
Li, Qianmu and Meng, Shunmei and Sang, Xiaonan and Zhang, Hanrui and
Wang, Shoujin and Bashir, Ali Kashif and Yu, Keping and Tariq, Usman
(2021) Dynamic Scheduling Algorithm in Cyber Mimic Defense Architecture
of Volunteer Computing. ACM Transactions on Internet Technology, 21 (3).
pp. 1-33. ISSN 1533-5399

Downloaded from: https://e-space.mmu.ac.uk/628379/

Version: Accepted Version

Publisher: Association for Computing Machinery (ACM)

DOI: https://doi.org/10.1145/3408291

Please cite the published version

https://e-space.mmu.ac.uk

https://e-space.mmu.ac.uk/628379/
https://doi.org/10.1145/3408291
https://e-space.mmu.ac.uk

Dynamic Scheduling Algorithm in Cyber Mimic Defense Architecture of

Volunteer Computing

QIANMU LI, School of Cyber Science and Engineering, Nanjing University of Science and Technology, Nanjing, China,

E-mail: qianmu@njust.edu.cn

SHUNMEI MENG, School of Computer Science and Engineering, Nanjing University of Science and Technology,

Nanjing, China, E-mail: mengshunmei@njust.edu.cn

XIAONAN SANG, 1School of Computer Science and Engineering, Nanjing University of Science and Technology,

Nanjing, China,2 Intelligent Manufacturing Department, Wuyi University, Jiangmen, China E-mail:

913000720238@njust.edu.cn
HANRUI ZHANG, 1School of Computer Science and Engineering, Nanjing University of Science and Technology,

Nanjing, China,2 Jiangsu Zhongtian Internet Technology Co., Ltd. Nantong, 226463, China, E-mail:

jessica_9533@njust.edu.cn
SHOUJIN WANG, Department of Computing, Macquarie University, Sydney, Australia, E-mail:

shoujin.wang@mq.edu.au
ALI KASHIF BASHIR, Department of Computing and Mathematics, Manchester Metropolitan University, UK,E-mail:

Dr.alikashif.b@ieee.org
KEPING YU (CORRESPONDING AUTHOR), Global Information and Telecommunication Institute, Waseda

University, Japan, E-mail: keping.yu@aoni.waseda.jp

USMAN TARIQ, College of Computer Science and Engineering, Prince Sattam bin Abdulaziz University, Saudi Arabia,
E-mail: u.tariq@psau.edu.sa

Volunteer computing uses computers volunteered by the general public to do distributed scientific computing. Volunteer computing is being

used in high-energy physics, molecular biology, medicine, astrophysics, climate study, and other areas. These projects have attained

unprecedented computing power. However, with the development of information technology, the traditional defense system cannot deal

with the unknown security problems of volunteer computing. At the same time, Cyber Mimic Defense (CMD) can defend the unknown

attack behavior through its three characteristics: dynamic, heterogeneous and redundant. As an important part of the CMD, the dynamic

scheduling algorithm realizes the dynamic change of the service centralized executor, which can enusre the security and reliability of CMD

of volunteer computing. Aiming at the problems of passive scheduling and large scheduling granularity existing in the existing scheduling

algorithms, this paper first proposes a scheduling algorithm based on time threshold and task threshold, and realizes the dynamic

randomness of mimic defense from two different dimensions; finally, combining time threshold and random threshold, a dynamic

scheduling algorithm based on multi-level queue is proposed. The experiment shows that the dynamic scheduling algorithm based on multi-

level queue can take both security and reliability into account, has better dynamic heterogeneous redundancy characteristics, and can

effectively prevent the transformation rule of heterogeneous executors from being mastered by attackers.

KEYWORDS

Volunteer computing, Cyber Mimic Defense, Dynamic Scheduling, Time Threshold, Task Threshold, Multi-level Queue

1 INTRODUCTION

With the explosive expansion of the global cyberspace, the traditional defense model follows "threat perception, cognitive

decision-making, problem removal", which has been unable to resist the known but not occurred security risks and unknown

security risks. Therefore, the research goal of network security defense technology should be to find a new way of defense

that does not rely on attack characteristics and behavior information, so as to alleviate the growing problem of network space

security. In 2014, Wu Jiangxing published the vision of Cyber Mimic Defense (CMD) [1], which is based on the highly

available and highly reliable non similar redundancy structure, combined with the multi-mode voting mechanism that does

not rely on rules and features to determine, through the nonlinear transformation of several service components with

equivalent functions and different structures, to interfere with the behavior decision of attackers. In CMD, in order to make

the attacker cannot create the conditions that can invade all the heterogeneous execution components at the same time, a

dynamic scheduling strategy that can resist the cooperative attack is introduced, which makes it difficult for the attacker to

maintain the attack chain and sniff[2-6].

In recent years, there has been a rapidly-growing interest in volunteer computing systems, which allow people from any

where on the Internet to contribute their idle computer time towards solving large parallel problems. Probably the most

popular examples of these are distributed.net, which gained fame in 1997 by solving the RSA RC5-56 challenge using

thousands of volunteers’ personal computers around the world, and SETI @ home, which is currently employing hundreds of

thousands of volunteer machines to search massive amounts of radio telescope data for signs of extraterrestrial intelligence. A

XX

number of academic projects have also ventured to study and develop volunteer computing systems, including some, like our

own Bayanihan, that promote web-based systems using Java. Even the commercial sector has joined the fray, with a number

of new startup companies seeking to put volunteer computing systems to commercial use, and pay volunteers for their

computer time. The key advantage of volunteer computing over other forms of met a computing is its ease-of-use and

accessibility to the general public. By making it easy for anyone – even casual users – on the Internet to join in a parallel

computation, volunteer computing makes it possible to build very large global computing networks very quickly, as proven

by the success of SETI @home and distributed.net.

The most important thing in volunteer computing CMD is the dynamic scheduling of heterogeneous executors. It is

responsible for organizing and building the current service set of executors, realizing the dynamic change of executor

components, and keeping the whole architecture dynamic redundancy. Therefore, the scheduling strategy often determines

the security of the whole volunteer computing CMD. At present, there are few researches on the dynamic scheduling

algorithm, and the proposed scheduling algorithm is either too regular or too random, which cannot take into account the

security and reliability of the system [7-10]. Moreover, most algorithms rely on the feedback mechanism of passive

scheduling, and the scheduling object granularity is large [11-14]. Therefore, the research of a fine-grained active scheduling

algorithm which can not only achieve dynamic randomness, but also ensure the reliability of the system has a guiding role for

the further improvement of volunteer computing CMD, even for improving the severe security situation in cyberspace.

This paper focuses on the dynamic scheduling algorithm, which is very important in CMD of volunteer computing. The

purpose of dynamic scheduling is to make the attacker unable to grasp the internal changes of the system through the non-

linear transformation of heterogeneous redundancy. At present, most of the existing scheduling strategies are passive

scheduling based on the feedback mechanism[15-16], and the scheduling object is often the whole set of executor services,

with large scheduling granularity[17-18], and the general scheduling strategies are based on the unified transformation cycle,

without strong randomness[19-21], and some scheduling strategies cannot meet the reliability requirements[22]. In addition,

there is no research about CMD analyze the research of quantitative model. So combined with the research status of CMD,

aiming at the shortcomings of the existing dynamic scheduling algorithm, the main research work of this paper is as follows:

1. Analyzing the quantitative model of security analysis is given for volunteer computing CMD architecture through the

perspective of intrusion success probability;

2. Aiming at the volunteer computing problem that the granularity and passivity of the scheduling algorithm and the

randomness of the executor based on the unified transformation cycle, a stochastic threshold based dynamic scheduling

algorithm is proposed, which includes time random thresholds and task random thresholds. The main idea is to assign a

random threshold for each execution body before work, and when the threshold is reached, the execution body will be

transformed. In order to implement this algorithm, ziggurat random threshold generation algorithm is also given, and the

concept of random threshold pool is defined to provide threshold resources for the execution body scheduling.

3. In view of the lack of reliability of the scheduling algorithm and the shortcomings of the random threshold scheduling

algorithm, a dynamic scheduling algorithm based on multilevel queue is proposed. Firstly, based on the minimum similarity

model of the executive body, the initialization algorithm of the execution volume set is given. Secondly, the multi-level

feedback queue of the process scheduling is used, combined with the time random threshold and task random threshold. This

way takes the security and reliability into account.

