
Parameterized monads in linguistics

Viet Ha Bui

A thesis submitted in partial ful�lment of the requirements of the

University of Wolverhampton for the degree of Doctor of Philosophy

2021

This work or any part thereof has not previously been presented in any

form to the University or to any other body whether for the purposes of as-

sessment, publication or for any other purpose (unless otherwise indicated).

Save for any express acknowledgements, references and/or bibliographies

cited in the work, I con�rm that the intellectual content of the work is the

result of my own e�orts and of no other person.

The right of Viet Ha Bui to be identi�ed as author of this work is asserted

in accordance with ss.77 and 78 of the Copyright, Designs and Patents Act

1988. At this date copyright is owned by the author.

Signature: .

Date: .
17/06/2021

Abstract

This dissertation follows the formal semantics approach to linguistics. It

applies recent developments in computing theories to study theoretical lin-

guistics in the area of the interaction between semantics and pragmatics and

analyzes several natural language phenomena by parsing them in these the-

ories. Speci�cally, this dissertation uses parameterized monads, a particular

theoretical framework in category theory, as a dynamic semantic framework

to reinterpret the compositional Discourse Representation Theory(cDRT),

and to provide an analysis of donkey anaphora. Parameterized monads

are also used in this dissertation to interpret information states as lists of

presuppositions, and as dot types. Alternative interpretations for demon-

stratives and imperatives are produced, and the conventional implicature

phenomenon in linguistics substantiated, using the framework. Interpret-

ing donkey anaphora shows that parameterized monads is able to handle

the sentential dependency. Therefore, this framework shows an expressive

power equal to that of related frameworks such as the typed logical grammar

and the dynamic predicate logic. Interpreting imperatives via parameterized

monads also provides a compositional dynamic semantic analysis which is

one of the main approaches to analysing imperatives.

iii

Acknowledgements

I would like to thank my supervisors, Dr Ha Le An and Prof. Ruslan Mitkov,

for welcoming me into their computational research group. I also would like

to thank the examiners, Dr Chris Fox, Prof. Arm Sabry, and Prof. Fabrice

Laussy, for the feedback in their report.

I would like to thank my friends: Sarah Girling, Dr Michael Oak, Dr Craig

Williams from my time at Wolverhampton University. I also would like to

thank Dr Peter Dybjer who introduced me to type theories and his logic

programming group at Chalmers, and Dr Wouter Swiestra who introduced

me to Hoare's state monad. Without them, the thesis could not have been

completed. I also thank Dr Zhaohui Luo who introduced me to linguistics

during my time at Royal Holloway, the University of London. Also worthy

of mention here are Dr Robin Adam and Dr James Cheney.

Finally, I would like to thank my family and Linh Le for supporting me

during the time when this dissertation was written. I dedicate this disserta-

tion to my father.

v

Contents

Abstract ii

Acknowledgements iv

1 Introduction 1

1.1 Overview . 4

1.2 Related research . 11

1.3 Contribution to knowledge . 13

1.4 Thesis structure . 17

2 Parsed natural languages 21

2.1 An introduction to parsing natural languages 22

2.1.1 λ-calculus in linguistics 26

2.1.2 Type theories . 42

2.1.2.1 Judgements . 42

2.1.2.2 Proofs in linguistics 44

2.1.2.3 Untyped λ-calculus in a typed theory 46

2.1.2.4 The Curry�Howard correspondence 51

2.1.2.5 An intuitionistic type theory 54

2.1.2.6 Extensions of a type theory 59

2.1.2.7 The multi-modal type-logical grammar 60

2.1.3 Type-theoretical semantics 60

vii

2.1.3.1 Modern typed theoretical semantics 61

2.1.3.2 Further examples 65

2.1.3.3 Universes . 67

2.1.3.4 The progressive conjunction 68

2.1.3.5 Dependent types 70

2.2 Ambiguity in natural languages 74

2.2.1 Quanti�cations . 79

2.2.2 Dynamic semantics . 83

2.2.3 Scope-taking . 87

2.2.4 Conventional implicatures 91

2.3 Discussion . 94

3 The de�nition of Monads 97

3.1 Basic de�nitions . 98

3.1.1 Simply typed λ-calculus in category theory 104

3.2 The de�nition of functors . 109

3.3 The de�nition of a natural transformation 110

3.4 An introduction to monads . 111

3.5 The distinction between mathematical de�nitions and an im-

plementation of monads . 113

3.6 Notable monads in computing 114

3.6.1 The maybe monad . 115

3.6.2 The nondeterminism monad 115

3.6.3 side-e�ects or the state monad 115

viii

3.6.4 The exception monad . 116

3.6.5 The continuation monad 116

3.6.6 IO monads . 116

3.6.7 An example of the reader monad 119

3.6.8 Other monads . 121

3.7 Discussion . 121

4 Monads in linguistics 123

4.1 A basic linguistic example . 127

4.2 The continuation for the scope problem and quanti�cations . 129

4.2.1 The continuation in linguistics 129

4.2.1.1 Quanti�cations 134

4.2.1.2 The continuation for an evaluation order . . 136

4.2.2 The towering notion . 138

4.2.2.1 Operators on the towering notion 141

4.2.3 The continuation in monads 143

4.2.3.1 Continuation monads in analysing quanti�ers 149

4.2.4 The recent development of the continuation in linguistics150

4.3 The state monad for dynamic semantics 151

4.3.1 Lifting linguistic expressions into state monads 152

4.3.2 State-changing operators 153

4.3.3 The discourse representation 154

4.3.4 Structures adding to states 155

4.3.5 Quanti�ers and the inde�nite 156

ix

4.4 The writer monad for the conventional implicature phenomenon159

4.5 Discussions . 167

5 An introduction to parameterized monads 171

5.1 Strong monads . 172

5.2 An introduction to parameterized monads 176

5.3 Computing monads in the parameterized monads 180

5.3.1 Strong monads inclusion 181

5.3.2 Parameterized monads morphism 181

5.3.3 The state monad . 181

5.3.4 The composable continuation monad 186

5.3.5 The writer monad . 187

5.3.5.1 The stack machine 188

5.3.6 The IO monad . 190

5.3.6.1 Stateful IO devices 193

5.3.6.2 Session types 194

5.4 Speci�cation structures in parameterized monads 195

5.5 Type systems for parameterized monads 198

5.6 Discussion . 204

6 Linguistic structures of parameterized monads 209

6.1 First-order logic interpretation of natural languages 214

6.2 Structured information states 227

6.2.1 Berg's criteria for information states 227

6.2.2 Information states as presuppositions 229

x

6.2.3 Information states as dot types 235

6.3 Discussion . 242

7 The cDRT in parameterized monads 247

7.1 An introduction to the cDRT 251

7.1.1 Logic of change . 251

7.1.2 Translating boxes to the logic 255

7.1.3 Semantics of a fragment of English 259

7.1.4 An accessibility and weakest-precondition calculus . . 263

7.2 The translation to parameterized monads 265

7.3 Dynamic semantics in parameterized monads 271

7.3.1 Linguistic logical operators in parameterized monads . 276

7.3.2 Dynamic predicate logic in parameterized monads . . 279

7.3.3 Combining state and set monads in parameterized mon-

ads . 282

7.3.4 Another example of how the compositional principle

acts in parameterized monads 285

7.4 The donkey anaphora in parameterized monads 288

7.4.1 The de�nition of the problem 288

7.4.2 The compositional dynamic semantic interpretation of

the problem . 290

7.4.2.1 The BHK interpretation 293

7.4.2.2 Scope-taking as proof-search 296

7.4.2.3 An analysis of the phenomenon 297

xi

7.5 Discussion . 304

7.5.1 Related research . 307

7.5.2 The continuation monad 312

7.5.3 The state monad . 313

8 Imperatives phenomenon in parameterized state monads 315

8.1 The Ross' paradox . 318

8.1.1 Logic in imperatives . 319

8.1.2 Properties . 319

8.1.3 Speci�cations . 322

8.1.4 Monadic approaches to the semantics of imperatives . 325

8.2 The interpretation in monads 326

8.2.1 Hoare state monads . 326

8.2.2 An interpretation . 328

8.3 The imperative logic . 333

8.3.1 Axioms . 334

8.3.2 Rules . 335

8.4 Discussion . 337

9 Additional linguistic phenomena in parameterized monads 339

9.1 De�nite descriptions in IO monads 339

9.2 The complex demonstrative in parameterized IO monads . . . 344

9.2.1 Introduction to the complex demonstratives 344

9.2.1.1 The de�nition of the complex demonstrative 344

9.2.1.2 The problem with direct references 347

xii

9.2.1.3 Previous approaches 350

9.2.2 The context domain restriction interpretation of the

single complex demonstrative 354

9.2.2.1 The di�erence between demonstratives and

de�nite descriptions 356

9.3 The conventional implicature in parameterized monads 358

9.3.1 The conventional implicature in session types 362

9.4 Discussion . 370

10 Conclusion 375

10.1 Future work and limitations of the research 380

xiii

Chapter 1

Introduction

This research is an attempt to provide a theory of meaning to natural lan-

guages. According to [1] [p. 22] and [2][p. 2] the theory of meaning, also called

the theory of knowledge, focuses on the question of how linguistic meaning

is constructed. It di�ers from meaning theory which answers the question of

how to specify the meanings of words and expressions. For example, meaning

theory builds a dictionary, while the theory of meaning examines how words

are combined to form ideas.

In order to achieve the theory, I chose category theory, which is studied in

both computing and mathematics �elds. Hence, this dissertation belongs to

computational linguistics, in that it applies computing theories to linguistics.

Since it focuses on theoretical aspects, it also belongs to formal semantics.

The λ calculus by [3] provides a major framework for linguistic semantic

analysis through Montagovian semantics in [4], as discussed in [5]. However,

semantic approaches to linguistics su�er from a general problem: there are

linguistic phenomena that cannot be analyzed by semantics alone. For exam-

1

ple, since the pioneering research by [4], key phenomena such as quanti�ca-

tions, still lie outside the proper grammatical treatment of formal semantics.

[6] shows that quanti�cations in linguistics can be regarded analogically

to side e�ects in functional programming languages' terminology, such as

the terms shift and reset in composable continuation by [7] in programming

languages. On the other hand, the side e�ects can be captured by the math-

ematical monads in category theory by [8]. However, these two notions of

composable continuation and monads are related by [9]. Thus, this disser-

tation has rede�ned the notion of side e�ects in order to reduce the misun-

derstanding of this jargon in linguistics, and associate it with contextually

related phenomena in chapter 4. Additionally, it includes the de�nition of

e�ects by [10] as an interaction between semantics and pragmatics.

Indeed, I extend the research done by [11] and replace Shan's thesis by

proposing monads as an underlying framework of interactions between se-

mantics and pragmatics, in place of his continuation approach with recent

research by [12]. Shan's in [6] proposed delimited continuation as a frame-

work for side e�ects because he supposed that it had more expressive power

than monads. However, a recent study by [13] rejected this idea and stated

that it is still a conjecture under the current accepted research results.

Thus, this dissertation improves Montague's semantics by extending the

2

CHAPTER 1. INTRODUCTION

theoretical foundation of the semantics to modularize and unify additional

linguistic phenomena under monads in category theory. Monads do not

change the nature of linguistic phenomena, nor do they provide any sub-

stance analysis of the phenomena. Instead, they unify related phenomena

under a general structure, and we can use them to reason under the com-

positional principle. In this research, I use monadic expressions to represent

types, and we use them to express the denotational semantics of a linguistic

term, while λ expressions are used for the term's operational semantics.

Hence, a linguistic term is given both denotational and operational ex-

pressions. Through the use of types, the monadic expressions are guarded

by a compositional rule under the typing principle. On the other hand, the

operational expression in the λ calculus formation is more deliberate so as to

express the meaning of a term, following the lead of [14] who also promoted

types for restricted conditions of the λ calculus. Hence, we are extending

their research by pointing out a clearer type system that uses modern type

theories which will be discussed below in sections 2.1.2, 2.1.3 and 5.5.

Monads have an expressive power rich enough to capture other semantics

such as dynamic semantics as per [15] and [16], and situation semantics as

developed by [12] and [17][p. 6]. Furthermore, using the evaluation order

discussed in [6], monads have an advantage over the type logical grammar

approach by [18] in the �exible treatment of quanti�cation scopes.

3

1.1. OVERVIEW

Hence, in the author's opinion, studying monadic applications in linguis-

tics does not complete the extension of monadic applications. Rather, it is

the beginning of a research trend in generalizing monads for linguistic ap-

plications in the interface between linguistic semantics and pragmatics. For

example, [19], also develops a related idea.

1.1 Overview

Monads have been introduced to linguistics as a theoretical framework by

[12, 11, 20, 15, 16, 21, 17, 22]. This dissertation investigates parameterized

monads, a generalization of monads by [23], to capture dynamic semantics

through the reinterpretation of the compositional discourse representation

theory (cDRT) by [24] and the �rst order logic interpretation of natural

languages by [25]. It also parses additional linguistic phenomena: the pre-

suppositions and ist notion, dot types, the donkey sentence, the imperatives,

the de�nite descriptions and demonstratives, and the conventional implica-

ture using parameterized monads. Furthermore, it strengthens the expressive

power of monads to be compatible with other theoretical frameworks such

as the type-theoretical semantics of [26], the dynamic predicate logic of [27],

the delimited continuation of [12], or the typed predicate logic of [28].

The thesis structure is organized as follows. The introduction and conclu-

4

CHAPTER 1. INTRODUCTION

sion chapters establish the contribution to knowledge as well as limitations

and the future research. Chapters 2,3, and 4 are the literature review chap-

ters. Chapter 5 provides a brief introduction to parameterized monads in

mathematics and computing. Finally, chapters 6,7,8, and 9 illustrate the

formalization of the above linguistic phenomena in parameterized monads.

Chapter 2 provides the background knowledge of parsing in computing

with the parsing as deduction hypothesis. It also introduces two notorious

theoretical frameworks, in parallel with category theory, in computing: the

λ calculus and type theory, and their applications in linguistics. The latter

part of chapter 2 introduces the notion of ambiguity in linguistics under the

theoretical computing perspective. Hence, it points out the characterization

of the ambiguity notion in linguistics into the essential and spurious one. In

addition, the chapter provides a brief introduction to the following linguistic

phenomena: generalized quanti�ers, scope taking, and conventional implica-

tures.

Chapters 3 and 4 introduce the notion of monads in mathematics [29, 30,

31] and its applications through the continuation, dynamic semantics, and

the conventional implicatures [12, 17, 15, 21]. Notably, Chapter 3 introduces

the interpretation of the λ calculus in category theory. This interpretation

eliminates the criticism of the research by [32]; the criticism stated that their

research did not cover the Montagovian grammar. Chapter 4 discusses fur-

5

1.1. OVERVIEW

ther applications of monads in linguistics.

The limitation of the expressive power of monads has been noticed by [33].

Thus, chapter 5 introduces the de�nition of parameterized monads, a well

known extension of monads, by [23, 34, 35] with a further extension by [36].

There are various extensions of monads which include the applicative functor

[37]. The parameterized monads has less expressive power than the applica-

tive functor but it holds the compositional principle. The chapter begins

by introducing the mathematical de�nition of the parameterized monads. It

then introduces their examples in computing which include the composable

continuation by [9] and the IO monads by [38]. In addition, the notion of

the speci�cation and a type system for parameterized monads, which build

upon the research by [39] and [40, 34], respectively, are introduced.

Chapters 6,7,8, and 9 introduce their applications in parsing instances of

several linguistic phenomena. Chapters 6 builds upon the �rst order logic

interpretation of natural languages in the programming language Haskell, a

computing implementation of monads and category theory, by [25]. In addi-

tion, it investigates the interpretation of the dot types and the ist notion in

parameterized monads. On the other hand, chapter 7 provides the dynamic

semantic interpretation of parameterized monads by reinterpret the cDRT

and the parsing process of the donkey sentence.

6

CHAPTER 1. INTRODUCTION

This dissertation categorizes the parameterized monads as a moderate

contextualization formalism, according to [41], to parse natural languages.

It is more expressive than the logical (static) approach to linguistics and

less generic than the radical one. Furthermore, the author characterizes the

parameterized monadic interpretation of the donkey anaphora as a dynamic

semantic approach to the phenomenon. The formalization of the donkey sen-

tence is straightforward: it uses a comprehensive analysis of the phenomenon

by [42], with an extension to variable-binding as discussed by [43, 44].

In an argument for favouring the static approach to the phenomenon, [42]

poses three problems for the dynamic approach, namely: disjunction, undis-

tinguished participants, and neontological pronouns. However, [12] solves

the �rst two problems. Hence, in the author's opinion, the gap in the inter-

pretations of the phenomenon between the dynamic and static approaches is

reduced.

However, the treatment of variable-binding in [12, 45, 17, 46] is not

straightforward and does not provide a natural semantic interpretation of

the phenomenon. They use delimited continuation and continuation monads

or type lifting techniques to interpret and reason about the scope taking of

the phenomenon in their theoretical frameworks. In order to achieve their

objectives, they used the double negation law. Hence, the formalized sen-

tence appears in a negative rather than an a�rmative formation. According

7

1.1. OVERVIEW

to [45, 12] for example, the sentence

if a farmer owns a donkey, he beats it.

is parsed (or formalized) as

¬∃x.farmer(x) ∧ ∃y.donkey(y) ∧ own(y, x) ∧ ¬(beat(y, x))

Intuitively, this semantic interpretation of the above sentence is not natu-

ral as a result of using the double negation law. Contrastingly, parameterized

monads provide a clear solution. In order to formalize the phenomenon, the

author divides the formalization process into two steps. First, we de�ne the

dynamic implication in dynamic semantics in section 7.3.1 to faithfully parse

the sentence into

∃x.(farmer(x) ∧ ∃y.donkey(y) ∧ own(y, x)) ⇒ (beat(y, x))

The state is omitted in the above representation and serves as a con-

text in dynamic semantics. A detailed discussion can be found in chapter

7. Intuitively, it is also analogous to a situation in situation semantics by

[47]. Second, we change the scope-binding of the pronoun variable by using

a technique similar to that in [43] or [44], namely Egli's theorem. In our

framework, this technique is called the swapping technique in section 7.4.2.

8

CHAPTER 1. INTRODUCTION

The idea behind the swapping technique is that the variable in an ex-

istence operator is free to change and take scope. We use the Brouwer�

Heyting�Kolmogorov (BHK) interpretation to provide support for this idea.

Intuitively, the BHK interpretation means that we can either interpret a term

in a formula by the direct logical interpretation, or shift it into the context. If

we shift the term into the context, then we can reuse it in the next formulae

in any order. Thus, the formula is rewritten as

∃x.∃y.(farmer(x) ∧ donkey(y) ∧ own(y, x) ⇒ beat(y, x))

This formalization process di�ers from traditional logical interpretations

of natural languages by having multiple stages of semantic analysis. Speci�-

cally, we add an additional scope-binding process to the logical parsing pro-

cess. Adding this extra process results in the proper placement of the ∃

operators in the sentence. Besides, this dynamic semantic formalization has

an equivalent interpretation in a logical formation by the previous research

of [24, 42] or situation semantics by [42, 48].

If we interpret an inde�nite as an existence in traditional logics, for ex-

ample in [15], then this proposal provides an alternative mechanism for ex-

ceptional scopes taken by inde�nites, in comparison with [17]. The purpose

of scope-binding is to have a correct assignment of logical variables in the

9

1.1. OVERVIEW

interpretation of natural languages. Hence, if we hypothesis an anaphora as

a variable, then scope-binding is also a mechanism of anaphora resolution by

allocating antecedents to a scope of suitable referred objects.

Chapter 8 studies the imperative phenomenon in parameterized monads,

building on the previous research by [49, 50]. [49] provides an axiomatiz-

ing system of an imperatives logic which is based on Hoare logic by [51].

Moreover, [52] provides a solution to interpreting Hoare's logic in monads.

In addition, the parameterized monads are also regarded as a Hoare's logic

extension of monads by [53]. Therefore, the parameterized monads provides

a dynamic interpretation, see [54], as well as establishing a new logic to the

phenomenon. Related research includes [55]. Our solution, however, is a

compositional treatment of the phenomenon by interpreting the cDRT in pa-

rameterized monads while [55] using classical discourse representation theory

(DRT) by [56] only.

Finally, Chapter 9 uses the parameterized IOmonads to parse the demon-

stratives by using the Wolter's hypothesis in [57]. Hence, it provides a the-

oretical framework for the research by [58]. In addition, it also uses the

session type in parameterized monads to substantiate the interpretation of

conventional implicature, from [20] in section 9.3. Session types can capture

the data or information exchanged between the client and the server dimen-

sions, while their solution as a writer monad cannot. The separation of the

10

CHAPTER 1. INTRODUCTION

client and server dimensions in session types is analogous to the same aspect

between the at-issue and conventional implicature dimensions.

1.2 Related research

Related research is discussed in both the overview and in the conclusion

chapter. The key related research is as follows.

� Both [16] and this dissertation use the recent extensions of monads.

Whereas Grove uses graded monads, I use parameterized monads. Both

are shown to be equivalent by [53]. However, Grove based her frame-

work on the possible-world semantics of [59], while we use the type

theory discussed by [60]. Intuitively, it means that our approach is

proof-oriented while hers is model theoretic-oriented. Finally, a recent

research by [21] also introduces monads into linguistics. In contrast to

them, I use a di�erent theoretical background, and I interpret di�erent

linguistic phenomena.

� [17] also uses a monad-based framework, namely monad transformers

([61]) that provide a dynamic interpretation of the scope of inde�-

nites in a sentence. In contrast to his framework, I use parameterized

monads which provide a clearer solution to the donkey anaphora phe-

nomenon. In addition, the advantages of using parameterized monads

over monad transformers is that the former provide a compositional

and solid mathematical theoretical framework in contrast to the latter.

11

1.2. RELATED RESEARCH

In this dissertation, the compositional principle, in the sense of [62] and

[5], is a major concern and is expressed as a type which is represented

as a state in parameterized monads, driven in the sense of [14][p. 44]

and [12][p. 25].

Thus, while both parameterized monads and monad transformers raise

concerns about combining monads, parameterized monads focuses on

explicit type or state declarations, i.e. the compositional aspect, while

monad transformer research governs on the operation or λ abstraction

aspect. Intuitively, the parameterized monad approach is semantic-

oriented, while the monad transformers one is syntactic-oriented.

� [15, 63] interpret dynamic semantics in monads. I develop their research

further by using parameterized monads, enabling capture of the donkey

phenomenon.

� [10] provides algebraic e�ects and handler techniques to analyse side

e�ects in natural languages. Our research is similar to his, in being

based on type theories. The di�erence is that we are using monads and

parameterized monads to illustrate side e�ects rather than the algebraic

e�ects and handlers as developed in [64]. Furthermore, instead of using

handlers to manage the scope of the e�ects, I propose to use our own

swapping technique.

� [55] provide a dynamic approach to the imperative phenomenon. Their

12

CHAPTER 1. INTRODUCTION

research is based on DRT, and I develop their research further by pro-

viding a compositional approach by interpreting the cDRT using pa-

rameterized monads.

� [65] reinterprets the cDRT by [24] and extends the framework to the

PCDRT in order to capture the plurality phenomenon in linguistics.

This dissertation also reinterprets the cDRT in chapter 7 with an al-

ternative theoretical foundation in category theory.

1.3 Contribution to knowledge

Category theory has been used by previous researchers such as [66] with cat-

egorial grammar and [67]. [30][p. 2] recently advocated that category theory

could be an alternative to set theory in mathematics and the sciences. Re-

sponding to criticism of set theory in linguistics including those by [68, 69],

this dissertation takes a step towards proposing category theory as an alter-

native to set theory in linguistic semantics.

This dissertation examines a particular class of category theory, namely,

monads by [8], and their extension to parameterized monads by [23], to for-

malize e�ects in several linguistic phenomena. Previous studies of monads

in linguistics by [11, 15, 21, 70, 16, 17, 22] indicated that monads provide a

proper framework for capturing linguistic e�ects. The e�ects are interpreted

as pragmatics related to semantics phenomena by [10], or as anaphora resolu-

13

1.3. CONTRIBUTION TO KNOWLEDGE

tions by [17]. This dissertation rede�ned the meaning of e�ects in linguistics

as context-related phenomena, as discussed by [71, 41, 72, 73].

[6, 12] based their theoretical foundation on a continuation approach by

delimited control by [7, 74], and criticised the work of [8] as being less con-

crete, such as in [75][p. 142] and [6][p. 91]. However, the recent research

of [13] shows that this criticism is incorrect. Hence, this dissertation con-

tributes to current knowledge by using parameterized monads to provide an

alternative foundation to composable continuation for interpreting e�ects in

linguistics. This is a strong foundation on denotational semantics and proves

the properties discussed in [50, 52, 33].

Monads cannot capture all of the e�ects in computing (an observation

made by [33]). Consequently, this dissertation does not claim to capture

all of the phenomena in the interaction between linguistic semantics and

pragmatics; the research goal here is to observe and parse certain linguistic

phenomena in monads and parameterized monads. Hence, this dissertation

contributes to current knowledge by parsing the presuppositions, ist notion,

and the dot types in parameterized monads in chapter 6. In addition, it also

parsed the de�nite descriptions and imperatives in parameterized IO mon-

ads, related to [38], in sections 9.1 and 9.2.

In addition, it was observed that the pioneering research on applying the

14

CHAPTER 1. INTRODUCTION

state monads in linguistics by [15] did not interpret the donkey sentence

phenomenon due to the limit of the expressive power of monads. The inter-

pretation has been studied recently by using extensions of monads by [17, 16]

1. Parameterized monads, in conjunction with these extensions, are expres-

sive enough to parse the donkey sentence. Indeed, the author used the direct

interpretation of the dynamic condition in section 7.3.1 to interpret the con-

dition if rather than using the double negation interpretation by [12]. This

formalization implies that the parameterized monads achieve an expressive

power equal to those of other successful theoretical frameworks such as the

type-theoretical grammar by [26], the dynamic predicate logic (DPL) by [27],

or the typed predicate logic by [28].

I also interpret the cDRT in parameterized monads to combine both the

dynamic semantics and the Montagovian grammar found in chapter 7.2 This

interpretation uses Hoare-style logic rather than Dijkstra's weakest precondi-

tion calculus in the cDRT. Hence, this dissertation also contributes to current

knowledge by reinterpreting the logic of imperatives, based on the research

of [49]. This interpretation implies that we provide a compositional dynamic

semantics to the phenomenon.

1intuitively, Charlow's approach is more operational approach oriented while ours is
denotational one. Furthermore, this research is conducted in a parallel and separately
with another extension by [16]

2The recent research discussion on the topic of combining dynamic semantics and Mon-
tague's semantics is at the end of section 4 in https://plato.stanford.edu/entries/

dynamic-semantics/

15

https://plato.stanford.edu/entries/dynamic-semantics/
https://plato.stanford.edu/entries/dynamic-semantics/

1.3. CONTRIBUTION TO KNOWLEDGE

According to [76], two major theoretical frameworks for interpreting the

imperative phenomenon in linguistics are the dynamic semantics and modal-

ity by [55] and [77], respectively. However, the dynamic framework by [55]

does not provide a compositional approach because their research is based

on DRT by [56] rather than the cDRT.

This dissertation contributes to knowledge by providing a model that

captures interaction between the at-issues and conventional implicature di-

mensions in the conventional implicature phenomenon in [78]. Speci�cally,

the author interprets the conventional implicature as session types using pa-

rameterized monads in section 9.3. In previous studies of this phenomenon,

[20] interpreted it as a writer monad with a principle of abandoning the inter-

action between the two dimensions in accordance with the research by [79].

However, an empirical study by [80] shows that there are linguistic phenom-

ena that require interaction between the two dimensions.

Finally, [81] proposes a new analogy between the normalization of proofs

and the evaluation of programs via the Curry�Howard correspondence. Through

the use of our analysis of the swapping technique, this dissertation also pro-

poses a new analogy between the scope evaluation problem in linguistics

and the proof search problem in logics. This new analogy is based on an

observation from previous research by [82] and [16], which states that the

presupposition projection phenomenon is the proof search and scope evalua-

16

CHAPTER 1. INTRODUCTION

tion phenomenon3, respectively.

1.4 Thesis structure

This thesis is divided into the following ten chapters: introduction, parsed

natural languages, introduction to monads, introduction of monads in lin-

guistics, introduction to parameterized monads, linguistic structures in pa-

rameterized monads, the cDRT in parameterized monads, the imperative

phenomenon in parameterized monads, others linguistic phenomena in pa-

rameterized monads, and the conclusion chapter.

Chapters 2,3, and 4 are the literature review ones. Firstly, chapter 2, the

parsed natural languages chapter, consists of the following sections:

� Introduction to parsing as deduction hypothesis and λ calculus in lin-

guistics.

� Introduction to type-theoretical semantics.

� Introduction to ambiguity in natural languages and associated linguis-

tic phenomena.

Chapter 3, the basic theoretical or the introduction to monads chapter, cov-

ers:

� The duality between category and type theories

3A further discussion can be seen in by [83]

17

1.4. THESIS STRUCTURE

� The category theory background

� Major monads in computing.

Chapter 4 surveys monads in linguistics, and is organized as follows:

� Introduction to continuation in linguistics with the scope-taking phe-

nomenon.

� Introduction to the state monad with dynamic semantics

� Introduction to the writer monad with the conventional implicature

Chapter 5, the parameterized monad chapter, introduces the recent extension

of the monadic theoretical framework. It is structured as follows:

� De�nition of parameterized monads

� Applications of parameterized monads in computing

� Speci�cation structures of parameterized monads

� Introduction to the typed system for parameterized monads by the

typed command calculus

Finally, chapters 6,7,8, and 9 applied the framework of parameterized monads

to linguistics. Firstly, chapter 6 interprets linguistic structures in parameter-

ized monads and it has following sections:

� Example of the �rst-order logic in category theory

18

CHAPTER 1. INTRODUCTION

� Berg's criteria for states

� Information states as presuppositions

� Lexical semantics of information states

Chapter 7, the cDRT in parameterized monads chapter, is organized as fol-

lows:

� Introduction to cDRT

� Interpretation of cDRT in parameterized monads with Hoare's logic

� Dynamic semantic de�nitions in parameterized monads

� Introduction to the parsed donkey sentence with the swapping tech-

nique and the analogy between proof-search and scope-taking

Chapter 8, the imperative phenomenon in parameterized monads one, is

designed as follows:

� Literature review of the phenomenon with the revised Dubislav analogy

� Interpretation of the phenomenon in parameterized monads

� The imperative logic

Chapter 9, the additional phenomena chapter, parses the following additional

linguistic phenomena in parameterized monads:

� De�nite description

19

1.4. THESIS STRUCTURE

� Demonstrative

� Conventional implicature

Finally, the conclusion chapter summarizes the research, points out its limi-

tations, and develops prospects for future research.

20

Chapter 2

Parsed natural languages

This chapter provides an overview and background knowledge for the disser-

tation. It focuses on the theoretical aspects of programming languages with

applications of parsing in theoretical linguistics rather than discussing the

whole area of computational linguistics. It uses logic as a methodological

study, rather than statistics. The connection between logics and linguistics

has long been recognized. For example, Bar-Hillel and Chomsky, quoted by

[84][p. 2], show the striking relation between two �elds:

I think it is correct to say that the di�erence between the struc-

tural linguist and the formal logician is one of stress and degree

rather than of kind.

�Bar-Hillel

and

The correct way to use the insights and techniques of logics is in

formulating a general theory of linguistic structures.

�Chomsky

21

2.1. AN INTRODUCTION TO PARSING NATURAL LANGUAGES

2.1 An introduction to parsing natural languages

According to [60][p. 11] and [85][p. 61], the de�nition of parsing in compilers

or programming languages is: the process of converting a language string

into an formal, internal tree representation. Parsing is an essential part of a

modern compiler. Parsing leads, in conjunction with other processes such as

name resolutions, type checking, optimizations and code generations, to the

abstract syntax tree.

Thus, the term parsing expresses the practical perspective on formaliza-

tion, in the sense of [86]. According to [86], a formalism is a translated

form of natural languages, rendered into a formal system such as logics or

mathematical theory; an act of parsing natural languages to the theoretical

expression is called formalization.

Taking another viewpoint, [87] provide a multi-disciplinary perspective

on parsing natural languages. [87][p. 1] de�ned the term, `parsing' etymolog-

ically, from classical origins:

Like so many aspects of modern intellectual frameworks, the idea

of parsing has its roots in the classical tradition; (grammatical)

analysis is the Greek-derived term, parsing (from pars orationis

'part of speech') the Latin-derived one. In this tradition, which

extends through medieval to modern times

In this dissertation, parsing follows the formal semantics tradition, i.e.

22

CHAPTER 2. PARSED NATURAL LANGUAGES

formalizing natural languages into computing-oriented theories or systems.

From a theoretical perspective, a grammar for a parsed tree is an instance of

a formal framework. In computing, the formal framework can be a regular

language as in [85], or a more theoretical oriented as a type system, as in [88].

Therefore, in the author's opinion, the choice of formal semantic parsing

provides a deeper analysis by bringing insights from computing theories to the

study of linguistic phenomena. Furthermore, it provides new opportunities

to test computing theories for its claimed strengths and weaknesses. In this

regard, parsing natural language is an area of science where theories and

empirical observation meet. In the author's opinion, this idea is similar to

one in [78][p. 3], which also proposes to regard descriptive observations in a

di�erent way from theoretical proposals.

A related idea can be found in [89], which justi�es the role of category

theory in computer science. He claims that, in computer science, just as in

physics, theories have to be tested. However, since category theory cannot

be tested directly, we can take an alternative path by connecting computer

science concepts to category-theoretic ones in order to determine what ad-

vantages are obtained by going through category theory.

If we take abstract computing theories such as category theory and shift

their application from computer science to linguistics, the above idea is still

valid. From the physicist viewpoint, the parsed languages, or formal lan-

guages, provide an abstract structure for studying linguistic phenomena.

23

2.1. AN INTRODUCTION TO PARSING NATURAL LANGUAGES

They simplify and guide further theoretical or empirical research. It does

not substitute for detailed research, however, where more subtle insights

may be obtained.

In words, parsed natural languages, in the author's opinion, is the prac-

tical logics, i.e.

parsed natural languages = logical interpretation + practical insight

Table 2.1: general picture.

This idea is similar to the idea of parsing as logical deduction in [25][p. 260].

It can be traced further to the paper by Pereira and Warren in 1983, or to a

recent revision in [90]. The computational perspective on parsing is referred

to by [85]. However, this dissertation focuses on its applications in linguistics,

which is also presented in Chapter 9 of [25].

The generalized linguistic picture of the theoretical model of logical in-

terpretation is treated in [46, chapter 1]. It can be further traced to previous

research on formalizing natural languages in [91, 92, 62, 93, 94]. If we take

a mathematician's view and follow Russell's thesis [92] that mathematics is

linguistics, then deriving and analyzing an abstract linguistic structure is

equivalent to proving a mathematical problem. Up to the author's knowl-

edge, this idea still underlies recent research by contemporary semanticists.

In the author's opinion, a thorough linguistic analysis could lead to a bet-

24

CHAPTER 2. PARSED NATURAL LANGUAGES

ter analysis of mathematical text as a domain speci�c language. Indeed, this

direction has been investigated in [95, 94]. The �rst of these works provides a

contemporary theoretical framework, including the dynamic semantics from

[56], and a foundational notion of types with which to parse the language of

mathematics.

However, the fact that there is no adequate system for formalized math-

ematics, nor for natural languages, has been widely accepted since Aristotle.

Similarly, [60][p. 5] also cited Sapir's observation (1921) that all grammars

leak. Thus, this dissertation stresses the practical insight aspect of parsed

natural languages. The insight can be gleaned from the implementation and

knowledge yields due to the implementation, such as the creation of new

theory or interpretation. Research such as [6, 96, 12] shows how computing

techniques, i.e. practical insight, such as continuation can provide further

insight into the scope-taking phenomenon in linguistics in the 21st century.

However, in the author's opinion, we should take care to seek a partial solu-

tion equipped for practical investigation rather than �nding a total solution1

for a phenomenon from this perspective. The practical investigation can al-

ternatively take place via a statistical perspective which would, however, be

outside the scope of this dissertation.

This direction is persuasive if we consider linguistics as a science of study-

ing human natural communication, rather than of explaining the communi-

1A total solution can be criticized as providing only toy languages, as per [68]. However,
we should consider its objects and associated research in other �elds such as mathematics.

25

2.1. AN INTRODUCTION TO PARSING NATURAL LANGUAGES

cated objects. As an interpersonal communication, a linguistic expression

has both subject and object properties. It is objective since the expression

should be understandable by others, and it is subjective because it includes

the speaker's thought and information. The objective properties, in the au-

thor opinion, for semanticists to study, while the subjective properties are

for pragmatic investigation in the sense of [97].

Indeed, research in programming languages can advance natural language

research, and vice versa, through the exchange of insight between the two

�elds. For example, Chomsky's generative grammar [98] is successfully used

as formal grammar in compilers, as discussed in [85][p. 19-34]. On the other

hand, applying computing theories in linguistics generates formal semantics.

Thus, the rest of this section introduces two major computing frameworks

that linguistics uses, namely λ calculus by [3] and type theories by [99].2

These are foundational frameworks for programming language semantics; the

�rst of them was introduced into linguistics in [4, 100, 101, 14], and the

second of them in [86]. Furthermore, the next section introduces a problem

of ambiguity.

2.1.1 λ-calculus in linguistics

In this part, we are going to introduce the notion of λ-calculus in linguistics

[3]. It is usually called Montagovian semantics, recognizing the pioneering

research of Montague [4]. For an introduction to λ-calculus, I suggest [14]

2There are many type theories. I use Martin's in this dissertation.

26

CHAPTER 2. PARSED NATURAL LANGUAGES

for its simplicity and rich linguistic explanations. For more contemporary

research, see, for example, [42, 102, 103].

To begin with, suppose that we want to express a function called f . Func-

tion f does the following: when a natural number is provided to f , f returns

a value which is equal to that number plus one. We can describe f using the

symbolic formation

f ∶ N→ N

The above formula means that f is a function from the set of natural numbers

to the set of natural numbers. This formula is called a `typed declaration' of

a function. Hence, we can describe the details of the function's operation or

calculation as

f(x) = x + 1

.

However, there is a problem with the above declaration. Namely, we have

to express the name f every time f is used. This demand may bring further

issues such as not being able to organize the name of f if we are making

a complex mathematical solution or computer program. To overcome these

issues, we may rephrase the statement to

27

2.1. AN INTRODUCTION TO PARSING NATURAL LANGUAGES

λx ∶ x ∈ N.x + 1

The above notion means that there is a function which takes a natural num-

ber x as an argument, and returns x+ 1. There is no requirement to express

the name of a function, viz. f , as in the previous declaration. In general,

functions are described in the λ calculus as follows:

λx ∶ α.φ(x)

Where x,α,φ(x), are called the variable, the type or domain, and the value

description, respectively. From this formulation, we can express the substi-

tution of a speci�c value into the function:

[λx ∶ x ∈ N.x + 1](10) = 10 + 1 = 11

The above formula constrains the variable to its domain, the natural num-

bers, by the set declaration {x ∶ x ∈ N}. Thus, N is a type of the variable x.

According to [104], we can de�ne the types separately as

28

CHAPTER 2. PARSED NATURAL LANGUAGES

f = λx.x + 1 ∶ N→ N

f(10)

= 10 + 1

= 11

In order to describe the domain for the λ notion, we can either use the tradi-

tional notion of set in set theory, or we use the notion of types in [104, 99, 86].

In the latter, the expression

a ∶ A

means that an object a is an element of a type A. There are two major

types in [14]. Namely, e is the type of individuals such as John, Mary, and

t is the type of truth values {0,1}. We can add a further type of situation

s to describe the situations of an utterance rather than the whole complete

worlds in Kripke's semantics [47, 42].

The de�nition of individuals is taken from the philosophy of logics, as

discussed in [105, 106, 107]. The de�nition of truth values t are de�ned in

classical logics, as discussed in [106, 62, 4]. However, the de�nition of sit-

uations is not quite clear despite its important role. The intensionality in

29

2.1. AN INTRODUCTION TO PARSING NATURAL LANGUAGES

[14, 102] could also be viewed as an interpretation of situations. In the au-

thor's opinion, the situation type s in the sense of [48, 47] represents the

pragmatic issues. Finally, from these basic types, we can construct the com-

plex types using the application rule in [14, 4]:

if ρ and τ are types, then ⟨ρ, τ⟩ denotes the function from the

type ρ to the type τ .

This rule exempli�es the compositional principle, following [62], which

states that a formula is equivalent to the composition of its subformula. An

example of a rule to express this principle is the substitution rule above.

Another example is a fragment of English linguistic expression by Montague

[4] with a clear illustration by typing declaration:

30

CHAPTER 2. PARSED NATURAL LANGUAGES

e ∶ entities

t ∶ truth

IV, intransitive vp, ∶ t→ e

T, term, ∶ t→ IV

TV, transitive vp, ∶ IV → t

IAV, IV modi�ed adv, ∶ IV → IV

CN, common noun, ∶ t→ e

adv ∶ t→ t

prep ∶ IAV → t

vp ∶ IV → t

vp ∶ IV → IV

Besides these basic types, we describe the additional monadic and param-

eterized monadic types in Chapters 4, 6, 7, 8, 9. For related research, see

[17, 21, 16] which show monadic types as the primitive objects.

From these typed declarations, we can de�ne the denotation of a linguis-

tic expression based on constraints on these types. For example, according

to [14]

JsmokeK = [λx.x ∶ e.smoke(x)]

So, a predicate is the function, or a test, that maps the set of individuals to

31

2.1. AN INTRODUCTION TO PARSING NATURAL LANGUAGES

1 if that individual smokes, and maps to 0 otherwise. Thus

JsmokeK(Ann) = 1 if Ann smokes and 0 otherwise.

If a predicate needs two arguments, we feed it with two λ notions such as

JloveK = [λx ∶ (x ∶ e).[λy ∶ (y ∶ e).y love xK

A similar approach is used for the conjunction operator and, as in an

example in [14]:

Ann sings and dances

is interpreted as

JandK = [λf ∶ ⟨e, t⟩.[λg ∶ ⟨e, t⟩.[λx ∶ e.f(x) = g(x) = 1]]]

where f, g, x are sing, dance, and Ann, respectively. According to [14],

other vacuous English words�possessives, to be, and inde�nites�have de-

notations

Jof JohnK = JJohnK

Jbe richK = JrichK

Ja catK = JcatK

with their interpretation in Montague's semantics as

32

CHAPTER 2. PARSED NATURAL LANGUAGES

JofK = λx ∶ e.x

JbeK = λf ∶ ⟨e, t⟩.f

JaK = λf ∶ ⟨e, t⟩.F

Heim & Kratzer also interpret adjectives, preposition, and nouns as func-

tions from individuals to truth values. Thus

JcatK = λx ∶ e.x is a cat

JgrayK = λx ∶ e.x is gray

JoutK = λx ∶ e.x is not in x's home

JpartK = λx ∶ e.[λy ∶ e.y is a part of x]

JfondK = λx ∶ e.[λy ∶ e.y is fond of x]

JinK = λx ∶ e.[λy ∶ e.y is in x]

The compositional principle is expressed as below

If JTexasK = Texas then

33

2.1. AN INTRODUCTION TO PARSING NATURAL LANGUAGES

Jin TexasK = JinK(Texas)

= [λx ∶ e.[λy ∶ e.y is in x]](Texas)

= λy ∶ e.y is in Texas

Now, the question is, what happens if we have more than one argument for

given lexical entries, such as a city in Texas? We are doing that by modi-

fying the Montague semantics for the preposition, in.

JinK = λy ∶ e.[λf ∶ ⟨e, t⟩.[λx ∶ e.f(x) = 1 ∧ x is in y]]

JgrayK = λf ∶ ⟨e, t⟩.[λx ∶ e.f(x) = 1 ∧ x is gray]

A problem, called a propositional problem, arises in giving semantics for ad-

jectives. It occurs when we are making subjective comparisons. For example,

in the sentences below from [14], "a small elephant" does not mean the same

as "a small animal".

Jumbo is a small elephant.

Jumbo is a small animal.

To avoid the problem, [14] strengthens the semantic interpretation of

34

CHAPTER 2. PARSED NATURAL LANGUAGES

adjectives:

JsmallK = λf ∶ ⟨e, t⟩.[λxe.f(x) = 1∧size of x is below the normal size of[y ∶ f(y) = 1]].

Or, if we are putting it into a context,

JsmallK = λx ∶ e.x's size is below c,

where c is the standard size of salient objects in the utterance context.

Furthermore, [14] interpreted the English de�nite description, the, as

JtheK = λf ∶ ⟨e, t⟩. there is x such that f(x) = 1 ∧

if exists y such that f(y) = 1 then y = x.

Since the de�nition of the de�nite description is not universal uniqueness,

the truth condition of uniqueness is local rather than global. Hence, the sit-

uation or contextual interpretation is

JtheK = λf ∶ ⟨e, t⟩. there is x ∶ C such that f(x) = 1 ∧ if exists y ∶ C

such that f(y) = 1 then y = x.

where C is a contextual subset of e

35

2.1. AN INTRODUCTION TO PARSING NATURAL LANGUAGES

λ-calculus is designed to express computations, so it uses variables in

a mathematical way. Thus, if we use it as theoretical linguistic semantics,

then we must translate linguistic expressions to have a variable declaration

in the λ notation. In other words, we are abstracting a linguistic expression.

Pragmatically speaking, we also have variables in linguistics. We use vari-

ables to express referencing such as anaphora it, he, she, or demonstratives

that, this, or relative clauses. According to [97], they are called variables

reference. Their meaning are short abbreviations for a complex linguistic

expression. Besides variables reference, we also have individual variables to

analyze quanti�ed propositions or representing λ abstraction. For example,

in order to provide the semantics to the sentence,

Every dog is barking.

we need a variable to quantify over the set of dogs to give the logical inter-

pretation of the sentence, i.e. ∀x.dog(x) → barking(x). Another example

is the following sentence from [92]:

The king of France is bald.

which has a logical interpretation,

∃x.(king of France(x) ∧ ∀y.king of France(y) → y = x) ∧ bald(x).

36

CHAPTER 2. PARSED NATURAL LANGUAGES

Semantically, according to [14], a variable denotes an individual which (or

who) relates to an assignment of a value. An assignment f , from the math-

ematical view, is a map from the set of variables to the space of individuals.

Thus, an assignment of a variable is an individual.

This interpretation is usually called Taski's variable truth assignment

function in [106]. This is a single assignment, i.e. a map from variables

to individuals. Thus, a trace of a variable under an assignment is the in-

dividual that is referred, in the assignment, by the variable. For example,

if we have the set of variables S = {x, y, z,⋯}, and the set of individuals

U = {Alice,Bob,Carol,⋯}, then the assignment function f , for example, is a

particular map

x↦ Alice

y ↦ Bob

z ↦ Carol

⋮

Thus, JxKf = Alice, or the trace of x under the assignment f is Alice. It is

worth noting that the real world contains many assignment functions. For

a particular semantic interpreting model, we usually limit our choices to the

meaningful assignment functions.

37

2.1. AN INTRODUCTION TO PARSING NATURAL LANGUAGES

If an expression is true in all assignments, we simply omit the superscript

of the assignment function, i.e.

∀f, JαKf = JαK = λx ∶ e.αx

.

For example,

∀f, JlaughKf = JlaughK = λx ∶ e.x laughs

There is no formal de�nition of variables in linguistics up to the author's

knowledge, as discussed in [14]. However, the phenomenon of variables is a

foundational assumption in logics and mathematics, such as in [92]. In the

author's opinion, the variables in theories of formal languages such as logics

and mathematics has a domain of interpretation which, while implicit, is still

clear and not vague. However, when we apply that notion to linguistics, it

results in a vague and confused terminology because the background assump-

tions are changed. Thus, the author stresses at this point for readers to be

aware of mismatches between natural languages and formal languages such

as logics or mathematics.

Now, we come back to the basic logical operators of quanti�cations and

38

CHAPTER 2. PARSED NATURAL LANGUAGES

how to interpret them in λ-calculus. The �rst question is, what are quan-

ti�cations in linguistics? And the second is how to interpret these quanti�-

cations. To answer the �rst question, we follow the de�nition of generalized

quanti�cations in [108, 14], described later in this chapter. Quanti�cations,

in traditional logics, is expressed using an operator such as the ∀ and ∃

notations. Linguistically, their appearance takes various forms such as

everything, nothing, something, few,⋯.

It should be noted that the idea of interpreting these quanti�cations as

entities (or individuals, e), or as a function from individuals to truth val-

ues (⟨e, t⟩) in λ-calculus is not possible. That is because they require other

expressions to form a phrasal meaning, such as in the following sentence, [ev-

ery dog] barks. Thus, we usually interpret quanti�cations as higher-order

types that take a domain of interpretation, and an interpreting predicate,

to complete the meaning. For example, in this sentence, the quanti�cation,

every requires the domain of interpretation, dogs, and a completing predi-

cate, bark. This generalized approach to quanti�cations provides a general

type for them as

JeverythingK = λf ∶ ⟨e, t⟩.∀x ∶ e.f(x) = 1

JsomethingK = λf ∶ ⟨e, t⟩.there is some x ∶ e.f(x) = 1

39

2.1. AN INTRODUCTION TO PARSING NATURAL LANGUAGES

since we want to restrict quanti�cations over a speci�c domain rather than

over the whole domain of individuals e. Thus, in the above sentence, we

quantify over the set of particular dogs in the speaker's view, rather than the

whole set of all dogs in all universes in all of present, past, and future. This

is done by adding the extra function to restrict the domain of quantifying.

Hence, their interpretations are

JnothingK = λf ∶ ⟨e, t⟩.λg ∶ ⟨e, t⟩.there is no x ∶ esuch that g(x) = 1 ∧ f(x) = 1.

JeverythingK = λf ∶ ⟨e, t⟩.λg ∶ ⟨e, t⟩.∀x ∶ e such that g(x) = 1 and f(x) = 1

JsomethingK = λf ∶ ⟨e, t⟩.λg ∶ ⟨e, t⟩. there is some x ∶ e.g(x) = 1 and f(x) = 1

Finally, we are going to introduce the interpretation of pronouns and bound

variables in the λ-calculus. The term pronouns, according to Heim & Katzer

[14], is de�ned as

A pronoun is used deictically when it receives its reference from

the extralinguistic utterance context, and it is used anaphorically

when it �picks up its reference� from another phrase in the sur-

rounding text.

However, there is a case in which pronouns do not have a referencing

object. This is a bound variable, and occurs in situations such as

40

CHAPTER 2. PARSED NATURAL LANGUAGES

Every man put a screen in front of him.

Here, the pronoun him does not refer to any real physical object, yet the

meaning is clear. We usually have this interpretation in propositional attitude

predicates such as think, believe, know, hope, be aware. For example, let us

take an example from [97]

Sally thinks the kid who lives next door to Ann could be a top gymnast.

Here, the bound variable the kid who lives next door to Ann could not

refer to any particular individual, yet the sentential meaning is clear. The-

oretically, the interpretation of a bound variable is as a co-index with the

restrictors under the quanti�cation, as in the �rst sentence, or the opaque

contexts, as in the second sentence. In the above examples, the bound vari-

able is a particular man or Sally's mind. Similarly, the interpretation of pro-

nouns is supplemented by the utterance contexts and variable assignments.

For example, if we have an utterance situation c1 with the assignment gc1 :

gc1 =

⎡⎢⎢⎢⎢⎢⎢⎣

1→Kim

2→ Sandy

⎤⎥⎥⎥⎥⎥⎥⎦

Then, in the utterance,

She1 is taller than she2

41

2.1. AN INTRODUCTION TO PARSING NATURAL LANGUAGES

means that

Kim is taller than Sandy.

A detailed analysis of the relation between utterance context and pronoun

is referred to the discourse representation theory (DRT) by [56] or dynamic

semantics by [109, 110, 44, 111]. Notably, combining λ-calculus and DRT

yields the cDRT by [24]. The cDRT is analysed in the Chapter 7 and a short

summary of dynamic semantics is given later in this chapter.

2.1.2 Type theories

This section provides as background knowledge on type-theoretical semantics

by [86, 112], rather than the typed categorical grammar by [113] and [6]. It

also serves as an intuitive explanation for the product and exponential in the

next chapter. Furthermore, the towering notion in [17, 12] can be viewed

as a type in this dissertation. Indeed, a similar format is derived by [114]

to formulate the syntactic calculus in type theories. Finally, type-theoretical

semantics also acts as a theoretical proof framework in which to express the

syntax and semantics of Chapter 8.

To begin with, let us start with basic de�nitions.

2.1.2.1 Judgements

According to [86][p. 2], judgements are one kind of linguistic act, or an act

in a broader interpretation. Thus, a judgements-oriented framework focuses

42

CHAPTER 2. PARSED NATURAL LANGUAGES

more on the pragmatics aspect. Judgements have a special form:

⊢ A

which means an assertion that a proposition A is true. From judgements,

we can set up inference rules to state relations between judgements. Accord-

ing to [115], we represent inferences rules horizontally, and separate them

vertically by a line. The judgements above the line are called premises, and

the judgements below the line are called conclusions. For example, let John

be a subject, runs is a predicate in the sense of Aristotle [91]. We conclude

that John runs is a sentence in linguistics as

John ∶ NP run ∶ NP→ S

John runs ∶ S

In the above sentence, we omit the ⊢ notion for convenience. A further

note is that a judgement is an indicative mood by [86][p. 26]; it does not

cover the emotional moods such as the interrogative or imperative moods.

Another example of an inference rule is the sentence below:

all men are mortal Socrates is a man
Socrates is mortal

If we go one step further to abstract from the mortal property as Prop,

and Socrates as an individual, then we have the following inference rule:

43

2.1. AN INTRODUCTION TO PARSING NATURAL LANGUAGES

All men are Prop I is a man
I is Prop

where Prop and I are called metavariables. They are called metavari-

ables because they interact with the judgements to make sense of judgement,

rather than being concrete objects.

We can now understand an axiom as being an inference rule without

premises. For example, we declare that a proper name Alice is a noun phrase

Alice ∶ NP

2.1.2.2 Proofs in linguistics

Intuitively, a proof system is a set of inferences rules. A proof is a particular

instance or application of a proof system. For example, the derivation of the

proof of the utterance, John runs as a sentence is

John ∶ NP run ∶ NP→ S
John runs ∶ S

The de�nition of proof in linguistics can be basically adopted from the

de�nition of proof in logics. Past research, such as [116], has shown a close

relation between logics and the semantics of natural languages. In particular,

we can follow [6][p. 20] to use the term proof in linguistics as a derivation of

connected inferences. Hence, the de�nition of grammar is a system of infer-

ence rules and the set of basic meaning interpretations. From this perspec-

44

CHAPTER 2. PARSED NATURAL LANGUAGES

tive, the derivation tree results from natural deduction. A full explanation

of proof-theoretic semantics in linguistics is given in by [2]. For example, a

natural deduction for the sentence Alice thinks vanilla is

Alice is a subject
postulate thinks vanilla is a predicate

Alice thinks vanilla is a sentence
Composition

This dissertation focuses on the typing aspect as a means of carrying

semantic values, in contrast to [6], where Shan uses types as a syntactic

classi�cation. Thus, we are still carrying the computer science tradition�

of interpreting types as semantic values�to linguistics analysis. Basically,

types are used to classify linguistic expressions. However, as linguistic expres-

sions are broadly classi�ed rather than limited to expressions in programming

languages, we consider the types in natural languages by their relevance. Ill-

types in our research means that the types are not relevant to the situations

of interpretation, rather than letting it be absent as in Shan's interpretation.

Thus, this research is similar to the pioneering investigations of type the-

ory in linguistics such as in [86, 112]. The di�erence between this research

and theirs is to interpret types according to relevance. We are not seeking the

absolute truth in linguistics as is done in logic. Rather, we seek understand-

ings that are true to some extent. This sense of being `true to some extent'

may be understood as applying the principle of relevance in a way similar to

Frege's principle of compositionality [62]. This approach is also discussed as

45

2.1. AN INTRODUCTION TO PARSING NATURAL LANGUAGES

Berg's criterion by [117] in section 6.2. Recognizing this principle is crucial

since natural languages are not exactly the same as computer programming

languages, even both are constructed by humans. The distinction is due to

the empirical research showing that the semantic values in linguistics are

more ambiguous than in programming languages. A discussion of the ambi-

guity can be seen in the next section 2.2 of this Chapter.

The idea of relevance is similar to the idea of possible-worlds semantics, or

intensionality [6], or approximating techniques [86][p. 55]. A phrase is called

intensional when we cannot �nd its references in a real world, for example in

one's imagination, such as for wish or believe. Thus, to provide the semantics

for such a phrase, we say that it is true in a given context, or in a possible

world. In another words, the phrase has intensionality in a particular or a

relevance context. See [102] for further details.

2.1.2.3 Untyped λ-calculus in a typed theory

We use the type theory, in the sense of [99], as a foundational framework to

express monads and λ-calculus. There are various extensions of λ-calculus,

which is the foundation of programming languages. In this dissertation, we

refer to the seminal paper by [3]. On the linguistic applications of type the-

ory, we refer to [86, 112, 118].

A related research theoretical framework with type theory is proof theory.

46

CHAPTER 2. PARSED NATURAL LANGUAGES

Proof theory's counterpart is model theory, as described in [119]. In this

dissertation, I use a type theory to express inference rules of expressions'

denotation, and λ-calculus to express an expression's operation. Firstly, let

us follow [6] to explain how the λ-calculus and simply typed λ-calculus are

expressed in a type theory. Γ is the notion of a context; E is an abbreviation

of an expression. Thus, the rules in untyped λ-calculus are represented in a

type theory as

47

2.1. AN INTRODUCTION TO PARSING NATURAL LANGUAGES

x ⊢ x
Id

Γ, x ⊢ E
Γ ⊢ λx.E

Abstract

Γ ⊢ F Γ ⊢ E
Γ ⊢ F E

Apply

Γ,∆ ⊢ E
Γ,∆,Θ ⊢ E

Weaken

Γ,∆,∆ ⊢ E
Γ,∆ ⊢ E

Contract

Γ,∆,Θ ⊢ E
Γ,Θ,∆ ⊢ E

Exchange

Γ, (∆,Θ),Φ ⊢ E
Γ,∆, (Θ,Φ) ⊢ E

Associate

Table 2.2: untyped λ-calculus in type theories

The typed λ-calculus, according to [120], has a general judgement of the

form Γ ⊢ e ∶ T where Γ is a context, e is an expression and T is its as-

48

CHAPTER 2. PARSED NATURAL LANGUAGES

sociated type. Hence, a typed system of the typed λ-calculus is represented as

x ∶ T ⊢ x ∶ T
Id

Γ, x ∶ T1 ⊢ E ∶ T2

Γ ⊢ λx.E ∶ T1 → T2

Abstract

Γ ⊢ F ∶ T1 → T2 Γ ⊢ E ∶ T1

Γ ⊢ FE ∶ T2

Apply

Γ,∆ ⊢ E ∶ T
Γ,∆,Θ ⊢ E ∶ T

Weaken

Γ,∆,∆ ⊢ E ∶ T
Γ,∆ ⊢ E ∶ T

Contract

Γ,∆,Θ ⊢ E ∶ T
Γ,Θ,∆ ⊢ E ∶ T

Exchange

Γ, (∆,Θ),Φ ⊢ E ∶ T
Γ,∆, (Θ,Φ) ⊢ E ∶ T

Associate

Table 2.3: typed λ-calculus in type theories

The above notion keeps the context Γ both complete and global. We can

add the local contexts to make the theory more accessible, as in the case

49

2.1. AN INTRODUCTION TO PARSING NATURAL LANGUAGES

of evaluation context in [6]. We can do so by using metavariables to model

an evaluation context, as also stated in [6][p. 26]. Detailed applications of

metavariables in type theory and monads are described in [121, 122]. Since

we are working in linguistics, the author follows [123][p. 7] to de�ne the

metavariable slightly di�erent. We said that the metavariable in [] is relative

to the context Γ as (Γ)[]. Thus, the rules for the contextual evaluation and

other grammar, for example, in [6][p. 33] are being kept unchanged as follows

[]
C[]

C[λ(x ∶ T).[]]
C[] Γ ⊢ E ∶ T1

C[((Γ)[]) E]
Γ ⊢ F ∶ T0 C[]
C[F ((Γ)[])]

Table 2.4: local evaluation context

Generally speaking, the interpretation of λ-calculus in type theory is the

interpretation of programming in logics by the propositions-as-types prin-

ciple, as described below. Notable contemporary research on this includes

[121, 86, 112]. The intuitive idea is that the dependent product types Π are

being used to represent the type of the λ abstraction. A further discussion

of the relation between λ calculus and constructive type theory can be found

in, for example, [124].

