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Abstract 

In northern Tanzania livestock are heavily relied upon as a main source of income, social 

status and nutritional security, especially by those living in the most impoverished 

communities (Covarrubias et al., 2012; Government of Tanzania, 2017). The high 

dependence on livestock is accompanied by a high burden of infectious production-limiting 

and zoonotic pathogens circulating within the livestock population but poor access to 

veterinary services. Zoonotic pathogens can spill over to cause disease in people, which are 

often misdiagnosed and erroneously treated leading to worse patient outcomes (Crump et 

al., 2013; Zhang et al., 2016). For pathogens that cause disease in livestock alone, the 

economic returns from investing in disease control can far outweigh the costs (Jones et al., 

2016). Improved livestock health and productivity is widely recognised as a route out of 

and away from poverty for people living in the most marginalised communities (Randolph 

et al., 2007). Funding and resources to invest in the livestock sector and livestock disease 

control are often lacking as the broad benefits to individuals, societies and economies are 

poorly documented and often overlooked (Rich and Perry, 2011; World Organisation for 

Animal Health (OIE), 2013). Policy makers need clear guidelines to develop efficient 

livestock disease control programmes that reduce livestock and zoonotic pathogen burden 

through minimal use of resources for maximal societal gains (FAO, 2009; Dutilly et al., 

2020).  

 

Livestock movements are widely recognised as providing a route to move pathogens 

between populations (Fèvre et al., 2006). These movements can drive large epidemic 

outbreaks of disease and also provide opportunities for pathogens with relatively low R0 to 

persist in populations (Green, Kiss and Kao, 2006a; Prentice et al., 2017). Where dense 

comprehensive data on livestock movements is available, this can be used by policy makers 

to guide effective disease control programmes (Kao et al., 2006). However, information on 

livestock movements is not routinely collected and centrally recorded in Tanzania and is 

therefore not available to guide livestock disease control programmes.  

 

Through this PhD, I gather and analyse data on three major types of permanent livestock 

movements in cattle and small ruminants across and beyond the Arusha, Manyara and 

Kilimanjaro regions in northern Tanzania. Permanent movements are those into or out of 

household herds and flocks with no plan to return the animal(s) to their origin. Using 
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household survey data in conjunction with livestock serological data, market survey data 

and government movement permit data, I evaluate how livestock movements contribute 

to epidemiological connectivity and disease risk. Movements to and from households, 

including market movements go largely unreported in the study area but can cover long 

distances up to 300 km in a single movement. I use the data to construct networks of 

livestock movements and use concepts from network analysis to identify sub-village and 

ward locations that can be targeted with efficient disease control and surveillance 

interventions.  

 

My analysis shows that high risk locations for disease introduction are also those at high 

risk of onward transmission, and that locations at high risk for small ruminant pathogen 

transmission are also high risk for cattle pathogen transmission. Additionally, I show that 

locations at risk of introduction and onward transmission of less transmissible pathogens 

(e.g. Brucella spp.) are also high risk for epidemic-prone pathogens (e.g. Foot and Mouth 

disease virus) that are rapidly transmitted. The positive correlations identified between 

locations’ risk ranks show that multi-species interventions which aim to prevent 

introduction and onward transmission of multiple pathogens could be an efficient use of 

disease control resources in northern Tanzania. Specifically, I show that household cattle 

introductions and sub-village betweenness are positively associated with cattle’s risk of 

bovine viral diarrhoea virus (BVDV) exposure and this risk is ubiquitous across the study 

area. For other pathogens investigated, the associations between introductions and 

exposure are complex and vary depending on pathogen and the agro-ecological (A-E) class 

of the livestock keeping system. This complexity is likely driven by the varying transmission 

routes and shedding cycles of different pathogens, in combination with the different 

livestock mixing and contact rates between infectious and susceptible individuals in the 

different A-E systems. Nevertheless, risk factors relating to household and sub-village 

livestock introductions are identified and can be used to guide disease control 

interventions in different settings.  

 

I also identify that livestock market movements are most often made on foot with 

increased risk of these livestock contacting local non-moving livestock and creating 

opportunities for pathogen dissemination across the landscape. Frequently travelled 

routes to and from market are therefore also identified as areas where an increase in active 

surveillance would benefit both local livestock and animals moving into the market system. 
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Findings from this work will be useful for policy makers in northern Tanzania who have 

minimal resources available to reduce livestock and zoonotic pathogen burden. High risk 

locations identified in this analysis can be made targets for knowledge exchange and 

information dissemination, active surveillance and multi-pathogen vaccination 

programmes. Additionally, the results from this study can be used to guide future research 

questions which address how temporary  contacts between livestock from different herds 

and flocks might affect pathogen transmission in the area.   
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Glossary 

Abbreviations used throughout this thesis 

General  

A-E Agro-ecological 

LMICs Low and middle income countries 

  

Network specific  

GSCC Giant strongly connected component 

GWCC Giant weakly connected component 

Combined_E Combined cattle and small ruminant network with link 
weights equal to the total number of expected cattle and 
small ruminants moved along them in one year 

Combined_SR Combined cattle and small ruminant network with links 
weighted heavily for small ruminants (0.9 * expected 
number of small ruminants moved in one year) and lightly 
for cattle (0.15 * expected number of cattle moved in one 
year) 

Pathogens  

BHV-1 Bovine herpes virus type 1 

BVDV Bovine viral diarrhoea virus 

bTB Bovine tuberculosis 

PPRV Peste des petits ruminants virus 

RVF Rift Valley fever 

C. burnetii Coxiella burnetii 

Brucella spp.  Brucella melitensis, Brucella abortus 

FMDV Foot and mouth disease virus 
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Node and network properties brief definitions  
 
Degree 

 
Number of edges connected to a node (Newman, 2010)  
pg.133-46 

In-degree Number of inward connections in a directed network 
(Newman, 2010) pg.133-46 

Out-degree Number of outward connections in a directed network 
(Newman, 2010)  pg.133-46 

Eigenvector Centrality Score of a node is proportional to the centrality scores of 
its neighbours  (Newman, 2010) 

Betweeness centrality Frequency with which a node lies on the geodesic 
between other nodes  (Newman, 2010) 

Path Sequence of nodes so that every consecutive pair in a path 
are connected by a link (Kiss, Green and Kao, 2006). 

Geodesic Shortest path between two nodes. If two nodes are not 
connected in a network they are in different ‘Components’  
(Newman, 2010) pg. 139 

Diameter Shortest path (Geodesic) between the two most distant 
nodes on the network (Newman, 2010) pg. 139 

Strongly Connected 
Component (SCC) 

Nodes are in the same SCC if A connects to B and B 
connects to A via a directed path (Dorogovtsev, Mendes 
and Samukhin, 2001) 

Giant Strongly Connected 
Component (GSCC) 

Largest strongly connected component, used to estimate 
the lower bounds of an epidemic size on a directed 
network 

Weakly Connected 
Component (WCC) 

Nodes are in the same WCC if there is an undirected path 
between them (Newman, 2010) 

Giant  Weakly Connected 
Component (GWCC) 

Largest weakly connected component, used to estimate 
the upper bounds of an epidemic size on a directed 
network 

Local clustering Proportion of neighbours of node X that are connected to 
each other  (Newman, 2010) 

Clustering coefficient Density of triangles in a network  (Newman, 2010) (Pg. 
262) 

Reciprocity Fraction of edges in a network that are reciprocated  
(Newman, 2010) 

Modularity Measures the extent to which like connects to like in a 
network  (Newman, 2010) 

Assortative mixing Nodes with similar characteristics (e.g. High degree) are 
more likely to connect to one another  (Newman, 2010) 

Disassortative mixing Nodes connect to others with dissimilar characteristic 
values (Negative modularity) (Newman, 2010) 

Cluster/Community Many connections within, few connections between.  
(Newman, 2010) 
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1 Introduction 

1.1 Livestock reliance and infectious diseases  

In northern Tanzania livestock are heavily relied upon as a main source of income, social 

status and nutritional security, especially by those living in the most marginalised 

communities (Covarrubias et al., 2012; Government of Tanzania, 2017). Slow growth of the 

livestock agriculture sector in Tanzania has been linked directly to a slow rate of poverty 

and nutritional deficit reduction compared to what was expected in line with the country’s 

overall economic growth (Pauw and Thurlow, 2011). The livestock agriculture sector is in 

need of rapid development to improve livestock productivity as this change will maximally 

benefit people living in the poorest communities (Christiaensen, Demery and Kuhl, 2011).  

 

There is strong evidence to suggest that the high burden of infectious livestock and 

zoonotic pathogens circulating in the cattle and small ruminant livestock populations in 

northern Tanzania places a major constraint on the development of the livestock sector 

(Komba et al., 2012; Sindato, Karimuribo and Mboera, 2012; Mathew et al., 2017; 

Nandonde, Gebru and Stapleton, 2017; Haseeb et al., 2019). The high livestock pathogen 

burden is problematic as it leads to high livestock losses through disease related morbidity 

and mortality, unstable reproduction and growth rates and financial and nutritional 

insecurity for the people and communities who are reliant upon livestock (Tempia et al., 

2010; Coppock, Desta and Gebru, 2012; Haseeb et al., 2019). Healthy livestock, on the other 

hand, are associated with prevention of human disease, reduced malnutrition and 

improved household income and education (Thumbi et al., 2015; Haseeb et al., 2019).  

 

Spill-over of zoonotic pathogens from animals (including livestock) to humans contribute 

to the majority of human infectious and emerging diseases globally (61% and 75% 

respectively) (Taylor, Latham and Woolhouse, 2001; Klous et al., 2016). Endemic zoonoses 

however, receive little attention at the global scale because their overall impact on 

livelihoods are prone to underestimation due to insufficient access to cheap, reliable 

diagnostics and the consequent under reporting (Maudlin, Eisler and Welburn, 2009; 

Halliday et al., 2012). In Tanzania, hospital based research studies have found zoonoses to 

be a leading cause of febrile illness in hospitalised patients but zoonoses are rarely listed 

as a potential or differential diagnosis (Biggs et al., 2011; Crump et al., 2013; Bodenham, 

Lukambagire, et al., 2020). Limited awareness of zoonotic pathogens amongst both human 
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and livestock health workers in Tanzania, along with limited resources for diagnosis, 

treatment and prevention mean that zoonotic infections are often misdiagnosed and 

erroneously treated which leads to worse patient outcomes (Crump et al., 2013; Zhang et 

al., 2016). The dual burden of zoonoses on individuals and societies in Tanzania motivates 

an integrated and collaborative approach between human and livestock health sectors for 

research, policy development and the design of disease control interventions (Morens, 

Folkers and Fauci, 2004; Coker et al., 2011).  

 

For pathogens that cause disease in livestock alone, the overall economic returns from 

control programmes can far outweigh the costs and thus pathogen control can directly 

contribute to improved livelihoods for farming communities (Jones et al., 2016). 

Improvements to livestock- and public-health services can improve a country’s health and 

economic wellbeing but the funding resources available for these remain limited (World 

Bank and TAFS Forum, 2011; World Organisation for Animal Health (OIE), 2013). Because 

of the limited governmental funding received by livestock sectors and veterinary services 

there is often scarce data available to clearly prioritise which pathogens should be targeted 

for control and where to focus control for maximal gains (Forman et al., 2012; Brooks-

Pollock et al., 2015). Where there are multiple pathogens circulating in livestock 

populations, these are typically prioritised in government agendas based on their political 

profile and/or zoonotic potential, not necessarily on their cumulative impact on livestock 

productivity and livelihoods (Carslake et al., 2011; Pieracci et al., 2016). For example, Rift 

Valley fever virus (RVFV) is often prioritized due to its zoonotic potential and foot and 

mouth disease virus (FMDV) has a high political profile due to the estimated global costs of 

the disease and livestock trade restrictions placed on countries with circulating virus 

(Woods, 2004; Sinkala et al., 2014; Munyua et al., 2016; Pieracci et al., 2016).  In low and 

middle income countries (LMICs) specifically, improved diagnostic capacity, veterinary 

services, healthcare provider education and an increase in active surveillance are all 

required to improve livestock pathogen and zoonoses control (Christou, 2011; Sherman, 

2011; Crump et al., 2013; Zhang et al., 2016; Cash-Goldwasser et al., 2018). Pooling 

resources from multiple sectors to reduce the incidence of zoonoses in the livestock 

populations is recognised as the most economically efficient way to reduce the overall 

zoonoses burden in populations for maximum societal gains (Zinsstag et al., 2007). 
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1.2 What influences pathogen transmission? 

There are a wide range of pathogen- and host-specific factors that influence pathogen 

reproduction rates and transmission from infectious to susceptible individuals within 

populations (Woolhouse et al., 1997; Blackburn et al., 2019). In brief, pathogen shedding 

varies between hosts (Lloyd-Smith et al., 2005) and between pathogens with some 

pathogens shed cyclically (e.g. Brucella spp.) (Lambert et al., 2018), some intermittently 

(e.g. Bovine herpes virus type 1 (BHV-1))(Biswas et al., 2013) and some persistently (e.g. 

bovine viral diarrhoea virus (BVDV))(Brownlie et al., 1987). What is required for a successful 

transmission event between a susceptible and an infectious individual also varies with 

some pathogens requiring close contact (e.g. Peste des petits ruminants virus (PPRV) 

(Hammouchi et al., 2012)) and others able to transmit via  fomites or environmental 

contamination (e.g. Leptospira spp. (Barragan et al., 2017) and Coxiella (Kersh et al., 2013)). 

Coxiella is also an example of a pathogen which can remain infectious in the environment 

for several months (Seitz, 2014) whereas others such as Brucella spp. are unlikely to survive 

more than a few weeks in the environment (Aune et al., 2012). The duration of infectious 

periods also varies with some pathogens, such as foot and mouth disease virus (FMDV), 

having infectious periods that last less than one week (Mardones et al., 2010) and others 

such as Leptospira spp. having infectious periods that can last months or years (Bharti et 

al., 2003). A further factor that affects transmission of pathogens is the involvement of 

vector species with examples such as Rift Valley fever (RVF) and Crimean-Congo 

haemorrhagic fever (CCHF) both transmitted through vectors to livestock and then directly 

from livestock to people (Ergönül, 2006; Aslam et al., 2016; Métras et al., 2020). 

More broadly, pathogen transmission between hosts is influenced by population structure 

and contacts between susceptible and infectious individuals (Anderson and May, 1991). 

Intermittent direct and indirect contacts between livestock can provide opportunities for 

pathogen transmission events that allow chronic diseases with low transmission rates to 

persist in populations, provided the contacts occur during infectious periods (Cross et al., 

2005; VanderWaal, Gilbertson, et al., 2017). With regards to population structure, a high 

variation in herd and flock sizes within a population can reduce the epidemic threshold for 

infectious pathogens (Caillaud, Craft and Meyers, 2013). In northern Tanzanian there is 

evidence for high variation in herd and flock sizes as the livestock population constitutes 

household herds and flocks that range from 1 to over 1,000 for each of cattle, sheep and 

goats (de Glanville et al., 2020). Larger groups in a population also have larger infectious 



22 

disease outbreaks within them that persist for longer periods of time. This means that in a 

population with more large groups, fewer movements between them are required for 

pathogen propagation because more infected individuals are moved (Cross et al., 2005). 

There are multiple reasons that could explain the maintenance of endemic pathogens at 

low levels in northern Tanzanian livestock and the repeated epidemics seen from diseases 

such as FMD,  RVF and PPR (Sindato, Karimuribo and Mboera, 2012; Kerfua et al., 2018; 

Omondi et al., 2019; Spiegel and Havas, 2019). It is very likely however, that transmission 

and maintenance of livestock pathogens is driven by livestock movements and contacts 

occurring between infectious and susceptible individuals as a result of these livestock 

movements (Prentice et al., 2017; Kim et al., 2021). 

 

In northern Tanzania, a further concern regarding livestock disease transmission is that 

competition for natural resources is increasing in line with population growth and 

degradation of communal rangelands (Borjeson, Hodgson and Yanda, 2008). This will 

inevitably result in livestock herds and flocks and individuals being forced into closer 

proximity which could further increase the risk of pathogen transmission events (Lee and 

Barrett, 2001; Goldman and Riosmena, 2013; National Bureau of Statistics, 2013). 

Increased competition for resources could also negatively impact nutritional status which 

again might increase opportunities for pathogen transmission within and between species 

(Epstein, 2002; Patz and Khaliq, 2002; Cross et al., 2004; Jones et al., 2008).  

 

Control measures that aim to reduce livestock and zoonotic pathogen burden within the 

livestock population need to be developed and implemented urgently, to prevent further 

and more pronounced livestock losses, human disease, social and nutritional insecurity. 

 

1.3 Using livestock movements to target disease control 
measures 

Targeted approaches to livestock disease control are an efficient way to use limited disease 

control resources (Kao et al., 2006; Ortiz-Pelaez et al., 2006; VanderWaal, Enns, et al., 

2017). Identifying targets for disease control interventions, however, requires 

epidemiological knowledge on which individuals, populations or geographic locations are 

at highest risk of disease introduction or onward transmission (Ortiz-Pelaez et al., 2006; 

Fournie et al., 2013; Rushmore et al., 2014; Molia et al., 2016; Mathew et al., 2017). For 

pathogens that can be transmitted by livestock, livestock movements provide routes for 
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transmission of infection between individuals and populations (Gilbert et al., 2005; Fèvre 

et al., 2006; Sherman, 2011). Livestock movements can occur at local, national and global 

scales which means that the risk of pathogen transmission and consequent disease risk also 

occur at these scales (Little, 2009). There are multiple motives for livestock movements but 

globally the major driver is trade to meet the growing demand for livestock produce 

(Williams, Spycher and Okike, 2006; Little, 2009; Mtimet et al., 2021). The demand for 

livestock produce is often higher in urban areas compared to rural, where the majority of 

livestock rearing takes place (Covarrubias et al., 2012; Fournié and Pfeiffer, 2013; Molia et 

al., 2016; Nandonde, Gebru and Stapleton, 2017). Moving live animals from their point of 

origin to slaughter points close to the point of consumption is considered the most 

economical way to meet the demand for livestock meat products in urban areas in many 

LMICs. The cold chain in Tanzania, as in many other LMICs is insufficient to allow the safe 

movement of meat products between the points of origin and consumption (McClowry, 

2014; Wilson, 2018). Live animal movements therefore occur over long distances and 

frequently cross international borders, both formally and informally through 

undocumented movements (Dean et al., 2013; Motta et al., 2017; Napp et al., 2018).  

 

Where extremely dense data on livestock movements exists this can be used to inform 

disease control programmes (Gibbens et al., 2001). In some countries, often following 

outbreaks of an economically important livestock disease, national recording of livestock 

movements has been made compulsory to facilitate future tracing of infectious animals 

(McGrann and Wiseman, 2001; Derah and Mokopasetso, 2005; Bowling et al., 2008; Smith 

et al., 2008; Vernon, 2011; Cassius Moreki et al., 2012; Ntokwane and Dibeela, 2016). A 

specific example of this is the National Animal Identification and Tracing programme set up 

in New Zealand following the Mycoplasma bovis outbreak (Ministry for Primary Industries, 

2018). In countries where comprehensive data on livestock movements were lacking, 

multiple different methods have been used to gather this information (Tempia et al., 2010; 

Pica-Ciamarra et al., 2011; Flintan, 2012; Dean et al., 2013; Fournie et al., 2013; 

VanderWaal, Gilbertson, et al., 2017). Data collection has often focussed on livestock 

markets as these have a high throughput of animals and can also have poor biosecurity, 

which in combination creates a high risk environment for pathogen transmission (Ortiz-

Pelaez et al., 2006; Kao et al., 2007; Fournié et al., 2011; Molia et al., 2016; Júnior et al., 

2017). For example, the UK 2001 FMD epidemic was fuelled by a large dissemination event 

through sheep market sales (Gibbens et al., 2001). Although livestock markets can increase 
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disease transmission through widespread pathogen dissemination event, they do provide 

useful targets for implementing efficient disease control and surveillance programmes (Kao 

et al., 2006; Ortiz-Pelaez et al., 2006; Vallée et al., 2013). In Mali and Hong Kong, data 

describing poultry movements were gathered at markets and used to identify key locations 

for surveillance and also the type of interventions that would reduce pathogen 

transmission with minimal trade disruption, such as market rest days (Fournié et al., 2011; 

Molia et al., 2016). In Togo, Mauritania, Senegal and Cameroon, studies have used market 

survey data in combination with movement permit data to identify epidemiological 

connections between multiple countries through cattle movements (Dean et al., 2013; 

Motta et al., 2017; Jahel et al., 2020). Paper movement permits are often officially required 

to move livestock between locations in countries that don’t have digitised livestock 

movement recording systems in place. These permits tend to contain information on 

movement origin, destination, number of animals moved, date of issue, health status of 

animals and a record of any tax paid for movement the movement. In Egypt, legal import 

permits for cattle and camels from Ethiopia and Sudan were used to identify high risk 

locations for Rift Valley fever (RVF) outbreaks and to determine changes that could be 

made to animal movement behaviour that would reduce risk (Napp et al., 2018). In East 

Africa, from Somalia down to Tanzania, studies have used a combination of data from 

livestock market surveys, livestock trader surveys and GPS trackers to identify formal and 

informal trade routes and high risk locations for livestock and zoonotic pathogen outbreaks 

(Aklilu, Irungu and Reda, 2002; Mutua et al., 2018; Mtimet et al., 2021; Ng’asike, Hagmann 

and Wasonga, 2021).  

 

In Ethiopia, Kenya, Sudan and Cameroon and in multiple West African countries, a 

hierarchical market structure has been identified. Livestock owners sell animals in small 

primary markets where livestock are batched together and moved on to secondary or 

tertiary markets by traders, closer to the point of consumption (Aklilu, Irungu and Reda, 

2002; Dean et al., 2013; Apolloni et al., 2018; Motta et al., 2019). Livestock traders 

therefore play an important role in the aggregation of livestock and movement between 

different locations, including across international boundaries, and along market chains 

(Motta et al., 2017; Ng’asike, Hagmann and Wasonga, 2021).  

 

In other countries and regions, the demand for livestock produce has been shown to vary 

throughout the year with increased demand often driven by religious festivals and holiday 
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seasons. In West Africa, the trade of small ruminants and use of vehicles to move livestock 

are dramatically increased around the time of the Tabaski festival which changes the both 

the type and speed of pathogen spread (Nicolas et al., 2018). In Ethiopia, poultry trade 

increases in line with festive periods so an increase in surveillance capacity is needed to 

accommodate the larger volume of animals traded (Vallée et al., 2013). The trade of small 

ruminants from Somalia into Saudi Arabia also usually increases around the time of the Hajj 

pilgrimage, as trade restrictions between the countries are relaxed during this time to meet 

the increased demands for small ruminant produce (Mtimet et al., 2021). The variation in 

demand that alters livestock mobility patterns should be captured where possible so that 

decisions about when and where pathogen surveillance or control programmes should be 

implemented account for seasonal changes. 

 

The informal East African cross-border cattle trade is estimated to exceed a value of $60 

million (Williams, Spycher and Okike, 2006; Little, 2009; Tempia et al., 2010). An example 

of the cost of international livestock trade in the horn of East Africa is the trade between 

Somalia and Saudi Arabia which usually increases around the time of the Hajj pilgrimage 

festival. Current trade restrictions placed on livestock exports from Somalia into Saudi 

Arabia, driven by the global COVID-19 pandemic, are estimated to be worth US$770M over 

a 5-year period to Somalia. Over 54% of these losses will be felt by pastoralist livestock 

keepers (Mtimet et al., 2021). 

 

Livestock movements can also occur for reasons beyond those driven by economics 

through market chains. In northern Tanzania, as in many other extensive livestock keeping 

countries around the world, livestock can be moved in search of natural resources including 

pasture, water or salt, and/or transferred directly between households as gifts or borrowed 

(Coppolillo, 2000; Aktipis, Cronk and de Aguiar, 2011).  In Kenya a combination of 

household surveys, GPS trackers and photograph recognition methods have been used to 

quantify livestock mobility patterns and identify high risk individuals, villages and times of 

year for increased disease risk (VanderWaal, Gilbertson, et al., 2017; Ogola et al., 2018; 

Floyd et al., 2019). These types of household livestock movements provide opportunities 

for direct and indirect contacts between livestock from different herds and flocks which 

provide opportunities for pathogen transmission events.  
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Knowledge and quantification of livestock movements is important for policy makers and 

public and livestock health workers because this information can be used to identify which 

individuals and populations are high risk of disease exposure and onward transmission 

(Gibbens et al., 2001; Kao et al., 2006; Buhnerkempe et al., 2014; Marquetoux et al., 2016; 

Kim et al., 2018). Within livestock populations, a small proportion of herds or individuals 

are often identified as responsible for the majority of movement activity (Woolhouse et al., 

1997; Volkova et al., 2010). Heterogeneity in activity often translates into a heterogeneity 

in pathogen transmission risk and identification of high risk individuals, locations or 

populations means that these can be targeted by efficient disease control programmes 

(Kao et al., 2006; Bansal, Grenfell and Meyers, 2007; Tempia et al., 2010; Fournié et al., 

2011; Leventhal et al., 2015; Guinat et al., 2016). A major obstacle to implementing 

effective livestock disease control interventions in countries lacking centralised and 

comprehensive movement records is that these movements still need to be accounted for 

to prevent disease control programmes being undermined (Kivaria, 2003; Prentice et al., 

2017; Apolloni et al., 2018). 

 

1.4 Livestock movements in Tanzania 

At the household level in northern Tanzania three major reasons for livestock movements 

have been identified: movement to access natural resources such as grazing and watering; 

movement between households as gifts, private sales, or loans; and sales into and through 

the market system (Aktipis, Cronk and de Aguiar, 2011; Pica-Ciamarra et al., 2011; 

Covarrubias et al., 2012). Despite the high dependence on livestock in northern Tanzania 

and multiple reasons for movements that could result in pathogen transmission events, 

there is no centralised system for identifying individuals and recording livestock 

movements within the country or to neighbouring countries (Mutua et al., 2018). An 

estimated 100,000 cattle a year (valued at $15 million) are traded across the border into 

Kenya, but this trade is difficult to monitor and regulate despite its potential to facilitate 

pathogen transmission between distant, geographically distinct populations (Zaal et al., 

2006; Little, 2009). Movements to access natural resources can also cover long distances 

and cross international borders (Coppolillo, 2000; Bouslikhane, 2015). Unchecked long 

distance livestock movements provide hidden routes (Trojan livestock) for pathogen 

transmission into new human and livestock populations, reducing livestock and human 

resilience and increasing insecurity (Hotez et al., 2009; Molyneux et al., 2011; Rich and 

Perry, 2011; Bouslikhane, 2015).  
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In summary, there is a high burden of livestock and zoonotic pathogens in northern 

Tanzania, limited resources for diagnosis and control and multiple motives for 

undocumented livestock movements, contacts and thus pathogen transmission 

opportunities. The combination of these factors motivates data collection and analysis to 

establish a better understanding of livestock movements in northern Tanzania. More 

specifically, analysis should aim to quantify how different types of livestock movements at 

household and market levels contribute to pathogen propagation and maintenance. 

Improved knowledge of livestock movements and contacts can then be used to identify 

targets for implementation of efficient disease control programmes.  

 

1.5 Network analysis 

1.5.1 Constructing contact networks to represent underlying 
population epidemiological connections 

Mathematical models, and more specifically network models and concepts from network 

analysis (NA), have been used increasingly over the past two decades in public health and 

veterinary epidemiology to describe and analyse population structure and livestock 

movements (Kao, 2002; Keeling and Eames, 2005; Danon et al., 2011; Büttner et al., 2013b; 

Craft, 2015; Enright and O’Hare, 2017; Enright and Kao, 2018). Social behaviour and contact 

structure in a population are important for pathogen transmission because it is the 

interactions between susceptible and infectious individuals, either directly or indirectly 

through vectors or fomites, that determine pathogen spread (Craft, 2015; Sah, Mann and 

Bansal, 2018). Heterogeneity in social contacts often naturally exists between individuals 

within a population and has profound implications for disease dynamics within a 

population (Bansal, Grenfell and Meyers, 2007). Behavioural heterogeneity translates into 

heterogeneity in the risk of acquiring and transmitting pathogens within and between 

groups (Corner, Pfeiffer and Morris, 2003; Böhm, Hutchings and White, 2009). Network 

models are a useful way of modelling heterogenous population structures and predicting 

disease spread through populations (Bansal, Grenfell and Meyers, 2007). Identifying the 

most active and thus high-risk individuals for targeted pathogen control is an efficient way 

to reduce overall pathogen burden in populations, and efficiency is particularly important 

when disease control resources are scarce (Kao et al., 2006; VanderWaal, Enns, et al., 

2017).  
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To construct a network that represents an underlying study population, individuals, herds 

or locations can be represented as nodes in a network graph. A contact or movement 

between two nodes is represented by a link in the network graph which can be directed 

from one node to another or undirected. When designing a study, collecting data and 

constructing a network, what constitutes a node and a link between node pairs should be 

carefully considered and based on the biological process of interest (Keeling and Eames, 

2005; Bansal et al., 2010; Enright and O’Hare, 2017). Once constructed, network graphs 

that represent the underlying population contact structure can be used to explore how 

epidemiologically connected a study population is and how easily pathogens might 

transmit and persist in the population (Gross, D’Lima and Blasius, 2006; Craft, 2015). In 

some countries, all livestock movements are digitised and centrally recorded. This type of 

digitised and centralised data has been used to construct complete livestock movement 

networks for cattle, sheep and pigs in the UK, Sweden, Germany, Italy, France and Denmark 

to list a few (Natale et al., 2009; Nöremark et al., 2011; Rautureau, Dufour and Durand, 

2011; Büttner et al., 2013b; Smith, Cook and Christley, 2013; Ruget et al., 2021). These 

networks have been used to identify high risk locations for disease control interventions 

such as active surveillance or movement bans and market closures. Where livestock 

movement records have not been digitised and centralised, household, trader and market 

survey data and official movement permit data have been used alone or in combination to 

construct cattle movement networks in many countries including Canada (Dubé et al., 

2008), Brazil (Júnior et al., 2017), Cameroon (Motta et al., 2017), Uruguay (VanderWaal et 

al., 2016), Togo (Dean et al., 2013) and Mauritania (Jahel et al., 2020). Household, market 

and trader survey data have also been used to construct poultry movement networks in 

Ethiopia (Vallée et al., 2013), Cambodia (Van Kerkhove et al., 2009) and Madagascar 

(Rasamoelina-Andriamanivo et al., 2014). These networks have described various 

resolutions of livestock market movements at regional, market and village levels and are 

considered representative subsamples of the true underlying networks. Finer scale 

networks of livestock movements between household herds and contacts between herds 

when they are moved to access natural resources have been created using household 

survey data and GPS tracker data in multiple studies in Kenya (VanderWaal, Gilbertson, et 

al., 2017; Ogola et al., 2018; Omondi et al., 2021). 
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Once constructed, networks can be used to identify high risk individuals, populations or 

locations that are most central in the network, based on multiple node centrality metrics 

(further details in descriptive list of network measures and centrality metrics in glossary).  

The most central network nodes can be at highest risk of disease acquisition or onward 

transmission and therefore targets for efficient pathogen surveillance or control 

programmes (Bell, Atkinson and Carlson, 1999; Keeling and Eames, 2005; Kao et al., 2006; 

Martínez-López, Perez and Sánchez-Vizcaíno, 2009b; Farine and Whitehead, 2015). 

Network models can be used to simulate the effectiveness of different pathogen control 

interventions that aim to reduce overall network connectedness such as removal of the 

highest risk (most central) nodes. Nodes that are identified as being at high risk of acquiring 

infection also have lower estimated time to infection during disease outbreaks (Christley 

et al., 2005). A pre-existing knowledge of network structure and node’s centrality metrics 

therefore enables plans to be made for the most efficient use of disease control resources 

and implementation of interventions in advance of disease outbreaks (Keeling and Eames, 

2005; Colizza et al., 2006; Salathé et al., 2010; Motta et al., 2017). 

 

1.5.2 Using contact network structure to assess the extent of 
pathogen transmission in populations 

Network structure is important because it affects the speed and extent of pathogen spread, 

which in a livestock movement network could represent the speed and extent of pathogen 

diffusion through the population (Newman, 2010). Networks can theoretically range from 

uniform and regular in structure to completely random (Newman, 2010). Between these 

two extremes exist small world networks. In small world networks most links connect local 

nodes, creating clusters of densely connected nodes, with a small number of long range 

links connecting more distant nodes that belong to different clusters (Watts, 1999; Mark D 

F Shirley and Rushton, 2005). This small world structure, with high clustering (neighbours 

of nodes are connected) but some long range links between distant nodes, creates short 

average path lengths which allow fast diffusion across the network (Watts and Strogatz, 

1998; Latora and Marchiori, 2001; Cowan and Jonard, 2004; Guimerà et al., 2005). If the 

movement or contact between clusters is temporary this can still be sufficient to allow 

pathogen transfer between clusters, provided the duration of contact is long enough for a 

transmission event to occur. This type of temporary contact can prevent local pathogen 

extinction even when the pathogen is not considered to be highly infectious and it has a 

low R0 value (Keeling and Rohani, 2002).  
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Communities in networks are groups of highly connected nodes with many connections 

within the community and few between them. A network that has a strong community 

structure is susceptible to high rates of pathogen transmission within communities but slow 

transmission between them (Leventhal et al., 2015). If networks have a high level of 

community structure this property can be utilised to tailor pathogen control programmes 

so that they reduce overall transmission whilst aiming to minimise disruption to normal 

activity by facilitating movement and trade within communities (Guinat et al., 2016). 

Various methods and algorithms can be used to identify network communities (Newman 

and Girvan, 2004; Pons and Latapy, 2006; Martínez-López, Perez and Sánchez-Vizcaíno, 

2009a).  These work by optimising some definition of network modularity so that the 

density of network links is highest within communities compared to between (Blondel et 

al., 2008).  

 

The sizes of the largest connected components of a network can be used to estimate the 

upper and lower bounds of epidemics on networks (Dorogovtsev, Mendes and Samukhin, 

2001; Kao et al., 2006). The giant strongly connected component (GSCC) is the largest 

component of a network that is connected by directed links only and can be used to 

estimate the lower bounds of an epidemic’s size on the network. The giant weakly 

connected component (GWCC) is the largest component of a network connected by 

undirected links and can be used to estimate the upper bounds of an epidemic’s size 

(Newman, 2010). 

 

1.5.3 Using network node centrality metrics to identify high risk 
locations for pathogen transmission and disease control 
interventions 

The nodes in a network that connect communities are important for pathogen transmission 

dynamics because they act as bridges between large groups of nodes and reduce the 

number of steps required (average path length) for pathogen transmission across the 

network. These bridging nodes can be identified using the network node centrality measure 

betweenness. Betweenness centrality measures the frequency with which a node lies on 

the shortest path between all pairs of connected network nodes (Newman, 2010). When a 

pathogen is introduced onto a network, the higher the betweenness centrality of the 

seeding node, the greater the extent of the epidemic (Natale et al., 2009; Sah, Mann and 
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Bansal, 2018). Removing just a small proportion (1-20%) of nodes with high betweenness 

centrality has been shown to rapidly fragment networks GSCCs in multiple settings, 

significantly reducing the potential for pathogen transmission across the network (Meyers 

et al., 2003; Rautureau, Dufour and Durand, 2011; Marquetoux et al., 2016; Motta et al., 

2017). Targeting nodes with high betweenness in advance of an epidemic, to raise 

awareness of the role they play in pathogen dissemination and control, has also been 

identified as an intervention that could improve preparedness to reduce the extent of 

future disease outbreaks (Rautureau, Dufour and Durand, 2011). 

 

In addition to betweenness centrality, other measures of node centrality commonly used 

in disease epidemiology to identify high risk nodes include in-degree, out-degree, degree, 

geometric mean degree and eigenvalue centrality (De Arruda et al., 2014; Bucur and 

Holme, 2020). More details on the relevance and use of these measures in network analysis 

are available elsewhere (Watts and Strogatz, 1998; Butts, 2008; Martínez-López, Perez and 

Sánchez-Vizcaíno, 2009b; Newman, 2010; Schimmer et al., 2012; Farine and Whitehead, 

2015). A basic description of the node centrality metrics commonly used to identify high 

risk nodes on static networks, and some descriptive network terms relevant to disease 

epidemiology that will be used in this thesis are included in the glossary.  

 

In brief, in-degree counts the number of ingoing links to a node on a directed network and 

has been used to identify nodes (herds, markets and villages) at high risk of disease 

introduction in multiple countries (Lo Fo Wong et al., 2004; Christley et al., 2005; Natale et 

al., 2009; Palisson et al., 2016). Out-degree measures the number of outgoing links from a 

node and can be used to identify nodes that contribute most towards onward disease 

transmission (VanderWaal et al., 2016). Degree is the sum of a node’s in- and out-degree. 

Geometric mean degree is the square root of the product of in- and out-degree and 

quantifies a node’s contribution to pathogen transmission on a network (Newman, 2010). 

A high level of correlation between in- and out-degree, for example livestock traders or 

markets, show that nodes at high risk of disease introduction are also high risk for onward 

transmission and thus have the potential to act as super spreaders on the network (Galvani 

and May, 2005; Kiss, Green and Kao, 2006; Natale et al., 2009). Node eigenvalue centrality 

is calculated based on the sum of the centralities of its connected neighbours so it reflects 

a nodes connectedness in the network and thus its ability to transmit pathogens on to other 

nodes (Bonacich, 2007; De Arruda et al., 2014).   



32 

 

Heterogeneity and right skew of centrality metric distributions are frequently seen in 

livestock movement networks globally, with most nodes having low numbers of 

connections (low degree centrality, low betweenness, low eigenvalue centrality etc) but 

few nodes having many connections (high degree centrality, high betweenness etc) (Bigras-

Poulin et al., 2006; Kiss, Green and Kao, 2006; Natale et al., 2009; Nöremark et al., 2011; 

Büttner et al., 2013b; Lindström et al., 2013; Smith, Cook and Christley, 2013; Motta et al., 

2017). Networks with right-skewed centrality distributions are vulnerable to rapid 

fragmentation of the large components through targeted removal of the most central 

nodes and these networks are less vulnerable to fragmentation if node removal is done 

randomly (Christley et al., 2005;  Shirley and Rushton, 2005; Nöremark et al., 2011; Büttner 

et al., 2013a; Smith, Cook and Christley, 2013). Successful and efficient fragmentation of 

networks into multiple small components that are not connected to one another rapidly 

reduces the potential for pathogen transmission across network. 

 

More complex temporal dynamic networks that model the timing of movements and 

potential transmission events are also increasingly being used in disease epidemiology 

(Bajardi et al., 2011; Masuda and Holme, 2013; Enright and Kao, 2016; Silk et al., 2017). In 

countries such as the UK and Sweden with strong seasonal patterns to livestock movement, 

traditionally driven by birthing and growing seasons, temporal changes in network 

structure can be identified that will influence the speed and extent of pathogen spread 

(Kiss, Green and Kao, 2006; Nöremark et al., 2011). Dynamic networks identify structural 

changes that can be otherwise masked by static networks but these are computationally 

expensive and require intensive data collection at appropriate time scales (Bansal et al., 

2010; Bajardi et al., 2011; Farine and Whitehead, 2015). Static networks are still useful to 

identify high risk individual nodes when node behaviour does not vary substantially over 

time and or when disease transmission rates are low (Vernon and Keeling, 2009). In 

countries such as Ethiopia and Cameroon, no seasonal changes in trading behaviour of 

individuals were identified, so although the volume of livestock moved varied through the 

year, static networks were robust to temporal changes and could be used to identify high 

risk nodes (Nöremark et al., 2011; Vallée et al., 2013; Motta et al., 2018).  
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1.6 Objectives and overview 

In this thesis I aim to address the knowledge gaps around livestock movements in northern 

Tanzania and the impact that these movements have on the transmission of key livestock 

pathogens at the inter-household and market levels (Figure 1-1). I will collect market data 

and movement permit data across three regions (Arusha, Manyara and Kilimanjaro) and 

use these in combination with household survey data to quantify, for the different types of 

movement, numbers of cattle and small ruminants moved, distances travelled and 

variations in the modes of transport used and journey speeds. I will also assess how inter-

household movements are associated with pathogen seroprevalence for multiple livestock 

and zoonotic pathogens in cattle and small ruminants. I will use the livestock movement 

data to construct contact networks and use concepts from network analysis to evaluate 

whether heterogeneity in movement activity exists at the inter-household network or 

market network levels. If heterogeneity exists, node centrality metrics calculated on the 

network models will be used to identify high risk locations for pathogen introduction or 

onward transmission and thus where disease control programmes should be targeted. I will 

also assess if the same locations are high risk for single or multi species pathogens by 

combining cattle and small ruminant networks.  

 

Figure 1-1: Schematic diagram showing movement types to be identified and quantified in 
this thesis 
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1.6.1 Chapter 2  

In Chapter 2, household survey data from 404 household surveys collected from 47 sub-

villages in Arusha and Manyara regions are used to describe movements of livestock 

between households and between households and markets. The household data is 

aggregated to the level of the sub-village (an administrative subunit within a village) and 

used to construct an inter-household movement network that represents a subsample of 

the underlying population inter-household movement network in the study area. Concepts 

from network analysis are used to assess study area connectivity through inter-household 

movements and assess if heterogeneity in movement activity exists between study sub-

villages. 

 

1.6.2 Chapter 3  

In Chapter 3, household survey data and seroprevalence data for multiple livestock 

pathogens from cattle and small ruminants are used to assess whether livestock 

introductions and/or sub-village centrality metrics (calculated in Chapter 2) are associated 

with an increased risk of pathogen exposure.  

 

1.6.3 Chapter 4  

In chapter 4, market survey data collected from buyers and sellers at 22 markets across 

Arusha, Manyara and Kilimanjaro regions of northern Tanzania are used to describe and 

quantify the journeys of cattle and small ruminants to and from markets. The market survey 

data is also used to construct a network and assess how well-connected the study area is 

through the movements of cattle and small ruminants. The constructed network is used to 

calculate centrality metrics for the market and non-market nodes and evaluate whether 

heterogeneity exists between nodes which could be used to identify high risk locations for 

targeted pathogen surveillance programmes.  

 

1.6.4 Chapter 5 

In Chapter 5, Data from Tanzanian government livestock movement permits from Arusha, 

Manyara and Kilimanjaro regions are used to construct a static network of livestock trade 

movements within the study area. The network is used to evaluate if heterogeneity in 

movement activity exists between wards (administrative unit of around 12,000 people 
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containing on average 4 villages). Node centrality metrics, calculated on the static network, 

are used to identify high risk wards and assess if removal of a small proportion (5%) of 

highest  risk nodes, through implementation of targeted disease control interventions 

(vaccination vs movement ban) can significantly reduce pathogen transmission on the 

network.   

 

1.6.5 Chapter 6 

In Chapter 6, The same methods as in Chapter 5 are used to construct a small ruminant 

movement network from government movement permits data to quantify market trade 

movements of small ruminants to, from and between wards within the study area. The 

small ruminant and cattle networks are then combined and methods from network analysis 

are used to identify high risk locations for introduction and onward transmission of: (i) small 

ruminant only and (ii) combined cattle and small ruminant pathogens. Locations identified 

as high risk for small ruminant only or cattle and small ruminant pathogens are compared 

to determine if they are largely the same, or if locations identified as high risk vary 

depending on a pathogens host species. The comparison between the small ruminant only 

and combined cattle and small ruminant network models is made to evaluate whether 

multi-host, multi-pathogen disease control programmes can be efficiently and effectively 

implemented in northern Tanzania. 

 

1.6.6 Summary 

Overall, the data generated and used in this thesis address major data gaps regarding 

livestock movements in northern Tanzania and how these movements contribute to 

epidemiological connectivity and influence livestock and zoonotic pathogen transmission. 

The networks and results generated through this work can be used to identify if high risk 

locations for pathogen transmission exist at household, village and ward levels. The data 

can also be used to identify if the same locations are high risk for pathogens that are utilise 

different transmission routes and infect different livestock species. If there is positive 

correlation between risks within locations then these results can be used to develop multi-

host multi-pathogen interventions for the most efficient use of publicly funded disease 

control resources.  
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2 The importance of largely undocumented 
household livestock movements on connectivity 
and pathogen transmission in northern Tanzania 

Contribution 

Data were collected as part of Social, Economic and Environmental Drivers of Zoonoses 

research project lead by Professor Sarah Cleaveland, University of Glasgow. Further details 

on this study are given within the chapter. Movement specific research questions which 

could be answered utilising available data were conceptualised by GC. Data cleaning, 

processing and analysis were done by GC. 

2.1 Introduction 

In Tanzania a large proportion of the population, particularly those in the most 

marginalised communities, rely heavily on livestock for a source of income, food security 

and social status (Covarrubias et al., 2012; Davis and Sharp, 2020). The reliance on livestock 

is accompanied by a high prevalence of infections, including zoonotic pathogens, within the 

livestock (Hyera, Liess and Frey, 1991; Machang’u, Mgode and Mpanduji, 1997; Karimuribo 

et al., 2007; Schoonman and Swai, 2010; Mdetele and Kassanga, 2014; Alonso et al., 2016; 

Mathew et al., 2017; Herzog et al., 2019; Semango et al., 2019). The pathogen burden leads 

to reduced productivity and excessive levels of uncertainty for people and societies whose 

livelihoods are reliant on livestock and their produce. Additionally, in the case of zoonoses, 

spill over of pathogens from livestock to humans leads to illnesses that are often 

misdiagnosed and improperly treated (Biggs et al., 2011; Crump et al., 2013; Allan et al., 

2015, 2018; Assenga et al., 2015; Cash-Goldwasser et al., 2018; Bodenham, Lukambagire, 

et al., 2020). The relatively high prevalence of zoonotic pathogens in northern Tanzania has 

extensive negative health and socio-economic consequences that are exacerbated by a lack 

of awareness of zoonoses among livestock keepers and livestock and human health 

workers (Zhang et al., 2016). Individuals are unable to prevent infection as there is limited 

epidemiological understanding of pathogen transmission routes and this problem is 

compounded by poor healthcare infrastructure and inadequate access to robust 

diagnostics and veterinary services (Chipwaza et al., 2014; Zhang et al., 2016; Bodenham, 

Mazeri, et al., 2020). In any low-resource setting, knowledge exchange, active surveillance 

and disease control programmes need to be streamlined and targeted if control of 



37 

endemic, zoonotic and emerging pathogens is to be both effective and sustainable 

(Heffernan and Misturelli, 2000; Maudlin, Eisler and Welburn, 2009; Hop et al., 2011; 

Johnson et al., 2020).  

 

Movement of livestock between locations and/or populations provides a route for 

pathogen transmission. Where animal identification and movement recording are not 

routinely practised, tracing pathogen spread through a population becomes difficult and 

disease control efforts are hindered (Gibbens et al., 2001). Livestock movement data, the 

use of this data to construct movement networks, and combining network analysis (NA) 

with epidemiological data have contributed to effective disease surveillance and control 

strategies globally (Christley et al., 2005; Gilbert et al., 2005; Ortiz-Pelaez et al., 2006; Kao 

et al., 2007; Volkova et al., 2010; Nöremark et al., 2011; Buhnerkempe et al., 2014; Guinat 

et al., 2016; VanderWaal et al., 2016; Marquetoux et al., 2016; Sah, Mann and Bansal, 2018; 

Kim et al., 2018).  There are many ways that livestock network data can be collected 

(Wongsathapornchai et al., 2008; Nicolas et al., 2013; Selby et al., 2013; Buhnerkempe et 

al., 2014; Motta et al., 2017; VanderWaal, Gilbertson, et al., 2017; Apolloni et al., 2018). 

NA offers the opportunity to assess the effects of different types of livestock movements 

and the resulting epidemiological contacts on pathogen transmission through a population 

and this has been used increasingly in infectious disease epidemiology over the last two 

decades (Kao et al., 2006; Kiss, Green and Kao, 2006; Martínez-López, Perez and Sánchez-

Vizcaíno, 2009b; Natale et al., 2009, 2011; Danon et al., 2011; Rautureau, Dufour and 

Durand, 2011; Enright and Kao, 2018; Salvador et al., 2018).  

 

A contact network is composed of nodes that can represent individuals, populations or 

locations where livestock are kept, and these are connected by links which represent 

connections such as a  contact or movement between nodes within the period being 

studied. Links are assigned numeric values and can be unweighted (binary), where the 

values 0 and 1 indicate the absence or presence of movement, or weighted (continuous), 

where the link values represent the number or rate of movements or contacts. Network 

links can be directed or un-directed and should be weighted depending on the question 

being asked, the timescale of the disease/event of interest and the level of data available 

(Craft, 2015). For a highly contagious pathogen such as African swine fever virus (ASFV) in 

pigs (Ferdousi et al., 2019), Peste des petits ruminants (PPRV) in small ruminants (Fournié, 

Waret-Szkuta, Camacho, Laike M Yigezu, et al., 2018) or foot and mouth disease virus 
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(FMDV) in livestock, any contact or movement between nodes might be epidemiologically 

important (Kao et al., 2007). Thus, when constructing a network to model transmission of 

a highly infectious pathogen, network links can be binary so a link is present if any 

epidemiological contact between two nodes occurs. For a less contagious pathogen such 

as bovine tuberculosis (bTB) in cattle or scrapie in sheep the total number of contacts 

between two nodes and the duration of a contact or residency time becomes more 

important for transmission risk (Kao et al., 2007). When constructing a network to model 

the risk of transmission of a less transmissible pathogen, links should be weighted by the 

total number of livestock movements that occur between all node pairs within a set time 

period.  

 

In disease control epidemiology the aim of an intervention is to reduce or prevent pathogen 

transmission. Network fragmentation can be used to break a network into smaller 

components (or fragments), so there are fewer or zero routes for pathogens to transmit 

between nodes. This can be achieved by node or epidemiological link removal (Bienstock 

and Bonacich, 2003; Chen et al., 2007; Chami et al., 2017). Node removal can, for example, 

practically be achieved by vaccinating all livestock within it, increased active pathogen 

surveillance or preventing any movements into or out of the node, such as through market 

closures, rendering it inactive in the network (León et al., 2006; Van Kerkhove et al., 2009; 

Vallée et al., 2013; Rasamoelina-Andriamanivo et al., 2014; Molia et al., 2016; Poolkhet et 

al., 2016; Holme and Litvak, 2017). Construction and analysis of epidemiological contact 

networks, done with a pathogen(s) of interest in mind, allows node centrality metrics to be 

calculated. Centrality metrics are frequently used to identify the most central and 

influential nodes in contact networks where interventions can be targeted. Commonly used 

node centrality metrics that are used in this chapter include in-degree (number of ingoing 

links), out-degree (number of outgoing links), geometric mean degree (the square root of 

in-degree multiplied by out-degree) and betweenness centrality (most frequently lying on 

the shortest path between other nodes in the network) (Freeman, 1978; Newman, 2002).  

Identification of the most central and influential nodes (individuals, farms, markets, villages 

etc) in the network can identify those individuals or populations at greatest risk of acquiring 

and or propagating a pathogen(s) on the network (Palisson et al., 2016). The most central 

nodes can then be targeted for removal for efficient fragmentation of the network with 

minimum disruption and minimal use of resources (Marquetoux et al., 2016; Ferdousi et 

al., 2019). Identifying highly central nodes also provides an opportunity to identify common 
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characteristics of these which can then be used to identify other, similarly high risk nodes 

not captured by sub-sampled data (Rushmore et al., 2014). High risk nodes can also be 

targets for active information dissemination and knowledge exchange programmes. 

Identification of the most central and influential network nodes is valuable in the fight to 

reduce disease burden when pathogen prevalence and the risk of emerging diseases are 

high but resources are scarce and knowledge of different pathogens and their transmission 

routes is limited (Maudlin, Eisler and Welburn, 2009; Colman et al., 2019).  

 

Where information on livestock movements is lacking, increasing the available knowledge 

on movements, including where livestock are moving to and from, over what distances and 

in what numbers, will help identify high risk areas for pathogen transmission and 

emergence (Bigras-Poulin et al., 2006; Kiss, Green and Kao, 2006; Vanderwaal et al., 2016). 

Quantifying the various types of livestock movement or contacts (such as shared resources 

or services) between locations, and the numerous potential routes for pathogen 

transmission is increasingly being identified as important in network epidemiology (Finn et 

al., 2019; Porphyre et al., 2020). A quantitative understanding of livestock movements and 

connectivity between host populations in any given area will help to inform the 

geographical scale needed for pathogen control programmes.  

 

If different types of epidemiological contact between nodes in a population exist, multiple 

network layers that represent the different contact types can be combined to create a 

multiplex network representing the multiple pathogen transmission routes between nodes 

(Kinsley et al., 2020). If multiple types of contact and thus methods for pathogen 

transmission between nodes exist on a network then the threshold required for large 

disease outbreak on the network is reduced (Zhao et al., 2014; Zhang et al., 2015). 

 

In northern Tanzania there are multiple, complex socio-economic and environmental 

drivers for livestock movements which all have the potential to result in epidemiological 

contacts between individuals from different herds or populations (Covarrubias et al., 2012; 

Goldman and Riosmena, 2013). Any data on livestock movements or identification, such as 

the recent national cattle branding programme, are scarce and not readily available (not 

digitised and or centralised). The predominant livestock movement types include 

movements to access natural resources such as grazing, water and salt points (Coppolillo, 

2000), trade movements to, between and onward from markets (Chaters et al., 2019), and 
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movements between households. Inter-household livestock movements occur for many 

reasons, including the giving and receiving of gifts, payment for services, lending, and 

private sales and purchases. These inter-household movements are not necessarily 

captured by official government movement permits (used most frequently for movement 

of livestock batches onwards from markets (Chaters et al., 2019) – further details in Chapter 

4 and 5) as they are unlikely to represent large business transactions or be of substantial 

economic importance. Inter-household movements thus potentially remain 

undocumented and undetected at the regional and national levels and have received 

limited previous investigation. This results in uncertainty around the role of inter-

household livestock movements on pathogen propagation and maintenance in the 

livestock, and by default for zoonoses, human populations in northern Tanzania.  

 

The aim of this study is to address the gap in the knowledge of inter-household livestock 

movements in northern Tanzania and assess how these movements effect epidemiological 

connectivity in the study area. Household survey data will be used to construct an inter-

household livestock movement network. Concepts from network analysis will then be used 

to quantify how these movements provide otherwise undocumented routes for pathogen 

transmission and maintenance in the livestock and human populations. The scale 

(distances and numbers moved) and extent (number of distinct locations that are 

connected) of epidemiological connectivity across the study area via inter-household 

movements will be assessed and the network used to identify if heterogeneities in 

movement activity exist between sampled locations. This information will be used to 

identify if highly central or influential locations exist within the inter-household livestock 

movement network that are at increased risk of pathogen exposure and onward 

transmission. Highly central locations, if identified and if the observed network structure 

lends itself to fragmentation with sufficiently minor disruption, can become targets for 

efficient implementation of surveillance, knowledge exchange and disease control 

programmes for both existing and emerging pathogens.   

 

2.2 Methods 

2.2.1 The study area and data collection 

Data were collected as part of the Social, Economic and Environmental Drivers of Zoonoses 

(SEEDZ) research project cross-sectional household survey in Arusha and Manyara Regions 
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of northern Tanzania between January and December 2016. Figure 2.1 shows a map of 

Tanzania with the two study regions highlighted in purple. The northern boundary of the 

study area is the international border with Kenya. Each region is made up of a number of 

districts. Within each district there are wards (an administrative unit of around 10,000 

people) and within wards there are villages (mean = 3,  median = 2, range 1-19 villages per 

ward). Villages are further divided into the smallest administrative unit the ‘sub-village’ (2-

5 sub-villages per village). Multi-stage sampling was used to randomly select 20 villages 

from within the study areas (lists taken from national census data) with urban and 

Ngorongoro Conservation Area wards excluded. Two to three sub-villages were then 

randomly selected from each village and a central point determined within the sub-village 

(N = 47). All cattle, sheep and goat (livestock) keeping households in the sub-village were 

invited to attend the central point and register for participation in the study. Ten livestock-

keeping households per sub-village were randomly selected for participation using a 

random number generator. Data were collected from a total of 404 households from 47 

sub-villages by enumerators using Open Data Kit (ODK) Collect 

software  (https://opendatakit.org/) on portable computer tablets in Kiswahili or Maa. Full 

details on the SEEDZ project, study design, implementation protocol and the household 

survey can be found elsewhere (Herzog et al., 2019; de Glanville et al., 2020).  

 

In brief, data used in this study were generated from the survey questions ‘How many 

cattle were introduced into this household in the last 12 months’, followed by ‘How many 

of these cattle were purchased?’ and ‘How many of these cattle were not purchased (e.g. 

Received as gifts or dowry)?’ and the follow up questions: ‘Where was the household most 

of the cattle were purchased from?’ (asked up to 5 times to allow for introductions from 

multiple other households in different locations). The same questions were asked for all 

possible location types (‘market’, ‘trader’ and ‘other’) where introduced cattle may have 

originated (again up to 5 times for each location type). The same question structure was 

used to identify the numbers of, and destinations, for cattle exiting the household in the 

12 months preceding the study. The same questions about household introductions and 

exits were asked for goats and small ruminants. The questionnaire sections and 

accompanying data dictionary used in this analysis are given in Appendix sections 9.2.2.1 

and 9.2.2.2.  
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Livestock keeping households in the study area have been broadly categorized into three 

production system classes: pastoral, agropastoral and small holder/urban by de Glanville 

et al. using data from the SEEDZ survey (de Glanville et al., 2020). Pastoral households 

generally have the largest herd sizes, are heavily reliant on livestock as the main source of 

income, largely report transhumance movement to access grazing land and practise limited 

crop production. Agropastoral households are reliant on livestock as well as crops and are 

generally in areas with the highest vegetation cover. Small holder households have the 

smallest numbers of cattle and goats, practise zero grazing around the homestead, are 

generally in denser human and livestock populated areas and are closest to the major road 

network. Urban households have no livestock and are in densely human populated towns 

(de Glanville et al., 2020). 

 

 

Figure 2-1: Arusha and Manyara study regions highlighted in map of Tanzania, sub-
divisions show ward boundaries.  Schematic diagram overlaid to depict the nested structure 
of administrative units in northern Tanzania - the smallest units sub-villages (sampled from 
in this study), are nested within villages which are nested within wards. Map created using 

Google Maps as base map. 

Ward 

Village 

Sub-village 
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2.2.2 Network construction 

All reports of permanent livestock (cattle, sheep and goat) movements to and from the 404 

surveyed household in the year preceding the study were aggregated at the sub-village 

level (N = 47). Household data are aggregated at the sub-village level because for this 

analysis it is assumed that mixing between livestock from different herds and flocks within 

sub-villages occurs throughout the study area due to the use of shared natural resources 

(de Glanville et al., 2020). Herd and flock mixing provides opportunity for close contacts 

and pathogen transmission events between livestock from the same and different herds. 

The effect of livestock introductions into the sub-village on individuals’ risk of pathogen 

exposure could therefore be assumed homogenous across the sub-village following an 

introduction event.  

 

All household reports of permanent livestock movements into or out of the household herd 

and/or flock were used to construct a network of livestock movements. A directed link was 

created between a sub-village node and an origin or destination node for every reported 

movement. Each link represents the movement of a batch of livestock (at least one 

individual) and links are weighted by the number of times they are reported by all surveyed 

households from the sub-village.  

 

There are three different types of permanent livestock movements used to construct the 

full inter-household movement network. These are gifting in and out movements, private 

sales (including for meat) and purchases, and market sales and purchases. Permanent 

movements of livestock between any two locations in Tanzania are supposed to be 

centrally recorded by use of a movement permit and a tax is supposed to be paid for each 

animal moved (Chaters et al., 2019). To understand the scale of interhousehold movements 

potentially happening below the radar due to under/non-reporting, data were collected 

from households on whether the reported movement was centrally recorded by using a 

movement permit. If interhousehold movements are important for epidemiological 

connectivity but are also under reported centrally then this needs to be considered in the 

design of disease control interventions to prevent them being undermined by movement 

activity that is unaccounted for.  

 

In addition to the full interhousehold movement network using all movement data, four 

subset networks were also constructed, one for each movement type and one which 
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combines gifting and private sales/purchases. These four networks were analysed using the 

same methods used on the full network to assess the relative importance of each 

movement type on its contribution to study area connectivity and provision of 

undocumented pathogen transmission routes. The gifting and private sales/purchases 

movements were looked at in combination as practically these movements will be difficult 

to separate for disease control interventions and may require different interventions 

compared to movements centred around livestock markets. 

 

All location nodes were assigned geographic coordinates, so that they could be plotted on 

a map for visualisation and so movement distances between nodes could be calculated. 

This was done using a stepwise process as naming and spelling of locations in the survey 

responses was variable. First, the surveyed sub-village nodes were assigned the sub-village 

central point co-ordinates (N matches = 47). The remaining non-sampled nodes (N = 100) 

name was matched first to the list of villages (N = 71) then wards (N = 12) and finally districts 

(N = 6) from the 2012 Tanzania NBS census data (the original list from which the study 

villages were selected)(National Bureau of Statistics, 2012) and coordinates from the 

geographic centre of the matched geographical area were assigned to the node. The 

remaining unmatched locations (N = 11) were manually checked by two local members of 

the study team (SM and RT) for potential spelling discrepancies, different naming for 

locations such as market names given rather than administrative unit, or when named 

locations fell out-with the study area. All 11 locations were successfully identified and 

assigned geographic central point coordinates using Google Earth to manually find the 

location and coordinates. Reported node types (market or other household/village), names 

and assigned coordinates were double checked by the same local members of the study 

team to minimise the risk of assigning erroneous locations in the case of a different or mis-

spelt location name. For network plotting and the network analysis, sampled sub-village 

nodes are referred to as sub-village nodes. Nodes that were recorded as market locations 

due to the recorded movements to or from them being market sales or purchase are 

referred to as market nodes. Nodes that were recorded as other households or villages due 

to household private sales, purchases or gifting movements being to or from them are 

referred to as origin/destination location (OD location) nodes. 

 

Data were imported, cleaned and analysed using R version 3.6.0 (R Core Team, 2019b) and 

the igraph package (Csardi and Nepusz, 2006) was used to construct and analyse the 
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livestock movement networks. Spearman’s ρ was calculated using the cor.test function in 

the R stats package(R Core Team, 2019a) to test the correlation between in-degree 

measures. For further details on data processing, methods and analysis see R scripts 

[HH_NW_1:5] descriptions and links in the Appendix section 9.1.1. 

 

2.2.3 Movement distances 

Link length (great circle distance between two nodes) was calculated to assess the scale at 

which the risk of pathogen transmission exists, via the recorded inter-household 

movements, within and out-with the study area. Links were categorised by species group 

(cattle or small ruminant which includes sheep and or goats), movement type (gift, private, 

or market), inward or outward movement, production system of outgoing and receiving 

nodes (agropastoral, pastoral or smallholder/urban), sub-village region (Arusha or 

Manyara) and production system type of sampled sub-village (agropastoral or pastoral) and 

were weighted by the number of livestock moved. A generalized linear mixed model 

(GLMM) was used to assess the effects of the aforementioned movement characteristic 

variables on movement distance with sampled sub-village included as a random effect. 

Distance was modelled on the log scale to satisfy model assumptions of normally 

distributed residuals. The model outcome estimate for movement distance was adjusted 

for Jensen’s inequality to account for the potential uneven sampling between sub-villages 

and backwards log transformation of distance. All P-values presented in the results are 

Wald P-values unless otherwise stated. Model goodness of fit was assessed by visualising 

the distribution of model residuals and the model marginal and conditional R2 were 

calculated to estimate the proportion of variation in movement distances explained by the 

model. 

 

2.2.4 Network Analysis 

Several concepts derived from network analysis were used to better understand the role 

of inter-household livestock movements in pathogen transmission. This included 

estimating the level of connectivity between populations in the study area via cattle and 

small ruminant movements, assessing the effects of different movement types on 

connectivity and identifying if any differences in connectedness exist between sub-villages. 
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The size of the giant strongly and weakly connected component (GSCC’s and GWCC’s) of a 

network can be used to evaluate how epidemiologically connected an area is and estimate 

the lower and upper bounds of epidemic sizes on a network, respectively. In the GSCC all 

nodes can reach one another via a directed link and in the GWCC links are assumed 

undirected so all nodes can reach each other via an undirected link. The size of the GSCC 

and GWCC were calculated using all recorded movement data and then separately on the 

subset market, gifting, private and combined private and gifting (from here on referred to 

as the private&gift)_networks.  

 

The average path length, which is the average number of steps between all pairs of 

connected nodes in the network, and the diameter of the network, which is the shortest 

path between two most distant nodes on the network, were also calculated for all 

networks. These measures show how many sequential movements of infectious animals 

would be required to spread a pathogen on average between any two connected nodes 

and the two most distant nodes in the network respectively. Finally, the network 

fragmentation index, which is the proportion of pairs of nodes that are not able to reach 

each other, was calculated to assess how relatively difficult, or easy, it would be to 

fragment the networks through targeted node removal. Fragmentation breaks the network 

up into many small components so that as few nodes as possible are epidemiologically 

connected and so the routes available for pathogen transmission are minimised. The higher 

the fragmentation index of a network the fewer nodes or links need to be removed to 

fragment it. The aim of an efficient disease control programme is to fully fragment a 

network with as little disruption or use of resources as possible.  

 

2.2.5 Node centralities 

Node centrality metrics were calculated for sub-village nodes to ascertain if there is 

heterogeneity in the amount of livestock movement traffic, connectedness and disease 

risk, between sub-villages. Node centrality measures that are epidemiologically important 

for pathogen acquisition and onward transmission were calculated for the sampled sub-

village nodes only. These include the in- and out-degree’s, which are the sum of the ingoing 

and outgoing edges, the geometric mean degree which is the square root of the product of 

the in and out-degree’s, and the betweenness centrality which is the number of times a 

node lies on the shortest path between two other nodes (Newman, 2010). Centrality 
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metrics were not analysed in the same way for non-sampled market and OD location nodes 

because these were not sampled from in the same way as the sub-villages. 

 

A sub-village node with high in-degree is at greater risk of bringing in pathogens from other 

nodes if infected livestock are moved along the network links (Palisson et al., 2016). Sub-

villages with high out-degree are at greater risk of infecting other nodes if they have 

pathogens circulating within the livestock population and infectious livestock move out of 

the node along the network links (Büttner et al., 2013a). Geometric mean degree can be 

used to calculate the importance, or rank, of a node for its contribution to livestock 

movements on the network. The higher the geometric mean degree, the busier a node is 

(more in-going and out-going movements) thus the livestock in these nodes are both more 

likely to be exposed to infectious pathogens and transmit pathogens on to other nodes. 

 

Betweenness measures the number of times a node lies on the shortest path between 

other nodes on the network (Newman, 2010). This represents a measure of a node’s 

reachability, so high betweenness will lead to an increased risk of pathogen exposure as a 

node is more likely to be reached by livestock carrying pathogen(s) (Molia et al., 2016). 

More specifically, livestock in nodes with a higher betweeness could be at higher risk of 

exposure to endemic pathogens because livestock repeatedly circulate through them.  

 

Right skewed distributions of node centrality measures are common in many naturally 

occurring networks and this pattern has frequently been identified in livestock movement 

networks in other settings (Salathé et al., 2010; Danon et al., 2011; Büttner et al., 2013a). 

A right skewed distribution of centrality measures show that few of the nodes in the 

network are responsible for much of the movement activity(Woolhouse et al., 1997; 

Newman, 2002). The distribution of centrality measures can help to inform whether a 

network is susceptible to fragmentation through targeted removal of the most central 

nodes (Büttner et al., 2013a). Successful fragmentation of a network diminishes the routes 

available for pathogens to transmit between nodes or groups of nodes with minimal 

disruption or resource use (Chami et al., 2017).  

 

Sub-village nodes that ranked highly for one centrality (in-degree, out-degree, 

betweenness and geometric mean degree) were evaluated to check if they also ranked 

highly for the others by calculating pairwise correlation coefficients using Spearman’s rho 
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(ρ). The P-value used to assess if the observed correlations are likely to be significant was 

calculated using the AS 89 algorithm (Best and Roberts, 1975). This analysis will show if 

nodes at high risk of pathogen acquisition are also those responsible for onward 

transmission and maintenance on the network. The amount of correlation between sub-

village’s risk of pathogen introduction or onward transmission will allow decisions to be 

made about how to implement disease control interventions most efficiently. For example, 

nodes with high in-degree at high risk of pathogen introduction may be good targets for 

vaccination but nodes with high betweenness might be good targets for active surveillance. 

If the centrality measures are highly correlated then the fixed costs of implementing 

different veterinary interventions can be shared and more high risk locations targeted with 

multiple intervention types using the available resources(Forman et al., 2012). 

