xn) =
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f1(xn) and ψ2(xn) = exp(f2(xn)); or if the likelihood is a Gamma its parameters are

linked as ψ1(xn) = exp(f1(xn)) and ψ2(xn) = exp(f2(xn)). Also, in the equation

above, Kfjfj represents the kernel matrix built from evaluations between all pairs of

data observations X in the j-th covariance function Cov[fj(·), fj(·)] = kj(·, ·) that

belongs to the j-th GP prior (Adam et al., 2018). In general, this model is known as

chained Gaussian processes (CGP) model (Saul et al., 2016).

3.3 Inducing Variables Framework

The non-parametric formulation of a GP introduces computational loads through the

inference process. For example, given a dataset that contains N samples, GP regres-

sion involves a computational complexity of O(N3) for inverting the covariance matrix

Kfjfj (Rasmussen, 2006). An approach to reduce such computational complexity is to

augment the GP prior with a set of inducing variables ǔj = [fj(z
(1)
j ), ..., fj(z

(M)
j )]>,

with ǔj := fj, that represent additional function evaluations at some unknown induc-

ing points Zj = [z
(1)
j , ..., z

(M)
j ]> ∈ RM×P , thereby allowing a complexity reduction to

O(NM2), where M << N (Snelson and Ghahramani, 2006; Titsias, 2009). We can

write the augmented GP prior as

p(fj, ǔj) = N
([

fj

ǔj

] ∣∣∣∣∣0,
[

Kfjfj Kfj ǔj

Kǔjfj Kǔj ǔj

])
, (3.2)

where, by applying Gaussian properties to condition the distribution over functions fj

to the inducing variables ǔj, we can express such an augmented GP prior as p(fj, ǔj) =

p(fj|ǔj)p(ǔj), with:

p(fj|ǔj) = N (fj|Kfj ǔj
K−1

ǔj ǔj
ǔj,Kfjfj −Kfj ǔj

K−1
ǔj ǔj

K>fj ǔj
), (3.3)

p(ǔj) = N (ǔj|0,Kǔj ǔj
), (3.4)

for which Kfj ǔj
is the cross covariance matrix formed by computing cov [fj(·), ǔj(·)] =

kj(·, ·) between inputs X and Zj; and Kǔj ǔj
is the covariance matrix built from evalua-

tions of the covariance function cov [ǔj(·), ǔj(·)] = kj(·, ·) between all pairs of inducing

points Zj (Hensman et al., 2015a). It is worth mentioning that the inducing variables

are not always additional function evaluations of fj(·), but additional evaluations of a

GP function, say uj(·), that covariates with the function fj(·), i.e., fj(·) 6= uj(·), but

there exist a covariance function Cov[fj(·), uj(·)] that allows us to construct the matrix
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Kfjuj
. We will henceforth refer to ǔj(·) as an inducing variable that strictly repre-

sents additional evaluations of fj(·), and to uj(·) to the alternative case. Therefore,

the Gaussian properties to condition the distribution over functions fj to the inducing

variables uj grants us the application of Eq. (3.3) and (3.4) for the alternative case of

uj(·) by making a variable change of ǔj(·) to uj(·). We will study this latter case in

section 3.5, where the number J of latent functions fj(·) is not necessarily the same

number of latent functions uj(·).

3.4 Evidence Lower Bound for the Multi-GP set-

ting

For non-Gaussian likelihoods, posterior inference is analytically intractable and ap-

proximations are needed instead. To overcome this issue, an inducing variable frame-

work combined with the VI mechanism described in section 2.3, allow us to build

a tractable objective bound when using multiple GPs (Hensman et al., 2013).1 Let

p(y, f , ǔ) = p(y|f)p(f , ǔ) be a joint distribution with likelihood function p(y|f) =∏N
n=1 p(yn|ψ1(xn), ..., ψJ(xn)) and augmented GP prior

p(f , ǔ) =
J∏

j=1

p(fj|ǔj)p(ǔj), (3.5)

as the one already introduced in Eq. (3.3) and (3.4). Also, let f = [f>1 , ..., f
>
J ]> and

ǔ = [ǔ>1 , ..., ǔ
>
J ]> be vectors that group the LPFs and inducing variables, respectively.

In order to approximate the true posterior we introduce a free parametrised varia-

tional distribution q(f , ǔ) ≈ p(f , ǔ|y). Such approximation consists on optimising the

variational posterior’s parameters by minimising a Kullback-Leibler (KL) divergence

between the distribution q(f , ǔ) and the true posterior p(f , ǔ|y). However, in practice

we cannot compute that KL divergence, but equivalently maximise an evidence lower

bound, i.e., a lower bound to the log marginal likelihood. That ELBO can be derived

as follows:

L = Eq(f ,ǔ)

[
log

p(y|f)p(f , ǔ)

q(f , ǔ)

]
, (3.6)

1We avoid the full notation p(y, f , ǔ,X,Z) excluding the variables X and Z to ease the writing.
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where the variational posterior distribution is defined as

q(f , ǔ) =
J∏

j=1

p(fj|ǔj)q(ǔj),

where p(fj|ǔj) was already defined in (3.3) (Saul et al., 2016). The Chained GP model

assumes that the posterior q(ǔ) =
∏J

j=1N (ǔj|mj,Vj) is the product of J parametrised

Gaussian distributions, each one with mean mj and covariance Vj. When solving for

Eq. (3.6) the objective becomes:

L =
N∑

n=1

Eq(f1)···q(fJ )[log p(yn|ψ1(xn), ..., ψJ(xn)]− DKL(q(ǔ)||p(ǔ)),

where DKL(·||·) is a Kullback-Leibler divergence and each distribution q(fj) can be

computed from

q(fj) :=

∫
p(fj|ǔj)q(ǔj)dǔj, (3.7)

where the variable ǔj is integrated out. Once we have built the objective ELBO, the

goal is to optimise it w.r.t each variational parameter mj and Vj, each set of unknown

inducing points Zj and the kernel hyper-parameters.

3.5 Introducing Correlations over Chained Gaus-

sian Processes

We introduce an alternative approach that explores correlations between the GP latent

functions. Such correlations are induced through the inclusion of a multi-parameter GP

prior where the LPFs are considered to come from a linear model of coregionalisation

(Journel and Huijbregts, 1979) as follows:

fj(xn) =

Q∑

q=1

Rq∑

i=1

wij,qu
i
q(xn), (3.8)

where uiq(x) are samples from uq(·) ∼ GP(0, kq(·, ·)) taken IID, and each wij,q is a

linear combination coefficient (LCC). We will use Rq = 1 for simplicity. Such a model

is also known as the semi-parametric latent factor model (SLFM) (Teh et al., 2005).

Each latent function fj(xn) is chained to each likelihood’s parameter in Eq. (3.1),

as ψj(xn) = φj(fj(xn)). Hence the likelihood function depends of J latent functions
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necessary for representing its parameters, since there is a LCC per LPF we can group

in a vector wq = [w1,q, ..., wJ,q]
> ∈ RJ×1 all the coefficients per function uq(·); and we

can cluster all vectors wq in a specific vector of LCCs w = [w>1 , ...,w
>
Q]> ∈ RQJ×1.

Now that we know that the GP latent functions fj are a priori correlated due to the

generative model in Eq. (3.8), we can express the likelihood as:

p(y|f) =
N∏

n=1

p(yn|ψ1(xn), ..., ψJ(xn)),

and our augmented GP prior becomes,

p(f ,u) =
J∏

j=1

p(fj|u)p(u), (3.9)

where we can use the properties of a multivariate Gaussian distribution to write:

p(fj|u) = N (fj|KfjuK−1
uuu,Kfjfj −KfjuK−1

uuK>fju), (3.10)

p(u) = N (u|0,Kuu), (3.11)

where Kuu ∈ RQM×QM is a block-diagonal matrix with blocks Kuquq ∈ RM×M built

from evaluations of Cov [uq(·), uq(·)] = kq(·, ·) between all pairs of inducing points

Zq = [z
(1)
q , ..., z

(M)
q ]> ∈ RM×P ; the covariance matrix Kfjfj is built from evalua-

tions of Cov [fj(·), fj(·)] =
∑Q

q=1wj,qwj,qkq(·, ·) over all pairs of data X, thus in-

volving all Q kernel-covariances weighted by the coefficients wj,q. It is important

to highlight that in the former method each covariance matrix Kfjfj in Eq. (3.1)

and (3.2) is influenced by an unique kernel-covariance Cov[fj(·), fj(·)] = kj(·, ·); and

Kfju = [Kfju1 , ...,KfjuQ
] is a covariance matrix with blocks Kfjuq ∈ RN×M constructed

by computing Cov [fj(·), uq(·)] = wj,qkq(·, ·) between X and Zq. Unlike the matrix

Kfj ǔj
in Eq. (3.2) and (3.3), here the blocks Kfjuq are additionally weighted by the co-

efficients wj,q. Notice that u = [u>1 , ...,u
>
Q]> ∈ RQM×1 is the inducing variables vector

formed by the function evaluations uq = [uq(z
(1)
q ), ..., uq(z

(M)
q )]> (Álvarez et al., 2010).

It is worth to distinguish from subsection 3.3 that in our model the inducing variables

u are not additional function evaluations of f , but evaluations of each function uq(·),
i.e., u 6= ǔ. Also, Eq. (3.9) differs from Eq. (3.5) in the fact that we condition the

distribution over each latent function fj on all the Q latent functions uq. While due

to the independence assumption in former methods the distribution over each latent

function fj can only be conditioned on a unique ǔj. We refer to the model described

above as the Correlated Chained Gaussian Processes model.
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Given that most of the likelihood functions that we can define for our CCGP model

make it intractable, it is necessary to derive an ELBO. To this end we define a varia-

tional posterior as follows,

q(f ,u) =
J∏

j=1

p(fj|u)

Q∏

q=1

q(uq), (3.12)

where each q(uq) = N (uq|mq,Vq) is a Gaussian distribution with mean mq and co-

variance Vq. Following Eq. (3.6) we can derive the ELBO:

L =
N∑

n=1

Eq(f1)···q(fJ ) [log p (yn|ψ1(xn), ..., ψJ(xn))]− DKL(q(u)||p(u)), (3.13)

where the posteriors over each LPF can be computed from:

q(fj) :=

∫
p(fj|u)q(u)du. (3.14)

In the equation above, all posteriors q(u) =
∏Q

q=1 q(uq) influence the construction of

each LPF’s posterior q(fj), while that does not happen in previous methods, as it can

be seen in Eq. (3.7). We solve for Eq. (3.14) arriving to:

q(fj) =N (fj|KfjuK−1
uum,Kfjfj + KfjuK−1

uu(V −Kuu)K−1
uuK>fju), (3.15)

where m = [m>1 , ...,m
>
Q]> is a vector of means and V a block-diagonal matrix with

blocks given by each covariance Vq. The ELBO in Eq. (3.13) can be easily rewriten

in terms of mini-batches allowing stochastic inference as follows:

L̂ = S
∑

ic∈C
Eq(f1)···q(fJ ) [log p (yic |ψ1(xic), ..., ψJ(xic))]− DKL(q(u)||p(u)), (3.16)

where the variable C represents a set of indexes, where each index is uniformly sample

as ic ∼ Unif(1, ..., N), and S = N/L is a scaling factor with L as the set’s size.

In order to make predictions with the model, it is necessary to compute the following

distribution:

p(y∗|y) ≈
∫
p(y∗|f∗)q(f∗)df∗, (3.17)

where q(f∗) =
∏J

j=1 q(fj,∗), and each q(fj,∗) can be computed with Eq. (3.15) by

evaluating Kfj,∗u and Kfj,∗fj,∗ at the new inputs X∗.
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3.6 Deriving a Fully Natural Gradient Scheme for

the CCGP model

This section describes how to derive the fully natural gradient updates for optimising

the CCGP model. We first detail how to induce an exploratory distribution over the

hyper-parameters and inducing points as per the section 2.2, then we write down the

MDA for the model and derive the update equations. Later on, we get into specific

details about the algorithm’s implementation.

3.6.1 An Exploratory Distribution for the CCGP

In the context of sparse GPs, the kernel hyper-parameters and inducing points of

the model have usually been treated as deterministic variables. Here, we use the

VO perspective as a mechanism to induce randomness over such variables, this with

the aim to gain exploration for finding better solutions during the inference process

(Staines and Barber, 2013). To this end we define and connect random real vectors

to the variables through a link function as follows: for the inducing points, z = θZ,

for a vector that stacks all kernel hyper-parameters of the model, lkern = exp(θL),

with θL = [θ>L1
, ...,θ>LQ

]> ∈ RQP×1̧ , and for the vector of LCC w = θw, that are

used to generate the LPFs in Eq. (3.8). We have defined the real random vectors

θZ ∈ RQMP×1, θLq ∈ RP×1 and θw ∈ RQJ×1 to link the set of inducing points, the

kernel hyper-parameters per latent function uq(·), and the vector w of LCCs. We

cluster the random vectors defining θ = [θ>Z ,θ
>
L ,θ

>
w]> ∈ R(QMP+QP+QJ)×1 to refer to all

the parameters in a single variable. Hence, we can specify an exploratory distribution

q(θ) := N (θ|µ,Σ) for applying the VO approach in Eq. (2.2), though for our case the

objective to bound is already derived in Eq. (3.16) for the CCGP model. Therefore

our VO bound is defined as follows:

F̃ = Eq(θ)

[
− L̂

]
+ DKL(q(θ)||p(θ)), (3.18)

where p(θ) = N (θ|0, λ−1
1 I) is a Gaussian distribution with precision λ1 that forces

further exploration of θ’s space (Khan et al., 2017b). It is important to highlight that

the kernel hyper-parameters are guaranteed to be strictly positive by means of the

exponential link function, lkern = exp(θL); i.e., from a Bayesian perspective the kernel

hyper-parameters, lkern, are set to follow a prior Log-Normal distribution. Since our

aim, from an optimisation perspective, is to induce additional exploration over such

hyper-parameters of the model by using the VAN approach described in section 2.4.2.
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Thereby a Log-Normal prior is just a consequence of the implementation in which our

work relies by using a Gaussian exploratory distribution, q(θ) := N (θ|µ,Σ), and the

exponential link functions to the positive hyper-parameters.

3.6.2 Mirror Descent Algorithm for the CCGP

With the purpose of minimising our VO objective in Eq. (3.18), we use the MDA

described in Eq. (2.5), which additionally exploits the natural-momentum. Therefore,

we make use of the mean-parameters of distributions q(uq) and q(θ) by defining ρq =

{mq,mqm
>
q + Vq} and η = {µ,µµ> + Σ} (Khan and Lin, 2017). In this way we can

write the MDA as:

ηt+1, {ρq,t+1}Qq=1 =
arg min

η, {ρq}Qq=1

〈η, ∇̂ηF̃t〉+
1

α̃t
KL(θ)t −

γ̃t
α̃t

KL(θ)t−1 (3.19)

+

Q∑

q=1

[
〈ρq, ∇̂ρq

F̃t〉+
1

β̃t
KL(uq)t −

υ̃t

β̃t
KL(uq)t−1

]
,

where F̃t := F̃({mq,t}Qq=1, {Vq,t}Qq=1,µt,Σt) and β̃t, α̃t, υ̃t, and γ̃t are positive step-size

parameters. Notice that the sub-index t in the equations above refers to a t-th instant

of an iterative procedure.

3.6.3 Fully Natural Gradient Updates

We can solve for Eq. (3.19) by computing derivatives w.r.t η and ρ, and setting to

zero (Khan et al., 2017a). This way we obtain results similar to Eq. (2.6) and (2.7),

we call them FNG updates:

Σ−1
t+1 = Σ−1

t + 2αt∇̂ΣF̃t (3.20)

µt+1 = µt − αtΣt+1∇̂µF̃t + γtΣt+1Σ
−1
t (µt − µt−1) (3.21)

V−1
q,t+1 = V−1

q,t + 2βt∇̂VqF̃t (3.22)

mq,t+1 = mq,t − βtVq,t+1∇̂mqF̃t (3.23)

+ υtVq,t+1V
−1
q,t (mq,t −mq,t−1),

where αt = α̃t/(1 − γ̃t), βt = β̃t/(1 − υ̃t), γt = γ̃t/(1 − γ̃t) and υt = υ̃t/(1 − υ̃t) are

positive step-size parameters (see Appendix F for details on the gradients derivation).
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3.7 Implementation

In order to implement the proposed method, we have to take into account that our

computational complexity depends on inverting the covariance matrix Σ in Eq. (3.20).

Such complexity can be expressed as O((QMP + QP + QJ)3) for the CCGP with

LMC, where the terms with the number of inducing points and/or input dimensionality

tend to dominate the complexity. Likewise, the gradient ∇̂ΣF̃ involves computing the

Hessian ∇̂2
θθL̃ which can be computationally expensive and prone to suffer from non-

positive definiteness. To alleviate those complexity issues we assume Σ = diag(σ2),

where σ is a vector of standard deviations, and diag(σ2) represents a matrix with the

elements of σ2 on its diagonal. Additionally, we estimate the Hessian by means of

the Gauss-Newton (GN) approximation ∇̂2
θθL̃ ≈ ∇̂θL̃ ◦ ∇̂θL̃ (Bertsekas, 1999; Khan

et al., 2017b). The authors in Khan et al. (2018) term this method as the variational

RMSprop with momentum. They alternatively express Eq. (3.20) and (3.21) as:

pt+1 = (1− αt) pt + αtEq(θ)

[
∇̂θL̃ ◦ ∇̂θL̃

]
(3.24)

µt+1 = µt − αt(pt+1 + λ11)−1 ◦ ∇̂µF̃ (3.25)

+ γt(pt + λ11) ◦ (pt+1 + λ11)−1 ◦
(
µt − µt−1

)
,

where ∇̂µF̃ = (Eq(θ)

[
∇̂θL̃

]
+λ1µt), ◦ represents an element-wise product and we have

made a variable change defining a vector pt := σ−2
t − λ11, with 1 as a vector of ones.

The GN approximation provides stronger numerical stability by preventing that σ2

becomes negative. Also, using diag(σ2) we reduce the computational complexity from

O((QMP +QP +QJ)3) to O(QMP +QP +QJ), see Appendix G for a pseudo-code

implementation of the algorithm.

3.8 Predictive Distribution

Making predictions with the CCGP model depends on computing the distribution:

p(y∗|y) ≈
∫
p(y∗|f∗)q(f∗)df∗, where q(f∗) =

∏J
j=1 q(fj,∗). Each distribution, q(fj,∗), can

be calculated from q(fj,∗) =
∫
p(fj,∗|u,θ)q(u)q(θ)dθdu, where q(θ) is the exploratory

(or variational) distribution induced over all hyper-parameters and inducing points of

the model. Nonetheless, the fact of integrating out the distribution, q(θ), involves a

high computational complexity during the predicting process. For instance, in the work

by Rossi et al. (2021) this scenario emerges when studying the fact of inducing prior dis-

tributions over the hyper-parameters and inducing points of the model, i.e., building a
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fully Bayesian GP model; consequently, the authors propose to perform the prediction

operation by parallelizing and using GPUs for integrating out the posterior distribu-

tion over said hyper-parameters and inducing points. Nonetheless, our motivation for

treating the hyper-parameters and inducing points as stochastic variables relies on the

fact of improving exploration during optimisation. Indeed, in the practice we realised

that q(θ)’s covariance converged to very small values, in general diag(σ2) ≤ 10−15, and

almost all the uncertainty information was concentrated on q(u)’s covariance. There-

fore, with the aim to avoid the expensive computations involved in the integrations,

we can trade-off the computation by using the MAP solution for q(θ) (see Appendix

H for details on MAP in the context of VI) and completely integrate over the remain-

ing distribution as follows: q(fj,∗) =
∫
p(fj,∗|u,θ = µ)q(u)du. When solving for these

integrals we arrive to the same solutions in Eq. (3.15), where we just need to evaluate,

at the new inputs X∗, the matrix covariances Kfj,∗u and Kfj,∗fj,∗ .

3.9 Training Strategy: Augmenting the CCGP’s

Output

The objective in Eq. (3.16) shows a version of the ELBO that permits stochastic

inference (Blei et al., 2017) by randomly sampling a mini-batch of data observations

per training iteration. Lets us supose that we pick two mini-batches of data, if we

compare them, it is reasonable to think that one mini-batch can contain information

that it is not necessarily present in the other mini-batch. We can think of those two

mini-batches as partially different collections of input-output data, as it happens in a

multi-output context. When we look at multi-output Gaussian processes performance,

we realise that their main achievement relates to providing more accurate predictions

due to the correlations induced between the outputs (Álvarez and Lawrence, 2009;

Osborne et al., 2008a). Therefore, with the intention that at every iteration of the

inference process we can induce correlations between two mini-batches, as if each one

were associated to a different output; we propose a training strategy that is based on

augmenting a single-output GP model in order to treat it as a multi-output model.

Let us call our original output y1 and create a duplicate version of it as y2 = y1,

thereby we can express a two-output likelihood as follows:

p(y|f) =
N∏

n=1

p(y1,n|ψ1,1(xn), ..., ψ1,J(xn))p(y2,n|ψ2,1(xn), ..., ψ2,J(xn)),
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where we additionally index the LPFs indicating the association to an output, so we

can express the SLFM as:

fd,j(x) =

Q∑

q=1

wd,j,quq(xn),

where the linear combination coefficients wd,j,q include an additional index that asso-

ciates them to a d-th output (Álvarez et al., 2012). With the aim to derive the objective

ELBO, we define the augmented GP prior and approximate posterior respectively as,

p(f ,u) =
J∏

j=1

p(f1,j|u)p(f2,j|u)p(u),

q(f ,u) =
J∏

j=1

p(f1,j|u)p(f2,j|u)

Q∏

q=1

q(uq),

where the distributions p(u) and each q(uq) are exactly the same ones already defined

in Eq. (3.11) and (3.12) (Moreno-Muñoz et al., 2018). The distributions p(fd,j|u) can

simply be identified in Eq. (3.10) by making a change of variable from fj to fd,j. We

derive the ELBO following Eq. (3.6) to arrive to:

L̂ = SA
∑

ia∈A
Eq(f1,1),...,q(f1,J ) [log p (y1,ia|ψ1,1(xia), ..., ψ1,J(xia))] (3.26)

+ SB
∑

ib∈B
Eq(f2,1),...,q(f2,J ) [log p (y2,ib|ψ2,1(xib), ..., ψ2,J(xib))]− DKL(q(u)||p(u)),

where we express this ELBO in terms of two mini-batches one for y1 and the other for

y2. Here the variables A and B represent sets of indexes, where each index is uniformly

sample as ia ∼ Unif(1, ..., N) and ib ∼ Unif(1, ..., N). The summatories are scaled by

the factors SA = N/LA and SB = N/LB with LA and LB as the size of A and B,

respectively, i.e., the mini-batch size per output. Also, each distribution q(fd,j) can

be computed from Eq. (3.15) by making a change of variable from fj to fd,j. Notice

that despite modelling two outputs using the augmented strategy, there is not need to

make predictions for both of them since y2 is the duplicate of y1. Indeed, the LPFs’

distributions are conditionally independent, so it is not necessary to make predictions

using all marginal posteriors q(fd,j,∗). We can simply pick the posteriors associated to

one output, for instance q(f1,∗) =
∏J

j=1 q(f1,j,∗), and make predictions following Eq.

(3.17).
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One might think that Eq. (3.26) is simply the same as rewriting the single-output

stochastic ELBO in Eq. (3.16) in terms of two summatories as follows:

L̂ = S
∑

ia∈A
Eq(f1),...,q(fJ ) [log p (yia |ψ1(xia), ..., ψJ(xia))] (3.27)

+ S
∑

ib∈B
Eq(f1),...,q(fJ ) [log p (yib |ψ1(xib), ..., ψJ(xib))]− DKL,

where, unlike Eq. (3.26), here A and B are subsets of the original set of indexes C, i.e.,

C = A ∪ B. Nonetheless, the main difference relies on the fact that, in the equation

above, the scaling factor becomes S = N/(LA + LB), where LA represents the size of

A and LB the size of B, being different from the scaling factors SA and SB in (3.26).

Furthermore, in the augmented setting, there is an extra set of coefficients wd,j,q that

influence the gradients when updating the parameters of each variational posterior

q(uq),

∇mqL̂ =
J∑

j=1

R>f1,juq
ν1,j +

J∑

j=1

R>f2,juq
ν2,j −∇mqDKL,

∇VqL̂ =
J∑

j=1

R>f1,juq
γ1,jRf1,juq +

J∑

j=1

R>f2,juq
γ2,jRf2,juq −∇VqDKL,

where Rfd,juq = Kfd,juqK
−1
uquq

is a matrix that involves the computation of the covari-

ance functions cov [fd,j(·), uq(·)] = wd,j,qkq(·, ·), where such coefficients wd,j,q weight

each kernel. Also, they directly affect νd,j ∈ RN×1 which is a vector with entries,

Eq(fd,1)...q(fd,J )[∇fd,j(xn) log pd,n];

and γd,j ∈ RN×N is a diagonal matrix with entries 1
2
Eq(fd,1)...q(fd,J )[∇2

fd,j(xn)fd,j(xn) log pd,n]

in its diagonal, and we have defined log pd,n := log p (yd,n|fd,1(xn), ..., fd,J(xn)); it is

worth noticing that the distributions q(fd,j) involve the computations of the coefficients

wd,j,q as per Eq. (3.15).

3.10 Experiments

In this section we want to evaluate the performance of the CCGP model and the

proposed training strategy of augmenting the output using our proposed fully natural

gradient scheme of optimisation. First, in order to asses the performance of our FNG

scheme, we compare it with the stochastic gradient descent (SGD) method, and the
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adaptive gradient methods Ada-Delta (ADAD) and Adam; we report the convergence

of the Negative ELBO (NELBO) from Eq. (3.16). Regarding the model performance,

we use the FNG scheme for training purposes and report the negative log predictive

density (NLPD) (Quiñonero-Candela et al., 2006) over a test set. We use the NLPD

metric since it takes into account the uncertainty quantification of the model. We

compare our proposed methods against the CGP model, which generalises the concept

of likelihood parametrisation using multiple independent GPs.

3.10.1 Comparison between FNG and AGMs

We ran experiments over the following datasets: boston (N = 505, P = 13) con-

tains housing information collected by the U.S. Census Service in the area of Boston,

Massachusetts, consists of one output with the value of owner-occupied homes, we

re-scaled it as y ∈ [0, 1]; yacht (N = 308, P = 6) is a register of the residuary re-

sistance of sailing yachts at an initial design stage, the data is useful for estimating

the required propulsive power, consists of one output, the residuary resistance; and

concrete (N = 1K,P = 8) contains information of the concrete compressive strength

as a function of age and ingredients, consists of one output: the concrete compressive

strength, we re-scaled it as y ∈ R+.2 For the boston dataset, we used a Beta like-

lihood,
∏N

n=1 Beta(yn|an, bn); for the yacht dataset, a Heteroscedastic-Gaussian likeli-

hood,
∏N

n=1N (yn|µn, vn); and for the concrete dataset, we used a likelihood Gamma,∏N
n=1 Gamma(yn|αn, βn). The LPFs were chained to the likelihood Heteroscedastic-

Gaussian (HG) as µn = ψ1(xn) = f1(xn) and vn = ψ2(xn) = exp(f2(xn)); to Beta (Bt)

as an = ψ1(xn) = exp(f1(xn)) and bn = ψ2(xn) = exp(f2(xn)); and to Gamma (Ga) as

αn = ψ1(xn) = exp(f1(xn)) and βn = ψ2(xn) = exp(f2(xn)). With the aim to assess

the performance of our FNG scheme in comparison to the AGMs, we randomly set 15

different initialisations of the CCGP model and ran the optimisation algorithms per

initialisation. We assumed two inducing latent functions u1 and u2, during training

used a mini-batch size of 100, and a number of M = 20. Figure 3.1 shows the average

NELBO reached by each one of the optimisation methods. We can notice from Fig-

ure 3.1 that the FNG scheme generally converged to a lower NELBO in comparison

to the other methods, except for the case of concrete dataset, where Adam achieved

a slightly better solution. Adam method usually converged to better solutions than

ADAD and SGD. The optimisers ADAD and SGD presented a poor performance for

2See http://archive.ics.uci.edu/ml/datasets.php for datasets information.

See https://www.cs.toronto.edu/∼delve/data/boston/bostonDetail.html for boston.
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Figure 3.1: Convergence of the Objective Functions when using the meth-

ods SGD (blue), Adam (orange), ADAD (green) and FNG (red) for train-

ing the CCGP model. The datasets are as follows: boston (top left), yacht

(top right) and concrete (bottom). Each convergence graph is an average

NELBO function of 15 different initialisations for the model.
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minimising the objective function for the different datasets. Particularly, the different

AGMs struggled to minimise the objective function for the yacht dataset, whilst the

FNG was able to converge to an appropriate minimum. Generally, the FNG scheme

presented a faster convergence performance than the other methods.

3.10.2 Qualitative Assessment using the Motor Dataset

We use a one-dimensional dataset to provide a qualitative assessment of the different

methods: the motor dataset (N = 133, P = 1) was built to test crash helmets and

consists of one output with measurements of head acceleration in a simulated motor-

cycle accident.3 We run two experiments with different percentage of data for training

and testing. We define a Heteroscedastic-Gaussian likelihood
∏N

n=1N (yn|µn, vn),

then each parameter associates a latent function where the mean µn = f1(xn) and the

variance vn = exp(f2(xn)). All methods use two inducing latent functions u1 and u2,

and the number of inducing points per latent funtion is M = 20. We use stochastic

inference with a mini-batch size of 20 for training the CGP and CCGP models, while

for the Augmented-output CCGP (ACCGP) strategy we use a mini-batch size of 10

per each output, this is to be fair in the amount of data used at each iteration for all

methods. In the first case, we randomly split the data into 50% for training and testing

respectively. In the second case, we randomly split the data into 75% for training and

25% for testing. Figures 3.2 and 3.3 show the predictive distribution reached by the

methods with regard to each setting. In the graphs we include black crosses and red

dots that represent the train and test data observations respectively.4

For the first case, we can see from Figure 3.2 that the CGP and CCGP present

almost the same mean prediction, although it is more difficult for the former to quantify

the uncertainty. For instance, in the time interval (−1.75,−1.0) there is a flat trend

in the data, but the CGP understimates such trend, while the CCGP shows a better

quantification. The interval (−1.0, 0.0) presents a sinusoidal behaviour without much

noise, here our CCGP approach shows smaller error bars than the CGP. Both CGP

and CCGP have a similar performance over the region (0.0, 3.0) with slightly smaller

error bars for the latter. The ACCGP approach shows a high performance for all data

regions, better than CGP and CCGP for both y1 and y2. This strategy quantifies the

uncertainty more appropriately in the flat zone (−1.75,−1.0), also among (−1.0, 0.0)

3See http://vincentarelbundock.github.io/Rdatasets/datasets.html for motor data.
4Notice that in Figures 3.2 and 3.3 the data for Acceleration and Time are both standardised, i.e.,

zero mean and one standard deviation.
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Figure 3.2: Predictive distribution of CGP, CCGP and ACCGP (y1 and

y2) over the motor dataset using a split of 50% for training and testing

respectively. Each figure shows the predictive distribution; mean prediction

(solid blue line) plus and minus two times the standard deviation (dashed

blue line) for each input value. The black crosses represent the training

data and the red dots the testing data.
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Figure 3.3: Predictive distribution of CGP, CCGP and ACCGP (y1 and

y2) over the motor dataset using a split of 75% and 25% for training and

testing respectively. Each figure shows the predictive distribution; mean

prediction (solid blue line) plus and minus two times the standard deviation

(dashed blue line) for each input value. The black crosses represent the

training data and red dots the testing data.
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and for the most noisy region of the data in (0.0, 3.0). We can see from the figures

that ACCGP’s predictive distribution generalises the training data properly, while

additionally shows to be consistent for the testing data. As an additional support to

these results, Table 3.1 shows the NLPD computed over the training and testing data

observations. For the second case, we can notice from Figure 3.3 that the predictive

Table 3.1: NLPD achieved by the different methods over motor dataset

for training and testing observations. Column split shows the percentage of

data used for training and testing respectively. Lower values of NLPD refer

to a better performance.

CGP CCGP ACCGP y1 ACCGP y2

Split Train Test Train Test Train Test Train Test

50% 50% 0.491 0.601 0.444 0.536 0.219 0.418 0.218 0.408

75% 25% 0.372 0.275 0.297 0.180 0.218 0.216 0.221 0.213

distributions of the CGP and CCGP fit the data better than the first case where there

was less amount of training data and more for testing. Again we can see that the

predictive mean looks quite similar for CGP and CCGP approaches. Nonetheless, the

main differences can be spotted in the time axis regions. In (−1.75,−1.0), where data

presents an almost steady behaviour, the CCGP reaches more confidence than CGP.

Also, among the interval (−1.0, 0.0) where there is a clear trend along the observations

with low noise, the CCGP presents smaller error bars than CGP. For the remaining

region in (0.0, 3.0), which it is the noisiest one, both CGP and CCGP show similar

deviations in the predictive distribution, though the latter attains a better uncertainty

quantification at the end of the interval. With regard to the ACCGP, we can see that

its predictive distribution for both y1 and y2 performs better than the first setting

that had less training data, and also better than CGP and CCGP. We can see from

Figure 3.3 that the mean and error bars for both ACCGP’s outputs seem exactly the

same. The ACCGP’s predictive distribution is the most confident for the less noisy

interval (−1.75,−1.0), which makes sense regarding the data trend. Likewise, ACCGP

approach shows smaller deviations between (−1.0, 0.0) than CGP and CCGP. As per

the data observations tendency in the noisy interval (0.0, 3.0), ACCGP achieves a more

appropriate uncertainty quantification in comparison to CGP and CCGP approaches.

In order to support quantitatively these results, Table 3.1 shows the NLPD computed

over the training and testing data observations.
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3.10.3 Quantitative Assessment using diverse Datasets

In this subsection, we evaluate quantitatively the performance of our proposed methods

reporting the NLPD over a test set. We run experiments over the following datasets:

motor (N = 133, P = 1), yacht (N = 308, P = 6), boston (N = 505, P = 13) and

concrete (N = 1K,P = 8) were previously introduced. Additionally, here we include

bike (N = 17.3K,P = 13) that consists of an output with a daily count of rental bikes

between years 2011 and 2012 in Capital bikeshare system; the dataset’s features corre-

spond to weather and seasonal information; protein (N = 45.7K,P = 9) is a dataset

of physicochemical properties of protein tertiary structure, consists of one output that

represents the measure of the average distance between the atoms of superimposed

proteins, and nine physicochemical features; and CTslice (N = 53.5K,P = 379) con-

tains 384 features extracted from images of computerised tomography, and consists of

an output that denotes the relative location of the image slice on the axial axis of the

human body.5 For each dataset, we test three different likelihood functions:

D∏

d=1

N∏

n=1

N (yd,n|µd,n, vd,n),
D∏

d=1

N∏

n=1

Beta(yd,n|ad,n, bd,n),
D∏

d=1

N∏

n=1

Gamma(yd,n|αd,n, βd,n),

where D = 1 for CGP and CCGP, and D = 2 for ACCGP. The LPFs are chained

to Heterocedastic-Gaussian as µd,n = fd,1,n and vd,n = exp(fd,2,n); to Beta as ad,n =

exp(fd,1,n) and bd,n = exp(fd,2,n); and to Gamma as αd,n = exp(fd,1,n) and βd,n =

exp(fd,2,n). All methods use two inducing latent functions u1 and u2. We re-scale the

output of each datasets as per the statistical data type of the likelihood used in the

experiment, i.e., y ∈ R for the HG, y ∈ [0, 1] for the Bt and y ∈ R+ for the Ga. We

use the proposed fully natural gradient scheme for optimising all the model parameters

employing a mini-batch size of 100 for the CGP and CCGP, while a mini-batch size

of 50 for each output of the ACCGP strategy. We split the datasets using 75% for

training and 25% for testing. We run 15 different parameters initialisations and choose

the best to train the models, then we report the NLPD over the test set. Table 3.2

shows the NLPD reached by the models CGP, CCGP and strategy ACCGP (output

y1) for each dataset with a specific likelihood (Lik) configuration. Also, it shows results

for sizes of inducing points M = 20 and M = 40.

We can see from Table 3.2 that ACCGP is the most consistent method given that,

in general, achieves the lowest NLPD for most of the different configurations. Re-

garding CCGP, Table 3.2 shows that it generally outperforms the CGP, given that

5See http://archive.ics.uci.edu/ml/datasets.php for datasets information.

See https://www.cs.toronto.edu/∼delve/data/boston/bostonDetail.html for boston.
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Table 3.2: NLPD Achieved by the Different Methods, CGP, CCGP and

ACCGP (output y1) over a Test set. Column Lik refers to the type of like-

lihood used; Heterocedastic Gaussian (HG), Beta (Bt) and Gamma (Ga).

Colums with M refer to the number of inducing points used. Lower values

of NLPD refer to a better performance.

M=20 M=40

Lik Dataset CGP CCGP ACCGP CGP CCGP ACCGP

motor 0.50 0.53 0.28 0.98 0.74 0.50

yacht 1.11 -0.45 -0.60 1.26 -0.44 -0.57

boston 1.27 1.43 1.43 1.38 1.42 1.51

concrete 1.15 0.98 0.97 1.19 1.00 0.97

bike 1.52 1.45 1.32 1.50 1.43 1.31

protein 1.27 1.25 1.25 1.19 1.20 1.25

HG

CTslice 1.05 1.03 0.75 1.03 1.37 0.76

motor -0.60 -0.69 -0.88 -0.37 -0.60 -0.65

yacht -1.95 -2.00 -1.95 -1.83 -1.89 -1.93

boston -0.28 -0.23 -0.14 -0.13 -0.26 -0.21

concrete -0.01 -0.40 -0.42 -0.15 -0.36 -0.40

bike -0.44 -0.47 -0.71 -0.19 -0.50 -0.72

protein -0.28 -0.27 -0.26 -0.29 -0.27 -0.27

Bt

CTslice -0.23 -0.27 -0.59 -0.19 -0.19 -0.60

motor -0.11 -0.16 -0.49 0.06 -0.28 -0.50

yacht -1.79 -1.85 -1.79 -1.65 -1.77 -1.78

boston -0.28 1.11 2.17 -0.01 0.12 1.90

concrete 0.08 -0.37 -0.39 0.07 -0.34 -0.37

bike -0.26 -0.40 -0.60 -0.25 -0.42 -0.62

protein -0.20 -0.13 -0.13 -0.21 -0.14 -0.14

Ga

CTslice 0.17 0.05 -0.53 0.16 -0.06 -0.45
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in almost the 70% of the experiments reached a lower NLPD. Though, CGP showed

better performance than CCGP and ACCGP for the datasets boston and protein. We

notice that despite of changing the likelihood to train each dataset all methods CGP,

CCGP and ACCGP tend to behave similarly. For intance, if we analyse the ranking

of methods’ performance on motor with HG likelihood we find that: ACCGP showed

the best performance, followed by CCGP and CGP. Then, this same ranking order

occurred when using Bt and Ga likelihoods. Likewise, this ranking tendency can be

seen for concrete, bike and CTslice datasets. For yacht this pattern is only consistent

in M = 40, while in M = 20 only for HG likelihood. So, for yacht with the other

likelihoods Bt and Ga in M = 20, the ranking changes to CCGP best, followed by AC-

CGP and CGP with the same performance. For boston, the ranking is CGP with the

lowest NLPD, followed by CCGP and then ACCGP for all likelihoods in M = 20 and

M = 40, with the only exception of Bt likelihood in M = 40. For protein, the ranking

is CGP best, followed by CCGP and then ACCGP for all likelihoods in M = 20 and

M = 40, with the only exception of HG likelihood in M = 20 where ACCGP presented

the lowest NLPD followed by CCGP and CGP with the same performance.

3.10.4 An Application of the CCGPs for Datasets with Mul-

tiple Annotators

Additional experiments for an application of the CCGP model using datasets with

multiple annotators are presented in the paper (iii) of Appendix L. A dataset with

multiple annotators is usually associated to a supervised learning task, where the la-

belling process is carried out by crowds with different levels of experience (Raykar

et al., 2010). For instance, in a medical diagnostic, an senior doctor in medicine might

conclude (or label) the presence of an illness c1 from a computed tomography image

of a patient; whilst other doctor without much expertise could label the presence of a

different illness, say c2, from the same tomography image. Therefore, the goal standard

or ground truth regarding the illness becomes a hidden variable. In supervised learn-

ing, usually each input data observation, xn, is assigned to a single, yn, that represents

the ground truth. Though, in the context of multiple annotators, instead of having the

ground truth, we have multiple labels provided by R annotators with different ranges

of expertise for an n-th observation. In real-world scenarios is common to find that

the each annotator r only labels |Nr| ≤ N samples, where |Nr| is the set’s cardinality,

Nr ⊆ {1, ..., N} that contains the indexes of samples labelled by the r-th annotator.

Therefore, our collection of input and output data observations with multiple annota-
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tor can be expressed as: X = {xn}Nn=1 and y = {yrn}n∈N,r∈Rn , respectively; for which

Rn ⊆ {1, ..., R} is a set that contains the indexes of the annotators that labelled the

n-th instance, and yrn is the output or annotation assigned by the r-th labeller to the

n-th observation (Zhu et al., 2019).

By means of the CCGP model, we can build a probabilistic framework able to code

the annotators’ expertise as a function of the input observations, and also exploit the

correlations between the annotators’ answers. Such a probabilistic framework consists

of a likelihood that involves all the multiple annotations of the data observations,

where the likelihood’s parameters are modelled as LPFs that follow correlated GP

priors. For instance, if we aim to model data observations with categorical outputs

(Rodrigues et al., 2013), i.e., yrn ∈ {1, ..., K}, the likelihood function can be expressed

as:

p(y|f) =
N∏

n=1

∏

r∈Rn

(
K∏

k=1

ψk(xn)δ(y
r
n,k)

)ψK+r(xn)(
1

K

)(1−ψK+r(xn))

,

with the likelihood’s parameters chained to the GP latent functions as:

ψk(xn) =
exp (fk (xn))∑K
j=1 exp (fj (xn))

, ψK+r(xn) =
1

2
+

1

2
sign(fK+r(xn)),

where sign(·) is a function that returns the sign of a real number; and we have also

introduced an indicator function, δ (yrn, k) = 1 if yrn = k, otherwise δ (yrn, k) = 0. It is

worth noticing that the total number of LPFs chained to the likelihood is J = K +R.

On the other hand, if we aim to model data observations for a regression task (Ruiz

et al., 2019), we can consider that each, yrn ∈ R, is a corrupted version of the unknown

ground truth yn, thus the likelihood function can be written as:

p(y|f) =
N∏

n=1

∏

r∈Rn

N (yrn|yn, vrn) ,

where, yn = ψ1(xn) = f1(xn), represents the ground truth (or gold standard) modelled

as a LPF and vrn = ψr+1(xn) = exp(fr+1(xn)) is the r-th error-variance of the n-th

observation, also modelled as a LPF. Paper (iii) in Appendix L presents a detailed

explanation of the CCGP model for datasets with multiple annotators, it also includes

experiments that show how such a model helps to improve the modelling of labellers’

behaviour for synthetic, semi-synthetic and real-world datasets.
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3.10.5 Discussion

Through the different experiments, we found that the FNG scheme usually helped to

find a better solution during the inference process for training the CCGP model in

comparison to the AGMs. In general, experimental results showed that CCGP at-

tained richer predictive distributions than CGP. Introducing correlations between the

latent functions allowed the CCGP model to improve its uncertainty quantification

capabilities. Furthermore, we found that training the model through an augmented

configuration, that we called ACCGP, permitted to enhance the generalisation prop-

erties of the model. Indeed, this ACCGP approach behaved robustly when having

little training data observations. For instance, in the first experiment with the motor

dataset that used only the 50% of data observations for training, the ACCGP accom-

plished a predictive distribution with properties quite similar to the one achieved in

the case with 75% of data observations, being a bit less confident in the former case.

Although, such training strategy demands additional hyper-parameters to be trained

due to the augmentation of the outputs, and also additional matrix operations for

computing the marginal posterior distributions, q(fd,j), during the inference process.

On the other hand, we assessed the performance of our methods in the context of

small and large datasets with low and high dimensionality. The results showed as per

Table 3.2 that CCGP generally accomplished lower NLPD metrics in comparison to

CGP, this supports the premise that our model provides robust solutions adequate

for making predictions with appropriate uncertainty quantification. Furthermore, we

found that in most of the configurations, it is possible to obtain higher performances

for CCGP when trained using the augmenting strategy, ACCGP. We believe that the

improvement attained when using the ACCGP is due to the additional set of linear

coefficient parameters that influence the gradient updates of the variational posterior

distributions. Also, due to the fact that the scaling factors SA and SB in Eq. (3.26)

put additional weight over the likelihood term. For example, if the mini-batch size is

just one sample per output then the scaling factors become SA = SB = N . Unlike the

single-output case, if we use a mini-batch size of two samples then the scaling factor is

limited to S = N/2 as per the two mini-batches expression in Eq. (3.27).
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3.11 Summary

In this chapter, we have introduced the correlated chained Gaussian processes model.

We showed that the introduction of a linear model of coregionalisation allows to exploit

correlations between the likelihood’s LPFs, thereby outperforming the former methods

based on independent GP assumptions. We showed that the model can achieve robust

predictive properties for different types of likelihoods and various types of datasets.

We provided a derivation of a FNG scheme that improved the inference process of the

CCGP model in comparison to AGMs. Furthermore, we proposed and tested a training

strategy based on output augmentation that permits to boost predictive properties of

the CCGP model. In the next chapter, we will focus on broadly addressing the issues

associated to poor local optima solutions that emerge when using the CCGP model in

the context of multiple heterogeneous outputs. To this end, we will particularly derive

the FNG scheme for improving inference of the model when having multiple outputs,

and will provide different comparative results against AGMs and a hybrid strategy

(NG+Adam) (Salimbeni et al., 2019).