This paper first addresses the problem of the lack of reliability of existing scheduling algorithms. Through the minimum

similarity model of the executive body, the initialization algorithm of the executive body set is given. Then, in view of the

shortcomings of the scheduling algorithm based on random threshold, this paper draws on the multi-level feedback queue of

process scheduling, combines the random threshold of time and the random threshold of task, and proposes a dynamic

scheduling algorithm based on multi-level queue. Finally, a simulation experiment was done. On the premise of ensuring the

low uncertainty of the experiment, this paper has done 150 experiments, and obtained 150 scheduling cycles and 150

common mode failure rates. According to the simulation results of the simulation experiment, this article compares the five

mimic defense dynamic scheduling algorithms from two aspects of security and reliability, including the completely random

scheduling algorithm (CRS), the normal distribution based scheduling algorithm (NDS) Time-based random threshold

scheduling algorithm (TIRTS), task-based random threshold scheduling algorithm (TARTS), multi-level queue scheduling

algorithm (MQS). This paper verifies that MQS has higher security and reliability.

In Section 3, this paper introduces the mimic defense architecture; in Section 4, a dynamic scheduling algorithm based on

random threshold is proposed, which includes time random threshold and task random threshold; in Section 5, a dynamic

scheduling algorithm based on multi-level queue is proposed by combining time random threshold and task random

threshold; in Section 6, the advantages and disadvantages of similar algorithms are verified by simulation experiments.

2 RELATED WORKS

This section mainly introduces the research work related to the dynamic scheduling algorithm of Mimic Defense.

As an important part of the mimic defense architecture, the basic function of dynamic scheduling is to organize and build

the current set of executor services, and take control of the input agent component to send external input requests to the

specified executor, dynamically select the executor components in the service set, and realize the replacement, offline, service

migration and other operations of the executor[23]. The main purpose of the dynamic scheduling algorithm is to make the

pseudo representation of the execution body in the service set unable to be sniffed, so it is easier to hide the internal

characteristics of the target object. Therefore, the advantages and disadvantages of dynamic scheduling algorithm determine

whether the whole architecture has high security and reliability. In recent years, there are more and more research results

about dynamic scheduling algorithm in mimic defense.

In reference [24], a completely random scheduling algorithm is proposed, which is also a general method at present. In this

strategy, the control parameters are used as random seeds to generate pseudo-random numbers, and the redundancy and

number of heterogeneous executors are further determined to schedule. In reference [25], a hard real-time non periodic task

fault-tolerant scheduling algorithm is proposed, which reduces the influence of voting, switching and other factors by

combining specific voting strategies. It reduces the error rate of scheduling when executing aperiodic tasks. In reference [26],

an agent scheduling model based on attack and defense game is proposed. By using the prior probability statistics of attack

behavior and combining the differences between heterogeneous agents, the revenue value of both sides of attack and defense

and the overall difference value between the service set of the agent and the set to be selected are calculated The optimal

scheduling strategy is selected by the Bayesian Stackelberg game model. a random seed minimum similarity algorithm is

proposed in reference [27]. Firstly, the construction of heterogeneous executors is analyzed, the similarity between

heterogeneous executors is calculated by the similarity between components, and then the overall similarity of the set of

executors is obtained. Finally, the scheduling strategy with the minimum overall similarity is selected during scheduling

scheme; in reference [28], a scheduling strategy based on normal distribution is proposed. Based on the idea of random

scheduling, by introducing the carrier function and defining the attributes of heterogeneous executors, the scheduling strategy

can achieve randomness and controllability at the same time.

The above mimic defense scheduling algorithms have their own advantages, but they also have shortcomings. Most of the

scheduling algorithms do not fully implement the scheduling process, but how to choose the most appropriate transformation

scheme when the executor needs to schedule, when the scheduling is determined by the feedback controller, and the

scheduling object is the whole set of heterogeneous executors. So, most of the existing scheduling algorithms are large

granular active scheduling. However, the general scheme of active scheduling only makes the set of executors transform

periodically based on different time, which is often observed by attackers. While the completely random transformation

period cannot guarantee the reliability of the system. Therefore, it is necessary to research a fine-grained scheduling

algorithm for a single executor to constrain the scheduling period and ensure the security and reliability.

3 VOLUNTEER COMPUTING CMD

In nature, after a long process of evolution and variation, organisms have gradually evolved their own way of survival. A

variety of organisms can use their physiological structure and characteristics to disguise as other creatures in the environment,

or integrate with the environment, so as to improve their attack ability or defense ability. This biological phenomenon is

called "mimicry phenomenon". Biological mimicry is an inspiration to volunteer computing Cyberspace Security Defense,

which is called Cyberspace Mimic Defense (CMD). Dynamic Heterogeneous Redundancy (DHR) architecture is the core

architecture of CMD system. Therefore, DHR architecture has three core characteristics: dynamic, heterogeneous and

redundant.

In DHR architecture, the attack complexity is promoted to the cooperative attack level of "dynamic heterogeneous

multiple targets under uncoordinated conditions". This exponential level of attack difficulty makes it difficult for intruders to

find a way to escape by means of continuous trial and error elimination. Even if some kind of attack is successful, the

dynamic feedback mechanism inside DHR makes it difficult to inherit the previous successful experience. DHR not only

improves the uncertainty of attack effect, but also improves the robustness of target system including high reliability, high

availability and high credibility. DHR typically constructs a negative feedback control mechanism based on multi-mode

voting policy distribution and multi-dimensional dynamic reconstruction [28], as shown in Fig.1.

As can be seen from the above figure, the main function of input agent is policy distribution. According to the instructions

of policy scheduling, it determines whether to bind external input with the executor in the current heterogeneous executor set,

so as to realize executor activation, pending repair and other tasks. The executor in the current service executor set is

represented as A_j (j=1,2,⋯,k), Each service executor A_j can correspond to a variety of functional equivalent to be selected

Heterogeneous executors according to the strategy of distribution, which is expressed as E_i (i=1,2,⋯,m); each executor to be

selected E_ican realize multi-dimensional dynamic reconstruction technology such as reorganization, reconstruction and

redefinition through various software and hardware modules in component pool; The policy scheduler is also a feedback

controller. When the feedback information of the multi-mode voter indicates that the output vector is abnormal, the following

three steps will as follows:

⚫ Judge whether there is a selectable normal output vector according to the given voting strategy. If not, judge whether

other voting algorithms need to be called for secondary voting;

⚫ According to the given scheduling policy instructions, in the policy distribution phase, remove the suspicious

executors from the current service set, or replace the executors to be selected into the service set, or directly assign

new defense scenarios to the suspicious executors, and even transform the defense scenarios of all executors in the

service set if necessary;

⚫ Observe the status between the update of defense scenario and the output voting to determine whether the first two

operations need to be repeated.

Fig. 1. typical structure of DHR

In the simulation defense system with DHR as the core architecture, the multi-mode voter realizes the uncertainty attribute

and fault tolerance ability, and makes up for the defects caused by the certainty and static of the traditional defense system.

For the intruder, the mimic defense architecture has the uncertainty effect, because as long as the multi-mode voter finds that

the output vector of the executor in a transient stable scenario is abnormal, it will trigger a dynamic negative feedback control

mechanism and send out instructions to replace the abnormal executor in the current service set. From the perspective of

reliability, the mimic defense architecture has strong fault tolerance. In multi-mode voting, most of the same or identical

output vectors are selected from the multi-mode output vectors of the current service set as the output response of the input

excitation. Once the dynamic mechanism with closed-loop feedback property is activated, the service structure will be

changed or the resources will be reconfigured, so as to eliminate the impact of the abnormal output of the executor in the

service set.

In summary, mimic defense has explored a new direction of network security technology research. It not only shows the

characteristics of point surface integrated security defense, but also can build a highly reliable service scenario, which is of

great significance to change the rules of cyberspace security.

4 DYNAMIC SCHEDULING ALGORITHM BASED ON RANDOM THRESHOLD

4.1 The selection of random threshold

Considering that the probability of random events can be represented by probability distribution, the threshold probability

distribution in scheduling strategy can be specified. A series of thresholds obeying a certain probability distribution are

selected to indirectly control the transformation rule of heterogeneous executors in the pseudo defense architecture, so that

the dynamic and controllability can be considered in the dynamic scheduling strategy based on random thresholds.

Considering the continuity of random threshold and the difficulty of selection, this chapter uses probability density function

to reflect the distribution of threshold.

Definition 1 random threshold： Select a random number r for an execution T with an attribute A of the Heterogeneous

executor as the listening object, When the attribute A of the executive body T reaches the set r, the random number r is called

the random threshold of the executive body T based on the attribute A.