50

CHAPTER 2. PARSED NATURAL LANGUAGES

In the author's opinion, the introduction of the product and sum operators

to λ-calculus in [6] is represented by the dependent Π and Σ types in the

type-theoretic semantic part in [86]. Thus, the current development of type

theory, especially as described in [121], is expressive enough to capture the

formal system in [6].

2.1.2.4 The Curry�Howard correspondence

The Curry�Howard correspondence has another name: the propositions-

as-types principle. It states the correspondence between propositions and

types, or between logics and types in general. According to [86], who

followed Heyting, a proposition is an expectation, and to understand a

proposition is to understand what ful�ls the expectation. The word, `ful�l'

later become the word, proof in intuitionistic logic. These concepts are also

called problems and solutions by Kolmogorov. A proposition is a statement

of a problem, and a proof is a solution. Thus, a proposition A is true if

The problem A has a solution

According to [86] the problems (propositions) and solutions (proofs) have a

corresponding form by Heyting.

51

2.1. AN INTRODUCTION TO PARSING NATURAL LANGUAGES

Proposition has a proof

�

A&B a proof of A and a proof of B

A ∨B a proof of A or a proof of B

A ⊃ B A method for obtaining a proof of B from any proof of A

¬A a method for obtaining a proof of�from any proof of A

(∀x ∶ A)B(x) a method for obtaining a proof of B(a) for any a : A

(∃x ∶ A)B(x) an element a : A and a proof of B(a)

In type theory, a type represents a proposition as the proposition as a type

principle, and provides an element to a given type as the proof of the propo-

sition. Thus, a proposition is true if the type (set) has an element. In short,

we write a ∶ A for a reading that a is an element of type A. Hence, the

judgement a ∶ A, has the following explanations, in the view of each of the

above interpretations

a ∶ A A true comment

a is an element of the set A A has an element Curry�Howard

a is the proof of the proposition A A is true Gentzen

a ful�ls the expectation A A is ful�l Heyting

According to [86] and [6], if we are taking λ-calculus as a semantics of

proofs, then we have the corresponding formations

52

CHAPTER 2. PARSED NATURAL LANGUAGES

Proofs of Formations

�

A&B (a, b)where a : A, b:B

A ∨B a canonical injection i(a) when a : A or j(b) when b: B

A ⊃ B an λ abstraction λx.b(x)where b(x) : B (x :A)

¬A an λ abstraction λx.b(x)whereb(x) ∶ �(x ∶ A)

(∀x ∶ A)B(x) an λ abstraction λx.b(x)where b(x) : B (x :A)

(∃x ∶ A)B(x) a pair (a,b) where a : A and b : B

Table 2.5: Curry�Howard correspondence

The distinction between this set of correspondences and the above inferences

rule is that the earlier rule provides the semantics to a formula, while

the latter set of correspondences describes how the formula is de�ned.

Hence, in computing, the Curry-Howard correspondence leads to the insight

that constructing mathematical proofs is equal to constructing computer

programs. Problems, or speci�cations, or formulae, are types. Solutions, or

proofs, are programs. Deriving a proof is executing a program. The author

will use type theories, or an intuitionistic type theory in [99], as a particular

example to demonstrate that idea later in this dissertation.

We should note a distinction between deriving a proof and the proof itself.

Analogically, there is a distinction between executing a program and its

53

2.1. AN INTRODUCTION TO PARSING NATURAL LANGUAGES

output. Deriving a proof is a proof process where the process may be

undecidable or non-terminating, while a proof is a concrete or canonical

object which can be tested or veri�ed.

This distinction has several implications in linguistics. For example, [125],

following Van Benthem, shows the correspondence between Lamberk's cat-

egorial grammar and Montague's semantics. The categorial grammar is the

typing style, while Montague's semantics is the proof's type. Similarly,

[6][p. 38] interprets the correspondence in linguistics as the syntactic cat-

egory for formulae or types, and semantics, for utterance meanings.

2.1.2.5 An intuitionistic type theory

We use Martin-Löf's type theory by [99] as a description of the theoretical

foundation. Martin-Löf's type theory has in�uenced computer science as the

foundation for theorem-proving programming languages such as Coq [126]

and Agda [121]. The type-theoretical advantages are based on two major

points. Firstly, the theory is suitable for formalizing computational pro-

cesses by embedding λ-calculus, the theoretical foundation of programming

languages, by using the introduction and elimination rules for abstraction

and substitution. Thus, the normalization process in [3, 6] is interpreted

as a set of elimination rules. Secondly, Martin-Löf's type theory is open

for extensions. Additional types can be added to the original theoretical

framework under speci�c circumstances. Notable extensional types include

54

CHAPTER 2. PARSED NATURAL LANGUAGES

inductive datatypes, internal type theory, coercive subtyping, metavariables.

Through the Curry�Howard correspondence, there is an equivalence between

types and logics. However, the Martin-Löf's type theory has a richer

expressive power than �rst-order logic. This is because the theory has

progressive conjunctions, so that latter parts of the formula can depend on

previous parts. In linguistics, such back-reference is used to formalize the

donkey sentence in [86]. We will come back to give further explanation on

progressive conjunctions.

General speaking, the syntax of a type theory has a formula

Γ ⊢ a∶A

where Γ is the context, and ⊢ is a judgement. a is a term, and A is a type.

According to [86], a judgement is in an indicative mood. This means that

other expressing moods, such as imperative, mental, are not in the focus of

the theory. Indeed, we can follow [93] to trace back a judgement ⊢ as Kant's

short notion for a statement of I assert that. Therefore, a particular type

theory is quite pragmatically oriented in comparison with the tradition of

logics such as Aristotle's logic.

The context Γ contains a list of assumptions which have the form ai ∶ Ai.

In other words, Γ = {a1 ∶ A1, a2 ∶ A2, . . . , an ∶ An}. A term a is, basically,

55

2.1. AN INTRODUCTION TO PARSING NATURAL LANGUAGES

introduced to the theory by introduction and elimination rules of a type A.

The introduction rules show how we formulate a term, and the elimination

rules show how we operate on these terms and their associated types. On

the other hand, when a type is primitive in type theory, we use formation

rules to construct the type A. Therefore, the above formula has an interpre-

tation: under the context Γ, there is a conclusion that a term a has a type A.

It should be noted that the relationships between types and terms are far

from easy. Indeed, if we are focusing on the operation of terms, we have the

research domain on functional programming, while we have the research on

proof assistants if we are focusing on type operation. The main issue here is

the uni�cation problem. Intuitively, the uni�cation problem can be stated

as, given a term a, how can we decide that it has an associated type A? For

further research on this topic, see [127].

The Curry�Howard isomorphism, i.e. the propositions-as-types principle,

plays a central role in the above formulae. The isomorphism states the

analogy between logics and types. More clearly, it means that we can

express and understand a proposition under typed notions. The proposition

p is true if, and only if, there is a term a such that a has a type A, where

a is an interpretation of p. In short, p ∶ Prop if, and only if, Γ ⊢ a ∶ A. In

computing, for example, this principle is applied as a type-checking notion

in programming languages [128, 88].

56

CHAPTER 2. PARSED NATURAL LANGUAGES

Let us take the Π type to illustrate how to construct a type in type theory.

Other basic types such as the type of natural numbers N, the sum type Σ,

the ordering type W, or the universe U are covered by [99].

[x ∶ A]

⋮

(A ∶ Type) B(x) ∶ Type

(Πx ∶ A)B(x) ∶ Type
Πform

[x ∶ A]

⋮

(x ∶ A) b(x) ∶ B(x)

λx.b(x) ∶ (Πx ∶ A)B(x)
Πintro

a ∶ A f ∶ (Πx ∶ A)B(x)
fa ∶ B(a)

Πelim

[x ∶ A]

⋮

(a ∶ A) b(x) ∶ B(x)

(λx.b(x))a = b(a) ∶ B(a)
Πequal

Each type, for example the above Π type, contains four basic judgements,

namely: formation, introduction, elimination, and equality rules. The

formation rule sets up the syntax or symbolic de�nition of a particular type.

The introduction rule de�nes how terms or canonical objects are constructed

in the given type. On the contrary, the elimination rule combines or

substitutes objects of complex types into the simple one. Finally, the

equality rule states the relation between terms, and establishes the proof

when two terms are equal.

In the above example, all rules are stated in natural deduction or Gentzen's

57

2.1. AN INTRODUCTION TO PARSING NATURAL LANGUAGES

style. Above the bar are the premises or conditions, and below the bar is

the derivation or conclusion. The formation rule Πform establishes how the

Π type is constructed. We have two premises, a type A, and a rule that

associates each element x of type A to a type B(x).

The judgement Πintroduction, i.e. the Πintro rule, shows the construction

of canonical objects of the given type Π. Πintro can be read informally as

follows: if, for each element x of type A, there is a function b(x) of type

B(x), then b(x) has a Π type Π(x ∶ A)B(x). Roughly speaking, the Π

introduction rule provides the type for the λ abstraction λx.b(x). Indeed,

we can view Π type as a functional space in mathematics, i.e. a list of all

functions from A to B.

Similarly, the Π elimination rule, Πelim, plays the role of substitution in

λ-calculus. It reduces complex types, such as Π types, to simple ones. Πelim

can be read as: for a given term a of type A, and a function f of the Π type

(Π(x ∶ A))B(x), we can get the term f(a) of type B(a).

Finally, Πequal lets us know when two terms are equal. It relates introduction

and elimination rules by making an equation between a canonical object,

which is generated by introduction rules, and its correspondent by operation

of an elimination rule. It can be read as: for a speci�c term a of type A,

a term which is introduced by the introduction rule, i.e. λx.b(x), with an

58

CHAPTER 2. PARSED NATURAL LANGUAGES

application to a, is b(a).

2.1.2.6 Extensions of a type theory

Type theories are based on proof theories so their strength is based on the

construction of concrete objects. These objects are called canonical objects,

which have an identical property by the I rule in [99]. Their deriving rules

follow natural deduction rules and the hypothetical judgement, which means

that, given a ∶ A, we substitute a for x in f(x), which results in a type B.

Thus, if y = x, then f(y) also has an element equal to f(a), which has a

type B.

Therefore, a type theory is a good candidate for a system that requires

correct interpretation. An example of the system is a theorem prover such

as in [126], or veri�cation of mathematical texts or computer programs as in

[129, 121].

This dissertation cannot cover all contemporary extensions of type theories.

It is worth noting, however, extensions such as dependent type [130], logics-

enriched type theories [131], UTT [132] and its implementation in Agda [121],

Hoare type theory [133], modal type theory [123], and, recently, the develop-

ment of homotopy type theory [134].

59

2.1. AN INTRODUCTION TO PARSING NATURAL LANGUAGES

2.1.2.7 The multi-modal type-logical grammar

The multi-modal type-logical grammar is presented in [6] and [135].

We represent multi-modal operators in type-theoretical semantics by using

[86][p. 150], which follows the idea on a choice sequence by Martin-Löf, where

the necessary and possibility operator are interpreted as the Π and Σ types as

(2Γ)A(x) = (ΠΓ)A(x) ∶ prop,

(3Γ)A(x) = (ΣΓ)A(x) ∶ prop

There is an alternative way to represent in contextual modal type theory

[123]: a modality is represented by a hypothetic judgement.

2.1.3 Type-theoretical semantics

There are various approaches to type theories in linguistics. For example,

[86] provides a computational linguistics approach to type theories. Recently,

[112] provides a logical approach to the application of type theories in lin-

guistics with a dedicated special issue in the Journal of Language Modelling

[136]. In addition, [137] uses record type to unify linguistic frameworks such

as dynamic semantics and head-driven phrase structure grammar under type

theories. Hence, its fruitful result is the dialog system in [118]. Finally,

there are also other researchers who apply type theories in linguistics such

as [138, 139]. Thus, the basic concepts are described below.

60

CHAPTER 2. PARSED NATURAL LANGUAGES

2.1.3.1 Modern typed theoretical semantics

Type theory, as an instance of a proof theory, is one of several major for-

malisms for parsed natural languages. Typed theoretical semantics is estab-

lished by using type theories as a formalism. To begin with, we start with

an English sentence from [18]:

Walter snores.

The sentence consists of two words: Walter, and snores. The noun, Walter

is a name, with an assumption that it is referred to the individual called

"Walter". From that assumption, the expression Walter is completed, which

means that it is self-explained. There is no need of extra linguistic variables

to describe the name. In other words, the name is being taken as a constant.

Thus, Walter has a type or category Individual, the set of all individuals; in

short Ind.

On the other hand, the word, snore is a verb or a predicate. Intuitively, it is

a function that requires additional parameters for completion. A predicate

has no meaning when it stands alone, with one exception in a special context

where the object is inferred implicitly. In other words, this word is a function.

In the logical tradition, the semantics of a sentence is a proposition which

represents truth values. If we are taking the compositional principle in [62],

which states that the meaning of a whole is the totality of the meaning

61

2.1. AN INTRODUCTION TO PARSING NATURAL LANGUAGES

of its parts, then the meaning of a sentence is a combination, for a short

interpretation, of a verb and its associated noun or noun phrase in the

sentence. For example, the semantics of the sentence, Walter snores is

the combination of the meaning of a predicate snores, and a noun Walter.

In traditional logics, the meaning of a sentence has a category, or type,

Proposition. We abbreviate proposition as Prop.

For simplicity, we say that snore has a category Ind → Prop, or type

Π(x ∶ Ind)Prop. It is a predicate that requires an individual to complete

it, resulting in a proposition. In a summary,

Walter : Ind

snore : Π(x ∶ Ind)Prop

Walter snores = snore (Walter) : Prop

The �rst of these three lines means that: Walter has a category Ind.

The second line means that snore is a predicate that takes an individual and

returns the proposition.

The third, and �nal, line means that the composition of the predicate snore

62

CHAPTER 2. PARSED NATURAL LANGUAGES

and a noun Walter, i.e. snore (Walter) has a syntactic sugar (see [86]) as

Walter snores, and is a proposition.

Let us consider another example from [18]

Walter knows Kevin.

The verb, know, with its singular form knows, requires two parameters to

complete its meaning. Thus, it has the predicate form

know : Ind → Ind → Prop.

or a type

know : Π(x ∶ Ind)(y ∶ Ind)Prop.

There is a di�erence between a predicate which focuses on representing the

meaning, and a verb with its associated syntax. For example, in the above

sentence, Walter Knows Kevin and Kevin knows Walter have two di�erent

meanings. Hence, the question of placing the individuals, such as Walter

and Kevin, around the predicate, such as know, is concerning. If the verb is

represented as a predicate regardless of words order, it is possible to write

as know Walter Kevin for interpretation as either of Walter knows Kevin or

Kevin knows Walter. However, to avoid this ambiguity, we must derive the

order of composition of a predicate. In another words, we should have a

pre�x and post�x around the verb know.

63

2.1. AN INTRODUCTION TO PARSING NATURAL LANGUAGES

Therefore, the type or category should include the linguistic fact of

whether an individual appears on the right of the verb, or on its left.

Following [140], two kinds of predicative categories are distinguished

in [18]: a/b (a over b) which expects that the missing piece is on the

right, and a/b (a under b) which assumes that the missing part is on the left.

The adequacy formalization of the above example is

Walter, Kevin : Ind

Snore : Ind/Prop

Know : (Ind/Prop)/Ind

It has the following illustrated tree

Prop

Ind

Walter

Ind/ Prop

snores

64

CHAPTER 2. PARSED NATURAL LANGUAGES

Prop

Ind

Walter

Ind/Prop

(Ind/Prop)/Ind

knows

Ind

Kevin

2.1.3.2 Further examples

In the modern type theory in [112], a common noun is represented as a

universe, whereas nouns are interpreted as types in [86]. For example,

popular nouns such as man, woman, cigarette, ... are represented as types.

On the other hand, verbs, such as walk, run, light, talk, ... are represented

as predicates, as is the tradition in logics. Logical operators such as and, or

conjunctions are represented by the Σ type, and implications are represented

by the Π type. Let us demonstrate these ideas through the following

examples.

1) The sentence, [John walks] is formalized as, walk(J) ∶ Prop where: J is

John, and walk : human → Prop. J is a term of type man, i.e. J : man.

man is a subtype of human, i.e. man ≤ human. Thus, walk(J) is a valid

proposition under above assumptions.

65

2.1. AN INTRODUCTION TO PARSING NATURAL LANGUAGES

2) The conditional sentence, [John walks and Mary runs] is formalized as,

walk(J)∧ run(M) : Prop, where: J : Man; M : Woman; Man, Woman ≤ Hu-

man; walk, run : Human → Prop; ∧ is a conjunction type as presented above.

3) The existence sentence, [John takes a cigarette] is formalized as,

(∃x ∶ cigarette)take(J, x), where, for simplicity: take : Human → Human →

Prop.

4) The donkey sentence, [Every man who owns a donkey beats it] has

the above interpretation as .

(Πz ∶ (Π(x ∶ man)(∃(y ∶ donkey)own(x, y))))beat(p(z), p(q(z))). 3

This formalization follows the progressive conjunction approach. There is

another, alternative, approach in which an anaphoric expression it is treated

as a metavariable. However, that approach is outside this dissertation's

scope.

The sentence can have various semantic interpretations which depend on

the scope of its quanti�cations. In the above example, we set the scope of

the quanti�cation every over man rather than over man who owns a donkey

[141]. Thus, we verify the correctness of a sentence by checking it over the

3p and q are the left and right projections π1, π2 in [99]

66

CHAPTER 2. PARSED NATURAL LANGUAGES

set of man.

2.1.3.3 Universes

Universes has been used to model the common noun of type CN in [112].

Basically, the universe U is a collection of names, where each name is as-

sociated with its corresponding type. Thus, it is convenient for us to write

x ∶ U to declare that x is a type rather than to list all types and state that x

belongs to the list. Indeed, this lists is described as elements of U. Formally,

U = {U, τ ∶ U → Type}.

where U is a collection of names, and τ is a function that maps each name

in U to its associated type.

For example, the universe CN represents all common nouns:

U = {Man,Woman,Object, Ind, etc}.

Each element of U is a type. Man, for example, is a type of man. To illustrate

this point, we de�ne

τ(Man) = man,

where man is a type of all man. Thus, we can write x ∶ τ(Man), in short

x ∶ man. But we cannot write x ∶ Man since Man is just a name, not a

type. Noteworthy, elements of U are constructed by rules in type theory as

67

2.1. AN INTRODUCTION TO PARSING NATURAL LANGUAGES

represented in [99].

In the authors opinion, we can use the universe U to represent the pragmatics

in linguistics. Universes are quite useful when we formalize the proposition

that includes quanti�cations so that we can describe the domain of quanti-

�ers.

2.1.3.4 The progressive conjunction

The distinction between the applications of type theory and �rst-order logics

in linguistics is the progressive conjunctions property, originally de�ned in

[86]. The progressive conjunction allows the latter part of a sentence to

depend on previous parts. We cannot express this property in �rst-order

logic and the donkey sentence below, which is discussed in section 7.4, is an

illustrated example

If Perdo owns a donkey, he beats it.

It is clear that the semantics of the second clause depends on the interpre-

tation of the previous clause in the above sentence. It is problematic to

formalize in the �rst-order logics since it does not express the subformula

dependency. In type theories, both existence and conjunction are formalized

as the Σ type in type theory, and existence is a special case of conjunctions

where the second part depends on the �rst part. Thus, progressive conjunc-

tions is another name for existential propositions.

68

CHAPTER 2. PARSED NATURAL LANGUAGES

In order to explain the situation in detail, let us rewrite the existence and

conjunction in type theory as

∃ rules:

[x ∶ A]

⋮

(A ∶ Type) B(x) ∶ prop

(∃x ∶ A)B(x) ∶ Prop
∃Formation

a ∶ A b ∶ B(a)
(a, b) ∶ (∃x ∶ A)B(x)

∃Introduction

c ∶ (∃x ∶ A)B(x)
p(c) ∶ A q(c) ∶ B(p(c))

∃Elim (a, b) ∶ (∃x ∶ A)B(x)
p((a, b)) = a ∶ A q((a, b)) = b ∶ B(a)

∃Equal

p,q are projection functions that select the �rst and second elements of a

pair, respectively.

Conjunction rules:

A ∶ Prop B ∶ Prop

A ∧B ∶ Prop
∧ Formation

a ∶ A b ∶ B
(a, b) ∶ (A ∧B)

∧ Introduction.

(a, b) ∶ (A ∧B)
p((a, b)) ∶ A q((a, b)) ∶ B

∧Elim (a, b) ∶ (A ∧B)
p((a, b)) = a ∶ A q((a, b)) = b ∶ B

∧Equal

The di�erence between the ∃ type and the conjunction types is that the

second part of the ∃ type depends on the �rst element of the �rst part. If

we let B ∶ A → Prop, A ∶ Prop as A ∶ Type (by the propositions as types

principle) in the conjunction rule, then it becomes the ∃ rule. Thus, the ∃

69

2.1. AN INTRODUCTION TO PARSING NATURAL LANGUAGES

type is interpreted as a conjunction type when the second proposition is

based on the �rst one. Thus, the donkey sentence can be formalized in type

theory as

(Π(proof ∶ (ΣPedro ∶ Ind)(Σd ∶ Donkey)own(Pedro, d) ∶ Prop)beat(p(proof), q(proof)) ∶ Prop)

where the conditional sentence is interpreted as a Π type. For further discus-

sion, recent research [142] replaces the ∃ rules by the ε-calculus. This leads

to the interpretation that the derivation of the formalization of a sentence in

type theory is the anaphora resolution by [143].

2.1.3.5 Dependent types

The original term, dependent types, over intuitionistic type theory by [99]

is credited to [130]. However, Dybjer introduced this notion in computer

science. For a clear application in linguistics, we follow the research in [114]

and [112]. As described above, new types, in intuitionistic type theory, are

de�ned in formation rules based on previous rules. Thus, the expressive

power of types stays at the general description. In the propositions as

types principles, the propositions are diverse. Thus, type theories need

to be developed to express the correspondence. If we want types to have

more roles rather than just labeling, hence improving their expressive

power, Martin-Löf's type theory reaches its limits. One improvement on

Martin-Löf's type theory is creating new types that can be de�ned over

70

CHAPTER 2. PARSED NATURAL LANGUAGES

previous terms rather than types, thus, creating a layer of interactions

between types and terms.

The new type theory is called dependent types. It improves Martin-Löf's

type theory by having more precise descriptions of types. Thus, instead

of requiring precise descriptions of terms, we can express that on the

description of types. Let us illustrate a relation between types and terms

by an example of a type a which is a n-tuple vector Vecn and a depends

on n. n must be given explicitly in the de�nition of A. In intuitionistic

type theory, n is left in the assumptions. This leads to n being implicit, and

requires another variable in the assumptions for the declaration of n. On

the other hand, dependent type automates the declaration of an implicit

argument as a new type formation that depends on terms. In the example,

the dependent typed version of a is a : (n : Nat) Vecn, i.e. the declaration

that the type a depends on the term n.

We follow [114, 144] to introduce the dependent Π and Σ types. The gener-

alized dependent Π type has the following formula:

Π(x ∶ α)β

Where α is a type, x is a term, and β is a type which depends on x. The

application rule of the product type is

71

2.1. AN INTRODUCTION TO PARSING NATURAL LANGUAGES

f ∶ (x ∶ α)β a ∶ α
f(a) ∶ β(x = a)

Formation and introduction rules are

(a ∶ α)

α ∶ Type f(a) ∶ Type

(Πa ∶ α)f(a) ∶ Type

(a ∶ α)

f(a) ∶ F (a)

λa.f(a) ∶ (Πa ∶ α)F (a)

The application rule means that: given f , as a dependent type (x ∶ α)β, and

a term a with a type α, f(a) has a type β(a) which is a substitution of a for

x in β. In cases where β does not depend on α, we have a normal Π type.

For simplicity, we write f ∶ α → β.

There is another example of dependent types as the Σ type [144]

Σ(a,b) or Σ(x ∶ a)b

Its terms are a pair (a, b) where a has a type a and b has a type b(a). If b

does not depend on a, we have a normal Cartesian product type a × b. We

extract a and b from (a, b) by projection functions p and q: p(a, b) = a and

q(a, b) = b.

In typed theoretical semantics, we use the Σ type to interpret modi�ed com-

mon nouns by [144] where common nouns are interpreted as types. The idea

72

CHAPTER 2. PARSED NATURAL LANGUAGES

of interpreting common nouns as types is similar to the idea of interpreting

clauses as type [145]. Now, let us give Luo's example of a modi�ed common

noun,

Σ(JmanK, JhandsomeK)

This is a typed interpretation of the modi�ed common noun, handsome men

of the common noun, men. Where JaK is the typed semantics of a word a,

handsome is an adjective with a type handsome ∶Man→ Prop.

In a proof theory, or typed theoretical semantic in particular, the semantic

value of a sentence is asserted by providing a term for a given type. For

example, the semantic value of a sentence Joe is a handsome man, according

to [146] , is the proof of an assertion Joe ∶ Σ(JmanK, JhandsomeK). Practically,

it is constructed by providing the following assertions

Joe : JmanK,

Handsome

Proof : handsome(Joe)

73

2.2. AMBIGUITY IN NATURAL LANGUAGES

Where the individual Joe is a term of type man, and the handsome Proof is

being found in cognitive assumptions or derived from a mechanizing process.

An application of dependent type in linguistics is the interpretation of syn-

tactic calculus in dependent type [114]. If we interpret the calculus in typed

logical grammar in the sense of [18, 113], we have a towering notion in [12, 17].

2.2 Ambiguity in natural languages

There are persistent ambiguities in interpreting the meaning of natural

languages despite serious past attempts, all the way from Aristotle to

Hilbert's program. Philosophically, it is challenging to formalize the abstract

physical de�nitions such as center of the universe or intentionalities such

as belief. In the strict grammars required in programs such as compilers,

[26][p. 5] states that grammars are either incomplete or overgenerating. This

claim is supported by claimed technical di�culties in dealing with English

ambiguity in [147]. Among the major reasons for the di�culty of parsing

natural languages text is their complexity, ambiguity, and speci�cation by

collections of examples rather than by complete formal rules for grammars.

Another reason is that punctuation is used more sparingly.

From the perspective of what compilers need, the de�nition of ambiguity in

[85][p. 63] is:

A sentence from a grammar can easily have more than one pro-

74

CHAPTER 2. PARSED NATURAL LANGUAGES

duction tree, i.e., there can easily be more than one way to pro-

duce the sentence. From a formal point of view this is a non-issue

(a set does not count how many times it contains an element),

but as soon as we are interested in the semantics, the di�erence

becomes signi�cant. Not surprisingly, a sentence with more than

one production tree is called ambiguous, but we must immediately

distinguish between essential ambiguity and spurious ambiguity.

The di�erence comes from the fact that we are not interested

in the production trees per se, but rather in the semantics they

describe. An ambiguous sentence is spuriously ambiguous if all

its production trees describe the same semantics; if some of them

di�er in their semantics, the ambiguity is essential.

The characterization of ambiguity into essential and spurious in linguistics

has not been researched, to the author's knowledge. The present state of

research on the spurious ambiguity is given in categorial grammar by [148].

However, instead of that, the disambiguition of various forms of sentence

parsing in compiler technique has been used to solved linguistic semantic

ambiguity in [149], or scope-taking in [12].

Philosophically, in the author's opinion, the main source of ambiguity in the

semantics of natural language is an implicit use of the context, technically

termed `context sensitivity' in programming languages such as in chapter 1

of [6]. This idea is related to the research in [150]. It, for example, includes

75

2.2. AMBIGUITY IN NATURAL LANGUAGES

the common sense in [151]. In the author's opinion, basically, it relates

to the problem of requiring context-appropriate relevance of information in

order to interpret a formula. For example, if a sentence, John loves Mary

is evaluated on an utterance, it requires the speakers and listener to have

common concerns and intuitions about subjects, viz. John, loves, and Mary,

rather than other contextual information of the world such as whether the

king of France exists or not.4

In the author's opinion, the context sensitive in programming languages is

similar to the de�nition of pragmatics in [97]:

Semantics deals with the literal meaning of words and the mean-

ing of the way they are combined, which taken together form

the core of meaning, or the starting point from which the whole

meaning of a particular utterance is constructed. Pragmatics

deals with all the ways in which literal meaning must be re�ned,

enriched, or extended to arrive at an understanding of what a

speaker meant in uttering a particular expression.

For example, in Kearns' sentence

I forgot the paper.

4This idea, in the author's opinion, can be linked to independent logic by [152, 153],
which is also proposed as a foundation of mathematics. It is very expressive since depen-
dent logic is not proposed as a foundation of mathematics, to the author's knowledge

76

CHAPTER 2. PARSED NATURAL LANGUAGES

semanticists interpret an indexical �I�, predicate �forget� with the past tense,

a de�nite description the and an object paper. From these interpretations,

we can construct the meaning of a sentence as a list of indicative sentences:

There is a person who is speaking. There is a time t in the past that is

referred to, and he/she forgot an object which is a paper at that time.

There is still vagueness in the semantic interpretation due to the pragmatic

approach requiring role-play in order to have an accurate sentential meaning.

It answers questions such as who is �I�? What time is the utterance? What

is its scenario? Or what is the paper? We can only answer these questions

by a particular context of an utterance. Thus, in the author's opinion, we

have pragmatic issues by a practical usage of natural languages.

Linguistic ambiguity is far more complex than the compiler's scope for am-

biguity. It can be seen as a sense and reference of a linguistic term in by

[62]. In the author's opinion, sense is an ontology and reference is an epis-

temology. An example of the reference is the coreference problem between

the morning star and the evening star in [62]. The vagueness problem, for

example, discussed in [154], is normally associated with a sense in a term of

cognition, and an ambiguity is associated with a non-transparent reference.

Recent research by [72] states that the reference problem is the most generic

problem in natural languages.

Analogically we can think of the reference problem as providing semantics to

a pointer, or to a goto statement in computing. However, unlike computing,

references in natural languages are hard to grab because references have a

77

2.2. AMBIGUITY IN NATURAL LANGUAGES

complex syntax in languages all over the world, on top of the semantics. An

example is the syntax of quanti�cations such as ∀,∃ or the modality may,

might in the cross-disciplinary approach of [155] .

Mathematically, according to [94], the type theories developed in [92] avoid

the ambiguity. Recent research by [69] also shows the perspective that dis-

ambiguity is a coercion of types. However, ambiguity still persists in modern

mathematics in linguistics-related or conventional de�nitions such as uni-

verses in category theories.5

A list of linguistic ambiguities is studied in chapter 4 of [156]. Furthermore,

a study of ambiguity in mathematical text is conducted by [95], where he

stated that the major challenges are

� Introduction and use of variables in one sentence.

� Interpretation of symbolic mathematics.

� Linguistic text in mathematics. For example, a sentence such as

some natural number is prime

is ambiguous because the adjective prime has many senses.

� The interaction between symbolic and linguistic terms in mathematical

texts such as e is prime and Gn,e(C) is prime.

� The combination of the above points in sentential analyses.

5the universes is used in the proof of Fermat's last theorem.

78

CHAPTER 2. PARSED NATURAL LANGUAGES

From above reasoning, a complete study of ambiguity in linguistics is out of

the scope of this dissertation. Firstly, unlike computers' language, the ter-

minologies in natural languages, such as the centre of the universe is vague.

Hence, in the author's opinion, the process of natural languages' disambigua-

tion in accordance with parsing is analogous to providing a semantics for

them. Up to the state of the art, it depends on the linguistic phenomena and

theoretical backgrounds. Subsequent chapters explain the details of already-

studied linguistic phenomena in the background of the category theory; hence

the rest of this section provides a complement for these studies.

2.2.1 Quanti�cations

Quanti�ers are a multi-disciplinary research topic. It is an important topic;

the author cannot survey all in this dissertation. However, [157, 92] and

Henkin's quanti�er in [86] are classical mathematical studies. Linguistically,

[108] studied and called them as the generalized quanti�ers with an English

examples as few, some, most. These are regarded as a further discussion of

the generalized quanti�ers in the section on λ-calculus. However, the source

for this section is limited to the recent research in [158] and [159, chapter 1].

Quanti�ers have been studied since [92], with the �rst-order logical interpre-

tation of Westerståhl's sentences

Some professors smoke.

The king of France is bald.

79

2.2. AMBIGUITY IN NATURAL LANGUAGES

as

∃x.professor(x) ∧ smoke(x)

and

∃x.∀y.(king_ of_France(y) ↔ y = x) ∧ bald(x)

The problem with this interpretation is that it is not in the composition as

discussed in [159][p. 9]. [4] provides a compositional interpretation in simple

type theory :

(λP.λQ.(∃x.(P (x) ∧Q(x)))(professor))(smoke)

((λP.λQ.∃x.∀y.P (y) ↔ y = x ∧Q(x))(king_of_France))(bald)

Hence, the theoretical background frameworks, such as model theory in

previous attempts, plays a pivotal role for the interpretation of these

sentences. Besides, the linguistic de�nition, in conjunction with its analysis,

would extend the research boundary of the problem. The de�nition of the

quanti�ers is given in [160][p. 445] and [159][p. 10�11] as a functor Q, which

is described in the introduction to monads chapter,6 assigning each set E

6This idea is also expressed as a broader perspective, i.e. a desired formalized frame-

80

CHAPTER 2. PARSED NATURAL LANGUAGES

a binary relation QE between subsets of E. Though, not all functors are

quanti�ers, they should satisfy the condition

for all sets E and all permutations7 F of E and all A,B ⊆ E, QEAB i�

QEF (A)F (B)

Linguistically, A denotes a NP and B denotes a VP, so we can have a

sentence such as everyone runs with a quanti�er Q of every. In addition,

[159][p. 14-16] discussed the properties of the quanti�ers. They have the

characteristic of universality, which means that the meaning is the same in

every applied universe. Thus, at most ten has the same meaning in at most

ten men as it does in at most ten women. This phenomenon is a domain

restriction or conservativity, i.e.

for all sets E with A,B ⊆ E, QEAB i� QEA(B⋂A) 8

Thus, the meaning of

Several boys like Sue.

has an inference that

work, of generalized quanti�ers in [161][p. 460]. However, (author?) linked to category
grammar rather than a general category theory.

7 bijections
8This, roughly, means a subset relation.

81

2.2. AMBIGUITY IN NATURAL LANGUAGES

Several boys are boys who like Sue.

The quanti�ers also have the Boolean operators on them so we can construct

Westerståhl's sentences such as

Two students and a few professors left the party.

Mary and a few professors left the party.

For the linguistic challenges posed by these properties, readers are referred

to chapter 5 of [158]. In addition, other useful properties of quanti�ers in

linguistics are symmetry and monotonicity in [159][p. 18-21]. The symmetry

quanti�ers mean

Q(A,B) ⇒ Q(B,A)

Thus, some, even number of are symmetry quanti�ers while every, most are

not. Since Q has two arguments, the monotonicity quanti�ers can be either

left or right increase or decrease arguments as follows

MON ↑∶ Q(A,B)&B ⊆ B′ ⇒ Q(A,B′)

82

CHAPTER 2. PARSED NATURAL LANGUAGES

MON ↓∶ Q(A,B)&B ⊇ B′ ⇒ Q(A,B′)

↑MON ∶ Q(A,B)&A ⊆ A′ ⇒ Q(A′ ,B)

↓MON ∶ Q(A,B)&A ⊇ A′ ⇒ Q(A′ ,B)

This is the basic view of generalized quanti�ers. However, the quanti�ers

may not have a monotonicity property and is called non-monotonicity; or

they may have additional properties such as continuity in [160]. Combining

the logical operators and the above properties also yields a comprehensive

perspective of quanti�ers.

A linguistic view point of this topic can be found in [158, chapter 4]. In

addition, pragmatic properties of quanti�ers, especially inde�nites, such as

the scope, are argued as being not uniform in [158, chapter 6]. Finally, other

forms of quanti�cation such as distributive quanti�ers, bare and modi�ed

numeral quanti�cation are discussed in [158, chapters 8�10].

2.2.2 Dynamic semantics

This subsection can not cover all aspects of the topic. For a basic literature

on the topic, see discourse representation theory (DRT) in [56] or �le-change

semantics in [111]. Contemporary research includes [109, 110, 27, 44, 162].

Dynamic semantics is also a framework to explain linguistic phenomena in

83

2.2. AMBIGUITY IN NATURAL LANGUAGES

[46, 17, 95, 10, 42, 163]. In addition, a recent development is summarised

in [19, 164, 16]. Notably, [25][p. 305] also argues that the classic DRT is

another form of continuation semantics.

According to [162][p. 8], DRT in accordance with �le-change semantics, is

a formalized system on model theory of discourse referents which is based

on the logico-philosophical research of Geach and Karttunen. Thus, it has a

strong connection with (�rst-order) logics. However, they are not the same,

as pointed out by [25][p. 304], since DRT can visualize the reference resolution

process. Since the author has already introduced both λ-calculus and type

theories, the author skips the details of the framework and introduce the basic

idea below. A particular framework of DRT, called the cDRT, is analysed in

the Chapter 7.

Formally, the discourse representation structure (DRS) of DRT K is a pair

⟨I,C⟩ where I is the universe of a list of discourse referents, and C is a list

of DRS conditions. The DRS conditions can be described as

� an atomic condition Px1⋯xn where P is a n-ary relation and x1,⋯, xn

are discourse referents

� ¬K where K is a DRS

� K1 ∨K2 where K1,K2 are DRSs

� K1 ⇒K2 where K1,K2 are DRSs

84

CHAPTER 2. PARSED NATURAL LANGUAGES

A DRS ⟨{x1,⋯, xn},{c1,⋯, cm}⟩ is usually called a box, and is represented

as

x1,⋯, xn

c1

⋮

cm

A box is a primitive object for DRT in [56], meaning that the context, or

information state, is the primitive in DRT. DRT is thus distinguished from

the traditional classical logics, where the truth condition is primitive. We

can merge boxes, construct a complex discourse from sentences, update it,

translate to �rst-order logic, or provide a semantic model. Hence, boxes can

be used to formalize linguistic phenomena, and have become an in�uential

framework in the literature9. Its strength lies in its rigorous interpretation

of the donkey anaphora. However, it is usually criticized for not being

a composition. For example, a translation of the sentence, John owns a

Porsche into a box is

9Other in�uences on dynamic semantics are DPL, ε-calculus, �le-change semantics, etc

85

2.2. AMBIGUITY IN NATURAL LANGUAGES

x, y

Jonesx

Porschey

ownxy

A discourse such as, John owns a Porsche. It fascinates him. is complex to

parse as a box because the second sentence includes pronouns. If we skip

the pronoun resolution, the two boxes from these sentences can be merged

using the ● operator in [25][p. 304-308], to

x, y

Jonesx

Porschey

ownxy

fascinateyx

Hence, the above box, can be translated into �rst-order logic as

∃x, y.Jonesx ∧Porschey ∧ ownxy ∧ fascinateyx.

86

CHAPTER 2. PARSED NATURAL LANGUAGES

2.2.3 Scope-taking

The basic literature for scope-taking in linguistics is referred to by [12]. Re-

lated research are [165, 166, 75, 6, 17]. A recent research is conducted by [16]

with the study of the scope-taking of presuppositions in the graded monads.

Section 7.4 of this dissertation also discussed the scope-taking phenomenon.

A recent summary of scope-taking research is given by Barker in chapter 2

of [159]. Scope-taking is de�ned with a syntactic orientation in [159][p. 40]

as

A phrase takes scope over a large expression that contains it when

the larger expression serves as the smaller phrase's semantic ar-

gument.

Thus, in Barker's example

John said [Mary called [everyone] yesterday] with relief.

The quanti�cation everyone takes scope over its nuclear scope of Mary called

everyone yesterday, and spans over the whole sentence. Hence, it leads to the

scope ambiguity in accordance with two major syntactic analyses of linear

and inverse-scope reading in a complex sentence, including scope island and

ellipsis.

In order to provide the semantics for the challenges, various techniques

have been used, as described in [159, chapter 2, sections 2�3]. They are

87

2.2. AMBIGUITY IN NATURAL LANGUAGES

quantifying in, quanti�ers raising, Cooper storage, Flexible Montague

grammar, a logic in category grammar, and continuation.

A characterization of scopes is given in section 4 of the above research. Scope

takers cover all of lowering, split scope, existence versus distributive scope,

parasitic scope, and recursive scope. The lowering or total-reconstruction

scope taker means that the subject is taking a scope under an embedded

clause. For example, in Barker's example

some politiciani is likely [pi to address John's constituency].

means that the subjects of politician(s) is also a subject of an embedded

clause, i.e.

There is a politician x such that x is likely to address John's constituency.

Thus, its scope is to narrow down.

The split scope and existential versus distributive quanti�cation mean that

an expression can have multiple meanings10. An example is the German

determiner kein (no) which can be either negation or an existence quan-

ti�cation. Another one is the wh-phrases, such as how many, in English,

which can be either a wh-operator or a generalized quanti�er. The detailed

10You can think of it as a special kind of co-predication

88

CHAPTER 2. PARSED NATURAL LANGUAGES

interpretation depends on the focus of the sentence. For example, in this

sentence

How many people should I talk to?

The wh-phrase interpretation is

What number n is such that there are n-many people whom I should talk to?

i.e. how many people are there, with a property of the requirement for me

to talk to them? On the other hand, the generalized quanti�er reading is

What number n is such that I should talk to n-many people?

which means the number of people to be talked to.

The parasitic scope means a higher-order scope11. It is an expression that

takes scope over another scope taker such as same, di�erent. For example,

in the sentence

Every student reads the same textbook.

same takes scope over the other scope taker, every. The same process can

be used to interpret average in Kennedy and Stanley's sentence,

11This is analogous to higher-order logics or higher-order plurality; see [167, 168]

89

2.2. AMBIGUITY IN NATURAL LANGUAGES

The average American has 2.3 kids.

Finally, recursive scope-taking means an expression that can be another

scope-taking expression if it is combined with a scope-taking expression.

Barker's example is the English expression, same; however, with an alterna-

tive interpretation. For example, in the sentence,

Ann and Bill know [some of the same people.]

same is combined with people to become another scope-taking phrase, same

people.

The inde�nites and their scope, which is a motivation for dynamic semantics,

is analyzed in [159, chapter 2, section 5]. An inde�nite can be a reference

or quanti�ers, and are related to Skolem functions that show the analogy

between existential quanti�ers and operations over the set of individuals, i.e.

the formula ∀x.∃y.Px∧Qy is equivalent to ∀x.Px∧Q(fx). The function can

be probabilistic, and is called a choice function. The quanti�ers can be devel-

oped further into branching or Henkin's quanti�ers. A recent development

is dependence logic [153]. Inde�nites also have a cumulatives of plurality

reading in the sentence:

Two boys read three books.

or the de dicto/de re ambiguity in intensionality. For example, Barker's

sentence

90

CHAPTER 2. PARSED NATURAL LANGUAGES

Mary wants to buy an inexpensive coat.

has a de dicto reading that she wants to save money, while its de re reading

means that Mary bought a coat but is not concerned that it is inexpensive.12

2.2.4 Conventional implicatures

The thorough literature review of the phenomenon with a formal semantics

approach is summarized in [78]. A short review is given by [169] with an

indication that there is no uni�ed formal treatment of speaker-orientation

in Potts' theory. An empirical challenge to the non-interaction principle

between the at-issue and the conventional implicature, with the proposed

solution in the dynamic predicate logics, is given by [80]. An alternative

solution is given in section 9.3 of this dissertation. In the author's opinion,

the interaction between textual and symbolic meaning in mathematical text

in [95] can be viewed as an interaction between at-issue and conventional

implicature dimensions. Hence, this viewpoint supports the hypothesis in

[80].

General speaking, the conventional implicature (CI) phenomenon is the mul-

tidimensional analysis of a sentence. Sections 2 and 3 of [169] provides the

theoretical framework and empirical explanation. The detailed discussion of

the phenomenon is given in sections 4.4 and 9.3. The de�nition of the phe-

nomenon, according to [169][p. 710] and [78], is the meaning triggers which:

12For the state of the art of other readings, besides the two given, see [159][p. 69]

91

2.2. AMBIGUITY IN NATURAL LANGUAGES

� Are constituent to the meaning of an utterance in the conventional way,

and is non-cancellable.

� Not at the central constituent, or the at-issue part, and independent

from this part; however, CI can take at-issue as an argument.

� Are scopeless, or scope-free.

� Are speaker-oriented, except in direct quotations.

Under pragmatic characterization, Potts divided the CI into two main

groups of supplements (e.g appositives and parentheticals), and expressive,

[78, chapters 4 and 5]. Examples in [169][p. 710�711] are

Supplements

As-parentheticals: Ames was, as the press reported, a successful

spy.

Supplementary relatives: Ames, who stole from the FBI, is now

behind bars.

Nominal appositives: Sheila believes that Chuck, a psychopath,

is �t to watch the kids.

92

CHAPTER 2. PARSED NATURAL LANGUAGES

Topic-oriented adverbs: `Physically, the keyboard is smaller than

I expected, and extremely well built�there's no creaking or

�exing. The keys look as if they will last well�including their

paint. Thoughtfully, there is a clip-on cover for the connector

while not in use.'

Speaker-oriented adverbs: Motorola said that, amazingly, it has

no spare modems.

Utterance-level modi�ers: Frankly (speaking), Ed �ed.

Expressives

Expressive attributive adjectives: Sue's dog is really bloody

mean.

Epithets: Every Democrat advocating [a proposal for reform]1

says [the stupid thing]1 is worthwhile.

Honori�cs (Japanese):

93

2.3. DISCUSSION

Ame ga furi-mashi-ta

rain SUBJ fall (HON-PAST)

it rained (performative honori�c)

or

Yamada sensei-ga o-warai-ni nat-ta

Yamada teacher-NOM HON-laugh-DAT be-PERF

Professor Yamada laughed.

German Konjunktiv I which implies a lack of speaker's com-

mitment to an embedded clause:

Sheila behauptet, dass sie krank sei.

Sheila maintains that she sick be.

KONJ

Sheila maintains that she is sick.

Finally, a further discussion of this phenomenon is provided in section 9.3.1.

2.3 Discussion

This chapter provided a background for this dissertation, introduced the pars-

ing of natural languages and how to address ambiguity. Natural language

parsing is approached under the logical perspective with the hypothesis of

parsing as deduction. The author also discussed λ-calculus and type theories

as parsed frameworks for linguistic phenomena. Besides the above-listed phe-

nomena, also worth investigating is the copredication phenomenon, recently

94

CHAPTER 2. PARSED NATURAL LANGUAGES

studied in [154, 170, 171, 172, 173]. Finally, a further study of character-

ization of ambiguity in natural languages, such as essential and spurious

ambiguity, in compilers is suggested as a prominent research direction in

section 2.2.

95

Chapter 3

The definition of Monads

According to [157][p. 1], there is a duality between formal and conceptual

de�nitions in mathematics. In a rough sense, formal means logical deduc-

tions or axiomatic studies, while conceptual means inside properties of a

studied object. For example, the formal approach concerns the deduction

of theorems from axioms in group theory, while the conceptual approach

considers classes of actual groups to which `group' refers.

Furthermore, [157] also states that studying the foundation of mathematics

means studying the universal mathematical characteristics. Hence, if we

focus on the formal aspect, we have logics, and we have a category theory

if we concentrate on the conceptual aspect. This idea is developed further

to the triangle equality between logics, types, and category theories in [30].

That relationship is called the Curry�Howard�Lambek correspondence.

If we keep the correspondence, an analogy between type and category

theories, which is also studied by [174], is summarized and extended by

recent studies as

97

3.1. BASIC DEFINITIONS

Type theory ≈ Category theory annotation

Σ type ≈ binary product ∃quantifier,pair of expressions

Π type with intro and elim rules ≈ Exponential with curry and eval ∀quantifier,application and abstraction of an λterm

metavariable in the sense of[121]or ≈ monad express questions or modality

hypothesis reasoning in the sense of[28]and[123]

Dependent type theory ≈ locally cartesian closed categories [175, 176]

dependent linear type theory ≈ indexed monoidal category quantum computation by[177, 178]

Table 3.1: duality between category and type theories

The introduction of category theory or a comprehensive survey of the equiv-

alent between category and type theories is broad an under contemporary

research. Thus, this dissertation is going to introduce basic de�nitions in

category theory which associate with monads as a background knowledge.

Let us start by giving a de�nition of a category, as in [30, 29].

3.1 Basic de�nitions

De�nition 1: A category C is de�ned by:

1. a collection of objects, Obj(C). An object is called A, B, C, etc.

2. a collection of arrows (often called a morphism), Arr(C). An arrow

is called f , g, h, etc.

3. operations assigning each arrow f to its domain�an object dom f, and

its codomain�an object cod f. We usually write these traditionally

98

CHAPTER 3. THE DEFINITION OF MONADS

as

f ∶ A→ B or, graphically, A f
Ð→
B.

A collection of all arrows with domain A and codomain B is C(A,B).

4. If f , g are arrows and cod f = domg, a composite arrow g○f ∶ domf →

cod g is a composition operator with an additional associative law :

for any arrows f ∶ A→ B,g ∶ B → C,h ∶ C →D,

h ○ (g ○ f) = (h ○ g) ○ f .

5. For each object A, an identity arrow id
A
∶ A → A with an additional

law f ○ idA = f = idA ○ f .

Intuitively, an object is a type or set in type theory or computing,

and an arrow represents a judgement or function over the type or

set. However, in category theory, the priority is the relation between

arrows rather than de�ning the actual elements in a set. Notably, an

associative law is able to be regarded as the substitution rule. An

example of a category is the Set category by setting:

(a) A collection of sets as objects (if we do not concern about cardi-

nality and hierarchy).

(b) Total functions between sets as arrows.

99

3.1. BASIC DEFINITIONS

(c) Identity arrows as identity functions in set theory.

To verify that Set is a category, we check that the �ve elements of

the above de�nition all hold. Further categories with de�nition of ob-

jects and arrows, such as partial order sets with monotone function,

monoids with monoid homomorphisms, vector spaces with linear trans-

forms, topological spaces with continuous functions, are illustrated in

[29]. These examples substance the coverage of the category theory

and show its potential applications.

Linguistically, we can view situations or information states in situation

theory in [47, 179] as objects, and arrows as assignment functions

or transitions between states. If we restrict the assignments1 to the

associative and identity laws by interpreting them in Kripke's concrete

possible-worlds semantics (set theoretic semantics [180]), or transitions

to team semantics [181], then we have a categorical interpretation of

situation or dynamic semantics.

Another linguistics-oriented example is Church's simply typed λ-

calculus [3], interpreted as a closed Cartesian category [182]. It will

be discussed in subsequent sections of this chapter. It implies that we

can have a categorical interpretation of Montagovian semantics [4], of

which sample illustrations can be found in [14] and [25][p. 173-175].

1In Carnap's approach to the philosophy of languages [105], an arrow denotes Tarski's
assignment function that assigns individuals to variables.

100

CHAPTER 3. THE DEFINITION OF MONADS

This approach would answer to criticisms that Coecke's research [32]

does not cover Montague's semantics.

De�nition 2: An object 0 is an initial object if, ∀A ∈Obj(C), there

exists an unique arrow from 0 to A.

De�nition 3: An object 1 is a terminal object if, ∀A ∈ Obj(C),

there exists an unique arrow from A to 1.

For example, in the category set, the empty set {} is the initial object

since, for each set S = {a} inObj(C), the only arrow from {} to S = {a}

is a map from ∅ to a. Each one-element set {a} is a terminal object

because, for each set S, the arrow from S to {a} is a constant function

that maps each element of S to a.

De�nition 4: A product of two objects A and B is an object A ×B

with two projections: π1 ∶ A × B → A, π2 ∶ A × B → B, such that, for

every triple A f
←Ð

C g
Ð→

B, there is a unique arrow ⟨f, g⟩ ∶ C Ð→ A×B

such that

π1 ○ ⟨f, g⟩ = f and π2 ○ ⟨f, g⟩ = g.

The product de�nition is a representation of the Cartesian product A ×B =

{(a, b) ∶ a ∈ A ∧ b ∈ B} in set theory. As part of our abstraction away from

101

3.1. BASIC DEFINITIONS

set theory, we do not have the ∈ notion. Thus, the above de�nition replaces

the Cartesian product in set theory.

Similar to disjoint unions in set theory is the de�nition of coproduct in cat-

egory theory:

De�nition 5: a coproduct of two objects A and B is an object A+B with

two injection arrows ι1 ∶ A → A + B and ι2 ∶ B → A + B such that, for any

triple A f
←Ð

C g
Ð→

B, there is a unique arrow [f, g] ∶ A +B → C such that

[f, g] ○ ι1 = f and [f, g] ○ ι2 = g.

In set theory, the disjoint union of two sets X, Y is X +Y = {1}×X ∪{2}×Y .

In the category set, we illustrate the objects as below

X ι1←ÐÐ
X + Y ι2ÐÐ→

Y

ι1(x) = (1, x), ι2(y) = (2, y)

The new formed arrows are given as follows. Suppose that

f ∶X → Z, g ∶ Y → Z, [f, g] ∶X + Y → Z.

102

CHAPTER 3. THE DEFINITION OF MONADS

[f, g](1, x) = f(x), and [f, g](2, y) = g(y).

From the de�nition of product and coproduct, we can generalize to the in-

dexed family of products.

De�nition 6: Let C be a category with a product, and A,B be objects

in C. An object BA is an exponential object if there exists an arrow

eval
AB

∶ (BA ×A) → B such that, given an object C and arrow g ∶ (C ×A) → B,

there is exactly one arrow curry(g) ∶ C → BA such that

eval
AB

○(curry(g) × idA) = g.

The exponential object is the representation of the functional space, or a

collection, from A to B in set theory, i.e. BA = {f ∶ A → B} (or Π type in a

type theory).

De�nition 7: A Cartesian closed category (CCC) is a category with a

terminal object, a product, and exponentiation.

These are the basic de�nitions, in category theory, for understanding mon-

ads. For other de�nitions, such as limit, colimit, equalizer, pullback,

pushout, see [29].

The next section introduces the interpretation of simply typed λ-calculus in

category theory.

103

3.1. BASIC DEFINITIONS

3.1.1 Simply typed λ-calculus in category theory

Recent research in formal semantics, especially Montagovian grammar, is

based on the λ-calculus in section 2.1.1. This section will show how we in-

terpret the calculus in a Cartesian closed category, in order to establish a

starting point for further research. Basically, the interpretation is as given

in [29][p. 53-57] or [30, 29, 182]. Its potential further research, for example,

is the study of Kripke's semantics in the sense of a linguistic model in cat-

egory theory. [183] shows the translation between Kripke's semantics and

the Cartesian closed subcategories of presheaves over a poset while the ma-

jority of formal semantics, which includes λ-calculus, is based on Kripke's

possible-world semantics [180].

Basically, according to [29] the syntax for typed λ-calculus is given, by [3],

as below

M ∶= unit∣c∣x∣λx ∶ A.M ∣(M M)∣(M,M)∣π1 M ∣π2 M

Table 3.2: Syntax of the typed λ-calculus

Where x is a variable that ranges over a set of variables, and c is a metavari-

able that ranges over a set of constants. The λ notion is the functional

abstraction. M M
′

is the functional application. (M,M
′) is a pair with π1

and π2 being projection functions.

104

CHAPTER 3. THE DEFINITION OF MONADS

Besides the basic syntax, the treatment of free variables is given an additional

step. The variable x is free in the formula x, and the free variable in the

formula λx ∶ A. M is the set of free variables in M excluding x. Free

variables in other formulae are the concatenation of free variables in their

sub-formulae. The typing rules for the syntax are

Γ ⊢ unit ∶ Unit

Γ ⊢ c ∶ Bc

Γ;x ∶ A ⊢ x ∶ A
Γ ⊢ x′ ∶ A′

Γ;x ∶ A ⊢ x′ ∶ A′
Γ;x ∶ A ⊢M ∶ B

Γ ⊢ λx ∶ A.M ∶ A→ B
Γ ⊢M ∶ C → B Γ ⊢M ′ ∶ C

Γ ⊢ (M M ′) ∶ B
Γ ⊢M ∶ B Γ ⊢M ′ ∶ B′

Γ ⊢ (M,M ′) ∶ B ×B′

Γ ⊢M ∶ B ×B′

Γ ⊢ π1M ∶ B
Γ ⊢M ∶ B ×B′

Γ ⊢ π2M ∶ B′

Table 3.3: Recapturing typed λ-calculus in the type theory by [29].

Besides typing rules, there are additional equivalent rules to provide the

reasoning in the languages. notable are β and η rules as

(β)(λx ∶ A.M)N = [N/x]M ∶ B

105

3.1. BASIC DEFINITIONS

(η)(λx ∶ A.M x) =M ∶ A→ B

The β rule means that substituting x to N in M is equivalent to applying

N to an abstract over M for a free variable x in M . Normally, the rule is

associated with the let construction in programming languages. The η rule

means that each element in a function type is equivalent to a λ abstraction.

The translation of the above type system to a Cartesian closed category

C are given below. The main di�culty is to translate the substitution to

C. Consequently, the di�culty of the inverse direction is to de�ne the λ

abstraction. The translation is basic in the sense that we can complicate and

equip the about type system with additional equality rules.

The typing translation is

JAK = AC(A ∈K)

JUnitK = 1

JA ×BK = JAK × JBK

JA→ BK = JBKJAK

The context is translated into

106

CHAPTER 3. THE DEFINITION OF MONADS

J∅K = 1

JΓ;x ∶ AK = JΓK × JAK

The syntax is translated as follows

JΓ ⊢ unit ∶ UnitK =! ∶ JΓK→ JUnitK

JΓ ⊢ c ∶ BcK = c○! ∶ JΓK→ JBcK

JΓ;x ∶ A ⊢ x ∶ AK = π2 ∶ (JΓK × JAK) → JAK

JΓ;x ∶ A ⊢ x′ ∶ A′K = JΓ ⊢ x′ ∶ A′K ○ π1 ∶ (JK × JAK) → JA
′

K

JΓ ⊢ λx ∶ A.M ∶ A→ BK = curry(JΓ, x ∶ A ⊢M ∶ BK) ∶ JΓK→ (JBKJAK)

JΓ ⊢ (M M
′) ∶ BK = evalCB ○ ⟨Γ ⊢M ∶ C → B, JΓ ⊢M ′ ∶ CK⟩ ∶ JΓK→ JBK

JΓ ⊢ (M,M
′) ∶ B ×B′

K = ⟨JΓ ⊢M ∶ BK, JΓ ⊢M ′ ∶ B′

K⟩ ∶ JΓK→ JB ×B′

K

JΓ ⊢ π1M ∶ BK = π1 ○ JΓ ⊢M ∶ B ×B′

K ∶ JΓK→ JBK

JΓ ⊢ π2M ∶ BK = π2 ○ JΓ ⊢M ∶ B ×B′

K ∶ JΓK→ JBK

Table 3.4: Typed λ-calculus in category theory.

[30] provided a better illustration, as below, by showing the analogy between

logic and category theory.

107

3.1. BASIC DEFINITIONS

Axiom
Γ,A ⊢ A

Id
π2 ∶ Γ ×AÐ→ A

Conjunction

Γ ⊢ A Γ ⊢ B
Γ ⊢ A ∧B

∧ I
Γ ⊢ A ∧B

Γ ⊢ A
∧E1

Γ ⊢ A ∧B
Γ ⊢ B

∧E2

f ∶ ΓÐ→ Ag ∶ ΓÐ→ B

⟨f, g⟩ ∶ ΓÐ→ A ×B
f ∶ ΓÐ→ A ×B
π1 ○ f ∶ ΓÐ→ A
f ∶ ΓÐ→ A ×B
π2 ○ f ∶ ΓÐ→ B

Implication

Γ;A ⊢ B
Γ ⊢ A ⊃ B

⊃ I
Γ ⊢ A ⊃ B Γ ⊢ A

Γ ⊢ B
⊃ E

f ∶ Γ ×AÐ→ B
Λ(f) ∶ ΓÐ→ (AÔ⇒ B)

f ∶ ΓÐ→ (AÔ⇒ B) g ∶ ΓÐ→ A

evA,B ○ ⟨f, g⟩ ∶ ΓÐ→ B

Table 3.5: Illustrated duality between logics and category theory.

The Λ notion in implication rules means the abstract type, which is an

abstract for type, whereas an abstract for terms is the normal λ notion.

We can extend this basic interpretation further. [8, 184], for example, showed

that monads (to be discussed later in section 6) in category theory can cap-

ture an extension of typed λ-calculus with e�ects. An extension of monads

is given in Chapter 5. The intuitive idea in the logical sense, in the au-

thor's opinion, is the translation between the propositional universe and the

hypothetical universe. The propositional universe accommodates pure calcu-

lations in functional programming. The hypothetical universe, in contrast,

includes modality, conjectures, questions, or e�ects. The monadic laws tie

up the interaction between the two universes, particularly via Kleisli's triple.

This view is also taken in, for example, logic-enriched type theory [131].

108

CHAPTER 3. THE DEFINITION OF MONADS

3.2 The de�nition of functors

De�nition 7: Let C, D be categories. A Functor2 F ∶ C → D is de�ned as

follows:

1) if A is an object of C, F(A) is an object of D.