 

2.2.6 Different methods for link weighting 

Node centrality metrics are calculated to quantify the relative importance of nodes in a 

network. Calculated centrality metrics can depend on the weight of the links going into or 

out of nodes. For example, node in-degree is the sum of the links going into a node and this 

metric is used to gauge a node’s risk of pathogen introduction. How links are weighted will 

therefore affect the calculated node centrality metrics and potentially where nodes rank 

when using centrality metrics to identify those at highest risk of pathogen introduction or 

onward transmission (Gates and Woolhouse, 2015a). How a link is weighted, when 

considering transmission of an infectious pathogen on a network, should depend on the 

infectiousness of the pathogen of interest, the granularity of the data available and needs 

to be carefully considered before constructing a network (Craft, 2015). For this study we 

are largely interested in the transmission of endemic zoonotic pathogens such as Brucella 

spp. and Coxiella burnetii that impair livestock productivity and cause disease in people 

(Hummel, 1976; Crump et al., 2013; Shirima and Kunda, 2016). These pathogens can be 

transmitted through close contact between susceptible and infectious cattle and small 

ruminants, or contact between susceptible livestock and infectious reproductive fluids and 

or environmental contamination (Hummel, 1976; H. I.J. Roest et al., 2011; Prabhu et al., 

2011; Shirima and Kunda, 2016). The primary analysis on the household survey movement 

data weights network links by the number of times a batch of at least one animal are moved 

between nodes as reported by all surveyed households within the sub-village. Each batch 

of at least one animal moved creates a link to another location with an associated risk of 

moving of at least one infectious animal and introducing pathogen to the sub-village where 
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it can circulate directly and indirectly within and between herds and flocks. If interest was 

directed more towards a highly transmissible pathogen which is excreted and spread more 

rapidly between infectious and susceptible animals (e.g. foot and mouth disease virus 

(FMDV)), then binary link weighting could be used where any movement reported between 

nodes creates a single link (Green, Kiss and Kao, 2006a). Conversely, if this study was 

focussed on less transmissible pathogens (e.g. bovine tuberculosis (bTB) (VanderWaal, 

Enns, et al., 2017)), links could be weighted by the total number of animals moved between 

nodes so the risk of pathogen introduction varies proportionally with the number livestock 

introductions.  

 

The three different methods of link weighting, chosen depending on the transmissibility of 

a specific pathogen of interest, have the potential to identify different nodes as high or low 

risk.  We wanted to assess if the results from the primary analysis in this study could be 

used to guide more generalised disease control programmes for pathogens of varying 

transmissibility. The two alternative methods for link weighting described above (binary or 

fully weighted) were therefore used to construct additional contact networks using all 

movement data so unweighted, partially weighted and fully weighted sub-village node 

centrality metric ranks could be compared. The level of correlation between the ranking of 

node metrics was assessed using Spearman’s rho (ρ) and the P-value used to check if the 

correlations are significant was calculated using the calculated using AS 89 algorithm (Best 

and Roberts, 1975). This was done to determine whether the same nodes ranked highly 

regardless of the method used to weight links and thus regardless of the transmissibility of 

the pathogen(s) of interest. If a high level of correlation exists between node ranks using 

the different methods of link weighting then pathogen control programmes that aim to 

reduce the burden of multiple pathogens with varying transmissibility could be developed. 

For further details see Appendix section 9.1.2. 

 

2.2.7 Data rarefication 

The network constructed using all household survey data represents a sub-sample of the 

true underlying inter-household livestock movement network in the study area. The 47 

sampled sub-village nodes represent around 2% of sub-villages in the study area. These 

nodes belong to 20 (2.2%) randomly selected villages which in turn belong to 20 (8.2%) 

wards (1 village was sampled per ward) in the study area (Arusha and Manyara regions, 

northern Tanzania). If sub-villages are frequently connected to each other via permanent 
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livestock movements then the sampling strategy should have captured many connections 

between sampled and non-sampled locations and the network will consist of a small 

number of large components. If sub-villages are not well connected via permanent 

livestock movements then the observed network will be heavily fragmented, made up of 

multiple components that are not connected to each other. We can check how connected 

sub-villages are by assessing the size and number of components in the observed network 

and then randomly removing proportions of the data and reassessing the network 

structure. If the observed network is not highly connected and it has numerous redundant 

links, then we would expect to see rapid fragmentation of the network through data 

removal. The level of data saturation that a study achieved using the sampling method can 

also be assessed by removing data and reassessing network structure. If data saturation, 

or close to this, has been achieved, then removing some data will not affect network 

structure. Conversely, if removing data does affect network structure, we can hypothesise 

that adding further data could increase the observed level of connectivity in the study area. 

The process of data rarefication will allow us to make transparent interpretations from any 

results and will indicate if sampling from more locations or extrapolating up from the 

observed network would increase the observed amount of connectivity in the study area. 

  

To evaluate the level of connectivity and redundant links in the observed network and the 

level of data saturation 50% and 10% of data was removed randomly, using a random 

number generator within the sample function in R statistical software (R Core Team, 2019b) 

at two levels: (i) the sub-village and (ii) the village/ward level. The network was 

reconstructed (10 times for each scenario) using the remaining 50% and 90% of data. This 

was done at the sub-village level because these represent the sampled nodes in the 

network, and at the village/ward level because this was the primary level of sampling. If 

data saturation has been achieved, and the network is densely connected with many 

redundant links, then dropping data will not have a large effect on overall connectivity and 

size of the giant components. If data saturation has not been achieved then dropping half 

of the data will remove around half of the observations (nodes, edges) and greatly reduce 

connectivity measures and a similar pattern would be seen by dropping 10% of data.  

 

In addition to assessing connectivity between sub-villages in the study area via inter-

household movements, it is also important for us to assess how many wards are connected 

in the study area via these movements. This has practical relevance as the ward could be 
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the smallest administrative unit that disease control programmes are implemented at. 

Knowledge of the level of ward connectivity via inter-household movements will also 

enable this work to be viewed in the context of others on livestock movements in the study 

area (Chaters et al., 2019). To assess the extent of ward connectivity via inter-household 

movements in the study area the number of connected wards was calculated for the full 

network, the four subset networks constructed using different movement types and the 

90% and 50% sub-sampled networks. 

 

2.3 Results 

2.3.1 Network construction  

Data from the 404 surveyed households, from 47 sub-villages within 20 randomly selected 

villages, were aggregated at the sub-village level and used to construct an inter-household 

movement network. The constructed network using all data has 147 nodes. These are the 

47 sampled sub-village nodes and 100 non-sampled origin/destination location nodes. 

Sixty-two of the origin/destination locations were active livestock markets (market nodes) 

and 38 origin/destination location nodes were households located in non-study sub-

villages without markets, these location nodes are referred to as OD nodes. The full 

network has 816 links, each representing the movement of a batch of at least one animal. 

This network represents a static sub-sample of the underlying annual sub-village inter-

household livestock movement network as we do not have information on the timing of 

movements throughout the year, or data from every household or every sub-village in the 

study area. Details on the size of the batches of livestock moved to and from sub-villages 

can be found in Table 2-1. Despite reporting a movement of some livestock between two 

locations, the exact number of animals moved was not reported for 55 of the 816 

movements thus data on these movements are not included in Table 2-1. Number of links 

by species group (cattle or small ruminant) and the type of movement (gifting, private, 

market) are shown in Table 2-2.   
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Table 2-1: Frequency of batch sizes of reported livestock movements for all movements 
where batch size was recorded (N = 761) (55 movements had no batch size recorded) 

Batch Size Cattle frequency Small ruminant frequency 
1 82 51 
2 64 57 
3 33 43 
4 31 30 
5 31 46 
6 15 22 
7 7 12 
8 12 6 
9 2 0 

10 23 33 
11 3 0 
12 4 11 
13 2 3 
14 0 3 
15 3 19 
16 1 3 
17 0 1 
18 3 0 
20 4 27 
21 0 1 
22 1 0 
24 0 1 
25 0 4 
26 0 2 
27 0 1 
28 0 1 
30 7 10 
32 2 0 
35 0 1 
40 1 6 
42 0 1 
45 0 1 
48 0 1 
50 2 8 
54 2 0 
55 0 1 
60 4 3 
78 2 0 
80 3 1 
92 0 1 

100 0 2 
104 0 1 
234 0 2 

Total edges 344 417  
 
 
 
 
 



53 

Table 2-2: Number of different edge types (Gift, Market and Private) for cattle and small 
ruminants, representing inward and outward movements in a static sub-sample of the 

underlying the northern Tanzanian inter-household livestock movement network 
 In Out Total 

Cattle Gift 8 (10%) 48 (16%) 56 

Cattle Market 70 (86%) 217 (74%) 287 

Cattle Private 3 (4%) 29 (10%) 32 

Cattle Sub total 81 294 375 

Small Ruminant Gift 2 (2%) 24 (7%) 22 

Small Ruminant Market 98 (95%) 283 (84%) 381 

Small Ruminant Private 3 (3%) 31 (9%) 34 

Small ruminant Sub total 103 338 441 

Total 184 632 816 
 

The majority of household livestock introductions came from market purchases (86% 

cattle, 95% small ruminants) but only 32% (35/108) of households that introduced livestock 

from markets reported using a movement permit to record this. Receiving livestock as gifts 

accounted for 10% of cattle introductions and 2% of small ruminant introductions and 

private purchases accounted for fewest livestock introductions (4% of cattle and 3% of 

small ruminant). The predominant reason for livestock exits were market sales (74% of 

cattle exits and 85% of small ruminant exits) and again very few households (23% (56/240)) 

that took livestock to a market reported declaring this by using an official movement 

permit. The giving of livestock as gifts was the reason for 16% of cattle and 7% of small 

ruminant exits and private sales, including sales directly for meat, contributed to 10% of 

cattle and 9% of small ruminant household exits.  

 

2.3.2 Movement distances 

Movement distances were calculated as the great circle distance between origin and 

destination co-ordinates. The distribution of movement distances is given in Figure 2-2. 

There is right skew of the distribution of movement distances with most being short 

journeys (minimum 0.4 km) but some occurring between locations that are much farther 

apart (maximum 294 km). There is a slight bimodal distribution of movement distance with 

a slight increase in the frequency of movements between 100 and 200km (Figure 2-2). 

Results of the generalized linear mixed effects regression model (GLMM) to estimate 
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movement distances are given in Table 2-3. The baseline movement distance (cattle, gifted 

into an agropastoral sub-village from an agropastoral origin) is estimated to be 19km (95% 

CI 12-29 km). Small ruminant movements were estimated to be 20% shorter than cattle 

movements (95% CI 0.70-0.88, P-value <0.001) which would make small ruminant gift 

movements into agropastoral sub-villages from an agropastoral origins an estimated 15km. 

Market and private movements were estimated to be 20% and 40% shorter than gifting 

movements respectively (market movements 95% CI 0.66-0.99 P-value 0.04 and private 

movements 95% CI 0.46-0.86, P-value <0.01). This means that cattle movements into 

households from markets (between agropastoral locations) are estimated to be around 

15km and privately purchased cattle are estimated to be introduced from locations that 

are closer again, around 11km away. Outward movements were also estimated to be 

almost 20% shorter than inward movements (95% CI 0.69-0.99 P-value 0.04). There was 

strong evidence to suggest that the production system of the origin and destination nodes 

was associated with movement distance (Likelihood ratio Chi squared test P-value <0.001). 

Most notable were that movements between small holder/urban nodes and pastoral nodes 

were estimated to be around 10 times longer than agropastoral-agropastoral movements 

(To 95% CI 6.53-17.69, From 95% CI 5.31-17.72) which means that these movements are 

estimated to cover distances closer to 200km. Pastoral-agropastoral movements were also 

estimated to be three times longer than agropastoral-agropastoral movements (95% CI 

2.02-4.78 P-value 0.01).  

 

There was no evidence to suggest production system of the sampled sub-village node 

alone, the region of the sampled sub-village or the number of livestock moved were 

associated with movement distance (Likelihood ratio Chi squared test P-value > 0.3) so 

these variables were not included in the final model. The marginal and conditional R2 values 

of the distance model show that the fixed effects explain an estimated 23% of variation in 

movement distance and the random effect of sampled sub-village explains a further 37% 

of the variation.  
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Figure 2-2: Distance of reported inter-household livestock movements in northern Tanzania 
 

Table 2-3: Results of multivariable mixed effects regression model to estimate the distance 
livestock are moved to and from households. The estimated journey distance in kilometres 
for the baseline group (Cattle, moving into the household, as gifts, between agropastoral 
locations), adjusting for Jensen’s inequality, is presented in the top row of the table. The 
multiplicative effect estimates of each variable on journey distance to and from the 
household with 95% confidence intervals are displayed in the rows below. 

 
Regression coefficient estimates 

(95% CI) 
(Nobs = 815) 

Predicted distance in km 
 (Baseline group: Cattle, Gift, Inward movement, 
agropastoral to agropastoral movement (ap-ap)) 

19.00 (12.52-28.81) 

Small ruminant (vs cattle) 0.79 (0.70-0.88)*** 
Market movement (vs gift) 0.80 (0.66-0.99)* 
Private movement (vs gift) 0.63 (0.46-0.86)** 

Outward movement (vs inward) 0.81 (0.68-0.97) * 
agropastoral to pastoral movement (vs ap-ap) 2.50 (1.62-3.86)*** 

agropastoral to smallholder/urban movement (vs ap-ap) 2.48 (1.62-3.86)* 

pastoral to agropastoral movement (vs ap-ap) 3.12 (2.02-4.78)*** 

pastoral to pastoral movement (vs ap-ap) 2.83 (1.84-4.35)*** 

pastoral to smallholder/urban movement (vs ap-ap) 10.75 (6.53-17.69)*** 

smallholder/urban to agropastoral movement (vs ap-ap) 2.17 (1.05-4.49)* 

smallholder/urban to pastoral movement (vs ap-ap) 9.70 (5.31-17.72)*** 

Sub-villages (N = 47) random effects variance 0.61 

Marginal R squared 0.23 

Conditional R squared 0.60 
Note: Sub-village fitted as random effect *p<0.05**p<0.01***p<0.01 
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2.3.3 Network analysis 

The fully weighted network using all data is plotted over a map of the study area (Arusha 

and Manyara Regions in northern Tanzania) in Figure 2-3, Figure 2-4 and Figure 2-5 to 

visualise, at scale, a year of all reported inter-household livestock movements to and from 

47 sub-villages (approximately 2% of all sub-villages in the study area). In Figure 2-3 link 

colour represents species moved, in Figure 2-4 link colour represents inward or outward 

movement and in Figure 2-5 link colour represents the production system of the receiving 

node. In all network plots link density is proportional to the number of animals moved. 

Where number moved was not reported the mean value based on link categories species, 

in or out movement and production system moved to was used (12 categories). 

Movements above the highlighted study area on the plots are those that cross the 

international Kenyan border. 

 

Figure 2-3: All household livestock movements from 404 surveyed households across 47 
randomly selected sub-villages in northern Tanzania between January and December 2016. 
Movements represent reported gifts, sales and purchases to and from other households in 
other villages (OD locations) and market sales and purchases. Node size is proportional to 
its degree (busier nodes appear larger) and edge density is proportional to the total number 
of animals moved. Sub-village nodes are the sampled nodes. Link colour represents the 
species group moved. 
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Figure 2-4: All household livestock movements from 404 surveyed households across 47 
randomly selected sub-villages in northern Tanzania between January and December 2016. 
Movements represent reported gifts, sales and purchases to and from other households in 
other villages (OD locations) and market sales and purchases. Node size is proportional to 
its degree (busier nodes appear larger) and edge density is proportional to the total number 
of animals moved. Sub-village nodes are the sampled nodes. Link colour represents if the 
movement was reported as an inward or outward movement. 
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Figure 2-5: All household livestock movements from 404 surveyed households across 47 
randomly selected sub-villages in northern Tanzania between January and December 2016. 
Movements represent reported gifts, sales and purchases to and from other households in 
other villages (OD locations) and market sales and purchases. Node size is proportional to 
its degree (busier nodes appear larger) and edge density is proportional to the total number 
of animals moved. Sub-village nodes are the sampled nodes. Link colour represents the 
agro-ecological class of the receiving node (Agropastoral (AP), Pastoral (P) or Small holder / 
Urban (SH/Urb)) 
 

The full network consists of 4 weakly connected components with the giant weakly 

connected component (GWCC) containing 137 nodes (93%). This means that, if links are 

bidirectional the network consists of 4 groups of connected nodes and 93% of nodes belong 

to the largest group. The strongly connected network, calculated assuming links are 

unidirectional and only travelled in the direction they are reported, consists of 10 

connected components. The largest of the strongly connected components, the giant 

strongly connected component (GSCC), contains 29% of nodes (N=43). The size of the GSCC 

shows that despite sampling a small sub-sample of the underlying network and having 

missed some number of links, 30% of locations identified by this data are connected via a 

directed link and 93% by an undirected link. 

 

The reciprocity of the network, which measures the proportion of links that are reported 

in both directions is 0.35, so 35% of the recorded movements in and out of sub-villages 
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have happened in both directions between the two locations in the year preceding the 

study. The average path length to get between any pair of connected nodes in the network 

is 6.5 and the diameter is 16 (shortest path between the two most distant nodes in the 

connected network). The diameter (N = 16) could, in reality, represent the minimum 

number of sequential livestock movements required to move an infectious pathogen 

between the two most distant locations largest connected component of the network. This 

stepwise chain of transmission would require the duration of time between movements in 

and out of each node to be long enough for a transmission event to occur between 

infectious and susceptible individuals within the node.  

 

The fragmentation index (proportion of pairs of nodes that cannot reach each other) of the 

full network is 0.91. This means that almost 10% of pairs of nodes in the network can reach 

each other via a directed path. The aim of a disease control programme would be to remove 

some of the most central nodes to fragment the network and reduce the size of the giant 

connected components so that fewer pairs of nodes can reach, and thus transmit pathogen 

to, each other. The full inter-household movement network also shows that despite 

sampling from sub-villages in only 8% of wards in the study area the observed network has 

movements that connect 34% of wards in the study area.  

 

2.3.4 Subset networks 

The data were seperated into the three movement types (private, gift and market) and 

used to construct four additional networks (private, gift, market and private&gift 

combined) to assess the extent to which each movement type contributes to study area 

connectivity. The three subset networks for the three distinct movement types (private, 

gift and market) are plotted in Figure 2-6 (a,b,c) and summary network statistics for the 

four subset networks (private, gift, market and private&gift combined) are given in Table 

2-4). Private movements created the smallest network (48 nodes and 66 links). This 

network alone was completely fragmented (fragmentation index 1.00) with no GSCC and 

only 5 nodes (10%) in the GWCC. On its own this network might not be considered a cause 

for concern with regards to a rapidly spreading pathogen in an epidemic scenario, as these 

movements do not connect multiple locations. The movements do still pose a risk of 

introducing endemic pathogens that transmit slowly between individuals into populations. 

Market movements created the largest subset network (108 nodes and 669 links) with the 

largest GSCC  (8 nodes (7%)) and GWCC (79 nodes (73%)). The gifting network sits between 
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these two with a GSCC containing 3 nodes (5%), three other SCC each containing two nodes 

and a GWCC containing 33 nodes 52%).  

 

The private&gift network was constructed to evaluate how these movements contribute 

to study area connectivity when combined, in case interventions cannot be implemented 

in a way that accounts for the differences between these movement types. In combination 

the gifting and private movements connect more nodes and wards than either movement 

type alone. This shows that these inter-household movements are fundamentally different 

when we consider the risk of pathogen transmission through these movements, because 

they create links with different locations. The combination of the gifting and private 

movements does not however create a network with a connected component as large as 

the one created through market movements. The fragmentation index of the market 

movements only network is 0.98 which is higher than the fragmentation index of the full 

network (0.91) and shows that only 2% of pairs of nodes in this inter-household market 

network can reach one another via a directed path. This indicates that if inter-household 

market movements were viewed alone, fewer nodes would have to be removed to 

fragment the network and disrupt pathogen transmission. When all inter-household 

movements are viewed in combination however, they reveal the additional links that exist 

between nodes that are not centred around livestock markets but could provide routes for 

pathogen transmission.  

 

The four subset networks (private, gifting, market and private&gift) all consist of more 

smaller components compared to the full network, and are all closer to complete 

fragmentation. Despite being less connected than when assessed in combination the 

subset networks still include livestock movements to and from 11%, 17%, 27% and 22% of 

study area wards respectively when data were only collected from 8% of wards in the study 

area. Further details and links to the code for network analysis can be found in the 

Appendix section 9.1.1 (HH_NW_4 and 5). 
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a. b. 

 

c. 

 

Figure 2-6: Subset networks showing connectivity across study area and beyond via private (a), gift (b) and market (c) movements of livestock. 
Node coloured by type and node size proportional to its degree. Link colour represents species moved and density is proportional to the number 
of livestock moved. Grey opaque area are three study regions Arusha, Manyara and Kilimanjaro. Northern straight-line boundary is the 
international border with Kenya. Sub-village nodes are sampled nodes, market nodes are origin/destination locations containing a market and OD 
locations are non-sampled origin/destination locations that do not contain a market. 
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Table 2-4: Network Summary statistics for the full inter-household livestock movement network constructed using all movement types, the gifting 
movements network, the private movements network, the market movements network and the gifting and private movements combined network. 

 All  
movements Private movements Gifting 

movements 
Market 

movements 
Gifting and private 

combined 

Nodes 147 48 64 108 93 

Links 816 66 82 668 148 

Number of strongly connected 
components > 1 10 0 4 15 3 

Size of Giant Strongly 
connected component 43 (29%) 1 3 (5%) 8 (7%) 5 (5%) 

Number of weakly connected 
components > 1 4 18 10 5 12 

Size of Giant Weakly connected 
component 137 (93%) 5 (10%) 33 (52%) 79 (73%) 51 (35%) 

Diameter 16 2 4 17 5 

Fragmentation index 0.91 1.00 0.99 0.98 0.997 

Average path length 6.5 1.09 1.74 4.94 1.98 

Study area wards listed in the 
network (total N = 245) 83 (34%) 27 (11%) 41 (17%) 65 (27%) 54 (22%) 
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2.3.5 Node centrality metrics 

A statistical summary of sub-village node centrality metrics in-degree, out-degree, 

geometric mean degree and betweenness is provided in Table 2-5. Histograms of the four 

node centrality metrics distributions are given in Figure 2-7(a, b, c, d). To visualise the level 

of correlation between sub-village in-degree and out-degree and sub-village in-degree and 

betweenness these are plotted in Figure 2-7 (e and f respectively). 

 

The distributions of sub-village in-degree, out-degree, geometric mean degree and 

betweenness centrality metrics are right skewed (many nodes have a low 

value/connections, some have many). This is a common feature of many naturally occurring 

networks (Newman, 2002; Büttner et al., 2013a). The variance to mean ratios are greater 

than 1 for node in-degree, out-degree and geometric mean degree, which along with the 

right skewed distributions, provides evidence to show that the node metric results are 

over-dispersed. Out-degree is less dramatically skewed than the other measures and there 

are more out-going links (N = 632, μ = 13.5) than in-going (N = 184 μ = 4) on the network.   
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Table 2-5: Summary statistics showing the distribution of sub-village node centrality metrics in-degree, out-degree, geometric mean degree and betweeness – 
network edges are weighted by the number of times they are reported by each sub-village node. 

 Min 
lower 

quartile 
Median Mean upper quartile Max 

Variance Variance: 

Mean ratio 

In-degree 0 1.5 4 4 6 13 9.7 2.4 (>1) 

Out-degree 0 7 11 13.5 22 37 78.4 5.8 (>1) 

Geometric mean 

degree 
0 3.4 5.2 6.7 10.6 19.2 25.2 3.8 (>1) 

Betweenness 0 5.5e-5 3.9e-3 2.0e-2 2.0e-2 1.5e-1 NA NA 
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a. 

 

b. 

 

c. 

 

d. 

 

e. 

 

f. 

 

Figure 2-7: Sub-village (a) in-degree, (b) out-degree, (c) betweenness, (d) geometric mean 
degree, (e) sub-village in-degree plotted against out-degree (f) sub-village in-degree plotted 
against betweenness. 
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The Spearman’s rank correlation coefficient was calculated to assess the level of correlation 

between sub-village node centrality metrics in-degree (risk of pathogen introduction), out-

degree (measure of the risk of onward transmission), betweenness (risk of passing 

pathogen between other groups of nodes) and geometric mean degree (measures of the 

risk of pathogen propagation on the network). All pairwise correlations are positive (p-

value <0.0001 calculated using AS 89 algorithm) for the four node centrality measures that 

can be used to identify central sub-village nodes, at high risk for pathogen introduction or 

propagation on the full network. Spearman’s Rho correlation coefficients results are given 

in Table 2-6. In-degree and geometric mean degree are highly positively correlated but this 

is to some level expected as geometric mean degree is calculated in part from the in-degree 

(Spearman’s ρ = 0.92).  

Table 2-6: Spearman’s Rho correlation coefficients showing pairwise correlations between 
four sub-village node centrality metrics. All pairwise correlation P-values less than 0.0001  

 In-degree Out-degree Betweenness Geometric mean 
degree 

In-degree - - - - 

Out-degree 0.51 - - - 

betweenness 0.49 0.61 - - 

Geometric 
mean degree 

0.92 0.76 0.64 - 

 

2.3.6 Different methods for link weighting 

The full network was reconstructed using two alternative methods to weight the links 

(binary so the links are present or absent and fully weighted by total number of animals 

reportedly moved). The additional networks were constructed to represent networks and 

associated node centralities that might be needed if the primary pathogens of interest for 

disease control were more or less transmissible than the endemic zoonotic pathogens of 

primary interest in this study. The centrality measure in-degree was re-calculated on the 

additional networks for all sub-village nodes and the three versions of in-degree (binary, 

partially weighted and fully weighted) were compared to assess how correlated they are. 

There was a high level of correlation between the three in-degree measures (Spearman’s 

rho > 0.86 for all pairwise correlations P-value <0.0001) which suggests that, despite 

different link weighting methods the three measures are picking up the same information. 

A node identified as high risk of introducing of a highly infectious pathogen on the inter-

household movement network is also at high risk of introducing a much less transmissible 

pathogen.  
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2.3.7 Data rarefication  

Results from the data rarefaction are shown in Table 2-7. Summary statistics for network 

measures and number of wards connected via livestock movements are compared for 

networks constructed using all data and a random 50% and 90% of sub-village and 50% and 

90% of sampled wards data. Removing 50% and 10% of the data at both sampling levels 

reduced all network measures. For the 50% data reduction the total number of links was 

halved at each level of rarefication. The total number of nodes in the network was least 

influenced by halving the number of sampled sub-villages (27% reduction) compared to 

wards (45% reduction). Both methods of removing 50% of data resulted in over 70% 

reduction in the size of the GSCC. Removing a random 10% of the data, at both levels also 

showed a relatively large reduction in the size of the GSCC (35% when data removed at sub-

village level and 28% when data removed at the ward level).  



68 

Table 2-7: Network results (number of nodes, edges, size of the giant strongly and weakly connected components (GSCC and GWCC) and the number of study 
area wards included in the network) using; all SEEDZ household survey data (complete dataset), a randomly selected subset of data from 50% of sampled sub-
villages and a randomly selected subset of data from 50% of sampled wards. 

  Randomly removed 50%  
sampled sub-villages data 

Randomly removed 50%  
sampled wards data 

Randomly removed 10%  
sampled sub-villages data 

Randomly removed 10%  
sampled wards data 

  All 
data 

Min – Max 
(mean) 

Mean % 
reduction 

Min – Max 
(mean) 

Mean % 
reduction 

Min – Max 
(mean) 

Mean % 
reduction 

Min – Max 
(mean) 

Mean % 
reduction 

Nodes 147 86 – 100 (93) 27% 63 – 92 (81) 45% 124-139 (135) 8% 127-141 (136) 7% 

Edges 816 371 – 458 (413) 49% 281 – 470 (409) 50% 673-769 (724) 11% 681-789 (740) 9% 

GSCC 43 6 – 30 (10) 77% 7 -35 (12) 72% 8-43 (28) 35% 10-43 (31) 28% 

GWCC 137 42 – 89 (64) 53% 18 – 84 (57) 58% 103-130 (122) 11% 108-133 (124) 9% 

Wards 83 55 – 68 (61) 27% 39 – 59 (49) 41% 70-82 (79) 4% 73-81 (78) 6% 
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2.4 Discussion 

2.4.1 General 

The data described in this study show that inter-household livestock movements such as 

private purchase, gifts and market sales or purchases provide a largely undocumented level 

of epidemiological connectivity across northern Tanzania and beyond. The network of 

inter-household livestock movements provides a route for pathogen transmission between 

both geographically close (minimum 400m) and distant (maximum 294km) locations, 

including across the international border with Kenya.  We show that disease control 

interventions in northern Tanzania should be discussed at a regional level if they are to 

avoid being undermined by movement activity and epidemiological connections that 

remain unaccounted for. The documented movements to and from Kenya provide a 

reminder that the international border here will not act as boundary to pathogens, as has 

been shown here and in other countries (Little, 2009; Dean et al., 2013; Motta et al., 2017).  

 

The relatively high proportion of nodes contained in the giant components of the observed 

network (GSCC 30%, GWCC 93%) show that inter-household movements are responsible 

for creating epidemiological connections between a large proportion of locations. The 

minimum number of sequential movements taken to get between the two most distant 

locations on the observed network was 16. If more data gathered from other villages in the 

study area increased the density of network connections, which is what the data 

rarefication analysis suggests, the number of sequential movements required to cross the 

network would likely decrease. Either way, this number indicates that pathogens could be 

transmitted relatively quickly across the study area via inter-household movements if we 

consider the fact that livestock market movements were the most frequently reported and 

markets are active up to twice a week. 

 

When viewed alone the three inter-household movements types (gifting, private and 

market) do not create particularly large or well-connected network graphs and the private 

network alone is completely fragmented. Alone therefore, the different movement types 

might not raise cause for concern with policy makers interested in developing pathogen 

control programmes, particularly when considering rapidly transmissible pathogens with 

epidemic potential. They may still however provide enough movement between 
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populations to allow pathogens with low R0 values to persist (Prentice et al., 2017). 

Conversely, when the movements are combined into a single network, which we consider 

to be appropriate here as pathogens do not differentiate between the reasons for livestock 

movement, the network becomes relatively well connected (93% of nodes are connected 

to one another via an undirected link, 30% via a directed link). This means that the observed 

network and underlying population is susceptible to epidemic outbreaks of more infectious 

and rapidly transmissible pathogens (Kao et al., 2006; Prentice et al., 2017). This is observed 

despite the network data being collected from a very sparse sample of the underlying 

population (2% of sub-villages).  

 

Although the observed network is well connected it does appear have a structure that lends 

itself to relatively easy fragmentation (FI 0.91) by targeted node removal, provided any 

data from additional unobserved nodes is similar to data from the sampled nodes. When 

50% and 10% of the data are removed the network becomes much less connected and the 

giant components (GSCC and GWCC) shrink significantly. This shows that, if observed data 

are representative of the underlying network, few nodes would need to be removed to 

break apart the network to prevent pathogen transmission across it. The heterogeneity and 

right skew of sub-village node centrality measures (in-degree, out-degree, betweenness 

and geometric mean degree), in addition to the positive correlation between the different 

measures, shows that some high risk sub-village nodes can be identified and targeted for 

removal to fragment the network with minimal disruption (Marquetoux et al., 2016; Chami 

et al., 2017). The positive correlation between the different centrality measures shows that 

sub-village nodes at high risk of pathogen introduction are also high risk for onward 

pathogen transmission on the network (Rautureau, Dufour and Durand, 2011; Molia et al., 

2016; Palisson et al., 2016). The high level of positive correlation between the different 

weighted networks (binary, partial and fully weighted) in-degree measures also show that 

interventions that target pathogens of varying transmissibility can be efficiently 

implemented at the high risk nodes identified on this network. The high level of correlation 

between all node centrality metrics evaluated here will make identifying high risk locations 

for implementing disease control interventions relatively straightforward. This is useful 

information for policy makers as it can be used to ensure harmonised disease control 

programmes are developed that focus on multiple pathogens, in the highest risk locations, 

for optimal cost efficiency and resource use.  
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Practically, node removal could be achieved by implementing movement restrictions, 

multi-pathogen active surveillance or vaccination programmes or knowledge exchange 

exercises so livestock keepers are aware of the risks associated with livestock introductions 

(Cowan and Jonard, 2004; Büttner et al., 2013a; Vallée et al., 2013; Colman et al., 2019; 

Ferdousi et al., 2019; Hidano, Gates and Enticott, 2019).  Identifying the most central nodes 

in the study area, before being faced with a large-scale disease outbreak, will allow policy 

makers to be one step ahead in preparation for such an eventuality. Having established 

early warning surveillance platforms in the high risk locations will aid in the control of 

pathogens such as Rift Valley fever (Sindato, Karimuribo and Mboera, 2012) and peste des 

petits ruminants (Herzog et al., 2019) that frequently plague the region causing significant 

socio-economic losses (Halliday et al., 2012; Muma et al., 2014). It will also be beneficial 

for surveillance of any new emerging livestock pathogens. Targeted control efforts are an 

efficient way to spend resources which is particularly important here in northern Tanzania 

where resources are scarce, funding for livestock disease control is limited and the burden 

of pathogens are high (Coker et al., 2011; Rushton, Uggla and Magnusson, 2017). Targeted 

control measures can also be less disruptive and have less overall socio-economic 

consequences compared to blanket interventions such as movement bans in the face of a 

disease outbreak (Tildesley et al., 2019).  

 

Household livestock exits, that could result in onward pathogen transmission events, were 

reported more frequently (77% of reported movements) than introductions and network 

node centrality metrics show that out-degree was less skewed than other centrality 

metrics. This is likely to be a consequence of the broadly important and more frequent 

need for households to sell livestock to generate income (generating out-going edges), 

compared to the relatively rare practice of introducing livestock when an excess of cash 

capital is available. This finding shows the economic importance of animal movements at 

the household level and highlights that the drivers for these movements need to be 

carefully considered when designing disease control programmes (Haseeb et al., 2019). 

Household needs and family responsibilities will still exist in the face of any livestock 

disease outbreak. A sweeping outright ban on livestock movements or market closures will 

remove a primary method used to generate household income in northern Tanzania and 

thus could be met with non-compliance and key stakeholder disengagement. The high 

reciprocity (35%) identified on the network indicates that there are factors involved in 
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livestock movement decision making that encourage people to move animals between the 

same locations. Movements could have been to and from up to 900 villages in the study 

area and many more villages beyond this. The drivers that result in people from the same 

sub-villages often choosing to move livestock in both directions between the same 

locations within a year could be family or friendship ties or more economically focussed 

such as proximity to livestock markets. Regardless of the reason for high reciprocity on the 

network this is useful to have identified. The reciprocity could be taken advantage of to 

reinforce disease awareness message campaigns about risk of movements and pathogen 

transmission as information can flow between nodes along with livestock as people from 

each node interact. This could also be beneficial when implementing vaccination 

programmes as the high rate of livestock exchange between connected nodes (excluding 

markets) could ensure vaccine coverage does not drop, provided high risk vaccinated  

nodes largely connect to other vaccinated nodes. Harmonising disease control efforts to 

target multiple pathogens in locations identified as high risk for pathogen introduction and 

onward transmission, with an aim of reducing overall transmission rates and disease 

burden appears to be a sensible option for northern Tanzania. 

 

The model fitted to estimate household movement distances showed that cattle 

movements generally extend about 20% further than small ruminant movements and gift 

movements are generally longer distance than market or private sale and purchase 

movements. This could be due to the fact that commercial movements have a lower 

opportunity cost if they are shorter whereas the motivations (family, clan, friendship ties) 

for gifting movements are not constrained by economics. The longer distances of gifting 

movements and their potential lack of economic predictability, again highlights the 

importance of considering these movements when developing disease control 

programmes. From an economics perspective we might also expect longer journeys to be 

made by larger batches of animals so that the fixed journey costs are shared and each 

animal journey then has a lower marginal cost (Tisdell and Adamson, 2017). The distance 

GLMM showed that there was no evidence to support this economic assumption in the 

household survey data. This finding highlights that there are motivations beyond 

economics for the inter-household livestock movements. These movements differ from 

commercial movements, with different drivers and so they are unlikely to be well predicted 

by economic models. 
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The production system of the giving and receiving nodes had the largest effect on 

estimated movement distance with the longest movements being those to and from small 

holder or urban locations (high livestock and human population density(de Glanville et al., 

2020)) from agropastoral or pastoral nodes (less densely populated, larger herd and flock 

sizes(de Glanville et al., 2020)). These long-distance movements to and from more densely 

populated areas could explain the slightly bimodal nature of the movement distance 

distribution shown in Figure 2-2. It also supports findings from other studies that show 

livestock generally move from sparsely populated rural areas of production into densely  

populated areas for consumption (Motta et al., 2018; Napp et al., 2018). Pastoralist 

production systems have previously been associated with higher pathogen prevalence 

(Herzog et al., 2019; Bodenham, Lukambagire, et al., 2020). Identifying the existence of 

long-distance movements between the different production system types highlights that 

geographical distance from a high prevalence area will not render a node, and thus its 

population, immune to pathogen introduction. Ultimately it is important for public health 

officials and policy makers to be aware of these long-distance movements because, in the 

case of a disease outbreak, a pathogen could be rapidly moved into an area of high livestock 

and human population density from a distant location, without detection (Napp et al., 

2018).  

 

Through the data rarefication process, we show that total number of nodes connected in 

the network was least influenced by removing data at the sub-village level compared to the 

ward level. This indicates that sub-villages within wards/villages, which are more spatially 

clustered, are more similar to each other and connect to similar locations. For future 

sampling to identify highly connected locations it would be more efficient to sample from 

different villages or wards rather than from multiple sub-villages within wards. 

Additionally, for the design and implementation of disease control programmes we can 

consider sub-villages within villages/wards to be more similar to each other. Sub-villages 

within villages/wards will thus benefit from similar interventions if these are targeted 

based on disease risk as a result of connectivity through inter-household livestock 

movements. Interventions can therefore be designed at the less granular spatial 

administrative level of the ward or village which is more practical and feasible compared 

to targeting sub-villages.  
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The data rarefication process also shows a less dramatic reduction in the number of wards 

listed in the 50% and 90% subsampled networks compared to the overall number of nodes. 

This finding shows that, if the observed network was constructed at the larger spatial scale 

of the ward, we would observe a more densely connected network with a number of 

redundant links. This data could therefore be used to calculate centrality measures of 

wards to identify the most influential wards at greatest risk of pathogen acquisition or 

onward transmission through household livestock movements in the study area. This is an 

important policy relevant point to note as practically the ward is likely to be the smallest 

administrative unit that a control programme is implemented at. If that is the case, further 

analysis is needed to identify key wards and thus locations to target control efforts. 

Identifying the most highly connected wards via inter-household movements would also 

allow these to be compared to the most central high risk wards that were identified using 

livestock movement permit data from the study area (Chaters et al., 2019). Practically if the 

same nodes are identified as high risk this will make targeting pathogen control 

programmes even more efficient. If different wards are important for the different 

movement types, then careful consideration of the importance of each network layer will 

be needed.  

 

In addition to the permit and household movement network layers mentioned above, there 

will be other types of movement or interaction between nodes in the study area, such as 

the lending of animals or the sharing of natural resources, that create epidemiological links. 

This could be particularly important for pathogens with indirect transmission routes such 

as Coxiella Burnetii (environmental contamination) or Rift Valley fever (mosquito 

transmission). We know that when multiple network layers are combined to create a 

multiplex with multiple routes available for pathogen transmission between nodes the 

minimum disease epidemic threshold is dramatically reduced compared to what is 

calculated on a single network layer (Zhao et al., 2014; Zhang et al., 2015). Having this 

network of inter-household livestock movements documented means that this data can be 

combined with other network layers from northern Tanzania in future to create a multiplex 

network of livestock movements and epidemiological connections (Chaters et al., 2019). A 

multiplex network could then be analysed to identify high risk locations based on the 

multiple different types of livestock movement and epidemiological connections. 
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Data rarefication also shows that data saturation is unlikely to have been reached, and the 

observed network does not have a surplus of redundant links. Collecting more data from 

wards in the study area, or extrapolating up from our data, could further increase the 

observed level of connectivity via inter-household movements in the study area. Additional 

high-risk nodes might also be identified if sampling was more extensive. Care should be 

taken however to avoid unnecessary oversampling which would waste time and resources 

and further contribute to research fatigue. If additional data was collected it should be 

added to the network in a stepwise process and the network re-assessed, with random 

data removal, to evaluate at each stage if data saturation or close to it has being reached 

(no change in nodes centrality ranking and redundant links appearing). Through the data 

rarefication we have shown that the current data is unlikely to have identified the complete 

underlying network  but we know that the value of adding new information to a network 

diminishes as the high risk nodes are identified (Colman et al., 2019). Chami et al found 

using an acquaintance algorithm (Chami et al., 2017) to be a more efficient method of 

network construction and identification of the most central nodes rather than 

oversampling from many more locations and wasting peoples’ time. This method identifies 

the most connected locations by sampling from random locations and making the 

assumption that the most connected nodes in any network are likely to be those that are 

mentioned by the randomly selected others. Applying this method we could trial 

interventions such as active surveillance at the most central non-sampled nodes in the 

observed network and assess if removing these nodes efficiently fragments the underlying 

network. Given that the majority of household movements reported in this data are market 

movements this means that livestock markets are likely to be important non-sampled 

locations contributing significantly to epidemiological connectivity across northern 

Tanzania and beyond. The role of livestock markets in connectivity across Tanzania needs 

to be investigated further to evaluate if high risk locations can be identified and used as 

targets for implementation of efficient livestock disease control and surveillance 

programmes.  

 

To improve the findings from this study and further understand the true impact of livestock 

movements on pathogen transmission risk in the study area, longitudinal data that details 

the timing of movements and disease incidence would also be valuable. This data could be 

used to construct a dynamic epidemiological transmission network model on which 
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different intervention scenarios could be simulated to identify the most efficient type of 

interventions for maximum reduction of pathogen burden (Barnard et al., 2018; Enright 

and Kao, 2018).  

 

2.4.2 Data Limitations 

The SEEDZ household survey was very detailed and took up to five hours to complete, with 

the questions regarding livestock husbandry and livestock movements asked towards the 

end of the survey. There is the potential for some interviewee and interviewer fatigue 

which could have resulted in a failure to recall all livestock movements in the previous year 

(reporting bias). The survey also asked the questions in relation to household livestock 

movements over the previous 12 months which in itself leads to the potential for under 

reporting due to relying on good memory/recall from the interviewee. Furthermore, the 

topic of livestock numbers and introductions is a sensitive subject in the study area because 

livestock numbers equate directly to wealth. For this reason, numbers of introductions 

could have been underreported or withheld. The location that animals are received from 

and sent to is a less sensitive subject which potentially made the inclusion of network 

measures as risk factors a more robust measure of livestock movement activity compared 

to absolute counts of livestock.  

 

The movement permits that are supposed to be used to record all permanent livestock 

movements between two locations have a movement tax associated with them. The 

movement tax payable depends on the administrative boundaries crossed by the 

movement. An increasing tax is due if the movement crosses a ward, district or regional 

boundary (all administrative units increasing in size from ward to region).  The person 

moving the livestock is responsible for getting the movement permit and paying the 

movement tax. This movement tax could be a major reason for underuse of permits and 

thus recording of livestock movements as people try to avoid paying it and thus avoid 

registering their livestock movements.  
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2.5 Conclusions 

This study shows that inter-household movements of livestock add a layer of 

epidemiological connectivity in northern Tanzania that is otherwise undocumented. These 

movements link locations up to 300km apart and cross international boundaries. Alone and 

in combination with other types of livestock movements, inter-household movements 

should be a cause for concern for those charged with developing pathogen control 

programmes. The majority of reported movements were to and from markets but few 

households actually recorded these movements by using a government permit. Perhaps a 

method of movement reporting, that has minimal financial cost could be considered by the 

government if they can prioritise disease surveillance and control above tax collection.  

 

The observed inter-household movement network exhibits properties that suggest it is 

susceptible to rapid fragmentation, by identification and removal of the most central nodes 

through targeted disease control interventions. This could be done via increased 

surveillance, vaccination or temporary movement restrictions. A high level of 

heterogeneity and right skew of the sub-village node centrality metrics and positive 

correlation between node centrality metrics means that targeted node removal to 

fragment the network could be done efficiently with minimal disruption to other livestock 

activity. This is an important finding as livestock movements are of vital socio-economic 

importance in northern Tanzania. The high level of correlation between in-degree 

centrality metrics calculated on the inter-household network using different methods to 

weight links (binary links weighted based on how one might represent risk of transmission 

of a rapidly transmissible pathogen such as FMDV and fully weighted links based on how 

one might represent risk of transmission of a less transmissible pathogen such as bovine 

Tuberculosis) show disease control programmes could target multiple pathogens of varying 

transmissibility in high risk locations. As society is moving towards improved efficiency of 

livestock production, it is important to identify where targeted interventions can be 

implemented, that do not require unnecessary culling of animals (wastage) or excessive 

drug use (pollution and increased resistance risk). A multi-pathogen approach focused on 

reducing overall pathogen burden in the livestock populations by reducing transmission 

between and within populations by regulating and reducing livestock movements appears 

to be a sensible and feasible option in this area. A control option that is focused on livestock 

movement with the potential to improve productivity and sustainability, while not costing 
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as much financially, environmentally or socially as movement bans or drug use programmes 

should be considered in northern Tanzania. Finally however, if undocumented inter-

household movements epidemiologically link regions beyond this study area, as this data 

suggests, we urge discussion of disease surveillance and control programmes at a regional 

scale to prevent all efforts being undermined.  
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3 Livestock introductions and the risk of 
infectious pathogen exposure in northern 
Tanzania 

Contribution 

Existing serological data from the SEEDZ and The Impact and Social Ecology of Bacterial 

Zoonoses in Tanzania (BacZoo) project, along with survey data from both studies were used 

in this chapter. Further details on these studies are given within the chapter. The 

movement specific research questions that could be answered utilising available qualitative 

and serological data, building on analysis results from the previous chapter in this thesis 

were conceptualised by GC. Data cleaning, processing and analysis, including choice of 

methods for analysis, were done by GC. 

3.1 Introduction 

Livestock movements create epidemiological links between locations and populations 

which provide direct routes for pathogen movement between populations (Fèvre et al., 

2006). Zoonotic pathogens such as Brucella spp., Coxiella and Leptospira  spp. can be 

transmitted directly and indirectly between livestock (cattle and small ruminants) and from 

livestock to people. Close contact between people and livestock is identified as a major risk 

factor for zoonoses (Allan et al., 2018; Maze et al., 2018; Bodenham, Lukambagire, et al., 

2020; Johnson et al., 2020). Zoonotic pathogens not only threaten human health directly 

but are also estimated to be responsible for 50% of global livestock losses by reducing 

livestock productivity (Molyneux et al., 2011; World Bank and TAFS Forum, 2011). Thus, 

zoonotic pathogens, along with other production-limiting pathogens such as bovine viral 

diarrhoea virus (BVDV)(Lanyon and Reichel, 2013; Okumu et al., 2019) and Bovine Herpes 

virus-1 (BHV-1)(Ata et al., 2006; Mineo et al., 2006; Mahmoud and Allam, 2013) cause 

reduced livestock productivity through impaired growth rates and milk production and 

excess reproductive and mortality losses. Poor livestock productivity has extensive 

negative human and livestock health and socio-economic consequences globally, 

particularly in communities that are heavily dependent upon livestock for socio-economic 

and nutritional security (Ashworth and Mainland, 1995; Kossaibati and Esslemont, 1997; 

Thompson et al., 2002; Tomley and Shirley, 2009; Hendrik I J Roest et al., 2011; Rich and 

Perry, 2011; Bouley et al., 2012; Sindato, Karimuribo and Mboera, 2012; Vanderburg et al., 
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2014; Wensman et al., 2015; Lankester et al., 2015; Njeru et al., 2016; Guidoum et al., 

2020). The economic impacts of livestock diseases have long been recognised as keeping 

people in marginalised communities trapped in poverty (Steinfeld et al., 2006; Perry and 

Grace, 2009; Rich and Perry, 2011). In a world with an expanding population, over 2 billion 

people living on the margins, prevalent macro and micronutrient deficiencies, 

environmental pressures and climate instability, there is a cumulative need to improve 

livestock productivity to ensure people have access to adequate nutrition (Upton, 2004; 

FAO, 2009; Nair, Augustine and Konapur, 2016; Myers et al., 2017; Rushton et al., 2018). 

Reducing the burden of livestock diseases is an obvious first step towards improving the 

efficiency of livestock production and global food security (WHO et al., 2005; Hotez et al., 

2009; Molyneux et al., 2011; Grace et al., 2012; Muma et al., 2014; Pradère, 2014).  

 

In Tanzania a large proportion of the population depends on livestock as a source of 

income, food security and social status (Covarrubias et al., 2012; Davis and Sharp, 2020). 

Resource-poor communities in Tanzania are also increasingly reliant on small ruminants for 

food security because these are considered more drought resilient and cheaper to replace 

(Smith et al., 2004; Wodajo et al., 2020). The reliance on livestock is accompanied by a high 

prevalence of infectious, including zoonotic, pathogens in the cattle and small ruminant 

livestock populations (Hyera, Liess and Frey, 1991; Machang’u, Mgode and Mpanduji, 1997; 

Karimuribo et al., 2007; Schoonman and Swai, 2010; Mdetele and Kassanga, 2014; Alonso 

et al., 2016; Mathew et al., 2017; Herzog et al., 2019; Semango et al., 2019). This results in 

poor productivity and high levels of income uncertainty and food insecurity with up to 40% 

of household income lost through small ruminant drought and disease losses alone 

(Sherman, 2011; Covarrubias et al., 2012; Haseeb et al., 2019). Additionally, in the case of 

zoonoses, spill-over of pathogens from livestock to humans leads to illnesses that are often 

misdiagnosed and incorrectly treated (Biggs et al., 2011; Crump et al., 2013; Cash-

Goldwasser et al., 2018). Close contact with small ruminants has been identified as a 

significant contributor to the transmission of zoonotic pathogens Coxiella burnetii and 

Brucella spp. to people in Tanzania (Van den Brom et al., 2015; Bodenham, Lukambagire, 

et al., 2020).  In addition to living with zoonotic pathogens, Tanzanian livestock lack routine 

pathogen testing, vaccination or control programmes for many endemic or production-

limiting infections which is compounded by inadequate access to veterinary services 

(Komba et al., 2012; Herzog et al., 2019; Hughes et al., 2019). In some European countries 
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the detrimental effects of the production-limiting pathogen BVDV are considered so great 

in cattle that disease elimination campaigns have been established (Stott et al., 2012; 

Metcalfe and Metcalfe, 2019). Prior work on the serological samples used in this study 

(Hodgkinson, 2017) suggests that BVDV and BHV-1 are circulating at a high prevalence in 

northern Tanzania compared to the zoonotic bacterial pathogens, Brucella, Coxiella and 

Leptospira (Hummel, 1976; Alonso et al., 2016; Shirima and Kunda, 2016). There is 

variability in the shedding cycles of these five pathogens; Brucella and Coxiella can be shed 

cyclically after parturition, Leptospira and BHV-1 are shed intermittently and BVDV is shed 

continuously by persistently infected animals. These pathogens also utilise different 

transmission routes to spread between infectious and susceptible individuals. Close (nose 

to nose) contact between an infectious shedding animal and a susceptible can result in 

transmission events for all, Leptospira and Coxiella can be transmitted via contaminated 

environment and BHV-1 can utilise respiratory and sexual transmission routes (Brownlie et 

al., 1987; Angelakis and Raoult, 2010; Poester, Samartino and Santos, 2013; Allan, 2016; 

Kipyego et al., 2020). Regardless of the disparities in transmissibility between BVDV, BHV-

1 and the zoonotic pathogens Brucella, Coxiella and Leptospira, they are all circulating and 

causing reduced livestock productivity while remaining largely unscreened for across 

northern Tanzania (Brackenbury, Carr and Charleston, 2003; Ata et al., 2006; Chase, 2013; 

Okumu et al., 2019). 

 

Infection with BVDV in cattle can cause immunosuppression (Brownlie et al., 1987; Chase, 

2013). Coinfection between BVDV and bacterial zoonoses has been documented in cattle 

in neighbouring Kenya (Okumu et al., 2019) but the potential immunosuppressive effects 

of belonging to a BVDV herd on cattle’s risk of exposure to other infectious pathogens in 

Tanzania is unknown (Brackenbury, Carr and Charleston, 2003; Lanyon and Reichel, 2013). 

If BVDV presence in a herd enhances the risk of exposure to and infection with other 

endemic pathogens and the immunosuppressive effects make cattle more likely to shed 

other pathogens, this should be considered when designing livestock disease control 

programmes. This is particularly important if control programmes are to include 

vaccination campaigns that rely upon a healthy and responsive immune system in 

vaccinated livestock.  
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In low-resource settings, such as northern Tanzania, livestock disease control programmes 

need to be streamlined and targeted to make the control of endemic, zoonotic and 

emerging pathogens both effective and sustainable (Heffernan and Misturelli, 2000; 

Zinsstag et al., 2007; Maudlin, Eisler and Welburn, 2009; Hop et al., 2011). There is a need 

to identify common risk factors for pathogen exposure and whether these risk factors exist 

at the individual, household or wider population level, so that pathogen control 

programmes can be applied at an appropriate scale. Livestock movements and 

introductions have been identified as major risk factors for disease transmission in other 

populations, but the association between livestock movements and disease risk has 

received limited previous investigation in northern Tanzania (Gibbens et al., 2001; Wilson 

and Mellor, 2009; Nöremark et al., 2011; Segura-Correa et al., 2016; Byrne et al., 2017; 

Kaddour et al., 2019; van Roon et al., 2020). 

 

Knowledge of livestock movements can help trace pathogen spread through a population 

and be used to slow, disrupt or prevent transmission (Gibbens et al., 2001; Finn et al., 2019; 

Porphyre et al., 2020). Livestock movement data can be collected in multiple ways and can 

be used in combination with epidemiological data to construct contact networks 

(Wongsathapornchai et al., 2008; Nicolas et al., 2013; Selby et al., 2013; Buhnerkempe et 

al., 2014; Motta et al., 2017; VanderWaal, Gilbertson, et al., 2017; Apolloni et al., 2018). 

Contact networks can then be analysed using concepts from NA to assess the effects of 

livestock movements on pathogen transmission and inform effective disease surveillance 

and control strategies (Kiss, Green and Kao, 2006; Gates and Woolhouse, 2015b; Motta et 

al., 2017; Ruget et al., 2021).  

 

In northern Tanzania there are multiple, complex socio-economic and environmental 

drivers for livestock movements and contacts between herds (Covarrubias et al., 2012; 

Goldman and Riosmena, 2013). Data on livestock movements or identification (such as the 

recent national cattle branding programme) are limited and not readily available (not 

digitised and/or centralised). Predominant livestock movement types include: movements 

to access shared natural resources such as grazing, water and salt points (Coppolillo, 2000); 

trade movements to, between and onward from markets (Chaters et al., 2019); and 

movements between households. Inter-household livestock movements occur for many 

reasons, including the giving and receiving of gifts, payment for services, lending and 
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private sales and purchases. Inter-household movements are not well captured by 

government movement permits, which are used most frequently for movement of 

livestock batches onwards from markets (Chaters et al., 2019) (Chapter 1), so they remain 

undocumented at regional and national levels. Increasing the available knowledge on the 

role of inter-household livestock movements on pathogen exposure will help to identify 

high risk behaviours for both pathogen transmission and emergence and identify what and 

where disease control programmes are needed (Bigras-Poulin et al., 2006; Kiss, Green and 

Kao, 2006; Vanderwaal et al., 2016). As stated above, a targeted approach to pathogen 

control would be most useful in northern Tanzania where pathogen burden and the risk of 

emerging diseases are high but resources to implement broad scale control measures are 

scarce (Maudlin, Eisler and Welburn, 2009; Colman et al., 2019).  

 

The objective of this study was to assess the relationship between livestock introductions 

and exposure to three zoonotic pathogens, Brucella spp. and C. burnetii in cattle and small 

ruminants and Leptospira serovar Hardjo in cattle, and two non-zoonotic, production-

limiting pathogens, BHV-1 and BVDV, in cattle. Using seroprevalence to gauge exposure, 

livestock introductions at the household and sub-village levels (administrative sub-unit of 

a village), and sub-village centrality metrics in-degree and betweenness (calculated from 

the inter-household movement network in Chapter 2), were evaluated to see if these were 

associated with individual animal’s risk of pathogen exposure. In-degree quantifies the 

number of livestock batches (at least one animal) from external locations a sub-village 

received in the year preceding the study. Betweenness quantifies the number of times a 

sub-village lies on the shortest path (acting as a bridge) between other pairs of location 

nodes in the connected network.  The hypothesis tested here is that belonging to a 

household and/or a sub-village with high numbers of livestock introductions, or many 

epidemiological links from and between other locations via livestock movements (high in-

degree and or betweenness centrality) is associated with an increased risk of pathogen 

exposure. Assessing the effects of introductions at the sub-village level allowed for the 

possibility that the risk of an introduction into a sub-village herd or flock would have 

consequences for all livestock in the sub-village due to between-herd mixing at shared 

resources (VanderWaal, Gilbertson, et al., 2017). Belonging to a cattle herd with evidence 

of prior BVDV exposure was also assessed to see if this is associated with an increased risk 

of those cattle being exposed to other pathogens.  
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3.2 Methods 

3.2.1 The study area 

This study was conducted in three regions Arusha, Manyara and Kilimanjaro in northern 

Tanzania. Each region has 6 (Manyara) or 7 (Arusha and Kilimanjaro) districts, and within 

each district there are wards (an administrative unit of around 10,000 people). Wards are 

divided into villages (mean 3, median 2, range 1-19 per ward), and villages further sub-

divided into smaller administrative units called sub-villages (2-5 sub-villages per village). 

Livestock-keeping households in the study area have been broadly categorized into three 

agro-ecological (A-E) classes: pastoral, agropastoral and smallholder (de Glanville et al., 

2020).  

 

3.2.2 Data collection 

3.2.2.1 Household survey data 

Data were collected as part of two cross-sectional household surveys carried out in 

overlapping study areas in northern Tanzania. The two projects that generated the datasets 

used in this analysis are the Social, Economic and Environmental Drivers of Zoonoses 

(SEEDZ) project and the Impact and Social Ecology of Bacterial Zoonoses in Tanzania 

(BacZoo) project. Data were collected from a total of 65 sub-villages (47 SEEDZ, 18 BacZoo) 

across the study area (Figure 3-1). 

 

3.2.2.1.1 SEEDZ	 	
 
The primary data used for all parts of this analysis was generated from the SEEDZ research 

project (further details Chapter 2). Data used in this study included livestock numbers and 

numbers of introductions and exits, including the locations animals came from or went to. 

Location livestock were moved to or from, along with the number of livestock moved, were 

aggregated at the sub-village level and used to construct an inter-household movement 

network in Chapter 2. Sub-village node metrics in-degree and betweenness, calculated in 

Chapter 2, are assessed as potential risk factors for pathogen exposure in this analysis.  
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3.2.2.1.2 BacZoo	
 
The BacZoo research project was carried out in the Kilimanjaro and Arusha Regions 

between September 2013 and March 2015. Multi-stage sampling was used to randomly 

select 18 wards from districts within the study areas (lists taken from national census data). 

One sub-village was then randomly selected from each ward and a minimum of five 

livestock-keeping households were randomly selected from within the sub-village for 

participation in the study. Data were collected from a total 121 households from the 18 

sub-villages. Further details on the BacZoo project, study design and implementation can 

be found in (Bodenham, Mazeri, et al., 2020). An important difference to note between the 

studies is that the BacZoo data does not specify a location from where livestock were 

acquired or sent to. Because there is no associated location data it could not be used to 

construct a movement network thus there are no sub-village network associated (in-degree 

and betweenness centrality) variables to test with these data. 
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Figure 3-1: Map of the three study regions (Arusha, Manyara and Kilimanjaro) in northern 
Tanzania with SEEDZ and BacZoo study sub-villages shown. Lines demarcate ward 
boundaries. 
 

3.2.2.2 Serological data 

Up to a maximum of 10 cattle, 10 sheep, and 10 goats for SEEDZ and 15 cattle, 15 sheep, 

and 15 goats for BacZoo (fewer if the household owned fewer than 10 or 15 respectively) 

were randomly selected from each participating household and a 10-ml blood sample taken 

for serological testing. All SEEDZ and BacZoo livestock serum samples were tested for the 

presence of antibodies to the zoonotic pathogens Brucella spp. (competitive ELISA, 

COMPELISA, APHA Scientific, UK) and Coxiella burnetii (Indirect ELISA, LSIVet Ruminant Q 

fever Serum/Milk ELISA kit, Thermofisher, USA). All study samples were tested in the same 

laboratory, Kilimanjaro Christian Research Institute (KCRI), Moshi, Tanzania. The SEEDZ 

cattle samples were also tested for the presence of antibodies to Leptospira borgpetersenii 

serovar Hardjo and/or Leptospira interrogans serovar Hardjo (Leptospira serovar Hardjo) 
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(double sandwich ELISA, Linnodee Leptospira kit, Linnodee Animal Care, Ballyclare, 

Northern Ireland), bovine herpes virus 1 (BHV-1) (IBR Individual Antibody TEST, IDEXX test 

kit) and bovine viral diarrhoea virus (BVDV) (BVDV p80 Ab ELISA, IDEXX test kit).  

 

3.2.3 Introductions 

Household introductions and sub-village node centrality metrics are the primary risk factors 

of interest for pathogen exposure in this study. The household survey data were analysed 

to evaluate if the odds of the household having introduced any livestock in the 12 months 

preceding the study differed depending on household A-E class and herd or flock size. Logit-

binomial generalised linear mixed models (GLMMs) were used to assess if there was any 

evidence of a relationship. Sub-village was included as a random effect and back 

transformed model predictions are adjusted for Jensen’s inequality. Gaussian GLMMs were 

also used to assess if sub-village in-degree and betweenness metrics in the SEEDZ data were 

associated with sub-village estimated herd and flock size and A-E class. 

 

3.2.4 Pathogen exposure risk  

3.2.4.1 Model construction 

Household survey and serological data from the household’s cattle and small ruminants 

(sheep and goats combined) were used to assess if there was evidence of, and the strength 

and direction of, a relationship between livestock introductions (at the household and sub-

village level) and exposure to five pathogens in cattle and two pathogens in small 

ruminants. Univariable and multivariable logit-binomial generalised linear mixed models 

(GLMMs) were fitted to identify potential risk factors for the binary pathogen exposure 

seropositivity outcomes (Chriél, Stryhn and Dauphin, 1999; Zuur et al., 2009; Michel, Brun 

and Makowski, 2017). Seroprevalence estimates were calculated using GLMMs, accounting 

for the random effects of household and sub-village (Zuur et al., 2009). Univariable models 

were fitted first to look for evidence of an association between all individual risk factors 

and potential confounding variables and the pathogen seropositivity outcomes, for each 

pathogen in both cattle and small ruminants. Multivariable models were then fitted, with 

all risk factor and potential confounding variables included, to calculate the adjusted odds 

of seropositivity in the exposed groups while controlling for the potential confounding 

effects of all other variables. Likelihood ratio tests were used to assess if a variable 
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significantly (PLRT < 0.05) improved models fit to the data. Non-significant variables were 

removed using backward stepwise elimination process, starting with the variable with the 

largest P-value, until all remaining variables in the models had a significant effect on the 

pathogen seropositivity outcome.  

 

A summary of all model seropositivity outcomes in each livestock group, measured at the 

individual animal level, are given in Table 3-1. These are Brucella spp. and C. burnetii in 

both cattle and small ruminants using the SEEDZ and BacZoo data combined and 

Leptospira serovar Hardjo, BHV-1 and BVDV in cattle using the SEEDZ data only. “Any 

zoonoses seropositivity” is investigated as an outcome using both the cattle (combining 

Brucella spp., C. burnetii and Leptospira serovar Hardjo results (SEEDZ data only)) and 

small ruminant (combining Brucella spp. and C. burnetii results (using SEEDZ and BacZoo 

data)) data to evaluate if common risk factors for zoonoses exposure exist.  

Table 3-1: Livestock group and pathogen exposures tested using SEEDZ only or combined 
SEEDZ and BacZoo datasets 

Pathogen Cattle Small Ruminants 

Brucella spp. SEEDZ and BacZoo SEEDZ and BacZoo 

C. burnetii SEEDZ and BacZoo SEEDZ and BacZoo 

Leptospira serovar Hardjo (SEEDZ only) SEEDZ only  

Any zoonoses (SEEDZ only) SEEDZ only SEEDZ and BacZoo 

BHV-1 (SEEDZ only) SEEDZ only  

BVDV (SEEDZ only) SEEDZ only  

 

3.2.4.2 Livestock introductions risk factor variables 

The main risk factor exposure variables of interest, tested in the models using the combined 

SEEDZ and BacZoo data, were the number of household introductions (total number of 

cattle or small ruminants introduced to the household in the 12 months preceding the 

study) and the estimated number of sub-village introductions (total number of 

introductions of cattle or small ruminants in the 12 months preceding the study reported 

by all surveyed households from a sub-village, divided by number of surveyed households, 

multiplied by number of livestock keeping households in the sub-village). For the SEEDZ-

only data the additional sub-village-level node centrality metrics in-degree and 

betweenness, calculated on the inter-household movement network, were also included 
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as risk factor variables. Sub-village node centrality metrics were tested as risk factor 

variables to evaluate whether an individual’s risk of pathogen exposure can be better 

quantified by the connectedness of its sub-village rather than the total number of livestock 

introductions at household or sub-village level. More details on construction of the inter-

household movement network and analysis of the network can be found in the Appendix 

section 9.2.1 and Chapter 2.  

 

3.2.4.3 BVDV exposure risk factor variable 

Herd BVDV exposure status was added as a risk factor variable to the SEEDZ cattle models 

to test the hypothesis that belonging to a herd with evidence of prior BVDV exposure will 

increase an individual’s risk of exposure to other pathogens due to the immunosuppressive 

effects of BVDV. Herds were assigned a positive status if any of the sampled cattle tested 

antibody positive for BVDV, under the assumption that this provides evidence to show 

there is, or has been, BVDV circulating locally.  

 

3.2.4.4 Potential confounding variables 

Potential confounding variables included in the models were age and sex at the individual 

animal level and herd or flock size at the household (total number of cattle or small 

ruminants reportedly owned by the household) and sub-village levels (mean number of 

livestock owned by all surveyed households in a sub-village multiplied by the number of 

livestock keeping households in the sub-village). Herd/flock size is important to include as 

it is possible that larger herds/flocks have a higher risk of both introductions and pathogen 

propagation once a pathogen is introduced, depending on how it transmits between 

infectious and susceptible individuals (de Jong, Diekmann and Heesterbeek, 1994; Begon 

et al., 2002). Finally, A-E class, assigned at the sub-village level was also included as a 

potential risk factor variable. Sub-villages sampled during the SEEDZ and BacZoo studies 

were assigned an A-E class using a clustering method that was based largely upon 

household livestock keeping practices that include livestock densities, movement to access 

natural resources and herd sizes (de Glanville et al., 2020). Pathogen exposure risk for 

livestock within households may be affected by some of the variables used in the 

classification process. For example, larger herds may have greater within-herd transmission 

once a pathogen is introduced and herds that move often to access natural resources might 

be at more risk of de novo exposure to different pathogens. Based on the possibility that 
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pathogen transmission may vary within or between household and sub-village 

herds/flocks, based on some livestock husbandry factors used in the A-E classification 

process, all risk factor variables were assessed to see if they varied by A-E class (Begon et 

al., 2002).  Likelihood ratio tests (PLRT < 0.05) were used to assess if there was evidence of 

an interaction between A-E class and the other risk factor variables in each multivariable 

model. Model results are presented with interaction terms included, along with the PLRT, 

where there is evidence to suggest that including the interaction term improves the model 

fit. For any variable that has an interaction with A-E class, the interacting risk factor variable 

is centred on its geometric mean and the odds ratio for the effect of that variable are 

presented separately for each class, with each class fitted as the baseline group. The odds 

ratio effect of each A-E class is thus presented in the results table conditioned on the 

geometric mean value of the interacting risk factor variable(s). Further details on each of 

the variables used in the models are included in Table S2.1 in the Appendix section 9.2.2. 

 

3.2.4.5 Guarding against collinearity 

The presence of collinearity among covariates can result in misleading results from 

regression analysis models (Zuur, Ieno and Elphick, 2010). To guard against this correlation 

coefficients and variance inflation factors (VIFs) were calculated among all pairs of 

variables. The level of correlation between model variables was tested by calculating 

Spearman’s ⍴ before they were all added to the multivariable disease models. If any two 

variables were strongly correlated, the author was aware of this before fitting both 

variables into the multivariable model as this could lead to multicollinearity and failure of 

model convergence. When variables were correlated, in the first instance both were 

included in the multivariable model and the variable with the highest VIF was removed in 

a backward stepwise process until all VIFs were less than 3 (James et al., 2013). All variables 

with VIFs less than 3 remained in each multivariable mixed effects regression model for 

each disease and species unless they were removed during the backwards stepwise fitting 

process (Wang et al., 2008).  