Definition 2 random threshold probability density function：The function describing the probability of random threshold

near a certain value point is a probability model of selecting random threshold, which reflects the distribution of random

threshold. In this paper, two kinds of random thresholds, time and task, are involved, which correspond to the probability

density function of time random threshold and the probability density function of task random threshold respectively.

In order to meet the requirements of the system for the randomness and controllability of the dynamic scheduling

algorithm, the random threshold probability density function needs to have a broad domain of definition, controllability and

complexity. The probability density function of normal distribution meets the above basic characteristics. The long-term

practice of industry and academia shows that normal distribution is very similar to the distribution of objective phenomena in

many fields. From the perspective of central limit theorem, if a thing is affected by many factors, no matter what the

distribution of each factor itself is, the average value of the sum of them is normal distribution [29]：

The probability density function of random threshold is determined as normal function, which means that the selection of

random threshold is based on normal distribution, or a series of random thresholds selected in dynamic scheduling algorithm

obey normal distribution. According to the probability density function, Ziggurat algorithm [30] is used to select the random

threshold.

The specific process of initialization algorithm for heterogeneous executive body sets is as follows:

(1) Calculating a similarity threshold value 𝜙𝑡ℎ;

(2) Randomly select two actuators 𝑃𝑖 and 𝑃𝑗 (1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑚) in the candidate set, if 𝑅𝑒𝑐𝑜𝑟𝑑[𝑖][𝑗] > 𝜙𝑡ℎ, repeat step (2),

otherwise, record 𝑃 = {𝑃𝑖 , 𝑃𝑗} 𝑃|𝑙𝑖𝑠𝑡 = ∅ and continue;

(3) Select the executors in turn from the set to be selected, if the current executor 𝑃𝑘(1 ≤ 𝑘 ≤ 𝑚) meets 𝑃𝑘 ∉ 𝑃 and any

𝑃𝑙 ∈ 𝑃 has 𝑅𝑒𝑐𝑜𝑟𝑑[𝑘][𝑙] < 𝜙𝑡ℎ, then 𝑃 = {𝑃𝑘} ∪ 𝑃;Repeat step (3) until |𝑃| = 𝑛;When |𝑃| = 𝑛, order 𝑃|𝑙𝑖𝑠𝑡 = {𝑃} ∪ 𝑃|𝑙𝑖𝑠𝑡;

(4) Reset 𝑃 = {𝑃𝑖 , 𝑃𝑗} and return to step (3) until a new set of executors 𝑃𝑛𝑒𝑤(𝑃𝑛𝑒𝑤 ∉ 𝑃|𝑙𝑖𝑠𝑡) can no longer be obtained;

(5) The executive body set with the lowest comprehensive similarity in 𝑃|𝑙𝑖𝑠𝑡 is selected as the initialization executive

body set, that is 𝑃𝑖𝑛𝑖𝑡 = 𝑚𝑖𝑛{𝑃 → 𝛷|𝑃∈ 𝑃|𝑙𝑖𝑠𝑡}.
In order to facilitate the implementation of the above step (4) and obtain all the execution body sets that are not repeated

and meet the conditions, the backtracking method will be adopted in the minimum similarity algorithm. The specific

algorithm is described as follows:

ALGORITHM: Heterogeneous Executor Body Set Initialization Algorithm Based on Minimum Similarity

Precondition assumption: similarity between all executants has been calculated and recorded, and a method 𝑐𝑎𝑙𝑆𝑖𝑚 for

calculating n redundancy executants set has been defined;

Input: heterogeneous executive body set E to be selected, total number m of all heterogeneous executors, redundancy n of pseudo

defense architecture, similarity record 𝑅𝑒𝑐𝑜𝑟𝑑 between executors;

Output: Heterogeneous Executive Body Set P;

𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝐹𝑜𝑟𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝐸,𝑚, 𝑛, 𝑅𝑒𝑐𝑜𝑟𝑑)

1. /* Calculate similarity threshold */

2. 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 𝑚𝑎𝑥(𝑅𝑒𝑐𝑜𝑟𝑑) + (𝑚𝑎𝑥(𝑅𝑒𝑐𝑜𝑟𝑑) − 𝑚𝑖𝑛(𝑅𝑒𝑐𝑜𝑟𝑑)) ∗ 𝑛/𝑚;

3. /* Randomly select two benchmark actuators */

4. 𝒘𝒉𝒊𝒍𝒆 𝑻𝒓𝒖𝒆

5. 𝑖 ← 𝑅𝑎𝑛𝑑𝐼𝑛𝑡(1,𝑚);

6. 𝑗 ← 𝑅𝑎𝑛𝑑𝐼𝑛𝑡(1,𝑚);

7. 𝒊𝒇 𝑖 == 𝑗 𝑜𝑟 𝑅𝑒𝑐𝑜𝑟𝑑[𝑖][𝑗] > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝒕𝒉𝒆𝒏

8. 𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒆;

9. 𝒆𝒍𝒔𝒆

10. 𝒃𝒓𝒆𝒂𝒌;

11. 𝒆𝒏𝒅 𝒊𝒇

12. 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆

13. 𝑃 ← [𝐸𝑖 , 𝐸𝑗];

14. 𝑃𝐿𝑖𝑠𝑡 ← [];

15. /* Get all the required executive body sets */

16. 𝑔𝑒𝑡𝑃𝐿𝑖𝑠𝑡(2, 𝑃, 1);

17. /* Find the executive body set with Least Comprehensive Similarity */

18. 𝑚𝑖𝑛𝑆 ← 𝑚𝑎𝑥(𝑅𝑒𝑐𝑜𝑟𝑑);

19. 𝑚𝑖𝑛𝑃 ← [] ;

20. 𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑃𝑃 𝒊𝒏 𝑃𝐿𝑖𝑠𝑡 𝒅𝒐

21. 𝑠𝑖𝑚𝑃𝑃 ← 𝑐𝑎𝑙𝑆𝑖𝑚(𝑃𝑃)

22. 𝒊𝒇 𝑠𝑖𝑚𝑃𝑃 < 𝑚𝑖𝑛𝑆 𝒕𝒉𝒆𝒏

23. 𝑚𝑖𝑛𝑆 ← 𝑠𝑖𝑚𝑃𝑃;

24. 𝑚𝑖𝑛𝑃 ← 𝑃𝑃;

25. 𝒆𝒏𝒅 𝒊𝒇

26. 𝒆𝒏𝒅 𝒇𝒐𝒓

27. 𝒓𝒆𝒕𝒖𝒓𝒏 𝑚𝑖𝑛𝑃;

// Recursive backtracking to find all the required executive body sets

𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝑔𝑒𝑡𝑃𝐿𝑖𝑠𝑡(𝑛𝑢𝑚, 𝑃, 𝑙𝑎𝑠𝑡𝐼𝑛𝑑𝑒𝑥)

28. 𝒊𝒇 𝑛𝑢𝑚 == 𝑛 𝒕𝒉𝒆𝒏

29. 𝑃𝐿𝑖𝑠𝑡. 𝑎𝑑𝑑(𝑃);

30. 𝒆𝒏𝒅 𝒊𝒇

31. 𝒊𝒇 𝑙𝑎𝑠𝑡𝐼𝑛𝑑𝑒𝑥 == 𝑚 𝒕𝒉𝒆𝒏

32. 𝒓𝒆𝒕𝒖𝒓𝒏;

33. 𝒆𝒏𝒅 𝒊𝒇

34. /* Select the executors from the set to be selected */

35. 𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑘 𝒊𝒏 𝒓𝒂𝒏𝒈𝒆(𝑙𝑎𝑠𝑡𝐼𝑛𝑑𝑒𝑥,𝑚) 𝒅𝒐

36. 𝑓𝑙𝑎𝑔 ← 𝑻𝒓𝒖𝒆;

37. 𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑝 𝒊𝒏 𝑃 𝒅𝒐

38. 𝑙 ← 𝑖𝑛𝑑𝑒𝑥(𝑝);

39. 𝒊𝒇 𝑅𝑒𝑐𝑜𝑟𝑑[𝑘][𝑙] > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝒕𝒉𝒆𝒏

40. 𝑓𝑙𝑎𝑔 ← 𝑭𝒂𝒍𝒔𝒆;

41. 𝒃𝒓𝒆𝒂𝒌;

42. 𝒆𝒏𝒅 𝒊𝒇

43. 𝒆𝒏𝒅 𝒇𝒐𝒓

44. 𝒊𝒇 𝑓𝑙𝑎𝑔 𝒕𝒉𝒆𝒏

45. 𝑔𝑒𝑡𝑃𝐿𝑖𝑠𝑡(𝑛𝑢𝑚 + 1, 𝑃 + [𝐸𝑘], 𝑘);

46. 𝒆𝒏𝒅 𝒊𝒇

47. 𝒆𝒏𝒅 𝒇𝒐𝒓

Definition 3 random threshold auxiliary function: In the algorithm of random threshold generation, the probability density

function of random threshold is f(x), There is a distribution G that is easy to sample, and its probability density function is

g(x). If there is a constant M > 1, so that there is f(x) ≤ Mg(x) in the whole definition domain of x, then g(x) is called

random threshold auxiliary function.