Chapter 4

Heterogeneous Multi-Output GPs

Model with a Linear Model of

Coregionalisation

In chapter 3, we introduced the CCGP model that relies on an linear model of core-

gionalisation for generating correlated LPFs. The extrapolation of the CCGP model

to the context of multiple outputs gives rise to the Heterogeneous Multi-Output GP

model (Moreno-Muñoz et al., 2018). It is worth noticing that the idea in chapter 3, of

correlating the LPFs for modelling the likelihood’s parameters, was motivated by the

fact of building a more realistic setting for which the parameters were correlated as part

of a latent stochastic process that inherently affects them jointly. Indeed, through the

different experiments carried out in chapter 3, we showed how the correlation assump-

tion between the LPFs improved the single-output model flexibility to better quantify

the uncertainty in comparison to the independent case. On the other hand, the Het-

MOGP model is particularly built upon the assumption of knowledge transferability

between the multiple outputs for which the outputs could be a mix of different sta-

tistical data types, for instance the outputs can be: continuous, categorical, binary or

discrete variables that can associate different likelihood functions. Such a heterogeneity

of the likelihoods and the multiple LPFs chained to their parameters, make the model

suffer a strong conditioning between the variational posterior distribution, the multiple

hyper-parameters of the GP prior and the inducing points (Van der Wilk, 2018).

The HetMOGP model can be seen as an extrapolation of the CCGP model, but for

multiple heterogeneous outputs, it is also built upon a linear combination of Q latent

functions; where each latent function demands a treatment based on the inducing

45
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variables framework. On this model then, such strong conditionings are enhanced even

more due to the dependence of inducing points per underlying latent function, and

the presence of additional linear combination coefficients. Those problems hinder the

AGMs to appropriately fit the parameters and hyper-parameters of the models. In

order to improve the inference of the HetMOGP model, in this chapter we make use of

the mechanisms for optimisation introduced in chapter 2, by deriving a fully natural

gradient scheme for suitably fitting the model. We carry out experiments using toy

and real datasets that involve heterogeneous outputs. To the best of our knowledge

the NG method has not been performed over any MOGP model before. Hence, in this

work we contribute to show how a NG method used in a full scheme over the MOGP’s

parameters and kernel hyper-parameters alleviates the strong conditioning problems.

This, by achieving better local optima solutions with higher test performance rates

than Adam and SGD. Moreover, we explore for the first time in a MOGP model the

behaviour of the hybrid strategy NG+Adam proposed by Salimbeni et al. (2018), and

provide comparative results to our proposed FNG scheme.

4.1 The Likelihood Function for the HetMOGP

The HetMOGP model is an extension of the Multi-Output GP that allows different

kinds of likelihoods as per the statistical data type each output demands (Moreno-

Muñoz et al., 2018). For instance, if we have two outputs problem, where one output

is binary y1 ∈ {0, 1} while the other is a real value y2 ∈ R, we can assume our likelihood

as the product of a Bernoulli and Gaussian distribution for each output respectively.

In general the HetMOGP likelihood for D outputs can be written as:

p(y|f) =
N∏

n=1

D∏

d=1

p(yd,n|ψd,1(xn), ..., ψd,Jd(xn)), (4.1)

where the vector y = [y>1 , ...,y
>
D]> groups all the output observations and each ψd,j(xn)

represents the j-th parameter that belongs to the d-th likelihood. It is worth noticing

that each output vector yd is generated by a particular set of input observations Xd.

Though, in order to ease the explanation of the model and to be consistent with the

equation above, we have assumed that all outputs yd = [yd,1, ..., yd,N ]> are related to

the same input observations X = [x1, ...,xN ]> ∈ RN×P . Each likelihoods’ parameter

ψd,j(xn) is chained to a latent function fd,j(·) that follows a GP prior, through a

link function φ(·), i.e., ψd,j(xn) = φ(fd,j(xn)). For instance, if we have two outputs
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where the first likelihood is a Heteroscedastic Gaussian, then its parameters mean and

variance are respectively chained as ψ1,1(xn) = f1,1(xn) and ψ1,2(xn) = exp(f1,2(xn)); if

the second likelihood is a Gamma, its parameters are linked as ψ2,1(xn) = exp(f2,1(xn))

and ψ2,2(xn) = exp(f2,2(xn)) (Saul et al., 2016). Notice that Jd accounts for the number

of latent functions necessary to parametrise the d-th likelihood, thus the total number

of functions fd,j(·) associated to the model becomes J =
∑D

d=1 Jd. Each fd,j(·) is

considered a LPF that comes from a LMC as follows:

fd,j(x) =

Q∑

q=1

Rq∑

i=1

wid,j,qu
i
q(x), (4.2)

where uiq(x) are IID samples from GPs uq(·) ∼ GP(0, kq(·, ·)) and wid,j,q ∈ R is a

linear combination coefficient. In chapter 5, we introduce a different way to model

fd,j(x) based on convolution processes. For the sake of future explanations let us

assume that Rq = 1. In this way the number of LCCs per latent function uq(·)
becomes J . The coefficients per function uq(·) can be grouped in a vector wq =

[w1,1,q, ..., w1,J1,q, ..., wD,JD,q]
> ∈ RJ×1; and we can cluster all vectors wq in a specific

vector of LCCs w = [w>1 , ...,w
>
Q]> ∈ RQJ×1.

4.2 The Inducing Points Method

A common approach for reducing computational complexity in GP models is to aug-

ment the GP prior with a set of inducing variables. For the specific case of the Het-

MOGP model with LMC prior, the vector of inducing variables u = [u>1 , ...,u
>
Q]> ∈

RQM×1 is built from uq = [uq(z
(1)
q ), ..., uq(z

(M)
q )]> ∈ RM×1. Notice that the vector uq is

constructed by additional evaluations of the functions uq(·) at some unknown inducing

points Zq = [z
(1)
q , ..., z

(M)
q ]> ∈ RM×P . The vector of all inducing variables can be ex-

pressed as z = [vec(Z1)>, ..., vec(ZQ)>]> ∈ RQMP×1 (Snelson and Ghahramani, 2006;

Titsias, 2009). We can write the augmented GP prior as follows,

p(f |u)p(u) =
D∏

d=1

Jd∏

j=1

p(fd,j|u)

Q∏

q=1

p(uq), (4.3)

where f = [f>1,1, ..., f
>
1,J1

, ..., f>D,JD ]> is a vector function built from the vectors fd,j =

[fd,j(x1), ..., fd,j(xN)]> ∈ RN×1. Following the conditional Gaussian properties we can

express, p(fd,j|u) = N (fd,j|Afd,juu, Q̃fd,jfd,j) and p(u) = N (u|0,Kuu), where the ma-

trix Kuu ∈ RQM×QM is a block-diagonal with blocks Kuquq ∈ RM×M built from
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evaluations of cov [uq(·), uq(·)] = kq(·, ·) between all pairs of inducing points Zq re-

spectively; and we have introduced the following definitions, Afd,ju = Kfd,juK−1
uu,

Q̃fd,jfd,j = Kfd,jfd,j −Qfd,jfd,j , Qfd,jfd,j = Kfd,juK−1
uuKufd,j , Kfd,ju = K>ufd,j

. Here the co-

variance matrix Kfd,jfd,j ∈ RN×N is built from the evaluation of all pairs of input data

X in the covariance function Cov [fd,j(·), fd,j(·)] =
∑Q

q=1 w
2
d,j,qkq (·, ·); and the cross co-

variance matrix Kfd,ju = [Kfd,ju1 , ...,Kfd,juQ
] ∈ RN×QM is constructed with the blocks

Kfd,juq ∈ RN×M , formed by the evaluations of Cov [fd,j(·), uq(·)] = wd,j,qkq(·, ·) between

inputs X and Zq. Each kernel covariance kq (·, ·) has an Exponentiated Quadratic (EQ)

form as follows:

E(τ |0,L) =
|L|−1/2

(2π)P/2
exp

[
−1

2
τ>L−1τ

]
, (4.4)

where τ := x− x′ and L is a diagonal matrix of length-scales. Thus, each kq (x,x′) =

E(τ |0,Lq).

4.3 The Evidence Lower Bound

We follow a VI derivation similar to the one used for single output GPs (Hensman et al.,

2013; Saul et al., 2016). This approach allows the use of HetMOGP for large data.

The goal is to approximate the true posterior p(f ,u|y) with a variational distribution

q(f ,u) by optimising the following negative ELBO:

L̃ =
N∑

n=1

D∑

d=1

Eq(fd,1)···q(fd,Jd ) [gd,n] +

Q∑

q=1

DKL (q(uq)‖p(uq)) , (4.5)

where gd,n = − log p(yd,n|ψd,1(xn), ..., ψd,Jd(xn)) is the NLL function associated to each

output, and we have set a tractable posterior q(f ,u) = p(f |u)q(u), where p(f |u) is

already defined in Eq. (4.3), q(u|m,V) =
∏Q

q=1 q(uq), and each q(uq) = N (uq|mq,Vq)

is a Gaussian distribution with mean mq and covariance Vq (Hensman et al., 2015a) (see

Appendix D for details on the ELBO derivation). The above expectation associated

to the NLL is computed using the marginal posteriors,

q(fd,j) := N (fd,j|m̃fd,j , Ṽfd,j), (4.6)

with the following definitions, m̃fd,j := Afd,jum, Ṽfd,j := Kfd,jfd,j+Afd,ju(V−Kuu)A>fd,ju,

where mean m = [m>1 , ...,m
>
Q]> ∈ RQM×1 and the covariance matrix V ∈ RQM×QM
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is a block-diagonal matrix with blocks given by Vq ∈ RM×M .1 The objective func-

tion derived in Eq. (4.5) for the HetMOGP model with LMC requires fitting the

parameters of each posterior q(uq), the inducing points z, the kernel hyper-parameters

lkern = [diag(L1)>, ..., diag(LQ)>]> and the coefficients w. With the aim to fit said

variables in a FNG scheme, later on we will apply the VO perspective on Eq. (4.5) for

inducing randomness and gain exploration over z, lkern and w; and by means of the

MDA we will derive the inference updates for all the model’s variables.

4.4 Deriving a Fully Natural Gradient Scheme for

HetMOGP model with LMC

This section describes how to derive the FNG updates for optimising the HetMOGP

model based on an LMC. We first detail how to induce an exploratory distribution

over the hyper-parameters and inducing points, then we write down the MDA for the

model and derive the update equations. Later on, we get into specific details about

the algorithm’s implementation.

4.4.1 An Exploratory Distribution for HetMOGP with LMC

As we previously mentioned in section 3.6.1, the kernel hyper-parameters and inducing

points of the a sparse variational GP model have usually been treated as deterministic

variables. In similar way to the CCGP model, here we adopt the VO perspective as

a mechanism to induce stochasticity over such variables, for gaining exploration that

allows us to find better solutions during the inference process (Staines and Barber,

2013). Therefore, we define and connect random real vectors to the variables through

a link function φ(·) as follows: for the inducing points z = θz, for the kernel hyper-

parameters lkern = exp(θL) with θL = [θ>L1
, ...,θ>LQ

]> ∈ RQP×1̧ , and for the vector of

LCC w = θw, that are used to generate the LPFs in Eq. (4.2). We have defined the

real random vectors θZ ∈ RQMP×1, θLq ∈ RP×1 and θw ∈ RQJ×1 to link the set of

inducing points, the kernel hyper-parameters per latent function uq(·), and the vector

w of LCCs, respectively. We cluster the random vectors defining θ = [θ>z ,θ
>
L ,θ

>
w]> ∈

R(QMP+QP+QJ)×1 to refer to all the parameters in a single variable. Having defined the

previous relations, we can specify an exploratory distribution q(θ) := N (θ|µD ,ΣD)

for applying the VO framework from Eq. (2.2), though for our case the objective to

1Each marginal posterior derives from: q(fd,j) =
∫
p(fd,j |u)q(u)du.
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bound is L̃, already derived in Eq. (4.5) for the HetMOGP with an LMC. Therefore

our VO bound is defined as follows:

F̃ = Eq(θ)

[
L̃
]

+ DKL(q(θ)||p(θ)), (4.7)

where p(θ) = N (θ|0, λ−1
1 I) is a Gaussian distribution with precision λ1 (Khan et al.,

2017b).

4.4.2 Mirror Descent Algorithm for the HetMOGP with LMC

With the aim to minimise the VO objective in Eq. (4.7), we take advantage of the

MDA formulation from Eq. (2.5), which allow us to derive closed-form updates for

fitting the parameters and hyper-parameters of the model. We use the parametrisation

in the mean-parameter space of the distributions q(uq) and q(θ) by defining ρq =

{mq,mqm
>
q + Vq} and ηD = {µD ,µDµD>+ ΣD}. Since the HetMOGP model can be

seen as a generalisation of the CCGP model to the context of multiple heterogeneous

outputs, then we can express the MDA exactly as the Eq. (3.19) previously derived

for the CCGP model.

4.4.3 Fully Natural Gradient Updates

Given that the MDA for the HetMOGP with LMC is exactly the same as the one

derived in Eq. (3.19) for the CCGP model, then by solving for such a MDA we obtain

the following FNG updates:

ΣD−1
t+1 = ΣD−1

t + 2αt∇̂ΣD F̃t (4.8)

µD
t+1 = µD

t − αtΣD
t+1∇̂µD F̃t + γtΣD

t+1ΣD−1
t (µD

t − µD
t−1) (4.9)

V−1
q,t+1 = V−1

q,t + 2βt∇̂VqF̃t (4.10)

mq,t+1 = mq,t − βtVq,t+1∇̂mqF̃t (4.11)

+ υtVq,t+1V
−1
q,t (mq,t −mq,t−1),

where αt = α̃t/(1−γ̃t), βt = β̃t/(1−υ̃t), γt = γ̃t/(1−γ̃t) and υt = υ̃t/(1−υ̃t) are positive

step-size parameters. It is worth noticing, that the main difference when applying the

equations above, either for CCGP model or for HetMOGP with LMC, relies on the

influence of the gradients; the CCGP would be influenced by only one output (D = 1),

while the HetMOGP with LMC would be influenced by the multiple heterogeneous

outputs; see Appendix F for details on the gradients derivation.
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4.5 Implementation

The implementation of the FNG scheme for the HetMOGP model with LMC follows

the same procedure of chapter 3.7; where, in order to alleviate the complexity issues

of inverting the covariance matrix ΣD , we assume ΣD = diag(σD2), for which σD is a

vector of standard deviations, and diag(σD2) represents a matrix with the elements of

σD2 on its diagonal. Also, we estimate the Hessian ∇̂2
θθL̃, associated to the gradient

∇̂ΣD F̃ in Eq. (4.8), through the Gauss-Newton approximation ∇̂2
θθL̃ ≈ ∇̂θL̃ ◦ ∇̂θL̃

(Bertsekas, 1999; Khan et al., 2017b), and alternatively express the updates of Eq.

(4.8) and (4.9) as,

pD
t+1 = (1− αt) pD

t + αtEq(θ)

[
∇̂θL̃ ◦ ∇̂θL̃

]
(4.12)

µD
t+1 = µD

t − αt(pD
t+1 + λ11)−1 ◦ ∇̂µD F̃ (4.13)

+ γt(pD
t + λ11) ◦ (pD

t+1 + λ11)−1 ◦
(
µD

t − µD
t−1

)
,

where ∇̂µD F̃ = (Eq(θ)

[
∇̂θL̃

]
+ λ1µD

t) and pD
t := σD−2

t − λ11, where 1 is a vector

of ones. It is worth mentioning that here, the computational complexity is reduced,

from O((QMP + QP + QJ)3) to O(QMP + QP + QJ), as in the CCGP model,

but the total number of LPFs is influenced by all D heterogeneous outputs; i.e., for

the HetMOGP, J =
∑D

d=1 Jd, where Jd accounts for the number of latent functions

necessary to parametrise the d-th likelihood as per section 4.1. See Appendix G for a

pseudo-code implementation of the algorithm.

4.6 Predictive Distribution

In order to make predictions with the HetMOGP model with LMC, it is necessary

to compute the following distribution: p(y∗|y) ≈
∫
p(y∗|f∗)q(f∗)df∗, where q(f∗) =∏D

d=1

∏Jd
j=1 q(fd,j,∗). Given that we have introduced a variational distribution q(θ) over

all hyper-parameters and inducing points of the model, we could apply a fully Bayesian

treatment when calculating q(fd,j,∗), i.e., q(fd,j,∗) =
∫
p(fd,j,∗|u,θ)q(u)q(θ)dθdu (Rossi

et al., 2021). In practice, we found that q(θ)’s covariance converged to very small

values, in general diag(σD2) ≤ 10−15, and almost all the uncertainty information was

concentrated on q(u)’s covariance. Since making predictions with the equations above

becomes computationally expensive and most of the uncertainty is represented by the

distribution q(u), we can trade-off the computation by using the MAP solution for

q(θ) and completely integrating over the remaining distribution as follows: q(fd,j,∗) =
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∫
p(fd,j,∗|u,θ = µD)q(u)du. When solving these integrals we arrive to exactly the same

solutions in Eq. (4.6), where we simply have to evaluate the matrix covariances Kfd,j,∗u

and Kfd,j,∗fd,j,∗ , all at the new inputs X∗.

4.7 Experiments

In this section, we explore the performance of the proposed FNG method for jointly

optimising all variational parameters, hyper-parameters and inducing points. We also

test the hybrid (HYB) method proposed by Salimbeni et al. (2018), and compare the

performance against Adam and SGD methods. We run experiments on different toy

and real datasets, for all datasets we use a splitting of 75% and 25% for training and

testing, respectively. The experiments consist on evaluating the method’s performance

when starting with 20 different initialisations of q(θ)’s parameters to be optimised. We

report the NELBO shown in Eq. (4.5) over the training set, and the NLPD error for the

test set; this error metric takes into account the predictions’ uncertainty (Quiñonero-

Candela et al., 2006).

4.7.1 Optimising the HetMOGP with LMC on Toy Data

We are interested in looking at the performance of HetMOGP with LMC when increas-

ing the number of outputs, which implies rising also the heterogeneity of the output

data. Given that the inducing points have the same input space dimensionality and

strongly affect the performance of sparse MOGPs, we are also interested in assessing

the behaviour when increasing the input space dimensionality. For all the toy data

examples we define an input space X ∈ [0, 1]N×P with N = 2 × 103 observations, we

analyse a set of different dimensions P = {1, 2, 3, 4, 5, 10}. We assume a number of

Q = 3 with an EQ kernel kq(·, ·), and the inducing points Zq ∈ RM×P , with M = 80.

We run the experiments using mini-batches of 50 samples at each iteration, and we use

one sample to approximate the expectations w.r.t q(θ) in Eq. (4.7). Below we describe

the characteristics of each toy dataset.

Toy Data 1 (T1): the first toy example consists of three outputs D = 3; the first out-

put is y1 ∈ R, the second y2 ∈ [0, 1] and the third y3 ∈ {0, 1}. We use a Heteroscedastic-

Gaussian (HetGaussian), a Beta and Bernoulli distribution as the likelihoods for each

output, respectively.

Toy Data 2 (T2): the second toy example consists of five outputs D = 5, where
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the first three are exactly the same ones as T1 with the same likelihoods and the two

additional ones are y4 ∈ [0,∞], and y5 ∈ [0,∞]. We use a Gamma and an Exponential

distribution for those latter outputs, respectively.

Toy Data 3 (T3): the third toy example consists of ten outputs D = 10, where the

data type of the first five outputs {yd}5
d=1 is exactly the same as T2. Also, the last five

outputs {yd}10
d=6 share the same data type of the outputs in T2. We use the following

ten likelihoods: HetGaussian, Beta, Bernoulli, Gamma, Exponential, Gaussian (with

σlik = 0.1), Beta, Bernoulli, Gamma and Exponential. The data of the first five outputs

is not the same as the last ones since the distributions of the generative model depend

on the LCCs wd,j,q that generate the LPFs in Eq. (4.2). 2

In order to visualise the convergence performance of the methods, we show results

for T2 which consists of five outputs, where all of them are used in T3 and three of

them in T1. We focus on the example for which P = 10 as the dimensionality. Figure

4.1 shows the behaviour of the different algorithms over T2, where its top left sub-figure

shows the average convergence of the NELBO after running 20 different initialisations.

The figure shows that our FNG method tends to find a better local optima solution

that minimises the NELBO followed by the HYB, Adam and SGD. The other sub-

figures titled from Out1 to Out5 show the model’s average NLPD achieved by each of

the methods over the test set. From Figure 4.1 we can notice that the SGD method

does not progress much through the inference process achieving the poorest perfor-

mance along the diverse outputs. The Adam method presents a big variance along

the different outputs, showing its ability to explore feasible solutions, but arriving at

many different poor local minima. Particularly, for the output 3, a Bernoulli likeli-

hood, the method hardly moves from its initial NLPD value, showing in the figure a

tiny variance without much improvement. This means the method lacks exploration

and rapidly becomes trapped in a very poor local minima. The HYB method in general

shows smaller error bars than Adam and SGD. Indeed, it reaches low NLPD results

for Gamma, HetGaussian and Exponential likelihoods, with similar behaviour to our

FNG method in the two latter distributions. Although, it is difficult for HYB to

achieve a proper NLPD performance on the distributions Beta and Bernoulli; though

for the Beta distribution presents boxes with big variance meaning that it arrives to

many different solutions, the NLPD’s mean shows a trending to weak solutions. For

the Bernoulli, it is deficient exploring, so it also ends up in poor solutions. Our FNG

2The code with all toy configurations is publicly available in the repository:

https://github.com/juanjogg1987/Fully Natural Gradient HetMOGP
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Figure 4.1: Performance of the different inference methods on the T2

dataset for P = 10 using 20 different initialisations. The top left sub-figure

shows the average NELBO convergence. The other sub-figures show the

box-plot trending of the NLPD over the test set for each output. The box-

plots at each iteration follow the legend’s order from left to right: SGD,

Adam, HYB and FNG. The isolated diamonds that appear in the outputs’

graphs represent “outliers”.
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method is consistent along the diverse outputs, usually tending to richer local minima

solutions than the other methods. For the Beta and Gamma outputs, FNG makes a
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Figure 4.2: Trending of the Mean NLPD along outputs for 20 different

initialisations. Performance over: T1 (left), T2 (middle) and T3. Each

sub-figure summarises the Mean NLPD of SGD, Adam, HYB and FNG

methods along dimensions P = {1, 2, 3, 4, 5, 10}. The box-plots at each P

follow the legend’s order.

confident progress and even shows some “outliers” below its boxes which means that

our method has the ability to eventually provide better solutions than the other meth-

ods. For the Bernoulli distribution, Figure 4.1 shows that FNG presents big variance

boxes, but with a tendency to much better solutions than the other methods. This big

variance effect let us confirm that our proposed method actually takes advantage of

the stochastic exploration induced over the model hyper-parameters for avoiding poor

local minima solutions.

Figure 4.2 summarises the behaviour along the different dimensions P for each

toy example. We notice from Figure 4.2 that our FNG method achieves better test

performance along distinct dimensions for all toy examples, followed by the HYB,

Adam and SGD methods, though HYB presents better results than FNG when P = 1.

All methods in general tend to present large variances for T1 which consists of three

outputs, although this effect is reduced when the number of outputs is increased. Our

FNG in general presents the smallest variance showing its ability to find better local

minima even with many outputs. When increasing the dimensionality, the methods

tend to degrade their performance, but the less sensitive to such behaviour are the

HYB and FNG methods, where the latter, in general achieves the lowest mean NLPD

along outputs for the different toy examples. Apart from the heterogeneous toy data

examples shown in this work, we also ran experiments for dimensions higher than

P = 10, although we noticed that all methods behaved similar except for the SGD
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which demands a very small step-size parameter that makes it progress slowly. We

believe that the toy examples become difficult to control in such dimensions and the

data observations become broadly scattered. We also explored experiments increasing

the mini-batch size at each iteration, we noticed the gradient’s stochasticity is reduced

helping to increase the convergence rates of all methods, but the ones using NG perform

better. When reducing the mini-batch size, our FNG method usually performs better

than the others probably due to the fact that it additionally exploits the probability

distribution q(θ), imposed over the hyper-parameters and inducing points.

4.7.2 Settings for Real Datasets Experiments

In this subsection we describe the different real datasets used for our experiments (See

Appendix J for information about the web-pages where we took the datasets from).

HUMAN Dataset: the human behaviour dataset (HUMAN, N1, N2 = 5× 103, N3 =

21× 103, P = 1, Nd associates the number of observations per output) contains infor-

mation for monitoring psychiatric patients with a smartphone app. It consists of three

outputs; the first monitors use/non-use of WhatsApp, y1 ∈ {0, 1}, the second repre-

sents distance from the patient’s home location, y2 ∈ R, and the third accounts for

the number of smartphone active apps, we rescale it to y3 ∈ [0, 1]. We use a Bernoulli,

HetGaussian and a Beta distribution as the likelihoods for each output, respectively.

We assume Q = 5 latent functions.

LONDON Dataset: the London dataset (LONDON, N = 20 × 103, P = 2) is a

register of properties sold in London in 2017; it consists of two outputs; the first rep-

resents house prices with y1 ∈ R and the second accounts for the type of house. We

use two types (flat/non-flat) with y2 ∈ {0, 1}. We use a HetGaussian and Bernoulli

distribution as the likelihood for each output respectively. We assume Q = 3 latent

functions.

NAVAL Dataset: the naval dataset (NAVAL, N = 11× 103, P = 15) contains infor-

mation of condition based maintenance of naval propulsion plants. It consists of two

outputs: plant’s compressor decay state coefficient and turbine decay state coefficient.

We re-scaled both as y1, y2 ∈ [0, 1], and used a Beta and Gamma distribution as the

likelihood for each output respectively. We assume Q = 4 functions.

SARCOS Dataset: a seven degrees-of-freedom SARCOS anthropomorphic robot arm

data, where the task is to map from a 21-dimensional input space (7 joint positions,

7 joint velocities, 7 joint accelerations) to the corresponding 7 joint output torques
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(SARCOS, N = 44.5× 103, P = 21, D = 7). We use a HetGaussian distribution as the

likelihood for each output and assume Q = 3 functions.

MOCAP7 Dataset: a motion capture data for a walking subject (MOCAP7, N =

744, P = 1, D = 40). We use a HetGaussian distribution as the likelihood for each

output and assume Q = 3 functions. We refer to the dataset as MOCAP7 due to the

selection of the 7-th subject for the walking experiment.

For the first three datasets, the number of inducing points per latent function is M = 80

and for each function uq(·) we use an EQ kernel like Eq. (4.4). We run the experi-

ments using mini-batches of 50 samples at each iteration, and we use one sample to

approximate the expectations with regard to q(θ) in Eq. (4.7). For SARCOS we use

mini-batches of 200 due to its large number of observations, and given that MOCAP7

is not a large dataset we use mini-batches of 5 with M = 20. To select Q, we applied

a rule of thumb as follows: I. If D <= 5 set Q = J . We opted for this rule of thumb

as a way to allow the HetMOGP model to have a high flexibility for modelling the

data in presence of few outputs. II. if D > 5 set Q = 3. We chose this option for

not overloading the computational complexity in presence of many outputs, though by

setting Q = 3 we still can at least model low, medium and high length-scale resolutions

from a dataset (see Appendix I for details about the rule of thumb for setting Q and

the number Jd associated to each likelihood distribution).

4.7.3 Optimising the HetMOGP with LMC on Real Data

For this sub-section we explore our method’s behaviour over the HetMOGP with LMC

on HUMAN, LONDON, NAVAL, SARCOS and MOCAP7.

Figures 4.3 and 4.4 show the NELBO convergence over the training set, together

with the average NLPD performance over the test set for HUMAN, LONDON and

NAVAL data, respectively. We provide a merged NLPD along outputs for LONDON

and NAVAL (see Appendix J for an analysis of each specific output). With regard to

the convergence rate of the NELBO for HUMAN and LONDON datasets all methods

converge similarly. Nonetheless, for the NAVAL dataset, our FNG approach presents

a faster converge, followed by HYB and Adam; SGD remains without much progress

along the iterations.

For the HUMAN dataset, the SGD arrives at a better minimum than Adam, but

the Adam’s averaged NLPD is higher across outputs. HYB reaches consistent solu-

tions being better than Adam and SGD, not only in the training process but also in
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Figure 4.3: Performance of the diverse inference methods on the HUMAN

dataset using 20 different initialisations. The left sub-figure shows the av-

erage NELBO convergence of each method. The other sub-figures show the

box-plot trending of the NLPD over the test set for each output. The box-

plots at each iteration follow the legend’s order from left to right: SGD,

Adam, HYB and FNG. The isolated diamonds that appear in the outputs’

graphs represent “outliers”.



CHAPTER 4. HET-MOGP MODEL WITH LMC 59

0 200 400 600 800 1000

Iteration

105

106

107

108

109

1010

1011

1012

1013

A
v
e
r
g
e

N
E

L
B

O

Convergence of the Objective Function (LONDON)

SGD Adam HYB FNG

0 200 400 600 800 1000

Iteration

0.5

1.0

1.5

2.0

2.5

3.0

N
L

P
D

Outputs Merged (LONDON)

SGD Adam HYB FNG

0 200 400 600 800 1000

Iteration

−104

−103

−102

−101

−100
0

100

101

102

103

104

105

106

107

A
v
e
r
g
e

N
E

L
B

O

Convergence of the Objective Function (NAVAL)

SGD Adam HYB FNG

0 200 400 600 800 1000

Iteration

−1.0

−0.5

0.0

0.5

1.0

1.5

N
L

P
D

Outputs Merged (NAVAL)

SGD Adam HYB FNG

Figure 4.4: Performance of the diverse inference methods on the LON-

DON and NAVAL datasets using 20 different initialisations. Sub-figures

top-left and top-right correspond to LONDON; bottom-left and bottom-right

refer to NAVAL. For each dataset we show the average NELBO conver-

gence of each method and the box-plot trending of the NLPD over the test

set across all output. The box-plots at each iteration follow the legend’s or-

der from left to right: SGD, Adam, HYB and FNG. The isolated diamonds

that appear in the outputs’ graphs represent “outliers”.
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testing along the HetGaussian and Beta outputs. Though, the Bernoulli output limits

the overall performance of the method since there is not much improvement along the

iterations. Our FNG method also shows a steady performance along outputs, com-

monly arriving to solutions with lower NLPD than the other methods. Our method

presents the biggest variance for the Bernoulli output, implying strong exploration of

the solutions’ space for such likelihood, allowing it to reach the lowest average NLPD.

For the LONDON dataset, Adam converges to a richer minimum of the NELBO than

SGD. Moreover, the NLPD for Adam is, on average, better than the SGD. The HYB

and FNG arrive to a very similar value of the NELBO, both being better than Adam

and SGD. HYB and FNG methods attain akin NLPD metrics, but the average and

median trend of our approach is slightly better, being more robust to the initialisation

than HYB method. The NLPD performance for the NAVAL dataset shows in Figure

4.4 that the SGD method cannot make progress. We tried to set a bigger step-size, but

usually increasing it derived in numerical problems due to ill-conditioning of the co-

variance matrices. The methods Adam and HYB show similar NLPD boxes, but at the

end, Adam attains a slightly lower median with bigger variance than HYB. Regarding

the NLPD, our FNG method ends up with a larger variance than SGD, Adam and

HYB, but obtaining a much better mean and median trending than the others. Also,

our FNG shows that the upper bar of the NLPD box is very close to the interquartile

range, while the other methods present larger upper bars, this means that our FNG

method concentrates in regions that provide better predictive performance than the

other methods.

Figure 4.5 shows the performance achieved by the different optimisation methods

for SARCOS and MOCAP7 datasets. Since these datasets present a high number of

outputs we stacked the NLPD metric along all outputs. We can notice from the SAR-

COS experiment, in the first two sub-figures to the left, that SGD cannot improve much

during the inference process both for NELBO and NLPD. Adam and HYB converge

to the same local minima achieving the same average NELBO and NLPD trend, in

contrast to our FNG method which attains the lowest values showing a better perfor-

mance. Particularly in the SARCOS experiment, figures show how our method changes

suddenly, around iteration 600, probably escaping from the same local minima to which

Adam and HYB converged. For the MOCAP7’s experiment, the two sub-figures to the

right show that SGD slightly improves its performance in the inference process, while

Adam reaches a much better minimum for the average NELBO. Although, these for-

mer methods do not perform better than HYB and FNG. The HYB and FNG behave

similar before 500 iteration, but in the long term our FNG presents the lowest average
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Figure 4.5: Performance of the diverse inference methods on the SARCOS

and MOCAP7 datasets using 20 different initialisations for HetMOGP with

LMC. Sub-figures left and middle-left correspond to SARCOS; middle-right

and right refer to MOCAP7. For each dataset we show the average NELBO

convergence of each method and the box-plot trending of the NLPD over

the test set across all output. The box-plots at each iteration follow the

legend’s order from left to right: SGD, Adam, HYB and FNG. The isolated

diamonds that appear in the outputs’ graphs represent “outliers”.
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NELBO. Likewise, the NLPD shows that HYB presents a slightly better trend than

FNG at the early stages of the inference, but at the end, our FNG finds a better NLPD

metric.

4.7.4 Discussion

In practice we noticed that some likelihoods (e.g. HetGaussian, Gamma) tend to

strongly influence the value of the objective function, so the optimisers HYB, Adam and

SGD are prone to find solutions that focus on such kind of likelihoods, while neglecting

the others with less influence, for instance a Bernoulli or Beta as shown in Figure

4.1. On the other hand, our proposed scheme presents a more consistent performance

achieving richer solutions across the different types of outputs’ distributions. When

increasing the outputs’ size our FNG presented a consistent performance for TOY and

real datasets like SARCOS and MOCAP7. We realised that HYB method presents a

relevant performance for low input dimensionalities in comparison to SGD and Adam,

but when the input dimensionality increases its performance degrades as shown for

the TOY experiments when P > 1 and for the SARCOS experiment with P = 21.

So, our method is the least sensitive to reduce its performance when increasing the

input dimensionality, followed by the HYB and Adam methods. When using the SGD

method we had to set a very small step-size parameter, because using large step-sizes

makes the model to easily become ill-conditioned.

The VO bound in Eq. (4.7) can be seen as a fully Bayesian treatment of the

HetMOGP, where the model’s parameters and hyper-parameters follow a prior distri-

bution, where the positive constraint variables follow a Log-Normal distribution and

the non-constraint ones follow a Gaussian distribution. Our VO bound benefits from

the assumption of a Gaussian exploratory (or posterior) distribution for deriving in a

closed-form our FNG optimisation scheme. This scheme helps to find solutions that

directly improve the predictive capabilities of the HetMOGP model. For instance, since

the inducing points’ dimensionality is directly influenced by the input dimensionality,

we believe that applying exploration over them helps to improve the model perfor-

mance for high input dimensionalities as shown in the experiments. Although, a very

high dimensionality of the input space directly influences the complexity of our scheme.

It might be worth exploring alternatives to scale the algorithms for allowing the use

of the full covariance matrix, ΣD , with the aim to exploit full correlations between all

model’s hyper-parameters, and possibly improve its predictive capabilities.
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4.8 Summary

In this chapter, we have shown how a fully natural gradient scheme improves optimi-

sation of a heterogeneous MOGP model with LMC by generally reaching better local

optima solutions with higher test performance rates than HYB, Adam and SGD meth-

ods. We have shown that our FNG scheme provides rich local optima solutions, even

when increasing the dimensionality of the input and/or output space. In the next chap-

ter, we will provide an extension of the HetMOGP based on a convolution processes

model, rather than on the LMC approach. This HetMOGP with convolution processes

is a novel model extension since there are no former MOGP models with convolution

processes that involve stochastic variational inference, nor a model of heterogeneous

outputs that relies on convolution processes.



Chapter 5

Heterogeneous Multi-Output GPs

Model with Convolution Processes

In chapter 3, we introduced the CCGP model based on an LMC for generating the

LPFs. Then, in chapter 4, we described how the CCGP model becomes a HetMOGP

model in the context of multiple heterogeneous outputs, and derived a FNG scheme for

improving inference over such a model. In this chapter, we provide an extension of the

HetMOGP based on a Convolution Processes model (Boyle and Frean, 2005; Álvarez

and Lawrence, 2011), rather than on the LMC approach for generating the LPFs.

This is a novel contribution since there are no former MOGP models with convolution

processes that involve stochastic variational inference, nor a model of heterogeneous

outputs that relies on convolution processes.

The CPM relies on solving convolution integrals between smoothing kernels and

GP priors. The construction of the HetMOGP with CPM includes multiple smoothing

kernels that involve an additional set of hyper-parameters. Thus, in comparison to the

model in chapter 4 based on an LMC, here, the additional smoothing kernels’ hyper-

parameters make this extension of HetMOGP with CPM even more prone to suffering

from a strong conditioning; i.e., a strong conditioning between the model’s variational

parameters, the smoothing kernels’ hyper-parameters, the kernel hyper-parameters of

the GP priors and the inducing points. Therefore, we also provide a derivation of the

fully natural gradient scheme for optimising this new model extension.

64



CHAPTER 5. HET-MOGP MODEL WITH CONVOLUTION PROCESSES 65

5.1 The Convolution Processes Model

In the previous chapter, the generative process (or LMC) for correlating the LPFs

relied on an static mixture of independent Gaussian Processes, i.e., a particular output

function fd,j(x) simply depends on the values of the GP latent functions {uq(x)}Qq=1

specifically evaluated at the data observation x (Álvarez and Lawrence, 2011). In

contrast, in this section we describe the convolution processes model, a more powerful

way to correlate the LPFs that can be seen as a dynamic version of the LMC (Álvarez,

2011); i.e., a particular output function fd,j(x) depends on all the continuous values of

the GP latent functions, {uq(·)}Qq=1, as follows:

fd,j (x) =

Q∑

q=1

Rq∑

i=1

∫

X
Gi
d,j,q (x− r′)uiq (r′) dr′,

where uiq(x) are IID samples from Gaussian Processes uq(·) ∼ GP(0, kq(·, ·)) and each

Gd,j,q(·) represents a smoothing kernel (Boyle and Frean, 2005). Through the use

of smoothing kernels, we might, for instance, model two LPFs where one of them

represents a blurring version of the other; something not possible to achieve in the

static mixture of GPs performed by an LMC (Higdon, 2002). An important fact

of using convolution processes is that by convolving the latent Gaussian processes

{uiq(·)}Q,Rqq=1,i=1 with a smoothing kernel, it allows us to obtain also a Gaussian process.

By using the CPM we could model correlations between LPFs that present different

length-scales, this is due to having possible convolution operations where the latent

GPs, uiq(·), could be smoothed for a particular fd,j (x), but not necessarily for other

(Álvarez, 2011).

We can notice from the equation above that the computation of the LPFs, fd,j (x),

depends on all the possible values of {uiq(·)}Q,Rqq=1,i=1 evaluated at all possible inputs

r′, that is the why we refer as a dynamic version of the LMC. In this chapter we

aim to model the LPFs of the HetMOGP using convolution processes. Therefore, the

HetMOGP model with convolution processes follows the same likelihood defined in Eq.

(4.1), but each fd,j(xn) is considered a LPF that comes from a convolution processes

model. We will use Rq = 1 as in the LMC for simplicity in the following derivations.
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5.2 The Inducing Points Method

With the purpose to reduce the computational complexities involved in GPs we follow

the inducing variables framework by augmenting the probability space as,

p(f |ǔ)p(ǔ) =
D∏

d=1

Jd∏

j=1

p(fd,j|ǔd,j)p(ǔd,j), (5.1)

with p(ǔ) =
∏D

d=1

∏Jd
j=1 p(ǔd,j), and p(f |ǔ) =

∏D
d=1

∏Jd
j=1 p(fd,j|ǔd,j), where the vector

ǔ = [ǔ>1,1, ..., ǔ
>
1,J1

, ..., ǔ>D,JD ]> ∈ RJM×1 is built from the inducing variables ǔd,j =

[fd,j(z
(1)
d,j), ..., fd,j(z

(M)
d,j )]> ∈ RM×1. As it can be seen, these inducing variables are

additional evaluations of the functions fd,j(·) at each set of inducing points Zd,j =

[z
(1)
d,j , ..., z

(M)
d,j ]> ∈ RM×P , thus the set of all inducing points can be represented as z =

[vec(Z1,1)>, ..., vec(Z1,J1)
>, ..., vec(ZD,JD)>]> ∈ RJMP×1. Using the properties of Gaus-

sian distributions, we can express, p(fd,j|ǔd,j) = N (fd,j|Afd,j ǔd,j
ǔd,j, Q̄fd,j), p(ǔd,j) =

N (ǔd,j|0,Kǔd,j
), with the following definitions: Afd,j ǔd,j

= Kfd,j ǔd,j
K−1

ǔd,j
, Q̄fd,j =

Kfd,jfd,j − Q̌fd,j , Q̌fd,j = Kfd,j ǔd,j
K−1

ǔd,j
Kǔd,jfd,j , Kfd,j ǔd,j

= K>ǔd,jfd,j
. Here the covari-

ance matrix Kfd,jfd,j ∈ RN×N is built from the evaluation of all pairs of input data

X ∈ RN×P in the covariance function,

cov [fd,j (x) fd′,j′ (x
′)] =

Q∑

q=1

∫

X
Gd,j,q (x− r)

∫

X
Gd′,j′,q (x′ − r′) kq(r, r

′)drdr′,

where the cross covariance matrix Kfd,j ǔd,j
∈ RN×M is formed by evaluations of the

equation above between inputs X and Zd,j, and the matrix Kǔd,j
∈ RM×M is also

built from evaluations of the equation above between all pairs of inducing points Zd,j

respectively. We can compute the above covariance function analytically for certain

forms of Gd,j,q (·) and kq(r, r
′). In this thesis, we follow the work by Álvarez and

Lawrence (2011) by defining the kernels in the EQ form of Eq. (4.4): kq (x,x′) =

E(τ |0,Lq) and Gd,j,q(τ ) = Sd,j,qE(τ |0,κd,j), where Sd,j,q is a weight associated to the

LPF indexed by fd,j(·) and to the latent function uq(·), and κd,j is a diagonal covariance

matrix particularly associated to each fd,j(·); κd,j can be seen as a matrix of length-

scales in its diagonal. Therefore, when solving for the cov [fd,j (x) fd′,j′ (x
′)] above we

end up with the closed-form,

kfd,j ,fd′,j′ (τ ) =

Q∑

q=1

Sd,j,qSd′,j′,qE(τ |0,Pd,j,d′,j′,q), (5.2)

where Pd,j,d′,j′,q represents a diagonal matrix of length-scales, Pd,j,d′,j′,q = κd,j +κd′,j′+

Lq.
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5.3 The Evidence Lower Bound

We now introduce the negative ELBO for the HetMOGP that uses convolution pro-

cesses. It follows as

L̃ =
N∑

n=1

D∑

d=1

Eq(fd,1)···q(fd,Jd ) [gd,n] +
D∑

d=1

Jd∑

j=1

DKL (q(ǔd,j)‖p(ǔd,j)) , (5.3)

where gd,n = − log p(yd,n|ψd,1(xn), ..., ψd,Jd(xn)) is the NLL function associated to each

output, and we have set a tractable posterior q(f , ǔ) = p(f |ǔ)q(ǔ), where p(f |ǔ) is

already defined in Eq. (5.1), q(ǔ|m,V) =
∏D

d=1

∏Jd
j=1 q(ǔd,j), and each q(ǔd,j) =

N (ǔd,j|md,j,Vd,j) is a Gaussian distribution with mean md,j ∈ RM×1 and covariance

Vd,j ∈ RM×M (see Appendix E for details on the ELBO derivation). The above

expectation is computed w.r.t the marginals,

q(fd,j) =

∫
p(fd,j|ǔd,j)q(ǔd,j)dǔd,j = N (fd,j|m̃fd,j , Ṽfd,j), (5.4)

with the following definitions, m̃fd,j := Afd,j ǔd,j
md,j, Ṽfd,j := Kfd,jfd,j + Afd,j ǔd,j

(Vd,j −
Kǔd,j

)A>fd,j ǔd,j
. The objective derived in Eq. (5.3) for the HetMOGP model with

convolution processes requires fitting the parameters of each posterior q(ǔd,j), the in-

ducing points z, the kernel hyper-parameters lkern, the smoothing-kernels’ length-scales

κsmooth = [diag(κ1,1)>, ..., diag(κ1,J1)
>, ..., diag(κD,JD)>]> ∈ RJP×1

+ and the vector of

weights sq = [S1,1,q, ..., S1,J1,q, ..., SD,JD,q]
> ∈ RJ×1 associated to each smoothing-kernel.

In the interest of fitting those variables in a FNG scheme, in the following section we

will explain how to apply the VO perspective over Eq. (5.3) so as to introduce stochas-

ticity over z, lkern, κsmooth and sq; and through the MDA we will derive closed-form

updates for all parameters of the model.

5.4 Deriving a Fully Natural Gradient Scheme

This section describes how to derive the FNG updates for optimising CPM scheme

of the HetMOGP model. We first detail how to induce an exploratory distribution

over the hyper-parameters and inducing points, then we write down the MDA for the

model and derive the update equations. Later on, we get into specific details about

the algorithm’s implementation.
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5.4.1 An Exploratory Distribution for the HetMOGP with

CPM

The case of the CPM has the same kernel hyper-parameters lkern = exp(θL) and in-

ducing points z = θz, as the LMC in chapter 4, but differs from it since the smoothing

kernels involve a new set of hyper-parameters, the smoothing-kernels’ length-scales.

The way we define and connect the new random real vectors is as follows: κsmooth =

exp(θκ), with θκ = [θ>κ1,1
, ...,θ>κ1,J1

, ...,θ>κD,JD
]> ∈ RJP×1, where θκd,j

∈ RP×1 is

a real random vector associated to each smoothing kernel Gd,j,q(·) from Eq. (5.2).

Also, instead of the combination coefficients w of the LMC, for the CPM we have

an analogous set of weights from the smoothing-kernels in Eq. (5.2), s = θs, where

s = [s>1 , ..., s
>
Q]> ∈ RQJ×1 is a vector that groups all the weights that belong to the

smoothing kernels. Thus, the real random vectors for the CPM are: θz ∈ RJMP×1,

θL ∈ RQP×1, θκ ∈ RJP×1, and θs ∈ RQJ×1. We group the random vectors by defining

θ = [θ>z ,θ
>
L ,θ

>
κ ,θ

>
s ]> ∈ R(JMP+QP+JP+QJ)×1. Notice that, for the CPM, the dimen-

sionality of the real random vector θ differs from the one for LMC, this is due to

the way the inducing variables are treated in subsection 5.2 and the additional set of

smoothing-kernel’s hyper-parameters. In the same way as defined for the LMC, we

specify an exploratory distribution q(θ) := N (θ|µC ,ΣC ) and follow the VO approach

in Eq. (2.2) (Staines and Barber, 2013). In this case the objective to bound is the one

derived for the CPM, i.e., the new bound, F̃ , is exactly the same as Eq. (4.7), but

using the corresponding L̃ from Eq. (5.3).