 

3.2.4.6 Dealing with zero events in subgroups 

For the Brucella spp. small ruminant models there were zero positive events in the 

smallholder households which meant these models could not be fitted using a maximum 

likelihood approach. Instead, a Bayesian approach was used to model this data. This 
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resulted in a decision to combine smallholder and agropastoral data for the Brucella spp. 

small ruminant models because there was no evidence of a difference between the two 

groups. Further details are provided in Appendix section 9.2.3. 

 

3.2.4.7 Model fitting 

Data were imported into R statistical software version 3.6.0 (R Core Team, 2019b) and 

GLMMs were fitted by maximum likelihood using the glmer function in R package lme4 

(Bates et al., 2015). The vif function in the car package (Fox and Weisberg, 2019) was used 

to check the model variable VIFs. Likelihood ratio tests were used to assess if there was 

sufficient evidence (level of acceptance p < 0.05) to support the effect each variable had 

on the coefficient. The drop1 function from R core package stats was used to conduct the 

likelihood ratio tests. All final multivariable model predictions estimates were adjusted for 

Jensen’s inequality (Nakagawa, Johnson and Schielzeth, 2017). Further details on data 

preparation, analysis and links to the code can be found in the Appendix sections 9.2.1. 

Normally distributed random effects were fitted at the sub-village and household levels in 

all univariable and multivariable models to account non-independence of observations at 

these levels. The association between each exposure variable and outcome variable was 

tested using Wald P-values (PW). Marginal R2 (mR2) was calculated to gauge the predictive 

power of the model, and conditional R2 (cR2) was calculated to assess the amount of 

unexplained variation at the levels of the random effects (Nakagawa and Schielzeth, 2013).  
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3.3 Results 

3.3.1 Descriptive statistics  

Sero-prevalence results which show individual exposure prevalence and 95% confidence 

intervals, for each pathogen in the SEEDZ and combined SEEDZ and BacZoo datasets broken 

down by agroecological class for cattle and small ruminants are in Table 3-2 and Table 3-3. 

Household exposure prevalence, which is the proportion of cattle or small ruminant owning 

households with any positive animals is also given for each pathogen, broken down by A-E 

class for cattle and small ruminants is shown in Table 3-2 and Table 3-3. A summary of all 

numeric risk factor variables used in the cattle and small ruminant disease models, 

presented as mean and standard deviation or number and percentage, are given in Table 

3-4 and Table 3-5. The final data sets were comprised of 3,364 cattle samples (2,853 SEEDZ 

and 511 BacZoo) from 440 cattle owning households (79 BacZoo and 361 SEEDZ 

households) and 5,524 small ruminant samples (4,318 SEEDZ and 1,206 BacZoo) from 411 

small ruminant owning households (106 BacZoo and 305 SEEDZ households). From the 

initial serology results, for all pathogens the household prevalence was greater than the 

individual animal prevalence in both cattle and small ruminants.  
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Table 3-2: Estimated pathogen prevalence in cattle for production systems in the SEEDZ 
and combined (SEEDZ and BacZoo) data sets, with summary household prevalence for 
each pathogen 

Pathogen 

exposure 

SEEDZ Combined SEEDZ & 

BacZoo 

Household prevalence 

(proportion of cattle 

owning households with 

any +ve animals) 
Number 

+ve Prev. (95% CI) 

Number 

+ve Prev.  (95% CI) 

Brucella spp 85 
0.030 (0.018, 

0.047) 
136 0.040 (0.026-0.059) 0.204 SEEDZ & BacZoo 

Agropastoral 16 0.013 (0.006, 0.024) 17 0.014 (0.007, 0.026) 0.084 

Pastoral 67 0.051 (0.033, 0.077) 110 0.062 (0.043-0.089) 0.414 

Smallholder 2 0.009 (0.002, 0.039) 9 0.025 (0.011, 0.055) 0.076 

C. burnetii 110 
0.038 (0.026, 

0.054) 
148 0.044 (0.032-0.061) 0.241 SEEDZ & BacZoo 

Agropastoral 51 0.036 (0.023, 0.058) 52 0.040 (0.025, 0.062) 0.223 

Pastoral 57 0.044 (0.028, 0.067) 84 0.050 (0.034, 0.073) 0.343 

Smallholder 2 0.012 (0.002, 0.044) 12 0.038 (0.019, 0.075) 0.109 

Leptospira 

serovar 

Hardjo 

911 
0.326 (0.275, 

0.380) 
- - 0.778 SEEDZ 

Agropastoral 337 0.279 (0.229, 0.335) - - 0.718 

Pastoral 541 0.386 (0.325, 0.451) - - 0.965 

Smallholder 33 0.198 (0.126, 0.293) - - 0.429 

Any zoonoses 1017 
0.361 (0.311, 

0.413) 
- - 0.820 SEEDZ 

Agropastoral 386 0.310 (0.261, 0.363) - - 0.785 

Pastoral 597 0.435 (0.376, 0.495) - - 0.979 

Smallholder 34 0.198 (0.129, 0.290) - - 0.452 

BVDV 1,146 
0.376 (0.331, 

0.423) 
- - 0.803 SEEDZ 

Agropastoral 324 0.316 (0.253, 0.386) - - 0.661 

Pastoral 732 0.458 (0.381, 0.536) - - 1.000 

Smallholder 90 0.419 (0.315, 0.530) - - 0.762 

BHV-1 1,890 
0.658 (0.613, 

0.701) 
- - 0.958 SEEDZ 

Agropastoral 838 0.619 (0.564, 0.672) - - 0.943 

Pastoral 932 0.713 (0.660, 0.762) - - 1.000 

Smallholder 120 0.588 (0.484, 0.685) - - 0.881 
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Table 3-3: Estimated pathogen prevalence in sheep and goats for production systems in the 
SEEDZ and combined (SEEDZ and BacZoo) data sets, with summary household prevalence 
for each pathogen 

Pathogen 
exposure 

 
SEEDZ 

Combined SEEDZ 
& BacZoo 

Household prevalence 
(proportion of small 

ruminant owning 
households with any +ve 

animals) 
Number 

+ve prevalence (95% CI) Number 
+ve 

prevalence 
(95% CI) 

Brucella spp 125 0.025 (0.012, 0.050) 169 0.025 (0.013, 0.049) 0.168 

Agropastoral/ 

smallholder 
59 0.015 (0.006, 0.033) 59 0.017 (0.007, 0.037) 0.086 

Pastoral 66 0.033 (0.017, 0.063) 110 0.037 (0.019, 0.069) 0.305 

C. burnetii 1059 0.202 (0.166, 0.243) 1280 0.223 (0.183, 0.270) 0.689 

Agropastoral 327 0.172 (0.134, 0.218) 331 0.159 (0.124, 0.200) 0.628 

Pastoral 676 0.267 (0.215, 0.326) 858 0.266 (0.218, 0.319) 0.987 

Smallholder 56 0.200 (0.128, 0.294) 91 0.124 (0.086, 0.173) 0.358 

Any zoonoses 1135 0.238 (0.193, 0.288) 1387 0.215 (0.176, 0.259) 0.686 

Agropastoral 366 0.195 (0.151, 0.246) 370 0.178 (0.140, 0.223) 0.628 

Pastoral 713 0.275 (0.219, 0.337) 926 0.277 (0.226, 0.333) 0.981 

Smallholder 56 0.215 (0.138, 0.315) 91 0.129 (0.089, 0.182) 0.349 
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Table 3-4: Summary statistics for all cattle specific variables used in cattle disease risk 
models for SEEDZ, BacZoo and combined data sets 

   BacZoo SEEDZ Combined 

   
Number 

/ Mean 

% / 

[Std.dev] 

Number 

/ Mean 

% (95% CI) 

/ [Std.dev] 

Number 

/ Mean 

% (95% CI) 

/ [Std.dev] 

Number of households surveyed 

owning cattle 
79 

18% 

(row %) 
361 

82% 

(row %) 
440  

Number of cattle sampled 511 
15% 

(row %) 
2,853 

85% 

(row %) 
3,364  

Sex Male 140 27% 948 33% 1,088 32% 

  Female 371 73% 1905 67% 2,276 68% 

Age 4.5 [3.10] 4.6 [3.10] 4.6 [3.10] 

Production 

system 
 

Agropastoral 16 3% 1302 46% 1,318 39% 

Pastoral 369 72% 1318 46% 1,687 50% 

Smallholder 126 25% 233 8% 359 11% 

Belong to a BVDV+ herd -  2,399 84%   

Household cattle herd size 35 [40] 67 [136] 62 [127] 

Household number of cattle 

introductions for all households 
0.69 [2.19] 1.18 [5.64] 1.09 [5.20] 

Household number of cattle 

introductions for households that 

reported any cattle introductions 

5.50 [3.50] 5.01 [10.82] 5.06 [10.28] 

Sub-village cattle herd size 1332 [1375] 2537 [2460] 2354 [2367] 

Sub-village estimated number of 

cattle introductions 
32 [46] 57 [105] 54 [99] 

Degree -  19.8 [10.9]   

In-degree -  4.6 [2.0]   

Betweenness -  0.02 [0.04]   
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Table 3-5: Summary statistics for all small ruminant specific variables used in small 
ruminant disease risk models for SEEDZ, BacZoo and combined data sets 

  BacZoo SEEDZ Combined 

  Number / 

Mean 

% / 

[Std.dev] 

Number / 

Mean 

% / 

[Std.dev] 

Number / 

Mean 

% / 

[Std.dev] 

Number of households 

surveyed owning small 

ruminants 

106 
26% 

(row %) 
305 

74% 

(row %) 
411  

Number of small ruminants 

sampled 
1206 

22% 

(row %) 
4,318 

78% 

(row %) 
5,524  

Age   3.1 [2.10] 3.4 [2.10] 3.4 [2.10] 

Sex Male 363 30% 943 22% 1,306 24% 

  Female 843 70% 3375 78% 4,218 76% 

Production 

system 
 

Agropastoral 39 3% 1743 40% 1,782 32% 

Pastoral 708 59% 2290 53% 2,998 54% 

Smallholder 459 38% 285 7% 744 13% 

Household small ruminant 

flock size 
81 [90] 140 [270.00] 127 [243] 

Household number of small 

ruminant introductions for all 

households 

1.42 [6.71] 2.11 [7.94] 1.93 [7.64] 

Household number of small 

ruminant introductions for 

households introducing any 

small ruminants 

7.50 [14.16] 7.87 [13.82] 7.79 [13.82] 

Sub-village small ruminant 

flock size 
2895 [2855] 5818 [6520] 5180 [6038] 

Sub-village estimated number 

of small ruminant 

introductions 

93 [178] 131 [203] 123 [199] 

Degree   19.8 [10.9]   

In-degree   4.6 [2.9]   

Betweenness   0.02 [0.04]   
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3.3.2 Introductions 

Cattle introductions in the 12 months preceding the study date were reported by 22% of 

cattle owning households (85 SEEDZ and 10 BacZoo households), with the number 

introduced ranging from 1-94 (mean 6). Small ruminant introductions were reported by 

25% (82 SEEDZ and 20 BacZoo) of small ruminant owning households, with the number 

introduced ranging from 1-110 (mean 10). Across all cattle owning households surveyed in 

the study area the mean number of cattle introduced was 1.1 [SD 5.2] and for small 

ruminant owning households the number of small ruminants introduced was 1.9 [SD 7.6]).  

 

At the sub-village level 66% (37 SEEDZ, 5 BacZoo) of sub-villages reported cattle 

introductions with the estimated number introduced ranging from 4-822 (mean 67) and 

78% of surveyed sub-villages (37 SEEDZ and 13 BacZoo) reported small ruminant 

introductions with the estimated number introduced ranging from 4 – 1,000 (mean 149). 

 

There was no evidence of an association between the odds of cattle and small ruminant 

introductions and household herd or flock size (fitted on log scale) (Pw = 0.13 and Pw = 

0.24) respectively. There was evidence to show the odds of a household introducing any 

cattle or small ruminants in the year preceding the study differed between A-E classes (PLRT 

< 0.05). Pastoral households were more likely to introduce cattle compared to agro-

pastoral (OR 2.27, 95% CI 1.28, 4.00, Pw = 0.005) and smallholder households  were less 

likely to introduce cattle compared to agro-pastoral (OR 0.40, 95% CI 0.16, 0.96, Pw = 0.04). 

An estimated 8% (95% CI 4-17%) of smallholder households, 18% (95% CI 12-25%) of agro-

pastoral and 32% (95% CI 25-41%) of pastoral households introduced cattle in the year 

preceding the studies. Pastoral households were also more likely to introduce small 

ruminants compared to agro-pastoral (OR 2.48, 95% CI 1.36, 4.54, Pw = 0.003). Model 

results estimate 14% (95% CI 9-24%) of smallholder households, 20% (95% CI 13-28%) of 

agropastoral and 37% (95% CI 28-46%) of pastoral households introduced small ruminants 

in the year preceding the studies. 

 

A 10 fold increase in sub-village cattle herd size and or small ruminant flock size was 

associated with higher sub-village betweenness (OR 1.67, 95% CI 1.01-2.75, Pw 0.04 and 

OR 1.45, 95% CI 1.05-2.00, Pw 0.02 respectively) which shows larger sub-village herds and 

flocks act as bridges between multiple other locations. A 10 fold increase in sub-village 
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cattle herd size was also associated with a higher in-degree (OR 2.34, 95% CI 1.46-3.76, Pw 

<0.001) so larger cattle herds at the sub-village level receive incoming livestock from a 

greater diversity of origins. There was no evidence of an association between sub-village 

flock size and in-degree (Pw = 0.12). Pastoral sub-villages had higher in-degree and 

betweenness compared to smallholder and agro-pastoral sub-villages in both the cattle 

data and small ruminant data so pastoral villages receive incoming livestock from a greater 

diversity of origins compared to other A-E classes (in-degree 95% CI 1.06-3.78, Pw = 0.003 

and 95% CI 1.50-5.49, Pw = 0.002 respectively and betweenness OR 11.85, 95% CI 7.29-

19.28, Pw <0.001 and OR 5.19 95% CI 3.66-7.36, Pw <0.001 respectively). 

  

3.3.3 Disease risk models   

3.3.3.1 Univariable analysis  

All univariable model results for pathogen exposure risk factor variables and the potential 

confounding variables for cattle and small ruminants can be found in the Appendix Tables 

S2.2 and S2.3, along with a description in the Appendix results section 9.2.4. While several 

univariable comparisons suggest evidence of associations, these associations alter when 

the multivariable models are fitted. 

 

3.3.3.2 Multivariable analysis 

The results of the correlation tests are shown in the Appendix Table S2.4. The variable “sub-

village number of small ruminant introductions” was removed from the SEEDZ small 

ruminant model due to its high level of correlation with other risk factor variables (e.g. sub-

village herd size, in-degree and betweenness) and it having a VIF value > 3.00. No variables 

were removed from the cattle multivariable models based on their VIF values. Results from 

the final multivariable models for an individual’s odds of exposure to different pathogens 

for cattle and small ruminants, using the SEEDZ and BacZoo combined datasets and the 

SEEDZ only dataset, are given in Tables 3-6 to 3-9. 

 

3.3.3.2.1 Cattle	pathogen	exposure	-	SEEDZ	and	BacZoo	data	model	results	
 
The results from the cattle multivariable models using the combined SEEDZ and BacZoo 

data are shown in Table 3-6. These models primarily assessed if household and sub-village 

cattle introductions were associated with an increase in the odds of exposure to Brucella 
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spp. and C. burnetii. Increasing age was associated with an increased risk of exposure to 

both pathogens. Once age was adjusted in the combined data set there was no evidence 

of an association between any of the risk factor variables and exposure to C. burnetii.  

 

For Brucella spp. there was evidence of an interaction between A-E class and household 

introductions (PLRT = 0.03). In cattle from agro-pastoral households a twofold increase in 

household introductions was associated with an increased risk of exposure to Brucella spp. 

There was no evidence of an effect of household introductions on Brucella spp exposure in 

cattle from smallholder or pastoral households. Overall, belonging to household that was 

agro-ecologically classed as pastoral was associated with a fourfold increased risk of 

exposure to Brucella spp. Confidence limits around the model estimates for the effects of 

household introductions and A-E  class are broad due to the low prevalence of Brucella spp. 

in the sampled cattle.  
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Table 3-6: Cattle disease multivariable mixed model results using combined SEEDZ and 
BacZoo data. The top row of the table shows predicted seroprevalence in the baseline 
group (Agropastoral cattle, age 0 belonging to households with the mean number of 
household introductions), adjusted for Jensen’s inequality. Rows below show the odds ratio 
for the effect of each model covariate on pathogen exposure, relative to the baseline group, 
with 95% confidence limits.  

 
 

  Odds ratio for pathogen exposure in cattle 
with 95% confidence interval  

 
 

  Brucella spp. C. burnetii 
  Constant a 

(predicted seroprevalence for 
Agropastoral cattle, Age 0, mean 

number of household introductions)  

 0.004 
(0.002, 0.009)  

0.029 
(0.019, 0.045)  

Age (Years)  1.28 
(1.19, 1.38) *** 

1.10 
(1.03, 1.17) ** 

Pastoral production system b  4.70 
(2.39, 9.26)***  

Smallholder production system b  2.26 
(0.60, 8.54)  

Household cattle introductions  
(log2)  [0.03]  

Agropastoral  2.26 
(1.23, 4.17) **  

Pastoral c  0.89 
(0.72, 1.10)  

Smallholder d  1.71 
(0.21, 13.61)  

 
 

Random effects variance   
Household (440)  0.86 0.57 
Sub-village (64)  0.35 0.55 

Marginal R squared  0.05 0.003 
Conditional R squared  0.09 0.049 

Observations  3,357 3,330 

Variable Wald P-value <0.05 * <0.01** <0.001*** 
a Adjusted for Jensen’s inequality 
b Where number of household cattle introductions are centered on the geometric mean (The effect 
of agro-ecological class presented in the table is conditioned on the geometric mean value of the 
interacting risk factor variable(s)). 

c Result given for model with pastoral group set as baseline 

d Result given for model with smallholder group set as baseline   
 

3.3.3.2.2 Cattle	pathogen	exposure	-	SEEDZ	only	data	model	results	
 
The second set of cattle multivariable models were constructed using the SEEDZ data only 

(Table 3-7). The network centrality measures in-degree and betweenness and household 

herd BVDV status are included as additional risk factor variables in these models, along with 

household and sub-village introductions. The pathogen exposure (seropositivity) outcomes 
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assessed in the SEEDZ cattle models are Brucella sp., C. burnetii, Leptospira serovar Hardjo, 

any zoonoses, BHV-1 and BVDV. There were only 2 disease events in the SEEDZ smallholder 

Brucella spp. and C. burnetii data thus smallholder data were excluded from these two 

models because their inclusion resulted in model instability. Across all pathogen models 

increasing age was associated with an increased odds of pathogen exposure and male 

cattle had increased odds of exposure to BHV-1. 

 

In both the Brucella spp. and C. burnetii SEEDZ data models, pathogen exposure prevalence 

was relatively low and there was evidence to suggest an interaction between A-E class and 

household cattle introductions on the risk of pathogen of exposure (PLRT < 0.05). In these 

models a twofold increase in household cattle introductions was associated with an 

increased odds of pathogen exposure in agro-pastoral cattle (Brucella spp. OR 2.30, CI 1.21 

- 4.36, C. burnetii OR 1.62, CI 1.04 – 2.52). This is the same as the effect of household cattle 

introductions seen in the combined data model for Brucella spp exposure. A twofold 

increase in household cattle introductions was also associated with an increased risk of 

exposure to BVDV (OR 1.11, 95% CI 1.01-1.24) and this effect was the same across all three 

A-E classes. There was no evidence to suggest that household cattle introductions were 

associated with an increased risk of exposure to Leptospira serovar Hardjo, any zoonoses 

or BHV-1.  

 

A twofold increase in the sub-village network centrality measure betweenness (node lies 

on shortest path between most other pairs of nodes in the network) was also associated 

with an increased risk of exposure to BVDV (OR 1.21, 95% CI 1.09-1.35) and again this effect 

was the same across all A-E classes.  

 

There was strong evidence to suggest the effect of the sub-village network centrality 

measure in-degree (number of incoming batches of livestock from other locations) differed 

between A-E classes for exposure to Leptospira serovar Hardjo, any zoonoses and BHV-1 

(P-value 0.005, 0.003 and 0.03 respectively). A twofold increase in in-degree was associated 

with increased odds of exposure to Leptospira serovar Hardjo and any zoonoses in 

smallholder cattle and BHV-1 in pastoral cattle. Despite evidence to support including these 

interaction terms the effect estimate confidence limits within classes were often 

overlapping and spanned 1. 



102 
 
 
The effect of belonging to larger household herds was uniform across A-E classes in the 

Leptospira serovar Hardjo, any zoonoses and BHV-1 models with a tenfold increase in 

household herd size positively associated with pathogen exposure. There was evidence 

(PLRT 0.02) to suggest the effect of household herd size differed between A-E classes in the 

SEEDZ data Brucella spp. model. In this model only pastoral cattle belonging to a tenfold 

larger herd had an associated increased odds of exposure to Brucella spp. (OR 2.30, CI 1.21-

4.36). There was no evidence of an effect of household herd size on C. burnetii or BVDV 

exposure.  

 

In the SEEDZ data cattle models, belonging to a pastoral herd was associated with an 

increased risk of exposure to Brucella spp. (a sixfold increase in risk when household herd 

size and cattle introductions are at their geometric mean values), as in the combined cattle 

data model,  and any zoonoses (a 63% increased risk of exposure when in-degree is set at 

its geometric mean value). Belonging to a pastoral or smallholder herd was associated with 

an increased risk of exposure to BVDV and  smallholder cattle were associated with lower 

risk of exposure to BHV- 1 compared to agropastoral and pastoral cattle (when in-degree 

is set at its geometric mean value). 

 

There was no evidence of an association between estimated sub-village herd size or 

estimated number of sub-village introductions and the odds of exposure to any cattle 

pathogens. 

 

For the secondary hypothesis, the effects of belonging to a BVDV positive herd was 

associated with around a 60% increase in the odds of exposure to Leptospira serovar Hardjo 

(OR 1.64 95% CI 1.06, 2.05). This could be due to immunosuppression in the herds, but 

given the lack of evidence of a similar effect on the risk of exposure to other infectious 

pathogens it could also be a result of BVDV and Leptospira serovar Hardjo sharing similar 

transmission routes and other shared exposure risk factors.  



103 
 
 
Table 3-7: Cattle disease multivariable mixed model results using SEEDZ data only. The top 
row of the table shows predicted seroprevalence in the baseline group adjusted for Jensen’s 
inequality. Rows below show the odds ratio for the effect of each model covariate on 
pathogen exposure, relative to the baseline group, with 95% confidence limits. 

  Odds ratio (OR) for pathogen exposure in cattle 
95% confidence intervals (CI) 

 
 

Brucella sp.  C. burnetii  
Leptospira 

serovar 
Hardjo 

Any 
zoonoses  

BHV-1  BVD  

Constant a 
(predicted 
seroprev. for 
baseline 
group in all 
covariate 
categories)  

 

0.002 
(0.0004, 
0.005) 

0.02 
(0.01, 0.04) 

0.08 
(0.05, 0.13) 

0.12 
(0.08, 0.17) 

0.10 
(0.06, 0.15) 

0.55 
(0.35, 0.74) 

Age (Years) 
 1.32 

(1.20, 1.44) 
*** 

1.13 
(1.06, 1.21) 

** 

1.18 
(1.14, 1.83) 

*** 

1.20 
(1.16, 1.23) 

*** 

1.67 
(1.60, 1.75) 

*** 

1.08 
(1.05, 1.12) 

*** 

Sex (Male) 
 

    
1.57 

(1.26, 1.96) 
*** 

 

Production 
system 
Pastoral b  

 6.20 
(2.10, 18.25) 

** 

1.03 
(0.58, 1.82) 

 

1.45 
(0.96, 2.18) 

 

1.63 
(1.11, 2.38) 

* 

1.03 
(0.69, 1.54) 

 

1.69 
(1.11, 2.56) 

* 
Production 
system 
Smallholder b 

 - 
 - 

0.67 
(0.37, 1.21) 

 

0.59 
(0.33, 1.04) 

 

0.52 
(0.29, 0.92) 

* 

1.87 
(1.13, 3.09) 

* 
Household 
herd size  
(log 10) 

 
[0.02]#  

1.37 
(1.03, 1.83) 

* 

1.39 
(1.05, 1.83) 

* 

2.04 
(1.47, 2.82) 

*** 
 

 
Agro-
pastoral 

0.16 
(0.02, 1.10) 

. 
     

 
Pastoral 
c 

1.65 
(0.92, 2.95) 

* 
     

 Small- 
holder d 

- 
 -     

Household 
cattle 
introductions 
(log 2) 

  

[0.01] # [0.05] #    
1.11 

(1.01, 1.24) 
* 

 
Agro-
pastoral 

2.30 
(1.21, 4.36) 

* 

1.62 
(1.04, 2.52) 

* 
    

 
Pastoral 
c 

0.90 
(0.72, 1.13) 

** 

1.02 
(0.83, 1.24)     

 Small-
holder d - -     

Herd BVD 
status 

 
  

1.64 
(1.06, 2.55) 

* 
  - 

In-degree     [0.005] # [0.003] # [0.03] #  
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(log2) 

 
Agro-
pastoral   

0.72 
(0.53, 0.99) 

* 

0.77 
(0.58, 1.03) 

. 

0.75 
(0.56, 1.01) 

. 
 

 
Pastoral 
c   1.03 

(0.79, 1.35) 
1.03 

(0.81, 1.32) 

1.24 
(0.96, 1.59) 

* 
 

 
Small-
holder d    

2.16 
(1.10, 4.25) 

** 

2.29 
(1.20, 4.38) 

** 

1.00 
(0.62, 1.62) 

 

Betweenness 
(log2) 

 
     

1.21 
(1.09, 1.35) 

*** 
Random effects 
variance       

Household (361) 0.74 0.12 0.34 0.33 0.34 0.22 
Sub-village (46) - 0.47 0.30 0.23 0.20 0.91 

Marginal R squared 0.05 0.01 0.10 0.12 0.35 0.12 
Conditional R squared 0.07 0.03 0.21 0.22 0.42 0.31 

Observations 2,618 2,617 2,848 2,853 2,848 2,848 

Variable Wald P-value <0.05 * <0.01** <0.001*** 
# Interaction term likelihood ratio test P-value 
a Adjusted for Jensen’s inequality 
b Conditional on any variable with an interaction effect being centred around, and set at, its geometric mean  
c Result given for model with pastoral group set as baseline 

d Result given for model with smallholder group set as baseline 
Note. Smallholder data were removed from the Brucella spp. and C. Burnetii models as there are only 2 
disease events in each group which made the multivariable models unstable with large uninformative 
confidence intervals for the smallholder groups  

3.3.3.2.3 Cattle	data	models	variation	explained	by	fixed	and	random	effects	
 
In the combined SEEDZ and BacZoo dataset cattle models, the random effect of ‘household’ 

captures much of the variation for the Brucella spp. and C. burnetii models (Random effects 

variance 0.86 and 0.57 respectively). This means that animals within households are more 

similar to each other compared to animals from other households within the sub-village. 

For the C. burnetii SEEDZ only data model this finding was not repeated as the sub-village 

variance was larger than the household variance which indicates that in the SEEDZ villages 

cases, and thus C. burnetii exposure risk appears to cluster at the sub-village level. The mR2 

value for both the combined data and SEEDZ only data C. burnetii models was particularly 

low with the models fixed effects explaining <1% of the variation in the data. The mR2 for 

both Brucella spp. model was slightly higher at 5% which indicates that losing observations 

to test for the effects of the network centrality measures and herd BVDV status did not 

compromise, nor improve, this models predictive power. For the SEEDZ only data cattle 

Brucella spp. model there was no additional variance at the sub-village level so this was not 
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included as a random effect. The additional variation explained by the random effects in 

the combined SEEDZ and BacZoo dataset and SEEDZ only data cattle Brucella spp. models 

was also small with an increase in the mR2 to the cR2 of 4% and 2% respectively. 

 

In the BVDV model the variance results show there was more clustering of cases at the sub-

village level and the mR2 (12%) and cR2 (31%) show the models random effects explain more 

of the variation in exposure prevalence than the fixed.  

 

The  variance results from the Leptospira serovar Hardjo, any zoonoses and BHV-1 models 

show that unexplained risk of exposure to these pathogens was more clustered at the 

household level rather than the sub-village level. For Leptospira serovar Hardjo and any 

zoonoses the proportion of variation explained by the models fixed and random effects are 

similar and for BHV-1 the models fixed effects explain more of the variation in the data 

than the random effects. These results show that there are different livestock management 

and husbandry risk factors for pathogen exposure at the level of both the household and 

sub-village, depending on the pathogen of interest, not captured by these models.  

 

3.3.3.2.4 Small	ruminant	pathogen	exposure		-	all	model	results		
 
Results from the small ruminant multivariable models, fitted using the combined SEEDZ 

and BacZoo data to assess the effect of household and sub-village introductions on small 

ruminants risk of Brucella spp., C. burnetii and ‘any zoonoses’ exposure are shown in Table 

3-8. The results from the small ruminant models fitted using the SEEDZ data only, with the 

additional network centrality measures in-degree and betweenness included as risk factor 

variables in the analysis, are given in Table 3-9. Agro-pastoral and smallholder data are 

combined in both Brucella spp. models as there were no Brucella spp. seropositive events 

in smallholder small ruminants and no evidence of a difference in risk between the 

smallholder and agropastoral groups. For further details see Appendix  section 9.2.3. 

 

For all small ruminant models, increasing age and belonging to a tenfold larger household 

flock was associated with an increased risk of pathogen exposure across all A-E classes. In 

both C.burnetii models, male small ruminants had a lower odds of exposure compared to 

females and belonging to a pastoral flock was associated with an increased odds of 

exposure.  
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With the effects of age, sex, flock size (household and sub-village) and A-E class controlled 

for in all small ruminant models there is no evidence of an association between household 

and sub-village introductions of small ruminants and exposure to Brucella spp. or C.burnetii. 

 

In the SEEDZ data only small ruminant Brucella spp. model there is evidence of an 

interaction between the network centrality measure in-degree and A-E class (PLRT = 0.03) 

on the risk of pathogen exposure. In pastoral villages a twofold increase in sub-village in-

degree is associated with an approximately  twofold increase in the odds of small ruminant 

exposure to Brucella spp (OR 2.47, 95% CI 1.03-5.89). 

 

In both the combined and SEEDZ-only small ruminant Brucella spp. models there was good 

evidence to suggest the effects of sub-village flock size on the risk of pathogen exposure 

differed between A-E classes (PLRT = 0.03 and 0.01 respectively). Small ruminants from 

agropastoral and smallholder households had an increased odds of exposure to Brucella 

spp. with increasing sub-village flock size . 
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Table 3-8: Small ruminant Brucella and Coxiella multivariable mixed model results - BacZoo 
and SEEDZ data. The top row of the table shows predicted seroprevalence in the baseline 
group adjusted for Jensen’s inequality. Rows below show the odds ratio for the effect of each 
model covariate on pathogen exposure, relative to the baseline group, with 95% confidence 
limits.   
 Odds ratio for pathogen exposure in small ruminants 

with 95% confidence interval   
 Brucella spp. Coxiella 

burnetii  
Any Zoonoses 

 
Constant a 
(predicted seroprev. for 
baseline group in all 
covariate categories))  

0.002 
(0.0002, 0.009) 

0.03 
(0.02, 0.06) 

0.03 
(0.02, 0.05) 

Age (Years) 
1.26 

(1.14, 1.38) 
*** 

1.28 
(1.23, 1.33) 

*** 

1.29 
(1.24, 1.34) 

*** 

Sex (Male)  
0.60 

(0.49, 0.74) 
*** 

0.61 
(0.50, 0.74) 

*** 

Production system  
Pastoral b 

0.74 
(0.25, 2.24) 

1.83 
(1.26, 2.66) 

** 
 

Production system  
Smallholder b NA 0.89 

(0.54, 1.47)  

Household  
herd/flock size (log 10) 

4.59 
(1.61, 13.06) 

** 

1.47 
(1.12, 1.94) 

** 

1.90 
(1.45, 2.48) 

*** 
Sub-village herd/flock size 
(log 10) [0.03] #   

Agropastoral/smallholder 
5.90 

(1.09, 32.02) 
* 

  

                            Pastoral c  
 

0.39 
(0.06, 2.41)   

 

Random effects variance    
Household (411) 3.02 0.25 0.29 
Sub-village (64) 1.33 0.72 0.92 

Marginal R squared 0.04 0.09 0.07 
Conditional R squared 0.13 0.21 0.23 

Observations 5,524 5,500 5,524 
 

Wald p-value <0.05 * <0.01** <0.001*** 
# Interaction term likelihood ratio test P-value 
a Adjusted for Jensen’s inequality 
b Conditional on any variable with an interaction effect being centered around, and set at, its geometric 
mean  
c Result given for model with pastoral group set as baseline 
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Table 3-9: Small ruminant Brucella sp. and C.burnetii multivariable mixed model results - 
SEEDZ data only. The top row of the table shows predicted seroprevalence in the baseline 
group adjusted for Jensen’s inequality. Rows below show the odds ratio for the effect of each 
model covariate on pathogen exposure, relative to the baseline group, with 95% confidence 
limits.  

  Odds ratio (OR) for pathogen exposure in small ruminants with 
95% confidence intervals (CI) 

   

  Brucella spp. Coxiella burnetii  Any Zoonoses 

Constant (predicted 
seroprev. for baseline 
group in all covariate 
categories)a 

 
0.001 

(0.0001, 0.010) 
0.03 

(0.02, 0.06) 
0.04 

(0.02, 0.06) 

Age (Years) 
 1.27 

(1.14, 1.42) 
*** 

1.33 
(1.27, 1.39) 

*** 

1.34 
(1.28, 1.39) 

*** 

Sex (Male) 
 

 
0.66 

(0.53, 0.84) 
*** 

0.69 
(0.55, 0.86) 

** 
Production system 
Pastoral b 
 

 0.42 
(0.12, 1.41) 

 

1.67 
(1.12, 2.50) 

* 
 

Production system  
Smallholder b 
 

 - 1.42 
(0.78, 2.59)  

Household flock size  
(log 10) 

 5.05 
(1.61, 15.87) 

** 

1.45 
(1.07, 1.95) 

* 

1.68 
(1.25, 2.25) 

*** 
 
Sub-village herd/flock 
size (log 10) 

 
[0.01] #   

Agropastoral/Small  
holder 

 4.56 
(0.68, 30.23)   

Pastoral c  0.08 
(0.008, 0.87) 

* 
  

Sub-village in-degree  
(log 2) 

 [0.03] #   

Agropastoral/Small  
holder 

 0.72 
(0.33, 1.58)   

Pastoral c  2.47 
(1.03, 5.89) 

* 
  

Random effects 
Variance 

    

Household ID (N=305)  3.02 0.25 0.29 

Sub-village (N=46)  1.04 0.76 0.92 
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Marginal R squared  0.03 0.09 0.08 

Conditional R squared  0.12 0.22 0.24 

Observations  4,318 4,316 4,318 
 

 
   

Variable Wald p-value <0.05 * <0.01** <0.001***  
# Interaction term likelihood ratio test P-value 
a Adjusted for Jensen’s inequality 
b Conditional on any variable with an interaction effect being centered around, and set at, its geometric 
mean  
c Result given for model with pastoral group set as baseline  

   

3.3.3.2.5 Small ruminant data models variation explained by fixed and random effects 
 
The mR2 (variation explained by the model’s fixed effects only) value in the combined data 

Brucella spp., C. burnetii and ‘any zoonoses’ models is increased from 4%, 9% and 7% 

respectively, to the cR2 of 13%, 21% and 23% (amount of variation explained by the 

combination of fixed and random effects) respectively. Similarly, in the SEEDZ data models 

the mR2 values are similar at 3%, 9% and 8% and these are increased to the cR2 values 12%, 

22% and 24% for the Brucella spp., C. burnetii and any zoonoses models respectively. These 

results show that for all small ruminant models the random effects of household and sub-

village explain more of the variation in exposure prevelance than the model fixed effects. 

The small ruminant brucella models have a particularly low mR2 values compared to the 

other models with only 3-4% of the observed variation being explained by the fixed effects. 

The slight decrease in the mR2 between the combined data model and the SEEDZ only data 

model shows that losing some observations to test for the effects of the network centrality 

measures on Brucella spp. exposure did not improve this model’s fit to the data. The larger 

proportion of variation explained by the random effects compared to the fixed effects in 

all small ruminant models shows that there are factors at both the household and sub-

village levels that explain exposure prevalence which are not included in these models. In 

the Brucella spp. small ruminant models a large amount of the variation in prevalence is 

captured by the random effects household ID (both models 3.02) and sub-village 

(combined 1.33, SEEDZ 1.04) which shows a high level of clustering of exposure at both the 

household and sub-village levels (Table 3-8). In both the combined data and the SEEDZ-only 

data C.burnetii and ‘any zoonoses’ models there is also substantial variation and clustering 

of exposure among sub-villages (C.burnetii sub-village model variance’s 0.72 and 0.76 and 

any zoonoses sub-village model variance’s 0.92 and 0.92 respectively) but less evidence of 

clustering at the household level. This means that the sub-village the small ruminant 



110 
 
 
belongs to affects its risk of pathogen exposure to a greater extent than the household. 

There are therefore livestock management and husbandry practices, or environmental 

contamination which affect exposure risk, clustered at the sub-village level and not 

captured by the variables used in these models. 

 

3.4 Discussion 

3.4.1 General 

Livestock movements are widely recognised as providing a route for pathogen transmission 

between otherwise well-separated populations (Green, Kiss and Kao, 2006a; Palisson et al., 

2016). High in-degree and betweenness have also frequently been identified as risk factors 

for disease introduction in other livestock keeping systems (Palisson et al., 2016; Ferdousi 

et al., 2019).  The primary objective of this study was to investigate the extent to which 

different types of permanent livestock introductions at the household and sub-village 

levels, which go largely unreported in northern Tanzania, affect livestock's risk of exposure 

to five infectious pathogens.  

 

Through this study, analyses show the association between seroprevalence and household 

introductions and sub-village in-degree differ for pathogens of varying transmissibility 

between the different A-E systems and between species. When other important or 

potentially confounding risk factors are controlled for, my analysis shows that: 

•  Increasing numbers of household introductions are associated with increased 

exposure to BVDV (all A-E classes), and Brucella spp. (AP only) and C. burnetii (AP 

only) in cattle.  

• At the sub-village level, increasing betweeness centrality is associated with 

increased BVDV exposure across all A-E classes.  

• Increasing in-degree at the sub-village level is also associated with (i) increased 

exposure to Brucella spp. in pastoral small ruminants, (ii) BHV-1 in pastoral cattle 

and (iii) Leptospira serovar Hardjo and any zoonoses in smallholder cattle.  

 

The pathogens used to test the hypothesis in this study have different shedding patterns 

(cyclical vs intermittent vs persistent) and utilise multiple different transmission routes 

(close contact, sexual, respiratory and environmental). In addition to the variations in 
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transmissibility of the pathogens studied, cattle and small ruminant stocking density, 

mixing patterns and use of shared resources vary between A-E classes (de Glanville et al., 

2020). The combination of varying pathogen transmissibility and opportunities for effective 

contacts between infectious and susceptible individuals in the different A-E classes likely 

explain the inconsistent pattern observed here between introductions and seroprevalence. 

The variation in risk associated with household and sub-village level introductions and 

exposure to the different pathogens needs careful consideration in the design of effective 

control programmes for production-limiting and zoonotic pathogens in this population.  

 

3.4.2 Household introductions 

In the 12 months preceding the study 22% and 25% of cattle and small ruminant owning 

households respectively reported livestock introductions with a high variation in the 

numbers introduced (mean of 5 [SD 10.3] cattle and 8 [SD 13.8] small ruminants).  

 

These results show that the majority of household herds and flocks in the study area, 

especially those in agropastoral and smallholder villages, operate in one sense as closed 

units reporting no introductions. If household introductions are the major risk factor for 

exposure to pathogens in this population then few households will experience the 

increased risk each year. On the other hand, with over 20% of households introducing 

potentially infectious animals a year this could be sufficient to sustain transmission 

between households and allow pathogens to persist in the population even when their R0 

values are low (Prentice et al., 2017). If other contacts between livestock, such as those 

that occur through the use of shared resources, are more important for pathogen 

transmission and maintenance in this population then the potentially beneficial effect of 

belonging to a somewhat ‘closed’  herd will be less evident.  

 

3.4.3 Sub-village introductions  

At the sub-village level, introductions were more frequent with 66% and 78% of surveyed 

sub-villages experiencing cattle and small ruminant introductions respectively in the year 

preceding the studies. Pastoralist sub-villages and all sub-villages with larger cattle herds 

were connected to more other locations through incoming livestock movements (higher 

in-degree) and were more likely to act as bridges between other locations (higher 
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betweenness). Sub-villages with larger small ruminant flocks across all A-E classes also had 

higher betweenness. This means that if the risk of pathogen exposure is increased through 

connectivity at the sub-village level then livestock in pastoral sub-villages and sub-villages 

with larger herds and flocks will be at increased risk of exposure. Additionally, because 

introductions are more frequent at the sub-village level compared to household level, if 

the risk of pathogen exposure is experienced at the sub-village level then a higher 

proportion of livestock are at risk. 

 

3.4.4 Disease risk 

3.4.4.1 Household level 

At the household level household introductions were positively associated with BVDV 

exposure across all A-E classes and Brucella spp. and C. burnetii exposure in agro-pastoral 

cattle.  

 

For BVDV, this result indicates that once BVDV is introduced into a household herd the 

frequency of within herds contacts that result in within herd transmission are the same 

across all A-E classes. For Brucella spp. and C.burnetii these results provide no definitive 

answer as to why household introductions act as a risk factor for exposure in agro-pastoral 

cattle but not in the other A-E classes. One possibility is that the type of introductions vary 

between A-E classes with market introductions more common in agro-pastoral herds but 

gifts more common in pastoral herds (Aktipis, Cronk and de Aguiar, 2011). Additionally the 

management of recently calved animals, most likely to be shedding pathogen, may vary 

between A-E classes which will have a direct effect on opportunities for transmission 

events. 

 

3.4.4.2 Sub-village 

At the sub-village level increasing in-degree was associated with increased risk of Brucella 

spp. exposure in pastoral small ruminants, BHV-1 in pastoral cattle and Leptospira serovar 

Hardjo in smallholder cattle. The variation in the effects of increasing in-degree in the 

different A-E classes for different pathogens in different species groups is likely due to the 

differences in the pathogen transmission routes and livestock husbandry practices 
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between A-E classes (Otte and Chilonda, 2003; Schoonman and Swai, 2010; Allan et al., 

2018).  

 

For Brucella spp. in pastoral small ruminants and BHV-1 in pastoral cattle perhaps the 

concept of defined individual herds and flocks in these settings is less important, specifically 

when considering the transmission routes used by these pathogens (close contact, 

reproductive and respiratory). There may be more opportunities for mixing and effective 

contacts between susceptible and infectious individuals from different herds and flocks at 

shared grazing and water points in pastoral settings that can be utilised as transmission 

routes by these pathogens (Valle et al., 1999; Palisson et al., 2016; Rossi et al., 2019). This 

hypothesis is supported by findings from Böhm et al. who show the most social within herd 

individuals are most likely to interact with individuals outside the herd making them 

potential hubs for transmission between infectious and susceptible individuals (Böhm, 

Hutchings and White, 2009). This could explain why in pastoral settings introductions at 

the sub-village level are a risk factor for some pathogens that require close contact for 

transmission events. The opportunities for close contact interactions between flocks from 

different households in pastoral settings might also be different to the opportunities 

available to cattle. For example, cattle may be taken away to distant grazing sites whereas 

all small ruminants may stay closer to the homesteads and thus have more opportunities 

for interactions between post-partum, infectious shedding animals and susceptibles from 

other flocks. 

 

For Leptospira serovar Hardjo there is an environmental component to transmission and 

also the involvement of vectors such as rats. These factors could explain why introductions 

into more densely populated smallholder sub-villages specifically act as a risk factor for 

Leptospira serovar Hardjo.  

 

Also at the sub-village level increasing betweenness (number of times a sub-village lies on 

the shortest path between other locations) was associated with increased risk of BVDV 

across all A-E classes (BVDV is shed persistently by infected animals (PIs) and close contact 

between infectious and susceptible can result in transmission event (Brownlie et al., 1987; 

Qi et al., 2019)).  This result shows that transmission of BVDV between herds within sub-

villages is ubiquitous across all A-E classes and indicates that some within-sub-village 
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transmission routes exist for BVDV across all A-E classes that are less utilisable by other 

pathogens investigated here. This finding alone is noteworthy as little is currently known 

about the transmission of BVDV within northern Tanzania (Hyera, Liess and Frey, 1991; 

Hodgkinson, 2017). The high level of within sub-village transmission of BVDV once 

introduced, and the higher overall sero-prevalence in pastoral and smallholder cattle could 

be due to BVDV transmission being more density dependent rather than frequency 

dependent (Begon et al., 2002) (smallholder cattle densely populated and pastoral herds 

both large and densely confined in bomas overnight).  

 

More specifically the relationship between BVDV and betweenness could be explained by 

transmission events for highly transmissible vs less transmissible (specifically those that are 

cyclically or intermittently shed) pathogens being less dependent on the duration of a 

contact or stay of an infectious animal (in this case a PI) in a herd (Kao et al., 2007). The 

reverse causality option is also possible, in that BVDV PIs might under-perform and 

frequently be sold on and replaced, thus driving up sub-village betweeness (Hidano and 

Gates, 2019). Both of these possible explanations should be interpreted with caution as 

they make an assumption that it is the same animals which are moving in and out of sub-

villages.  

 

Either way, the relationship between increasing sub-village betweenness centrality and 

increasing risk of exposure to highly transmissible pathogens should be explored further. 

This could be done by assessing whether the same effect is observed for exposure to other 

highly transmissible livestock pathogens such as PPRV (Jones et al., 2016), contagious 

caprine pleuropneumonia (CCPP) (Swai and Nesella, 2010) and FMD (Green, Kiss and Kao, 

2006a). PPRV in northern Tanzania is already associated with pastoralist livestock keepers 

and, as shown by the results from this study, pastoralist sub-villages do tend to have higher 

betweenness centrality than sub-villages in the other A-E classes (Herzog et al., 2019).   

 

In addition to the increased risk of exposure to highly transmissible pathogens, sub-villages 

with high betweenness link most other locations in a contact network and thus are high 

risk for passing pathogens on to many other locations. The combination of increased risk 

of highly transmissible pathogen introduction, propagation and onward transmission 

means that sub-villages with high betweenness are ideal targets for interventions that will 
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break chains of transmission. These could include increased veterinary knowledge 

exchange on the specific effects of BVDV in herds and how to prevent it or reduce the 

burden, early warning surveillance platforms or sub-village vaccination programmes. 

 

Any zoonoses exposure was analysed as an outcome in case strong risk factors could be 

identified that resulted in livestock, and thus the people in close contact with them, being 

at high risk of zoonoses exposure. The disparate prevalence and transmission routes of the 

pathogens used to create the any zoonoses measure mean the risk factors for the most 

prevalent pathogens drive the model outcomes. This makes the any zoonoses category less 

practically useful than if all zoonotic pathogens had similar prevalence and transmission 

routes. 

 

3.4.5 BVDV exposure  

In this study we also tested the hypothesis that belonging to a BVDV positive herd increased 

the risk of exposure to other pathogens in cattle. A herd was considered positive for BVDV 

circulation if one or more animals from the herd tested positive for BVDV antibody. This 

assumption falls down if the cattle sampled are PIs and therefore test sero-negative or the 

cattle test antibody positive due to historic exposure but were only recently added to the 

sampled herd and thus do not represent circulating infection. We do not have data 

available on the timing of any household introductions or the duration of stay in the herd 

of sampled cattle so results from this analysis must be interpreted with caution.  

 

Leptospira serovar Hardjo was the only pathogen tested that was associated with BVDV 

herd positivity. This could be due to the immunosuppressive effects of the virus at the herd 

level and perhaps the effect is weak so only picked up for pathogens with a high prevalence. 

It also possible that Leptospira serovar Hardjo and BVDV exposure have other common risk 

factors as they both circulate endemically in this cattle population. The high herd 

prevalence of BVDV in the study area (80%) means there are few sero-negative herds to 

compare to the sero-positive herds and thus show evidence of an effect of herd 

seropositivity on risk of exposure to other pathogens. 

 

Despite not identifying a significant relationship between BVDV herd seropositivity and 

exposure to other pathogens, the high herd prevalence of BVDV is important to note. This 



116 
 
 
acts as a reminder that livestock disease control programmes can be inefficient and 

potentially ineffective if they tackle individual diseases in isolation (Mahmoud and Allam, 

2013). If a herd is immunosuppressed due to circulating BVDV (Chase, 2013) then the 

effectiveness of vaccines against other pathogens will be reduced. Similarly, if an animal or 

herd tests positive for one pathogen following a clinical syndrome such as an abortion, this 

is not necessarily the only pathogen causing disease as coinfections occur and can have 

more severe consequences on individual and herd productivity (Mahmoud and Allam, 

2013; Mathew et al., 2017). Furthermore the impact of BVDV on pathogen shedding and 

thus zoonotic risk posed by animals that are infected with Brucella spp. and C. burnetii is 

not clear but there is reason to believe there may be an association if shedding increases 

with immunosuppression (Mathew et al., 2017; Okumu et al., 2019). 

 

3.4.6 Control measures 

The effects of livestock introductions on individual animals’ risk are not homogenous across 

species, pathogens and A-E classes. Introductions should therefore not be relied upon as 

the sole guide for when and where to implement pathogen surveillance and control 

programmes in this livestock population as they have been in other countries with 

disparate livestock husbandry practices (VanderWaal, Enns, et al., 2017; Salvador et al., 

2018). Nonetheless, these results can be used to guide the design of optimal surveillance 

and control programmes for the pathogens studied here and potentially for others with 

similar shedding patterns and transmission routes within the different A-E classes. Targeted 

pathogen control interventions, at either the household or sub-village level in locations 

identified as high risk for exposure, could greatly benefit communities in northern Tanzania 

by improving overall livestock productivity and public health (Lanyon and Reichel, 2013; 

Haseeb et al., 2019).  

 

3.4.6.1 Target interventions based on household risk 

If the risk factor for exposure exists at the household level then the responsibility of the 

risk belongs at that level – i.e. to the person who chooses to import the livestock. In this 

scenario livestock owners should have access to veterinary knowledge so they can weigh 

up the pros and cons of introducing livestock and come to an informed decision about 

disease risk. Sharing results of the risk of bacterial zoonoses exposure associated with 
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household introductions with livestock keepers in agropastoral villages will give them 

greater agency to make informed decisions about livestock introductions based on the 

potential risks posed by introducing animals. Similarly, cattle keepers in villages across all 

A-E classes should be made aware of the risk of introducing BVDV to their household and 

sub-village through cattle introductions. Cattle keepers could implement risk reduction 

strategies such as spending a small amount of money on testing, quarantining, practicing 

zero grazing for a short time and or buying from known disease-free sources. The cost of 

preventing pathogen introduction would be offset by the both herd and community 

benefits of reduced pathogen burden in the livestock and human population (Jones et al., 

2016; Cash-Goldwasser et al., 2018).  The relatively low rate of household introductions 

and generally small numbers of cattle and small ruminants introduced means that the 

interventions listed above, to reduce pathogen introduction into the household via these 

routes, could be focussed and achievable. 

 

3.4.6.2 Target interventions based on sub-village risk 

When the risk of pathogen exposure through livestock introductions exists at the sub-

village level then interventions that can be publicly or collectively funded and enacted are 

needed because the livestock and public health benefits are a collective public good (Rich 

and Perry, 2011; Forman et al., 2012; Pradère, 2014; Thumbi et al., 2015). Examples of 

collective targeted interventions could be: vaccination against rapidly transmissible 

pathogens such as BVDV, development and maintenance of sub-village test and quarantine 

facilities, and provision of improved veterinary services in sub-villages with high 

betweenness. Veterinary knowledge exchange interventions that aim to reduce high risk 

behaviour and decision making can be introduced rapidly at a low financial and resource 

cost, unlike control programmes that require drug administration or surveillance platforms. 

The disadvantages of knowledge exchange as a disease control intervention is that even 

when disease knowledge is considered good, complex relationships can exist between 

livestock keepers’ behaviour and biosecurity practices (Rich and Perry, 2011; Hidano, Gates 

and Enticott, 2019). These complexities will need to be considered when deciding how to 

measure the success of knowledge exchange programmes.  
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3.4.7 Limitations 

The topic of livestock numbers and introductions is a sensitive subject in the study 

area because livestock numbers equate directly to wealth. For this reason, 

numbers of introductions could have been underreported or withheld. The 

location animals are received from and sent to is a less sensitive subject which 

potentially made the inclusion of network measures as risk factors a more robust 

measure of livestock movement activity compared to absolute counts of livestock.  

 

Sero-prevalence results, used here as a proxy for overall risk of pathogen exposure, also 

have their limitations. Sero-positivity is not correlated with pathogen shedding, for 

example cattle persistently shedding BVDV will never test sero-positive for antibodies and 

the relationship between shedding and seropositivity for C. burnetii and Leptospira serovar 

Hardjo is variable (Brownlie et al., 1987; de Cremoux et al., 2012; Allan, 2016). A further 

limitation to using serology results is that owing to the moderate power of each individual 

test for seropositivity, and the large number of tests, false positives are possible and false 

negatives within the dataset are likely.  Despite the limitations associated with using sero-

prevalence as a proxy for pathogen exposure these two overlapping studies carried out in 

northern Tanzania were large with robust study design and implementation. This means 

that the general results presented here will be difficult to improve upon. 

 

The influence of the timing of events is another limitation we need to be aware of when 

interpreting the results. Many livestock could have been added to the herd in previous 

years/months yet none in the year which the study asks about or the reverse. Because the 

measure of disease used in this study is point prevalence seropositivity data, infection could 

have been introduced to the herd in previous years, or may have been so recently 

introduced that few animals are currently infected and thus it remains undetected. To 

understand the true impact of livestock introductions on individual disease status, a 

longitudinal study would be needed, gathering data on timing of movements and time of 

pathogen exposure (Barnard et al., 2018; Enright and Kao, 2018). A further limitation to the 

approach taken in this study is that there is no account made for potential transmission 

events, either direct or indirect, between livestock and wildlife that could be acting as 

reservoirs for multiple livestock pathogens in the study area. Details on direct and indirect 

contact with wildlife, through the use of shared resources, could be included in future 
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longitudinal studies that aim to identify key risk factors for pathogen transmission events 

and introductions into herds and flocks. 

 

3.5 Conclusion 

The relationship between livestock introductions at the herd or flock and sub-village level 

and onward pathogen transmission within herds and flocks is complex. It varies depending 

on the A-E class of the management systems under which the livestock are kept and the 

pathogen characteristics which likely include the shedding pattern, infectiousness and 

transmission route(s) utilised. The overarching hypothesis tested in this work, that 

introductions cause pathogen exposure, embeds an underlying assumption about the 

relationship between introduction of disease, residency times, mixing and seroprevalence. 

Within these results there likely lies an interaction between the risk of pathogen 

introduction and risk of persistence as pathogens are transmitted within and between 

herds and flocks through the use of shared resources.  

 

The relationships identified in this data could be investigated further using data on other 

more transmissible small ruminant pathogens, or other serology data from studies with 

similar differences in livestock husbandry practices between different communities. 

Further work in northern Tanzania would ideally use a longitudinal cohort study design to 

identify the differences in the risk of pathogen introduction, propagation and exposure 

within and between herds and flocks (Bajardi et al., 2011; Enright and O’Hare, 2017).  

 

The results from this study show that livestock movements between households provide 

routes for pathogen transmission and maintenance between populations in northern 

Tanzania. Where the increased risk of pathogen exposure is due to livestock introductions 

at the sub-village level, network node centrality metrics combined with A-E class data can 

be used to identify high risk villages to target with disease surveillance and control 

programmes. These interventions should aim to break transmission chains and prevent 

pathogen propagation within sub-villages. Sub-village level interventions should be publicly 

funded because they provide wider community benefits by reducing livestock and zoonotic 

pathogen burden, improving livestock health and productivity and thus improving 

household income, food security and public health (Salvador et al., 2018). 
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This work shows that multiple zoonotic and socio-economically important pathogens have 

similar livestock movement exposure risk factors despite their varying shedding patters and 

transmission routes. This builds on the theory that pathogens should not be viewed in 

isolation with regards to control campaigns, particularly in populations such as northern 

Tanzania where multiple pathogens circulate at high levels and control resources are 

scarce. This work provides data to show that targeted approaches to disease control (albeit 

nuanced depending on the different A-E systems), that focus on reducing pathogen 

incursion and onwards transmission via livestock movements, could encompass multiple 

pathogens and target multiple species. A single pathogen vaccination programme, such as 

the one aimed for by GALVmed with the Brucella vaccine development challenge 

(GALVmed, 2018), is unlikely to reduce the all-encompassing impacts of zoonoses in 

northern Tanzania’s human and livestock populations. Where public or private funded 

facilities are set up to test or vaccinate for one pathogen, multiple pathogens that share 

exposure risk factors and/or cause similar clinical disease (for example livestock abortion) 

can and should be included. This multi-pathogen approach to disease control will not only 

maximise the cost efficiency of control programmes but will have a more noticeable clinical 

effect on the ground. Where we should be moving towards improved efficiency of livestock 

production it is important to identify where targeted interventions can be implemented. A 

multi-pathogen approach, that focuses on reducing overall burden in the livestock 

populations by reducing transmission between and within populations by regulating (for 

example by introducing pre- and post-movement quarantines) and reducing livestock 

movements (through knowledge exchange to make people aware of the disease risks 

incurred at household and sub-village level with livestock introductions) appears to be a 

sensible and feasible option in this area.  

 

Where we are still faced with a lack of standardised processes to quantify the true socio-

economic burden of animal diseases (productivity losses and zoonotic burden) it is difficult 

to secure funding for large control and elimination programmes (Hotez et al., 2009; 

Molyneux et al., 2011). To this end it remains imperative that through future work, we 

improve knowledge and awareness of specific risk factors for livestock disease, for livestock 

managed in different ways. Having more specific information on the risk of disease 

introduction and onward transmission will allow livestock keepers to act to mitigate these 

risks in an effort to protect the health of their herds, families and wider communities.  
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4 Describing livestock market movements in 
northern Tanzania and how these influence 
pathogen transmission 

Contribution 

Conceptualisation of research questions, study design, survey design, data collection, 

processing and analysis were all done by GC. Data collection was supported by a field team 

made up of three individuals trained by GC.  

4.1 Introduction 

The northern zone of Tanzania contains 15% of Tanzania’s 30 million cattle and around 25% 

of the 19 million goats and 5.5 million sheep, with many households heavily reliant on 

livestock as a major or sole source of income (Pica-Ciamarra et al., 2011; Covarrubias et al., 

2012; National Bureau of Statistics and Tanzania Government, 2016). The high reliance on 

livestock is accompanied by a high pathogen prevalence in both cattle and small ruminant 

livestock with limited access to robust diagnostics and treatment and limited resource and 

funding for disease control programmes (Chipwaza et al., 2014; Alonso et al., 2016; Shirima 

and Kunda, 2016; Mathew et al., 2017; Allan et al., 2018). Many of the livestock pathogens 

are also zoonotic and spill over to cause disease that is regularly misdiagnosed and 

incorrectly treated with profound negative consequences for human health and wellbeing  

(Crump et al., 2013; Bodenham, Lukambagire, et al., 2020). In northern Tanzania it is 

essential  to reduce pathogen transmission within the livestock population to reduce the 

socio-economic losses and zoonoses that result from unhindered transmission (Molyneux 

et al., 2011; Halliday et al., 2012). 

 

Movement of livestock between locations create epidemiological links that provide routes 

for pathogen transmission. The geographical scale and speed of livestock movements 

therefore influences the scale and speed of pathogen transmission (Cowan and Jonard, 

2004; Fèvre et al., 2006; Green, Kiss and Kao, 2006a; Buhnerkempe et al., 2014; Palisson et 

al., 2016). Market movements of livestock have frequently been identified as important for 

pathogen amplification and propagation within and between distinct populations 

(Robinson and Christley, 2007; Fournié et al., 2011; Rautureau, Dufour and Durand, 2011; 

Dean et al., 2013; Fournié and Pfeiffer, 2013; Fournie et al., 2013). The well-travelled routes 
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livestock take to reach markets have also been identified as important for pathogen 

transmission in countries where livestock are kept extensively and market journeys are 

made on foot (Tempia et al., 2010; Jahel et al., 2020). In northern Tanzania many  types of 

livestock movement exist and these include the movement of livestock to, from and 

between markets. This creates a network of movements between and across geographical 

areas and these can cross, sometimes multiple, international boundaries (Watts and 

Strogatz, 1998; Kao et al., 2006; Dean et al., 2013; Motta et al., 2017). A relevant example 

of this is the recent description of movements from northern Tanzania into Kenya as part 

of the Kenyan beef supply chain (Mutua et al., 2018). 

 

Globally livestock markets have been identified as highly central hubs that attract sellers 

and buyers from multiple and potentially distant locations (Gibbens et al., 2001; Molia et 

al., 2016; Motta et al., 2017). Markets are therefore frequently identified as important 

locations contributing to pathogen spread, but also where targeted disease control 

programmes could be most effective (Ortiz-Pelaez et al., 2006; Robinson and Christley, 

2007; Molia et al., 2016). Targeted control programmes might include active surveillance, 

knowledge exchange or vaccination programmes or under extreme circumstances 

movement restrictions or market closures (Vallée et al., 2013). 

 

There is currently little known about the characteristics of market movements in northern 

Tanzania (Chaters et al., 2019). This includes a lack of information on how livestock travel 

to market (in vehicle or on foot), and the risk of pathogen transmission events along market 

journeys through journey sharing or other close contacts made with local livestock en route 

(Pica-Ciamarra et al., 2011). It was legislated in 2000 that vehicles must be used to transport 

livestock to and from markets to protect land, the health of the livestock moved and to 

reduce pathogen transmission between moving and local livestock (Pica-Ciamarra et al., 

2011; Covarrubias et al., 2012). This legislation is difficult to enforce and the level of 

compliance with vehicle transport to and from markets remains unknown. The additional 

cost of vehicle transport to move animals to market might also be beyond what poorer 

households can afford and force them to make difficult decisions about market 

movements. This could include moving livestock to and from markets on foot, increasing 

the risk of journey pathogen transmission events, or having to sell livestock to traders 

rather than in the markets themselves and losing out on opportunities to achieve the best 
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price (Pica-Ciamarra et al., 2011). If livestock being moved are infectious and have contact 

with others along their market journey this could lead to pathogen dissemination beyond 

movement origins and destinations. If this is the case it will make surveillance more difficult 

and makes targeted surveillance at markets less effective as a lower proportion of overall 

infectious-susceptible contacts and observed infections will be caused at markets. The 

routes livestock take to markets and local livestock living along them would need to be 

considered in the design of effective surveillance programmes, similar to what was 

suggested for locations along major livestock trade routes between Somalia and Ethiopia 

(Tempia et al., 2010).  

 

There is also a lack of information on the socio-economic drivers for livestock market 

movements and who the key stakeholders are that are involved in market movements in 

northern Tanzania. In other LMICs chains of livestock trade movements are driven by a 

mismatch between the high volume of livestock in rearing locations and low volume in 

locations where demand for livestock produce is highest (Nicolas et al., 2018; Mtimet et 

al., 2021). Livestock traders can be prominent actors in the livestock market chain, often 

trading in multiple countries as they buy, move and sell livestock in different locations, 

moving along a price gradient to make a profit (Dean et al., 2013). Livestock traders can 

also be high risk for widespread pathogen dissemination events as they gather and 

distribute livestock from and to multiple locations (Robinson and Christley, 2007). 

Knowledge of the reasons for livestock sale or purchase at markets and prices available 

provides information about the major drivers for livestock market movements and who the 

key stakeholders are that would be affected by market movement restrictions. The socio-

economic factors surrounding livestock market movements in northern Tanzania should be 

reflected in the design of disease control programmes. The aim would be to ensure 

stakeholders remain engaged and that interventions are equitable, compensate for socio-

economic losses and have minimal negative externalities (Beileh, 2006; Rich and Perry, 

2011). 

 

More generally, if livestock movement data is recorded it can be used to construct a 

network which can then be analysed using concepts from network analysis to assess the 

level of connectivity and scale of pathogen transmission risk in an area or population. A 

network constructed from livestock market movements would be made up of nodes that 
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represent markets and other origin and destination locations that livestock have moved 

from or are moving to, connected by links that represent the movement of animals 

between nodes.  

 

Once constructed a network structure can be analysed using concepts from network 

analysis to identify how epidemiologically connected an area is. The giant strongly 

connected components (GSCC) and weakly connected components (GWCC) of a network 

can be used to estimate the upper and lower bounds of epidemics in the connected 

population (Newman, 2010). Pathogen control programmes often aim to fragment 

networks, breaking them up into smaller disconnected components by removing 

epidemiological connections while minimizing overall network disruption, to reduce the 

potential size of epidemics (Marquetoux et al., 2016; Chami et al., 2017). The diameter of 

a network is the minimum number of steps taken to get between the two most distant 

nodes in the largest connected component (Newman, 2010). The diameter can be used to 

estimate of how many sequential livestock movements of infectious animals would be 

needed to transmit a pathogen between the two most epidemiologically distant nodes on 

a connected network (Danon et al., 2011). The average path length on a network is the 

average number of movements needed to get between any two connected nodes 

(Newman, 2010). This can be useful when thinking about the speed of pathogen movement 

and subsequent speed needed to implement disease control interventions in the case  of 

an outbreak. Network nodes reciprocity is also useful in disease epidemiology as it 

measures the proportion of connections on the network that are reciprocated (reported in 

both directions) and thus how often a pathogen can flow in both directions (Lindström et 

al., 2013). 

 

Node centrality metrics can be calculated on a network and used to identify whether 

heterogeneity in movement activity exists between nodes (Kao et al., 2006; Danon et al., 

2011). Nodes with high centrality metrics can be those at greatest risk of pathogen 

introduction or onward transmission and can be made targets for resource efficient disease 

control programmes (Ortiz-Pelaez et al., 2006; Molia et al., 2016). Node centrality metrics 

that are often the most informative for epidemiological networks, to identify high risk 

locations for targeted disease control interventions are; in- and out-degree (number of 

ingoing or outgoing links); geometric mean degree (square route of product of in-degree 
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and out-degree); and betweenness centrality (number of times a node lies on the shortest 

path between other pairs of nodes, acting as a bridge)(Dubé et al., 2008; Lichoti et al., 2016; 

Bucur and Holme, 2020). A detailed description of these centrality metrics and their 

epidemiological relevance can be found in the introduction to this thesis.   

 

If node centrality metrics have a right skewed distribution this indicates that the network 

will be vulnerable to fragmentation by using targeted disease control interventions to 

remove the most central nodes (Büttner et al., 2013a; Chami et al., 2017). Additionally, if a 

high level of correlation between the different centrality metrics is identified, on a network 

these can be targeted with multipurpose interventions that can reduce both pathogen 

introduction and onward transmission.  

 

Two major types of livestock market, primary and secondary, exist in northern Tanzania 

(Pica-Ciamarra et al., 2011; Covarrubias et al., 2012) (further details in The Appendix 

Section 9.3.1). Primary markets are smaller and widespread across the country, run by local 

governments with a market tax payable by buyers to local governments. Secondary 

markets are owned by the national government and are larger, busier and generally close 

to major towns and road networks with a tax payable by buyers to central government. 

There was no published data available on the differences between primary and secondary 

livestock markets in northern Tanzania at the time of writing this document. Movement of 

livestock between markets in the study area has been identified using government 

movement permit data and this is described in Chapter 5 (Chaters et al., 2019) and Chapter 

6. Movement permits are officially required to move livestock between any two locations 

in Tanzania. Household survey data from northern Tanzania however shows that 

compliance with permit use is low for household movements to and from markets and they 

are predominantly used for movements between markets or onward from markets to end 

point slaughter destinations (Chapter 1 and further details on livestock movement permits 

in Appendix section 9.3.2). Because of the low rate of permit use at the household level 

and because livestock have not historically been formally identified nor movements 

centrally recorded, the large gap in the knowledge around livestock movements between 

households and markets remains.  
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It is important that we improve the overall quantitative knowledge around market 

movements in northern Tanzania so they can be appropriately accounted for in the design 

of efficient disease control programmes (Beileh, 2006; Pica-Ciamarra et al., 2011; 

Covarrubias et al., 2012; Chaters et al., 2019). Policy makers require information on the 

scale needed for effective disease control programmes, where these can be most efficiently 

implemented and how to prevent enforcing interventions that are met with resistance and 

non-compliance. Having detailed knowledge of the characteristics of livestock market 

movements that will affect pathogen transmission is particularly important in areas with 

limited resources, high pathogen burden, and a limited awareness of transmission routes 

(Maudlin, Eisler and Welburn, 2009; Crump et al., 2013; Chipwaza et al., 2014; Colman et 

al., 2019) 

 

The aim of this study is to use market survey data to address four major knowledge gaps 

around livestock market movements in northern Tanzania. First we need to improve the 

knowledge available on how market movements might influence pathogen transmission 

along a market journey beyond potentially moving a pathogen between distinct locations. 