The core idea of Ziggurat's random threshold generation algorithm is to change the big into the small, and integrate the

effective local into the effective whole. By dividing the random threshold probability density function into a section of curve,

the random threshold is selected for each section of curve by the method of refusing sampling, so as to avoid too many

invalid calculations. In this paper, the random threshold probability density function is selected as a normal function. Due to

the symmetry of the normal function, Ziggurat segmentation is performed with the right half of the normal function as an

example, as shown in Fig.2.

Fig. 2. Ziggurat partition of normal function

In the Ziggurat segmentation graph above, the right half of the normal function is divided into n+1 parts, including the

ladder shape composed of n rectangles and the area with the lowest tail, and each partition point (the abscissa of the right

vertex of the rectangle) is x0, x1, x2, ⋯ , xn−1 . In addition, the most important point is that the area of these n+1

segmentation part is equal, so as to ensure that the probability of sampling from any one segmentation is equal, and the equal

area value is defined by the trailing part.

S = (x0 − μ) ∙ f(x) + ∫ f(x)dx
∞

x0

 (1)

However, it is impossible to determine the specific area value through analytical evaluation. In other words, it is

impossible to calculate the analytical solution of x0. Therefore, the numerical solution of x0 can only be obtained through

approximation method: first, assume x0, calculate the area S according to formula (1), and then calculate x1, x2, ⋯ , xn−1 one

by one. If the difference between the rectangular partition area corresponding to xn−1 and S exceeds the error value is given,

and then the x0 will be changed until all the partition areas are equal. Once the value of x0 is determined, all the dividing

points can be recorded as data tables. For normal functions, a pair of (n, μ, σ) values correspond to a data table. In the

subsequent use, you can directly check the table to get the required dividing points. After Ziggurat segmentation, you can

refuse to sample each rectangular segmentation and collect the samples that meet the requirements.

In addition, considering that the range of threshold is the whole real field, the threshold cannot be too small or even less

than 0, and the threshold cannot be too large, so it is necessary to limit the selection range of threshold. According to the 3 σ

principle of normal distribution [31-32], the probability of random threshold distribution beyond (μ-3σ,μ+3σ) is 0.3%, which

is very small, but it is still necessary to exclude these almost impossible thresholds. Of course, when determining the

probability distribution function of random threshold, it will make μ-3σ>0. Therefore, the range of 3 σ can not only achieve

the completeness of random threshold, but also ensure the rationality of random threshold.

4.2 Dynamic scheduling algorithm based on time random threshold

Time is the most commonly used scheduling threshold in mimic defense architecture, which is called transformation

period.

The traditional scheduling strategy is to fix a period value, all the executors change after a period. This method has been

gradually abandoned because it is obvious periodicity and easy to be mastered by attackers. In the current common strategies,

the transformation period is dynamically adjusted according to the current network environment, but the period is still for all

executors. The time random threshold proposed in this section is for each different executor. According to the description of

the random threshold in definition 1, this section takes the execution time of the executor as the listening attribute, So the

time random threshold is the random threshold based on the execution time

Definition 4 Time Random Threshold: Assign a random threshold t to a Heterogeneous executor T, and replace it when the

execution time of the Heterogeneous executor T reaches t. The threshold t is called the random threshold based on the

execution time, which is called time random threshold for short.

It is determined that the random threshold is the execution time. Next, it is necessary to set the time random threshold for

each executor. In the previous section, the algorithm of generating random threshold has been given, so only the probability

density function of time random threshold, i.e. the expectation μ and standard deviation σ of normal function, need to be

determined to meet the distribution law of execution time of executors.

Definition 5 A successful attack [33]：In general, an attack means that the attacker's behavior produces an input and

output in the system, and a successful attack may involve multiple attacks, resulting in multiple input and output. In the

mimic defense architecture, if an attacker exploits a vulnerability in some executors, resulting in consistent abnormal output

of these executors, and the abnormal output is voted by the voter, it is considered as a successful attack.

For a single redundancy architecture, the expected transformation period is always shorter than the time taken for an attack

to succeed[34-38]. It is as same as multi redundancy architecture. However, the average time to succeed in an attack is longer

than that of single redundancy architecture. If an attacker attacks in a cooperative way, or a large number of executors have

the same or same origin vulnerabilities, the time to succeed in an attack is the same as that to succeed in a single redundancy

architecture. Therefore, the final time threshold is determined in a single redundancy architecture On the whole, the expected

model is:

Time threshold = Time to success of an attack − time when the performer performs a task

Analysis in mathematical sense, First, make the following assumptions and definitions：

⚫ The total number of all Heterogeneous executors is m;

⚫ In the single redundancy architecture, the executive body is Pi(1 ≤ i ≤ m)，The average time taken for an attack to

succeed is T̅attack
(i)

(1 ≤ i ≤ m), executive body Pi the average time taken to perform a task isT̅once
(i)

(1 ≤ i ≤ m), The

expected time threshold for the transformation is T̅th
(i)
= T̅attack

(i)
− T̅once

(i)
 , (1 ≤ i ≤ m);

⚫ There is an objective safety factor βi(1 ≤ i ≤ m) for a single actuator Pi(1 ≤ i ≤ m) . βi(1 ≤ i ≤ m) refers to the

quantification of the security of each heterogeneous executor. Before the standardized hardware and software modules

are used as the optional executors in the system, the quantitative parameters should be given after the security evaluation.

To some extent, the security factor will limit the impact of the uncertainty of the success of an attack;

⚫ Setting the artificial control coefficient αi(1 ≤ i ≤ m) for the executor Pi(1 ≤ i ≤ m) is a manual setting to control the

effect of the time taken by an executor to succeed in an attack on the expectation of the random threshold probability

density function;

⚫ In the calculation of the average time threshold, the influence weight of the executor Pi(1 ≤ i ≤ m) is the standardized

control coefficient ωi(1 ≤ i ≤ m), and ωi =
αiβi

∑ αkβk
m
k=1

 , ∑ ωi
m
i=1 = 1 , which is determined by the safety factor number

and human control coefficient of the executor.

Based on the above assumptions and definitions, the expected value and standard deviation of time random threshold

probability density function are:

𝜇𝑡𝑖𝑚𝑒 =∑𝜔𝑖𝑇̅𝑡ℎ
(𝑖)

𝑚

𝑖=1

 (2)

𝜎𝑡𝑖𝑚𝑒 = √∑𝜔𝑖(𝑇̅𝑡ℎ
(𝑖) − 𝜇𝑡𝑖𝑚𝑒)

2
𝑚

𝑖=1

 (3)

Here, ωi =
αiβi

∑ αkβk
m
k=1

 ，T̅th
(i)
= T̅attack

(i)
− T̅once

(i)
.

Therefore, the final time random threshold probability density function is expressed as:

𝑓(𝑥) =
1

√2𝜋𝜎𝑡𝑖𝑚𝑒
𝑒
−
(𝑥−𝜇𝑡𝑖𝑚𝑒)

2

2𝜎𝑡𝑖𝑚𝑒
2

 (4)

As a whole, to determine the expectation and standard deviation of the probability density function of time random

threshold, it is necessary to conduct attack simulation in the mimic defense architecture with single redundancy to obtain the

corresponding attack success time of each executor, as well as the time of one input and output, which can be adjusted by the

safety coefficient and human control coefficient of the executor itself. In addition, because the task threshold is an integer

value, the final result needs to be rounded in the random threshold generation algorithm.

According to the typical structure of dynamic heterogeneous redundancy in the mimic defense architecture, combined with

the definition and generation of time random threshold, a dynamic scheduling model based on time random threshold is

constructed, as shown in Fig.3.

Fig. 3. dynamic scheduling model based on time random threshold

Among them, the total number of all Heterogeneous executors is m, set P(P1, P2, ⋯ , Pn) is the set of Heterogeneous

executors in the working state, set E(E1, E2, ⋯ , Em−n) is the set of Heterogeneous executors to be selected, and set

T(t1, t2, ⋯) is the time random threshold pool.