2) if f is a C arrow with f ∶ A→ B then F(f) ∶ F(A) → F(B) with additional

properties. For all A in Obj(C), and composable arrows f, g in Arr(C),

� F(idA) = idF(A)

� F(g ○ f) = F(g) ○ F(f)

If C, D is the same, F is called an endofunctor. There are various examples of

functors; [30][p. 26�27] give examples of F ∶ G→ set, where G is a group and

this functor denotes an action of G on a set. If P is a poset which represent

time, a functor F ∶ P → Set can be used to describe the Kripke's semantics.

Another example is a functor, list : set → set. If A is an object in set,

list(A) is a collection of �nite elements in A. If an arrow f ∶ A → B is a

function which operate on the set A (such as sorting) then

list(f) ∶ list(A) → list(B) and

list(f)[x1,⋯, xn] = [f(x1),⋯, f(xn)].

2According to [29], the name is taken from [105].

109

3.3. THE DEFINITION OF A NATURAL TRANSFORMATION

3.3 The de�nition of a natural transformation

Functors, in the previous section, show relations between categories. Natural

transformation is the relation between functors. Intuitively, from the logical

point of view, a functor is the higher-order logic, i.e. reasoning with arrows

of a category. An example of a functor in linguistic is the quanti�er ∀. Thus,

we can use it to express an axiom: ∀x ∶ A.f(x) for A and f are an object

and arrow, respectively, in C.

Hence, a natural transformation is used to write an inference statement such

as ∀x ∶ A.f(x) ⇒ ∀y ∶ B.g(y) for x, y, f , g being objects and arrows in C.

Formally, the transformation is de�ned as below.

De�nition 8: let C,D be categories. F,G are functors from C to D. A

natural transformation η from F to G (η ∶ F → G) is a function: if A is the

object of C, there exists a D arrow ηA ∶ F(A) → G(A) such that, for any C

arrow f ∶ A→ B, the following diagram commutes in D

F(A) G(A)

F(B) G(B)

F(f)

ηA

ηB

G(f)

for example, for any functor F , the identity natural transformation ι ∶ F → F

are identity arrows, i.e. ιA = idF (A).

Another example is the natural transformation reverse of a functor

List ∶ Set→ Set, which is de�ned as:

110

CHAPTER 3. THE DEFINITION OF MONADS

reverse : List → List

reverseX ∶ List(X) → List(X) ∶= [x1,⋯, xn] ⇒ [xn,⋯, x1]

3.4 An introduction to monads

The mathematical de�nition of monads is given below.

De�nition 9: A monad over a category C is a triple (T, η, µ) where T is

an endofunctor, and

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

η ∶ IdC → T

µ ∶ T 2 → T

are natural transformations, and the diagrams below commute:

T T 2 T

T

idT

ηT

µ

T (η)

idT

η, µ are called the unit and multiplication of the monad, respectively.

Assuming familiarity with functional programming (such as [185]), we can

follow the standard practice of using the Kleisli triple [33][p. 45] to interpret

the above monads. We follow [20] to provide a simpler interpretation of

111

3.4. AN INTRODUCTION TO MONADS

monads. A monad is a monoid. Monoids meet these two criteria:

1. Monoids combine with other objects of the same kind to return an

object of the same kind. This principle is quite useful for modelling the

compositional rules in linguistic semantics.

2. There exists a unit object so that, if we combine an object α with the

unit object, we will still have α. For example, in basic arithmetic, we

have a unit object 0 for the + operator and a unit object 1 for the ×

operator.

In addition, the monads require:

1. The functor that will create or associate new types from original types

and the connections between new types that correspond to the old re-

lations.

2. A unit operation that lifts the actual values of the original types to their

images under the functor operator.

3. A bind operation that performs the composition rules.

Thus, we write the monad as a Kleisli triple ⟨M, η, ⋆ ⟩ where M is the

functor, η is the unit and ⋆ is the binding operator.3

η has a formation ∀a.a→M(a).

3In [17], the ⋆ operator is represented by the ⊸ operator.

112

CHAPTER 3. THE DEFINITION OF MONADS

⋆ has a formation ∀a.∀b.M(a) → (a→M(b)) →M(b).

In addition, further rules for a proper monad, which is equivalent to the

commute diagrams, are

η(x) ⋆ f = f(x)

m ⋆ η =m

(m ⋆ f) ⋆ g =m ⋆ (λx.f(x) ⋆ g)

The third monad requirement above introduces the binding operator, which

needs an associative property in ⋆. The second requirement makes sure that

η has no interface to functions, and the �rst requirement lifts up functional

application from old functions to a new binding functor.

3.5 The distinction between mathematical def-

initions and an implementation of monads

The above de�nitions come from category theories in mathematics. In com-

puting perspective, the original application idea comes from [8], who realized

that monads can be used to capture e�ects in functional programming.

Hence, various e�ects have been studied by researchers such as [186, 9]

and [187]. In addition, the contemporary overview of monads and their

applications in programming languages and industries is given in [188].

In the author's opinion, the computational implementation of monads yields

merit and further insights beyond their theoretical studies. For example, [6]

113

3.6. NOTABLE MONADS IN COMPUTING

shows that an evaluation order provides a further insight into the analysis

of quanti�cations in monads beyond that obtained through traditional

static analysis of logics in typed logical grammar. According to [189], other

advantages of implementing monads outside evaluation order that are worth

exploring are sugar syntax, reuseables, and encoding more non-standard

computations.

This idea is also found in [8], distinguishing between a program and a proof.

A proof is a mathematical construction and a program is a computer con-

struction. By the Curry�Howard correspondence, they are equivalent. How-

ever, as Moggi noted, they are di�erent in practice. This idea and its potential

implications, for example, is recently con�rmed by research in neuroscience

by [190].

3.6 Notable monads in computing

In functional programming, we concretise the ideas of objects and arrows in

category theories as data types and functions over these data types. Hence,

we can construct complex operators and real world applications from those

data types, functions, and operators. Furthermore, the monads are inter-

preted as abstract datatypes. A general study of functional programming

language is provided in [185], a particular computer science application of

category theory to natural languages can be found in [25, 26].

Despite the fact that [8] is the �rst author to introduce the notion of mon-

114

CHAPTER 3. THE DEFINITION OF MONADS

ads in computing, [186] is the �rst author to substantiate the mathematical

notion into an implementation with substantial examples with impure prop-

erties in the design of programming languages. Let us illustrate the basic

examples of monads by following [33, 186, 50].

3.6.1 The maybe monad

The partiality or maybe monad is de�ned as

M A = A +{�}(i.eA�)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ηA = A ι1ÐÐ→
A + �

If f ∶ A→MB,f ⋆ � = �, f ⋆ a = f(a)fora ∈ A

3.6.2 The nondeterminism monad

MA = Pfin(A), i.e the �nite power set of A.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ηA = a⇒ {a}, i.e a map from an element to a set of that element.

if f ∶ A→MB, c ∈MA,f ⋆ c = ∪{f(x)∣x ∈ c}

3.6.3 side-e�ects or the state monad

MA = (A × S)S, for s is a stack or state of a computer.

115

3.6. NOTABLE MONADS IN COMPUTING

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ηA = a⇒ λs ∶ S.(a, s)

if f ∶ A→MB, c ∈MA,f ⋆ c = λs ∶ S.fa(π2(cs))
(i.e

do(a, s′) ← cs

f a s
′

)

The Writer and Reader monads are special cases of the State monad. A

further discussion is given by [186, 9, 191]

3.6.4 The exception monad

MA = A +E.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ηA = ηA = A ι1ÐÐ→
A +E

if f ∶ A→MB,f ⋆ (ι2e) = ι2e, (e ∈ E), f ⋆ (ι1a) = f(a), (a ∈ A)

3.6.5 The continuation monad

MA = ΩΩA

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ηAa = λk ∶ ΩA.k a

if f ∶ A→MB, c ∈MA,f ⋆ c = λk ∶ ΩB.c(λa ∶ A.f a k)

3.6.6 IO monads

For the operational semantics of IO monads, see [187, 192]. The denotational

semantics is given below, from [33]. The underlying idea is to use the recur-

sive functions (denoted by the �xed point operator µ), represented by trees,

to model the sequent of an input monad.

116

CHAPTER 3. THE DEFINITION OF MONADS

Input monad MA = µX.A +XU4

ηA ∶ a to a tree with only one leaf labelled with a.

if f ∶ A → MB, c ∈ MA,f ⋆ c is the tree which replaces leaves of c labelling

by a to f a.

Output monad MA = µX.A + (U ×X)

ηA is a map a→ (ε, a)

iff ∶ A →MB,f ⋆ (s, a) = (s; s′ , b) where fa = (s′ , b) and s; s′ is a concatena-

tion of s and s
′

In functional programming, the input�output (IO) monad is implemented

as by [187, 38] in the programming language, Haskell. IO provides an ad-

ditional dimension to capture the non-mathematical computations of users'

input and output from computers. It separates the class of computation

from a pure or mathematical computation, and from impure or physical

information such as from users' input and output devices. According to

[193], IO is designed to capture the imperative function from imperative

programming languages, like C, for functional programming.

4U is a universe

117

3.6. NOTABLE MONADS IN COMPUTING

An IO a is a computation that may perform in an IO functor, and return a

result of type a. In Haskell, the η function is replaced by a return notation

and ⋆ is replaced by a ⊳ notation.

return ∶∶ a→ IO a (i.e an η operator)

⊳ :: IO a→ (a → IO b) → IOb (i.e an ⋆ operator)

the return function lifts a value into an IO monad environment and the

⊳ operator performs the computation which is related to its �rst argument

and passes the results to its second argument. We can de�ne other functions

from these two primitive functions in Haskell.

For example, the main function, a main function that relates each Haskell

program to a computer's hardware, is de�ned as IO() which means a

computation that returns nothing.

≫ :: IO a → IO b → IO b

p ≫ q = p ⊳ λx.q

The �rst of these lines states that the function ≫ takes two arguments. The

�rst argument has a type IO a, and the second has a type IO b, and the

computation returns a value of type IO b. Implicitly, if two arguments p

and q are given in a computation, i.e. p≫ q, then we use the ⊳ computation

118

CHAPTER 3. THE DEFINITION OF MONADS

to calculate it. The left hand of ⊳, i.e. p, is given in the computation (as

equal to IO a), and the right hand of ⊳ specify how we compute it (as a →

IO b). λx.q means a function that for any given value x, we still get q, i.e

the value of type IO b. Therefore, the ≫ operator means that we compute

only the �rst argument, and return only the second argument. Though the

�rst argument is computed, we discard the return value of this computation.

Monads are further discussed in [50, 38].

3.6.7 An example of the reader monad

The above sections show the usefulness of the applications of monads from

the pure mathematical notion in category theory to model the e�ects in the

functional programming. In the author's opinion, the main advantage of

the category theory is its capability of interpret λ calculus as its internal

language. The research by [194] shows the application of the reader monad

in the linguistic �eld. The reader monad ⟨R,η,⋆⟩ associates each value,

or a piece of data, with a speci�c location in memory, the location being

indexed by an integer. More explicitly, this monad is a function that,

given a location i, returns the value a stored in that location. In short,

it is a function of a type ι→ α with additional properties of η and ⋆ operators.

R stands for the reader monad that will read a memory location to get a

value or stored data. R lifts every element of a type τ to element of a type

119

3.6. NOTABLE MONADS IN COMPUTING

ι→ τ , i.e. R is a function from indexes ι to objects of type τ . It operates in

the same manner as in Montague's semantics, where we lift entities to their

intentional interpretations.

For each function f or a relation between two types α,β f ∶ α → β, R maps

them to R(f) ∶ R α → R β. In our case, R(f) ∶ (ι→ α) → (ι→ β)

As f ∶ α → β, or f 's �rst argument has a type α, we can rewrite R(f) as:

R(f) = λθ.f ○ θ

As θ is a function from ι to α, or θ ∶ ι → α, f is a function from α to β.

Thus, f ○ θ = λi.f(θ(i)). Hence:

R(f) = λθ.λi.f(θ(i)).

The unit operator in our monad R lifts a value a of type α to a function f

of a type ι → α that associates every index i of type ι to the �xed value, a.

Thus it is a constant function and we can write it as:

η(x) = λi.x

The above notion means that, if we pass a parameter x to η, and if we are

120

CHAPTER 3. THE DEFINITION OF MONADS

given a further value i, then the function still returns x.

The ⋆ or binding function operates as a functional application:

if m ∶ R α, f ∶ α → R β then

m ⋆ f = λi.f(m(i))(i)

which is R β. As m ∶ R α, i.e. m ∶ ι → α, m(i) ∶ α. as f ∶ α → R β,

f(m(i)) ∶ R β. Thus m ⋆ f ∶ R β, or m ⋆ f ∶ ι → β. In other words, if we

introduce an additional variable i, it is the function, f(m(i)), that returns

a value of type β with i as an input.

3.6.8 Other monads

A range of monads have been research besides those listed above, for example,

the list monad [186], the probability monad [195, 196] with a pioneering

approach to probability in [197], the completion monad [198], the update

monad [199]. Its potential applications in linguistics is given in the discussion

section 4.5.

3.7 Discussion

This chapter provides the mathematical de�nitions of monads. The next

chapter shows its applications in linguistics and the subsequent chapters ex-

tend the monads to the parameterized monads and its linguistic applications.

121

3.7. DISCUSSION

A further general study of category theory is available in [200, 31, 201].

However, despite the powerful expressive of monads, it should be noted that

combining monads is a di�cult topic, as discussed in [21, 6, 202].

There are bene�ts of using category theory in computing which the author

also found useful in linguistics. According to [174], category theory provides a

pure theory of function, giving a powerful guide to research direction. Dybjer

also states that categorical properties are essential if they exist, and that

the theory studies objects by characterizing universal properties rather than

by description. According to [30], category theory provides composition,

abstraction, and independence of representation. Furthermore, the theory

opens a new foundation for mathematics and science as an alternative for set

theory.

122

Chapter 4

Monads in linguistics

This chapter provides a summary of applications in linguistics of the

previous chapter's monad de�nitions. In this dissertation, I interpret

the e�ects in the computing sense, as in [6, 33], as contextually related

phenomena in linguistics. Hence, monads, in accordance with [21, 17, 16],

is a moderate contextual theory in pragmatic enriched theories in the

sense of [41]. According to [41], there are three contextualism approaches.

I characterize existence frameworks as follows.1 Firstly, the minimal

contextualism approach assigns a context to a minimal set of words such as

pronouns, demonstratives or indexicals. It is mostly identical with the static

or logical semantics approach to natural languages. Theories of this kind

include [86, 112] or [203]. It's strengths are in its foundational background

and representation analysis. However, in order to keep theoretical analysis

precise, researchers are currently working on a small number of linguistic

examples.

In the second approach, radical contextualism in [41], one assigns a context

1The characterization is based on the framework's strength because it is not quite
straightforward: each framework can interpret others based on the development of the
underlying theories, or one theory may have many frameworks.

123

to every word. Notable theories are [56, 47, 111]. Radical contextualism

o�ers strength in explanation, but is weak on foundational issues. For

example, situation semantics [47] is based on possible-worlds semantics

[180], which is based, in turn, on set theory. However, the set-theoretic

foundation is criticised in [28], for example, in the case of the di�culty to

use the theory to formalize the plurality in [204].

Finally, there is a moderate contextualism, richer than the minimal ap-

proach, but less contextual than the radical approach. It extends the

minimal to overcome its rigidity while still preserving representation

analysis. Applying monadic frameworks to natural languages is considered

to be a moderate contextualism approach. For example, according to [45],

their concern is the semantic contexts, or with local context, rather than

the whole information states of utterance contexts. The theories of this

kind are this framework and others in [27, 21, 10, 28, 12, 16, 11]. Moderate

contextualism is also moderate in the sense that we interpret the verb

phrases in the dynamic tradition, for example, as tests on the context only.

In the research framework in [28], it also means that a proposition doesn't

require a contextual analysis. A non-proposition, however, does.

Using monads, as a particular instance of category theory, in linguistics

yields observable advantages. Firstly, monads are abstract and expressive

enough to formalize and modularize other phenomena under the same

124

CHAPTER 4. MONADS IN LINGUISTICS

algebraic structure. It inherits the abstract approach from category theory;

thus, it overcomes the technical misinterpretation that occurs, for exam-

ple, under set theory. The modularization advantage has been claimed by [6].

In this dissertation, using monads also provides a denotational semantics,

which allows further processing for verifying or proving the correctness

of linguistic properties, for the interpretation of a linguistic phenomenon.

For example, a property is an assertion, e.g. that the de�nite description

the does not go after the word there [159]. Another example is the

coreference problem between the morning star and the everning star in

[62]. In a particular case, the research by [11] shows that monads provide

a denotational semantics for intentionality. In addition, monads provide

a common framework, beside others, for the interpretation of linguistics

phenomena. Grasping phenomena in a single framework helps others to

study multiple phenomena more easily. Hence, applying monads can lead

to research principles which will be useful for future implementation on

computing and linguistic phenomena.

Using monads in linguistics was pioneered in [63] and further developed in

[17, 15, 21, 16, 122, 205]. A general summary of previous research on monads

is given as below by extending [11] with recent research on monads since 2009.

125

Monadic types Formation Linguistic phenomena Researchers

State.set monad Monad morphism Exceptional scope taking, inde�nite [17]

Writer monad τ ↦ ⟨τ,1⟩ Conventional implicature [20]

Reader monad Special case of the state monad Generalize opacity [194]

Probability monad probability monad Conjunction fallacies [206]

Exponential τ → _ Variable binding [4]

Exponential Intentionality [4]

Product τ ×_ Variable binding [11]

State τ → ⟨τ ×_⟩ Variable binding [11]

Power set {X ∣X ⊆ _} Quanti�cation [11]

Power set Interrogatives [207]

Pointed powerset {⟨x,X⟩∣x ∈X ⊆ _} Focus [208]

Sum τ +_ Presupposition [11]

Continuation (_→ τ) → τ Interrogative [11]

Continuation Type lifting Quanti�cation [4];

[165];

generalized quanti�ers [149, 46, 164];

donkey anaphora ;

grammar, conjoinable coordinate [166];

(as delimited control) [6]

crossover, superiority, [209, 96, 45, 12]

donkey anaphora, evaluation order

negative polarity licensing

General/not specify Compositional treatment of anaphora [70]

typical monad state monad Dynamic semantics [15]

Continuation Practical perspective Anaphora resolution [210]

Internal monad A sub-language of the Non-determinism [211]

(composable continuation) meta lambda calculus Contextual parameters as above

Delimited continuation as above

Covert movement [212]

Focus as above

Inverse scope as above

e�ects and handlers De�ne the calculus Deixis [213]

Quanti�cation

Conventional implicature

graded monads monad presupposition [16]

126

CHAPTER 4. MONADS IN LINGUISTICS

Table 4.1: Summary of contemporary research of monads in linguistics

4.1 A basic linguistic example

Let us consider some linguistic examples of how we use binding to perform

composition in the monad of propositional logic, using the concepts as

introduced into linguistics in, for example, [108, 106, 44, 4]. We use the

monad P for the proposition space which is modelled as a set-theoretic

interpretation of possible-world semantics in [180]. Hence, the lifting is a

translation from a linguistic expression to its possible-world semantics, i.e.

a set. For example, we lift entities such as the set of individuals, John, and

Mary to their logical constants J∗,M∗. The transitive verbs, such as like,

express the relations between entities and truth values. The binding ⋆ is

just the functional application, as is standard in formal semantics.

η(John) ∶ P e (for the convenience, we call η(John) as J∗),

η(Mary) ∶ P e (i.e M∗),

likes ∶ P e → (e → t). The type also equals λe.P (e → t) by the additional

monadic associative law.

Therefore, the phrase, John likes is lifted to our monad with the binding

operator as J∗ ⋆ likes with J∗ ∶ P e and likes ∶ e→ P (e→ t). Thus

J∗ ⋆ likes ∶ P (e→ t).

127

4.1. A BASIC LINGUISTIC EXAMPLE

Let us look at the complete sentence, John likes Mary. If we compose the

sentence by reading it from left to right as (John likes)Mary, it has the

following monadic interpretation

J∗ ⋆ likes ⋆M∗.

From the above explanation, this is equal to

P (e→ t) ⋆M∗.

If we assume that we can swap two parameters in the binding without

changing the meaning, it also equals

M∗ ⋆ P (e→ t)

We should note that, from the associative law P (e → t) is equal to λe.P t.

Thus,M∗⋆P (e→ t) is equal toM∗⋆(λe.P t). By our binding de�nition, this

latter returns P t. Therefore, the sentence, John likes Mary is computed to

P t, i.e. a truth proposition.

In the above example, we assume that the evaluation order we compute

is from left to right. Other frameworks, such as Lambek's calculus [114],

may explicitly specify what the left and right parameters of the computation

are. This speci�cation can be needed because some natural languages do

128

CHAPTER 4. MONADS IN LINGUISTICS

not have any word order, i.e. the words distribute freely from left to right.

Languages with free word-order include Russian and Japanese, whereas strict

word-order occurs in English. Thus John likes Mary, or Mary likes John,

or John Mary likes have the same meaning in Russian or Japanese. They

have a distinct meanings, however, in English. More clearly, the former

sentence is a correct grammatical sentence while the latter is an incorrect

one.

4.2 The continuation for the scope problem

and quanti�cations

4.2.1 The continuation in linguistics

The basic idea of continuation is expressed in Section 3.6 with details in

[6, 9], and a composable continuation2 is indeed a metavariable, as men-

tioned in the Section 2.2.3. The idea of continuation also appears in other

research �elds. To begin, let us consider an example of a double-negation

rule in classical mathematical logic: ¬(¬A) = A [214]. This rule is usually

taken for granted when constructing a mathematical proof by contradiction

(reductio ad impossibile). Instead of proving a problem directly, you suppose

its conclusion to be false, and you draw from the false premises to a

contradiction, hence proving the problem.

In computing, `the continuation' means the remainder of a program or

2The global context is sliding to a list of compositional local contexts, and each local
context is called composable continuation in [7].

129

4.2. THE CONTINUATION FOR THE SCOPE PROBLEM AND
QUANTIFICATIONS

future computation. Continuation is used to provide semantics for the

complex statements which contain a recursive expression or goto and jump

commands. A survey of the discovery of this terminology in computing

is given in [215]. In natural language semantics, the continuation is the

type-shifting in [4, 216, 149]. In general, the basic idea of continuation is

to shift the interpretation of an expression's meaning from its syntactic

analysis to its associated �nal objective such as a true or false proof in

mathematics, �nal state in computing, or truth values in linguistic semantics.

In this dissertation, we use the notion of composable continuation from

[217, 9, 75, 6, 23]. For a detailed discussion of continuation, see [218],

and, for a characterization, [219]. An intuitive explanation of continuation

in linguistics is in [220, 166, 149], with more elaborate explanation in [12, 17].

According to [166, 6], the continuation denotation of an expression consists

of two steps

1. continuation: transforms a value to intermediate answer, and

2. continuized denotation: transforms continuation to an intermediate an-

swer.

Let us illustrate a simple Montagovian grammar from [166] (without

categorial grammar).

130

CHAPTER 4. MONADS IN LINGUISTICS

Category Syntax Direct semantics direct denotation semantic type logical meaning

S NP V P JV P K(JNP K) JSK t Boolean value

V P V t NP JV tK(JNP K) JV P K ⟨e, t⟩ property

V P run λx.run(x) JV P K ⟨e, t⟩ property

NP Alice A JNP K e entity

NP Bob B JNP K e entity

V t like λx.λy.like(x,y) JNP K ⟨e, ⟨e, t⟩⟩ relation on entities

The variable, as in traditional logics, are

Variable Type Meaning

p, q t propositions

x, y, z e individual constants

P,Q ⟨e, t⟩ one-place predicates

R,S ⟨e, ⟨e, t⟩⟩ two-places predicates

The sentence has semantic construction in Montagovian grammar as

usual. For example, Alice runs. or Alice likes Bob is parsed as run j, like

A B.

The continuation of an expression is a function from the expression to

the results of the entire meaning (or computation). The continuized

denotation is a function from the continuation to the entire meaning.

Intuitively, the continuation lifts an expression to a function, and the

continuized denotation states the results of applying the continuation

function. For example, the above grammatical expression has the following

131

4.2. THE CONTINUATION FOR THE SCOPE PROBLEM AND
QUANTIFICATIONS

continuation:

Category Continuation Type Meaning

CS ⟨t, t⟩ sentence continuation, discourse meaning

CNP ⟨e, t⟩ NP continuation, result in a sentence truth value

CV P ⟨e, ⟨t, t⟩⟩ VP continuation, results is a sentence truth value

CV t ⟨⟨⟨e, ⟨e, t⟩, t⟩, t⟩ transitive verb continuation

In general, a continuation is a function from a category to a meaning of a

sentence, i.e. a truth value. Thus, the continuized semantics is a function

from a continuation to a meaning of a sentence, too (i.e. how the truth

value is changed by applying the continuation). Thus, the above expressions

have the continuized grammar below:

Category Continuatized Type Meaning

S ⟨⟨t, t⟩, t⟩ continuized sentence

NP ⟨⟨e, t⟩, t⟩ continuized NP

V P ⟨e, ⟨e, t⟩⟩, t⟩ continuized VP

V t ⟨⟨⟨e, ⟨e, t⟩, t⟩, t⟩, t⟩ continuized transitive verb

In a similar manner, the denotation of the λ-calculus in [3] also has the

following continuized denotation in [221, 149]

(1) c = λk.k c

(2) x = λk.k x

(3) λx.M = λk.k (λx.M)

(4) M N = λk.M(λm.N(λn.m n k))

Table 4.2: Continuation semantics for untyped λ-calculus terms.

132

CHAPTER 4. MONADS IN LINGUISTICS

Applying this transform style to the above grammar, we have the below

denotation from [166]

Category Syntax Continuized semantincs rule

S NP V P λcS.V P (λP.NP (λx.cS(P (x))) (4)

NP Alice λcNP (A) (1)

V P V t NP λcV P .NP (λx.V t(λR.cV P (R(x)))) (4)

NP Bob λcNP .cNP (B) (1)

V P run λcV t.(cV t.λx.run(x)) (3)

V t like λcV t.cV t(λx.λy.like(y,x)) (3)
Thus, the simple sentence Alice runs is derived grammatically as follows:

S

NP

Alice

VP

run

with the following semantics as in [166] :

S = λcS.V P (λP.NP (λx.cS(P (x))))(rule 4)

= λcS.V PλP.(λcNP .cNP (A))(λx.cS(P (x)))(rule 1)

= λcS.V PλP.cS(P (λcNP .cNP (A)))

= λcS.(λcV P .cV P (λx.run(x)))λP.cS(P (λcNP .cNP (A)))(rule 3)

= λcS.cS((λcV P .cV P (λx.run(x)))(λcNP .cNP (A)))

= λcS.cS(λcNP .cNP (A))(λx.runx)

= λcS.cS(λx.run(x))(A)

133

4.2. THE CONTINUATION FOR THE SCOPE PROBLEM AND
QUANTIFICATIONS

= λcS.cS(run(A))

Thus, the above sentence returns a continuation function. To return a value,

we usually have to use the evaluation function eval as in [9]. Normally, the

evaluation function is the application of the continuation function to the

identity function, i.e. λp.p. Thus

eval(λcS.cS(run(A)))

= (λcS.cS(run(A)))(λp.p)

= (λp.p)(run(A))

= run(A)

4.2.1.1 Quanti�cations

A brief overview of quanti�cation is given in section 2.2.1. The

continuation approach to quanti�cations has been studied in

[220, 149, 166, 6, 75, 12, 96, 11]. The basic idea is that, in order to

analyze, a quanti�cation expression such as every, some, most, no, the

direct grammatical rules are not enough, so we have to interact with the

contexts to explain the expression's meaning. This approach �nds support

also from cognitive research [222], which interprets quanti�cation as a

numeric sense rather than linguistic one. The context, then, is regarded as

the end-results of continuation. Thus, [166, 25], for example, explain the

quanti�cations as

134

CHAPTER 4. MONADS IN LINGUISTICS

Everyone λx.(∀c.(person(c) → x(c)))

Someone λx.(∃c.(person(c) ∧ x(c)))

Every λPx.P (λP.∀x.P (x) → x(x))

A,Some λPx.P (λP.∃x.P (x) ∧ x(x))

Most λPx.P (λP.most(P)(x))

No λPx.P (λP.¬∃x.P (x) ∧ x(x))

The λPx.P (λQ.ιx.(Q(x) ∧ x(x)))

∀,∃,→,¬ are basic logical connectives. The quanti�cations do not have a

direct semantic interpretation, i.e. a context-free grammatical interpreta-

tion, since that requires an additional observational veri�cation that the

property x(c) holds for all, or at least that there exists one entity for which

the property holds. Particularly, the semantic interpretation can be found

in the literature as the type raising in by [4, 216] or the µ-calculus in [149].

We can derive the semantics for the sentence, Alice likes everyone, as follows
S

NP

Alice

VP

Vt

likes

NP

everyone

135

4.2. THE CONTINUATION FOR THE SCOPE PROBLEM AND
QUANTIFICATIONS

We start from the VP likeseveryone

= λk.(everyone(λn.like(λm.(k(m n)))))(rule 4)

= λk.(everyone(λn.(λk′ .k′ like)(λm.(k(m n)))))

= λk.everyone(λn.(k(m n)(like)))

= λk.everyone(λn.(klike n))

= λk.(λk′ .∀x.person(x) → k
′(x))(λn.(k(like n)))

= λk.∀x.(person(x) → k(like x))

Thus the sentence Alice likes everyone has the following denotation:

λk.Alice(λn.likes everyone(λm.k(m n)))

= λk.Alice(λn.λk′ .∀x.person(x) → (k′like x)(λm.(k(m n))))

= λk.Alice(λn.∀x.(person(x)) → k((like x)n))

= λk.(λk′ .k′ A)(λn.∀x.(person(x)) → k((like x)n))

= λk.∀x.(Person(x) → (k(like x)Alice))

4.2.1.2 The continuation for an evaluation order

A general discussion of scope taking is in Section 2.2.2. This section

highlights an advantage of the continuation approach in its ability to vary

the scope of quanti�ers, and hence also the evaluation order, in linguistics.

Thus, this technique resolves some aspects of scope ambiguity.3. Basically,

the technique arises from the Plotkin's rule (4) about the substitution rule in

3In computing, the scope ambiguity is usually associated with evaluation strategy by
[221]

136

CHAPTER 4. MONADS IN LINGUISTICS

λ-calculus [149, 166, 6]. The substitution rule can have two reading strategies:

(∗)M N = λk.M(λm.N(λn.m n k))

or

(∗∗)M N = λk.N(λn.M(λm.n m k))

Each reading is associated with one scope interpretation. For example,

consider the sentence, Everyone helps someone from [25][p. 299]. Applying

a similar procedure as in the above sentence produces the denotation,

helpedsomeone

= λk.∃x.(Person(x) ∧ k(Help(x)))

Thus,

everyone help someone = everyone (help someone)

= λk.everyone(λn.(help someone).λm.k(m n))

= λk.(λk′ .∀x.(Person(x)) → k
′(x))(λn.(help someone).λm.k(m n))

= λk.∀x.Person(x) → (λn.(help someone)(λm.k(m n)))(x)

= λk.∀x.Person(x) → (help someone)(λm.k(m x))

= λk.∀x.person(x) → (λk′ .∃y.(Person(y)) ∧ k′(Help(y)))(λm.k(m x))

= λk.∀x.Person(x) → (∃y.Person(y) ∧ k(Help (y)) (x))

We have the above denotation with the scope of ∀ being wider than the

137

4.2. THE CONTINUATION FOR THE SCOPE PROBLEM AND
QUANTIFICATIONS

scope of ∃ because the rule (∗) is used. If we use the rule (∗∗), i.e, if we

interpret help someone before everyone, the denotation is still kept with the

reversal reading scope for ∀ and ∃ as

λk.∃x.Person(x) ∧ ∀y.Person(y).k(Help y x)

The two above readings yield a scope ambiguity as discussed by [149, 166].

Further examples of continuation for mathematical functions can be seen in

[46, chapter 3] and [220, chapter 3].

4.2.2 The towering notion

The above section shows us how continuation is applied in linguistics.

[45, 12] go further by de�ning the towering notion to elaborate the inter-

action of continuation and categorial grammar in [66, 84] with empirical

study in syntactic analysis. Informally, A)B is a category of a continuation

asserting that B is the returned answer of the category A. In another words,

a category A is surrounded by a category B, or B is an expression that

requires a subexpression A to be completed. In the reverse order, C (D

means that the expression is C if it is surrounded by D. Thus, the general

form of a scope taker (such as a quanti�er) expression is C) (A(B).

From the above explanation of continuation, the above formation implies

a continuized denotation of the scope taker. The scope taker expression

138

CHAPTER 4. MONADS IN LINGUISTICS

is problematic in syntactic theories because there is no precise method to

identify the evaluation scope or type for the expression. It is even more

problematic when the scope taker is analyzed in combination with other

phenomena, as discussed in [12]. The scope taker, everyone, for example,

has a category S) (DP (S) in [12], which can be expressed vertically as

S∣S
DP

This notation has a counter-clockwise reading starting from the bottom,

moving to the above right, and �nishing at the above left. It means that

the scope-taking of everyone takes a continuation of the form, DP)S as an

input, and returns a type S as a resultant denotation. An example of an

expression with a continuation of the category DP) S is the following from

[12]

John called [] yesterday.

The above expression has a category DP)S because it requires an expression

of the category DP to �ll in the [] to be a complete sentence of the category

S. Thus we combine everyone with a continuation John called [] yesterday

to form a (returned) category S.

John called everyone yesterday.

In order to combine the categorical grammar and Montague's seman-

tics with continuation, [12] derived the tower notion which consists of three

elements of category grammar for syntax, lexical, and semantics. These are

139

4.2. THE CONTINUATION FOR THE SCOPE PROBLEM AND
QUANTIFICATIONS

ordered vertically as
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Categorial grammar + continuation

Lexical

Montague's semantics

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
A basic example of the tower notion without continuation is given below;

further discussion can be found in [84]
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DP DP /S

John left

J Left

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

S

John left

Left(J)
The combination is explained by adjacent combination in [66] using AB

grammar à la Ajdukiewicz. A continuation denotation for scope taker is, as

in [12],
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S∣S
DP

S∣S
DP /S

everyone left

∀y. []
y

[]
left

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

S∣S
S

everyone left

∀y. []
left(y)

The continuation category has been explained above. The continuation

semantics of the form λk.g[k f] is written as
g []
f

Thus

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S∣S
DP

everyone

∀y. []
y

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

is identical to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S) (DP (S)

everyone

λk.∀y.k y

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
The compositional principle is expressed as the combination schema as

follows

140

CHAPTER 4. MONADS IN LINGUISTICS

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

C ∣D
B/A

D∣E
A

left expression right expression

g []
f

h []
x

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C ∣E
B

left expression right expression

g [h []]
f(x)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
In the above combination, we don't need to read counter-clockwise for the

combination on the grammar. Instead, we combine the elements below and

above the horizontal directly, i.e. the category B/A is combined with the

category A to yield category B, and the category C ∣D combines with the

category D∣E to create the category C ∣E.

The above expressions provides a basic de�nition of the tower notion. Further

studied operators on this notion are given below. The type lifting returns

a continuation for an expression, and it is equal to type-shifting [216]. The

type lowering is the evaluation function in continuation, and the binding

introduces the pronoun into the regime.

4.2.2.1 Operators on the towering notion

The type lifting operator is de�ned as

A
B∣B
A

expression LIFT expression

x ⇒ []
x

For example, the tower

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DP

Alice

A

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

is lifted into

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S∣S
DP

Alice

[]
A

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

141

4.2. THE CONTINUATION FOR THE SCOPE PROBLEM AND
QUANTIFICATIONS

The type lowering is de�ned as
A∣S
S

Lower A

Expression Expression

f []
x

⇒ f[x]
For example, we can lower the type of the sentence, everyone runs as
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S∣S
S

everyone runs

∀x.[]
run(x)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S

everyone runs

∀x.run(x)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Both scope ambiguity and evaluation order appear in the strategy for

lowering. They also are in the above continuation evaluation order. Finally,

we are going to introduce for the rule of the binding operator. Basically, the

binding operator is used for the pronoun resolution. If A,B are categories,

then A�B is a category which takes a pronoun of category A, and returns

a category B. In the author's opinion, the operator is the delimited

continuation in [6], and equal to the metavariable in [122, 137, 121]. [12]

provides an example of the de�nition as

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

DP � S∣S
DP

S∣S
DP /S

he run

λx.[]
x

[]
run

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

=

DP � S∣S
S

he runs

λx.[]
run(x)

⇒

DP � S

he runs

λx.run(x)
Formally, according to [12], the rule for binding is

142

CHAPTER 4. MONADS IN LINGUISTICS

A∣B
DP

Bind
A∣DP �B

DP

Expression Expression

f[]
x

⇒ f[[]x]
x

For example, we can bind a quanti�er as follow
S∣S
DP

everyone

∀x.[]
x

⇒

S∣DP � S
DP

everyone

∀x.[[]x]
x

.

Hence, the crossover sentence can be derived as the following grammar by

[12]

S∣DP � S
DP

everyone

∀x.[]x
x

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

DP � S∣DP � S
(DP /S)/DP

love

[]
love

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

DP � S∣S
DP

S∣S
DP /DP

his mother

λy.[]
y

[]
mom

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

S∣S
S

everyone loves his mother

∀x(∀y.[])x
loves(momy)x

⇒

S

everyone loves his mother

∀x.(λy.love(momy)x)x
From the above operators and notion [12] derived the scope analysis of various

linguistic phenomena such as crossover, superiority, donkey anaphora, etc.

While I am not going into detail, this research plays a pivotal role in the

contemporary linguistic semantics in [159].

4.2.3 The continuation in monads

The idea of interpreting continuation in monads can be found in [9]. There

is a distinctive notion of delimited continuation and undelimited continu-

ation. The undelimited continuation, with its application in linguistics by

143

4.2. THE CONTINUATION FOR THE SCOPE PROBLEM AND
QUANTIFICATIONS

[220, 149, 166], treats a result as a whole while delimited continuation breaks

the result into composable results. The latter is also called composable

continuation in [7, 6, 219, 23]. In general, the undelimited continuation

has less expressive power than delimited continuation; however, delimited

continuation has a less concrete theoretical foundation such as a formalized

type systems, as discussed in [9, 219].

The continuation monad has been studied in linguistics by [17, 22], where the

towering notion is de�ned by replacing the category grammar by the contin-

uation monads [17][p. 70], in order to study the inde�nite and its exceptional

scope taking. Continuation monads are expressive enough for that to suc-

ceed in combination with monad transformers [202]. The author will use the

general notion of monads as parameterized monads [23] as an equivalent of

delimited continuation [6, 7] in a comparison by [223] in Chapter 5 of this

dissertation.

The rest of this section explains the rule of the continuation monads and

gives basic examples. They are not much di�erent from the undelimited

continuation.

Let us recall the de�nition of continuation by [9][p. 43]; the rule de�nitions

for the continuation monad of the answer type ω are described below.

The answer type ω can contain the truth value t, or the truth values in

many-valued logics.

144

CHAPTER 4. MONADS IN LINGUISTICS

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1) Mα = (α → ω) → ω, ∀α

(2) η(a) = λc.c(a) ∶Mα, ∀a ∶ α

(3) m ⋆ k = λc.m (λa.k a c) ∶Mβ, ∀m ∶Mα, k ∶ α →Mβ

Rules 1 and 2 de�ne the model and lifting rules as usual. The ⋆ rule means

that we are taking the continuation c of type β → ω as a parameter. Then,

we read m and pass the value as a to the computation (ka)c. if we compute

k a = x ∶ β, then λc.(k a)c = λc.c(x) ∶ Mβ since it passes a value x of a type

β to the continuation c.

Each value of a type Mα turns a continuation (type α → ω) into an answer

(type ω). α is a type of a parameter of the continuation, and ω is the return

type of the calculation. Thus, Mα is a space for a contraction or application

rule since it reduces the length of its elements. Thus, Mα, in our de�nition,

is a collection of functions that each take an argument of type α and return

a value of type ω.

The variable c in the above de�nition is a de�nition of the continuation. It

is a function, for example of a type α → ω. For example, our η function

above, if we feed it with an element of type α, returns a value of type ω.

More speci�cally, c ∶ α → ω, if a ∶ α, c(a) ∶ ω. Thus, λc.c(a) ∶ Mα since the

notion on the left, by our λ-calculus, means that, if we pass a function which

takes an argument of type α as our parameter, it will return a value of type ω.

145

4.2. THE CONTINUATION FOR THE SCOPE PROBLEM AND
QUANTIFICATIONS

In our unit η examples, η(John) = λc.c(J), i.e. the collection of functions

that are applicable to John. Thus, η(John) ∶Me.

Similarly, η(smokes) = λc.c(smoke). If smoke is de�ned by our

semantics as an intransitive verb, then smoke ∶ e → t. Thus

η(smokes) = λc.c(smoke) ∶M(e→ t).

Finally, at our binding rule, i.e. ⋆, our calculation process is: �rstly, we

compute kac where k ∶ α → ((β → ω) → ω). This computation involves a

value a ∶ α and our continuation c ∶ β → ω. After that, we pass the result to

m. The �nal result is interpreted as: take a continuation of type β → ω and

return a value of type ω, i.e. Mβ.

A monad has two properties: one of these is a unit lift function; the other

handles the underlying function. For our continuation monad, we use

functional application notation:

AM ∶M(α → β) →Mα →Mβ,

AM(f)(x) = f ⋆ (λa.x ⋆ (λb.η(a(b)))) ∶Mβ, ∀f ∶M(α → β), x ∶Mα.

The above rule can be read as: we read f , pass the result as a value a, read

x, pass the result as b, and return the value of the functional application of

146

CHAPTER 4. MONADS IN LINGUISTICS

a to b, i.e. we return η(a(b)).

By applying our ⋆ operation as per the above de�nition, we have a concrete

λ-calculus formulation

AM(f)(x) = λc.f (λg.x (λy.c(g(y)))),∀f ∶M(α → β), x ∶Mα.

This means: we read f and we pass the value as g. Then we read x, we pass

the result as y. Finally, we perform the calculation g(y) and pass it as a

value to the continuation c.

Let us demonstrate our composition rule with f = η(smoke) and x = η(John)

JJohnK JsmokesK = AMJsmokeK JJohnK

= λc.η(smoke)(λg.η(John)(λy.c(g(y))))

= λc.η(J)(λy.c(smoke(y)))

= λc.c(smoke(J)) ∶M t.

In the second line, we replace f, x by η(smoke) and η(John), respectively.

Thus, we take smoke as a result of our �rst computation, i.e. g, and that

gives the third-line equation. In the third line, we take λy.c(smoke(y))

as the continuation for η(John). We thus gain a check on whether John

smokes, after which the result will pass to the context c that contains the

clause, John smokes. If John smokes is a sentence, then c is just an identity

function. To evaluate the �nal result, i.e. λc.c(smoke(John)) to an ω value

147

4.2. THE CONTINUATION FOR THE SCOPE PROBLEM AND
QUANTIFICATIONS

(in our case, ω = t), we de�ne the eval function following [9]:

eval ∶M ω → ω

eval m =m id where id = λv.v, i.e an identity function.

Thus eval (λc.c(smoke(J))) = smoke(J) ∶ t with an implicit declaration

c = λv.v. We should note that we transfer back a type from M t to t in our

eval function.

Barker [96] interprets quanti�er scoping as evaluation order. For example, in

the interpretation of AM, we interpret f before x. Thus, we have an inverse

scope-reading of someone loves everyone, i.e.:

∀x.∃y.love(x, y).

Whereas our correct reading is that

∃x.∀y.love(x, y).

To obtain this correct reading, we must evaluate x before the function f

x ⋆ (λb.f ⋆ (λa.η(a(b)))).

148

CHAPTER 4. MONADS IN LINGUISTICS

This continuation monad has a disadvantage of being non-commutative in

that it must follow a strict evaluation order. It is, however, compositional

and the underlying grammar is still kept (via our AM rule).

4.2.3.1 Continuation monads in analysing quanti�ers

Following the above analysis for quanti�ers, we specify the meaning of a

quanti�cation such as everyone as

everyone = λc.∀x.c(x) ∶Me.(*)

We do not use the unit functor η to lift up our quanti�er everyone as a usual

continuation object, because it manipulates the continuation nontrivially.

As [222] stated, the sense of quanti�cation is numeric rather than linguistic.

Thus, we still need the logical quanti�er ∀ in our interpretation. For

example, consider the clause everyone smokes :

JeveryoneK JsmokesK = λc.η(smoke)(λg.everyone (λy.c(g(y)))).

= λc.JeveryoneK (λy.c(smoke(y)))

= λc.∀x.c(smoke(x)) ∶ Mt, we pass λy.c(smoke(y)) as a continuation for

an interpretation of everyone in (*).

To give a semantics of everyone smokes, we use the eval function to transfer

149

4.2. THE CONTINUATION FOR THE SCOPE PROBLEM AND
QUANTIFICATIONS

from the monadic value Mt to a t value:

eval (λc.∀x.c(smoke(x))) = ∀x.smoke(x) ∶ t.

The semantics is true if we observe that, for all x, then x smokes. As we

introduce the new notion of variable x, we should be concerned about its

scope or x's bounding space. Incorrect manipulation of variable scopes would

lead to ambiguity or to multiple interpretations of words.

4.2.4 The recent development of the continuation in lin-

guistics

Contemporary research on the continuation technique in linguistics includes

[12, 46, 10, 164]. [46, 164] derive the type-theoretic framework for continua-

tion. The type theoretic framework for continuation is also studied by [220]

which uses a well-ordering tree to interpret continuation in Martin-Löf's

type theory.

Continuation has strong applications in compiled programming languages.

The main idea is the dualist view that a program, or an algorithm, is a

function that changes a computer's state to another state by [220]. Thus,

instead of looking at the reasoning in the programs, we can conceptualise

reasoning in the changing of the memory.

150

CHAPTER 4. MONADS IN LINGUISTICS

4.3 The state monad for dynamic semantics

An introduction to dynamic semantics is given in section 2.2.3. The sub-

stantial study of viewing the state monad as dynamic semantics is credited

to Unger [15], with previous research in [11, 122]. Unger's innovation is

to stay at the interpretation of meanings as computation in monads which

yield advantages over other frameworks. Namely, the state monad provides

the rich operators on the states, and clear separation between the dynamic

and static interpretation, while keeping the ability for full composition.

The state monad also distinguishes between context updating and context

accessing, and provides clear referent-handling by state manipulations

such as through global and local contexts. Thus, the quanti�ers and the

inde�nite are interpreted in a local context, and deleted after exiting the con-

text. Unger also distinguishes quanti�ers from inde�nites by the sense that

the latter introduce the discourse referent, whereas other quanti�ers does not.

Technically, the main supporting hypothesis for the interpretation is the

view that the DRS structure is a λ term on the state, i.e.

[x1,⋯, xn∣C1,⋯,Cm] = λc.⟨C1 ∧ C2⋯Cm, ⟨c;xn,⋯;x1⟩⟩ where x1,⋯, xn are

discourse referents and C1,⋯,Cm are conditions. Hence, she interpreted

linguistic phenomena in state monads as following.

Let us recall that the state monad is de�ned in the Chapter 3 as

151

4.3. THE STATE MONAD FOR DYNAMIC SEMANTICS

Mα = State→ (α × State)

i.e. the monad is a function which takes a state as an argument, and returns

a pair of a values and a new state. The lifting and binding operators, η and

⋆, are

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

unit x = λc.⟨x, c⟩

v ⋆ k = λc.kπ1(v c)π2(v c)

Where π1 and π2 are the projection functions of the 1st and 2nd element in

a tuple ⟨x, y⟩. In other words, π1⟨x, y⟩ = x and π2⟨x, y⟩ = y. The application

function is restated as a compositional semantics of two state monads

AM ∶M(α → β) →Mα →Mβ

AM k v = k ⋆ λf.(v ⋆ λx.unit(f x))

4.3.1 Lifting linguistic expressions into state monads

The basic syntactic categories�proper names, nouns, pronouns, verbs�are

translated into the state monad by the lifting operator unit as follows [15].

Unger interpreted a common noun, such as unicorn, as a function from a set

of entities to a truth value, as traditional Montagovian semantics in by [14].

JunicornK = unit(λx.unicorn x) = λc.⟨λx.unicorn x, c⟩

152

CHAPTER 4. MONADS IN LINGUISTICS

Unger also interpreted verbs as predicates, and classi�ed by the number of

arguments over entities. She used continuation to lift a verb and proper

names. Examples of a proper name, a one-predicate verb whistles, and a

two-predicate verb admire are lifted as below

JwhistlesK = unit(λP.P(λx.whistle x))

JadmiresK = unit(λPλQ.P(λx.Q(λy.admire x y)))

JAliceK = unit(λP.P (A))

Now, the compositional principle is applied as above

AMJwhistlesKJAliceK

= λc.⟨λP.P(λx.whistle x), c⟩ ⋆ λf.(λc.⟨λP.P A, c⟩ ⋆ λx.unit(f x))

= λc.⟨whistle A, c⟩

4.3.2 State-changing operators

[15, 11] interpret the states as the discourse entities which vary during a lin-

guistics expression in dynamic semantics. Unger's state-changing operators

are

� ˆ ∶ e → state → state. This operator is a function to add entity x to a

context or state c.

� sel ∶ state→ e to select an entity from a context.

Thus, we can have following auxiliary functions:new,get as following

153

4.3. THE STATE MONAD FOR DYNAMIC SEMANTICS

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

new ∶ e→M ⊺(add an entity to the context and return an unit Boolean truth values⊺).

new x = λc.⟨⊙, cˆx⟩
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

get ∶ (e→M(e→ t)) →M(e→ t)

get m = λc.m(sel c)c
Thus, we have an example of an interpretation of a proper name

JAliceK = new a≫ (unitλP.P a) = λc.⟨λP.P a, cˆa⟩

or an interpretation of a general pronoun

JherK = get≫ (λx.unitλP.P x) = λc.⟨λP.P (sel c), c⟩

4.3.3 The discourse representation

In order to combine two sentences, we need an operator that merges two

states. To solve this issue, Unger uses the discourse-concatenating operator

⊕ ∶M t→M t→M t to combine discourse from two sentences.

s1 ⊕ s2 = s1 ⋆ λp.(s2 ⋆ λq.unit(p ∧ q))

This operator means: we read a sentence s1 and pass the resulting state as

p. Then we read the sentence s2 and pass that resulting state as q. Finally,

we return the monadic value as the combination of entities in p and q. For

example, the context is added during the computation with two sentences of

Alice whistles and Bob admires her by Unger [15] as

Alice whistles⊕Bob admires her

= λc.⟨whistle a, ĉa⟩ ⊕ λc.⟨admire(sel c) b, cˆb⟩

= λc.⟨(whistle a) ∧ (admire(sel cˆa)b), cˆaˆb⟩

154

CHAPTER 4. MONADS IN LINGUISTICS

4.3.4 Structures adding to states

Unger [15] shows that the complex scope-reading of quanti�ers making

a single list of entities for state is not suitable for analyzing a sentence

discourse. Her example is the discourse, Every unicorn is eating Bob's

�owers. He adores it. which raises the problem that the pronoun it

cannot be exactly associated to the correct referee in the previous sentence,

i.e. unicorns. The underlying cause is that the discourse reference for

unicorns must be deleted after �nishing the �rst sentence. However, we

cannot delete all previous references, such as the global name Bob.

Unger's proposal is to add more structure to the state by dividing the state

into its global and local contexts. Local contexts exist, and can be deleted

in a sentence. Hence, quanti�ers can introduce new entities in the local

contexts. Since we may have multiple quanti�ers in a sentence, the local

contexts should be a list of entities. Thus, her proposed state consists of a

pair of two sub-states

state = [{e}] × {e}

Given a state c, Unger divides the new operator into newglobal and newlocal

operators as

newglobalx = ⟨⊙, (π2 c)ˆx⟩

155

4.3. THE STATE MONAD FOR DYNAMIC SEMANTICS

newlocalx = ⟨⊙, add x(top(push(π1 c)))⟩

Where the local contexts operators implement a stack:

� top ∶ [α] → α is a function that reads the top element of the stack.

� push ∶ [α] → [α] pushes an empty context onto a stack, assigning stack

space for new variable.

� pop ∶ [α] → [α] removes the top element of the stack.

� add ∶ α → [α] → [α] adds an element to a set. (for both the global and

local context)

We now illustrate these operators by example, with an interpretation that

a proper name is a global variable, and that quanti�ers introduce local

variables.

JAliceK = (newglobal) ≫ (unitλP.P a)

JsheK = get≫ (λx.unitλP.P x)

4.3.5 Quanti�ers and the inde�nite

Quanti�ers introduce the reference in local contexts and remove it after

exiting the scope. Unger de�ned the function clear for this purpose:

clear ∶ t→M t

clear = λx.λc.⟨x, pop c⟩

156

CHAPTER 4. MONADS IN LINGUISTICS

This de�nition enables Unger to derive the denotation for a quanti�er such

as every as

λP .Q.(AM((newlocalx)� (unit λP.λQ.∀x.P (x) → Q(x))) P Q) ⋆ clear

The quanti�er is thus cleared after being evaluated on the scope analy-

sis by P ,Q with the generalized quanti�er denotation being newlocalx) �

(unit λP.λQ.∀x.P (x) → Q(x).

The compositional principle is exempli�ed in analysing, for example, the

sentence every man thinks he is right as follows, with denotations:

JmanK = unit λx.man(x)

JthinksK = unit λaλb.thinks (a) (b)

JheK = get� λx.unit λP.P (x)

Jis rightK = unit λx.is_right (x)

The VP thinks he is right has the following interpretation:

AMJthinksK JheK Jis rightK = λc.⟨λx.thinks(is_right(sel c)) x, c⟩

The NP Every man has the interpretation

AM JEveryK JmanK = AM λQ.(λc.⟨(λQ.∀x.man x → Q (x)), c{̂x}⟩ (Q)) ⋆

clear

157

4.3. THE STATE MONAD FOR DYNAMIC SEMANTICS

Now, the whole sentence is interpreted by applying the NP to the VP

λc.⟨∀x.man(x) → think(is_right(sel c{̂x})), c⟩

Unger's quanti�er-free analysis of the inde�nite is more complex than

quanti�ers because the inde�nite's scope is not �xed. Unger observed that

the scope of the inde�nite depends on the appearance of the quanti�ers.

Hence, we do not know which of the local or global contexts applies to the

inde�nite. For example, in her sentence

Alice saw a unicorn in her garden. It was eating the �owers.

an inde�nite a unicorn acts globally, while in the sentence below, the unicorn

acts only locally.

Every formal semanticist saw a unicorn in his garden. ♯ It was

eating the �owers.

In order to resolve the issue, she proposes the new operator newchoice for the

selecting the context for an inde�nite. This operator chooses to update the

local contexts if there is a quanti�er. Otherwise, it acts globally. Formally,

it is written as

newchoicex = λc.⟨⊙, c + x⟩

158

CHAPTER 4. MONADS IN LINGUISTICS

where c + x =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

add x (top(π1 c)) if there is a local context in c

add x (π2 c) otherwise

The non-quanti�cation reading of an inde�nite is

(newchoicex)� unit λP.λQ.P (x) ∧Q (x)

Thus, the sentence A unicorn barks at Alice. It is afraid, for example,

has the following denotation

λc⟨unicorn(x) ∧ barkAt (A) (x) ∧ afraid (sel ĉ(x,A)), ĉ(x,A)⟩.

On another hand, the sentence Every gardener saw a unicorn. has a

reading

(λc.⟨∀x.gardenerx→ unicorn (y) ∧ saw (y) (x), ĉ{x, y}⟩) ⋆ clear

= λc.⟨∀x.gardener(x) → unicorn(y) ∧ saw (y) (x)⟩

4.4 The writer monad for the conventional im-

plicature phenomenon

Following Potts' [78] analysis in section 2.2.4 of this dissertation, [224, 21]

argue that there are at least two separate dimensions of the discourse

structures for the at issue and CI dimensions for conventional implicature

159

4.4. THE WRITER MONAD FOR THE CONVENTIONAL
IMPLICATURE PHENOMENON

4. In order to model the phenomenon in monads, [20] proposes using writer

monads. Writer monads, in the sense of [225], are a general write monad

with additional stored logging information. Analogically, CI is interpreted

as a logging state where additional information is stored at the same time

with the main discourse elements in an at issue. Intuitively, a writer monad

can be thought of as a pair, comprising a value and an additional element

of information.

Ma = a ● c where a ● c = ⟨a, c⟩.

The ● separates the two dimensions. The �rst element in the monad is the

returned value, and the second element is the logged, or added, information.

The �rst element is the discourse or at issue dimension, and the second

element is the CI dimension. Thus, the lifting and binding operators

between the two dimensions are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 η(a) ∶Mα

2 ⋆ ∶Mα → (a→Mβ) →Mβ

a ● p ⋆ k = b ● (p ∧ q) where k a = b ● q, a ∶ α, b ∶ β, k ∶ α →Mβ

⊺ means that the logging information is empty. Empty di�ers from nothing

in the sense that an empty value is able to be concatenated later. For

example, after the computation k a, the logging information q is added to

4These two dimensions are de�ned in the section 2.2.4

160

CHAPTER 4. MONADS IN LINGUISTICS

the previous logging information p, whereas the computing value is b.

Alternatively, we can improve the writer monad to parameterized writer

monad (see chapter 5) or the dynamic writer monad in [17]. The reader

can skip this part without a�ecting the interpretation of the phenomenon

by [21, 20]. Basically, we are extending the monad with an additional

state manipulation, and there is not much change in the writer monad

interpretation of the phenomenon.

Ma ∶M s1 s2 α

Ma = λs1.(s2 = s1) ∧ ⟨a ● p⟩

with the lifting and binding operators

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

η(a) ∶M s1 s2 α

η(a) = a ● ⊺ (i.e λs1.(s2 = s1) ∧ ⟨a ● ⊺⟩)
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

m ⋆k ∶M s1 s2 α → (α →M s2 s3 β) →M s1 s3 β

m ⋆ k = (λs1.s2 ∧ ⟨a ● p⟩) ⋆ k
= λs1.((k a s2) ● p)

= λs1.λs2.(s3 ∧ ⟨b ● q⟩) ● p

= λs1.s3 ∧ ⟨b ● q ● p⟩

= λs1.s3 ∧ ⟨b ● q ∧ p⟩.

where s2 ∧ ⟨a ● p⟩ ←m s1 and s3 ∧ ⟨b ● q⟩ ← k a s2.

for convenience, we use the do notation

161

4.4. THE WRITER MONAD FOR THE CONVENTIONAL
IMPLICATURE PHENOMENON

do a←m

which is equal to

m ⋆λa. This process executes the monadic value m, and the result is passed

to the next computation as a. Thus

do a←m

do b← n

is a syntactic sugar reading version, i.e an easier to read one, of the complex

mathematical notation m ⋆ λa.n ⋆ λb. Therefore, the above ⋆ binding is

rewritten as

m ⋆ k =

do (s2, a ● p) ←m s1

do (s3, b ● q) ← k a s2

η(b ● p ∧ q)

In order to interpret the phenomenon in a compositional manner with both

at issue and CI dimensions, [20, 21] propose using two implications (applica-

tions) on two dimensions. The �rst implication, ⊸ is the normal application

in the at issue dimension. The second one, ⊸∗ is the application rule in the

CI dimension. The di�erence between the two dimensions is what resource

to use. ⊸ has access to all resource in that dimension, and we must compute

it in advance before its use. ⊸∗ entails an exchange of resource between two

dimensions, and that exchanged resource is reused instead of computed anew.

162

CHAPTER 4. MONADS IN LINGUISTICS

The de�ning rules of the two implications are similar, as below

x ∶ A f ∶ A⊸ B

A(f)(x) ∶ B
⊸ E

[x ∶ A]i

⋮

t ∶ B

x◁ t ∶ A⊸ B
⊸ Ii

x ∶ A f ∶ A⊸∗ B

A∗(f)(x) ∶ B
⊸∗ E

[x ∶ A]i

⋮

t ∶ B

x◁∗ t ∶ A⊸∗ B
⊸∗ Ii

Applications A and A⋆ combine two expressions, whereas the abstractions

◁ and ◁⋆ create a new function from two variables. The use of ◁ and ◁⋆ is

for the type-lifting situation in the sense of Partee in [5], or for continuation

in [12]. For example, an expression type NP , can be type-lifted to be

V P → S, where S = NP → V P . The examples from [20], below, illustrate

the type-lifting of comma and also.