To do this we will quantify what proportion of journeys by vehicle and on foot are shared 

by livestock from different batches and how likely livestock moving to markets are to have 

contact with local, non-moving livestock, along their journey. Second, a better 

understanding of the socio-economic drivers behind livestock market movements and the 

key stakeholders involved with market movements is needed. This would help determine 

potential drivers of pathogen transmission and who is affected by any restrictions. To 

achieve this the major reasons for sale and purchase of different species in the different 

market types will be identified, along with any difference in sale prices between market 

types. Third, the more quantitative market movement characteristic data gaps that may be 

associated with the geographical area at risk, and rate of pathogen transmission through 

market movements will be assessed. This will be achieved by evaluating how many 

livestock are moved on market journeys, over what distance and the duration of time 

livestock spend travelling to and from markets. Fourth, a static network of livestock market 

movements will be constructed to assess how epidemiologically connected northern 

Tanzania is via market movements which include household movements not necessarily 

recorded through use of a movement permit. The network will then be used to calculate 

market and non-market node centrality metrics. Centrality metrics will be evaluated for 
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evidence of heterogeneity in connectivity and thus pathogen acquisition and onward 

transmission risk and for correlation between metrics to see if high risk locations can be 

targeted with multi-purpose disease control interventions. 

 

4.2 Methods 

4.2.1 Study area and livestock market selection 

The data collected for this study were from livestock markets across Arusha, Manyara and 

Kilimanjaro Regions of northern Tanzania. At the time of this study there were 85 active 

livestock markets across the three study regions. This included 3 secondary and 82 primary 

markets. Livestock market data were generated from the Zonal Veterinary Centre in Arusha 

town, Arusha, Tanzania. To achieve samples from buyers and sellers that were 

representative of those moving livestock to and from markets in the study regions we 

sampled a substantial portion (N = 22, 26%) of these (Figure 4-1). To make inferences about 

the differences between market types and markets across all three regions this required 

sampling of all three secondary markets in the study area and all four primary markets from 

Kilimanjaro. The remaining 15 markets consisted of seven primary markets from Manyara 

Region and eight primary markets from Arusha Region which were selected randomly from 

the lists of functioning primary markets using the sample function in the base package in R 

version 3.6.0 (R Core Team, 2019b). To minimize seasonal variation in observed market 

characteristics, market visits were carried out within a 7-week period between the 25th 

April and 16th May 2017. The analysis presented here therefore do not account for seasonal 

variation in livestock market movements in northern Tanzania. Two markets from the 

original list of 15 randomly selected primary markets could not be accessed due to logistical 

constraints during the 7-week study period so these were replaced by randomly selected 

replacements from the same region. Further descriptive details on livestock markets can 

be found in the Appendix Sections 9.3.3 and 9.3.4. 
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Figure 4-1: Arusha, Manyara and Kilimanjaro study regions highlighted on map of northern 
Tanzania with sampled markets plotted and point colour representing market type. 
 

4.2.2 Survey 

A field team of three interviewers conducted the market survey at all 3 secondary markets 

and 19 (23%) of 82 primary markets in the study area. The survey was created and 

implemented using Open Data Kit (ODK) Collect software (https://opendatakit.org/) on 

portable computer tablets in Kiswahili or Maa. The market survey can be found in Appendix 

section 9.3.5  

 

4.2.3 Ethics 

All participants provided written informed consent. The protocols, questionnaire tools and 

consent and assent procedures were approved by the ethics review committees of the 

Kilimanjaro Christian Medical Centre (KCMC/832) and National Institute of Medical 

Research (NIMR/2028) in Tanzania, and in the UK by the ethics review committee of the 

College of Medical, Veterinary and Life Sciences at the University of Glasgow (39a/15). 

Approval for study activities was also provided by the Tanzanian Commission for Science 

and Technology (COSTECH) and by the Tanzanian Ministry of Livestock and Fisheries. 
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4.2.4 Participant selection 

The three interviewers arrived together at the start of the market day and each had a target 

of completing a minimum of 10 surveys per market visited. An effort was made to ensure 

an equal number of sellers and buyers were surveyed by asking one seller and then one 

buyer, but this was not always possible as buyers move around and can be difficult to 

locate. Where markets had both small and large ruminants for sale, interviewers split 

themselves evenly between the separate market sections during the visit spending half 

their time in each section.  

 

A central point was selected in the market and the three interviewers set out at the same 

time in different directions following a spiral or zig-zag direction of movement, depending 

on the shape of the market area, to ensure all corners of each market area were covered. 

Multiple entry points into the market necessitated the spiral or zig-zag strategy to capture 

people arriving from different locations and directions, and congregating in different areas 

of the market.  

 

Depending on the size of the market, number of buyers and sellers present and buyer and 

seller willingness to participate, every seller, every other seller or every third seller was 

interviewed to ensure the sample was representative of the buyer and seller population. 

Sellers generally stand with their livestock until sold, buyers were more difficult to identify 

and locate within the markets. Buyers were therefore interviewed if they were within easy 

conversation distance of the interviewer when a seller’s interview was finished. If a buyer 

was not near they were sought out between interviews with sellers by the local livestock 

field officer or market master who was familiar with and could recognise the buyers 

present, and asked them if they were willing to participate in the study.  

 

4.2.5 Statistical analysis 

4.2.5.1 Descriptive summary 

We summarised market movement characteristics that could influence the extent and rate 

of pathogen transmission and the opportunity for transmission events during market 

journeys (Table 4-1). The data were stratified by market type (primary and secondary) and 

species group (cattle or small ruminants) to compare characteristics of market movements 
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(and therefore pathogen transmission risk) between the four groups. Binomial and 

Gaussian generalised linear mixed models (GLMMs) are fitted to the descriptive journey 

characteristics data, depending on whether the outcome of interest is binary or continuous, 

with market fitted as a random effect. The assumptions of linearity and normally 

distributed residuals were assessed visually by plotting the residuals against the fitted 

values. Residuals for outcomes numbers sold and purchased, journey distance and journey 

duration required log-transformation. Where model outcomes were log transformed 

(including the binomial models), any effect estimates calculated using the models were 

adjusted for Jensen’s inequality due to the back transformation of the logged outcome 

variable and in case of uneven sampling across markets (Nakagawa, Johnson and 

Schielzeth, 2017). For model outcomes that relate to contacts made on the journey, either 

through journey sharing or close contacts with local livestock at grazing and watering points 

en route, mode of transport was also included as a covariate in the descriptive models.  

 

Results of the binomial GLMMs are given as odds ratios. The results given in the tables and 

text are the multiplicative effect of each variable on the baseline value. For the Gaussian 

GLMM’s estimating price data, where the continuous outcomes is not log transformed, the 

effect estimate results presented are additive.  

 

All data processing and analysis was done using R statistical software   (R Core Team, 

2019b). The Binomial and Gaussian GLMMs were fitted using the lme4 package (Bates et 

al., 2015). The validity of model assumptions was judged by visualising the model residuals 

to assess if they exhibited homoscedasticity using the plotResiduals function in the 

DHARMa package (Hartig, 2020). The marginal R2 (variance explained by the fixed effects) 

and conditional R2 (variance explained by both fixed and random effects) of the GLMMs 

are calculated using the rsquared function in the piecewiseSEM package (Lefcheck, 2016). 

All plots were made using the ggplot2 package (Wickham, 2016). All P-values shown in the 

results are Wald P-values unless otherwise stated.  
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Table 4-1: List of market journey characteristics described in this data 

 
Journey 

Characteristic 
Binary or 

continuous Stratified by 

Journey 

contacts and 

transmission 

opportunities  

Transport to market 

(Vehicle or foot) 
Binary Market type, Species group 

Transport from market 

(Vehicle or foot) 
Binary Market type, Species group 

Journey to market shared 

with others 
Binary Market type, Species group 

Journey from market 

shared with others 
Binary 

Market type, Species group, 

Transport used 

Contacts made with local 

livestock on journey to 

market 

Binary 
Market type, Species group, 

Transport used 

Socio-

economic 

drivers 

Reason for sale 

(As part of a livestock 

trading business or for 

private household needs) 

Binary Market type, Species group 

Origin Binary Market type, Species group 

Price Continuous Market type, Species group 

Quantitative 

factors 

Number sold/purchased Continuous Market type, Species group 

Journey distance Continuous Market type, Species group, 

Journey duration Continuous Market type, Species group 

    

4.2.5.2 Transport 

Binomial GLMMs were used to estimate the proportion of livestock transported to and 

from market by vehicle and assess whether this differed between cattle and small 

ruminants and market type. If mode of transport differs for the different market journeys 

this will affect both the speed of pathogen spread and the potential for pathogen 

dissemination along market routes. 
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4.2.5.3 Shared journey contacts 

Binomial GLMMs were used to estimate the proportion of livestock batches sold or 

purchased that shared (or would share) their market journey with livestock from other 

households (or batches), adjusting for market type, species group, and mode of transport. 

If shared journeys are more common for livestock transported by vehicles there will be 

greater risk of pathogen transmission between these animals as they are kept in close 

physical confinement and share the same air space. 

 

4.2.5.4 Local livestock journey contacts 

Binomial GLMMs were used to assess if there was evidence of a difference in close contacts 

made with livestock from other households at grazing or watering points during journeys 

to market, adjusting for market type, species group and mode of transport. If there are high 

rates of close contact with local livestock along market journeys these could provide 

pathogen transmission opportunities and should be accounted for in the design of disease 

control programmes. 

 

4.2.5.5 Reason for sale or purchase 

Binomial GLMMs were used to assess whether there was evidence of a difference in the 

reason for sale (traders selling livestock for business reasons, as part of a commercial 

enterprise or private sellers selling their own animals to directly generate household 

income) between cattle and small ruminant batches sold at the different market types.  

This will help identify who the key stake holders are that will be affected by livestock market 

centred interventions or movement restrictions and thus who needs to be engaged in the 

development of equitable interventions to improve both compliance and effectiveness. 

 

4.2.5.6 Origins 

Sellers were asked what type of origin of the livestock they were selling came from, the 

response options to select from were home, another household/village or another market 

or other. The number and type of livestock origins will influence the risk of pathogen 

introduction into the market system. Improving the understanding of where livestock that 

enter the market system come from will help ascertain the scale needed for disease control 

interventions. This information will identify where knowledge exchange campaigns can be 
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most effectively targeted, especially if livestock entering the market chain are primarily 

privately owned in contrast to sold by traders and gathered from multiple locations.  

 

4.2.5.7 Price 

Gaussian GLMMs were used to assess if there was evidence of a difference in price wanted 

or price achieved, for cattle and small ruminants sold at primary and secondary markets. If 

price differs between locations and market types this could affect the distances people are 

willing to travel and how much they are willing to spend on using a vehicle to transport 

their livestock. The distances travelled and ability to spend money on using a vehicle to 

transport the livestock to market could both influence the speed and extent of pathogen 

dissemination through market centred livestock movements. Price disparity between 

locations would also identify if and where improved market access is needed by livestock 

keepers to ensure they can access the best prices. 

 

4.2.5.8 Numbers sold and purchased 

Gaussian GLMMs were used to assess if there was evidence of a difference in the number 

of livestock being bought and sold at each market type for cattle and small ruminants. 

Livestock managed in larger batches might have a higher risk of pathogen spread within 

the group if one moving animal is infectious. 

 

4.2.5.9 Journey distance and duration 

Gaussian  GLMM’s were used to assess if there was evidence of a relationship between the 

outcomes journey distance (calculated as the great circle distance between 

origin/destination co-ordinates and market co-ordinates of all reported livestock market 

movements captured by the survey data) and duration (reported by seller/buyer) for both 

the buyer and seller data, with multiple covariates fitted in each model. The distance and 

speed of livestock movements to and from markets will be directly associated with the 

speed and geographical area at risk of pathogen transmission as a result of these 

movements. The explanatory variables included in both the distance and duration models 

for buyer and seller data were market type (primary or secondary), species (cattle or small 

ruminant), number in batch, transport type (vehicle or foot), reason for sale or purchase 

(private or business), shared journey and journey contacts made. Variables that showed no 
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evidence of an association with any of the outcome variables (LR test P-value <0.05) were 

removed from the models using backwards stepwise selection. 

 

4.2.6 Network analysis 

4.2.6.1 Network construction and analysis 

Livestock origin and destination data collected from sellers and buyers was used to 

construct a market-centred static livestock movement network. The number and size of 

the strongly and weakly connected components (all nodes in the component can reach 

each other by a directed or undirected path respectively) of the network were calculated 

to assess the extent to which market-centred movements connect geographically distinct 

locations. The network diameter, average path length and reciprocity of the market 

network were also calculated.  

 

Central point coordinates from sampled markets and origins or destinations livestock 

travelled from or to were used to represent network nodes. Links were formed between 

these nodes, weighted by the number of livestock moved, each time a movement was 

reported. Unweighted node centrality metrics in-degree, out-degree, betweeness and 

geometric mean degree were calculated for all market nodes. The same node metrics were 

calculated for non-sampled origin/destination location nodes but this was done on the 

weighted network with links weighted by the total number of animals reportedly moving 

to and from the destinations. For market nodes the centrality metrics were used to assess 

whether heterogeneity existed between markets in their contribution connectivity, and 

thus pathogen transmission risk, in the study area. Unweighted unique links were used to 

calculate the market nodes centrality metrics in an effort to adjust for any bias in sampling 

size and proportion of sellers and buyers sampled at the different markets. A node would 

have an in-degree of 1 if 10 sellers surveyed were all selling cattle and had all travelled from 

the same location. If all survey respondents listed a different origin then the markets in-

degree would be 10. The larger a markets in-degree the greater diversity in origins the 

livestock in the market are sampled from. Weighted links were used to analyse non-market 

nodes to identify if locations outside the sampled markets have a large amount of livestock 

traffic and therefore a high risk of pathogen introduction or onward transmission. 
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4.2.6.2 Node centrality metrics 

The non-market nodes were analysed separately, to assess if there was evidence of 

heterogeneity in their centrality metrics and if any of these could be made targets for 

resource efficient disease control interventions. Other studies have found targeting 

contacts or ‘friends’ of randomly sampled nodes to be an efficient way to identify highly 

connected network nodes and fragment networks by removing these highly connected 

nodes, if there is again evidence of heterogeneity in node centrality measures.  

 

Correlation between centrality metrics was estimated using Spearman’s rho separately for 

the market and non-market nodes and the P-value to test the significance of any observed 

correlation calculated using the AS 89 algorithm (Best and Roberts, 1975). A high level of 

positive correlation between centrality metrics would allow the most influential nodes in 

the network to be identified. These could then be targeted with multipurpose disease 

control interventions that aim to both reduce pathogen introduction and onward 

transmission. Multi-purpose interventions would have the benefit of a shared initial fixed 

cost of community engagement and infrastructure development so authorities would save 

resources by not having to implement different types of interventions in different locations. 

 

Northern Tanzania has four major agro-ecological classes that villages have been divided 

into which are pastoral, agropastoral, small holder and urban. In pastoral areas the main 

household income is from livestock, in agropastoral areas household income is from both 

livestock and crops, in small holder areas livestock are kept tethered at the household in 

small numbers and these are more densely human and livestock populated areas. Urban 

areas are classified as those where no large livestock are kept by the households. Further 

details on agro-ecological classifications in the study area can be found in (de Glanville et 

al., 2020). The agro-ecological class of market locations might affect the type of movement 

required to access it and the probability of connection to the individual locations so market 

node centrality metrics should be assessed to see if they differ between agro-ecological 

classes of market locations.  

 

For the market nodes, Gaussian GLMMs were used to assess the relationship between the 

two centrality metrics in-degree and betweenness (fitted as continuous outcomes) and the 

market characteristic covariates; market type (primary and secondary) and agro-ecological 
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class of the market area (pastoral, agropastoral, small holder/urban). Market was fitted in 

each model as a random effect. This was done to evaluate if the study results could be 

generalised from across the study area and beyond if markets identified as high risk based 

on their centrality metrics also had other defining characteristics. The network construction 

and analysis was done in R statistical software (R Core Team, 2019b) using the igraph 

package (Csardi and Nepusz, 2006). Livestock market movement network plots were 

created using the ggplot2 package (Wickham, 2016). 

 

4.3 Results 

4.3.1 Number of surveys 

Data were collected from 507 sellers and 216 buyers at 19 primary markets and three 

secondary markets. The numbers of buyers and sellers surveyed stratified by market type 

and those selling cattle or small ruminants are given in Table 4-2. The majority of sellers 

and buyers surveyed at primary markets were dealing with small ruminants whereas the 

majority in secondary markets were dealing with cattle. Data from five sellers and seven 

buyers dealing with both species groups and one small ruminant seller (primary market) 

and two cattle sellers (secondary market) who had used mixed transport were excluded 

from descriptive analysis as these group sizes are too small to analyse. Raw survey data for 

all variables analysed are given in Appendix Table S3.1 stratified by market type and species 

group. All model estimates described in these results and the corresponding model 

summary statistics which include number of observations, random effects, variance and 

marginal and conditional R2 values are given in this document in Table 4-3 and in the 

Appendix Table S3.9 respectively. 

Table 4-2: Number of buyers and sellers surveyed at different market types stratified by 
species group being sold or purchased 

 Primary market 
(N = 19) 

Secondary market 
(N = 3) Total 

Sellers 

All 425 82 507 
Cattle 137 (32%) 66 (80%) 203 
Small ruminant 283 (67%) 16 (20%) 299 
Cattle and small ruminants 5 (1%)  5 

Buyers 

All 185 31 216 
Cattle 46 (25%) 22 (71%) 68 
Small ruminant 132 (71%) 9 (29%) 141 
Cattle and small ruminants 7 (4%)  7 
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4.3.2 Journey transport and contacts 

4.3.2.1 Mode of transport (vehicle or on foot) used to and from market 

Overall, the majority of livestock journeys to and from markets are made on foot (Figure 

4-2). Sellers at secondary markets were more likely to have moved their livestock to market 

by vehicle compared to those who had travelled to primary markets (OR 6.47, 95% CI 1.12-

37.46, P = 0.04). Forty-two percent (95% CI 17-71%) of journeys to secondary markets were 

made by vehicle compared to only 15% (95% CI 8-23%) of journeys made to primary 

markets (Table 4-3). Mode of transport did not differ between cattle and small ruminant 

groups sellers (P = 0.30). Buyers of small ruminants were more likely to use a vehicle for 

onward transport (OR 4.23, 95% CI 1.51-11.85, P = 0.006) compared to cattle buyers; this 

represents 50% of small ruminant buyers (95% CI 36-63%) compared to 28% of cattle 

buyers (95% CI 15-45%) (Table 4-3). There was no difference in mode of transport used for 

onward journeys between livestock purchased at primary or secondary markets (P = 0.31).  

a. 

 

 
b. 

  

Figure 4-2: Mode of transport used to get cattle and small ruminants to (a) and from (b) 
primary and secondary markets 
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4.3.2.2 Journey contacts with livestock from other households 

The majority of livestock batches being sold at both primary and secondary markets had 

some contact with livestock from another household during their journey to market (Figure 

4-3). The proportions of contact type were similar regardless of species group and 

destination market type. 

 

Figure 4-3: Types of journey contacts made by batches of livestock as they are moved to 
market, stratified by market type 
 

Livestock moved to market on foot were more likely (OR 2.4, 95% CI 1.15-5.07, P  = 0.02) 

to make contact with livestock from other households at grazing and watering points along 

their journey compared to livestock moved to market by vehicle. Twenty-one percent (95% 

CI 17-27%) of livestock batches moved to market by foot had some close contact with 

livestock from other non-moving, local households at grazing and watering points 

compared to 10% when moved by vehicle (95% CI 5-19%) (Table 4-3). There was no 

evidence to suggest that species group or the type of market being moved to had any effect 

on contacts made at grazing and water points during the journey (P = 0.07 and 0.35 

respectively).  

 

4.3.2.3 Journey sharing to and from markets 

Livestock transported to and from market by vehicle were more likely to be transported 

with livestock that belonged to other households or batches compared livestock moved to 

and from market on foot (OR 4.19, 95% CI 2.37-7.40 P <0.001 and OR 6.56 95% CI 2.78-

15.48, P <0.001 respectively). Cattle were more likely to share their journey to and from 
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market with livestock from another household or batch compared to small ruminants (OR 

1.53, 95% CI 1.03-2.28, P = 0.03 and OR 2.75, 95% CI 1.23-6.12, P = 0.01 respectively). There 

was no evidence of an effect of market type being travelled to or from on the odds of the 

market journey being shared with others (P = 0.91 and 0.65 respectively). Model estimates 

for the proportion of cattle and small ruminants that share their market journey with 

others, for journeys to and from markets, both by vehicle and on foot, are given in Table 4-

3. 

 

4.3.3 Socio-economic factors 

4.3.3.1 Reason for sale and money use 

Livestock sold in secondary markets were more likely to be sold by traders listing business 

as the major reason for sale, compared to livestock being sold in primary markets (OR 7.1, 

95% CI 1.9-26.4, P = 0.003). An estimated 47% (95% CI 24-70%, P = 0.003) of sales in 

secondary markets were made by livestock traders rather than private sellers compared to 

only 14% of sales in primary markets (95% CI 9%-21%)(Table 4-3). There was no difference 

in the proportion of sellers listing business as the primary reason for livestock sale (business 

or private) between those dealing with cattle or small ruminants (P = 0.57). 

 

A summary of the number of responses given for reasons for livestock sale are given in the 

Appendix table S3.2. Some of the more common reasons listed for the sale of livestock 

include ‘to generate money to buy other (non-livestock) things’ 199/502 (40%) and ‘for 

household purchases/problem at home’ 41/502 (8%). In response to the question about 

what the money generated from the livestock sales will be used for, the most common 

response was ‘for a household purchase’ (223/502 (44%)). Other common responses given 

to this question include ‘school fees’ 154/502 (30%), ‘treating illness (livestock or human)’  

125/502 (25%), ‘buying food’ 68/502 (13%) and for ‘business’ 96/502 (19%). A full list of 

responses about the what the money generated from livestock sales will be used for, and 

the number of respondents listing these reasons, are given in the Appendix table S3.3. 

Further details on who sellers are hoping to sell to and what they plan to do with non-sold 

livestock are given in Appendix tables S3.4 and S3.5. Eight percent of livestock sellers (all at 

secondary markets) planned to leave any unsold livestock at the market site until the next 

active market day, 78% planned to take any unsold livestock home. 
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4.3.3.2 Reason for purchase 

The most commonly listed primary reason for choosing to buy specific livestock was ‘price’ 

128/216 (59%). Other responses given for primary reason for choosing to purchase these 

animals were ‘health of livestock’ (39% (N=85)), followed by ‘quality of animal’ (36% 

(N=78)), ‘amount of meat on carcase’ (26% (N=56)) and finally for ‘milk production’ (2.2% 

(N=5)). 

 

4.3.3.3 Price 

Cattle sellers at secondary markets were hoping to achieve, and generally did achieve, a 

higher price for the cattle they were selling compared to cattle sellers at primary markets 

(57% and 42% more, respectively) (Figure 4-4 and Table 4-3). For small ruminants there 

was no evidence of a difference between the price per head wanted or achieved at primary 

and secondary markets (P = 0.42 and 0.34 respectively). Summary data on price wanted 

and price achieved, stratified by species group and market type is in Appendix Tables S3.6 

and S3.7. 
a. b. 

  

Figure 4-4:  Minimum price wanted and price achieved for (a) cattle and (b) small ruminants 
being sold at primary and secondary markets in northern Tanzania. Data displayed from N= 
131 cattle sellers and N = 239 small ruminant sellers who were able to responded to both 
questions. 
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4.3.3.4 Livestock origins 

The majority of sellers in both market types had brought the livestock they were selling 

from their home. Other types of location livestock were reported to have originated from 

include ‘other markets’ and ‘other villages’ (Figure 4-5). Cattle sellers in secondary markets 

were less likely to have brought the animals from home compared to cattle sellers in 

primary markets and any small ruminants sellers (OR 0.21, 0.08-0.55, P = 0.001) (Figure 

4-6). An estimated 80% of sellers at primary markets (cattle  95% CI 71-88% and small 

ruminants 95% CI 77-88%) and small ruminant sellers at secondary markets (95% CI 62-

97%) were selling livestock brought from home compared to only 50% of cattle sellers at 

secondary markets (95% CI 33-67%). A summary of the raw data for responses to livestock 

origin and if the livestock sold originally belonged to the seller is given in Appendix Tables 

S3.1 and S3.8 respectively. 

 

Figure 4-5: Type of origin cattle and small ruminants sold in primary and secondary markets 
came from 
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Figure 4-6: Model estimates for probability that a seller is selling livestock brought from 
home rather than some other location in the primary and secondary markets, for cattle and 
small ruminant (shoat) sellers 
  

1.0 - 
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4.3.3.5 Livestock destinations 

Other market was the most commonly reported destination for livestock batches 

purchased at primary markets (48% cattle and 44% small ruminants) and small ruminants 

purchased at secondary markets (66%) (Table 4-3 and Figure 4-7). The effect of market type 

differed between species groups for destination choice meat and other market so an 

interaction was fitted between market type and species group in these models (P = 0.05). 

Cattle batches purchased at secondary markets were most likely to be taken direct to 

slaughter (OR 7.21, 95% CI 1.73-30.0, P = 0.007) and had a lower odds of being taken on to 

other markets (OR 0.11, 95% CI 0.02-0.81, P = 0.03) compared to small ruminants 

purchased at secondary markets and both cattle and small ruminants purchased at primary 

markets. Livestock purchased at secondary markets were less likely to be taken home 

compared to those purchased at primary markets (OR 0.19, 95% CI 0.04-0.89, P = 0.03) and 

there was no evidence to suggest this effect differed between species groups (P = 0.47). 

Small ruminants purchased at primary and secondary markets were most likely to be taken 

on to another market (44% from primary markets and 66% purchased at secondary 

markets). Model estimates for the proportion of purchased livestock at each market going 

to the three most commonly reported destination types is given in Table 4-3 and a summary 

of the raw data numbers of buyers taking each livestock species to each destination are 

given in the Appendix Table S3.1. 
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Figure 4-7: Number of buyers taking the livestock they purchased to their home, for 
slaughter, to another market or to another village location. 
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Table 4-3: Model estimated proportion (95% CI) of livestock batches in each variable 
category, by market type and species, estimated from binomial GLMMs  

(see methods for details) 
 Primary (N = 19) Secondary (N = 3) 

 
Cattle Small 

ruminants Cattle Small 
ruminants 

Estimated proportion of livestock 
Transported to market in vehicle  

15%  
(8-23%) 

42%  
(17-71%) 

Estimated proportion of livestock 
Transported from market in vehicle 

28%  
(15-45) 

50%  
(36-63) 

28%  
(15-45) 

50%  
(36-63) 

Estimated proportion of livestock that 
contacted local livestock at grazing or 
watering, of those moved to market on 
foot 

21%  
(17-27%) 

Estimated proportion of livestock that 
contacted local livestock at grazing or 
watering, of those moved to market in 
a vehicle 

10%  
(5-19%) 

Estimated proportion of livestock 
sharing their journey to market with 
others, for those transported by foot 

59%  
(51-67) 

39%  
(30-49) 

59% 
(51-67) 

39%  
(30-49) 

Estimated proportion of livestock 
sharing their journey to market with 
others, for those transported by vehicle 

79%  
(60-90) 

73%  
(57-85) 

79%  
(60-90) 

73%  
(57-85) 

Estimated proportion of livestock 
sharing their onward journey from 
market with others, for those 
transported by vehicle 

90%  
(77-96) 

78%  
(65-87) 

90%  
(77-96) 

78%  
(65-87) 

Estimated proportion of livestock 
sharing their onward journey from 
market with others, for those 
transported on foot 

61%  
(46-75) 

39%  
(27-53) 

61%  
(46-75) 

39%  
(27-53) 

Proportion of livestock sold for Business  14%  
(9-21) 

47%  
(24-70) 

Estimated Price wanted 
(1,000 TzSh) 

329  
(273– 384) 

59  
(55-63) 

516  
(412-621)  

58  
(55-63) 

Estimated Price achieved 
(1,000 TzSh)  

343  
(276-408) 

46 
(30-62) 

486  
(365-607) 

46  
(30-62) 

Estimated proportion of livestock sold 
that originated from the home 

81%  
(71-88) 

83%  
(77-88) 

50%  
(33-67) 

88%  
(62-97) 

Estimated proportion of livestock 
purchased that were destined for 
another market 

48%  
(32-64) 

44%  
(33-56) 

12%  
(3-40) 

66%  
(26-92) 

Estimated proportion of livestock 
purchased that were destined for 
meat/consumption 

26%  
(14-43) 

20%  
(13-30) 

69%  
(43-87) 

20%  
(4-59) 

Estimated proportion of livestock 
purchased that were destined for the 
home 

23%  
(12-40) 

27%  
(20-36) 

5%  
(1-27) 

11%  
(1-52) 
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4.3.4 Quantitative journey characteristics 

4.3.4.1 Batch sizes 

There is strong evidence of a difference in estimated batch sizes sold between cattle and 

small ruminants sold at primary and secondary markets (Table 4-4 and Figure 4-8). Cattle 

sold at secondary markets were sold in batches that were around 5 times larger than 

batches sold at primary markets (95% CI 3.05 – 7.87, P <0.001). Small ruminants sold at 

primary and secondary markets were also sold in larger batches than cattle at primary 

markets (P <0.001) but there was no evidence of a difference in batch sizes of sold small 

ruminants between the different market types (Table 4-4).  

 

Small ruminants were purchased in larger batches than cattle (95% CI 1.12-2.30, P = 0.009) 

(Table 4-4 and Figure 4-9). There was no evidence of an effect of market type on the batch 

size of purchased cattle or small ruminants (P = 0.60) though the number of buyers 

surveyed at secondary markets (N=22 cattle buyers and N=9 small ruminant buyers) are 

too small for meaningful differences to be excluded. 

 

Table 4-4: Model estimates (95% CI) from Gaussian GLMMs for batch size of cattle and small 
ruminants sold and purchased at primary and secondary markets 

 Primary (N = 19) Secondary (N = 3) 
 Cattle Small ruminants Cattle Small ruminants 

Batch Size  
Sold 

2.64 
(2.15-3.23) 

3.53 
(2.96-4.22) 

9.36 
(6.11-14.35) 

4.69 
(2.74-8.03) 

Batch size 
Purchased 

8.24 
(5.90 – 11.63) 

13.32 
(10.23 – 17.34) 

8.24 
(5.90 – 11.63) 

13.32 
(10.23 – 17.34) 
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Figure 4-8: Batch sizes for cattle and small ruminants sold at primary and secondary 
markets 

 

Figure 4-9: Batch sizes for purchased cattle and small ruminants 
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4.3.4.2 Journey duration 

When all other variables are controlled for, cattle spent longer travelling to market than 

small ruminants  (4.2 hours (95% CI 3.5-5.2) vs 2.1 hours (95% CI 1.8-2.5)) and journeys to 

secondary markets were 68% longer duration (95% CI 19-138% P = 0.007) than journeys to 

primary markets. Journeys that were primarily for business reasons took 65% longer than 

private sale journeys (95% CI 28-113%, P <0.001) and livestock that experienced close 

contact with local livestock at grazing or watering points along their journey had travelled 

for longer compared to those that had no contact with local livestock (31% longer journeys, 

95% CI 5-64% P = 0.02). Journey duration also increased by an estimated 28% for every 

twofold increase in the size of the batch of livestock being moved to market (95% CI 18-

38%, P <0.001).  

 

For onward journeys from market, the estimated journey duration for one livestock being 

transported on foot from primary markets, without being grouped with others, is 4.75 

hours (95% CI 3.0-7.5 hours). There was no evidence of a difference in the duration of 

onward journey between cattle and small ruminants (P = 0.86). A twofold increase in batch 

size was associated with a 24% increase in estimated onward journey duration (95% CI 12-

38% P  <0.001). An increase in onward journey duration was also positively associated with 

livestock being purchased based on them being a good price and a plan to share the onward 

journey with other batches of livestock (60% (95% CI 13-126% P = 0.01) and 175% (95% CI 

87-303% P  <0.001) increase respectively). Onward journeys from secondary markets and 

those that used a vehicle were both associated with shorter journey duration times (0.44 

(95% CI 0.20-0.97, P = 0.05) and 0.39 (95% CI 0.26-0.59, P <0.001) respectively). Results 

from both journey-to-market and journey-from-market duration models are plotted in 

Figures 4-10 and 4-11 given in Table 4-5. 
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Figure 4-10: GLMM results for effects of covariates on livestock journey to market duration  
 

 
Figure 4-11: GLMM effects of covariates on journey from market duration 
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Table 4-5: Results from generalised linear mixed model, with journey duration (time in 
hours) fitted on the log scale to satisfy model assumption of normally distributed outcome. 
In the top row of the table the results show the estimated journey duration in hours for the 
baseline group (1 cattle, going to/from primary market on foot as a private sale and having 
no contacts with local livestock en route), adjusting for Jensen’s inequality. Rows below  
show the multiplicative effect estimates of each variable on journey duration to and from 
market with 95% confidence intervals. 

  Regression coefficient estimate (95% CI) 
  Journey to market 

(Nobs = 499) 
Journey from market 

(Nobs = 205) 

Predicted duration in hours 
(#1 Cattle, Primary market, On foot, 
private sale, no contacts with local 

livestock on journey) 

4.24 (3.45, 5.20) 4.75 (3.01, 7.50) 

Multiplicative 
effect estimate: Secondary market  

1.68 (1.19, 2.38) 
** 

0.44 (0.20, 0.97) 
* 

 Small ruminants 0. 50 (0.41, 0.60) 
*** - 

 Log2 Number in batch  
1.28 (1.18, 1.38) 

*** 
1.24 (1.12, 1.38) 

*** 
 Vehicle Transport   - 0.39 (0.26, 0.59) 

*** 
 Journey close contacts 

with local livestock 
1.31 (1.05, 1.64) 

* - 

 Business sale 1.65 (1.28, 2.13) 
*** - 

 Reason for purchase  
Good Price - 1.60 (1.13, 2.26) 

* 
 Transported onwards 

with other livestock - 2.75 (1.87, 4.03) 
*** 

Markets (N = 22) random effects variance 0.03 0.28 
Marginal R2  0.35 0.32 
Conditional R2  0.37 0.44 
Note:  *p<0.05**p<0.01***p<0.001 

  Market fitted as random effect 
 

4.3.4.3 Journey distance 

Livestock journey distance was calculated as the great circle distance between the origin 

(to) and destination (from) coordinates and the market central point coordinates. Summary 

data of market distances travelled to and from markets are given in Appendix Table S3.1. 

The longest recorded distance of a single market movement was for cattle that were moved 

511 km to a secondary market. The longest recorded onward journey distance was 297 km 

for small ruminants moved from a primary market.  
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The effect of market type on journey distance differed between the species groups in both 

journey distance to and from models (Likelihood ratio test P <0.001 and 0.05 respectively) 

so an interaction was fitted between species group and market type and the model results 

are presented separately for each group (cattle primary, cattle secondary, small ruminant 

primary and small ruminant secondary)(Table 4-5). Cattle travelling to secondary markets 

travelled twice as far as those travelling to primary markets and cattle travelling onwards 

from secondary markets had about a third of a journey distance ahead of them compared 

to cattle purchased in primary markets. Small ruminants travelled shorter distances to and 

from primary and secondary markets compared to cattle and their journey distances were 

not affected by market type. 

 

Estimated distance travelled to market for the baseline group of one cattle, travelling on 

foot to primary markets was 22.2km (95% CI 16.1-31.6km). A twofold increase in number 

of livestock being moved was associated with a 20% increase in journey distance (95% CI 

14-27%) and use of a vehicle to travel to market was associated with a twofold increase in 

distance travelled (2.15 (95% CI 1.79-2.58 P <0.001)). Livestock that had close contacts with 

local livestock on their journey had also travelled an estimated 21% further than those who 

made no contacts with local livestock at grazing and watering points on their journey (95% 

CI 4-41% P = 0.008).  

 

Estimated distance travelled from markets for one cow (or bull) moved onwards on foot 

from primary markets was 36.2km (95% CI 25.0-52.4km). A twofold increase in number of 

livestock purchased was associated with a 19% increase in onward journey distance (95% 

CI 11-28%, P <0.001) and livestock that were transported onwards by vehicle were 

estimated to be moving over twice as far compared to those moved onwards on foot (2.22, 

95% CI 1.69-2.92 <0.001). Livestock that were purchased primarily for meat production had 

shorter onward journeys compared to livestock that weren’t purchased primarily for meat 

(0.62, 95% CI 0.52, 0.90 P = 0.007).  
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Figure 4-12: Effect of GLMM covariates on distance livestock travelled to market 
 

 

Figure 4-13: Effect of GLMM covariates on distance livestock travel onwards from markets 
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Table 4-6: Results of generalised linear mixed models with the log distance livestock travel 
to and from markets as the response variable. In the top row of the table the results show 
the estimated journey distance in kilometres for the baseline group (1 cattle, going to/from 
primary market on foot having no contacts with local livestock en route),  adjusted for 
Jensen’s inequality. In the rows below the coefficients give the estimated multiplicative 
effect of each variable on journey distance to and from markets with the 95% confidence 
interval and the. An interaction between species group and market type is fitted in each 
model and the effects of each group are presented separately in the table (likelihood ratio 
test P-value <0.001 in journey to model and 0.049 in journey from model) 

  Regression coefficient estimate (95% CI) 
  Journey from market 

(Nobs = 499) 
Journey to market  

(Nobs = 205) 

Predicted distance in km 
(# 1 Cattle, Primary market, On foot, No 
contact with local livestock on journey) 

22.22 (16.13, 30.61) 36.21 (25.00, 52.44) 

Multiplicative 
effect estimate: 

Cattle  
Secondary market  

2.28 (1.01, 5.17) 
* 

0.36 (0.17, 0.76) 
* 

 Small Ruminant  
Secondary market 0.59 (0.25, 1.39) 0.80 (0.33, 1.93) 

 Small Ruminant  
Primary market 

0.76 (0.65, 0.89) 
*** 

0.74 (0.54, 1.00) 
* 

 Log2  
Number in batch 

1.20 (1.14, 1.27) 
*** 

1.19 (1.11, 1.28) 
*** 

 Transported by 
Vehicle 

2.15 (1.79, 2.58) 
*** 

2.22 (1.69, 2.92) 
*** 

 Contact with local 
livestock 

1.21 (1.04, 1.41) 
** - 

 Purchased for meat - 0.69 (0.52, 0.90) 
** 

Markets (N = 22) random effects variance 0.41 0.05 
Marginal R squared 0.36 0.29 
Conditional R squared 0.67 0.51 
 Note: *p<0.05**p<0.01***p<0.001 
   Market fitted as random effect 
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4.3.5 Network analysis 

4.3.5.1 The observed network  

Market movements recorded in this data connect multiple locations outside the study area, 

including across the international border with Kenya (Figure 4-14).  

 

Figure 4-14: Map of the study area highlighted in grey and all identified origins, destinations 
and markets 
 

Movements into the study area from outside are due to cattle travelling north into the 

market system and these are all moved by vehicle. Movements out of the study area are 

all small ruminants moved north by vehicle into Kenya (Figure 4-15 (a,b,c)). Movement 

plots have links represented by arrows that are coloured by movement type and show the 

direction of movement. The market movement network constructed using this market 

survey data is fully connected (assuming links are bidirectional) with 22 market nodes and 

280 unique non-sampled origin and destination nodes (61 unique destinations, 184 unique 

origins and 35 locations listed as both an origin and destination). Of the markets sampled 

9 were listed as both origin and destinations, 3 as an origin and 5 as a destination. The 

nodes were connected by 726 links and 64% (N = 468) of links are unique (only mentioned 

once as a route livestock travelled in the survey data). 23 origins and 12 destinations could 

not be matched to known locations thus these 35 locations and the corresponding 

movements generated from and to them are not plotted in the figures. 
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a. 

 
b. 

 
c. 
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Figure 4-15: Static network of livestock market movements in Arusha, Manyara and 
Kilimanjaro regions of northern Tanzania. Node size is plotted proportional to its degree 
centrality (combined in and out degree) and link thickness is proportional to the number of 
livestock reportedly moved along it on one market day. Links are coloured differently in the 
three plots by (a) species, (b) transport type, (c) to or from market movements. All market 
nodes are classed as markets (N=22) regardless of being listed as an origin or destination 
and locations listed as both origins and destinations (N=35) are classed as origins in the 
figures. 
 

4.3.5.2 Network properties 

The giant weakly connected component (GWCC), calculated by assuming all links are 

bidirectional, includes all 302 network nodes. This can be used to estimate the maximum 

size of an epidemic if a pathogen is introduced into the network. Assuming reported links 

are unidirectional, there were two giant strongly connected components in the network, 

each made up of 6 nodes. The size of the GSCC can be used to estimate the lower bounds 

of an epidemic size on the network if a pathogen is introduced. The size of the GSCC should 

be interpreted with some caution here as we only have a sub-sample of the underlying 

network. Additionally all nodes involved in the network are not equivalent (some markets, 

some origin/destination locations) so the pathogen transmission within nodes may vary. 

The diameter of the network is 10 which shows that a minimum of 10 consecutive livestock 

movements are needed to move between the two most distant nodes on the network. The 
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average path length on the network is 4 which shows that on average 4 sequential 

movements of infectious livestock are needed to get between pairs of connected nodes. 

The reciprocity of the network is 0.11 which shows that 11% of livestock movements 

captured in this data are bi-directional. Again these results should be interpreted with 

caution as the density of the underlying network might be higher if more nodes were 

sampled from, resulting in more links and thus shorter path lengths across the network. 

 

4.3.5.3 Centrality metrics 

Market in-degree and geometric mean degree have normal distributions and out-degree 

and betweeness centrality metrics are skewed to the right Figure 4-16. This shows some 

markets were connected to many more locations via outgoing movements than others and 

a small proportion of markets with high betweenness act as bridges in the network 

connecting many other pairs of nodes.  

 

 

Figure 4-16: Distribution of market node centrality metrics (in-degree, out-degree, geometric 
mean degree and betweenness centrality) calculated on market movement network 
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For the non-market nodes the centrality measures were calculated using all links reported 

in the network. Centrality metric distributions for all non-market nodes identified show 

strong right skew (Figure 4-17) indicating that through this data we have identified some 

highly connected non-sampled locations. 

 

Figure 4-17: Distribution of non-market nodes centrality metrics (in-degree, out-degree, 
geometric mean degree and betweenness centrality) calculated on market movement 
network 
 

There was strong positive correlation between market nodes in-degree and both 

betweenness centrality and geometric mean degree centrality P < 0.001 (Figure 4-18). In 

the non-market nodes there were positive correlations between betweenness centrality 

and both in-degree (ρ = 0.29) and geometric mean degree centrality (ρ = 0.61) (Figure 4-19). 

The positive correlations suggest that a small number of highly connected locations exist, 

outside the sampled markets, which could be important for pathogen transmission via 

livestock movements within and beyond northern Tanzania, and these could be identified 

using this market survey data. 
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Figure 4-18: Market node centrality metrics correlation plots (bottom left) and 
corresponding Spearman’s rho correlation coefficients (top right) with only significant (AS 
86 P-value <0.05) rho values displayed 
 

 

Figure 4-19: Non-market node centrality metrics correlation plots (bottom left) and 
corresponding Spearman’s rho correlation coefficients (top right) with only significant (AS 
86 P-value <0.05) rho values displayed 
 

The sample size for comparison between centrality metrics and other market 

characteristics was small (3 secondary markets and 19 primary markets). Nevertheless 

there was strong evidence to suggest that secondary markets have higher in-degree 

(sampling livestock from more unique location) and betweenness centrality (lying on the 

shortest path between most other pairs of nodes in the network) than the primary markets 
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sampled (P = 0.003 and < 0.001 respectively). Thus, secondary markets sample livestock 

from a wider range of locations than primary markets and also act as bridges connecting 

many other locations in the network. There was no evidence to suggest either market 

centrality metric was associated with the A-E class of the market area (P=value >0.05). 

Model estimates for in-degree and betweenness centrality metrics for primary and 

secondary market nodes are given in Table 4-7.  

 

Table 4-7: GLMM Estimated market node’s in-degree and betweenness centrality measures 
  

In-degree 

 

Betweenness 

Primary markets 13.6 (11.3, 15.8) 0.007 (0.004, 0.009) 

Secondary markets 23.7 (17.6, 29.8)*** 0.024 (0.017, 0.031)** 

 

4.4 Discussion 

4.4.1 Summary 

This market survey data shows that the study area in northern Tanzania and beyond, across 

the international border into Kenya, is epidemiologically connected through livestock 

market movements. Livestock movements to and from markets covered large distances 

(over 500km and almost 300km respectively) showing that pathogens can also be 

transmitted over these distances via a single market movement, if infectious animals are 

moved (Dean et al., 2013). The network constructed from market movements can be used 

to identify highly central market and non-market locations that are at high risk of both 

pathogen introduction and onward transmission. These locations can be made targets for 

efficient multi-purpose disease control programmes that target multiple pathogens and 

aim to prevent pathogen introduction and or onward transmission, depending on 

government priorities (Perry and Grace, 2009; Rich and Perry, 2011; Forman et al., 2012; 

Sindato, Karimuribo and Mboera, 2012). These results also show key differences between 

primary and secondary markets and differences in journey characteristics, made by cattle 

and small ruminants to and from markets that will influence pathogen transmission. The 

results also provide new information on some of the external pressures that determine 

livestock flow into and through the market system in northern Tanzania and identify who 
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the key stakeholders are in the market movement network who will be affected by 

movement restrictions.  

 

4.4.2 Journey contacts and socio-economic factors 

Most livestock move to and from markets on foot and livestock moving on foot are more 

likely to contact local livestock along their journey which provides opportunities for 

pathogen transmission events with livestock outside the market system. This is despite 

legislation made in 2000 stating that all livestock market journeys should be made in 

vehicles (Pica-Ciamarra et al., 2011). The resultant higher rate of local livestock contacts 

could be risk factors for the spread of highly transmissible pathogens like foot and mouth 

disease virus (FMDV) and Peste des petits ruminants (PPRV), as well as those transmitted 

by environmental contamination such as Leptospira spp. and Coxiella burnetii (Sherman, 

2011; Van den Brom et al., 2015; Allan et al., 2018; Herzog et al., 2020). This is an important 

finding to document as pathogen surveillance programmes targeted solely at markets will 

miss infections of local livestock that happen along market routes. As has been shown in 

studies from other countries, both formal and informal trade routes should be considered 

as additional locations for implementing pathogen surveillance in this setting as well as in 

markets (Spiegel and Havas, 2019; Ng’asike, Hagmann and Wasonga, 2021). Both local 

livestock keepers and those moving livestock to markets should actively minimise contact 

between moving and local livestock to prevent pathogen transmission.  

Cattle are more likely to be transported by vehicle, especially for journeys from primary to 

secondary markets where they achieve a higher price. Livestock transported by vehicle are 

also more likely to have shorter journey times overall but be mixed together with livestock 

from other households or purchased batches for the duration of the journey. Journey 

sharing is a risk factor for pathogen propagation as the chance of at least one animal being 

infectious increases as the batch size increases and when multiple batches are combined. 

Vehicle use also provides potential opportunity for fomite pathogen transmission if the 

vehicle used is contaminated. Vehicle transport might reduce livestock’s time in transit, 

energy required for the journey, stress, and the risk of contact with local livestock but the 

risk of transmission of infectious pathogens between livestock from different households 

within the vehicle will be high (Bernini, Bolzoni and Casagrandi, 2019). Longer market 

journeys of large livestock batches, identified here as driven largely by market economies 
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of scale, will have a greater chance of disseminating pathogens throughout the moving 

batch and to other livestock along the route if any moving livestock are infectious. The 

higher rate of journey sharing by livestock transported by vehicle and the increased use of 

vehicles for cattle journeys and journeys to secondary markets where higher prices are 

achieved by cattle implies that the cost of vehicle use needs to be offset. This result 

highlights the restrictive economic component of market movement decisions and is 

important to document as it shows the cost of vehicle use may be too high for sellers 

attending primary markets and or poorer sellers are unable to afford vehicle transport. This 

means that despite multiple initiatives (e.g. the Tanzanian governments Agricultural Sector 

Development Programme (ASDP) (Michael et al., 2018) and Market infrastructure, value 

addition and rural finance (MIVARF) funded by the African development bank) to improve 

livestock keeper’s access to markets in Tanzania, access inequality still exists and rural 

livestock keepers continue to miss out on higher cattle price opportunities available at 

more distant secondary markets (Pica-Ciamarra et al., 2011).  

The primary driver for most livestock sales into the market system is household need as the 

majority of sellers in primary markets were selling their own animals brought from home, 

primarily to generate money for household purchases. This is an important finding, 

supported by other studies, and should be used to ensure that the needs of households 

who rely on livestock sales into the market system are carefully considered in the design 

and implementation of disease control programmes (Pica-Ciamarra et al., 2011). When 

people are already living in marginal circumstances it could be detrimental to overall health 

and wellbeing to remove the primary source of income generation used to meet family 

needs for a large proportion of the population (Komba et al., 2012).  

In secondary markets, located closer to major towns, cattle generate a higher price and are 

most likely to be sold by traders, as part of commercial business enterprises, who have also 

travelled further to access the market compared to cattle sold at primary markets. Cattle 

sold at secondary markets then have relatively short (distance and duration) onward 

journeys to predominantly final end point slaughter destinations compared to cattle sold 

at primary markets and small ruminants sold at secondary markets. Similar to findings from 

other countries this is likely the main reason for secondary markets being located close to 

major towns: buyers that supply the local meat production units that supply urban areas 

do not have to travel far to purchase the livestock they need (Martin et al., 2011; Mutua et 
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al., 2018; Motta et al., 2019). Urban per-capita consumption of livestock products in 

Tanzania is twice that of rural households and is largely made up of purchased products, 

indicating this is what drives the flow of livestock from rural (primary markets) into urban 

areas (where secondary markets are located) (Covarrubias et al., 2012). 

The distinction between market types and the flow of livestock into and out of them is not 

reflected in the small ruminant data. This could be because small ruminants purchased for 

meat can be bought and slaughtered locally without entering the market chain because 

slaughter of smaller animals requires less infrastructure. Alternatively, there may be less 

demand for small ruminant meat, or it is possible local small ruminant consumers are being 

effectively priced out of the market by external buyers. Small ruminants in the market 

system described by this data are commonly being moved on to other markets (48% buyers 

at primary and 55% at secondary) however these markets are not captured in this data with 

only a small proportion of surveyed small ruminant sellers selling animals brought from 

other markets. The mapped survey data helps to explain this misalignment as there were 

a high number of small ruminant movements out of surveyed markets going north across 

the international border with Kenya. This finding is supported by other studies that show 

the international border here does not provide a barrier to livestock movements and thus 

to pathogens (Mutua et al., 2018; Omondi et al., 2019; Spiegel and Havas, 2019). The long-

distance international movements of many small ruminants mixed together in large 

batches from multiple origins in vehicles, provide potential important routes for rapid 

regional pathogen dissemination. This is an important finding for policy makers who are 

currently designing disease surveillance and control interventions, especially for highly 

transmissible pathogens such as FMDV and PPRV, as it confirms a harmonised regional 

approach is required (Kivaria, 2003; Motta et al., 2017; Herzog et al., 2019).  

4.4.3 Connectivity 

If the network links were considered bi-directional all locations reported in this study could 

reach one-another. The network was built using data on movements reported in one 

direction. If pathogens can be transferred by fomites, such as the people or vehicles that 

move the livestock, or by non-sold livestock returning to their origin, it is plausible that for 

some pathogens the observed links are partially bidirectional, albeit with the two directions 

weighted differently (Porphyre et al., 2020). As an example the majority of sellers (78%) 

reported that they would take non-sold animals home. The majority of all sellers surveyed 
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were also selling livestock from home so regardless of sale success the seller is likely to 

return to their origin and create a bidirectional link.  

 

Secondary markets have higher betweenness and in-degree centrality compared to 

primary markets which shows they sample livestock from a wider range of locations than 

primary markets and also act as bridges by connecting many other locations in the network. 

This makes them good locations to begin targeted pathogen surveillance programmes or 

in the case of emergency responses to disease outbreaks, where market closures could be 

targeted to rapidly fragment the network and remove important transmission routes. As 

we did not have a full sample of all markets in the study area the distinction between 

market types is an important finding as these results could be generalised from so that all 

secondary markets in Tanzania become early warning disease surveillance sites.  

 

There was significant right skew of, and positive correlation between, all centrality metrics, 

in-degree, out-degree, betweenness and geometric mean degree, of the non-market nodes 

identified by this survey data. This shows that some non-market locations identified in the 

data could also be targets for efficient disease control interventions such as vaccination or 

surveillance programmes, depending on the pathogens of primary concern and the type of 

locations identified. For example, villages with high in-degree and betweenness could be 

targets for vaccination campaigns, or if locations with high in-degree are slaughter points 

these could be targets for implementing early warning active surveillance programmes. 

Other studies have shown efficient network fragmentation can be achieved by removal of 

the highly connected non-sampled nodes, because these are likely to be some of the most 

central nodes in the underlying network (Büttner et al., 2013a; Herrera et al., 2016; Colman 

et al., 2019). If the most central non-sampled locations are other markets, these can 

become surveillance sites for existing and emerging pathogens. If highly connected non-

sampled locations are villages then these might be targets for vaccination campaign 

starting points so that transmission chains are broken, especially in the face of disease 

outbreaks such as FMD, RVF and PPR (Bett et al., 2010; Brahmbhatt et al., 2012; Fournié, 

Waret-Szkuta, Camacho, Laike M Yigezu, et al., 2018)   
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4.5 Limitations 

This data is a small static subsample of the underlying network, we do not control for any 

adjustments in time or season and we have only sampled from a proportion of markets in 

the study area. The volume of livestock sales from different areas might change with the 

wet and dry seasons as household income needs vary through the year (Pica-Ciamarra et 

al., 2011; Haseeb et al., 2019). The demand for livestock produce might also vary in 

different areas throughout the year in line with festival seasons, as is seen in other 

countries (Aklilu et al., 2007; Dean et al., 2013; Nandonde, Gebru and Stapleton, 2017; 

Mtimet et al., 2021).  

Sampling effort was the same in all markets and although we recorded an estimated 

number of livestock being sold on each market day, with some markets much busier than 

others, we do not know what proportion of buyers and sellers surveyed at each market. 

We were unable to measure more specifically how exhaustive or saturated our market 

sample was on each day as markets are busy with many people and livestock coming and 

going during the market day and no official recording required. The network, and market 

node metrics calculated using this data will be skewed left (less heterogeneity identified 

even if it exists) which we tried to offset by analysing only unique links to calculate market 

node metrics. The random sampling strategy was followed closely by all interviewers at 

each market with a total of four people approached unwilling to participate in each case 

citing shortage of time. This makes the study participation rate look high however market 

attendees who did not want to participate could have simply avoided the interviewers by 

moving away if they saw an interviewer close by. There may therefore have been some 

unknown sampling bias with interviewee participation. 

 

4.6 Conclusions 

Northern Tanzania is highly connected via livestock movements to and from markets that 

provide epidemiological connections and routes for pathogen transmission over long 

distances between geographically distinct populations. This includes cattle coming into 

northern Tanzania from the south west of the country and small ruminants moving out of 

the area northwards across the international border into Kenya. Market journeys 

predominantly happen on foot with moving livestock at high risk of contacting local 

livestock and providing opportunities for pathogen dissemination along market routes 
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which should be considered in the design of surveillance programmes (Spiegel and Havas, 

2019; Ng’asike, Hagmann and Wasonga, 2021).  

 

There is high price disparity between cattle sold in primary and secondary markets. Cattle 

sellers in secondary markets are generally selling as part of a livestock trading business and 

achieve higher prices compared to those in primary markets who are generally selling to 

generate some income to meet household needs. Secondary markets sample from a higher 

number of locations and bridge many locations in the observed network which makes them 

principal targets for implementing efficient pathogen surveillance in northern Tanzania. 

Efficient surveillance is needed in countries with limited resources and high disease burden 

with risk of emerging pathogens (Martin et al., 2011; Halliday et al., 2012; Motta et al., 

2017).  

 

The findings of this study highlight a disparity in market access and show that market 

journeys might be responsible for widespread pathogen dissemination across and beyond 

the study area. Although pathogen control programmes are needed to reduce overall 

burden in northern Tanzania, the structure of the livestock market system and the key 

stakeholders in market movements need to be carefully considered in the development of 

these. Market access needs to be improved so rural livestock keepers can achieve greater 

parity in prices for their livestock at the same time as reducing the risk of widespread 

pathogen transmission through market movements.  
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5 Analysing livestock network data for infectious 

diseases control: an argument for routine data 

collection in emerging economies 

This chapter is published in Philosophical Transactions B DOI: 10.1098/rstb.2018.0264 
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5.1 Abstract 

Livestock movements are an important mechanism of infectious disease transmission. 

Where these are well recorded, network analysis tools have been used to successfully 

identify system properties, highlight vulnerabilities to transmission and inform targeted 

surveillance and control. Here we highlight the main uses of network properties in 

understanding livestock disease epidemiology, discuss statistical approaches to infer 

network characteristics from biased or fragmented datasets. We use a “hurdle model” 

approach that predicts (i) the probability of movement and (ii) the number of livestock 

moved to generate synthetic ‘complete’ networks of movements between administrative 

wards, exploiting routinely collected government movement permit data from northern 

Tanzania. We demonstrate that this model captures a significant amount of the observed 

variation. Combining the cattle movement network with a spatial between-ward contact 

layer we create a multiplex, over which we simulated the spread of ‘fast’ (R0=3) and ‘slow’ 

(R0=1.5) pathogens, and assess the effects of random versus targeted disease control 

interventions (vaccination and movement ban). The targeted interventions substantially 

outperform those randomly implemented for both fast and slow pathogens. Our findings 

provide motivation to encourage routine collection and centralisation of movement data 

to construct representative networks. 
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5.2 Introduction 

The “static network” concept of a population as a set of “individuals” (nodes) with 

immutable contacts (links) between them is now well-established in infectious disease 

modelling. The network representation occurs naturally because the “individual” is 

typically well-defined (e.g. a person, animal, city, herd, or farm) and the number of 

potentially infectious contacts per individual is usually few (Watts and Strogatz, 1998; 

Keeling, 1999; Liljeros et al., 2001; Kao et al., 2006; Robinson, Everett and Christley, 2007). 

While there are a few studies for human diseases that include comprehensive, explicit 

network data (Hufnagel, Brockmann and Geisel, 2004), more frequently these are either 

generated indirectly (for example, using mobile phone data or gravity models to predict 

commuter flow (Brockmann, Hufnagel and Geisel, 2006; Viboud et al., 2006; Balcan et al., 

2009; Wesolowski et al., 2016), or are explicit but at small geographical scales (Meyers, 

Newman and Pourbohloul, 2006; Gardy et al., 2011). In contrast, in Great Britain (GB) cattle 

movement data have been recorded for individuals on a daily basis for almost two decades 

(Green and Kao, 2007). This data richness has presented both challenges and opportunities 

for the application of network analyses in infectious disease epidemiology (Kao et al., 2006; 

Robinson, Everett and Christley, 2007). Similar livestock data now exist in many other 

countries (León et al., 2006; Natale et al., 2009; Bajardi et al., 2011; Nöremark et al., 2011; 

Konschake et al., 2013; Dutta, Ezanno and Vergu, 2014; VanderWaal et al., 2016). However, 

they remain rare in emergent economies where disease burden is often high and zoonotic 

risk is more pronounced due to the high proportion of people who live and work in close 

contact with livestock (Klous et al., 2016). About one billion of the world’s poorest people  

(earning < US$2 per day) depend at least partially on livestock for their livelihoods (FAO, 

2009), making the trade of livestock and the freedom to move livestock to access natural 

resources vital in many impoverished communities (Perry and Grace, 2009; Grace et al., 

2012; ILRI, 2018). In many regions, such as Sub-Saharan Africa, there are frequent but 

poorly recorded cross-border movements (Aklilu, 2008; Musemwa et al., 2012; Apolloni et 

al., 2018) and, when coupled with poor within-country knowledge of livestock movements, 

this creates risks for international pathogen transmission.  

 

Though network analyses would be greatly aided by systems for comprehensive routine 

recording of between-farm and market movement, as occurs in GB and elsewhere, in 

countries with developing infrastructure collecting these data can be onerous and costly 
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and requires well-evidenced justification. Here, we provide an overview of the role of 

network analysis in epidemiology, paying particular attention to the challenges of 

exploiting extensive but fragmented data. These insights are used to analyse livestock 

movements in northern Tanzania, where there is a high burden of livestock disease 

including zoonoses (Hummel, 1976; Schoonman and Swai, 2010; Crump et al., 2013; 

Assenga et al., 2015; Sumaye et al., 2015; Wensman et al., 2015; Cash-Goldwasser et al., 

2018), no formal livestock traceability system implemented at a national level, and limited 

resources for disease control. We demonstrate the utility of our network by identifying 

nodes to target disease control and surveillance interventions, considering both fast and 

slowly transmitting pathogens, and interrogate their efficacy through simulation, 

demonstrating substantial potential benefits in reducing disease spread.  

 

5.3 Fundamental network concepts applied to livestock 
diseases 

5.3.1 Centrality measures and transmission patterns  

Network centrality measures originated in social science (Wasserman and Faust, 1994), 

and are used to quantify the importance of nodes and links in a network, with obvious 

applications to identifying disease risks (Bell, Atkinson and Carlson, 1999; Christley et al., 

2005; Natale et al., 2011; VanderWaal et al., 2016; Palisson et al., 2016; Sintayehu et al., 

2017). Common measures include degree centrality (the number of links associated with 

a node3), betweenness centrality (the number of times a node or link is traversed by the 

shortest paths between all other node pairs), and eigenvector centrality (loosely, a 

measure of how connected a node is to well-connected neighbours)4. Network centrality 

measures have been used to analyse livestock movement data from many countries, with 

each using different types of data source (Kao et al., 2006; Natale et al., 2009; Büttner et 

al., 2013a; Palisson et al., 2016; Sintayehu et al., 2017; VanderWaal, Enns, et al., 2017). 

One example showing the relevance of all three of these centrality measures comes from 

the analysis of the costly (Haydon, Kao and Kitching, 2004) 2001 foot-and-mouth disease 

(FMD) epidemic in GB. First, a small number of “cull ewes” were sold and transported 

 
3 For directed networks like livestock movements, where transmission is overwhelmingly in the direction of the 

movement only, the geometric mean of in- and out-degree can be used. 
4 See the Appendix information for a disease-relevant interpretation. 
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long  distance across GB; these were responsible for seeding virus into many otherwise 

low risk areas (Gibbens et al., 2001). These seeding movements are a characteristic of 

“small world” network behaviour  (Watts and Strogatz, 1998) with the long-range 

movements acting as links with high betweenness centrality (Gibbens et al., 2001; M D 

Shirley and Rushton, 2005). Second, Longtown auction market (the largest in GB) played a 

dominant role in spreading disease (Kao, 2002), demonstrating the importance of high 

degree centrality. Third, since the epidemic, prohibition of direct market-to-market 

livestock movements means that some farms now act as “middlemen” between markets, 

representing a risk that could be effectively targeted to restrict disease spread (Kao et al., 

2006, 2007). This role, linking highly connected nodes, is a well-recognised feature of high 

eigenvector centrality. 

 

5.3.2 Network Dynamics 

In a static network, the infection pressure from a single individual is reduced over time as 

each daughter infection ‘uses up’ the link it was infected over (Keeling and Grenfell, 2000; 

Green, Kiss and Kao, 2006b). Further, the components of the network (groups of nodes 

which can reach each other) are well defined. In dynamic networks, links can shift between 

individuals over time (rewiring), nodes can appear or disappear and the components of the 

network can change in size and composition. Rewiring a link away from an infected 

individual has the potential to expose another susceptible individual, thus increasing the 

probability of disease persistence (Kao, 2010; Enright and Kao, 2018). Link dynamics also 

greatly complicate measures of network structure. For example, for an SIS infection process 

on a static network, where susceptible individuals (S) can become infected (I) and 

eventually recover to susceptible again, the eigenvector centrality scores of the nodes of 

the network contact matrix represents the expected proportion of time those nodes are 

infected over the long term5. This is the case so long as the probability of recovery before 

re-infection is high (e.g. if the density of infected nodes is always low, or the recovery time 

is substantially shorter than the time between infected generations). However, livestock 

 
5 For an irreducible positive definite matrix (e.g. a contact matrix where all nodes belong to a single 

strong component), the Perron-Frobenius theorem applies and the matrix is guaranteed to have 
a unique largest eigenvalue (and positive eigenvector). For directed networks, strong 
connectivity amongst all nodes is required (all nodes can reach each other reciprocally, i.e. are 
members of the same strong component). Where this is not the case, eigenvector centrality is 
not well-defined, and other network measures need to be considered (for example by using 
singular values). 
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movements vary daily, seasonally and from year-to-year. Contact patterns between farms 

and therefore eigenvector centrality measures can change dramatically depending on the 

season and stochastic progression of the epidemic. This influences epidemic spread (Kao 

et al., 2006; Green and Kao, 2007; Bajardi et al., 2011; Enright and Kao, 2018), an effect 

also seen in human diseases (Konschake et al., 2013; Takaguchi, Masuda and Holme, 2013). 

Individual variability in disease progression and severity will also influence disease 

generation times and therefore what movements are likely to cause infection spread. Thus, 

predictions of node importance and targeting can depend strongly both on the dynamic 

properties of the network and the properties of the underlying disease, making the 

identification of general principles for the targeting of control more challenging (e.g. 

(Holme and Masuda, 2015); also Appendix 9.4).  

 

Livestock movements are also an example where the actual contact occurs episodically. 

Episodic behaviour is a subject of considerable study in the network literature, especially 

where there are patterns of concentrated bursts (“burstiness”) separated by long waiting 

periods (Barabási, 2005; Oliveira and Barabási, 2005; Vázquez et al., 2006). While an 

infection may itself cause episodic activity, it is most frequently studied as a property of 

the underlying network.  Episodic activity has been shown to slow an epidemic on 

simulated (Min, Goh and Vazquez, 2011) and real networks (Iribarren and Moro, 2011) but 

can also increase epidemic speed, for example, due to observed correlations between the 

topology of the network and the frequency of episodic contacts (Karsai et al., 2011). 

Epidemic spread also depends on within-node infection dynamics; in a simulated avian 

influenza outbreak, patterns of recorded vehicle movement between farms could either 

slow or accelerate pathogen spread, depending on the disease parameters and detection 

threshold at the farm level (Nickbakhsh et al., 2013).  

 

Infection events themselves can also change the network structure. If the perceived 

jeopardy is sufficiently high, rumours of pathogen spread may change contact patterns 

(Epstein et al., 2008; Funk, Salathé and Jansen, 2010). For livestock, farmers may be inclined 

to sell infected animals due to their condition, or may be restricted from selling animals 

until the farm is officially declared disease-free (Green et al., 2008). In human disease, 

modelling analyses that included changes in the contact process over the course of the 

recent West African Ebola epidemic were used to inform changes in policy (Drake et al., 
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2015), highlighting the relevance for detailed datasets on contact patterns and their 

changes over time, both routinely and in response to an outbreak (Chowell and Nishiura, 

2015).  