Combined with the scheduling model in Fig.3., the dynamic scheduling of heterogeneous executors is illustrated as

follows:

⚫ The time random threshold pool is a queue structure independent of the mimic defense architecture. Through Ziggurat

random threshold generation algorithm, new elements are added to the tail of the queue periodically. The threshold

allocated from the head of the queue no longer exists in the threshold pool;

⚫ The time random threshold pool can ensure that the supply of time threshold is greater than the demand during

initialization and operation;

⚫ During initialization, the executors in set P and set E are randomly arranged. In the process of work, set E is a queue

structure. When an executor in set P reaches the time threshold, it is added to the end of set E and assigned a new time

threshold. At the same time, the first executor in set E is replaced by the vacant position in set P;

⚫ The time random threshold ensures that each replaced Heterogeneous executor can be assigned to a new time threshold

at the first time, which avoids the serialization of scheduling and threshold calculation, and improves the overall

efficiency of dynamic scheduling algorithm;

The dynamic scheduling algorithm TIRTS based on time random threshold is shown in algorithm 1:

ALGORITHM 1: dynamic scheduling algorithm based on time random threshold (TIRTS)

Assumption：Ziggurat random threshold generation algorithm periodically adds new elements to the time random threshold pool to ensure

that the supply of time threshold is always greater than the demand; Set of heterogeneous executors E to be selected，Time random

threshold pool T is queue structure; Available listening objects exist;

Input：Sum of Heterogeneous executors m, Redundancy of mimic defense architecture, Set of heterogeneous executors in working state P,

Set of heterogeneous executors to be selected E, Time random threshold pool T;

Function :SchedulingBasedOnTimeRandomThreshold(m,n,P,E,T)

/* Initialize the heterogeneous execution set. Currently, P is an empty set, and the number of elements in set E is m */

if(|P|==0) then

 /* Assign random time thresholds to all Heterogeneous executors */

 for each entity in E do

 entity.TimeThreshold←T.pop();

 end for

 /* Select n executors from the selected set to the service set, and the listener starts */

 for each i in range(n) do

 entity←E.top();

 entity.pos←i;

 P.push(entity);

 threshold←entity.TimeThreshold;

 listener←entity.TimeListener(threshold,Scheduling);

 listener.start();

end for

end if

/* Function executed after listener triggers (discovery reaches time threshold) */

Function : Scheduling(old_entity):

 /* The executor is added from the service set to the tail of the selection set, and the time threshold is reallocated */

 E.push(old_entity);

 old_entity.TimeThreshold←T.pop();

 i←old_entity.pos;

 new_entity←E.pop();

 new_entity.pos←i;

 P[i]←E.pop();

4.3 Dynamic scheduling algorithm based on task random threshold

In the previous section, the random threshold is set as the execution time of the executor, and the scheduling based on the

time threshold is also based on the traditional transformation cycle. Of course, the attributes that can be used as scheduling

threshold in heterogeneous executors are not only execution time. In this section, the number of execution tasks of executors

is selected as the listening attribute, and a dynamic scheduling algorithm, TARTs, based on task random threshold is

proposed.

Definition 6 Task Random Threshold: A random threshold w is assigned to a heterogeneous executor T. when the number

of tasks executed by the executor t reaches w, it is replaced. The threshold w is called the random threshold based on the

number of tasks executed by the executor T, which is called task random threshold for short.

The number of tasks to be executed is selected as the random threshold, and then the random threshold for each executor is

assigned. Similar to the previous section, based on the random threshold generation algorithm, it is necessary to determine the

probability density function of the random threshold of the task, that is, to determine the expectation μ and standard deviation

σ of the normal function to meet the distribution law of the number of tasks to be executed by the executor.

In the single redundancy architecture, the number of tasks to be executed is always expected to be less than the number of

successful attacks. In the multi redundancy architecture, the average number of successful attacks will be greater than the

single redundancy. However, in the case that the attacker adopts the cooperative attack or a large number of executors have

the same origin vulnerabilities, the number of successful attacks will be one The number is equivalent to the number in a

single redundancy architecture. The above discussion is consistent with that in the previous section. The determination of the

final task threshold is also based on the single redundancy architecture. The overall task threshold expectation model is:

Task threshold = number of successful attacks in one attack − 1

Similarly, in a mathematical sense, make the following assumptions and definitions:

⚫ The total number of all Heterogeneous executors is m;

⚫ In the single redundancy architecture, the executor is Pi(1 ≤ i ≤ m) , the average number of successful attacks is

W̅attack
(i)

(1 ≤ i ≤ m) , and the expected task threshold of the executor Pi is W̅th
(i)
= W̅attack

(i)
− 1 , (1 ≤ i ≤ m);

⚫ Set the human control coefficient αi(1 ≤ i ≤ m) for the actuator Pi(1 ≤ i ≤ m);
⚫ In the calculation of the average task threshold, the influence weight of the executor Pi(1 ≤ i ≤ m) is the standardized

control coefficient ωi(1 ≤ i ≤ m), and ωi =
αiβi

∑ αkβk
m
k=1

 , ∑ ωi
m
i=1 = 1

Based on the above assumptions and definitions, the expected value and standard deviation of the probability density

function of task random threshold are:

𝜇𝑡𝑎𝑠𝑘 =∑𝜔𝑖𝑊̅𝑡ℎ
(𝑖)

𝑚

𝑖=1

 (5)

𝜎𝑡𝑎𝑠𝑘 =∑𝜔𝑖(𝑊̅𝑡ℎ
(𝑖) − 𝜇𝑡𝑎𝑠𝑘)

2
𝑚

𝑖=1

 (6)

And 𝜔𝑖 =
𝛼𝑖𝛽𝑖

∑ 𝛼𝑘𝛽𝑘
𝑚
𝑘=1

 , 𝑊̅𝑡ℎ
(𝑖)
= 𝑊̅𝑎𝑡𝑡𝑎𝑐𝑘

(𝑖)
− 𝑊̅𝑜𝑛𝑐𝑒

(𝑖)

Therefore, the probability density function of the final task random threshold is expressed as:

𝑓(𝑥) =
1

√2𝜋𝜎𝑡𝑎𝑠𝑘
𝑒
−
(𝑥−𝜇𝑡𝑎𝑠𝑘)

2

2𝜎𝑡𝑎𝑠𝑘
2

 (7)

In order to determine the expectation and standard deviation of the probability density function of the random threshold of

the task, it is also necessary to simulate the attack in the mimic defense architecture with single redundancy, to obtain the

number of successful attacks corresponding to each executor, and to adjust the safety coefficient and human-oriented control

coefficient of the executor.

According to the typical structure of dynamic heterogeneous redundancy in the mimic defense architecture, combined with

the definition and generation of task random threshold, a dynamic scheduling model based on task random threshold is built,

as shown in Fig.4.

Fig. 4. dynamic scheduling model based on task random threshold

Among them, the total number of all Heterogeneous executors is m, set P(P1, P2, ⋯ , Pn) is the set of Heterogeneous

executors in working state, set E(E1, E2, ⋯ , Em−n) is the set of Heterogeneous executors to be selected, set W(w1, w2, ⋯) is

the task random threshold pool, which is similar to the time random threshold pool T(t1, t2, ⋯). The basic form of the

dynamic scheduling algorithm based on task random threshold is the same as that of time random threshold scheduling.

Combined with the scheduling model in Fig.4. , the specific process is shown in algorithm 2:

ALGORITHM 2: Dynamic scheduling algorithm based on task random threshold TARTS

Assumption：Ziggurat random threshold generation algorithm periodically adds new elements to the time random threshold pool to ensure

that the supply of time threshold is always greater than the demand; Set of heterogeneous executors E to be selected，Time random

threshold pool T is queue structure; Available listening objects exist;

Input：Sum of Heterogeneous executors m, Redundancy of mimic defense architecture, Set of heterogeneous executors in working state P,

Set of heterogeneous executors to be selected E, Time random threshold pool T;

Function：SchedulingBasedOnTaskRandomThreshold(m,n,P,E,W)

/* Initialize the heterogeneous execution set. At this time, P is an empty set, and the number of elements in set E is m */

if(|P|==0) then

 /* Assign task random thresholds to all heterogeneous performers */

 for each entity in E do

 entity.TaskThreshold←W.pop();

 end for

 /* Select n executors from the selected set to the service set, and the listener starts */

 for each i in range(n) do

 entity←E.top();

 entity.pos←i;

 P.push(entity);

 threshold←entity.TaskThreshold;

 listener←entity.TaskListener(threshold, Scheduling);

 listener.start();

 end for

end if

/* Function executed after listener triggers */

Function: Scheduling(old_entity):

 /* The executor is added from the service set to the tail of the selection set, and the task threshold is reassigned */

 E.push(old_entity);

 old_entity.TaskThreshold←W.pop();

 i←old_entity.pos;

 new_entity←E.pop();

 new_entity.pos←i;

P[i]←E.pop();

Whether it is time threshold or task threshold, the core idea of scheduling algorithm based on random threshold is

consistent, and the implementation process is similar. This paper analyzes the scheduling algorithm based on random

threshold from space complexity and time complexity.