We use λ notion for computing the resource for the �rst use, i.e. the A and

◁ de�nitions. The reused resource is de�ned by just applying it. Their

monadic types are

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

A(f)(x) ∶ (Mα →Mβ) →Mα →Mβ

A(f)(x) = f ⋆ a. x ⋆ b.η(ab)

163

4.4. THE WRITER MONAD FOR THE CONVENTIONAL
IMPLICATURE PHENOMENON

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

A∗(f)(x) ∶ (Mα →Mβ) →Mα →Mβ

A∗(f)(x) = f x
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x◁m ∶Mα →Mβ →M(α → β)

x◁m =m ⋆ λn.η(λx.n)
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x◁∗m ∶Mα →Mβ → (Mα →Mβ)

x◁∗m = λx.m
Lexical examples from [20] are given below, with an interpretation of comma

as a monadic writer.
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

comma ∶M j ⊸∗ M (j ⊸ l) ⊸∗ M j

comma = λjλl.j ⋆ λx.l ⋆ λf.write(f x) ⋆ λ_.η(x)
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

also ∶M (d⊸ j ⊸ l) ⊸∗ M d⊸∗ M j ⊸∗ M l

also = λv.λo.λs.s ⋆ λx.v ⋆ λf.o ⋆ λy.check(∃z.f z x ∧ z ≠ y) ⋆ λ_.η(f y x)
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

John ∶M J

John = η(J)
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

who ∶ (j ⊸ l) ⊸M (j ⊸ l)

who = η(λP.P)
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

likes ∶ c→ j ⊸M l

like = η(λy.λx.like(x, y))
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

cats ∶Mc

cats = η(ιx.cat∗(x))
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

likes ∶ d⊸ j ⊸M l

likes = η(λyλx.like(x, y))

164

CHAPTER 4. MONADS IN LINGUISTICS

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dogs ∶M d

dogs = η(ιx.dog∗(x))

The comma interpretation can be read as following. Firstly, we read j and l

(J for John, and l for a sentence who likes cats). Then we pass J and l as x

and f , as well as performing write(f x) i.e write(l j). Therefore, l is lifted

in the CI dimension or logging space. Finally, for any results, we return x.

We use the wildcard λ_ to express the �nal operation.

The expression also is being read as passing s and (f, o) as v and y. If we

check from CI that there is z, and z ≠ y and f z x, then, for whatever results,

we return f y x. likes has two type interpretations which are associated

with cats and dogs: c → j → l and d → j → l. Finally, cats and dogs are

the plurals of categories cat and dog.

The compositional rule for the sentence John, who likes cats, likes dogs

also is performed as follows. The reading produces several points for future

research. For example, there is a polysemy of types in an expression likes,

and there is no anaphora resolution for who. We assume that it is referred

to the subject John.

165

4.4. THE WRITER MONAD FOR THE CONVENTIONAL
IMPLICATURE PHENOMENON

John

j

comma

j ⊸∗ (j → l) ⊸∗ j

(j → l) ⊸∗ j
⊸∗ E

who

(j ⊸ l) ⊸ (j ⊸ l)

likes

c⊸ j ⊸ l

cats

c

j ⊸ l
⊸ E

j ⊸ l
⊸ E

⊡j
⊸∗

E

also

(d⊸ j ⊸ l) ⊸∗ d⊸∗ j ⊸∗ l

likes

d⊸ j ⊸ l

d⊸∗ j ⊸∗ l
⊸∗ E

dogs

d

j ⊸∗ l
⊸∗ E

⊡
j

l
⊸∗ E

Table 4.3: Derivation of an example conventional implicature sentence.

⊡ is the connection of the sentences for the readable version. From the �rst

part, it returns a type j with the additional CI dimension of John likes cats,

i.e ⟨j, like(j, ιx.cat∗(x))⟩.

The compositional rule is expressed through the typing composition of parts.

After the typing composition, the at issue dimension is John also likes dogs

which is of type l, while the CI dimension is John likes cats. In order to

present the semantics for also, we need to do the post-composition analysis

using the check function. This is done after the composition process since

we have to access across both the CI and at issue dimensions to draw the

veri�cation. The formation semantics of check before the post-composition

process is

⟨like(j, ιy.dog∗(y)), like(j, ιx.cat∗(x))⟩,check(∃z, like(j, z) ∧ z ≠

166

CHAPTER 4. MONADS IN LINGUISTICS

ιy.dog∗(y)).

The post-composition process is performed by using discourse fragments

and pointing z as ιx.cat∗(x). Hence, we draw

⟨also(like, ιy.dog∗(y), j) ∶ l, like(j, ιx.cat∗(x))⟩ given that

like(j, ιy.dog∗(y)) ∶ l.

This treatment keeps the CI and at issue dimensions apart, and lifts the

cross-boundary phenomena to the post-composition procedure, i.e. discourse

treatment. I will improve this interpretation by using session type in section

5.3.6 to lift the cross-boundary phenomena during the compositional proce-

dure in section 9.3. We explicitly declare which resource is exchanged in the

monadic type declaration. Hence, there is no need to de�ne the implications

⊸ and ⊸⋆ for the compositional rules, and only the normal application rule

→ is required.

4.5 Discussions

Up to the author's knowledge, there is no thorough summarization of the

research of monads in linguistics yet. Additional research on the topic is

listed below. The research by [226] also provides a summary of monads in

linguistics with additional monads : the list monad for focus, the reader

monad for intentionality as reader, and the exceptional monad for presup-

position failure. Other detailed linguistic phenomena have been studied in

[21, 16, 17, 10]. The focus in Hamblin's semantics is studied through the list

167

4.5. DISCUSSIONS

monad in [11]. The conjunction fallacy has been studied as a probabilistic

monad in [206]. The reader monad, as above, is used to interpret generalized

opacity and intentionality in [194]. The inde�nite and its related exceptional

scope-taking has been studied in [17]. The presupposition phenomenon with

projection satisfaction is studied using graded monads in [16].

This chapter summarises previous research on monads in linguistics.

[12, 122] provide the continuation approach5 in linguistics giving insight

into the scope analysis problem. [15, 17, 22, 16] focus on the state monad

giving insight into dynamic semantics. Finally, [21, 227] give insight into

phenomena oriented, such as multidimension, reference opaque, perspective

semantics, and hyperintentionality approach in monads. Additional analysis

research includes [205, 228].

Monads and computing e�ects constitute an active research area. In the au-

thor's opinion, it opens up fruitful research directions to follow in linguistics.

For example, the copredication problem by [172, 173] can be analysed by the

probabilistic monads by [196], or we can use update monads [229] to analyse

the incremental typed logic by [230]. In addition, the completion monads by

[198] have been used to formalize real numbers or [231, 232] to show how we

intergrade databases in monads . There are also promising directions for for-

malizing plurality by previous research by [233, 234, 235] or [65]. Practically,

5Mostly using composable continuation monads.

168

CHAPTER 4. MONADS IN LINGUISTICS

we can interpret dialog as the IO monad by [192, 187] and study a dialog

system such as in previous research by [118]. From a theoretical standpoint,

it is bene�cial to see how the typed predicate logic by [28] is associated with

general category theory.

169

Chapter 5

An introduction to parameterized monads

This chapter presents a theoretical extension of the monads in Chapter 3,

which is called parameterized monads. The parameterized monad was origi-

nated by [23, 34] under the practical requirement for the generalized model

of the computational monads by [8]. Since it is an extension of monads, it

preserves the properties of the monadic framework and enriches them with

an expressive power while being less generic than an applicative functor

framework, such as [37]. Intuitively, according to [53, 236], parameterized

monads follow Hoare logic, originated by [51], to extend monads. To explore

this, a related study was conducted by [237, 238]. Its strength is able to

capture the composable continuation in [7, 6, 75] by following the previous

research of [9, 53]. Thus, parameterized monads can encapsulate linguistic

theories under the Hoare logic interpretation while preserving the same

expressive power to the composable continuation as discussed by [12].

Despite the fact that monads compose a successful mathematical model of

computing e�ects, they have limited expressive power, as observed by [33].

Thus, contemporary research has been attempted to extend the expressive

171

5.1. STRONG MONADS

power of monads. For example, a recent attempt was made by [53] and

an algebraic e�ects and handlers approach was taken by [64]. In addition,

a summary of the attempted research was given in [239, 240], including

notable research by [52, 23, 241]. However, this dissertation was based on a

notable study by [23, 35, 242, 243], which created the contemporary popular

framework to track the e�ects of monads.

According to [23, 34], parameterized monads enrich monads by explicitly de-

scribing states, or contexts, during the composition of monadic expressions.

Adding a state's variation to its monadic expression is di�cult from the theo-

retical perspectives at several points. First, a state's changing is independent

from monadic expressions. Therefore, it is di�cult to keep the compositional

principle in the new theoretical framework. Second, other questions arise,

such as how to describe these states and what the states' properties are.

These states may vary across �elds of studies. Therefore, general modeling

is problematic, as discussed by [240]. However, in the author's opinion, it is

a starting point for a foundational study of computing. Thus, the rest of this

chapter will provide its de�nitions in category theory and examples from the

computing �eld.

5.1 Strong monads

This section and the next one are based on the previous research by [23, 34]

and they provide the mathematical de�nition of the parameterized monads.

172

CHAPTER 5. AN INTRODUCTION TO PARAMETERIZED MONADS

To begin with, let us recall that the monads in this chapter has three main

de�nitions.

� An underlying functor M ∶ C → C

� A unit ηA ∶ A→M A, meaning a lifting function from A to MA

� A multiplication, µA, function ∶MMA→MA

In addition, a particular class of monads, which is called a strong monad,

shows the interaction of the lifted environments of monads with their

contexts. This strong monad has an additional rule, which is called a

strength or a natural transformer rule τAB ∶ A ×MB →M(A ×B).

An object from a monad MA models a computation that produces a value of

type A. This computation could have several properties, such as side e�ects

or exceptions, during the computation process. Meanwhile, M retains the

underlying relation in C. A simple arrow A → MB is a program that turns

an input of type A to output of type B. From a computational viewpoint,

this is the compositional property of the program.

A unit function, η, transfers an object of type A to its target representation

in MA. In terms of computation, it lifts and returns a (typed) value to

the new space (type). The multiplication function uses this to combine

or sequence computations. If f ∶ A→MB and g ∶ B →MC, then the sequence

173

5.1. STRONG MONADS

A
f
ÐÐ→MB

Mg
ÐÐ→MMC

µCÐÐ→MC.

means that an input of type A is passed as an argument to a computation

f . Next, the result is passed to the computation g. Finally, the double

operator is placed on the monad MM to M by the µ law. This computation

shows the combination of two computations to produce a single output that

can be reused for other computations under the same monad. The de�nition

of the combination of computations requires that the input and output of

each computation match.

The strength function transforms a function f , from A to MB to the monad

M(A ×B). That is, one changes the output of the function. If f ∶ A →MB,

C is an additional context, and then

C ×A
C × f
ÐÐÐÐ→ C ×MB

τCBÐÐ→M(C ×B)

This monadic de�nition brings the discussion back to the alternative

de�nition of the basic monad ⟨M, η,⋆⟩ in the section 3.4 and [21, 33]. The

⋆ rule can be interpreted in a di�erent way. That is, if f ∶ A → MB, then

f∗ ∶MA →MB. That is, the parameter m of type MA is given in the oper-

ator m⋆f . It is still equivalent to m⋆f ∶MA→ (A→MB) →MB if m ∶MA.

174

CHAPTER 5. AN INTRODUCTION TO PARAMETERIZED MONADS

One can change ⟨M, η, µ⟩ to ⟨M, η,⋆⟩ by keeping the de�nitions of M and η.

Furthermore, the ⋆ binding operator can be rede�ned as f∗ = ⟨Mf ;µB⟩, for

f ∶ A→MB. ⟨Mf ;µB⟩ is represented as a sequence

MA
Mf
ÐÐ→MMB

µBÐÐ→MB.

It is transformed from MA to MB, as seen ⋆ from the above view.

The converse method, which is a transformer of ⟨M, η,⋆⟩ to ⟨M, η, µ⟩ is

de�ned as follows.

Assuming that f ∶ A → B, one extends functors from ⟨M, η,⋆⟩ to functors

in ⟨M, η, µ⟩ as Mf = (f, ηB)∗. Since f ∶ A → B, (f, ηB) ∶ A → MB, and

(f, ηB)∗ ∶MA→MB. Therefore, if f ∶ A→ B, then Mf ∶MA→MB.

The η operation remains the same.

When setting µA = id∗MA, it can be seen that g∗ ∶MA →MB if g ∶ A →MB.

If IdMA ∶MA→MA, then Id∗MA ∶MMA→MA. Thus, this is the µ law.

The τ operation, or natural transformation, of ⟨M, η, µ⟩ is an additional prop-

erty of this monad. In addition, this operation obeys axioms in accordance

with the η, µ commutative and associative laws.

175

5.2. AN INTRODUCTION TO PARAMETERIZED MONADS

5.2 An introduction to parameterized monads

As mathematical models of e�ects computation, monads have limitations,

despite their rigorous compositional principle. A notorious di�culty oc-

curs when combining two monads. However, parameterized monads face

another limitation�the need to describe the states of monadic expressions.

Although a monadic expression MA preserves the underlying structure of a

computation with a value of type A, it gives little information regarding its

associated states or contexts. There are state monads and reader monads,

and a state monad is de�ned in the denotation manner rather than at the

typed declaration level. However, there are bene�ts to enriching monads

with states as parameterized monads.

First, from a programming perspective, parameterized monads are used to

give more precise conditions of states to help a program run by declaring

them to be explicitly in their prestate. For example, one could require that

a previous function output�a boolean value or the given list�be sorted.

This is the prestate condition of the parameterized monad, also known as

the indexed monad. In general, this is a monadic version of dependent

types, which can be used to more precisely characterize these monads.

From the states perspective, a parameterized monad allows a change

of the type of state during the computation time when it is still type safe.

176

CHAPTER 5. AN INTRODUCTION TO PARAMETERIZED MONADS

To do this, a parameterized monad not only indicates its return value but

also its precondition (input) and postcondition (output). In other words,

the monad keeps three types under its control. A state monad cannot do

this since it does not allow its state to change type during the computation.

The underlying extension of a monad to a parameterized monad is

quite intuitive: one may extend the underlying category C with an addi-

tional category of state S. Objects in S represent state descriptions, and

arrows represent logical entailments. In a rough sense, one can explain the

state as a region, as explained by [33, 241] .

According to [23], implementing this idea in a monad must rede�ne

basic operations in the monads. First, he extended the underlying functor

M ∶ C → C to M ∶ Sop ×S × C → C. The objects in M(S1,S2,A) are not merely

values of a speci�c type A; they are the computation that begin in states

described in S1 and end in states described in S2, producing a return value

of the type A. From this author's point of view, this process is similar to a

continuation version in a monad. 1One can strengthen the pre-description

and weaken the post description by using additional properties of arrows

such as contravariance. That is, the arrows preserve identities and the

compositional law. A functor F from C to D is called contravariance if

� Associate each object X in C an object F (X) in D.

1This idea was also discovered by [223]

177

5.2. AN INTRODUCTION TO PARAMETERIZED MONADS

� Associate each morphism f ∶ X → Y in C a morphism F (f) ∶ F (Y) →

F (X) in D such that

� F (IdX) = IdF (X) for every object X in C.

� F (g ○ f) = F (f) ○ F (g) for all morphism f ∶ X → Y and g ∶ Y → Z

in C.

As one extends the functors from M ∶ C → C to M ∶ Sop × S × C → C, making

the extension more coherent becomes more di�cult since each functor in

the original formations becomes two more dimensions of states and arrows

of relations between them. Therefore, one must strengthen the conditions of

the unit, multiplication, and transformation laws�that is, η, µ, τ rules.

The unit operator, η is not transformed from A to MA. Instead, it

transforms from A to M(S,S,A) and should follow a dinatural in S.

dinatural is another name for keeping the structure coherence. We limited

our literature to category theory at this point since we were focusing at

its applications. Its dinaturality has a commutative law, which is described as

A M(S,S,A)

M(S ′ , S ′ ,A) M(S,S ′ ,A)

ηS′A

ηSA

M(f,S ′ ,A)
M(S, f,A)

For each function of related states, f ∶ S1 → S2 in S. This diagram

178

CHAPTER 5. AN INTRODUCTION TO PARAMETERIZED MONADS

means that the computation from A to M(S,S ′ ,A) is commutative for η

and f .

The multiplication operator, µ is

µ(S1, S2, S3,A) ∶M(S1, S2,M(S2, S3,A)) →M(S1, S3,A).

Given two functions f, g such that f ∶ A → M(S1, S2,B) and

g ∶ B →M(S2, S3,C). Their combination is illustrated as follows

A M(S1, S2,B) M(S1, S2,M(S2, S3,C)) M(S1, S3,C)
f M(S1, S2, g) µ(S1, S2, S3,A)

We canceled the middle state, S2, as it was the post state for the �rst com-

putation and immediately was supplied as a pre-state for the second one. If

the post state of the �rst and prestate of the second computations mismatch,

it should be dinatural to maintain structural coherence. Explicitly, given

f ∶ S2 → S
′

2, the computations sequenced in the arrows should be preserved:

M(S1, S2,M(S ′2, S3,A)) M(S1, S
′

2,M(S ′2, S3,A))

M(S1, S2,M(S2, S3,A)) M(S1, S3,A)

M(S1, S2,M(f,S3,A))

M(S1, f,M(S ′2, S3,A))

µ(S1,S2,S3,A)

µ
(S1,S

′

2,S3,A)

The sequence of arrows that change from S2 to S
′

2 is called weakening the

179

5.3. COMPUTING MONADS IN THE PARAMETERIZED MONADS

post state, whereas the other one is called strengthening the prestate. The

diagram shows that the outcomes should be the same, regardless of whether

they strengthen the prestate or weaken the post state for the purpose of

compositional matching.

The strength operator τ is τAB ∶ A ×M(S1, S2,B) →M(S1, S2,A ×B).

To summarize, one can see that C,S form two categories. The S-

parameterised monad M(η, µ) of C is de�ned with

� A functor M ∶ Sop × S × C → C

� A unit ηS,A ∶ A→M(S,S,A) with dinatural in S.

� A multiplication, or pruning, µS1,S2,S3,A ∶ M(S1,S2,M(S2,S3,A)) →

M(S1,S3,A) with dinatural in S2.

� A strength τA,S1,S2,B ∶ A ×M(S1,S2,B) →M(S1,S2,A ×B)

These new operations must follow monadic compositional laws and axioms,

such as η, µ =M(S1,S2, η);µ = id.

5.3 Computing monads in the parameterized

monads

This section will reanalyze the examples of parameterized monads in comput-

ing given by [23] that follow. In the author's opinion, it is still a prominent

research issue to discover, re�ne, and extend these examples further.

180

CHAPTER 5. AN INTRODUCTION TO PARAMETERIZED MONADS

5.3.1 Strong monads inclusion

According to [23], every strong monad can be embedded into the parameter-

ized monad by removing the controlling states. Formally, given the monads

(M, η, µ), its parameterized monads embed (P, η′ , µ′) is

P(S1, S2,A) =M A
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η
′

SA = ηA

µ
′

(S1 S2 S3 A) = µA

τ
′

S1 S2 A B = τAB

5.3.2 Parameterized monads morphism

Given two state categories, S,S ′ , and a functor (or morphism) between the

two categories F ∶ S ′ → S and a parameterized monad (P, η, µ), the mor-

phism of state will change, as explained by [23], to the new parameterized

monad (P′ , η′ , µ′) is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P′(S ′1, S
′

2,A) = P(F (S ′1), F (S ′2),A)

η
′

S′ A
= ηF (S′) A

µ
′

S
′

1 S
′

2 S
′

3 A
= µF (S′1) F (S

′

2) F (S
′

3) A

5.3.3 The state monad

A related study of Hoare state monads is studied by [52]. However, [23]

studied the interpretation of the state monad in parameterized monads

with a focus on the abstraction level. One can manipulate the states or

181

5.3. COMPUTING MONADS IN THE PARAMETERIZED MONADS

stores by using an update function f ∶ S → S. Formally, the standard side

e�ects monad choose an object S to represent the computer's store and,

thus the monad is the functor: MA = (S × A)S , i.e λs.(s, a) in functional

programming by [185, 50]. The S in the power represents the old stores,

and S ×A represents the new stores associated with its values.

The problem with this representation is that this study used only one

object to represent the store during the programs. Therefore, to update

or manipulate the single cell inside the store, one must process the whole

store, which is not practically preferable. This is because the function f

is total, spanning the entire store S. In addition, this manipulation is not

expressive enough for complex programs that require precision and micro

manipulations of cells or the types of stores is changing over time. Examples

are the Hoare logic cited by [51] and the strong update explained by [237].

Otherwise, one may want a system that is capable of giving the semantics

for speci�c memory address-manipulated functions, such as malloc or alloc

in the programming language C.

To solve this issue, we divided the store into smaller stores to reason and

used separation logic, as explained by [244], to process the entire store.

One may let C represent a Cartesian closed category, S = C, de�ning

M(S1, S2,A) = (S2 ×A)S1 with de�nitions of η, µ, τ , as usual. The parame-

terized monad thus takes its old state, or the prestate of type S1, computed

182

CHAPTER 5. AN INTRODUCTION TO PARAMETERIZED MONADS

to post state S2, with a value of type A.. Thus, the state transformations

are now explicitly given. For each A of C, this study de�ned the read and

update the store as:

readA ∶M(A,A,A)

readA = λs.(s, s)

writeXA ∶ A→M(X,A,1)

writeXA = a↦ λs.(a,⊙)

The read function indicates that we began at a state where a store was of

type A and ended at a stage where a store was of type A, and we returned

an object of type A. This function does not change its state. On the other

hand, the write function does not return a value but may change its type of

state. This can be interpreted as follows: Taking an arbitrary store of type

X, one may replace it with a value of type A and return an unit value ⊙ if

successful. Its prestate has a store of a type X, whereas its post state has a

store of a type A.

This study sought to divide the entire store S into smaller parts to

facilitate reading or writing in one part of a store rather than an en-

tire one. As S is a Cartesian closed category, this study used a linear

compositional representation of S, partitioning it into several parts:

183

5.3. COMPUTING MONADS IN THE PARAMETERIZED MONADS

S = A1 ×⋯ ×_ ×⋯ ×Ai ×⋯ ×An. For example, one could separate S into 3

parts: A × B × C and our read, and write functions are operated only at a

speci�c part:

readS(A) ∶M(S(A), S(A),A)

readS(A) = λs.let S(a) = s in(s, a)

writeS(A) ∶ A→M(S(X), S(A),1)

writeS(A) = a↦ λs.(S(↦ a)s,⊙)

In this frame, S(A) is the �rst part of S if it is equal to A ×B ×C. In this

example, reasoning occurs only at a speci�c part A rather than throughout

the entire S. The function read is interpreted as follows: Read location s,

and an action result is a value a; return (s, a) with the sugar syntax like

this: Let (S(a) = s) in. We bound s to our �rst part�that is, A, by the type

S(A). Similarly, the write function was interpreted this way: we replaced a

value in a part X by a value part a of part A, and X could be either A,B,

or C. In addition, we returned an unit of type 1 for a sign of termination.

S(↦ a)s means updating the location s with a speci�c part of store in S(_)

by a value a. Overall, the write function is explained as follows: Given a

value a of type A, if one procures an arbitrary location s of type X, one can

write a to s and return a termination value ⊙.

184

CHAPTER 5. AN INTRODUCTION TO PARAMETERIZED MONADS

The read and write functions are complex to explain because they manip-

ulate the hardware memory in the computer. Although a program can be

view as a function, the actual performances of reading and writing are quite

physical during real interaction with the computer's memory. Notably, the

change of the entire store should be noted, as there could be malfunctions

or exceptions during the execution of the commands in the hardware.

Examples could include reading recursive functions in speci�c locations with

nontermination.

Practical applications require various degree of reasoning about stores, in-

cluding the global state or the local state. Thus, a generic monad with only

one type of state would not be expressive enough in practice. In addition, if

one changed the type of state manually, this would not be a monad anymore.

The proposed solution is to provide a method to automatically govern the

store and update if one is only changing a small changing part of the store.

This could be achieved through an assumption of the monoidal structures of

the store and by performing computations over the structure. Such compu-

tations are called lifting operations in separation logic. The detail analysis

was referenced in the work of [23], who used the monoidal structure and a

lifting function to handle the case through separation logic.

185

5.3. COMPUTING MONADS IN THE PARAMETERIZED MONADS

5.3.4 The composable continuation monad

The interpretation of composable continuation by [7] was addressed by

[9, 23], and delimited continuation in monads was studied by [245]. The

latter of this subsection involves sketching the composable continuation

interpretation in parameterized monads, as shown by [23]. Basically, Atkey

de�ned the generalized continuation with the unit and binding operators by

following the previous study of [9] as

M R1 R2 A = (AR2)R1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η(x) = λk.k x

µ(f) = λk.f(λk′ .k′ k)

τ(a, f) = λk.f(λb.k(a, b))

Since the type system of the composable continuation by [7] has the general

judgement for an expression

Γ, α ⊢ e ∶ A,β.

Using the equivalence between type and category theory, the author adopted

Atkey's interpretation for the judgement in category as a Cartesian product

(Atkey represented it as an arrow).

186

CHAPTER 5. AN INTRODUCTION TO PARAMETERIZED MONADS

JΓK ×M JβK JαK JAK

Thus, the reset and shift operators were de�ned by Atkey as

reset ∶M B A A→M C C B

reset = λc.λk.k(x(λx.x))

shift ∶ ((A→M C C B) →M E D D) →M E B A

shift = λf.f(λv.η(k v))(λx.x)

The reset operator changed the current continuation to be empty, rep-

resented as an identity function, and fed it to the current argument c,

returning the result for the future continuation.

The shift operator, such as the one given by [75], calls f by the continuation

function k such that given a value A, it evaluates the current surrounding

context up to the recent reset and returns the answer. Thus, it applied the

result in this study to the empty continuation.

5.3.5 The writer monad

The writer monad in the previous chapter, or the tracing explained by [34],

was found by adding the monoid structure (G,e, ●) to the additional space

for logging information. Finally, the writer monad was given as

187

5.3. COMPUTING MONADS IN THE PARAMETERIZED MONADS

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M S1 S2 A = A × op(S1, S2), where S1, S2 ⊂ G,op is an operator.

ηA = λa.(a, e)

µA = ((a,m1),m2) → (a,m1 ●m2)

τA,B = (a, (b,m)) → ((a, b),m)

In a parameterized monad, [23, 34] generalized the monoid structure G to

be in the smaller category S. The de�nition was slightly changed to be

PS1(S1, S2,A) = A × S(S1, S2)
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ηSA(a) = (a, idS)

µS1 S2 S3 A((a, s1), s2) = (a, (s1 ⊗ s2))

where S1 is a small category and S1, S2 are in the category S, which is the

subcategory of S1. An example of this monad is the stack machine given

below, in which A is the natural number denoted in the number of stack,

and G is an actual stack on the computer.

5.3.5.1 The stack machine

Next, this study considered the category stackProgram, in which ob-

jects are natural numbers for the stack depths, and the arrows are given below

n []
Ð→

n

i ∈ Z
n push.i
ÐÐÐ→

n + 1 n + 2 pop
Ð→

n + 1 n + 1 dup
Ð→

n + 2

n1 t1Ð→
n2 n2c2Ð→

n3 n1 (c1,c2)
ÐÐÐÐ→

n3

188

CHAPTER 5. AN INTRODUCTION TO PARAMETERIZED MONADS

Table 5.1: stack machine

Basically, the push, pop, and dup operators, which represent the ⊗ operator,

with the additional program transformations c1, c2 on the last arrow, that

explain the composition rule. The parameterized monad is the P monad

above with the parameterized category |stackProgram|, which is the discrete

category of stackProgram. Thus, one can add additional operators with the

monads, as follows

pushn ∶ Z→ PstackProgram(1, n, n + 1)

pushn = λi.(⋆, (push.i))

clearn ∶ 1→ PstackProgram(1, n + 2, n + 1)

clearn = λ_.(⋆, pop)

dupn ∶ PstackProgram(1, n + 1, n + 2)

dupn = λ_.(⋆, dup)

in which Z is the set of natural numbers.

This is a basic stack program. One can add types for subtyping relations or

substructure the stack for the local context. However, the basic idea is that

there is a stack with its own arrows and additional operators (that can be

the Hoare speci�cation) on the stack.

189

5.3. COMPUTING MONADS IN THE PARAMETERIZED MONADS

5.3.6 The IO monad

One may recall that the de�nition of the interactive IO monad in Section

3.6.6 by [33, 187, 240] was a tree, and operators appeared on the tree in the

following manner:

Input monad MA = µX.A +XU

ηA ∶ a to a tree with only one leaf labelled with a.

if f ∶ A →MB, c ∈ MA,f ⋆ c is the tree that replaces leaves of c labelling by

a to f a.

Output monad MA = µX.A + (U ×X)

ηA is a map a→ (ε, a)

iff ∶ A →MB,f ⋆ (s, a) = (s; s′ , b) where fa = (s′ , b) and s; s′ is a concatena-

tion of s and s
′

The above de�nition shows no relation between the input, output, and

the current states. The parameterized IO monad by [23] shows how one

can embed the meaningful state to the IO monads. In order to show this

interpretation, he limited the example category C to be a set category. The

state category S is a small category, in which objects are states and arrows,

such as S1 → S2, which are the proofs that S1 permits all operators that S2

permits.

190

CHAPTER 5. AN INTRODUCTION TO PARAMETERIZED MONADS

If Ω is a set of IO operations in the sense of [192], it is a world. If action ∈ Ω,

it has two governed sets of input, output, and associated states

� in(action): the set of input values under the operation action.

� out(action): the set of output values under the operation action.

� pre(action): the precondition state that action may perform.

� post(action): the post condition state after the action is performed.

By restricting the action, the objects in the parameterized IO monad are

given inductively as follows by an usual de�nition of the monad, as in the

tree illustrated by [23].

a ∈ A f ∶ S → S
′

e(f, a) ∈ PΩ(S,S ′ ,A)

action ∈ Ω o ∈ out(action) k ∈ in(action) → PΩ(post(action), S
′

,A) f ∶ S → pre(action)
o(f, action, o, k) ∈ PΩ(S,S ′ ,A)

Table 5.2: IO actions

The �rst rule de�nes the return value, and the second rule de�nes the

computation of the input or output actions. The trees for the parameterized

IO monad have values at leaves and operations at the node for branching of

possible input values for each operation. In addition, an arrow of S exists

between each node, acting as witness of compatible with or tracing the

operations. It is separated from the normal IO monad.

191

5.3. COMPUTING MONADS IN THE PARAMETERIZED MONADS

In the space of S, an arrow in PΩ(f, g,A) precomposes f to the S-arrow at

the roof and post composes g to all the S-arrow at the leaves of the tree. On

the other hand, in the normal IO space, if f ∶ A → B, PΩ(S1, S2, f) would

be the usual composition rules on the tree. Thus, the monadic η rule is

η a = e(id, a), and the multiplication rule (µ) concatenates trees by replacing

each leaf of the �rst tree as the roof of the second tree.

Finally, there is an additional primitive operation, which acts as a continua-

tion, for each op ∈ Ω

runop ∶ out(op) → PΩ(pre(op), post(op), in(op))

runop = λx.o(id, op, x.λi.(e(i)))

Examples of stateful IO devices and session types IO were given by [23], as

shown below. There have been other studies on these topics as well, such as

current research on information �ow; but Atkey's examples clearly illustrate

the essential of governing operators under the states in the scope of this

dissertation. Further development, for example the work of [36], shows how

to substance and operate the states from the database perspective.

192

CHAPTER 5. AN INTRODUCTION TO PARAMETERIZED MONADS

5.3.6.1 Stateful IO devices

An overview of the operations is given as

action pre(action) post(action) out(action) in(action)

activate inactive initialising 1 1

initData initialising initialising Ba 1

�nishInit initialising active 1 1

read active active 1 Z

write active active Z 1

shutdown active inactive 1 Z

Table 5.3: controlled IO devices

where B is the boolean values of {true, false}.

The input/output in the stateful IO device is operated by six operations

activate, read, write, shutdown, initiate data, �nish initiate, in

accordance with three states inactive, initialising, active. Before performing

the usual read and write operators in the active state, we assumed that the

computation is in the inactive state and the operators activate, initiative

data, �nish initiate would transform the inactive state to the initialising

and active states, respectively. Finally, the shutdown operator resets the

state from active to inactive.

193

5.3. COMPUTING MONADS IN THE PARAMETERIZED MONADS

In this case, the state category S consisted of three states as objects, and

there was no arrow between any states.

5.3.6.2 Session types

The session types were introduced in a study by [246, 247]. One may assume

that X1,X2,⋯ are sets of values for input/ouput. The states descriptions

are then the abstract traces of the IO behavior of a program using the

following context-free grammar

S =def?X ∣!X ∣S1 + S2∣S1 ⋅ S2∣○

A session ?X means that the program must take an input value of type X,

and !X indicates that it must output a value of type X. The formulae S1+S2

shows the choice operator of either performing S1 or S2. On the other hand,

the formulae S1 ⋅S2 means sequencing two programs, S1 and S2, respectively.

Finally, the formulae ○ indicates that termination or no action is possible.

The arrow in S is given by the smallest preorder that considers S1 ⋅ S2 as an

associative binary operation, and ○, S1 + S2 are met.

The operations are given as follows:

194

CHAPTER 5. AN INTRODUCTION TO PARAMETERIZED MONADS

action pre(action) post(action) out(action) in(action)

inputX,S ?X.S S 1 X

outputX,S !X.S S X 1

Table 5.4: session types

These operations generate an in�nitive actions index using values of the type

X and session S. The translating primitive operations in the parameterized

monads are

inputX,S ∶ 1→ P(?X ⋅ S,S,X)

outputX,S ∶X → P(!X ⋅ S,S,1)

5.4 Speci�cation structures in parameterized

monads

There are ongoing research attempts to study the structure of the param-

eterized monads. For example, Chapter 4 in a study by [248] provided

a general theory for parameterized monads lifting as a transformer of

monoidal category. Another attempt to explain this was made using the

Dijsktra monad in the work of [240, 249]. To conclude, [240] argued

that there is not yet a contemporary general story about the pre- and

post-conditions of monads. However, these authors argued that applying the

relevance theory in linguistics would lend the insight principle to the problem.

195

5.4. SPECIFICATION STRUCTURES IN PARAMETERIZED MONADS

From the Hoare logic perspective, the lifting operators were shown in the

de�nition 6 by [23] with _⊗S as a precondition of strengthening and S ⊗_

as a post condition weakening. In addition, there has been related research

on this topic. For example, [53] used a lax functor to describe the operator.

Another example was given by [39] to provide a speci�cation structure in

category theory with the notion of towers using Hoare logic. [39] inferred that

this structure is equal to the lax functor, which is the theoretical background

explained by [53]. However, further study of this topic is out of this research

scope since there remains no clear axiomatic system for this de�nition.

Thus, this study provided the basic de�nition of category theory shown below

De�nition: let C is a category. A speci�cation structures S over C is

� a set P A of properties over A for each object A in C

� a relation RA,B ⊆ P A ×C(A,B) × P B for each object pair A,B in C.

Thus, the Hoare triples φ{f}ψ, a short abbreviation of RA,B(φ, f,ψ). If

f ∶ A → B,g ∶ B → C,φ ∈ P A,ψ ∈ P B, θ ∈ P C, the axioms for the relation

are

(1) φ{idA}ψ

(2) φ{f}ψ,ψ{g}θ⇒ φ{f ○ g}θ

Given C and S, the new category CS is de�ned with the objects as pairs

196

CHAPTER 5. AN INTRODUCTION TO PARAMETERIZED MONADS

(A,φ), where A ∈ Obj(C) and φ ∈ P A. The morphism f ∶ (A,φ) → (B,ψ) is

a morphism f ∶ A→ B in C with φ{f}ψ

The above axioms guarantee that CS is a category. In addition, the faithful

functor

C↢ CS

is given as

A←[(A,φ)

Indeed, given the faithful functor F ∶ D → C, the speci�cation structure is

de�ned as

P A = {φ ∈ Obj(D)∣F (φ) = A}

φ{f}ψ =def ∃α ∈ D(φ,ψ)st.F (α) = f .

Thus, there is an equivalent between the speci�cation structures S and the

faithful functor C↢ CS. In this way, [39] de�ned the towering of categories as

C0 ↢ C1 ↢ C2 ↢ ⋯↢ Cn

197

5.5. TYPE SYSTEMS FOR PARAMETERIZED MONADS

where the starting C0 is the basic semantic universe to model computational

situations with obvious behavior speci�cations. Thus, the tower re�nes C0

to Cn by performing speci�cation and progressively verifying more kinds of

properties.

5.5 Type systems for parameterized monads

Due to the duality between type theories and category theories discussed by

[157], providing a type system for parameterized monads is an equivalent

way to model this phenomenon in category theory. This section will outline

the basic type system for parameterized monads by following the research

of [23]. [223] showed the equivalent between delimited continuation and

parameterized monads. However, there is no satisfactory type system for

delimited continuation yet, as shown by [219, 6, 40], who explained that the

latest research has been based on subtyping. Thus, the same situation is

anticipated for the parameterized monad.

The typed command calculus mentioned by [23] is based on the previous

research by [250]. The �ne-grained calculus in a study by [250] di�ered

from the λc calculus used by [8] that employed syntactic characterization of

judgments of the producers regarding which can produce e�ects and values

which cannot. Furthermore, λc has no distinction and concerns that all

judgments are producers.

198

CHAPTER 5. AN INTRODUCTION TO PARAMETERIZED MONADS

Basically, this �ne-grained calculus includes two form of judgment Γ ⊢v v ∶ A

and Γ ⊢p M ∶ A for the type values and producers, respectively. The main

construction of the calculus is

Γ ⊢v v ∶ A
Γ ⊢p produce v ∶ A

Γ ⊢p M ∶ A Γ, x ∶ A ⊢p N ∶ B
Γ ⊢p M to x.N ∶ B

Overall, these processes involve lifting a value to a producer's category

and the composition rule, which computes the e�ective computation M

and assigns it as x to the next (e�ective) computation N. In this author's

opinion, these can be seen as axioms on the above speci�cation structures.

Hence, Atkey altered the calculus by adding the state computations to

the calculus. Thus, the typed command calculus has three basic judgment

formations

S1 ⊢s s ∶ S2 Γ ⊢v e ∶ A Γ;S1 ⊢c c ∶ A;S2

The �rst judgment manipulates the states, which is concretely shown as

lists in Category S. The second one is type values in the category C with

usual constructions in type or category theories of variable, units, pairs,

projections, and primitive functions. The last judgment produces e�ects

that include compositional rules for pure values, state terms, sequencing,

and primitive functions. Formally, according to [23], these terms are

199

5.5. TYPE SYSTEMS FOR PARAMETERIZED MONADS

s =def ●∣s.m

e =def x∣f e∣ ⋆1 ∣(e1, e2)∣πie∣λ(xA;S).c

c =def (e; s)∣let x⇐ c1 in c2∣p e∣e1 e2

where m, f, and p are primitive functions for the state, value, and computa-

tion, which ranges over their primitive types ΦS,ΦV ,ΦC . The types for the

states are S,S1, S2,⋯ for the state category, and the value types are given

through the context-free rules

A =def X ∈ TV ∣1∣A1 ×A2∣(A1;S1) → (A2;S2)

where TV are the primitive types. The context Γ of value types consists of

a list of pairs between variable names and their associated types, the usual

de�nition of type theory. Thus, the typing rules explained by [23] are

200

CHAPTER 5. AN INTRODUCTION TO PARAMETERIZED MONADS

State calculus

S ⊢s ● ∶ S
(S − ID) S1 ⊢s s ∶ S2 (m ∶ S2 Ð→ S3) ∈ ΦS

S1 ⊢s s.m ∶ S3

(S − primitive)

Value calculus

x ∶ A ∈ Γ

Γ ⊢v x ∶ A
(V − var) Γ ⊢v e ∶ A1 (f ∶ A1 Ð→ A2) ∈ ΦV

Γ ⊢v f e ∶ A2

(V − primitive)

Γ ⊢v ⋆1 ∶ 1
V − 1I

Γ ⊢v e1 ∶ A1 Γ ⊢v e2 ∶ A2

Γ ⊢v (e1, e2) ∶ A1 ×A2

(V − ×I) Γ ⊢v e ∶ A1 ×A2

Γ ⊢v πi e ∶ Ai
(V − ×Ei)

Γ, x ∶ A1;S1 ⊢c c ∶ A2;S2

Γ ⊢v λ(xA1 ;S1).c ∶ (A1;S1) → (A2;S2)
(V − → I)

Command calculus

S1 ⊢s s ∶ S2 Γ ⊢v e ∶ A
Γ;S1 ⊢c (e, s) ∶ A;S2

(S − V −C)

Γ ⊢v e ∶ A (p ∶ (A;S1) Ð→ (B;S2)) ∈ Φc

Γ;S1 ⊢c p e ∶ B;S2

(C − primitive)

Γ;S1 ⊢c c1 ∶ A;S2 Γ, x ∶ A;S2 ⊢c c2 ∶ B;S3

Γ;S1 ⊢c let x⇐ c1 in c2 ∶ B;S3

(C − let)

Γ ⊢v e1 ∶ (A;S1) → (B;S2) Γ ⊢v e2 ∶ A
Γ;S1 ⊢c e1 e2 ∶ B;S2

(C− → E)

201

5.5. TYPE SYSTEMS FOR PARAMETERIZED MONADS

Table 5.5: typed command calculus

The state calculus is quite simple since it requires no structure in the

state. It can be extended to the symmetry monoidal type of calculus 2 in

the later part of work by [23] if the state is symmetry monoidal one. This

consists of two primitive rules: The �rst one initiates the state, and the sec-

ond explains the use of the state's manipulation in the compositional manner.

The value and command calculi are de�ned interactively for introduction

and elimination rules, which are the abstraction and application rules for

V − → I,C− → E, respectively. The standard rules of the value calculus

consists of the identity, products, and abstraction rules. V − → I introduces

the term in an abstraction formation, which is only a syntax producing no

e�ect. C− → E is an elimination rule that has various potential e�ects. In

this author's opinion, if one were to substance the C− → E rules, for example,

one could produce the algebraic e�ects and handlers system described by [64].

The S-V-C rule relates three calculi together. The C −primitive signi�es the

primitive type of command, and the C − let is the polymorphic sequencing

function.

The substitution rules of the value e for others in the value and command

calculi are de�ned as usual by

2an equivalent notion of linear logic, as discussed in a study by [30]

202

CHAPTER 5. AN INTRODUCTION TO PARAMETERIZED MONADS

y[e/x] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x if x ≠ y

e if x = y
(f e′[e/x] = f(e′[e/x])

⋆ [e/x] = ⋆

(e1, e2)[e/x] = (e1[e/x], e2[e/x])

(πi e
′)[e/x] = πi(e

′[e/x])

(λ(yA;S).c)[e/x] = λ(yA;S).(c[e/x]) with y fresh in e

and

(e′ ; s)[e/x] = (e′[e/x]; s)

(p e′)[e/x] = p (e′[e/x])

(let y⇐ c1 in c2)[e/x] = let y⇐ c1[e/x] in c2[e/x] with y is fresh in e

(e′1 e
′

2)[e/x] = (e′1[e/x], e
′

2[e/x]).

Finally, the substitution for the state in the command calculus is given by

(e; s′)[s/●] = (e; s.s′)

(p e)[s/●] = p e

(let x⇐ c1 in c2)[s/●] = let x⇐ c1[s/●]

(e1 e2)[s/●] = e1 e2

Examples for the calculi explained by [23] include the composable continua-

203

5.6. DISCUSSION

tion's and session types' typing rules, as follow

Γ;A ⊢c c ∶ B;B

Γ; c ⊢c reset c ∶ A;C

Γ, f ∶ (T ;D) → (A;D);B ⊢c c ∶ O;O

Γ;B ⊢c shift f.c ∶ T ;A

and

Γ ⊢v e ∶X
Γ; !X.S ⊢c outputX,Se ∶ 1;S Γ; ?X.S ⊢c inputX,S ∶X;S

From the above typing rules, one can construct the programs in composable

continuation and session types as usual in the literature.

5.6 Discussion

A related theoretical framework was given by the graded monad described

by [53] and [236]. Orchard claimed that his framework was more generalized

than parameterized monads. However, in the author's opinion, this frame-

work has the strength of interpreting delimited continuation, whereas this

interpretation has been known to cause di�culty in the graded monad. This

interpretation is essential to provide monads enough expressive power as the

delimited continuation approach to achieve the scope analysis in linguistics,

as shown in Chapter 19 of [12].

In addition, the recent development of Hoare logic as separation logic by

[244] or structural parameterized monads has hinted at an improvement

204

CHAPTER 5. AN INTRODUCTION TO PARAMETERIZED MONADS

on the topic of glue semantics explained by [251]. This development has

provided a model for updating a local context and lifting it to verify a

complete context rather than to update a local context and verify the entire

context, which would yield resource exhaustion.

Despite the advantage of parameterized monads, this seems to have the

disadvantage of writing an ine�cient identity function in programming

languages. In the author's opinion, the advantages of parameterized monads

would outweigh this minor disadvantage in linguistic theories.

Furthermore, there are open theoretical research questions to investigate

from this research. For example, one could research how to extend the

towering categories. Moreover, the inclusion of the premises in the calculus

is problematic in practice, as discussed as the operator presentIn in a study

by [252].

The applications of indexed monads were studied by [253] for the parsing

program, whereas [254] applied it to the domain-speci�c language. Various

forms of monads, such as exceptional errors, were discussed by [249]. Other

well-known applications in the literature can be found in the information

�ow, session types, and the parameterized probabilistic monad. In addition,

[255] provided a timed monad, which required time synchronization, similar

to parameterized monads.

205

5.6. DISCUSSION

Linguistically, higher order monads were illustrated by [17][p. 10], and a

double continuation was shown by [9], required in an example such as

If ⟨a persuasive lawyer visits a relative of mine ⟩, I'll inherit a fortune.

(selective exceptional existential scope)

We can interpret it as a special case of a parameterized monad, as

MMt ⊆M s1 s2 t

where the explicit state s2 is the choice of reading the inde�nite order. One

could say that it is the towering category of two parameterized monads,

equivalent to the reading order

MMt =M s1 s2 t ⋆M s2 s3 t

The advantage of a parameterized monad over a higher-order structure

monad is that the former has a �rm foundation, as a�rmed by [23]. This

is the underlying theoretical framework of combining states with other

monads. In addition, the research of [17] also combined states and set

monads to interpret dynamic semantics by using a framework of monad

transformers, as shown by [61]. In a similar manner, the combination in

206

CHAPTER 5. AN INTRODUCTION TO PARAMETERIZED MONADS

parameterized monads is detailed explained in the chapter 7.

In comparison with monad transformer, this study's approach has advan-

tages in the ability to vary the states inside a sentence. To provide a similar

mechanism for state changing, or scope taking inside a sentence, [17] com-

bined monads with the continuation monad listed by [45]. Thus, this study

provided a simpler interpretation of the research of [17]. In addition, the

parameterized monads framework is semantically oriented by the composi-

tional principles as typing rules, whereas the monad transformers are more

operationally oriented. Finally, the mathematical background of the param-

eterized monad is quite solid and based on category theory, as explained by

[35].

207

Chapter 6

Linguistic structures of parameterized

monads

The pioneering research of using monads to interpret linguistics side e�ects

is credited to [63, 6] and is summarized in the chapter 4. At this point, two

comments must be made. Firstly, the term side e�ects confused researchers

unfamiliar with functional programming and monads. Side e�ects are

not side, nor small, e�ects. Thus, I propose to call them e�ects in lin-

guistics, or an area of interaction between semantics and pragmatics, instead.

Secondly, Shan [6], [75][p. 142], based his foundation on the continuations

approach in the delimited control by [7, 74], and criticised other approaches

such as [8] as being less concrete. He backed up his reasoning on an

assumption that each computational side e�ect corresponds to a notion of

computation expressed as a monad or monad morphism [6][p. 91]. However,

a recent study by [13, 245] shows that the picture is not that simple. They

compared the expressive power between these foundations of delimited

control, algebraic e�ects and handlers, and monads for modelling e�ects,

and show that these are equivalent in a simple type system. Furthermore,

the results of comparison are still conjectural for a complex typing system

209

such as polymorphic types.

In addition, according to [256], which [6] is based on, continuation can

provide other e�ects such maybe, exceptions, or state. However, proving

correctness in the continuation-based formulation is challenging and non-

trivial. On the other hand, denotational semantics with metavariables in

monads by [8] is a traditional way to prove the correctness of program

speci�cation1 such as [38, 50, 33].

The research in this dissertation is based on parameterized monads by [23]

which is described in the previous chapter. Thus, this chapter provides

an alternative foundation for the e�ect in parallel with continuations in

linguistics by [12] and we are presenting its bene�t on analysing the donkey

sentence in the next chapter. In a short comparison, our reasoning is based

on constructive logics, while Barker and Shan base theirs on classical logic

by [214, 149]. To the author's knowledge, the constructive logic has the BHK

interpretation, allowing the quanti�cation to be varied in order to compen-

sate for changing of a variable's scope by modifying its formula (a double

negation rule, for example, A → B = ¬B → ¬A or A → B = ¬(A ∧ ¬B)).

In addition, its underlying theory of category theory also has the Yoneda's

lemma with a straight interpretation of the implication.2

1The correctness could mean coreference. [24] also talked about super�uous integration
of di�erent logics

2another variance of the lemma is the propositional dependence logic in by [257].

210

CHAPTER 6. LINGUISTIC STRUCTURES OF PARAMETERIZED
MONADS

The contemporary characterization of related approaches in linguistics are

listed as follows. The continuation approach is pursued in [6, 46, 12, 149, 164].

The algebraic e�ect and handler are pursued by Marsik [10], and the monadic

approach is pursued in [16, 15, 21, 17, 22, 63].

An advantage of the parameterized monads framework is that it provides a

clear representation of dynamic semantics by using the pre- and post-states

in parameterized monads is alighted with Hoare's style in pre- and post-

conditions in dynamic semantics. Furthermore, it is also well connected

with type-theoretical research in linguistics by the duality between type

and category theory. Hence, it inherits a strong contextual modelling

background. Finally, it is a denotational semantics with a strong foundation

for proving correctness.

In a broad sense, states in this framework are de�ned similarly to the

information states in [179, 181, 117]. The distinction is the theoretical

background. Those other frameworks are based on the dependence logic in

[153], or on relational algebra and are database-oriented. In contrast, this

framework is oriented towards category theory. Thus, there is a diversity of

research to draw on in category theory. For example, [31] also shows how

we can interpret databases in category theory, with a rich set of examples.

A database �eld is a scheme S, equivalent to a category, and an instance is

211

a functor I ∶ S → set from the scheme to a set (or any algebraic structure).

Hence, their linguistic frameworks are able to be interpreted in category

theories3.

Comparing their strengths, the information states framework by

[179, 181, 235] has an advantage in analysing plurality, while this framework

has a rich structural analysis such as an evaluation order, and is able to

modularise phenomena of the interaction between pragmatics and semantics

such as in [21].

Thus, I de�ne the information states in this categorical framework as the

context in type theory. Another type-theoretic notion for interpreting

information states is the record type in [137]. Record types are a powerful

framework to intergrade situation semantics, Montague's semantics for

compositionality, and the DRT, surpassing [24]. However, I choose context

for the bene�t of presentation and, according to [258], the minor di�dence

between the dependent record types and the Σ type is the �elds label.

Furthermore, a context is a loose interpretation of the Σ type with a list

of assumptions rather than a Σ type. According to [141], type-theoretic

context also has an advantage of handling the presupposition projection.

There are two advantages of this approach. Firstly, type theories has a rich

3It is left as a future research direction

212

CHAPTER 6. LINGUISTIC STRUCTURES OF PARAMETERIZED
MONADS

analysis of contexts. Previous applications of contexts in type theories in

linguistics include [141, 60, 112, 137, 259, 118], with theoretical studies in

[260, 261, 262]. Secondly, the translation of contexts from type theories to

category theory is quite straightforward due to the duality between them

as discussed in chapter 3 and [157, 201]. This transition technique,4

for example, is explained in general category theory textbooks such as

[29, 30, 201]. Formally, it is rewritten as below

J∅K = 1

JΓ;x ∶ AK = JΓK × JAK

JΓ;x1 ∶ A1;⋯;xn ∶ AnK = JΓK × JA1K ×⋯ × JAnK

Table 6.1: Context in category theory.

A further development of this idea is the slide category by [263, 260].

However, this dissertation uses the notion of type-theoretic judgement,

which is related to [19], rather than slide category, to express the context. It

is because we model the context in linguistics by following previous research

by [86, 141].

4Similar to the transition semantics in [181] where the state transition is equivalent to
the operator on the formulae

213

6.1. FIRST-ORDER LOGIC INTERPRETATION OF NATURAL
LANGUAGES

6.1 First-order logic interpretation of natural

languages

The theoretical background to the interpretation of �rst-order logic to

category theory is covered in [30, 264]. These works, especially the latter,

can lead us to contemporary research such as homotopy type theory in [134].

Overall, however, the majority of interpretation is in a closed Cartesian

category, and a linear logic is interpreted as a symmetry monoidal.

The literature on logical interpretation of natural languages is rich. A

contemporary research, for example, is developed in [106, 44, 265]. By the

Curry-Howard-Lambek correspondence, the interpretation between logic,

type and category theories are equivalent, from an abstract perspective.

Thus, the author introduces examples of the basic use of �rst-order logics

for interpreting natural languages. It should be noted that, for example, the

DRT in [56] is interpretable in �rst-order logic as discussed in [24][p. 2].

This section is based on the interpretation of propositional and predicate

logics in an implementation of the functional programming language Haskell

by [25]. Thus, this section provided the interpretation of predicate and

propositional logics in category theory where Haskell is an implementation

in the programming languages of the theory. The logics are examples of

internal languages of category theory. Informally, the interpretation means

214

CHAPTER 6. LINGUISTIC STRUCTURES OF PARAMETERIZED
MONADS

that category theory is expressive enough to include other languages such as

the �rst-order logic.

To begin with, [25][p. 69] provides a simple, context-free grammar of an

English fragment by following inductive rules

S Ð→ NP VP

NP Ð→ Snow White∣Alice∣Dorothy∣Goldilocks∣Little Mook∣Atreyu∣DET CN∣DET RCN

DET Ð→ the∣every∣some∣no

CN Ð→ girl∣boy∣princess∣dwarf∣giant∣wizard∣sword∣dagger

RCN Ð→ CN thatVP∣CN that NP TV

VP Ð→ laughed∣cheered∣shuddered∣TV NP∣DV NP NP

TV Ð→ loved∣admired∣helped∣defeated∣caught

DV Ð→ gave

Table 6.2: An English grammar example.

Propositional logic can also be de�ned in [25][p. 74] as

atom Ð→ p∣q∣r∣atom′

Formula Ð→ atom∣¬Formula∣Formula ∧Formula∣Formula ∨Formula

Table 6.3: Propositional logic formula

where connectives ¬,∧,∨ mean not, and, or, respectively. atom means a

basic proposition, and is listed as p, p, r, p
′

, q
′

, r
′

,⋯. From the above rules,

we can de�ne in�nite formulae such as ¬¬p, p ∨ ¬q, etc.

215

6.1. FIRST-ORDER LOGIC INTERPRETATION OF NATURAL
LANGUAGES

Furthermore, [25][p. 76] extends the propositional logic by quanti�cations,

and structures basic proposition to a logic called `predicate one'. The

predicate logic is also called �rst-order logic, or �rst-order predicate logic.

The quanti�cation in this logic ranges only over entities, not over other

formulae. The structured basic proposition expressed that we detailed

and characterized the proposition by its arity or the number of its taking

parameters. The grammar is given in by [25][p. 76] as

v Ð→ x∣y∣z∣v′

P Ð→ P ∣P
′

R Ð→ R∣R
′

S Ð→ S∣S
′

atom Ð→ P v∣R v v∣S v v v

F Ð→ atom∣v = v∣¬F∣F ∧F∣F ∨F∣∀v.F∣∃v.F

Table 6.4: predicate logic formulaes

Where v is the list of variables. P, R, S is a list of propositions by arity.

∃,∀ stand for existence and universal quanti�ers. The implication F1 → F2,

for example, is interpreted as ¬(F1 ∧ F2).

From the above grammar, and taking a pronoun or an anaphora as a

variable, we can interpret various examples of English sentences in [266, 44]

as follows. For the sake of interpretation, we are skipping the scope of the

216

CHAPTER 6. LINGUISTIC STRUCTURES OF PARAMETERIZED
MONADS

pronoun at this point.

Thus, the sentence Maria borrowed the textbook from her professor. is parsed

as

∃x.[textbook(x) ∧ ∃y.(professor(y)) ∧own(x, y) ∧borrow(Maria, y, x)].

A discourse such as A kid is going home. He is whistling is parsed as

∃x.(Kid(x) ∧ going_home(x)) ∧Whistle(p1).

If p1 = x, the interpretation is equivalent to

∃x.(Kid(x) ∧ going_home(x)) ∧Whistle(x)

Thus, the sentence can be rewritten as

A kid who is going home is whistling

Another complex example by [266] is the discourse

A kid walks down the park.

There is also a dog.

217

6.1. FIRST-ORDER LOGIC INTERPRETATION OF NATURAL
LANGUAGES

It frightens him and he chases it.

with a formalization as

∃x.Kid(x) ∧Walk(x).

∃y.Dog(y).

Frighten(p1, p2) ∧Chase(p2, p1).

It can be rewritten as an overall discourse as

∃x.Kid(x) ∧Walk(x) ∧ ∃y.Dog(y) ∧Frighten(p1, p2) ∧Chase(p2, p1).

If we assume an anaphora resolution, it is reduced to

∃x.Kid(x) ∧Walk(x) ∧ ∃y.Dog(y) ∧Frighten(y, x) ∧Chase(x, y).

Another sentence with rewritten discourse rules and anaphoric resolution is

Once there was a Queen.

Her son fell in love with a frog.

The prince kissed it and she got mad.

with its basic formalization

218

CHAPTER 6. LINGUISTIC STRUCTURES OF PARAMETERIZED
MONADS

∃x.Queen(x).

∃y.(Son(y) ∧ ∃z.(Frog(z)) ∧ love(y, z))

Kiss(p1, p2) ∧Mad(p3).

and the rewritten discourse as

∃x.Queen(x) ∧ ∃y.(Son(y) ∧ ∃z.(Frog(z)) ∧ love(y, z)) ∧ Kiss(p1, p2) ∧

Mad(p3).

Now, the resolved anaphora yields the reading

∃x.∃y.∃z.Queen(x)∧(Son(y)∧(Fro(z))∧love(y, z))∧Kiss(y, z)∧Mad(x).

The above formulae concern with Egli's theorem with its application on

solving anaphora resolution in the research by [266, 44]. Egli's theorem re-

de�nes the scope of the existence variables in �rst-order formulae. Formally,

it is parsed as

∃x.φ ∧ ψ↔ ∃x.(φ ∧ ψ).

with a corollary [44]

219

6.1. FIRST-ORDER LOGIC INTERPRETATION OF NATURAL
LANGUAGES

(∃x.φ→ ψ) ↔ ∀x.φ→ ψ.

[266] provides an implementation of the theorem. However, in the author's

opinion, the strength of the DPL, which is associated with the dynamic of

the assignments by [44], has not been captured in the research. In addition,

in the case of cataphorics, I de�ne an alternative theorem as

φ ∧ (∃x.ψ) ↔ ∃x.(∧ψ)

Other examples, with their �rst-order formalization, from [44] are given below

A Canadian farmer, whose horse was ill, went to see his veterinarian. She

lent him her donkey. with

∃x.(Canadian_farmer(x) ∧ ∃y.own_horse(x, y) ∧ ill(y)) ∧

∃e.see_veterinarian(x, e) ∧ ∃v.own_donkey(p2, v) ∧ lent(p2, v, p1).

There is a boy in the garden. He sneezes. with

∃x.boy(x) ∧ in_garden(x) ∧ sneeze(p1).

There once was a king. He lived in a castle. with

220

CHAPTER 6. LINGUISTIC STRUCTURES OF PARAMETERIZED
MONADS

∃x.King(x) ∧ ∃y(Castle(y) ∧ live_in(p1, y)).

If someone is a king, he lives in a castle. with

∃x.King(x) → ∃y(Castle(y) ∧ live_in(p1, y)).

A diver found a pearl. She lost it again. with

∃x.Diver(x) ∧ ∃y.(pearl(y) ∧ found(x, y)) ∧ lost(p1, p2).