 

5.3.3 The role of pathogen sequence data for relating 
transmission networks to livestock networks 

Although livestock movements tell us about potentially infectious contacts, the 

relationship between these contacts and the transmission network of actual infectious 

contacts is only partially understood. Duration of contact, heterogeneity in immune 

response, and environmental conditions are some of the factors that could affect which 

livestock movements transmit infection. The growing availability of high coverage 

pathogen sequence data provides an unprecedented opportunity to quantify this 

relationship (Cottam et al., 2008; Kao et al., 2014). A number of tools have been developed 

to estimate transmission from genetic data (Jombart et al., 2009, 2011; Morelli et al., 2012; 

Ypma et al., 2012; Ypma, van Ballegooijen and Wallinga, 2013; Numminen et al., 2014; Hall, 

Woolhouse and Rambaut, 2015; Lau et al., 2015; De Maio, Wu and Wilson, 2016; Worby et 

al., 2016) and new tools continue to be developed (Lau et al., 2015; Pybus, Tatem and 

Lemey, 2015; De Maio, Wu and Wilson, 2016). However there remain many challenges 

(Romero-Severson et al., 2014; Worby, Lipsitch and Hanage, 2014; Biek et al., 2015; Frost 

et al., 2015; Meehan et al., 2018). A key limitation is that pathogen evolution needs to occur 

on a similar or faster timescale to the disease generation time in order to infer direction of 

transmission (Biek et al., 2015). Considering larger epidemiological units (e.g. farms rather 

than animals) can alleviate this problem, since the generation time will be concomitantly 

longer (Morelli et al., 2012; Ypma et al., 2012; Lau et al., 2015). Epidemiological information 

is still required to estimate transmission from genetic data and contact network data is 

important when trying to identify the most likely transmission events (Di Nardo, Knowles 

and Paton, 2011; VanderWaal et al., 2014), but there are few tools to formally integrate 

these (Rasmussen, Volz and Koelle, 2014). Phylodynamic approaches that leverage all 

available data could provide new insights into pathogen transmission and result in more 

targeted and improved control interventions, but they must overcome the challenge of 

appropriate weighting of the often biased and/or fragmented data. Nevertheless, even 

limited genetic data integrated into transmission models can improve epidemiological 
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insights  (Viana et al., 2016) and in situations where other data are fragmented or sparse, 

sequence data can greatly strengthen the understanding of transmission and inform 

control. 

 

5.4 Exploiting network properties 

5.4.1 Evaluating system resilience 

Invasion of a livestock network by an infectious pathogen has the capacity to impair or 

destroy the function of individual nodes, either by the direct impact on livestock, or by the 

restrictions resulting from control efforts. The impact on network structure can be 

considerable, in extremis resulting in the destruction of the network as a functioning entity. 

For infectious diseases, interventions such as movement restrictions, culling or prolonged 

herd testing are all designed to reduce transmission, but will also have varying degrees of 

impact on livestock movements and potentially impair the nodes role in the network. Such 

changes have economic impact (Knight-Jones and Rushton, 2013; Smith et al., 2013) and, 

if sufficiently harmful, can result in node removal and/or substantial long-term harm to the 

network. Resilience of a network typically focuses on its ability to recover, retain the same 

structure, and adapt to maintain system functionality when exposed to disturbances 

(Carpenter et al., 2001; Holling, 2013). One approach to eliminate disease, such as during 

the 2001 FMD epidemic, is to disrupt the network by preventing trade for a period (link 

removal). These movement restrictions, however, can result in excessive livestock welfare 

issues, welfare culls, and significant long term industry damage (Anderson, 2002). Less 

disruptively, lasting adjustments (link rewiring) can minimize the impact of highly 

influential nodes, whilst maintaining overall trade function. An example of this is the 

implementation of high biosecurity and compartmentalisation in some poultry companies 

to isolate themselves from disease incursion despite close physical proximity to infected 

farms, allowing operations to continue in the face of national restrictions (Nickbakhsh et 

al., 2014). 

 

Minimising the number of affected nodes, or protecting particular ones, may be important 

for resilience. In dynamic networks, slowing the rate at which contacts occur can slow the 

rate of pathogen spread and maintain communication between nodes (Kao et al., 2006), 

improving the networks resilience. Conversely, reducing contact rates can also increase 
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pathogen spread (Nickbakhsh et al., 2013). Additional complications arise when 

considering multiple layers of a network and multiple diseases that spread on it. Ultimately, 

targeting control measures that consider the spread of multiple pathogens on a network 

could be more efficient and robust. Additionally, prior to designing and imposing changes 

on a network, particularly in economies where livelihoods are heavily dependent on a 

functioning livestock movement network, the network’s resilience to proposed changes 

should assessed. 

 

5.4.2 Exploiting network data to improve surveillance 

The concepts of network resilience can be used to improve surveillance. Albert et al. 

showed the extent to which different types of complex network can be resilient to 

breakdown (which makes disease difficult to control) or vulnerable to breakdown (which 

makes disease easier to control) (Albert, Jeong and Barabási, 2000). Nodes (or links) can be 

removed from a network randomly or using targeted measures such as removing nodes 

that are highly ranked by one or more centrality measure. In terms of surveillance, random 

and targeted node removal can be compared to non-targeted and targeted surveillance 

(Kao et al., 2006). Network analysis can thus provide an analytical framework to predict 

which farms to test in targeted surveillance strategies and estimate net gains in 

performance. While generic network analysis can be valuable (Robinson, Everett and 

Christley, 2007), it can be made more robust by an understanding of the characteristics of 

the real system (Rossi et al., 2015) and the dynamics of the considered pathogen (Kao et 

al., 2007). Network analysis has been used to inform targeted surveillance strategies in 

many livestock systems (Dubé et al., 2009, 2011; Craft, 2015; Rossi et al., 2015; 

VanderWaal, Enns, et al., 2017), leading to considerable gains in surveillance efficiency 

(Bessell et al., 2013; Salvador et al., 2018). Analyses of GB livestock networks have 

identified highly connected premises with a high risk of both becoming infected with and 

spreading disease (Christley et al., 2005), and have used simulations to show how targeted 

surveillance could reduce the size of potential epidemics (Kao et al., 2006). For Swedish 

cattle and pigs, a bespoke metric was identified to consider the timing and sequence of 

possible incoming and outgoing infection chains (Nöremark et al., 2011). This metric was 

subsequently expanded to consider the size of the in- and out- components and then used 

to analyse the German pig trade movements network to identify high-risk farms 

(Konschake et al., 2013). Such data are not typically available in low resource settings; 
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having such network knowledge could enable the use of cost-efficient, network measure-

targeted surveillance for disease control, but needs justification for the additional cost and 

effort required. 

  

5.4.3 Multiplexes, multi-layer networks and multi-host pathogen 
systems 

Complex systems are inherently multi-dimensional, with components linked via a complex 

set of often directed and weighted interactions, giving rise to diverse and unpredictable 

behaviours (San Miguel et al., 2012).  For infectious diseases, these can arise when spread 

occurs by more than one mechanism (e.g. animal trade, airborne, fomites, sharing a 

resource or insect vectors), resulting in a multiplex, or where transmission occurs across 

more than one species, an example of a multi-layer network. Both can compromise disease 

control (Webster, Borlase and Rudge, 2017), especially when there are biases in available 

data or ability to exert control (Godfray et al., 2013). The multiplex representation was first 

developed in the social sciences to represent different types of inter-personal relationships 

(Kivelä et al., 2014). It has since been used in a variety of contexts, including ecological 

systems (Pilosof et al., 2017), air transport (Cardillo et al., 2013), behavioural biology 

(Barrett, Peter Henzi and Lusseau, 2012), and epidemiology (Brooks-Pollock et al., 2015). 

In one livestock example, a study of a dairy system in northern Italy explicitly accounted for 

two independent transmission routes: cattle and veterinarian movements. This study 

found that at the local scale veterinarian movements explained the spread of 

Mycobacterium avium subspecies paratuberculosis better than cattle movements and 

geographic distance failed to capture the impact of veterinarian visits (Rossi, De Leo, et al., 

2017; Rossi, Smith, et al., 2017). This highlights a need to identify the potentially multiple 

transmission routes beyond discrete livestock movements when collecting data to 

construct a livestock network that is representative of a transmission network. 

 

Many pathogens are multi-host and therefore the network multi-layer. This complication 

often has severe implications for humans, livestock and wildlife (Haydon et al., 2002). 

Unfortunately most analytical frameworks of resilience are unsuitable for multi-

dimensional systems (Solé and Montoya, 2001), and network resilience can be influenced 

by interdependence with other networks (Gao, Barzel and Barabási, 2016). Recent work 

using percolation theory to study the vulnerability of a system of interdependent networks 
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(Gao et al., 2013) shows the overlap between network layers can improve network 

resilience and this makes diseases harder to eradicate (Cellai et al., 2013). By disentangling 

system dynamics from system structure, network characteristics can be identified that 

influence resilience (Gao, Barzel and Barabási, 2016). A well-known exemplar is the 

transmission of Mycobacterium bovis, the cause of  bovine tuberculosis (bTB), between 

cows and European badgers (Meles meles), where the role of different layers can be 

quantified by exploiting their spatial patterns (Figure S1) (Green et al., 2008). At finer 

granularities, radio-collar data were used to quantify inter- and intra-species contacts for 

cattle and badgers (Böhm, Hutchings and White, 2009); adding a layer of indirect contacts 

based on badger latrines locations to this network showed better correspondence to 

badger-to-badger transmission patterns (Silk et al., 2018). 

 

5.5 Movement networks where there is limited resource 
for explicit traceability 

There are many examples where livestock movement data have facilitated the planning of 

disease control and surveillance (Bigras-Poulin et al., 2006; Kiss, Green and Kao, 2006; 

Natale et al., 2009; Büttner et al., 2013a; VanderWaal et al., 2016; Motta et al., 2017). 

Conversely, an absence of movement information can obstruct disease control (Gibbens et 

al., 2001; Ministry for Primary Industries, 2018). In settings where comprehensive tracing 

systems are absent, a variety of methods have been used to quantify livestock movement 

patterns and construct movement networks. These include the use of GPS collar data to 

describe mobility patterns of pastoral herds and overlaps with wildlife areas (Handcock et 

al., 2009; Musemwa et al., 2012; Raizman et al., 2013; VanderWaal, Enns, et al., 2017), 

household and market surveys (Poolkhet et al., 2013), transport vehicle records (Kim et al., 

2018), and international movement permits (Lindström et al., 2013; Apolloni et al., 2018).  

 

Movement permits are used in many countries to certify livestock health and/or to regulate 

movement taxes, and have been used to quantify livestock flow and construct movement 

networks (Dubé et al., 2008; Lindström et al., 2013). The often ephemeral and patchy 

nature of these records, due to poor archiving or non-compliance (Poolkhet et al., 2016), 

can results in substantial non-random “missingness” that is difficult to quantify. In these 

cases, movement permits have been used in conjunction with household and/or market 

survey data to estimate the risk of disease introduction and target surveillance and 
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vaccination campaigns, also illustrating the importance of a regional disease control 

approach (Wongsathapornchai et al., 2008; Selby et al., 2013; Motta et al., 2017; Apolloni 

et al., 2018). Such analyses have identified traders as key targets for disease control 

(Poolkhet et al., 2016), demonstrated the effects of cattle movement on regional disease  

transmission (Dean et al., 2013), identified increased risks of bTB with increased herd 

introductions (Sintayehu et al., 2017) and, with serology data, identified the role of 

between-village cattle movements in transmitting Rift Valley fever virus (Nicolas et al., 

2013). 

 

Biased network samples can make reconstruction of network characteristics difficult. This 

was addressed in GB by extrapolating from a small biased network sample via statistical 

associations between common factors in the network study and a national population 

survey (Nickbakhsh et al., 2011). 

 

Another approach to network construction is to impose an underlying model on observed 

population densities. Specifically, if census data (populations and locations) are available 

or can be estimated, gravity (Xia, Bjørnstad and Grenfell, 2004) and radiation (Simini et al., 

2012) models provide two ways of creating network models of population mobility. While 

there is ongoing research regarding their relative merits (Masucci et al., 2013), they share 

the property of describing movement in terms of relative population size and a measure of 

distance. Gravity models, for example, describe the probability of a movement occurring in 

inverse proportion to spatial distance from each hub.  

 

5.6 Evaluating network-based control strategies for 
livestock movements in Tanzania.  

5.7 Introduction to the study 

Tanzania provides an exemplar of a rapidly developing emerging economy. In northern 

Tanzania there is a heavy reliance upon livestock for food, traction power, income, 

savings and social status. Movements can be over long distances, often on foot, and 

occasionally over international boundaries with multiple levels of market activity (Aklilu, 

2008; Little, 2009; Di Nardo, Knowles and Paton, 2011; Bouslikhane, 2015). The pathogen 

burden is often high, and this impacts productivity, creates herd/flock instability and, in 
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the case of zoonoses, directly affects human health (Machang’u, Mgode and Mpanduji, 

1997; Karimuribo et al., 2007; Schoonman and Swai, 2010; Biggs et al., 2013; Crump et al., 

2013; Assenga et al., 2015; Sumaye et al., 2015). In addition to protecting human health, 

reducing the burden of endemic livestock pathogens to improve livestock health and 

productivity is recognised as a route away from poverty and necessary to meet global 

food demands (Allen, 2003; Steinfeld et al., 2006; Kelly and Marshak, 2007; Randolph et 

al., 2007; Perry and Grace, 2009; Coker et al., 2011; Muma et al., 2014; Pradère, 2014). 

Livestock sales are also a major source of income in rural communities (Williams, Spycher 

and Okike, 2006; Pica-Ciamarra et al., 2011; Covarrubias et al., 2012). In addition to trade 

between markets, livestock can be sold privately, borrowed or gifted between 

households and are regularly moved to access natural resources (Coppolillo, 2000; 

Sintayehu et al., 2017; VanderWaal, Gilbertson, et al., 2017). A reduction in endemic 

livestock disease is therefore paramount to improving livelihoods in such emerging 

economies. 

Historically there has been no formal, centralised system for identifying and tracing the 

movement of individual animals in Tanzania, however a paper movement permit certifying 

livestock health is officially required whenever animals are traded, recording movements 

from markets, though not movements to markets. These data are not digitised and the 

receipt books are stored at administrative Zonal Veterinary Centres in Tanzania. The aims 

of this study were to: quantify cattle and small ruminant movements in a large (97000 km2) 

area of northern Tanzania (Arusha, Manyara and Kilimanjaro regions) using archived, 

routinely collected government movement permit data; infer livestock movement 

networks; and build this information into livestock disease simulations to inform 

surveillance and control.  

 

5.7.1 Methods 

Summary methods are presented here; for full details see the Appendix (Appendix section 

9.4). 

 

5.7.1.1 Data source and transcription 

Access was granted to archived government movement permit receipt books at the 

Northern Zonal Veterinary Office, Arusha. Movement permit receipt books were selected 
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for analysis from 2009, 2011, 2013 and 2015. Origin, destination, number of each species 

(cattle, sheep or goat) moved, and date were manually entered into spreadsheets from 

50% of the available permits (30,946 permits), of which 19,438 (63%) permits yielded 

complete data. Only cattle movements are analysed here.  

 

5.7.1.2 Statistical Modelling  

Cattle movements were aggregated temporally by month and spatially at the ward level, 

because origins and destinations often could not be located at a finer scale. A ward is an 

administrative unit of mean area 243 km2 and mean human population of 12,000 across 

the 398 wards in the study regions (National Bureau of Statistics, 2012). We aimed to infer 

the inter-ward cattle movement network within the study area; movements to outside the 

study area and within wards were excluded (local movements from markets are less likely 

to generate a movement permit due to non-compliance). The resulting data set recorded 

the movement of 86,195 cattle from 98 origin wards to 239 destination wards over the 4 

sampled years. 

 

Due to the large number of non-randomly missing permits, it was not possible to use the 

movement data directly. Instead, the network was inferred by statistical modelling of the 

observed movements. First, to distinguish true from artefactual absence of movements 

(months where an origin ward sent out no cattle) a zero-inflated negative binomial (ZINB) 

generalised linear model (GLM) was fitted to each origin ward, so that in subsequent 

modelling steps movements would be imputed in place of false zeroes. Next, inter-ward 

livestock movement was modelled using a hurdle model. The movement between each 

pair of wards in a given month is represented by a two-step processes: the binary event of 

any cattle being moved, modelled by a binomial generalised linear mixed-effects model 

(GLMM); and the number of animals moved, modelled by a zero-truncated negative 

binomial (ZTNB) GLMM. Each part of the hurdle model allowed movement to depend 

multiplicatively on the distance between origin and destination wards and their “masses” 

(human and cattle population sizes), in addition to other characteristics (Table S1). The 

combined models can therefore be viewed as a gravity model of the livestock movement 

network. Unexplained spatial and temporal variation was modelled by fitting random 

effects for origin and destination ward and for the 48 months. 
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5.7.1.3 Simulated networks 

The fitted model was used to simulate monthly movements amongst the 398 wards for one 

year, with the number of movements inflated twofold to account for using a 50% 

subsample of the data.  

 

5.7.1.4 Network measures 

The simulated data were used to create an observed year-aggregated, static, directed, 

weighted cattle movement network. A spatial contact layer, connecting all adjacent wards, 

was added to the market movements network as a simplified means of accounting for 

contacts and movements between wards that are not represented by the movement 

permit data. Network analysis methods were applied to the resulting multiplex network to 

identify nodes with high in-degree, out-degree, betweenness and eigenvector centrality 

where disease control interventions could be targeted. 

 

5.7.1.5 Simulating disease outbreaks and control on the network 

The spread of a ‘fast’ (R0  = 3) and ‘slow’ (R0  = 1.5)  pathogen was simulated on the multiplex 

to assess the effects of disease control interventions on the spread of pathogens with 

varying infectiousness [166]. This was achieved by running a stochastic SIR compartmental 

model within each ward. The total number of cattle in the susceptible (S), infectious (I) and 

recovered (R) compartments was updated daily, while cattle were moved monthly 

between wards. The two sources of simulated cattle movement were long distance 

movements via the market network and short distance movements between adjacent 

wards to account for unobserved local movements (for a full description see Appendix 9.4; 

an animation of a simulated fast epidemic is available as a supplementary file). Two types 

of intervention were trialled: proactive vaccination of 70% of the cattle in a ward before 

the start of the epidemic, and a reactive ban on cattle movements one month after the 

start of the epidemic. Vaccine interventions were applied to all wards, or targeted at 20 

(5%) of wards that were selected randomly, based on their total cattle population size or 

based on their network centrality measures. The network centrality measures used for 

targeting interventions were betweenness centrality, eigenvector centrality, and geometric 

mean degree. The market movement ban was either implemented in all 111 wards that 

generated outward cattle movements in the simulations and were therefore assumed to 
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have a market, or were targeted in a subset of 20 of these wards, the same number as in 

the targeted vaccination interventions, and based on the same selection criteria. 

 

5.7.2 Results 

The two parts of the hurdle model explained a substantial proportion (binomial: 40%; ZTNB: 

24%) of the spatial and temporal variation in cattle movement, with movement being more 

probable over shorter distances and into wards containing a secondary market, and the 

number of animals moved being most strongly associated with the agro-ecological system 

of the origin wards and the presence of a primary or secondary market in the origin or 

destination ward (Table S1; Figure S2). All variables were retained in the hurdle model that 

was used to simulate the monthly cattle market movements. 

 

5.7.2.1 Network and node measures 

The multiplex network is fully strongly connected (all wards can be reached by all other 

wards) and displays ‘small world’ properties. The spatial network layer connects all 

adjacent wards and the permit-related movements reduce the network diameter (longest 

path length between two wards) from 18 on the spatial network to 12 (see the Appendix 

Table S5.2 for cattle market, spatial and multiplex networks summary statistics). 

 

The distributions of the three node centrality measures that were investigated 

(betweenness, eigenvector, and geometric mean degree) were strongly right-skewed. This 

indicates that the multiplex may be sensitive to targeted disease control interventions at 

the highly influential nodes. Figure 5-1 shows the geographical distribution of the top-

ranked wards for each centrality measure, showing the potential for substantial differences 

in the effectiveness of targeting controls based on centrality measures due to their 

geographical distribution. 
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Figure 5-1: Spatial distribution of wards with highest centrality measures in the northern 
Tanzania livestock movement network, colour shows position in each centrality measure 
rank, out of 398: red, top 1%; orange, 1-5%; yellow, 5-10%. 
 

5.7.2.2 Simulated movements and pathogen transmission 

Mean reductions in population cumulative incidence (PCI) after 1 year for the fast and slow 

pathogens for each intervention scenario are shown in Figure 5-2. Reductions are relative 

to PCI reached after 1 year with no intervention (fast: 24%; slow: 1.7%). The higher the 

reduction in PCI, the more effective the intervention. The list of trialled interventions and 

associated PCI are given in Tables S3 and S4. All simulated interventions had greater 

reduction in PCI for the fast pathogen example compared to the slow, although the ranking 

of intervention efficacy was similar for both fast and slow pathogens. The movement ban 

implemented in all 111 market wards (high economic and logistical costs) performed only 

slightly better than when targeted in only 20 wards using network measures, and network-

based targeting was more effective than selecting wards using population size or randomly, 

although there was no substantial difference in performance between the network 

measures. Vaccination applied to all wards achieved a 100% reduction in PCI for both fast 

and slow pathogens, while the best-performing targeted intervention, degree centrality, 

achieved reductions in PCI of 58% (fast) and 31% (slow). The “common sense” intervention 

of targeting using the total number of cattle performed almost as well as degree centrality, 

and similarly to the second-best network measure, betweenness, but was much less 

efficient, requiring 3.5 × more vaccine doses than degree centrality. Targeting vaccination 

using eigenvalue centrality performed relatively poorly, particularly against the slow 

disease, where its performance was comparable to selecting wards randomly. 
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Figure 5-2: Mean (± SE) percentage reduction in population cumulative incidence (PCI) after 
1 year for simulated ‘fast’ and ‘slow’ transmitting pathogens on the northern Tanzania cattle 
multiplex network for two types of intervention (market movement ban or vaccination at 
70% coverage) applied using six strategies: applied to all wards; targeted to 5% (n = 20) of 
wards using each of three network centrality measures (betweenness, degree, and 
eigenvector centrality); targeted to the 5% of wards with the highest cattle population size; 
and applied to 5% of wards selected randomly. The greater the reduction in PCI, the more 
effective the intervention is at reducing total number of cases. Mean PCI under each 
scenario is calculated as the geometric mean of 237 simulated epidemics (full data: Tables 
S3 and S4). 
 

5.8 Discussion 

It is well established that the network analysis of livestock movements can be used to 

better understand and control diseases of commercial and zoonotic importance in higher 

income countries where livestock industries tend to be highly structured and movement 

data are centrally collected and digitised. It is less clear that such approaches are valuable 

in lower income countries, where movement data are typically unavailable and the cost-

benefit ratio less compelling. By exploiting movement permit data collected for health 

certification and tariff purposes, we have shown that even highly fragmented information 

about movement patterns can be used to infer network structure. By simulation, we show 

that the resultant inferred network has the potential to advance strategic understanding. 

These simulations corroborate that simple network measures can be used to identify good 
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targets for surveillance and disease control that would be appropriate for a range of 

diseases and reduce the impact of infectious disease at considerably reduced cost and 

effort. These results could be used to form simple and practical guidelines that could be 

exploited immediately if, for example, a movement ban was initiated and government 

needed guidance on where their limited re-enforcement resources should be targeted, 

although they should not be used for more specific predictions without further data and 

analysis. They also provide a foundation for deeper research effort, highlighting where the 

collection of additional empirical data would be useful. For example, the substantial 

changes in network metrics that result when spatial spread between wards is incorporated 

highlight the need to augment movement data with more extensive information about 

local patterns of contact. The homogeneous mixing assumption used at the within-ward 

level has previously been shown to be useful for developing strategic understanding, even 

in highly spatially driven scenarios (Keeling et al., 2003), but more detailed 

recommendations would require modelling of within-ward heterogeneity supported by 

higher resolution data. This assumption may be less realistic for small urban wards where 

cattle are tethered, though in larger pastoral and agro-pastoral wards, shared natural 

resource points might make homogeneous mixing more appropriate (G.L.C., unpublished 

data and (VanderWaal, Gilbertson, et al., 2017)). Similarly, while the assumption that 

cattle-to-market movements occur from adjacent wards is consistent with two authors’ 

expert knowledge of livestock management practice (O.M.N. and E.S.), verification with 

further data collection is an important next step. Finally, simulated movements are 

dynamically generated based on the random variation generated within the stochastic 

simulation models. We have not investigated in our dataset evidence of dynamic patterns 

such as changing network patterns over time because the patchy missingness in our data 

limits the complexity of the movement model. If more complete data became available for 

analysis it would be beneficial to assess the evidence for link rewiring throughout the year 

as this could indicate where control measures should be targeted at specific times. Further 

potential model deficits include the similar impact of targeting control measures when 

comparing across centrality measures. This may in part because of the relative crudeness 

of the disease model; in a more sophisticated model, where the timescales and frequencies 

of links were considered in greater detail, more substantial differences might be apparent. 

Similarly, a more explicit model of spatial spread might also prove discriminatory. Finally, 
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the addition of pathogen sequence data where these are available, would provide valuable 

confirmation of the role of network structure. 

5.9 Conclusions 

Despite this demonstration of the value of our inferred network approach, we note that 

data generation was the result of substantial, time consuming effort, and the resultant 

inferred network, while useful, has limitations as noted above. Mobile broadband 

technology is becoming increasingly accessible and coupled with the availability of 

inexpensive scanning devices, the adoption of routine, robust digitised data recording 

should be achievable. In this paper, we have shown the benefits of having this data to be 

potentially substantial. This will be particular pertinent in emerging economies such as 

Tanzania, where changes in industry structure are likely to have unanticipated disease 

impacts and will require regular monitoring.  
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6 Using small ruminant and multi-species 
movement networks to identify high risk 
locations for targeted disease control 
interventions in northern Tanzania  

Contribution 

As for chapter 5 GC gained access to movement permit data, designed framework for data 

collection and data processing and carried out data collection and transcription with the 

help of field staff. GC also contributed to data processing, building of generalised linear 

mixed model, model fitting and use of model to generate predicted movement data. GC 

conceptualized research question to be answered by this chapter, combined small 

ruminant and cattle simulated data, constructed networks and carried out analysis. 

 

6.1 Introduction  

People living in the most marginalised communities in northern Tanzania depend on 

livestock, and increasingly on small ruminants (sheep and goats), for socio-economic and 

nutritional security (Upton, 2004; Pauw and Thurlow, 2011; Pica-Ciamarra et al., 2011; 

Covarrubias et al., 2012; Haseeb et al., 2019). Livestock are however susceptible to 

unpredictable and substantial morbidity and mortality losses due to disease outbreaks 

(Sindato, Karimuribo and Mboera, 2012; Hughes et al., 2019; Herzog et al., 2020). 

Minimising livestock disease losses and the uncertainty that accompanies these is needed 

to ensure people are able to move out of and away from poverty, a key aim of the 

sustainable development goals (Rich and Perry, 2011; Muma et al., 2014; Pradère, 2014; 

United Nations, 2015). 

 

Many livestock pathogens can be carried by multiple livestock species and in the case of 

zoonoses such as Rift Valley Fever virus (RVF) (Wensman et al., 2015; Makuru Nyarobi, 

2019), Brucella (Assenga et al., 2015) and Coxiella (Hummel, 1976), these can spill over to 

cause disease in people (Crump et al., 2013; Cash-Goldwasser et al., 2018). In northern 

Tanzania, small ruminant livestock can carry pathogens such as FMDV that may cause mild 

disease in small ruminants but infect and cause severe disease in cattle, and vice versa, 

with cattle able to carry the small ruminant virus Peste des petits ruminants virus (PPRV) 
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(Kivaria, 2003; Herzog et al., 2020). The recent description of PPRV carriage by cattle is an 

important factor to consider in the development of global PPRV eradication programmes, 

especially in areas such as northern Tanzania where cattle and small ruminants are 

frequently kept together (Jones et al., 2016; Fournié, Waret-Szkuta, Camacho, Laike M 

Yigezu, et al., 2018; Herzog et al., 2019; de Glanville et al., 2020) 

 

The demand for small ruminant livestock products is growing globally, especially in the 

Middle East, and this growing global demand is increasing small ruminant livestock traffic 

at an international scale (Sherman, 2011; Meat Livestock Austrailia, 2017). The trade of 

livestock through markets to meet increasing demands can drive long range movements of 

livestock between geographically distinct areas and across sometimes multiple 

international boundaries, providing opportunities for pathogen transmission (Fèvre et al., 

2006; Little, 2009; Dean et al., 2013; Nicolas et al., 2018).  Where detailed knowledge of 

livestock movements is available, targeted disease control interventions such as 

vaccination, active surveillance or temporary movement restrictions can be implemented 

to reduce pathogen transmission risk (Bessell et al., 2013; Buhnerkempe et al., 2014; 

VanderWaal, Enns, et al., 2017). In contrast, where data on livestock movements are 

scarce, disease preparedness and an ability to respond rapidly in the face of a livestock 

disease outbreak are difficult (Gibbens et al., 2001; Ministry for Primary Industries, 2018). 

 

Livestock movement data is now frequently used in veterinary epidemiology to construct 

graphs that can be analysed using concepts from network analysis to identify locations or 

populations for targeted disease control interventions (Vallée et al., 2013; VanderWaal et 

al., 2016). Graphs are made up of nodes which can represent individuals, populations or 

locations, connected by links that represent movements or contacts between them 

(Newman, 2010). For networks that are constructed to assess connectivity for disease 

control purposes the link between nodes should represent an epidemiological connection 

along which a pathogen can be transmitted (Craft, 2015). 

 

In addition to some of the NA methods already mentioned in this thesis, community 

detection is another method which can be used to assess network structure and how 

homogeneously connected a network is. Communities are groups of nodes in a network 

with many connections within the group and few between them (Blondel et al., 2008).  If 
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highly connected communities exist within networks, their identification can enable groups 

of nodes within communities to be isolated during disease outbreaks (Guinat et al., 2016). 

This would be achieved by banning trade or livestock movement between nodes from 

different communities but allowing movements to continue between nodes that belong to 

the same community.  

 

When multiple modes of pathogen transmission between individuals or groups of 

individuals in a population exist, for example via other species or indirectly through 

environmental contamination, the risk of pathogen persistence and epidemics in a 

population increases (Craft et al., 2009; Zhao et al., 2014; White, Forester and Craft, 2017; 

Wilber et al., 2019).  Multi-host or multi-species networks are less studied than single 

species networks, but where they have been used they demonstrate the importance of 

considering the multiple routes for pathogen transmission (Böhm, Hutchings and White, 

2009; Lavelle et al., 2016; Ruget et al., 2021). If high risk individuals or locations can be 

identified in a multi-species network, targeted disease control measures can be 

implemented at these locations with multiple species included in the intervention 

activities. This is an efficient use of disease control resources as the fixed costs are shared 

and the cost-benefit impacts are maximised across species (Tisdell and Adamson, 2017). 

Disease control interventions implemented at high-risk nodes on multi-species networks 

could focus on multi-species pathogens and/or multiple pathogens. This type of integrated 

and multi-faceted approach to pathogen control is needed for efficient control of endemic 

diseases that often receive little political attention and limited public funding towards 

control (Maudlin, Eisler and Welburn, 2009; Carslake et al., 2011; Brooks-Pollock et al., 

2015). If single and multi-species networks in a population are highly correlated the multi-

species intervention foundations could also be built upon to implement single species 

pathogen interventions (Böhm, Hutchings and White, 2009). Identification of how 

correlated single and multi-species networks are in different agro-ecological settings and 

populations could allow future multi-pathogen disease control programmes to be designed 

even when data on one or the other species is lacking (Kao et al., 2006; Nöremark et al., 

2011; Apolloni et al., 2018; Ruget et al., 2021). 

 

In northern Tanzania there is currently no centralised data available on the movement of 

small ruminants and thus how these movements contribute to the maintenance or 
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propagation of livestock and zoonotic pathogens in the area. We used government 

movement permit data, largely representative of livestock movements between and 

onward from markets in northern Tanzania, to characterize the cattle movement network 

in chapter 5 (Chaters et al., 2019). The primary objective of this study is to build on the 

work from chapter 5 (Chaters et al., 2019) to identify how epidemiologically connected 

northern Tanzania is through the movement of small ruminants alone and through the 

combination of cattle and small ruminant movements. We will assess if there is a strong 

community structure in the small ruminants and combined species networks so these 

communities could be identified and isolated in case of future disease outbreak scenarios.  

 

We will also identify high risk locations for small ruminant and multi-species pathogen 

introduction and onward transmission and will assess if targeted removal of high-risk 

locations can successfully fragment the networks’ connected components. This will 

simulate the effectiveness of targeted disease control interventions implemented in nodes 

ranked based on their risk for small ruminant only or multi-species pathogens. We will 

compare the effectiveness of targeted node removal at achieving network fragmentation 

to assess if a multi-species, multi-pathogen intervention would be an efficient use of 

disease control resources in this setting. 

 

6.2 Methods 

6.2.1 Study area and data 

This study is focussed on the movement of sheep, goats and cattle in three regions in the 

northern zone of Tanzania: Arusha, Manyara and Kilimanjaro. The study area and 

movement data used for this study are described in detail in chapters 2 and 5 (Chaters et 

al., 2019), respectively. In brief, movement data were collected from movement permit 

receipt books. Movement permits are required in Tanzania to move livestock from point A 

to point B. The study area is home to livestock keepers who practice pastoralism (grazing 

livestock over large areas of pasture) which makes enforcing the use of movement permits 

difficult. In previous work studying the movement permit data in chapter 4 we found that 

generally the movement permits are used for trade movements of livestock onward from 

markets (Chaters et al., 2019). The origin and destination locations, species, number 
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moved, date of movement, mode of transport, any health concerns and price of the 

movement tax are all recorded on the permit. 

 

In 2016 we were granted access to over 64,000 paper movement permit receipts from 

Arusha, Manyara and Kilimanjaro regions of northern Tanzania, covering 4 years (2009, 

2011, 2013 and 2015). The permit receipt books were ordered by district and year and then 

photographed and stored as JPEG image files. Photographs of the permits were separated 

into 20 folders (A:T) in turn so each folder contained a representative sub-sample. Data 

from 50% of the folders were transcribed (28,421 permits). Data from a further 5,045 

permits were entered directly into a spreadsheet so these were also allocated in the same 

way into 20 batches and subsampled down 50% so the data from these permits were not 

over represented. This created a final raw data set that comprised 30,906 records. Some 

permits were unreadable due to fading or illegible writing which resulted in 67% of the 

permits being successfully transcribed. Through the data cleaning process the to and from 

locations were assigned to origin and destination locations using the fuzzy  text-matching  

package  stringdist (van der Loo, 2014), against  a  database  of Tanzanian    geographic    

names    compiled    from    the Geographic    Names    Database 

(http://geonames.nga.mil/gns/html/namefiles.html; file dated 10 April 2017) and the 

National Bureau  of  Statistics 2012  Population  and  Housing  Census  of  Tanzania. Central  

point coordinates  were  assigned  to locations  that  matched  to origins and  destinations. 

Fuzzy matching was used as a guide only; all origins and destinations were checked visually 

against the JPEG where available, and ambiguous matches were adjudicated with guidance  

from Tanzanian colleagues with local knowledge. Movements with origins or destinations 

outside the study area were removed from the analysis dataset. The final cleaned dataset 

comprised of data from 19,438 movement permits representing movements of 124,491 

animals. Further details on data collection and processing are found in chapter 4 (Chaters 

et al., 2019). 

 

6.2.2 Multi-species husbandry and transmission risk 

The proportion of livestock-keeping households that keep both cattle and small ruminants 

in the study area was estimated using cross-sectional household survey data from the 

Social, Economic and Environmental Drivers of Zoonoses (SEEDZ) and Bacterial Zoonoses 

(BacZoo) research projects. Further details on both of these projects are found in chapters 
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2 and 3 and published studies (Bodenham, Lukambagire, et al., 2020; de Glanville et al., 

2020)). The number of cattle, sheep and goats owned for each surveyed household were 

used to calculate the proportion of surveyed livestock owning households that owned 

cattle, small ruminants and both. This was done to evaluate the potential for mixing 

between species groups within households which will provide opportunities for pathogen 

transmission events in addition to any mixing opportunities and indirect contacts that occur 

outside the household.  

 

6.2.3 Model fitting 

The movement permit data were aggregated to the ward level (398 wards in the study area, 

each representing an administrative unit of around 12,000 people) for the 48 study months 

(12 months for each year 2009, 2011, 2013, 2015). Because of the age of some of the 

movement permit receipt books and the potential for patchy data collection at source due 

to missing or lost receipt books the data were checked for evidence of zero inflation. Where 

there was evidence of zero inflation these zeros were taken to represent missing data 

rather than zero movements.  

 

A mixed effects negative binomial hurdle model with the two response variables any 

movement (binary) and expected number of animals moved given that a movement occurs 

(continuous), was fitted to the data using ward level characteristics as explanatory 

covariates. The continuous fixed effect covariates were: origin and destination cattle or 

small ruminant population size, origin and destination human population size, origin and 

destination geographical area and calendar month (1:12). All continuous covariates were 

fitted with natural cubic splines with 3 degrees of freedom to allow the model estimates to 

vary throughout the year and identify up to two peaks or troughs in livestock movement 

volume. The fixed effect categorical covariates are: year, presence of a primary or 

secondary market and agro-ecological classification of origin and destination. The model 

random effects (all categorical) were: from ward, to ward and period (1:48 for all study 

months). A hurdle model was used so that the strength and effect size of the factors that 

predict the probability of any movement occurring between two wards in a given month 

and the expected number of animals moved, given that a movement occurred, could vary 

for the two separate parts of the model.  
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6.2.4 Network construction 

The cattle and small ruminant negative binomial hurdle models were used to predict the 

probability of a movement, and the expected number of livestock moved given that a 

movement occurred, between all potential origin (117 wards as origins in the raw data) and 

destination wards (398 possible destination wards in the study area) for each month of a 

year. The model output was boosted by 100% to account for only having transcribed 50% 

of the available permits. The model prediction outputs were used to create two matrices: 

a probability of movement matrix and an expected number of animals moved given a 

movement occurs matrix, for each month of the year for both cattle and small ruminants. 

For each month the probability of a movement matrix and the expected number of animals 

moved given a movement occurs matrix were multiplied to create 12 monthly expected 

number of movements between all ward pairs for both the small ruminant and cattle data. 

The 12 monthly expected number of movements matrices were then summed to give the 

annual expected number of animals moved between all pairs of wards in Kilimanjaro, 

Arusha and Manyara regions of northern Tanzania for both cattle and small ruminants. If 

the expected number of livestock moved between any two wards was less than one animal 

per year these links were discarded. This was done to avoid creating a network with an 

unrealistically large well connected component that includes predicted movements 

between wards that represent almost zero contact. Thus, in the predicted networks some 

wards appear as inactive, with no movement in and out even though we know this is 

unlikely as all wards containing some livestock will probably have some movement activity 

in or out in a year. The cut off decision was made based on the assumption that if recorded 

movements between wards are so infrequent they are not picked up by the models,  

discarding these links from the annual networks is unlikely to affect the overall network 

structure or the identification of central nodes (Wang et al., 2012). The total sum of the 

discarded small ruminant links (where the expected number moved in a year was <1) is 

2,118 (5.0% of the total sum of predicted small ruminant movements) and in the cattle 

dataset it is 1,847 (2.5% of the total sum of predicted cattle movements). The low 

percentages of total movements represented by the discarded links (5% small ruminants 

and 2.5% cattle) shows that the arbitrary cut off of <1 animal per year used here to 

construct the network  doesn’t remove a large proportion of movements. The annual 

expected number of animal movements matrices were used to construct a small ruminant 

static annual movement network and a cattle static annual movement network (Chapter 



194 
 
 
4). In the single species networks, link weights are equal to the expected number of animals 

moved in a year.  

 

The cattle and small ruminant annual expected number of movements matrices were 

summed to create a static annual multi-species livestock movement network with link 

weights equal to the expected total number of cattle and small ruminants moved between 

node pairs in a year (the combined equally weighted network, referred to as combined_E).  

 

Finally, a fourth network was constructed from the combined small ruminant and cattle 

expected number of annual movements matrices, this time heavily weighting small 

ruminant movements (multiplying estimated annual number moved by 0.9) and lightly 

weighting cattle movements (multiplying estimated annual number moved by 0.15) (the 

combined small-ruminant-weighted network, referred to as combined_SR). This was done 

to simulate a scenario representative of a pathogen circulating at high prevalence (90%) in 

the small ruminant population and low prevalence (15%) in the cattle population. In this 

example scenario a multi-species disease control intervention may be needed for pathogen 

elimination but the relative contribution of each species group to pathogen transmission 

differs and this may need to be accounted for during the development of interventions.  

 

6.2.5 Network structure descriptive analysis  

To assess study area connectivity through the movements of small ruminants alone and 

through the combination of cattle and small ruminant movements, summary network 

statistics were calculated for the small ruminant, cattle and combined_E networks. Each 

network’s number of nodes, links, giant strongly connected component (GSCC), giant 

weakly connected component (GWCC), diameter, average path length and clustering 

coefficient were calculated (Newman, 2010). Results from analysis of the small ruminant, 

cattle and combined_E networks were compared to evaluate the effect of adding the cattle 

data to the small ruminant data on overall study area connectivity. 

 

6.2.6 Community detection  

Communities in networks are groups of highly connected nodes with more connections to 

other nodes within the group compared to nodes outside it. Community detection was 
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done on the small ruminant and combined_E networks to determine whether communities 

exist in each network, and to count how many individual nodes are isolated and do not 

belong to a community. In brief, the algorithm used for community detection on these 

networks assigns each node to its own community then each node is re-assigned to a 

community with which it achieves the highest contribution to modularity (fraction of nodes 

that fall within communities minus fraction expected to fall within groups if the network 

graph were completely random). When no nodes can be reassigned the process is repeated 

with each community considered a node. The process stops when all nodes are part of one 

community or modularity cannot be increased (Blondel et al., 2008). 

 

All model fitting, network construction and NA was done in R version 4.0.4 (R Core Team, 

2019b) using the lme4 (Bates et al., 2015), glmmTMB (Brooks et al., 2017) and igraph 

packages (Csardi and Nepusz, 2006) and graphs were plotted using ggplot (Wickham, 

2016). Community detection was done using the multilevel.community function in igraph  

which uses the multi-level modularity optimisation algorithm to find community structure 

(Blondel et al., 2008).  

 

6.2.7 Node centrality metrics 

Five node centrality metrics were calculated for each ward in the small ruminant, cattle and 

combined networks (Newman, 2010): weighted in- and out-degree, eigenvalue centrality 

(score of a node is proportional to the centrality of its connected neighbours) (Bonacich, 

2007), betweenness centrality and geometric mean degree centrality (square root of the 

product of in- and out-degree). Each of these five centrality measures represent a different 

aspect of a node’s risk of pathogen acquisition or transmission. Eigenvalue centrality 

accounts for how well connected a nodes neighbours are and relates directly to a node’s 

contribution to R0 on the network (Danon et al., 2011). The five measures assessed here 

use different methods to quantify a node’s risk and so can be used in combination or alone, 

depending on the desired outcome of a disease control programme, to select nodes for 

targeted intervention (De Arruda et al., 2014). The distributions of these five node 

centrality metrics were described for each network and compared within and between the 

networks. We assessed if the distributions of node centrality metrics exhibit right skew and 

compare centrality metric ranks using Spearman’s ρ correlation coefficient, to evaluate if 

nodes that rank highly for one metric also rank highly for others. This allows us to assess if 
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the different centrality metrics identify the same nodes as high risk for disease acquisition 

and onward transmission. The P-values presented for the Spearman’s ρ correlation 

coefficient are calculated using the AS 89 algorithm (Best and Roberts, 1975). 

 

We compared node ranks for three centrality measures (weighted in-degree, betweenness 

and eigenvalue centrality) between the SR, combined_E and combined_SR networks to 

evaluate if high risk nodes on the SR network remained high risk when the cattle data were 

added. These three measures were chosen because they were least correlated within the 

small ruminant and combined_E networks and represent different risks of pathogen 

introduction, between group transmission and contribution to transmission on the network 

through their highly connected neighbours.   

 

The number and proportion of nodes that change rank from zero activity on the small 

ruminant network to having (i) some activity and (ii) being ranked in the top 20% of most 

central nodes in the combined_E network was also calculated. This analysis will allow us to 

assess the extent of the change in nodes’ importance when cattle data are added to the 

small ruminant data. Understanding the proportion of nodes that change rank when the 

cattle data are added to the small ruminant data will allow us to assess whether using 

combined_E node ranks will be a substantial waste of resources when targeting a small 

ruminant specific pathogen. 

 

6.2.8 Node removal and network fragmentation 

Finally, the top 20% and 5% of nodes, ranked based on their weighted in-degree, eigenvalue 

and betweenness centrality on the combined_E network, were removed from the small 

ruminant, combined_E and combined_SR networks followed by recalculation of the GSCC 

and GWCC. Nodes were removed based on their rank in the combined_E network to assess 

how effective control measures that specifically target locations high risk for multi-host 

pathogens are at reducing connectivity on the small ruminant only network as well as on 

the multi-species networks. The top 5% of nodes ranked most highly based on their 

betweenness centrality on the small-ruminant-only network were also removed from the 

small ruminant network and the size of the GSCC was recalculated. This was done to assess 

if targeting using small-ruminant-only network node metrics had a substantially different 

effect on fragmentation of the small ruminant network compared to removal based on 
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nodes’ ranks in the combined_E network. Complete network fragmentation is achieved 

when the giant components are reduced to size 1 so that zero nodes remain 

epidemiologically connected to any others.  

 

6.3 Results 

6.3.1 Raw data description 

A description of the transcribed raw data from all transcribed movement permits is given 

in Table 6-1. There was more than double the number of permits recording cattle 

movements compared to small ruminants. The cattle data identifies more unique origin 

and destination wards than the small ruminant data and there are some different origins 

and destinations listed in each dataset as the total numbers of origin and destination 

locations in the combined dataset are more than in each individual dataset.  

 

The mean number of animals moved on each permit was 10.8 for small ruminants (range 

1-190, SD 20.9 and 8.1 for cattle (range 1-337, SD 10.4). The mean movement distance 

within the study was 90 km for small ruminants (range 0.5 – 850, SD 134) and 79 km for 

cattle (range 0.5 – 883, SD 115). Distributions of the number of small ruminants and cattle 

moved per permit (a, b) and distances moved (c, d) are shown in Figure 6-1.
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Table 6-1: Number of movement permits transcribed and their characteristics from Arusha, Manyara and Kilimanjaro regions of northern Tanzania 

 

Number of permits transcribed 
*Including movement data within study area only 

Number of 
animals moved 
*Within study 

area (from 19,438 
permits) 

Unique 
links 

identified in 
raw data 

Number of 
unique origin 

and destination 
wards in raw 

data 

Number of 
unique 
Origin 

wards in 
raw data 

Number of 
unique 

Destination 
wards in raw 

data 
2009 2011 2013 2015 Total 

Small 
Ruminant 266 1,199 1,572 2,697 5,734 38,299 2,990 300 95 279 

Cattle 1,462 2,755 3,682 5,958 13,857 86,192 5,127 340 101 327 

Combined 1,709 3,917 5,222 8,590 19,438 124,491 7,138 389 117 376 
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a.

 

b. 

 

c. 

 

d.

 

Figure 6-1: Movement permit data distribution of number of number of small ruminants (a) 
and cattle (b) moved per permit and distance (km) of recorded small ruminant movements 
(c) and cattle movements (d)



200 
 
 
6.3.2 Multi-species husbandry and transmission risk   

Out of 524 livestock-keeping households that were surveyed in the study area, 402 (76%) 

kept both cattle and small ruminants, 61 (12%) kept cattle only, and 61 (12%) kept small 

ruminants only. The number of small ruminants kept is also on average twice the number 

of cattle: the mean number of cattle was 42 (range 0-1140, SD 107), while the mean 

number of small ruminants was 84 (range 0-2600, SD 230).  

 

6.3.3 Hurdle model results 

Results from the binomial hurdle models fitted to the transcribed permit data for small 

ruminants and cattle are given in Table 6-2 and Table 6-3 respectively. The results tables 

display the effect of each variable on the model R2 value (effect size of X = 1 – (variance of 

linear predictor without X / variance of linear predictor of full model)). The size of the effect 

of each variable, and the significance of the effect (likelihood ratio test P-value) is given for 

both the binary and count parts of the model. The hurdle models used here are generalised 

linear mixed models which are fitted by maximising the likelihood of the observed data 

(different to standard linear regression models which are fitted by least squares). The 

difference in method model fitting, along with how R2 is defined, explains why it is possible 

to get a negative effect on R2 by removing a variable when this wouldn’t be possible with a 

standard linear regression model. 

 

Similar variables affect the probability of a movement and number of animals moved 

between wards but the effect sizes vary in the small ruminant and cattle models. Distance 

has the largest effect on the probability of any movement between wards in both models 

(small ruminants 51% and cattle 58%, P <0.001) but it has no effect on the number of cattle 

moved and has a 7% effect on the number of small ruminants moved. Human population 

size and A-E class of destination, year and presence of a market affect the probability of a 

small ruminant movement between wards and these variables plus A-E class of origin affect 

the probability of a cattle movement (P < 0.05). In addition to distance, variables that have 

a significant (P <0.05) effect on the number of small ruminants moved include destination 

area, presence of a market, A-E class of origin and destination wards and year. In the cattle 

model variables that affect the number of animals moved include month, year, market 

presence and origin agro-ecological class (P <0.05).   
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Table 6-2: Predictors of monthly inter-ward small ruminant movement. Effect: relative 
reduction in model mean sum of squares when predictor is removed. R2LATENT: 
proportion of spatial and temporal random effect variation explained by the fixed effects 

 

Model stage predicting 
probability of 
movement 
(R2

LATENT = 44%) 

Model stage predicting 
number of animals 
moved 
(R2

LATENT = 18%) 

Predictor Effect P-value Effect P-value 
log10(distance/km) [spline] 51% <0.001 7% 0.005 

log10(origin human pop. size) [spline] 3% 0.171 -18% 0.367 

log10(destination human pop. size) [spline] 11% <0.001 5% 0.256 

log10(origin cattle pop. size [GWA†]) [spline] 1% 0.122 -1% 0.394 

log10(destination cattle pop. size [GWA†]) [spline] 0% 0.468 0% 0.503 

log10(origin area/km2) [spline] 0% 0.225 0% 0.641 

log10(destination area/km2) [spline] 1% 0.157 7% 0.028 
Calendar month [spline] 0% <0.001 1% 0.326 
Year [categorical] 8% <0.001 2% 0.001 
1ary/2ary market in origin/destination [categorical]  20% <0.001 18% 0.048 
Origin agro-ecological system [categorical] 3% 0.419 12% 0.002 
Destination agro-ecological system [categorical] 7% <0.001 8% 0.005 

 

Table 6-3: Predictors of monthly inter-ward cattle movement. Effect: reduction in model 
mean sum of squares when predictor is removed. R2LATENT: proportion of spatial and 
temporal random effect variation explained by the fixed effects 

  
Model stage predicting 
probability of 
movement 
(R2

LATENT = 40%) 

Model stage predicting 
number of animals 
moved 
(R2

LATENT = 24%) 

Predictor Effect P-value Effect P-value 
log10(distance/km) [spline] 58% <0.001 0% <0.001 

log10(origin human pop. size) [spline] 4% 0.053 16% 0.125 

log10(destination human pop. size) [spline] 14% <0.001 0% 0.197 

log10(origin cattle pop. size [GWA†]) [spline] 0% 0.952 -1% 0.349 

log10(destination cattle pop. size [GWA†]) [spline] 0% 0.968 4% 0.304 

log10(origin area/km2) [spline] 1% 0.274 6% 0.91 

log10(destination area/km2) [spline] 2% 0.028 0% 0.28 

Calendar month [spline] 0% 0.054 5% <0.001 

Year [categorical] 3% <0.001 2% <0.001 

1ary/2ary market in origin/destination [categorical]  27% <0.001 27% <0.001 

Origin agro-ecological system [categorical] 6% 0.036 29% 0.039 

Destination agro-ecological system [categorical] 6% <0.001 2% 0.759 
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6.3.4 Network analysis results 

Of the total 398 wards in the study area there were 330 active ward nodes in the small 

ruminant network, 316 in the cattle network and 373 in the combined data network. There 

are more cattle moved in a year (N = 73,506) than small ruminants (N = 40,529) and more 

active links on the cattle network (N = 2,926) compared to the small ruminant network (N 

= 2,653). Descriptive network measures from analysis of the small ruminant, cattle and 

combined_E networks structures are given in Table 6-4. The combined data network is 

more connected with more active links, a larger GSCC and GWCC and shorter diameter and 

average path length compared to both the small ruminant and cattle networks. 

 

The mean small ruminant journey length on the network is 95 km (range 1.7-365, SD 73) 

and the mean cattle journey length is on average around 30% longer at 118 km (range 2.05 

– 435km, SD 85). Both mean distances are similar to the mean movement distances in the 

raw permit data.  

 

The distributions of link weights (count of number of animals moved along that directed 

link in a year) for the small ruminant, cattle and combined networks are all skewed to the 

right. This means that the majority of active links in all of the movement networks 

represent quiet routes with the movement of few animals and a small proportion of links 

represent busy livestock traffic corridors with the movement of many animals over the 

course of a year. For small ruminants the median link weight is 3.2 (mean 15.3) with a range 

from 1 to 1,275 (SD 58.5). For cattle the median link weight is 4.0 (mean 25.1) with a range 

from 1 to 2,279 (SD 97.4) and for the combined data network the median link weight is 4.6 

(mean 28.0) with a range from 1 to 2,594 (SD 108.1). 
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Table 6-4: Network measures for small ruminant, cattle and combined annual static movement networks in northern Tanzania where at least one cattle, small 
ruminant or either, was estimated to be moved between two locations in the year 

 
Nodes 

Active nodes (>1 
animal moved in or 

out per year) 
Links Weighted links 

(no of animals) GSCC GWCC Diameter Average 
path length 

Clustering 
coefficient 

Small ruminant 398 330 2,653 40,529 82 330 8 3.31 0.30 
Cattle 398 316 2,926 73,506 102 316 8 2.58 0.31 

Combined_E 398 373 4,068 114,035 111 373 7 2.6 0.34 
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6.3.5 Community detection 

The small ruminant network has 3 communities greater than size 1 (69, 125 and 136 nodes) 

and 68 inactive nodes. Each of the three communities identified in the small ruminant data 

grow when the cattle data is combined with the small ruminant data. The combined data 

network also has 3 communities greater than size 1 (77, 134 and 149) with only 38 inactive 

nodes. Identifying communities in the observed networks means that these could be 

isolated during disease outbreaks and trade allowed to continue within communities 

provided there was no contact or movement between nodes from different communities. 

 

6.3.6 Node centrality metrics 

6.3.6.1 Centrality metric distributions  

There was right skew of all node centrality metrics; weighted in-degree, weighted out-

degree, eigenvalue centrality, betweenness centrality and geometric mean degree in the 

small ruminant, combined_E (cattle and small ruminant links weighted equally) and 

combined_SR networks (small ruminant links weighted heavily (0.9), cattle links weighted 

lightly (0.15)). The distributions of all calculated node centrality measures are shown in 

Figure 6-2  with all zero values excluded from the plots so the distribution of the non-zero 

values can be observed. The number of excluded zero values is given below the X axis on 

each plot. Summary data for all node centrality metrics in the small ruminant and 

combined_E networks can be found in the Appendix Table S5.1.  
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Figure 6-2: Node centrality metric distributions: weighted in-degree, weighted out-degree, eigenvalue centrality, betweenness centrality and geometric mean 
degree for three networks: small ruminant only, combined cattle and small ruminant (equally weighted) and combined cattle and small ruminant with links 
weighted heavily for small ruminants (0.9 multiplied by the number of small ruminants moved) and lightly weighted for cattle (0.15 multiplied by the number 
of cattle moved) to represent an example of the relative impact of the movement of the different species groups on transmission of a pathogen that is shed 
more by small ruminants that cattle. All zero values are excluded from the plots so the distribution of none-zero values can be visualised. The number of zero 
values that are excluded for each centrality metric, on each network, is given below each plot. 
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6.3.6.2 Centrality metric correlations 

Node centrality metric ranks were positively correlated on both the small ruminant and the 

combined_E networks (Figure 6-3). Scatter plots of pairwise comparisons between node 

centrality metric ranks are in the bottom right panels and Spearman’s ρ correlation 

coefficients are in the top left panels for the small ruminant (Figure 6-3(a)) and combined_E 

networks (Figure 6-3(b)), all P-values <0.001. Dashed lines on the scatter plots highlight the 

boundaries for the top five percent (red) and twenty percent (blue) of nodes. Points that 

fall on the diagonal represent nodes that rank equally high or low for both centrality metrics 

being compared. Points off the diagonal (above the horizontal lines and to the left of the 

vertical, or to the right of the vertical line and below the horizontal) represent nodes that 

are dissimilar in how they rank using the different metrics. The dissimilar nodes rank in the 

top twenty percent (blue line) or five (red line) percent for one metric but not for the other 

for each pairwise comparison. Geometric mean degree, out-degree and betweenness 

centrality were highly positively correlated on both the small ruminant and combined_E 

networks indicating that they pick up the same information. For the next analysis, 

comparing how node ranks correlate for different centrality measures on the three 

networks, the three least correlated centrality measures were used (weighted in-degree, 

eigenvalue and betweenness) as these metrics contain more diverse information about 

risk.  

 

Spearman’s ρ correlation coefficients (top left) and scatter plots (bottom right) that 

compare three node centrality metric ranks between the three networks: small ruminant, 

combined_E and combined_SR networks are shown in Figure 6-4 (weighted in-degree (a), 

eigenvalue (b) and betweenness (c)). On these scatter plots points above and to the right 

of the dashed lines are ranked in the top 5% (red) and 20% (blue) of nodes. Points that are 

off the diagonal (above the horizontal lines and to the left of the vertical and below the 

horizontal lines and to the right of the vertical) represent nodes with highly discordant 

ranks. These discordant nodes change rank due to structural changes on the different 

networks and move into the top twenty percent (top left or bottom right of blue lines) and 

five percent (top left or bottom right of red lines) high risk groups on the different 

networks. The scatter plots show a smaller proportion of nodes change rank into the top 

five and twenty percent of nodes when the cattle data is added to the small ruminant data 

compared to the proportion of nodes that remain on the diagonal (rank similarly). The 
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Spearman’s ρ correlation coefficients show that for all pairwise comparisons (using 

centrality metrics calculated on the different networks), for each centrality metric, they are 

all strongly positively correlated (Spearman’s ρ 0.82-0.99, all P-values <0.001)). 

 

Table 6-5 shows the number of nodes that change rank from zero activity to (i) active (non-

zero centrality metric value) and (ii) ranked in the top twenty percent for that centrality 

metric, when cattle data is added to the small ruminant data. When the cattle data is added 

to the small ruminant data, for both methods of link weighting (equal and small ruminant 

weighted) a few nodes do move from zero activity to active for each centrality measure 

(range 19-35 nodes (6-47% of zero activity nodes in small ruminant network)). A small 

number of nodes  also move from zero activity into the top 20% of most central (high risk) 

nodes based on the betweenness centrality measure (4% in combined_E and 5% in the 

combined_SR network) and eigenvalue centrality measure (4% combined_E). It is 

important to identify nodes that move into the top 20% of high-risk nodes when cattle data 

are added to the small ruminant data to ensure these are included in control programmes 

if the aim is to control a potentially multi-host pathogen.  
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a. 

 

 

b. 

 

 

Figure 6-3: Spearman’s ρ correlation coefficients (P<0.001) (top left) and correlation plots 

(bottom right) between five node centrality metric ranks; weighted in-degree, weighted 

out-degree, eigenvalue, betweeness and geometric mean degree calculated on the (a) 

small ruminant and (b) the combined cattle and small ruminant networks. Points to the 

right of the blue and red lines are ranked in the top 20% and 5% of nodes respectively for 

the centrality metric labelled above the panel. Points above the blue and red lines are 

ranked in the top 20% and 5% of nodes respectively, for the centrality metric labelled to 

the left of the panel.  
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b. 
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c. 

 
Figure 6-4 Spearman’s ρ correlation coefficients (P<0.001) (top left) and correlation 

plots (bottom right) between three node centrality metrics: weighted in-degree (a), 

eigenvalue centrality (b) and betweenness centrality (c) on the small ruminant data 

network, the equally weighted combined cattle and small ruminant data network 

(combined_E) and the combined data network weighted heavily for small ruminants 

(0.9) and lightly for cattle (0.15)  

 
 

Table 6-5: Number of nodes with zero centrality on the small ruminant network that have (i) 

some activity (non-zero centrality) and (ii) are ranked in the top twenty percent of high risk 

nodes for: betweenness, weighted in-degree and eigenvalue centrality, when cattle data is 

added to the small ruminant data on the Combined_E and Combined_SR networks. In the 

Combined_E network cattle and small ruminant links are equally weighted, in the 

Combined_SR network small ruminant links are heavily weighted (0.9) and cattle links 

lightly weighted (0.15). 

 Non-zero activity Top 20% of nodes 

Betweenness 
Combined _E 23 (7%) 14 (4%) 

Combined_SR 19 (6%) 17 (5%) 

Weighted in-degree 
Combined_E 35 (47%) 0 

Combined_SR 35 (47%) 0 

Eigenvalue centrality 
Combined_E 35 (47%) 3 (4%) 

Combined_SR 35 (47%) 0 
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6.3.7 Fragmentation 

Results from targeted node removal analysis, based on nodes’ combined_E weighted 

indegree, betweenness and eigenvalue rank, to assess if the three networks, small 

ruminant, combined_E and combined_SR are vulnerable to fragmentation are shown in 

Table 6-6 (top 20% removed ) and Table 6-7 (top 5% removed ).  

 

Targeted removal of nodes based on their betweenness centrality rank in the combined_E 

network resulted in the most efficient fragmentation of all networks. Removal of the top 

20% of nodes based on their betweeness centrality resulted in complete fragmentation of 

all three networks strongly connected components. Removal of the top 5% of nodes ranked 

based on their betweenness centrality reduced the size of the GSCCs by 81%, 84% and 95% 

on the combined_SR, combined_E and small ruminant networks respectively.  

 

Removing nodes based on them ranking in the top 5% for betweenness centrality on the 

small ruminant network did not improve the level of fragmentation achieved on the small 

ruminant network compared to removing nodes based on their rank on the combined_E 

network. The GSCC was still reduced to 4 nodes.  If node removal is only possible for 5% of 

nodes then targeting nodes based on their combined_E rank is just as effective at 

fragmenting the small ruminant network compared to targeting nodes based on their rank 

in the small ruminant only network. 
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Table 6-6: Size of giant components and percentage reduction in size of giant components of combined and single species networks when nodes are removed 
based on belonging to the top 20% of nodes with highest in-degree, eigenvalue centrality and betweenness centrality on the combined data network with 
equally weighted edges. 

 All data -20% In-degree -20% Eigenvalue -20% Betweenness 

 GSCC 

 

GWCC 

 

GSCC 

(% reduction) 

GWCC 

(% reduction) 

GSCC 

(% reduction) 

GWCC 

(% reduction) 

GSCC 

(% reduction) 

GWCC 

(% reduction) 

Small ruminant 82 330 10 (97%) 184 (44%) 25 (92%) 217 (34%) 1 (100%) 21 (94%) 

Combined_E 111 360 12 (89%) 224 (38%) 52 (53%) 239 (34%) 1 (100%) 33 (91%) 

Combined_SR 111 360 15 (86%) 233 (35%) 49 (56%) 200 (44%) 1 (100%) 38 (89%) 

 

Table 6-7: Size of giant components and percentage reduction in size of giant components of combined and single species networks when nodes are removed 
based on belonging to the top 5% of nodes with highest in-degree, eigenvalue centrality and betweenness centrality on the combined data network with 
equally weighted edges. 

 All data -5% In-degree -5% Eigenvalue -5% Betweenness 

 

GSCC 

 

GWCC 

 

GSCC 

(% reduction) 

GWCC 

(% reduction) 

GSCC 

(% reduction) 

GWCC 

(% reduction) 

GSCC 

(% reduction) 

GWCC 

(% reduction) 

Small ruminant 82 330 51 (38%) 303 (8%) 48 (41%) 287 (13%) 4 (95%) 231 (30%) 

Combined_E 111 360 64 (42%) 309 (14%) 83 (25%) 324 (10%) 18 (84%) 241 (33%) 

Combined_SR 111 360 65 (41%) 318 (12%) 76 (32%) 319 (11%) 21 (81%) 274 (24%) 
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6.4 Discussion 

The majority (76%) of livestock owning households in the northern Tanzania study area 

own both cattle and small ruminants.  The high prevalence of multi-species ownership 

means that there is likely to be sufficient opportunity for between-species pathogen 

transmission events in the homestead, if one species is infectious with a multi-host 

pathogen. This finding supports our justification for looking at the small ruminant and cattle 

movement data together in combined networks because it is feasible that multi-host 

pathogens could be transmitted by either species group in the study area. In addition to 

homestead contact, extensive management of livestock in northern Tanzania provides 

opportunity for direct and indirect inter-species contacts between livestock from different 

households when they move to access grazing and watering points (Coppolillo, 2000; 

VanderWaal, Gilbertson, et al., 2017; Herzog et al., 2019).  

 

Comparisons between the cattle, small ruminant and combined data (combined_E) 

movement networks in northern Tanzania show that there are more active wards in the 

small ruminant network compared to the cattle (SR = 330, C = 316) but the small ruminant 

network is less well connected with a smaller GSCC (SR = 82, C = 102). When the cattle and 

small ruminant data are combined the number of active wards increases to 373 and the 

network’s giant connected components increase in size by 35% for the GSCC and 9% for 

the GWCC. The larger component sizes mean that many more wards are epidemiologically 

connected through the combination of cattle and small ruminant movements than by 

movements of a single species groups. This result shows that the mean estimated lower 

and upper bounds of epidemics caused by multi-host pathogens in this livestock population 

are significantly larger than what would be estimated for single-host pathogens. The 

combination of the movement data also increases the number of active links (routes 

available for pathogen transmission) in the network which shortens the average path 

length and diameter of the connected components, despite them including more nodes 

than the single species networks. This means that multi-species pathogens can transmit in 

fewer consecutive steps across the study area compared to single-species pathogens. The 

broader reach of multi-host pathogens, which can be achieved in fewer sequential 

movements, show that disease control interventions for potential multi-host pathogens in 

northern Tanzania should consider the contribution of both species groups.  
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All centrality metrics calculated on the small ruminant, combined_E and combined_SR 

networks exhibit strong right skew which shows that most wards are quiet with little 

livestock movement in and out and a few are very busy with livestock traffic. The right skew 

of all centrality distributions on the single and multi-species between ward movement 

networks indicates that they are going to be vulnerable to fragmentation through targeted 

node removal by implementing targeted pathogen control interventions.  

 

Pairwise comparisons between five node centrality metrics: weighted in-degree, weighted 

out-degree, eigenvalue, geometric mean degree and betweenness, on the small ruminant 

and combined data (combined_E) networks show that they are all positively correlated. 

The strength of the positive correlations between all five centrality metrics mean that 

nodes at high risk of pathogen introduction are also those that are high risk for onward 

pathogen transmission and maintenance on the network. Out-degree, geometric mean 

degree and betweenness very highly correlated on both networks (Spearman’s ρ >0.9, P-

value <0.001) which suggests these metric ranks are picking up similar information about 

nodes risk of pathogen acquisition and onward transmission.  

 

We checked to see how similarly nodes rank for weighted in-degree, eigenvalue and 

betweenness centrality, when the cattle data was added to the small ruminant data.  

Pairwise comparisons were made between node ranks on the small ruminant, combined_E 

(node links were weighted equally) and combined_SR (node links weighted more heavily 

for small ruminants (0.9) compared to cattle (0.15)) networks. The results show that 

despite adding cattle data and varying the relative contribution of each species group, node 

ranks show strong positive correlation (0.82-0.99, P-value <0.001). This shows that high risk 

nodes for disease introduction and onward transmission on the small ruminant only 

network remain high risk when the cattle data are added, and vice versa for low risk nodes, 

regardless of how heavily cattle links are weighted in comparison to small ruminant links. 

The most correlated metric on the three networks is weighted in-degree which shows that 

nodes at high risk of small-ruminant-only pathogen introduction are also high risk for multi-

species pathogen introduction. The least correlated metric is betweenness which shows 

that adding the cattle data to the small ruminant data does slightly modify nodes’ 

importance as gate-keepers, connecting other groups of nodes, on the network. The 

alterations to betweenness rank when the data are combined is important to document as 
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nodes with high betweenness could be targets for movement restrictions or increased 

surveillance (Molia et al., 2016).  

 

Targeted removal of nodes based on their betweenness centrality was the most efficient 

way to fragment all networks. Removing the top 20% of nodes based on their betweenness 

centrality on the combined_E network resulted in complete fragmentation of all networks 

GSCC. Removing only the top 5% of nodes based on their betweenness centrality, again 

ranked on the combined_E network, reduced the size of the GSCC’s by 81-95%. The level 

of fragmentation achieved on the small ruminant network was not improved upon by 

removing nodes that ranked in the top 5% of highest betweenness on the small ruminant 

network only. This result shows that if resources are limited to only being able to target 

interventions in 5% of wards then choosing nodes based on their combined betweenness 

rank is no better than choosing based on their small ruminant only rank, even for small 

ruminant only pathogens. Control interventions in the top 5% of high-risk wards, chosen 

based on their betweenness centrality rank can therefore target multi-species pathogens 

without compromising on efficiency of targeting small ruminant only pathogens. Targeting 

interventions at nodes that are high risk for multi-species pathogens will be more efficient 

long term compared to targeting nodes based on their risk rank for single species pathogen. 