1) space complexity

If the redundancy of pseudo defense architecture is n, the space required by heterogeneous executor service sets is 𝑂(𝑛).If
the total number of all available heterogeneous executants is m, the space required by candidate set of heterogeneous

actuators is 𝑂(𝑚). The random threshold pool ensures that the threshold can always be provided, and the total number of

actuators with a control capacity of 2 times in the implementation process, that is, the required space is 𝑂(2𝑚).Overall, the

spatial complexity of the dynamic scheduling algorithm based on random threshold is 𝑂(3𝑚 + 𝑛).
2) Time complexity

Ziggurat random threshold generation algorithm is independent of the scheduling based on random threshold, which

avoids the need to generate random threshold in the scheduling process through the random threshold pool and greatly

reduces the time complexity. The redundancy of the pseudo defense architecture is n, and the total number of all available

heterogeneous executants is m, then the time complexity for allocating random thresholds to each heterogeneous executant is

𝑂(𝑚) , the time complexity for selecting the executant to the service set and starting the listener is 𝑂(𝑛) , and the

transformation of the executant after the listener is triggered is a linear operation with the complexity of 𝑂(1).Finally, the

time complexity of the dynamic scheduling algorithm based on random threshold is 𝑂(𝑚 + 𝑛).

5 DYNAMIC SCHEDULING ALGORITHM BASED ON MULTILEVEL QUEUE

In order to improve the security of pseudo defense architecture, a dynamic scheduling algorithm based on random

threshold is proposed. Although it can realize the dynamic and controllable scheduling of heterogeneous executors, it can

meet the security requirements of the architecture to a certain extent. But there are still two shortcomings：

1) Under the action of random threshold, although the transformation of a single heterogeneous executor makes the overall

architecture dynamic, if the replaced executor and the original executor have the same origin vulnerabilities during

scheduling, the architecture has not changed much for attackers, and the vulnerabilities they have been using still exist,

resulting in the transformation of the executor not playing the role of reducing vulnerability attack timeliness at this time, thus

the reliability of executor scheduling is not guaranteed.

2) The selection of random threshold is based on normal function, which satisfies the dynamics and has controllability at

the same time. Although the threshold range is limited, there is still a situation that some random thresholds are too large,

which leads to some heterogeneous executants not being transformed for a long time. In addition, there is a correlation

between the time random threshold and the task random threshold, and the use of one threshold alone leads to the inability to

adapt to different task loads. The combination of the two can improve the adaptability of the scheduling algorithm, and can

also make up for the decrease in randomness caused by the limitation of the threshold range, thus improving the dynamics

and reliability of the executants' scheduling.

The first deficiency of the random threshold scheduling algorithm is to maximize the difference between the execution

entities during scheduling, in other words, to ensure the heterogeneity of the pseudo defense architecture, so as to improve the

reliability. In order to achieve this, it is necessary to quantify the difference between heterogeneous execution bodies, that is,

to define the similarity between the execution bodies. The smaller the similarity, the greater the difference between the

execution bodies, and vice versa. Therefore, the scheduling algorithm based on multi-level queue proposed in this paper is

based on the minimum similarity. In addition to considering the similarity between the two executants in the scheduling

process, the similarity index of the set of executants should be minimized during system initialization.

The second deficiency of the scheduling algorithm based on random threshold is although the selection of random

threshold limits the scope, there is also a situation that the threshold is too large, resulting in some executants being in a

working state for a long time. In addition, because the range of random thresholds is limited, the thresholds are closer to each

other as a whole and randomness is reduced. Therefore, this paper proposes a dynamic scheduling algorithm based on multi-

level queue according to the inspiration from the multi-level feedback queue scheduling of processors and the minimum

similarity description of executants. Compared with random threshold scheduling, it has the following three improvements:

1) The combination of time random threshold and task random threshold not only enables the executor with larger

threshold to be transformed in time, but also makes up for the defect of randomness reduction caused by limiting the

threshold range.

2) The initialization of heterogeneous executor sets adopts the minimum similarity algorithm, which provides basic

reliability guarantee for subsequent scheduling.

3) In the scheduling process, the executor with the lowest similarity to the replaced executor is selected to ensure the

reliability of the system.

To sum up, scheduling based on random threshold cannot guarantee the reliability of mimic defense architecture, which is

also the defect of most scheduling algorithms. In this chapter, in order to solve the two shortcomings. Firstly, we use the

random seed minimum similarity algorithm[5] to define the similarity model for heterogeneous executors, reduce the

probability of the same origin vulnerability after a transformation, and then propose a dynamic scheduling algorithm MQS

based on multi-level queue, combining the time threshold and task threshold, to reduce the uncertainty of heterogeneous

executor scheduling.

5.1 Minimum Similarity and Comprehensive Similarity

Definition 7 Similarity of Execution Entity: In the mimic defense architecture, it represents the degree of difference

between heterogeneous executors with equivalent functions. Hereinafter referred to as similarity; The smaller the similarity is,

the greater the difference between executors is; otherwise, the smaller the difference is; the similarity can be quantified.

In order to measure the similarity more easily, we need to define the component type and its corresponding instances.

Definition 8 In the mimic defense architecture, the set of component types that make up the functional equivalent executor

is D = {D1, D2, ⋯ , DK}, where K is the total number of component types; The instance set corresponding to component type

Dj is Cj = {c1
(j)
, c2
(j)
, ⋯ , cLj

(j)
}, where 1 ≤ j ≤ K , Lj is the number of instances owned by component type Dj ; the set of

executors with equivalent functions is E = C1 × C2 ×⋯× CK , in which × is Cartesian product symbol and the total number

is |E| = ∏ Lj
K
j=1

Based on the above definition, the composition structure of the set of heterogeneous executors is shown in Fig.3.

Fig. 5. the structure of the set of heterogeneous executors

For a functional structure, the number of instances of each component will not be large, because it will affect the system

power consumption and cost. With the definition of component type and corresponding instance, then we can make

quantitative representation for the composition of executor.

Definition 9 In the mimic defense architecture, The total number of Heterogeneous executors is m, Each actuator can be

divided into K types of components according to the fixed standard, For the j(1 ≤ j ≤ K) component Dj , if the instance

selected by the executor Pi(1 ≤ i ≤ m) in the corresponding instance set Cj is cx
(j)

, , it is represented by the eigenvector

Zj
(i)
= [θ1 θ2 ⋯ θLj] , and θl = {

1, l = x
0, l ≠ x

 , 1 ≤ l ≤ Lj ; Then, the composition information of the executor Pi can be

represented by the feature vector set Zi = {Z1
(i)
, Z2
(i)
, ⋯ , ZK

(i)
}

To get the similarity between executors, we need to get the similarity between their component instances.

Definition 10 The vulnerability set of the p(1 ≤ p ≤ Lj) of component Dj (1 ≤ j ≤ K) is expressed as Vp
(j)

, and the

number of containing vulnerability bands is expressed as np
(j)
= |Vp

(j)
|, and the overall threat level is expressed as:

𝑡𝑝
(𝑗)
=∑𝑠𝑥

𝑛𝑝
(𝑗)

𝑥=1

 (8)

Two instances of component Dj , cp
(j)
 (1 ≤ p ≤ Lj) and cq

(j)
 (1 ≤ q ≤ Lj) contain a common number of vulnerabilities

expressed as npq
(j)
= |Vp

(j)
∩ Vq

(j)
|, and the threat degree of containing the same vulnerabilities expressed as

𝑡𝑝𝑞
(𝑗)
=

{

 0, 𝑉𝑝

(𝑗)
∩ 𝑉𝑞

(𝑗)
= ∅

∑𝑠𝑥

𝑛𝑝𝑞
(𝑗)

𝑥=1

, 𝑉𝑝
(𝑗)
∩ 𝑉𝑞

(𝑗)
≠ ∅

1, 𝑉𝑝
(𝑗)
= 𝑉𝑞

(𝑗)

 (9)

where sx is the threat rating of the x-th vulnerability.