5.4.2 Mirror Descent Algorithm for the HetMOGP with CPM

For the HetMOGP with CPM, we follow a similar procedure carried out for the LMC.

We use the MDA in Eq. (2.5) and the mean-parameters of distributions q(ǔd,j) and q(θ)

defining ρd,j = {md,j,md,jm
>
d,j + Vd,j} and ηC = {µC ,µCµC> + ΣC} for minimising

Eq. (4.7). Then, our algorithm for the CPM can be written as:

ηC
t+1, {ρd,j,t+1}D,Jdd=1,j=1 =

arg min

ηC , {ρd,j}D,Jdd=1,j=1

〈ηC , ∇̂ηC F̃t〉+
1

α̃t
KL(θ)t −

γ̃t
α̃t

KL(θ)t−1

(5.5)

+

D,Jd∑

d,j=1

[
〈ρd,j, ∇̂ρd,j

F̃t〉+
1

β̃t
KL(ǔd,j)t −

υ̃t

β̃t
KL(ǔd,j)t−1

]
,
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where we have used the same variables β̃t, α̃t, υ̃t, and γ̃t for the step-size parameters

as in the LMC. This for the sake of a unified derivation of the FNG updates.

5.4.3 Fully Natural Gradient Updates

We can solve for Eq. (5.5) by computing derivatives w.r.t ηC and ρd,j, and setting to

zero (Khan and Lin, 2017). This way we obtain results similar to Eq. (2.6) and (2.7),

and arrive to our FNG updates:

ΣC−1
t+1 = ΣC−1

t + 2αt∇̂ΣC F̃t (5.6)

µC
t+1 = µC

t − αtΣC
t+1∇̂µC F̃t + γtΣC

t+1ΣC−1
t (µC

t − µC
t−1) (5.7)

V−1
d,j,t+1 = V−1

d,j,t + 2βt∇̂Vd,j
F̃t (5.8)

md,j,t+1 = md,j,t − βtVd,j,t+1∇̂md,j
F̃t (5.9)

+ υtVd,j,t+1V
−1
d,j,t(md,j,t −md,j,t−1),

where αt = α̃t/(1 − γ̃t), βt = β̃t/(1 − υ̃t), γt = γ̃t/(1 − γ̃t) and υt = υ̃t/(1 − υ̃t) are

positive step-size parameters (see Appendix E for details on the gradients derivation).

5.5 Implementation

Similar to the implementation used for the CCGP and HetMOGP with LMC, here the

implementation of our FNG for the HetMOGP with CPM depends on inverting the

covariance matrix ΣC in Eq. (5.6). Such a task involves a computational complex-

ity of O((JMP + QP + JP + QJ)3), where the terms with the number of inducing

points and/or input dimensionality tend to dominate the complexity. Also, the gradient

∇̂ΣC F̃ involves computing the Hessian ∇̂2
θθL̃ which can be computationally expensive

and prone to suffer from non-positive definiteness. In order to mitigate the complexity

issues mentioned above, we assume ΣC = diag(σC 2), where σC is a vector of stan-

dard deviations, and diag(σC 2) represents a matrix with the elements of σC 2 on its

diagonal. With the aim to adopt a stronger numerical stability by preventing that

σC 2 becomes negative, we approximate the Hessian by means of the Gauss-Newton

approximation ∇̂2
θθL̃ ≈ ∇̂θL̃ ◦ ∇̂θL̃ (Bertsekas, 1999; Khan et al., 2017b). Thus, for

the implementation we use the same approach of Eq. (4.12) and (4.13), where by using

diag(σC 2) we reduce the computational complexity from O((JMP +QP +JP +QJ)3)

to O(JMP +QP + JP +QJ). See Appendix G for a pseudo-code of the algorithm.
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5.6 Predictive Distribution

In a similar way to chapter 4.6, if we want to make predictions with the HetMOGP

with a CPM, it is necessary to solve: p(y∗|y) ≈
∫
p(y∗|f∗)q(f∗)df∗, where q(f∗) =∏D

d=1

∏Jd
j=1 q(fd,j,∗). Given that we have introduced a variational distribution q(θ) over

all hyper-parameters and inducing points of the model, we could apply a fully Bayesian

treatment when calculating q(fd,j,∗) =
∫
p(fd,j,∗|ǔ,θ)q(ǔ)q(θ)dθdǔ. In practice, we

found that q(θ)’s covariance converged to very small values, in general diag(σC 2) ≤
10−15, and almost all the uncertainty information was concentrated on q(ǔ)’s covari-

ance. Since making predictions with the equations above becomes computationally

expensive and most of the uncertainty is represented by the distribution q(ǔ), we can

trade-off the computation by using the MAP solution for q(θ) and completely integrat-

ing over the remaining distribution as follows: q(fd,j,∗) =
∫
p(fd,j,∗|ǔ,θ = µC )q(ǔ)dǔ.

When solving these integrals, we arrive to exactly the same solutions in Eq. (5.4),

where we simply have to evaluate the matrix covariances Kfd,j,∗ǔ and Kfd,j,∗fd,j,∗ , all at

the new inputs X∗.

5.7 Experiments

In this section, we explore the performance of the proposed FNG method for jointly

optimising all variational parameters, hyper-parameters and inducing points. We also

test the hybrid (HYB) method proposed by Salimbeni et al. (2018), and compare the

performance against Adam and SGD methods. We run experiments on different toy

and real datasets, for all datasets we use a splitting of 75% and 25% for training and

testing respectively. The experiments consist on evaluating the method’s performance

when starting with 20 different initialisations of q(θ)’s parameters to be optimised.

We report the NELBO shown in Eq. (5.3), for HetMOGP model with CPM, over the

training set, and the NLPD error for the test set; this error metric takes into account

the predictions’ uncertainty (Quiñonero-Candela et al., 2006). Information about the

datasets used in this section can be consulted in section 4.7.2.

5.7.1 Optimising the HetMOGP with CPM on Real Data

In this subsection, we show the performance of our FNG over the convolved MOGP for

the model with heterogeneous likelihoods. We use the datasets SARCOS and MOCAP7

with a number of outputs of D = 7 and D = 40, respectively. Figure 5.1 shows the
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Figure 5.1: Performance of the diverse inference methods on the SARCOS

and MOCAP7 datasets using 20 different initialisations for HetMOGP with

CPM. For each dataset we show the average NELBO convergence of each

method and the box-plot trending of the NLPD over the test set across all

outputs. The box-plots at each iteration follow the legend’s order from left

to right: SGD, Adam, HYB and FNG. The isolated diamonds that appear

in the outputs’ graphs represent “outliers”.
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performance of the different optimisation methods for fitting the HetMOGP with CPM

over such datasets. Similarly to Figure 4.5, we put together the NLPD metric across all

outputs. The SARCOS’ experiment shows that SGD does not improve much during

the optimisation process. Adam and HYB seem to converge to a similar minimum

value since the average NELBO and NLPD look very much alike. Otherwise, our FNG

method shows to perform much better than the other methods achieving the lowest

average NELBO. Also the NLPD trend exhibits a more robust performance over the

test set. For MOCAP7, HYB and FNG behave similarly during the optimisation

process showing almost the same average NELBO trend. Though, the former method

presents a better behaviour when converging at the end. Our FNG method shows a

better NLPD performance during the optimisation, but at the end HYB reaches a lower

NLPD metric. Adam method accomplishes a poor minima in comparison to HYB and

FNG, though a better one than SGD. We can notice from Figures 4.5 and 5.1, both

experiments over SARCOS and MOCAP7, that the FNG presents similar convergence

patterns in both the LMC and CPM, reaching better solutions than SGD and Adam. In

comparison to HYB method, FNG was better for the SARCOS dataset, but presented

a similar behaviour to HYB for the MOCAP7 dataset. The next sub-section compares

the performance between these two MOGP prior schemes.

5.7.2 Comparing MOGP priors for heterogeneous likelihoods

In this subsection we compare the MOGP models for heterogeneous likelihoods: the

one based on the LMC (chapter 4) and the one based on convolution processes. Table

5.1 presents the different NLPD metrics over a test set when using our proposed FNG

scheme. Here, we make use of the real datasets from previous sections (see section

4.7.2 for details about the datasets), and we have additionally included two datasets

for these experiments:

TRAFFIC Dataset: a record of vehicles traffic, it contains a per-day-number of vehi-

cles passing by the main roads and streets of London city (TRAFFIC, N = 1712, P =

3, D = 4). We use a Poisson likelihood per each output of TRAFFIC and assume

Q = 4 latent functions.

MOCAP9 Dataset: a motion capture data for a running subject (MOCAP9, N =

744, P = 1, D = 20). We use a HetGaussian distribution as the likelihood for each

output and assume Q = 3 functions. We refer to the dataset as MOCAP9 due to the

selection of the 9-th subject for the running experiment.
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Table 5.1: NLPD Performance of the Heterogeneous Schemes.

LMC CPM

Dataset Median Mean ± 0Std Median Mean ± 0Std

LONDON 1.025 01.012 ± 00.331 0.986 00.983 ± 00.396

NAVAL -0.310 0-0.318 ± 00.475 -0.429 0-0.454 ± 00.527

HUMAN 0.596 00.646 ± 00.764 0.330 00.529 ± 00.807

SARCOS 0.684 00.618 ± 00.581 0.096 00.169 ± 00.605

MOCAP9 0.752 00.774 ± 00.297 1.101 01.172 ± 00.386

MOCAP7 1.344 01.344 ± 00.170 1.078 01.141 ± 00.833

TRAFFIC 72.762 69.947 ± 25.466 68.214 74.866 ± 35.775

Table 5.1 shows that the CPM in general outperforms the LMC for the different real

datasets used in our experiments. The NLPD performance, for almost all datasets,

shows a considerable improvement when using the convolutional approach, only for

MOCAP9 the CPM did not present an improvement over the LMC. The NLPD metric

for most of the datasets presents a median very close to the mean, unlike the HUMAN

dataset which its mean differs much to the median, though having the median a better

trend. Also, we can observe from the Table that generally the standard deviation

is higher for the CPM. This is probably due to the additional hyper-parameter set,

i.e., the length-scales associated to each smoothing kernel which introduce a larger

parameters’ space to be explored.

5.7.3 Discussion

Through the different experiments, we could observe that our FNG is a suitable scheme

for training another type of MOGP model like the CPM. Indeed, our experiments

showed that the CPM can also be trained under a SVI attaining better performance

than a HetMOGP based on a LMC. The new HetMOGP model based on convolution

processes differs from the original one based on a LMC in the way the inducing variables

are introduced. For the LMC, the inducing variables were additional evaluations of the

functions uq(·), while for the CPM the inducing variables are additional evaluations

of the functions fd,j(·). We implemented the version of CPM using the same style of

inducing variables as the LMC though, in practice, we realised that the assumption

commonly used in the literature for the posterior, i.e., q(f ,u) = p(f |u)q(u) is not

sufficiently flexible to fit the LPFs and limits the SVI implementation. Therefore, we
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opted for the inducing variables procedure where ǔd,j(·) = fd,j(·), which does support

the assumption q(f , ǔ) = p(f |ǔ)q(ǔ).

5.8 Summary

In this chapter, we have provided a novel extension of a stochastic scalable HetMOGP

model based on convolution processes and derived a fully natural gradient scheme for

improving optimisation of such a model. We have shown in the experiments that our

FNG scheme reached better local optima solutions with higher test performance rates

than HYB, Adam and SGD methods for the HetMOGP model with a CPM. We have

provided comparative results between the two types of GP priors for generating the

LPFs: the HetMOGP with LMC versus the HetMOGP with a CPM introduced in this

chapter. In the next chapter, we will focus on a practical implementation that consists

on modelling the citizens mobility in the Chinese city of Guangzhou. To this end, we

make use of the CCGP model in conjunction with a Zero-inflated Poisson likelihood

to deal with counting data that involve problems of overdispersion.



Chapter 6

CCGP for Modelling Citizens

Mobility using a Zero-Inflated

Poisson Likelihood

In chapter 3, we introduced the CCGP model based on an LMC for generating the

LPFs. In chapter 4, we described how the CCGP model becomes a HetMOGP model

in the context of multiple heterogeneous outputs. Then, in chapter 5, we derived

an extension of the model termed as the HetMOGP model with a CPM for generat-

ing such LPFs. In this chapter, we aim to apply the CCGP models based on LMC

and CPM to the real problem of modelling the citizens mobility using a Zero-inflated

Poisson likelihood distribution. To the best of our knowledge, a Zero-inflated Poisson

likelihood has not been previously implemented together with a GP model. Unlike

previous works based on GPs that mainly model the mean parameter of the likelihood

with a unique GP prior (BinTayyash et al., 2020), here we propose that each of those

likelihood’s parameters are modelled as Latent Parameter Functions that follow cor-

related GPs as detailed in chapters 3, 4 and 5; thus, allowing a higher flexibility to

model heteroscedasticity. Also in this chapter, we derive an SVI framework that allows

us to use two types of convolution process models in the context of large datasets:

1. CCGP with a convolution processes model, here we particularly make use of the

alternative inducing variables, uq(·), in contrast to the chapter 5 where we used ǔd,j(·);
and 2. CCGP with Variational Inducing Kernels (VIKs) (Álvarez et al., 2010), this

VIKs approach is an alternative form to generate the LPFs through the convolution

processes formalism, by using a double convolution integral. It is worth mentioning

that former works have not developed GP models based on CPM and VIKs for other

75
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type of likelihoods beyond a Gaussian. In this work, we derive equations that can be

used for any type of likelihood. Particularly, we provide results for both CCGP models

based on CPM and VIKs for Zero-inflated Poisson and Poisson likelihoods.

Modelling the mobility of persons in a city depends on counting data that inher-

ently involve problems of overdispersion. Such overdispersion issues are caused by an

excess of observations with values at zero, i.e., zero-inflated counts (Zuur et al., 2009).

In order to tackle those issues, different types of machine learning models have focused

on fitting the excessive dispersion in data caused by the zero-inflation. For instance,

via Generalised Linear Models (GLMs) (Murphy, 2013) using likelihoods like the zero-

inflated Poisson (ZIP or ZI-Poisson) (Long and Freese, 2014; Roemmele, 2019), the

zero-inflated negative Binomial (ZINB) (Long and Freese, 2014), or the Tweedie distri-

bution (Smyth and Jørgensen, 2002; Bonat et al., 2018), etc. Though these models have

been useful to overcome the problems associated to the zero-inflation, they still lack of

the ability to appropriately model the spatio-temporal correlations of data associated

to mobility. A more powerful alternative for exploiting such spatio-temporal correla-

tions relies on Gaussian process models; nonetheless, few works have taken advantage

of their application to improve the forecasting for zero-inflated data. For instance, the

work by Kahilakoski (2011) proposes the use of GPs together with a Zero-inflated Pois-

son likelihood for the analysis of sickness absence; the authors discuss that GP models

might yield better predictive performance than hurdle models. Although they did not

implement them because of numerical stability issues. The authors in Hegde et al.

(2018) propose a zero-inflated formalism that consists of a Gaussian likelihood whose

mean follows a latent GP, and a separate ‘on-off’ probit-linked GP for generating a

sparse kernel that allows the model to predict zeros; this work lacks of capturing het-

eroscedastic noise (an inherent trait of counting data), this due to assuming a Gaussian

likelihood where the noise variance is considered constant along all the observations.

Also, in BinTayyash et al. (2020), the authors use a ZINB likelihood with a GP prior

to model temporal and spatial counting data from RNA-sequencing experiments; this

approach presents a unique latent function that models the mean of the Negative Bino-

mial term with a GP prior, while the dispersion parameter and the so called Michalis

parameter are assumed free parameters. To the best of our knowledge there are not

other works based on GPs that have been concerned about solving the zero-inflation

issues while exploiting the spatio-temporal correlations, but the ones mentioned before.

In this work, we aim to model the citizens mobility in the Chinese city of Guangzhou,

this from counting data of persons present at a delta area of the city. Since there are
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not previous works that explore the behaviour of the Zero-inflated Poisson likelihood

with GP priors, here we concentrate on such a likelihood; a ZIP likelihood is more

appropriate than the Gaussian likelihood used in Hegde et al. (2018), given that the

statistical data type of the observations are counts, i.e., non-negative values. Also,

though the work in BinTayyash et al. (2020) considers the statistical data type of

counts by assuming a ZINB likelihood, it only uses a GP prior to model the mean of

the Negative Binomial term while the other parameters are considered a constant, this

way limiting the modelling flexibility. Unlike this latter work, here we propose that

the likelihood’s parameters are modelled as latent functions drawn from correlated GP

priors, this way allowing a higher flexibility to model heteroscedasticity.

In the context of GP models, where each parameter of the likelihood is chained to a

GP latent function, three ways to generate such latent functions include: 1. each latent

function follows an independent GP prior (Saul et al., 2016) (see sections 3.1 to 3.4); 2.

each latent function is generated from a linear model of coregionalisation (see section

3.5 and chapter 4), i.e., a weighted sum of GP priors (Álvarez et al., 2012; Moreno-

Muñoz et al., 2018); and 3. from convolution processes, i.e., a convolution integral

between smoothing kernels and GP priors (Boyle and Frean, 2005; Álvarez et al., 2010;

Álvarez and Lawrence, 2011) (see chapter 5). The above generative alternatives for the

latent functions have been broadly used to model either a single or multiple outputs in

diverse application scenarios (Álvarez et al., 2012). In the specific ambit of modelling

urban traffic in different areas of a city, the work by Rodriguez-Deniz et al. (2017)

focuses on forecasting vehicles traffic speeds using an intrinsic coregionalisation model

(a particular case of the LMC). Also, the work by Rodrigues et al. (2019) uses a model

based on convolution processes to fit spatial and temporal patterns in crowdsourced

traffic data. Nevertheless, these previous works become prohibitive in the context of

a large number of data observations. To tackle such scalability issues, we additionally

derive a stochastic variational inference (Hoffman et al., 2013; Blei et al., 2017) frame-

work that allows the use of this type of models when having massive amounts of data

observations. Besides the convolution processes model, we also introduce a scalable

version of the variational inducing kernels approach (Álvarez et al., 2010). This VIKs

approach is an alternative form to generate the LPFs through the convolution pro-

cesses formalism, by using a double convolution integral; i.e., the LPF is drawn from a

convolution integral between a smoothing kernel and an inducing function (IF), where

such an IF is an artificial construction generated from another convolution integral

between a smoothing kernel and a GP prior.
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6.1 Correlated Chained GP with a Convolution Pro-

cesses Model

This section explains the construction of a CCGP model that introduces correlations

between the LPFs through the use of convolution processes. Here, we derive an alter-

native version of the CCGP model based on convolution process (Higdon, 2002; Boyle

and Frean, 2005), it differs from chapter 5 in the way we apply the inducing variables

approach. Also, we explain how such inducing variables approach allows the model to

obtain tractable variational bounds suitable to SVI.

6.1.1 Convolution Processes for Generating the LPFs

A more general way to derive the latent parameter functions relies on the convolution

processes model (Álvarez et al., 2010, 2012). In this type of model, the LPFs are

generated by convolving Q latent processes uq(·) with smoothing kernels Gj,q(·), i.e.,

the LPFs are drawn from fj(x) =
∑Q

q=1

∫
X Gj,q (x− r′)uq (r′) dr′. Alternatively, we

can express the latter equation as influenced by multiple latent functions uiq(·):

fj(x) =

Q∑

q=1

Rq∑

i=1

∫

X
Gi
j,q (x− r′)uiq (r′) dr′, (6.1)

where each uiq(·) represents a latent function drawn IID from uq(·) ∼ GP(0, kq(·, ·));
and Rq represents the number of said IID samples drawn per q-th latent function uq(·)
(Álvarez and Lawrence, 2011). Notice that the equation above is analogous to the linear

model of coregionalisation presented in section 3.5, where there are usually Q groups

of latent functions uq(·), and each IID sample uiq(·) has the same covariance kq(·, ·)
(Journel and Huijbregts, 1979). To ease the derivations in the following sections, we

will refer to R instead of Rq, i.e., the number of samples uiq(·) per q-th latent function

uq(·) is the same for all Q groups (see section 5.1 for additional details about the

relevance of the CPM and the generative process of LPFs for D > 1).

6.1.2 Augmented Gaussian Process Prior

As we presented in previous chapters, a common approach to reduce the compu-

tational complexity in a GP model consists on augmenting the GP prior with a

set of inducing variables u(·). Such inducing variables represent additional func-

tion evaluations of some unknown inducing points Z = [Z>1 , ...,Z
>
Q]> ∈ RQM×P , with
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Zq = [z
(1)
q , ..., z

(M)
q ]> ∈ RM×P (Snelson and Ghahramani, 2006; Titsias, 2009). We can

write the augmented GP prior as follows,

p(f |u)p(u|u)p(u) =
J∏

j=1

p(fj|u)p(u|u)p(u), (6.2)

where u = [u1
1
>
, ..., u1

Q
>
, ..., uR1

>
, ..., uRQ

>
]> represents a vector of functions that stacks

all R IID samples uiq(·) of all groups Q; here, u is seen as a continuous version infinitely

evaluated at all possible values x ∈ RP . A finite evaluation of u, for instance over the

set of inducing points, is expressed as u = [u1
1
>
, ...,u1

Q
>
, ...,uR1

>
, ...,uRQ

>
]> ∈ RQMR×1

with uiq = [uiq(z
(1)
q ), . . . , uiq(z

(M)
q )]> ∈ RM×1 (Álvarez and Lawrence, 2009; Álvarez

et al., 2010). Particularly, the distributions of the GP prior follow the form: p(fj|u) =

N (mfju(X),0) = δ(fj −mfju(X)), where mfju(X) = [mfju(x1), ...,mfju(xN)]> ∈ RN×1

is a vector built from:

mfju(x) =

Q∑

q=1

R∑

i=1

∫

X
Gi
j,q (x− r′)uiq (r′) dr′,

and p(u|u) = N (u|kuuK−1
uuu, Vu) is a distribution over the vector of functions, con-

ditioned on the finite vector of inducing variables u; Kuu ∈ RQMR×QMR is a block-

diagonal matrix with blocks Kui
qu

i
q

which entries are calculated with Cov
[
uiq(·), uiq (·)

]
=

kq(·, ·), between all pairs of inducing points Zq; Vu = kuu − kuuK−1
uukuu, where kuu =

Cov [u, u] can be understood as a continuos matrix covariance infinitely evaluated, and

ku,u = Cov [u,u] is a cross-covariance matrix with continuous rows and finite columns;

and finally p(u) = N (u|0,Kuu). It is worth noticing that the augmented GP prior

relies on a set of inducing variables that are additional evaluations of uq(·) over the

inducing points; whilst in chapter 5, the inducing variables framework consisted on

additional evaluations of, ǔj(·) = fj(·), over the inducing points.

6.1.3 The Evidence Lower Bound

As we described for the GP models in chapters 3, 4 and 5, posterior inference is

analytically intractable for non-Gaussian likelihoods and approximations are needed

instead. To overcome this issue, the inducing variables framework combined with the

VI mechanism described in section 2.3, allow us to build a tractable objective bound.

Therefore, we approximate the true posterior p(f , u,u|y) with a variational distribution

q(f , u,u) by optimising the following ELBO (Blei et al., 2017):

L = Eq(f ,u,u)

[
log

p(y|f)p(f |u)p(u|u)p(u)

q(f , u,u)

]
. (6.3)
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We set a variational posterior distribution as follows: q(f , u,u) = p(f |u)p(u|u)q(u)

=
∏J

j=1 p(fj|u)p(u|u)q(u) for which q(u) = N (u|m,V) is a free parametrised distribu-

tion, with mean m ∈ RQMR×1 and a block-diagonal covariance matrix V ∈ RQMR×QMR,

with blocks given by Vq,i ∈ RM×M (Álvarez et al., 2010; Hensman et al., 2013; Moreno-

Muñoz et al., 2018). After replacing the posterior distribution at Eq. (6.3) and ar-

ranging terms, we end up with the following objective for the ELBO:

L =
N∑

n=1

Eq(f)

[
gn
]
− DKL

(
q(u)||p(u)

)
, (6.4)

where gn = log p (yn|ψ1 (xn) , ..., ψJ (xn)) is the Log Likelihood (LL) function. The ex-

pectation above associated to the LL is computed with regard to the marginal posterior,

q(f) =
∫ ∫ ∏J

j=1 p(fj|u)p(u|u)q(u)dudu. Solving for the integrals above, we arrive to:

q(f) := N (f |m̃fu, Ṽfu), (6.5)

having the following definitions, m̃fu := Afum; Afu = KfuK−1
uu; and Ṽfu := Kff +

Afu(V − Kuu)A>fu; where Kfu = [K>f1u, ...,K
>
fJu]> ∈ RJN×QMR is a cross covariance

matrix built with blocks Kfju = [Kfju1
1
, ...,Kfju1

Q
, ...,KfjuR

1
, ...,KfjuR

Q
] ∈ RN×QMR, with

Kfjui
q
∈ RN×M constructed with entries calculated from Cov

[
fj(x), uiq (z)

]
between

the data observations X and the inducing points Zq; and Kff ∈ RJN×JN is a matrix

built with evaluations of the covariance function Cov [fj (x) , fj′ (x
′)] between all pairs

of data observations X. In the following subsection, we describe the specific form of

the covariance functions introduced above.

6.1.4 Covariance Functions for CCGP with CPM

For all our models we assume kernel covariance functions with the Exponentiated

Quadratic form described in Eq. (4.4). Therefore, with the such a functional form we

can define the following kernels for our CCGP model with CPM:

kq(x,x
′) = E(τ |0,Lq), (6.6)

Gi
j,q(x,x

′) = Sij,qE(τ |0,κj), (6.7)

where Lq and κj are diagonal matrices of length-scales, and Sij,q is a weight associated

to the LPF fj(·) and to the i-th sample of the latent function uq(·). Having the defini-

tions of our kernels, we can solve the convolution integrals associated to the covariance

functions, Cov
[
fj(x), uiq (z)

]
=
∫
X G

i
j,q(x − r′)kq(r′, z)dr′ and Cov [fj (x) , fj′ (x

′)] =
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∑Q,R
q=1,i=1

∫
X G

i
j,q (x− r)

∫
X G

i
j′,q (x′ − r′) kq(r, r′)drdr′. To solve such integrals above,

we follow the work in Álvarez and Lawrence (2011), where the authors apply method-

ically an identity for the product of two Gaussian distributions. This way, we arrive

to the solutions: Cov
[
fj(x), uiq (x′)

]
= Sij,qE(τ |0,κj + Lq), and Cov [fj (x) fj′ (x

′)] =∑Q
q=1 S

i
j,qS

i
j′,qE(τ |0,Pj,j′,q), where Pj,j′,q represents a diagonal matrix of length-scales,

Pj,j′,q = κj + κj′ + Lq.

6.1.5 Making Predictions with CCGP based on a CPM

To make predictions with our proposed model, we have to compute p (y∗ | y) ≈∫
p (y∗ | f∗) q (f∗) df∗, where q (f∗) can be computed using Eq. (6.5), but building the

different covariances matrices Kf∗u and Kf∗f∗ with evaluations at the new inputs X∗

using equations from section 6.1.4.

6.2 Correlated Chained GP with Variational In-

ducing Kernels

This section describes the construction of the CCGP model with variational inducing

kernels (Álvarez et al., 2010). Also, it explains how to obtain a variational objective

of the model which is suitable for training by means of SVI (Hoffman et al., 2013; Blei

et al., 2017).

6.2.1 Variational Inducing Kernels for Generating the LPFs

The concept of variational inducing kernels was proposed by Álvarez et al. (2010) as

an alternative and more powerful way of defining an inducing variable (Snelson and

Ghahramani, 2006; Titsias, 2009). It consists on applying a convolution of the latent

function uq(·) with a smoothing kernel as follows:

ιq(z) =

∫

X
Tq(z− r)uq(r)dr, (6.8)

where Tq(z − r) is a smoothing kernel, also known as the inducing kernel (IK) and

ιq(z) is called an inducing function; and the latent function is drawn from a GP,

uq(·) ∼ GP(0, k(·, ·)). This idea of inducing function and inducing kernel is closely

akin to the works on sparse multi-scale Gaussian process regression by Walder et al.

(2008) and inter-domain Gaussian processes by Lázaro-Gredilla and Figueiras-Vidal
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(2009). The VIKs allow us to define more general inducing variables with higher

approximation capacities than the inducing variables uq(·) used in Eq. (6.1) for the

CCGP with CPM (Álvarez et al., 2012). Though the motivation to use the VIKs in

our work relies on the fact of increasing the predictive capabilities of our model, this

approach is also useful to deal with possible white noise latent functions uq(·) when

applicable.

As we mentioned before in chapter 3 for Eq. (3.1), each latent parameter function,

fj(·), aims to model the j-th parameter of the likelihood, i.e., each ψj (xn) = α(fj(xn)).

Unlike the convolution processes model in Eq. (6.1), which is particularly based on

the inducing variables uq(·), the LPFs can also be drawn from a convolution integral

between a smoothing kernel and an inducing function ιq(·) as follows:

fj(x) =

Q∑

q=1

Rq∑

i=1

∫

X
Gi
j,q (x− r′) ιiq (r′) dr′, (6.9)

where Gi
j,q(·) represents the smoothing kernel; and ιiq(·) is an inducing function asso-

ciated to the i-th sample uiq(·) taken IID from uq(·) ∼ GP(0, kq(·, ·)), i.e., as per Eq.

(6.8): ιiq(z) =
∫
X Tq(z−r)uiq(r)dr; and Rq represents the number of IID samples drawn

per q-th inducing function ιq(·) (Álvarez and Lawrence, 2011). Thereby, the equation

above is an alternative approach to generate the GP priors for modelling the likeli-

hood’s parameters under the VIKs approach. As we assumed for the CPM, instead of

Rq in Eq. (6.9), we will refer to the same number R of IID samples for all Q groups of

inducing functions.

6.2.2 Augmented Gaussian Process Prior

We follow a similar inducing variables framework used for the model CCGP with Con-

volution processes. It is worth noticing that for the convolution processes model,

the function u(·) is the one representing the inducing variable that augments the

GP prior (see Eq. (6.2)). Conversely, in this case of VIKs, the vector function

ι = [ι11
>
, ..., ι1Q

>
, ..., ιR1

>
, ..., ιRQ

>
]> is the one used to augment the GP prior, and from

which we compute additional evaluations over the set of unknown inducing points

Z = [Z>1 , ...,Z
>
Q]> ∈ RQM×P , with Zq = [z

(1)
q , ..., z

(M)
q ]> ∈ RM×P (Álvarez et al., 2010).

We express the augmented GP prior as follows, p(f |ι)p(ι|ι)p(ι) =
∏J

j=1 p(fj|ι)p(ι|ι)p(ι),
where ι, the inducing function, is a continuous function infinitely computed at all

possible x ∈ RP×1; whilst a finite evaluation of ι, for example over the inducing

points can be expressed as ι = [ι11
>
, ..., ι1Q

>
, ..., ιR1

>
, ..., ιRQ

>
]> ∈ RQMR×1 with ιiq =
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[ιiq(z
(1)
q ), . . . , ιiq(z

(M)
q )]> ∈ RM×1. The specific terms of the augmented GP prior can

be written as: p(fj|ι) = N (mfjι(X),0) = δ(fj −mfjι(X)), where the mean mfjι(X) =

[mfjι(x1), ...,mfjι(xN)]> ∈ RN×1 is a vector built from:

mfjι(x) =

Q∑

q=1

R∑

i=1

∫

X
Gi
j,q (x− r′) ιiq (r′) dr′,

and p(ι|ι) = N (ι|kιιK−1
ιι ιj, Vι), is a distribution over the continuous inducing function

ι, conditioned on ι; Kιι ∈ RQMR×QMR is a block-diagonal matrix with blocks Kιiqι
i
q

with entries calculated with kιiq(z, z
′) := Cov

[
ιiq(z), ιiq (z′)

]
=
∫
X Tq(z − r)

∫
X Tq(z

′ −
r′)kq(r, r′)drdr′ between all pairs of inducing points Zq; Vι = kιι − kιιK

−1
ιι kιι, where

kιι = Cov [ι, ι] is a continuos matrix covariance infinitely evaluated, and kι,ι = Cov [ι, ι]

is a cross-covariance matrix with continuous rows and finite columns; and p(ι) =

N (ι|0,Kιι).

6.2.3 The Evidence Lower Bound

In a similar form to the ELBO derivation for the CCGP with CPM, here we approxi-

mate the true posterior p(f , ι, ι|y) with a variational distribution q(f , ι, ι) for construct-

ing the following ELBO (Blei et al., 2017):

L = Eq(f ,ι,ι)
[

log
p(y|f)p(f |ι)p(ι|ι)p(ι)

q(f , ι, ι)

]
. (6.10)

We define a variational posterior distribution with the form: q(f , ι, ι) = p(f |ι)p(ι|ι)q(ι)
=
∏J

j=1 p(fj|ι)p(ι|ι)q(ι), where, q(ι) = N (ι|m,V), with mean m ∈ RQMR×1 and a

block-diagonal covariance matrix V ∈ RQMR×QMR, which blocks are given by Vi
q ∈

RM×M . By replacing the posterior q(f , ι, ι) in Eq. (6.10), we obtain a scalable objective:

L =
N∑

n=1

Eq(f)

[
gn
]
− DKL

(
q(ι)||p(ι)

)
, (6.11)

where gn = log p (yn|ψ1 (xn) , ..., ψJ (xn)) is the LL function (Moreno-Muñoz et al.,

2018). In contrast to the objective function in Eq. (6.4) for the CCGP with a CPM, the

expectation for the LL in the equation above is calculated with respect to the marginal

posterior, q(f) =
∫ ∫ ∏J

j=1 p(fj|ι)p(ι|ι)q(ι)dιdι. When solving for these integrals, we

obtain the following:

q(f) := N (f |m̃fι, Ṽfι), (6.12)
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where we have defined, m̃fι := Afιm; Afι = KfιK
−1
ιι ; and Ṽfι := Kff + Afι(V −

Kιι)A
>
fι; with Kfι = [K>f1ι, ...,K

>
fJ ι

]> ∈ RJN×QMR as a cross covariance matrix built

with blocks Kfjι = [Kfjι11
, ...,Kfjι1Q

, ...,KfjιR1
, ...,KfjιRQ

] ∈ RN×QMR, in which, each

Kfjιiq
∈ RN×M has entries computed with the covariance function, Cov

[
fj(x), ιiq (z)

]
,

between the data observations X and the inducing points Zq; and Kff is a covariance

matrix built with evaluations of Cov[fj (x) , fj′ (x
′)], between all pairs of data obser-

vation X. In the following subsection, we detail the form of the covariance functions

introduced above.

6.2.4 Covariance Functions for CCGP with VIKs

For our CCGP model with VIKs we follows the same EQ form of the kernel co-

variance functions. Given that this type of model also relies on the latent func-

tion uq ∼ GP(0, kq(·, ·)) and a smoothing kernel Gi
j,q(·), we make use of exactly the

same equations (6.6) for kq(·, ·), and (6.7) for Gi
j,q(·). We additionally need to de-

fine the inducing kernel Tq(·) in Eq. (6.8), so we use the functional form in Eq.

(4.4) to define: Tq(x,x
′) = WqE(τ |0, tq), where Wq is a weight an tq is a diag-

onal matrix of length-scales. Similar to the case of CPM, we rely on the multi-

plication identity between Gaussian distribution applied in Álvarez and Lawrence

(2011) and Álvarez (2011). Thus, we solve for kιiq(z, z
′) := Cov

[
ιiq(z), ιiq (z′)

]
=∫

X Tq(z−r)
∫
X Tq(z

′−r′)kq(r, r′)drdr′ and Cov
[
fj(x), ιiq (z)

]
=
∫
X G

i
j,q(x−r)kιiq(r, z)dr,

and arrive to the following covariances: Cov
[
ιiq(x), ιiq (x′)

]
= W 2

q E(τ |0, 2tq + Lq) and

Cov
[
fj(x), ιiq (x′)

]
= Sij,qWqE(τ |0,κj+2tq+Lq). Also, when solving for the covariance

function:

Cov[fj (x) , fj′ (x
′)] =

Q∑

q=1

R∑

i=1

∫

X
Gi
j,q (x− v)

×
∫

X
Gi
j′,q (x′ − v′) kιiq(v,v

′)dvdv′,

we end up with: Cov [fj (x) , fj′ (x
′)] =

∑Q
q=1 S

i
j,qS

i
j′,qWqWqE(τ |0,Tj,j′,q), where Tj,j′,q

represents a diagonal matrix of length-scales, Tj,j′,q = κj + κj′ + 2tq + Lq.

6.2.5 Making Predictions with CCGP based on VIKs

In a similar way to section 6.1.5, we compute p (y∗ | y) ≈
∫
p (y∗ | f∗) q (f∗) df∗. Notice

that the distribution q (f∗) now involves computations associated to ι instead of u.
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Therefore, for a new set of inputs X∗, we have to build Kf∗ι and Kf∗f∗ as per Eq.

(6.12).

6.3 Zero-Inflated Poisson distribution

Since we aim to model non-negative values that represent counts and also tackle the

problems associated to zero-inflation data (Zuur et al., 2009; Lukusa et al., 2017), here

we rely on the ZIP distribution for targeting such issues (Roemmele, 2019). The ZIP

probability distribution can be expressed as follows:

p(yn|πn, ρn) = 1ynπn + (1− πn)
exp(−ρn)ρynn

yn!
, (6.13)

where πn ∈ [0, 1] is a parameter that represents a probability for the values at zero

(Beckett et al., 2014), ρn > 0 is the Poisson rate parameter and 1yn := 1(yn) is

an indicator function defined as follows: 1(yn) = 1 if yn = 0, or 1(yn) = 0 if yn 6= 0.

Following the notation in Eq. (3.1), here the distribution’s parameters are associated as

πn = ψ1 (xn) and ρn = ψ2 (xn), where ψ1 (xn) = σ(f1(xn)) and ψ2 (xn) = exp(f2(xn));

σ(f1(xn)) = 1/(1+exp(−f1(xn))) is a sigmoid function. With the definitions above we

can link Eq. (6.13) in the Log Likelihood function, gn = log p (yn|ψ1 (xn) , ..., ψJ (xn)),

of equations (6.4) and (6.11) as follows:

gn = log
(
1ynπn exp(ρn) + (1− πn)

)
+ log

(
exp(−ρn)ρynn

yn!

)
.

It is worth noticing that the equation above is exactly the same for both CCGP mod-

els based on either the CPM (Eq. (6.4)) or VIK (Eq. (6.11)); They just differ by

construction in the way of generating the LPFs, but not in the form of the likelihood

function. In the experiments section, we will compare the performance of our pro-

posed CCGP methods, the CPM-based and VIK-based in conjunction with either a

ZI-Poisson likelihood or a Poisson likelihood.

6.4 Experiments

In this section, we make a quantitative and qualitative analysis of the predictions

obtained by the three types of CCGP models based on: an LMC (presented in section

3.5 and chapter 4), our CPM proposed in Eq. (6.4) and also our VIK introduced in

Eq. (6.11). As explained at section 6.3, we implement a ZI-Poisson likelihood and
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compare its performance with a Poisson likelihood for modelling the citizens mobility

in Guangzhou city. We run two types of experiments: the first corresponds to building

a model per each day of the month; the second to building a model per each day of

the week. 1

6.4.1 Dataset of Guangzhou City

The dataset used to model the citizens’ mobility in the region of Guangzhou was

built from recordings of mobile phone GPS locations. In a nutshell, the users of a

Guangzhou’s mobile phone network share their longitude and latitude coordinates that

are consequently preprocess through a counting algorithm. Such an algorithm consists

on counting the citizens that coincide in a delta area of Guangzhou; i.e., the main

region of Guangzhou is divided in a grid of 201 × 201, where each square (or delta

area) of the grid contains a total number of citizens. The counting is performed every

hour of the day, this during 31 days: from March 1 to 31 of 2019. The total number

of data observations per day is N = 201× 201× 24 = 969624.

6.4.2 Model Training

Given that the models derived in Eq. (6.4) and Eq. (6.11) allow stochastic variational

inference, we use a random mini-batching of 400 samples per iteration during training.

We selected through cross-validation a number of latent functions Q = 3, the number

of IID samples R = 2, and inducing points M = 200.2 It is worth noticing that the

expectations of the Log Likelihood in equations (6.4) and (6.11) cannot be computed in

closed-form, so we opt for using the Gauss-Hermite quadrature approach (Saul et al.,

2016; Jin and Andersson, 2020). Also, it is important to highlight that there is not

need to compute the full covariances Kff in Eq. (6.5) for the CPM-based model or in

Eq. (6.12) for the VIK-based model, but only the diagonal values randomly selected

as per the mini-batching at each optimisation iteration.

For the inference process, we make use of the VAN updates from Eq. (2.6) and Eq.

(2.7) where: each variational parameter m and V; each set of inducing points Z; and all

the kernels’ hyper-parameters, H = {{κj}Jj=1, {Lq}Qq=1, {tq}Qq=1}, are optimised through

a natural gradient scheme. Similar to sections 3.6, 4.4 and 5.4, here we build a bound

1The code with the proposed models is publicly available in the repository:

https://github.com/juanjogg1987/CorrelatedChainedGPs ConvolutionProcesses
2In the practice, we heuristically found that a suitable way to set R was to make it equal to the

total number of LPFs, i.e., R = J .
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of the form, F̃ = Eq(θ)[−L]+DKL(q(θ)||p(θ)), where L is any of the objective functions

for either the CPM or VIK in Eq. (6.4) or (6.11) respectively; q(θ) represents a free

parametrised exploratory distribution over the set of all parameters to optimise, i.e.,

θ = {m,V,Z,H}. The main difference with the algorithms of previous chapters relies

on the inclusion of the parameters m and V as part of the exploratory distribution.

6.4.3 Quantitative Results: Models along the Month

The first experiment consists on building 31 CCGP models, one model per day during

all the month of March. We use a dataset random split of 90% and 10% for training

and testing, respectively. In order to measure the uncertainty quantification capability

of the models, we report the NLPD error over the test set (Quiñonero-Candela et al.,

2006). Figure 6.1 shows the performance of the CCGP models based on VIK, CPM

and LMC, when using a Poisson distribution (top figure) and a ZI-Poisson distribution

(bottom figure). Low NLPD values mean better performance.

We can notice from Figure 6.1 that the models with a Poisson likelihood presented

metrics roughly within the interval (2.2, 2.7), whilst the models with a ZI-Poisson

likelihood obtained metrics approximately within the interval (0.59, 1.02). Thereby, we

can say that in general the models relying on a ZI-Poisson likelihood outperformed the

ones based on a Poisson likelihood by achieving lower NLPD metrics. For the Poisson

likelihood, the VIK model accomplished the lowest NLPD for 22 days of the month in

comparison to the CPM and LMC; the CPM presented a better performance than VIK

and LMC for six days; and the LMC only presented the lowest NLPD in the days: 13,

16 and 30. For the ZI-Poisson likelihood, the VIK reached better NLPD values for 13

days; the CPM obtained the lowest metrics in 18 times; and the LMC did not present

a better performance at any day in comparison to the other CCGP models. Table 6.1

Table 6.1: Summary of Statistics of NLPD-Test Performance along the

month for the CCGP Models based on Poisson and ZI-Poisson Likelihoods

using three types of GP Priors.

VIK CPM LMC

Avg ± Std Med Avg ± Std Med Avg ± Std Med

Poisson 2.401± 0.081 2.395 2.448 ± 0.090 2.476 2.507 ± 0.094 2.515

ZIP 0.740 ± 0.053 0.742 0.736 ± 0.063 0.752 0.976 ± 0.032 0.982

shows a summary of the main statistics obtained by the models along the month. We
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Figure 6.1: NLPD-Test Performance along the month for the CCGP mod-

els based on VIK, CPM and LMC. Top figure: Poisson likelihood. Bottom

figure: ZI-Poisson likelihood. For each day there are three bars associated

to the GP priors: left bar, VIK with pattern inscription “x”; middle bar,

CPM with pattern “+”; and right bar, LMC with pattern “\”. Low NLPD

values mean better performance.
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can see from the table that the CCGP model based on VIK reached the lowest median

for both types of likelihoods; also it tended to present smaller standard deviations

than the other methods. The CPM showed a slightly lower mean than the VIK when

using a ZI-Poisson, but with a higher standard deviation. The LMC presented similar

results to the CPM for the case of a Poisson likelihood; nevertheless, in comparison to

VIK and CPM, its performance was poor when modelling with a ZI-Poisson likelihood.

The results show that the use of a ZI-Poisson likelihood considerably improved the

performance of the prediction capabilities of our CCGP models in the context of the

zero-inflated data from Guangzhou city. Regarding the types of GP priors, the VIK

and CPM showed to outperform the LMC by allowing better NLPD metrics, i.e., a

better quantification of the uncertainty.

6.4.4 Quantitative Results: Models along the Week

For the second experiment, we trained seven CCGP models, one per day of the week,

i.e., models for Monday, Tuesday, Wednesday, Thursday, Friday, Saturday and Sunday.

In contrast to the first experiment, here we selected the observations from Monday

March 4 to Sunday March 10 for training data; whilst the remaining days were used

for testing: Mondays (March 11, 18, 25), Tuesday (March 12, 19, 26), Wednesday

(March 13, 20, 27), Thursday (March 14, 21, 28), Friday (March 15, 22, 29), Saturday

(March 16, 23, 30) and Sunday (March 17, 24, 31). For instance, we trained a model for

Monday using data from March 4 and tested it over the remaining Mondays March 11,

18 and 25. Figure 6.2 shows the NLPD error obtained by the different GP models in

combination with both types of likelihoods, Poisson and ZI-Poisson. From Figure 6.2 we

can observe that the ranges of NLPD metrics accomplished by the CCGP models when

using a ZI-Poisson likelihood were lower in comparison to the Poisson likelihood; ZIP

metrics were within the range (0.52, 0.78) and Poisson metrics are within (1.72, 1.97).