The initial fixed cost of setting up a livestock pathogen intervention will be high but the 

long-term benefits of a foundation that can be built upon to target multi-host pathogens 

mean there can be greater public- and livestock-health returns from the investment. The 

results from this study identify the possibility of a cost-efficient and integrative approach 

to multi-host, multi-pathogen, livestock disease control interventions in northern Tanzania. 

 

The detection of three highly connected communities on the small ruminant and combined 

data networks show that isolation of these communities could be achieved by banning 

movement between them but allowing movement within. For practical feasibility this type 

of restrictive intervention requires communities to be spatially clustered and also requires 

increased surveillance within the active communities to ensure pathogens are not 

introduced and allowed to circulate unchecked. In response to regional disease outbreaks 

of rapidly transmissible pathogens such as FMDV or RVF, movement restrictions between 

communities could provide a practical alternative to blanket movement bans. Blanket 

movement bans can be met with non-compliance due to the economic fragility of livestock 

trading and the abundant need for households to continue to generate an income (Pica-
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Ciamarra et al., 2011; Motta et al., 2018; Haseeb et al., 2019). The policing of movement 

restrictions between communities would require public financial resources to support a 

regulation enforcement team but there could be money made available to support this if 

some legal, taxable, trade continues. Compliance with community isolation can be helped 

by identifying the communities before a disease outbreak and discussing the practicalities 

of allowing movements to continue within but not between communities with all 

community stakeholders. Community isolation could prevent rapid pathogen 

dissemination across the study area before it is detected or reported and give local 

vaccination roll-out campaigns an opportunity to get ahead of the epidemic. 

 

This study has limitations. The networks used in this study do not account for movements 

of less than one animal a year between wards. These are unlikely to change the overall 

network structure but may provide occasional connections and opportunity for pathogen 

transmission that remain unaccounted for. Similarly, the networks do not account for 

unrecorded inter-household movements in the study area and direct and indirect contacts 

between livestock from different wards. Unrecorded movements and intermittent contacts 

could provide opportunities for pathogen maintenance in the northern Tanzania livestock 

population (VanderWaal, Gilbertson, et al., 2017). The extent to which undocumented 

movements and contacts might undermine targeted pathogen control interventions could 

be estimated by constructing multi-layer networks that include simulated inter-household 

movements and intermittent contacts at natural resources.   

 

6.5 Conclusion 

We used movement permit data to construct a between-ward contact network for small 

ruminants, cattle and both species groups combined in northern Tanzania. The networks 

can be used to identify wards at high risk of pathogen introduction (highest weighted in-

degree ranks), or those at high risk of onward pathogen transmission (high betweenness 

and eigenvalue ranks) for single and multi-host pathogens. The results show that all 

networks are vulnerable to fragmentation through targeted removal of high-risk wards and 

this is most efficiently done by removing wards based on their betweenness centrality rank. 

When only the top 5% of nodes are removed the efficiency of fragmentation of the small 

ruminant network is not improved upon by selecting wards based on their betweenness 

rank in the small ruminant network vs in the combined data network. The results from this 
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study show that targeted pathogen control interventions in high-risk wards in northern 

Tanzania could greatly reduce transmission of single and multi-host pathogens via trade-

based livestock movements. Targeted interventions can be developed so that they are 

multi-host multi-pathogen focussed and reduce overall disease burden in the livestock, and 

in the case of zoonoses, human populations. Multi-host and multi-pathogen interventions 

in the highest risk locations can share the initial fixed costs of communication and 

implementation platforms and result in greater public and livestock health returns from 

initial investments.  
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7 Discussion  

7.1 General 

For this thesis market survey and government movement permit data were gathered, along 

with household survey data to quantify different types of livestock movements in Arusha, 

Manyara and Kilimanjaro Regions of northern Tanzania. The results show that inter-

household, market-centred and trade-based movements of livestock create networks of 

epidemiological connectivity between livestock populations across the study area and 

beyond, including across the international border with Kenya. Movements in and out of 

Kenya, between households and markets, show that a harmonised, regional approach to 

disease control is required in the area.  

Household survey data show that the majority of movements to and from households, 

including market movements, are unreported. These movements can cover long distances 

up to 300 km. This means that undocumented livestock movements (around 75%) have the 

potential to move pathogens around the study area, acting somewhat as Trojan livestock, 

undermining disease control programmes should they remain unaccounted for. There is a 

clear need for improvements to livestock movement reporting and recording so 

comprehensive data can be accessed in real-time and used to guide effective livestock 

disease control programmes (Green and Kao, 2007). This platform could be established, for 

example, by having movements reported using SMS as most households now have access 

to a mobile ‘phone at some level (Mibei et al., 2017). In addition to ease of access, factors 

which may be necessary to improve movement reporting compliance include a reduction 

in movement associated taxes and increased awareness amongst livestock keepers as to 

why movement data is necessary. Livestock keepers should be made aware of how 

movement data can be utilised to improve livestock and public health through 

implementation of efficient disease control interventions.  

The inter-household, market-centred and trade networks constructed from movement 

data all exhibit properties to suggest they are vulnerable to fragmentation through 

targeted removal of the most central nodes. Fragmentation is the aim of disease control 

programmes as this effectively breaks up a network into smaller components and removes 

routes for pathogen transmission between groups of nodes, reducing the extent of spread. 
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Examples of node removal in this instance include implementing disease control 

interventions to break pathogen transmission cycles in the most central nodes which are 

at highest risk of pathogen introduction and onward transmission. Because the majority of 

movements in the network models are market and trade movements it is likely that money 

and disease flow similarly on the networks (Xie, Horan and Wolf, 2009; Motta et al., 2018). 

This factor needs careful consideration in the design of disease control interventions 

because for these to be successful they must aim to interrupt pathogen transmission but 

allow commerce to continue wherever possible. This is where vaccination to increase herd 

immunity prior to any large disease outbreaks can be utilised in high-risk locations as it can 

reduce the proportion of susceptible animals and reduce the duration of other restrictions 

such as movement bans. 

On all constructed networks (inter-household, market and trade), there were positive 

correlations between all node centrality metrics. This means that locations identified as 

high risk for pathogen introduction were also likely to be high risk for onward transmission. 

On the inter-household movement network there were also positive correlations between 

weighted and non-weighted node metrics which shows that nodes at high risk of acquiring 

and transmitting rapidly transmissible pathogens are also high risk for less transmissible 

pathogens. These positive correlations make targeting disease control interventions more 

efficient as the fixed costs of logistically setting up intervention platforms are minimised 

because fewer locations need to be targeted. Interventions can include: vaccination in high 

risk locations with large resident livestock populations; test and quarantine facilities; and 

knowledge exchange to improve livestock keeper awareness of disease risks posed to their 

own animals and others through livestock introductions and movements. On the trade 

networks constructed from movement permit data, the high risk nodes for single-host 

pathogens are also high risk for multi-host pathogens. This means that generally, across the 

study area livestock and zoonotic disease control interventions can be multifaceted, aiming 

to target multiple pathogens and multi-host pathogens to reduce the risk of both pathogen 

introduction and propagation. A multifaceted, targeted approach to pathogen control in 

the northern Tanzanian livestock population is going to be an efficient way to spend limited 

disease control resources with maximal gains for livestock keepers and livestock dependant 

societies (Randolph et al., 2007).  
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7.2 Household movements and disease risk 

Through use of household survey data this study shows that largely undocumented 

household livestock movements create epidemiological connections between 

geographically close and distant locations, including across the international border with 

Kenya. The majority of reported movements are to and from markets but gifting and 

private sale movements create additional epidemiological links between sub-villages and 

other locations which provide additional routes for pathogen transmission. Similar 

epidemiological connectivity through inter-household movements has recently been 

documented in neighbouring Kenya (Omondi et al., 2021). In combination, the inter-

household movements identified in this study create a well-connected network despite 

sampling from only a small proportion of villages and sub-villages (around 2%). If disease 

control programmes were to only target livestock markets, and other between-household 

movements such as private sales and gifting continue unchecked, these could provide 

sufficient opportunities for sustained pathogen transmission (Prentice et al., 2017). There 

are of course potentially other types of between-household movements such as the shared 

use of breeding stock or draught animals which could provide further opportunities for 

pathogen transmission. Increased awareness of the disease risks associated with livestock 

introductions and contacts amongst livestock keepers (to their own animals, other livestock 

locally and in the case of zoonoses, themselves), could increase livestock keeper willingness 

to engage in movement reporting. Increased awareness of the risks associated with 

introductions and contacts also allows livestock keepers the opportunity to make informed 

decisions about management factors such as the use of shared grazing and or developing 

a quarantine area. 

This study tests the hypothesis that more household and sub-village introductions will 

increase pathogen exposure risk for multiple livestock and zoonotic pathogens. This 

hypothesis embeds an underlying assumption about the risk of introduction and the risk of 

onward pathogen spread within households and sub-villages following an introduction. The 

results of the associations between household and sub-village introductions and exposure 

to production-limiting and zoonotic pathogens tested are complex but summarised in brief 

schematic form in Figure 7-1.  The relationship between introductions and exposure varies 

depending on the agro-ecological (A-E) setting where livestock are kept and also between 

pathogens that utilise different transmission routes and have various shedding cycles. This 
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is perhaps not a surprising finding as we know that population structure, mixing and contact 

dynamics, all of which vary amongst the A-E classes, have significant influence on the R0 of 

a pathogen and its ability to both persist and cause epidemics (Keeling and Grenfell, 2000; 

Kao, 2010). It is also not surprising that within A-E classes the results vary between 

pathogens because the pathogens tested operate on different time-scales and utilise 

different transmission routes (Kao et al., 2007), and livestock movements and herd 

contacts vary widely across different systems (de Glanville et al., 2020). For example, in 

smallholder settings livestock are tethered and stocking density and human density are 

high whereas in pastoral settings livestock are extensively grazed and mix with other herds 

and flocks. Agro-pastoral livestock are managed somewhere between the two with 

livestock also grazed on croplands following harvest.  

 

Figure 7-1: Schematic diagram depicting increased risk of pathogen seropositivity (through 
listing disease in text box alongside graphic of species group affected) and how it is 
associated with household and sub-village livestock introductions in cattle and small 
ruminants across three agro-ecological classes: pastoral, agro-pastoral and smallholder. The 
decagons represent sub-villages with a mock network created for each agro-ecological class 
(top row depict some characteristics of the A-E class: pastoral have high mixing (red circular 
arrow) between herds and extensive grazing, agro-pastoral predominantly cropland grazing 
with some extensive grazing, smallholder have high population density (livestock and people) 
to depict example sub-villages with high betweenness centrality (middle row – lying on 
shortest path between most other node pairs), high in-degree (bottom right sub-village for 
each A-E class) and a household with high numbers of introductions (depicted by a house 
icon contained within bottom left sub-village for each A-E class). Note high in-degree in agro-
pastoral sub-villages is not associated with seroprevalence for any pathogens tested in this 
work.  
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Despite the complexities identified using these data, household cattle introductions and 

sub-village betweenness (calculated on the inter-household movement network from 

livestock movements reported in and out of sub-village households) are positively 

associated with exposure to the rapidly transmissible BVDV pathogen in cattle and this 

association is consistent across A-E classes. Household introductions are also positively 

associated with exposure to Brucella spp. and C. burnetii in cattle from agro-pastoral 

households. Sub-village in-degree is positively associated with Brucella spp. exposure in 

pastoral small ruminants, BHV-1 in pastoral cattle and Leptospira serovar Hardjo in 

smallholder cattle. One example of a factor that may drive the difference in the 

relationships between pathogen introduction and onward transmission for Leptospira 

serovar Hardjo in smallholder cattle is that the density of other reservoir hosts of Leptospira 

serovar Hardjo could be higher in smallholder areas.  

Differences in the way herds are managed and grazed between A-E classes could explain 

why there is an association between cattle introductions and exposure to the zoonotic 

pathogens Brucella spp. and C. burnetii in agro-pastoral households. Agro-pastoral herds 

are managed as more defined units compared to pastoral herds, and partially grazed on 

small areas of privately managed cropland following harvesting. This could lead to a higher 

frequency of within herd contacts vs between herd contacts compared to mixing patterns 

experienced by smallholder (tethered, not free roaming) and pastoral (extensively grazed 

on shared pasture) cattle. Additionally, environmental contamination with zoonotic 

pathogens, by infectious animals from within the herd, of land grazed only by that 

household herd, could provide further opportunity for within-herd transmission in agro-

pastoral cattle. Pastoral herds on the other hand, are managed more extensively with the 

concept of a herd perhaps more nebulous with more frequent opportunities for between 

herd contacts and transmission events (VanderWaal, Gilbertson, et al., 2017). Smallholder 

herds are smaller so will inherently experience smaller within herd outbreaks and because 

animals are tethered in place there will be less close contact mixing between infectious and 

susceptible animals. The differences in mixing patterns are likely to make the risks of within 

herd transmission of pathogens that are shed intermittently or cyclically (after parturition) 

and through environmental contamination less important for pastoral cattle.  

In the case of BVDV, where there is an association between livestock introductions and 

seropositivity at both the household and sub-village level, interventions that target high-
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risk households and sub-villages could be implemented. An example of this could be 

targeting vaccination campaigns in sub-villages with high betweenness, which in this case 

are most likely to be pastoral sub-villages, to break chains of transmission across the study 

area. Another example would be provision of test and quarantine facilities so livestock 

keepers can reduce the risk of introducing pathogens to their own herd and the village 

herd. At the household level interventions could include those which aim to improve 

livestock keeper knowledge of rapidly transmissible pathogens such as BVDV to increase 

risk awareness. The benefit of preventing introduction of pathogens such as BVDV would 

be felt by the whole sub-village across all A-E classes. 

For Leptospira serovar Hardjo in smallholder cattle, BHV-1 in pastoral cattle and Brucella 

spp. in pastoral small ruminants the benefits of preventing pathogen introduction are also 

shared across households throughout the sub-villages. These results support the concept 

that sub-village level interventions such as vaccination and tests and quarantine facilities 

should be publicly or collectively funded because they provide a public good, protecting 

livestock beyond those in the household that engages in the risk behaviour (Rich and Perry, 

2011; Maziku, Gebru and Stapleton, 2017). Testing of individual animals introduced into 

the quarantine facilities could potentially be funded by the individual livestock keeper so 

they bear some financial responsibility for the cost of mitigating disease risk, based on the 

protective effect this will have on their herd.  

The complexities identified in the relationships between livestock introductions, A-E 

systems and BHV-1 and the zoonotic pathogens show a disease control programme 

targeting one pathogen uniformly across the area is not an efficient use of resources. These 

results show that to reduce livestock and zoonotic pathogen burden for pathogens with 

variable transmission pathways (different shedding cycles, utilising different transmission 

routes), in an area with complex between-herd mixing patterns, a more targeted approach 

to disease control is needed. For zoonotic pathogens, multifaceted disease control 

interventions which aim to improve livestock keeper awareness, provide opportunities for 

disease risk mitigation, vaccine access and improved veterinary services are widely 

advocated (Maudlin, Eisler and Welburn, 2009; Rich and Perry, 2011). The results in this 

thesis show that multi-pathogen control programmes can be targeted at high-risk locations 

in northern Tanzania that are identified using the SEEDZ household survey data. For 

maximal benefits interventions should involve components such as knowledge exchange 
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with livestock keepers as well as improved access to veterinary services including 

vaccinations and test and quarantine facilities. Knowledge exchange programmes should 

aim to increase livestock keeper awareness of the risks of pathogen introduction and 

exposure posed by livestock movements, direct and indirect contacts and introductions. 

Once armed with this knowledge, livestock keepers can make informed decisions about 

livestock mixing and introductions and create their own quarantine areas.  

The movements and mixing patterns of livestock within the sub-village, and how these are 

associated with pathogen transmission, have not been described in this thesis. Given the 

seroprevalence variations identified between A-E classes, it is important to quantify the 

differences in dynamic intra- and inter-herd and flock mixing patterns within villages 

belonging to the different A-E classes through further investigation.  

A limitation of this study is that the relationship between pathogen exposure and livestock 

introductions is only investigated at the household and sub-village level. These data could 

also be explored further to evaluate if the effects of belonging to a village or ward with high 

betweenness are also associated with high risk of exposure to BVDV so interventions could 

be rolled out at potentially more practical, larger administrative scales.  

Trialling interventions in sub-villages identified as high risk in this data would be a good 

place to start to assess if this has any rapid impact on overall livestock stability and 

productivity. Another important factor to consider here is that the introduction risk factors 

identified as important for exposure to BVDV may also be similar for other pathogens with 

similar shedding cycles and transmission routes. The serological samples used in this study 

could be further tested to evaluate if exposure to pathogens such as Pestes des petits 

ruminants and foot and mouth disease virus follow similar patterns to BVDV, and thus if 

vaccination against these pathogens should also be targeted in locations with high 

betweenness (Kerfua et al., 2018; Herzog et al., 2019).  

Disease simulations similar to those done on the trade network were not done on the inter-

household and market networks because, despite static network properties being robust 

to sampling error, epidemic simulations are strongly affected by sub-sampling a network 

(Génois et al., 2015). The data collected and used in this thesis could be extrapolated from 

and used to estimate the complete underlying inter-household movement network, which 
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could then be used to run disease simulations and interventions. This was beyond the scope 

of this thesis but can be done in future work.  

 

7.3 Market movements 

Market movements were the most commonly reported type of movement in and out of 

surveyed households and these are largely un-documented (around 75%). For future 

traceability and improved disease control this result supports the need for a new system 

for livestock keepers to easily register livestock movements. Market survey data show that 

market movements also create long distance epidemiological connections (up to 300 km) 

across northern Tanzania, including across the international border into Kenya. Consistent 

with the results from the household survey data this result confirms the need to develop 

regional disease control programmes.  

The majority of market journeys are made on foot, with livestock moved this way spending 

longer travelling and more likely to come into close contact with local livestock. A schematic 

diagram showing an overview of livestock market movements and the disease risks 

associated with these is given in Figure 7-2. Livestock moved on foot are also at greater risk 

of indirect contacts with local livestock at communal grazing and watering points. Indirect 

contacts could provide opportunity for transmission of pathogens that can be spread 

through environmental contamination or through infection of local vectors such as 

mosquitos and ticks. Large numbers of on-foot market journeys across northern Tanzania 

are therefore a risk factor for pathogen dissemination throughout the study area. These 

journeys create additional livestock disease transmission risks beyond those created by 

livestock moving between two distinct origin and destination locations. Animals that are 

being moved are also likely to be stressed and thus at increased risk of pathogen shedding 

(Beach, Murano and Acuff, 2002). Additionally  the most social animals within herds are 

most likely to be the ones to contact livestock from outside the herd, creating opportunities 

for super-spreading events within and between  herds (Böhm, Hutchings and White, 2009; 

Biswas et al., 2013; Lambert et al., 2018). 
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Figure 7-2: Schematic diagram showing summary of results from market survey data and how 
these might associate with different factors regarding pathogen transmission and 
dissemination. Black arrows represent household to household, orange arrow represents gift 
movement, pink arrows represent household to market movement, grey arrows represent 
between market movements, dark green arrows represent market to final destination. Red 
circular arrows depict mixing along journeys, red straight arrow represents contact between 
livestock moving on foot and local livestock along journey. Dollar signs represent higher 
cattle price at secondary markets. Green dashed line is international border with Kenya. Pale 
green decagons are rural villages, pale yellow decagons are urbanised areas 
 

The risk of moving livestock transmitting pathogens such as RVFV and CCHFV to local 

vectors is particularly important to consider if moving livestock originate from areas with 

high pathogen prevalence and pass through low risk areas where surveillance and 

awareness are limited (Aslam et al., 2016; Kim et al., 2021). Markets identified as most 

central in the study area should be a priority for implementing active surveillance. The 

positive association identified between secondary markets and the centrality metrics in-

degree and betweenness, used to identify locations for targeted interventions, show that 

secondary markets beyond the study area would also be efficient locations to implement 

surveillance. If funds and resources were available, additional surveillance sites could be 

established along well-travelled market routes. This could identify a proportion of 

infectious animals and associated outbreaks in areas in need of disease control 

interventions and temporary movement restrictions before mass pathogen dissemination 

through market mixing and onward movements (Kao et al., 2006). Additionally villages 

along the busy market routes could be included in vaccination and knowledge exchange 

disease control campaigns if they are deemed at high risk of pathogen exposure due to 
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contacts with the moving livestock (Dean et al., 2013; Jahel et al., 2020). Stronger 

enforcement of the 2000 legislation stating that all market journeys should be made in 

vehicles, while potentially reducing transmission risks, would have the major drawback of 

further excluding poorer livestock keepers. 

Livestock moved in vehicles to and from markets have shorter journey durations but are at 

a higher risk of being batched together with multiple other livestock. If any transported 

animals were infectious at the start of the market journey, the increased intensity of mixing 

within vehicles, stress and associated risk of pathogen shedding, mean that livestock 

entering the market system following a vehicle journey are more likely to be infected with 

a pathogen. This might not be a major risk factor for transmission of production-limiting 

livestock pathogens because most livestock entering the market system are destined for 

slaughter. A small proportion of livestock purchased in markets are however taken home. 

Buyers should be made aware of where the livestock they wish to purchase have originated 

and the intensity of mixing the animals have experienced on their market journey. Access 

to this type of information could help livestock buyers decide which animals to purchase 

and/or if a quarantine period in the home village is necessary before introducing purchased 

animals to their own herd/flock.  

The risks of zoonotic disease transmission through intensive mixing of livestock along 

journeys to people at slaughter points and butcheries is more of a pressing issue. This is 

especially important for diseases such as Coxiellosis, RVF and CCHF which can infect people 

directly through contact with livestock blood putting slaughterhouse workers at high risk 

of exposure (Ergönül, 2006; Aslam et al., 2016; Woldeyohannes et al., 2018; Métras et al., 

2020). Market survey and movement permit data show that livestock generally move from 

rural areas of production, through the market system in multiple journeys along a price 

gradient, to urban areas of consumption. This finding is in line with other studies in LMICs 

and warrants the need for transparent traceability of livestock entering the food chain in 

Tanzania, from point of origin to slaughter to improve disease control and early responses 

to disease outbreaks (Ntokwane and Dibeela, 2016; Mutua et al., 2018; Napp et al., 2018). 

This will allow active surveillance in appropriate high risk locations in the face of disease 

outbreaks as well as early warning surveillance. It will also allow those working in slaughter 

points and butcheries to be aware of, and act to mitigate, their risks of contracting zoonotic 

diseases that might usually be associated with infections in distant rural locations. 
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7.4 Trade movements 

The cattle, small ruminant and combined species networks created using movement permit 

data show a high level of epidemiological connectedness across northern Tanzania through 

trade-based movements of livestock. Comparison between the networks show that multi-

host pathogens have a wider reach in the study area than single host pathogens. Using 

node centrality metrics, heterogeneity in movement activity is identified between wards 

on all networks and identify high risk wards that can be made targets for disease control 

interventions. Through disease simulations on the cattle network, it is shown that 

implementing interventions in only 5% of nodes identified as high risk based on having high 

betweeness, eigenvalue and degree centrality, pathogen spread on the network can be 

reduced by up to 50%. Ward locations identified as high risk for single-host pathogen 

introduction and onward transmission are also shown to be high risk for multi-host (cattle 

and small ruminant) pathogens. This finding can be used to encourage policymakers to 

invest in livestock disease control programmes as these can be initiated in a small 

proportion of high risk wards and target multiple multi-host pathogens, for efficient use of 

resources. In the highest risk wards active surveillance can be implemented in markets and 

used to identify early warning signs of disease outbreaks across the regions. Multi-valent 

vaccination programmes can also be implemented in the high-risk wards, especially those 

with large resident livestock populations, as local livestock are at high risk of pathogen 

exposure due to large volumes of livestock traffic.  

Disease simulation models on the cattle trade network showed that movement bans 

(lasting 11 months) across all wards had the largest effect on reducing pathogen spread, 

however the socio-economic shocks associated with these restrictions would be large and 

compliance levels are likely to be low (Sindato, Karimuribo and Mboera, 2012). Movement 

controls must be carefully matched to epidemiological and economic consequences and 

well as to livestock keepers perception of what is necessary (Tildesley et al., 2019). To avoid 

broad scale interventions that are difficult to regulate due to the extensive management 

of livestock across northern Tanzania, other preventative interventions such as vaccination 

of livestock in high risk wards can be implemented prior to outbreaks (Coppolillo, 2000; de 

Glanville et al., 2020). If livestock traceability is improved,  for example through 

development of a quick, cheap and easy to use movement reporting tool (e.g. accessed for 

free via SMS), surveillance in secondary markets, which sample livestock from the widest 
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range of locations, can be used as early warning for disease outbreaks. Active surveillance 

could involve thorough clinical examination of livestock and also the use of rapid diagnostic 

tests either in random samples of traded livestock or in any animal considered potentially 

unwell. For active surveillance to work efficiently this would require the centralisation of 

all movement data daily and reports on the health of moving livestock to also be centralised 

along with movement data so that any deviations from normal can be rapidly recognised. 

Rapid vaccinations along with temporary movement restrictions can be rolled out in high-

risk locations on the network and also in locations where the infected animals originated 

to stem transmission before pathogens become widespread in the population.  

Analysis of the market survey data also shows that the primary driver for livestock 

movements into the market system is to generate household income to meet household 

needs. Once within the livestock system animals are traded and moved between markets 

along a price gradient by livestock traders. The financial needs of livestock keepers and 

traders will still exist in the face of disease outbreaks and these need to be carefully 

considered and integrated into the design of any disease control intervention (Sindato, 

Karimuribo and Mboera, 2012). Blanket movement bans are shown to result in huge 

economic shock for societies that depend on livestock sales as a source of income (Sindato, 

Karimuribo and Mboera, 2012). Of course, in some instances, such as regional RVF 

outbreaks, there may be a need to ban livestock movements but the more that can be done 

to limit the duration and extent of these bans the better due to their negative socio-

economic consequences (Knight-Jones and Rushton, 2013; Tildesley et al., 2019).  

If interventions such as vaccination and quarantine can be implemented along with others 

to reduce livestock mixing this could allow valuable trade movements to continue safely, 

for longer, while mitigating pathogen transmission risk through the population. Examples 

of mitigation measures include things already discussed such as vaccination of susceptible 

livestock in high-risk locations. Large vehicles could also be chartered by buyers and sent 

to primary markets where livestock can be purchased and taken directly to different 

slaughter points to avoid long journeys on foot and mixing with other livestock in secondary 

markets. Infrastructure changes could include development of slaughter points in some 

rural areas closer to livestock origins with butcheries attached and robust cold chains 

established. This would mean livestock would have shorter journeys from origin to 

slaughter and meat could be prepared safely for consumption locally and moved to towns 



231 

where the demand is highest to supply a market currently met by largely imported meat 

products (Nandonde, Gebru and Stapleton, 2017). To develop these interventions to 

reduce livestock pathogen transmission large financial investments are needed. The gains 

from investments however will be multifactorial with livestock keepers able to access 

better prices (Pica-Ciamarra et al., 2011; Motta et al., 2019), and societies as a whole 

experiencing reduced pathogen burden through reduced transmission and dissemination. 

If livestock keepers were able to access better prices for the animals they sell this might 

also incentivise them to manage herds in a way that optimized offtake rather than herd 

size which might be a more sustainable approach in the face of declining access to grazing 

lands . Livestock keepers will also have more cash capital to spend on disease prevention 

which will further benefit communities through improved livestock health and productivity 

and thus nutritional and social security.  

The data generated in this thesis show multiple types of livestock movement create 

epidemiological connections with locations in Kenya. In other studies from LMICs livestock 

traders were also found to be acting in multiple countries (Dean et al., 2013; Motta et al., 

2017). Multiple small ruminant traders were spoken to who openly reported that they were 

taking livestock across the border into Kenya where better prices were available. Cross 

border movements are generally not reported as the taxes associated with these are large. 

From a disease control perspective, given that cross-border movements happen anyway 

without taxes being paid, these findings show that import and export taxes probably need 

to be reduced to improve movement reporting compliance and thus pathogen tracing. 

Epidemiological and economic analysis could be done to address what the potential 

impacts of movement tax reduction will be on movement reporting compliance, the 

potential change in numbers of transboundary movements and consequent effects on 

disease dynamics. The economic analysis could also address what the expected changes in 

government revenue might be if movement taxes were reduced and the socio-economic 

gains that could be made through better livestock disease control if movement data were 

more comprehensive. 

7.5 Summary 

This is the first detailed descriptive and statistical study of permanent livestock movements 

in Tanzania. There are multiple layers of epidemiological connectivity across northern 
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Tanzania created through various types of permanent livestock movements between 

households, markets and slaughter points. The results presented here provide a clear 

motivation for digital collection and centralisation of livestock movement data in Tanzania 

and this could begin with immediate effect. Development of a national digitized, 

centralised reporting system that is quick, cheap and easy to use is both necessary and 

achievable. Similar studies in other countries across Africa, where movement data are 

lacking, have shown similar results but not yet acted to rectify this (Tempia et al., 2010; 

Dean et al., 2013; Motta et al., 2017). Tanzania  now has the opportunity to pave the way 

for other countries by implementing such a system and then utilising the data generated 

to move towards improved livestock health and productivity.  

 

Livestock keepers need to be  aware of the overarching livestock and societal health 

benefits that can be achieved as a result of movement data collection, and need to be 

actively engaged in the data collection design and implementation process. A top down 

approach is unlikely to be successful in this scenario given the current level of non-

compliance with movement reporting through movement permit use. Real-time routine 

data collection will clarify which locations to target with active surveillance and other 

strategic disease control interventions such as vaccination or short term movement 

restrictions (Motta et al., 2017). Real-time movement data will also allow identification of 

any changes in movement activity throughout the year and changes that occur in response 

to disease outbreaks which may alter which locations risk level and where control 

interventions need to be implemented (Funk, Salathé and Jansen, 2010; Chowell and 

Nishiura, 2015; Enright and Kao, 2018). 

 

The results from my study also clearly show that locations at high risk for single-host 

pathogens are also high risk for multi-host pathogens. Disease control interventions such 

as surveillance, test and quarantine and vaccination, which target multiple multi-host 

pathogens, can therefore be efficiently implemented in high-risk locations. Interventions 

such as these, which go beyond routine data collection, will require more funding to 

establish effective platforms. It is however widely recognised that improved veterinary 

services and livestock health have improved overall public health embedded within them 

(Upton, 2004; Perry and Grace, 2009; Forman et al., 2012). In Tanzania specifically there 

remains a profound need for access to transparent and effective livestock health services 

to allow livestock keepers living in difficult circumstances the opportunity to pursue better 
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livestock health (Virhia, 2019).  The results from my study can therefore be considered by 

Government, NGOs or doners to guide where improved veterinary services will have the 

largest impact on societal wellbeing by mitigating disease risk and burden. Multifaceted 

disease control interventions in high-risk sub-villages or wards in general are going to be 

more beneficial to communities and a more efficient use of resource compared to targeting 

single pathogens such as Brucella or PPRV (Fournié, Waret-Szkuta, Camacho, Laike M. 

Yigezu, et al., 2018; GALVmed, 2018). Another relatively tangible intervention would be 

knowledge dissemination to increase livestock keepers’ awareness of pathogen 

transmission routes and the risk posed by livestock introductions and contacts. Increased 

knowledge and awareness will not necessarily change livestock keepers’ behaviour but it 

would at least allow them opportunity to make informed decisions about livestock 

movements that potentially put them, their own livestock and others at risk of disease 

(Hidano, Gates and Enticott, 2019). 

 

The positive externalities yielded as a result of reduced livestock and zoonotic pathogen 

burden can be expected to benefit society as a whole. Enhanced livestock health and 

productivity can lead to improved human health and wellbeing through increased 

nutritional and socio-economic security and reduced disease burden. The results of this 

thesis show this is achievable in northern Tanzania through investment and introduction of 

digitised livestock movement recording and targeted multi-pathogen disease control 

interventions in a small number of high-risk locations. 
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9 Appendices 

9.1 Chapter 2  

9.1.1 Data analysis R scripts summary 

1. HH_NW_1 

/Users/gemmachaters/Dropbox/PHD/SEEDZ data/making new edge dfs.R 

Opens all of SEEDZ household survey data, creates data frame of all livestock 

movements (number in each batch, destination/origin type and location) for cattle, sheep 

and goats for all possible movement types which include; sales to households, outside 

traders, at markets, to slaughter and gifts to; family, clan, friends, relatives and non-

ageset persons. 

Creates: “AllEdges.csv” 

 

2. HH_NW_2 

/Users/gemmachaters/Dropbox/PHD/SEEDZ data/1_import seedz hh movements 

data.R 

Using “AllEdges.csv” 

Explores data, numbers sold/gifted, number of locations and markets people sold at etc 

 Creates “NodesUncleaned.csv” 

 

3. HH_NW_3 

/Users/gemmachaters/Dropbox/PHD/SEEDZ 

data/1cleaningHHdatnodesedgescoordsprodsys.R 

Using “AllEdges.csv” and “NodesUncleaned.csv” this script corrects spellings for edge 

locations and thus nodes, creates a unique nodes table, assigns production system to 

nodes based on the ward they are within, condenses node type to be a sub-village, 

market or village. 

 Creates “SEEDZnodes.csv” and “SEEDZedges.csv” 

   

4. HH_NW_4 

/Users/gemmachaters/Dropbox/PHD/SEEDZ data/plottingNodesOnMap2.R 

Uses  “SEEDZnodes.csv” and “SEEDZedges.csv” plots network and nodes on map of  
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distance and relationship with type of movement, species moved and number moved for 

use in next chapter. 

 Creates “EdgesForPlot.csv” and “SeedzDataNodes.csv” 

 

5. HH_NW_5 

/Users/gemmachaters/Dropbox/PHD/SEEDZ data/network analysis on seedz hh 

data.R 

Uses “EdgesForPlot.csv” and “SeedzDataNodes.csv”, constructs household movement 

network, calculates social network analysis measures and sensitivity analysis dropping 

50% of sampled sub-village and sampled ward data. 

Creates “SeedzNetworkNodes.csv” and “SeedzNetworkEdges.csv” 

 

9.1.2 SEEDZ household questionnaire data dictionary 

Data from the following 9 sections of the SEEDZ household survey were used to construct 

the movement network 

 

 

 

9.1.3 Network construction – edge weighting 

The unweighted binary network was constructed using unique edge data only (263 

edges). All edge weights = 1, regardless of how many times it was reported by households 

from a sub-village. From the unweighted network an ‘unweighted in-degree’ was 

calculated by summing the number of in-going edges to each node. The fully weighted 

network was constructed with edge weights equal to the total number of livestock 

reported to be moved along that edge. There were 51 ‘NA' responses (6.7%) to the 

livestock batch size question (number moved), thus the batch size was imputed based on 

the mean value of the categories ‘species’, ‘in/out movement’, ‘production system 

moving too’ (12 categories). A fully weighted in-degree was calculated for each sub-

village node by summing the weights of all in-going edges on the fully weighted network 

(this number is equal to the reported total number of livestock introduced into the sub-

village). We then assessed the level of correlation between the three values for nodes in-

degree by calculating Spearman’s ρ correlation coefficient. Spearman’s ρ can take any 

value between -1 and 1 with 0 = no correlation.  
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9.2 Chapter 3  

9.2.1 Methods 

9.2.1.1 Lab book for data cleaning and references to scripts – files can be 
made available if requested 

6. /Users/gemmachaters/Dropbox/PHD/SEEDZ 

data/HHaddingdiseasedata_followsNetworkAnalysisScript.R 

Uses  

“allbrucelladata_final_withODvalues_updated1420(1).csv”, 

“allcoxielladata_final_withODvalues(1).csv”,   

“gemma_data_BVD_IBR_lepto.csv”, 

“link.csv” (a data frame used to link the serum barcodes to the cryovial barcodes. 

(basically a match between the unique individual animal identification codes on the 

different sample tubes) 

This creates data frame of individual animal disease data using SEEDZ and BacZoo 

serology data and creates a data frame of aggregated number of each species sampled 

per household and BVDV herd status for all seed households. If we have link data to link 

RVF samples to ‘serum_sample_barcodes’ for goats and sheep it would also be possible 

to include RVF in the final model. 

Creates “individual_dz_dat.csv” and “HHnumbersampled.csv” 

 

7. /Users/gemmachaters/Dropbox/PHD/SEEDZ data/SEEDZ merging serology and hh 

data.R 

Uses: 

“AllSEEDZdata.csv” and 

“BacZoo_HHQ_DataToGemma_10Apr2019.csv" 

 

This reads in SEEDZ and BacZoo household survey data, creates data frames of livestock 

numbers owned and introduced (both payed and not payed for), total numbers of 

livestock owned are calculated by adding adult males, female and juveniles. If this 

number is less than the reported number owned or the number blood sampled from the 

household the maximum value is taken to be the true ‘number owned’ for each species. 
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The column names are cleaned so the datasets match and can be merged. Summary 

statistics for the data on number owned and number introduced. 

Creates SEEDZ “householdintros.csv” from seedz data which is used in script, merged to 

baczoo hh data and creates then “SEEDZandBacZooHHdata.csv” 

“SEEDZandBacZooHHdat.csv 

 

8. /Users/gemmachaters/Dropbox/PHD/SEEDZ data/AddHHdatat.R 

Uses “SEEDZandBacZooHHdata.csv” and “HHnumberSampled.csv” 

“hhnumbersampled” data is added to Household data and max value is taken from 

number sampled, numbers reported owned and calculated (by adding adults and 

juvenilles) numbers of livestock, to create a ‘total_species_number’ for each household. 

 

Further cleaning to create mean and estimated number of livestock additions to the sub-

village based on households number of introductions, number sampled in the sub-village 

and total number of livestock owning households in the sub-village. 

 

To create and read back in: “SDZandBZHHdataTOuse.csv” 

 

Then uses data on number of households that own livestock from BacZoo 

“BZlivestockowninghh.csv” and SEEDZ  

“subvillage_numbers%5b1%5d.csv”, BacZoo agroecological classifications 

“BZagroecoClasses.csv”, SEEDZ sub-village ‘node’ data from network script 

“SeedzNetworkNodes.csv”. 

 

Creates two datasets of all household data and a refined household data version which 

will be used to combine with the disease data to create full dataset for use in model. 

 

FinalHHandDZdataForModel.csv (525 observations, 63 variables) full version 

HHdataFormodel.csv (525 observations, 20 variables, refined version) 

 

Finally individual disease data “individual_dz_dat.csv” for all animals in both studies is 

read in, the refined household data is merged with the individual animal disease data 

based on the “.hh_id” variable and the final data set to be used for running the models is 

created. 
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Final dataset of individual animal data, household data and sub-village data called BigTest 

in the script and saved as “FinalHHandDZdataForModel.csv”  

 

9. /Users/gemmachaters/Dropbox/PHD/SEEDZ data/fitting models to seedz hh sero 

sv data.R 

Uses: “FinalHHandDZdataForModel.csv” 

Cleans age and sex variables. Creates separate cattle and small ruminant “shoat” data 

frames. Creates total shoats owned and introduced columns. 

“cattle_data.csv” 

“shoats_data.csv” 

 

9.2.1.2 Analysis Code 

10. “/Users/gemmachaters/Dropbox/PHD/SEEDZ data/UnivarMultivarDZmodels.R” 

Uses: “cattle_data.csv” 

“shoats_data.csv” 

Changes “early seedz” study data to “baczoo” 

Assigns household classifications based on most up to date classifications data by de 

Glanville. Creates descriptive data tables for cattle and small ruminant data. 

Finds number to add to log10 betweenness and indegree to avoid adding 1 to zeros and 

creating huge overdispersion/right skew. 

Calculates disease and movement summary statistics (how many livestock belong to 

disease positive hh’s and how many belong to hh’s that introduce livestock), calculates 

disease prevalence’s (adjusting for Jensen’s inequality because of uneven sampling), 

creates univariable model for each disease and risk factor variable, and summary tables. 

Assesses degree of correlation between risk factor variables and creates multivariable 

models, checks variance inflation factors and removes variables with VIF >3. Checks for 

interaction between production system and all other risk factor variables. Keeps 

interaction terms if likelihood ratio test p value <0.05 for the interaction term. Creates 

final models with agropastoral production system as baseline and fits models with 

pastoral and small holder groups as baseline for any models with significant interaction 

term included. Creates multivariable model tables for each data set (combined and SEEDZ 
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only) for cattle and small ruminants. Calculates marginal and conditional R squared for 

each multivariable model.  

 

9.2.2 Household survey Questions and data dictionary 

9.2.2.1 Entries 

cattle_born 

How many cattle were born in this 

compound in the past 12 months [Ng'ombe 

wangapi wamezaliwa katika boma hili katika 

miezi 12 iliyopita]? 

 

10 

cattle_born_yousure 

NOTE TO INTERVIEWER: There are 

${cattle_number} cattle in this compound, 

are you sure none were born in the past 12 

months [Kuna ${cattle_number} ng'ombe 

katika boma hili, unauhakika hakuna 

aliyezaliwa katika miezi 12 iliyopita]? 

yes_no2 

10 

note_goback_cattle_born 

Please go back and change the answer to the 

question "How many cattle were born in this 

compound in the past 12 months?" 

[Tafadhali rudi nyuma na badili jibu la swali 

"ng'ombe wangapi wamezaliwa katika boma 

hili katika  miezi 12 iliyopita?"] 

 

10 

cattle_born_hh 

How many cattle were born into this 

household's herd in the past 12 months 

[Ng'ombe wangapi wamezaliwa katika kaya 

hii katika miezi 12 iliyopita]? 

 

10 

cattle_intro 

Have any cattle been introduced into this 

COMPOUND in the past 12 months? [Kuna 

ng'ombe yeyote aliyeliletwa katika kundi 

lenu kwa kipindi cha miezi 12 iliyopita] 

yes_no 

10 

cattle_intro_comp_pay 

How many of the introduced cattle were 

purchased [Wangapi kati yao 

walionunuliwa]? 

 

10 

cattle_intro_comp_nopay 

How many of the introduced cattle were not 

purchased (e.g. a gift, dowry, exchange etc) 

[Wangapi hawakununuliwa au waliletwa 

kama zawadi, mahari, kubadalishana]? 

 

10 

cattle_intro_yousure 

NOTE TO INTERVIEWER - this is an important 

question, are you sure no cattle were 

introduced through purchase or as a gift etc? 

yes_no3 

10 

note_cattle_intro 

Please go back and change the answer to the 

question "Have you cattle been introduced 

into this compound's herd (walioletwa) in the 

past 12 months?" [Tafadhali rudi nyuma na 

badili jibu la swali "Have cattle been 

introduced into this compound's herd 

(walioletwa) in the past 12 months?"] 

 

10 

cattle_intro_hh 

Have cattle been introduced into your 

HOUSEHOLD'S herd in the past 12 months 

[Kuna ng'ombe yeyote aliyeliletwa katika 

kaya yenu kwa kipindi cha miezi 12 iliyopita]? 

yes_no 

10 

cattle_intro_hh_pay 

How many of the introduced cattle were 

purchased [Wangapi kati yao 

walionunuliwa]? 

 

10 
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cattle_intro_hh_nopay 

How many of the introduced cattle were not 

purchased (e.g. a gift, dowry etc) [Wangapi 

hawakununuliwa au waliletwa kama zawadi, 

mahari, kubadalishana]? 

 

10 

cattle_intro_hh_yousure 

NOTE TO INTERVIEWER - this is an important 

question, are you sure no cattle were 

introduced into the household's herd 

through purchase or as a gift etc? 

yes_no3 

10 

note_cattle_hh_intro 

Please go back and change the answer to the 

question "Have you cattle been introduced 

into your household's herd (walioletwa) in 

the past 12 months?" [Tafadhali rudi nyuma 

na badili jibu la swali "Have cattle been 

introduced into your household's herd 

(walioletwa) in the past 12 months?"] 

 

10 

cattle_intro_pay 

calculation: if(${hh_number}>1,${cattle_intro_hh_pay}, 

${cattle_intro_comp_pay}) 10 

cattle_intro_pay_origin 

Where did you buy the ${cattle_intro_pay} 

cattle introduced into your household's herd 

[Kwa hao ng'ombe ${cattle_intro_pay} 

walionunuliwa walitokea wapi]? 

animal_origin 

10 

cattle_intro_pay_origin_o

ther 

Specify other [Vinginevyo (ainisha)]: 
 

10 

cattle_intro_source_calc 

calculation: count-

selected(${cattle_intro_pay_origin}) 

 

10 

cattle_intro_source_note 

NOTE: Only ${cattle_intro_pay} cattle were 

introduced from ${cattle_intro_source_calc} 

place(s). This is not correct. Please go back 

and either change the number of places 

animals originated from OR the number of 

animals introduced before proceeding to the 

next question. 

 

10 

cattle_hh 

How many of the ${cattle_intro_pay} 

purchased cattle came direct from this/these 

other household(s) [Wangapi kati ya 

ng'ombe ${cattle_intro_pay} walionunuliwa 

walitoka moja kwa kutoka hii/hizi kaya 

nyingine]? 

 

10 

cattle_hh_number 

How many different households did 

purchased cattle come from [Ni kaya ngapi 

tofauti walipotoka hao ng'ombe 

walionunuliwa]? 

 

10 

cattle_hh1_origin 

Where was the household where most (or 

all) animals were purchased from [Iko wapi 

kaya ambayo wanayama wengi zaidi (au 

wote) walinunuliwa]? 

reciprocity_whe

re 

10 

cattle_hh1_district District [Wilaya] 
 

10 

cattle_hh1_ward Ward [Kata] 
 

10 

cattle_hh1_village Village [Kijiji] 
 

10 

cattle_hh1_relation 

What was your relationship with the 

person/people you bought these animals 

from [Nini uhusiano wako na mtu/watu 

uliyeleta wanyama kutoka kwake]? 

reciprocity1 

10 

cattle_hh1_relation_othe

r 

Specify other [Vinginevyo (ainisha)]: 
 

10 

cattle_hh2_origin 

Where was the second household [Kaya ya 

pili ilikuwa wapi]? 

reciprocity_whe

re 10 

cattle_hh2_district District [Wilaya] 
 

10 
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cattle_hh2_ward Ward [Kata] 
 

10 

cattle_hh2_village Village [Kijiji] 
 

10 

cattle_hh2_relation 

What was your relationship with the 

person/people you bought these animals 

from [Nini uhusiano wako na mtu/watu 

uliyeleta wanyama kutoka kwake]? 

reciprocity1 

10 

cattle_hh2_relation_othe

r 

Specify other [Vinginevyo (ainisha)]: 
 

10 

cattle_hh3_origin 

Where was the third household [Kaya ya tatu 

ilikuwa wapi]? 

reciprocity_whe

re 10 

cattle_hh3_district District [Wilaya] 
 

10 

cattle_hh3_ward Ward [Kata] 
 

10 

cattle_hh3_village Village [Kijiji] 
 

10 

cattle_hh3_relation 

What was your relationship with the 

person/people you bought these animals 

from [Nini uhusiano wako na mtu/watu 

uliyeleta wanyama kutoka kwake]? 

reciprocity1 

10 

cattle_hh3_relation_othe

r 

Specify other [Vinginevyo (ainisha)]: 
 

10 

cattle_hh4_origin 

Where was the fourth household [Kaya ya 

nne ilikuwa wapi]? 

reciprocity_whe

re 10 

cattle_hh4_district District [Wilaya] 
 

10 

cattle_hh4_ward Ward [Kata] 
 

10 

cattle_hh4_village Village [Kijiji] 
 

10 

cattle_hh4_relation 

What was your relationship with the 

person/people you bought these animals 

from [Nini uhusiano wako na mtu/watu 

uliyeleta wanyama kutoka kwake]? 

reciprocity1 

10 

cattle_hh4_relation_othe

r 

Specify other [Vinginevyo (ainisha)]: 
 

10 

cattle_hh5_origin 

Where was the fifth household [Kaya ya tano 

ilikuwa wapi]? 

reciprocity_whe

re 10 

cattle_hh5_district District [Wilaya] 
 

10 

cattle_hh5_ward Ward [Kata] 
 

10 

cattle_hh5_village Village [Kijiji] 
 

10 

cattle_hh5_relation 

What was your relationship with the 

person/people you bought these animals 

from [Nini uhusiano wako na mtu/watu 

uliyeleta wanyama kutoka kwake]? 

reciprocity1 

10 

cattle_hh5_relation_othe

r 

Specify other [Vinginevyo (ainisha)]: 
 

10 

cattle_market 

How many of the ${cattle_intro_pay} cattle 

that were purchased came direct from a 

market [Wangapi kati ya ng'ombe 

${cattle_intro_pay} walinunuliwa moja kwa 

moja kutoka sokoni]? 

 

10 

cattle_market_number 

How many different markets did cattle come 

from [Ng'ombe walitoka kwenye masoko 

mangapi tofauti]? 

 

10 

cattle_market1_note 

What is the name of the market from which 

most (or all) cattle came and which district is 

it in [Jina la soko ambalo ngombe wengi zaidi 

wametoka (au wote) ni lipi na ni wilaya ipi]? 

 

10 

cattle_market1_name Market name [Jina la soko] 
 

10 
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cattle_market1_district District [Wilaya] 
 

10 

cattle_market2_note 

What is the name of the second market from 

which cattle came and which district is it in 

[Jina la soko la pili ambalo ngombe 

wametoka ni lipi na ni wilaya ipi]? 

 

10 

cattle_market2_name Market name [Jina la soko] 
 

10 

cattle_market2_district District [Wilaya] 
 

10 

cattle_market3_note 

What is the name of the third market from 

which cattle came and which district is it in 

[Jina la soko la tatu ambalo ngombe 

wametoka ni lipi na ni wilaya ipi]? 

 

10 

cattle_market3_name Market name [Jina la soko] 
 

10 

cattle_market3_district District [Wilaya] 
 

10 

cattle_market4_note 

What is the name of the fourth market from 

which cattle came and which district is it in 

[Jina la soko la nne ambalo ngombe 

wametoka ni lipi na ni wilaya ipi]? 

 

10 

cattle_market4_name Market name [Jina la soko] 
 

10 

cattle_market4_district District [Wilaya] 
 

10 

cattle_market5_note 

What is the name of the fifth market from 

which cattle came and which district is it in 

[Jina la soko la tano ambalo ngombe 

wametoka ni lipi na ni wilaya ipi]? 

 

10 

cattle_market5_name Market name [Jina la soko] 
 

10 

cattle_market5_district District [Wilaya] 
 

10 

cattle_bought_tradervilla

ge 

How many of the ${cattle_intro_pay} cattle 

that were purchased came from a livestock 

trader in this village [Wangapi kati ya 

ng'ombe ${cattle_intro_pay} walionunuliwa 

kutoka kwa mfanyabiashara wa mifugo 

katika kijiji hiki]? 

 

10 

cattle_bought_trader_ot

hervillage 

How many of the ${cattle_intro_pay} 

purchased cattle came from a livestock 

trader in another village [Wangapi kati ya 

ng'ombe ${cattle_intro_pay} walionunuliwa 

walitoka kwa mfanyabiashara wa mifugo 

kwenye kijiji kingine]? 

 

10 

cattle_bought_trader_ot

hervillage_number 

How many different villages were these 

livestock traders in [Ni vijiji vingapi tofauti 

walikwepo wafanyabishara wa mifugo 

ambao uliwauzia hii ng'ombe]? 

 

10 

note_cattle_bought_outsi

detrader1 

Which village did most (or all) cattle come 

from [Ni kijiji gani ng'ombe mingi (au yote) 

ilitoka]? 

 

10 

cattle_bought_outsidetra

der1_village 

Village [Kijiji] 
 

10 

cattle_bought_outsidetra

der1_ward 

Ward [Kata] 
 

10 

cattle_bought_outsidetra

der1_district 

District [Wilaya] 
 

10 

note_cattle_bought_outsi

detrader2 

Where was the second village [Kijiji cha pili 

kilikuwa wapi]? 

 

10 

cattle_bought_outsidetra

der2_village 

Village [Kijiji] 
 

10 

cattle_bought_outsidetra

der2_ward 

Ward [Kata] 
 

10 
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cattle_bought_outsidetra

der2_district 

District [Wilaya] 
 

10 

note_cattle_bought_outsi

detrader3 

Where was the third village [Kijiji cha tatu 

kilikuwa wapi]? 

 

10 

cattle_bought_outsidetra

der3_village 

Village [Kijiji] 
 

10 

cattle_bought_outsidetra

der3_ward 

Ward [Kata] 
 

10 

cattle_bought_outsidetra

der3_district 

District [Wilaya] 
 

10 

note_cattle_bought_outsi

detrader4 

Where was the fourth village [Kijiji cha nne 

kilikuwa wapi]? 

 

10 

cattle_bought_outsidetra

der4_village 

Village [Kijiji] 
 

10 

cattle_bought_outsidetra

der4_ward 

Ward [Kata] 
 

10 

cattle_bought_outsidetra

der4_district 

District [Wilaya] 
 

10 

note_cattle_bought_outsi

detrader5 

Where was the fifth village [Kijiji cha tano 

kilikuwa wapi]? 

 

10 

cattle_bought_outsidetra

der5_village 

Village [Kijiji] 
 

10 

cattle_bought_outsidetra

der5_ward 

Ward [Kata] 
 

10 

cattle_bought_outsidetra

der5_district 

District [Wilaya] 
 

10 

cattle_bought_other 

How many of the ${cattle_intro_pay} 

purchased cattle came direct from this other 

source (${cattle_intro_pay_origin_other}) [Ni 

wangapi kati ya  ng'ombe ${cattle_intro_pay} 

walionunuliwa moja kwa moja kutoka chanzo 

hiki)]? 

 

10 

cattle_bought_other_plac

e 

Where was this other source (please give 

village and district, if appropriate) [Chanzo 

hiki kilikuwa wapi (tafadhali nipe jina la kijiji 

na wilaya, kama ni sahihi)]? 

 

10 

cattle_intro_nopay 

calculation: 

if(${hh_number}>1,${cattle_intro_hh_nopay}

, ${cattle_intro_comp_nopay}) 

 

10 

cattle_intro_nopay_origin 

Where did the ${cattle_intro_nopay} cattle 

that were introduced but not purchased 

come from [Ng'ombe${cattle_intro_nopay} 

walioletwa walitokea wapi]? 

reciprocity1 

10 

cattle_intro_nopay_origin

_other 

Specify other [Vinginevyo (ainisha)]: 
 

10 

cattle_intro_nopay_sourc

e_calc 

calculation: count-

selected(${cattle_intro_nopay_origin}) 

 

10 

cattle_intro_nopay_sourc

e_note 

NOTE: Only ${cattle_intro_nopay} cattle 

were introduced from 

${cattle_intro_nopay_source_calc} place(s). 

This is not correct. Please go back and either 

change the number of places animals 

originated from OR the number of animals 

introduced before proceeding to the next 

question. 

 

10 

cattle_intro_compound_

number 

How many of the ${cattle_intro_nopay} 

cattle came from family members in this 

compound [Wangapi ng'ombe walitoka kwa 

wanafamilia katika boma hii]? 

 

10 
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cattle_intro_family_num

ber 

How many of the ${cattle_intro_nopay} 

cattle came from family members outside 

this compound [Wangapi ng'ombe walitoka 

kwa wanafamilia]? 

 

10 

cattle_intro_family_hh_n

o 

How many different households of family 

members did cattle come from [Je walitoka 

kwa wanafamilia wanaoishi nje au mabali ya 

boma hili]? 

 

10 

cattle_intro_family_villag

e 

Where was the household of family 

members where most (or all) animals came 

from [Iko wapi kaya ya wanafamilia ambayo 

wanayama wengi zaidi (au wote) walitoka]? 

reciprocity_whe

re 

10 

note_cattlefromfamily_w

here1 

Where is this village [Hiki kijiji kipo wapi]? 
 

10 

cattlefromfamily_district1 District [Wilaya] 
 

10 

cattlefromfamily_ward1 Ward [Kata] 
 

10 

cattlefromfamily_village1 Village [Kijiji] 
 

10 

cattlefromfamily_other1 

Where was the second household [Kaya ya 

pili ilikuwa wapi]? 

reciprocity_whe

re 10 

note_cattlefromfamily_w

here2 

Where is this village [Hiki kijiji kipo wapi]? 
 

10 

cattlefromfamily_district2 District [Wilaya] 
 

10 

cattlefromfamily_ward2 Ward [Kata] 
 

10 

cattlefromfamily_village2 Village [Kijiji] 
 

10 

cattlefromfamily_other2 

Where was the third household [Kaya ya tatu 

ilikuwa wapi]? 

reciprocity_whe

re 10 

note_cattlefromfamily_w

here3 

Where is this village [Hiki kijiji kipo wapi]? 
 

10 

cattlefromfamily_district3 District [Wilaya] 
 

10 

cattlefromfamily_ward3 Ward [Kata] 
 

10 

cattlefromfamily_village3 Village [Kijiji] 
 

10 

cattlefromfamily_other3 

Where was the fourth household [Kaya ya 

nne ilikuwa wapi]? 

reciprocity_whe

re 10 

note_cattlefromfamily_w

here4 

Where is this village [Hiki kijiji kipo wapi]? 
 

10 

cattlefromfamily_district4 District [Wilaya] 
 

10 

cattlefromfamily_ward4 Ward [Kata] 
 

10 

cattlefromfamily_village4 Village [Kijiji] 
 

10 

cattlefromfamily_other4 

Where was the fifth household [Kaya ya tano 

ilikuwa wapi]? 

reciprocity_whe

re 10 

note_cattlefromfamily_w

here5 

Where is this village [Hiki kijiji kipo wapi]? 
 

10 

cattlefromfamily_district5 District [Wilaya] 
 

10 

cattlefromfamily_ward5 Ward [Kata] 
 

10 

cattlefromfamily_village5 Village [Kijiji] 
 

10 

cattle_intro_relatives_nu

mber 

How many of the ${cattle_intro_nopay} 

cattle came from relatives through marriage 

[Wangapi ng'ombe walitoka kwa ndugu 

kupitia kuoa]? 

 

10 

cattle_intro_relatives_hh

_no 

How many different households of relatives 

through marriage did cattle come from 

[Ng'ombe walioletwa walitoka katika kaya 

ngapi tofauti za ndugu au jamaa]? 

 

10 
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cattle_intro_relatives_vill

age 

Where was the household of relatives 

through marriage where most (or all) animals 

came from [Iko wapi kaya ya ndugu au jamaa 

ambayo wanayama wengi zaidi (au wote) 

walitoka]? 

reciprocity_whe

re 

10 

note_cattlefromrelatives

_where1 

Where is this village [Hiki kijiji kipo wapi]? 
 

10 

cattlefromrelatives_distri

ct1 

District [Wilaya] 
 

10 

cattlefromrelatives_ward

1 

Ward [Kata] 
 

10 

cattlefromrelatives_villag

e1 

Village [Kijiji] 
 

10 

cattlefromrelatives_other

1 

Where was the second household [Kaya ya 

pili ilikuwa wapi]? 

reciprocity_whe

re 10 

note_cattlefromrelatives

_where2 

Where is this village [Hiki kijiji kipo wapi]? 
 

10 

cattlefromrelatives_distri

ct2 

District [Wilaya] 
 

10 

cattlefromrelatives_ward

2 

Ward [Kata] 
 

10 

cattlefromrelatives_villag

e2 

Village [Kijiji] 
 

10 

cattlefromrelatives_other

2 

Where was the third household [Kaya ya tatu 

ilikuwa wapi]? 

reciprocity_whe

re 10 

note_cattlefromrelatives

_where3 

Where is this village [Hiki kijiji kipo wapi]? 
 

10 

cattlefromrelatives_distri

ct3 

District [Wilaya] 
 

10 

cattlefromrelatives_ward

3 

Ward [Kata] 
 

10 

cattlefromrelatives_villag

e3 

Village [Kijiji] 
 

10 

cattlefromrelatives_other

3 

Where was the fourth household [Kaya ya 

nne ilikuwa wapi]? 

reciprocity_whe

re 10 

note_cattlefromrelatives

_where4 

Where is this village [Hiki kijiji kipo wapi]? 
 

10 

cattlefromrelatives_distri

ct4 

District [Wilaya] 
 

10 

cattlefromrelatives_ward

4 

Ward [Kata] 
 

10 

cattlefromrelatives_villag

e4 

Village [Kijiji] 
 

10 

cattlefromrelatives_other

4 

Where was the fifth household [Kaya ya tano 

ilikuwa wapi]? 

reciprocity_whe

re 10 

note_cattlefromrelatives

_where5 

Where is this village [Hiki kijiji kipo wapi]? 
 

10 

cattlefromrelatives_distri

ct5 

District [Wilaya] 
 

10 

cattlefromrelatives_ward

5 

Ward [Kata] 
 

10 

cattlefromrelatives_villag

e5 

Village [Kijiji] 
 

10 

cattle_intro_friends_num

ber 

How many of the ${cattle_intro_nopay} 

cattle came from friends/age mates 

[Wangapi ng'ombe walitoka kwa 

marafiki/watu wa rika moja]? 

 

10 
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cattle_intro_friends_hh_

no 

How many different households of 

friends/age mates did cattle come from 

[Ng'ombe walioletwa walitoka katika kaya 

ngapi tofauti za marafiki/watu wa rika moja] 

 

10 

cattle_intro_friends_villa

ge 

Where was the household of friends/age 

mates where most (or all) animals came from 

[Iko wapi kaya ya marafiki/watu wa rika moja 

ambayo wanayama wengi zaidi (au wote) 

walitoka]? 

reciprocity_whe

re 

10 

note_cattlefromfriends_

where1 

Where is this village [Hiki kijiji kipo wapi]? 
 

10 

cattlefromfriends_district

1 

District [Wilaya] 
 

10 

cattlefromfriends_ward1 Ward [Kata] 
 

10 

cattlefromfriends_village

1 

Village [Kijiji] 
 

10 

cattlefromfriends_other1 

Where was the second household [Kaya ya 

pili ilikuwa wapi]? 

reciprocity_whe

re 10 

note_cattlefromfriends_

where2 

Where is this village [Hiki kijiji kipo wapi]? 
 

10 

cattlefromfriends_district

2 

District [Wilaya] 
 

10 

cattlefromfriends_ward2 Ward [Kata] 
 

10 

cattlefromfriends_village

2 

Village [Kijiji] 
 

10 

cattlefromfriends_other2 

Where was the third household [Kaya ya tatu 

ilikuwa wapi]? 

reciprocity_whe

re 10 

note_cattlefromfriends_

where3 

Where is this village [Hiki kijiji kipo wapi]? 
 

10 

cattlefromfriends_district

3 

District [Wilaya] 
 

10 

cattlefromfriends_ward3 Ward [Kata] 
 

10 

cattlefromfriends_village

3 

Village [Kijiji] 
 

10 

cattlefromfriends_other3 

Where was the fourth household [Kaya ya 

nne ilikuwa wapi]? 

reciprocity_whe

re 10 

note_cattlefromfriends_

where4 

Where is this village [Hiki kijiji kipo wapi]? 
 

10 

cattlefromfriends_district

4 

District [Wilaya] 
 

10 

cattlefromfriends_ward4 Ward [Kata] 
 

10 

cattlefromfriends_village

4 

Village [Kijiji] 
 

10 

cattlefromfriends_other4 

Where was the fifth household [Kaya ya tano 

ilikuwa wapi]? 

reciprocity_whe

re 10 

note_cattlefromfriends_

where5 

Where is this village [Hiki kijiji kipo wapi]? 
 

10 

cattlefromfriends_district

5 

District [Wilaya] 
 

10 

cattlefromfriends_ward5 Ward [Kata] 
 

10 

cattlefromfriends_village

5 

Village [Kijiji] 
 

10 

cattle_intro_non_ageset_

number 

How many of the ${cattle_intro_nopay} 

cattle came from people outside your age set 

[Wangapi ng'ombe walitoka kwa watu nje ya 

rika lako]? 

 

10 
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cattle_intro_non_ageset_

hh_no 

How many different households of people 

outside your ageset did cattle come from 

[Ng'ombe walioletwa walitoka katika kaya 

ngapi tofauti za watu nje ya rika lako]? 

 

10 

cattle_intro_non_ageset_

village 

Where was the household of people outside 

your ageset where most (or all) animals came 

from [Iko wapi kaya ya watu nje ya rika lako 

ambayo wanayama wengi zaidi (au wote) 

walitoka]? 

reciprocity_whe

re 

10 

note_cattlefromnon_ages

et_where1 

Where is this village [Hiki kijiji kipo wapi]? 
 

10 

cattlefromnon_ageset_di

strict1 

District [Wilaya] 
 

10 

cattlefromnon_ageset_w

ard1 

Ward [Kata] 
 

10 

cattlefromnon_ageset_vil

lage1 

Village [Kijiji] 
 

10 

cattlefromnon_ageset_ot

her1 

Where was the second household [Kaya ya 

pili ilikuwa wapi]? 

reciprocity_whe

re 10 

note_cattlefromnon_ages

et_where2 

Where is this village [Hiki kijiji kipo wapi]? 
 

10 

cattlefromnon_ageset_di

strict2 

District [Wilaya] 
 

10 

cattlefromnon_ageset_w

ard2 

Ward [Kata] 
 

10 

cattlefromnon_ageset_vil

lage2 

Village [Kijiji] 
 

10 

cattlefromnon_ageset_ot

her2 

Where was the third household [Kaya ya tatu 

ilikuwa wapi]? 

reciprocity_whe

re 10 

note_cattlefromnon_ages

et_where3 

Where is this village [Hiki kijiji kipo wapi]? 
 

10 

cattlefromnon_ageset_di

strict3 

District [Wilaya] 
 

10 

cattlefromnon_ageset_w

ard3 

Ward [Kata] 
 

10 

cattlefromnon_ageset_vil

lage3 

Village [Kijiji] 
 

10 

cattlefromnon_ageset_ot

her3 

Where was the fourth household [Kaya ya 

nne ilikuwa wapi]? 

reciprocity_whe

re 10 

note_cattlefromnon_ages

et_where4 

Where is this village [Hiki kijiji kipo wapi]? 
 

10 

cattlefromnon_ageset_di

strict4 

District [Wilaya] 
 

10 

cattlefromnon_ageset_w

ard4 

Ward [Kata] 
 

10 

cattlefromnon_ageset_vil

lage4 

Village [Kijiji] 
 

10 

cattlefromnon_ageset_ot

her4 

Where was the fifth household [Kaya ya tano 

ilikuwa wapi]? 

reciprocity_whe

re 10 

note_cattlefromnon_ages

et_where5 

Where is this village [Hiki kijiji kipo wapi]? 
 

10 

cattlefromnon_ageset_di

strict5 

District [Wilaya] 
 

10 

cattlefromnon_ageset_w

ard5 

Ward [Kata] 
 

10 

cattlefromnon_ageset_vil

lage5 

Village [Kijiji] 
 

10 

cattle_intro_clan_numbe

r 

How many of the ${cattle_intro_nopay} 

cattle came from people in your clan 

 

10 
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[Wangapi ng'ombe walitoka kwa watu wa 

ukoo wako]? 

cattle_intro_clan_hh_no 

How many different households of people in 

your clan did cattle come from [Ng'ombe 

walioletwa walitoka katika kaya ngapi tofauti 

za watu wa ukoo wako]? 

 

10 

cattle_intro_clan_village 

Where was the household of people in your 

clan where most (or all) animals came from 

[Iko wapi kaya ya watu wa ukoo wako 

ambayo wanayama wengi zaidi (au wote) 

walitoka]? 

reciprocity_whe

re 

10 

note_cattlefromclan_whe

re1 

Where is this village [Hiki kijiji kipo wapi]? 
 

10 

cattlefromclan_district1 District [Wilaya] 
 

10 

cattlefromclan_ward1 Ward [Kata] 
 

10 

cattlefromclan_village1 Village [Kijiji] 
 

10 

cattlefromclan_other1 

Where was the second household [Kaya ya 

pili ilikuwa wapi]? 

reciprocity_whe

re 10 

note_cattlefromclan_whe

re2 

Where is this village [Hiki kijiji kipo wapi]? 
 

10 

cattlefromclan_district2 District [Wilaya] 
 

10 

cattlefromclan_ward2 Ward [Kata] 
 

10 

cattlefromclan_village2 Village [Kijiji] 
 

10 

cattlefromclan_other2 

Where was the third household [Kaya ya tatu 

ilikuwa wapi]? 

reciprocity_whe

re 10 

note_cattlefromclan_whe

re3 

Where is this village [Hiki kijiji kipo wapi]? 
 

10 

cattlefromclan_district3 District [Wilaya] 
 

10 

cattlefromclan_ward3 Ward [Kata] 
 

10 

cattlefromclan_village3 Village [Kijiji] 
 

10 

cattlefromclan_other3 

Where was the fourth household [Kaya ya 

nne ilikuwa wapi]? 

reciprocity_whe

re 10 

note_cattlefromclan_whe

re4 

Where is this village [Hiki kijiji kipo wapi]? 
 