The number of component instances in the above definition can be obtained from Common Vulnerabilities and Exposures

(CVE); the threat rating of vulnerability can be obtained from Common Vulnerability Scoring System (CVSS), which

quantifies the threat rating of the leak to a value between 0 and 10 [32].

Definition 11 The similarity of two examples cp
(j)
(1 ≤ p ≤ Lj) and cq

(j)
(1 ≤ q ≤ Lj) of component Dj(1 ≤ j ≤ K) is

expressed as:

𝜆𝑝𝑞
(𝑗)
=

𝑡𝑝𝑞
(𝑗)2

𝑡𝑝
(𝑗)
× 𝑡𝑞

(𝑗)
 (10)

From the above definition, we can get that the similarity between two component instances is 0 ≤ λ ≤ 1, the smaller the

value is, the greater the difference between two component instances is, that is, the greater the degree of heterogeneity; λ = 0

indicates that two component instances achieve the ideal complete heterogeneity, while λ = 1 indicates that two component

instances are the same in the vast number.

Definition 12 The similarity between instances in component Dj(1 ≤ j ≤ K) is expressed as the similarity feature matrix of

Dj [5]

𝑌𝑗 =

[

 1 𝜆12

(𝑗)
⋯ 𝜆1𝐿𝑗

(𝑗)

𝜆21
(𝑗)

1 ⋯ 𝜆2𝐿𝑗
(𝑗)

⋮ ⋮ ⋱ ⋮

𝜆𝐿𝑗1
(𝑗)

𝜆𝐿𝑗2
(𝑗)

⋯ 1]

 (11)

It can be seen that the similarity feature matrix Yj of Dj is a symmetric matrix, which contains the similarity between all

instances in component Dj, and lays a foundation for calculating the similarity between executors.

Definition 13 The similarity between the heterogeneous executor Pk(1 ≤ k ≤ m) and Pl(1 ≤ l ≤ m) on the component

Dj(1 ≤ j ≤ K) is expressed as the product of the corresponding eigenvector and the similarity matrix [5]:

𝜙𝑘𝑙
(𝑗)
= 𝑍𝑗

(𝑘) ∙ 𝑌𝑗 ∙ 𝑍𝑗
(𝑙) (12)

The similarity between Pk and Pl is expressed as the weighted sum of the similarity between them on each component [5]:

𝜙𝑘𝑙 =∑𝜌𝑗

𝐾

𝑗=1

𝜙𝑘𝑙
(𝑗)

 (13)

Among them, K is the number of components that make up the heterogeneous executor, ρj is the weight of the similarity

of component Dj in all components, and ∑ ρj
K
j=1 = 1, which indicates the impact of component Dj on the attack behavior in

the composition of executor.

In conclusion, the similarity between two heterogeneous executors is described. Before performing multi-level queue

based scheduling, we first calculate the similarity between the two executors and arrange them in order. When scheduling, it

is only necessary to select the executor with the least correlation after the transformation instruction is issued.

Since there is no executor in the service set of the executor before the initialization of the mimic defense architecture, the

method of scheduling based on random threshold is to select the executor from the waiting set and add it to the service set.

But this does not guarantee better heterogeneity of the service set. Therefore, according to the similarity between

heterogeneous executors defined in the previous section, this section gives the overall comprehensive similarity of

heterogeneous executor service set.

For n redundancy architecture, there are n functional equivalent heterogeneous executors and n (n-1) / 2 similarity between

the two, so the comprehensive similarity of heterogeneous executor service set is defined as follows.

Definition 14 The comprehensive similarity of service set of executor in n redundancy architecture is expressed as the

mean value of similarity among all executors in the set [31]

𝛷 =
2

𝑛(𝑛 − 1)
∑ ∑ 𝜙𝑖𝑗

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

 (14)

Where ϕij is the similarity between the executors Pi and Pj

Generally, the executor combination scheme with the lowest overall similarity will be considered in the initialization of

the executor service set, but this may not be the optimal scheme. In addition to the smaller overall similarity, the similarity

between local executors should also be considered. In order to better illustrate this situation, an example is given next.

Fig. 6 Actuator and similarity diagram

As shown in Fig. 6, in the 3-redundancy architecture, candidate set includes four actuators 𝑃1、𝑃2、𝑃3、𝑃4 , the

connection length between the actuators represents the size of the difference, corresponding to 𝜙12、𝜙23、𝜙13、𝜙14、𝜙34

five similarities respectively. The longer the connection, the smaller the similarity, and 𝜙12 + 𝜙23 + 𝜙13 > 𝜙13 + 𝜙14 + 𝜙34.

The two initialized executive body combination schemes are shown in Fig. 7 respectively, and each scheme is composed of a

bold execution body point and a similarity dotted line. The execution body combination in scheme a is {𝑃1, 𝑃2, 𝑃3}, and the

execution body combination in scheme b is {𝑃1, 𝑃3, 𝑃4}. Because of 𝜙12 + 𝜙23 + 𝜙13 > 𝜙13 + 𝜙14 + 𝜙34, the execution body

set similarity in scheme b is smaller than that in scheme a. However, at this time, it does not mean that scheme b is adopted

for initialization, because it can be seen from the figure that the corresponding connection line 𝜙34 is very short, which means

that the similarity 𝜙34 between the executor 𝑃3 and 𝑃4 is large, so the 𝑃3 and 𝑃4 does not have sufficient difference, and there

are loopholes of the same origin with high probability, which are easier to be exploited by attackers.

Fig. 7 Combination scheme of two actuators

To sum up, the description definition of similarity of heterogeneous executor sets does not mean that only the executor

combination scheme with the lowest overall similarity needs to be directly selected during initialization, and the situation that

the similarity between local executors is too small also needs to be avoided. Therefore, it is necessary to set a similarity

threshold before initialization to exclude the occurrence of two actuators with smaller similarity. Of course, it is very

inefficient to combine all the schemes from the candidate set and then check whether they meet the setting in turn. According

to the random seed minimum similarity algorithm, only one executor needs to be randomly selected as the initial benchmark.

5.2 Quasi-Static Measurements: MOKE and MFM

According to the previous description and definition, the following three points should be guaranteed during the

initialization of heterogeneous executor set:

⚫ Select benchmark executor and similarity threshold;

⚫ The similarity between two selected executors is less than the set threshold.

⚫ The overall similarity of the service set of the executor is the minimum

In order to compare the similarity and threshold between executors more conveniently, firstly, calculate the similarity

between two executors according to formula (13), record and save it, adopt sequence storage structure and record it asRecord,

and Record[i][j] = ϕij, and ϕij is the similarity between Pi and Pj expressed by formula (13). 1 ≤ i ≠ j ≤ m, m is the total

number of all optional executors; meanwhile, the maximum similarity is ϕmax , and the minimum similarity is ϕmin

The random seed minimum similarity algorithm sets a random seed executor, which reduces the calculation amount to a

certain extent through preliminary screening. In order to further reduce the initialization work without increasing the

complexity of the algorithm, this section selects two random Executors as the benchmark, and the similarity threshold is set

as:

𝜙𝑡ℎ = 𝜙𝑚𝑖𝑛 +
𝑛

𝑚
∙ (𝜙𝑚𝑎𝑥 − 𝜙𝑚𝑖𝑛) (15)

the value of ϕth will increase with the increase of n, and ϕmin < ϕth ≤ ϕmax. While retaining the threshold restriction, it

can also guarantee the existence of the initializable set of executors.

The specific process of initialization algorithm of heterogeneous executor set is as follows:

1) Calculate similarity threshold ϕth.

2) Randomly select two executors Pi and Pj (1 ≤ i ≠ j ≤ m), if Record[i][j] < ϕth, repeat step 2, otherwise record P =

{Pi, Pj}, P|list = ∅ and continue.

3) Select the executor from the set to be selected, If the current executor Pk(1 ≤ k ≤ m) satisfies Pk ∉ P , and any Pl ∈ P

has Record[k][l] < ϕth, then P = {Pk} ∪ P ; repeat step 3 until |P| = n; when |P| = n, make P|list = {P} ∪ P|list.

4) Reset P = {Pi, Pj} and turn back to step 3, until you can no longer get a new set of executors Pnew(Pnew ∉ P|list)

5) The set of executors with the least comprehensive similarity in P|list is selected as the initial executor set, that is, Pinit =
min{P → Φ|P∈ P|list}

5.3 Multilevel Queue Scheduling of Executor

In order to adapt dynamic scheduling to different network load, we can use multi-level queue to combine time threshold

and task threshold to improve the adaptability and randomness of scheduling algorithm.