In addition, [44] also provides problems outside anaphora resolution. They

are, for example, the binding variables operator, i.e. changing the variable

names in

She is seeing a woman. She is seeing a woman with a basic interpretation

∃y.woman(y) ∧ see(p1, y) ∧ ∃y.woman(y) ∧ see(p1, y)

and the rewritten formula

∃y.∃x.woman(x) ∧ see(p1, x) ∧woman(y) ∧ see(p1, y)

or the entailment relation in the discourse

221

6.1. FIRST-ORDER LOGIC INTERPRETATION OF NATURAL
LANGUAGES

If a man is from Athens, he is not from Rhodes. There is a man from

Athens here. So, he is not from Rhodes. with the interpretation

∃x.man(x) ∧ from_Athens(x) → ¬from_Rhodes(p1),∃x.man(x) ∧

from_Athens(x) ⊧ ¬from_Rhodes(p1).

or

A: A man has just drunk a pint of sulphuric acid.

B: Nobody who drinks sulphuric acid lives through the day.

A: Very well then, he will not live through the day.

with

∃x.man(x)∧drink_sulphuric_acid(x),¬∃x.drink_sulphuric_acid(z)∧

live_through_day(z) ⊧ ¬live_through_day(p1)

However, this formalization may lead to an incorrect reading consequence

as discussed in [44]

If Jane has a garden, she sprinkles it right now and if Jane owns a house,

she has a garden. Now Jane actually owns a house. So she sprinkles it right

222

CHAPTER 6. LINGUISTIC STRUCTURES OF PARAMETERIZED
MONADS

now.

∃y.Gargen(y) ∧ has(J, y) → Sprinkle(J, p1),∃x.House(x) ∧Own(J, x) →

∃y.(Garden(y) ∧ House(J, y)),∃x.(House(x) ∧ Own(J, x) ⊧

Sprinke(J, p1)).

Besides the basic quanti�cation ∃ and ∀, [44] extends them to other

operators such as the modality, generalized quanti�cation, presupposition,

and belief. The modality operator 3 illustrates an expression of English

words outside a�rmative words such as may, might. Thus, for example,

they are represented in

Someone is hiding in the closet. He might have broken the vase.

with a formalization as

∃x.Hide_in_closet(x) ∧3broke_the_vase(x).

So, we need to modify Egli's theorem for modality as

∃x.φ→ ψ⇔∃x.(φ ∧ ψ) if and only if x is not free in the scope of the modal

operator 3 in ψ

223

6.1. FIRST-ORDER LOGIC INTERPRETATION OF NATURAL
LANGUAGES

The presupposition is being used with the partial operator ∂ to add the

situation or event in the analysis of a sentence. ⊧s ∂φ means that, in the

information state s, the formula φ is presupposed to hold in [44][p. 54]. Thus

A fat man was pushing his bicycle.

is parsed with a presupposition that a man own a bicycle

∃x.fat_man(x) ∧ ∃y.∂Own_bicycle(x, y) ∧ push(x, y).

However, this system is inherited the contradiction of giving information as

given in

Someone might have broken the vase. She didn't do it.

with a formalization as

∃x.3broken_vase(x) ∧ ¬broken_vase(x). Since it may not referred to

the vase. Thus, the above formalization may be incorrect.

The generalized quanti�cation can also be given with additional operators

such as

224

CHAPTER 6. LINGUISTIC STRUCTURES OF PARAMETERIZED
MONADS

No boy likes a girl.

with

NO(x).(boy(x))∃y.girl(y) ∧ like(x, y).

At most �ve students handed in a cake.

with

AT_MOST_FIV E(x).student(x).∃y.cake(y) ∧ handed(x, y).

the belief operator is also discussed in [44, 86, 21] with a special notation B in

the examples below from [44]. It should be noted that [21] parsed the belief

operator as the reader monad. Intuitively, the information state is someone's

belief; hence the belief operator is the reader monad in that information state.

Ralph believes that Ortcutt is a spy. So Ralph believes about Ortcutt that he

is a spy.

with

B(R, spy(O)) ⊧ ∃xC(x = O) ∧ B(R, spy(x)).

Ralph (mistakenly) believes that the man with the brown hat is Ortcutt. And

225

6.1. FIRST-ORDER LOGIC INTERPRETATION OF NATURAL
LANGUAGES

Ralph believes that he is spying.

with

B(R,∃xC(brown_hat(x) ∧ x = O)) ∧ B(R, spy(p1)).

Ralph believes that the man in the brown hat is a spy.

with

B(R,∃x.brown_hat(x) ∧ spy(x))

Ralph believes that the man seen at the beach is not a spy

with

B(R,∃x.see_at_beach(x) ∧ ¬spy(x))

Ralph believes of Ortcutt that he is a spy.

with

∃x.x = O ∧ B(R, spy(x)).

Ralph believes of Ortcutt that he is not a spy.

with

226

CHAPTER 6. LINGUISTIC STRUCTURES OF PARAMETERIZED
MONADS

∃x.x = O ∧ B(R,¬spy(x)).

Ralph believes there are spies.

with

B(R,∃x.spy(x)).

There is someone whom Ralph believes to be a spy.

with

∃x.B(R, spy(x))

6.2 Structured information states

The above extensions operators of �rst-order logic by [44] show their relation

to the (information) state. This section provides perspectives on the previous

study of the states. All formulations of states can be regarded as an instance

of a datatype, particularly in the sense of Muskens and Hoare [24, 51].

6.2.1 Berg's criteria for information states

Berg [117][p. 127] formulated criteria for the states in his research on the

de�nition of discourse for plurality. Since the states are ambiguous in real-

life situations, the criteria act as a following guideline. While Berg's main

concern is about plurality objects, they are generally accepted as a special

227

6.2. STRUCTURED INFORMATION STATES

case of our de�nition of states in the section 5.2. His criteria are

� States assign plural objects to discourse referents

� States are able to provide relationships between plural objects

� If a plural object is a subset of another plural object, then the relation-

ship is preserved

� States express relationships between objects if relationships are intro-

duced in the discourse explicitly.

� States only provide values to variables which are introduced in the dis-

course.

In the author's opinion, Berg's states can be roughly formulated as the

record type by [137], or as a heterogeneous collection in the sense of [231, 36]

or [31] in category theory. Examples of his states are given below. A basic

relationship of the state G = {g, h, k, l,m} is expressed as

ID man woman

g Bill Mary

h John Ann

k Harry Joan

l Charles Joan

m � Silvia

and a state G
′

to express the old men

228

CHAPTER 6. LINGUISTIC STRUCTURES OF PARAMETERIZED
MONADS

man_name truth_value

John Y

Harry Y

Charles N

Bill N

Berg's states can use column to express the properties on the state. Thus,

a state expresses more properties, such as old men, men, women, and those

women who love old men. An example of a state with dependence relations is

ID man woman old_man woman_love_old_men

g Bill Mary � �

h John Ann John Ann

k Harry Joan Harry Joan

l Charles Joan � �

m � Silvia � �

From the state, we can derive additional operators such as the depen-

dence notion of the relation between man and woman or the subset relation,

for example, old_man as a subset of man.

6.2.2 Information states as presuppositions

This section employs previous analysis of context in type theories in

linguistics. Since we have the duality between type theory and category

theory�dependent type as local Cartesian, Π type as exponential, Σ type

229

6.2. STRUCTURED INFORMATION STATES

as ×�the translation from previous research to category theory is quite

straightforward. In type theories, the quanti�ers ∀ and ∃ are interpreted as

the Π,Σ types by [86], and contexts are modelled as a list of presuppositions

in natural languages by [141, 86].

The research by [141] used contexts and judgements in type theories to

parse the ist notion in [252]. The notion (ist C i) is de�ned as an addi-

tional formulae in �rst-order logic to express that an expression i is true in

the context C. An example of the ist notion is the believe notion, or B, above.

Intuitively, Boldini's idea is to represent the context C as a regular context

in type theory and i as the typing declaration of the notion. Thus, any

operator on the notion is related to the contextual morphism and the

context is the primary object in his interpretation. For example, let us

analyze Boldini's sentence to demonstrate the context in type theory.

The eldest son of the Smith's is at the university.

In order to make the above sentence meaningful, presuppositions below are

required

230

CHAPTER 6. LINGUISTIC STRUCTURES OF PARAMETERIZED
MONADS

� The noun phrase the Smith's implies that they are a married couple.

� The noun phrase eldest son implies semantical presuppositions: the

Smiths have more than one son, and, among those, there is an eldest,

by the constraint of an adjective eldest.

Thus, the noun phrase the Smith's is parsed as

Smith's : (x1 : Man) (x2 : Woman) couple (x1, x2) ∧ married(x1, x2).

In this formalization, we use the dependent type, i.e. the type married

couple depends on two persons: husband and wife, which are repre-

sented as man and woman types. The type is interpreted as: there are

a man x1, a woman x2, and x1, x2 are couple and married. In order

to certify that the Smith's is an element of the type married couple, a

proof of x1, x2 is provided. In this case, they are the Smith husband and wife.

However, our approach is slightly di�erent from Boldini's one, viz. [Smith's:

Man × Woman, x1: married(p(Smith's), q(Smith's))] by the type formation.

We require one type to declare the fact that the Smith's is a married

couple, while Boldini needs two. More clearly, he breaks the Smith's into

two types: they are a couple which consists of a man and a woman, and a

proposition that they are married.

231

6.2. STRUCTURED INFORMATION STATES

Let sons be a predicate that takes a married couple and produces a list of

their sons, i.e. sons: married couple → [child]. ♯ is a predicate that takes a

list and returns the cardinality of the list, i.e. ♯: (A : Type) → [A] → Nat.

Then the proposition that the Smith's has more than one son is parsed as:

(♯ sons(Smith′s)) > 1, where > ∶ Nat→ Nat→ Prop. By the propositions as

types principle, constructing an element of the type (♯ sons(Smith′s)) > 1,

i.e. x ∶ ((♯ sons(Smith′s)) > 1) is equal to providing a judgement that this

proposition is true.

Let inc : (A : Type) → [A] → A → Prop, i.e. a proposition that an element is

included in the list. Then the noun phrase, the eldest son of the Smith's

is parsed as

(∃prop1 ∶ (∃(e ∶ child)inc(sons(Smith′s), e)))

∧ ((Πprop2 ∶ ∃(x ∶ child)inc(sons(Smith′s), x))(age(p(pro1)) > age(p(prop2)))).

Thus, the presuppositions of the sentence the eldest son of the Smith's

is at the university is

Γ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Smith′s ∶ (x1 ∶Man)(x2 ∶Woman)couple(x1, x2) ∧married(x1, x2)

v1 ∶ ((♯ sons(Smith′s)) > 1)

v2 ∶ (∃prop1 ∶ (∃(e ∶ child)inc(sons(Smith′s), e)))∧

((∃prop2 ∶ Π(x ∶ child)inc(sons(Smith′s), x))(age(p(pro1)) > age(p(prop2))))

v3 ∶ University

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

5

232

CHAPTER 6. LINGUISTIC STRUCTURES OF PARAMETERIZED
MONADS

Thus, the above sentence is parsed as: Γ ⊢ is_at(v2, v3). In the author's

opinion, v2, v3 are discourse references, and presuppositions are constraints

on the references. Examples of parsed linguistic phenomena in the context by

[141] are parallelism, anaphora, and ellipsis; another one is the formalization

of the de�nite description the in [142, 267].

From the above analysis, the parsing process of the sentence in parameterized

monads is quite straightforward

S ∶M Γ Γ B

S = λγ.is_at(v2, v3)

where B is the Boolean type.

The formalization of the ist notion in monads has not been studied.

However, in the author's opinion, monads, in the sense of [8], is an instance

of this notion. We can think of the notion (ist C i) with C being a

computational type (i.e. the lifted monadic space in the sense of [8] or the

Freyd category in [23]); the notion hence expresses the relation between a

type with the value i and its computational type.

The ist notion was regarded as a judgement in [141]. His approach

233

6.2. STRUCTURED INFORMATION STATES

looked upon the notion as a short abbreviation of an assertion is true,

while the de�nition of judgements ⊢ in [93], following Kant, is another

word for an assertion of I assert that. Thus, the author conjectures a

hypothesis that two notions are equivalent. In addition, the judgements is

being used in declaring a type system in section 5.5, especially the typing

declaration V − → I. Hence, the formulae (x ∶ A;S) in (Γ, x ∶ A,S) can be

regarded as the formalization of ist notion in parameterized monads where C

is S, and i is an assertion that x is a value of type A. Thus, we can concretise

ist(C i)

as either C ⊢v i or C ⊢p i

Therefore, a sequence or nested use of the ist notion is equivalent to a

program with monads and the do notation. This usage would lead to the

related research by [253] using indexed monads and applicative functors

to construct parsers. However, we should notice that the notion ist does

not need to satisfy the monad laws, even the laws of the applicative

functor. On the other hand, restricted rules, such as when using parame-

terized monads, yield additional properties such as composable continuation.

In this dissertation, the author represents the contexts as a computing

state, or practically as a stack machine, in a parameterized monad as per

234

CHAPTER 6. LINGUISTIC STRUCTURES OF PARAMETERIZED
MONADS

[23][p. 7�8]. The dynamic operators on the stack follow the structures

adding to state section 3.4 or [15]. Hence, axioms over the stack, such as

in [268], de�ne the practical correctness of the logical implication ⇒. This

is done because, in order to make an implication claim, we need to check

that the implication holds for every element in the stack. Hence, the axioms

associated with stacks play important roles.

This idea has been researched in [227]. In addition, this idea is similar

to the incremental dynamic semantics in [230], of which a fully elaborated

interpretation is in [25, chapter 12, pp. 303�349]. However, we should bear

in mind that we improve upon their research by including the swapping

technique for the free-variable binding mechanism.

6.2.3 Information states as dot types

The dot objects of complex types such as PHYS or INFO, in the sense

of lexical semantics, have been studied in [172, 170, 269, 270]. A recent

formalization frameworks for the objects are the coercive subtyping by

[170] or the disjoint union ⊎ in set theory by [269]. On another hand,

this dissertation uses the state to represent the dot objects. Hence, we

propose an alternative framework to interpret the objects. This is a

category-theoretic interpretation and it faithfully represents the Cartesian

product interpretation of the dot objects, as discussed in [173]. Furthermore,

the operations on the states can be substantiated by using the operators on

235

6.2. STRUCTURED INFORMATION STATES

meta-objects such as the downward monotone, disjoint union, multiple sets,

etc.

The basic introduction of the research on the dot objects is referred to

[270, 271]. Basically, dot objects are objects with distinct aspects. We can

think of these aspects as corresponding to the above states' construction

where the meaning of a word is interpreted by its relevance perspectives, in

Chapter 2, rather than by the whole of usages and descriptive meaning. A

linguistics example is the copredication or the polysemy phenomenon. An

example in [270, 170] is the word lunch, as follows

The lunch yesterday was delicious but took forever.

The lunch has both a property of describing a food and a property of

describing an event. Another example is the word book in

John picked up and mastered the mathematical book.

Since the book is an object of the verbs picked up and mastered, it has

both the physical and informative properties. Major examples in the

survey by [173] are listed below with orthogonal types combined as Act ⋆

Proposition, such as promise, in

236

CHAPTER 6. LINGUISTIC STRUCTURES OF PARAMETERIZED
MONADS

I heard John's quick promise from yesterday.

John's promise took months to realize.

State ⋆ Proposition, such as belief, in

Nothing can shake John's belief.

John's belief is obviously false.

Attribute ⋆ Value, such as temperature, in

The temperature is 90.

The temperature is rising.

Event ⋆ Information, such as lecture, in

My lecture lasted an hour.

Nobody understood my lecture.

Event ⋆ Human, such as appointment, in

Your next appointment is at 3:00 pm.

Your next appointment is a blonde.

Event ⋆ Music, such as concert, in

The rain started during the concert.

237

6.2. STRUCTURED INFORMATION STATES

The concert was confusing.

Performance ⋆ Music, such as song, in

Sophie bought some Lerner and Lowe songs.

Sophie coughed during the song.

Event ⋆ Physical, such as lunch, in

My lunch lasted too long today.

I pack my lunch on Thursdays.

Information ⋆ Physical, such as book, in

Mary burned my book on Mahler.

Mary believes all of Chomsky's books.

Material ⋆ liquid, such as co�ee, in

John picked the co�ee from the tree.

John drank the co�ee in the cup.

Organization ⋆ (Information ⋆ Physical), such as magazine, in

238

CHAPTER 6. LINGUISTIC STRUCTURES OF PARAMETERIZED
MONADS

The magazine �red its editor.

The cup is on top of the magazine.

I disagreed with the magazine.

Process ⋆ Result, such as classi�cation, in

Linnaeus's classi�cation of the species took 25 years.

Linnaeus's classi�cation contains 3000 species.

Producer ⋆ Product, such as the company named Honda, in

Honda raised prices last week.

I used to drive a Honda.

Tree ⋆ Fruit, such as orange, in

We planted an orange last year.

Mary peeled an orange for breakfast.

Tree ⋆ Wood, such as oak, in

We trimmed our oak last fall.

239

6.2. STRUCTURED INFORMATION STATES

We used oak for our cabinets.

Sound ⋆ Information (⋆ phys), such as music, in

I heard the music for hours.

Sophie can read music �uently.

The interpretation of dot objects in parameterized monads is quite straight-

forward. We use the state with the symmetry monoidal structure to

represent and govern the types of the dot objects. The changing of the

states in parameterized monads is the selection or coercion use of the type.

Thus, the state highlights the important aspect of parameterized monads

as providing an additional classi�cation of dot types. For example, if a

book has both the PHY and INFO types, then the pre-state de�ned it, and

the post-state selects which actual type (either PHY or INFO) is being

used. The selection, for example, depends on the actual usage during the

compositional process of the word. Thus, examples of the dot objects, under

the disjoint union ⊎, are represented as follows:

JtableK ∶M Γ (Γ;PHY S) B

JtableK = λγ.∃x ∶ e.(sing(table(x)) = T)

JbookK ∶M Γ (Γ;PHY S⊎ INFO) B

240

CHAPTER 6. LINGUISTIC STRUCTURES OF PARAMETERIZED
MONADS

JbookK = λγ.∃x ∶ e ∧ (sing(book(x)) = T)

JbooksK ∶M Γ (Γ;PHY S⊎ INFO) B

JbooksK = λγ.∃x ∶ e ∧ (book∗(x) = T)

Jbe_informativeplK ∶M Γ (Γ; INFO) B

Jbe_informativeplK = λγ.∃x ∶ e ∧ (info∗(x) = T)

Table 6.5: dot types interpretation in parameterized monads

where multisets6 are also a representation of the disjoint unions of sets.7 For

example, the multiset {1,1,2} = {1,2}⊎{1}, or {1,1,1} = {1}⊎{1}⊎{1}.

Additional state operators are listed as follows. We de�ne the singular or

sing operator as M G H Jsing(x)K = T if and only if G = H&G(x) is a

singleton. In a rough sense, this is the uniqueness condition of the de�nite

description in [92].

Other related operators on the state, such as the distributed operator δ,

are studied in [272, 117]. A further analysis of conditions can be found

in [273] where Ivlieva associated each sentential semantics with an event.

Thus, a linguistic expression has a semantic value which is associated with

an event. In other words, the research by Ivlieva is a context sensitive

analysis, similar to the introduction of the above context γ. Indeed,

6Set theory may not be a proper theoretical framework since the meta-objects could
be the mereology objects.

7The disjoint unions of sets is similar to the linear logic, or the symmetric monoidal
version in set theory.

241

6.3. DISCUSSION

in the author's opinion, we can view an event as a state monad. For

example, the sentence John loves Mary is only true if there is an event e

that it happens. An example with the rewritten notion is described as follows

JloveK⟨e⟨e⟨s,t⟩⟩⟩ = λx.λy.λe.love(e)(y)(x)

J[John love Mary]V P K⟨s,t⟩ = λe.love(e)(John)(Mary)

J[John loves Mary]SK⟨t⟩ = T i� ∃e.[love(e)(John)(Mary)]

6.3 Discussion

The parameterized monads interpretation of the dot type is close to the

formal lexical approach of the dot objects by [172] rather than the typed

theoretic approach by [170]. In addition, following Chapter 7 of interpreting

the cDRT in parameterized monads, this approach is categorized as a

dynamic semantic approach rather than a static one by type theories.

There are two further prominent developments on this topic. Firstly, in the

semantic perspective, we can de�ne states as the characterization of ontology

in [272]. Secondly, we can use states to represent conversational threads,

as in [274], with an attempt to extend the logic of the demonstrative (LD)

242

CHAPTER 6. LINGUISTIC STRUCTURES OF PARAMETERIZED
MONADS

in [203] for practical purposes by adding the conversational thread to the LD.

In the author's opinion, the conversation thread can be interpreted as states.

The consequences of conversational threads constitute the speci�cation

structure. However, a challenging practical question arises: how to de�ne

the similarity between two conversations? the author follows the traditional

dynamic semantic interpretation, such as [275], to suggest that two conver-

sations are similar if they di�er by at most one variable. However, in the

author's opinion, this de�nition of similarity leads to a challenging question:

what is the measure of `one variable'?

The author also notices another application of parameterized monads to

parse a linguistic phenomenon, which is called the switch-referencing. The

author sketches its de�nition and representation below; however, this ap-

plication still needs a further investigation. According to [276, 277], the

switch-reference is a phenomenon in which a morpheme is added to a syntax

to state the di�erences between subjects in clauses of a sentence. [276, p.

45�46] provides a clearer de�nition:

Switch-reference is a morpheme, found at the juncture of two

clauses, that typically indicates whether the subjects of those two

clauses co-refer. For instance, in Kiowa, there are two sentential

connectives translated as when. When the subjects of the two

joined clauses co-refer, the form of when is chè (/tsẽ ∶/), glossed

243

6.3. DISCUSSION

as SS, as seen in (25). When the subjects are disjoint, the form is

è (/ẽ:/), glossed as DS(26).

(25)

Hébàchè èm sáu.

[∅ − hé ∶ bà = tsẽ ∶] ẽm− s⊃́ ∶

[3s]enter.PF =when.SS [3s ∶ RFL]− sit down.PF

When she1 came in she1/∗2 sat down

(26)

Hébàè èm sá.

[∅ − hé ∶ bà = ẽ ∶] ẽm− s⊃́ ∶

[3s] − enter.PF =When.DS [3s ∶ RFL]− sit down.PF

[when she1came in] she∗1/2 sat down.

Jacobsen �rst proposed the term, switch-reference to describe a

proposed morpheme in Washo (Hokan-Coahuilan, California) that

only appeared at the juncture of two clauses whose subjects were

disjoint in reference. The term switch-reference referred to this

apparent switch.

Since the �rst simple description, this phenomenon has been found to be a

universal phenomenon, especially in Papua New Guinea, Australia, or, with

other name, as the same-reference in Mojave, as discussed in [276].

The interpretation of the switch reference in parameterized monads is quite

straightforward. It is

244

CHAPTER 6. LINGUISTIC STRUCTURES OF PARAMETERIZED
MONADS

(Γ, pivot)morpheme(Γ, anti − pivot ∧ condition).

where the pre- and post- states are (Γ, pivot) and (Γ, anti−pivot∧condition),

respectively. Γ, in our notation, is a short abbreviation for the discourse

representation of the morpheme as discussed in [277]. For example, the

semantic representation of chè is

(Γ, x)chè(Γ, λy. ∧ y = x)

The semantic representation of è is

(Γ, x)è(Γ, λy ∧ y ≠ x)

245

Chapter 7

The cDRT in parameterized monads

This chapter shows another application of parameterized monads in chapter

5, building upon on [15, 17] which show the interpretation of dynamic

semantics in monads. An advantage of this approach is a combination of a

compositional principle through the λ-calculus expression, or Montagovian

semantics, and the discourse structure. The discourse structure is repre-

sented in the state monad, and the λ-calculus provides the denotation of an

expression over the state. The related research by [17] also goes further to

advocate using monads as a framework to interpret dynamic semantics.

The idea of combining Montagovian semantics and the discourse structure,

discussed in 2.2.3, also appeared in the cDRT framework by [24]. Muskens

combined two frameworks by using the grafting technique which transposes

the discourse representation semantics (DRS) to the extended framework

of Montague's semantics. Hence, the two frameworks are fused. This

technique is feasible through the observation that the language of the DRS

is �rst-order logic. Muskens thereby enriches the research by Montague [4]

by adding axioms to include the transformation of the DRS in the enriched

247

framework. In the author's opinion, this idea is similar to the denotational

semantics in programming languages. For example, it is interpreted in the

intermediate languages in [33].

However, the interaction between two frameworks (speci�cally monads and

the cDRT) has not been studied as well as the properties of the combined

framework in the cDRT has not been researched. The state monad in [15] is

based on [8], and it cannot formalize the cDRT because Musken's framework

requires both pre- and post-conditions for each expression. In this section, I

will show how we construct Musken's framework in parameterized monads.

Hence, I point out how to use category theory as a potential metalanguage to

study the underlying structure of the cDRT. This construction contributes

to the current accepted research by enriching the literature of monads in

linguistics. It also allows the parameterized monads to express both the

linguistic category in [278] and types in [24] in state declarations.

The idea of combining the DRT and Montague's semantics also appears

in the records type in [137]. The current research on this framework does

not achieve that substance, but that occurrence shows the prominence of

monads, which is ultimately due to the duality between category theory

and type theory in Chapter 3. Intuitively, a record type is an abstract of

a stack, or a database schema. Mathematically, its equivalent notion in

category theory is �bred category in [261]. Computationally, the recent

248

CHAPTER 7. THE CDRT IN PARAMETERIZED MONADS

research of combining database and functional programming is carried out

by [231, 232, 36].

The interpretation of the cDRT by [24, 278] in parameterized monads is

quite straightforward because both are in�uenced by the Hoare's logic with

pre- and post- states as primitive objects. In addition, they used λ calculus

as an underlying languages and it is also being used in the the previous

research by [15] which this research is based upon. However, the distinction

is that this research yields the categorical semantics rather than model

semantics as per traditional semantic interpretation of the DRT.

Furthermore, the distinction between the cDRT and parameterized monads

is that the cDRT is based on the simple theory of types by [3]. According

to [8], while the simple theory of types is expressive enough to capture

computational expressions, it is not rich enough to stand alone as a theory

nor as a model of interpretation. For example, [4] has to use model theory to

encode the meaning of λ expressions. A further critique can be found in [69].

On the other hand, we use parameterized monads from [23], which followed

[8], and has a strong base in category theory, as discussed earlier in Chapter 3.

Both simple theory of types and also monads, a special class in the category

theory, describe functions. However, according to [8, p. 21], while both

proofs and programs, i.e. the Curry�Howard correspondence, denote

249

functions, they are not the same. In the author's opinion, the di�erence

is that programs focus more on the practical aspect of functions. Thus, if

the simple theory of types and monads are regards as proofs-oriented and

programs-oriented respectively, the parameterized monads framework is a

pragmatic oriented framework for the cDRT.

A recent development of the cDRT is the PCDRT framework

[179, 43, 279, 280]. The application of parameterized monads can be

substantial in a similar manner by integrating selective generalized quan-

ti�ers or plurality in parameterized monads. The author does not explore

this idea in detail; however, it seems to be a prominent direction for future

research.

Intuitively, the discourse, in an analogy to the computational view, repre-

sents the data structure. The data structure can be simple, as a declared

example in a toy language [25], or complex, as a database scheme. Thus,

dynamic semantics roughly means data-oriented representations. In the au-

thor's opinion, the data structure is stored in the states. Hence, the se-

mantics means that treating the pre- and post-states, which represent the

change of the data structure, is the primary objective. This idea, which is

also explored in [254, 36], is also an advantage of parameterized monads over

monads. Therefore, interpreting the basic cDRT in parameterized monads

is quite straightforward. However, the straightforwardness does not mean

250

CHAPTER 7. THE CDRT IN PARAMETERIZED MONADS

that it is obvious. For example, the reader can see the research in [16] for an

alternative possibility. Thus, the author summarises the basic de�nitions of

the cDRT in the next section before providing the translation.

7.1 An introduction to the cDRT

The source papers are [24, 281] for the interpretation of the cDRT framework

in parameterized monads. This interpretation, which is described below, has

related research in Chapter 3 of [65].

7.1.1 Logic of change

Musken's logic of change consists of four axioms with a type (sorted) logic.

Four basic (sorted) types of the logic are

� e for entities

� t for truth values

� π for registers or storages

� s for states

Registers and states denote discourse referents and a list of discourse refer-

ents, respectively. Intuitively, a register acts as a place for the referencing

function that Muskens calls pigeon-holes. Suppose that we encounter an

inde�nite such as a pigeon. We will create a register called upigeon which

stores an entity of pigeon to refer to later on:

Sue has a pigeon1. She feeds it1

251

7.1. AN INTRODUCTION TO THE CDRT

We can structure registers in addition to the one for inde�nites and the

one for names. The value in the register for inde�nites can be changed

or updated; these are called variable registers. On the other hand, the

values in the registers for names are �xed and called constant registers. In

programming languages, the �rst type of register contains variables which

can be substituted, and the second type are constants.

In Musken's system, a variable u is used for an unspeci�c referent, and

named with a capital letter such as Alice, Bob, Tim, Tom for a speci�c

one. A generic of two is used as v. On the other hand, variables without

references denote type e, which is called x with a lower-cased constant such

as alice, bob, tim, tom. In summary:

type meaning variable denotions constant denotions

s states i, j, k, h

e entities x1, x2,⋯ alice,mary,⋯

π registers v u1, u2,⋯(unspeci�c discourse referents)

⋯Alice,Mary,⋯(speci�c discourse referents)

An example of a relation between states and registers is given as the

following table. Columns represent states which consist of two forms of

registers. Rows show how registers are changed in each state.

252

CHAPTER 7. THE CDRT IN PARAMETERIZED MONADS

i1 i2 i3 i4 ⋯

u1 ∶ ⋆ Bob Joe Joe T im ⋯

u2 ∶ ⋆ Tim Tim Ann Sue ⋯

u3 ∶ ⋆ ⋆ Bob Lee Lee ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Tim ∶ Tim Tim Tim Tim Tim

Joe ∶ Joe Joe Joe Joe Joe

The above table is referred as ⋁ with the type π → s → e, so ⋁ δ i, the

value of the register δ in the state i, is an entity of type e. Hence, a state i

can be rewritten as λv.⋁ v i.

The above structure has additional operators of de�nitions and axioms as

follows.

� i [δ1⋯δn] j is an abbreviation of ∀v((δ1 ≠ v ∧⋯∧ δn ≠ v) Ð→ (⋁(v)(i) =

⋁(v)(j))) where i, j are states of type s and δ1,⋯, δn are registers of

type π. The formula expresses that i and j di�er at most in δ1,⋯δn.

� i [] j is equal to ∀v.⋁(v)(i) = ⋁(v)(j)

� VAR is a predicate of type π → t. It is a singling-out of the variable reg-

isters in Musken's de�nition, or, in the author's perspective, it initializes

the register. It is represented by the ⋆ notion above.

� Axioms of the above de�nitions are

253

7.1. AN INTRODUCTION TO THE CDRT

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Axiom 1 ∀i.∀v.∀x.(V AR(v) → ∃j.i[v]j ∧⋁(v)(j) = x)

Axiom 2 V AR(u)where u is an unspeci�c referent

Axiom 3 un ≠ umif n ≠m

Axiom 4 ∀i.(⋁(Tom)(i) = tom),∀i.⋁(Joe)(i) = joe, etc.

i.e. a speci�c name referent is unchanged.

Axiom 1 clari�es the relevance of register under the states. Axiom 2 initiates

the unspeci�c referent. Axiom 3 addresses an independence between

unspeci�c references. Finally, Axiom 4 o�ers a �xed point of speci�c

references such as proper names. It also establishes the connection between

the constant reference and constants in entities.

According to [24], this logic has an unselective binding property. Since a

state is a list of items, a quanti�cation over the state corresponds to multiple

quanti�cations over its substructural items. Formally, the quanti�cation is

written following the unselective binding lemma.

Suppose that the registers of type π contain unspeci�c referents u1,⋯, un, and

entities of type e contain variables x1,⋯, xn, and φ is a formula which does not

contain j. The substitution is written as [⋁(u1)(j)/x1,⋯,⋁(un)(j)/xn]φ.

Then we have the following axioms

i) ∀i.∃j(i [u1,⋯, un] j ∧ [⋁(u1)(j)/x1,⋯,⋁(un)(j)/xn]φ) ↔

∃x1.∃x2.⋯∃xn.φ

254

CHAPTER 7. THE CDRT IN PARAMETERIZED MONADS

ii) ∀j.(i[u1,⋯, un]j → [⋁(u1)(j)/x1,⋯,⋁(un)(j)/xn]φ) ↔ ∀x1.⋯xn.φ

A reader is referred to [281, 278, 280] for a further explanation of this logic.

7.1.2 Translating boxes to the logic

Let us recall that the semantics for DRT are given as following, in [24]

SEM1 ∶ ∥ R(δ1,⋯, δn) ∥= {a∣⟨∥ δ1 ∥a,⋯,∥ δn ∥a⟩ ∈ I(R)}

∥ δ1 is δ2 ∥= {a∣ ∥ δ1 ∥a=∥ δ1 ∥a}

SEM2 ∶ ∥ not K ∥= {a∣¬a′⟨a, a′⟩ ∈∥K ∥}

∥K1orK2 ∥= {a∣∃a′(⟨a, a′⟩ ∈∥K1 ∥ ∨⟨a, a
′⟩ ∈∥K2 ∥)}

∥K1 ⇒K2 ∥= {a∣∀a′(⟨a, a′⟩ ∈∥K1 ∥→ ∃a′′⟨a′ , a′′⟩ ∈∥K2 ∥)}

SEM3 ∶ ∥ x1,⋯, xn∣γ1,⋯, γm ∥= {⟨a, a′⟩∣a[x1,⋯, xn]a
′ ∧ a′ ∈∥ γ1 ∥ ⋂⋯⋂ ∥

γm ∥

SEM4 ∶ ∥K1;K2 ∥= {⟨a, a′⟩∣∃a′′(⟨a, a′′⟩ ∈∥K1 ∥ ∧⟨a
′′

, a
′⟩ ∈∥K2 ∥)}}

where δ1,⋯, δn are discourse referents. Hence, the semantics of DRT in λ

calculus are given by abbreviation rules below in [24]

255

7.1. AN INTRODUCTION TO THE CDRT

ABB1 R{δ1,⋯, δn} λi.R(⋁(δ1)(i))⋯(⋁(δn)(i))

δ1 is δ2 λi.⋁(δ1)(i) = ⋁(δ2)(i)

ABB2 not K λi.¬j.K(i)(j)

K or K
′

λi.∃j.(K(i)(j) ∨K ′(i)(j)

K ⇒K
′

λi.∀j.K(i)(j) → ∃k.K ′(j)(k)

ABB3 [u1,⋯, un∣γ1,⋯γm] λi.λj.(i[u1,⋯, un]j ∧ γ1(j) ∧⋯γm(j))

ABB4 K;K
′

λiλj.∃k(K(i)(k) ∧K ′(k)(j)))

The only distinction between the two interpretations of the DRS as discussed

in Chapter 2 and Musken's innovation is that the languages of boxes in

the �rst one is the metalanguage in DRT, while in the second one it is an

abbreviation or an intermediate language in the sense in [33]. Other aspects

are being kept the same.

The abbreviation works as in the following description. Firstly, following

Musken, let us consider a condition in a box such as u2 abhors John. We

can use the interpretation of the is in abbreviation 1 (ABB1) for abhors.

Thus, abhors can be rewritten by adding the state i to the condition as

λi.abhors(⋁(u2)(i))(⋁(John)(i)). By axiom 3, John is a �xed point, so

this formula is equal to λi.abhors(⋁(u2)(i))(john). Now, let us consider a

more complex pair of sentences

A man1 adores a woman2. She2 abhors him1.

256

CHAPTER 7. THE CDRT IN PARAMETERIZED MONADS

with its DRT or box interpretation being

[u1 u2∣man u1,woman u2, u1 adores u2, u2 abhors u1]

Applying the same steps as for the basic condition, this box is equal to the

below λ interpretation by using the abbreviation 3 and the interpretation of

the above basic condition

λi.λj.(i[u1, u2]j ∧ man(u1)(j) ∧ woman(u2)(j) ∧ (u1 adores u2)(j) ∧

(u2 abhors u1)(j))

where a common noun man, woman is a predicate that requires a state j

to have a meaning. Given the structure ⋁ with values in registers, this

formula is concretised out as

λi.λj.i[u1, u2]j ∧ man(⋁(u1)(j)) ∧ woman(⋁(u2)(j)) ∧

adores(⋁(u1)(j))(⋁(u2)(j)) ∧ abhors(⋁(u2)(j))(⋁(u1)(j))

This mechanism can be applied to all boxes. However, this structure does

not provide the truth in Boolean logic. In order to do so and giving its

interpretation in the predicate logic, Musken employed the unselected

binding lemma with the convention de�nition of truth values in DRT.

257

7.1. AN INTRODUCTION TO THE CDRT

Namely, a condition γ is true in a state i in the structure ⋁ if γ(i) holds at

⋁. If γ is true in all states i, we say that γ is true. Thus, a box K is true

in state i if ∃j.K(i)(j) is true. Hence, �K is true� is a short abbreviation

for �K is true in all states of ⋁.� Thus, the above sentence has a truth

condition in the structure ⋁:

∃j.i[u1, u2]j ∧ man(⋁(u1)(j)) ∧ woman(⋁(u2)(j)) ∧

adores(⋁(u1)(j))(⋁(u2)(j)) ∧ abhors(⋁(u2)(j))(⋁(u1)(j))

which can be re�ned by using the unselected binding lemma without

substitution:

∃x1, x2.man(x1) ∧woman(x2) ∧ adores(x1)(x2) ∧ abhors(x2)(x1)

The above abbreviation rules yield a λ abstraction of a linguistic term. They

can also provide application rules, if we see a box as a representation of a

condition on the abstracted variables with explicit states or registers. For

example, a common noun such as farmer is represented as λv.[∣farmer v],

and an inde�nite a as λP.λP
′

.[u2∣] ∧ P (u2) ∧ P
′(u2). The application rule

of the λ terms is performed normally under Montagovian semantics, or via

λ-calculus in [3], which rewrites the combination expression a farmer as

λP
′

.[u2∣] ∧ [∣farmer u2] ∧ P
′(u2). A further rewriting can be achieved by

the merging lemma as λP
′

.[u2∣farmer u2] ∧ P
′(u2).

258

CHAPTER 7. THE CDRT IN PARAMETERIZED MONADS

7.1.3 Semantics of a fragment of English

This section, after [24], substantiates the compositional rules above. The

syntax or grammar, for example, can be de�ned by following inductive rules

in [24, p. 17]

T → T S∣S

S → S
′

S∣NP V P

S
′ → IMP S

V P → AUX V
′ ∣V ′

V
′ → Vt NP ∣Vin

NP →DET N
′

N
′ → N ∣N S.

Det→ a,every,no,some

NP → he,she,it∣Mary,⋯∣who, whom, which

N → farmer, boy

AUX → doesn't

Vt → own

Vin → stink

IMP → if

The semantics are substantiated by the types, basic lexical de�nitions of En-

glish terms, and additional structural rules on the parsed tree of lexical items.

259

7.1. AN INTRODUCTION TO THE CDRT

This is also described as the standard Montagovian semantics in section 2.1.1.

The types are characterized by the number of registers used. Static types

are also demonstrated in section 2.1.1 and in [4]. For convenience, s→ s→ t

is given as [] for short. Thus, boxes have a type []. Other major syntactic

categories have following types: common nouns or intransitive verbs have

type π → s → s → t (or [π]). [[π]], for example, is an abbreviation of

(π → s → s → t) → (s → s → t). Transitive verbs have a type [[[π]]π]. Noun

phrases have a type [[π]]. Determiners have a type [[π][π]]. Verb phrases

have a types[[[π]]] or [π] which depends on whether they have an auxiliary

or not.

The lexical items are interpreted as following. Firstly, the relation between

discourse referents and anaphoric pronouns is basically as follows. Each

possible antecedent A, such as a determiner or a proper name, introduces a

discourse referent and is denoted dr(A). Thus, dr(no) and dr(Alice) would

be u,Alice, respectively. On another hand, an anaphoric pronoun selects a

referent in the created discourse referents with the ant. For example, ant(it)

= a in the sentence

Sue1 has a2 pigeon. She1 feeds it2

while dr(a) = u2 (or dr(ant(it)))and dr(ant(she1)) = Sue.

In the author's opinion, the operators dr, ant perform as read, write opera-

260

CHAPTER 7. THE CDRT IN PARAMETERIZED MONADS

tors on the register u in a computing sense. dr writes a new register while

ant reads from a register. Hence, the pronoun is interpreted in association

with an unspeci�c discourse referent, i.e. it = λP.P (uit), and a proper name

is associated with a speci�c discourse referent, i.e. Sue = λP.P (Sue).

Other lexical items are interpreted in accordance with standard Montagovian

semantics and Musken's above types as follows

Expression λnotation Type

an λP
′

.λP.([un∣];P
′(un);P (un)) [[π][π]]

non λP
′

.λP.[∣not([un∣];P
′(un);P (un))] [[π][π]]

everyn λP
′

.λP.[∣([un∣];P
′(un) ⇒ P (un))] [[π][π]]

Maryn λP.P (Mary) [[π]]

hen λP.(P (δ)), δ = dr(ant(hen)) [[π]]

en λP.P (vn) [[π]]

who λP
′

.λP.λv.P (v);P ′(v) [[π][π]π]

farmer λv.[∣farmer v] [π]

love λQ.λv.Q(λv′ .[∣v loves v′]) [[[π]]π]

doesn′t λP.λQ.[∣not(Q(P))] [[π][[π]]]

if λpq.[p⇒ q] [[][]]

To the basic lexical rules above, Musken adds inductive rules to construct a

mother node in a tree from its daughters. They are

261

7.1. AN INTRODUCTION TO THE CDRT

� COPYING: if A; α and A is the unique daughter of B then B; α.

� APPLICATION: if A ; α,B ; β and A, B are daughters only of C

then C ; α(β)

� SEQUENCING: if T ; τ, S ; δ and T , S are daughters of X then

X ; τ ; δ

� QUANTIFYING-IN: if NP n ; η,S ; δ and NP n, S are daughters of

X then X ; η(λvn.δ)

� REDUCTION: if A; α and β is reduced from α by λ conversion, then

A; B.

An example of the parsed tree of a sentence a farmer walks. He laughed, by

[278], is given as following

a λPλQ.([u1∣].P (u1);Q(u1))

farmer λv.[farmer[v]]

a farmer λQ.([u1].[∣farmer(u1)];Q(u1))

a farmer walks [u1∣].[∣farmer(u1)]; [∣walks(u1)]

he1 λP.P (δ)(δ = dr(ant(he)))

he1 λP.P (u1)

he laughed [∣laugh(u1)]
a farmer walks. he laughed ∶ [u1∣].[∣farmer(u1)]; [walks(u1)]; [∣laugh(u1)]

Using the merging lemma leads to:

262

CHAPTER 7. THE CDRT IN PARAMETERIZED MONADS

[u1∣farmer(u1),walk(u1), laugh(u1)]

7.1.4 An accessibility and weakest-precondition calcu-

lus

Accessibility in DRT is used to handle the potential referents of a pronoun.

Musken de�nes acc(u,K) as the set of accessible discourse referents from u

in K. Roughly speaking, the set represent the potential scopes of a discourse

referent. They are de�ned as following inductive rules:

(active discourse referents)

adr([u1,⋯, un∣γ1,⋯, γm]) = {u1,⋯, un}

adr(K1;K2) = adr(K1)⋃adr(K2)
acc(u,φ) = ∅ if φ is atomic

acc(u,not K) = acc(u,K)

acc(u,K1or K2) = acc(h,K1)if u appeared in K1 otherwise K2

acc(u,K1 ⇒K2) = acc(u,K1)if u appeared in K1 otherwise acc(u,K2)⋃adr(K1)

acc(u, [u1,⋯, un∣γ1,⋯γm]) = acc(u, γi)⋃{u1,⋯un}if u appeared in γi

acc(u,K1;K2) = acc(u,K1)u appeared in K1 otherwise acc(u,K2)⋃adr(K1)

A further development of this resolution can be seen in the verb phrase

ellipsis analysis in [278].

The weakest-precondition calculus in [24, p. 27�29] concerns translating the

language of boxes to (predicate) logics. A simple DRS structure can use

the unselective binding lemma. On the other hand, a complex structure

can be developed, using the below calculus which originates in Hoare's logic

[24][p. 27]. Let tr be a translation function from conditions to predicate

263

7.1. AN INTRODUCTION TO THE CDRT

logic formulae, wp (weakest precondition) have a box and a �rst order

formula as input, and a predicate logic formula as output. Thus, tr(γ) yields

a truth condition of the condition γ, while wp(K,T) (T is the a�rmative

truth-only sentence), the truth condition of K. The wp is the reverse

engine1 that, given a box K and an output truth value t, �nds the weak-

est condition in the predicate logic formation φ such that K applied with

φ yields t. Thus, �nding the semantics are equivalent to �nd the precondition.

Let � be the assignment function from discourse referents {u1,⋯un} to

individual variables {x1,⋯, xn} and constants as u�
n = xn,

T om� = tom,T im� = tim, etc

The calculus is illustrated as

tr(R{δ1,⋯, δn}) = R(δ�1,⋯, δ�n)

tr(δ1 is δn) = (δ�1 = δ
�
2)

tr(not K) = ¬(wk(K,T))

tr(K1 or K2) =wp(K1,T ∨wp(K2,T))

tr(K1 ⇒K2) = ¬wp(K1,¬wp(K2,T))

wp([uk1 ,⋯ukn ∣γ1,⋯γm],Ψ) = ∃xk1⋯xkn .tr(γ1) ∧⋯ ∧ tr(γm) ∧Ψ

wp(K1;K2,Ψ) =wp(K1, (wp(K2,Ψ)))

An example of the box for the sentence A man1 adores a woman2. She2

abhors him1. with its box representation:

1You can think of it as reverse mathematics.

264

CHAPTER 7. THE CDRT IN PARAMETERIZED MONADS

[u1 u2∣man u1,woman u2, u1 adores u2, u2 abhors u1]

is process as following

wp([u1 u2∣man u1,woman u2, u1 adores u2, u2 abhors u1] ,T)

= ∃x1x2.tr(man u1)∧tr(woman u2)∧tr(u1 adores u2)∧tr(u2 abhors u1)

(apply the second last rule)

= ∃x1, x2.man(x1) ∧woman(x2) ∧ adores(x1)(x2) ∧ abhors(x2)(x1)

(apply the �rst rule 4 times)

[24, p. 28] also noted that accessibility and wp are closely related.

7.2 The translation to parameterized monads

Due to the equivalence between logics, types, and category theories as

discussed in Chapter 3, we expect an equal framework for Musken's

system in category theory. I provide a translated version of Musken's

framework in parameterized monads as follows. The related research of the

translated systems of the cDRT are chapter 3 of [65] and [16]. In compar-

ison to those systems, this is a distinct framework underlaid by Hoare's logic.

The overall idea of this framework is similar to Muskens' viewpoint. Namely,

we use programming language theories as our background research. Thus,

265

7.2. THE TRANSLATION TO PARAMETERIZED MONADS

Musken's state is similar to states in parameterized monads as an abstraction

of a computer memory. Furthermore, the idea of using two states and a chain

has also appeared in [24, p. 14]:

In a similar way all other boxes can be rewritten as certain terms

λi.λj, where j is a �rst-order formula. Of course, for practical

purposes we greatly prefer the more transparent box notation and

in fact it will turn out to be completely unnecessary to expand

de�nitions.

and [24, p. 20]:

expressions of the fragment will be equivalent to terms consisting

of a chain of λs followed by an expression of the box type s(st),

In the author's opinion, the idea of using two states in λi.λj for semantics,

or s(s(t)) for types, is equivalent to the pre- and post-states in Hoare's logic

or parameterized monads and a chain of it is a speci�cation structure in

section 5.4. Alternatively, we can view a state s as a result, in which case

a short notion of s→ s→ t to [] is actually the continuation in the sense of [12].

The central point of composition in Muskens' framework is the interpretation

of λ-calculus in category theory. It is illustrated in section 3.1.1. In addition,

Muskens' four basic types are interpreted as follows: e, t are being kept

the same; registers or storage are stack programs; and states are the state

category in the parameterized monad as in section 5.2.

266

CHAPTER 7. THE CDRT IN PARAMETERIZED MONADS

In addition, moving Musken's states to parameterized monad states yields

an advantage in our typing declaration with an additional space for typing

declaration. I used it to encode category in the sense by [278] as in the

below lexical items. Hence, we have a richer typing declaration system than

Musken's type. In the author's opinion, this idea can be developed further

to include the categorical grammar.

Semantically, section 4.3 shows how to translate the DRS into the state

monad. Indeed, the interpretation of states by Muskens as λv.⋁(v)(i)

is the de�nition of the state monad. In addition, this framework extends

an expressive power of a monadic term and focuses on state transitions

under the same formulae. This has an advantage of an explicit governing

or subsentential management of registers. In detail, the semantics are

interpreted as follows.

The interpretation rules of boxes are de�ned by using the dynamic logical

operators, implication and negation (⇒,∼), in section 7.3.1 below. The four

axioms are kept the same and interpreted as primitive functions.

267

7.2. THE TRANSLATION TO PARAMETERIZED MONADS

● Rτ1→⋯τn→t(α1
s→τ1⋯α

n
sτn) ∶M s1 s1 t

Rτ1→⋯τn→t(α1
s→τ1⋯α

n
sτn) =def λs1.R(α1(s1),⋯, αn(sn))

● K ⇒K
′ =def K ⇒K

′

● ¬K =def∼K

● α = β ∶M s1 s1 t

α = β =def λs1.λx̂.α(x̂)(s1) = λx̂.β(x̂)(s1)

Table 7.1: Logical operators on boxes.

R is a relation, and K is a box in a sense of DRT [56]. In short, on the left of

the ∣ is a context which is a list of reference markers. Normally, it is repre-

sented as a list of variables which act as discourse references. The right of the

∣ describe the constraints. The box interpretation in parameterized monads is

[v1⋯vm∣k1⋯kn] ∶M s1 s2 t

[v1⋯vm∣k1⋯kn] =def λs1 ⋅ s1 [v1,⋯, vm] s2 ∧ k1(s1) ∧⋯kn(s1)

Table 7.2: Interpretation of a box.

where s1[v1,⋯, vm]s2 means s2 is di�erent with s1 at most in values of

v1,⋯, vm.

In addition, the box sequencing K;K
′

is interpreted as the dynamic conjunc-

tion ; in the following section. The merging lemma of boxes is described in

the following. if v
′

1⋯v
′

m are not in k1,⋯, kl,

268

CHAPTER 7. THE CDRT IN PARAMETERIZED MONADS

[v1⋯vk∣k1,⋯, kl]; [v
′

1⋯v
′

m∣k′1,⋯, k
′

n] =def [v1⋯vkv
′

1⋯v
′

m∣k1⋯kl, k
′

1⋯k
′

n]

Table 7.3: Merge two boxes.

The truth and entailment are:

� A formula K is true at s1 if there exists an s2 such that K ∶M s1 s2 ⊺.

If we write K is true, it means that ∀s1.∃s2.K ∶M s1 s2 ⊺

� K entails K
′

at s1 or K ⊧s1 K
′

if and only if, K is true at i implies K
′

is also true at i.

Lexically, the author provides basic lexical examples of a fragment of English

by [278] in parameterized monads as follows. The other �ve additional rules

for lexical items are kept the same.
Expression λnotation Type

an λP
′

.λP.([un∣];P
′(un);P (un)) M s1 (s2 ∧ s1[un]s2) (e→ t) →M s2 s3 (e→ t) →M s1 s3 NP

non λP
′

.λP.[∣not([un∣];P
′(un);P (un))] M s1 s2 (e→ t) →M s2 s3 (e→ t) →M s1 s3 (e→ t)

everyn λP
′

.λP.[∣([un∣];P
′(un) ⇒ P (un))] M s1 s2 (e→ t) →M s2 s3 (e→ t) →M s1 s3 ⊺

Maryn λP.P (Mary) M s (s,m)NP

hen λP.(P (δ)), δ = ant(hen) M s sNP

en λP.P (vn) M s s e

who λP
′

.λP.λv.P (v);P ′(v) M s1 s2 (e→ t) →M s2 s3 (e→ t) →

M (s2 ∨ s3) s4 e→M s1 s4 ⊺

farmer λv.[∣farmer v] M s sN

stink λv.[∣stinks v] M s sVP

love λQ.λv.Q(λv′ .[∣v loves v′]) M s1 s2 (e→ t) →M s2 s2 e→M s2 s2 e→M s1 s2 TV

doesn′t λP.λQ.[∣not(Q(P))] M s1 s2 (e→ t) →M s2 s3 e→M s1 s3 ⊺

if λp.λq.[p⇒ q] M s s S→ S→ S

Table 7.4: An English grammar example

Basically, the inde�nite a introduces a new discourse reference to the

discourse as un, and the quanti�ers�such as no, every�access and evaluate

269

7.2. THE TRANSLATION TO PARAMETERIZED MONADS

the discourse variables. A sketch of an analysis of the scope of the inde�nite

as variables (not as quanti�ers) in monads was discussed in section 4.3.5. A

further elaborated analysis can be seen in [17, 16].

The compositional rules to interpret this fragment of English in monads is

shown in the next section. How to interpret this fragment in parameterized

monads, providing the categorical semantics to the DRT, is explained

through the pilot study of the interpretation of the donkey anaphora in

parameterized monads.

Finally, [24, p. 28] also noted that the accessibility and wp are closely

related. This idea is close to the author's analogy between scope-taking

and proof search discussed below. In addition, the relation between the

weakest-precondition calculus or Dijkstra's programming logics and Hoare's

logic is explained in [282, p. 45�46]. Basically, Dijsktra's logic is interpreted

in Hoare's logic by Hilbert's ε-calculus. The recent study of the ε-calculus

can be found in [283].

Alternatively, Muskens' calculus and unselective binding lemma concerns

the semantics of the existence quanti�ers. Hence, it can be seen as the

interaction of static formulae and dynamic information states. BHK's

interpretation and [181] show that both are equal, and that they also

provide a general schematic interpretation. In addition, by using the above

270

CHAPTER 7. THE CDRT IN PARAMETERIZED MONADS

interpretation of Dijsktra's logic in Hoare's logic, the weakest-precondition

calculus is the structured analysis of parameterized monads.2 3

7.3 Dynamic semantics in parameterized mon-

ads

The idea of interpreting dynamic semantics in monads was pioneered by

Shan and Unger [63, 15] and subsequently advocated by Charlow and

Grove [17, 16]. [17, p. 34-85] claims to interpret dynamic semantics as

side-e�ects, using continuations and a combination of states and sets

to interpret the semantics. I also follow his approach but interpret via

a di�dent framework of category theory, in particularly parameterized

monads, and interpret the donkey phenomena in this framework. The

parameterized monad has a property that the Charlow's continuation

monad approach to the donkey anaphora [12] lacks: a clear framework

to combine state and non-deterministic side-e�ects. According to [17,

p.117], the two side-e�ects are required to provide a semantic to interpret

the donkey anaphora. This framework provides a semantics to combine

two side-e�ects as below. The basic de�nition of dynamic semantics is

given in section 2.2.4. I sketch the combination of two side-e�ects, and

an interpretation of the donkey anaphora, throughout the rest of this chapter.

2The weakest-precondition calculus seems close to the contemporary research of Dijsk-
tra's monad in [284, 249]

3The idea of accessibility and swapping technique seems similar, too.

271

7.3. DYNAMIC SEMANTICS IN PARAMETERIZED MONADS

The most recent related research on dynamic semantics is [19] with dynamic

category semantics and [164, 46] with type-theoretic dynamic logic (TTDL).

According to [10], an advantage of TTDL is that it imposes no requirement

for non-standard notions of binding and scope. This point is crucial to

support our swapping technique that advocates the post-evaluation of

linguistic variables and the analogy between the evaluation order and the

mathematical proof. Furthermore, the logic which is developed in [46] and

discussed in [10, p. 121�125] is similar to this section on the interpretation

of logical connectives. However, the di�erence is that we interpret the

implication directly4 5 whereas [46] has to use the continuation to interpret

the implication (i.e. A→ B ∶= ¬(A;¬B) or A→ B ∶= ¬(A∧¬B)). Lebedeva's

use of continuation leads to a double negation interpretation of the donkey

anaphora as

¬∃x.farmer(x) ∧ ∃y.donkey(y) ∧ own(y, x) ∧ ¬(beat(y, x))

This is a classical-logic interpretation of the phenomenon, according to

[149, 214]. On the other hand, I approach the problem through constructive

4The transition technique avoids this representation by using the analogy between a
formula's interpretation and changing, i.e. updating, in states as transition semantics
[181].

5We can think of the implication as the intuitionistic implication in [257]. The implica-
tion is well aligned in this framework, since we can think of the record type in [259] as the
team semantics in [153]. The interpretation of record type to category theory is achieved
by using �bred categories in [261].

272

CHAPTER 7. THE CDRT IN PARAMETERIZED MONADS

logic. The problem lies in the interpretation of the implication. In the

constructive-logic framework, the implication rules are interpreted using

Yoneda's lemma in [31]. Intuitively, the lemma means that we conclude

A ⇒ B if every instance of A implies an instance of B, rather than the

double negation that every instance of ¬B implies ¬A.6.

According to [43, 27], the dynamic interpretation for a formula φ in a given

state g is gJφKh, where g and h are the pre- and post-dynamic conditions. In

our parameterized monads framework, g and h are interpreted as pre- and

post-states. Hence, the dynamic interpretation of φ under the pre-condition

g is the parameterized monad M g h φ. A formula φ is true, relative to a

state g, if there exists a state h such that φ ∶M g h ⊺.

For a general formula φ, if the pre-condition g is not mentioned, the

dynamic semantic interpretation of the formula, i.e. JφK, is {⟨g, h⟩ ∶ gJφKh}.

This means that we generate all suitable pre-conditions and related post-

conditions for φ. Thus, the parameterized monadic type for JφK,i.e η(φ), is

M s1 s2 φ,

where s1 = ⋃ g, s2 = {⟨g, h⟩∣g ∈ s1}. g, h are de�ned as in traditional dynamic

semantics.

6Informally, this idea is also in Hilbert's study of systems for formalising mathematics.

273

7.3. DYNAMIC SEMANTICS IN PARAMETERIZED MONADS

The linguistic term φ has a traditional interpretation in dynamic semantics

by [275]. According to [44, p. 11�12] and [27, p. 4�5], dynamic predicate

logic uses constructive logic and arti�cial intelligence as backgrounds.

Furthermore, their interpretation of the meaning of a sentence is to change

the information of the interpreter. The information is stored in states,

and represented as noun phrases. Consequently, verbs are interpreted as

predicates. Hence, the meaning of a sentence is a process of verifying the

data structure, which is stored in states. This means that a sentence is true

if the output is sound, and an empty output indicates that the sentence is

false. Not all linguists may agree with that hypothesis, but we adopt this

hypothesis in our research.

Thus, I formalize the interpretation of NP and VP in the parameterized

monad framework as below:

JNP K ∶M s1 s2 NP

JNP K = λs1.s2 = operator(s1) ∧ return η(NP)

Where operator is an additional operator on the structured NP, de�ned

inductively by the inductive de�nition of NP as the above grammar in

Section 7.3. In the above grammar, s2 is being de�ned by adding a new

274

CHAPTER 7. THE CDRT IN PARAMETERIZED MONADS

discourse reference to s1 if NP is a proper name, and s2 = s1 otherwise. On

the other hand, we follow a tradition of interpreting verb phrases as tests on

state in dynamic semantics. Formally,

JV P K ∶M s1 s2 ⊺

JV P K = λN s1.s2 = s1 ∧ return⊙ if NP VP else 7s2 = {} ∧ return �

where ⊙ is a singleton element of the type of the truth condition ⊺.

In the above declaration, we have a type declaration and a meaning

declaration. The type declaration is an abstract representation of a term.

In this example, the monadic notion M means we lift linguistic terms,

which are represented by λ terms, into their evaluated environments of pre-

and post-conditions. In the monads in [8], for example, the meaning of an

utterance is lifted to be interpreted with its state or situation by using the

state monad in [15].

However, we should keep in mind a particularly important property: mon-

ads preserve the static meaning of a term when we lift it to the monadic

space. The static meaning is expressed by the meaning declaration. In this

formalization, static meaning is expressed by the λ terms. Related research

7That is by verifying, such as possible world semantics, that the sentence is true

275

7.3. DYNAMIC SEMANTICS IN PARAMETERIZED MONADS

by Barker [12] and Charlow [17, p. 60�61] shows this concept in the towering

notions.