10 

cattlefromclan_district4 District [Wilaya] 
 

10 

cattlefromclan_ward4 Ward [Kata] 
 

10 

cattlefromclan_village4 Village [Kijiji] 
 

10 

cattlefromclan_other4 

Where was the fifth household [Kaya ya tano 

ilikuwa wapi]? 

reciprocity_whe

re 10 

note_cattlefromclan_whe

re5 

Where is this village [Hiki kijiji kipo wapi]? 
 

10 

cattlefromclan_district5 District [Wilaya] 
 

10 

cattlefromclan_ward5 Ward [Kata] 
 

10 

cattlefromclan_village5 Village [Kijiji] 
 

10 

cattle_intro_non_clan_nu

mber 

How many of the ${cattle_intro_nopay} 

cattle came from people outside your clan 

[Wangapi ng'ombe walitoka kwa watu nje ya 

ukoo wako]? 

 

10 

cattle_intro_non_clan_hh

_no 

How many different households of people 

outside your clan did cattle come from 

[Ng'ombe walioletwa walitoka katika kaya 

ngapi tofauti za watu nje ya ukoo wako]? 

 

10 
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cattle_intro_non_clan_vil

lage 

Where was the household of people outside 

your clan where most (or all) animals came 

from [Iko wapi kaya ya watu nje ya ukoo 

wako ambayo wanayama wengi zaidi (au 

wote) walitoka]? 

reciprocity_whe

re 

10 

note_cattlefromnon_clan

_where1 

Where is this village [Hiki kijiji kipo wapi]? 
 

10 

cattlefromnon_clan_distri

ct1 

District [Wilaya] 
 

10 

cattlefromnon_clan_ward

1 

Ward [Kata] 
 

10 

cattlefromnon_clan_villag

e1 

Village [Kijiji] 
 

10 

cattlefromnon_clan_othe

r1 

Where was the second household [Kaya ya 

pili ilikuwa wapi]? 

reciprocity_whe

re 10 

note_cattlefromnon_clan

_where2 

Where is this village [Hiki kijiji kipo wapi]? 
 

10 

cattlefromnon_clan_distri

ct2 

District [Wilaya] 
 

10 

cattlefromnon_clan_ward

2 

Ward [Kata] 
 

10 

cattlefromnon_clan_villag

e2 

Village [Kijiji] 
 

10 

cattlefromnon_clan_othe

r2 

Where was the third household [Kaya ya tatu 

ilikuwa wapi]? 

reciprocity_whe

re 10 

note_cattlefromnon_clan

_where3 

Where is this village [Hiki kijiji kipo wapi]? 
 

10 

cattlefromnon_clan_distri

ct3 

District [Wilaya] 
 

10 

cattlefromnon_clan_ward

3 

Ward [Kata] 
 

10 

cattlefromnon_clan_villag

e3 

Village [Kijiji] 
 

10 

cattlefromnon_clan_othe

r3 

Where was the fourth household [Kaya ya 

nne ilikuwa wapi]? 

reciprocity_whe

re 10 

note_cattlefromnon_clan

_where4 

Where is this village [Hiki kijiji kipo wapi]? 
 

10 

cattlefromnon_clan_distri

ct4 

District [Wilaya] 
 

10 

cattlefromnon_clan_ward

4 

Ward [Kata] 
 

10 

cattlefromnon_clan_villag

e4 

Village [Kijiji] 
 

10 

cattlefromnon_clan_othe

r4 

Where was the fifth household [Kaya ya tano 

ilikuwa wapi]? 

reciprocity_whe

re 10 

note_cattlefromnon_clan

_where5 

Where is this village [Hiki kijiji kipo wapi]? 
 

10 

cattlefromnon_clan_distri

ct5 

District [Wilaya] 
 

10 

cattlefromnon_clan_ward

5 

Ward [Kata] 
 

10 

cattlefromnon_clan_villag

e5 

Village [Kijiji] 
 

10 

cattle_intro_other_numb

er 

How many of the ${cattle_intro_nopay} 

cattle came from these other people 

(${cattle_intro_nopay_origin_other}) 

[Wangapi ng'ombe walitoka kwa hawa watu 

wengine]? 

 

10 
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cattle_intro_other_hh_no 

How many different households of these 

other people did cattle come from [Ng'ombe 

walioletwa walitoka katika kaya ngapi tofauti 

za watu watu wengine]? 

 

10 

cattle_intro_other_village 

Where was the household of these other 

people where most (or all) animals came 

from [Iko wapi kaya ya watu wengine 

ambayo wanayama wengi zaidi (au wote) 

walitoka]? 

reciprocity_whe

re 

10 

note_cattlefromother_w

here1 

Where is this village [Hiki kijiji kipo wapi]? 
 

10 

cattlefromother_district1 District [Wilaya] 
 

10 

cattlefromother_ward1 Ward [Kata] 
 

10 

cattlefromother_village1 Village [Kijiji] 
 

10 

cattlefromother_other1 

Where was the second household [Kaya ya 

pili ilikuwa wapi]? 

reciprocity_whe

re 10 

note_cattlefromother_w

here2 

Where is this village [Hiki kijiji kipo wapi]? 
 

10 

cattlefromother_district2 District [Wilaya] 
 

10 

cattlefromother_ward2 Ward [Kata] 
 

10 

cattlefromother_village2 Village [Kijiji] 
 

10 

cattlefromother_other2 

Where was the third household [Kaya ya tatu 

ilikuwa wapi]? 

reciprocity_whe

re 10 

note_cattlefromother_w

here3 

Where is this village [Hiki kijiji kipo wapi]? 
 

10 

cattlefromother_district3 District [Wilaya] 
 

10 

cattlefromother_ward3 Ward [Kata] 
 

10 

cattlefromother_village3 Village [Kijiji] 
 

10 

cattlefromother_other3 

Where was the fourth household [Kaya ya 

nne ilikuwa wapi]? 

reciprocity_whe

re 10 

note_cattlefromother_w

here4 

Where is this village [Hiki kijiji kipo wapi]? 
 

10 

cattlefromother_district4 District [Wilaya] 
 

10 

cattlefromother_ward4 Ward [Kata] 
 

10 

cattlefromother_village4 Village [Kijiji] 
 

10 

cattlefromother_other4 

Where was the fifth household [Kaya ya tano 

ilikuwa wapi]? 

reciprocity_whe

re 10 

note_cattlefromother_w

here5 

Where is this village [Hiki kijiji kipo wapi]? 
 

10 

cattlefromother_district5 District [Wilaya] 
 

10 

cattlefromother_ward5 Ward [Kata] 
 

10 

cattlefromother_village5 Village [Kijiji] 
 

10 
 

 

9.2.2.2 Exits 

cattle_death 

Have any cattle kept by your 

household died in the past 12 months 

(not through slaughter) [Kuna 

ng'ombe yoyote anayefugwa kwenye 

boma lako amekufa katika miezi 12 

iliyopita (siyo kwa kuchinjwa)]? 

yes_no 

11 
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cattle_death_type 

What did these animals die of [Hawa 

wanyama walikufa na nini]? 

deaths 

11 

cattle_death_type_ot

her 

Specify other [Vinginevyo (ainisha)]: 
 

11 

cattle_death_drough

t 

How many cattle died from drought 

[Ng'ombe wangapi walikufa kutokana 

na ukame]? 

 

11 

cattle_death_predati

on 

How many died from predation 

[Wangapi walikufa kwa kuliwa na 

wanyama]? 

 

11 

cattle_death_disease 

How many died from disease 

[Wangapi walikufa kutokana na 

magonjwa]? 

 

11 

cattle_death_trauma 

How many died from trauma 

[Wangapi walikufa kwa kuumia]? 

 

11 

cattle_death_other 

How many died from 

${cattle_death_type_other} 

[Wangapi walikufa kutokana 

${cattle_death_type_other}]? 

 

11 

cattle_sold 

Have you sold any cattle out of your 

own herd in the past 12 months [Je, 

umeuza ng'ombe yoyote nje ya kundi 

lako katika miezi 12 iliyopita]? 

yes_no 

11 

cattle_sold_number 

How many cattle have been sold 

[Ng'ombe wangapi wameuzwa]?  

 

11 

cattle_sold_dest 

Who were they sold to/how were 

they sold [Waliuzwa kwa 

nani/waliuzwaje]? 

animal_dest 

11 

cattle_sold_dest_oth

er 

Specify other [Vinginevyo (ainisha)]: 
 

11 

cattle_sold_dest_calc 

calculation: count-

selected(${cattle_sold_dest}) 

 

11 

cattle_sold_dest_not

e 

NOTE: Only ${cattle_sold_number} 

cattle were sold to 

${cattle_sold_dest_calc} place(s). This 

is not correct. Please go back and 

either change the number of places 

animals were sold to from OR the 

number of animals sold before 

proceeding to the next question. 

 

11 

cattle_sold_hh 

How many of the 

${cattle_sold_number} cattle were 

sold directly to this/these 

household(s) [Wangapi kati ya 

ng'ombe ${cattle_sold_number} 

waliuzwa moja kwa moja kwenye 

kaya]? 

 

11 

cattle_sold_hh_num

ber 

How many different households were 

cattle sold to [Nyumba ngapi tofauti 

ng'ombe waliuzwa]? 

 

11 
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note_cattle_sold_hh

1 

Where was the household where 

most (or all) cattle were sold to [Iko 

wapi kaya ambayo ng'ombe wengi 

zaidi (au wote) waliouzwa]? 

 

11 

cattle_sold_hh1_dist

rict 

District [Wilaya] 
 

11 

cattle_sold_hh1_war

d 

Ward [Kata] 
 

11 

cattle_sold_hh1_villa

ge 

Village [Kijiji] 
 

11 

cattle_sold_hh1_rela

tionship 

What is your relationship with this 

person/household [Uhusiano wako 

na huyu mtu/kaya ukoje]? 

reciprocity1 

11 

cattle_sold_hh1_rela

tionship_other 

Specify other [Vinginevyo (ainisha)]: 
 

11 

note_cattle_sold_hh

2 

Where was the second household 

[Kaya ya pili ilikuwa wapi]? 

 

11 

cattle_sold_hh2_dist

rict 

District [Wilaya] 
 

11 

cattle_sold_hh2_war

d 

Ward [Kata] 
 

11 

cattle_sold_hh2_villa

ge 

Village [Kijiji] 
 

11 

cattle_sold_hh2_rela

tionship 

What is your relationship with this 

person/household [Uhusiano wako 

na huyu mtu/kaya ukoje]? 

reciprocity1 

11 

cattle_sold_hh2_rela

tionship_other 

Specify other [Vinginevyo (ainisha)]: 
 

11 

note_cattle_sold_hh

3 

Where was the third household [Kaya 

ya tatu ilikuwa wapi]? 

 

11 

cattle_sold_hh3_dist

rict 

District [Wilaya] 
 

11 

cattle_sold_hh3_war

d 

Ward [Kata] 
 

11 

cattle_sold_hh3_villa

ge 

Village [Kijiji] 
 

11 

cattle_sold_hh3_rela

tionship 

What is your relationship with this 

person/household [Uhusiano wako 

na huyu mtu/kaya ukoje]? 

reciprocity1 

11 

cattle_sold_hh3_rela

tionship_other 

Specify other [Vinginevyo (ainisha)]: 
 

11 

note_cattle_sold_hh

4 

Where was the fourth household 

[Kaya ya nne ilikuwa wapi]? 

 

11 

cattle_sold_hh4_dist

rict 

District [Wilaya] 
 

11 

cattle_sold_hh4_war

d 

Ward [Kata] 
 

11 

cattle_sold_hh4_villa

ge 

Village [Kijiji] 
 

11 
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cattle_sold_hh4_rela

tionship 

What is your relationship with this 

person/household [Uhusiano wako 

na huyu mtu/kaya ukoje]? 

reciprocity1 

11 

cattle_sold_hh4_rela

tionship_other 

Specify other [Vinginevyo (ainisha)]: 
 

11 

note_cattle_sold_hh

5 

Where was the fifth household [Kaya 

ya tano ilikuwa wapi]? 

 

11 

cattle_sold_hh5_dist

rict 

District [Wilaya] 
 

11 

cattle_sold_hh5_war

d 

Ward [Kata] 
 

11 

cattle_sold_hh5_villa

ge 

Village [Kijiji] 
 

11 

cattle_sold_hh5_rela

tionship 

What is your relationship with this 

person/household [Uhusiano wako 

na huyu mtu/kaya ukoje]? 

reciprocity1 

11 

cattle_sold_hh5_rela

tionship_other 

Specify other [Vinginevyo (ainisha)]: 
 

11 

cattle_sold_market 

How many of the 

${cattle_sold_number} cattle were 

sold directly at this/these market(s) 

[Wangapi kati ya ng'ombe 

${cattle_sold_number} waliuzwa 

moja kwa moja hili/haya masoko]? 

 

11 

cattle_sold_market_

number 

How many different markets were 

cattle sold at [Ng'ombe waliuzwa 

kwenye masoko mangapi tofauti]? 

 

11 

note_cattle_sold_ma

rket1 

What was the name of the market 

where most (or all) cattle went and 

what district was it in [Jina la soko 

ambalo ngombe wengi zaidi 

wameenda (au wote) ni lipi na ni 

wilaya ipi]? 

 

11 

cattle_sold_market1 Market name [Jina la soko] 
 

11 

cattle_sold_market1

_district 

District [Wilaya] 
 

11 

note_cattle_sold_ma

rket2 

What was the name of the second 

market and what district was it in 

[Nini jina la soko la pili  na lipo ndani 

ya wilaya gani]? 

 

11 

cattle_sold_market2 Market name [Jina la soko] 
 

11 

cattle_sold_market2

_district 

District [Wilaya] 
 

11 

note_cattle_sold_ma

rket3 

What was the name of the third 

market and what district was it in 

[Nini jina la soko la tatu  na lipo ndani 

ya wilaya gani]? 

 

11 

cattle_sold_market3 Market name [Jina la soko] 
 

11 
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cattle_sold_market3

_district 

District [Wilaya] 
 

11 

note_cattle_sold_ma

rket4 

What was the name of the fourth 

market and what district was it in 

[Nini jina la soko la nne  na lipo ndani 

ya wilaya gani]? 

 

11 

cattle_sold_market4 Market name [Jina la soko] 
 

11 

cattle_sold_market4

_district 

District [Wilaya] 
 

11 

note_cattle_sold_ma

rket5 

What was the name of the fifth 

market and what district was it in 

[Nini jina la soko la tano  na lipo 

ndani ya wilaya gani]? 

 

11 

cattle_sold_market5 Market name [Jina la soko] 
 

11 

cattle_sold_market5

_district 

District [Wilaya] 
 

11 

cattle_sold_tradervill

age 

How many of the 

${cattle_sold_number} cattle were 

sold directly to a livestock trader(s) in 

this village [Wangapi kati ya ng'ombe 

${cattle_sold_number} waliuzwa 

moja kwa moja  kwa mfanyabiashara 

wa mifugo wa kijiji hiki]? 

 

11 

cattle_sold_trader_o

thervillage 

How many of the 

${cattle_sold_number} cattle were 

sold directly to livestock traders in 

other villages [Wangapi kati ya  

ng'ombe ${cattle_sold_number} 

waliuzwa moja kwa moja  kwa 

mfanyabiashara wa mifugo wa kijiji 

kingine]? 

 

11 

cattle_sold_trader_o

thervillage_number 

How many different villages were the 

livestock traders to which you sold 

these cattle in [Ni vijiji vingapi tofauti 

walikwepo wafanyabishara wa 

mifugo ambao uliwauzia hii 

ng'ombe]? 

 

11 

note_cattle_sold_out

sidetrader1 

Where was the village where most 

cattle were sold [Ni kijiji gani mifugo 

mingi zaidi iliuzwa]? 

 

11 

cattle_sold_outsidetr

ader1_district 

District [Wilaya] 
 

11 

cattle_sold_outsidetr

ader1_ward 

Ward [Kata] 
 

11 

cattle_sold_outsidetr

ader1_village 

Village [Kijiji] 
 

11 

note_cattle_sold_out

sidetrader2 

Where was the second village [Kijiji 

cha pili kilikuwa wapi]? 

 

11 

cattle_sold_outsidetr

ader2_district 

District [Wilaya] 
 

11 
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cattle_sold_outsidetr

ader2_ward 

Ward [Kata] 
 

11 

cattle_sold_outsidetr

ader2_village 

Village [Kijiji] 
 

11 

note_cattle_sold_out

sidetrader3 

Where was the third village [Kijiji cha 

tatu kilikuwa wapi]? 

 

11 

cattle_sold_outsidetr

ader3_district 

District [Wilaya] 
 

11 

cattle_sold_outsidetr

ader3_ward 

Ward [Kata] 
 

11 

cattle_sold_outsidetr

ader3_village 

Village [Kijiji] 
 

11 

note_cattle_sold_out

sidetrader4 

Where was the fourth village [Kijiji 

cha nne kilikuwa wapi]? 

 

11 

cattle_sold_outsidetr

ader4_district 

District [Wilaya] 
 

11 

cattle_sold_outsidetr

ader4_ward 

Ward [Kata] 
 

11 

cattle_sold_outsidetr

ader4_village 

Village [Kijiji] 
 

11 

note_cattle_sold_out

sidetrader5 

Where was the fifth village [Kijiji cha 

tano kilikuwa wapi]? 

 

11 

cattle_sold_outsidetr

ader5_district 

District [Wilaya] 
 

11 

cattle_sold_outsidetr

ader5_ward 

Ward [Kata] 
 

11 

cattle_sold_outsidetr

ader5_village 

Village [Kijiji] 
 

11 

cattle_sold_slaughter 

How many of the 

${cattle_sold_number} cattle were 

sold directly to slaughter place(s) 

[Wangapi kati ya ng'ombe 

${cattle_sold_number} waliuzwa 

moja kwa moja  sehemu ya 

machinjio]? 

 

11 

cattle_sold_slaughter

_number 

How many different slaughter places 

were cattle sold to [Ni sehemu ngapi 

tofauti za machinjio ngombe 

waliuzwa]? 

 

11 

note_cattle_sold_sla

ughter1 

Where was the slaughter place where 

most animals went [Machinjio 

ambayo walienda wanayama wengi 

iko wapi]? 

 

11 

cattle_sold_slaughter

_district1 

District [Wilaya]   

11 

cattle_sold_slaughter

_village1 

Village/Town [Kijiji/Mji] 
 

11 

note_cattle_sold_sla

ughter2 

Where was the second slaughter 

place [Sehemu ya machinjio ya pili 

ilikuwa wapi]? 

 

11 
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cattle_sold_slaughter

_district2 

District [Wilaya]   

11 

cattle_sold_slaughter

_village2 

Village/Town [Kijiji/Mji] 
 

11 

note_cattle_sold_sla

ughter3 

Where was the third slaughter place 

[Sehemu ya machinjio ya tatu ilikuwa 

wapi]? 

 

11 

cattle_sold_slaughter

_district3 

District [Wilaya]   

11 

cattle_sold_slaughter

_village3 

Village/Town [Kijiji/Mji] 
 

11 

note_cattle_sold_sla

ughter4 

Where was the fourth place [Sehemu 

ya machinjio ya nne ilikuwa wapi]? 

 

11 

cattle_sold_slaughter

_district4 

District [Wilaya]   

11 

cattle_sold_slaughter

_village4 

Village/Town [Kijiji/Mji] 
 

11 

note_cattle_sold_sla

ughter5 

Where was the fifth slaughter place 

[Sehemu ya machinjio ya tano ilikuwa 

wapi]? 

 

11 

cattle_sold_slaughter

_district5 

District [Wilaya]   

11 

cattle_sold_slaughter

_village5 

Village/Town [Kijiji/Mji] 
 

11 

cattle_sold_other 

How many of the 

${cattle_sold_number} cattle were 

sold to this other source 

(${cattle_sold_dest_other}) [Wangapi 

kati ya ng'ombe 

${cattle_sold_number} waliuzwa 

kwenye chanzo hiki kingine]? 

 

11 

cattle_sold_other_pl

ace 

Where is this other place (please give 

village and district, if appropriate) [Hii 

sehemu nyingine ipo wapi]?  

 

11 

cattle_out_nopay 

Have you given away any cattle from 

your herd over the past 12 months  

[Je, umepeana ng'ombe kutoka kundi 

lako zaidi ya miezi 12 iliyopita]? 

yes_no 

11 

cattle_out_nopay_nu

mber 

How many cattle have been given 

away [Ng'ombe wangapi umepeana]?  

 

11 

cattle_out_nopay_de

st 

Who did you give these 

${cattle_out_nopay_number} cattle 

to [Umepeana hawa ng'ombe na 

nani]? 

reciprocity1 

11 

cattle_out_nopay_de

st_other 

Specify other [Vinginevyo (ainisha)]: 
 

11 

cattle_nopay_dest_c

alc 

calculation: count-

selected(${cattle_out_nopay_dest}) 

 

11 
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cattle_nopay_dest_n

ote 

NOTE: Only 

${cattle_out_nopay_number} cattle 

were given to 

${cattle_nopay_dest_calc} place(s). 

This is not correct. Please go back and 

either change the number of places 

animals were given to OR the number 

of animals given away before 

proceeding to the next question. 

 

11 

cattle_out_compoun

d_number 

How many of the 

${cattle_out_nopay_number} cattle 

went to family members in this 

compound [Ng'ombe wangapi 

walienda kwa familia katika boma 

hili]? 

 

11 

cattle_out_family_nu

mber 

How many of the 

${cattle_out_nopay_number} cattle 

went to family members outside this 

compound [Ng'ombe wangapi 

walienda kwa wanakaya]? 

 

11 

cattle_out_family_hh

_no 

How many different households of 

family members did cattle go to [Ni 

kaya ngapi tofauti walienda]? 

 

11 

cattle_out_family_vill

age 

Where was the household of family 

members where most (or all) animals 

went [Iko wapi kaya ya wanafamalia 

ambayo wanayama wengi zaidi (au 

wote) walienda]? 

reciprocity_

where 

11 

note_cattletofamily_

where1 

Where is this village [Hiki kijiji kipo 

wapi]? 

 

11 

cattletofamily_distric

t1 

District [Wilaya] 
 

11 

cattletofamily_ward1 Ward [Kata] 
 

11 

cattletofamily_village

1 

Village [Kijiji] 
 

11 

cattletofamily_other

1 

Where was the second household 

[Kaya ya pili ilikuwa wapi]? 

reciprocity_

where 11 

note_cattletofamily_

where2 

Where is this village [Hiki kijiji kipo 

wapi]? 

 

11 

cattletofamily_distric

t2 

District [Wilaya] 
 

11 

cattletofamily_ward2 Ward [Kata] 
 

11 

cattletofamily_village

2 

Village [Kijiji] 
 

11 

cattletofamily_other

2 

Where was the third household [Kaya 

ya tatu ilikuwa wapi]? 

reciprocity_

where 11 

note_cattletofamily_

where3 

Where is this village [Hiki kijiji kipo 

wapi]? 

 

11 

cattletofamily_distric

t3 

District [Wilaya] 
 

11 
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cattletofamily_ward3 Ward [Kata] 
 

11 

cattletofamily_village

3 

Village [Kijiji] 
 

11 

cattletofamily_other

3 

Where was the fourth household 

[Kaya ya nne ilikuwa wapi]? 

reciprocity_

where 11 

note_cattletofamily_

where4 

Where is this village [Hiki kijiji kipo 

wapi]? 

 

11 

cattletofamily_distric

t4 

District [Wilaya] 
 

11 

cattletofamily_ward4 Ward [Kata] 
 

11 

cattletofamily_village

4 

Village [Kijiji] 
 

11 

cattletofamily_other

4 

Where was the fifth household [Kaya 

ya tano ilikuwa wapi]? 

reciprocity_

where 11 

note_cattletofamily_

where5 

Where is this village [Hiki kijiji kipo 

wapi]? 

 

11 

cattletofamily_distric

t5 

District [Wilaya] 
 

11 

cattletofamily_ward5 Ward [Kata] 
 

11 

cattletofamily_village

5 

Village [Kijiji] 
 

11 

cattle_out_relatives_

number 

How many of the 

${cattle_out_nopay_number} cattle 

went to relatives through marriage 

[Wangapi ng'ombe walienda kwa 

ndugu kupitia kuoa]? 

 

11 

cattle_out_relatives_

hh_no 

How many different households of 

relatives through marriage did cattle 

go to [Ni kaya ngapi tofauti 

walienda]? 

 

11 

cattle_out_relatives_

village 

Where was the household of relatives 

through marriage where most (or all) 

animals went to [Iko wapi kaya ya 

ndugu kupitia kuoa ambayo 

wanayama wengi zaidi (au wote) 

walienda]? 

reciprocity_

where 

11 

note_cattletorelative

s_where1 

Where is this village [Hiki kijiji kipo 

wapi]? 

 

11 

cattletorelatives_dist

rict1 

District [Wilaya] 
 

11 

cattletorelatives_war

d1 

Ward [Kata] 
 

11 

cattletorelatives_villa

ge1 

Village [Kijiji] 
 

11 

cattletorelatives_oth

er1 

Where was the second household 

[Kaya ya pili ilikuwa wapi]? 

reciprocity_

where 11 

note_cattletorelative

s_where2 

Where is this village [Hiki kijiji kipo 

wapi]? 

 

11 
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cattletorelatives_dist

rict2 

District [Wilaya] 
 

11 

cattletorelatives_war

d2 

Ward [Kata] 
 

11 

cattletorelatives_villa

ge2 

Village [Kijiji] 
 

11 

cattletorelatives_oth

er2 

Where was the third household [Kaya 

ya tatu ilikuwa wapi]? 

reciprocity_

where 11 

note_cattletorelative

s_where3 

Where is this village [Hiki kijiji kipo 

wapi]? 

 

11 

cattletorelatives_dist

rict3 

District [Wilaya] 
 

11 

cattletorelatives_war

d3 

Ward [Kata] 
 

11 

cattletorelatives_villa

ge3 

Village [Kijiji] 
 

11 

cattletorelatives_oth

er3 

Where was the fourth household 

[Kaya ya nne ilikuwa wapi]? 

reciprocity_

where 11 

note_cattletorelative

s_where4 

Where is this village [Hiki kijiji kipo 

wapi]? 

 

11 

cattletorelatives_dist

rict4 

District [Wilaya] 
 

11 

cattletorelatives_war

d4 

Ward [Kata] 
 

11 

cattletorelatives_villa

ge4 

Village [Kijiji] 
 

11 

cattletorelatives_oth

er4 

Where was the fifth household [Kaya 

ya tano ilikuwa wapi]? 

reciprocity_

where 11 

note_cattletorelative

s_where5 

Where is this village [Hiki kijiji kipo 

wapi]? 

 

11 

cattletorelatives_dist

rict5 

District [Wilaya] 
 

11 

cattletorelatives_war

d5 

Ward [Kata] 
 

11 

cattletorelatives_villa

ge5 

Village [Kijiji] 
 

11 

cattle_out_friends_n

umber 

How many of the 

${cattle_out_nopay_number} cattle 

went to friends/age mates [Wangapi 

ng'ombe walienda kwa marafiki/watu 

wa rika moja]? 

 

11 

cattle_out_friends_h

h_no 

How many different households of 

friends/age mates did cattle go to [Ni 

kaya ngapi tofauti walienda]? 

 

11 

cattle_out_friends_vi

llage 

Where was the household of 

friends/age mates where most (or all) 

animals went to [Iko wapi kaya ya 

marafiki/watu wa rika moja ambayo 

wanayama wengi zaidi (au wote) 

walienda]? 

reciprocity_

where 

11 
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note_cattletofriends

_where1 

Where is this village [Hiki kijiji kipo 

wapi]? 

 

11 

cattletofriends_distri

ct1 

District [Wilaya] 
 

11 

cattletofriends_ward

1 

Ward [Kata] 
 

11 

cattletofriends_villag

e1 

Village [Kijiji] 
 

11 

cattletofriends_other

1 

Where was the second household 

[Kaya ya pili ilikuwa wapi]? 

reciprocity_

where 11 

note_cattletofriends

_where2 

Where is this village [Hiki kijiji kipo 

wapi]? 

 

11 

cattletofriends_distri

ct2 

District [Wilaya] 
 

11 

cattletofriends_ward

2 

Ward [Kata] 
 

11 

cattletofriends_villag

e2 

Village [Kijiji] 
 

11 

cattletofriends_other

2 

Where was the third household [Kaya 

ya tatu ilikuwa wapi]? 

reciprocity_

where 11 

note_cattletofriends

_where3 

Where is this village [Hiki kijiji kipo 

wapi]? 

 

11 

cattletofriends_distri

ct3 

District [Wilaya] 
 

11 

cattletofriends_ward

3 

Ward [Kata] 
 

11 

cattletofriends_villag

e3 

Village [Kijiji] 
 

11 

cattletofriends_other

3 

Where was the fourth household 

[Kaya ya nne ilikuwa wapi]? 

reciprocity_

where 11 

note_cattletofriends

_where4 

Where is this village [Hiki kijiji kipo 

wapi]? 

 

11 

cattletofriends_distri

ct4 

District [Wilaya] 
 

11 

cattletofriends_ward

4 

Ward [Kata] 
 

11 

cattletofriends_villag

e4 

Village [Kijiji] 
 

11 

cattletofriends_other

4 

Where was the fifth household [Kaya 

ya tano ilikuwa wapi]? 

reciprocity_

where 11 

note_cattletofriends

_where5 

Where is this village [Hiki kijiji kipo 

wapi]? 

 

11 

cattletofriends_distri

ct5 

District [Wilaya] 
 

11 

cattletofriends_ward

5 

Ward [Kata] 
 

11 

cattletofriends_villag

e5 

Village [Kijiji] 
 

11 
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cattle_out_non_ages

et_number 

How many of the 

${cattle_out_nopay_number} cattle 

went to people outside your age set 

[Wangapi ng'ombe walienda kwa 

watu nje ya rika lako]? 

 

11 

cattle_out_non_ages

et_hh_no 

How many different households of 

people outside your age set did cattle 

go to [Ni kaya ngapi tofauti 

walienda]? 

 

11 

cattle_out_non_ages

et_village 

Where was the household of people 

outside your age set where most (or 

all) animals went to [Iko wapi kaya ya 

watu nje ya rika lako ambayo 

wanayama wengi zaidi (au wote) 

walienda]? 

reciprocity_

where 

11 

note_cattletonon_ag

eset_where1 

Where is this village [Hiki kijiji kipo 

wapi]? 

 

11 

cattletonon_ageset_

district1 

District [Wilaya] 
 

11 

cattletonon_ageset_

ward1 

Ward [Kata] 
 

11 

cattletonon_ageset_

village1 

Village [Kijiji] 
 

11 

cattletonon_ageset_

other1 

Where was the second household 

[Kaya ya pili ilikuwa wapi]? 

reciprocity_

where 11 

note_cattletonon_ag

eset_where2 

Where is this village [Hiki kijiji kipo 

wapi]? 

 

11 

cattletonon_ageset_

district2 

District [Wilaya] 
 

11 

cattletonon_ageset_

ward2 

Ward [Kata] 
 

11 

cattletonon_ageset_

village2 

Village [Kijiji] 
 

11 

cattletonon_ageset_

other2 

Where was the third household [Kaya 

ya tatu ilikuwa wapi]? 

reciprocity_

where 11 

note_cattletonon_ag

eset_where3 

Where is this village [Hiki kijiji kipo 

wapi]? 

 

11 

cattletonon_ageset_

district3 

District [Wilaya] 
 

11 

cattletonon_ageset_

ward3 

Ward [Kata] 
 

11 

cattletonon_ageset_

village3 

Village [Kijiji] 
 

11 

cattletonon_ageset_

other3 

Where was the fourth household 

[Kaya ya nne ilikuwa wapi]? 

reciprocity_

where 11 

note_cattletonon_ag

eset_where4 

Where is this village [Hiki kijiji kipo 

wapi]? 

 

11 

cattletonon_ageset_

district4 

District [Wilaya] 
 

11 
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cattletonon_ageset_

ward4 

Ward [Kata] 
 

11 

cattletonon_ageset_

village4 

Village [Kijiji] 
 

11 

cattletonon_ageset_

other4 

Where was the fifth household [Kaya 

ya tano ilikuwa wapi]? 

reciprocity_

where 11 

note_cattletonon_ag

eset_where5 

Where is this village [Hiki kijiji kipo 

wapi]? 

 

11 

cattletonon_ageset_

district5 

District [Wilaya] 
 

11 

cattletonon_ageset_

ward5 

Ward [Kata] 
 

11 

cattletonon_ageset_

village5 

Village [Kijiji] 
 

11 

cattle_out_clan_num

ber 

How many of the 

${cattle_out_nopay_number} cattle 

went to people in your clan [Wangapi 

ng'ombe walienda kwa watu wa ukoo 

wako]? 

 

11 

cattle_out_clan_hh_

no 

How many different households of 

people in your clan did cattle go to 

[Ni kaya ngapi tofauti walienda]? 

 

11 

cattle_out_clan_villa

ge 

Where was the household of people 

in your clan where most (or all) 

animals went to [Iko wapi kaya ya 

watu wa ukoo wako ambayo 

wanayama wengi zaidi (au wote) 

walienda]? 

reciprocity_

where 

11 

note_cattletoclan_w

here1 

Where is this village [Hiki kijiji kipo 

wapi]? 

 

11 

cattletoclan_district1 District [Wilaya] 
 

11 

cattletoclan_ward1 Ward [Kata] 
 

11 

cattletoclan_village1 Village [Kijiji] 
 

11 

cattletoclan_other1 

Where was the second household 

[Kaya ya pili ilikuwa wapi]? 

reciprocity_

where 11 

note_cattletoclan_w

here2 

Where is this village [Hiki kijiji kipo 

wapi]? 

 

11 

cattletoclan_district2 District [Wilaya] 
 

11 

cattletoclan_ward2 Ward [Kata] 
 

11 

cattletoclan_village2 Village [Kijiji] 
 

11 

cattletoclan_other2 

Where was the third household [Kaya 

ya tatu ilikuwa wapi]? 

reciprocity_

where 11 

note_cattletoclan_w

here3 

Where is this village [Hiki kijiji kipo 

wapi]? 

 

11 

cattletoclan_district3 District [Wilaya] 
 

11 

cattletoclan_ward3 Ward [Kata] 
 

11 

cattletoclan_village3 Village [Kijiji] 
 

11 
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cattletoclan_other3 

Where was the fourth household 

[Kaya ya nne ilikuwa wapi]? 

reciprocity_

where 11 

note_cattletoclan_w

here4 

Where is this village [Hiki kijiji kipo 

wapi]? 

 

11 

cattletoclan_district4 District [Wilaya] 
 

11 

cattletoclan_ward4 Ward [Kata] 
 

11 

cattletoclan_village4 Village [Kijiji] 
 

11 

cattletoclan_other4 

Where was the fifth household [Kaya 

ya tano ilikuwa wapi]? 

reciprocity_

where 11 

note_cattletoclan_w

here5 

Where is this village [Hiki kijiji kipo 

wapi]? 

 

11 

cattletoclan_district5 District [Wilaya] 
 

11 

cattletoclan_ward5 Ward [Kata] 
 

11 

cattletoclan_village5 Village [Kijiji] 
 

11 

cattle_out_non_clan

_number 

How many of the 

${cattle_out_nopay_number} cattle 

went to people outside your clan 

[Wangapi ng'ombe walienda kwa 

watu nje ya ukoo wako]? 

 

11 

cattle_out_non_clan

_hh_no 

How many different households of 

people outside your clan did cattle go 

to [Ni kaya ngapi tofauti walienda]? 

 

11 

cattle_out_non_clan

_village 

Where was the household of people 

outside your clan where most (or all) 

animals went to [Iko wapi kaya ya 

watu nje ya ukoo wako ambayo 

wanayama wengi zaidi (au wote) 

walienda]? 

reciprocity_

where 

11 

note_cattletonon_cla

n_where1 

Where is this village [Hiki kijiji kipo 

wapi]? 

 

11 

cattletonon_clan_dis

trict1 

District [Wilaya] 
 

11 

cattletonon_clan_wa

rd1 

Ward [Kata] 
 

11 

cattletonon_clan_vill

age1 

Village [Kijiji] 
 

11 

cattletonon_clan_oth

er1 

Where was the second household 

[Kaya ya pili ilikuwa wapi]? 

reciprocity_

where 11 

note_cattletonon_cla

n_where2 

Where is this village [Hiki kijiji kipo 

wapi]? 

 

11 

cattletonon_clan_dis

trict2 

District [Wilaya] 
 

11 

cattletonon_clan_wa

rd2 

Ward [Kata] 
 

11 

cattletonon_clan_vill

age2 

Village [Kijiji] 
 

11 

cattletonon_clan_oth

er2 

Where was the third household [Kaya 

ya tatu ilikuwa wapi]? 

reciprocity_

where 11 
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note_cattletonon_cla

n_where3 

Where is this village [Hiki kijiji kipo 

wapi]? 

 

11 

cattletonon_clan_dis

trict3 

District [Wilaya] 
 

11 

cattletonon_clan_wa

rd3 

Ward [Kata] 
 

11 

cattletonon_clan_vill

age3 

Village [Kijiji] 
 

11 

cattletonon_clan_oth

er3 

Where was the fourth household 

[Kaya ya nne ilikuwa wapi]? 

reciprocity_

where 11 

note_cattletonon_cla

n_where4 

Where is this village [Hiki kijiji kipo 

wapi]? 

 

11 

cattletonon_clan_dis

trict4 

District [Wilaya] 
 

11 

cattletonon_clan_wa

rd4 

Ward [Kata] 
 

11 

cattletonon_clan_vill

age4 

Village [Kijiji] 
 

11 

cattletonon_clan_oth

er4 

Where was the fifth household [Kaya 

ya tano ilikuwa wapi]? 

reciprocity_

where 11 

note_cattletonon_cla

n_where5 

Where is this village [Hiki kijiji kipo 

wapi]? 

 

11 

cattletonon_clan_dis

trict5 

District [Wilaya] 
 

11 

cattletonon_clan_wa

rd5 

Ward [Kata] 
 

11 

cattletonon_clan_vill

age5 

Village [Kijiji] 
 

11 

cattle_out_other_nu

mber 

How many of the 

${cattle_out_nopay_number} cattle 

went to these other people 

(${cattle_out_nopay_dest_other}) 

[Wangapi ng'ombe walienda kwa 

hawa watu wengine]? 

 

11 

cattle_out_other_hh

_no 

How many different households of 

these other people did cattle go to 

[Ni kaya ngapi tofauti walienda]? 

 

11 

cattle_out_other_vill

age 

Where was the household of these 

other people where most (or all) 

animals went to [Iko wapi kaya ya 

watu wengine ambayo wanayama 

wengi zaidi (au wote) walienda]? 

reciprocity_

where 

11 

note_cattletoother_

where1 

Where is this village [Hiki kijiji kipo 

wapi]? 

 

11 

cattletoother_district

1 

District [Wilaya] 
 

11 

cattletoother_ward1 Ward [Kata] 
 

11 

cattletoother_village

1 

Village [Kijiji] 
 

11 
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cattletoother_other1 

Where was the second household 

[Kaya ya pili ilikuwa wapi]? 

reciprocity_

where 11 

note_cattletoother_

where2 

Where is this village [Hiki kijiji kipo 

wapi]? 

 

11 

cattletoother_district

2 

District [Wilaya] 
 

11 

cattletoother_ward2 Ward [Kata] 
 

11 

cattletoother_village

2 

Village [Kijiji] 
 

11 

cattletoother_other2 

Where was the third household [Kaya 

ya tatu ilikuwa wapi]? 

reciprocity_

where 11 

note_cattletoother_

where3 

Where is this village [Hiki kijiji kipo 

wapi]? 

 

11 

cattletoother_district

3 

District [Wilaya] 
 

11 

cattletoother_ward3 Ward [Kata] 
 

11 

cattletoother_village

3 

Village [Kijiji] 
 

11 

cattletoother_other3 

Where was the fourth household 

[Kaya ya nne ilikuwa wapi]? 

reciprocity_

where 11 

note_cattletoother_

where4 

Where is this village [Hiki kijiji kipo 

wapi]? 

 

11 

cattletoother_district

4 

District [Wilaya] 
 

11 

cattletoother_ward4 Ward [Kata] 
 

11 

cattletoother_village

4 

Village [Kijiji] 
 

11 

cattletoother_other4 

Where was the fifth household [Kaya 

ya tano ilikuwa wapi]? 

reciprocity_

where 11 

note_cattletoother_

where5 

Where is this village [Hiki kijiji kipo 

wapi]? 

 

11 

cattletoother_district

5 

District [Wilaya] 
 

11 

cattletoother_ward5 Ward [Kata] 
 

11 

cattletoother_village

5 

Village [Kijiji] 
 

11 
 

 

 

9.2.3 Model variables description 

Table S1. Risk factor and potential confounding variables for disease risk models, 

description and motivation for inclusion in model. 

Number of household 

introductions  

We hypothesised that higher numbers of livestock 

introductions will result in higher risk of pathogen 
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 introduction and thus higher prevalence of seropositivity in 

animals from these households. For the SEEDZ data the 

number of household introductions was calculated for each 

species by adding the numbers of animals purchased from 

markets, purchased from other households, and received as 

gifts in the 12 months preceding the study. For the BacZoo 

data the number of reported introductions of each species 

was used directly because the original survey question was 

not separated into introduction type.  

 

 

Estimated number of 

sub-village 

introductions  

 

We hypothesised that belonging to a sub-village with high 

numbers of livestock introductions will increase an 

individual’s risk of pathogen exposure. The standardised 

number of sub-village introductions was calculated to use as 

a risk factor in the model to assess whether being a 

household in a ‘busy’ sub-village increased the risk of disease 

exposure. This was calculated by adding the number of 

reported introductions from all surveyed households in the 

sub-village, dividing the total by the number of surveyed 

households and multiplying this ‘mean’ number of 

introductions by the total number of livestock owning 

households in the sub-village.  

 

Sub-village in-degree 

 

In-degree is the sum of the incoming edges into a node 

(edges are weighted by the number of times they are 

reported between the sub-village and location X). In-degree 

is used to test the hypothesis that livestock belonging to a 

sub-village that has connected more frequently, to more 

locations, via batches of livestock introductions, are at 

greater risk of pathogen exposure. Node metrics from the 

partially weighted network are used for the analysis rather 

than from the unweighted network, based on the 
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assumption that multiple introductions from location X will 

increase the risk of pathogen introduction compared to 

one/few introduction(s).  

 

Sub-village 

betweenness 

 

This metric is again ascertained from the constructed 

household movement network and is a measure of the 

number of times a sub-village lies on the shortest path 

between two other locations in the observed network. 

Betweeness will be used to test the hypothesis that 

belonging to a sub-village that is relatively ‘busy’ with many 

livestock passing through it on journeys between other 

locations, increases an individual’s risk of exposure to 

infectious pathogens. It should be noted here that because 

this network is a sub-sample of the underlying network, 

betweenness measures may be falsely inflated because 

locations with the truest high betweenness may not be 

included in the sample – this should be considered when 

interpreting the model results. 

 

Herd BVDV status 

 

A household herd was considered BVDV positive if one or 

more of the sampled cattle were seropositive for BVDV 

antibodies. Herds were thus assigned a value 0 (negative) or 

1 (positive). This is considered as a potential risk factor for 

exposure to other infectious pathogens as, if circulating, it 

could cause immunosuppression of animals in the herd and 

also potentially increase the risk of bacterial pathogen 

shedding. 

 

Household herd/flock 

size  

 

For each household the ‘total number owned’ of each 

species (cattle and small ruminants (goats and sheep) was 

calculated by adding the reported number of ‘juveniles’, 

‘adult females’ and ‘adult males’ owned. Where breakdown 

numbers were unreported (N households = 2) then the 
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‘number reported owned’ was imputed as the ‘total number 

owned’. For a number of households in the SEEDZ data set 

more livestock were blood sampled than the ‘total number 

owned’ (Cattle = 43 households, Goats = 52 households, 

Sheep = 51 households). For these households the maximum 

number from ‘number sampled’ or ‘number reported 

owned’ was imputed in place of the ‘total number owned’.  

 

Sub-village herd/flock 

size 

 

Number of livestock owning households and the size of these 

herds/flocks, in a sub-village was considered a likely risk 

factor for disease exposure at the household level. More 

livestock owning households with larger herds/flocks could 

potentially mean there are inherently more livestock 

introductions and/or higher opportunity for contact and 

transmission events between herds/flocks. Sub-village 

herd/flock size was calculated by taking the mean herd/flock 

size(s) from the surveyed households and multiplying by the 

total number of livestock owning households in the sub-

village. Participating households were randomly selected 

from a list of households that attended a meeting at the sub-

village central point thus they are assumed to be 

representative of others in the same sub-village.  

 

Household production 

system classification 

 

Production system classification data for each household was 

taken from the household classification model developed by 

de Glanville (de Glanville et al., 2020). Agro-ecological 

classification is assigned based on a number of production 

system metrics of households.  

For the SEEDZ cattle owning households 49% are agro-

pastoral, 39% are pastoral and 12% small holder, in contrast 

to the BacZoo data set which is comprised of predominantly 

small holder households (63%), two agro-pastoral (3%) and 

the remaining pastoral (34%). For the SEEDZ small ruminant 
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owning households 48% are agropastoral, 52% pastoral, 0 

smallholder and for the BacZoo small ruminant households 

1% are agropastoral, 26% pastoral and 73% small holder.  

 

 

 

9.2.4 Zero cases of brucella in small ruminant data 

Using BGLMER 

There were zero animals with Brucella spp. exposure in sampled smallholder small 

ruminants, resulting in quasi-complete separation of the data in the univariable model 

investigating household agro-ecological classification as a risk factor for Brucella 

seropositivity. In consequence, this model could not be fitted by maximum likelihood, 

because in such cases the maximum likelihood prevalence is zero, which cannot be 

represented on the log odds scale.  Thus this univariable GLMM was fitted using a 

Bayesian maximum a posteriori approach implemented in the bglmer function from the 

blme package in R (Chung et al., 2013).  A weak normally distributed prior with mean of 

zero and variance of nine was placed on each fixed effect, effectively penalising 

prevalence’s very close to zero (e.g. less than ~10
-6

). For the small ruminant Brucella spp. 

Bayesian univariate GLMM there was no evidence of a difference in seroprevalence 

between small holder and agro-pastoralist small ruminant disease risk. These classes 

were therefore combined into ‘agro-past/smallholder’ for the SEEDZ Brucella spp. 

multivariable analysis only, so that the model could be fitted using maximum likelihood, 

giving comparable results with the other models in this analysis. 

Further details found in R script UnivarMultivarDZmodels.R 

 

9.2.5 Supplementary results 

9.2.5.1 Serology 

For cattle and small ruminants the Brucella seroprevalence was low at 4.0% (95% 

Confidence Interval (CI) 2.5 - 5.8%) and 2.6% (95% CI 1.1-4.5%) respectively, with 90 

(20.5%) and 69 (16.8%) cattle- and small ruminant-owning households owning positive 

animals.  
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Similarly, C. burnetii seroprevalence was low in cattle 4.4% (95% CI 3.1-6.0%), with 106 

(16.8%) cattle owning households owning seropositive cattle. In small ruminants the C. 

burnetii seroprevalence was higher at 20.2% (95% CI 16.3-24.3%) with 283 (68.9%) small 

ruminant owning households owning at least one seropositive small ruminant.  

 

The individual seroprevalence of L .hardjo in cattle is high, compared to the other two 

bacterial zoonoses at 32.6% and these animals belong to 281 households (77.8%) cattle 

owning households. 

 

Overall, ‘any zoonoses’ seroprevalence in cattle using SEEDZ only data (Brucella and/or C. 

burnetii and/or L .hardjo) is 36.1% (95% CI 30.9-41.4%) and in small ruminants (Brucella 

and/or Coxiella using combined SEEDZ and BacZoo data) is 21.5% (95% CI 17.3-25.8%). 

The household prevalence of ‘any zoonoses’ within the SEEDZ cattle owning households is 

82.2% and in the SEEDZ and BacZoo small ruminant owning households it is 70 %. 

 

For the SEEDZ cattle the sero-prevalence of the viral pathogens BHV-1 and BVDV were 

65.8% (95% CI 61.2-70.2) and 39.5% (95% CI 32.5-46.5%) respectively with herd 

prevalence of 95.8% and 80.3%. 

 

Analysis was done in R version 3.6.0 using packages devtools and lme4. More details can 

be found in supplementary material section 1.1 and 1.2 with links to the analysis code.  

 

9.2.5.2 Univariable results 

In the univariable cattle models increasing household herd cattle introductions is 

positively associated with an increased probability of exposure to BVDV (OR 1.54, CI 1.09 

– 2.18). For all other pathogens tested, the estimated associations with introductions 

were positive (odds ratios range between 1.17 and 1.27), although all confidence intervals 

cross 1, meaning that there is insufficient evidence to support these associations.  

 

Belonging to a sub-village with increasing numbers of cattle introductions is positively 

associated with the unadjusted odds of BVDV sero-positivity (OR 1.98, CI 1.23 – 3.18) and 

in the other pathogen models the effect estimates are again positive (OR’s ranging from 

1.12 – 1.35) but with confidence limits crossing 1 again suggesting insufficient evidence. 
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Using the SEEDZ only data the univariable models for the network measures risk factors 

for cattle pathogen seropositivity show that increasing sub-village in-degree is associated 

with an increased odds of BVDV seropositivity (OR 4.55, CI 1.38 – 14.95). Increasing 

betweeness is associated with an increased odds of seropositivity for Brucella sp., (OR 

2.05, CI 1.42 – 2.94), L. hardjo (OR 1.55 , CI 1.15 – 2.09), ‘any zoonoses’ (OR 1.51, CI 1.16 – 

1.98) and BVDV (OR 2.25, CI 1.57 – 3.21). There is insufficient evidence to support a 

significant association between increasing in-degree and seropositivity for all other 

investigated pathogens. The odds ratio effect estimates are all positive (range from 1.39 – 

3.15) but the confidence limits all cross 1. The effect estimates for increasing betweeness 

and the odds of C.burnetii and IBR seropositivity are also positive (OR 1.19 and 1.25 

respectively) but again the confidence limits cross 1 suggesting more evidence is needed 

to assess the effect of this association. 

 

For the second hypothesis; belonging to a BVDV positive herd will be associated with an 

increased risk of exposure to other infectious pathogens; the univariable models show 

strong evidence to suggest a positive association between herd seropositivity and the 

unadjusted odds of Brucella sp. (OR 4.15, CI 1.15 – 14.94) and L.hardjo 1.63 (CI 1.04 – 

2.55) seropositivity.   

 

 

Table S2.2. Results of univariable models for potential risk factors for Brucella sp., C.burnetii, L.hardjo, 

'Any zoonoses', BHV-1 and BVDV seropositivity in cattle 

 

Dependent variable: 

Unadjusted odds ratio (95% confidence limits) 

 

Brucella 

sp. 
C. burnetii L.hardjo Any Zoonoses BHV-1 BVDV 

Age 

1.28 

(1.20, 

1.38)*** 

1.10 (1.03, 

1.17) ** 

1.18 

(1.14, 

1.21) *** 

1.20 (1.16, 1.23) *** 

1.62 

(1.56, 

1.70) 

*** 

1.09 

(1.05, 

1.12) *** 

Sex: Male 

0.29 

(0.17, 

0.51) *** 

0.59 (0.39, 

0.90)* 

0.77 

(0.63, 

0.94)* 

0.70 (0.58, 0.85) *** 

0.58 

(0.48, 

0.70) 

*** 

0.86 

(0.70, 

1.05) 
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Household 

herd size (log 

10) 

1.93 

(1.20, 

3.10) ** 

1.15 (0.76, 

1.74) 

1.58 

(1.19, 

2.09) ** 

1.60 (1.22, 2.10) *** 

1.96 

(1.52, 

2.54) 

*** 

1.25 

(0.95, 

1.64) 

Household 

cattle 

introductions 

(log 10) 

1.17 

(0.60, 

2.27) 

1.22 (0.65, 

2.27) 

1.26 

(0.87, 

1.84) 

1.27 (0.88, 1.84) 

1.27 

(0.86, 

1.88) 

1.54 

(1.09, 

2.18) * 

Sub-village 

herd size (log 

10) 

1.60 

(0.87, 

2.92) 

0.85 (0.52, 

1.39) 

2.19 

(1.22, 

3.92)** 

2.16 (1.26, 3.68) ** 

1.96 

(1.24, 

3.09)** 

7.65 

(4.18, 

14.01) 

*** 

Sub-village 

cattle 

introductions 

(log 10) 

1.26 

(0.81, 

1.97) 

0.96 (0.68, 

1.37) 

1.31 

(0.90, 

1.91) 

1.35 (0.96, 1.90) 

1.12 

(0.83, 

1.52) 

1.98 

(1.23, 

3.18) ** 

Sub-village in-

degree (log 

10) 

3.15 

(0.95, 

10.51) 

1.39 (0.50, 

3.85) 

1.72 

(0.68, 

4.39) 

1.79 (0.76, 4.21) 

1.85 

(0.91, 

3.78) 

4.55 

(1.38, 

14.95)* 

Sub-village 

betweenness 

(log 10) 

2.05 

(1.42, 

2.94) *** 

1.19 (0.85, 

1.66) 

1.55 

(1.15, 

2.09)** 

1.51 (1.16, 1.98) ** 

1.25 

(0.98, 

1.60) 

2.25 

(1.57, 

3.21) *** 

herd BVDV 

status 

4.15 

(1.15, 

14.94)* 

0.73 (0.38, 

1.39) 

1.63 

(1.04, 

2.55)* 

1.36 (0.90, 2.06) 

1.43 

(0.99, 

2.07) 

na 

Agropastoral 

production 

system 

0.0078 

(0.41, 

1.51) 

0.025 

(0.015, 

0.042) 

0.325 

(0.239, 

0.442) 

0.396 (0.301, 0.521) 

1.76 

(1.35, 

2.30) 

0.369 

(0.250, 

0.547) 

Pastoral 

production 

system 

5.19 

(2.69, 

10.02) 

*** 

1.30 (0.74, 

2.29) 

1.77 

(1.20, 

2.62)*** 

1.86 (1.30, 2.65) *** 

1.63 

(1.15, 

2.30)* 

2.17 

(1.42, 

3.32)*** 

Small holder 

production 

system 

1.85 

(0.70, 

4.91) 

0.96  

(0.42, 2.18) 

0.60 

(0.33, 

1.06) 

0.51  

(0.29, 0.89)** 

0.86 

(0.53, 

1.39) 

1.77 

(1.07, 

2.93)** 

Observations 3,357# 3,330## 2,848 2,853 2,848 2,848 

Note: # SEEDZ only variables N observations = 2,846, ## SEEDZ only variables N observations = 2,845 

Household ID and sub-village fitted as random effects 

*

p<0.05
**

p<0.01
***

p<0.001  
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The univariable small ruminant models using both SEEDZ and BacZoo data, show a 

significant association between increasing household and sub-village introductions and 

the odds of Brucella sp. seropositivity (OR 2.61, CI 1.09 – 6.29 and OR 2.12, CI 1.20 – 3.74 

respectively). The odds ratio effect estimates for increasing household and sub-village 

introductions and C. burnetii and ‘Any Zoonoses’ exposure are also positive however the 

confidence limits cross 1 suggesting insufficient evidence to support this association.  

 

The univariable models using SEEDZ data only to assess the effect of the network 

measure risk factor variables on pathogen exposure in small ruminants show there is 

good evidence to suggest increasing sub-village ‘betweenness’ is positively associated 

with C. burnetii and ‘any zoonoses’ exposure (OR 1.62, CI 1.10 – 2.39 and OR 1.65, CI 1.10 

– 2.46 respectively). Increasing in-degree and betweeness appear to be positively 

associated with the odds of Brucella sp. seropositivity (OR 3.10 and 1.61 respectively) but 

the confidence limits for these estimates cross 1 which means that there is insufficient 

evidence to support the association. The univariable model assessing the association 

between in-degree and C. burnetii exposure shows no evidence of an effect as the OR 

estimate is close to 1 with a wide confidence interval. 

 

 

 

 

  

 Table S2.3. Results of univariate models for potential risk factors for Brucella, Coxiella and 'Any zoonoses' 

seropositivity in Sheep and Goats 

                                                                Dependent variable: 

                                                                  Unadjusted odds ratio (95% confidence interval) 

 Brucella sp. C.burnetii Any Zoonoses 

Age 

1.27  

(1.15, 1.39) *** 

1.33  

(1.28, 1.38) *** 

1.33  

(1.29, 1.38) *** 

Sex 

0.45  

(0.28, 0.73) ** 

0.40  

(0.33, 0.48) *** 

0.40  

(0.33, 0.48) *** 

Household herd size (log 10) 

4.94  

(2.24, 10.86) *** 

1.75  

(1.36, 2.26) *** 

1.88  

(1.46, 2.43) *** 
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Household small ruminant 

introductions (log 10) 

2.61  

(1.09, 6.29)* 

1.12  

(0.88, 1.42) 

1.12  

(0.88, 1.44) 

Sub-village herd size (log 10) 

4.53  

(1.63, 12.61)** 

2.68  

(1.77, 4.07) *** 

2.89  

(1.88, 4.44) *** 

Sub-village small ruminant 

introductions (log 10) 

2.12  

(1.20, 3.74)** 

1.31  

(0.95, 1.79) 

1.34  

(0.96, 1.87) 

Sub-village in-degree 

3.10  

(0.55, 17.55) 

1.05  

(0.40, 2.71) 

1.00  

(0.37, 2.70) 

Sub-village betweenness 

1.61  

(0.78, 3.33) 

1.62  

(1.10, 2.39)* 

1.65  

(1.10, 2.46)* 

Pastoral production system # 

4.83  

(1.72, 13.59)** 

3.42  

(2.13, 5.51) *** 

3.64  

(2.24, 5.93) *** 

Small holder production system # 

0.10  

(0.00, 2.89) 

0.48  

(0.23, 1.00)* 

0.44  

(0.21, 0.93)* 

Observations 5,524 5,500 5,524 

SEEDZ data only N obs. 4,318 4,316 4,318 

Note: # model uses bglmer. See analysis methods. 
*

p<0.05
**

p<0.01
***

p<0.001 

Household ID and sub-village fitted as random effects 

 

 

9.2.5.3 Checking for multicoliniarity between risk factor and confounding 
variables for inclusion in the disease risk models. 

In-degree and sub-village introductions appear to be correlated in the small ruminant 

dataset (correlation 0.66, Kendall’s tau P value <0.001) . All variables were included in the 

initial multivariable models and the variable with the highest ‘variance inflation factor’ 

(VIF) was removed in a backwards step-wise process until all model variables had a VIF 

below 3.0. 

 

Table S2.4. Estimates of level of correlation between livestock disease risk factor variables using Kendall’s tau 

statistic – assessed prior to inclusion in multivariable models 

 Correlation Kendall’s tau P value 

Household number of cattle and number of cattle introductions 0.21  (0.17 – 0.24) <0.01 

Household cattle herd size and sub-village cattle herd size 0.43  (0.41 - 0.46) <0.01 

Household number of cattle introductions and sub-village 

estimated number of cattle introductions 

0.27  (0.24 - 0.30) <0.01 
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Sub-village herd size and sub-village estimated number of cattle 

introductions 

0.44  (0.41 – 0.46) <0.01 

Sub-village number of cattle introductions and in-degree 

(SEEDZ only data) 

0.47  (0.44 – 0.50) <0.01 

Cattle data sub-village degree and in-degree 0.75 (0.73 – 0.76) <0.01 

Cattle data sub-village degree and betweenness 0.64 (0.62 – 0.66) <0.01 

Cattle data sub-village in-degree and betweenness 0.52 (0.50 – 0.54) <0.01 

Household number of shoats and number of shoat introductions 0.21 (0.18-0.23) <0.01 

Household shoat herd size and sub-village shoat herd size 0.49 (0.47-0.51) <0.01 

Household number of shoat introductions and sub-village 

estimated number of shoat introductions 

0.32 (0.3-0.35) <0.01 

Sub-village shoat herd size and sub-village estimated number of 

shoat introductions 

0.41 (0.39-0.43) <0.01 

Sub-village number of shoat introductions and in-degree 

(SEEDZ only data) 

0.66 (0.64-0.67) <0.01 

Shoat data sub-village degree and in-degree 0.75 (0.73-0.76) <0.01 

Shoat data sub-village degree and betweenness 0.64 (0.62-0.66) <0.01 

Shoat data sub-village in-degree and betweenness 0.52 (0.5-0.54) <0.01 

 

9.2.5.4 Multivariable results 

Small holder data were excluded from the SEEDZ only data analysis for the Brucella spp. 

and C.Burnetii models because there were so few events in these groups to model (N =2) 

their inclusion resulted in model instability and a failure to converge. In the combined 

dataset there were N=12 events for each Brucella spp. and C.Burnetii thus the models 

were able to be fitted with the small holder data included.  
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9.3 Chapter 4 

9.3.1 Tax collection at markets 

Primary markets: Under local government control, so there is a local government tax 

collector who collects the ‘market fee’ 

Secondary markets are under central government control so there should only be 

someone from the central government present collecting the market fee. (However, 

there are also local government revenue collectors at the secondary markets collecting a 

fee and people do not know that this is not actually necessary and they central 

government collectors and people who run the market do not want to cause conflict with 

the local government people collecting extra revenue, this is specifically at Themi and 

Mesarani markets, I did not see any local government revenue collectors at Weruweru)  

It is the buyers who pay the revenue market tax, per head of cattle = 5,000 TzSh, per head 

of small ruminant = 1,500 TzSh. The tax is collected, by the market local government 

revenue collector, whether the buyer takes a movement permit or not. The tax receipt 

should match the movement permit for the number of animals being purchased and 

moved and these should be checked together as the buyers leave the market with their 

animals. At primary markets the local government revenue collector uses a receipt 

machine to issue a receipt of payment and a smart phone app to register the tax/sale. 

This is supposed to be done at all markets but we didn’t see it happening very often. We 

do not know where the data is stored and exactly what is collected (origin/destination 

information for example). At secondary markets the market fee is collected by the 

accountant or similar and an exchequer receipt issued to prove the market tax has been 

paid. 

9.3.2 Supplementary details about livestock movement permits 
and taxes 

By law an animal moving from point A to point B should have a movement permit. If 

animals are being moved for grazing and then back to a boma they are not required to 

have a movement permit. Village to village movements do require a permit and the 

process to get this permit is complex; the animals must be inspected by the LFO to ensure 

they are healthy (I am not sure how this is done - I assume they have to not be exhibiting 

any obvious signs of clinical disease, I do not know if they check for ticks, body condition 
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etc.) and there must be 1.a letter from the receiving village or district to to show that 

there is communal land or that the animal owner has private land in the receiving village 

that is fine to be grazed. Thus, due to the logistical complexities involved with getting the 

permit, and the fee involved, it is very rare that they are ever used. My source who spent 

years checking the permit books at Arusha office estimated that <1% of permits we have 

will represent village to village movements.  

Movement permits are issued at the end of the market day after all of the sales are 

completed, as people leave the market. Generally animals owned by different people who 

are going to the same destination are grouped together and one permit is written for the 

truck or tracker taking the animals onward.  

In Mbulu there is one LFO issuing all of the permits at the different markets on different 

days so he said he could issue one permit to cover the buyer buying animals at more than 

one market. Movements of animals from markets, within the district, are less likely to 

take movement permits. They are supposed to, however they are unlikely to get stopped 

if they are making short journeys so they may try to not take permits. This will be slightly 

different at different markets depending on the LFO’s and peoples attitudes towards the 

permits and revenue collection and it will be quite difficult to quantify the missing ‘within 

district’ movements not represented, we should be able to see from the market Q the 

proportion of movements that are ‘within’ and ‘out with’ the district but in total we 

interviewed fewer buyers that sellers.  

The movement permit fee is different to the market tax revenue and should be paid to 

the central government. (This is possibly why the revenue collection which stays with 

local government could be a higher priority than issuing the movement permit and 

collecting the fee for the permits at primary markets?) 

Cattle within district = 1000 TzSh 

Cattle outwith district, within region = 1500 TzSh 

Cattle outwith region = 2500 TzSh 

Shoats within district = 500 TzSh 

Shoats outwith district, within region = 1000 TzSh 

Shoats outwith region = 1500 TzSh 

The DVO is responsible for issuing the movement permits for his district however there 

are many markets within districts thus he delegates to LFO’s associated with local 
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markets. An LFO can be responsible for attending more than one market and can also 

delegate some of his role to LEO’s. The market master is responsible for overseeing the 

revenue collection by the local government revenue collectors. The market masters can 

be other members of local government such as the ward executive officers. The district 

executive officer is responsible for appointing the market master/supervisor and he can 

chose anyone he see’s fit.  

One person is responsible for issuing the movement permit at Meserani and they work 

with a cashier who collects the money for the permit. This should match the numbers on 

the permit and is attached to the movement permit. At Mesarani there are 2 livestock 

field officers (LFO’s) and 2 livestock extension officers (LEO’s) and an accountant 

collecting revenue tax, writing the movement permits, collecting the movement permit 

fee and checking the permits and tax receipts on animals exit from the market. They are 

still very busy and feel like the job could be done more thoroughly with more man power.  

9.3.3 Supplementary notes about livestock markets 

Prices at secondary markets appear to be much higher than at primary markets (Pica-

Ciamarra et al., 2011). 

There is illegal movement of animals from the Northern Zone of Tanzania markets across 

the border into Kenya which is going to be difficult to capture; the demand and prices in 

Kenya are higher and there are larger meat processing plants. People moving animals 

north of the border are generally buying high numbers and trucking them together with 

others to Longido, or areas close to the border that are accessible by road, then the 

animals are walked by Massai across the border and picked up by trucks at the other side.  

The 2009 Tanzanian National Panel Survey data showed that 63% of livestock keepers 

sold livestock in their own village, 46% had sold in a neighbouring village, 6% sold in the 

same region but a different district within the region and 2% sold out with their region 

(Covarrubias et al., 2012). 

Efforts have been made to standardise sale prices of livestock by introducing a standard 

price per kilo and weigh scales at some markets however there is a reluctance to use this 

system from both sellers and buyers. Each party thinks this system will allow the other to 
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achieve a more desirable price thus traditional bartering remain the way most livestock 

prices are agreed. Price is not standardised across districts, regions or times of year. 

 

Within markets, animals in better body condition were found to fetch a higher price (Pica-

Ciamarra et al., 2011) but despite this only 20% of surveyed households reported 

purchasing extra fodder for livestock that would improve their body condition before sale 

(Covarrubias et al., 2012). The full effects of limiting or redirecting livestock movements 

and markets are important to consider when developing a pathogen control programme 

as pathogen flow will not be the only thing that is hindered. Money and information 

transfer will also be affected.  

 

 

 

9.3.4 Market visits and notes on the specific markets:  

Participant selection 

Middle men were often present at the market and work by both buying and selling livestock 

in the market on that day but not moving the livestock themselves to or from the market. 

Although the middle-men are involved in the value chain and run a business as a result of 

livestock sales they do not physically move livestock between different points and often do 

not know the details of the origin of the animals they are selling thus they were not asked 

to participate in the survey . 

 

Market specific details 

25/04/17 Weruweru, Hai, Kilimanjaro 

Secondary market, close to Moshi, large and busy. Many middle men as people bring 

large numbers of animals then sell to middle men and they sell on from the smaller 

groups. for example, a man sells 20 cattle to 4 middle men and they each sell 5 to buyers. 

Mixed species, animals arriving and leaving by truck. See evidence of people using 

movement permits to exit and some permits are being collected on arrival.  

26/04/17 Makanya, Same, Kilimanjaro, -4.359809, 37.821463 

Primary market, shoats only. People predominantly arriving on foot. Some people buying 

to take home to their own flocks, some buying to truck together with others specifically 
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for meat, some buying for local meat consumption, leaving on pikipiki or daladala. Today 

was a small market but every other week there is a larger market with cattle here.  

28/04/17 Mgagao, Same, Kilimanjaro 

Primary market, large and mixed stock. Animals all seem in fair condition. Three large 

trucks left with shoats. Animals appeared to be arriving on foot. Some middle men for the 

cattle make finding actual sellers and buyers who are taking away from the markets .  

29/04/17 Naibili, Siha, Kilimanjaro 

Primary market, mixed livestock, poor to fair condition, animals arriving and leaving on 

foot, poor access by road, some trading before official market started, some middle men, 

once market started (market master arrived and everyone inside fenced area) everyone 

leaving needed a pink slip.  

Purchases of 1-2 shoats for local consumption, selling to get money to meet needs. West 

Kilimanjaro area, the weather here has been good recently with lots of rain.  