Comparing these latter results with the ones reached in the previous subsection of

Models along the Month, we can regard that the CCGP models along the week present

a better performance. For the Poisson likelihood, Figure 6.2 shows that the model

based on VIK obtained the lowest NLPD values for all the days of the week, followed

by the CPM and LMC. For the ZI-Poisson likelihood, Figure 6.2 shows that the model

VIK-based reached the lowest NLPD values for Monday and Saturday in comparison

to the other methods; whilst the model CPM-based attained the lowest NLPD values

for Tuesday, Wednesday, Thursday, Friday and Sunday; the model LMC-based did not

present a better performance than the other methods on any of the days. Though, for
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Figure 6.2: NLPD-Test Performance along the Week for the CCGP mod-

els based on VIK, CPM and LMC. Left figure: Poisson likelihood. Right

figure: ZIP likelihood. For each day there are three bars associated to the

GP priors: left bar, VIK with pattern inscription “x”; middle bar, CPM

with pattern “+”; and right bar, LMC with pattern “\”. Low NLPD values

mean better performance.

the ZI-Poisson likelihood, the CPM presented better metrics on more days than the

VIK, the summary of statistics in Table 6.2 shows that in general the VIK performs

similar to the CPM for such a likelihood.

Table 6.2 allows us to see that generally the CCGP model based on VIK obtained

better NLPD metrics in comparison to the other methods. The VIK performed quite

similar to the CPM in the context of a ZIP likelihood; indeed, VIK and CPM presented

a difference in the mean of just 0.011 for the ZIP likelihood, with equal standard

deviations and equal medians. Regardless of the type of likelihood, both CPM and

VIK models outperformed the LMC model.

Table 6.2: Summary of Statistics of NLPD-Test Performance along the

Week for the CCGP Models based on Poisson and ZI-Poisson Likelihoods

using three types of GP Priors.

VIK CPM LMC

Avg ± Std Med Avg ± Std Med Avg ± Std Med

Poisson 1.847 ± 0.065 1.865 1.878 ± 0.067 1.907 1.911 ± 0.062 1.932

ZIP 0.601 ± 0.039 0.612 0.590 ± 0.039 0.612 0.755 ± 0.026 0.764
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6.4.5 Qualitative Results

Since our data from Guangzhou city presents zero-inflation issues, we aim to observe

the effect in the predictions when using the Poisson and ZI-Poisson likelihoods to

deal with said problem. Also, in order to visualise the qualitative traits of the model

that showed the highest capabilities to generalise, we selected the CCGP model based

on VIK (CCGP-VIK), particularly we chose the model for Saturday, March 9 (from

Figure 6.2) given that it presented a relevant NLPD performance for both Poisson and

ZI-Poisson likelihoods.

Figure 6.3(b) shows the mean prediction of the CCGP-VIK with Poisson likelihood

and Figure 6.3(d) the mean prediction of the CCGP-VIK with ZI-Poisson likelihood.

Figures 6.3(a) and 6.3(c) are a heatmap of the real test data of the citizens mobility

on Saturday, March 16 at 11:00 am; both figures are exactly the same, but displayed

twice to ease the comparison to our models’ predictions provided in Figures 6.3(b) and

6.3(d). Also, to ease the description of the predictions we will refer to the names that

appear in the maps as key locations, for instance the names: GUANGZHOU, TIANHE

DISTRICT, Red Hill, Lijiao, Shachong, Xinzao, etc.

It can be seen from Figures 6.3(b) and Figure 6.3(d) that both CCGP-VIK models

with Poisson and ZI-Poisson focus on the high concentrations of citizens in the city

centre, that is the region between GUANGZHOU, TIANHE DISTRICT and Red Hill.

The models also focus on the region with high numbers of citizens located among

Shachong, HAIZHU DISTRICT and Lijiao; that is a central-west region that gathers

different Metro-stations like: Jiangnanxi station, Huadiwan station, Xilang station

and Jushu station. For the case of the Poisson likelihood, we can notice from Figure

6.3(b) that the predictions of high concentrations of citizens are underestimated in

comparison to the test data in Figure 6.3(a); whilst for the case of the ZI-Poisson

likelihood, we observe that the density of citizens looks more akin to the test data in

Figure 6.3(c). With respect to the regions of the city that present many zero value

observations like the north-east and south-east quadrants, we can notice that both

the CCGP-VIK models with Poisson and ZI-Poisson predict very low concentrations

of citizens in those regions. Although, specifically the model with Poisson likelihood

concentrates on predicting massive densities of zero values in the north-east quadrant

of the map that extend until Tangdong region; in contrast, the model with ZI-Poisson

remains a bit conservative not presenting as huge accumulations of zero values as the

Poisson distribution, and allowing to predict moderate concentrations of people around

Tangdong. Likewise, for the region in the south-west quadrant below Lijiao, the model
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(a) Test Data Heatmap: Saturday, March 16 at

11:00 am

(b) Prediction at 11:00 am using CCGP-VIK with

Poisson

(c) Test Data Heatmap: Saturday, March 16 at

11:00 am

(d) Prediction at 11:00 am using CCGP-VIK with

ZI-Poisson

Figure 6.3: Qualitative performance of the model CCGP-VIK (trained

with data from Saturday, March 9) in comparison to real test data. To the

left hand side, Figures 6.3(a) and 6.3(c) are a heatmap of the real test data

of the citizens mobility on Saturday, March 16 at 11:00 am; both figures are

the same, but displayed twice to ease the comparison with the predictions to

the right hand side. Figure 6.3(b) shows the mean prediction of the CCGP-

VIK with Poisson likelihood. Figure 6.3(d) presents the mean prediction

of the CCGP-VIK with ZI-Poisson likelihood. The color bar associates the

number of citizens in the map area.
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with Poisson likelihood focuses on predicting very low concentrations of citizens, but

the model with ZI-Poisson predicts moderate congregations of citizens that vanish

from Lijiao towards Huijiang and Zhicun. Both ZIP and Poisson models neglect the

concentrations of citizens in the region below Luntoucun and to the left hand side of

GUANGZHOU HIGHER EDUCATION MEGA CENTER.

The main quality of the model CCGP-VIK with ZIP consists on appropriately

trading-off between making predictions in the regions with high concentration of zeros

without underestimating the regions with substantial presence of citizens. Conversely,

the model based on a Poisson likelihood is not able to adequately forecast in the regions

with major presence of citizens.

6.5 Discussion

Through the different types of experiments we noticed that the use of a ZI-Poisson dis-

tribution significantly improved the performance for modelling the citizens’ mobility

in Guangzhou city, in comparison to a Poisson distribution. For the case of modelling

with a Poisson likelihood, the ranking of best performances usually showed the VIK at

first, followed by CPM and LMC. We realised the mean NLPD metrics are very close

between all the GP methods (with a difference not higher than 0.106) as shown in Table

6.1. We believe those NLPD metrics are close to each other due to the few param-

eters present in the Poisson distribution, which limit the capabilities of the different

GP models for achieving a higher predictive performance. On the other hand, when

modelling with the ZI-Poisson, the CCGP models based on VIK and CPM presented a

distinguished difference with the LMC. Such a difference can be attributed to the fact

of having additional hyper-parameters that allow higher modelling flexibilities than

the LMC, which only depends on a set of linear combination coefficients and matrices

of length-scales Lq related to the latent functions uq(·) (Journel and Huijbregts, 1979;

Álvarez et al., 2012). Such additional hyper-parameters can be identified, for instance:

from the CPM, in all weights Sj,q,i and the matrices of length-scales κj associated to

the smoothing kernels, and the matrices of length-scales Lq for the latent functions

uq(·) (see section 6.1.4); and apart from the latter parameters present in the CPM,

the VIKs model additionally presents weights Wq and the matrices of length-scales

tq associated to the inducing kernels (see section 6.2.4). Regarding the two types of

experiments we carried out for modelling either along the month or along the week,

the results showed a better performance in the models along the week. We associate
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the high performance reached by such models with a probable high correlation between

the training and testing data; the mobility patterns of citizens for instance on Monday

March 4 (training data) can be very similar to the remaining Mondays 11, 18 and 25

(testing data), a fact likely to happen also for the other days.

6.6 Summary

In this chapter, we have modelled the citizens mobility in the Chinese city of Guangzhou

by means of three types of CCGP models (based on an LMC, CPM or VIKs) with

Poisson and ZI-Poisson likelihoods. We showed that all types of CCGP models in

conjunction with a ZIP likelihood allow to overcome the issues associated to zero-

inflated data, outperforming the predictive capabilities of such CCGP models when

based on a Poisson likelihood. We derived a stochastic variational inference framework

that grants the use of a CCGP model with CPM or VIKs in the context of a large

number of data observations.



Chapter 7

Conclusions and Future Work

In this chapter we summarise the work developed throughout the thesis and provide

some insights for future work.

Conclusions

In this thesis we addressed problems of intractability, scalability, and poor local optima

solutions associated to non-conjugate likelihood Gaussian process models. Particularly,

in this thesis we addressed the aforementioned issues in a context where the likelihood’s

parameters are modelled as latent parameter functions drawn from correlated Gaussian

processes based on LMC, CPM and VIKs. We borrowed ideas from different optimi-

sation mechanisms that allowed us to dealing with intractability as well as enabling

scalability when needing to hand massive amounts of data observations. Also, such

optimisation mechanisms allowed us to improve inference processes of the models for

tackling the problems of poor local optima solutions.

• In chapter 2, we introduced different optimisation mechanisms, like VO, VI, MDA

and VAN. We built this thesis upon the idea of using such optimisation mech-

anisms for dealing with intractability issues present in non-conjugate likelihood

Gaussian process models. Such optimisation mechanisms helped us to construct

scalable objective functions that granted us the use of our GP models in scenarios

with large amounts of data observations; and we benefited from said mechanisms

for improving the inference processes of the different GP models presented in this

thesis.

• In chapter 3, we introduced the CCGP model, an approach that assumes by

95
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construction that the multiple GP priors of a Single-Output model are corre-

lated through a linear model of coregionalisation. Our approach bases on the

so-called inducing variables framework and scales by means of stochastic varia-

tional inference. By means of various experiments carried out for different real

databases, we showed that the CCGP model achieved rich predictive distributions

that quantify the uncertainty better than the classical setting that builds upon

independent GP priors. Also, we proposed a strategy of model training that aug-

ments a single-output GP in order to treat it as a multi-output one. We found

that such strategy enhances the generalisation properties of the model accom-

plishing a high predictive performance. Experimental results in paper (iii) show

how the CCGP model can help to improve the modelling of labellers’ behaviour

when dealing with datasets involving multiple annotators.

• In chapters 3, 4 and 5 we derived a fully natural gradient scheme for jointly tuning

the hyper-parameters, inducing points and variational posterior parameters of:

the single-output CCGP model, its multi-output version the HetMOGP with

LMC, and the model extension HetMOGP with CPM. Through the experiments

carried out in paper (i), we showed that such an scheme helped to improve the

inference processes of the different GP models outperforming methods like SGD,

Adam, ADAD, and the hybrid strategy of NG+Adam.

• In chapter 5, we provided an extension of the HetMOGP based on a Convolu-

tion Processes model, rather than on the LMC approach of the original model

by Moreno-Muñoz et al. (2018). By means of experimental results, we showed

in paper (i) that generally the HetMOGP with CPM attained better predic-

tive performance than a HetMOGP based on a LMC. Also, given that a NG

method had not been performed over any MOGP model before, we contributed

to show its performance using two schemes: the hybrid NG+Adam and our pro-

posed FNG. We showed that those NG methods helped to alleviate the strong

conditioning problems associated to non-conjugate likelihood Gaussian process

models. Particularly, the FNG achieved better local optima solutions with higher

test performance rates than Adam, SGD and hybrid (NG+Adam).

• Finally in chapter 6, we modelled the citizens mobility in the Chinese city of

Guangzhou, through the use of a ZIP likelihood in conjunction with GP priors,

and provided comparative results to a Poisson likelihood. We derived an SVI

framework that grants us to use two types of convolution process models in the
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context of large datasets: 1. correlated chained GP with a convolution processes

model, and 2. correlated chained GP with variational inducing kernels. Since,

former works had not developed GP models based on CPM and VIKs for other

type of likelihoods beyond a Gaussian, in this thesis, we derived equations that

could be used for any type of likelihood. Paper (ii) shows experimental results

where we found that all types of CCGP models in conjunction with a ZI-Poisson

likelihood allow us to overcome the issues associated to zero-inflated data, out-

performing the predictive capabilities of a CCGP model when based on a Poisson

likelihood. Also, we showed that the CCGP models based on VIK or CPM gen-

erally reached a better predictive performance than the one based on an LMC.

Future work

• As a future work, it might be worth exploring the behaviour of the proposed FNG

scheme over other type of GP models, for instance Deep GPs (Salimbeni et al.,

2019). Likewise, it would be relevant to explore a scalable way to implement

the method using a full covariance matrix Σ which can exploit full correlation

between all hyper-parameters.

• The VO approach with penalisation relies on a Kullback-Leibler divergence as

per Eq. (2.2), but one might research about the influence of a different family

of divergences. For instance, the so-called α-divergence (Minka, 2005) presents

a manifold of divergences indexed by α ∈ (−∞,∞), it might be worth to study

how they motivate or induce exploration of the space of solutions for minimising

an objective function.

• The different types of HetMOGP models introduced in this thesis could be ex-

tended by exploring the influence of assuming a full multivariate variational dis-

tribution q(u), such an alternative might help to better quantify the uncertainty.

Regarding the model training strategy, for instance, we could keep augmenting

the outputs and test its performance. Indeed, it would be valuable to look into

multi-output Gaussian processes and probe the output augmentation strategy in

that context.

• Modelling multi-modal data is another venue for future work. One might po-

tentially want to combine ideas from the work by Lázaro-Gredilla et al. (2012),

with the HetMOGP model and the optimisation schemes proposed in this work.
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Also, ideas for the model selection problem of the number Q of latent functions,

like the ones based on Indian buffet processes (Guarnizo et al., 2015; Tong and

Choi, 2019) can be further investigated in the particular context of MOGPs with

Heterogeneous outputs.

• It might be worth to investigate the performance and possible improvements of

the models described in this thesis when applying the work by Hensman et al.

(2018), by combining the variational framework for sparse approximations and

the spectral representation of Gaussian processes for modelling multiple heteroge-

neous outputs. Also, it might be worth to explore how the fully natural gradient

scheme performs in such a new model structure.

• As a future work, we might study the behaviour of our GP models, based on

CPM or VIKs, in conjunction with other types of likelihoods for tackling the

problems described in chapter 6 of zero-inflated data. For instance, we could

explore the performance of the ZINB likelihood, or the Tweedie likelihood from

the exponential dispersion family. The latter can be particularly challenging given

that its probability distribution needs to be evaluated using a series expansion

due to not having an analytical solution.

• In the context of Multi-Output GPs, if we had a broader database that, apart

from containing location information about the citizens mobility, additionally

had the vehicles used for such mobility; we might implement our GP models to

exploit the correlations between the types of transport vehicles. Likewise, we

could explore the application of HetMOGPs with CPM for data imputation, i.e.,

predicting information in regions of the city where data is sensible to be lost due

to failures in the mobile phone network that carries out the data collection.
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Appendix A

Newton’s Method Optimisation

Example

We reproduced the same experiment used in chapters 2.1 and 2.2 for optimising:

θ? = arg min
θ
g(θ) = arg min

θ
2 exp(−0.09θ2) sin(4.5θ). (A.1)

without introducing any variational optimisation exploration over the variable θ. We

used the Newton’s method for minimising Eq. (A.1), with the same initial point

θ = −3.0. Figure A.1 presents the process of convergence of the Newton’s method,

this figure uses the same style used for Figures 2.1 and 2.2. Though here, from right to

left the vertical red lines represent the occurrence of an iteration, being the furthest to

the right the initial one. As it can be seen from Figure A.1, the optimisation carried out

in the space of g(θ), with no exploration mechanism, converges to a poor local minima

located between the interval (−4,−3). From a variational optimisation perspective,

we can analogously understand the Eq. (2.1), i.e., minθ g(θ) ≤ L̃ = Eq(θ)[g(θ)] as:

g(θ) = L̃ = Eq(θ)[g(θ)], where this equality holds if the distribution is a Dirac’s delta

q(θ) = δ(θ − µ) and µ = θ, in a nutshell, there is not exploration around µ = θ.

Indeed, we can think of q(θ) as a Gaussian distribution with its variance collapsed to

zero (σ2 = 0), that is why the second sub-graph in Figure A.1 shows the black dots

only moving along θ-axis (where θ = µ) while σ = 0, and the third sub-graph depicts

the Dirac’s delta distributions.
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Figure A.1: Using the Newton’s method for optimising the multiple min-

ima function g(θ) = 2 exp(−0.09θ2) sin(4.5θ).
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Appendix B

Influence of the Parameter λ

During the Inference Process

With the aim to provide a criterion to select an initial value for the penalising distribu-

tion p(θ) = N (θ|0, λ−1) we have built an experiment as follows. We run the algorithm

of Variational Optimisation with Penalisation over three types of objective functions

that present multiple local minima. Below, we describe such functions in detail. We

test λ = {0.1, 1, 10, 100}, and execute the algorithm 20 times for each value of λ with

an initial value of θ0 = −3.

We use multi-local-minima functions of the form g(θ) = 2 exp(−0.09θ2) sin(0.3w1θ),

where the variable w1 allows us to control the length-scale of the function. We test

three scenarios: a large length-scale function with w1 = 7, a moderate length-scale

function with w1 = 15 and a short length-scale function with w1 = 31. Figures B.1,

B.2 and B.3 show the landscape of each function. For w1 = 7, we notice that the

function presents at least three prominent local minima that are very separated one

from another, at least in comparison to the functions for w1 = 15 and w1 = 31; for

w1 = 15, the function has at least six prominent local minima even closer than the

case of w1 = 7; and the function for w1 = 31 presents multiple local minima which are

very close to each other. Figures B.1, B.2 and B.3 show shaded circles in gray colour

that represent the prominent local minima of each function. The y-axis of the figures

to the left and to the right hand side is exactly the same, therefore each gray shaded

circle that represents a local minima to the left hand side of the figures is aligned to

its analogous value to the right hand side. The initial value θ0 = −3 is represented in

all figures as an orange shaded circle.

On the right hand side of Figures B.1, B.2 and B.3, we can visualise the influence of
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the parameter λ in the optimisation of the objective function. We notice from Figure

B.1 that λ = 100 and λ = 10 tend to converge to suboptimal solutions that are not

close to the local minima. Also from Figure B.2, we can see that the solutions provided

when using λ = 100 are poor, being almost always the same; when using λ = 10, the

algorithms reach a relevant local minima though it is not the best minimum of the

function. From Figure B.3 we can notice that when using λ = 100 the algorithm tends

to a region around g(θ) ≈ −1.52 achieving a better value of the function in comparison

to the initial θ0, though the convergence paths of the algorithm always target the same

minima, thereby lacking of exploration for other possible solutions; when using λ = 10

the algorithm is prone to converge to a better local minima in comparison to the case

of λ = 100. Also, for λ = 10 we can notice that the convergence paths of the algorithm

not always tend to the same solution, but alternatively they go towards different local

minima, showing broader explorative abilities.

On the other hand, for the case of λ = 1 and λ = 0.1, we can notice from Figure

B.1 that the algorithms tend to find much better solutions in comparison to λ = 10

and λ = 100; for λ = 0.1 some solutions convergence to a local minima close to the

initial value θ0 and others to the global minimum, while for λ = 1 the solutions usually

converged to the global minimum. Also, from Figure B.2 we can see that when using

λ = 0.1 the algorithm converges to different types of possible solutions including the

global minimum, though with a trend to converge to the solution closer to the initial

θ0; when using λ = 1 the algorithm tends to converge to either the global minimum or

the prominent local minima at g(θ) ≈ −1.5. Figure B.3 shows that λ = 0.1 and λ = 1

reach diverse possible local minima solutions, including also the global minima among

them; though the case of λ = 1 tends to arrive to better solutions than λ = 0.1.

In general, the values of λ = 0.1 and λ = 1 lead the algorithm to a variety of con-

vergence paths, thus increasing the exploration of the space of solutions. Such an ex-

plorative behaviour is much higher than the one presented for λ = 10 and λ = 100; this

either for functions that present landscapes with few notable local minima or functions

with many local minima that are very close to each other. Apart of the experiments

from Figures B.1, B.2 and B.3, we noticed from our manuscript’s experiments that

setting the penalisation parameter in the interval 0 ≤ λ ≤ 1 led to broad exploration

of the space of solution. Values very close to zero directly influence a higher explorative

behaviour, though they can be very aggressive and generate possible numerical insta-

bilities, particularly in the context of kernel methods and a high dimensionality in the

input space. For instance, this type of strong behaviour can be noticed from Figure
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Figure B.1: Influence of the precision parameter λ for optimising the

function g(θ) = 2 exp(−0.09θ2) sin((0.3× 7)θ).

Figure B.2: Influence of the precision parameter λ for optimising the

function g(θ) = 2 exp(−0.09θ2) sin((0.3× 15)θ).
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Figure B.3: Influence of the precision parameter λ for optimising the

function g(θ) = 2 exp(−0.09θ2) sin((0.3× 31)θ).

B.2 and B.3 where for λ = 0.1 there are some aggressive changes in the path that

caused the algorithm to arrive to poor solutions within the region −0.5 < g(θ) < 0.5.

Setting values close to one, or even one, can still present an explorative behaviour, but

allowing a smoother convergence performance when approaching to a local minima.

Given that in practise we usually do not have any idea about the landscape of

the objective functions that we are interested in optimising, then our suggestion for a

practitioner is to initialise the penalisation distribution p(θ) = N (θ|0, λ−1) with λ = 1.0

since it presents a stable performance in diverse types of landscapes, or use even smaller

values if more aggressive exploration is desired. Notice that the distribution p(θ) has

its mean in zero (E[p(θ)] = 0); we do not assign any value different to zero, given that

in general, when we optimise a function we do not have any idea about the locations

of its local minima, then using a zero value for p(θ)’s mean is a fair enough election.
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Appendix C

From Mirror Descent to the

Natural-Gradient

In this appendix, we provide additional details with regard to the relation between

mirror descent and natural-gradient described in section 2.4. The mirror descent al-

gorithm in the mean-parameters space of the distribution q(θ) bases on solving the

following iterative sub-problems:

ηt+1 = arg min
η
〈η, ∇̂ηL̃t〉+

1

αt
DKL(q(θ)||qt(θ)).

The intention of the above formulation is to exploit the parametrised distribution’s

structure by controlling its divergence w.r.t its older state qt(θ). Thus, we can solve

for the mirror descent algorithms setting to zero,

〈η, ∇̂ηL̃t〉+
1

αt
DKL(q(θ)||qt(θ)) = 0

〈η, ∇̂ηL̃t〉+
1

αt
Eq(θ)[log q(θ)− log qt(θ)] = 0,

since we can express the distribution q(θ) in the exponential-family form as follows:

q(θ) = h(θ) exp
(
〈ξ, φ(θ)〉 − A(ξ)

)

we can replace it in the above KL divergence as,

〈η, ∇̂ηL̃t〉+
1

αt
Eq(θ)

[
〈ξ, φ(θ)〉 − A(ξ)

]

− 1

αt
Eq(θ)

[
〈ξt, φ(θ)〉 − A(ξt)

]
= 0
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〈η, ∇̂ηL̃t〉+
1

αt

[
〈ξ,Eq(θ)[φ(θ)]〉 − A(ξ)

]

− 1

αt

[
〈ξt,Eq(θ)[φ(θ)]〉 − A(ξt)

]
= 0,

given that Eq(θ)[φ(θ)] = η represent the mean-parameters, we can write again,

〈η, ∇̂ηL̃t〉+
1

αt

[
〈ξ,η〉 − A(ξ)− 〈ξt,η〉+ A(ξt)

]
= 0

deriving w.r.t η we arrive to:

∇̂ηL̃t +
1

αt

[
ξ − ξt

]
= 0.

Where the recursive update comes from making ξ := ξt+1:

ξt+1 = ξt − αt∇̂ηL̃t

where ∇̂ηL̃t = F−1∇̂ξL̃t as per the work “The information geometry of mirror descent,”

(G. Raskutti and S. Mukherjee (2015)), where the authors provide a formal proof of

such equivalence.
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Appendix D

Bound Derivation for HetMOGP

with Linear Model of

Coregionalisation

In this appendix, we show how to derive the ELBO that appears in Eq. (4.5). We build

the objective ELBO for the linear model of coregionalisation by assuming a variational

distribution q(f ,u) = p(f |u)q(u) as follows:

L = Eq(f ,u)

[
log

p(y|f)p(f |u)p(u)

q(f ,u)

]

= Ep(f |u)q(u)

[
log

p(y|f)����p(f |u)p(u)

����p(f |u)q(u)

]

= Ep(f |u)q(u)

[
log p(y|f)

]
+ Eq(u)

[
log

p(u)

q(u)

]
.

Notice that the right hand side term in the equation above does not depend on p(f |u)

then only q(u) remains. The left hand side term does not depend on u so we can

integrate it out as follows:

q(fd,j) =

∫
p(fd,j|u)q(u)du,

with this result, the marginal posterior over all the latent parameter functions is build

as,

q(f) =
D∏

d=1

Jd∏

j=1

q(fd,j),
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this way we can keep developing the ELBO,

L = Eq(f)

[
log p(y|f)

]
+ Eq(u)

[
log

Q∏

q=1

p(uq)

q(uq)

]

= Eq(f)

[
log

D∏

d=1

N∏

n=1

p(yd,n|ψd,1(xn), ..., ψd,Jd(xn))
]

+ Eq(u)

[
log

Q∏

q=1

p(uq)

q(uq)

]

=
D∑

d=1

N∑

n=1

Eq(f)

[
log p(yd,n|ψd,1(xn), ..., ψd,Jd(xn))

]

−
Q∑

q=1

DKL(q(uq)||p(uq)).

We write again as a negative ELBO:

L̃ =
N∑

n=1

D∑

d=1

Eq(fd,1)···q(fd,Jd ) [gd,n] +

Q∑

q=1

DKL (q(uq)‖p(uq)) , (D.1)

where gd,n = − log p(yd,n|ψd,1(xn), ..., ψd,Jd(xn)) is the NLL function associated to each

output.
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Appendix E

Bound Derivation for HetMOGP

with Convolution Processes

In this appendix, we show how to derive the ELBO that appears in Eq. (5.3). We

derive the ELBO for the Heterogeneous MOGP with convolution processes, assuming

a variational distribution q(f , ǔ) = p(f |ǔ)q(ǔ) as follows:

L = Eq(f ,ǔ)

[
log

p(y|f)p(f |ǔ)p(ǔ)

q(f , ǔ)

]

= Ep(f |ǔ)q(ǔ)

[
log

p(y|f)����p(f |ǔ)p(ǔ)

����p(f |ǔ)q(ǔ)

]

= Ep(f |ǔ)q(ǔ)

[
log p(y|f)

]
+ Eq(ǔ)

[
log

p(ǔ)

q(ǔ)

]
.

Since the right hand side term in the equation above does not depend on p(f |ǔ) then

only q(ǔ) remains in the expectation. Regarding the left hand side term, p(y|f) does

not depend on ǔ, so we can integrate out q(ǔ), as follows:

q(f) =

∫
p(f |ǔ)q(ǔ)dǔ.

=

∫ D∏

d=1

Jd∏

j=1

p(fd,j|ǔd,j)q(ǔd,j)dǔd,j,

Hence the marginal posterior over all the latent parameter functions is build as,

q(f) =
D∏

d=1

Jd∏

j=1

q(fd,j),
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where each

q(fd,j) =

∫
p(fd,j|ǔd,j)q(ǔd,j)dǔd,j.

This way we can keep developing the ELBO,

L = Eq(f)

[
log p(y|f)

]
+ Eq(ǔ)

[
log

D∏

d=1

Jd∏

j=1

p(ǔd,j)

q(ǔd,j)

]

= Eq(f)

[
log

D∏

d=1

N∏

n=1

p(yd,n|ψd,1(xn), ..., ψd,Jd(xn))
]

+ Eq(ǔ)

[
log

D∏

d=1

Jd∏

j=1

p(ǔd,j)

q(ǔd,j)

]

=
D∑

d=1

N∑

n=1

Eq(f)

[
log p(yd,n|ψd,1(xn), ..., ψd,Jd(xn))

]

−
D∑

d=1

Jd∑

j=1

DKL(q(ǔd,j)||p(ǔd,j)).

We write again as a negative ELBO:

L̃ =
N∑

n=1

D∑

d=1

Eq(fd,1)···q(fd,Jd ) [gd,n]

+
D∑

d=1

Jd∑

j=1

DKL (q(ǔd,j)‖p(ǔd,j)) , (E.1)

where gd,n = − log p(yd,n|ψd,1(xn), ..., ψd,Jd(xn)) is the NLL function associated to each

output.
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Appendix F

Computing the Gradients w.r.t the

Posterior’ Parameters

The computation of the gradients ∇̂ΣF̃ and ∇̂µF̃ is directly influenced by the penal-

isation (or prior) distribution p(θ) = N (θ|0, λ−1
1 I) with precision λ1 > 0. Using the

Gaussian identities, we can express the gradients as follows:

∇̂µF̃ = Eq(θ)

[
∇̂θL̃

]
+ λ1µ

∇̂ΣF̃ =
1

2
Eq(θ)

[
∇̂2

θθL̃
]

+
1

2
λ1I−

1

2
Σ−1.

The other gradients ∇̂m(·)F̃ = Eq(θ)[∇̂m(·)L̃] and ∇̂V(·)F̃ = Eq(θ)[∇̂V(·)L̃] depend on the

inner gradients ∇̂mL̃ and ∇̂VL̃ of the negative ELBO in Eq. (4.5) for LMC, or in Eq.

(5.3) for CPM.

F.1 Particular Gradients for Linear Model of Core-

gionalisation

Taking the derivative of L̃ for the LMC w.r.t each parameter mq and Vq we arrive to,

∇̂mqL̃ =
D∑

d=1

Jd∑

j=1

A>fd,juq
gmd,j + K−1

uquq
mq, (F.1)

∇̂VqL̃ =
D∑

d=1

Jd∑

j=1

A>fd,juq
diag(gvd,j)Afd,juq (F.2)

− 1

2

[
V−1
q −K−1

uquq

]
,
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where Afd,juq = Kfd,juqK
−1
uquq

, the vector, gmd,j ∈ RN×1, has entries computed with

Eqfd,1(xn),...,qfd,Jd(xn)
[∇fd,j(xn)gd,n], the vector gvd,j ∈ RN×1 has entries calculated using

the expectation, 1
2
Eqfd,1(xn),...,qfd,Jd

(xn)
[∇2

fd,j(xn)fd,j(xn)gd,n], and diag(gvd,j) is a new ma-

trix with the elements of gvd,j on its diagonal. Notice that each distribution qfd,j,n
represents the n-th marginal of each distribution qfd,j . The above equations allow us to

use mini-batches at each iteration of the inference process. Then, instead of using all

data observations N , we randomly sample a mini-batch XB ∈ RB×P and yB ∈ RB×D

from the dataset D = {X,y}, here B accounts for the mini-batch size. We simply

construct: the matrix Afd,juq which becomes ∈ RB×M , and the vectors gmd,j and gvd,j

which become ∈ RB×1. Then we scale the first term to the right hand side of Eq. (F.1)

and Eq. (F.2) by a factor of N/B. We refer to DB = {XB,yB} as the mini-batch data

collection. It is worth noticing that for the case of the CCGP model we can simply

treat the number of outputs as D = 1.

F.2 Particular Gradients for Convolution Processes

Model

Taking the derivative of L̃ for the CPM w.r.t each parameter md,j and Vd,j we find

that,

∇̂md,j
L̃ = A>fd,j ǔd,j

ǧmd,j
+ K−1

ǔd,j ǔd,j
md,j,

∇̂Vd,j
L̃ = A>fd,j ǔd,j

diag(ǧvd,j
)Afd,j ǔd,j

− 1

2

[
V−1
d,j −K−1

ǔd,j ǔd,j

]
,

where Afd,j ǔd,j
= Kfd,j ǔd,j

K−1
ǔd,j ǔd,j

, the vector ǧmd,j
∈ RN×1 has entries computed

with Eqfd,1(xn),...,qfd,Jd(xn)
[∇fd,j(xn)gd,n], the vector ǧvd,j

∈ RN×1 has entries calculated

using 1
2
Eqfd,1(xn),...,qfd,Jd

(xn)
[∇2

fd,j(xn)fd,j(xn)gd,n], and diag(ǧvd,j
) is a new matrix with the

elements of ǧvd,j
on its diagonal. Notice that each distribution qfd,j(xn) represents the

n-th marginal of each distribution q(fd,j).
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Appendix G

FNG Algorithm

Algorithm 1 shows a pseudo-code implementation of the proposed method in section

(3.6.3) and (4.4.3) for CCGP and HetMOGP models based on LMC, respectively; and

of the method in section (5.4.3) for HetMOGP with CPM when applying inducing

variables ǔd,j(·). Here, we use Σ(·) and µ(·) for referring to either Σ and µ in CCGP;

or ΣD and µD in HetMOGP with LMC; or ΣC and µC in HetMOGP with CPM.

Likewise, we use V(·) and m(·) for referring to Vq and mq in CCGP and HetMOGP

models with LMC, or to Vd,j and md,j in HetMOGP with CPM. In practice, we found

useful to update the parameters µ
(·)
t+1 using

√
p

(·)
t and

√
p

(·)
t+1 instead of p

(·)
t and p

(·)
t+1,

for improving the method’s convergence.

Algorithm 1 Fully Natural Gradient Algorithm

Input: αt, βt, γt, νt, λ1

Output: Σ
(·)
t+1,µ

(·)
t+1, V(·),t+1, m(·),t+1

1: set t = 1

2: while Not Converged do

3: sample θt ∼ q(θ|µ(·)
t ,Σ

(·)
t )

4: randomly sample a mini-batch DB

5: Eq(θ)

[
∇̂θL̃

]
and Eq(θ)

[
∇̂θL̃ ◦ ∇̂θL̃

]
using samples θt

6: update pt+1 and µt+1

7: compute ∇̂m(·)F̃ and ∇̂V(·)F̃
8: update V(·),t+1 and m(·),t+1

9: Σ
(·)
t+1 = diag

(
(p

(·)
t+1 + λ11)−1

)

10: t = t+ 1

11: end while

122



Appendix H

Maximum a Posteriori in the

Context of Variational Inference

In context of Bayesian inference, posterior distribution p(θ|X) is proportional to the

likelihood p(X|θ) times the prior p(θ) , i.e., p(θ|X) ∝ p(X|θ)p(θ). Although, if the

likelihood and prior are non-conjugate distributions, it is necessary to approximate

the posterior, for instance using variational inference. In this context of variational

inference, we do not have access to the true posterior, but to the approximate posterior

q(θ), which it is optimised by maximising the ELBO,

L = Eq(θ)

[
log p(X|θ)

]
− DKL(q(θ)||p(θ)) ≤ log p(X).

Notice that if we are only interested in a point estimate of the parameter θ of the Log

Likelihood function, then a feasible solution for the parameter is θ? = Eq(θ)[θ] = µ,

where q(θ) := q(θ|µ,Σ). This corresponds to the MAP solution due to the fact that,

θMAP = arg max
θ

p(θ|X),

where p(θ|X) represents the true posterior. Since in the context of variational inference,

we only have access to an approximate free parametrised posterior p(θ|X) ≈ q(θ|µ,Σ),

therefore the equation above implies that,

θMAP = arg max
θ

q(θ|µ,Σ),

and it is clear that the maximum of the distribution q(θ|µ,Σ) is located at its mean,

thereby θMAP = µ.
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Appendix I

Rule of Thumb to Select the

number Q of Latent Functions uq(·)

Some research have particularly focused on the topic of selection of the number Q of

latent functions uq(·), for instance the works: “Multi-task Gaussian Process Learning

of Robot Inverse Dynamics” (Kian Ming A. et al., 2008); “Indian Buffet process for

model selection in latent force models” (Guarnizo et al., 2015) and “Discovering Latent

Covariance Structures for Multiple Time Series” (A. Tong and J. Choi, 2019). Kian

Ming A. et al. (2008) uses a Bayesian Information Criterion (BIC) for setting Q,

whereas both Guarnizo et al. (2015) and A. Tong and J. Choi (2019) use Indian buffet

process prior together with Bayesian inference for selecting Q. Although, selecting such

a parameter is still an open question for research.

Since the selection of such a number Q is still an open problem in the literature, and

the main focus of our manuscript aims to target the problem of inference regardless of

the Q value; we proposed a rule of thumb for selecting the value of Q, useful from the

point of view of the practitioner. In the Heterogeneous MOGP, the total number of

latent parameter functions, fd,j(x), is equal to J =
∑D

d=1 Jd, where Jd is the number

of LPFs per likelihood. To select Q, we apply the rule of thumb described below:

1. If the number of outputs is less or equal than five, then set the number of latent

functions Q = J , i.e., if D <= 5 set Q = J .

2. If the number of outputs is higher than five, then set the number of latent

functions Q = 3, i.e., if D > 5 set Q = 3.

In order to compute J =
∑D

d=1 Jd, the look up table below indicates the number of

LPFs Jd as per each specific type of likelihood used for each output:
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Likelihood Type Latent Functions fd,j (Jd)

Gaussian 1

Poisson 1

Bernoulli 1

HetGaussian 2

Beta 2

Gamma 2

Thus, using the above rule of thumb we have selected the Q value for our experiments as

follows: for the human data, we have three outputs with different likelihoods, Bernoulli,

Heteroscedastic-Gaussian and Beta. As per the Table above, the Bernoulli likelihood

requires one LPF; the Heteroscedastic-Gaussian likelihood requires two LPFs, and

the Beta likelihood also requires two LPFs. This gives a total of Q = 5. For the

London data, we have two outputs with likelihoods: Bernoulli with one LPF and

Heteroscedastic-Gaussian with two LPFs, all for a total of Q = 3. For the Naval data,

we have two outputs with likelihoods: Beta that requires two LPFs, and Gamma also

requires two LPFs. This give a total of Q = 4. For any other experiment with a

number of outputs D > 5 we have selected Q = 3.

We opt for this rule of thumb as a way to allow the HetMOGP model to have a high

flexibility for modelling the data. The higher the number Q of latent function uq(·)
is, the higher the flexibility will be to model possibly high frequency trendings that

can be present in the data observations. Although, setting a high number Q goes in

detriment to the computational complexity of the model and overloads making future

predictions; this is a reason why our rule of thumb sets Q = 3 when having more

than five outputs. Also, setting Q = 3 allows us to at least account for low, medium

and high length-scale resolutions for modelling a dataset with a very high number of

outputs.
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Appendix J

Additional Information of Datasets

and Experiments Setting

The datasets used in our experiments were taken from the following web-pages:

• The HUMAN is captured using EB2 app, visit https://www.eb2.tech/

• For information about LONDON dataset visit:

https://www.gov.uk/government/collections/price-paid-data

• For information about NAVAL dataset visit http://archive.ics.uci.edu/ml/datasets

• For information about SARCOS dataset see http://www.gaussianprocess.org/gpml/data/

• See http://mocap.cs.cmu.edu/subjects.php for MOCAP dataset, subject 7 refers

to MOCAP7 and subject 9 refers to MOCAP9.

• Visit https://data.gov.uk/dataset/208c0e7b-353f-4e2d-8b7a-1a7118467acc/gb-road-

traffic-counts for information about TRAFFIC dataset.

J.1 Additional Analysis per Output over LONDON

and NAVAL datasets

For the LONDON dataset, Figure J.1 shows that Adam converges to a richer minimum

of the NELBO than SGD. Moreover, the NLPD for Adam is, on average, better than

the SGD for both HetGaussian and Bernoulli outputs. Particularly, Adam presents for

the Bernoulli output few “outliers” under its boxes that suggest it can find sporadically
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rich local optima, but its general trend was to provide poor solutions for that specific

output in contrast to the HetGaussian output. The HYB and FNG arrive to a very

similar value of the NELBO, both being better than Adam and SGD. HYB and FNG

methods attain akin NLPD metrics for the HetGaussian output, though our method

shows smaller boxes being more confident along iterations. Both methods present large

variances for the Bernoulli output, but the average and median trend of our approach

is much better, being more robust to the initialisation than HYB method. The NLPD

performance for the NAVAL dataset shows in Figure J.2 that the SGD method cannot

make progress. We tried to set a bigger step-size, but usually increasing it derived

in numerical problems due to ill-conditioning. The methods Adam and HYB show

almost the same behaviour along the NELBO optimisation, in fact the NLPD boxes

for the Beta and Gamma outputs look quite similar for both methods. The difference

of performance can be noticed for the Beta output, where at the end, HYB method

becomes more confident reducing its variance. Our FNG method ends up with a slightly

upper NLPD solution in the Gamma output in comparison to Adam and HYB, but

being more confident showing a smaller spread in the box-plot across iterations. For

the Gamma output, FNG shows at the end some “outliers” under the NLPD boxes,

accounting for sporadic convergence to strong solutions. For the Beta distribution, our

method obtains a better solution with the finest NLPD in comparison to SGD, HYB

and Adam.
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Figure J.1: Performance of the diverse inference methods on the LON-

DON dataset using 20 different initialisations over HetMOGP with LMC.

The left sub-figure shows the average NELBO convergence of each method.

The other sub-figures show the box-plot trending of the NLPD over the test

set for each output. The box-plots at each iteration follow the legend’s order

from left to right: SGD, Adam, HYB and FNG. The isolated diamonds that

appear in the outputs’ graphs represent “outliers”.
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Figure J.2: Performance of the diverse inference methods on the NAVAL

dataset using 20 different initialisations over HetMOGP with LMC. The

left sub-figure shows the average NELBO convergence of each method. The

other sub-figures show the box-plot trending of the NLPD over the test set

for each output. The box-plots at each iteration follow the legend’s order

from left to right: SGD, Adam, HYB and FNG. The isolated diamonds that

appear in the output graphs represents “outliers”.
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Appendix K

Paper i: A Fully Natural Gradient

Scheme for Improving Inference of

the Heterogeneous Multi-Output

Gaussian Process Model

Paper accepted in the Journal IEEE Transactions on Neural Networks and

Learning Systems.
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A Fully Natural Gradient Scheme for Improving
Inference of the Heterogeneous Multi-Output

Gaussian Process Model
Juan-José Giraldo, and Mauricio A. Álvarez

Abstract—A recent novel extension of multi-output Gaussian
processes handles heterogeneous outputs assuming that each
output has its own likelihood function. It uses a vector-valued
Gaussian process prior to jointly model all likelihoods’ param-
eters as latent functions drawn from a Gaussian process with
a linear model of coregionalisation covariance. By means of an
inducing points framework, the model is able to obtain tractable
variational bounds amenable to stochastic variational inference.
Nonetheless, the strong conditioning between the variational
parameters and the hyper-parameters burdens the adaptive
gradient optimisation methods used in the original approach.
To overcome this issue we borrow ideas from variational opti-
misation introducing an exploratory distribution over the hyper-
parameters, allowing inference together with the posterior’s vari-
ational parameters through a fully natural gradient optimisation
scheme. Furthermore, in this work we introduce an extension of
the heterogeneous multi-output model, where its latent functions
are drawn from convolution processes. We show that our opti-
misation scheme can achieve better local optima solutions with
higher test performance rates than adaptive gradient methods,
this for both the linear model of coregionalisation and the
convolution processes model. We also show how to make the
convolutional model scalable by means of stochastic variational
inference and how to optimise it through a fully natural gradient
scheme. We compare the performance of the different methods
over toy and real databases.

Index Terms—Natural Gradient, Multi-Output Gaussian Pro-
cess, Heterogeneous Outputs, Convolution Processes, Variational
Optimisation.

I. INTRODUCTION

A MULTI-OUTPUT Gaussian Processes (MOGP) model
generalises the Gaussian Process (GP) model by exploit-

ing correlations not only in the input space, but also in the
output space [1]. Major research about MOGP models has
focused on finding proper definitions of a cross-covariance
function between the multiple outputs [2], [3]. Nevertheless
few works have been concerned about targeting the issue that
those outputs not necessarily follow the same statistical data
type. To address that regard, a recent approach known as the
Heterogeneous Multi-Output Gaussian Process (HetMOGP)
model extents the MOGP application [4] to any arbitrary
combination of D likelihood distributions over the output ob-
servations [5]. The HetMOGP jointly models all likelihoods’
parameters as latent functions drawn from a Gaussian process
with a linear model of coregionalisation (LMC) covariance.

J.J. Giraldo and M. A. Álvarez are with the Department of Com-
puter Science, The University of Sheffield, UK, (e-mail: jjgiraldogutier-
rez1@sheffield.ac.uk, mauricio.alvarez@sheffield.ac.uk)

It can be seen as a generalisation of a Chained GP [6]
for multiple correlated output functions of an heterogeneous
nature. The HetMOGP’s scalability bases on the schemes
of variational inducing variables for single-output GPs [7].
This scheme relies on the idea of augmenting the GP prior
probability space, through the inclusion of a so-called set
of inducing points that change the full GP covariance by a
low-rank approximation [8], [9]. Such inducing points help
reducing significantly the MOGP’s computational costs from
O(D3N3) to O(DNM2) and storage from O(D2N2) to
O(DNM), where N , D and M � N represent the number
of data observations, outputs and inducing points, respectively
[10], [4].

The adequate performance of a variational GP model de-
pends on a proper optimisation process able to find rich local
optima solutions for maximising a bound to the marginal
likelihood. Variational GP models generally suffer from strong
conditioning between the variational posterior distribution, the
multiple hyper-parameters of the GP prior and the inducing
points [11]. In particular, the HetMOGP model is built upon
a linear combinations of Q latent functions, where each latent
function demands a treatment based on the inducing variables
framework. On this model then, such strong conditionings
are enhanced even more due to the dependence of inducing
points per underlying latent function, and the presence of
additional linear combination coefficients. Since the model
is extremely sensitive to any small change on any of those
variables, stochastic gradient updates in combination with
adaptive gradient methods (AGMs, e.g. Adam) tend to drive
the optimisation to poor local minima.