7.3.1 Linguistic logical operators in parameterized

monads

De�nition a dynamic conjunction, ; , is de�ned in parameterized monads

as a traditional interpretation in DRT in [56]. Ja; bK = JaK and JbK, i.e

JaK ∧ JbK. Thus, the interpretation of the conjunction in parameterized

monads, which the pre- and post-states are primary, is

J; K ∶M s1 s2 ⊺

J; K = λ l r s1.s2 = ⋃
s∈l s1

r s ∧ ⊙ 8

De�nition a negation, ∼, of a formula is de�ned through the absence of

proper output, i.e. s2, in the formula's typing declaration. Thus

J∼ φK ∶M s1 s2 η(φ)

J∼ φK = λ s1.s2 = s1 ∧ ¬∃s.JφK ∶M s1 s ⊺

De�nition the implication, ⇒, such as if, between two formulae φ and ψ,

is de�ned if every output state s of φ, when taken as an input state of ψ,

produces a proper output. Formally

8This interpretation of conjunction follows Barker's polymorphic typed interpretation
of a conjoinable coordinator [166, p. 16]

276

CHAPTER 7. THE CDRT IN PARAMETERIZED MONADS

Jφ⇒ ψK ∶M s1 s2 ⊺

Jφ⇒ ψK = λs1.s2 = {⟨g, h⟩∣∀g ∈ s1.g = h∧∀k.JφK ∶M g k ⊺ ∧ ∃k′JψK ∶M k k
′ ⊺}

This de�nition is equal to the dynamic implication ⇉ in [16, p. 65].

De�nition the disjunction, ∨, is de�ned as a selection or choice operator

of assignment functions. It is random and has a nondeterministics property.

For example, if the state s1 consists of four computer scientists o, p, q, r and

we write s1[x]s2 as �s2 is di�erent at most with s1 by the variable x,� then

s2 = (s1 ∧ ox) ∨ (s1 ∧ px) ∨ (s1 ∧ qx) ∨ (s1 ∧ rx). ax means that we update the

value of x to a.

De�nition the truth of a formula φ, in a traditional interpretation in

dynamic semantics, is de�ned relative to a given state s1, i.e. φ is true

relative to s1 if there exists s2 such that φ ∶M s1 s2⊺.

Linguistically, we represent an inde�nite, such as English a, an, as an

existence ∃ variable [92], and the disjunction as an assigning function which

provides a value to the variable. The inde�nite has a prestate s1 as a

collection of entities that satisfy properties of the inde�nite and the post

state s2 di�ers at most at one variable with s1. It is written formally as

277

7.3. DYNAMIC SEMANTICS IN PARAMETERIZED MONADS

J∃x.φK = J[x];φK

where

J[x]K ∶M s1 s2 ⊺

J[x]K = λs1. ⋃
g∈s1

s2 = {⟨g, h⟩∣g[x]h} ∧ ⊙

and ; is the conjunction operator. Let us illustrate the point by way of an

example.

a scientist ∶M s1 s2 S

a scientist = λP s1.scientist(x) ∧ P (x) ∧ s1[x]s2 ∧ η(x)

where S is a type of scientists. A general treatment of an inde�nite noun

phrase NP is

Ja NPK = J[x];NP(x)K

NP, in the above example is scientist.

Furthermore, the linguistic universal quanti�cations, such as ∀, are

interpreted as the implication ⇒ in parameterized monads. Formally,

universal quanti�cation is written as

278

CHAPTER 7. THE CDRT IN PARAMETERIZED MONADS

J∀x.φK = J[x] ⇒ φK

Thus, a sentence

every NP VP

is interpreted as

∀x.NP(x) ⇒VP(x)

7.3.2 Dynamic predicate logic in parameterized monads

This section sketches an interpretation of dynamic predicate logic (DPL)

[27] in the parameterized monads with the set category. The language is

simple but powerful. For example, [285] shows how the context change

potential in [111] is interpreted in dynamic predicate logic. In addition, a

related research by [235] shows an interpretation of DPL in the dependence

logic.

The context Γ includes the domain of individuals and the interpretation

function I, i.e Γ =De⋃ I where I(R) ⊆Dn if R is a n-ary relation.

JR(x1, x2,⋯, xn)K ∶M G H B

279

7.3. DYNAMIC SEMANTICS IN PARAMETERIZED MONADS

JR(x1, x2,⋯, xn)K = T if and only if G = H and ∀g ∈

G,R(g(x1), g(x2),⋯, g(xn)) ∈ I(R)),

Jx = yK ∶M G H B

Jx = yK = T if and only if G =H and ∀g ∈ G,g(x) = g(y).

J¬φK ∶M G H B

J¬φK = T if and only if ∀G′ ⊆ G, JφK ∶M G
′

H F.

Jφ ∧ 9ψK ∶M G H B

Jφ ∧ ψK = T if and only if

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

JφK ∶M G H B

JφK = T
and

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

JψK ∶M G H B

JψK = T

Jφ ∨ ψK ∶M G H B

Jφ ∨ ψK = T if and only if there exists G
′

and G
′′

such that G = G′⋃G
′′

and
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

JφK ∶M G
′

H B

JφK = T
or

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

JψK ∶M G
′′

H B

JψK = T

Jφ→ 10ψK ∶M G H B

Jφ → ψK = T if and only if ∀G′ ⊆ G if

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

JφK ∶M G
′

H B

JφK = T
then

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

JψK ∶M G
′

H B

JψK = T
.

9The notion is the dynamic conjunction
10The notion is the dynamic implication

280

CHAPTER 7. THE CDRT IN PARAMETERIZED MONADS

Table 7.5: Dynamic predicate logic in parameterized monads.

In the case of negation and disjunction, there are alternative de�nitions

based on the truth condition in [235]. In the author's opinion, this is the

same truth condition (as below) and dynamic condition (as above) of a

sentence in [117]. More clearly,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

J¬φK ∶M G H B

J¬φK = T
if and only if

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

JφK ∶M G H B

JφK = F
.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Jφ ∨ ψK ∶M G H B

Jφ ∨ ψK = T
if and only if

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

JφK ∶M G H B

JφK = T
or

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

JψK ∶M G H B

JψK = T
.

As we are focusing on the dynamic aspect, we adopt these interpretations

for negation and disjunction as above. We do not represent the inclusion, as

discussed in [286, 117] to the framework. The usefulness of these choices is

shown in the interpretation of time in [235].

Further examples of how to translate between static semantics (or proposi-

tional semantics) and dynamic semantics is given in [287, 288, 273], and in

[116, Chapter 10]. In addition, an update function, an important part of

dynamic semantics (as discussed in [285]), is given in parameterized monads

in [34, Chapter 8].

281

7.3. DYNAMIC SEMANTICS IN PARAMETERIZED MONADS

7.3.3 Combining state and set monads in parameterized

monads

In this section, the author will show how we combine a state's related monad

in parameterized monads. They include the state monad and reader monad.

The reader monad is a state monad that does not process the explicit state.

Its advantage is to reduce computation time, at the cost of having less

expressive power than the state monad.

In this example, the author will combine state and reader monads with

power set monads. Power set monads are used to describe subsets. The

declaration includes the lifting, i.e. η, and passing, i.e. ⋆, rules. The

combination is similar to the reader.set and state.set monad in [17].

However, we are working on parameterized monads, an extension of monads.

The combination of reader and set monads is interpreted as

aη ∶M s1 s2 (α → t)

aη = λs1.s2 = s1 ∧ {a}

m ⋆ π ∶M s1 s2 α → (α →M s2 s3 β) →M s1 s3 β

m ⋆ π = λs1.s2 = s1 ∧ s3 = s2 ∧ ⋃
a ∈ m s1,v ∈ the set of variables of s2

π(a/v) s2

Similarly, the combination of the state and set monads is interpreted as

Mα = λs.(α × s)

282

CHAPTER 7. THE CDRT IN PARAMETERIZED MONADS

aη ∶M s (P (α × s)) α

aη = λs1.s2 = {⟨a, s⟩}a

m ⋆ π ∶M s1 s2 α → (α →M s2 s3 β) →M s1 s3 β

m ⋆ π = λs1.π[a/v]s2

where α is a set. a ∶ α means that a is an element of that set. An example

of a set is the set of individuals of a class at school. A set monad is the

power set of its elements in [289] and [17]. In other words, if a ∶ α, then the

monadic dimension of α is the power set of α, i.e. all subsets of the set α.

It has a following formal de�nition:

M s1 s2 α = λs1.s2 = s1 ∧ P(α)

Where P(α) = {f ∶ α → t}. For example, if α = {1,2,3} then

P(α) = {∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}

Thus, we can write Mα = M s1 s1 α, ignoring the states for demonstration

purposes. We can de�ne the set monads as

Mα = P(α)

aη ∶Mα

aη = {a}

m ⋆ π ∶Mα → (α →Mβ) →Mβ

m ⋆ π = ⋃
a∈m

π[a/v]

We use the set monad to describe the subset relation in linguistics. For

283

7.3. DYNAMIC SEMANTICS IN PARAMETERIZED MONADS

example, suppose that we have a set of individuals e. Now we want to

describe a subset of individuals who areman. In set-theoretic interpretation,

we use the subset notion to say that a set of man belongs to the set of

individuals. In the author's opinion, it is essential to interpret inde�nite

or de�nite descriptions such as a man or the man. For example, we can

model the inde�nite a man as a subset of the set of man which, in turn, is

also a subset of the set of individuals as a man ∶man ∧man ⊂ e.

Let us illustrate the idea by explaining the truth value of a sentence through

the compositional principle in Charlow's sentence

John meets a man

If we de�ne a man in the set monad as a man = {x ∶ e∣man(x)}, then the

sentential compositional derivation process of the truth value is

JJohn met a manK =

Johnη ⋆metη ⋆ a manη =

(Johnη ⋆metη) ⋆ a manη =

(J∗ ⋆met∗) ⋆ {x ∶ e∣man(x)} =

(J∗ ⋆ {λx.λy.met∗(x, y)}) ⋆ {x ∶ e∣man(x)} =

{λy.met(J∗, y)} ⋆ [{x ∶ e∣man(x)}]y =

[{x ∶ e∣man(x)}]y ⋆ {λy.met(J∗, y)} =

{met(J∗,{x ∶ e∣man(x)})} =

{met(J⋆, x)∣man(x)}

284

CHAPTER 7. THE CDRT IN PARAMETERIZED MONADS

In addition, a comprehensive monadic set theoretic interpretation of a sen-

tence is referred to [16].

7.3.4 Another example of how the compositional prin-

ciple acts in parameterized monads

This section demonstrates how the sentences

A man walks in the park. He whistles.

in [42] are interpreted in parameterized monads. Firstly, we de�ne illustrated

lexical semantics in parameterized monads. A proper name is interpreted as

a constant, adding an additional element to the discourse. Thus, a personal

name, Alice for example, has the following formalization

JAliceK ∶M s1 s2 ⊺

JAliceK = λP s1.s2 = (s1,A) ∧ P(A)

As previously discussed, an inde�nite, for example a man, is interpreted

through set monads as

a man ∶Ms1s2Man

285

7.3. DYNAMIC SEMANTICS IN PARAMETERIZED MONADS

a man = λs1.s2 = s1 ∧ {x ∶ e∣man(x)}.

A general pronoun is treated as reader monad in [15]. Hence, its formaliza-

tion in parameterized monads is

he ∶Ms1s2man

he = λP.λs1.s2 = s1 ∧ P(sel s1)

JsheK ∶M s1 s2 woman

JsheK = λP s1.s2 = s1 ∧ P(sel s1).

A verb is interpreted as a test in dynamic semantics because its purpose is

to verify the given states. Thus, a verb walk, for example, is formalised as

walk ∶ e→ e→Ms1s2t

walk = λx1.λx2.walk_in(x1, x2).

A preposition in our formalization describes a subset. Thus, a preposition

in the park, for example, is formalised as

in the park ∶ e→ e

286

CHAPTER 7. THE CDRT IN PARAMETERIZED MONADS

in the park = λx2.park(x2)

The compositional rules are applied to the phrase as

a man walk =

λs1.{x ∶ e∣man(x)} ∧ s1[x]s2 ∧ λx2.walk(x2, x)

Where s1[x]s2 means s2 di�ers from s1 at most by the variable x. Thus, the

sentence a man walks in the park has the following interpretation

λs1.{x ∶ e∣man(x)} ∧ s1[x]s2 ∧ λx2.walk(x,x2)(λx2.park(x2))

= λs1.{x ∶ e∣man(x)} ∧ s1[x]s2 ∧ λx2.park(x2) ∧walk(x,x2)

= λs1.λx2.{x ∶ e∣man(x)} ∧ s1[x]s2 ∧ park(x2) ∧walk(x,x2).

The sentence he whistles is interpreted by substituting the variable P in the

formalisation of the pronoun he to the predicate whistle:

λs1.whistle(sel s1)

Thus, the concatenation of the two sentences

A man walks in the park. He whistles.

287

7.4. THE DONKEY ANAPHORA IN PARAMETERIZED MONADS

is

λs1.λx2.{x ∶ e∣man(x)} ∧ s1[x]s2 ∧ park(x2) ∧ walk(x,x2) ∧

λs
′

1.whistle(sel s
′

1)

For the sake of simpli�cation, we assume that s
′

1 = s2. Interestingly,

the relation between these two states can be further analysed using the

weakest-precondition calculus in [24]. Hence, we can combine the two

sentences as

λs1.λx2.{x ∶ e∣man(x)} ∧ s1[x]s2 ∧park(x2) ∧walk(x,x2) ∧whistle(sel s2)

7.4 The donkey anaphora in parameterized

monads

7.4.1 The de�nition of the problem

According to [290], the donkey anaphora phenomenon has existed since the

middle ages. It is important in linguistics because it expresses the linguistic

property that the latter part of a sentence depends on its preceding parts.

It is called the progressive conjunction in [86], or the internal dynamic in

[27]. Unger's state monad approach [15] cannot model the donkey anaphora

because the state (in the sense of Chapter 3) is �xed during the sentential

analysis. We are going to formalize the phenomenon in the parameterized

monads framework by allowing the state, in the sense of Chapter 5, changing

288

CHAPTER 7. THE CDRT IN PARAMETERIZED MONADS

during subsentence analysis. This parsing or formalization also means

that parameterized monads have an expressive power compatible with the

type-theoretical and dynamic predicate-logic frameworks in [26] and [27],

respectively.

The problem that makes the illustrated sentence important is that it shows

a mismatch between the natural-language expressions and their logical

interpretation. The interpretations of linguistic expressions are more �exible

by reading with any order whereas the logical semantics entails strict

adherence to a mechanical process. A detailed analysis of this sentence is

found in [42]. Recent research with the dynamic approach to formalize the

donkey anaphora has been carried out in [291, 43].

In general, the problem is associated with the scope reading of a pronoun.

The problem is formulated in [43], formulated with a new dynamic frame-

work in [291]. In comparison with their approaches that use inquisitive

semantics, the parameterized monads provide an alternative modularity and

compositional approach to the problem.

Return to the de�nition of the problem: according to [43], the phenomenon,

in an English sentence, is formally stated as below

Q(⋯NPx⋯)(⋯itx/themx⋯) such that

289

7.4. THE DONKEY ANAPHORA IN PARAMETERIZED MONADS

� Q is a quanti�er such as every, most, always, some

� The element in the �rst bracket is the nuclear scope of the quanti�er

� NPx is an inde�nite which acts as an antecedent.

� The pronoun itx/themx is the referencing expression for the antecedent.

An example of the phenomenon is the sentence below

every farmer who owns a donkeyx beats itx

Or its variation as

If a farmerx owns a donkeyy, hex beats ity.

The problem with the logical interpretation is that the variable x in the con-

sequence clause of the sentence does not bind to the farmerx in conditional

clause. Hence, it triggers a problem of variables in linguistics as discussed in

section 2.1.1.

7.4.2 The compositional dynamic semantic interpreta-

tion of the problem

From above construction, the formalization of the donkey sentence

Every farmer who owns a donkey beats it.

is straightforward by using the cDRT framework (i.e Sentence → DRS →

Musken's logic of change→ parameterized monads) as

290

CHAPTER 7. THE CDRT IN PARAMETERIZED MONADS

∀x.(farmer(x);∃y.donkey(y);own(x, y) ⇒ beat(x, y)).11

The quanti�ers ∀,∃ are interpreted in the linguistic logical operators section.

Generally speaking, the ∀ quanti�er means the uniqueness condition such

as in [292]. The ∃ quanti�er is similar to the discourse referent in a box in

Musken's framework.

From the formalization, we can process the second step, namely varying

the scope-binding of variables or performing the evaluation order. The

idea of using multiple stages to derive the semantics of a sentence is also

developed in [209, p. 2] by analysis of Postal, Reinhart, and Büring, in [17],

and in chapter 4 of [6]. In monads, multi-stage derivation manifests through

multiple intermediate languages en route to the denotational semantics [33].

In this framework, I de�ne the swapping technique for the second stage, to

resolve the scope of linguistic expressions. The idea behind this technique is

taken from mathematical logic with BHK's interpretation (explained below)

of variables in a mathematical formula.12 Linguistically, the idea of taking

the scope of an inde�nite freely after syntactic analysis can also be found in

[17].

11For the complete formalized fragment of English, see the cDRT section in 7.1.
12I note that we are working with the domain of linguistic expressions.

291

7.4. THE DONKEY ANAPHORA IN PARAMETERIZED MONADS

This idea is similar to the idea of changing a variable's scope using delimited

control operators shift, reset in [293, 75], or by type lifting in [216]. Since the

technique is not based on syntactic analysis, it lacks the analytic rigour of

syntactic theory, but it is more abstract than that. The greater abstraction

allows us to catch and interpret the variable inside and outside a scope more

reasonably. Thus, the formalized sentence is transformed into

∀x.∀y.(farmer(x);donkey(y);own(x, y) ⇒ beat(x, y))

This technique is also called Egli's theorem in [44, 266, 294], where it is used

to swap the location of variables and, consequently, for pronoun resolution

in the formalization process of a sentence. The theorem states that an

occurrence of the existence variable in the left-hand side of the implication

formula must also appear in the right-hand side. Formally, it is written as

(∃x.φ) → ψ⇔∃x.(φ→ ψ)

This technique is also called the modi�ed version for dynamic conjunction

in [43], where it is expressed as

(∃x.φ);ψ⇔∃x.(φ;ψ)

However, we are de�ning a new theoretical framework to interpret the phe-

292

CHAPTER 7. THE CDRT IN PARAMETERIZED MONADS

nomenon. The → in the above formulae is the �rst-order logic implication,

whereas we are using our own de�nition of the dynamic implication, ⇒.

7.4.2.1 The BHK interpretation

The supporting idea behind our reasoning is the Brouwer�Heyting�

Kolmogorov (BHK) interpretation in mathematical logic [295, 296, 297, 261].

The interpretation means that a quanti�cation of a variable, for example the

universal quanti�cation ∀.x, is either interpreted in the surrounding formula,

or transposes x to the contexts (in some areas called an environment or

state) and then reused in another formula by bringing x back. From a

computing perspective, this is equivalent to avoiding analysis of a variable

in a program's expression, and instead storing it in memory for later recall

if requested.

Roughly speaking, the idea of transposing the variable to a context is the

dependent type in [130], which introduces a dependent term (or variable)

for a type in an internal language in a typing declaration. The idea of

bringing a variable from the context back to a formula has also appeared

in the formation rule of the Π type to capture the λ-abstraction formulae

in type theory in [99]. Hence, the ability to reuse and refer to the variable

under abstraction is the projection rule π1, π2. [86], for example, calls this

property a progressive conjunction in linguistics.

293

7.4. THE DONKEY ANAPHORA IN PARAMETERIZED MONADS

In this dissertation, we replace the typed construction notions, such as Π or

Σ, by quanti�cation notions such as ∃ or ∀.13. Hence, we can rewrite and

change the scope of quanti�cation such as the ∀ quanti�cation in ∀x.φ⇒ ψ.

We can substantiate and substitute variables in the formulae by the above

grammar ad in�nitum, while keeping the underlying mechanism unchanged.

(1) ⇔ [x] ⇒ φ⇒ ψ

(2) ⇔ [x] ∧ φ⇒ ψ

(3) ⇔ [x];φ⇒ ψ

(4) ⇔ (∃x.φ) ⇒ ψ

.

Table 7.6: Equivalences in the BHK interpretation.

The �rst equivalence lifts the declaration of the variable x under the

quanti�cation in a formula to its environment or context. Similarly, the

second equivalence lifts the formula φ to the environment which now consists

of x and φ, i.e. [x] ∧ φ. The third equivalence shows how we operate

on the environment. Thus, the environment is rewritten as the dynamic

conjunction, i.e. [x];φ. Finally, the last equivalence means that we return

the rewritten formula in the environment to the existing formulae ψ which

now appears in the existence quanti�cation, i.e. (∃x.φ) ⇒ ψ.

In the author's opinion, an example of the above process is in Unger's

corresponding operators write, write, swap, read on references in the state

13A dependent version of this is called Henkin's quanti�er and can be found in [86]

294

CHAPTER 7. THE CDRT IN PARAMETERIZED MONADS

monad [15]. The resolution process, or variable scope binding, for example,

can take place in the third equivalence, i.e. rewriting an environmental

formula [x] ∧ φ to [x];φ. We can swap variables around; another word for

swap is algorithm14, since the formula is rewritten as φ; [x]. The resolu-

tion process can be concretised out as an anaphora resolution [298]. The

third equivalence, of course, also provides a space for practical scope analysis.

By a similar mechanism, we can establish Egli's theorem, i.e. lift the formula

(∃x.φ) → ψ to the state, becoming [x] ∧ φ ∧ ψ. Hence, we rewrite it as

[x]; (φ ∧ ψ) and return it as ∃x.(φ → ψ) 15. A detailed analysis of Egli's

theorem in [44] with a short introduction is in section 6.1.

Finally, in the author's opinion, our technique is similar to the normalization

by evaluation (NBE) technique in type theories [262, 299]. NBE is also

performed by normalizing a formula to its algebraic space, then reifying it

back. The normalizing and rei�cation steps are similar to the above steps (1)

and (4). NBE is distinguished with call-by-value and call-by-name in [221, 6]

since it doesn't specify the concrete syntactic strategy for evaluation.

14In general, a logic introduces a general guide line, whereas an algorithm (for any)
concretises it out [252].

15It has a stronger version by replacing an existence ∃ operator to the universal operator
∀, i.e ∀x.(φ→ ψ). A further analysis of it is given in [43][p. 12]

295

7.4. THE DONKEY ANAPHORA IN PARAMETERIZED MONADS

7.4.2.2 Scope-taking as proof-search

The above mechanism doesn't show the complexity of the formalised formu-

lae because their concrete syntax is not discussed. Linguistics formalisation

is complex since it is pervasive from daily conversation through to scienti�c

communication. A brief glance at its syntax, limited to the needs of this

thesis, is reviewed for the readers' convenience below. For a contemporary

general overview, see [159]; for a summary of the �rst-order interpretation

of natural languages, as discussed in the philosophy of languages, see

[106, 265]; for the typed theoretic interpretation, see [86, 118, 112]. An

application or phenomena-oriented perspective can be found in [252] and [12].

One major insight in the jungle of formulae is the Curry�Howard correspon-

dence, which states the equivalent between logics and types. Wadler [81]

restates the analogies of the Curry�Howard isomorphism as

propositions as types

proofs as programs

In addition, he also postulates another analogy which concerns the

practical derivation of the correspondence as

normalisation of proofs as evaluation of programs

296

CHAPTER 7. THE CDRT IN PARAMETERIZED MONADS

Thus, our technique, which is proof-oriented and similar to normalization

of proofs or to the normalization-by-evaluation technique, is analogous

to the evaluation order (or evaluation of programs) in [6]. In addition,

previous research in [6, 45] advocates the analogy between the evaluation

of programs and the evaluation of scope taking. Furthermore, studying

the presupposition phenomena also yields insight: [300, 82] show that the

presupposition projection is a proof search, and [16] also shows that the

projection is scope-taking. Thus, I propose a new analogy as follows

scope-taking in linguistics is analogous to proof-search in logics.

The analogy16 is observed by following below research

[81] [6, 45]

[300, 82] [16]

proofs search as evaluation of programs

Evaluation of programs as scope takingpresupposition as proofs search

presupposition as evaluation of scopes

7.4.2.3 An analysis of the phenomenon

In comparison with Charlow's continuation monad [17]17, the author argues

that the technique presented in this dissertation is more general than the

continuation monad despite the fact that both techniques describe the

interaction of a formula with its environment. Indeed, for example, [301]

16This analogy would act as this part's hypothesis.
17Barker [12] uses delimited continuation, which is similar to the continuation monad

but not the same. See [9] for explanation

297

7.4. THE DONKEY ANAPHORA IN PARAMETERIZED MONADS

had shown that continuation monad is a symmetric case of the parametric

continuation monad. This technique, however, is independent from theoret-

ical implementation.

In the author's opinion, the proposed technique is similar to the ad-hoc

solution of handlers in [10, 240], i.e. scoping the algebraic e�ects in the

sense of [64]. However, we provide a clear mathematical reasoning behind

the technique in our framework. It is, in essence, a free-scope analysis,

instead of the syntactic analysis in Barker's continuation approach [12]. In

the author's opinion, the choice between this proposed solution and the

syntactic analysis may depend on the actual language being parsed. English,

for example, has a strict left-to-right reading order, so the syntactic analysis

is well-analysed, in contrast to how syntactic analysis plays out in languages

with a looser reading order such as Russian or Japanese.

The ability to swap the variable scope in our framework is similar to the

internal dynamic in dynamic semantics [27, p. 9]. A connective has an

internal dynamic property if it can pass a variable from one formula to

another. In our interpretation, it is the rewritten process in the environment.

According to [27], the property of keeping a variable for the yet-to-come

formula in a connective is called an external dynamic. In our interpretation,

it is the �rst and last equivalence that lift a variable to the environment and

transforms it back to the formula.

298

CHAPTER 7. THE CDRT IN PARAMETERIZED MONADS

Traditionally, according to [42], the donkey phenomenon sentence

Every farmer who owns a donkey beats it.

has a truth condition or static interpretation in �rst-order logic

∀x.(farmer(x).∃y.(donkey(y).own(x, y)) → beat(x, y))

However, we formalise the sentence in our framework as

∀x.(farmer(x);∃y.donkey(y);own(x, y) ⇒ beat(x, y)).

Hence, by swapping the quanti�cations and rewriting the ∃ quanti�cation

to ∀ as discussed in [43][p. 12], we have another equivalent dynamic

interpretation that solves the problem of variable binding

∀x.(∀y.(farmer(x).(donkey(y).own(x, y) ⇒ beat(x, y)))

The �rst-order logic interpretation is problematic in that we do not know

where the variable y is in the clause beat(x, y). This confusing arises

because the logical implication → lacks the internal dynamic property.

Hence, this formalisation demonstrates a mismatch between the logical

interpretation and natural-language interpretation.

In our interpretation, we shift the �rst order logic implication, → to the

dynamic implication ⇒. Thus, instead of focussing on the truth condition,

we are focussing on the changing of states during the interpretation. The

verbs, or predicates, are a test on the changing of states rather than

contributing to the truth meaning of a sentence. Clearly, the shifting solves

299

7.4. THE DONKEY ANAPHORA IN PARAMETERIZED MONADS

the scope problem of the variable y. In other words, the dynamic implication

⇒ has an internal dynamic property, while the �rst-order logic implication

→ contributes only to the sentence's truth condition.

From the above reasoning, the parsing process for the donkey sentence,

If Pedro owns a donkey, he beats it. (in short C)

is summarised as following, with an emphasis on the state-changing. The

process can be seen as an instance of the speci�cations structure in [39],

which is one of the category models of Hoare's logic. In addition, we view the

interpretation of the second context in [149, 46, 164] as a special case of this

framework. Hence, this interpretation provides an alternative framework to

them. The operator of the discourse is highlighted as below.

Alternatively, the parsing process is detailed in states' changing in DPL

in [42, p. 246�247]. Since we provide the interpretation of DPL in the

framework above, Elbourne's analysis translates to our framework without

any di�culty, and is hence omitted here. It is worth noting, however, that,

where Elbourne used F (R), we use I(R).

Pedro owns a donkey ∶M Γ ([Γ;p ∶ Ind;d ∶Donkey]) S

Pedro owns a donkey = λγ.∃p ∶ Ind.∃d ∶Donkey.own(p, d)

300

CHAPTER 7. THE CDRT IN PARAMETERIZED MONADS

he beats it ∶M ∆ ∆ S

he beats it = λγ.beat(read(he), read(it))

C ∶M Γ ([Γ;p ∶ Ind;d ∶Donkey]) S ⇒ M ∆ ∆ S

C = λp.λq.p⇒ q

Hence,

C ∶ M Γ [Γ;p ∶ Ind;d ∶ Donkey] S ⇒ M [Γ;p ∶ Ind;d ∶ Donkey] [Γ;p ∶

ind;d ∶Donkey] S (*)

C = λγ.(∃p ∶ Ind.∃d ∶Donkey.own(p, d)) ⇒ λδ.beat(read(he), read(it))

C ∶ M Γ [Γ;p ∶ Ind;d ∶ Donkey] S ⇒ M [Γ;p ∶ ind;d ∶ Donkey] [Γ;p ∶

ind;d ∶Donkey] S

C = λγ.(∃p ∶ Ind.∃d ∶Donkey.own(p, d)) ⇒ beat(p, d)(anaphora resolution)

C ∶M Γ [Γ;p ∶ Ind;d ∶Donkey] S

C = λγ.∀p ∶ Ind.∀d ∶Donkey.(own(p, d) ⇒ beat(p, d)) (swapping)

Table 7.7: Interpretation of the donkey sentence: if Pedro owns a donkey, he
beats it.

We can think of this analysis as a dual for the progressive conjunction in

type theoretical grammar by [86] where we analyse the process of contexts

instead of analysing the formula. Furthermore, the idea of the secondary

context also appeared in [302, 46]. Hence, roughly speaking, the last formula

301

7.4. THE DONKEY ANAPHORA IN PARAMETERIZED MONADS

in the Table 7 can be read as a situation-semantics interpretation of the

predicate logic in literature such as [42].

The �rst rule in the table (i.e the * rule) shows a transition from ∆ to

[Γ;p ∶ Ind;d ∶ Donkey]. It is called the context lifting in [141, 252, 86], or a

speci�cation monad which maps from the postcondition to the precondition

in [240]. In general, if we want to transform a context Γ to a context ∆, we

say�in a counter-intuitive manner�that ∆ extends Γ, and write it formally

as:

De�nition A context ∆ = [y1 ∶ B1, y2 ∶ B2(y1),⋯, ym ∶ Bm(y1, y2,⋯, ym−1)]

extends a context Γ = [x1 ∶ A1, x2 ∶ A2(x1),⋯, xm ∶ Am(x1, x2,⋯, xn−1)] if we

have a map f = (f1, f2,⋯, fn)from ∆ to Γ such that

f1(y1, y2,⋯, ym) ∶ A1

f2(y1, y2,⋯, ym) ∶ A2(f1(y1, y2,⋯, ym))

⋯

⋯

fn(y1, y2,⋯, ym) ∶ An(f1(y1, y2,⋯, ym),⋯, fn−1(y1, y2,⋯, ym))

Related research is in [280] shows the parsing of a simple donkey sentence

If a man knocked, he left.

with the following sequence

Ja man knockedK = [x∣]; [∣man(x)]; [∣knocked(x)]

= [x∣x.knocked(x)]

302

CHAPTER 7. THE CDRT IN PARAMETERIZED MONADS

Jhe leftK = [∣left(x)]

Jif a man knocked, he leftK =

[∣[x∣man(x).knocked(x)] ⇒ [∣left(x)]]

= λij.i[]j ∧ ∃k.(j[x]k ∧man(x(k)) ∧ knocked(x(k)) → ∃l.k[]l ∧ left(x(l)))

However, the variable x in the above second clause, viz he left, has not been

resolved in Charlow's interpretation. We can use the additional step of the

swapping technique, or Egli's theorem as above, to rewrite his interpretation

from

[∣[x∣man(x).knocked(x)] ⇒ [∣left(x)]]

to

(∃x.man(x) ∧ knocked(x)) ⇒ [∣left(x)]

Hence, the swapping technique to translates it into

(∃x.(man(x) ∧ knocked(x) ⇒ [∣left(x)])

and reduces further into18

(∃x.(man(x) ∧ knocked(x) ⇒ left(x))

In other words, we shift the variable scope from the �rst formula to both left

and right formula in an implication sentence and the problem of the scope

of the variable is resolute. For a further discussion of the scope-taking, see

section 2.2.3 or [17, p. 113�116] where various frameworks are compared.

18We can employ the weakest-precondition calculus to do so, or the formula simply
means adding a situation in situation semantics for the logical formula as discussed in
[42]. Since, for example, that there is an equivalent of interpreting in states or in formulae
as discussed in [181]

303

7.5. DISCUSSION

A detailed analysis of the phenomenon in dynamic predicate logic, and a

comparison with a static approach, are given in [292]. A recent study of

the phenomenon under continuation is pursued by [12, 46]. However, their

approach yields a double-negation reading of the sentence as highlighted

above. In contrast, this framework and the cDRT provide a direct reading.

7.5 Discussion

This chapter re�nes the cDRT in [24] by translating it into parameterized

monads. It provides a simpli�er model in category theory for the cDRT. The

research in [24] is based on the λ-calculus and has recently been criticised

by [69]. This new �ne-grained model would eliminate the critics by them.

Adding the second state in the parameterized monad is crucial to capturing

the pragmatics, or environment-related, issues which are essential for a

natural-language understanding of the donkey phenomenon. This idea is

discussed in [12, p. 200] who concluded that any frameworks that interpret

the phenomenon require a delimited, composable continuation. However,

the composable continuation has been interpreted in parameterized monads

by [23]. In the above example, the phenomenon is only captured in param-

eterized monad framework by de�ning the dynamic implication ⇒ through

associating each evaluation state of the (compositional) evaluation process.

The implication is used, for example, to represent the English condition if.

304

CHAPTER 7. THE CDRT IN PARAMETERIZED MONADS

We cannot express the dynamic implication in general monads because the

state k, which acts as the output of the �rst monad and input of the second

monad, is required. In other words, we must have a declaration M g k⊺ and

M k k
′ ⊺ to connect between two monads.

Our idea of including two states in an expression also appeared in the

Lamberk�Grishin calculus for the type-logical grammar, as discussed in [12,

p. 194]. According to that discussion, an expression of type (B ⊘C) ;A is

interpreted as locally acting as A within a context of type B; hence it acts

as a function transforming B into C.

The direct treatment of the quanti�er every in the sentence

Every farmer who owns a donkey beats it.

is also studied by [63] with his variable-free dynamic semantics. Shan's

analysis may lead to an unwanted reading that every farmer who owns a

donkey beats each donkey that he owns. However, Shan, as well as [86],

didn't analyse it further in their frameworks.

We are providing a category or type-theoretical interpretation of dynamic

semantics in comparison with model theory interpretation in the DPL by

[27] and its related systems. In our sense, the dynamic is interpreted as

305

7.5. DISCUSSION

a transition between information states or contexts. The truth condition

in type theory entails constructing an element of a given type. It can be

studied further as a record type [259] or a database scheme [231, 232].

However, our innovation also involves the swapping technique, which shows

how we operate the binding in a formula, and its underlying reasoning by

the BHK interpretation. This technique is crucial in the general treatment

of categories in linguistics since it allows a framework for reasoning about

scope in compensation for the classical-logic interpretation of the implication

(another version of Yoneda's lemma).

A deeper analysis of the donkey phenomenon in dynamic semantics is given

in [43]. For example, according to [43], the dynamic approach to the donkey

anaphora can extend to general cross-sentence anaphora. This observation

is also a good research direction for examination in our framework.

Adding the described states in parameterized monads complicates the

state monad in the conjunction and implication interpretations. There is

a question of why do we need to do this? The donkey phenomenon above

shows the empirical requirement of the correct sentential reading for the

dynamic implication. It has not been captured by the state monads. In the

author's view, the parameterized monads may have further applications in

situations where the interpretation's correctness is paramount, such as in

scienti�c or legal documents.

306

CHAPTER 7. THE CDRT IN PARAMETERIZED MONADS

The donkey phenomenon is a subproblem of the linguistic context-dependent

phenomena with associated linguistic structures such as scope-reading. Ex-

amples of those phenomena are the donkey anaphora or domain-restriction

phenomena in [303]. In the author's opinion, parameterized monads do

not solve the scope-reading problem since the author assumes that these

problems are related to pragmatics. Instead, the parameterized monads

provide a representation, categories and modularisation for a greater variety

of linguistic phenomena. Thus, the monads preserve the linguistic structures

of those phenomena more faithfully. In other words, parameterized monads

provide a computational framework to capture those linguistic phenomena.

In other words, the parameterized monads provide a framework for a monad

morphism between two-state monads and explicit splitting. We thus gain

some theoretical advantages: for example, adding the second state (as per

[101]) can capture the cataphora phenomenon.Moreover, it is possible to use

records types [137] or collections [231] to model information states. In the

author's opinion, the �elds label or modularizing ability in collections is a

proper candidate for modelling plurality in linguistics.

7.5.1 Related research

This chapter provides a dynamic semantics interpretation of the parame-

terized monads. A brief list of related research is given here. The most

307

7.5. DISCUSSION

closest related research is [16] who uses graded monads from [304] to build

a dynamic semantic framework based on [24], and interprets the presuppo-

sition phenomenon in linguistics. [53] shows that her theoretical framework,

i.e. graded monads, and this framework are similar. Her central notions of

dynamic implication ⇉ and monadic notion >>= are similar to our dynamic

implication ⇒ and the kept monadic notion. In addition, the presupposition

projection is a strength of the contextual analysis in type theory in [141].

Her reset notion is similar to our reset notion de�ned in Chapter 5 or in

[23]. However, it seems that the only distinction between her framework

and ours is that the interpretation of Muskens' cDRT is quite natural to us

while it is not natural in her framework. In addition, she did not study the

donkey sentence in her framework, and she used possible-world semantics to

interpret her information states rather than using context in type theory.

Another similar theoretical framework is also the dynamic monad by [280].

This framework and Charlow's have the same objective of interpreting

dynamic semantics in monads. However, his framework is not thoroughly

theoretically investigated, and is based on monad transformer by [202]. Be-

sides, he tries to manage the information states in the focus presupposition

binding rather than through the scope analysis of the pronoun. Thus, we

can say that this version is a strong compositional version of Charlow's

dynamic monads. We also declare the states in the types rather than in the

denotation of linguistic expressions. Doing so is crucial since it makes the

308

CHAPTER 7. THE CDRT IN PARAMETERIZED MONADS

presentation clearer, and makes the typing declaration more meaningful.

[63] also provides the semantics for the donkey sentence for his variable-free

dynamic semantics. In comparison with Shan, this research explains

more detail on the state-changing during the sentential analysis of the

phenomenon. Chapter 4 by [6] also modelled the context as a graph. Hence,

he lifts the scope of the sentence's quanti�ers into the contexts, and performs

swapping operators on the context. This idea is similar to our swapping tech-

nique. More clearly, it is the concretisation of this technique in the categorial

grammar. He also used one context to model the change in the contexts, and

splits the context into two by the ⊚ operator, with the idea of left and right

concatenation from categorial grammar to describe how the contexts inter-

act. Let us consider the context in the derivation in an example by [6, p. 101]

[Γ = (x ∶ NP,f ∶ saw, y ∶ NP) ⊚ 1] ⊢ fyx ∶ s
[Γ′ = (f ∶ saw, y ∶ NP) ⊚ (1, x ∶ np)] ⊢ fyx ∶ s

In the author's opinion, his idea and ours are similar in the sense that both

are describing the change in the context. Thus, the change from pre- to

post-state is expressed as the contexts in the premise, and as the conclusion

in his derivation. Thus, if he wrote

Γ ⊢ fyx ∶ s
Γ′ ⊢ fyx ∶ s

309

7.5. DISCUSSION

it means

M Γ Γ
′

fyx ∶ s

in this framework. In general, this is a special case of the Curry�Howard

correspondence between the proof and programming.

Some further related research is by [32] who uses category theory with

distributional semantics rather than dynamic semantics to study natural

language. This technique is called the Frobenius algebra. According to

[157], this algebra has a particular existential quanti�er property that

δ ∧ (∃x.φ) ⇔ ∃x.(δ ∧ φ). According to [305], it is because the connectives

(⇒,∧,→,×) and quanti�ers (∀,∨,∃,+) are a duality of the right and left

adjoints of a simpler category. In the author's opinion, we can think of

Taylor's connectives as being similar to the generalized quanti�ers in [108],

or to continuation in [12].

The continuation interpretation of linguistics with the donkey sentence

analysis is represented in [12, 46, 149, 10]. These investigations are based

on continuation, and they delimit control with classical logic to overcome

the scope problem of linguistic phenomena. We enrich their study and

applications of category theory in linguistics by providing an alternative

foundation. Hence, we can interpret the donkey phenomenon and the

310

CHAPTER 7. THE CDRT IN PARAMETERIZED MONADS

implication directly rather than having to use the double-negation rule from

classical logic.

In comparison with the towering notion in [12], the syntax is replaced

by the pre- and post- information states, and we replace the syntax

calculus as the discourse structure in our framework. These replacements

preserve the continuation idea of keeping the interaction between an

expression and its environment, or context, without the pros and cons

of syntax. However, we still keep the semantic by Montague's grammar,

which is the same as in [12]. Their contextual illustration, and hence

continuation, is represented by the introduction of the hole [] which has

the λ-calculus interpretation, λk.k is merged to be the pre-state in our

framework, i.e. λs1. Hence, the continuised denotation is the second state s2.

Readers may wonder, where is the syntax analysis? I would say that it is to

be found in the typing declaration. [114] shows that we can interpret syn-

tactic calculus in type theory. In order to encode the swapping technique19

in type theory. We need nominal type theory from [306, 307] or linear logic

in type theory from [30]. The full development, however, is beyond this

dissertation's intended scope.

[19] also had an idea similar to ours. The transition technique is also named

19In a manner similar to parallel computing.

311

7.5. DISCUSSION

as hypothetical proof in [19]. Formally, the hypothetical proof rule is

Γ, p ∶ P ;A, z ∶ B ⊢ a ∶ C;D; b ∶ E
Γ ⊢ λp.a ∶ P → C;A⊸D;λz.b ∶ B → E

[19] have a rich linguistic structure. However, we base our proposal on type

theories and logical interpretation.

Finally, [291] develops the analysis of the donkey phenomenon further in the

inquisitive semantic framework from [308]. In contrast with that approach,

our approach has a strong mathematical background by the research of [35].

7.5.2 The continuation monad

The application of continuation in linguistics is studied in [149, 166, 12].

The lifting operator for continuation monads is represented in [9] as

η(o) = (e → ω) → ω ∶ M ω o, and it has been studied in linguistics in [17].

In parameterized monads, I propose a new representation for composable

continuation as

η(o) = (o→∆) → Γ ∶M Γ ∆ o.

This means that the states are associating with the return values. A compar-

ison of extensions to the continuation monad is [301]. Both frameworks are

based on category theory. However, I based this research on parameterized

312

CHAPTER 7. THE CDRT IN PARAMETERIZED MONADS

monads, while Melliès de�nes his own frameworks.

In a concrete example, [302] used ∆ = Γ → o for the second context. Hence,

his typed interpretation of a formula with a type o is

Γ→ (Γ→ o) → o.

On the other hand, if we still keep ∆ = Γ → o, then our parameterized

monad interpretation is

o→ (Γ→ o) → Γ.

We see that the above two interpretations are identical up to swapping the

�rst and third parameters o and Γ.

7.5.3 The state monad

The parameterised state-manipulation has been extensively discussed as

Monoidal Typed Command Calculus in [23, p. 32]. However, we still can

extend this calculus by adding further rules. For example, we can govern

the changing of the state from s1 to s2 by adding additional C − Conseq

rules as implicit state-manipulation as in [23, p. 34]:

s1 ⇒ s
′

1 Γ; s
′

1 ⊢c c ∶ A; s
′

2 s
′

2 ⇒ s2

Γ; s1 ⊢c c ∶ A; s2

313

7.5. DISCUSSION

For example, the state-changing rule ˆ in [15] can be interpreted as the

C −Conseq rule for the implicit addition of a new entity in the state with

s
′

1 = s1, s
′

2 = s2, s2 =ˆ(c, s1)

Finally, in the author's opinion, the discourse representation ⊕ in [15] can

be represented as the merging relation 1 in [23, p. 31�32]. The stack manip-

ulations push, top, add are represented as the StkPrg program for a simple

stack machine program with de�ning rules in [23, p. 7�8, 28].

314

Chapter 8

Imperatives phenomenon in parameterized

state monads

This chapter shows another application of parameterized monads to in-

terpret the imperative phenomenon. This interpretation is characterized

as a computational approach to the phenomenon. Monads, in our sense,

are the computational types by [8], and types and logics are equivalent by

the Curry�Howard correspondence as discussed in section 2.1.2.5. This

research is based on the previous one by [49] using Hoare's logic [51]. The

precondition and postcondition in Hoare's logic are captured by the �rst

and second states in parameterized monads, respectively.

The basic literature review of this phenomenon is given as follows. The philo-

sophical approach to the phenomenon can be found in [309, 310, 311, 312, 313]

with recent developments in [314, 315, 316, 317, 318, 319]. Linguistic study

of the phenomenon includes [145, 320, 321, 77, 322, 323, 76]. However,

we are approaching the phenomenon in the logical aspect, so the related

literature is the logical and computational approach to the phenomenon as

studied by [311, 313, 324, 49, 139, 55].

315

According to [49, p. 1], the de�nition of imperatives is

An imperative is a tenseless and subjectless sentence typically used

to ask someone to do something or not to do something, and which

does not denote a truth-value.

According to [325, 115], despite its formation as an incomplete sentence as

indicative one, imperative can be an object of scienti�c reasoning. The basic

idea of the reasoning is illustrated as: do this, hence if we do not do that,

we cannot do this. For example, let us illustrate this reasoning point by an

example in [324] as below

Open the door!

However, the door cannot be opened unless it is �rst unlocked. Thus, the

imperative also means

Unlock the door!

Hence, we can reason about an imperative by its inferences. In the above

example, a request to open the door has an implicit meaning associated

with unlocking the door. The reasoning of the imperative is more essential,

for example, in the case when we talk to a robot and say

Clean the house!

316

CHAPTER 8. IMPERATIVES PHENOMENON IN PARAMETERIZED
STATE MONADS

Then the robot should know what to do, such as taking the vacuum, plugging

it into the power, starting the work, �nishing the work, etc. Practically,

according to [55], any dialog theories have to interpret imperatives.

However, there is a challenging question: how to build an inference system

for imperatives? This problem is challenging since we are reasoning with

verbs, or with predicates rather than nouns. Besides, the interpretation of an

imperatives is heavily in�uenced by the environment in which it is uttered.

According to [324, 309], the meaning of imperatives can be interpreted by

Dubislav's analogy. The analogy states that there is an equivalence between

imperatives and declared sentences. This analogy was discussed originally

in [309] and further developed in [310, 311, 324].

Basically, to interpret an imperative sentence, we translate it to the

equivalent indicative sentence, then we use inference rules on the indicative

sentence before transferring it back to the imperative form. This process

is illustrated by the following diagram, where I1 and I2 are imperative

sentences, S1 and S2 are interpreted indicative sentences. The horizontal

arrows show the translation, and the vertical arrow shows the inference rules.

317

8.1. THE ROSS' PARADOX

I1 → S1

↓

I2 ← S2

Table 8.1: Dubislav's analogy.

However, this approach poses a problem called Ross' paradox, which is raised

by the interpretation of the disjunction to the phenomenon.

8.1 The Ross' paradox

[311] follows [310] to provide an answer the question:

Can imperative be a part of logical inference?

Then he questions the validity of [309] and [310] in the case of disjunction.

Validity, in Ross' sense, means that, if all the premises are correct, then the

conclusion is correct.

I(a) → S(a)

↓

I(a ∨ b) ← S(a ∨ b)
A natural-language example is

Slip the letter into the letter-box!

This sentence could be inferred as

318

CHAPTER 8. IMPERATIVES PHENOMENON IN PARAMETERIZED
STATE MONADS

Slip the letter into the letter-box! Or burn it!

That is an undesirable implication. Thus, [311] argues that, in order to

avoid the paradox, the context or holding good of the imperative should be

presumed. It is similar to the idea in [309] that the inference is valid if the

subject is presupposed.

8.1.1 Logic in imperatives

According to [49, 313, 139], there is a logic for the imperative despite its

incomplete formation in comparison with an indicative sentence. In their

observation, the basic logical operators in the phenomenon are

Direct imperative: ρ = Come here!

Negative imperative: ρ1 = Don't do that!

Conjunction: (ρ1;ρ2) = Sit down and listen carefully!

Disjunction: (ρ1 + ρ2) = Shut up or get out of here!

Conditional imperative: (C) ρ) = If it is raining, close the window!

8.1.2 Properties

According to [49, p. 4], interpreting an imperative requires a state of a�airs

or the speaker's context. Understanding the context allows us to avoid

inappropriate speaker expectations, thus avoiding inappropriate inference

such as Ross' paradox. The context is called a situation in [326]. In addition,

319

8.1. THE ROSS' PARADOX

using illocutionary forces allows us to deduce whether an imperative is

satis�able or not [326].

Thus, an inappropriate order such as Have three arms! is identi�ed and

rejected. To explain it, we may say that there is a precondition of pragmatics

for each imperative. To make sense of an imperative, the precondition must

satis�ed. An imperative that overcomes the conditions is called satis�able

by Fox [49].

We also have a post-condition for verifying the actions of the addressee, to

update the state of a�airs, or to record the pragmatic issues which relate to

speaker and hearer performance. For example, if the speaker utters the order

Close the door!

In order to satisfy the above order, we verify that the door is closed after

the action of the hearer. If the door is closed, an imperative has a post

condition that can be used for further reasoning. If the door is not closed,

the imperative is not satis�ed, which Vranas calls violated [316]. Thus, the

post-condition can be extended to include complex reasoning on common

grounds and pragmatic issues.

Besides contextual dependency, imperatives have both subjective and

320

CHAPTER 8. IMPERATIVES PHENOMENON IN PARAMETERIZED
STATE MONADS

objective properties. Imperatives have the objective property because they

explain an imperative. This is the demand from a speaker to a hearer. The

demand must be understood and interpretable by both parties. Therefore,

it must be objective in order to be analysed. Imperatives are subjective

because they depends on the situation such as whether a speaker has

authority over a hearer.

According to [311], an imperative cannot provide a truth value of true or

false in the sense used in propositional logic. In place of true and false,

he proposed the terms, validity and invalidity. The corresponding term

correctness is used in [49]. If an imperative satis�es its pre-condition, then

it is called validity.

In the author's opinion, Ross has classical or propositional logic in mind

when he discusses the concept of an imperative's validity. That means a

proposition must be either true or false. Thus, he cannot categorise the

imperative to that frame. If we view modern logics in which a proposition

is not just true or false (e.g. in [93, 131]), the author supposes that

we can provide a logic for imperatives in Ross' sense. Then, validity

would mean a true proposition, while an imperative without classi�cation as

validity or invalidity would mean a hypothetic judgement in the sense of [123].

Thus, Nanevski and Pfenning and Pientka leads to an explanation of

321

8.1. THE ROSS' PARADOX

non-applicable of classical logic in imperative as discussed in [311, 49]. It

illustrated by an example in [49]: if an employee utters, Do your work! to

the boss, then it is invalid. It is not implied that its negation, Don't do your

work! is a valid imperative either.

Practically, according to [311, p. 36], de�ning the validity of an imperative

is impossible, for example in association with feelings or morality [325], in

comparison with de�ning validity for an indicative sentence. To arrive at a

practical logical interpretation, Ross also proposed using Dubislav's analogy

and de�ning the term, satisfaction. If an imperative I to be satisfaction,

then its corresponding indicative sentence S has a truth value in classical

logic. Consequently, we can build a logical interpretation of the phenomenon.

In addition, according to [49], interpreting the satisfaction of an imperative

also provides a means to verify it. For example, an imperative Close the door!

is satis�ed if we can check that the post-condition has a property that the

door is closed. If the door is not closed, then the imperative is not satis�ed.

8.1.3 Speci�cations

There are various de�nitions for the objective meaning of an imperative.

For example, it is called a requirement [49] and prescriptions [316]. Ross

[311][p. 33] calls it theme of demand :

An imperative expresses a demand for action and must therefore of

322

CHAPTER 8. IMPERATIVES PHENOMENON IN PARAMETERIZED
STATE MONADS

necessity contain a statement of the nature of the thing demanded.

It is impossible to demand without demanding something. This

"something" I propose to call the "theme of demand". The theme

of demand consists of a certain fact, or a state, or an activity, which

is assumed not to exist at the moment of the demand; but the re-

alisation of which is requested by the demand through the action

of the one to whom the demand is directed. Every imperative may

therefore be conceived to be resolved into two factors, the properly

imperative factor, expressing that something is demanded, and the

indicative factor, describing the theme of demand. It is now pos-

sible to segregate the indicative factor and give it an independent

formulation in a sentence which describes the theme of demand,

and which will therefore be true in case the demand is complied

with. For example, in the imperative, �Peter, close the door� the

theme of demand is described in the sentence �Peter closes the

door�. It may then be laid down that to an imperative

In this dissertation, I adopt the terminology from Hoare's logic and call it

a speci�cation. A speci�cation is a list of indicative sentences which express

the meaning of an imperative. According to [49, p. 13], we can verify a

speci�cation and avoid the Ross paradox. This is because the speci�cation

does not infer any new utterance. If we describe the speci�cation more

clearly, such as the to-do list by [145], the veri�cation task is made easier.

An imperative is always veri�able as accomplished, or not accomplished, by

323

8.1. THE ROSS' PARADOX

pragmatic factors, even if the demanded task is in a speci�c time in the

future, such as

Run tomorrow!

Or even just in a vague near future:

Get well soon!

I call the translation process from an imperative to a descriptive speci�cation,

a speci�cation process, recalling Dubislav's analogy between imperative and

indicative sentences. The process is discussed in [310] as follows:

According to this method the command �Shut the door� corre-

sponds in a certain sense to the indicative sentence �The door is

to be closed�, or more explicitly, �The action of closing the door is

belonging to the class of actions which are to be performed�. Or

generally, there is a syntactic rule according to which an impera-

tive sentence of the form �Do so and so� may be transformed into

an indicative sentence of the form �Such and such action is to be

performed, resp. such and such state of a�airs is to be produced�.

Hence, by adding the context to an imperative expression, I propose modi-

fying the Dubislay analogy to associate with an evaluation context as

Γ ⊢ I1 → ∆ ⊢ S1

↓

Γ ⊢ I2 ← ∆ ⊢ S2

Table 8.2: Revised Dubislav analogy.

324

CHAPTER 8. IMPERATIVES PHENOMENON IN PARAMETERIZED
STATE MONADS

In our parameterized monad approach, Γ or ∆ is represented by a pair of

the pre- and post-states ⟨G,H⟩. The analysis of context in imperatives, in

the author's opinion, is essential for the interpretation of the phenomenon as

discussed in the literature.

8.1.4 Monadic approaches to the semantics of impera-

tives

Our monadic approach to imperatives is a dynamic semantic one. The

related research are [320, 139, 326, 55, 49, 313] in parallel with the modality

approach by [322, 77].

Furthermore, I propose that, using the evaluation order in monads by

[50, 189], we can tackle the order-dependence of the conjunction problem in

[49, p. 6]. It has a distinguished theoretical foundation with the continuation

evaluation order in [6], and a similar, but not identical, concept is also

discussed in Chapter 11 of [12]. The order-dependence of conjunctions

means that a later imperative in a conjunction can be satis�ed only after the

previous imperative has been satis�ed. Thus, for example Open the envelope!

And read the letter! di�ers from Read the letter! And open the envelope!.

That di�erence demonstrates that the conjunction in an imperative is not

commutative as it is in classical logics.

Basically, evaluation order or scope-taking in section 2.2.3, with detail in

325

8.2. THE INTERPRETATION IN MONADS

[12, 75], study and assert the practical issue that the order of terms in a

formula contributes to the meaning of that formula. Thus, this technique is

better at analysing quanti�ers, than is the edge treatment of quanti�ers in

typed logic grammar in [18]. We can employ this technique to interpret the

order-dependent conjunction in [49]. However, we should keep in mind that

monads, instead of continuations, provide the theoretical framework. Either

of the two techniques would be adequate in this dissertation's research scope.

It is not, however, achievable in classical logics, but it is quite straightforward

in monads if we interpret the conjunction as a binding operator as below.

8.2 The interpretation in monads

We base our interpretation of Hoare logic in monads via [52] with a similar

study of Hoare's type theory by [237]. The di�erences between Hoare logic

and monads originate in the principles used to express them. Hoare logic is

expressed in imperative programming languages, while monads are expressed

in functional or compositional principles.

8.2.1 Hoare state monads

Let us assume that the pre- and post-conditions are collections of proposi-

tions P as de�ned in [49]. So, the precondition P is a subset of P, i.e. P ⊆ P.

In order to de�ne Hoare state monads, we need to de�ne the unit and binding

operators for general monads as per [8]. Let a be a type, then let us follow

[52] to de�ne the return unit as

326

CHAPTER 8. IMPERATIVES PHENOMENON IN PARAMETERIZED
STATE MONADS

η(a) =MP P a,

now, let us investigate the binding operator which is, by default,

MP1 a Q1 → (a→MP2 b Q2) →M⋯b⋯.

Thus, the question is: how we de�ne the �nal monad in the binding opera-

tor? I assume that the imperatives are normal and reasonable; we need not

be concerned with absurdities here.

My proposal is that, in order to make sense of the binding, the second pre-

condition, P2, should be stronger than P1. Thus, post-condition Q2 is weaker

than post-condition Q1, since the �rst imperative is added by making a sec-

ond order. Thus, the pre-condition of the second order should be stronger

than the pre-condition of the �rst because it is to happen only after the �rst

order has been accomplished. Thus, the post-condition, or the �nal goal of

the second order, should be weaker than the �rst one since the goal is more

clari�ed by the action in the �rst-order imperative. Formally, we de�ne that

strength-ordering as

P1 ⊑ P2, and Q2 ⊑ Q1. The ⊒ is the subsumption notion, i.e. if we write

P ⊑ Q, it means that there is a function from P to Q.

And so, the binding operator returns

MP1 a Q1 → (a→MP2 b Q2) →M{P1 ∧ (P1 ⊑ P2)}b{Q2 ∧ (Q2 ⊑ Q1)}.

Were we to argue further, we should let the conditions: (P1 ⊑ P2), (Q2 ⊑ Q1)

manifest on another dimension since we just want the result to have a repre-

sentation as: MP1 b Q2. For further discussion, the author refers to the topic

of adaptation in Hoare logic as discussed in [327], and to separation logic in

327

8.2. THE INTERPRETATION IN MONADS

[244].

8.2.2 An interpretation

This monadic interpretation captures the evaluation order by the binding

order, which is problematic for conjunctions in [49]. The detailed interpre-

tation is illustrated below.

1) A single imperative such as Portner's imperative

Feed the bird!

has a direct representation as

P {ρ} Q = MP Q ρ

2) The negation imperative, such as the imperative in [49]

Don't close the window!

returns the η operator of absurdity,

i.e. ¬φ = η(φ) =MP (φ→ �) P

3) The conjunction imperative, such as

Find the key under the carpet! And open the door!

is the above binding operator

ρ1 ∧ ρ2 =M P1 ρ1 Q1 ≫MP2 ρ2 Q2.

4) The condition imperative is interpreted as a dynamic implication

and explained in the donkey anaphora section.

328

CHAPTER 8. IMPERATIVES PHENOMENON IN PARAMETERIZED
STATE MONADS

The conditional imperative is one case of hypothetical reasoning. It is

represented as a condition in an imperative programming language by [49].

Formally, it is written as

{P}φ⇒ ρ{Q}

For example, φ is The cat, Felix, is hungry, and ρ is Feed it!.

This relationship means that the conclusion imperative ρ depends on

the conditional imperative φ. I use the same method as the dynamic

implication for the donkey phenomenon in the Chapter 7 in the general

treatment of conditional imperatives. Thus, we are checking the pre- and

post-conditions P and Q to verify the correctness or satisfaction of the

conditional imperatives. This approach is dynamic one, and continues the

research in [49] by incorporating with dynamic predicate logic from [27].

This approach has an advantage that we do not need an excluded-middle

law to interpret the imperative. For example, in [49], the hearer is required

either to take an action if the condition is met, or not to take that action.

Their example is

ρ = Close the door!

φ = It is raining.

P = The door is open.

Q = The door is closed.

Thus, their interpretation means either: if the condition is met, then take

the action as

329

8.2. THE INTERPRETATION IN MONADS

(P ∧ φ){ρ}(Q)

or, if the condition is not met, then do not take the action as

(P ∧ ¬φ)_(¬Q)

That interpretation is not desirable because we do not know what is meant

by �do not take an action ρ�, and also because ρ can be performed without

�rst meeting the condition φ. On the other hand, the dynamic approach

means that a listener takes the action only if the condition is met. Formally,

it is written as

(P)φ⇒ ρ(Q)

Hence, we lift the condition φ to the environment via the BHK interpreta-

tion, and it has the following equivalent interpretation:

(P ∧ φ)ρ(Q)

5) I provide the continuation and nondeterministic approaches to the

interpretation of imperatives with disjunction as below. An example of a

disjunction imperative is

Stand here! Or don't eat the cake!