01/05/17 Arash, Ngorongoro, Arusha  

Primary market, shoats only, very rural, all Massai, 2 trucks buying and taking the animals 

north, they say they are going to Wasso but we suspect they are going further north to 

Kenya, some do name the Kenyan market. Animals here are in fair condition, there has 

been some good weather here recently and sheep and goats are a little fitter and ready 

for sale in comparison to the cattle. People are selling animals to get money to meet the 

family needs and shoats specifically because they are fit for sale but the cattle are still 

recovering from the drought and are in poorer condition (so comparatively price for 

shoats is better at the minute). People tend to be selling small numbers 1-5, but many 

shoats arrive in large groups of 10-20, being walked together by a number of owners from 

their own villages. Quite a lot of ticks here and some sheep with raised respiratory rates. 

One buyer was buying 20 sheep to expand his own flock, most groups being bought were 

for meat.  

02/05/17 Endulen, Ngorongoro, Arusha 

Primary market, mixed , animals appear in fair to good condition, prices for cattle here 

are very low. there are many more sellers than buyers, some people have been coming 

here repeatedly for a number of weeks and taking their cattle home again due to lack of 
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buyers and very low prices. There is a noticeably high proportion of smaller cattle 

intended for sale for breeding and there appears to be a mix of stock being sold, in that 

people are selling some of their own cattle and some cattle that they bought at other 

markets and fattened for a few months and are now trying to sell again here. This has not 

worked out very well though it seems as prices being offered are lower than the original 

purchase price (Avg. 300,000 TZsh) which is why people have been taking the animals 

home again in recent weeks. 

There are also two women selling here, they have been given money by the NCA to 

buy/rear and sell cattle as a business. There is a thought here that this is when people are 

selling large cattle suitable for slaughter due to money needs and that they should want 

to replace them with new breeding stock.  

05/05/17 Themi, Monduli, Arusha 

Secondary market, mixed livestock. Many cattle are walked here from Simanjiro. The only 

market i have noticed so far where the LFO is collecting permits from treckers as they 

arrive into the market area. The majority of buyers are butchers. Some people are buying 

to take to Mesarani market, Weruweru (both other secondary markets) or to Arusha 

meats. A number of buyers will take the cattle to Kenya. The animals here are in fair-good 

condition. The shoats are gathered and sold in a smaller walled enclosure separate to the 

cattle and have to pass the LFO to leave the walled area.  

06/05/17 Oldonyosambu, Arumeru, Arusha 

Primary market, mixed livestock, just off the main road outside Arusha on the Longido 

road, about 30 minutes drive from Arusha, fairly close to Sakina abattoir (Arusha meats). 

Animals are arriving here on foot, generally from not far away (1-3 hours walk?) and the 

animals seem to be in fair condition. Many shoats are leaving in trucks. There are buyers 

here buying 20-40 shoats and transporting them with others north to Kenya though they 

are not willing to talk to us about where they are going officially. Animals appear clean 

and healthy, there are also some calves for sale here which is different, I haven't noticed 

so many calves for sale at other markets.  

08/05/17 Mesarani 

Secondary market, only cattle on a Monday, cattle arriving by truck and leaving on trucks. 

Many walking from Singida to Karatu (6 days) then taking a truck to Mesarani (in groups 

of 12-30) with other groups of cattle. Cattle are in good condition and going for high 
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average prices, around 750-800,000. Cattle are going to Sakina Abattoir in Arusha or to 

Longido and then north into Kenya. The people taking cattle north were not very willing 

to give that answer as a destination as it is illegal.  

09/05/17 Njia Panda, Moshi  

Primary market, small, 1 hour east of Moshi on the Dar road, very easy road access. 

Mixed livestock, cattle in particularly are in poor to fair condition. Animals generally 

arriving on foot in small groups and have traveled for 0-3 hours. The price of cattle here is 

quite low in comparison to Mesarani/Weruweru. Buyers are using this market as there 

are animals here that meet their needs, small butchers are buying 1 or 2 because it is 

there day to slaughter. The slaughter slabs in a village take turns to slaughter (village 

timetable) and they use the market that fits best with the day they are allocated to 

slaughter. The prices vary between the local markets but they say they just use whichever 

is on their allocated day to buy because they don't have the spare capital to buy a cow 

too far in advance. (But the difference in price could be 200,000 tzsh so I need to look into 

this, it is interesting that they wouldn't just buy at the closest/cheapest market and hold 

the animal at there house/butchery till their slaughter day. I wonder how often slaughter 

days are? Something to ask at village level.)  

10/05/17 Mateves, Arusha 

Primary market, shoats only, 10km outside Arusha. Some people buying for local 

abattoirs and slaughter slabs in Arusha, buyers have orders from processors or something 

similar. There are also a couple of buyers taking many (30-40) shoats to go north to 

Longido (most likely then into Kenya). These people say they are too busy to answer 

questions but are more than happy to let us sample the animals they have bought as they 

are for meat. Animals tend to be arriving on foot and have not travelled far (0-2 hours) 

and are being sold for family needs. The body condition of sheep is worse than goats and 

they are dirtier. There are some noticeably ill animals here (n=3). Ormilo? Heart water?  

13/05/17 Gilai Bomba, Longido, Arusha 

Medium sized, mixed livestock Massai market, all animals arriving on foot, no good road 

access. Noticed a couple of cattle with cutaneous nodules (lumpy skin disease? cutaneous 

TB? I need to ask someone about these cattle with lumps all over them, they usually look 

in poorer condition than other cattle being sold at the same market/in same group). 
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Some people mentioned that they were buying animals here because they were good 

prices and then they would keep for a couple of months to fatten and sell - although 

there isn't a lot of grass here and the rainy season is through so I am not sure how this 

will work? But it seems like a sensible economic decision, if the animals do grow/fatten. 

Note, the mapping of grass land and feed back to villages is happening here so people 

may feel like they have the ability to successfully graze and fatten animals here where 

previously they may have not.  

17/05/17 Gendi, Babati Town council, Manyara  

Primary mixed market, by the road side, around 5k out of town, the only market in this 

town district, this is a relatively new administrative district. 

There was slaughter of livestock here and they were cooked on the fires at the market to 

make nyama chime which is one of the main reasons people like to visit the market. This 

is an agri pastoral area, the crops are looking good, there has been a lot of rain over the 

past few weeks. People are selling small livestock animals to get money to buy food, 

some for school fees. Yesterday there was a large market at Galapo and 200-300 shoats 

were sold so today there are fewer sellers and animals here and thus the prices are high. 

Some of the buyers here today are people who we met selling at Oldonyosambu market 

close to Arusha last week.  

18/05/17 Riroda, Babati district council, Manyara 

Primary market, fairly small, mixed livestock, 30 minutes drive from Babati, Irac tribe 

area. People are much less willing to talk and felt like more of a hostile environment. The 

livestock, particularly the cattle, were in poorer condition, I noticed a couple of thinner 

animals with SC lumps on the skin over the ribs and shoulder area. There is a notably high 

proportion of younger animals here. People are buying young stock for growing and 

fattening. 

The price at this market varies, from December to May the price is low. During this time 

people do not have food so they sell animals to get money to buy food. Then when the 

crops are harvested they have food and can sell surplus crops for money and then use this 

money to buy animals to replace the ones they were forced to sell during times of 

hardship. During this time (June/July onwards) after the rains cattle may be in better 

condition and the numbers supplied at the market are much lower (there is not the need 

to sell) so the prices are much higher. (they quoted 250,000 now (mid May), 700,000+ 
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later in the year). 

People do not seem concerned with disease and losing the animals that they invest in, 

they appear to be happy to continue investing their money in this way. (I need to ask 

more about this at village level to understand how assets and basic needs and luxuries are 

prioritized).  

19/05/17 Dongobesh, Mbulu, Manyara 

Primary market, large and mixed stock and separate holding pens for larger (intended for 

meat market) and smaller cattle (intended for breeding) estimated 200 cattle being sold 

here today. Shoats are being sold in a separate area. This market happens twice a month 

and we were there on the busier day. People were buying here and buy at other markets 

locally then take cattle to Mesarani, the cattle seemed in fairly good condition, the cattle 

intended for breeding or keeping to fatten up for draught power use were noticeably 

smaller and thinner and going for much lower prices in the separate area. Animals here 

appeared to be predominantly arriving and leaving on foot. There were many sellers but 

few buyers in comparison so the sellers complained that the price was very low in 

comparison to what they wanted as there was less competition between buyers they 

could wait and force the price down (market saturation).  

20/05/17 Dirim, Mbulu, Manyara 

Primary mixed market, also only happens twice a month, crazy cattle (around 300+ 

today), brought here by different tribes. Cattle mostly in very good condition, Zebu breed. 

All arriving on foot and leaving on foot, animals here are coming from the rift valley, 

mainly Tatanga tribe, where people don't cultivate the land they simply graze it so the 

animals are looking fit and healthy, in good condition. I noticed one cow here with S/C 

lumps on its back legs. A buyer here was going to sell to a butcher, but said the butcher 

varies the price he is willing to pay so a good price purchase today doesn't necessarily 

equate to good profit margins for him. 

22/05/17 Engaranaibor, Longido (Mairowa village), Longido  

Primary market, mixed small and large ruminants, separate walled pens for both the 

cattle and the small ruminants. Cattle here were in good condition, mostly Boran breed 

cattle, around 50 being sold today, there appeared to be a lot of discussion going on, a 

good sellers:buyers ratio. There were a lot of smaller cattle that were being sold and the 
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owners thought they would be good for breeding but the buyers were mainly there 

looking for meat/purchasing cattle to sell on either in Kenya or at Oldonyosambu or 

Mesarani for markets. Again people were bringing 1-3 cattle for sale and buyers were 

looking to buy around 5. One man was looking for 10-20 depending on price, to supply a 

small abattoir in Namanga at the border, he will only buy this number if the price is good. 

This market is close to the border and people often buy here and take to Kenya.  

Recently (over the past 1-2 months) people have been finding Ruby at the local mine and 

the influx of cash is being spent by local people here on livestock, people are buying cattle 

and goats to expand their existing herds and flocks (possibly why there were more people 

trying to sell younger good breeding animals), meaning at the minute more buyers here 

are keeping the animals in Longido rather than exporting them to Kenya so perhaps more 

livestock are staying in the area in comparison to during normal financial times when the 

demand for livestock meat from Kenya is higher than it is locally thus driving the flow of 

livestock into Kenya from this area. There is a higher demand for goats than cattle and 

sheep here, from people who are buying to expand their herds/ flocks, as the climate and 

grazing conditions more recently (over the past few years) are thought to suit goats the 

best (there is less grass available).  

4 cattle being sold were tagged to say they were vaccinated against ECF. 

This again is in the grazing management satellite imaging district, I am meeting with these 

people on Monday.  

24/05/17 Sukuro, Simanjiro district, Manyara 

Primary market, medium sized mixed livestock, cattle and shoats being sold at different 

sides of the large market. Estimate around 150 cattle being sold here today, it looked like 

there were some pink slips being given out to people who were buying cattle and there 

was something happening with the shoats being placed in a pen after purchase, before 

they left the market they likely needed to get a permit too and it was being enforced. 

A buyer told me that this is a good market to buy at as there are few buyers thus 

competition is low and generally the sellers need to sell. This lady was going to take some 

animals to her own butchers,  

25/05/17 Terrat, Simanjiro district, Manyara 

Primary, small mixed local town market, estimated 40 cattle being sold today, perhaps 
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around 100 shoats, trucks parked close by on the main road which is a good dirt road that 

goes to Themi market, people are here buying who were also buying at Sukuro market 

yesterday.  

26/05/17 Emboret, Simanjiro district, Manyara 

Primary market, small ruminant only, supposed to be a pastoral area but there are some 

fields of crops here now. 27km from Terrat, there are lots of wildebeest and cattle on the 

plains around this area. Estimated 150 shoats being sold today, people are selling 1-6 

animals, arriving on foot some individually and some as parts of large groups. People 

interviewed tend to use this market, Sukuru or Terrat for selling their stock. One person is 

here because he failed to finish seeing all of his goats at Terrat yesterday. There are a 

number of buyers at this market not willing to talk to us, they are taking the animals to 

sell at Kenya, Keryobogy market was the only market in Kenya mentioned. 

30/05/17 Weruweru, Hai district, Kilimanjaro  

Secondary market, re visit to market to collect more questionnaire responses as this was 

the first market visited. In comparison to the last time we were here, 4 weeks ago, there 

are more animals here this week, the market appears less hectic because buyers are 

standing back waiting for the sellers to lower there prices  

The market master was collecting permits from people as they arrived with batches of 

cattle. The permits would be for around 40 animals but those animals are owned by a 

number of people. All people that I interviewed here were bringing animals here that 

they had bought at other markets in different areas. At this time (Mid May) a lot of the 

animals were coming from Tabora region and they were in very good condition, this is 

within the lake zone where they usually get the rains earlier (November to December) so 

the cattle are fit for sale earlier than those in other regions where they get the rains later. 

The price is lower in Tabora from January to March as there are many cattle getting fat 

and ready for sale, however the price in Tabora goes up from April - May as there are 

many people going there to buy from Dar Es Salaam, Sinray (a border market) and Nairobi 

due to the quality of the cattle.  

31/05/17 Longido, Longido, Arusha (-2.727363, 36.688137)  
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Very small informal market, the official market takes place on a Saturday. There were 

only 3 buyers, all buying small ruminants to take to Kenya. The sales were just being 

carried out beside a water point. There were mentions of no money changing hands 

between some people, the sellers would get there money when the buyers returned from 

Kenya having sold the animals on. I estimated that there were 35 goats and 3 sheep sold 

here today. The sellers were not hanging around, it was a simple arrive with animals, take 

money and leave situation. Perhaps because there were so few buyers there was no 

space for price negotiations or competition. There were no permits and no one collecting 

revenue.  

03/06/17 Longido, Longido, Arusha (-2.727363, 36.688137)  

Primary market, official market functioning on a Saturday, mixed small and large 

ruminants. Animals were held within spikes bush fenced areas, cattle separate from 

shoats. Estimated 200 shoats (predominantly goats), 60-70 cattle, all buyers interviewed 

were taking purchased animals to Kenya. Prices were thought to be good at this market. 

Generally the shoats were in good condition.
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9.3.5 Market survey 

type Name Label Hint requ
ired relevant 

start start     

integer q_number Questionnaire number    

text market Market name   yes  

text district District  yes  

text region Region  yes  

date date Date    

      

text origin Where have you travelled from (Ulisafiri kutoka wapi)  yes  

text origin_district 
Which district did you travel from (Ulisafiri kutoka 
wilaya gani) 

   

integer journey_to_time 
How long did it take you to get here (Ilikuchukua muda 
gani kufika hapa) 

Answer 
must be 
number 
of hours 

yes  

select_one transport 
transport_to_
m 

What mode of transport did you use to get here 
(Ulitumia usafiri gani kufika hapa) 

 yes  

select_one origin_type origin_type 
What type of place did you travel from (Ni sehemu 
gani ulizotembelea) 

 yes  

      

      

select_one yes_no selling 
Are you selling animals here today (Je unauza wanyama 
hapa leo) 

  yes   
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select_one species 
species_selling 

What species are you selling today (Je ni aina gani ya 
wenyama unauza leo) 

 yes selected(${selling},'yes') 

integer nof_selling 
How many animals are you selling today (Unauza 
wangama wangapi leo) 

 yes selected(${selling},'yes') 

select_one age age_selling 
How old are the animals you are selling ( Je ni 
wanyama wa umri gani) 

  selected(${selling},'yes') 

select_one 
body_cond_score 

avg_bcs_selling 
What is the animals (average) Body Condition Score 
(Je wana afya nzuri) 

 yes selected(${selling},'yes') 

select_multiple 
disease_evident 

dz_evident_sell
ing 

Is there any evidence of disease in this animal(s) (Je 
kuna dalili yeyote ya ugonjwa) 

 yes selected(${selling},'yes') 

text 
dz_selling_othe
r 

What other disease is evident   selected(${dz_evident_
selling},'other') 

      

select_one own_animals own_animals 
Are the animals you are selling your own (Je wanyama 
unaouza ni wako?) 

 yes selected(${selling},'yes') 

select_one nof_vil_from 
nof_villages_fr
om 

How many villages are the animals from (Wanyama 
hawa wanatoka vijiji vinapi?) 

  selected(${selling},'yes') 

      

select_multiple 
journey_contacts 

contacts_journ
ey_to 

Did you contact other herds or flocks on your journey 
here (Ulikutana na makundi mengine ulipoku unakuja 
hapa?) 

 yes selected(${selling},'yes') 

   
 

  

select_multiple 
reason_species_sold 

reason_sold_ca
ttle 

Why are you selling Cattle (Kwanini unauza ng'ombe) 
 

 selected(${species_selling}
,'cattle') 

select_multiple 
reason_species_sold 

reason_sold_sh
eep 

Why are you selling Sheep (Kwanini unauza kondoo) 
 

 selected(${species_selling}
,'sheep') 
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select_multiple 
reason_species_sold 

reason_sold_go
at 

Why are you selling Goats (Kwanini unauza mbuzi) 
 

 selected(${species_selling}
,'goat') 

select_multiple 
reason_species_sold 

reason_sold_sh
eepgoat 

Why are you selling Sheep and Goats (Kwanini unauza 
kondoo na mbuzi)  

 selected(${species_selling}
,'shoat') 

select_multiple 
reason_species_sold 

reason_sold_ca
ttlesheepgoat 

Why are you selling Cattle and Sheep/Goats (Kwanini 
unauza ng'ombe na kondoo na mbuzi)  

 selected(${species_selling}
,'cattle&shoat') 

   
 

  

select_multiple 
reason_animal_sold 

reason_sold_an
imal 

Why are you selling these specific animals (Kwanini 
unauza wanyama hawa?)  

yes selected(${selling},'yes') 

text 
reason_sold_an
imal_other 

Enter other reason for selling these specific animals 
 

 selected(${reason_sold_a
nimal},'other') 

select_multiple 
money_use 

money_use 
What is the money for (Je pesa unatumia kufanya 
nini?) 

 yes selected(${selling},'yes') 

text 
money_use_ot
her 

Enter other reason the money is for   selected(${money_use},'ot
her') 

select_one aim_sell_to who_selling_to 
Who do you wish to sell these animals to (Je ni nani 
ungependa kumuuzia wanyama hawa?) 

 yes selected(${selling},'yes') 

text 
who_selling_to
_other 

Enter other person you wish to sell to    selected(${who_selling_to
},'other') 

select_one no_sale_plan no_sale_plan 
If you do not sell the animals here today what will you 
do (Je usipouza wanyama hawa leo utafanya nini?) 

 yes selected(${selling},'yes') 

text 
no_sale_plan_o
ther 

Enter other no sale plan   selected(${no_sale_plan},'
other') 
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integer min_price 
What is the minimum price per animal you wish to 
take (Mi kiasi gani ungependa kuuza kwa kila 
mnyama?) 

  selected(${selling},'yes') 

integer price_achieved 
What price per animal did you get (Je unapata bei 
gani kwa kila mnyama) 

  selected(${selling},'yes') 

      

select_one yes_no buying Are you buying animals today (Je unanunua wanyama leo)   yes   

select_one species 
species_purcha
sed 

What species are you buying (Unanunua wanyama 
gani) 

 yes selected(${buying},'yes') 

integer nof_purchased 
How many animals are you buying (Unanunua 
wanyama wangapi) 

 yes selected(${buying},'yes') 

select_one age age_buying 
how old are the animals you are buying today  
(Wangama unaonunua wana umri gani) 

 yes selected(${buying},'yes') 

select_one 
body_cond_score 

avg_bcs_purch
ased 

What is the animals (average) Body Condition Score 
(Je wana afya nzuri) 

 yes selected(${buying},'yes') 

select_multiple 
disease_evident 

dz_evident_pur
chased 

Is there any evidence of disease in this animal(s) (Je 
kuna dalili yeyote ya ugonjwa) 

 yes selected(${buying},'yes') 

text 
dz_evident_pur
chased_other 

Enter other disease evident   selected(${dz_evident_pur
chased},'other') 

      

select_multiple 
reason_species_purchased 

reason_cattle_
purch 

What is the reason for purchasing cattle (Je ni kwanini 
unanunua ng'ombe) 

  selected(${species_purcha
sed},'cattle') 

select_multiple 
reason_species_purchased 

reason_goat_p
urch 

What is the reason for purchasing goat (Je ni kwanini 
unanunua kondoo) 

  selected(${species_purcha
sed},'sheep') 

select_multiple 
reason_species_purchased 

reason_sheep_
purch 

What is the reason for purchasing sheep (Je ni kwanini 
unanunua mbuzi) 

  selected(${species_purcha
sed},'goat') 
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select_multiple 
reason_species_purchased 

reason_sheepg
oat_purch 

What is the reason for purchasing sheep and goats (Je 
ni kwanini unanunua kondoo na mbuzi) 

  selected(${species_purcha
sed},'shoat') 

select_multiple 
reason_species_purchased 

reason_cattles
heepgoat_purc
h 

What is the reason for purchasing cattle, sheep, goats 
(Je ni kwanini unanunua ng'ombe, kondoo / mbuzi) 

  selected(${species_purcha
sed},'cattle&shoat') 

      

select_multiple 
reason_animal_purchased 

reason_animals
_purch 

What is the reason for purchasing these animals (Je 
wanyama hawa utawapeleka wapi?) 

  selected(${buying},'yes') 

text 
reason_purch_
other 

Enter reason these animals were purchased    selected(${reason_animal
s_purch},'other') 

      

text 
destination_na
me 

What is the name of the place you take these animals 
(Je wanyama hawa utawapeleka wapi) 

 yes selected(${buying},'yes') 

select_one 
destination_type 

destination_typ
e 

What sort of place is your destination (Je ni maeneo 
gani utawapeleka wanyama hawa) 

 yes selected(${buying},'yes') 

text 
destination_typ
e_other 

Enter type of destination   selected(${destination_ty
pe},'other') 

integer 
time_destinatio
n 

How long will journey take (Je safari yako itachukua 
muda gani) 

Enter 
number 
of hours 
journey 
will take 

yes selected(${buying},'yes') 

select_one transport 
transport_from
_market 

How will you travel to the next destination (Je 
utatumia usafiri gani kuwafikisha wanyama hawa) 

 yes selected(${buying},'yes') 

      

select_multiple 
why_this_market 

why_market 
Why did you choose to use this market (Kwanini ulichagua 
kutumia soko hili) 

 yes selected(${buying},'yes') 
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select_one yes_no more_q_time 
Do you have time to answer a couple more questions (Je 
una muda wa kujibu maswali mengine zaidi) 

  yes   

select_one yes_no other_markets Do you use other markets (Je unatumia masoko mengine)   selected(${more_q_time},'
yes') 

text 
other_markets
_name 

What other markets do you use (Ni masoko gani mengine 
unatumia) 

  selected(${other_markets}
,'yes') 

text 
other_markets
_name2 

What other markets do you use 2 (Ni masoko gani mengine 
unatumia) 

 selected(${other_markets}
,'yes') 

select_multiple 
why_other_markets 

why_other_mark
et 

Why do you use other markets (Kwanini unatumia masoko 
mengine) 

  selected(${other_markets}
,'yes') 

select_multiple 
others_sale_reasons 

others_reason_
market 

What are the main reasons that other people sell animals 
at Market (Ni sababu gani inawafanya watu kuuza 
wanyama sokoni) 

  selected(${more_q_time},'
yes') 

      

select_one yes_no vag_swab swab collected (Je mnakusanya ufusi)  yes  

integer nof_swabs 
How many swab samples were taken (Je mnakusanya 
fusi ngapi) 

If more 
than 1 
animal in 
batch 

  

select_one yes_no faeces_sample faeces collected (Je mlikusanya kinyesi)  yes  

integer 
nof_faeces_sa
mples 

How many faeces samples were taken (Je mlichukua 
aina ngapi za kinyesi) 

If more 
than 1 
animal in 
batch 

  

      

end end     
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Response Choices  

list name name label::eng 

transport a 
On foot - alone (kwa miguu - 
pekeyako) 

transport b 
On foot - with other people (kwa 
miguu - na watu wengine) 

transport c vehicle - alone (kwa gari - pekeyako) 

transport d 
vehicle - with other herders (kwa gari 
- na watu wengine) 

   
origin_type homevillage Home - village (nyumbani - kijijini) 
origin_type hometown Home - town (nyumbani - mjini) 

origin_type othervillage 
Village - other (kijijini - na watu 
wengine) 

origin_type market Market (sokoni) 

origin_type slaughterpoint 
Slaughter place (sehemu za 
machinjio) 

origin_type other Other 

   
yes_no yes Yes (ndio) 
yes_no no No (hapana) 

   
species cattle Cattle (ng'ombe) 
species sheep Sheep (kondoo) 
species goat Goat (mbuzi) 
species shoat Sheep & Goat (kondoo na mbuzi) 

species cattle&shoat 
Cattle & Sheep/Goat (ng'ombe, 
kondoo / mbuzi) 

species other Other 

   

age 
<1 

less than 1 year (chini ya mwaka 
mmoja) 

age 
1-3 

1 - 3 years (mwaka mmoja hadi 
miaka mitatu) 

age 4< 4 years or over (miaka minne zaidi) 
age mixed mixed (miaka mcha nganyiko) 
 

  
body_cond_score <1.5 emaciated (amekonda sana) 
body_cond_score 1.5-2 thin (amekonda) 
body_cond_score 2.5-3 normal (kawaida) 
body_cond_score 3.5< fat (mnene) 
 

  
disease_evident skincond Skin Condition 
disease_evident metritis Metritis or Endometritis 
disease_evident RFM Retained Foetal Membranes 
disease_evident lameness Lameness 
disease_evident Diarrhoea Diarrhoea 
disease_evident NoneEvident None Evident 
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disease_evident other Other (mengineyo) 
 

  
own_animals all all (wote) 
own_animals most most (wengi wao) 

own_animals some some (baadhi) 

own_animals none none (hakuna) 

   
nof_vil_from OneVillage One village (kijiji kimojo) 
nof_vil_from TwoVillages Two Villages (vijiji viwili) 

nof_vil_from 
ThreeOrMoreVillage 

Three or more villages (vijiji vitatu 
zaidi) 

 
  

journey_contacts No No (hapana) 

journey_contacts 
YesTravelledWith 

Yes - made journey with other herds 
(ndio - ninasafiri na makundi 
mengine) 

journey_contacts 
YesWater 

Yes - at watering points on route 
(ndio - katika kituo cha kunywea 
maji) 

journey_contacts 
YesGrazing 

Yes - at grazing points on route (ndio 
- katika kituo cha kulisha majani) 

   

reason_species_sold 
moneyworth 

Worth more money (kupata pesa 
zaidi) 

reason_species_sold 
moreavailable 

I have more of these available (nina 
wanyama wengi zaidi) 

reason_species_sold 
lessimportant 

They are less important to me 
(hawana umuhimu kwangu) 

reason_species_sold 
highdemand 

There is a high demand for these 
(wanahitajika zaidi) 

reason_species_sold 
allavail 

They are all I have to sell (nahitaji 
kuuza wote) 

reason_species_sold other Other (mengineyo) 

   

reason_animal_sold 
dzathome 

High disease risk at home (hatari 
kubwa magonjwa nyumbani) 

reason_animal_sold 
animaldz 

animals have disease (wangama 
wanamagonjwa) 

reason_animal_sold slaughter For slaughter (kwaajili yakuchinja) 

reason_animal_sold 
nofoodavail 

Not enough food (hakuna chakula 
chakutosha) 

reason_animal_sold 
nowateravail 

Not enough water (hakuna maji 
yakutosha) 

reason_animal_sold 
environmentcatast 

Environment problem (matatizo ya 
mazingira) 

reason_animal_sold 
moneyotherlivestock 

Need money to buy other stock 
(nahitaji pesa kununua wanyama 
zaidi) 



335 

reason_animal_sold 
moneyotherthing 

Need money for other things 
(nahitaji pesa kwa matumizi 
mengine) 

reason_animal_sold 
nospace 

Not enough housing space (hakuna 
nafasi ya kuweka mifugo nyumbani) 

reason_animal_sold 
geneticsbreeding 

Genetic reasons / for breeding 
(kwasababu ya kuzaliana/maumbile) 

reason_animal_sold 
timeofyear 

Time of year you always sell (muda 
wa kufanya mauzo kwa mwaka) 

reason_animal_sold abortion Abortion (kutoka kwa ujauzito) 
reason_animal_sold other Other (mengineyo) 
 

  
money_use schoolfee School fees (ada ya schule) 
money_use celebration Celebration (sherehe) 

money_use 
illness 

Illness / emergency (ugonjwa / 
dharura) 

money_use 
householdpurch 

household purchase (kununua vita 
vya nyumbani) 

money_use 
goodpriceop 

Opportunity for a good price (bahati 
ya kupata bei nzuri) 

money_use 
buyothers 

to buy other animals (kununua 
wanyama wengine) 

money_use buisness buisness (biashara) 
money_use other Other (mengineyo) 

   
aim_sell_to meatco Meat company (kiwanda cha nyama) 
aim_sell_to butcher Butcher (kwaajili ya kushinja) 
aim_sell_to farmer Farmer (wakulima) 
aim_sell_to livestockkeeper Livestock keeper (wafugaji) 
aim_sell_to samevilperson Same village (mtu wa kijiji kimoja) 
aim_sell_to samedistperson Same district (mtu wa wilaya mojo) 
aim_sell_to other Other (mengineyo) 

   

no_sale_plan 
leave 

Leave them here till next sale 
(unawaacha hapa) 

no_sale_plan takehome Take home (utawapeleka nyumbani) 

no_sale_plan 
othermarket 

Take to other market (utawapeleka 
katika masoko mengine) 

no_sale_plan mustsell Must sell (lazima uuze) 
no_sale_plan other Other (menginyo) 

   

reason_species_purchased 
replace 

to replace lost/dead animal 
(kurejesha wanyama 
waliopotea/kufa 

reason_species_purchased 
expand 

to expand herd/flock (kuongeza 
idadi/akiba) 

reason_species_purchased 
savedtobuy 

have saved money to buy (ulihifadhi 
fedha ya kununua) 
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reason_species_purchased 
moremeatcarcas 

more meat on carcas (nyama zaid 
kwenye mizoga) 

reason_species_purchased 
moreavail 

more animals available (kuna 
upatikanaji wa wanyama zaidi) 

reason_species_purchased goodprice Good price (bei nzuri) 

reason_species_purchased 
affordmore 

can afford to buy more (unaweza 
kununua zaidi) 

reason_species_purchased 
meatdemand 

they are what people want to eat 
(watu wanahitaji kula zaidi) 

reason_species_purchased 
milksale 

milk production - buisness/to sell 
(uzalishaji wa maziwa - kuuza) 

reason_species_purchased 
milkhome 

milk production - home consumption 
(uzalishaji wa maziwa - matumizi ya 
nyumbani) 

reason_species_purchased other other (menginyo) 
 

 
 

reason_animal_purchased health Looks healthy (wana afya nzuri) 

reason_animal_purchased 
milkproduction 

Milk production (uzalishaji wa 
maziwa) 

reason_animal_purchased 
pricemake 

Will sell next for a good price 
(nitowaza wakati mwingine bei nzuri) 

reason_animal_purchased qualitymeat Good quality meat (nyama nzuri) 

reason_animal_purchased 
knowownwer 

I know the owner (ninafahamu 
mmiliki) 

reason_animal_purchased 
qualityanimal 

The quality of animal I want in my 
herd (nilihitaji kuongeza kundi langu) 

reason_animal_purchased pricepurch Good price (bei nzuri) 
reason_animal_purchased other Other (menginyo) 

   
destination_type a10 Other Market (masoko mengine) 
destination_type b10 village (kijijini) 
destination_type c10 Slaughter slab (machinjioni) 
destination_type d10 Abattoir (machinjio makubwa) 
destination_type other Other (mangineyo) 

   

why_this_market 
distance_home 

It is closest to my home (karibu na 
nyumba yangu) 

why_this_market prices The prices are good (bei ni nzuri) 

why_this_market 
proximity_town 

It is closest to large town / buisness 
(karibu na mji mkubwa/biashara) 

why_this_market 
proximity_road 

It is easy access by roads (ni rahisi 
kufika kwa barabara) 

why_this_market 
good_animals 

The animals are good quality for my 
needs (wanyama niwazuri kwa 
mahitaji yangu) 

why_this_market 
tradition 

tradition (ni utamaduni wa kutumia 
soko hili) 
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why_this_market 
social 

It is a socially good market to see 
friends (ni soko jumuia kuona 
ndungu na marafiki) 

why_this_market 
type_animal 

There is the type of animal here I 
need to sell or buy (kuna aina 
wanyama nahitaji kuona/kununua 

why_this_market other Other (mengineyo) 

   
why_other_markets price Prices (bei) 

why_other_markets season Season (msimu) 
why_other_markets sell_more Selling more (kuuza zaidi) 

why_other_markets sell_less Selling less(kuuza kidogo) 

why_other_markets distance Distance to travel (umbali kusafiri) 

why_other_markets weather 
Weather change (mabodiliko ya hali 
ya hewa) 

why_other_markets buy_more Buying more (kununua zaid) 

why_other_markets buy_less Buying less (kununua kudogo) 

why_other_markets social Social factors (sababu za kijamii) 
why_other_markets other Other (mengineyo) 

   
others_sale_reasons others_money To get Money (kupata pesa) 

others_sale_reasons others_tomany 
thave Too many animals (wana 
wanyama wengi sana) 

others_sale_reasons others_dz Disease (magonjwa) 

others_sale_reasons others_goodprices Good prices (bei nzuri) 

others_sale_reasons others_other other (mengineyo) 
 

9.3.6  Table S3.1  

Table S3.1. Summary of seller and buyers market survey data variables stratified by 

market type and species group 

 Primary Secondary 

Variable 

Small ruminant 

N (%) /  

Mean (min, max) 

Cattle 

N (%) /  

Mean (min, max) 

Small ruminant 

N (%) /  

Mean (min, max) 

Cattle 

N (%) /  

Mean (min, max) 

Seller surveys 283 137 16 66 

Number in 

batch being 

sold 

3.4 (1,30) 2.8 (1, 35) 5.7 (1, 38) 11.6 (1,46) 

Vehicle to 

market 
52 (18%) 7 (5%) 2 (13%) 39 (59%) 
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Foot to market 230 (82%) 130 (95%) 14 (88%) 25 (38%) 

Mixed 

transport to 

market 

1 (<1%) 0 0 2 (3%) 

Shared journey 

to market 
150 (53%) 82 (60%) 9 (56%) 48 (73%) 

Contact with 

local livestock 

on journey 

49 (17%) 35 (26%) 3 (19%) 11 (17%) 

Business sale 34 (12%) 20 (15%) 6 (38%) 32 (48%) 

Own animals 265 (94%) 126 (92%) 14 (88%) 40 (61%) 

Livestock 

originate from 

more than 1 

village 

15 8 4 29 

Livestock 

originate from 

another market 

8 10 0 25 

Livestock 

originate from 

another village 

36 20 2 8 

Livestock 

originate from 

another home 

238 107 14 31 

Journey to 

market 

duration 

(hours) 

3.4  

(0.25, 96) 

10.3 

(0.3, 120) 

13.6  

(1, 48) 

30.1 

(1, 148) 

Journey to 

market 

distance (km) 

30.1  

(0.9, 227.9) 

28.6  

(1.2, 299.9) 

19.1 

(1.1, 85.8) 

177.0 

(4.6, 510.8) 

Buyer surveys 132 46 9 22 
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Number in 

batch 

purchased 

17.4 (1, 500) 5.6 (1, 25) 7.9 (1, 40) 9.6 (1, 100) 

Vehicle From 

market 
60 (45%) 10 (22%) 1 (11%) 13 (59%) 

Foot from 

market 
70 (53%) 34 (74%) 8 (89%) 9 (41%) 

Mixed 

transport from 

market 

2 (2%) 2 (4%) 0 0 

Shared journey 

from market 
77 (58%) 29 (63%) 3 (33%) 17 (77%) 

Destination 

type home 
35 (27%) 10 (22%) 1 (11%) 1 (5%) 

Destination 

type slaughter 
26 (20%) 12 (26%) 2 (22%) 15 (68%) 

Destination 

type market 
61 (46%) 20 (43%) 5 (55%) 3 (14%) 

Destination 

type 

other/village 

8 (6%) 2 (4%) 1 (11%) 3 (14%) 

Purchased for 

meat 
27 (20%) 13 (28%) 1 (11%) 12 (55%) 

Purchased for 

price 
73 (55%) 28 (61%) 7 (77%) 9 (41%) 

Purchased for 

health 
46 (35%) 20 (43%) 0 11 (50%) 

Journey from 

market 

duration 

(hours) 

24.1  

(0.25, 192) 

20.9  

(0.25, 96.0) 

3.3  

(1,0, 6.0) 

5.4  

(1.0, 72.0) 

Journey from 

market 

distance (kms) 

73.4  

(1.6, 296.6) 

57.8 

(7.5, 226.7) 

23.4 

(7.3, 66.9) 

25.9 

(4.8, 154.0) 
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9.3.7 Distance imputed where origins and destinations were not located 

23 listed origins and 12 destinations were not assigned location coordinates thus were 

not plotted on the network map and distances for these journeys were imputed from a 

GLMM that estimated distance for livestock sold and purchased based on market type, 

species, number in batch and mode of transport used. 

    

 In total 20% of sellers used vehicle to get there livestock to market. 82% of these shared 

the journey with others. Stratified by market type only 14% of sellers at primary markets 

used vehicle to get their livestock there and again 80% of these journeys were shared 

with others. At secondary markets 50% of sellers used vehicle to get there livestock to the 

market and 85% of journeys were shared with others. For livestock being taken to market 

on foot around 50% of journeys were made with others (livestock mixed but less intensely 

compared to sharing a journey in a vehicle).   

 

BLME was used to fit model to shared journey data due to small number of small 

ruminants (N=2) transported by vehicle to secondary markets using a prior with a very 

low estimate.  

Code for models for differences in modes of transport used in 310:360 R script 

Market_data_analysis.R 
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Reason for sale 

Reason sold animal – this is important for us to understand as it is the reasons for sale 

that drive the movement of livestock which in turn drives the spread of pathogen across 

the study area 

Table S3.2. Summary of reported reasons for livestock sale 

Reported reason for sale Number of respondents listing this 

reason 

Business 96 

Value of animal/healthy/ good price at 

this market 

76 

Demand for meat/slaughter 13 

For breeding 4 

To generate money to buy other livestock 10 

To generate money to buy other things 199 

We need money for a problem at home 41 

We have no food available 18 

There is no water available 7 

We have surplus stock/no space 9 

Environmental problem 2 

There is disease at home 2 

Other 214 

 

Money use 

Table S3.3. Summary of what the money generated from livestock sales will be used 

for 

Reported money use Number of respondents listing this use 

Business 96 

Buying other livestock 19 

Celebration 20 

Household purchase 223 

To treat Illness 125 

For savings 6 

School fees 154 
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Good price opportunity 1 

Buy food 68 

Buy drugs 13 

Building work 13 

Buy clothes 3 

 

Who are you selling to 

Table S3.4. Summary of the people sellers are hoping to sell their livestock to 

Anyone  353 

Butcher/meat company 57 

Livestock keeper 33 

Other 65 

 

No sale plan 

Table S3.5. Summary of what people will do if they don’t sell the livestock at this 

market 

Leave animals here 42 

No option – they must be sold 12 

Take to other market 47 

Take home 392 

Graze/take home then return here 8 

Graze/take home then other market 2 

Don’t know 1 

 

9.3.8 Price 

Price wanted 

Table S3.6.  summary of minimum price wanted for livestock being sold at primary 

and secondary markets 

 Minimum 25th 

quintile 

Median Mean 75th 

quintile 

Max NA 

Cattle 

primary 

0 230,000 300,000 320,636 400,000 800,000 27 
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Cattle 

secondary 

30,000 400,000 500,000 524,830 600,000 1,200,000 7 

Small 

ruminant 

primary 

0 45,000 55,000 57,588 70,000 200,000 23 

Small 

ruminant 

secondary 

0 38,750 55,000 49,375 60,000 95,000  

 

Price achieved 

Table S3.7.  summary of price achieved for livestock being sold at primary and 

secondary markets 

 Minimum 25th 

quintile 

Median Mean 75th 

quintile 

Max NA 

Cattle 

primary 

0 250,000 300,000 350,233 450,000 1,200,000 51 

Cattle 

secondary 

250,000 400,000 460,000 489,130 550,000 1,000,000 20 

Small 

ruminant 

primary 

0 40,000 50,000 51,357 60,000 160,000 53 

Small 

ruminant 

secondary 

30,000 31,250 47,500 46,071 50,000 60,000 2 

 

9.3.9 Origins 

Own animals 

Table S3.8. Number of sellers that are selling their own animals or others for trade 

 Primary 

market 

cattle 

Secondary 

market 

cattle 

Primary 

market small 

ruminant 

Secondary 

market small 

ruminant 

Primary market 

cattle and small 

ruminants 

All own 126 (92%) 36 (55%) 265 (94%) 14 (88%) 3 (60%) 

Some own 6 (4%) 7 (10%) 8 (3%)  2 (40%) 
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None own 5 (4%) 23 (35%) 10 (3%) 2 (12%)  

 

The majority of sellers at primary markets are selling their own animals (92% cattle 94% 

small ruminants), at secondary markets a higher proportion of sellers are selling livestock 

for trade that are not their own (45% cattle (10% selling some of their own 35% selling 

none of their own), and 12% of small ruminant sellers). 
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Table S3.9. Descriptive data binomial and gaussian generalised linear mixed models 

summary statistics. 

Model Model type 

No. 

of 

obs. 

No. of 

market 

random 

effects 

Variance 
Marginal 

R2 

Conditional 

R2 

Sellers Vehicle 
transport 

Binomial 
GLMM 

499 22 1.74 0.05 0.25 

Buyers Vehicle 
transport 

Binomial 
GLMM 

205 22 2.98 0.06 0.46 

Sellers share 

journey 

Binomial 
GLMM 

499 22 0.06 0.07 0.08 

Buyers share 

journey 

Binomial 
GLMM 

205 22 0.55 0.17 0.27 

Sellers 

contacts at 

grazing and 

water points 

Binomial 
GLMM 

499 22 0.17 0.02 0.04 

Sellers reason 

sale business 

Binomial 
GLMM 

499 22 0.92 0.07 0.18 

Sellers Cattle 

price wanted 

Gaussian 
GLMM 

167 17 7.2x109 0.21 0.39 

Sellers Cattle 

price achieved 

Gaussian 
GLMM 

131 16 9.7x109 0.12 0.37 

Sellers Small 

ruminants 

price wanted 

Gaussian 
GLMM 

269 21 4.8x107 0.004 0.10 

Sellers Small 

ruminants 

price achieved 

Gaussian 
GLMM 

235 21 8.2x107 0.01 0.19 

Sellers from 

home 

Binomial 
GLMM 

499 22 0.24 0.05 0.09 

Destination 

market 

Binomial 
GLMM 

205 22 0.81 0.09 0.24 

Destination 

meat 

Binomial 
GLMM 

205 22 0.34 0.08 0.14 

Destination 

Home 

Binomial 
GLMM 

205 22 0.11 0.06 0.08 

Batch size sold 

Gaussian 
GLMM (log 

transformed 
outcome) 

502 22 0.12 0.19 0.33 

Batch sizes 

purchased 

Gaussian 
GLMM (log 

transformed 
outcome) 

209 22 0.20 0.04 0.18 

Journey 

duration To 

markets 

Gaussian 
GLMM (log 

transformed 
outcome) 

499 205 0.03 0.35 0.37 
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Journey 

duration From 

markets 

Gaussian 
GLMM (log 

transformed 
outcome) 

205 205 0.05 0.32 0.44 

Journey 

distance To 

markets 

Gaussian 
GLMM (log 

transformed 
outcome) 

499 205 0.41 0.31 0.67 

Journey 

distance From 

markets 

Gaussian 
GLMM (log 

transformed 
outcome) 

205 205 0.05 0.29 0.51 
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9.4 Chapter 5 

Supplementary information for : Analysing livestock network data for infectious diseases 

control: an argument for routine data collection in emerging economies 

 

G.L. Chaters1,a, P.C.D. Johnson1,a, S. Cleaveland1, J. Crispell2, W.A. de Glanville1, T. 

Doherty3, L. Matthews1, S. Mohr1, O.M. Nyasebwa4, G. Rossi3, L.C.M. Salvador3, 4, 5, E. 

Swai6, R.R.Kao3,b 

 

1 Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal 

Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK  

2 School of Veterinary Medicine, University College Dublin, Ireland 

3 Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, 

Easter Bush Campus, Midlothian, Scotland, UK 

4 Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA 

5 Institute of Bioinformatics, University of Georgia, Athens, USA 

6 Department of Veterinary Services, Ministry of Livestock and Fisheries, Tanzania;  

 

a These authors contributed equally to this work 

b Corresponding author 

 

9.4.1 Network dynamics 

Eigenvector centrality and dynamic infection processes. 

If the contact network between nodes in a network is represented as an unweighted 

adjacency or contact matrix M (where a link between two individuals i and j is represented 

by a 1 at position mij or 0 otherwise), then for some initial disease vector v0, and some 

probability of infection p, the product p.M.v0 estimates the distribution of infection 

probability across all nodes in the first generation so long as the clustering coefficient (i.e. 

the proportion of triplet nodes where A is connected to B is connected to C and A and C are 

also connected) and/or p are sufficiently small. For an SIS infection process where 

susceptible individuals when exposed become immediately infectious and upon recovery, 
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become completely susceptible again and the probability of recovery before re-infection is 

high (e.g. if the density of infected locations is always low, or the recovery time is shorter 

than the intergeneration time), then pn.Mn.v0 is an estimate of the distribution of infection 

probability in the nth generation. We shall assume here that the matrix is square and 

irreducible (this is only the case if all nodes are part of the same strong component), and 

note that it is also positive definite (i.e. real and non-negative); in this case, the Perron-

Frobenius theorem applies and the lead eigenvalue of the matrix is guaranteed to be real 

and positive. By definition, for an eigenvector ei of M (i = 1 to np, where np is the dimension 

of the matrix),   

lim
$→&

'().+)$- . . = ). lim
$→& √+$- . .

= 1. .
 

where l is an eigenvalue of M, and .2 = ∑ 4565$7
589  where 45  are coefficients associated 

with the unit vectors 65. As any vector v can be written as a sum of eigenvectors, provided 

v includes the lead eigenvector, then not only is 45  the eigenvector centrality value 

associated with node j, it also represents the relative proportion of time that the node is 

infected over the long-term evolution of the epidemic. This is analogous to the next 

generation matrix (NGM) definition of the basic reproduction number R0 except that the 

contact matrix considers individuals, while the NGM definition considers populations and 

thus issues of node clustering and the requirement that infectious nodes quickly become 

susceptible again are not issues in the NGM definition. 
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9.4.2  Mulitplexes, multi-layer networks and multi-host pathogen 
systems 

 

 

Figure S1. Maps of Great Britain, showing density (per 100 km2 hexagonal tile) of activity 
associated with three layers contributing to incidence of cattle with positive bovine Tb test 
results (reactors). Colour scale reflects proportional reduction compared to the largest 
calculated value (red highest, blue lowest). (a) Estimated density of badger main setts 
across GB, based on (Croft, Chauvenet and Smith, 2017) (b) Cattle numbers as of 
01/01/2013. (c) Geometric mean of total number of inward cattle movements multiplied 
by total number of outward cattle movements. (d) Number of test positive cattle.    
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Livestock movement permit data analysis methods 

Data source 

Access was granted to all archived government movement permit receipt books from the 

study regions (Arusha, Manyara and Kilimanjaro) at the Northern Zonal Veterinary Office, 

Arusha. Movement permit receipt books were selected for analysis from 2009, 2011, 2013 

and 2015. A permit receipt book consists of 50 consecutively numbered permit receipts 

(referred to here as permits).  

 

Data processing 

Data from all of the available receipt books from 2009, 2011, 2013 and 2015 were entered 

directly into a spreadsheet (n = 5,045) or photographed and stored as JPEG files (n = 56,849) 

between September 2016 and March 2017. The data recorded were date (year, month and 

day), origin, destination, number of animals of each species (cattle, sheep and goat) moved, 

and permit number. Owing to the considerable effort required to enter data from 

thousands of permits, data was entered from only 50% of the permit JPEGs, as selected 

follows. Prior to data entry, permit JPEGs were ordered by district, then by year within each 

district. Consecutive permit JPEGs were allocated to each of twenty batches in turn so that 

each batch contained a representative subsample. Data from ten of the twenty batches of 

JPEGs were entered into spreadsheets, resulting in a database from 28,421 (50%) 

photographed permits. The 5,045 directly entered permits were allocated to batches and 

subsampled down to 2525 (50%) records in the same way as the JPEGs, to avoid these 

permits being over-represented in the final raw data set, which contained 30,946 records.  

 

Data cleaning 

Data were cleaned using an R program to detect anomalous data, correcting it where 

possible using the stored JPEGs, and deleting records that could not be corrected. First, 
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removal of records where the data entry technicians had indicated that the permit was 

blank or unreadable reduced the database to 26,855 permits. The origin and destinations 

recorded on the permits were matched, using a fuzzy text-matching program written in R, 

against a database of Tanzanian geographic names compiled from the Geographic Names 

Database (http://geonames.nga.mil/gns/html/namefiles.html; file dated 10 April 2017) 

and the National Bureau of Statistics 2012 Population and Housing Census of Tanzania. 

Central point coordinates were assigned to locations that matched to origins and 

destinations. Fuzzy matching was used as a guide only; all origins and destinations were 

checked visually against the JPEG, where available, and ambiguous matches were 

adjudicated with guidance from Tanzanian colleagues with local knowledge. Where 

possible, missing year was imputed from the preceding and subsequent permits, ordered 

by permit number, where the two permit numbers differed by less than 100 and bore the 

same year. Month was imputed similarly, except that where the subsequent permit bore a 

later month than the preceding permit, the mean month was imputed. Following 

imputation of missing dates, 22,538 records with all of the following data were retained: 

year, month, origin, destination, and number of each species moved. Duplicate records 

were identified either by having the same permit number or highly similar data, verified by 

comparing JPEGs, then removed, leaving 21,316 records. Finally, permits from years 

outside the four target years were removed, leaving 19,438 complete permit records, 

recording 112,531 cattle movements (mean 8.1 cattle per permit, range 1-337), 11,900 

sheep movements (mean 6.0 sheep per permit, range 1-85) and 47,201 goat movements 

(mean 10.4 goats per permit, range 1-180). 

For the present analysis, only cattle movements were analysed. Data were 

aggregated temporally within 48 (12 months × 4 years) calendar months and spatially 

within the 398 wards (administrative units of around 12,000 people across the study 

regions), resulting in a database recording the number of cattle moved in each of the 48 
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months between each pair of wards. Local (within-ward) movements were not analysed 

because of suspected non-compliance with the permit system for short movements, and 

movements to outside the three study regions were also omitted.  

 

Detection of missing data 

A major obstacle to inferring the movement network from the permit data was the large 

number of non-randomly missing permits. Frequently permits were missing from locations 

and time periods that were known to be active from local knowledge and trade volume 

data (Livestock Information Network Knowledge System; http://www.lmistz.net). To 

distinguish true from artefactual absence of movement (months where an origin ward sent 

out no cattle) a zero-inflated negative binomial (ZINB) generalised linear model (GLM) was 

fitted to each origin ward. Significant zero-inflation (P < 0.05) was detected at 16 of the 112 

origin wards (wards with at least one outward movement of any species), and in each case 

a clear majority of zeroes were predicted to be false (range 89-100%), therefore all zero 

months for these wards were assumed to be due to missing data, and were removed to 

allow them to be imputed in the subsequent statistical modelling. The final data set 

recorded the movement of 86,195 cattle from 98 origin wards to 239 destination wards 

over the 4 sampled years. 

 

Statistical model of inter-ward cattle movement 

Inter-ward livestock movement was modelled using a hurdle model, which represented 

movement between each pair of wards in a given month as two processes: the binary event 

of any cattle being moved, modelled as a binomial generalised linear mixed-effects model 

(GLMM); and the number of animals moved, given that at least one animal was moved, 

modelled as a zero-truncated negative binomial (ZTNB) GLMM. Both parts of the hurdle 

model allowed movement to depend on the distance between origin and destination wards 
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and their masses (human and cattle population sizes), in addition to other characteristics 

(Table S1), so the combined model components can be viewed as a gravity model of the 

livestock movement network. Unexplained spatial and temporal variation was modelled by 

fitting normal random effects for origin and destination ward and for time period (48 

months). The same fixed and random effects were fitted in both parts of the model. 

Characteristics of origin and destination wards that were included as fixed effects were: 

log10 human population size, log10 cattle population size, log10 area in km2, all of which were 

continuous, and presence of a primary (N=81) or secondary market (N=3), and production 

system classification (agropastoral N=159; pastoral N=55; smallholder N=150; urban N=34), 

which were categorical. In addition, log distance in km between ward centroids 

(continuous), calendar month (continuous), and year (categorical) were fitted as fixed 

effects. To allow their relationships with movement to deviate from linearity, all continuous 

variables were fitted as natural cubic splines with three degrees of freedom. Models were 

fitted using the glmmTMB (Brooks et al., 2017) package for R version 3.5.0 (R Core Team, 

2019a). Distributional assumptions were checked by inspecting plots of residuals against 

fitted values. The predictive performance of each stage of the hurdle model was assessed 

by calculating a modified R2 statistic which we term R2
LATENT because it focusses on the 

variance components on the latent scale (i.e. the transformed scale where the model is 

linear). R2
LATENT is the fixed effects variance as a proportion of the total linear predictor 

variance (composed of the fixed effects plus the three random effects), and can be 

interpreted as gauging the predictive power of the fixed effects to explain spatial and 

temporal variation in cattle movements. 

 

Predictor variables for the hurdle model 

• Ward area shapefile with ward boundaries from 2012 Tanzania national census 

data (World Bank et al., 2011). 
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• Human population size from 2012 Tanzania national census data (World Bank et 

al., 2011). 

• Cattle population size Estimates of cattle population numbers in 313 of the 398 

wards were provided by local District Veterinary Officers via the Directorate of 

Veterinary Services (DVS) of Tanzania. Cattle numbers for the remaining 85 wards 

were imputed by linear regression (R2 = 42%) of the log-transformed 313 DVS 

estimates onto log-transformed estimates from Gridded Livestock of the World 

(Wint and Robinson, 2007) (map: "Predicted global cattle density (2005), corrected 

for unsuitability, adjusted to match observed totals)", downloaded from 

http://www.fao.org/ag/againfo/resources/en/glw/ GLW_dens.html on 2017-08-

11). 

• Ward classification created using recently updated Tanzania northern zone village 

classification data developed by W.A.d.G. The village classification model assigns a 

classification based on the highest probability of it being ‘agripastoral’, ‘pastoral’, 

or ‘smallholder’ generated by the model. Ward classification was determined by the 

most common classification among constituent villages. 

• Primary or Secondary market presence; A list of all active or recently active markets 

in the study regions was taken from The Zonal Veterinary Centre in Arusha and two 

binary variables were created for each ward; ‘presence of primary market’ and 

‘presence of secondary market’. 

 

Simulation of livestock movement 

Three quantities (fitted probability of any movement between each pair of wards; fitted 

rate of cattle movement given any movement; and the estimated dispersion parameter of 

the ZTNB distribution) were used to simulate livestock movements out of markets among 

the 398 wards in the study area for each of the 12 months of the year 2015, conditioning 
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on both the fixed and random effects. Before simulating the movements, the probabilities 

and rates of movement were amplified twofold to account for the 50% subsampling of the 

permit data. This was achieved by first multiplying the probability of movement using the 

expression 1 – (1 – p)2, which approximately doubles low probabilities (p < 0.1) but has less 

effect on larger probabilities, then scaling the rate of movement so that the overall increase 

in expected number of movements was exactly twofold.  

We simulated five kinds of market-related movement: from herd to primary 

market; from primary market to secondary market; from primary market to ward; from 

secondary market to secondary market; and from secondary market to ward. The three 

wards containing secondary markets (Bwawani, Machame Kusini and Meserani) were 

treated as if the ward was a secondary market, so that these wards had to be empty of 

cattle after each round of movements. Where the model predicted imbalances in cattle 

flows through secondary markets (for example, typically inflow to a secondary market was 

less than outflow, probably because permits stored at large secondary markets are less 

likely to be lost than those stored at primary markets), this was dealt with by boosting the 

deficient cattle flow rate so that inflow and outflow were balanced. Because permits are 

only generated by markets, wards with no recorded outflow of cattle over the four years 

studied were assumed not to contain markets. Such wards were assumed to export cattle 

only locally, supplying the nearest market. The assumption that most cattle sold at primary 

markets come from local herds is based on the experiences of E.S. and O.M.N., who have 

worked in the livestock industry and for the government veterinary services for several 

years, and G.C., who has conducted an unpublished survey investigating the origins of 

livestock at 24 primary livestock markets. These wards with no markets (n = 287) were 

therefore linked as feeder wards to the nearest active ward containing a primary market (n 

= 108), and the outflow from this active primary market ward was balanced by creating 

inflow divided evenly among the nearest feeder wards. Any remaining imbalances were 
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evened out by creating births and deaths. By following this scheme, the cattle population 

remained stable at 3.7 million, with approximately 30,000 movements, 1,200 births and 

1,200 deaths occurring each month. 

 

Network measures for targeting interventions 

The simulated livestock movement data were used to calculate three measures of network 

centrality (betweenness centrality, degree centrality and eigenvector centrality) for each 

ward with the aim of targeting the two types of intervention (market movement ban and 

vaccination at 70% coverage) to influential wards that are potentially important for disease 

transmission. The package igraph (Csardi and Nepusz, 2006) for R (R Core Team, 2019a) to 

derive a year-aggregated, static, directed, weighted movement network for cattle. A spatial 

contact layer was added to the market movements network as a simplified means of 

accounting for contacts that happen at waterholes and grazing points and via the transfer 

of animals between households as gifts or financial support. For this example, each ward 

was connected to all spatially adjacent wards via a single link with a probability one. 

Betweenness centrality, degree centrality and eigenvector centrality were  calculated for 

each ward from the resulting multiplex network.  

 

Simulating disease outbreaks 

To conduct an example simulation of pathogen transmission on the network and 

investigate the effects of targeted interventions of epidemic spread, some simplifying 

assumptions were made. Each ward was assumed to have a homogeneously mixing 

population of cattle, with the population size estimated as described above. To avoid 

underflow in the simulations, wards with fewer than 1000 cattle (n = 38) were assumed to 

have 1000 cattle, except for the three secondary market wards which were assumed to 

hold zero cattle. One cattle per month was moved between adjacent wards (along the 
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spatial network) to capture short-distance non-market movements across wards 

boundaries. The choice of one animal moved per month between adjacent wards was taken 

from a separate unpublished model of Rift Valley fever (RVF) spread among cattle across 

the same regions and using the same movement data. In the RVF model, we calibrated the 

number of cattle moved across ward boundaries so that when combined with longer-range 

market movements we observed a realistic rate of spread across the study area when 

compared with published data (Sindato et al., 2014). 

 

 

Random introduction and transmission of both fast and slow transmitting pathogens was 

simulated on the cattle movement multiplex network using the SimInf (Widgren et al., 

2016) package for R. A stochastic SIR model with frequency-dependent transmission was 

simulated within each ward. R0 was 3 for the fast disease and 1.5 for the slow disease, and 

the mean infectious period was 7 days, corresponding to transmission rates (b) of 0.429 

(fast) and 0.214 (slow) and a recovery rate (g) of 0.143. In each simulated epidemic, 10 

infected cattle were introduced into each of five “seed” wards, and the epidemic was 

simulated over 12 months. To allow the average intervention effects to be estimated, each 

epidemic scenario was run 79 times, each time starting from a different set of five seed 

wards, after which all the disease had been seeded into all 395 wards with cattle 

populations (i.e. not including the three secondary markets), allowing the effect of seed 

wards to be balanced between scenarios. To further reduce the effect of sampling variation 

when comparing interventions, each set of 79 simulations was repeated 3 times, so that 

each scenario was run a total of 237 times. For each type of intervention, market 

movement ban and vaccination at 70% coverage, seven intervention scenarios were 

simulated, including worst- and best-case scenarios, three interventions targeted using 

network measures, and two non-network-targeted controls:  



358 

• No intervention (worst case scenario) 

• Intervention applied to all wards (best case scenario) 

• Targeting of the intervention in 5% all 398 wards (n = 20), selected for: 

o Highest betweenness centrality 

o Highest degree centrality (geometric mean of indegree and outdegree) 

o Highest eigenvector centrality  

o Highest number of cattle (“common sense” network-free intervention 

scenario) 

o Random selection (non-targeted negative control to gauge the effect of 

reducing effort from all wards to 5% of wards) 

The effect of each intervention was estimated as the percentage reduction in population 

cumulative incidence (PCI) at 1 year relative to the no-intervention scenario. This was 

calculated as one minus the geometric mean across the 237 simulations of the intervention 

PCI divided by the no-intervention PCI, expressed as a percentage. The standard error of 

the geometric mean was calculated according to (Norris, 1940).  
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Results 

Table S5.1. Predictors of monthly inter-ward cattle movement fitted in the two stages 

of the hurdle model of cattle movement. Continuous variables were fitted as natural 

cubic splines with three degrees of freedom. Effect size: reduction in model mean 

sum of squares when predictor is removed. R2
LATENT: proportion of spatial and 

temporal variation explained by the fixed effects. LRT: likelihood ratio test.  
Model stage 

predicting 
probability of 

movement 
(R2

LATENT = 40%) 

Model stage 
predicting no of 
animals moved 
(R2

LATENT = 24%) 

Predictor Effect 

size 

LRT 

P-value 

Effect 

size 

LRT 

P-value 

log10(distance/km) [spline] 58% <0.001 0% <0.001 
log10(origin human pop. size) [spline] 4% 0.053 16% 0.125 
log10(destination human pop. size) 
[spline] 

14% <0.001 0% 0.197 

log10(origin cattle pop. size) [spline] 0% 0.952 -1% 0.349 
log10(destination cattle pop. size) [spline] 0% 0.968 4% 0.304 
log10(origin area/km2) [spline] 1% 0.274 6% 0.910 
log10(destination area/km2) [spline] 2% 0.028 0% 0.280 
Calendar month [spline] 0% 0.054 5% <0.001 
Year [categorical] 3% <0.001 2% <0.001 
1ary/2ary market in origin/destination 
[categorical]  

27% <0.001 27% <0.001 

Origin production system [categorical] 6% 0.036 29% 0.039 
Destination production system 
[categorical] 

6% <0.001 2% 0.759 
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Figure S2. Probability of any cattle movement between wards in a given month, by 
straight line distance and market type in the origin and destination wards. Predictions are 
conditional on all continuous variables except month being set at their geometric means. 
Month is set to January 2015, while production system in both origin and destination 
wards is agropastoral.  
 
 
Network measures 

 

Table S5.2. Network measures calculate from the cattle market movement network, 
the spatial contact network, and the multiplex network 
Network measure Cattle Spatial Multiplex 
Giant weakly connected component 344 398 398 
Giant strongly connected component 143 398 398 
Diameter 8 18 12 
Transitivity 0.17 0.39 0.21 
Reciprocity 0.19 1.00 0.66 
Number of edges 1760 2222 3792 
Edge weight 89,229 2,222 91,451 
Edge density 0.011 0.014 0.024 
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Table S5.3. Mean percentage population cumulative incidence (PCI) of the fast-
transmitting pathogen (R0 = 3) after one year, with no intervention and under six 
strategies for targeting interventions to wards. The two targeted interventions were a 
ban on cattle movements through markets, and vaccination of 70% of the cattle in a 
ward. Mean (SE) absolute reduction in cumulative incidence relative to the no-
intervention scenario is also given. The simulated scenarios are: no intervention; 
application of the intervention to all wards; and targeting of the intervention to 20 
wards (5% of the total 398 wards) selected either for network centrality (betweenness, 
degree and eigenvector), the total number of cattle, or randomly. The total cattle 
population size in each simulation was 3,707,830. 
Targeting method Movement ban Vaccination 

Mean PCI 

(%) 

Mean % 

reduction 

in PCI (SE) 

Mean 

PCI (%) 

Mean % 

reduction 

in PCI (SE) 
No intervention 23.9 - 23.5 - 
All wards 3.8 82.7 (1.3) 0.0 99.9 (0.0) 
Betweenness centrality 6.3 75.3 (2.0) 12.5 50.7 (4.4) 
Degree centrality 5.4 77.4 (1.6) 11.0 57.9 (3.6) 
Eigenvector centrality 7.8 70.1 (2.2) 16.4 38.8 (5.3) 
Number of cattle 19.7 17.4 (6.6) 14.4 47.3 (4.8) 
Random 17.9 31.0 (5.7) 19.5 20.8 (6.5) 

 
 
Table S5.4. Mean percentage population cumulative incidence (PCI) of the slow-
transmitting pathogen (R0 = 1.5) after one year, with no intervention and under six 
strategies for targeting interventions to wards. The two targeted interventions were a ban 
on cattle movements through markets, and vaccination of 70% of the cattle in a ward. 
Mean (SE) absolute reduction in cumulative incidence relative to the no-intervention 
scenario is also given. The simulated scenarios are: no intervention; application of the 
intervention to all wards; and targeting of the intervention to 20 wards (5% of the total 
398 wards) selected either for network centrality (betweenness, degree and eigenvector), 
the total number of cattle, or randomly. The total cattle population size in each simulation 
was 3,707,830. 
Targeting method Movement ban Vaccination 

Mean PCI 

(%) 

Mean % 

reduction 

in PCI (SE) 

Mean 

PCI (%) 

Mean % 

reduction 

in PCI (SE) 
No intervention 1.7 - 1.7 - 
All wards 0.9 37.0 (2.9) 0.0 99.8 (0.0) 
Betweenness centrality 1.1 27.0 (3.4) 1.1 27.1 (3.4) 
Degree centrality 1.1 28.6 (3.1) 1.0 31.0 (3.3) 
Eigenvector centrality 1.2 20.5 (3.4) 1.3 16.9 (3.4) 
Number of cattle 1.5 10.3 (3.6) 1.1 28.1 (3.7) 
Random 1.5 12.4 (4.1) 1.5 12.4 (3.9) 
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9.5 Chapter 6 

 

Table S5.1. Node centrality measure distributions, for nodes with any activity 
(annual degree > 1) on the small ruminant, cattle and combined networks 

 Small ruminants 
(Nodes = 330) 

Cattle 
(Nodes = 344) 

Combined 
(Nodes = 373) 

 Mean [Range] 

(SD) 

Mean [Range] 

(SD) 

Mean [Range] 

(SD) 

In degree 
8.0 

[0 - 91] 

(12.5) 

9.3 
[0 - 98] 
(14.6) 

11.3 
[0 - 100] 

(16.6) 

Out degree 
8.0 

[0 - 143] 
(23.1) 

9.3 
[0 - 162] 

(25.2) 

11.3 
[0 - 170] 

(29.5) 

Degree 
16.1 

[1 - 177] 
(27.8) 

18.5 
[1 - 247] 

(32.9) 

22.6 
[1 - 249] 

(37.5) 

Weighted 

In-degree 

122.8 
[0.0 - 8,904] 

(610.1) 

232.6 
[0.0 - 14,767] 

(1,068) 

316.8 
[0.0 - 16,460] 

(1,379) 

Weighted 
Out-degree 

122.8 
[0.0 – 6,426] 

(1,354) 

232.6 
[0.0 – 10,647] 

(1,111) 

316.8 
[0.0 – 16,963] 

(1,420) 

Betweenness 
0.002 

[0.0 - 0.071] 
(0.007) 

0.002 
[0.0 - 0.070] 

(0.007) 

0.002 
[0.0 - 0.079] 

(0.007) 

Eigenvalue 

0.017 
[0.0 - 1.0] 

(0.087) 

0.017 
[0.0 - 1.0] 

(0.070) 

0.017 
[0.0 - 1.0] 

(0.072) 

Geometric mean 
degree 

40.9 
[0.0 -1,304] 

(128.7) 

109.6 
[0.0 - 8,303] 

(605.3) 

141.1 
[0.0 - 8,738] 

(648.7) 
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Table 5.2. Spearmans rank rho value measureing how correlated ward node centrality measures are on the small ruminant, cattle, combined, 

combined small ruminant high transmissibility and combined cattle high transmissibility networks constructed using livestock movement permit data. 

  In-degree 

 

Betweenness 

In-degree 

Geometric mean 

degree 

In-degree 

 

Eigenvalue 

Betweenness 

Geometric mean 

degree 

Betweenness 

 

Eigen value 

Geometric 

mean degree 

Eigen value   

Small ruminant 0.47 0.52 0.79 0.93 0.28 0.32 

Cattle 0.46 0.49 0.86 0.90 0.27 0.31 

Combined 0.48 0.51 0.77 0.96 0.25 0.27 

Comb. small ruminant high 

trans 
0.46 0.51 0.74 0.91 0.24 0.27 

Comb. cattle high trans. 0.46 0.50 0.80 0.91 0.26 0.27 
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