With the purpose to overcome the optimisation problems
present in variational GP models, there has recently been a
growing interest in alternative optimisation schemes that adopt
the natural gradient (NG) direction [12]. For instance, in [7]
the authors derived a mathematical analysis that suggested we
can make better progress when optimising a variational GP
along the NG direction, but without providing any experimen-
tal results of its performance. The authors in [13] propose to
linearise the non-conjugate terms of the model for admitting
closed-form updates which are equivalent to optimising in the
natural gradient direction. The work in [14] shows how to
convert inference in non-conjugate models as it is done in the
conjugate ones, by way of expressing the posterior distribution
in the mean-parameter space. Furthermore, it shows that by
means of exploiting the mirror descent algorithm (MDA) one
can arrive to NG updates for tuning the variational posterior
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distribution. Those works coincide in improvements of training
and testing performance, and also fast convergence rates.
Nonetheless, they only show results in a full GP model where
the kernel hyper-parameters are fixed using a grid search.
On the other hand, the work in [15] does show a broad
experimental analysis of the NG method for sparse GPs. The
authors conclude that the NG is not prone to suffer from ill-
conditioning issues in comparison to the AGMs. Also the
NG has been used to ease optimisation of the variational
posterior over the latent functions of a deep GP model [16].
However, in those two latter cases the NG method only applies
for the latent functions’ posterior parameters, while an Adam
method performs a cooperative optimisation for dealing with
the hyper-parameters and inducing points. The authors in [15]
call this strategy a hybrid between NG and Adam, and termed
it NG+Adam.

The main contributions of this paper include the following:

• We propose a fully natural gradient (FNG) scheme for
jointly tuning the hyper-parameters, inducing points and
variational posterior parameters of the HetMOGP model.
To this end, we borrow ideas from different variational
optimisation (VO) strategies like [17], [18] and [19], by
introducing an exploratory distribution over the hyper-
parameters and inducing points. Such VO strategies have
shown to be successful exploratory-learning tools able to
avoid poor local optima solutions; they have been broadly
studied in the context of reinforcement and Bayesian deep
learning, but not much in the context of GPs.

• We provide an extension of the HetMOGP based on a
Convolution Processes (CPM) model, rather than an LMC
approach as in the original model. This is a novel con-
tribution since there are no former MOGP models with
convolution processes that involve stochastic variational
inference (SVI), nor a model of heterogeneous outputs
that relies on convolution processes.

• We provide a FNG scheme for optimising the new model
extension, the HetMOGP with CPM.

• To the best of our knowledge the NG method has not
been performed over any MOGP model before. Hence,
in this work we also contribute to show how a NG method
used in a full scheme over the MOGP’s parameters and
kernel hyper-parameters alleviates the strong conditioning
problems. This, by achieving better local optima solu-
tions with higher test performance rates than Adam and
stochastic gradient descent (SGD).

• We explore for the first time in a MOGP model the
behaviour of the hybrid strategy NG+Adam, and provide
comparative results to our proposed scheme.

II. VARIATIONAL OPTIMISATION: AN EXPLORATORY
MECHANISM FOR OPTIMISATION

This section introduces the variational optimisation method
as an exploratory mechanism for minimising an objective
function [17]. It also shows how Variational Inference (VI)
can be seen as a particular case of variational optimisation.

A. Variational Optimisation

The goal in optimisation is to find a proper set of parameters
that minimise a possibly non-convex function g(θ) by solving,
θ∗ = arg minθ g(θ), where θ∗ represents the set of parameters
that minimise the function. The classical way to deal with the
above optimisation problem involves deriving w.r.t θ and solv-
ing in a closed-form, or through a gradient descent method.
Usually, gradient methods tend to converge to the closest local
minima from the starting point without exploring much the
space of solutions [20] (see section I of Supplemental Material
(SM) for a comparison between VO and Newton’s method).
Alternatively the variational optimisation method proposes to
solve the same problem [17], but introducing exploration in the
parameter space of a variational (or exploratory) distribution
q(θ|ξ) by bounding the function g(θ) as follows:

L̃(ξ) = Eq(θ|ξ)[g(θ)] + DKL
(
q(θ|ξ)||p(θ)

)
, (1)

where DKL(·||·) is a Kullback-Leibler (KL) divergence and
p(θ) is a penalization distribution. The work of VO in [17]
does not introduce the KL term in the equation above, i.e.
L̃(ξ) = Eq(θ|ξ)[g(θ)], this implies that during an inference
process, the exploratory distribution is free to collapse to zero
becoming a Dirac’s delta q(θ) = δ(θ−µ), where µ = θ∗ and
µ represents the q(θ)’s mean [21], [22]. This collapsing effect
limits the exploration of θ’s space (see section I of SM for a
graphical example). In contrast, by using the KL term, we can
force the exploratory distribution q(θ|ξ) to trade-off between
minimising the expectation Eq(θ|ξ)[g(θ)] and not going far
away from the imposed p(θ) penalization [23]. Indeed, the
KL term in Eq. (1) reduces the collapsing effect of q(θ)
and helps to gain additional exploration when an inference
process is carried out. With the aim to better understand such
behaviour, let us define an example inspired by the one in
[18]; we define g(θ) = 2 exp(−0.09θ2) sin(4.5θ), a function
with multiple local minima, q(θ) = N (θ|µ, σ2) represents a
variational distribution over θ, with parameters mean µ and
variance σ2, and p(θ) = N (θ|0, λ−1) with λ = 1.0. We built
the graph in Fig. 1 to show what happens at each iteration of
the optimisation process. Figure 1 shows three perspectives
of a such experiment, where we initialise the parameters
θ = µ = −3.0 and σ = 3.0. We can notice from Fig. 1 that the
initial value of θ = µ = −3.0 is far away from g(θ)’s global
minimum at θ ≈ −0.346. When the inference process starts,
the exploratory distribution q(θ) modifies its variance and
moves its mean towards a better region in the space of θ. From
the third row we can also see that q(θ) initially behaves as a
broad distribution (in light-gray colour) with a mean located
at µ = −3.0, while the iterations elapse, the distribution q(θ)
modifies its shape in order to reach a better local minima
solution (at µ ≈ −0.346). The distribution presents such
behaviour in spite of being closer to other poor local minima
like the ones between the intervals (−4,−3) and (−2,−1).
Additionally, when the mean µ is close to θ ≈ −0.346 (the
global minimum), the variance parameter reduces constantly
making the distribution look narrower, which means it is
increasing the certainty of the solution. This behaviour implies
that in the long term q(θ)’s mean will be much closer to θ∗.
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Fig. 1. First row shows what happens from the perspective of the original
function g(θ) = 2 exp(−0.09θ2) sin(4.5θ), the black dots represent the
position of θ = µ at each iteration. Second row shows a contour graph of
the space of solutions w.r.t σ and µ, here the black dots refer to the position
of σ and µ at each iteration, and the low and high colour intensities relate
to low and high values of Eq(θ)[g(θ)], notice that here we do not include
the KL term information for easing the visualisation of the multiple local
minima. Third row shows q(θ)’s behaviour, for each Gaussian bell we use a
colour code from light-gray to black for representing initial to final stages of
the inference. All sub-graphs present vertical lines for aligning iterations, i.e.,
from left to right the lines represent the occurrence of an iteration. To avoid
excessive overlapping, the third row only shows q(θ) every two iterations.

Therefore, a feasible minima solution for the original objective
function g(θ) is θ = Eq(θ)[θ] = µ, this can be seen in the first
sub-graph where at each iteration θ = µ, in fact, at the end µ is
fairly close to the value θ ≈ −0.346. Given that in the practise
we usually do not have any idea about the landscape of the
objective functions that we are interested in optimising, then
our suggestion for a practitioner is to initialise the penalisation
distribution p(θ) = N (θ|0, λ−1) with λ = 1.0; this value
presents a stable performance in diverse types of landscapes,
or use even a smaller value if more aggressive exploration is
desired. (see section II of SM for a detailed analysis of the
influence of λ during optimisation).

B. Variational Inference: VO for the Negative Log Likelihood

A common way to build a probabilistic model for a set
of observations X = {xn}Nn=1 ∈ RN×P is to assume
that each observation is drawn independently and identically
distributed (IID) from a probability distribution p(X|θ), com-
monly known as a likelihood. Fitting the model consists on
finding the parameter θ that makes the distribution appro-
priately explain the data. This inference process is called
maximum likelihood estimation, given that is equivalent to
the optimisation problem of maximising the log likelihood
function log p(X|θ), i.e., minimising the negative log like-
lihood (NLL) function − log p(X|θ) [24]. From a Bayesian
perspective, we can introduce a prior distribution p(θ) over the
parameter of interest, p(θ|X) ∝ p(X|θ)p(θ), which implies
that there also exists a posterior distribution p(θ|X) over such
parameter, useful to render future predictions of the model.
When the likelihood and prior are conjugate, the posterior
distribution can be computed in closed form, but that is not

always the case. Hence, if the likelihood and prior are non-
conjugate, it is necessary to approximate the posterior [25].
Variational inference is a powerful framework broadly used in
machine learning, that allows to estimate the posterior by min-
imising the KL divergence DKL

(
q(θ|ξ)||p(θ|X)

)
between an

approximate variational posterior q(θ|ξ) and the true posterior
p(θ|X) [26]. Since we do not have access to the true posterior,
minimising such KL divergence is equivalent to maximising a
lower bound to the marginal likelihood. It emerges from the
equality: logEq(θ|ξ)

[
p(X|θ)p(θ)
q(θ|ξ)

]
= log p(X), in which, after

applying the Jensen’s inequality we arrive to,

−L̃(ξ) = Eq(θ|ξ)

[
log

p(X|θ)p(θ)

q(θ|ξ)

]
≤ log p(X), (2)

where log p(X) represents the log marginal likelihood and
−L̃(ξ) is an evidence lower bound (ELBO) [27]. It is notewor-
thy that if we replace g(θ) = − log p(X|θ) in Eq. (1), we end
up with exactly the same lower bound of Eq. (2). Therefore, VI
can be seen as a particular case of VO with a KL divergence
penalisation, where the objective g(θ) is nothing but the NLL.
We can distinguish from two perspectives when using VO for
maximum likelihood: for the Bayesian perspective we are not
only interested in a point estimate for the parameter θ, but
in the uncertainty codified in q(θ)’s (co)variance for making
future predictions; and for the non-Bayesian perspective the
main goal in maximum likelihood estimation is to optimise the
function g(θ) = − log p(X|θ). For this case, if q(θ|µ,Σ) is a
Gaussian distribution, we can make use of only the posterior’s
mean Eq(θ|ξ)[θ] = µ as a feasible solution for θ∗ without
taking into account the uncertainty. This is also known as the
maximum a posteriori (MAP) solution in the context of VI,
due to the fact that θMAP = arg maxθ p(θ|X) ≈ q(θ|µ,Σ),
where the maximum of the distribution q(θ|µ,Σ) is located
at its mean, thereby θMAP = µ (see section VIII of SM for
details) [25].

III. EXPLOITING THE MIRROR DESCENT ALGORITHM

Direct update equations for the parameters of a (posterior)
distribution using natural gradients involve the inversion of a
Fisher information matrix, which in general it is complex to
do. The purpose of this section is to show how an alternative
formulation of the NG updates can be derived from the
MDA. We introduce the Variational Adaptive-Newton (VAN),
a method that benefits from a Gaussian posterior distribution to
easily express the parameters updates in the NG direction. And
we also introduce the concept of natural-momentum which
takes advantage of the KL divergence for providing an extra
memory information to the MDA.

A. Connection between Natural-Gradient and Mirror Descent

The NG allows to solve an optimisation problem like
the one in Eq. (1), where the goal consists on finding an
optimal distribution q(θ) that best minimises the objective
bound [12]. The method takes advantage of the inverse Fisher
information matrix, F−1, associated to the random variable
θ, by iteratively weighting the following gradient updates,
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ξt+1 = ξt−αtF−1t ∇̂ξL̃t, where αt is a positive step-size pa-
rameter and ξt represents the natural (or canonical) parameters
of the distribution q(θ). Such natural parameters can be better
noticed by expressing the distribution in the general form of
the exponential family, q(θ) = h(θ) exp

(
〈ξ, φ(θ)〉 − A(ξ)

)
,

where A(ξ) is the log-partition function, φ(θ) is a vector
of sufficient statistics and h(θ) is a scaling constant [24].
The updates for ξt+1 are expensive due to involving the
computation of the inverse Fisher matrix at each iteration.
Since an exponential-family distribution has an associated set
of mean-parameters η = E[φ(θ)], then an alternative way to
induce the NG updates consists on formulating a MDA in such
mean-parameter space. Hence, the algorithm bases on solving
the following iterative sub-problems:

ηt+1 = arg min
η
〈η, ∇̂ηL̃t〉+

1

αt
DKL(q(θ)||qt(θ)), (3)

where η is the set of q(θ)’s mean-parameters, L̃ is a VO
bound of a function g(θ), ∇̂ηL̃t := ∇̂ηL̃(ηt) denotes a
stochastic gradient, qt(θ) := q(θ|ηt) and αt is a positive
step-size parameter [14]. The intention of the above formu-
lation is to exploit the parametrised distribution’s structure by
controlling its divergence w.r.t its older state qt(θ). Replacing
the distribution q(θ) in its exponential-form, in the above KL
divergence, and setting Eq. (3) to zero, let us express,

〈η, ∇̂ηL̃t〉+
1

αt

[
〈ξ,η〉 −A(ξ)− 〈ξt,η〉+A(ξt)

]
= 0,

and by deriving w.r.t η, we arrive to ξt+1 = ξt − αt∇̂ηL̃t,
where ξt+1 := ξ and ∇̂ηL̃t = F−1∇̂ξL̃t as per the work
in [28], where the authors provide a formal proof of such
equivalence. The formulation in Eq. (3) is advantageous since
it is easier to compute derivatives w.r.t η than computing the
inverse Fisher information matrix F−1. Therefore, the MDA
for solving iterative sub-problems in the mean-parameter space
is equivalent to updating the canonical parameters in the NG
direction (see section III of SM for more details).

B. Variational Adaptive-Newton and Natural-Momentum
The VAN method aims to solve the problem in Eq. (3)

using a Gaussian distribution q(θ) := q(θ|µ,Σ) as the
exploratory mechanism for optimisation [18]. This implies that
if µ and Σ represent the mean and covariance respectively,
then q(θ)’s mean-parameters are η = {µ,Σ+µµ>}, and also
its analogous natural-parameters are ξ = {Σ−1µ,− 1

2Σ−1}.
When plugging these parametrisations and solving for the
MDA in Eq. (3), we end up with the following updates:
Σ−1t+1 = Σ−1t + 2αt∇̂ΣL̃t and µt+1 = µt − αtΣt+1∇̂µL̃t,
where µt and Σt are the mean and covariance parameters
at the instant t respectively; the stochastic gradients are
∇̂µL̃t := ∇̂µL̃(µt,Σt) and ∇̂ΣL̃t := ∇̂ΣL̃(µt,Σt). These
latter updates represent a NG descent algorithm for exploring
the space of solutions of the variable θ through a Gaussian
distribution [14]. It is possible to keep exploiting the structure
of the distribution q(θ), this by including an additional KL
divergence term in the MDA of Eq. (3) as follows: ηt+1

= arg min
η
〈η, ∇̂ηL̃t〉+

1

α̃t
KL(θ)t −

γ̃t
α̃t

KL(θ)t−1, (4)

where qt(θ) := q(θ|µt,Σt) represents the exploratory dis-
tributions q(θ) with the parameters obtained at time t, and
KL(·)t := DKL(q(·)||qt(·)). Such additional KL term, called
as a natural-momentum in [19], provides extra memory infor-
mation to the MDA for potentially improving its convergence
rate. This momentum can be controlled by the relation between
the positive step-sizes α̃t and γ̃t. When solving for Eq. (4),
we arrive to the following NG update equations:

Σ−1t+1 = Σ−1t + 2αt∇̂ΣL̃t (5)

µt+1 = µt−αtΣt+1∇̂µL̃t + γtΣt+1Σ
−1
t (µt − µt−1), (6)

where αt = α̃t/(1 − γ̃t) and γt = γ̃t/(1 − γ̃t) are positive
step-size parameters [23], [19].

IV. HETEROGENEOUS MULTI-OUTPUT GAUSSIAN
PROCESS MODEL

This section provides a brief summary of the state of the art
in multi output GPs. It later describes the HetMOGP model.
Also, how the inducing points framework allows the model to
obtain tractable variational bounds amenable to SVI.

A. Multi-Output Gaussian Processes Review

A MOGP generalises the GP model by exploiting correla-
tions not only in the input space, but also in the output space
[1]. Major research about MOGPs has focused on finding
proper definitions of a cross-covariance function between
multiple outputs. Classical approaches that define such cross-
covariance function include the LMC [2] or process convolu-
tions [3]. The works in [1], [4] provide a review of MOGPs
that use either LMC or convolution processes approaches.
MOGPs have been applied in several problems including
sensor networks with missing signals [29]; motion capture data
for completing a sequence of missing frames [30]; and natural
language processing, where annotating linguistic data is often
a complex and time consuming task, and MOGPs can learn
from the outputs of multiple annotators [31]. They have been
also used in computer emulation, where the LMC, also termed
as a Multiple-Output emulator, can be used as a substitute of
a computationally expensive deterministic model [32], [33].
Likewise, MOGPs have been useful for learning the couplings
between multiple time series and helping to enhance their
forecasting capabilities [34]. Recent approaches have focused
on building cross-covariances between outputs in the spectral
domain [35]. For instance, by constructing a multi-output
Convolution Spectral Mixture kernel which incorporates time
and phase delays in the spectral density [36]. Other works
have concentrated in tackling the issues regarding inference
scalability and computation efficiency [4], for example in the
context of large datasets using collaborative MOGPs [37];
introducing an scalable inference procedure with a mixture of
Gaussians as a posterior approximation [38]. Other works have
investigated alternative paradigms to MOGPs. For instance, the
work in [39] has explored combinations of GPs with Bayesian
neural networks (BNN) so as to take advantage from the GPs’
non-parametric flexibility and the BNN’s structural properties
for modelling multiple-outputs. Another recent work relies
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on a product rule to decompose the joint distribution of the
outputs given the inputs into conditional distributions, i.e.
decoupling the model into single-output regression tasks [40].
Most work on MOGPs including [33], [36], [40] has focused
on Gaussian multivariate regression. As we have mentioned
before, in this paper we focus on the HetMOGP that concerns
about outputs with different statistical data types, and extends
the MOGPs’ application to heterogeneous outputs [5].

B. The Likelihood Function for the HetMOGP

The HetMOGP model is an extension of the Multi-Output
GP that allows different kinds of likelihoods as per the
statistical data type each output demands [5]. For instance,
if we have two outputs problem, where one output is binary
y1 ∈ {0, 1} while the other is a real value y2 ∈ R, we
can assume our likelihood as the product of a Bernoulli and
Gaussian distribution for each output respectively. In general
the HetMOGP likelihood for D outputs can be written as:

p(y|f) =
N∏

n=1

D∏

d=1

p(yd,n|ψd,1(xn), ..., ψd,Jd(xn)), (7)

where the vector y = [y>1 , ...,y
>
D]> groups all the output

observations and each ψd,j(xn) represents the j-th parameter
that belongs to the d-th likelihood. It is worth noticing that
each output vector yd is generated by a particular set of input
observations Xd. Though, in order to ease the explanation of
the model and to be consistent with the equation above, we
have assumed that all outputs yd = [yd,1, ..., yd,N ]> are related
to the same input observations X = [x1, ...,xN ]> ∈ RN×P .
Each likelihoods’ parameter ψd,j(xn) is chained to a latent
function fd,j(·) that follows a GP prior, through a link function
φ(·), i.e., ψd,j(xn) = φ(fd,j(xn)). For instance, if we have
two outputs where the first likelihood is a Heteroscedastic
Gaussian, then its parameters mean and variance are respec-
tively chained as ψ1,1(xn) = f1,1(xn) and ψ1,2(xn) =
exp(f1,2(xn)); if the second likelihood is a Gamma, its
parameters are linked as ψ2,1(xn) = exp(f2,1(xn)) and
ψ2,2(xn) = exp(f2,2(xn)) [6]. Notice that Jd accounts for
the number of latent functions necessary to parametrise the
d-th likelihood, thus the total number of functions fd,j(·)
associated to the model becomes J =

∑D
d=1 Jd. Each fd,j(·)

is considered a latent parameter function (LPF) that comes
from a LMC as follows:

fd,j(x) =

Q∑

q=1

Rq∑

i=1

aid,j,qu
i
q(x), (8)

where uiq(x) are IID samples from GPs uq(·) ∼ GP(0, kq(·, ·))
and aid,j,q ∈ R is a linear combination coefficient (LCC). In
Section V, we introduce a different way to model fd,j(x)
based on convolution processes. For the sake of future ex-
planations let us assume that Rq = 1. In this way the
number of LCCs per latent function uq(·) becomes J . The
coefficients per function uq(·) can be grouped in a vector
wq = [a1,1,q, ..., a1,J1,q, ..., aD,JD,q]

> ∈ RJ×1; and we can
cluster all vectors wq in a specific vector of LCCs w =
[w>1 , ...,w

>
Q]> ∈ RQJ×1.

C. The Inducing Points Method

A common approach for reducing computational com-
plexity in GP models is to augment the GP prior with
a set of inducing variables. For the specific case of the
HetMOGP model with LMC prior, the vector of inducing
variables u = [u>1 , ...,u

>
Q]> ∈ RQM×1 is built from uq =

[uq(z
(1)
q ), ..., uq(z

(M)
q )]> ∈ RM×1. Notice that the vector uq

is constructed by additional evaluations of the functions uq(·)
at some unknown inducing points Zq = [z

(1)
q , ..., z

(M)
q ]> ∈

RM×P . The vector of all inducing variables can be expressed
as z = [vec(Z1)>, ..., vec(ZQ)>]> ∈ RQMP×1 [9], [41]. We
can write the augmented GP prior as follows,

p(f |u)p(u) =

D∏

d=1

Jd∏

j=1

p(fd,j |u)

Q∏

q=1

p(uq), (9)

where f = [f>1,1, ..., f
>
1,J1

, ..., f>D,JD ]> is a vector built from
fd,j = [fd,j(x1), ..., fd,j(xN )]> ∈ RN×1. Following the
conditional Gaussian properties we can express,

p(fd,j |u) = N (fd,j |Afd,juu, Q̃fd,jfd,j ), p(u) = N (u|0,Kuu),

where the matrix Kuu ∈ RQM×QM is a block-diagonal
with blocks Kuquq

∈ RM×M built from evaluations of
cov [uq(·), uq(·)] = kq(·, ·) between all pairs of inducing
points Zq respectively; and we have introduced the following
definitions, Afd,ju = Kfd,juK−1uu, Q̃fd,jfd,j = Kfd,jfd,j −
Qfd,jfd,j , Qfd,jfd,j = Kfd,juK−1uuKufd,j , Kfd,ju = K>ufd,j

.
Here the covariance matrix Kfd,jfd,j ∈ RN×N is built from the
evaluation of all pairs of input data X in the covariance func-
tion cov [fd,j(·), fd,j(·)] =

∑Q
q=1 a

2
d,j,qkq (·, ·); and the cross

covariance matrix Kfd,ju = [Kfd,ju1 , ...,Kfd,juQ
] ∈ RN×QM

is constructed with the blocks Kfd,juq
∈ RN×M , formed by

the evaluations of cov [fd,j(·), uq(·)] = ad,j,qkq(·, ·) between
inputs X and Zq . Each kernel covariance kq (·, ·) has an
Exponentiated Quadratic (EQ) form as follows:

E(τ |0,L) =
|L|−1/2
(2π)P/2

exp

[
−1

2
τ>L−1τ

]
, (10)

where τ := x−x′ and L is a diagonal matrix of length-scales.
Thus, each kq (x,x′) = E(τ |0,Lq).

D. The Evidence Lower Bound

We follow a VI derivation similar to the one used for single
output GPs [7], [6]. This approach allows the use of HetMOGP
for large data. The goal is to approximate the true posterior
p(f ,u|y) with a variational distribution q(f ,u) by optimising
the following negative ELBO:

L̃ =

N,D∑

n,d=1

Eq(fd,1)···q(fd,Jd
) [gd,n] +

Q∑

q=1

DKL (uq) , (11)

where gd,n = − log p(yd,n|ψd,1(xn), ..., ψd,Jd(xn)) is the
NLL function associated to each output, DKL (uq) :=
DKL (q(uq)‖p(uq)), and we have set a tractable posterior
q(f ,u) = p(f |u)q(u), where p(f |u) is already defined in
Eq. (9), q(u|m,V) =

∏Q
q=1 q(uq), and each q(uq) =

N (uq|mq,Vq) is a Gaussian distribution with mean mq and
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covariance Vq [42] (see section IV of SM for details on the
ELBO derivation). The above expectation associated to the
NLL is computed using the marginal posteriors,

q(fd,j) := N (fd,j |m̃fd,j , Ṽfd,j ), (12)

with the following definitions, m̃fd,j := Afd,jum, Ṽfd,j :=
Kfd,jfd,j + Afd,ju(V − Kuu)A>fd,ju, where mean m =

[m>1 , ...,m
>
Q]> ∈ RQM×1 and the covariance matrix V ∈

RQM×QM is a block-diagonal matrix with blocks given by
Vq ∈ RM×M .1 The objective function derived in Eq. (11) for
the HetMOGP model with LMC requires fitting the parameters
of each posterior q(uq), the inducing points z, the kernel
hyper-parameters lkern = [L>1 , ...,L

>
Q]> and the coefficients

w. With the aim to fit said variables in a FNG scheme, later
on we will apply the VO perspective on Eq. (11) for inducing
randomness and gain exploration over z, lkern and w; and by
means of the MDA we will derive the inference updates for
all the model’s variables.

V. HETEROGENEOUS MULTI-OUTPUT GPS WITH
CONVOLUTION PROCESSES

The HetMOGP model with convolution processes follows
the same likelihood defined in Eq. (7), though each fd,j(xn)
is considered a LPF that comes from a convolution process as
follows: fd,j (x) =

∑Q
q=1

∑Rq

i=1

∫
X G

i
d,j,q (x− r′)uiq (r′) dr′,

where uiq(x) are IID samples from Gaussian Processes uq(·) ∼
GP(0, kq(·, ·)) and each Gd,j,q(·) represents a smoothing
kernel. We will also use Rq = 1 as in the LMC for simplicity
in the following derivations.

A. The Inducing Points Method

With the purpose to reduce the computational complexities
involved in GPs we follow the inducing variables framework
by augmenting the probability space as,

p(f |ǔ)p(ǔ) =

D∏

d=1

Jd∏

j=1

p(fd,j |ǔd,j)p(ǔd,j), (13)

with p(ǔ) =
∏D
d=1

∏Jd
j=1 p(ǔd,j), and p(f |ǔ) =∏D

d=1

∏Jd
j=1 p(fd,j |ǔd,j), where the vector ǔ =

[ǔ>1,1, ..., ǔ
>
1,J1

, ..., ǔ>D,JD ]> ∈ RJM×1 is built from the induc-
ing variables ǔd,j = [fd,j(z

(1)
d,j), ..., fd,j(z

(M)
d,j )]> ∈ RM×1.

As it can be seen, these inducing variables are additional
evaluations of the functions fd,j(·) at each set of
inducing points Zd,j = [z

(1)
d,j , ..., z

(M)
d,j ]> ∈ RM×P ,

thus the set of all inducing variables is z =
[vec(Z1,1)>, ..., vec(Z1,J1)>, ..., vec(ZD,JD )>]> ∈ RJMP×1.
Using the properties of Gaussian distributions, we can
express p(fd,j |ǔd,j) = N (fd,j |Afd,j ǔd,j

ǔd,j , Q̄fd,j ),
p(ǔd,j) = N (ǔd,j |0,Kǔd,j

), with the following definitions:
Afd,j ǔd,j

= Kfd,j ǔd,j
K−1ǔd,j

, Q̄fd,j = Kfd,jfd,j − Q̌fd,j ,
Q̌fd,j = Kfd,j ǔd,j

K−1ǔd,j
Kǔd,jfd,j , Kfd,j ǔd,j

= K>ǔd,jfd,j
.

Here the covariance matrix Kfd,jfd,j ∈ RN×N is built
from the evaluation of all pairs of input data X ∈ RN×P

1Each marginal posterior derives from: q(fd,j) =
∫
p(fd,j |u)q(u)du.

in the covariance function cov [fd,j (x) fd′,j′ (x
′)] =∑Q

q=1

∫
X Gd,j,q (x− r)

∫
X Gd′,j′,q (x′ − r′) kq(r, r′)drdr′,

the cross covariance matrix Kfd,j ǔd,j
∈ RN×M is formed

by evaluations of the equation above between inputs X
and Zd,j , and the matrix Kǔd,j

∈ RM×M is also built
from evaluations of the equation above between all pairs
of inducing points Zd,j respectively. We can compute the
above covariance function analytically for certain forms of
Gd,j,q (·) and kq(r, r

′). In this paper, we follow the work
in [4] by defining the kernels in the EQ form of Eq. (10):
kq (x,x′) = E(τ |0,Lq) and Gd,j,q(τ ) = Sd,j,qE(τ |0,κd,j),
where Sd,j,q is a weight associated to the LPF indexed by
fd,j(·) and to the latent function uq(·), and κd,j is a diagonal
covariance matrix particularly associated to each fd,j(·); κd,j
can be seen as a matrix of length-scales in its diagonal.
Therefore, when solving for the cov [fd,j (x) fd′,j′ (x

′)] above
we end up with the closed-form,

kfd,j ,fd′,j′ (τ ) =

Q∑

q=1

Sd,j,qSd′,j′,qE(τ |0,Pd,j,d′,j′,q), (14)

where Pd,j,d′,j′,q represents a diagonal matrix of length-scales,
Pd,j,d′,j′,q = κd,j + κd′,j′ + Lq.

B. The Evidence Lower Bound

We now introduce the negative ELBO for the HetMOGP
that uses convolution processes. It follows as

L̃ =

N,D∑

n,d=1

Eq(fd,1)···q(fd,Jd
) [gd,n] +

D,Jd∑

d,j=1

DKL (ǔd,j) , (15)

where gd,n = − log p(yd,n|ψd,1(xn), ..., ψd,Jd(xn)) is the
NLL function associated to each output, DKL (ǔd,j) :=
DKL (q(ǔd,j)‖p(ǔd,j)), and we have set a tractable poste-
rior q(f , ǔ) = p(f |ǔ)q(ǔ), where p(f |ǔ) is already defined
in Eq. (13), q(ǔ|m,V) =

∏D
d=1

∏Jd
j=1 q(ǔd,j), and each

q(ǔd,j) = N (ǔd,j |md,j ,Vd,j) is a Gaussian distribution with
mean md,j ∈ RM×1 and covariance Vd,j ∈ RM×M (see
section V of SM for details on the ELBO derivation). The
above expectation is computed w.r.t the marginals, q(fd,j)

=

∫
p(fd,j |ǔd,j)q(ǔd,j)dǔd,j = N (fd,j |m̃fd,j , Ṽfd,j ), (16)

with the following definitions, m̃fd,j := Afd,j ǔd,j
md,j ,

Ṽfd,j := Kfd,jfd,j + Afd,j ǔd,j
(Vd,j − Kǔd,j

)A>fd,j ǔd,j
. The

objective derived in Eq. (15) for the HetMOGP model
with convolution processes requires fitting the parameters
of each posterior q(ǔd,j), the inducing points z, the kernel
hyper-parameters lkern, the smoothing-kernels’ length-scales
κsmooth = [κ>1,1, ...,κ

>
1,J1

, ...,κ>D,JD ]> ∈ RJP×1+ and the
weights sq = [S1,1,q, ..., S1,J1,q, ..., SD,JD,q]

> ∈ RJ×1 asso-
ciated to each smoothing-kernel. In the interest of fitting those
variables in a FNG scheme, in the following section we will
explain how to apply the VO perspective over Eq. (15) so
as to introduce stochasticity over z, lkern, κsmooth and sq; and
through the MDA we will derive closed-form updates for all
parameters of the model.
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VI. DERIVING A FULLY NATURAL GRADIENT SCHEME

This section describes how to derive the FNG updates for
optimising both the LMC and CPM schemes of the HetMOGP
model. We first detail how to induce an exploratory distribution
over the hyper-parameters and inducing points, then we write
down the MDA for the model and derive the update equations.
Later on, we get into specific details about the algorithm’s
implementation.

A. An Exploratory Distribution for HetMOGP with LMC

In the context of sparse GPs, the kernel hyper-parameters
and inducing points of the model have usually been treated
as deterministic variables. Here, we use the VO perspective
as a mechanism to induce randomness over such variables,
this with the aim to gain exploration for finding better so-
lutions during the inference process. To this end we define
and connect random real vectors to the variables through
a link function φ(·) as follows: for the inducing points
z = θz, for the kernel hyper-parameters lkern = exp(θL)
with θL = [θ>L1

, ...,θ>LQ
]> ∈ RQP×1¸, and for the vector

of LCC w = θw, that are used to generate the LPFs in Eq.
(8). We have defined the real random vectors θz ∈ RQMP×1,
θLq

∈ RP×1 and θw ∈ RQJ×1 to link the set of inducing
points, the kernel hyper-parameters per latent function uq(·),
and the vector w of LCCs. We cluster the random vectors
defining θ = [θ>z ,θ

>
L ,θ

>
w]> ∈ R(QMP+QP+QJ)×1 to refer to

all the parameters in a single variable. Hence, we can specify
an exploratory distribution q(θ) := N (θ|µ,Σ) for applying
the VO approach in Eq. (1), though for our case the objective
to bound is L̃, already derived in Eq. (11) for the HetMOGP
with a LMC. Therefore our VO bound is defined as follows:

F̃ = Eq(θ)
[
L̃
]

+ DKL(q(θ)||p(θ)), (17)

where p(θ) = N (θ|0, λ−11 I) is a Gaussian distribution with
precision λ1 that forces further exploration of θ’s space [23].

B. An Exploratory Distribution for the HetMOGP with CPM

The case of the CPM has the same kernel hyper-parameters
lkern = exp(θL) and inducing points z = θz as the
LMC case, but differs from it since the smoothing ker-
nels involve a new set of hyper-parameters, the smoothing-
kernels’ length-scales. The way we define and connect the
new random real vectors is as follows: κsmooth = exp(θκ),
with θκ = [θ>κ1,1

, ...,θ>κ1,J1
, ...,θ>κD,JD

]> ∈ RJP×1, where
θκd,j

∈ RP×1 is a real random vector associated to each
smoothing kernel Gd,j,q(·) from Eq. (14). Also, instead of
the combination coefficients w of the LMC, for the CPM we
have an analogous set of weights from the smoothing-kernels
in Eq. (14), s = θs, where s = [s>1 , ..., s

>
Q]> ∈ RQJ×1

is a vector that groups all the weights that belong to the
smoothing kernels. Thus, the real random vectors for the
CPM are: θz ∈ RJMP×1, θL ∈ RQP×1, θκ ∈ RJP×1,
and θs ∈ RQJ×1. We group the random vectors by defining
θ = [θ>z ,θ

>
L ,θ

>
κ ,θ

>
s ]> ∈ R(JMP+QP+JP+QJ)×1. Notice

that, for the CPM, the dimensionality of the real random
vector θ differs from the one for LMC, this is due to the way

the inducing variables are treated in subsection V-A and the
additional set of smoothing-kernel’s hyper-parameters. In the
same way as defined for the LMC, we specify an exploratory
distribution q(θ) := N (θ|µ,Σ) and follow the VO approach
in Eq. (1). In this case the objective to bound is the one derived
for the CPM, i.e., the new bound, F̃ , is exactly the same as
Eq. (17), but using the corresponding L̃ from Eq. (15).

C. Mirror Descent Algorithm for the HetMOGP with LMC

With the purpose of minimising our VO objective in Eq.
(17), we use the MDA in Eq. (4) which additionally exploits
the natural-momentum. In the interest of easing the derivation,
we use the mean-parameters of distributions q(uq) and q(θ)
defining ρq = {mq,mqm

>
q + Vq} and η = {µ,µµ> + Σ}.

In this way we can write the MDA as: ηt+1, {ρq,t+1}Qq=1

=
arg min

η, {ρq}Qq=1

〈η, ∇̂ηF̃t〉+
1

α̃t
KL(θ)t −

γ̃t
α̃t

KL(θ)t−1 (18)

+

Q∑

q=1

[
〈ρq, ∇̂ρq

F̃t〉+
1

β̃t
KL(uq)t −

υ̃t

β̃t
KL(uq)t−1

]
,

where F̃t := F̃(mt,Vt,µt,Σt) and β̃t, α̃t, υ̃t, and γ̃t are
positive step-size parameters.

D. Mirror Descent Algorithm for the HetMOGP with CPM

For the HetMOGP with CPM, we follow a similar procedure
carried out for the LMC. We use the MDA in Eq. (4) and the
mean-parameters of distributions q(ǔd,j) and q(θ) defining
ρd,j = {md,j ,md,jm

>
d,j +Vd,j} and η = {µ,µµ>+Σ} for

minimising Eq. (17). Then, our algorithm for the CPM can be
written as: ηt+1, {ρd,j,t+1}D,Jdd=1,j=1

=
arg min

η, {ρd,j}D,Jdd=1,j=1

〈η, ∇̂ηF̃t〉+
1

α̃t
KL(θ)t −

γ̃t
α̃t

KL(θ)t−1

(19)

+

D,Jd∑

d,j=1

[
〈ρd,j , ∇̂ρd,j

F̃t〉+
1

β̃t
KL(ǔd,j)t −

υ̃t

β̃t
KL(ǔd,j)t−1

]
,

where we have used the same variables β̃t, α̃t, υ̃t, and γ̃t for
the step-size parameters as in the LMC. This for the sake of a
unified derivation of the FNG updates in the next subsection.

E. Fully Natural Gradient Updates

We can solve for Eq. (18) and (19) by computing derivatives
w.r.t η and ρ, and setting to zero. This way we obtain results
similar to Eq. (5) and (6), we call them FNG updates:

Σ−1t+1 = Σ−1t + 2αt∇̂ΣF̃t (20)

µt+1 = µt − αtΣt+1∇̂µF̃t + γtΣt+1Σ
−1
t (µt − µt−1)

(21)

V−1(·),t+1 = V−1(·),t + 2βt∇̂V(·)F̃t (22)

m(·),t+1 = m(·),t − βtV(·),t+1∇̂m(·)F̃t (23)

+ υtV(·),t+1V
−1
(·),t(m(·),t −m(·),t−1),
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where we have defined, m(·),t, as a way of referring to either
mq,t or md,j,t depending on the case of LMC or CPM. This
also applies for V(·),t without loss of generality. And αt =

α̃t/(1 − γ̃t), βt = β̃t/(1 − υ̃t), γt = γ̃t/(1 − γ̃t) and υt =
υ̃t/(1 − υ̃t) are positive step-size parameters (see section VI
of SM for details on the gradients derivation).

F. Implementation

In order to implement the proposed method, we have to take
into account that our computational complexity depends on
inverting the covariance matrix Σ in Eq. (20). Such complexity
can be expressed as O((QMP +QP +QJ)3) for the LMC,
or O((JMP + QP + JP + QJ)3) for the CPM, where
the terms with the number of inducing points and/or input
dimensionality tend to dominate the complexity in both cases.
Likewise, the gradient ∇̂ΣF̃ involves computing the Hessian
∇̂2

θθL̃ which can be computationally expensive and prone
to suffer from non-positive definiteness. To alleviate those
complexity issues we assume Σ = diag(σ2), where σ is a
vector of standard deviations, and diag(σ2) represents a matrix
with the elements of σ2 on its diagonal. Additionally, we
estimate the Hessian by means of the Gauss-Newton (GN)
approximation ∇̂2

θθL̃ ≈ ∇̂θL̃ ◦ ∇̂θL̃ [43], [23]. The authors
in [19] term this method as the variational RMSprop with
momentum. They alternatively express Eq. (20) and (21) as:

pt+1 = (1− αt) pt + αtEq(θ)
[
∇̂θL̃ ◦ ∇̂θL̃

]
(24)

µt+1 = µt − αt(pt+1 + λ11)−1 ◦ ∇̂µF̃ (25)

+ γt(pt + λ11) ◦ (pt+1 + λ11)−1 ◦
(
µt − µt−1

)
,

where ∇̂µF̃ = (Eq(θ)
[
∇̂θL̃

]
+λ1µt), ◦ represents an element-

wise product and we have made a variable change defining a
vector pt := σ−2t − λ11, with 1 as a vector of ones. The
GN approximation provides stronger numerical stability by
preventing that σ2 becomes negative. Also, using diag(σ2)
we reduce the computational complexity from O((QMP +
QP + QJ)3) to O(QMP + QP + QJ) for the LMC, or
O((JMP +QP + JP +QJ)3) to O(JMP +QP + JP +
QJ) for the CPM (see section VII of SM for a pseudo-code
implementation of the algorithm).

G. Predictive Distribution

In order to make predictions with the HetMOGP model, it
is necessary to compute the following distribution: p(y∗|y) ≈∫
p(y∗|f∗)q(f∗)df∗, where q(f∗) =

∏D
d=1

∏Jd
j=1 q(fd,j,∗).

Given that we have introduced a variational distribution
q(θ) over all hyper-parameters and inducing points of
the model, we could apply a fully Bayesian treatment
when calculating q(fd,j,∗), either for the LMC q(fd,j,∗) =∫
p(fd,j,∗|u,θ)q(u)q(θ)dθdu,; or the CPM q(fd,j,∗) =∫
p(fd,j,∗|ǔ,θ)q(ǔ)q(θ)dθdǔ. In practice, we found that

q(θ)’s covariance converged to very small values, in general
diag(σ2) ≤ 10−15, and almost all the uncertainty infor-
mation was concentrated on q(u)’s covariance for LMC, or
q(ǔ)’s covariance for CPM. Since making predictions with
the equations above becomes computationally expensive and
most of the uncertainty is represented by the distribution

q(u) or q(ǔ), we can trade-off the computation by using
the MAP solution for q(θ) and completely integrating over
the remaining distribution as follows: for LMC q(fd,j,∗) =∫
p(fd,j,∗|u,θ = µ)q(u)du, and for CPM q(fd,j,∗) =∫
p(fd,j,∗|ǔ,θ = µ)q(ǔ)dǔ. When solving these integrals, we

arrive to exactly the same solutions in Eq. (12) if we aim
to make predictions for the LMC, or Eq. (16) if the case for
CPM, where we simply have to evaluate the matrix covariances
Kfd,j,∗u for LMC or Kfd,j,∗ǔ for CPM, and Kfd,j,∗fd,j,∗ , all
at the new inputs X∗.

VII. EXPERIMENTS

In this section, we explore the performance of the proposed
FNG method for jointly optimising all variational parameters,
hyper-parameters and inducing points. We also test the hybrid
(HYB) method proposed by [15], and compare the perfor-
mance against Adam and SGD methods. We run experiments
on different toy and real datasets, for all datasets we use a
splitting of 75% and 25% for training and testing, respec-
tively. The experiments consist on evaluating the method’s
performance when starting with 20 different initialisations of
q(θ)’s parameters to be optimised. We report the negative
evidence lower bound (NELBO) shown in Eq. (11) for LMC
and Eq. (15) for CPM over the training set, and the negative
log predictive density (NLPD) error for the test set; this error
metric takes into account the predictions’ uncertainty [44].

A. Optimising the HetMOGP with LMC on Toy Data

We are interested in looking at the performance of Het-
MOGP with LMC when increasing the number of outputs,
which implies rising also the heterogeneity of the output data.
Given that the inducing points z have the same input space
dimensionality and strongly affect the performance of sparse
MOGPs, we are also interested in assessing the behaviour
when increasing the input space dimensionality. For all the
toy data examples we define an input space X ∈ [0, 1]N×P

with N = 2× 103 observations, we analyse a set of different
dimensions P = {1, 2, 3, 4, 5, 10}. We assume a number of
Q = 3 with an EQ kernel kq(·, ·), and the inducing points
Zq ∈ RM×P , with M = 80. We run the experiments using
mini-batches of 50 samples at each iteration, and we use one
sample to approximate the expectations w.r.t q(θ) in Eq. (17).
Below we describe the characteristics of each toy dataset.

Toy Data 1 (T1): the first toy example consists of three
outputs D = 3; the first output is y1 ∈ R, the second
y2 ∈ [0, 1] and the third y3 ∈ {0, 1}. We use a Heteroscedastic-
Gaussian (HetGaussian), a Beta and Bernoulli distribution as
the likelihoods for each output, respectively.

Toy Data 2 (T2): the second toy example consists of five
outputs D = 5, where the first three are exactly the same ones
as T1 with the same likelihoods and the two additional ones
are y4 ∈ [0,∞], and y5 ∈ [0,∞]. We use a Gamma and an
Exponential distribution for those latter outputs, respectively.

Toy Data 3 (T3): the third toy example consists of ten
outputs D = 10, where the data type of the first five outputs
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Fig. 2. Performance of the different inference methods on the T2 dataset for P = 10 using 20 different initialisations. The top left sub-figure shows the
average NELBO convergence. The other sub-figures show the box-plot trending of the NLPD over the test set for each output. The box-plots at each iteration
follow the legend’s order from left to right: SGD, Adam, HYB and FNG. The isolated diamonds that appear in the outputs’ graphs represent “outliers”.
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Fig. 3. Trending of the Mean NLPD along outputs for 20 different initialisations. Performance over: T1 (left), T2 (middle) and T3. Each sub-figure summarises
the Mean NLPD of SGD, Adam, HYB and FNG methods along dimensions P = {1, 2, 3, 4, 5, 10}. The box-plots at each P follow the legend’s order.