The continuation approach

In general, the disjunction operator di�ers from the conjunction operator

in that its result is nondeterministic. In the case of a conjunction and a

condition, the result of an action is determined by a commander, whereas in

the disjunction case, the �nal result provides the listener a choice of action.

in the case of Close the door or close the window, a listener can choose to

close the door, or close the window, or close both.

330

CHAPTER 8. IMPERATIVES PHENOMENON IN PARAMETERIZED
STATE MONADS

The nondeterministic problem is vastly studied in computer science �eld. To

solve the problem, I suggest using continuation as a technique to interpret

the nondeterministic problem. Continuation lifts a function so that its

evaluation depends on its environment. The continuation is formulated as:

given a function f , its continuation is λc.f , where λ is an arbitrary function.

In other words, there is an arbitrary function λ from an environment c to

interpret f . Thus, we derive the rule for disjunction as follows.

given : P = ¬(the door is closed ∧ the window is closed),

Q1 = the door is closed.

Q2 = the window is closed.

P {ρ1} Q1 P {ρ2}Q2

P {ρ1 ∨ ρ2} (λc.ifc = ρ1 Q1 else Q2)
If we took an alternative semantics, the post-condition is a subset of the

powerset of {door closed, window closed} (i.e. {door closed}, {window

closed}, {door closed, window closed}). This post-condition can be written

more intuitively as

λc.c ⊆ P({doorclosed,windowclosed})

where P stands for the powerset notion.

Basically, the continuation approach requires a further, and external,

clari�cation. In general, disjunction is a nondeterministic phenomenon. The

post-condition in the above interpretation is the weakest post-condition in

the sense that it returns either Q1 or Q2. A listener may perform both

actions, leading to the actual post-condition being that both the door and

the window are closed. There are several uses of continuation in linguistics

331

8.2. THE INTERPRETATION IN MONADS

as discussed in section 4.3.

In the �eld of program veri�cation, continuation is also used as a lifting

function to combined two Hoare statements [328]. There is also the possibil-

ity [329] of taking post-conditions as primitives rather than as pre-conditions

in general Hoare logic. Doing so enables us to trace back the pre-conditions

from the post-condition and the program's return value. While it would

be worth seeing how this approach would enhance the research in [139],

we should bear in mind that human imperatives are more intuitive, direct,

ambiguous than programming languages.

The guarded nondeterministic approach

This approach is similar to the above continuation approach. However, it

provides explicitly where the further clari�cation is. It is restricted by the

LEFT and RIGHT rules as described below. These rules shift the choice

operator from the post-condition in a continuation approach to the formula's

formation. Hence, we can control, or guard, the choice more properly. It is

a simpli�ed version of the delay-guarantee method for parallel programming

by [330, 329].

332

CHAPTER 8. IMPERATIVES PHENOMENON IN PARAMETERIZED
STATE MONADS

8.3 The imperative logic

I present here an imperative logic which is an improved version of the

logic in [49], with handling rules for disjunctions. For an imperative ρ,

we say ρ ∶ A, for a clause type A as discussed in [145]. The clause types

can be further characterised to forces such as ORDER, COMMAND,

REQUEST, ADVICE, WARNING, INSTRUCTION, THREAT, DARE,

WISH, PERMISSION, etc [207, 321]. The clause types di�er from basic

types in formal semantics in the sense that the latter's types, constructed

in [4], have only basic categories e, e → t, e → t → t,⋯ (where e stands for

entities, or individuals, t for truth, or proposition).

In the author's opinion, Portner's types are types in the sense of the typed

theoretical semantics and grammar in [26, 112]. More particularly, they are

the hypothetic judgement in the sense of [123]. Providing an imperative

with a type in Portner's sense means setting a type for a hypothetic

judgement. Indeed, it is correct since [145] used modality and clause type

as his foundational background to study the phenomenon. Thus, we adopt

type-theoretic interpretation of natural language as a general syntax and

semantics for imperatives, instead of de�ning it anew as was done in [49],

following [312]. Thus, the foundation for the overall framework can be found

in the previous chapter.

333

8.3. THE IMPERATIVE LOGIC

Furthermore, we can specify, or encapsulate in the de�nition in [49], the

nondeterminism of a disjunction by using reverse Hoare logic from [329].

I am going to represent the logic from [49, 313] in a type-theoretical

formulation. This framework is similar to the judgement formulation of the

phenomenon in [139]. A related research is the interpretation of dynamic

logic by [331], which [49] is based on, in the type theory or natural deduction

style of [332].

Suppose that A, B, etc stand for clause types, P , Q, etc stand for condition,

and φ, ρ stand for a proposition and an imperative respectively. Γ is a context,

x is a variable, and P is the set of propositions. The axioms and inference

rules for the logic are described below.

8.3.1 Axioms

When pre- or post-conditions are not mentioned below, it is assumed that

they are applied globally. In addition, the judgement

Γ;P ⊢ {ρ}Q

is a shorthand notation for

Γ ⊢M P Q ρ.

A0. All tautologies in predicate logic are axioms. By the propositions-as-

types principle, tautologies can also be expressed by typing rules in [99].

A1

Γ;P ⊢ {φ⇒ ρ}Q φ ∶ P ρ ∶ B
Γ;{P ∧ φ} ⊢ {ρ ∶ Π(x ∶ P)B(x)}Q

⇒ elim
Γ;P ∧ φ ⊢ {ρ}Q φ ∶ P, ρ ∶ B

Γ;P ⊢ {φ⇒ ρ ∶ Π(x ∶ P)B(x)}Q
⇒

334

CHAPTER 8. IMPERATIVES PHENOMENON IN PARAMETERIZED
STATE MONADS

intro

A2

Γ;P ⊢ {(ρ1;ρ2) ∶ Σ(x ∶ A)B(x)}Q
Γ;P ⊢ {ρ1 ∶ A}((ρ2 ∶ B)Q)

; elim
Γ;P ⊢ {ρ1 ∶ A}((ρ2 ∶ B)Q)

Γ;P ⊢ {(ρ1, ρ2) ∶ Σ(x ∶ A)B(x)}Q
; intro

A3

Γ;P ⊢ {(ρ1 + ρ2) ∶ A +B}Q
Γ;P ⊢ {ρ1 ∶ A}Q ∨ {ρ2 ∶ B}Q

+ elimΓ;P ⊢ {ρ1 ∶ A}Q ∨ {ρ2 ∶ B}Q
Γ;P ⊢ {(ρ1 + ρ2) ∶ A +B}Q

+ intro

A4

Γ;P ⊢ ∀x(φ→ ψ) ∶ Π(x ∶ P).Π(y ∶ P).C(x, y)Q φ ∶ P, ψ ∶ C
Γ;P ⊢ φ→ (∀x.ψx) ∶ Π(y ∶ P).Π(x ∶ P).C(x, y)Q

swap, x is not free

in φ

A5

Γ;P ⊢ ∀x.φ(x) ∶ Π(x ∶ A).B(x)Q
Γ;P ⊢ φ(t) ∶ PQ

, t is free in φ,

8.3.2 Rules

We add LEFT and RIGHT rules, which are a simpli�ed version of the top-

down rule for a reliable guarantee of speci�cation for the disjunction. Details

of the analysis can be found in [330]

Modus Ponens:

Γ ⊢ φ ∶ P Γ ⊢ φ→ ψ ∶ Π(x ∶ P)P
Γ ⊢ ψ ∶ P

Necessitation: I use the contextual modal type theory by [123] to represent

the modality, `necessary'

Γ;⊢ φ ∶ P
Γ ∧ (ρ ∶ A) ⊢ φ ∶ P
where ρ ∶ A means a hypothetic judgement as per [123]. A necessitation

introduction and elimination rules are described in [123, p. 7].

335

8.3. THE IMPERATIVE LOGIC

Universal Generalisation:

Γ ⊢ φ ∶ P
Γ ⊢ ∀x.φ ∶ Π(x ∶ P)P

, x is not free in φ

LEFT rule:

Γ;P ⊢ c0 ∶ A;Q

Γ;P ⊢ c0 ⊔ c1 ∶ A +B;Q

RIGHT rule:

Γ;P ⊢ c1 ∶ B;Q

Γ;P ⊢ c0 ⊔ c1 ∶ A +B;Q

SPLIT rule:

∀l ∈ L.Γ;P ⊢ c ∶ A;Ql

Γ;P ⊢ c ∶ A; (⊔l∈LQl)
(AND)

Γ ⊢ P{ρ1 ∶ A}Q Γ ⊢ Q{ρ2 ∶ B}R
Γ ⊢ P{(ρ1;ρ2) ∶ Σ(A,B)}R

OR is replaced by LEFT and RIGHT rules.

CONDITIONS

Γ ⊢ (P ∧ φ ∶ P){ψ ∶ B}Q Γ ⊢ (P ∧ ¬φ) → Q

Γ ⊢ P{φ⇒ ψ ∶ Π(x ∶ P).B(x)}Q
Alternatively, we can use dynamic implication for the conditions rule. It is

formally written as

P{φ⇒ ρ ∶ Π(x ∶ P.B(x)}Q φ ∶ P
Γ ⊢ {P ∧ φ}ρ ∶ B{Q}

WP (weakening post condition)

Γ ⊢ P{ρ ∶ A}Q Q→ R

Γ ⊢ P{ρ ∶ A}R
SP (strengthening precondition)

O → P Γ ⊢ P{ρ ∶ A}Q
Γ ⊢ O{ρ ∶ A}Q

CR(lifting)

P
′ → P Q→ Q

′

Γ ⊢ P{ρ ∶ A}Q
Γ ⊢ P ′{ρ ∶ A}Q′

(CDR1)

336

CHAPTER 8. IMPERATIVES PHENOMENON IN PARAMETERIZED
STATE MONADS

Γ ⊢ P{ρ ∶ A}Q Γ ⊢ P ′{ρ ∶ A}Q′

Γ ⊢ (P ∧ P ′){ρ ∶ A}(Q ∧Q′)
CDR2 is replaced by LEFT and RIGHT rules. Furthermore, in the author's

opinion, The + type, which represents the disjunction type, can be viewed

as the dot type ● [170].

8.4 Discussion

The relation between the imperative logic and Hoare's state monad is

that we are using the Hoare state (or parameterized) monad as a general

framework and the logic substance the application of the framework. It is

similar to the de�nition of typed command calculus inside parameterized

monads as discussed in section 5.5.

This research considers category as a dynamic approach to the phenomena

examined in the sections above. Hence, interpreting [49] in parameterized

monads means that we solve their open problem of combining their axioma-

tized system of imperative with dynamic predicate logics in Sections 2 and

3. Thus, this research, in a manner similar to the dynamic approach in [55],

has a potential practical implication to NLP and other �elds. Indeed, for

example, according to [76], the two main approaches to the phenomenon

in linguistics are the dynamic approach [55] and the modality approach

[77]. However, the distinction between our research and [55] is that the

latter is based on DRT. On the other hand, we can interpret cDRT in

our system. Hence, we can provide a compositional approach to their system.

337

8.4. DISCUSSION

The results thus far open several future research prospects:

� It seems quite straightforward to formalize to-do lists in [145] as the

writer monad. Furthermore, it is also a prominent future research to

see how update monad by [229] can be used to model the interaction be-

tween common grounds, the to-do list in Portner's sense, in this frame-

work.

� Subjects of imperatives are not mentioned in [49], while they are a

third solution to interpret an imperative in [311] besides the satisfac-

tion approach. Taking a type-theoretic approach, the author suggests

representing subjects as metavariables in type theories as in [121, 138].

Doing so may result in a di�erence from the imperatives and promises

as discussed in [145]. Hence, we would be able to use dependent types

or subtypes to formalize an inference process for the phenomenon.

338

Chapter 9

Additional linguistic phenomena in

parameterized monads

This chapter studies the formalization of additional linguistic phenomena:

de�nite descriptions, demonstrative, and conventional implicature phenom-

ena in parameterized monads.

9.1 De�nite descriptions in IO monads

There is a vast and traditional literature on the topic of de�nite descriptions

in linguistics and logics. This section is selective, for a brief introduction,

see [333, 71]. Instead, a formalization of de�nite descriptions as IO monads,

in section 3.6 in the sense of [38, 187], is given in this section. Informally,

the section �rst attempt to interpret the English de�nite description in the

sentence

the F is G

in IO monads:

the F ∶ IO F

339

9.1. DEFINITE DESCRIPTIONS IN IO MONADS

the F= λx ∶ F.G(x) ∧ sing(x).

where sing(x) means x is a singular object. This formalization can be

developed further by synthesising the ι operator to interpret the de�nite

descriptions in [216, 71, 334, 335] as the µ operator for recursive de�nitions,

or as µvλ2-calculus, in [38] which is studied in [336, 337, 338]. Thus, an

alternative interpretation of the de�nite description in the above sentence is

The F ∶ IO F

The F = µx.λc.x ∶ F in c.G(x) ∧ sing(x)1.

A related study for research is given below. The most closed one is the

research by [63] which also derives a novel de�nition of input and output

types as � and ⋉, respectively. The types are described in λ terms and

similar to the �rst attempt, rather than to the second attempt, to derive

them from µ and v terms. A recent related research is by [83] and a broader

related research is an ongoing de�nition of the input/output logic in by [339]

which can be linked to the deontic logic.

[54] is also another related study with a proposed calculus for the de�nite

description with exceptions. However, he did not spell out the exception

in the case of plurality as in [334]. The di�erence between this proposed

solution and [54] is only in language expressions since both parameterized

1in the functional programming language Haskell, µx means the initial function, or an
input function, such as getchar. The terminal or output function putchar by [38] is the vx

340

CHAPTER 9. ADDITIONAL LINGUISTIC PHENOMENA IN
PARAMETERIZED MONADS

monads and their framework are based on Hoare's logic. This language

choice also helps us to reveal the rich structure of monads with the composi-

tional principle. Notably, the presupposition projection is able to be parsed

in both the research by [54] and a recent one by [16].

In addition, [83] studied the possessive de�nite description phenomenon,

such as the rabbit in the hat, in the dependent type theory. Alternatively, its

interpretation in IO monads is given as follows

the rabbit in the hat : IO Rabbit

the rabbit in the hat = λc.µ r: Rabbit.µ h: Hat.in_the_hat(c,r,h)

If we characterize this phenomenon as the domain restriction phenomenon,

its formalization in parameterized IO monads is similar to the demonstrative

one in the next section. Besides, the composition principle for the above

possessive de�nite description is performed as usual with additional syntactic

rules. For example, the sentence The rabbit in the hat is bald has a derived

interpretation as follow

341

9.1. DEFINITE DESCRIPTIONS IN IO MONADS

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

the rabbit in the hat : IO Rabbit

the rabbit in the hat = λc.µ r: Rabbit.µ h: Hat.in_the_hat(c,r,h)

is_bald: Rabbit→ Boolean

is_ bald(x) = λc.if (x = ⋯) in c then ⊺ else � (i.e pure function)

the rabbit in the hat is bald ∶ IO Boolean

the rabbit in the hat is bald = do

r ← the rabbit in the hat

v ← is_bald(r)

return v
2

Table 9.1: Possessive de�nite description in IO monads.

In the author's opinion, the ι notion in [334, p. 360] can be regarded as

the IO monads. Hence, the interpretation of the de�nite description the in

[334, p. 380] is synthesised to the above interpretation. Kinds, in Chierchia's

sense, are close to types in this framework. However, they are not the same

because each object in a type in type theories requires a canonical object

formation, as discussed in [86]. On another hand, this restriction is not

required in Chierchia's framework.

The denotational semantics for IO monads is discussed in [38]. Accord-

ing to [187], this semantics lacks strength on concurrency. However, I

argue that it is a good candidate for further development for reasoning

2v is similar to the output function in [38], which is the putchar function in Haskell.

342

CHAPTER 9. ADDITIONAL LINGUISTIC PHENOMENA IN
PARAMETERIZED MONADS

with the IO monads. For example, recent research attempts for the rea-

soning of a computer program with IO monads can be found in [50, 249, 240].

Accordingly, the operational semantics approach to IO monads in [187],

with its description in type as

world -> (a,world)

is a special case of an abductive reasoning with an inference rule

Ω

(a,Ω)

This line of research has a reasoning framework of IO monads if we view the

update function as an abduction inference by Plotkin's research [268].

Finally, parameterized IO monads are similar to the teletype IO in [38, 50].

The denotational semantics of the IO monads is based on denotational

semantics on µvλ2 calculus by Gordon [38]. On the other hand, the

operational semantics is studied by Jones [187]. In a short comparison, the

denotational semantics is a good approach for reasoning with the monads,

while the operational is proper for concurrency. Linguistically, denotational

semantics is suitable for semantic interpretations, while operational seman-

tics is better at capturing plurality.

343

9.2. THE COMPLEX DEMONSTRATIVE IN PARAMETERIZED IO
MONADS

9.2 The complex demonstrative in parameter-

ized IO monads

9.2.1 Introduction to the complex demonstratives

9.2.1.1 The de�nition of the complex demonstrative

The recent research by [340] provides the cutting edge perspectives on

the demonstrative. This section overviews the de�nition of the English

complex demonstrative in the literature. The de�nition, according to [341],

is a linguistic expression which has a formation that N or this N where

N is a common noun. Common nouns have an identity property which

enables comparison, recognition, or quanti�cation. This de�nition is similar

to the observation of Bennett in [203, p. 527] that only places are being

demonstrated, and an explicit or implicit common noun phrase is required

for the demonstration's actions.

For example, let us given a situation in which we are talking to a robot, or

translating between languages, and we utter

That car is moving to us.

The complex demonstrative is that car, and its meaning must be understood

to interpret the semantics. The di�culty is that its meaning depends on

the context of the utterance. Therefore, building a formal representation

for demonstratives is an aim worthy achieving. It is problematic because its

344

CHAPTER 9. ADDITIONAL LINGUISTIC PHENOMENA IN
PARAMETERIZED MONADS

semantics is not �xed and depends on time, location, social situations, and

other parameters.

[342] de�ne the notions of nominal-policing and appropriation to interpret

complex demonstratives. Their examples of complex demonstratives are

this cat or that glove with a hole, and the associated nouns behind the

demonstratives this and that are called nominals, viz. cat and glove with

a hole. The term nominal is perhaps similar to that in [107], which has a

broader meaning than common nouns. However, its identity properties have

not been discussed.

Their idea is similar to ours which, focusses on common nouns rather

than on the demonstratives themselves (this, that). Their nominal-policing

functionality is similar to the recognition property in a common noun. So,

instead of saying nominal-policing, we say common-noun recognition. How-

ever, they advocate the semantics of nominal-policing more strongly than we

do, since it guards the semantics property of the complex demonstratives.

More clearly, if the object σ fails to be policed in that F, then the complex

demonstrative that F has no semantic value despite it having been uttered.

The role of nominals in complex demonstratives has been discussed in [342].

Their philosophical viewpoint is similar to [58, 343], and ours in an opinion

that nominals play a central role for the complex demonstrative in natural

345

9.2. THE COMPLEX DEMONSTRATIVE IN PARAMETERIZED IO
MONADS

language contexts. Philosophically, it may not be necessary; however, in

daily conversations, the ability for object recognition is crucial for e�cient

language use.

Besides the nominal-policing de�nition, [342] introduced the notion of

appropriate. Intuitively, it is similar to the notion of similarity in [163]. For

example, if a speaker utters that car, and points to a car, by demonstration

gestures, or by intentions, then an object car is appropriated. If (s)he says

that car and points to a boat, then it is not appropriated and predicts that

the utterance will lead to semantic failures. Thus, they emphasize the role

of appropriation as a fundamental linguistic notion.

Notably, Grudzińska [343] presents arguments that demonstrative descrip-

tion, i.e. common nouns in the complex demonstrative, should not be an-

alyzed in semantics. It is a pragmatics problem, and is analyzed in the

conventional implicature aspect. She criticises the semantics approach to in-

terpret complex demonstratives by interpreting the word that, and proposed

that the complex demonstrative should be analysed via the conventional im-

plicature. The conventional implicature or a pragmatic perspective is similar

to our opinion if it is the familiarity process of �nding the object in a complex

demonstrative. In addition, Grudzińska declares 5 criteria for the complex

demonstrative:

� (I) reference, or rigid designators, in Kripke's sense: e is a rigid desig-

346

CHAPTER 9. ADDITIONAL LINGUISTIC PHENOMENA IN
PARAMETERIZED MONADS

nator if, in every possible world, it designates the same object; and it is

a nonrigid or accidental designator if that is not the case.

� (II) vacuous use: The gaps are cases where there is a reference failure.

� (III) no negation: The utterance, "That F is not F" is infelicity, i.e.

nominal-policing.

� (IV) entailment: "Necessarily, if that F is G, then something is F".

� (V) scope-reading: no descriptive entailment in "Necessarily, if that F

exists, it is F".

Grudzińska analyses the semantical approaches such as quanti�cation by

[344] and [345], modality by [346, 347], by these 5 criteria. Then she proposes

that the conventional implicature approach by [348] satis�es these criteria,

and is feasible to use as an alternative approach besides the semantic one.

9.2.1.2 The problem with direct references

The pioneering research on the logic of demonstratives in [203] has signi�-

cantly shaped the topic. However, there are limitations of the theoretical

framework because it is based on the �rst-order logic. The criticism focuses

on the semantic representations of objects in direct references. An example

of such limitation is explored in the work on complex demonstratives in

[345], or on covariation in situation semantics in [292].

In the logic of demonstratives, [203] follows [62] to assert that linguistic

expressions have both a sense and a reference. A sense and a reference are

347

9.2. THE COMPLEX DEMONSTRATIVE IN PARAMETERIZED IO
MONADS

contents and their referred physical entities in the real world, respectively.

However, there are several expressions that have only senses and no

references, or the references are vague. Perhaps one of the reasons is that

reference-resolution is time-consuming and not relevant to a conversation.

One case of that reason is explained as a vacuous use in [343]. Her example

is the following sentence:

That murderer of Smith is insane.

A detective can make that utterance despite the fact that (s)he does not

know exactly who performed the action. Another example is the case when

a woman has the title Mrs ; people assume that the lady has a husband.

However, we do not need to know exactly what his name is. Another

example is when we are travelling and see a beautiful historic building, we

may utter

The person who designed this building was a genius.

In this situation, we do not need to know who the designer is to express

our respect to them. [292, p. 2] also proposes an example of a covarying

phenomenon that is problematic for direct references:

Mary talked to no [senator]1 before [that senator]1 was lobbied.

348

CHAPTER 9. ADDITIONAL LINGUISTIC PHENOMENA IN
PARAMETERIZED MONADS

[that senator]1 is referred to a senator in [senator]1. However, we cannot

�nd any physical entity that represents a senator in [senator]1 since it is a

conditional sentence. It is a problematic example of the interpretation of the

direct reference approach in [203]. Indeed, Kaplan also criticizes his approach

in [349]:

Lately, I have been thinking that it may be a mistake to follow

Frege in trying to account for di�erences in cognitive values strictly

in terms of semantic values. Can distinctions in cognitive value

be made in terms of the message without taking account of the

medium? Or does the medium play a central role? On my view,

the message�the content�of a proper name is just the referent.

But the medium is the name itself.

However, the author argues that there is nothing wrong with following [62].

If we understand Kaplan's research as discussed in [106], the problem is

centred on there not being enough �exibility in Kaplan's context analysis;

it is a gap between philosophy of languages and pragmatic linguistics. In

the philosophy of languages, the contexts are possible worlds and physical

worlds, while in pragmatics, the context of conversations is information. The

physical worlds are hardly changed while the information does change during

the conversation. An example of an attempt to improve Kaplan's research

in that direction is [274].

349

9.2. THE COMPLEX DEMONSTRATIVE IN PARAMETERIZED IO
MONADS

9.2.1.3 Previous approaches

While complex demonstratives are widely used, there are only a few theories

to provide a complete semantic analysis to the phenomenon. According

to [292], besides his situation-semantic interpretation, there are only two

theories for unifying the semantics of English demonstratives. They are

theories of King [345] and Robert [350] which use generalized quanti�ers

and dynamic semantics. In the author's opinion, they are the static and

dynamic approaches to the phenomenon, respectively.

Dynamic semantics regards the meaning of conversations as information ex-

changes in the conversations' contexts. Indeed, the research by [111, 56, 27]

show that linguistic phenomena in static semantics can be captured in

dynamic semantics . The idea is to change the entities' properties in the

static case, to be the discourse properties. This works because we are

analysing a sentence according to the situations in which it is uttered rather

than for its universal characteristics. For example, the complex NP the

rich man is evaluated at the context of the time of evaluation, not over the

whole of human history, nor the whole population. The dynamic approach

is not limited by its theoretical framework in the same way as the static

approach. By using the update function, the dynamic approach captures the

pragmatic phenomena adequately. In general, it is the BHK interpretation,

as discussed in [351, 297, 295, 296], which states that the interpretation of

350

CHAPTER 9. ADDITIONAL LINGUISTIC PHENOMENA IN
PARAMETERIZED MONADS

a term in a logical formulae is equivalent to its interpretation in the contexts.

The problems discussed above can be seen as the improper handling of

information in [62]. It is improper in the sense of making an assertion that

every linguistic expression has a direct reference. While this is true in a per-

fect situation of semantic analysis, how relevant it is to real-life situations?

This matters because human conversation exchanges information, shares

feeling, or even does nothing at all, rather than �nding truth values of an ut-

terance. For example, we can take a sentence from [163] to illustrate the point

Bill saw a lion on the street. He claim that the lion had escaped from the zoo.

Of course, the speaker and listener are both referring to a lion but it does

not have a concrete identity. To resolve the problem, we can employ the

dynamic semantics viewpoint. It has been applied to the phenomenon by

[163] who used context-change potential as a dynamic semantic framework

to develop her theory of the demonstrative. She interpreted a demonstrative

as de�nite descriptions, and associated the meaning of a demonstrative to its

presupposition. Then, a presupposition is formalized in the context-change

potential in [111], which is based on the possible-world semantics in [180].

Roberts uses familiarity and uniqueness properties of objects as primary

presuppositions in accordance with the demonstration act.

351

9.2. THE COMPLEX DEMONSTRATIVE IN PARAMETERIZED IO
MONADS

Her theory also develops a taxonomy of the familiarity process. She divides

familiarity into a strong familiarity which appears in the preceding utterance,

and a weak familiarity, which is variance by salient variables. The familiarity

and uniqueness properties of de�nite descriptions are discussed in [92] as the

existence and uniqueness properties of de�nite descriptions. Her innovation

is associated them with the context in [163, p. 31] as follows:

The existence and uniqueness presuppositions of a de�nite descrip-

tions are not claims about an individual in a model, but about a

discourse referent in the domain of discourse. Thus, the existence

presupposition amounts to (a variation on) [111] Familiarity Pre-

supposition for de�nite NPs, and the uniqueness presupposition is

about the status of the familiar discourse referent in the Domain

of the Context of discourse.

In addition to Robert's theory, there have been other noteworthy modi�-

cations. The theoretical framework in [292] re�ects Robert's theory with a

reinterpretation in situation semantics by [47], rather than in possible world

semantics. Wolter's theory [57] goes further by asserting that demonstratives

are di�erent from de�nite descriptions as the former a�ects and changes the

context.

Besides the main dynamic approach to the phenomenon is the static

approach by [345] 3. His hypothesis is that demonstratives are generalized

3Basically, it is the higher order logics

352

CHAPTER 9. ADDITIONAL LINGUISTIC PHENOMENA IN
PARAMETERIZED MONADS

quanti�ers in the sense of [108]. His interpretation of a demonstrative that is

and are uniquely in an object x and x is

The �rst and last slots are for NP and VP, respectively. The second and

third slots are for the recognition or familiarity in Robert's sense, and

reference or perception function, respectively. His innovation stays at

expressing the referencing function through the speaker's perceptual. For

example, Elbourne's sentence

That animal [Pointing at Flossy] is a donkey.

has an interpretation in generalized quanti�ers with possible-world semantics

as

animal and = Flossy are uniquely jointly instantiated in w, t in an object x

and x is a donkey.

The detailed analysis of the problems that each theory poses is covered in

[292]. For the generalized quanti�ers theory, that is a rejection of Russell's

idea that de�nite descriptions are existence objects. It seems true, especially

in the view of Hilbert's ε-calculus which is described in [142, 283]. In dynamic

semantics, it is the contradiction reading between sentences or subsentences.

353

9.2. THE COMPLEX DEMONSTRATIVE IN PARAMETERIZED IO
MONADS

9.2.2 The context domain restriction interpretation of

the single complex demonstrative

This interpretation defends the dynamic approach to the demonstrative in

conjunction with [163, 57, 292]. To align with it, I provide an alternative

dynamic semantic framework as discussed in Chapter 7. In this section,

I will explain how this dynamic framework and Wolter's hypothesis of

the distinction between the demonstrative and de�nite descriptions is

synthesised through the parameterized IO monads in section 5.3.6. Wolter's

hypothesis [57] is that the demonstrative is a context-domain restriction

phenomenon. Hence the demonstrative narrows the context while other

phenomena, such as de�nite descriptions, do not.

According to [203], demonstratives are interpreted as a direct reference as

dthat[δ]. The problem with this interpretation is the direct reference as

discussed above. However, we can have a semantic interpretation of the

complex demonstrative in the sentence That F is G in [58] as follows:

that(F) ∶= the(x).(F(x) ∧G(x))

Where the is an interpretation of a de�nite description. According to [292],

de�nite descriptions have the following interpretation in situation theory

Jthe catK ∶= ιx.λP.cat(x) ∧ P (x).

354

CHAPTER 9. ADDITIONAL LINGUISTIC PHENOMENA IN
PARAMETERIZED MONADS

The de�nite descriptions is interpreted in the IO monads in the previous

section 9.1. On the other hand, I propose a solution for the demonstratives,

which is based on the research by [57], in parameterized IO monads as the

derived formulae

that F ∶ IO (M) (N ∧M ≠ N) F4

that F = µx ∶ F ∧G(x) ∧ sing(x).

Where F is a familiar object of that F. The dynamic condition M ≠ N

is derived from Wolter [57]. Her research states that demonstratives are

di�erent from de�nite descriptions, as the former trigger the changing

of the context, while the latter do not. Formally, demonstratives di�er

from de�nite descriptions in the sense that the latter require no change

in the state. Explicitly, an interpretation of de�nite description the in

parameterized IO monads is

the F ∶ IO (M) (M) F

the F = µx ∶ F ∧G(x) ∧ sing(x).

In the previous section with an interpretation of the de�nite description in

4In the current state of the art, the states have a limited formation or apply in limited
circumstances. The states are the teletype IO in by [50, 38] or 25 situations in according
to [352]

355

9.2. THE COMPLEX DEMONSTRATIVE IN PARAMETERIZED IO
MONADS

IO monads, we only saw a type IO F without pre- and post-states. In

addition, the above formula also di�ers from the formulation of de�nite de-

scriptions in [333], at the point of stating the dynamic condition. The dy-

namic condition asserts that the context is not changing with inserted de�nite

descriptions.

9.2.2.1 The di�erence between demonstratives and de�nite de-
scriptions

There is a close link between the research on demonstratives and the

research on de�nite descriptions because they are both referential expres-

sions. Researchers such as [292] support the idea that demonstratives are

de�nite descriptions. Elbourne argues that English demonstratives `this'

and `that' are de�nite articles in the sense of providing existence and unique

presuppositions.

In the author's opinion, the di�erence between demonstratives and de�nite

descriptions is that the former is the explicit substitution by the demon-

stration action of the latter. In other words, the substitution is an explicit

similarity or a familiarity in Robert's sense. A related approach by [353] also

provides that the demonstrative refers to the most salient object through

the descriptive content in the context, while de�nite descriptions refer to

the unique object by their descriptive content. This idea di�ers from [350]

and [292] where demonstratives are classi�ed as de�nite descriptions. In the

author's opinion, the explicit substitution provides a distinguished character-

356

CHAPTER 9. ADDITIONAL LINGUISTIC PHENOMENA IN
PARAMETERIZED MONADS

ization between two phenomena: demonstratives and de�nite descriptions.

they are the same at the conceptual level but di�erent at the expressing level.

The objection to treating demonstratives as de�nite descriptions is also

supported by Nowak [58] and Wolter [57]. According to Wolter [57],

the demonstrative narrows the scope of familiarity objects, while de�nite

descriptions infer the universal property.

In the author's opinion, explicit familiarity is similar to anchoring in [163,

p. 42]. The explicit familiarity is represented as a demonstration, i.e. an

act of demonstrations in the logic of demonstratives in [203]. Furthermore,

explicit familiarity can be expressed through other forms of cognitive

behaviours.

Explicit familiarity

Demonstration act
(Kaplan)

Cognitive behaviour
(cross-linguistics)

There is also another interesting viewpoint in cross-linguistics on the di�er-

ence. Universally, we may agree that both demonstratives and de�nite de-

scriptions are both referential words. However, the demonstrative may have

di�erent word order constraints from those of de�nite descriptions. Thus, if

we identify demonstratives with de�nite descriptions, they are still subject

357

9.3. THE CONVENTIONAL IMPLICATURE IN PARAMETERIZED
MONADS

to di�erent word-order interpretations. For example, in Swahili, as recorded

in [354]

a. yule mtu (Swahili)

the man

`the man'

b. mtu yule

man that

`that man'

9.3 The conventional implicature in parame-

terized monads

The literature review of the conventional implicature phenomenon has

been discussed in section 2.2.4. [20, 79] proposed theoretical frameworks to

parse the phenomenon by following the principle that the at-issue and the

dimension issue do not interact. However, the recent research by AnderBois

et al. [80, 355] provided counterexamples to that principle. Hence, this part

is going to discuss the phenomenon at an alternative perspective and the

next section provides an alternative framework to capture the new empirical

observation in parameterized monads.

The de�nition of conventional implicature in this research was provided in

section 2.2.4. For example, in the below sentence

358

CHAPTER 9. ADDITIONAL LINGUISTIC PHENOMENA IN
PARAMETERIZED MONADS

Jake, who almost killed a woman with his car, visited her in the hospital.

[78] proposed that the phrase who almost killed a woman is being analysed

in a separate dimension rather than the usual analysing context of the

sentence. Indeed, the phrase is not a necessary contextual presupposition

nor a prerequisite needed for an interpreter to understand the sentence. Its

functionality is to provide additional information to the sentence. Therefore,

he suggested that the additional information should be analysed in another

context rather than in the traditional context. The new context is called a

conventional implicature (CI) context, and it is parallel with the context of

the ordinary sentence, which now changes to become an at-issue context.

The interesting point, according to [78], is that the at-issue dimension can

be used in the CI dimension, but not the opposite direction. However,

the interaction between the two contexts are not that separated. The

pragmatic examples below from [355] show cases in which the CI and the

at-issue dimension interact by discourse phenomena-related issues such as

presuppositions, anaphora, VP ellipsis, and nominal ellipsis. They cross, at

their boundary, from CI → at-issue and at-issue → CI:

1) Presupposition

a) John, who wouldn't talk to Mary, wouldn't talk to Susan either.

b) John, who wouldn't talk to Mary, wouldn't talk to him either.

359

9.3. THE CONVENTIONAL IMPLICATURE IN PARAMETERIZED
MONADS

2) Anaphora

a) John, who had been kissed by Mary, kissed her too.

b) John kissed Mary, who kissed him too.

3) Ellipsis

a) Melinda, who won three games of tennis, lost because Betty won six.

b) Melinda lost three games of tennis to Betty, who lost six to Jane.

4) VP ellipsis

a) Mr. Gore at �rst believed the president, and even defended him to Tipper

and his daughters, who did not.

b) So Lalonde, who was the one person who could deliver Trudeau, did.

In the above sentences, the phrases inside the commas are called the side

issues or conventional implicature, as they provide additional information

for the readers/hearers rather than the fact at the believe level of the

speaker. According to Potts [78], we separate the sentence into multiple

dimensions rather than interpreting them in an single dimension. For

example, we separate sentence 2a into two parts:

John kissed her too (at issue) and who had been kissed by Mary. (CI)

360

CHAPTER 9. ADDITIONAL LINGUISTIC PHENOMENA IN
PARAMETERIZED MONADS

Potts de�ned the principle that the at-issue is reusable in CI but not vice

versa. On the other hand, [355] argues against this principle by providing the

above examples as a crossed boundary between two dimensions of at-issue

and CI. They propose to interpret the sentences as a single dimension

rather than on multiple dimensions. However, this approach also leads to

an ambiguous example in [20], as below.

Luke Skywalker is so gullible that he believes that Jabba the Hutt, a notorious

scammer, is a trustworthy business partner.

If we interpret the sentence in a single dimension, it would lead to a contra-

dicting semantics that Luke Skywalker is so gullible that he believes Jabba

the Hutt is a trustworthy business partner and he is a notorious scammer.

The contradiction comes from the semantic meaning that Luke Skywalker

is both a trustful business partner and being a notorious scammer. This

evidence show a strong case that we should separate the propositions into

two distinct discourse segments.

In the next session, we will use session types in section 5.3.6 to model the

interaction between the two dimensions. We view these dimensions as an

interaction channel between the client and server computers. Session types

provide a channel with an explicit type for exchanging data between the two

dimensions. The type of the data is not able to be captured by general state

361

9.3. THE CONVENTIONAL IMPLICATURE IN PARAMETERIZED
MONADS

monads.

9.3.1 The conventional implicature in session types

This section proposes to use session types in [23, 247] as a mechanism to

model the conventional implicature's phenomenon in [78]. This proposal

synthesises the research results in [78] and [355]. Speci�cally, we keep

the multidimensional analysis by [78], while allowing resources to be

exchangeable between the CI and at issue dimensions as in the analy-

sis by [355] during the sentence composition. Thus, we do not leave it

as a discourse phenomenon, nor as post-compositional process as done in [20].

Firstly, let us reintroduce a session type in section 5.3.6.2 and from [23]. Its

original version is described as the π calculus by [246]. Let X,X1,X2 be a

collection of sets of values for input/output (IO). The states are abstract

traces of a program's possible IO behaviour; we call these sessions. Their

regular grammar is:

S =?X ∣!X ∣S1 + S2∣S1.S2∣○

A session ?X means that the program must input, or read, a value in X. !X

means that the program must output, or write, a value in X. S1 +S2 means

a choice operator in which a program performs either session S1 or session

S2. A conjunction operator S1.S2 means that the program must perform ses-

362

CHAPTER 9. ADDITIONAL LINGUISTIC PHENOMENA IN
PARAMETERIZED MONADS

sion S1 before next performing session S2. ○means the program does nothing.

The state relations, or arrows in S, are the combination of the above

grammar, with atoms (or formulae) being ?X, !X, ○, a coordinator S1 + S2

and an implication S1.S2.

From the above session type, we have in�nitely many sessions with states

described as sessions. Consider a function sum from [23], which takes an

input of two integers and outputs their sum if it is greater than 10, or

outputs nothing otherwise. It has the declared type and denotation as below.

sum ∶M (?Int.?Int.((!Int.○) + ○)) (○) 1

This parameterized monad sum has a consequence reading. Firstly, we

are taking a pre-state or a session of type (?Int.?Int.(!Int. ○ +○)). It

receives, or reads, two integers, outputs one integer, and performs a choice

operator + of a function without any input or output, i.e. the pure

calculation plus (+). A post-state, or a �nal session, has a type ○ with

the return value being a unit, i.e. a termination if the computation successes.

From the declared type for the session type of sum, its operation under the

servers' perspective is illustrated as following

363

9.3. THE CONVENTIONAL IMPLICATURE IN PARAMETERIZED
MONADS

sum : M (?Int.?Int.((!Int.○) + ○)) (○) 1

sum =

dox← sentInt, ?Int.((!Int.○) + ○)

do y ← sentInt, (!Int.○) + ○

do z ← (x + y;⋆)

if z > 10 then

do ⋆ ← (⊙; (!Int.○) + ○ ⇒!Int.○)

receiveInt,○z

else (⊙; (!Int.○) + ○ ⇒ ○)

1; ○

Table 9.2: An example of an operational operator in session types.

where sent, receive are primitive functions of the read and write operators

with associated types

sentX,S ∶ 1↦M ?X.S S X

receiveX,S ∶X ↦M !X.S A 1

The if-then-else is the usual logical structure. The ⇒ performs the choice

operator between two choices of returning (!Int.○) or ○. in the case of ⋆, the

choice is (!Int.○), otherwise, it is ○.

Alternatively, we will elaborate the idea more with an example from [247]

that takes place in an internet shopping context. The shop provides two

364

CHAPTER 9. ADDITIONAL LINGUISTIC PHENOMENA IN
PARAMETERIZED MONADS

operations: giving a list of books, or checking out by collecting credit card

numbers and their associated addresses:

Shop = & ⟨add: !book.Shop, checkout: !Card.! Address. ○⟩

The syntax structure &⟨⟩ explains that the shop has two sub-functions:

adding a book, or checking-out to buy. the & symbol means a branching

with 2 options add and checkout. The adding function is processed as

follows: we receive a book name and then return to the main shop function

to continue to perform the choosing between two options. Otherwise, we will

checkout by receiving the credit card number and addressing and �nishing

our shopping session.

We can perform these actions under the assumption that we have shoppers

or users over the internet. As clients, they would provide the names of

interested books, followed by a checkout process in which they provide

personal card numbers and addresses. Our example correspondence is

Shopper = ⊕ ⟨add: ? book.Shopper, checkout: ? Card.? Address. ○⟩

⊕ means choice between two options. The two above protocols are working

if we ensure some additional properties of the processes: they are compatible

as both shop and shopper are operate on an agreement assumption, and

365

9.3. THE CONVENTIONAL IMPLICATURE IN PARAMETERIZED
MONADS

will not terminate prematurely by small mismatches between two parties.

In addition, the protocol is terminated at the end, and the shopper can

only perform on selected actions. The process of selecting books should

be performed before checkout and, during the checkout process, both card

number and address are given, in that order. If the shopper chooses an

option of adding a book, she sends a book's name; and after accepting the

adding option, a shop expects a book's name. The requirements are similar

for checkout process.

The π calculus in the above examples, described in [23] and [246], provides

a model to resolve the controversy in conventional implicature posed by

[78] and [355]. Firstly, Potts strictly divided the sentence into multiple

dimensions and forbade the interaction between the CI and at-issue di-

mensions. Anderbois and Brasoveanu and Henderson, on the other hand,

gave counterexamples and suggest that we should analyse a sentence in a

single-dimension version. We provide a solution to unify their analyses into

the information �ow section of π calculus, in which each phenomenon, such

as anaphora resolution, is a task of exchanging data. Hence, we keep the

interesting and insightful multi-dimensional analysis while still capturing

crossed-boundary linguistic phenomena. In our view, it relates to the

problem of modelling the relation between two asymmetric parties such as

servers and clients or database's query.

366

CHAPTER 9. ADDITIONAL LINGUISTIC PHENOMENA IN
PARAMETERIZED MONADS

We can directly use session types to model the interaction between the

at-issue and CI dimensions. Analogically, the CI dimension is the server

side, and the at-issue dimension is the client side. We use commas to

separate between dimensions. For example, we are going to demonstrate the

above example by [20]

John, who likes cats, also likes dogs.

The CI dimension reads an input as a man, which is John, and returns

a proposition which is John like cats. The at-issue dimension reads the

proposition and checks the semantics for the word also.

comma ∶M (!j.○) (?like j c.○) j

comma = receive≫ x.λl.l ⋆ λf.sent(f x) ⋆ λ_.η(x)

where the sent, or ? operator translates the state from ?x.q to q after

sending the value x over the communication channel as per [356]. Its

formalization in parameterized monads is

sent ∶ α →M (?x.r) r ⊺

sent a = λc.write c a

where a ∶ α and write is the writer monad. Similarly, the de�nition of

367

9.3. THE CONVENTIONAL IMPLICATURE IN PARAMETERIZED
MONADS

receive, or !, is

receive ∶M (!a.r) r α

receive = λc.sel c

where a ∶ α.

also ∶M (!like j c.○) (○) ((d→ j → l) → d→ j → l)

also = λv.λo.λs.s ⋆ λx.v ⋆ λf.o ⋆ λy.receive ≫ A ∧ check(∃z ∈ A.f z x ∧ z ≠

y) ⋆ λ_.η(f y x)

John ∶M ○ (?j.○) j

John = η(j) ≫ sent(j) ≫ η(j)

We perform the lifting operator on the proper name, John twice. One

performance is to lift the name to the parameterized monads for an usage

by the sent operator. However, the sent operator just returns the truth

value in ⊺ and we want to reuse the name John again in the check function

at the at issue dimension. Therefore we lift the name again.

who ∶M ○ ○ ((j → l) → (j → l))

who = η(λP.P)

like ∶M ○ ○ (c→ j → l)

368

CHAPTER 9. ADDITIONAL LINGUISTIC PHENOMENA IN
PARAMETERIZED MONADS

likes = η(λy.λx.like(x, y))

cats ∶M ○ ○ (c)

cats = η(ιx.cat∗(x))

likes ∶M ○ ○ (d→ j → l)

like = η(λyλx.like(x, y))

dogs ∶M ○ ○ d

dogs = η(ιx.dog∗(x))

There are two duality performances between comma and john, comma and

also. We take a duality as an underlying assumption for session types in

[357]. The duality means that, for each sent and receive operator in a session

channel, there is a corresponding received and sent from the opposite side of

the channel. We also assume that the channel or session is closed after the

data is interchanged. Hence, the derivation is demonstrated below where

the data exchanged are john and a proposition John likes cats.

John

M ○ (?j.○) j
?

comma

●M (!j.○) (?like j c.○)j
M ○ ○ j ●M ○ (?like j c.○) (j)

!

who

M ○ ○ ((j → l) → (j → l))

likes

M ○ ○ (c→ j → l)
cats

M ○ ○ c
M ○ ○ (j → l)

→ E

M ○ ○ (j → l)
→ E

M ○ ○ (j ⊕ like j c) ●M ○ ○ l
?

also

M ○ (!like j c.○) (d→ j → l) → d→ j → l

likes

M ○ ○ (d→ j → l)
M ○ (!like j c.○) (d→ j → l)

→ E
dogs

M ○ ○ d
M ○ (!like j c.○) (j → l)

→ E
●

M ○ ○ (j ⊕ like j c)
M ○ ○ (like j c ∧ ((j → l) j)) ≡M ○ ○ (like j c ∧ l) ≡M ○ ○ (like j c ∧ like j d)

!

Table 9.3: Parsed conventional implicature sentence in session types.

●, in Potts' sense, is the separation between two dimensions. The left of

the ● is an at-issue dimension while the right is the CI dimension. In other

369

9.4. DISCUSSION

words, the left is the client and the right is the server. The interaction of

John and comma is the parameterised monads composition, whereas the

composition between comma and who likes cats is the normal composition.

a⊕ b is an object which is both a and b.

The detailed implementation of session types in parameterized monads is

available in [356]. The other properties of session types, such as duality, re-

cursion, have not been explored in linguistics. There are still limitations on

this approach such as exception-handling or error-handling, as the interac-

tions between dimensions are not yet properly handled.

9.4 Discussion

This chapter has used parameterized monads to parse the de�nite descrip-

tions, demonstrative, and conventional implicature phenomena. The parsing

of the demonstrative phenomenon shows an expressive power and dynamic

semantic requirements for a theoretical framework in which the parame-

terized IO monads have. The rich expressive power is required to express

Wolter's hypothesis [57]. Her hypothesis means that the demonstrative di�er

from the de�nite description in the sense that the former is the contextual

restriction phenomenon. Finally, the conventional implicature phenomenon

shows an application of parameterized monads through session types.

In addition, Grove [16] shows how to interpret presuppositions in graded

370

CHAPTER 9. ADDITIONAL LINGUISTIC PHENOMENA IN
PARAMETERIZED MONADS

monads. If we also take Roberts' [163] viewpoint of demonstratives as

the de�nite description and presuppositions, then synthesising [163, 16]

and section 9.1 also provides another approach to parse demonstratives in

IO monads. Finally, if a state is being viewed as a situation in situation

semantics as in [47], this framework is similar to the situation semantics

approach to the phenomenon in [292].

The research of [358] is related to us and it shows how to interpret the

phenomenon in type theories with a dialog system from [118]. However, we

do not have the interpretation of a dialog system in monads yet. Instead,

the advantage of our approach is an ability to have a clear expression of

how contexts change during an utterance. Finally, Nowak [58] also has a

similar perspective to ours. However, we extend his research by providing

a framework to express his idea. Since we use the typing to express the

similarity, the typing formula x ∶ F expressed a familiar process of �nding

object F rather than stating it plainly as F(x).

[359] also provided a database approach to the phenomenon. Our approach

is di�erent from theirs in the sense that our representation is more dynamic

while their approach is more static-oriented. We are focusing on the

changing of the situations during the use of the demonstrative. We can use

their study of linguistic features of the demonstrative, such as formality,

gender, and number to enhance our framework by predicting a speci�c

371

9.4. DISCUSSION

transition of the state (or situation). Furthermore, the syntax of the complex

demonstrative, such as that book, could change according to the language

that is being used. For example, Wilkins records 25 situations in which the

demonstrative changes [352]. The usage of the demonstratives, hence, is to

restrict the state/information for the interpreter belong to the referential

functionality.

Furthermore, we improve the interpretation of the conventional implicature

by using writer monads in [20] as session types in parameterized monads.

The advantage of this move lies in the ability to exchange data between

two separated dimensions, which �ts with the empirical observation of

the phenomenon in linguistics. Observation shows that the data is indeed

exchanged between the CI and at-issue dimensions of the phenomenon [355].

The data, for example, are common linguistic phenomena such as pronouns,

presuppositions, anaphoric expressions, etc. This cannot be handled by the

writer monad approach in [20]. The writer monad separates dimensions but

does not allow exchanging data.

A related study for the interpretation of the conventional implicature is

by Marsik [10, p. 134-137]. He used the e�ects and handlers framework to

parse the phenomenon. However, he was not concerned about information-

exchange in his framework.

372

CHAPTER 9. ADDITIONAL LINGUISTIC PHENOMENA IN
PARAMETERIZED MONADS

Finally, substantiating the study of the linguistic structures of states in Chap-

ter 6 with the interpretation of demonstratives in section 9.2 can brings new

perspectives on other topics in demonstratives such as multi-occurrences or

plural demonstratives. The interaction of properties of sessions types, such

as duality, recursion, and exception handling with linguistic exchanged data

phenomena in the conventional implicature phenomenon are also prominent

research directions. Alternatively, it is good to see how the research of infor-

mation �ows, a well known application of session types in computing, �ourish

in linguistics.

373

Chapter 10

Conclusion

The theoretical background of this dissertation is category theory by

[200, 30, 31, 29] with recent developments in monads by [33, 8] and

parameterized monads by [23, 34, 35]. Hence, this dissertation applied the

theory in linguistics as a new �eld of study to parse and analyze linguistic

phenomena under the intersection between semantics and pragmatics such

as the donkey anaphora, the conventional implicatures, the demonstra-

tives, and the imperatives phenomena. Notably, this dissertation regards

the parameterized monads as a dynamic approach in formal semantics

that re-interprets the cDRT framework by [24]. Thus, the summary of the

research is given below with the limitation and future research in section 10.1

It is well known that λ-calculus is not an adequate linguistic semantic

framework. Hence, for its semantic interpretations, traditional research in

formal semantics usually combines the calculus with other theories, such as

model theory with possible world semantics by [180]. An example of this

framework is the intentional semantics by [4]. However, some questions

remain, which are neglected by formal semanticists, in the background

375

theories. For example, set theory, which model theory is based on, has been

recently criticised for its linguistic applications by [68, 28, 69].

In this dissertation, the author proposes category theory as an alternative

for the traditional theories for parsed natural languages 1 based on parsing

as a deduction hypothesis stating in chapter 2. In a similar manner, [30]

proposed category theory as an alternative to set theory in philosophy.

Previous research, such as [182, 29, 30], show that it has a natural and

compatible treatment with λ-calculus through the Curry�Howard�Lambek

correspondence.

Since there is a duality between category and type theories; category

theory has a potential to provide a framework to modularise a variety of

linguistic semantic models in λ-calculus into a single framework. In the

author's opinion, the strength of type theories is that they provide general

frameworks, while category theories provide a more phenomena-oriented

approach to linguistics.

[11, 17, 16, 12, 15, 21] are regarded as the main stepping stones leading

to this dissertation. In particular, the parameterised monads are oriented

towards Hoare's logic, and can interpret the composable continuation by

1This idea has also circulated in literature since Lambek. However, ours is more sub-
stantive and based on recent critics of the use of the set theories as a foundation for
linguistic theories

376

CHAPTER 10. CONCLUSION

[7] in monads based on previous research by [9, 53]. Hence, parameterised

monads provide an alternative framework in comparison with the compos-

able continuation framework by [6, 75, 12].2

By studying the donkey anaphora, we showed that parameterized monads

can handle sentential dependency. Thus, this framework has expressive

power equal to related frameworks such as typed logical grammar by [26],

dynamic predicate logic by [27], and typed predicate logic by [28].3 This

framework also supports multi-level sentencing analysis, and proposes the

swapping technique in Section 7.4.2 to handle the scope of an existence

variable. This technique is based on the BHK interpretation; hence it

proposes an analogy between scope-taking in linguistics and proof-search in

logics.

The framework in this dissertation is capable of interpreting the cDRT

framework (Sections 7.1 and 7.2). Hence, it provides a compositional ap-

proach to dynamic semantics with a strong mathematical foundation. This

foundation has not been studied in the cDRT, and it uses Hoare-style logic

2 The generic notion of continuation has been introduced to linguistics in [220, 149, 166],
and its relation with monads is discussed in [360]. In categorical grammar, the equivalent
notion of parameterized monads is the Lambek�Gri�n calculus as discussed in chapter 11
of [12].

3Other formalisms such as type logical grammar in [113] and [6, p. 150] have not been
studied by the author. A brief view is that they provide better formalization of context as
highlighted in [141, 82]. The presupposition phenomenon is a special case of the context
and formulae relations.

377

rather than Dijkstra's weakest-precondition calculus4. Furthermore, it uses

session types to model the interaction between the at-issue and conventional

implicature dimensions in the conventional implicature phenomenon in

Section 9.3. Previous versions of the writer monad framework [20, 21] could

not handle this property. Finally, it also follows and provides an alternative

dynamic semantics framework to interpret the demonstratives (Sections 9.1

and 9.2) in parallel with previous research by [163, 292].

This dissertation also shed light on the logical study of the imperative

phenomenon. This analysis is based on previous studies by Pérez-Ramírez

and Fox [49], and its contribution in interpreting their framework in

parameterized monads with an additional handle of disjunction. Translating

their research into parameterized monads provides a dynamic approach to

the phenomenon. The phenomenon has also been interpreted using DRT

[55], but, by interpreting the cDRT in parameterized monads, we have

provided a compositional approach to their research. That is essential since,

according to [76], the two main theoretical frameworks used to analyse

the phenomenon in linguistics are the dynamic approach by [55] and the

modality approach by [77].

Related research includes [16, 10, 46, 17, 6, 15, 21, 19]. [16]5 studied the

4See chapter 7
5Her research is conducted in parallel with this one and the author was not aware of it

when conducting this research.

378

CHAPTER 10. CONCLUSION

graded monads and its application in the presupposition phenomenon. The

graded monads and parameterized monads are equal [53]. However, the

strength of parameterized monads is their capability of interpreting the

continuation while this is the weakness found in the grade monads. [6] uses

continuation to parse phenomena in linguistic side e�ects and he criticises

other frameworks such as monads as being less expressive than his approach.

However, a recent study by [13] rejects this claim and declares that it is still

a conjecture. [10] used the algebraic e�ects and handler by [64]. This is

another framework used in the study of e�ects in computing. Besides that,

[28] takes the logical approach. In the author's opinion, this approach has

as much expressive power as the contextual modal type theory by [123].

Finally, another related research is the dynamic Montague grammar(DMG)

by [275]. This framework is more generalized than DMG since DMG is based

on Montague's grammar. The interpretation of DMG in parameterised

monads is quite straight forward as this framework is open for grammatical

implementation. A closer discussion is given by [12, p. 25�29] which com-

pares DMG with the continuation monad. The research by [122] and [304]

also relates to ours. However, our research is distinct from theirs in both the

linguistic phenomena studied and in the choice of the theoretical background.

379

10.1. FUTURE WORK AND LIMITATIONS OF THE RESEARCH

10.1 Future work and limitations of the re-

search

The parameterized monads follow the dynamic approach to interpret

natural languages; hence, they bring both the strengths and weaknesses of

dynamic semantics. According to [109], the dynamic semantics focuses on

the unstructural properties of natural language. Thus, it lacks the rigorous

analysis of the static semantics, such as type theories or predicate logic.

In the currently accepted research, an analysis of the donkey anaphora

phenomenon by [292], shows that static analysis is preferred over a dynamic

one. However, in the author's opinion, other phenomena, such as demon-

stratives, are better understood through dynamic semantics.

Despite its compositional rule inside a monad, monads in general show a

limit of combining di�erent monads together. The general approach to solve

that problem is the monad transformers by [202], which is used and explored

as the background theory for the research in [17]. A further pragmatic study

is needed to see how monad transformers and parameterized monads are

better at parsing natural languages.

In the parameterized monads, or categories theory, the author's studies

suggest that it is feasible to employ category theories as an alternative to

type theories or model theory to interpret natural languages within the

380

CHAPTER 10. CONCLUSION

studies of linguistics. Prominent open problems are listed in the discussion

section of chapter 4.

A potential next step is to study the context-changing during the senten-

tial analysis phenomena such as state-switch reference [276] or dynamic

pragmatics [323]. In addition, the interaction of imperative and indicative

sentences have not yet been studied. Another further research is to

investigate the domain restriction phenomena in [303] in the framework,

such as the generalized quanti�ers in the Chapter 1 of [159]. Others are

interpreting the states and related phenomena as collections in [36] rather

than a simple treatment of the context as a list of individuals, as was done

in this dissertation. Finally, the study and characterization of the ambiguity

as an essential and spurious one in compiling techniques in computing has

not been explored in linguistics.

Future work should extend the linguistic phenomena studied in this research

such as

� investigating the interaction of this framework with maxims in Grice's

sense in [361], or Cooper's storage in [304].

� detailed analysis of conditional reasoning.

� context shifting by [73].

� multiple occurrences of demonstratives by [362].

381

10.1. FUTURE WORK AND LIMITATIONS OF THE RESEARCH

� dynamic pragmatics by [323].

� linguistic phenomena that change the context during sentence analysis,

such as switch reference, by [276, 277].

� representation of Nunberg's demonstratives by [363] in [292].

Alternatively, additional potential research directions include

� natural language parsing and its applications in machine translations.

� natural language parsing for speech acts and daily conversations with

potential applications in computer assisted writer applications.

� a unifying framework to interpret anaphora resolution. It would open

up research directions for indexical and linguistic contextual analysis.

� promote categorical semantics to linguistics.

382

Bibliography

[1] M. Dummett. The logical basis of metaphysics. Harvard university

press, 1991.

[2] N. Francez. Proof-Theoretic Semantics. College Publications, 2015.

[3] A. Church. A formulation of the simple theory of types. The journal

of symbolic logic, 5(2):56�68, 1940.

[4] R. Montague. The proper treatment of quanti�cation in ordinary en-

glish. In J. Kulas, J.H Fetzer, and T.L Rankin, editors, Philosophy,

Language, and Arti�cial Intelligence, volume 2 of Studies in Cognitive

Systems. Cambridge University Press, 1973.

[5] P. Portner and B. Partee, editors. Formal Semantics: The Essential

Readings. Wiley-Blackwell, Sep 2002.

[6] C.C. Shan. Linguistics side e�ects. PhD thesis, Harvard university,

2005.

[7] O. Danvy and A. Filinski. Abstracting control. In ACM Conference on

LISP and Functional Programming, pages 151�160. ACM, Jun 1990.

[8] E. Moggi. Notions of computation and monads. Information and Com-

putation, 93(1):55�92, 1991.

[9] P. Wadler. Monads and composable continuations. In LISP and sym-

bolic computation, volume 7, pages 39�56. Kluwer academic publishers,

383

BIBLIOGRAPHY

1993.

[10] J. Mar�sík. E�ects and handlers in natural language. PhD thesis, de

l'Université de Lorraine, 2016.

[11] C.C. Shan. Monads for natural language semantics. In Kristina Strieg-

nitz, editor, European Summer School in Logic, Language and Infor-

mation Student Session, pages 285�298, 2001.

[12] C. Barker and C.C. Shan. Continuations and Natural Language. The

Oxford University Press, 2014.

[13] Y. Forster, O. Kammar, S. Lindley, and M. Pretnar. On the expres-

sive power of user-de�ned e�ects: e�ect handlers, monadic re�ection,

delimited control. Functional Programming, 29, 2019.

[14] I. Heim and A. Kratzer. Semantics in Generative Grammar. Blackwell,

1998.