{yd}5d=1 is exactly the same as T2. Also, the last five outputs
{yd}10d=6 share the same data type of the outputs in T2.
We use the following ten likelihoods: HetGaussian, Beta,
Bernoulli, Gamma, Exponential, Gaussian (with σlik = 0.1),
Beta, Bernoulli, Gamma and Exponential. The data of the
first five outputs is not the same as the last ones since the
distributions of the generative model depend on the LCCs
ad,j,q that generate the LPFs in Eq. (8). 2

In order to visualise the convergence performance of the
methods, we show results for T2 which consists of five outputs,
where all of them are used in T3 and three of them in
T1. We focus on the example for which P = 10 as the
dimensionality. Fig. 2 shows the behaviour of the different
algorithms over T2, where its top left sub-figure shows the

2The code with all toy configurations is publicly available in the repository:
https://github.com/juanjogg1987/Fully Natural Gradient HetMOGP

average convergence of the NELBO after running 20 different
initialisations. The figure shows that our FNG method tends to
find a better local optima solution that minimises the NELBO
followed by the HYB, Adam and SGD. The other sub-figures
titled from Out1 to Out5 show the model’s average NLPD
achieved by each of the methods over the test set. From Fig.
2 we can notice that the SGD method does not progress
much through the inference process achieving the poorest
performance along the diverse outputs. The Adam method
presents a big variance along the different outputs, showing
its ability to explore feasible solutions, but arriving at many
different poor local minima. Particularly, for the output 3,
a Bernoulli likelihood, the method hardly moves from its
initial NLPD value, showing in the figure a tiny variance
without much improvement. This means the method lacks
exploration and rapidly becomes trapped in a very poor local
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minima. The HYB method in general shows smaller error
bars than Adam and SGD. Indeed, it reaches low NLPD
results for Gamma, HetGaussian and Exponential likelihoods,
with similar behaviour to our FNG method in the two latter
distributions. Although, it is difficult for HYB to achieve
a proper NLPD performance on the distributions Beta and
Bernoulli; though for the Beta distribution presents boxes with
big variance meaning that it arrives to many different solutions,
the NLPD’s mean shows a trending to weak solutions. For the
Bernoulli is deficient in exploring, so it also ends up in poor
solutions. Our FNG method is consistent along the diverse
outputs, usually tending to richer local minima solutions than
the other methods. For the Beta and Gamma outputs, FNG
makes a confident progress and even shows some “outliers”
below its boxes which means that our method has the ability
to eventually provide better solutions than the other methods.
For the Bernoulli distribution, Fig. 2 shows that FNG presents
big variance boxes, but with a tendency to much better
solutions than the other methods. This big variance effect let
us confirm that our proposed method actually takes advantage
of the stochastic exploration induced over the model hyper-
parameters for avoiding poor local minima solutions.
Figure 3 summarises the behaviour along the different di-
mensions P for each toy example. We notice from Fig. 3
that our FNG method achieves better test performance along
distinct dimensions for all toy examples, followed by the HYB,
Adam and SGD methods, though HYB presents better results
than FNG when P = 1. All methods in general tend to
present large variances for T1 which consists of three outputs,
although this effect is reduced when the number of outputs is
increased. Our FNG in general presents the smallest variance
showing its ability to find better local minima even with many
outputs. When increasing the dimensionality, the methods tend
to degrade their performance, but the less sensitive to such
behaviour are the HYB and FNG methods, where the latter,
in general achieves the lowest mean NLPD along outputs for
the different toy examples. Apart from the heterogeneous toy
examples shown in this paper, we also ran experiments for
dimensions higher than P = 10, although we noticed that
all methods behaved similar except for the SGD which de-
mands a very small step-size parameter that makes it progress
slowly. We believe that the toy examples become difficult to
control in such dimensions and the data observations become
broadly scattered. We also explored experiments increasing
the mini-batch size at each iteration, we noticed the gradient’s
stochasticity is reduced helping to increase the convergence
rates of all methods, but the ones using NG perform better.
When reducing the mini-batch size, our FNG method usually
performs better than the others probably due to the fact that it
additionally exploits the probability distribution q(θ), imposed
over the hyper-parameters and inducing points.

B. Settings for Real Datasets Experiments

In this subsection we describe the different real datasets
used for our experiments (See section X of SM for information
about the web-pages where we took the datasets from).

HUMAN Dataset: the human behaviour dataset (HUMAN,
N1, N2 = 5 × 103, N3 = 21 × 103, P = 1, Nd associates
the number of observations per output) contains information
for monitoring psychiatric patients with a smartphone app.
It consists of three outputs; the first monitors use/non-use of
WhatsApp, y1 ∈ {0, 1}, the second represents distance from
the patient’s home location, y2 ∈ R, and the third accounts
for the number of smartphone active apps, we rescale it to
y3 ∈ [0, 1]. We use a Bernoulli, HetGaussian and a Beta
distribution as the likelihoods for each output, respectively.
We assume Q = 5 latent functions.

LONDON Dataset: the London dataset (LONDON, N =
20 × 103, P = 2) is a register of properties sold in London
in 2017; it consists of two outputs; the first represents house
prices with y1 ∈ R and the second accounts for the type of
house. We use two types (flat/non-flat) with y2 ∈ {0, 1}. We
use a HetGaussian and Bernoulli distribution as the likelihood
for each output respectively. We assume Q = 3 latent func-
tions.

NAVAL Dataset: the naval dataset (NAVAL, N = 11 ×
103, P = 15) contains information of condition based main-
tenance of naval propulsion plants. it consists of two outputs:
plant’s compressor decay state coefficient and turbine decay
state coefficient. We re-scaled both as y1, y2 ∈ [0, 1], and
used a Beta and Gamma distribution as the likelihood for each
output respectively. We assume Q = 4 functions.

SARCOS Dataset: a seven degrees-of-freedom SARCOS
anthropomorphic robot arm data, where the task is to map
from a 21-dimensional input space (7 joint positions, 7 joint
velocities, 7 joint accelerations) to the corresponding 7 joint
output torques (SARCOS, N = 44.5× 103, P = 21, D = 7).
We use a HetGaussian distribution as the likelihood for each
output and assume Q = 3 functions.

MOCAP Dataset: a motion capture data for a walking subject
(MOCAP7, N = 744, P = 1, D = 40). We use a HetGaussian
distribution as the likelihood for each output and assume
Q = 3 functions.

For the first three datasets, the number of inducing points per
latent function is M = 80 and for each function uq(·) we
use an EQ kernel like Eq. (10). We run the experiments using
mini-batches of 50 samples at each iteration, and we use one
sample to approximate the expectations with regard to q(θ) in
Eq. (17). For SARCOS we use mini-batches of 200 due to its
large number of observations, and given that MOCAP7 is not
a large dataset we use mini-batches of 5 with M = 20. To
select Q, we applied a rule of thumb as follows: I. If D <= 5
set Q = J . We opted for this rule of thumb as a way to allow
the HetMOGP model to have a high flexibility for modelling
the data in presence of few outputs. II. if D > 5 set Q = 3.
We chose this option for not overloading the computational
complexity in presence of many outputs, though by setting
Q = 3 we still can at least model low, medium and high
length-scale resolutions from a dataset (see section IX of SM
for details about the setting Q and the number Jd associated
to each likelihood distribution).
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Fig. 4. Performance of the diverse inference methods on the HUMAN dataset using 20 different initialisations. The left sub-figure shows the average NELBO
convergence of each method. The other sub-figures show the box-plot trending of the NLPD over the test set for each output. The box-plots at each iteration
follow the legend’s order from left to right: SGD, Adam, HYB and FNG. The isolated diamonds that appear in the outputs’ graphs represent “outliers”.
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Fig. 5. Performance of the diverse inference methods on the LONDON and NAVAL datasets using 20 different initialisations. Sub-figures left and middle-left
correspond to LONDON; middle-right and right refer to NAVAL. For each dataset we show the average NELBO convergence of each method and the box-plot
trending of the NLPD over the test set across all output. The box-plots at each iteration follow the legend’s order from left to right: SGD, Adam, HYB and
FNG. The isolated diamonds that appear in the outputs’ graphs represent “outliers”.

C. Optimising the HetMOGP with LMC on Real Data

For this sub-section we explore our method’s behaviour over
the HetMOGP with LMC on HUMAN, LONDON, NAVAL,
SARCOS and MOCAP7.

Figures 4 and 5 show the NELBO convergence over the
training set, together with the average NLPD performance
over the test set for HUMAN, LONDON and NAVAL data,
respectively. We provide a merged NLPD along outputs for
LONDON and NAVAL (see section VIII of SM for an analysis
of each specific output). With regard to the convergence rate of
the NELBO for HUMAN and LONDON datasets all methods
converge similarly. Nonetheless, for the NAVAL dataset, our
FNG approach presents a faster converge, followed by HYB
and Adam; SGD remains without much progress along the
iterations. For the HUMAN dataset, the SGD arrives at a
better minimum than Adam, but the Adam’s averaged NLPD is
higher across outputs. HYB reaches consistent solutions being
better than Adam and SGD, not only in the training process
but also in testing along the HetGaussian and Beta outputs.
Though, the Bernoulli output limits the overall performance
of the method since there is not much improvement along the
iterations. Our FNG method also shows a steady performance
along outputs, commonly arriving to solutions with lower
NLPD than the other methods. Our method presents the
biggest variance for the Bernoulli output, implying strong ex-

ploration of the solutions’ space for such likelihood, allowing
it to reach the lowest average NLPD.

For the LONDON dataset, Adam converges to a richer
minimum of the NELBO than SGD. Moreover, the NLPD
for Adam is, on average, better than the SGD. The HYB
and FNG arrive to a very similar value of the NELBO, both
being better than Adam and SGD. HYB and FNG methods
attain akin NLPD metrics, but the average and median trend
of our approach is slightly better, being more robust to the
initialisation than HYB method. The NLPD performance for
the NAVAL dataset shows in Fig. 5 that the SGD method
cannot make progress. We tried to set a bigger step-size, but
usually increasing it derived in numerical problems due to ill-
conditioning of the covariance matrices. The methods Adam
and HYB show similar NLPD boxes, but at the end, Adam
attains a slightly lower median with bigger variance than HYB.
Regarding the NLPD, our FNG method ends up with a larger
variance than SGD, Adam and HYB, but obtaining a much
better mean and median trending than the others. Also, our
FNG shows that the upper bar of the NLPD box is very close to
the interquartile range, while the other methods present larger
upper bars, this means that our FNG method concentrates in
regions that provide better predictive performance than the
other methods.

Fig. 6 shows the performance achieved by the different opti-
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Fig. 6. Performance of the diverse inference methods on the SARCOS and MOCAP7 datasets using 20 different initialisations for HetMOGP with LMC.
Sub-figures left and middle-left correspond to SARCOS; middle-right and right refer to MOCAP7. For each dataset we show the average NELBO convergence
of each method and the box-plot trending of the NLPD over the test set across all output. The box-plots at each iteration follow the legend’s order from left
to right: SGD, Adam, HYB and FNG. The isolated diamonds that appear in the outputs’ graphs represent “outliers”.
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Fig. 7. Performance of the diverse inference methods on the SARCOS and MOCAP7 datasets using 20 different initialisations for HetMOGP with CPM.
Sub-figures left and middle-left correspond to SARCOS; middle-right and right refer to MOCAP7. For each dataset we show the average NELBO convergence
of each method and the box-plot trending of the NLPD over the test set across all output. The box-plots at each iteration follow the legend’s order from left
to right: SGD, Adam, HYB and FNG. The isolated diamonds that appear in the outputs’ graphs represent “outliers”.

misation methods for SARCOS and MOCAP7 datasets. Since
these datasets present a high number of outputs we stacked
the NLPD metric along all outputs. We can notice from the
SARCOS experiment, in the first two sub-figures to the left,
that SGD cannot improve much during the inference process
both for NELBO and NLPD. Adam and HYB converge to the
same local minima achieving the same average NELBO and
NLPD trend, in contrast to our FNG method which attains the
lowest values showing a better performance. Particularly in the
SARCOS experiment, figures show how our method changes
suddenly, around iteration 600, probably escaping from the
same local minima to which Adam and HYB converged.
For the MOCAP7’s experiment, the two sub-figures to the
right show that SGD slightly improves its performance in
the inference process, while Adam reaches a much better
minimum for the average NELBO. Although, these former
methods do not perform better than HYB and FNG. The HYB
and FNG behave similar before 500 iteration, but in the long
term our FNG presents the lowest average NELBO. Likewise,
the NLPD shows that HYB presents a slightly better trend
than FNG at the early stages of the inference, but at the end,
our FNG finds a better NLPD metric.

D. Optimising the HetMOGP with CPM on Real Data

In this subsection we show the performance of our FNG
over the convolved MOGP for the model with heterogeneous
likelihoods. We use the datasets SARCOS and MOCAP7 with
a number of outputs of D = 7 and D = 40, respectively. Fig.
7 shows the performance of the different optimisation meth-
ods for fitting the HetMOGP with CPM over such datasets.
Similarly to Fig. 6, we put together the NLPD metric across
all outputs. The SARCOS’ experiment shows that SGD does
not improve much during the optimisation process. Adam and
HYB seem to converge to a similar minimum value since the
average NELBO and NLPD look very much alike. Otherwise,
our FNG method shows to perform much better than the
other methods achieving the lowest average NELBO. Also the
NLPD trend exhibits a more robust performance over the test
set. For MOCAP7, HYB and FNG behave similarly during
the optimisation process showing almost the same average
NELBO trend. Though, the former method presents a better
behaviour when converging at the end. Our FNG method
shows a better NLPD performance during the optimisation,
but at the end HYB reaches a lower NLPD metric. Adam
method accomplishes a poor minima in comparison to HYB
and FNG, though a better one than SGD. We can notice from
Fig. 6 and 7, both experiments over SARCOS and MOCAP7,
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TABLE I
NLPD PERFORMANCE OF THE HETEROGENEOUS SCHEMES.

LMC CPM
Dataset Median Mean ± 0Std Median Mean ± 0Std

LONDON 1.025 01.012 ± 00.331 0.986 00.983 ± 00.396
NAVAL -0.310 0-0.318 ± 00.475 -0.429 0-0.454 ± 00.527

HUMAN 0.596 00.646 ± 00.764 0.330 00.529 ± 00.807
SARCOS 0.684 00.618 ± 00.581 0.096 00.169 ± 00.605
MOCAP9 0.752 00.774 ± 00.297 1.101 01.172 ± 00.386
MOCAP7 1.344 01.344 ± 00.170 1.078 01.141 ± 00.833
TRAFFIC 72.762 69.947 ± 25.466 68.214 74.866 ± 35.775

that the FNG presents similar convergence patterns in both the
LMC and CPM, reaching better solutions than SGD, Adam
and HYB. The next sub-section compares the performance
between these two MOGP prior schemes.

E. Comparing MOGP priors for heterogeneous likelihoods

In this subsection we compare the MOGP models for het-
erogeneous likelihoods: the one based on the LMC and the one
based on convolution processes. Table I presents the different
NLPD metrics over a test set when using our proposed FNG
scheme. Here, we make use of the real datasets from subsec-
tion VII-B, and we have additionally included two datasets
for these experiments: TRAFFIC and MOCAP9 (see SM in
section X for details about these additional datasets). The Table
shows that the CPM in general outperforms the LMC for the
different real datasets used in our experiments. The NLPD
performance, for almost all datasets, shows a considerable
improvement when using the convolutional approach, only for
MOCAP9 the CPM did not present an improvement over the
LMC. The NLPD metric for most of the datasets presents a
median very close to the mean, unlike the HUMAN dataset
which its mean differs much to the median, though having the
median a better trend. Also, we can observe from the Table
that generally the standard deviation is higher for the CPM.
This is probably due to the additional hyper-parameter set, i.e.,
the length-scales associated to each smoothing kernel which
introduce a larger parameters’ space to be explored.

VIII. DISCUSSION AND CONCLUSION

In practice we noticed that some likelihoods (e.g. HetGaus-
sian, Gamma) tend to strongly influence the value of the
objective function (NELBO), so the optimisers HYB, Adam
and SGD are prone to find solutions that focus on such kind
of likelihoods, while neglecting the others with less influence,
for instance a Bernoulli or Beta as shown in Fig. 2. On the
other hand, our proposed scheme presents a more consistent
performance achieving richer solutions across the different
types of outputs’ distributions. When increasing the outputs’
size our FNG presented a consistent performance for TOY and
real datasets like SARCOS and MOCAP7. We realised that
HYB method presents a relevant performance for low input
dimensionalities, but when the input dimensionality increases
its performance degrades as shown for the TOY experiments
when P > 1 and for the SARCOS experiment with P = 21.
So, our method is the least sensitive to reduce its performance
when increasing the input dimensionality, followed by the

HYB and Adam methods. When using the SGD method we
had to set a very small step-size parameter, because using large
step-sizes makes the model to easily become ill-conditioned.
Also, we observed that our FNG is a suitable scheme for
training another type of MOGP model like the CPM. Indeed,
our experiments show that the CPM can also be trained under
a SVI attaining better performance than a HetMOGP based
on a LMC. The new HetMOGP model based on convolution
processes differs from the original one based on a LMC
in the way the inducing variables are introduced. For the
LMC the inducing variables are additional evaluations of the
functions uq(·), while for the CPM the inducing variables
are additional evaluations of the functions fd,j(·). We imple-
mented the version of CPM using the same style of inducing
variables as the LMC though, in practice, we realised that the
assumption commonly used in the literature for the posterior,
i.e., q(f ,u) = p(f |u)q(u) is not sufficiently flexible to fit the
LPFs and limits the SVI implementation. Therefore, we opted
for the inducing variables procedure which does support the
assumption q(f , ǔ) = p(f |ǔ)q(ǔ).

The VO bound in Eq. (17) can be seen as a fully Bayesian
treatment of the HetMOGP, where the model’s parameters
and hyper-parameters follow a prior distribution, where the
positive constraint variables follow a Log-Normal distribution
and the non-constraint ones follow a Gaussian distribution.
Our VO bound benefits from the assumption of a Gaussian
exploratory (or posterior) distribution for deriving in a closed-
form our FNG optimisation scheme. This scheme helps to find
solutions that directly improve the predictive capabilities of the
HetMOGP model. For instance, since the inducing points’ size
is directly influenced by the input dimensionality, we believe
that applying exploration over them helps to improve the
model performance for high input dimensionalities as shown
in the experiments.

In this paper, we have shown how a fully natural gradient
scheme improves optimisation of a heterogeneous MOGP
model by generally reaching better local optima solutions
with higher test performance rates than HYB, Adam and
SGD methods. We have shown that our FNG scheme pro-
vides rich local optima solutions, even when increasing the
dimensionality of the input and/or output space. Furthermore,
we have provided a novel extension of a stochastic scalable
Heterogeneous MOGP model based on convolution processes.
Our FNG method may also be an alternative tool for im-
proving optimisation over a single output GP model. As a
future work, it might be worth exploring the behaviour of
the proposed scheme over other type of GP models, for
instance Deep GPs [16]. Likewise, it would be relevant to
explore a scalable way to implement the method using a
full covariance matrix Σ which can exploit full correlation
between all hyper-parameters. Modelling multi-modal data is
another venue for future work. One might potentially want
to combine ideas from the work in [45], with the HetMOGP
model and the optimisation schemes proposed in this work.
Also, ideas for the model selection problem of the number
Q of latent functions, like the ones based on Indian buffet
processes [46], [47] can be further investigated in the particular
context of MOGPs with Heterogeneous outputs.
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Juan-José Giraldo received a degree in Electronics Engineering (B. Eng.)
with Honours, from Universidad del Quindı́o, Colombia in 2009, a master
degree in Electrical Engineering (M. Eng.) from Universidad Tecnológica de
Pereira, Colombia in 2015. Currently, Mr. Giraldo is a Ph.D student in Comp.
Science at the University of Sheffield, UK.
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Correlated Chained Gaussian Processes for Datasets
with Multiple Annotators

J. Gil-González, J. Giraldo, A. Álvarez-Meza, A. Orozco-Gutiérrez, and M. A. Álvarez

Abstract—The labeling process within a supervised learning1

task is usually carried out by an expert, which provides the2

ground truth (gold standard) for each sample. However, in many3

real-world applications, we typically have access to annotations4

provided by crowds holding different and unknown expertise5

levels. Learning from crowds intends to configure machine6

learning paradigms in the presence of multi-labelers, residing on7

two key assumptions: the labeler’s performance does not depend8

on the input space, and independence among the annotators9

is imposed. Here, we propose the correlated chained Gaussian10

processes from multiple annotators–(CCGPMA) approach, which11

models each annotator’s performance as a function of the input12

space and exploits the correlations among experts. Experimental13

results associated with classification and regression tasks show14

that our CCGPMA performs better modeling of the labelers’15

behaviour, indicating that it consistently outperforms other state-16

of-the-art learning from crowds approaches.17

Index Terms—Multiple annotators, Correlated Chained Gaus-18

sian Processes, Variational inference, Semi-parametric latent19

factor model.20

I. INTRODUCTION21

SUPERVISED learning requires that a domain expert22

labels the instances to built the gold standard (ground23

truth) (1). Yet, experts are scarce, or their time is expensive,24

not mentioning that the labeling task is tedious and time-25

consuming (2). As an alternative, the labeling is distributed26

through multiple heterogeneous annotators, who annotate part27

of the whole dataset by providing their version of the hidden28

ground truth (3). Recently, crowdsourcing platforms, i.e.,29

Amazon Mechanical Turk– (AMT)1, have been introduced to30

capture labels from multiple sources on large datasets efficiently.31

The attractiveness of these platforms lies in that, at a low cost,32

it is possible to obtain suitable quality labels. Indeed, in some33

cases, such a labeling process can compete with those provided34

by experts (4). However, in such multi-labeler scenario, each35

instance is matched with multiple annotations provided by36

different sources with unknown and diverse expertise, being37

difficult to apply traditional supervised learning algorithms (5).38

In this sense, learning from crowds has been introduced as a39

general framework from two main perspectives: to fit the labels40

from multiple annotators or to adapt the supervised learning41

algorithms (6).42
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The first approach is known in the literature as “label43

aggregation” or “truth inference”, comprising the computation44

of a single hard label per sample as an estimation of the45

ground truth. The hard labels are then used to feed a standard46

supervised learning algorithm (7). The straightforward method47

is the so-called majority voting–(MV), and it has been used in48

different multi-labeler problems due to its simplicity (8). Still,49

MV assumes homogeneity in annotators’ reliability, which is50

hardly feasible in real applications, e.g., experts vs. spammers.51

Furthermore, the consensus is profoundly impacted by incorrect52

labels and outliers (3). Conversely, more elaborated models53

have been considered to improve the estimation of the correct54

tag through the well-known Expectation-Maximization–(EM)55

framework and by facing the imbalanced labeling issue (9; 8).56

The second approach jointly trains the supervised learning al-57

gorithm and models the annotators’ behavior. It has been shown58

that such strategies lead to better performance compared to the59

ones belonging to label aggregation. Thus, the features used60

to train the learning algorithm provide valuable information61

to puzzle out the ground truth (10). The most representative62

work in this area is exposed in (11), which offers an EM-based63

framework to learn the parameters of a logistic regression64

classifier and model the annotators’ behavior by computing65

their sensitivities and specificities. In fact, such a technique has66

inspired several models in the context of multi-labeler scenarios,67

including binary classification (12; 10), multi-class discrimina-68

tion (7; 13), regression (14; 15), and sequence labeling (16).69

Furthermore, some works have addressed the multi-labeler70

problem using deep learning approaches typically including an71

extra layer that codes the annotators’ information (17; 18; 19).72

Two main issues are still unsolved in the context of73

learning from crowds (20): we need to code the relationships74

between the input features and the labelers’ performance while75

revealing relevant annotators’ interdependencies. In general, the76

annotators’ behavior is parametrized through a homogeneous77

constraint across the input samples. The latter assumption78

is not correct since an expert makes decisions based not79

only on his/her expertise but also on the features observed80

from raw data (11). Besides, it is widespread to consider81

independence in the annotators’ labels, aiming to reduce the82

complexity of the model (21), or based on the fact that it is83

plausible to guarantee that each labeler performs the annotation84

process individually (22). However, this assumption is not true85

since there may exist correlations among the annotators (23).86

For example, if the sources are humans, the independence87

assumption is hardly feasible because knowledge is a social88

construction; then, people’s decisions will be correlated because89

they share information or belong to a particular school of90
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thought (24; 25). Now, if we consider that the sources are91

algorithms, where some of them gather the same math principle,92

there likely exists a correlation in their labels (26).93

In this work, we propose a probabilistic model, named the94

correlated chained Gaussian Processes for multiple annotators–95

(CCGPMA), to jointly build a prediction algorithm applicable96

to classification and regression tasks. CCGPMA is based on97

the chained GPs model–(CGP) (27), which is a Multi-GPs98

framework where the parameters of an arbitrary likelihood99

function are modeled with multiple independent GPs (one GP100

prior per parameter). Unlike CGP, we consider that multiple101

correlated GPs model the likelihood’s parameters. For doing so,102

we take as a basis the ideas from a Multi-output GP–(MOGP)103

regression (28), where each output is coded as a weighted sum104

of shared latent functions via a semi-parametric latent factor105

model–(SLFM) (29). In contrast to the MOGP, we do not have106

multiple outputs but multiple functions chained to the given107

likelihood parameters. From the multiple annotators’ point108

of view, the likelihood parameters are related to the labelers’109

behavior; thereby, CCGPMA models the labelers’ behavior110

as a function of the input features while also taking into111

account annotators’ interdependencies. Moreover, our proposal112

is based on the so-called inducing variables framework (30),113

in combination with stochastic variational inference (31). To114

the best of our knowledge, this is the first attempt to build115

a probabilistic approach to model the labelers’ behavior as a116

function of the input features while also considering annotators’117

interdependencies. Achieved results, using both simulated and118

real-world data, show how our method can deal with both119

regression and classification problems from multi-labelers data.120

The remainder is organized as follows. Section 2 exposes121

the related work and the main contributions of the proposal.122

Section 3 describes the methods. Sections 4 and 5 present the123

experiments and discuss the results. Finally, Section 6 outlines124

the conclusions and future work.125

II. RELATED WORK AND MAIN CONTRIBUTIONS126

Most of the learning from crowds-based methods aim to127

model the annotators’ behavior based on the accuracy (32), the128

confusion matrix (13), the error variance (11), and the bias (15).129

Concerning this, the expert parameters are modeled as fixed130

points (12), or as random variables, where it is considered that131

such parameters are homogeneous across the input data (7).132

The first attempt to analyze the relationship between the133

annotators’ parameters and the input features is the work in (23).134

The authors propose an approach for binary classification135

with multiple labelers, where the input data is represented136

by a defined cluster using a Gaussian Mixture Model–(GMM).137

The approach assumes that the annotators exhibit a particular138

performance measured in terms of sensitivity and specificity139

for each group. However, the model does not consider the140

information from multiple experts as an input for the GMM,141

yielding variations in the labelers’ parameters. Similarly, in142

(33), the authors propose a binary classification algorithm143

that employs two probability models to code the annotators’144

performance as a function of the input space, namely a145

Bernoulli and a Gaussian distribution. The parameters of these146

distributions are computed via Logistic regression. Nonetheless,147

a linear dependence between the labeler expertise and the input148

space is assumed, which may not be appropriate because of149

the data structure’s nonlinearities. For example, if we consider150

online annotators assessing some documents, they may have151

different labeling accuracy. Such differences may rely on152

whether they are more familiar with some specific topics related153

to studied documents (34). Authors in (35) offer a GP-based154

regression with multiple annotators. An additional GP models155

the annotators’ parameters as a nonlinear function of the input156

space. Yet, the inference is carried out based on maximum157

a posteriori (MAP), without including the uncertainty of the158

posterior distribution.159

On the other hand, it has been shown that the relaxation160

of the annotators’ independence restriction can improve the161

ground truth estimation (23; 20). To the best of our knowledge,162

only two works address such an issue. First, the authors in (26)163

describe an approach to deal with regression problems, where164

the labelers’ behavior is modeled using a multivariate Gaussian165

distribution. Thus, the annotators’ interdependencies are coded166

in the covariance matrix. Further, in (36), the authors propose a167

binary classification method based on a weighted combination168

of classifiers. In turn, the weights are estimated by using a169

kernel alignment-based algorithm considering dependencies170

among the labelers.171

Here, we propose a GPs-based framework to face classifi-172

cation and regression settings with multiple annotators. Our173

proposal follows the line of the works in (12; 14; 10; 7; 37)174

in the sense that we are modeling the unknown ground truth175

trough a GP prior. However, while such approaches code the176

annotators’ parameters as fixed points (12; 14); or as random177

variables (10; 7; 37); we model them as random processes to178

take into account dependencies between the input space and179

the labelers’ behavior. Besides, our CCGPMA shares some180

similarities with the works in (33; 35), because we aim to181

model the dependencies between the input features and the182

labelers’ performance. Our method is also similar to the works183

in (26; 36), because they assume dependencies in the annotators’184

labels. In contrast, CCGPMA is the only one that includes185

both assumptions to code the annotators’ behavior. Of note, we186

highlight that our proposal codes inconsistent annotations, being187

robust against outliers. Namely, CCGPMA can estimate the188

annotators’ performance for every region in the input space;189

meanwhile, state-of-the-art techniques assess it based on a190

conventional averaging (15; 7; 10). Table I summarizes the key191

insights of our CCGPMA and state-of-the-art approaches.192

III. METHODS193

A. Chained Gaussian processes194

Let us consider an input-output dataset D={X∈X,y∈Y},195

where X =
{
xn∈X⊆RP

}N
n=1

and y= {yn∈Y}Nn=1. In turn,196

let a GP be a collection of random variables f(x) indexed197

by the input samples x∈X holding a joint multivariate198

Gaussian distribution (39). A GP is defined by its mean199

m(x)=E[f(x)] (we consider m(x)= 0) and covariance func-200

tion κf (x,x
′)=E[(f(x) − m(x))(f(x′) − m(x′))], where201

κf :X×X→R is a given kernel function and x′ ∈X, yielding:202
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TABLE I
SURVEY OF RELEVANT SUPERVISED LEARNING MODELS DEVOTED TO MULTIPLE ANNOTATORS.

Source Data type Type of model
Modeling the

annotator’s
expertise

Expertise as a
function of the

input space

Modeling the
annotators’ inter-

dependencies

Raykar et al., 2010 (11) Regression-Binary-Categorical Probabilistic 3 7 7
Zhang and Obradovic, 2011 (23) Binary Probabilistic 3 3 7

Xiao et al., 2013 (35) Regression Probabilistic 3 3 7
Yan et al., 2014 (33) Binary Probabilistic 3 3 7

Wang and Bi, 2016 (34) Binary Deterministic 3 3 7
Rodrigues et al., 2017 (15) Regression-Binary-Categorical Probabilistic 3 7 7

Gil-Gonzalez et al., 2018 (36) Binary Deterministic 3 7 3
Hua et al., 2018 (38) Binary-Categorical Deterministic 3 7 7
Ruiz et al., 2019 (10) Binary Probabilistic 3 7 7

Morales- Álvarez et al., 2019 (7) Binary Probabilistic 3 7 7
Zhu et al., 2019 (26) Regression Probabilistic 3 7 3

Proposal-(CCGPMA) Regression-Binary-Categorical Probabilistic 3 3 3

f(x) ∼ GP(0, κf (x,x
′)). (1)

If we consider the finite set of inputs in X , then203

f = [f(x1), . . . , f(xN )]
> ∈RN is drawn for a multivariate204

Gaussian distribution f ∼ N(f |0,Kff ), whereKff ∈RN×N205

is the covariance matrix formed by the evaluation of κf (·, ·)206

over the input set X .207

Accordingly, using GPs for modeling the input-output data208

collection D consists of constructing a joint distribution209

between a given likelihood function and one or multiple GP-210

based priors. To code each likelihood parameter as a random211

process, we employ the so-called chained GP–(CGP) that212

attaches such parameters to multiple independent GP priors,213

as follows (27):214

p(y, f̂ |X) =

N∏

n=1

p(yn|θ1(xn), . . . , θJ(xn))× · · ·

· · · ×
J∏

j=1

N(fj |0,Kfjfj
), (2)

where each {θj(x)∈Mj}Jj=1 represents the likelihood’s pa-215

rameters, being J ∈N the number of parameters to repre-216

sent the likelihood. Besides, each θj(x) holds a non-linear217

mapping from a GP prior, e.g., θj(x)=hj(fj(x)), where218

hj :R→Mj is a deterministic function that maps each latent219

function–(LF) fj(x), to the appropriate domain Mj . Moreover,220

fj = [fj(x1), . . . , fj(xN )]
> ∈RN is a LF vector that follows221

a GP prior, and f̂ = [f1, . . . ,fJ ]
> ∈RNJ . Kfjfj

∈RN×N is222

the covariance matrix belonging to the j-th GP prior, which is223

computed based on the kernel function κj :X × X→R. The224

non-parametric formulation of a GP introduces computational225

loads through the inference process. For instance, considering226

that the dataset D configures a regression problem, a GP227

modeling involves a computational complexity of O(N3)228

to invert the matrix Kfjfj
(39). A common approach to229

reduce such computational complexity is to augment the230

GP prior with a set of M << N inducing variables (40)231

uj =[fj(z
j
1), . . . , fj(z

j
M )]> ∈RM through additional evalu-232

ations of fj(·) at unknown locations Zj =[zj1, . . . ,z
j
M ] ∈233

RM×P , which decreases the GP’s computational complexity to234

O(NM2). Further, the following augmented GP prior arises:235

p(fj ,uj) = N

([
fj
uj

] ∣∣∣∣∣ 0,
[
Kfjfj Kfjuj

Kujfj
Kujuj

])
, (3)

where Kfjuj
∈RN×M is the cross-covariance matrix formed236

by the evaluation of the kernel function κj(·, ·) between X and237

Zj . Likewise, Kujuj
∈RM×M is the inducing points-based238

covariance matrix. Then, the distribution of fj conditioned to239

the inducing points uj can be written as:240

p(fj |uj) =N
(
fj |KfjujK

−1
ujuj

uj ,Kfjfj − · · · (4)

· · · −KfjujK
−1
ujuj

Kujfj

)
,

p(uj) =N
(
uj |0,Kujuj

)
. (5)

In most cases Eqs. (4) and (5) are non-conjugate to the241

likelihood, finding the posterior distribution p(f ,u|y) is not242

tractable analytically; therefore, we resort to a deterministic243

approximation of the posterior distribution using variational244

inference. Hence, the actual posterior can be approximated by245

a parametrized variational distribution p(f̂ ,u|y)≈q(f̂ ,u), as:246

q(f ,u) = p(f |u)q(u) =
J∏

j=1

p(fj |uj)q(uj), (6)

where u=
[
u>1 , . . . ,u

>
J

]> ∈RMJ ; moreover, p(fj |uj) is247

defined in Eq. (4), and q(u) is the posterior approximation248

over the inducing variables:249

q(u) =
J∏

j=1

q(uj) =
J∏

j=1

N (uj |mj ,Vj) . (7)

The approximation for the posterior distribution comprises the250

estimation of the following variational parameters: the mean251

vectors mj ∈RM and the covariance matrices Vj ∈RM×M .252

Such an assessment is carried out by maximizing an evidence253

lower bound–(ELBO). Thereby, assuming that the instances254

xn are independently sampled, the ELBO can be derived as:255
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L =
N∑

n=1

Eq(f1),...,q(fJ ) [log p(yn|θ1,n, . . . , θJ,n]− · · ·

· · · −
J∑

j=1

DKL(q(uj)||p(uj)), (8)

where DKL(·||·) is the Kullback-Leibler divergence and q(fj)256

is defined as follows:257

q(fj) =

∫
p(fj |uj)q(uj)duj . (9)

258

B. Correlated chained Gaussian processes259

From Section III-A, we note that the CGP model assumes260

independence between priors, thereby lacking a correlation261

structure between GPs. As mentioned before, we consider that262

the annotators are correlated. We will enable this aspect of the263

model by assuming dependencies among the latent parameters264

of the chained GP. In particular, we introduce the correlated265

chained GPs–(CCGP) to model correlations between the GP266

latent functions, which are supposed to be generated from a267

semi-parametric latent factor model–(SLFM) (29):268

fj(xn) =

Q∑

q=1

wj,qµq(xn), (10)

where fj : X → R is an LF, µq(·) ∼ GP(0, kq(·, ·)) with269

kq : X×X → R being a kernel function, and wj,q ∈R is a270

combination coefficient (Q∈N). Here, each LF is chained to271

the likelihood’s parameters to extend the joint distribution in272

Eq. (2) as follows:273

p(y, f̂ ,u|X) = p(y|θ)
J∏

j=1

p(fj |u)p(u), (11)

where θ=[θ1, . . . ,θJ ]
> ∈RNJ holds the model’s parameters274

and θj =[θj(x1), . . . , θj(xN )]> ∈RN relates the j-th param-275

eter with the input space. Our CCGP employs the inducing276

variables-based method for sparse approximations of GPs (40).277

For each µq(·), we introduce a set of M ≤N “pseudo vari-278

ables” uq =[µq(z
q
1), . . . , µq(z

q
M )]> ∈RM through evaluations279

of µq(·) at unknown locations Zq =[zq1 , . . . ,z
q
M ]∈RM×P .280

Note that u=
[
u>1 , . . . ,u

>
Q

]> ∈RQM , yielding:281

p(fj |u) =N
(
fj |KfjuK

−1
uuu,Kfjfj − · · ·

· · · − KfjuK
−1
uuKufj

)
, (12)

p(u) =N (u|0,Kuu)=

Q∏

q=1

N(uq|0,Kuquq ), (13)

where Kuu ∈RQM×QM is a block-diagonal matrix with282

blocks Kuquq ∈RM×M , based on the kernel function283

κq(·, ·). The covariance matrix Kfjfj
∈RN×N holds284

elements
∑Q
q=1 wj,qwj,qκq(xn,xn′), with xn,xn′ ∈X .285

Likewise, Kfju =[Kfju1
, . . . ,KfjuQ

]∈RN×QM , where286

Kfjuq
∈RN×M gathers elements wj,qκq(xn, z

q
m),287

m∈{1, . . . ,M}. Alike CGP, in most cases, the CCGP288

posterior distribution p(f̂ ,u|y) has not an analytical solution,289

so the actual posterior can be approximated by a parametrized290

variational distribution p(f̂ ,u|y)≈q(f̂ ,u), as:291

q(f̂ ,u) = p(f̂ |u)q(u) =
J∏

j=1

p(fj |u)
Q∏

q=1

q(uq), (14)

where p(fj |u) is given by Eq. (12), q(uq)=N(uq|mq,Vq),292

and q(u)=N(u|m,V ). Also, mq ∈RM , and Vq ∈RM×M293

are respectively the mean and covariance of variational dis-294

tribution q(uq); similarly, m=[m>1 , . . . ,m
>
Q]
> ∈RQM , and295

V ∈RQM×QM is a block-diagonal matrix with blocks given296

by the covariance matrices Vq . We remark that the variational297

approximation given by Eq. (14) is not uncommon, and it298

has been used in several GPs models, including (27; 41).299

The approximation for the posterior distribution comprises300

the computation of the following variational parameters: the301

mean vectors {mq}Qq=1 and the covariance matrices {Vq}Qq=1.302

Such an estimation is carried out by maximizing an evidence303

lower bound–(ELBO), which is given as:304

L =
N∑

n=1

Eq(f1),...,q(fJ ) [log p(yn|θ1,n, . . . , θJ,n]− · · ·

· · · −
Q∑

q=1

DKL(q(uq)||p(uq)), (15)

where θj,n = θj(xn), with j ∈{1, . . . , J}, and DKL(·||·) is the305

Kullback-Leibler divergence and q(fj) is defined as follows:306

q(fj) = N(fj |KfjuK
−1
uum,Kfjfj

+ · · ·
· · ·+KfjuK

−1
uu(V −Kuu)K

−1
uuKufj ). (16)

Yet, in presence of non-Gaussian likelihoods, the computation307

of the variational expectations–(VEs) in Eq. (15) cannot be308

solved analytically (27; 41). Hence, aiming to model different309

data types, i.e., classification and regression tasks, we need310

to find a generic alternative to solve the integrals related to311

these expectations. In that sense, we use the Gaussian-Hermite312

quadratures approach as in (40; 27). We remark such ELBO is313

used to infer the model’s hyperparameters such as the inducing314

points, the kernel hyperparameters, and the combination factors315

wj,q Eq. (10). It is worth mentioning that the CCGPs objective316

functions exhibit an ELBO that allows Stochastic Variational317

Inference–(SVI) (42). Hence, the optimization is solved through318

a mini-batch-based approach from noisy estimates of the319

global objective gradient, which allows dealing with large scale320

datasets (40; 27; 41). Finally, we notice that the computational321

complexity for our CCGP is similar to the model in (41).322

Accordingly, it is dominated by the inversion of Kuu with323

O(QM3) and products like Kf̂u with O(JNQM2).324
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C. Correlated chained GP for multiple annotators-CCGPMA325

Let us consider that a predefined panel of R∈N annotators326

(with different and unknown levels of expertise) label a given327

dataset of N instances. It is common to find that the each328

annotator r only labels |Nr| ≤ N samples, being |Nr| the329

cardinality of the set Nr ⊆ {1, . . . , N} that contains the330

indexes of samples labeled by the r-th annotator. Besides,331

we define the set Rn ⊆ {1, . . . , R} holding the indexes of332

annotators that labeled the n-th instance. The input-output333

set is coupled within a multiple annotators scenario as334

D= {X,Y ={yrn}n∈N,r∈Rn}, where yrn ∈Y is the output335

given by labeler r to the sample n; accordingly, our main336

aims are: i) to code each labeler’s performance as a function337

of the input space and taking into account inter-annotator338

dependencies, and ii) to predict the true output y∗ ∈Y of a new339

instance x∗ ∈RP . We highlight that to achieve such objectives,340

no extra information about the annotators’ behaviour is provided341

(e.g., extra labels or information about her/his experience).342

1) Classification: To model categorical data from multi-343

ple annotators with K classes (Y={1, . . . ,K}) using our344

CCGPMA, we use the framework proposed in (32), which345

introduces a binary variable λrn ∈{0, 1} representing the r-346

th labeler’s reliability as a function of each sample xn. If347

λrn = 1, the r-th annotator is supposed to provide the actual348

label, yielding to a categorical distribution. Conversely, λrn = 0349

indicates that the r-th annotator gives an incorrect output, which350

is modeled by a uniform distribution. Therefore, the likelihood351

function is given as:352

p(Y |θ) =
N∏

n=1

∏

r∈Rn

(
K∏

k=1

ζ
δ(yrn,k)
k,n

)λr
n (

1

K

)(1−λr
n)

, (17)

where δ(yrn, k)= 1, if yrn= k, otherwise δ(yrn, k)= 0. Besides,353

ζk,n= p(yrn = k|λrn = 1) is an estimation of the unknown354

ground truth. Accordingly, J =K+R LFs are required within355

our CCGPMA approach, aiming to model the likelihood’356

parameters θ. In particular, K LFs are used to model ζk,n357

based on a softmax function ι as:358

ζk,n = ι(fk(xn)) =
exp(fk(xn))∑K
j=1 exp(fj(xn))

. (18)

Besides, R LFs are utilized to compute each λrn from a359

step function; therefore, λrn=1 if flr (xn) ≥ 0, otherwise,360

λrn=0 (r∈{1, . . . R}). lr =K + r∈{K + 1, . . . J} indexes361

the r-th annotator’ LF. Of note, we approximate the step362

function through the well-known sigmoid function ς to avoid363

discontinuities and favor the CCGPMA implementation. Alike364

to CCGP, we use variational inference to approximate the365

posterior distribution of our CCGPMA. In consequence, the366

actual posterior p(f̂ ,u|Y ) is approximated following Eq. (14).367

Besides, we can derive a CCGPMA ELBO, yielding:368

L=
N∑

n=1

∑

r∈Rn

Eq(f1),...,q(fJ ) [log p(y
r
n|θ1,n, . . . , θJ,n)]− · · ·

· · · −
Q∑

q=1

DKL(q(uq)||p(uq)), (19)

where for the classification case, we have369

p(yrn|θ1,n, . . . , θJ,n)=
(

K∏

k=1

ζ
δ(yrn,k)
k,n

)λr
n (

1

K

)(1−λr
n)

. (20)

Finally, given a new sample x∗, we are interested in the mean370

and variance for predictive distributions related to the ground371

truth ζk,∗= p(y∗= k|x∗, f̂ ,u), and the labelers’ reliabilities372

λr∗. Accordingly, for ζk,∗ we obtain373

E[ζk∗] ≈
∫
ι(fk(x∗))q(f∗)df∗, (21)

where q(f∗)=
∫
p(f∗|u)q(u)du. Similarly, for the predictive374

variance of ζk,∗, we use the expression Var[ζk,∗] = E[ζ2k,∗]−375

E[ζk,∗]2; hence, we need to compute E[ζ2k,∗] as376

E[ζ2k∗] ≈
∫
ι(fk(x∗))

2q(f∗)df∗. (22)

On the other hand, regarding the predictive mean and variance377

for λr∗, we have378

E[λr∗] =
∫
ς(flr,∗)q(f∗)df∗. (23)

For the variance of λr∗, we use the expression Var[λr∗] =379

E[(λr∗)2]− E[λr∗]2; hence, we need to compute380

E[(λr∗)2] =
∫
ς(flr,∗)

2q(f∗)df∗. (24)

In this case, integrals in Eqs. (21) to (24) have not closed381

solution; hence, we approximate them using the Gaussian-382

Hermite quadrature.383

2) Regression: For real-valued outputs, e.g., Y ⊂ R, we384

follow the multi-annotator model used in (11; 14; 35; 15),385

where each output yrn is considered to be a corrupted version386

of the hidden ground truth yn. Then:387

p(Y |θ) =
N∏

n=1

∏

r∈Rn

N (yrn|yn, vrn) , (25)

where vrn ∈R+ is the r-th annotator error-variance for the388

instance n. In turn, to model this likelihood function with389

CCGPMA, it is necessary to chain each likelihood’s paramater390

to a latent function fj . Thus, we require J =R + 1 LFs;391

one to model the hidden ground truth, such that yn= f1(xn),392

and R LFs to model each error-variance vrn=exp(flr (xn)),393

with r∈{1, . . . R}, and lr = r + 1 ∈ {2, . . . J}. Note that we394

use an exponential function to map from flr to vrn, aiming395
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to guarantee vrn > 0 (flr ∈R). Similar to the classification396

problem, the ELBO in regression settings is given by Eq. (19),397

where p(yrn|θ1,n, . . . , θJ,n)=N (yrn|yn, vrn).398

Now, given a new sample x∗, we are interested in the399

mean and variances for predictive distributions concerning the400

ground truth y∗, and the labelers’ error-variances vr∗. First, for401

y∗ we have that since y = f1, the posterior distribution for y∗402

corresponds to q(f1∗), yielding:403

E[y∗] = µ1,∗ (26)
Var[y∗] = s1,∗, (27)

where µ1,∗, and s1,∗ are respectively the mean and variance of404

q(f1∗). Then, for vr∗, we note that due to vr = exp(flr ), the405

posterior distribution for vr∗ follows a log-normal distribution406

with parameters µlr,∗ and slr,∗, which respectively correspond407

to the mean and variance of q(flr,∗). In this sense, the mean408

and variance of vr∗ are given as:409

E[vr∗] = exp
(
µlr,∗+

slr,∗
2

)
. (28)

Var[vr∗] = exp (2µlr,∗+slr,∗) (exp(slr,∗)−1) . (29)

410

IV. EXPERIMENTAL SET-UP411

In this section, we describe the experiments’ configurations412

to validate our CCGPMA concerning multiple annotators413

classification and regression tasks.414

A. Classification415

1) Datasets and simulated/provided annotations: We test416

our approach using three types of datasets: fully synthetic data,417

semi-synthetic data, and fully real datasets.418

First, we generate fully synthetic data as one-dimensional419

(P =1) multi-class classification problem (K =3). The input420

feature matrix X is built by randomly sampling N =100421

points from an uniform distribution within the interval [0, 1].422

The true label for the n-th sample is generated by taking423

the argmaxi{tn,i : i∈{1, 2, 3}}, where tn,1 =sin(2πxn),424

tn,2 =− sin(2πxn), and tn,3 =− sin(2π(xn + 0.25)) + 0.5.425

Besides, the test instances are obtained by extracting 200426

equally spaced samples from the interval [0, 1].427

Second, to control the label generation, we build semi-428

synthetic data from seven datasets of the UCI repository2
429

focused on binary and multi class-classification: Wiscon-430

sin Breast Cancer Database–(breast), BUPA liver disorders–431

(bupa), Johns Hopkins University Ionosphere database–432

(ionosphere), Pima Indians Diabetes Database–(pima), Tic-433

Tac-Toe Endgame database–(tic-tac-toe), Occupancy Detection434

Data Set–(Occupancy), Skin Segmentation Data Set–(Skin),435

Wine Data set–(Wine), and Image Segmentation Data Set–436

(Segmentation). Also, we test the publicly available bearing data437

collected by the Case Western Reserve University–(Western).438

The aim is to build a system to diagnose an electric motor’s439

2http://archive.ics.uci.edu/ml

TABLE II
TESTED DATASETS.

Name Number of
features

Number of
instances

Number of
classes

fully synthetic synthetic 1 100 3

semi-synthetic

Breast 9 683 2
Bupa 6 345 2

Ionosphere 34 351 2
Pima 8 768 2

Tic-tac-toe 9 958 2
Occupancy 7 20560 2

Skin 4 245057 2
Western 7 3413 4

Wine 13 178 3
Segmentation 18 2310 7

fully real Voice 13 218 2
Music 124 1000 10

status based on two accelerometers. The feature extraction was440

performed as in (43).441

Third, we evaluate our proposal on two fully real datasets,442

where both the input features and the annotations are captured443

from real-world problems. Namely, we use a bio-signal444

database, where the goal is to build a system to evaluate445

the presence/absence of voice pathologies. In particular, a446

subset (N =218) of the Massachusetts Eye and Ear Infirmary447

Disordered Voice Database from the Kay Elemetrics company448

is utilized, which comprises voice records from healthy and449

different voice issues. Each signal is parametrized by the Mel-450

frequency cepstral coefficients (MFCC) to obtain an input space451

with P =13. A set of physicians assess the voice quality by452

following the GRBAS protocol that comprises the evaluation453

of five qualitative scales: Grade of dysphonia–(G), Roughness–454

(R), Breathiness–(B), Asthenia–(A), and Strain–(S). For each455

perceptual scale, the specialist assigns a tag ranging from456

0 (healthy voice) to 3 (severe disease) (44). Accordingly, we457

face five multi-class classification problems (one per scale). We458

follow the procedure in (36) to rewrite five binary classification459

tasks preserving the available ground truth (13). Further, we460

use the music genre data3, holding a collection of songs461

records labeled from one to ten depending on their music genre:462

classical, country, disco, hip-hop, jazz, rock, blues, reggae, pop,463

and metal. From this set, 700 samples were published randomly464

in the AMT platform to obtain labels from multiples sources465

(2946 annotations from 44 workers). Yet, we only consider the466

annotators who labeled at least 20% of the instances; thus, we467

use the information from R=7 labelers. The feature extraction468

is performed by following the work by authors in (32), to469

obtain an input space with P =124. Table II summarizes the470

tested datasets for the classification case.471

Note that the fully synthetic and the semi-synthetic datasets do472

not hold real annotations. Therefore, it is necessary to simulate473

those labels as corrupted versions of the hidden ground truth.474

Here, the simulations are performed by assuming: i) depen-475

dencies among annotators, and ii) the labelers’ performance476

is modeled as a function of the input features. In turn, an477

SLFM-based approach (termed SLFM-C) is used to build the478

labels, as follows:479

– Define Q deterministic functions µ̂q :X → R, and their480

combination parameters ŵlr,q ∈R, ∀r∈R,n∈N .481

3http://fprodrigues.com/publications/learning-from-multiple-annotators-
distinguishing-good-from-random-labelers/
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TABLE III
A BRIEF OVERVIEW OF THE STATE-OF-THE-ART METHODS TESTED.

Algorithm Description

GPC-GOLD A GPC using the real labels (upper bound).
GPC-MV A GPC using the MV of the labels as the ground truth.
MA-LFC-C (11) A LRC with constant parameters across the input space.
MA-DGRL (32) A multi-labeler approach that considers as latent variables

the annotator performance.
MA-GPC (12) A multi-labeler GPC, which is as an extension of MA-LFC.
MA-GPCV (7) An extension of MA-GPC that includes variational inference

and priors over the labelers’ parameters.
MA-DL (18) A Crowd Layer for DL, where the annotators’ parameters

are constant across the input space.
KAAR (36) A kernel-based approach that employs a convex combination

of classifiers and codes labelers dependencies.
CGPMA-C A particular case of our CCGPMA for classification,

where Q= J , and we fix wj,q =1, if j= q, otherwise wj,q =0.

– Compute f̂lr,n=
∑Q
q=1 ŵlr,qµ̂q(x̂n), where x̂n ∈R is the482

n-th component of x̂∈RN , being x̂ the 1−D representa-483

tion of the input features in X by using the well-known t-484

distributed Stochastic Neighbor Embedding approach (45).485

– Calculate λ̂rn = ς(f̂lr,n), where ς(·)∈[0, 1] is the sigmoid486

function.487

– Finally, find the r-th label as yrn=

{
yn, if λrn ≥ 0.5

ỹn, if λrn < 0.5
,488

where ỹn is a flipped version of the actual label yn.489

2) Method comparison and performance metrics: The490

classification performance is assessed as the Area Under the491

Curve–(AUC). Further, the AUC is extended for multi-class492

settings, as discussed by authors in (46). We use a cross-493

validation scheme with 15 repetitions where 70% of the samples494

are utilized for training and the remaining 30% for testing495

(except for the music dataset training and testing sets are clearly496

defined). Table III displays the employed methods of the state-497

of-the-art for comparison purposes. The abreviations are fixed498

as: Gaussian Processes classifier (GPC), logistic regression499

classifier (LRC), majority voting (MV), multiple annotators500

(MA), Modelling annotators expertise (MAE), Learning from501

crowds (LFC), Distinguishing good from random labelers502

(DGRL), kernel alignment-based annotator relevance analysis503

(KAAR).504

B. Regression505

1) Datasets and simulated/provided annotations: We test506

our approach using three types of datasets: fully synthetic data,507

semi-synthetic data, and fully real datasets. First, We generate508

fully synthetic data as an one-dimensional regression problem,509

where the ground truth for the n-th sample corresponds to510

yn = sin(2πxn) sin(6πxn), where the input matrix X is511

formed by randomly sampling 100 points within the range512

[0, 1] from an uniform distribution. The test instances are513

obtained by extracting equally spaced samples from the interval514

[0, 1]. Second, to control the label generation (10), we build515

semi-synthetic data from six datasets related to regression tasks516

from the well-known UCI repository. We selected the following517

datasets: Auto MPG Data Set–(Auto), Bike Sharing Dataset518

Data Set–(Bike), Concrete Compressive Strength Data Set–519

(Concrete), The Boston Housing Dataset–(Housing),4 Yacht520

4See https://www.cs.toronto.edu/∼delve/data/boston/bostonDetail.html for
housing

TABLE IV
DATASETS FOR REGRESSION.

Name Number of
features

Number of
instances

fully synthetic synthetic 1 100

semi-synthetic

Auto 8 398
Bike 13 17389

Concrete 9 1030
Housing 13 506

Yacht 6 308
CT 384 53500

fully real Music 124 1000

TABLE V
A BRIEF OVERVIEW OF STATE-OF-THE-ART METHODS TESTED FOR

REGRESSION TASKS. GPR: GAUSSIAN PROCESSES REGRESSION, LR:
LOGISTIC REGRESSION, AV: AVERAGE, MA: MULTIPLE ANNOTATORS, DL:

DEEP LEARNING, LFCR: LEARNING FROM CROWDS FOR REGRESSION.

Algorithm Description

GPR-GOLD A GPR using the real labels (upper bound).
GPR-Av A GPR using the average of the labels as the ground truth.
MA-LFCR (11) A LR model for MA where the labelers’ parameters

are supposed to be constant across the input space.
MA-GPR (12) A multi-labeler GPR, which is as an extension of MA-LFCR.
MA-DL (18) A Crowd Layer for DL, where the annotators’ parameters

are constant across the input space.
CGPMA-R A particular case of our CCGPMA for regression,

where Q = J , and wj,q =1 if j= q, otherwise wj,q =0.

Hydrodynamics Data Set–(Yacht), and Relative location of521

CT slices on axial axis Data Set–(CT). Third, we evaluate522

our proposal on one fully real dataset. In particular, we use523

the Music dataset introduced in Section IV-A1. Notice that524

the music dataset configures a 10-class classification problem;525

however, in this experiment, we are using our CCGPMA with526

a likelihood function designed for real-valued labels Eq. (25).527

Such practice is not uncommon in machine learning, and it is528

usually known as “Least-square classification” (39). Table IV529

summarizes the tested datasets for the regression case.530

As we pointed out previously, fully synthetic and semi-synthetic531

datasets do not hold real annotations. Thus, it is necessary to532

generate these labels synthetically as a version of the gold533

standard corrupted by Gaussian noise, i.e., yrn = yn+ε
r
n, where534

εrn ∼ N(0, vrn), being vrn the r-th annotator error-variance for535

the sample n. Note that we are interested in modeling such an536

error-variance for the r-th annotator as a function of the input537

features, which is correlated with the other labelers’ variances.538

In turn, an SLFM-based approach (termed SLFM-R) is used539

to build the labels, as follows:540

• Define Q functions µ̂q : X → R, and the combination541

parameters ŵlr,q ∈R, ∀r, q.542

• Compute f̂lr,n =
∑Q
q=1 ŵlr,qµ̂q(x̂n), where x̂n is the n-543

th component of x̂ ∈ R, which is an 1−D representation544

of input features X by using the t-distributed Stochastic545

Neighbor Embedding approach (45).546

• Finally, determine v̂rn = exp(f̂lr,n).547

2) Method comparison and performance metrics: The548

quality assessment is carried out by estimating the regression549

performance as the coefficient of determination–(R2). A cross-550

validation scheme is employed with 15 repetitions where 70%551

of the samples are utilized for training and the remaining552
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30% for testing (except for fully synthetic dataset, since it553

clearly defines the training and testing sets). Table V displays554

the employed methods of the state-of-the-art for comparison555

purposes. From Table V, we highlight that for the model MA-556

DL, the authors provided three different annotators’ codification:557

MA-DL-B, where the bias for the annotators is measured; MA-558

DL-S, where the labelers’ scale is computed; and measured;559

MA-DL-B+S, which is a version with both (18).560

C. CCGPMA training561

Overall, the Radial basis function–(RBF) kernel is preferred562

in both classification and regression tasks because of its563

universal approximating ability and mathematical tractability.564

Hence, for all GP-based approaches, the kernel functions are565

fixed as:566

κ(xn,xn′) = φ1 exp

(−‖xn − xn′‖22
2φ22

)
, (30)

where ‖ · ‖2 stands for the L2 norm, n, n′ ∈{1, 2, . . . , N},567

and φ1, φ2 ∈R+ are the kernel hyper-parameters. For concrete568

testing, we fix φ1 =1, while φ2 is estimated by optimizing the569

corresponding ELBO (as exposed in Eq. (19)). Moreover, for570

CGPMA, since each LF fj(·) is linked to uq(·), we fix Q=R+571

K, and Q=R+1 for classification and regression respectively.572

On the other hand, for CCGPMA, each fj(·) is built as a convex573

combination of µq(·) (see Eq. (10)); therefore, there is no574

restriction concerning Q. However, to make a fair comparison575

with CGPMA, we also fix Q=R + K (classification), and576

Q=R + 1 (regression) in CCGPMA. For the fully synthetic577

datasets, we use M =10 inducing points per latent function,578

and for the remaining experiments, we test with M =40, and579

M =80. For all the experiments, we use the ADADELTA580

included in the climin library with a mini-batch size of 100581

samples to perform SVI. However, for small datasets (N <582

500), we employ mini-batches with a size equal to the number583

of samples in the training set. Finally, for all experiments related584

to our CCGPMA, the variational parameters’ initialization is585

carried out as follows: the variational mean is set mq =586

0,∀q ∈ {1, . . . , Q}, where 0 ∈ RM is an all-zeros vector; the587

variational covariances Vq = I,∀q ∈ {1, . . . , Q} are fixed as588

the identity matrix I ∈RM×M . The CCGPMA’s Python code589

is publicly available.5590

V. RESULTS AND DISCUSSION591

A. Classification592

1) Fully synthetic data results.: We first perform a controlled593

experiment to test the CCGPMA capability when dealing with594

binary and multi-class classification. We use the fully synthetic595

dataset described in Section IV-A1. Besides, five labelers (R =596

5) are simulated with different levels of expertise. To simulate597

the error-variances, we define Q=3 µ̂q(·) functions, yielding:598

5https://github.com/juliangilg/CCGPMA

µ̂1(x) = 4.5 cos(2πx+ 1.5π)− 3 sin(4.3πx+ 0.3π), (31)
µ̂2(x) = 4.5 cos(1.5πx+ 0.5π) + 5 sin(3πx+ 1.5π), (32)
µ̂3(x) = 1, (33)

where x ∈ [0, 1]. Besides, the combination weights are gathered599

within the following combination matrix Ŵ ∈RQ×R:600

Ŵ =



0.4 0.7 −0.5 0.0 −0.7
0.4 −1.0 −0.1 −0.8 1.0
3.1 −1.8 −0.6 −1.2 1.0


 , (34)

holding elements ŵlr,q . For visual inspection purposes, Fig. 1601

shows the predictive label’s probability–(PLP), p(y∗ = k|x∗),602

and the AUC for all studied approaches regarding the fully603

synthetic data. Notice that for methods MA-GPC, MA-GPCV,604

and KAAR, we use the one-vs-all scheme to face this experi-605

ment (such methods were defined only for binary classification606

settings). Accordingly, for those models, the PLP corresponds607

to scores rather than probabilities. Besides, regarding the PLP of608

our CGPMA and CCGPMA, we provide the mean and variance609

for the predictive distribution ζk,∗= p(y∗= k|x∗, f̂ ,u), which610

are computed based on Eqs. (21) and (22). As seen in Fig. 1,611

KAAR, MA-GPC, and MA-GPCV presents a different shape612

than the ground truth; moreover, KAAR and MA-GPCV exhibit613

the worst AUC, even worse than the intuitive lower bound614

GPC-MV. We explain such conduct in the sense that these615

approaches are designed to deal with binary labels (36; 12; 10).616

To face such a problem, we use the one-vs-all scheme; still,617

it can lead to ambiguously classified regions (47). We note618

an akin predictive AUC concerning MA-DL methods and the619

linear approaches MA-LFC-C and MA-DGRL. Nonetheless,620

the linear techniques exhibit a PLP less similar to the Ground621

truth, which is due to MA-LFC-C and MA-DGRL only can622

deal with linearly separable data. Further, we analyze the results623

of our CGPMA-C and its particular enhancement CCGPMA-C.624

We remark that our methods’ predictive AUC is pretty close to625

deep learning and linear models. Unlike them, our CGPMA-C626

and CCGPMA-C show the most accurate PLP compared with627

the absolute gold standard. CCGPMA-C behaves quite similarly628

to GPC-GOLD, which is the theoretical upper bound. Finally,629

from the GPC-MV, we do not identify notable differences with630

the rest of the approaches (excluding KAAR and MA-GPCV).631

From the above, we recognize that analyzing both the632

predictive AUC and the PLP, our CCGPMA-C exhibits the633

best performance obtaining similar results compared with the634

intuitive upper bound (GPC-GOLD). Accordingly, CCGPMA-C635

proffers a more suitable representation of the labelers’ behavior636

than its competitors. Indeed, CCGPMA-C codes both the637

annotators’ dependencies and the relationship between the638

input features and the annotators’ performance. To empirically639

support the above statement, Fig. 2 shows the estimated per-640

annotator reliability, where we only take into account models641

that include such types of parameters (MA-DGRL, CGPMA-642

C, and CCGPMA-C). As seen, MA-DGRL (see column 2 in643

Fig. 2) does not offer a proper representation of the annotators’644

behavior. CGPMA-C and CCGPMA-C (columns 3 and 4 in645

Fig. 2) outperforms MA-DGRL, which is a direct repercussion646
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Fig. 1. Fully synthetic dataset results. The PLP is shown, comparing the prediction of our CCGPMA-C(AUC = 1) and CCGPMA-C(AUC = 0.9999)
against: the theoretical upper bound GPC-GOLD(AUC = 1.0), the lower bound GPC-MV(AUC = 0.9809), and the state-of-the-art approaches MA-
LFC-C(AUC = 0.9993), MA-DGRL(AUC = 0.9999), MA-GPC(AUC = 0.9977), MA-GPCV(AUC = 0.9515), MA-DL-MW(AUC = 0.9989),
MA-DL-VW(AUC = 0.9972), MA-DL-VW+B(AUC = 0.9994), KAAR(0.9099). Note that the shaded region in GPC-MV, CGPMA-C, and CCGPMA-C
indicates the area enclosed by the mean ± two standard deviations. There is no shaded region for approaches lacking prediction uncertainty.

TABLE VI
AUC(%) CLASSIFICATION RESULTS FOR THE SEMI SYNTHETIC DATASETS. BOLD: THE HIGHEST AUC EXCLUDING THE UPPER BOUND (GPC-GOLD).

Method Breast Bupa Ionosphere Pima TicTacToe Occupancy Skin Western Wine Segmentation Average

GPC-GOLD(M =40) 99.07± 0.45 69.75± 4.66 94.90± 2.35 83.78± 3.02 84.29± 3.34 99.56± 0.06 99.97± 0.01 91.85± 0.61 99.87± 0.15 95.96± 1.96 91.90
GPC-GOLD(M =80) 99.03± 0.46 69.97± 4.83 95.13± 2.25 83.74± 2.97 84.91± 3.23 99.56± 0.06 99.97± 0.01 92.50± 0.57 99.88± 0.16 97.81± 0.41 92.25

GPC-MV(M =40) 98.97± 0.45 53.66± 5.16 75.66± 5.72 53.99± 7.60 66.20± 3.57 75.85± 19.16 84.58± 0.90 86.58± 3.31 81.79± 2.12 95.62± 2.28 77.29
GPC-MV(M =80) 98.92± 0.48 56.98± 5.29 77.79± 5.50 53.02± 6.74 67.44± 3.57 63.12± 19.68 84.20± 0.80 84.46± 0.89 83.23± 4.87 97.49± 0.47 76.66

MA-LFC-C 87.89± 5.10 45.93± 14.44 73.58± 9.01 81.19± 3.13 60.04± 2.61 89.42± 0.79 94.40± 0.08 84.00± 2.11 96.92± 3.57 98.92± 0.31 81.23
MA-DGRL 97.57± 1.89 57.24± 3.36 64.53± 7.21 81.38± 2.90 61.29± 2.30 49.71± 1.05 93.79± 1.07 81.43± 1.50 97.95± 2.21 98.97± 0.38 78.39
MA-GPC 98.11± 1.16 54.46± 5.78 66.31± 14.74 53.25± 17.80 60.79± 9.95 92.57± 7.96 80.89± 0.60 86.71± 1.14 94.17± 2.62 97.34± 0.35 78.46

MA-GPCV 82.70± 5.47 55.67± 6.83 62.38± 8.71 62.17± 5.90 61.04± 10.03 60.22± 2.66 76.29± 3.74 84.51± 1.47 97.35± 1.72 99.24± 0.27 74.16
MA-DL-MW 94.70± 1.73 52.37± 5.68 75.35± 5.43 61.78± 2.67 68.27± 2.96 64.09± 2.26 86.36± 0.57 90.92± 0.56 97.28± 1.09 99.50± 0.17 79.06
MA-DL-VW 95.26± 2.45 53.27± 6.18 69.87± 4.97 60.63± 3.36 67.71± 2.67 68.40± 3.45 86.56± 0.68 91.73± 0.67 98.07± 1.52 99.72± 0.11 79.12

MA-DL-VW+B 94.65± 2.42 52.81± 6.31 71.96± 4.53 61.23± 3.78 67.80± 3.42 67.82± 3.86 86.68± 0.67 91.64± 0.85 98.17± 1.55 99.72± 0.09 79.25
KAAR 80.58± 2.74 59.20± 6.63 70.46± 7.39 58.02± 4.06 63.81± 5.45 69.16± 2.06 51.58± 4.74 85.88± 1.20 99.43± 1.05 92.17± 1.90 73.03

CGPMA-C(M =40) 99.20± 0.38 57.13± 4.68 83.56± 10.02 82.01± 3.14 70.56± 3.04 82.20± 2.73 92.62± 1.20 91.78± 0.66 99.82± 0.18 96.79± 0.65 85.56
CGPMA-C(M =80) 99.14± 0.38 56.96± 4.74 86.15± 6.96 82.04± 3.18 70.48± 3.12 99.08± 0.26 90.46± 1.64 91.85± 0.57 99.84± 0.12 94.06± 0.61 87.01

CCGPMA-C(M =40) 99.38± 0.27 60.22± 5.06 87.84± 6.72 78.10± 6.22 74.95± 5.39 91.98± 2.00 85.70± 2.66 93.09± 0.51 99.44± 0.33 97.67± 0.53 86.84
CCGPMA-C(M =80) 99.33± 0.30 59.19± 5.65 90.55± 6.29 80.45± 5.10 73.12± 3.23 97.75± 2.00 89.42± 2.20 93.15± 0.50 99.43± 0.33 97.58± 0.43 88.00

of modeling the labelers’ parameters as functions of the647

input features. We observe that CCGPMA-C exhibits the best648

performance in terms of accuracy; such an outcome is due to649

this method improves the quality of the annotators’ model by650

considering correlations among their decisions (26; 36)).651

2) Semi-synthetic data results.: It is worth mentioning that652

the Semi-synthetic experiments are a common practice in653

the learning from crowds area (10; 36; 7), where the input654

features comes from real-world datasets whilst the labels655

from multiple annotators are simulated following the fully656

synthetic data set-up (see Eqs. (31) to (34)). Table VI shows657

the results concerning this second experiment. On average, our658

CCGPMA-C accomplishes the best predictive AUC; moreover,659

we note that CGPMA-C reaches the second-best performance.660

Furthermore, the GPs-based competitors achieve competitive661

results (GPC-MV, MA-GPC, MA-GPCV, and KAAR). On the662

other hand, the GPC-MV method obtains a significantly lower663

performance than our CCGPMA-C, which is explained because664

GPC-MV is the most naive approach since it considers that the665

whole annotators exhibit the same performance. Conversely,666

analyzing the results from MA-GPC, MA-GPCV, and KAAR,667

we note that they perform worse than GPC-MV. We explain668

such an outcome in two ways. First, these approaches do669

not model the relationship between the input features and the670

annotators’ performance. Second, as exposed in a previous671

experiment MA-GPC, MA-GPCV, and KAAR use a one-672
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Fig. 2. Fully synthetic data reliability results. From top to bottom, the first column exposes the true reliabilities (λr). The subsequent columns present the
estimation of the reliabilities performed by state-of-the-art models, where the correct values are provided in dashed lines. The shaded region in CGPMA-C and
CCGPMA-C indicates the area enclosed by the mean ± two standard deviations. Also, the accuracy (Acc) is provided.

vs-all to deal with multi-class problems, which can lead to673

ambiguously classified regions (47). The latter can be confirmed674

in the results for the multi-class dataset “Western” (K = 4),675

where the predictive AUC for such approaches are the lowest.676

Then, analyzing the results from the DL-based strategies,677

we note a slightly better performance compared with the678

GPs-based methods (excluding CGPMA-C and CCGPMA-679

C). However, the DL-based performs considerably worse than680

our proposal because the CrowdLayer provides straightforward681

codification of the labelers’ performance to guarantee a low682

computational cost (37). Finally, from the linear models, we683

first analyze the outstanding performance from MA-DGRL,684

which defeats all its non-linear competitors. In particular, the685

simulated labels (see Section IV-A1) follows the MA-DGRL686

model, favoring its performance. Though MA-LFC-C achieves687

competitive performance compared to the DL-based methods,688

it is considerably lower than our proposal. In fact, the MA-689

LFC-C formulation assumes that the annotators’ behavior is690

homogeneous across the input space, which does not correspond691

to the labels simulation procedure.692

3) Fully real data results.: We test the fully real datasets,693

which configure the most challenging scenario. The input694
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features and the labels from multiple experts come from real-695

world applications. Table VII outlines the achieved AUC. First,696

we observe that for the voice data, G and R scales exhibit a697

similar AUC for all considered approaches; in fact, GPC-MV698

obtains a result comparable with the upper bound GPC-GOLD.699

The latter can be explained in the sense that the annotators700

exhibit a suitable performance for these scales, i.e., the provided701

labels are similar to the ground truth. On the other hand, a702

reduction in the predictive AUC is observed for scale B, which703

is a consequence of diminishing the labelers’ performance704

compared with scales G and R, as demonstrated in (13). Our705

approaches exhibit the best generalization performances for706

the three scales in the voice dataset. Remarkably, CGPMA-707

C and CCGPMA-C do not suffer significant changes in the708

scale B, which is an outstanding outcome because it reflects709

that our method offers a better representation of the labelers’710

behavior against low-quality annotations. Finally, we review711

the AUC for the Music dataset. Achieved results show a low712

performance for the MA-GPC, even lower than their intuitive713

lower bound (GPC-MV). Notably, our CCGPMA-C reaches714

the best predictive AUC, being comparable with the intuitive715

upper bound.716

TABLE VII
AUC CLASSIFICATION RESULTS FOR THE FULLY REAL DATASETS. BOLD:

THE HIGHEST PERFORMANCE EXCLUDING THE GPC-GOLD BOUND.

Method Voice Music AverageG R B

GPC-GOLD(M = 40) 0.9481 0.9481 0.9481 0.9358 0.9450
GPC-GOLD(M = 80) 0.9484 0.9484 0.9484 0.9178 0.9407

GPC-MV(M = 40) 0.8942 0.9373 0.8001 0.8871 0.8797
GPC-MV(M = 80) 0.9301 0.9377 0.7962 0.8897 0.8884

MA-LFC-C 0.9122 0.9130 0.8406 0.8599 0.8814
MA-DGRL 0.9127 0.9164 0.8259 0.8832 0.8845
MA-GPC 0.8660 0.8597 0.4489 0.8253 0.7500

MA-GPCV 0.9283 0.9208 0.8835 0.8677 0.9001
MA-DL-MW 0.8957 0.8966 0.8123 0.8567 0.8653
MA-DL-VW 0.8942 0.8929 0.8092 0.9167 0.8782

MA-DL-VW+B 0.9030 0.8937 0.8218 0.8573 0.8689
KAAR 0.9109 0.9351 0.8969 0.8896 0.9081

CGPMA-C(M = 40) 0.9324 0.9406 0.8696 0.9025 0.9113
CGPMA-C(M = 80) 0.9324 0.9417 0.8708 0.8987 0.9109

CCGPMA-C(M = 40) 0.9318 0.9422 0.9002 0.9446 0.9297
CCGPMA-C(M = 80) 0.9243 0.9383 0.8907 0.9456 0.9247

B. Regression717

1) Fully synthetic data results : We perform a controlled718

experiment aiming to verify the capability of our CGPMA719

and CCGPMA to estimate the performance of inconsistent720

annotators as a function of the input space and taking into721

account their dependencies. For this first experiment, we use the722

fully synthetic dataset described in Section IV-B1. We simulate723

five labelers (R = 5) with different levels of expertise. To724

simulate the error-variances, we define Q = 3 functions µ̂q(·),725

which are given as726

µ̂1(x) = 4.5 cos(2πx+ 1.5π)− 3 sin(4.3πx+ 0.3π) + · · ·
· · ·+ 4 cos(7πx+ 2.4π), (35)

µ̂2(x) = 4.5 cos(1.5πx+ 0.5π) + 5 sin(3πx+ 1.5π)− · · ·
− 4.5 cos(8πx+ 0.25π), (36)

µ̂3(x) = 1, (37)

where x ∈ [0, 1]. Besides, we define the following combination727

matrix Ŵ ∈ RQ×R, where728

Ŵ =



−0.10 0.01 −0.05 0.01 −0.01
0.10 −0.01 0.01 −0.05 0.05
−2.3 −1.77 0.54 0.9 1.42


 , (38)

holding elements wlr,q .729

Fig. 3 shows the predictive performance of all methods in730

this first experiment. The results show two clear groups: those731

based on GPs (GPR-Av, MA-GPR, CGPMA-R, and CCGPMA-732

R), which expose the best performance in terms of the R2
733

score, and those based on other types of approaches (MA-734

LFCR, and MA-DL), whose performance is not satisfactory.735

The behavior of MA-LFCR is low since it only can deal with736

linear problems. Besides, concerning MA-DL and its three737

variations (S, B, and S+B), we note that this approach can738

deal with non-linear dynamics. However, MA-DL reaches a739

significantly low performance (even lower than the most naive740

approach, GPR-Av). To explain such an outcome, we remark741

that MA-DL comprises the introduction of an additional layer,742

the “CrowdLayer”, which allows the training of neural networks743

directly from the noisy labels of multiple annotators (18). Yet,744

such a CrowdLayer provides a very simple codification of the745

annotators’ performance to guarantee a low computational cost746

(37); therefore, MA-DL does not provide a proper codification747

of the annotators’ behavior. On the other hand, among the GP-748

based methods, the proposed CCGPMA-R achieves the best749

performance in terms of R2, followed closely by CGPMA-R750

and MA-GPR.751

Besides, concerning the high performance of our CCGPMA-752

R (the best in terms of R2 score), we hypothesize that such753

an outcome is a consequence of our method offers a better754

representation of the labelers’ behavior when compared with its755

competitors. To empirically support the above hypothesis, Fig. 4756

shows the estimated error-variances for this first experiment;757

here, we only take into account the models that include these758

parameters in their formulations. As seen in Fig. 4, MA-LFCR759

and MA-GPR offer the worst representation for the annotator’s760

performance, which is due to such methods do not take into761

account the relationship between the annotators and the input762

space. Conversely, CGPMA-R and CCGPMA-R outperform the763

models named previously. This outcome is a consequence that764

such two approaches compute the error-variance as a function765

of the input features, allowing for a better codification of the766

labelers’ behavior. Besides, by making a visual inspection and767

analyzing the R2 scores, CCGPMA-R performs better than768

CGPMA-R because the former codes properly the annotators’769

interdependencies (26). Finally, we remark that although our770

CCGPMA-R achieves the best representation of the annotators’771

performance, Annotator 4 exhibits a lower performance in772

terms of R2 score compared with the other labelers. Such773

an outcome is caused by the quasi-periodic behavior in the774

error-variances for those labelers, which cannot be captured775

because we are using an RBF-based kernel.776

2) Results over semi-synthetic data: Table VIII shows777

the results of the semi synthetic datasets. On average, our778

CCGPMA-R exhibits the best generalization performance in779
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Fig. 3. Fully synthetic dataset results. We compare the prediction of our CCGPMA-R(R2 = 0.9438), and CGPMA-R(R2 = 0.9280) with the theoretical
upper bound GPR-GOLD(R2 = 0.9843) and lower bound GPR-Av(R2 = 0.8718), and state-of-the-art approaches, MA-LFCR(R2 = −0.0245), MA-
GPR(R2 = 0.9208), MA-DL-B(R2 = 0.7020), MA-DL-S(R2 = 0.6559), MA-DL-B+S(R2 = 0.5997). Note that we provided the Gold Standard in dashed
lines. The shaded region in GPR-Av, MA-GPR, CGPMA-R, and CCGPMA-R indicates the area enclosed by the mean plus or minus two standard deviations.
We remark that there is no shaded region for MA-LFCR, and DLMA since they do not provide information about the prediction uncertainty.

terms of the R2 score. On the other hand, regarding its GPs-780

based competitors (GPR-Av, MA-GPR, and CGPMA-R), we781

first note that the performance of CGPMA-R exhibits a similar782

(but lower) performance than CCGPMA-R. The above is a783

consequence of that conversely to CGPMA-R, our CCGPMA-784

R models the annotators’ interdependencies. Secondly, the785

intuitive lower bound GPR-Av exhibits a significantly worse786

prediction than our approaches. We remark on MA-GPR’s787

behavior, which is lowest compared with its GPs-based com-788

petitors, even far worse than the supposed lower bound GPR-789

Av. The key to this abnormal outcome lies in the formulation790

of this approach; MA-GPR models the annotators’ behavior791

by assuming that their performance does not depend on the792

input features and considering that the labelers make their793

decisions independently, which does fit the process that we794

use to simulate the labels.795

Next, we analyze the results concerning the linear model796

MA-LFR; attained to the results, we note that this approach’s797

prediction capacity is far lower than ours. The above outcome798

suggests that there may exist a non-linear structure in most799

databases. However, we highlight a particular result for the800

dataset CT, where MA-LFCR exhibits the best performance801

defeating all its competitors based on non-linear models. From802

the above, we intuit that the CT dataset may have a linear803

structure. To confirm this supposition, we perform an additional804

experiment over CT by training a regression scheme based805

on LR with the actual labels (we follow the same scheme806

as for GPR-GOLD). We obtain an R2 score equal to 0.8541807

(on average), which is close to GPR-GOLD results. Thus, we808

can elucidate that there exists a linear structure in the dataset809

CT. Finally, we analyze the results for the DL-based models.810

Similar to the experiments over fully synthetic datasets, we note811

a considerable low prediction capacity; in fact, they are even812

defeated by the linear model MA-LFR. Again, we attribute813

TABLE VIII
REGRESSION RESULTS IN TERMS OF R2 SCORE OVER semi synthetic datasets. BOLD: THE HIGHEST R2 EXCLUDING THE UPPER BOUND GPR-GOLD.

Method Auto Bike Concrete Housing Yacht CT Average

GPR-GOLD(M = 40) 0.8604± 0.0271 0.5529± 0.0065 0.8037± 0.0254 0.8235± 0.0419 0.8354± 0.0412 0.8569± 0.0055 0.7888
GPR-GOLD(M = 80) 0.8612± 0.0279 0.5603± 0.0063 0.8271± 0.0230 0.8275± 0.0399 0.8240± 0.0339 0.8648± 0.0047 0.7942

GPR-Av(M = 40) 0.8425± 0.0286 0.5280± 0.0100 0.7589± 0.0279 0.7834± 0.0463 0.7588± 0.0498 0.8070± 0.0130 0.7464
GPR-Av(M = 80) 0.8406± 0.0304 0.5397± 0.0085 0.7765± 0.0274 0.7903± 0.0451 0.7676± 0.0535 0.8167± 0.0089 0.7552

MA-LFCR 0.7973± 0.0218 0.3385± 0.0051 0.6064± 0.0384 0.7122± 0.0509 0.6403± 0.0186 0.8400± 0.0014 0.6558
MA-GPR 0.8456± 0.0281 0.4448± 0.0187 0.7769± 0.0367 0.7685± 0.0632 0.7842± 0.1027 0.0105± 0.0045 0.6051
MA-DL-B 0.7766± 0.0253 0.5854± 0.0107 0.2319± 0.0328 0.5317± 0.1005 0.2089± 0.0783 0.6903± 0.2689 0.5041
MA-DL-S 0.7761± 0.0279 0.5828± 0.0149 0.2363± 0.0252 0.5352± 0.0948 0.1822± 0.0985 0.8418± 0.2288 0.5257

MA-DL-B+S 0.7717± 0.0239 0.5816± 0.0181 0.2369± 0.0322 0.5330± 0.0850 0.1974± 0.0895 0.5517± 0.2316 0.4787
CGPMA-R(M = 40) 0.8476± 0.0229 0.5464± 0.0069 0.8169± 0.0231 0.7244± 0.2973 0.8049± 0.0482 0.8236± 0.0132 0.7606
CGPMA-R(M = 80) 0.8342± 0.0217 0.5560± 0.0074 0.8190± 0.0254 0.7259± 0.3018 0.7928± 0.0884 0.8371± 0.0104 0.7608

CCGPMA-R(M = 40) 0.8558± 0.0248 0.5284± 0.0117 0.7976± 0.0270 0.8169± 0.0468 0.8409± 0.0548 0.8219± 0.0062 0.7769
CCGPMA-R(M = 80) 0.8534± 0.0243 0.5467± 0.0069 0.8220± 0.0259 0.8215± 0.0466 0.8691± 0.0473 0.8252± 0.0083 0.7897
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Fig. 4. Estimated values of error-variance for the five annotators in the fully synthetic experiment. In the first column, from top to bottom, we expose the
error-variances used to simulate the labels from each annotator. Furthermore, the subsequent columns from top to bottom present the estimation of such
error-variances performed by state-of-the-art models that include these kinds of parameters in their formulation; moreover, the true error-variances are provided
in dashed lines. The shaded region in CGPMA-R and CCGPMA-R indicates the area enclosed by the mean plus or minus two standard deviations. We remark
that there is no shaded region for MA-LFCR, and MA-GPR since these approaches perform a fixed-point estimation for the annotators’ parameters. Finally, we
remark that the R2 score between the true and estimated error variances are provided.

this behavior to the fact that the CrowdLayer (used to manage814

the data from multiple annotators) does not offer a suitable815

codification of the labelers’ behavior. Nevertheless, taking the816

above into account, we observe a remarkable result in the Bike817

dataset. The DL-based approaches offer the best performance,818

even defeating the supposed upper-bound GPR-GOLD. To819

explain that, it is necessary to analyze the meaning of the820

target variable in such a dataset. Regarding the description of821

this dataset,6 the target variables indicate the count of total822

rental bikes, including both casual and registered in a day. The823

above suggests that there may exist a quasi-periodic structure824

in the dataset, which the GPR-GOLD cannot capture since it825

6https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset

uses a non-periodic kernel (RBF). To support our suppositions,826

an additional experiment was performed over this dataset by827

training the model GPR-GOLD with the following kernel:828

κ(xn,xn′)=ϕ exp


−1

2

P∑

p=1



sin
(
π(xp,n−xp,n′ )

Tp

)

lp




2

, (39)

where ϕ∈R is the variance parameter, lp ∈ (R+) is the length-829

scale parameter for the p-th dimension, and Tp ∈(R+) is the830

period for the p-th dimension. Therefore, we obtain an R2
831

score equal to 0.5952 (on average), which is greater than832
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the obtained by the DL-based approaches, indicating a quasi-833

periodic structure in the Bike dataset as we had supposed.834

3) Fully real data results: Finally, we use the fully real835

datasets, which present the most challenging scenario, where836

both the input samples and the labels come from real-world837

applications. Table IX outlines the achieved performances. We

TABLE IX
REGRESSION RESULTS IN TERMS OF R2 SCORE OVER fully real dataset.
BOLD: THE HIGHEST R2 EXCLUDING THE UPPER BOUND GPR-GOLD.

Method Music

GPR-GOLD(M = 40) 0.4704
GPR-GOLD(M = 80) 0.4889

GPR-Av(M = 40) 0.2572
GPR-Av(M = 80) 0.2744

MA-LFCR 0.1404
MA-GPR 0.0090
MA-DL-B 0.2339
MA-DL-S 0.2934

MA-DL-B+S 0.3519
CGPMA-R(M = 40) 0.3345
CGPMA-R(M = 80) 0.3531

CCGPMA-R(M = 40) 0.3337
CCGPMA-R(M = 80) 0.3872

838

remark that our CCGPMA-R with M = 80 obtains the best839

generalization performance in terms of the R2 score. Further,840

as theoretically expected, its performance lies between that841

of GPR-GOLD and GP-Av. Moreover, regarding the GPs-842

based competitors (MA-GPR and CGPMA-R), we note that843

our CGPMA-R is just a bit lower than CCGPMA-R. On the844

other hand, MA-GPR exhibits the worst prediction capability845

with a R2 close to zero. We suppose the above is a symptom846

of overfitting, which can be confirmed because the training R2
847

score for MA-GPR is 0.4731, comparable with GPR-GOLD.848

Conversely, the linear approach MA-LFCR exhibits the second-849

lowest performance and performs worse than the theoretical850

lower bound GP-Av, which indicates a non-linear structure in851

the Music dataset. Finally, analyzing the results from the deep852

learning approaches, we note that the variation MA-DL-B+S853

exhibits a similar performance compared with our CGPMA-R;854

however, it is slightly lower than our CCGPMA-R. We highlight855

that despite deep learning capacities, our approach CCGPMA-856

R offers a better representation of annotators’ behavior, unlike857

the deep learning techniques, which measure such performance858

using a single parameter.859

Also, we observe that all regression models presented a lower860

generalization performance than previous results (see Table V861

in the paper) over the same dataset. The above is a repercussion862

of solving a multi-class classification problem with regression863

models. Such an outcome is not uncommon, and it can be864

founded in works (18; 15).865

VI. CONCLUSION866

This paper introduces a novel Gaussian Process-based867

approach to deal with Multiple Annotators scenarios, termed868

Correlated Chain Gaussian Process for Multiple Annotators869

(CCGPMA). Our method is built as an extension of the chained870

GP (27), introducing a semi-parametric latent factor model-871

(SLFM) to exploit correlations between the GP latent functions872

that model the parameters of a given likelihood function. To the873

best of our knowledge, CCGPMA is the first attempt to build a874

probabilistic framework that codes the annotators’ expertise as875

a function of the input data and exploits the correlations among876

the labelers’ answers. Besides, we highlight that our approach877

can be used with different likelihood, which allows us to878

deal with both categorical data (classification) and real-valued879

(regression). We tested our approach for classification tasks880

using different scenarios concerning the provided annotations:881

synthetic, semi-synthetic, real-world experts. According to the882

results, we remark that our CCGPMA can achieve robust883

predictive properties for the studied datasets, outperforming884

state-of-the-art methods.885

As future work, CCGPMA can be extended by using886

convolution processes (48) instead of the SLFM, aiming to887

obtain a better representation of the correlations among the888

labelers. Also, our approach can be extended for multi-task889

learning in the context of multiple annotators (49). Finally, we890

note that the performance of our approach heavily depend on891

kernel selection (see Section V-B2); accordingly, it would be892

interesting to automatically perform such kernel selection (50)893

as an input block of our framework.894
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[7] P. Morales-Álvarez, P. Ruiz, S. Coughlin, R. Molina, and A. K.927

Katsaggelos, “Scalable variational Gaussian processes for crowdsourcing:928

Glitch detection in LIGO,” arXiv preprint arXiv:1911.01915, 2019.929

[8] J. Zhang, X. Wu, and V. S. Sheng, “Imbalanced multiple noisy labeling,”930

IEEE Transactions on Knowledge and Data Engineering, vol. 27, no. 2,931

pp. 489–503, 2014.932

[9] A. Dawid and A. Skene, “Maximum likelihood estimation of observer933

error-rates using the EM algorithm,” Appl. Stat., pp. 20–28, 1979.934



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15
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Correlated Chained Gaussian Processes for
Modelling Citizens Mobility using a Zero-Inflated

Poisson Likelihood
Juan-José Giraldo, Jie Zhang, and Mauricio A. Álvarez

Abstract—Modelling the mobility of people in a city depends
on counting data with inherent problems of overdispersion. Such
dispersion issues are caused by massive amounts of data with
zero values. Though traditional machine learning models have
been used to overcome said problems, they lack the ability to
appropriately model the spatio-temporal correlations in data. To
improve the modelling of such spatio-temporal correlations, in
this work we propose to model the citizens mobility, for the
Chinese city of Guangzhou, by means of a Zero-inflated Poisson
likelihood in conjunction with Gaussian process priors generated
from convolution processes. We follow the idea of chaining the
likelihood’s parameters to latent functions drawn from Gaussian
process priors; this way allowing a higher flexibility to model
heteroscedasticity. Additionally, we derive a stochastic variational
inference framework that allow us to use two types of convolution
process models in the context of large datasets: 1. correlated
chained Gaussian processes with a convolution processes model,
and 2. correlated chained Gaussian processes with variational
inducing kernels. We reproduce quantitative and qualitative
results comparing the performance between Poisson and Zero-
inflated Poisson likelihoods, both in combination with three types
of Gaussian process priors: a linear model of coregionalisation,
and our two proposed methods based on a convolution processes
model and variational inducing kernels.

Index Terms—Citizens Mobility, Correlated Chained Gaussian
Processes, Zero-inflated Poisson, Convolution Processes, Varia-
tional Inducing Kernels, Stochastic Variational Inference.