[15] C. Unger. Dynamic semantics as monadic computation. In 8th In-

ternational Workshop on Logic and Engineering of Natural Language

Semantics, volume 9980, 2012. (LENLS 8).

[16] J. Grove. Scope-taking and presupposition satisfaction. PhD thesis,

The University of Chicago, 2019.

[17] S. Charlow. On the Semantics of Exceptional Scope. PhD thesis, the

department of linguistics, NewYork university, 2014.

[18] G. Jäger. Anaphora and type logical grammar. Springer, 2005.

[19] S. Martin and C. Pollard. A dynamic categorial grammar. International

Conference on Formal Grammar, pages 138�154, Aug 2014.

384

BIBLIOGRAPHY

[20] G. Giorgolo and A. Asudeh. Monad for conventional implicatures. In

Sinn und Bedeutung, volume 16, 2012.

[21] A. Asudeh and G. Giorgolo. Enriched Meanings: Natural Language

Semantics with Category Theory. Oxford University Press, Sep 2020.

[22] M. White, S. Charlow, J. Needle, and D. Bumford. Parsing with dy-

namic continuized CCG. In Proceedings of TAG 13, Association for

Computational Linguistics, pages 71�83, �2017.

[23] R. Atkey. Parameterised notions of computation. Functional Program-

ming, 19(3-4):335�376, Jul 2009.

[24] R. Muskens. Combining montague semantics and discourse represen-

tation. Linguistics and philosophy, 19(2):143�186, 1996.

[25] J. van Eijck and C. Unger. Computational Semantics with Functional

Programming. Cambridge University press, Sep 2010.

[26] A. Ranta. Gf: A multilingual grammar formalism. Language and

Linguistics Compass, 3, 2009.

[27] J. Groenendijk and M. Stokhof. Dynamic predicate logic. Linguistics

and Philosophy, 14(1):39�100, Feb 1991.

[28] C. Fox. Curry-typed semantics in typed predicate logic. In The Logica

Yearbook 2013, pages 35�48. College Publications, 2014.

[29] B.C. Pierce. Basic Category Theory for Computer Scientists (Founda-

tions of Computing). The MIT Press, 1991.

[30] S. Abramsky and N. Tzevelekos. Introduction to categories and cate-

gorical logic. In B. Coecke, editor, New structures for physics, pages

385

BIBLIOGRAPHY

3�94. Springer, Berlin, Heidelberg, 2010.

[31] D.I. Spivak. Category Theory for the Sciences. The MIT Press, Nov

2014.

[32] D. Kartsaklis, M. Sadrzadeh, S. Pulman, and B. Coecke. Reasoning

about meaning in natural language with compact closed categories and

Frobenius algebras. In J. Chubb, A. Eskandarian, and V. Harizanov,

editors, Logic and Algebraic Structures in Quantum Computing and

Information. Cambridge University Press, 2013.

[33] N. Benton, J. Hughes, and E. Moggi. Monads and e�ects. In

G. Barthe, P. Dybjer, L. Pinto, and J. Saraiva, editors, Applied Se-

mantics. APPSEM 2000. Lecture Notes in Computer Science, vol 2395.

Springer, Berlin, Heidelberg, 2002.

[34] R. Atkey. Substructural Simple Type Theories for Separation and In-

place Update. PhD thesis, Laboratory for Foundations of Computer

Science, School of Informatics, University of Edinburgh, 2006.

[35] R. Atkey. Algebras for parameterised monads. In A. Kurz, M. Lenisa,

and A. Tarlecki, editors, Algebra and Coalgebra in Computer Science.

CALCO 2009, volume 5728 of Lecture Notes in Computer Science,

pages 3�17, 2009.

[36] P.M. Martins. Context-Oriented Functional Programming. PhD thesis,

Imperial College London, Department of Computing, 2014.

[37] C. McBride and R. Paterson. Applicative programming with e�ects.

Journal of Functional Programming, 18(1):1�13, 2008.

386

BIBLIOGRAPHY

[38] A.D. Gordon. Functional Programming Input/Output (Distinguished

Dissertations in Computer Science). Cambridge University Press, 1995.

[39] S. Abramsky, S. Gay, and R. Nagarajan. Speci�cation structures and

propositions-as-types for concurrency. In Logics for Concurrency, pages

5�40. Springer, Berlin, Heidelberg, 1996.

[40] M. Materzok and D. Biernacki. Subtyping delimited continuations.

In ICFP '11: Proceedings of the 16th ACM SIGPLAN international

conference on Functional programming, page 81�93, Sep 2011.

[41] P. Elbourne. Weather predicates, binding, and radical contextualism.

Mind & Language, 2019.

[42] P. Elbourne. Situations and Individuals. Current Studies in Linguistics.

MIT press, 2005.

[43] A. Brasoveanu and J. Dotla£il. Donkey anaphora: Farmers and bishops.

In L. Matthewson, C. Meier, H. Rullmann, and T.E. Zimmerman, edi-

tors,Wiley's Linguistics Companion (Companion to Semantics). Wiley,

2018.

[44] P. Dekker. Dynamic Semantics. Studies in Linguistics and Philosophy.

Springer, 2012.

[45] C. Barker and C.C. Shan. Donkey anaphora is in-scope binding. Se-

mantics & Pragmatics, 1:1�46, 2008.

[46] E. Lebedeva. Expression de la dynamique du discours a laide de con-

tinuations. PhD thesis, l'Université de Lorraine, 2012.

[47] J. Barwise and J. Perry. Situations and Attitudes. MIT Press, 1983.

387

BIBLIOGRAPHY

[48] J. Barwise. The situation in logic. Number 17 in CSLI. Stanford

University, 1989.

[49] M. Pérez-Ramírez and C. Fox. An axiomatisation of imperatives using

hoare logic. In H. Bunt, I.D. Sluis, and R. Morante, editors, Fifth

International Workshop on Computational Semantics (IWCS-5), pages

303�320, 2003.

[50] W. Swierstra. A Functional Speci�cation of E�ects. PhD thesis, Not-

tingham University, 2009.

[51] C.A.R Hoare. An axiomatic basis for computer programming. Com-

munications of the ACM, 12(12):576�583, 1969.

[52] W. Swierstra. A Hoare logic for the state monad. In TPHOLs 2009:

Theorem Proving in Higher Order Logics, International Conference on

Theorem Proving in Higher Order Logics, pages 440�451, 2009.

[53] D. Orchard, P. Wadler, and H. Eades. Unifying graded and parame-

terised monads. MSFP@ETAPS, pages 18�38, 2020.

[54] J. van Eijck and F.D. Vries. Dynamic interpretation and Hoare deduc-

tion. Journal of Logic, Language, and Information, 1(1):1�44, 1992.

[55] A. Lascarides and N. Asher. Imperatives in dialog. In P. Kühn-

lein, H. Riesser, and H. Zeevat, editors, Perspectives on Dialogue in

the New Millenium. John Benjamins Publishing Company, Amster-

dam/Philadelphia, 2003.

[56] H. Kamp and U. Reyle. From Discourse to Logic: Introduction to Mod-

eltheoretic Semantics of Natural Language, Formal Logic, and Discoure

388

BIBLIOGRAPHY

Representation Theory. Springer-Science+Business Media,B.V., 1993.

[57] L.K. Wolter. That's That: the Semantics and Pragmatics of Demon-

stratives Noun Phrases. PhD thesis, The University of California, Santa

Cruz, 2006.

[58] E.P. Nowak. Two dogmas about demonstratives. PhD thesis, University

of California, Berkeley, 2016.

[59] I. Heim. File change semantics and the familiarity theory of de�nite-

ness. In P. Portner and B. Partee, editors, Formal Semantics: The

Essential Readings. Blackwell Publishers Ltd, 2002.

[60] A. Ranta. Grammatical framework: A type-theoretical grammar for-

malism. Functional Programming, 14(2):145�189, 2004.

[61] S. Liang, P. Hudak, and M.P. Jones. Monad transformers and modular

interpreters. In POPL'95: 22nd ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, San Francisco, CA, Jan 1995.

[62] G. Frege. Über sinn und bedeutung. In Zeitschrift für Philosophie und

philosophische Kritik, pages 25�50. NF 100, 1892.

[63] C.C. Shan. A variable-free dynamic semantics. In Robert van Rooy and

Martin Stokhof, editors, Proceedings of the 13th Amsterdam colloquium,

pages 204�209, 2001.

[64] O. Kiselyov, A. Sabry, and C. Swords. Extensible e�ects: an alternative

to monad transformers. Haskell '13: Proceedings of the 2013 ACM

SIGPLAN symposium on Haskell, pages 59�70, Sep 2013.

[65] A. Brasoveanu. Structured Nominal and Modal Reference. PhD thesis,

389

BIBLIOGRAPHY

the Graduate School-New Brunswick

Rutgers, The State University of New Jersey, 2007.

[66] L. Joachim. The mathematics of sentence structure. American Math-

ematical Monthly, 65:154�170, 1958.

[67] D.J. Dougherty. Closed categories and categorial grammar. Notre

Dame Journal of Formal Logic, 34(1), 1993.

[68] C. Fox. The meaning of formal semantics. In P Stalmaszczyk, editor,

Semantics and Beyond Philosophical and Linguistic Inquiries, pages

85� 108. De Gruyter, 2014.

[69] R. Moot and C. Retoré. Natural language semantics and computability.

Journal of Logic, Language and Information, 28(2):287�307, 2019.

[70] G. Giorgolo and C. Unger. Coreference without discourse referents

a non-representational drt-like discourse semantics. In Erik Tjong

Kim Sang Barbara Plank and Tim Van de Cruys, editors, 19th Meeting

of Computational Linguistics in the Netherlands, 2009.

[71] P. Elbourne. De�nite Descriptions. Oxford Studies in Semantics and

Pragmatics. Oxford University Press, 2013.

[72] J. Stanley and Z.G. Szabó. On quanti�er domain restriction. Mind &

Language, 15(2-3):219�261, 2000.

[73] F. Recanati. Indexicality and context-shift. Workshop on Indexicals,

Speech Acts and Logophors, Nov 2004.

[74] A. Filinski. Representing layered monads. In 26th ACM SIGPLAN-

SIGACT symposium on Principles of programming languages (POPL

390

BIBLIOGRAPHY

'99). ACM, pages 175�188. ACM, Jan 1999.

[75] C.C. Shan. Linguistic side e�ects. In C. Barker and P. Jacobson, edi-

tors, Direct compositionality, pages 132�163. Oxford University Press,

2007.

[76] M. Jary and M. Kissine. Imperatives. Key topics in Semantics and

Pragmatics. Cambridge University Press, 2014.

[77] M. Kaufmann. Interpreting Imperatives. Studies in Linguistics and

Philosophy. Springer, 2011.

[78] C. Potts. The Logic of Conventional Implicatures. Oxford, Oxford

university press, 2005.

[79] C. Barker, R. Bernardi, and C.C. Shan. Principles of interdimensional

meaning interaction. Proceedings of SALT 20, pages 109�127, 2010.

[80] S. Anderbois, A. Brasoveanu, and R. Henderson. At-issue propos-

als and appositive impositions in discourse. Journal of Semantics,

32(1):93�138, 2015.

[81] P. Wadler. Propositions as types. Communications of the ACM,

58(12):75�84, Dec 2015.

[82] K. Mineshima. A presuppositional analysis of de�nite descriptions in

proof theory. In Annual Conference of the Japanese Society for Arti�-

cial Intelligence, pages 214�227. Springer, Berlin, Heidelber, Jun 2007.

[83] J. Grudzi�ska and M. Zawadowski. Inverse linking, possessive weak

de�nites and haddock descriptions: A uni�ed dependent type account.

Journal of Logic, Language and Information, 28:239�260, 2019.

391

BIBLIOGRAPHY

[84] R. Moot and C. Retoré. The Logic of Categorial Grammars: A De-

ductive Account of Natural Language Syntax and Semantics. Springer,

2012.

[85] D. Grune and C.J.H. Jacobs. Parsing Technique: A Practical Guide.

Springer, 2008.

[86] A. Ranta. Type Theoretical Grammar. Oxford University Press, Ox-

ford, 1994.

[87] D.R. Dowty, L. Karttunen, and A.M. Zwicky. Natural Language Pars-

ing: Psychological, Computational, and Theoretical Perspectives. Cam-

bridge University Press, 2005.

[88] B.C. Pierce. Types and Programming Languages. The MIT Press, 2002.

[89] E. Moggi. An abstract view of programming languages, 1989.

[90] R. Bernardi. Scope ambiguities through the mirror. In M.B.H. Ever-

aert, T. Lentz, H.N.M.D. Mulder, ∅. Nilsen, and A. Zondervan, editors,

The Linguistics Enterprise: From knowledge of language to knowledge

in linguistics, pages 11�54. John Benjamins publishing company, 2010.

[91] J. Barnes, editor. Complete Works of Aristotle: Volume 1 The Revised

Oxford Translation. Bollingen. The Princeton University Press, 1984.

[92] B. Russell. Principles of Mathematics. New York: Norton, 1903.

[93] P. Martin-Löf. On the meanings of the logical constants and the jus-

ti�cations of the logical laws. Nordic Journal of Philosophical Logic,

1(1):11�60, 1996.

[94] S. Feferman. Typical ambiguity: trying to have your cake and eat it

392

BIBLIOGRAPHY

too. In One hundred years of Russell's paradox, pages 135�151. De

Gruyter, 2004.

[95] M. Ganesalingam. The Language of Mathematics: A Linguistic and

Philosophical Investigation. Springer-Verlag Berlin Heidelberg, 2013.

[96] C. Barker. Continuations: in-situ quantifcation without storage or type

shifting. In R. Hastings, B. Jackson, and Z. Zvolensky, editors, SALT

Semantics and Linguistic Theory, volume XI. Cornell university press,

2001.

[97] K. Kearns. Semantics. Palgrave Macmillan, 2011.

[98] N. Chomsky. Aspects of the theory of syntax. Cambridge, Mas-

sachusetts: MIT Press, 1965.

[99] P. Martin-Löf. Intuitionistic Type Theory. Sambin, Giovanni, Napoli:

Bibliopolis, 1984.

[100] B. Partee, editor. Compositionality in Formal Semantics. Blackwell

Publishing, 2004.

[101] P.D. Groote. Towards a montagovian account of dynamics. In SALT

Semantics and Linguistic Theory, volume XVI, pages 1�16. LSA Lin-

guistic Society of America, Jan 2006.

[102] C. Fox and S. Lappin. Foundations of Intensional Semantics. John

Wiley & Sons, 2008.

[103] C. Fox. The Ontology of Language Properties, Individuals and Dis-

course. Center for the Study of Language and Information Publica-

tions., 2000.

393

BIBLIOGRAPHY

[104] H. Barendregt. Lambda Calculi with Types, volume II of Handbook of

Logic in Computer Science. Oxford University Press, 1993.

[105] R. Carnap. Meaning and Necessity: a Study in Semantics and Modal

Logic. The university of Chicago Press, 1947.

[106] S. Soames. Philosophy of Language. Princeton university press, 2010.

[107] M.J. Cresswell. Semantical Essays: Possible Worlds and Their Rivals.

SPRINGER-SCIENCE+BUSINESS MEDIA, B.V., 1988.

[108] J. Barwise and R. Cooper. Generalized quanti�ers and natural lan-

guage. Linguistics and Philosophy, 4(2):159�219, 1981.

[109] J. van Benthem. Logical Dynamics of Information and Interaction.

Cambridge University Press, 2010.

[110] M. Aloni, A. Buler, and P. Dekker, editors. Questions in Dynamic Se-

mantics. Current research in Semantics Pragmatics Interface. Elsevier,

2007.

[111] I. Heim. The Semantics of De�nite and Inde�nite Noun Phrases. PhD

thesis, University of Massachusetts, 1982.

[112] S. Chatzikyriakidis and Z. Luo, editors. Modern Perspectives in Type

Theoretical Semantics. Studies in Linguistics and Philosophy. Springer,

2017.

[113] G.V. Morill. Type logical grammar, categorial logic of signs. Kluwer

Academic Publishers, 1994.

[114] A. Ranta. Syntactic calculus with dependent types. Journal of Logic,

Language, and Information, 7(4):413�431, Oct 1998.

394

BIBLIOGRAPHY

[115] H. Poincaré. Mathematics & Science Last Essays Paperback � 1913.

Dover Publications, 2010.

[116] J. van Benthem and A. ter Meulen, editors. Handbook of Logic &

Language. North Holland, 1997.

[117] M.H.V.D. Berg. Some aspects of the internal structure of discourse.

The dynamics of nominal anaphora. PhD thesis, Universiteit van Am-

sterdam, 1996.

[118] J. Ginzburg. The interactive Stance: meaning for conversation. Oxford,

2012.

[119] W. Hodges. A shorter model theory. Cambridge University Press, 1997.

[120] H. Barendregt. The Lambda Calculus: Its Syntax and Semantics (Stud-

ies in Logic and the Foundations of Mathematics 103). 2nd edition,

Amsterdam: North-Holland, 1985.

[121] U. Norell. Towards a practical programming language based on depen-

dent type theory. PhD thesis, Chalmers University of Technology, 2007.

[122] D. Bekki. Monad and meta-lambda calculus. In R. Hastings, B. Jack-

son, and Z. Zvolensky, editors, SALT XI Semantics and Linguistic

Theory, volume LNAI 5447 of New Frontiers in Arti�cial Intelligence,

pages 193�208, 2009. JSAI 2008, LENLS5.

[123] A. Nanevski, F. Pfenning, and B. Pientka. Contextual modal type the-

ory. ACM Transactions on Computational Logic (TOCL), 9(3), 2008.

[124] T. Altenkirch and B. Reus. Monadic presentations of lambda terms

using generalized inductive types. In International Workshop on

395

BIBLIOGRAPHY

Computer Science Logic, pages 453�468. Springer, Berlin, Heidelberg,

September 1999.

[125] R. Muskens. Language, lambdas, and logic. In Resource-sensitivity,

binding and anaphora, pages 23�54. Springer, Dordrecht, 2003.

[126] A. Chlipala. Certi�ed programming with dependent types. MIT press,

2008.

[127] J.A. Robinson. A machine-oriented logic based on the resolution prin-

ciple. J. ACM, 12(1):23�41, January 1965.

[128] R. Milner. A theory of type polymorphism in programming. Computer

and System Sciences, 17(3):348�374, 1978.

[129] R. Constable et al. Implementing Mathematics with The Nuprl Proof

Development System. Englewood Cli�s, NJ: Prentice-Hall, 1986.

[130] P. Dybjer. Internal type theory. In Types for Proofs and Programs,

Lecture Notes in Computer Science, volume 1158, pages 120�134, 1996.

[131] P. Aczel and N. Gambino. Collection principles in dependent type

theory. In TYPES '00 Selected papers from the International Workshop

on Types for Proofs and Programs, pages 1�23, 2000.

[132] Z. Luo. Computation and reasoning: A type theory for computer sci-

ence. Clarendon press, Oxford, 1994.

[133] A. Nanevski, G. Morrisett, and L. Birkedal. Hoare type theory, poly-

morphism and separation. Functional Programming, 18(5-6):865�911,

Sep 2008.

[134] The Univalent Foundations Program. Homotopy Type Theory: Uni-

396

BIBLIOGRAPHY

valent Foundations of Mathematics. https://homotopytypetheory.

org/book, Institute for Advanced Study, 2013.

[135] R.T. Oehrle. Multi-modal type-logical grammar. In R. Dorsley and

K. Börjars, editors, Non-transformation syntax: formal and explicit

models of grammar. Wiley, Blackwell, 2011.

[136] R. Cooper. Type-theoretical approaches to lexical semantics. Journal

of Language Modelling, 5(2), 2017.

[137] R. Cooper. Records and record types in semantic theory. Journal of

Logic and Computation, 15(2):99�112, Apr 2005.

[138] D. Bekki. Representing anaphora with dependent types. In LACL 2014:

Logical Aspects of Computational Linguistics, International Conference

on Logical Aspects of Computational Linguistics, pages 14�29, 2014.

[139] C. Fox and R. Turner. In defense of axiomatic semantics. In P Stal-

maszczyk, editor, Philosophical and Formal Approaches to Linguistic

Analysis. Ontos Verlag, 2012.

[140] Y. Bar-Hillel. Indexical expressions. Mind, LXIII:359�379, Jul 1954.

[141] P. Boldini. Formalizing context in intuitionistic type theory. Funda-

menta Informaticae, 42(2):105�127, May 2000.

[142] J. Carlström. Interpreting descriptions in intensional type theory. The

Journal of Symbolic Logic, 70(2), Jun 2005.

[143] K. Mineshima. A presuppositional analysis of de�nite descriptions in

proof theory. In New Frontiers in Arti�cial Intelligence, JSAI 2007

Conference andWorkshops, Miyazaki, Japan, pages 18�22, Jun 2007.

397

https://homotopytypetheory.org/book
https://homotopytypetheory.org/book

BIBLIOGRAPHY

[144] Z. Luo. Contextual analysis of word meanings in type-theoretical se-

mantics. In Logical Aspects of Computational Linguistics (LACL'2011),

LNAI 6736, 2011.

[145] P. Portner. The semantics of imperatives within a theory of clause

types. In R Young, editor, SALT XIV, pages 235�252, Ithaca, NY:

Cornell University, 2004.

[146] Z. Luo. Coercive subtyping. Logic and computation, 9(1), 1999.

[147] M.P. Jones, P. Hudak, and S. Shaumyan. Using types to parse natural

language. Proceedings of the 1995 Glasgow Workshop on Functional

Programming, pages 1�11, Jul 1995.

[148] G. Morill and O. Valentín. Spurious ambiguity and focalization. Com-

putational Linguistics, 44(2):285�327, 2018.

[149] P.D. Groote. Type raising, continuations, and classical logic. Thirteenth

Amsterdam Colloquium, pages 97�101, 2001.

[150] D. Westerståhl. Compositionality and ambiguity. Philosophical Com-

munications, web series no. 46, 2007.

[151] J. McCarthy. Notes on formalizing context. In IJCAI'93 Proceedings

of the 13th international joint conference on Arti�cal intelligence, vol-

ume 1, pages 555�560, 1995.

[152] J. Hinkita. the Principles of Mathematics Revisited. Cambridge Uni-

versity Press, 1996.

[153] J. Väänänen. Dependence Logic: a New Approach to Independence

Friendly Logic. London Mathematical Society Student Texts. Cam-

398

BIBLIOGRAPHY

bridge University Press, 2007.

[154] P.R Sutton. Vagueness, communication, and semantic information.

PhD thesis, King's College London, 2013.

[155] A. Abel and J.P. Bernardy. A uni�ed view of modalities in type sys-

tems. Proc. ACM Program. Lang, ICFP, 2020.

[156] M.V. Aldridge. The elements of mathematical semantics. De Gruyter,

1992.

[157] B. Lawvere. Adjointness in foundations. Dialectica, (23):281�296, 1969.

[158] A. Szabolsci. Quanti�cation. Cambridge University Press, 2010.

[159] S. Lappin and C. Fox. The handbook of contemporary semantic theory.

John Wiley & Sons, 2015.

[160] J. van Benthem. Questions about quanti�ers. Journal of Symbolic

Logic, 49(2), 1984.

[161] J. van Benthem. Polyadic quanti�ers. Linguistics and Philosophy,

12:437�464, 1989.

[162] P. Dekker. A guide to dynamic semantics. 2008.

[163] C. Roberts. Demonstratives as de�nites. In K.Van Deemter and K. Kib-

ble, editors, Information Sharing: Reference and Presupposition in

Language Generation and Interpretation, pages 89�196. CSLI Press,

2002.

[164] S. Qian, P.D. Groote, and M. Amblard. Modal Subordination in Type

Theoretic Dynamic Logic. Linguistic Issues in Language Technology,

14((1)):1�39, 2016.

399

BIBLIOGRAPHY

[165] H. Hendriks. Studied Flexibility: Categories and Types in Syntax and

Semantics. PhD thesis, University of Amsterdam, 1993.

[166] C. Barker. Continuations and the nature of quanti�cation. Natural

Language Semantics, 10(3):211�242, Sep 2002.

[167] A. Oliver and T. Smiley. Plural Logic. Oxford University Press, 2012.

[168] G.R. Berta. From plurals to superplurals: in defence of higher-level

plural logic. PhD thesis, University of Glasgow, 2018.

[169] P. Amaral, C. Roberts, and E.A Smith. Review of the logic of con-

ventional implicatures by Chris Potts. Linguistics and Philosophy,

30(6):707�749, 2007.

[170] T. Xue and Z. Luo. Dot-types and their implementation. In LACL'12,

LNCS 7351, 2012.

[171] H. Bahramian, N. Nematollahi, and A. Sabry. Copredication in ho-

motopy type theory: A homotopical approach to formal semantics of

natural languages. Fourth Workshop on Natural Language and Com-

puter Science, NLCS, 2016.

[172] J. Putejovsky. The Generative Lexicon. MIT Press, 1995.

[173] J. Putejovsky. A survey of dot objects, manuscript. 2005.

[174] P. Dybjer. Category theory and programming language semantics: an

overview. Proceedings of a tutorial and workshop on Category theory

and computer programming, pages 165�181, Nov 1986.

[175] R.A.G. Seely. Locally cartesian closed categories and type theory.

Math. Proc. Camb. Phil. Soc, 95(33), 1984.

400

BIBLIOGRAPHY

[176] M. Hofmann. On the interpretation of type theory in locally cartesian

closed categories. In Proceedings of Computer Science Logic, Lecture

Notes in Computer Science, pages 427�441. Springer, 1994.

[177] P. Fu, K. Kishida, and P. Selinger. Linear dependent type theory

for quantum programming languages: Extended abstract. LICS '20:

Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in

Computer Science, 2020.

[178] M. Vákár. A categorical semantics for linear logical frameworks. FoS-

SaCS 2015: International Conference on Foundations of Software Sci-

ence and Computation Structures, pages 102�116, 2015.

[179] A. Brasoveanu. Donkey pluralities: plural information states versus

non-atomic individuals. Linguistics and Philosophy, 31(2):129�209,

Apr 2008.

[180] S. Kripke. Naming and necessity. Harvard University Press, 1972.

[181] P. Galliani. The dynamics of imperfect information. PhD thesis, Uni-

versity of Amsterdam, 2012.

[182] A. Asperti and G. Longo. Categories, Types, and Structures. MIT

Press, 1991.

[183] J.C. Mitchell and E. Moggi. Kripke-style models for typed lambda

calculus. Annals of Pure and Applied Logic, 51:99�124, 1991.

[184] E. Moggi. Computational lambda calculus and monads, 1988.

[185] R. Bird. Introduction to Functional Programming using Haskell. Pren-

tice Hall, 1998.

401

BIBLIOGRAPHY

[186] P. Walder. Monads for functional programming. In J. Jeuring and

E. Meijer, editors, Advanced Functional Programming, Proceedings of

the Bastad Spring School, Lecture Notes in Computer Science 925.

Springer Verlag, May 1995.

[187] S.P. Jones. Tackling the awkward squad monadic input/output, con-

currency, execptions and foreign-language calls. Lecture Notes for a

tutorial given at Mark-toberdorf Summer School, 2002.

[188] N. Benton. Categorical monads and computer programming. Im-

pact150 - LMS 150 Year Impact Stories. London Mathematical Society,

Nov 2015.

[189] T. Petricek. What we talk about when we talk about monads. The

Art, Science, and Engineering of Programming, 2(3), 2018.

[190] A.A Ivanova, S. Srikant, Y. Sueoka, H.H Kean, R. Dhamala, U.M.

O'reilly, M.U. Bers, and E. Fedorenko. Comprehension of computer

code relies primarily on domain-general executive resources. BioRxiv,

2020.

[191] P. Wadler. The essence of functional programming. In Proceedings of

the 19th ACM Symposium on Principles of Programming Languages.

ACM Press, 1992.

[192] S.P. Jones and P. Wadler. Imperative functional programming. Proceed-

ings of the 20th ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, pages 71�84, Mar 1993.

[193] A.D. Gordon and K. Hammond. Monadic i/o in haskell 1.3. In Pro-

402

BIBLIOGRAPHY

ceedings of the Haskell Workshop, Jun 1995.

[194] G. Giorgolo and A. Asudeh. Monads as a solution for generalized opac-

ity. In EACL 2014 Workshop on Type Theory and Natural Language

Semantics (TTNLS), pages 19�27, Apr 2014.

[195] A. �cibior, Z. Ghahramani, and A.D Gordon. Practical probabilistic

programming with monads. In Proceedings of the 2015 ACM SIGPLAN

Symposium on Haskell, pages 165�176, Aug 2015.

[196] N. Ramsey and A. Pfe�er. Stochastic lambda calculus and monads

of probability distributions. Proceedings of the 29th ACM SIGPLAN-

SIGACT symposium on Principles of programming languages, pages

154�165, Jan 2002.

[197] M. Giry. A categorical approach to probability theory. Categorical

aspects of topology and analysis, Proc. int. Conf., Ottawa 1981, Lect.

Notes Math, 915:68�85, 1982.

[198] R. O'Connor. A monadic, functional implementation of real numbers.

Mathematical Structures in Computer Science, 1(17):129�159, 2007.

[199] D. Ahman and T. Uustalu. Update monads: cointerpreting directed

containers. In Proc. of 19th Int. Conf. on Types for Proofs and Pro-

grams, TYPES, 13:1�23, Jul 2014.

[200] S. Mac Lane. categories for the working mathematician. Springer, 1997.

[201] A. Pitts. Categorical logic. In Handbook of Logic in Computer Science,

volume 5, pages 39�128. Oxford University Press, 2001.

[202] S. Liang, P. Hudak, and M.P. Jones. Monad transformers and modular

403

BIBLIOGRAPHY

interpreters. In POPL'95: 22nd ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, San Francisco, CA, Jan 1995.

[203] D. Kaplan. Demonstratives: an essay on the semantics, logic, meta-

physics and epistemology of demonstratives and other indexicals. In

Summer Institute in the Philosophy of Language, 1977. Los Angeles,

s.n.

[204] G. Link. The logical analysis of plurals and mass terms: a lattice-

theoretical approach. In P. Portner and B. Partee, editors, Formal

Semantics: the Essential Readings. Wiley Press, Jan 2008.

[205] J. Grudzi�ska and M. Zawadowski. Scope ambiguities, monads and

strengths. Journal of Language Modelling, 5(2):179�227, 2017.

[206] G. Giorgolo and A. Asudeh. One semiring to rule them all. Cognitive

Science, 2014.

[207] C.L. Hamblin. Questions in Montague English. Foundations of Lan-

guage, 10(1):41�53, 1973.

[208] M. Rooth. Association with Focus. PhD thesis, University of Mas-

sachusetts, Amherst, 1985.

[209] C.C. Shan and C. Barker. Explaining crossover and superiority as left-

to-right evaluation. Linguistics and Philosophy, 29(1):91�134, 2006.

[210] J.P. Bernardy, S. Chatzikyriakidis, and A. Maskharashvili. A com-

putational treatment of anaphora and its algorithmic implementation.

Logic, Language and Information, 2020.

[211] D. Bekki and M. Masuko. Meta-lambda calculus and linguistic monads.

404

BIBLIOGRAPHY

In E. McCready, K. Yabushita, and K. Yoshimoto, editors, Formal

Approaches to Semantics and PragmaticsJapanese and Beyond, Studies

in Linguistics and Philosophy 95, pages 31�64. Springer, 2014.

[212] D. Bekki and K. Asai. Representing covert movements by delimited

continuations. In K. Nakakoji, Y. Murakami, and E. McCready, editors,

New Frontiers in Arti�cial Intelligence (JSAI-isAI Workshops, Selected

Papers from LENLS6, pages 161�180. Springer, Heidelberg, Nov 2010.

[213] J. Mar�sík. E�ects and Handlers in Natural Language. PhD thesis, The

university of de Lorraine, 2016.

[214] M. Parigot. λµ-calculus: an algorithmic interpretation of classical nat-

ural deduction. In International Conference on Logic for Programming

Arti�cial Intelligence and Reasoning, pages 190�201, Jul 1992.

[215] J.C. Reynolds. The discoveries of continuations. LISP AND SYM-

BOLIC COMPUTATION: An InternationM Journal, 6:233�248, 1993.

[216] B. Partee. Noun phrase interpretation and type shifting principles. In

Formal semantics: The essential readings, pages 357�381. Wiley, 2002.

[217] O. Danvy and A. Filinski. A functional abstraction of typed contexts.

Technical report, Computer Science Department, University of Copen-

hagen., 1989.

[218] A. Sabry and M. Felleisen. Reasoning about programs in continuation-

passing style. Lisp and symbolic computation 6, no. 3-4, pages 289�360,

1993.

[219] D. Biernacki. The Theory and Practice of Programming Languages

405

BIBLIOGRAPHY

with Delimited Continuations. PhD thesis, Department of Computer

Science, University of Aarhus, 2005.

[220] N. Leslie. Continuations and Martin-Löf's type theory. PhD thesis,

Massey University,Albany,New Zealand, 2000.

[221] G.D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theo-

retical Computer Science, 1(2):125�159, Dec 1975.

[222] R. Clark. Number sense and quanti�er interpretation. Topoi, 26(1):51�

62, 3 2007.

[223] O. Kiselyov. Parameterized extensible e�ects and session types. In

Proceedings of the 1st International Workshop on Type-Driven Devel-

opment, pages 41�42, 2016.

[224] G. Giorgolo and A. Asudeh. Monad for conventional implicatures. In

Sinn und Bedeutung, volume 16, 2012.

[225] O. Kiselyov and H. Ishii. Freer monads, more extensible e�ects. ACM

SIGPLAN Notices, 50(12):94�105, 2015.

[226] C. Reuben. Monad transformers for natural language: Combining mon-

ads to model e�ect interaction.

[227] L. Burke. P-hype: A monadic situation semantics for hyperintensional

side e�ects. Proceedings of Sinn und Bedeutung 23, 23(1), 2019.

[228] C.S Leong and M.Y. Erlewine. Long-distance dependencies in continu-

ation grammar. In Proceedings of the 33rd Paci�c Asia Conference on

Language, Information and Computation (ACL Anthology)., 2019.

[229] D. Ahman and T. Uustalu. Update monads: Cointerpreting directed

406

BIBLIOGRAPHY

containers. In R. Matthes and A. Schubert, editors, 19th Interna-

tional Conference on Types for Proofs and Programs (TYPES 2013),

LIPIcs�Leibniz International Proceedings in Informatics, pages 1�23,

2013.

[230] J. van Eijck. Incremental dynamics. Journal of Logic, Language and

Information, 10(3):319�351, 2001.

[231] O. Kiselyov, R. Lämmel, and K. Schupke. Strongly typed heteroge-

neous collections. Haskell '04: Proceedings of the 2004 ACM SIGPLAN

workshop on Haskell, Sep 2004.

[232] J. Gibbons, F. Henglein, R. Hinze, and N. Wu. Relational algebra by

way of adjunctions. Proceedings of the ACM on Programming Lan-

guages, 2(ICFP), pages 1�28, 2018.

[233] L. Champollion. Covert distributivity in algebraic event semantics.

Semantics and Pragmatics, 9(15):1�65, 2016.

[234] L. Champollion. Overt distributivity in algebraic event semantics. Se-

mantics and Pragmatics, 9(16):1�65, 2016.

[235] L. Champollion, J. Bledin, and H. Li. Rigid and �exible quanti�cation

in plural predicate logic. In SALT 27, pages 418�437, 2017.

[236] J. Bracker and H. Nilsson. Supermonads and superapplicatives. Func-

tional Programming, 103, 2018.

[237] A. Nanevski, G. Morrisett, and M. Birkedal. Hoare type theory, poly-

morphism and separation. Journal of functional programming, 8(5-6),

Sep 2008.

407

BIBLIOGRAPHY

[238] A. Nanevski, A. Banerjee, G.A Delbianco, and I. Fábregas. Specifying

concurrent programs in separation logic: morphisms and simulations.

In Proceedings of the ACM on Programming Languages, 3(OOPSLA),

pages 1�30, 2019.

[239] C. McBride. Kleisli arrows of outrageous fortune. (submitted to) Func-

tional Programming, pages 1�24, Mar 2011.

[240] K. Maillard, D. Ahman, R. Atkey, G. Martínez, C. Hritcu, E. Rivas,

and É. Tanter. Dijkstra monads for all. Proceedings of the ACM on

Programming Languages (PACMPL), 3(ICFP), 2019.

[241] O. Kiselyov and C.C. Shan. Lightweight monadic regions. Proceedings

of the �rst ACM SIGPLAN symposium on Haskell, pages 1�12, Sep

2008.

[242] O. Kammar. An Algebraic Theory of Type-and-E�ect Systems. PhD

thesis, University of Edinburgh, Oct 2014.

[243] J. Bracker. Uni�ed notions of generalised monads and applicative func-

tors. PhD thesis, University of Nottingham, 2018.

[244] P. O'hearn. Separation logic. Communications of the ACM, 62(2), Feb

2019.

[245] R.K. Dybvig, S.P. Jones, and A. Sabry. A monadic framework for de-

limited continuations. Functional Programming, 17(6):687�730, 2007.

[246] R. Milner. Communicating and Mobile Systems: The π Calculus. In-

formation and Computation. Cambridge University Press, 1999. ISBN

10: 0521658691 / ISBN 13: 9780521658690.

408

BIBLIOGRAPHY

[247] S.J. Gay and V.T. Vasconcelos. Linear type theory for asynchronous

session types. Functional Programming, 20(1):19�50, 2010.

[248] M.J. Jaskelio�. Lifting of operations in modular monadic semantics.

PhD thesis, University of Nottingham, 2009.

[249] W. Swierstra and T. Baanen. A predicate transformer semantics for

e�ects (functional pearl). Proceedings of the ACM on Programming

Languages, 3(ICFP), pages 1�26, 2019.

[250] P.B. Levy, J. Power, and H. Thielecke. Modelling environments in

call-by-value programming languages. Information and Computation,

185(2):182�210, 2003.

[251] A. Asudeh and R. Crouch. Coordination and parallelism in glue se-

mantics: Integrating discourse cohesion and the element constraint. In

proceeding of the LFG02 conference. CSLI Publications, 2002.

[252] R.V. Guha. Contexts : A Formalization and Some Applications. PhD

thesis, Standord University, Feb 1995.

[253] J. Malakhovski. On the Expressive Power of Indexed Applicative and

Monadic Structures. PhD thesis, IRIT, University of Toulouse-3 Paul

Sabatier and Saint Petersburg National Research University of Infor-

mation Technologies, Mechanics and Optics, 2019.

[254] M. Sackman and S. Eisenbachs. Safely Speaking in Tongues Statically

Checking Domain Speci�c Languages in Haskell. In J.J. Vinju and

T. Ekman, editors, Proceedings of The Ninth Workshop on Language

Descriptions, Tools, and Applications (LDTA 2009). Elsevier, 2009.

409

BIBLIOGRAPHY

[255] D. Janin. A timed io monad. In International Symposium on Practical

Aspects of Declarative Languages, pages 131�147. Springer, Cham., Jan

2020.

[256] A. Filinski. Controlling E�ects. PhD thesis, Carnegie Mellon Univer-

sity, May 1996.

[257] S. Abramsky and J. Väänänen. From IF to BI. Synthese, 167(2):207�

230, 2009.

[258] Z. Luo. Dependent record types revisited. In Proceedings of the 1st

Workshop on Modules and Libraries for Proof Assistants, pages 30�37,

2009.

[259] R. Cooper and J. Ginzburg. Type theory with records for natural

language semantics. In S. Lappin and C. Fox, editors, The Handbook

of Contemporary Semantic Theory. John Wiley & Sons, Ltd, 2015.

[260] P. Curien, R. Garne, and M. Hofmann. Revisiting the categorical in-

terpretation of dependent type theory. Theoretical Computer Science,

546(21):99�119, Aug 2014.

[261] B. Jacobs. Categorical Logic and Type Theory. Elsevier, 1999.

[262] A. Abel and C. Sattler. Normalization by evaluation for call-by-push-

value and polarized lambda-calculus. In 21st International Symposium

on Principles and Practice of Declarative Programming, PPDP'19,

2019.

[263] M.A. Warren. Homotopy Theoretic Aspects of Constructive Type The-

ory. PhD thesis, Carnegie Mellon University, Aug 2008.

410

BIBLIOGRAPHY

[264] M. Makkai. First order logic with dependent sorts, with applications

to category theory. 1995. Preprint 1995, version November 6. 201 pp.

Available from Makkai's webpages.

[265] T. Sider. Logic for Philosophy. Oxford University Press, 2009.

[266] N. Gerasimov and E. Pyshkin. Using dynamic predicate logic for

pronominal anaphora resolution in russian texts. In International

Workshop on Applications in Information Technology. The University

of Aizu Press, 2015.

[267] J. Carlström. Partiality and Choice: Foundational Contributions. PhD

thesis, Stockholm University, Faculty of Science, Department of Math-

ematics, 2005.

[268] G.D. Plotkin and J. Power. Notions of computation determine monads.

In FoSSaCS 2002: Foundations of Software Science and Computation

Structures, International Conference on Foundations of Software Sci-

ence and Computation Structures, pages 343�356, Mar 2002.

[269] M.G.H. Gotham. Copredication, Quanti�cation and Individual. PhD

thesis, University College London, Jan 2015.

[270] N. Asher. Lexical Meaning in Context: a Web of Words. Cambridge

university press, 2011.

[271] N. Asher. Context in content composition. In R. Kempson, T. Fer-

nando, and N. Asher, editors, Philosophy of Linguistics, volume 14.

North Holland, 2012.

[272] L. Champollion. Parts of a whole: Distributivity as a bridge between

411

BIBLIOGRAPHY

aspect and measurement, volume 66 of Oxford Studies in Theoretical

Linguistics. Oxford University Press, 2017.

[273] N. Ivlieva. Scalar Implicatures and the Grammar of Plurality and Dis-

junction. PhD thesis, MIT, 2013.

[274] A. Radulescu. The logic of indexicals. Synthese, 192(6):1839�1860, Jun

2015.

[275] J. Groenendijk and M. Stokhof. Dynamic montague grammar. In

Papers from the Second Symposium on Logic and Language, pages 3�

48. Akademiai Kiadoo, 1989.

[276] A.R. McKenzie. The Role of Contextual Restriction in Reference Track-

ing. PhD thesis, University of Massachusetts Amherst, May 2012.

[277] L. Stirling. Switch Reference and Discourse Representation. Number 63

in Cambridge studies in linguistics. Cambridge University Press, 1993.

[278] D. Hardt. Dynamic interpretation of verb phrase ellipsis. Linguistics

and philosophy, pages 185�219, 1999.

[279] L. Champollion. Homogeneity in donkey sentences. In Ken Turner

and Klaus von Heusinger, editors, Proceedings of SALT XXVI, page

684�704, 2016.

[280] S. Charlow. Cross categorial donkeys. In Selected papers from the 18th

Amsterdam Colloquium, LNCS 7218, pages 261�270, 2012.

[281] R. Muskens. Tense and the logic of change. In U. Egli, P.E. Pause,

C. Schwarze, A.V. Stechow, and G. Wienold, editors, Lexical Knowl-

edge in the Organization of Language, pages 147�183. Benjamins, Am-

412

BIBLIOGRAPHY

sterdam, 1995.

[282] M.J Gordon. Mechanizing programming logics in higher order logic.

Current trends in hardware veri�cation and automated theorem proving,

pages 387�439, 1989.

[283] S. Chatzikyriakis, F. Pasquali, and C. Retore, editors. Ifcolog Journal

of Logics and their Applications. Hilbert's epsilon and tau in Logic, In-

formatics and Linguistics. Volume 4, Number 2. College Publications,

Mar 2017.

[284] R. Atkey and P. Johann. Interleaving data and e�ects. Functional

Programming, 25, 2015. Cambridge University Press.

[285] J.C.L. Ralha. A multidimeonsional dynamic framework for handling

simple interruption phenomena, anaphoric pronouns and de�nite de-

scriptions. PhD thesis, The University of Leeds, 1998.

[286] P. Galliani. Inclusion and exclusion dependencies in team semantics -

on some logics of imperfect information. Annals of Pure and Applied

Logic, 163(1):68�84, Jan 2012.

[287] M. Kracht. Dynamic semantics. Linguistische Berichte, pages 217�241,

2002.

[288] R.W.F. Nouwen. Plural Pronominal Anaphora in Context: Dynamic

Aspects of Quanti�cation. PhD thesis, The Utrecht University, 2003.

[289] E. Manes. Monads of sets. In M. Hazewinkel, editor, Handbook of

Algebra, volume 3, pages 67 � 153. North-Holland, 2003.

[290] P. Geach. Reference and Generality: An Examination of Some Me-

413

BIBLIOGRAPHY

dieval and Modern Theories. Ithaca, New York: Cornell University

Press, 1962.

[291] J. Dotla£il and F. Roelofsen. Dynamic inquisitive semantics: anaphora

and questions. In Proceedings of Sinn und Bedeutung 23, 2019.

[292] P. Elbourne. Demonstratives as individual concepts. Linguistics and

Philosophy, 31(4):409�466, Aug 2008.

[293] O. Kiselyov and C.C. Shan. Continuation hierarchy and quanti�er

scope. In EMcCready, K Yabushita, and K Yoshimoto, editors, Formal

Approaches to Semantics and Pragmatics, Studies in Linguistics and

Philosophy. Springer, Dordrecht, 2014.

[294] P. Dekker. Predicate logic with anaphora. Semantics and Linguistic

Theory, 4:79�95, Nov 1994.

[295] A. Heyting. Die intuitionistische grundlegung der mathematik. Erken-

ntnis, 2:106�115, 1931.

[296] L.E.J. Brouwer. Points and spaces. Canadian Journal of Mathematics,

6:1�17, 1954.

[297] A. Kolmogoro�. Zur deutung der intuitionistischen logik. In K Kno�,

E Schmidt, and I Schur, editors, Mathematische Zeitschrift, volume 35,

pages 58�65. Verlag Von Julius Springer, 1932.

[298] R. Mitkov. Anaphora resolution. Longman, 2002.

[299] A. Abel, T. Coquand, and P. Dybjer. Normalization by evaluation

for Martin-Löf type theory with typed equality judgements. In 22nd

Annual IEEE Symposium on Logic in Computer Science (LICS 2007,

414

BIBLIOGRAPHY

pages 3�12. IEEE, Jul 2007.

[300] M. Satoh and D. Bekki. Calculating projections via type checking. In

the Proceedings of TYpe Theory and LExical Semantics (TYTLES) in

the 27th European Summer School in Logic, Language and Information

(ESSLLI 2015), 2015.

[301] P. Melliés. The parametric continuation monad. Mathematical Struc-

tures in Computer Science, 27(5), 2017.

[302] P.D. Groote. Towards a Montagovian account of dynamics. Semantics

and Linguistic Theory, 16:1�16, Aug 2006.

[303] K.Von Fintel. Restriction on Quanti�ers Domains. PhD thesis, Uni-

versity of Massachusetts, May 1994.

[304] G.M. Kobele. The Cooper storage idiom. logic, Language and Infor-

matics, 27(2), 2018.

[305] P. Taylor. Practical Foundations of Mathematics. Number 59 in Cam-

bridge Studies in Advanced Mathematics. Cambridge University Press,

1999.

[306] A. Pitts. Nominal logic: �rst order theory of names and binding. In

N Kobayashi and B. C. Pierce, editors, Fourth International Sympo-

sium on Theoretical Aspects of Computer Software (TACS2001), LNCS

Vol. 2215, pages 219�242, 2001.

[307] J. Cheney. A dependent nominal type theory. Logical Methods in

Computer Science, 8(1):1�29, 2012.

[308] I. Ciardelli, J. Groenendijk, and F. Roelofsen. Inquisitive Semantics.

415

BIBLIOGRAPHY

Oxford Surveys in Semantics and Pragmatics. Oxford University Press,

2019.

[309] W. Dubislav. Zur unbegründbarkeit der forderungssätze. Theoria,

3:330�342, 1937.

[310] J. Jörgensen. Imperatives and logic. Erkenntnis, 7:288�296, 1937.

[311] A. Ross. Imperative and logic. Philosophy of Science, 11(1):30�46, Jan

1944.

[312] C.L. Hamblin. Imperatives. Basil Blackwell, 1987.

[313] K. Segerberg. Validity and satisfaction in imperative logic. Notre Dame

Journal of Formal Logic, 31(2), 1990.

[314] H. Clark-Younger. Imperatives and Logical Consequence. PhD thesis,

The University of Otago, 2014.

[315] H. Clark-Younger. Imperatives and the more generalised Tarski thesis.

Thought: A Journal of Philosophy, 3(4):314�320, 2014.

[316] P.B.M. Vranas. New foundations for imperative logic i: Logical con-

nectives, consistency, and quanti�ers. Noûs, 42(4):529�572, 2008.

[317] P.B.M. Vranas. New foundations for imperative logic: Pure imperative

inference. Mind, 120(478):369�446, 2011.

[318] P.B.M. Vranas. Logic of imperative. In International Encycopedia of

Ethics. Wiley Online Library, 2015.

[319] P.B.M. Vranas. New foundations for imperative logic iii: A general

de�nition of argument validity. Synthese, 193(6):1703�1753, Jun 2016.

[320] P. Portner. Imperatives. In M. Aloni and P. Dekker, editors, The

416

BIBLIOGRAPHY

Cambridge Handbook of Formal Semantics, pages 593�626. Cambridge

University Press, 2016.

[321] C.H. Han. The Structure and Interpretation of Imperatives:Mood and

Force in Universal Grammar. PhD thesis, University of Pennsylvania,

Dec 1998.

[322] K.V Fintel and S. Iatridou. A modest proposal for the meaning of

imperatives. In Ana Arregui, María Luisa Rivero, and Andrés Salanova,

editors, Modality across Syntactic Categories, pages 288�319. Oxford

Scholarship Online, 2017.

[323] S. Lauer. Towards a Dynamic Pragmatics. PhD thesis, Standford

University, Aug 2013.

[324] J. Hansen. Imperatives and Deontic Logic On the Semantic Founda-

tions of Deontic Logic. PhD thesis, Universität Leipzig, 2008.

[325] H. Poincaré. Dernières Pensées. Ernest Flammarion, Paris, 1913.

[326] C.H. Han. Imperatives. In K.Von. Heusinger, C. Maienborn, and

P. Portner, editors, Semantics: An International Handbook of Natu-

ral Language Meaning. Handbooks of Linguistics and Communication

Science (HSK), pages 1785�1804. Berlin: Mouton de Gruyter, 2011.

[327] T. Kleymann. Hoare logic and auxiliary variables. Formal Aspects of

Computing, 11(5):541�566, Dec 1999.

[328] D. Cock, G. Klein, and T. Sewell. Secure microkernels, state monads

and scalable re�nement. In TPHOLs 2008: Theorem Proving in Higher

Order Logics, International Conference on Theorem Proving in Higher

417

BIBLIOGRAPHY

Order Logics, pages 167�182, 2008.

[329] E.D. Vries and V. Koutavas. Reverse hoare logic. In SEFM 2011:

Software Engineering and Formal Methods, International Conference

on Software Engineering and Formal Methods, pages 155�171, 2011.

[330] C. Stirling. A generalization of owicki-gries's hoare logic for a concur-

rent while language. Theoretical Computer Science, 58:347�359, 1988.

[331] D. Harel. First-order dynamic logic. In Goos and Hartmanis, editors,

Lecture Notes in Computer Science, volume 68, 1979.

[332] F. Honsell and M. Miculan. A natural deduction approach to dynamic

logic. In In International Workshop on Types for Proofs and Programs,

pages 165�182, Jun 1995.

[333] B. Russell. On denoting. Mind, 14(56):479�493, 1905.

[334] G. Chierchia. Reference to kinds across language. Natural language

semantics, 6(4):339�405, 1998.

[335] Hans-Martin Gärtner. Naming and economy. In O. Bonami and

P. Cabredo Hofherr, editors, Empirical Issues in Formal Syntax and

Semantics, pages 63�73. CSSP 2005, 2004.

[336] D. Kozen. Results on the propositional µ calculus. Theoretical Com-

puter Science, 27:333�354, 1983.

[337] W.P De Roever. Recursive program schemes: Semantics and proof

theory. PhD thesis, Free University. Amsterdam, 1973.

[338] J. Brad�eld and C. Stirling. Modal mu-calculi. In P. Blackburn, J. van

Benthem, and F. Wolter, editors, The Handbook of Modal Logic, pages

418

BIBLIOGRAPHY

721�756. Elsevier, 2006.

[339] B. Löwe, W. Malzkorn, and T. Räsch, editors. Foundations of the

Formal Sciences II: Applications of Mathematical Logic in Philosophy

and Linguistics (Vol. 17). Springer Science & Business Media, 2003.

[340] M. Coniglio, A. Murphy, E. Schlachter, and T. Veenstra, editors. Atyp-

ical Demonstratives: Syntax, Semantics and Pragmatics. Linguistische

Arbeiten 568. De Gruyter, 2018.

[341] D. Braun. Complex demonstratives and their singular contents. Lin-

guistics and Philosophy, 31:57�99, 2008.

[342] M. Glanzberg and S. Siegel. Presupposition and policing in complex

demonstratives. Noûs, 40(1):1�42, 2006.

[343] J. Grudzi«ska. Demonstrative descriptions and conventional implica-

tures. Semiotica, 188(1/4):333 � 345, 2012.

[344] E. Leopre and K. Ludwig. The semantics and pragmatics of complex

demonstratives. Mind, 109(434), Apr 2000.

[345] J.C. King. Complex Demonstratives: a Quanti�cational Account. The

MIT press, 2001.

[346] D. Braun. Structured characters and complex demonstratives. Philo-

sophical Studies: an International Journal for Philosophy in the Ana-

lytic Tradition, 74(2):193�219, May 1994.

[347] E. Borg. Complex demonstratives. philosophical Studies: an Interna-

tional Journal for Philosophy in the Analytic Tradition, 97(2):229�249,

Jan 2000.

419

BIBLIOGRAPHY

[348] K. Lauri and P. Stanley. Conventional implicature. In Oh and Dinneen,

editors, Syntax and semantics, Presupposition, volume 11, pages 1�56.

New York: Academic Press, 1979.

[349] D. Kaplan. Words. Aristotelian Society Supplementary, 64(1):93�119,

1990.

[350] C. Roberts. Domain restriction in dynamic semantics. In E. Bach,

E. Jelinek, A. Kratzer, and B. Partee, editors, Quanti�cation in Natural

Languages, volume 45 of Studies in Linguistics and Philosophy. Kluwer

Academic, 1995.

[351] S. Abramsky, J. Kontinen, J. Väänänen, and H. Vollmer, editors. De-

pendence Logic: Theory and Applications. Birkhäuser, 2016.

[352] D. Wilkins. The 1999 demonstrative questionnaire: 'this' and 'that' in

comparative perspective. In S.C. Levinson and N.J. En�eld, editors,

Manual for the 2001 Field Season, pages 149�163, Nijmegen: Max

Planck Institute for Psycholinguistics, 2001.

[353] A. Frigerio. Demonstratives and saliency. In C. Penco and M. Vig-

nolo, editors, WOC 2017 Contexts in Philosophy, Proceedings of the

Workshop on Contexts in Philosophy, 10th International Conference

on Modelling and Using Contexts (CONTEXT 2017), Jun 2017.

[354] D. Roehrs. Demonstratives and De�nite Articles as Nominal Auxil-

iaries. Linguistik Aktuell/Linguistics Today (LA). John Benjamins

publishing company, 2009.

[355] S. Anderbois, A. Brasoveanu, and R. Henderson. Crossing the appos-

420

BIBLIOGRAPHY

tive/ at issue meaning boundary. In N. Li and D. Lutz, editors, SALT

Semantics and Linguistics Theory, volume 20, pages 328�346. LSA:

Linguistic Society of America, 2010. Ithaca, NY, CLC publications.

[356] R. Pucella and A.J. Tov. Haskell session types with (almost) no class.

SIGPLAN Not., 44(2):25�36, September 2008.

[357] D. Orchard and N. Yoshida. Session types with linearity in haskell.

In S. Gay and A. Ravara, editors, Behavioural Types: from Theory to

Tools. river publisher, 2017.

[358] A. Lücking. Witness-loaded and witness-free demonstratives. In

M. Coniglio, A. Murphy, E. Schlachter, and T. Veenstra, editors, Atyp-

ical Demonstratives: Syntax, Semantics and Pragmatics. De Gruyter,

Aug 2018.

[359] H. Bliss and E. Ritter. Developing a database of personal and demon-

strative pronoun paradigms: Conceptual and technical challenges. In

S. Bird, P. Bunenman, and M. Liberman, editors, Proceedings of the

IRCS Workshop on Linguistic Database, pages 38�47, 2001.

[360] M. Felleisen A. Sabry. Reasoning about programs in continuation-

passing style. LISP and Symbolic Computation, 6:289�360, 1993.

[361] H.P. Grice. Logic and conversation. In Cole et al, editor, Syntax and

Semantics 3: Speech acts, volume 3, pages 41�58. Elsevier, 1975.

[362] G.B. Georgi. Demonstratives in Logic and Natural Language. PhD

thesis, University of Southern California, 2011.

[363] G.D. Nunberg. Indexicality and deixis. Linguistics and Philosophy,

421

BIBLIOGRAPHY

16(1):1�43, 1993.

422

	Abstract
	Acknowledgements
	Introduction
	Overview
	Related research
	Contribution to knowledge
	Thesis structure

	Parsed natural languages
	An introduction to parsing natural languages
	-calculus in linguistics
	Type theories
	Judgements
	Proofs in linguistics
	Untyped -calculus in a typed theory
	The Curry–Howard correspondence
	An intuitionistic type theory
	Extensions of a type theory
	The multi-modal type-logical grammar

	Type-theoretical semantics
	Modern typed theoretical semantics
	Further examples
	Universes
	The progressive conjunction
	Dependent types

	Ambiguity in natural languages
	Quantifications
	Dynamic semantics
	Scope-taking
	Conventional implicatures

	Discussion

	The definition of Monads
	Basic definitions
	Simply typed -calculus in category theory

	The definition of functors
	The definition of a natural transformation
	An introduction to monads
	The distinction between mathematical definitions and an implementation of monads
	Notable monads in computing
	The maybe monad
	The nondeterminism monad
	side-effects or the state monad
	The exception monad
	The continuation monad
	IO monads
	An example of the reader monad
	Other monads

	Discussion

	Monads in linguistics
	A basic linguistic example
	The continuation for the scope problem and quantifications
	The continuation in linguistics
	Quantifications
	The continuation for an evaluation order

	The towering notion
	Operators on the towering notion

	The continuation in monads
	Continuation monads in analysing quantifiers

	The recent development of the continuation in linguistics

	The state monad for dynamic semantics
	Lifting linguistic expressions into state monads
	State-changing operators
	The discourse representation
	Structures adding to states
	Quantifiers and the indefinite

	The writer monad for the conventional implicature phenomenon
	Discussions

	An introduction to parameterized monads
	Strong monads
	An introduction to parameterized monads
	Computing monads in the parameterized monads
	Strong monads inclusion
	Parameterized monads morphism
	The state monad
	The composable continuation monad
	The writer monad
	The stack machine

	The IO monad
	Stateful IO devices
	Session types

	Specification structures in parameterized monads
	Type systems for parameterized monads
	Discussion

	Linguistic structures of parameterized monads
	First-order logic interpretation of natural languages
	Structured information states
	Berg's criteria for information states
	Information states as presuppositions
	Information states as dot types

	Discussion

	The cDRT in parameterized monads
	An introduction to the cDRT
	Logic of change
	Translating boxes to the logic
	Semantics of a fragment of English
	An accessibility and weakest-precondition calculus

	The translation to parameterized monads
	Dynamic semantics in parameterized monads
	Linguistic logical operators in parameterized monads
	Dynamic predicate logic in parameterized monads
	Combining state and set monads in parameterized monads
	Another example of how the compositional principle acts in parameterized monads

	The donkey anaphora in parameterized monads
	The definition of the problem
	The compositional dynamic semantic interpretation of the problem
	The BHK interpretation
	Scope-taking as proof-search
	An analysis of the phenomenon

	Discussion
	Related research
	The continuation monad
	The state monad

	Imperatives phenomenon in parameterized state monads
	The Ross' paradox
	Logic in imperatives
	Properties
	Specifications
	Monadic approaches to the semantics of imperatives

	The interpretation in monads
	Hoare state monads
	An interpretation

	The imperative logic
	Axioms
	Rules

	Discussion

	Additional linguistic phenomena in parameterized monads
	Definite descriptions in IO monads
	The complex demonstrative in parameterized IO monads
	Introduction to the complex demonstratives
	The definition of the complex demonstrative
	The problem with direct references
	Previous approaches

	The context domain restriction interpretation of the single complex demonstrative
	The difference between demonstratives and definite descriptions

	The conventional implicature in parameterized monads
	The conventional implicature in session types

	Discussion

	Conclusion
	Future work and limitations of the research