I. INTRODUCTION

MODELLING the mobility of persons in a city depends
on counting data that inherently involve problems of

overdispersion. Such overdispersion issues are caused by an
excess of observations with values at zero, i.e., zero-inflated
counts [1]. In order to tackle those issues, different types
of machine learning models have focused on fitting the ex-
cessive dispersion in data caused by the zero-inflation. For
instance, via Generalised Linear Models (GLMs) [2] using
likelihoods like the zero-inflated Poisson (ZIP or ZI-Poisson)
[3], [4], the zero-inflated negative Binomial (ZINB) [3], or
the Tweedie distribution [5], [6], etc. Though these models
have been useful to overcome the problems associated to the
zero-inflation, they still lack of the ability to appropriately
model the spatio-temporal correlations of data associated to
mobility. A more powerful alternative for exploiting such

J. J. Giraldo and M. A. Álvarez are with the Department of Computer
Science, The University of Sheffield, UK; J. Zhang is with the Department
of Electronic and Electrical Engineering, The University of Sheffield, UK. (e-
mail: jjgiraldogutierrez1@sheffield.ac.uk, mauricio.alvarez@sheffield.ac.uk,
jie.zhang@sheffield.ac.uk)

spatio-temporal correlations relies on Gaussian process (GP)
models; nonetheless, few works have taken advantage of their
application to improve the forecasting for zero-inflated data.
For instance, the work in [7] proposes the use of GPs together
with a Zero-inflated Poisson likelihood for the analysis of
sickness absence; the authors discuss that GP models might
yield better predictive performance than hurdle models. Al-
though they did not implement them because of numerical
stability issues. The authors in [8] propose a zero-inflated
formalism that consists of a Gaussian likelihood whose mean
follows a latent GP, and a separate ‘on-off’ probit-linked
GP for generating a sparse kernel that allows the model to
predict zeros; this work lacks of capturing heteroscedastic
noise (an inherent trait of counting data), this due to assuming
a Gaussian likelihood where the noise variance is considered
constant along all the observations. Also, in [9], the authors
use a ZINB likelihood with a GP prior to model temporal
and spatial counting data from RNA-sequencing experiment;
this approach presents a unique latent function that models the
mean of the Negative Binomial term with a GP prior, while the
dispersion parameter and the so called Michalis parameter are
assumed free parameters. To the best of our knowledge there
are not other works based on GPs that have been concerned
about solving the zero-inflation issues while exploiting the
spatio-temporal correlations, but the ones mentioned before.

In this work, we aim to model the citizens mobility in
the Chinese city of Guangzhou, this from counting data of
persons present at a delta area of the city. Since there are not
previous works that explore the behaviour of the Zero-inflated
Poisson likelihood with GP priors, here we concentrate on
such a likelihood; a ZIP likelihood is more appropriate than
the Gaussian likelihood used in [8], given that the statistical
data type of the observations are counts, i.e., non-negative
values. Also, though the work in [9] considers the statistical
data type of counts by assuming a ZINB likelihood, it only
uses a GP prior to model the mean of the Negative Binomial
term while the other parameters are considered a constant, this
way limiting the modelling flexibility. Unlike this latter work,
here we propose that the likelihood’s parameters are modelled
as latent functions drawn from correlated GP priors, this way
allowing a higher flexibility to model heteroscedasticity.

In the context of GP models, where each parameter of the
likelihood is chained to a GP latent function, three ways to
generate such latent functions include: 1. each latent function
follows an independent GP prior [10]; 2. each latent function is
generated from a linear model of coregionalisation (LMC), i.e.,



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. XX, NO. X, MONTH 20XX 2

a weighted sum of GP priors [11], [12]; and 3. from convolu-
tion processes, i.e., a convolution integral between smoothing
kernels and GP priors [13], [14], [15]. The above generative
alternatives for the latent functions have been broadly used to
model either a single or multiple outputs in diverse application
scenarios [11]; particularly, the independent GP priors have
been used in applications that require the modelling of a single
output [16]. In the specific ambit of modelling urban traffic in
different areas of a city, the work in [17] focuses on forecasting
vehicles traffic speeds using an intrinsic coregionalisation
model (a particular case of the LMC). Also, the work in [18]
uses a model based on convolution processes to fit spatial and
temporal patterns in crowdsourced traffic data. Nevertheless,
these previous works become prohibitive in the context of a
large number of data observations. To tackle such scalability
issues, we additionally derive a stochastic variational inference
(SVI) [19], [20] framework that allows the use of this type of
models when having massive amounts of data observations.
Besides the convolution processes model, we also introduce
a scalable version of the variational inducing kernels (VIKs)
approach [14]. This VIKs approach is an alternative form to
generate the LPFs through the convolution processes formal-
ism, by using a double convolution integral; i.e., the LPF
is drawn from a convolution integral between a smoothing
kernel and an inducing function (IF), where such an IF is
an artificial construction generated from another convolution
integral between a smoothing kernel and a GP prior.

The main contributions of this work include the following:
• We model the citizens mobility in the Chinese city

of Guangzhou, through the use of a ZIP likelihood in
conjunction with GP priors. To the best of our knowledge,
a ZIP likelihood has not been previously implemented
together with a GP model.

• Unlike previous works based on GPs that mainly model
the mean parameter of the likelihood with a unique GP
prior, here we propose that each of those likelihood’s
parameters are modelled as LPFs that follow correlated
GPs; thus, allowing a higher flexibility to model het-
eroscedasticity.

• We derive an SVI framework that allow us to use two
types of convolution process models in the context of
large datasets: 1. correlated chained GP (CCGP) with a
convolution processes model (CPM), and 2. CCGP with
VIKs.

• Former works have not developed GP models based on
CPM and VIKs for other type of likelihoods beyond a
Gaussian. In this work, we derive equations that can be
used for any type of likelihood. Particularly, we provide
results for both CCGP models based on CPM and VIKs
for ZIP and Poisson likelihoods.

II. CHAINED GAUSSIAN PROCESSES MODEL

A GP is a non-parametric stochastic process that extends a
multivariate normal probability distribution from finite dimen-
sional vectors to functions [21]. Let us define a collection of N
data observations with a matrix of inputs X = [x1, ...,xN ]> ∈
RN×P and a vector of outputs y = [y1, ..., yN ]>, where, for

instance, each xn might represent a spatio-temporal observa-
tion associated to a measurement yn. Usually, for a regression
model, each observation yn is modelled as a noisy version
of a latent function evaluated at the n-th input observation,
f(xn). All data observations can be modelled by means of a
likelihood function,

∏N
n=1 p(yn|f(xn)), where the latent func-

tion follows a GP prior, i.e., f(x) ∼ GP(m(x), k(x,x′)). The
GP is characterised by a mean function m(x) = E[f(x)] and
a kernel covariance function k(x,x′) = Cov[f(x), f(x′)] =
E[f(x)f(x′)] − E[f(x)]E[f(x′)]; here Cov [·, ·] represents a
covariance function. Such a kernel determines the nature of the
latent functions involved in a GP model, for instance, through
the kernel we can induce latent functions with: smoothness,
periodicity, stationarity, non-stationarity, etc. It is important to
emphasize that a kernel is a covariance function that depends
on a set of hyper-parameters, that generally have to be fitted
during an optimisation process when training the model. For
example, a popular covariance option is the exponentiated
quadratic kernel, k(x,x′) = σ2

f exp
(
−‖x−x′‖2

2l2

)
, which de-

pends on the hyper-parameters σ2
f and l that control the

amplitude and length-scale of the latent functions, respectively.
Probably, the best known GP regression model is based

on a Gaussian likelihood,
∏N
n=1N (yn|f(xn), σ2

ε ), which can
be understood as assuming that each observed value yn is
a version of the GP latent function, f(xn), corrupted by
an independent Gaussian noise ε ∼ N (0, σ2

ε ) [2][21]. This
approach models the likelihood’s mean parameter with a GP
latent function, while σ2

ε is treated as a hyper-parameter. Since
the noise variance of the observations yn is not necessarily a
constant, treating σ2

ε as a hyper-parameter limits the flexibility
of the model for capturing heteroscedasticity. On the other
hand, setting a likelihood function directly depends on the
statistical data type of the observations y. A more general
case, regardless the type of distribution p(yn|f(xn)), consists
on chaining a GP prior to each parameter of the likelihood as
follows:

p(y|f) =
N∏

n=1

p (yn|ψ1 (xn) , ..., ψJ (xn)) , (1)

where each ψj (xn) = α(fj(xn)) represents the j-th pa-
rameter of the likelihood chained to a latent GP prior fj(·)
through a link function α(·) [10], and J represents the number
of likelihood’s parameters. We will refer to each fj(·) as
a latent parameter function (LPF). In the equation above
f = [f>1 , ..., f

>
J ]> is a vector that stacks all the LPFs, with

fj = [fj(x1), ..., fj(xN )]>. From a GPs perspective, we
aim to model each LPF in the likelihood’s equation above
as a GP prior. There can be different generative ways to
build the GP priors. For instance, the work in [10] assumes
that each LPF follows an independent GP prior, but such
an assumption does not allow the model to capture possible
correlations between the likelihood’s parameters [11]. Instead
of the independence supposition, the work in [12] uses a linear
model of coregionalisation [22], to generate correlated LPFs
from a weighted sum of GP priors; this model scales the
computational complexity by applying SVI. Another common
approach to model the LPFs, particularly used for multi-output
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regression, relies on using convolution processes by means
of solving a convolution integral between a smoothing kernel
and a GP [14], [11]. Nonetheless, this latter work has not
been developed to deal with a big number of data observations
neither for other type of likelihoods beyond a Gaussian. In the
following subsections, we will describe how to obtain tractable
variational bounds permitting to scale the convolutional model
for being trained in the context of a large number of data
observations even when the LPFs are correlated.

III. CORRELATED CHAINED GP WITH A CONVOLUTION
PROCESSES MODEL

This section explains the construction of a chained GPs
[10] model that introduces correlations between the GP la-
tent functions through the use of Convolution Processes.
We term this type of model as the Correlated Chained GP
with convolution processes [23], [13]. Also, we explain how
the inducing variables approach allows the model to obtain
tractable variational bounds suitable to SVI.

A. Convolution Processes for Generating the LPFs

A more general way to derive the latent parameter functions
relies on the convolution processes model [14], [11]. In this
type of model, the LPFs are generated by convolving Q
latent processes uq(·) with smoothing kernels Gj,q(·), i.e.,
fj(x) =

∑Q
q=1

∫
X Gj,q (x− r′)uq (r′) dr′. Alternatively, we

can express the latter equation as influenced by multiple latent
functions uq,i(·):

fj(x) =

Q∑

q=1

Rq∑

i=1

∫

X
Gj,q,i (x− r′)uq,i (r

′) dr′, (2)

where each uq,i(·) represents a latent function drawn in-
dependent and identically distributed (IID) from uq(·) ∼
GP(0, kq(·, ·)); and Rq represents the number of said IID
samples drawn per q-th latent function uq(·) [15]. Notice
that the equation above is analogous to the linear model
of coregionalisation, where there are usually Q groups of
latent functions uq(·), and each IID sample uq,i(·) has the
same covariance kq(·, ·) [22]. To ease the derivations in the
following sections, we will refer to R instead of Rq , i.e., the
number of samples uq,i(·) per q-th latent function uq(·) is the
same for all Q groups.

B. Augmented Gaussian Process Prior

Inference in GP models is computationally expensive. A
common approach to improve the computational complexity is
to augment the GP prior with a set of inducing variables u(·).
Such inducing variables represent additional function evalua-
tions of some unknown inducing points Z = [Z>1 , ...,Z

>
Q]
> ∈

RQM×P , with Zq = [z
(1)
q , ..., z

(M)
q ]> ∈ RM×P [24], [25]. We

can write the augmented GP prior as follows,

p(f |u)p(u|u)p(u) =
J∏

j=1

p(fj |u)p(u|u)p(u), (3)

where u = [u>1,1, ..., u
>
Q,1, ..., u

>
1,R, ..., u

>
Q,R]

> represents a
vector of functions that stacks all R IID samples uq,i(·) of
all groups Q; here, u is seen as a continuous version infinitely
evaluated at all possible values x ∈ RP . A finite evaluation
of u, for instance over the set of inducing points, is expressed
as u = [u>1,1, ...,u

>
Q,1, ...,u

>
1,R, ...,u

>
Q,R]

> ∈ RQMR×1 with
uq,i = [uq,i(z

(1)
q ), . . . , uq,i(z

(M)
q )]> ∈ RM×1 [26], [14].

Particularly, the distributions of the GP prior follow the
form: p(fj |u) = N (mfju(X),0) = δ(fj −mfju(X)), where
mfju(X) = [mfju(x1), ...,mfju(xN )]> ∈ RN×1 is a vector
built from:

mfju(x) =

Q∑

q=1

R∑

i=1

∫

X
Gj,q,i (x− r′)uq,i (r

′) dr′,

and p(u|u) = N (u|kuuK
−1
uuu, Vu) is a distribution over the

vector of functions, conditioned on the finite vector of in-
ducing variables u; Kuu ∈ RQMR×QMR is a block-diagonal
matrix with blocks Kuq,iuq,i which entries are calculated with
Cov [uq,i(·), uq,i (·)] = kq(·, ·), between all pairs of inducing
points Zq; Vu = kuu − kuuK

−1
uukuu, where kuu = Cov [u, u]

can be understood as a continuos matrix covariance infinitely
evaluated, and ku,u = Cov [u,u] is a cross-covariance matrix
with continuous rows and finite columns; and finally p(u) =
N (u|0,Kuu).

C. The Evidence Lower Bound

Similar to the works in [14][27][12], we follow a mathemat-
ical derivation based on variational inference. Such a way of
derivation grant us the application of our model in the context
of large datasets. Here, our aim consists on approximating
the true posterior p(f , u,u|y) with a variational distribution
q(f , u,u) by optimising the following evidence lower bound
(ELBO) [20]:

L = Eq(f ,u,u)

[
log

p(y|f)p(f |u)p(u|u)p(u)
q(f , u,u)

]
. (4)

We set a variational posterior as follows: q(f , u,u) =
p(f |u)p(u|u)q(u) =

∏J
j=1 p(fj |u)p(u|u)q(u), for which

q(u) = N (u|m,V) is a free parametrised distribution, with
mean m ∈ RQMR×1 and a block-diagonal covariance matrix
V ∈ RQMR×QMR, with blocks given by Vq,i ∈ RM×M . Af-
ter replacing the posterior distribution at Eq. (4) and arranging
terms, we end up with the following objective for the ELBO:

L =

N∑

n=1

Eq(f)
[
gn
]
− DKL

(
q(u)||p(u)

)
, (5)

where gn = log p (yn|ψ1 (xn) , ..., ψJ (xn)) is the Log Likeli-
hood (LL) function and DKL

(
· || ·

)
is a Kullback-Leibler

divergence. The expectation above associated to the LL is
computed with regard to the marginal posterior, q(f) =∫ ∫ ∏J

j=1 p(fj |u)p(u|u)q(u)dudu. Solving for the integrals
above, we arrive to:

q(f) := N (f |m̃fu, Ṽfu), (6)

having the following definitions, m̃fu := Afum; Afu =
KfuK

−1
uu; and Ṽfu := Kff + Afu(V − Kuu)A

>
fu;
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where Kfu = [K>f1u, ...,K
>
fJu]
> ∈ RJN×QMR is

a cross covariance matrix built with blocks Kfju =
[Kfju1,1 , ...,KfjuQ,1

, ...,Kfju1,R
, ...,KfjuQ,R

] ∈ RN×QMR,
with Kfjuq,i

∈ RN×M constructed with entries calculated
from Cov [fj(x), uq,i (z)] between the data observations X
and the inducing points Zq; and Kff ∈ RJN×JN is a
matrix built with evaluations of the covariance function
Cov [fj (x) , fj′ (x

′)] between all pairs of data observations
X. In the following subsection, we describe the specific form
of the covariance functions introduced above.

D. Covariance Functions for CCGP with CPM

For all our models we assume kernel covariance functions
with an Exponentiated Quadratic (EQ) form as follows:

E(τ |0,L) = |L|
−1/2

(2π)p/2
exp

[
−1

2
τ>L−1τ

]
, (7)

where τ := x−x′ and L is a diagonal matrix of length-scales.
With the above functional form we can define the following
kernels for our CCGP model with CPM:

kq(x,x
′) = E(τ |0,Lq), (8)

Gj,q,i(x,x
′) = Sj,q,iE(τ |0,κj), (9)

where Lq and κj are diagonal matrices of length-scales, and
Sj,q,i is a weight associated to the LPF fj(·) and to the i-th
sample of the latent function uq(·). Having the definitions
of our kernels, we can solve the convolution integrals
associated to the covariance functions, Cov [fj(x), uq,i (z)] =∫
X Gj,q,i(x − r′)kq(r′, z)dr′ and Cov [fj (x) , fj′ (x

′)] =∑Q,R
q=1,i=1

∫
X Gj,q,i (x− r)

∫
X Gj′,q,i (x

′ − r′) kq(r, r′)drdr′.
To solve such integrals above, we follow the work in [15],
where the authors apply methodically an identity for
the product of two Gaussian distributions. This way, we
arrive to: Cov [fj(x), uq,i (x

′)] = Sj,q,iE(τ |0,κj + Lq),
Cov [fj (x) fj′ (x

′)] =
∑Q
q=1 Sj,q,iSj′,q,iE(τ |0,Pj,j′,q),

where Pj,j′,q represents a diagonal matrix of length-scales,
Pj,j′,q = κj + κj′ + Lq.

E. Making Predictions with CCGP based on a CPM

To make predictions with our proposed model, we have
to compute p (y∗ | y) ≈

∫
p (y∗ | f∗) q (f∗) df∗, where q (f∗)

can be computed using Eq. (6), but building the different
covariances matrices Kf∗u and Kf∗f∗ with evaluations at the
new inputs X∗ using equations from section III-D.

IV. CORRELATED CHAINED GP WITH VARIATIONAL
INDUCING KERNELS

This section describes the construction of the CCGP model
with variational inducing kernels [14]. Also, it explains how
to obtain a variational objective of the model which is suitable
for training by means of SVI [19], [20].

A. Variational Inducing Kernels for Generating the LPFs

The concept of variational inducing kernels was proposed
in [14] as an alternative and more powerful way of defining
an inducing variable [24], [25]. It consists on applying a
convolution of the latent function uq(·) with a smoothing
kernel as follows:

λq(z) =

∫

X
Tq(z− r)uq(r)dr, (10)

where Tq(z − r) is a smoothing kernel, also known as the
inducing kernel (IK) and λq(z) is called an inducing func-
tion; and the latent function is drawn from a GP, uq(·) ∼
GP(0, k(·, ·)). The VIKs allow us to define more general
inducing variables with higher approximation capacities than
the inducing variables uq(·) used in Eq. (2) for the CCGP with
a convolution processes model [11]. Though the motivation
to use the VIKs in our work relies on the fact of increasing
the predictive capabilities of our model, this approach is also
useful to deal with possible white noise latent functions uq(·)
when applicable.

As we mentioned before in Eq. (1), each latent parameter
function, fj(·), aims to model the j-th parameter of the likeli-
hood, i.e., each ψj (xn) = α(fj(xn)). Unlike the convolution
processes model in Eq. (2), which is particularly based on the
inducing variables uq(·), the LPFs can also be drawn from
a convolution integral between a smoothing kernel and an
inducing function λq(·) as follows:

fj(x) =

Q∑

q=1

Rq∑

i=1

∫

X
Gj,q,i (x− r′)λq,i (r

′) dr′, (11)

where Gj,q,i(·) represents the smoothing kernel; and λq,i(·)
is an inducing function associated to the i-th sample uq,i(·)
taken IID from uq(·) ∼ GP(0, kq(·, ·)), i.e., as per Eq. (10):
λq,i(z) =

∫
X Tq(z − r)uq,i(r)dr; and Rq represents the

number of IID samples drawn per q-th inducing function λq(·)
[15]. Thereby, the equation above is an alternative approach
to generate the GP priors for modelling the likelihood’s
parameters under the VIKs approach. As we assumed for
the CPM, instead of Rq in Eq. (11), we will refer to the
same number R of IID samples for all Q groups of inducing
functions.

B. Augmented Gaussian Process Prior

We follow a similar inducing variables framework used for
the model CCGP with Convolution processes. It is worth notic-
ing that for the convolution processes model, the function u(·)
is the one representing the inducing variable that augments the
GP prior (see Eq. (3)). Conversely, in this case of VIKs, the
vector function λ = [λ>1,1, ..., λ

>
Q,1, ..., λ

>
1,R, ..., λ

>
Q,R]

> is the
one used to augment the GP prior, and from which we compute
additional evaluations over the set of unknown inducing points
Z = [Z>1 , ...,Z

>
Q]
> ∈ RQM×P , with Zq = [z

(1)
q , ..., z

(M)
q ]> ∈

RM×P [14]. We express the augmented GP prior as follows,
p(f |λ)p(λ|λ)p(λ) =

∏J
j=1 p(fj |λ)p(λ|λ)p(λ), where λ, the

inducing function, is a continuous function infinitely computed
at all possible x ∈ RP ; whilst a finite evaluation of λ,
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for example over the inducing points can be expressed as
λ = [λ>1,1, ...,λ

>
Q,1, ...,λ

>
1,R, ...,λ

>
Q,R]

> ∈ RQMR×1 with
λq,i = [λq,i(z

(1)
q ), . . . , λq,i(z

(M)
q )]> ∈ RM×1. The specific

terms of the augmented GP prior can be written as: p(fj |λ) =
N (mfjλ(X),0) = δ(fj − mfjλ(X)), where mfjλ(X) =
[mfjλ(x1), ...,mfjλ(xN )]> ∈ RN×1 is a vector built from:

mfjλ(x) =

Q∑

q=1

R∑

i=1

∫

X
Gj,q,i (x− r′)λq,i (r

′) dr′,

and p(λ|λ) = N (λ|kλλK−1λλλj , Vλ), is a distribution
over the continuous inducing function λ, conditioned
on λ; Kλλ ∈ RQMR×QMR is a block-diagonal ma-
trix with blocks Kλq,iλq,i

with entries calculated with
kλq,i

(z, z′) := Cov [λq,i(z), λq,i (z
′)] =

∫
X Tq(z −

r)
∫
X Tq(z

′ − r′)kq(r, r′)drdr′ between all pairs of inducing
points Zq;Vλ = kλλ−kλλK−1λλkλλ, where kλλ = Cov [λ, λ] is
a continuos matrix covariance infinitely evaluated, and kλ,λ =
Cov [λ,λ] is a cross-covariance matrix with continuous rows
and finite columns; and p(λ) = N (λ|0,Kλλ).

C. The Evidence Lower Bound
In a similar form to the ELBO derivation for the CCGP

with CPM, here we approximate the true posterior p(f , λ,λ|y)
with a variational distribution q(f , λ,λ) for constructing the
following ELBO [20]:

L = Eq(f ,λ,λ)

[
log

p(y|f)p(f |λ)p(λ|λ)p(λ)
q(f , λ,λ)

]
. (12)

We set a variational posterior as follows: q(f , λ,λ) =
p(f |λ)p(λ|λ)q(λ) =∏J

j=1 p(fj |λ)p(λ|λ)q(λ), where q(λ) =
N (λ|m,V) with mean m ∈ RQMR×1 and a block-diagonal
covariance matrix V ∈ RQMR×QMR, which blocks are given
by Vq,i ∈ RM×M . By replacing the posterior q(f , λ,λ) in
Eq. (12), we obtain a scalable objective:

L =

N∑

n=1

Eq(f)
[
gn
]
− DKL

(
q(λ)||p(λ)

)
, (13)

where gn is the LL function [12]. In contrast to the ob-
jective function in Eq. (5) for the CCGP with a CPM,
the expectation for the LL in the equation above is cal-
culated with respect to the marginal posterior, q(f) =∫ ∫ ∏J

j=1 p(fj |λ)p(λ|λ)q(λ)dλdλ. When solving for the in-
tegrals above, we obtain the following:

q(f) := N (f |m̃fλ, Ṽfλ), (14)

where we have defined, m̃fλ := Afλm; Afλ =
KfλK

−1
λλ; and Ṽfλ := Kff + Afλ(V − Kλλ)A

>
fλ;

with Kfλ = [K>f1λ, ...,K
>
fJλ

]> ∈ RJN×QMR as a
cross covariance matrix built with blocks Kfjλ =
[Kfjλ1,1

, ...,KfjλQ,1
, ...,Kfjλ1,R

, ...,KfjλQ,R
] ∈ RN×QMR,

in which, each Kfjλq,i
∈ RN×M has entries computed with

the covariance function, Cov [fj(x), λq,i (z)], between the data
observations X and the inducing points Zq; and Kff is a co-
variance matrix built with evaluations of Cov[fj (x) , fj′ (x′)],
between all pairs of data observation X. In the following
subsection, we detail the form of the covariance functions
introduced above.

D. Covariance Functions for CCGP with VIKs

For our CCGP model with VIKs we follows the same
EQ form of the kernel covariance functions. Given that
this type of model also relies on the latent function uq ∼
GP(0, kq(·, ·)) and a smoothing kernel Gj,q,i(·), we make
use of exactly the same equations (8) for kq(·, ·), and (9)
for Gj,q,i(·). We additionally need to define the inducing
kernel Tq(·) in Eq. (10), so we use the functional form in
Eq. (7) to define: Tq(x,x′) = WqE(τ |0, tq), where Wq is a
weight an tq is a diagonal matrix of length-scales. Similar
to the case of CPM, we base on the multiplication iden-
tity between Gaussian distribution applied in [15]. Thus, we
solve for kλq,i

(z, z′) := Cov [λq,i(z), λq,i (z
′)] =

∫
X Tq(z −

r)
∫
X Tq(z

′ − r′)kq(r, r′)drdr′ and Cov [fj(x), λq,i (z)] =∫
X Gj,q,i(x − r′)

∫
X Tq(z − r)kq(r

′, r)dr′dr, and arrive
to: Cov [λq,i(x), λq,i (x

′)] = W 2
q E(τ |0, tq + tq + Lq),

Cov [fj(x), λq,i (x
′)] = Sj,q,iWqE(τ |0,κj + tq + tq + Lq).

Also, when solving for the covariance function:

Cov[fj (x) , fj′ (x
′)] =

Q∑

q=1

R∑

i=1

∫

X
Gj,q,i (x− v)

×
∫

X
Gj′,q,i (x

′ − v′) kλq,i
(v,v′)dvdv′,

we end up with: Cov [fj (x) , fj′ (x
′)] =∑Q

q=1 Sj,q,iSj′,q,iWqWqE(τ |0,Tj,j′,q), where Tj,j′,q

represents a diagonal matrix of length-scales,
Tj,j′,q = κj + κj′ + tq + tq + Lq.

E. Making Predictions with CCGP based on VIKs

In a similar way to section III-E, we compute p (y∗ | y) ≈∫
p (y∗ | f∗) q (f∗) df∗. Notice that the distribution q (f∗) now

involves computations associated to λ instead of u. Therefore,
for a new set of inputs X∗, we have to build Kf∗λ and Kf∗f∗
as per Eq. (14).

V. ZERO-INFLATED POISSON DISTRIBUTION

Since we aim to model non-negative values that represent
counts and also tackle the problems associated to zero-inflation
data [1], [28], here we rely on the ZIP distribution for
targeting such issues [4]. The ZIP probability distribution can
be expressed as follows:

p(yn|φn, ρn) = 1ynφn + (1− φn)
exp(−ρn)ρynn

yn!
, (15)

where φn ∈ [0, 1] is a parameter that represents a probability
for the values at zero [29], ρn > 0 is the Poisson rate
parameter and 1yn := 1(yn) is an indicator function defined
as follows: 1(yn) = 1 if yn = 0, or 1(yn) = 0 if yn 6= 0.
Following the notation in Eq. (1), here the distribution’s
parameters are associated as φn = ψ1 (xn) and ρn = ψ2 (xn),
where ψ1 (xn) = σ(f1(xn)) and ψ2 (xn) = exp(f2(xn));
σ(f1(xn)) = 1/(1 + exp(−f1(xn))) is a sigmoid function.
With the definitions above we can plug Eq. (15) in the Log
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Likelihood function, gn = log p (yn|ψ1 (xn) , ..., ψJ (xn)), of
equations (5) and (13) as follows: gn

= log
(
1ynφn exp(ρn) + (1− φn)

)
+ log

(
exp(−ρn)ρynn

yn!

)
.

It is worth noticing that the equation above is exactly the
same for both CCGP models based on either the CPM (Eq.
(5)) or VIK (Eq. (13)); They just differ by construction in
the way of generating the LPFs, but not in the form of
the likelihood function. In the experiments section, we will
compare the performance of our proposed CCGP methods,
the CPM-based and VIK-based in conjunction with either a
ZI-Poisson likelihood or a Poisson likelihood.

VI. OPTIMISATION

In order to fit our proposed models, we make use of a
recent algorithm that optimises: each variational parameter
m and V; each set of inducing points Z; and all the ker-
nels’ hyper-parameters, H = {{κj}Jj=1, {Lq}Qq=1, {tq}Qq=1},
through a natural gradient scheme [30]. The algorithm consists
on building an alternative variational optimisation bound of
the form, F̃ = Eq(θ)[−L]+DKL(q(θ)||p(θ)), where L is any
of the objective functions for either the CPM or VIK in Eq.
(5) or (13) respectively; q(θ) represents a free parametrised
exploratory distribution over the set of all parameters to
optimise i.e., θ = {m,V,Z,H}; and p(θ) is a penalisation
distribution. The main idea of the method relies on adjusting
the distribution q(θ) during the optimisation by trading-off
between minimising the expectation Eq(θ)[−L] and reducing
the divergence DKL(q(θ)||p(θ)). During inference, such a
Kullback-Leibler divergence helps to gain additional explo-
ration of the space of solutions for optimising the exploratory
distribution. At the end of the inference process, q(θ)’s mean
becomes the best solution for the set of parameters of the
model. We chose this optimisation method due to its ability
for avoiding poor local optima solutions and having closed-
form update equations for fitting the parameters.

VII. EXPERIMENTS

In this section, we make a quantitative and qualitative
analysis of the predictions obtained by the there types of
CCGP models based on: a LMC (implemented in [12]), our
CPM proposed in Eq. (5) and also our VIK introduced in Eq.
(13). As explained at section V, we implement a ZI-Poisson
likelihood and compare its performance with a Poisson like-
lihood for modelling the citizens mobility in Guangzhou city.
We run two types of experiments: the first corresponds to
building a model per each day of the month; the second to
building a model per each day of the week. 1

A. Dataset of Guangzhou City

The dataset used to model the citizens’ mobility in the
region of Guangzhou was built from recordings of mobile
phone GPS locations. In a nutshell, the users of a Guangzhou’s

1The code with the proposed models in publicly available in the repository:
https://github.com/juanjogg1987/CorrelatedChainedGPs ConvolutionProcesses

mobile phone network share their longitude and latitude co-
ordinates that are consequently preprocess through a counting
algorithm. Such an algorithm consists on counting the citizens
that coincide in a delta area of Guangzhou; i.e., the main
region of Guangzhou is divided in a grid of 201 × 201,
where each square (or delta area) of the grid contains a
total number of citizens. The counting is performed every
hour of the day, this during 31 days: from March 1 to 31
of 2019. The total number of data observations per day is
N = 201× 201× 24 = 969624.

B. Model Training

Given that the models derived in Eq. (5) and Eq. (13)
allow stochastic variational inference, we use a random mini-
batching of 400 samples per iteration during training. We
selected through cross-validation a number of latent functions
Q = 3 and inducing points M = 200. It is worth noticing
that the expectations of the Log Likelihood in such equations
(5) and (13) cannot be computed in closed-form, so we opt
for using the Gauss-Hermite quadrature approach [10], [31].
Also, it is important to highlight that there is not need to
compute the full covariances Kfjfj in Eq. (6) for the CPM-
based model or in Eq. (14) for the VIK-based model, but only
the diagonal values randomly selected as per the mini-batching
at each optimisation iteration. We carry out optimisation of
each variational parameter m and V, each set of inducing
points Zq and all kernels’ hyper-parameters through the natural
gradient algorithm described in section VI [30].

C. Quantitative Results: Models along the Month

The first experiment consists on building 31 CCGP models,
one model per day during all the month of March. We use
a dataset random splitting of 90% and 10% for training and
testing respectively. In order to measure the uncertainty quan-
tification capability of the models, we report the negative log
predictive density (NLPD) error over the test set; such a NLPD
metric takes into account the predictions’ uncertainty [32].
Figure 1 shows the performance of the CCGP models based
on VIK, CPM and LMC, when using a Poisson distribution
(top figure) and a ZI-Poisson distribution (bottom figure). Take
into account that low NLPD values mean better performance.

We can notice from Fig. 1 that the models with a Pois-
son likelihood presented metrics roughly within the interval
(2.2, 2.7), whilst the models with a ZI-Poisson likelihood ob-
tained metrics approximately among the interval (0.59, 1.02).
Thereby, we can say that in general the models relying on a ZI-
Poisson likelihood outperformed the ones based on a Poisson
likelihood by achieving lower NLPD metrics. For the Poisson
likelihood, the VIK model accomplished the lowest NLPD for
22 days of the month in comparison to the CPM and LMC; the
CPM presented a better performance than VIK and LMC for
six days; and the LMC only presented the lowest NLPD in the
days: 13, 16 and 30. For the ZI-Poisson likelihood, the VIK
reached better NLPD values for 13 days; the CPM obtained
the lowest metrics in 18 times; and the LMC did not present
a better performance at any day in comparison to the other
CCGP models. Table I shows a summary of the main statistics
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Fig. 1. NLPD-Test Performance along the Month for the CCGP models based on VIK, CPM and LMC. Top figure: Poisson likelihood. Bottom figure:
ZI-Poisson likelihood. For each day there are three bars associated to the GP priors: left bar, VIK with pattern inscription “x”; middle bar, CPM with pattern
“+”; and right bar, LMC with pattern “\”. Low NLPD values mean better performance.

TABLE I
SUMMARY OF STATISTICS OF NLPD-TEST PERFORMANCE ALONG THE
MONTH FOR THE CCGP MODELS BASED ON POISSON AND ZI-POISSON

LIKELIHOODS USING THREE TYPES OF GP PRIORS.

VIK CPM LMC
Avg ± Std Med Avg ± Std Med Avg ± Std Med

Poisson 2.401± 0.081 2.395 2.448 ± 0.090 2.476 2.507 ± 0.094 2.515
ZIP 0.740 ± 0.053 0.742 0.736 ± 0.063 0.752 0.976 ± 0.032 0.982

obtained by the models along the Month. We can see from such
a Table that the CCGP model based on VIK reached a better
trending with the lowest median for both types of likelihoods;
also it tended to present smaller standard deviations than the
other methods. The CPM showed a slightly lower mean than
the VIK when using a ZI-Poisson, but with a higher standard
deviation. The LMC presented similar results to the CPM for
the case of a Poisson likelihood; nevertheless, in comparison to
VIK and CPM, its performance was poor when modelling with
a ZI-Poisson likelihood. The results show that the use of a ZI-
Poisson likelihood considerably improved the performance of
the prediction capabilities of our CCGP models in the context
of the zero-inflated data from Guangzhou city. Regarding the
types of GP priors, the VIK and CPM showed to outperform
the LMC by allowing better NLPD metrics, i.e., a better
quantification of the uncertainty.

D. Quantitative Results: Models along the Week
For the second experiment, we trained seven CCGP models,

one per day of the week, i.e., models for Monday, Tuesday,

Wednesday, Thursday, Friday, Saturday and Sunday. In con-
trast to the first experiment, here we selected the observations
related to the Monday March 4 to Sunday March 10 for
training data; whilst the remaining days were used for testing:
Mondays (March 11, 18, 25), Tuesday (March 12, 19, 26),
Wednesday (March 13, 20, 27), Thursday (March 14, 21,
28), Friday (March 15, 22, 29), Saturday (March 16, 23, 30)
and Sunday (March 17, 24, 31). For instance, we trained a
model for Monday using data from March 4 and tested it
over the remaining Mondays March 11, 18 and 25. Figure 2
shows the NLPD error obtained by the different GP models
in combination with both types of likelihoods, Poisson and
ZI-Poisson. From Figure 2 we can observe that the ranges
of NLPD metrics accomplished by the CCGP models when
using a ZI-Poisson likelihood were lower in comparison to
the Poisson likelihood; ZIP metrics were within the range
(0.52, 0.78) and Poisson metrics are within (1.72, 1.97). Com-
paring these latter results with the ones reached in the previous
subsection of Models along the Month, we can regard that the
CCGP models along the week present a better performance.
For the Poisson likelihood, Figure 2 shows that the model
based on VIK obtained the lowest NLPD values for all the
days of the week, followed by the CPM and LMC. For the ZI-
Poisson likelihood, Figure 2 shows that the model VIK-based
reached the lowest NLPD values for Monday and Saturday in
comparison to the other methods; whilst the model CPM-based
attained the lowest NLPD values for Tuesday, Wednesday,
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Fig. 2. NLPD-Test Performance along the Week for the CCGP models based
on VIK, CPM and LMC. Top figure: Poisson likelihood. Bottom figure: ZIP
likelihood. For each day there are three bars associated to the GP priors: left
bar, VIK with pattern inscription “x”; middle bar, CPM with pattern “+”; and
right bar, LMC with pattern “\”. Low NLPD values mean better performance.

Thursday, Friday and Sunday; the model LMC-based did not
present a better performance than the other methods on any
of the days. Though, for the ZI-Poisson likelihood, the CPM
presented better metrics on more days than the VIK, the
summary of statistic in Table II shows that in general the VIK
performs similar to the CPM for such a likelihood.

Table II allows us to see that generally the CCGP model
based on VIK obtained better NLPD metrics in comparison
to the other methods. The VIK performed quite similar to the
CPM in the context of a ZIP likelihood; indeed, VIK and
CPM presented a difference in the mean of just 0.011 for
the ZIP likelihood, with equal standard deviations and equal
medians. Regardless of the type of likelihood, both CPM and
VIK models outperformed the LMC model.

E. Qualitative Results

Since our data from Guangzhou city presents zero-inflation
issues, we aim to observe the effect in the predictions when
using the Poisson and ZI-Poisson likelihoods to deal with said
problem. Also, in order to visualise the qualitative traits of

TABLE II
SUMMARY OF STATISTICS OF NLPD-TEST PERFORMANCE ALONG THE
WEEK FOR THE CCGP MODELS BASED ON POISSON AND ZI-POISSON

LIKELIHOODS USING THREE TYPES OF GP PRIORS.

VIK CPM LMC
Avg ± Std Med Avg ± Std Med Avg ± Std Med

Poisson 1.847 ± 0.065 1.865 1.878 ± 0.067 1.907 1.911 ± 0.062 1.932
ZIP 0.601 ± 0.039 0.612 0.590 ± 0.039 0.612 0.755 ± 0.026 0.764

the model that showed the highest capabilities to generalise,
we selected the CCGP model based on VIK (CCGP-VIK),
particularly we chose the model for Saturday, March 9 (from
Figure 2) given that it presented a relevant NLPD performance
for both Poisson and ZI-Poisson likelihoods.

Figure 3(b) shows the mean prediction of the CCGP-VIK
with Poisson likelihood and Figure 3(d) the mean prediction of
the CCGP-VIK with ZI-Poisson likelihood. Figures 3(a) and
3(c) are a heatmap of the real test data of the citizens mobility
on Saturday, March 16 at 11:00 am; both figures are exactly
the same, but displayed twice to ease the comparison to our
models’ predictions provided in Figures 3(b) and 3(d). Also,
to ease the description of the predictions we will refer to the
names that appear in the maps as key locations, for instance
the names: GUANGZHOU, TIANHE DISTRICT, Red Hill,
Lijiao, Shachong, Xinzao, etc.

It can be seen from Figures 3(b) and Figure 3(d) that both
CCGP-VIK models with Poisson and ZI-Poisson focus on
the high concentrations of citizens in the city centre, that
is the region between GUANGZHOU, TIANHE DISTRICT
and Red Hill. Also those models focus on the region with
high numbers of citizens located among Shachong, HAIZHU
DISTRICT and Lijiao; that is a central-west region that gathers
different Metro-stations like: Jiangnanxi station, Huadiwan
station, Xilang station and Jushu station. For the case of the
Poisson likelihood, we can notice from Figure 3(b) that the
predictions of high concentrations of citizens are underesti-
mated in comparison to the test data in Figure 3(a); whilst
for the case of the ZI-Poisson likelihood, we observe that
the density of citizens looks more akin to the test data in
Figure 3(c). With respect to the regions of the city that present
many zero value observations like the north-east and south-
east quadrants, we can notice that both the CCGP-VIK models
with Poisson and ZI-Poisson predict very low concentrations
of citizens in those regions. Although, specifically the model
with Poisson likelihood concentrates on predicting massive
densities of zero values in the north-east quadrant of the map
that extend until Tangdong region; in contrast, the model with
ZI-Poisson remains a bit conservative not presenting as huge
accumulations of zero values as the Poisson distribution, and
allowing to predict moderate concentrations of people around
Tangdong. Likewise, for the region in the south-west quadrant
below Lijiao, the model with Poisson likelihood focuses on
predicting very low concentrations of citizens, but the model
with ZI-Poisson predicts moderate congregations of citizens
that vanish from Lijiao towards Huijiang and Zhicun. Both
ZIP and Poisson models neglect the concentrations of citizens
in the region below Luntoucun and to the left hand side of
GUANGZHOU HIGHER EDUCATION MEGA CENTER.
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(a) Test Data Heatmap: Saturday, March 16 at 11:00 am (b) Prediction at 11:00 am using CCGP-VIK with Poisson

(c) Test Data Heatmap: Saturday, March 16 at 11:00 am (d) Prediction at 11:00 am using CCGP-VIK with ZI-Poisson
Fig. 3. Qualitative performance of the model CCGP-VIK (trained with data from Saturday, March 9) in comparison to real test data. To the left hand side,
Figures 3(a) and 3(c) are a heatmap of the real test data of the citizens mobility on Saturday, March 16 at 11:00 am; both figures are the same, but displayed
twice to ease the comparison with the predictions to the right hand side. Figure 3(b) shows the mean prediction of the CCGP-VIK with Poisson likelihood.
Figure 3(d) presents the mean prediction of the CCGP-VIK with ZI-Poisson likelihood. The color bar associates the number of citizens in the map area.

The main quality of the model CCGP-VIK with ZIP consists
on appropriately trading-off between making predictions in
the regions with high concentration of zeros without under-
estimating the regions with substantial presence of citizens.
Conversely, the zero-inflation inherent in Guangzhou data
hinders the model based on a Poisson likelihood to adequately
forecast in the regions with major presence of citizens.

VIII. DISCUSSION AND CONCLUSION

Through the different types of experiments we noticed
that the use of a ZI-Poisson distribution significantly im-
proved the performance for modelling the citizens’ mobility
in Guangzhou city, in comparison to a Poisson distribution.
For the case of modelling with a Poisson likelihood, though
the ranking of best performances usually showed the VIK
at first, followed by CPM and LMC, we realised the mean
NLPD metrics are very close between all the GP methods
(with a difference not higher than 0.106) as shown in Table
I. We believe those NLPD metrics are close to each other
due to the few parameters present in the Poisson distribution,
which limit the capabilities of the different GP models for
achieving a higher predictive performance. On the other hand,
when modelling with the ZI-Poisson, the CCGP models based

on VIK and CPM presented a distinguished difference with
the LMC. Such a difference can be attributed to the fact of
having additional hyper-parameters that allow higher mod-
elling flexibilities than the LMC, which only depends on a
set of linear combination coefficients and matrices of length-
scales Lq related to the latent functions uq(·) [22][11]. Such
additional hyper-parameters can be identified, for instance:
from the CPM, in all weights Sj,q,i and the matrices of
length-scales κj associated to the smoothing kernels, and the
matrices of length-scales Lq for the latent functions uq(·) (see
section III-D); and apart from the latter parameters present
in the CPM, the VIKs model additionally presents weights
Wq and the matrices of length-scales tq associated to the
inducing kernels (see section IV-D). Regarding the two types
of experiments we carried out for modelling either along
the month or along the week, the results showed a better
performance in the models along the week. We associate the
high performance reached by such models with a probable
high correlation between the training and testing data; the
mobility patterns of citizens for instance on Monday March 4
(training data) can be very similar to the remaining Mondays
11, 18 and 25 (testing data), a fact likely to happen also for
the other days.
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In this work we have modelled the citizens mobility in the
Chinese city of Guangzhou by means of three types of CCGP
models (based on an LMC, CPM or VIKs) with Poisson and
ZI-Poisson likelihoods. We showed that all types of CCGP
models in conjunction with a ZIP likelihood allow to overcome
the issues associated to zero-inflated data, outperforming the
predictive capabilities of such CCGP models when based
on a Poisson likelihood. We derived a stochastic variational
inference framework that grants the use of a CCGP model
with CPM or VIKs in the context of a large number of data
observations. As a future work, it might be worth to explore
the behaviour of other types of likelihoods like the ZINB,
or the Tweedie from the exponential dispersion family. The
latter can be particularly challenging given that its probability
distribution needs to be evaluated using a series expansion due
to not having an analytical solution. On the other hand, we
believe our models can also be used in the context of Multi-
Output GPs, for instance: with a broader database information
that not only contained citizens mobility, but in which we
could discriminate the type of vehicles used for mobility; it is
feasible to implement our GP models to exploit correlations
that include information between types of transport vehicles.
Likewise, we could explore the application of Multi-Output
GPs for data imputation, i.e., predicting information in regions
of the city where data is sensible to be lost due to failures in
the mobile phone network that carries out the data collection.
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Juan-José Giraldo received a degree in Electronics Engineering (B. Eng.)
with Honours, from Universidad del Quindı́o, Colombia in 2009, a master
degree in Electrical Engineering (M. Eng.) from Universidad Tecnológica
de Pereira, Colombia in 2015. Currently, Mr. Giraldo is a Ph.D student in
Computer Science at the University of Sheffield, UK.
Jie Zhang received MEng and PhD in Industrial Automation from East China
University of Science and Technology in 1992 and 1995. Dr. Zhang stud-
ied/worked with Imperial College London, Oxford University and University
of Bedfordshire, becoming a Lecturer, Reader and Professor in 2002, 2005 and
2006 respectively. Dr. Zhang is co-founder and Board Director of RANPLAN,
which is listed on NASDAQ First North stock exchange and produces a
suite of world leading in-building DAS, indoor-outdoor small cell/HetNet
network design and optimisation tools; also the founder of Cambridge AI+
Ltd. From January, 2011, Dr. Zhang held the Chair in Wireless Systems at
the Department of Electronic and Electrical Engineering at The University of
Sheffield, UK.
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Computer Science at The University of Sheffield, UK, where he is now a
Senior Lecturer in Machine Learning.