According to the inspiration from the multi-level feedback queue of process scheduling, the following definitions are

given:

Definition 15 Heterogeneous execution multi-level queue: It is composed of several queues of fixed size and equal in

sequence, which are recorded as MQ, and each level of queue can be regarded as a heterogeneous execution service set;

hereinafter referred to as multi-level queue；

Definition 16 Multi level queue redundancy: The total number of queues included in the whole multi-level queue, that is,

the number of levels of the multi-level queue, is recorded as qn；

Definition 17 Queue capacity: The total number of executors that can be accommodated in each layer of the multi-level

queue is recorded as qc, and the capacity of all queues is equal to the redundancy of the mimic defense architecture(qc = n)；

Definition 18 Each level of the multi-level queue is recorded as Q1, Q2, ⋯ , Qqn , and exists Qqn+1 = Q1 ; The

heterogeneous executors in each level of queue are represented by queue level sequence number sn(1 ≤ sn ≤ qn) and

position k in the queue, which is recorded as Pk
(sn)

;

The rules for the construction of multi-level queues scheduled by heterogeneous executors are as follows:

Rule 1: Each level of queue is assigned a random threshold of time, and the threshold is small to large with the level from

top to bottom;

Rule 2: Time random threshold of all executors sharing queue in the same level queue;

Rule 3: At the same time, only one queue can be used as the set of heterogeneous executors;

Rule 4: The first level queue is used to initialize the heterogeneous execution set;

Rule 5: When the next level queue reaches the queue capacity, the heterogeneous execution set becomes;

Rule 6: As long as the upper level queue is not empty, it will be the executor candidate set of the current heterogeneous

executor set;

Rule 7: As long as the next level queue does not reach the capacity of the queue, it will be regarded as the storage set of

the replaced executor in the current heterogeneous executor set;

Rule 8: The next level queue of the last level queue is the first level queue, while the first level queue does not have the

previous level queue.

Fig. 8. dynamic scheduling model based on multi-level queue

The dynamic scheduling model based on multi-level queue is shown in Fig.8., assuming that the similarity between two

executors has been calculated and recorded as Record, The executors in the selected set E are clearly numbered and the

location is fixed during scheduling. The scheduling algorithm flow is as follows:

Select qn time thresholds from the time random threshold pool and sort them in ascending order of size to get

t1, t2, ⋯ , tqn , and then allocate them to each level of queue in MQ , Q1, Q2, ⋯ , Qqn.

From the task random threshold pool, select m task thresholds w1, w2, ⋯ ,wqn , and assign them to all executors

E1, E2, ⋯ , Em in the executor to be selected set E.

Through the initialization algorithm of heterogeneous execution set based on the minimum similarity, the first level queue

Q1 is initialized to heterogeneous execution service set, and the current work queue level sn is set to 1.

When Pk
(sn)

 does not reach the time threshold on Qsn, but reaches its task threshold:

if sn = 1 or Qsn−1 = ∅, Select the executor Ej(1 ≤ j ≤ m) from the set E to replace Pk
(sn)

;

if 1 < sn ≤ qn and Qsn−1 ≠ ∅, Select the executor Pl
(sn−1)

(1 ≤ l ≤ n) from Qsn−1 to replace Pk
(sn)

.

Make Record[i][j] the smallest available similarity, and Pk
(sn)

 return to the ith position in E and reassign the task threshold

When Pk
(sn)

 does not reach its task threshold w, but first reaches the time threshold on Qsn, the number of tasks completed

by Pk
(sn)

 is v(v < w):

if sn = 1 or Qsn−1 = ∅, Select the executor Ej(1 ≤ j ≤ m) from the set E to replace Pk
(sn)

;

if 1 < sn ≤ qn and Qsn−1 ≠ ∅, Select the executor Pl
(sn−1)

(1 ≤ l ≤ n) from Qsn−1 to replace Pk
(sn)

.

Make Record[i][j] the smallest of the available similarity, and add Pk
(sn)

 to the end of Qsn+1, and its task threshold in

Qsn+1 is w− v.
When |Qsn+1| = qc (queue capacity is reached), if sn < qn, the task threshold of all executors in Qsn is adjusted to the

difference between the initial task threshold and the number of tasks they have completed, and the hierarchical sequence

number sn of the work queue is set to sn + 1; if sn = qn, all executors in Qsn return to the corresponding positions in the

selected set E and reassign the task threshold, and sn is set to 1; if sn = 1, perform step 1; return to step 4.

This paper analyzes the dynamic scheduling algorithm based on the multi-level queue in terms of space complexity and

time complexity:

1) space complexity

If the redundancy of pseudo defense architecture is n, the redundancy of the multi-level queue is 𝑞𝑛,the space required by

the multi-level queue is 𝑂(𝑛 × 𝑞𝑛).If the total number of all available heterogeneous executants is m, the space required by

candidate set of heterogeneous actuators is 𝑂(𝑚). The random threshold pool comprises a time threshold pool and a task

threshold pool, and each threshold pool needs twice the capacity of the total number of executants, i.e. the total required

space is 𝑂(4𝑚). In the algorithm of initialization of executing body set, the record of similarity between heterogeneous

actuators requires 𝑂(𝑚2) space. All executable sets that meet the requirements have at most 𝐶𝑚
𝑛 and the space complexity is

𝑂(𝑛 × 2𝑚). Overall, the space complexity of the dynamic scheduling algorithm based on multi-level queue is 𝑂(5𝑚 +
𝑛 × 𝑞𝑛 +𝑚2 + 𝑛 × 2𝑚).

2) Time complexity

Similarly, Ziggurat random threshold generation algorithm is independent of scheduling based on multi-level queues, and

the time complexity will not affect the scheduling algorithm. The redundancy of the pseudo defense architecture is n, the

redundancy of the multi-level queues is 𝑞𝑛, and the total number of all available heterogeneous executants is m, then the time

complexity of assigning a task random threshold to each heterogeneous executant is 𝑂(𝑚), the time complexity of assigning

a time random threshold to each layer of queues is 𝑂(𝑞𝑛), and the time complexity of starting a listener for an executor in the

service set is 𝑂(𝑛). In the initialization algorithm of executing body set, the time complexity of finding all executing body

sets satisfying the requirements by backtracking method is 𝑂(2𝑚). In the scheduling process, the transformation of the

executor after the listener triggers needs to find the executor with the smallest similarity with the current executor from the

temporary candidate set according to the similarity record, and the time complexity is 𝑂(𝑚).Finally, the time complexity of

the dynamic scheduling algorithm based on multi-level queue is 𝑂(𝑚 + 𝑛 + 𝑞𝑛 + 2𝑚).

6 EXPERIMENT ANALYSIS

This experiment includes security verification and reliability verification, which are respectively reflected by the

scheduling cycle and the common mode failure rate of the architecture. In order to reduce the uncertainty of the experiment,

150 scheduling cycles and common mode failure efficiency are obtained through 150 tests, and one test is a scheduling cycle.

In the experiment, the redundancy of the mimic defense architecture is 4, 5 and 6 respectively, which can not only

compare five scheduling algorithms under different redundancy, but also reflect the relationship between the mimic defense

redundancy and security, reliability. In the experiment, there are 12 heterogeneous executors to be selected, which are

identified as . The specific steps of the experiment are as follows:

6.1 Determine probability density function random threshold

The random threshold pool is required in the TIRTS, TARTS, MQS algorithms. Therefore, two random threshold

probability density functions of time and task are determined first. The related prior values are shown in Table 1.

Table 1. RELATED PRIOR VALUES OF HETEROGENEOUS EXECUTOR

 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12

T̅th
(i)

 53.34 43.72 31.55 13.58 32.92 47.53 29.53 44.11 9.71 25.38 57.2 58.61

W̅th
(i)

 20 14 24 13 4 3 4 29 15 23 19 23

αi 0.156 0.459 0.407 0.204 0.103 0.239 0.432 0.357 0.261 0.149 0.475 0.278

βi 0.880 0.658 0.986 0.745 0.638 0.566 0.694 0.709 0.859 0.512 0.739 0.797

ωi 0.052 0.115 0.153 0.058 0.025 0.052 0.114 0.097 0.086 0.029 0.134 0.085

Combining the prior values in the above table, according to formula (2) and (3), two parameters of the probability density

function of time random threshold are calculated as μtime = 38.57 and σtime = 15.26. Therefore, the probability density

function of time random threshold is

𝑓(𝑥)𝑡𝑖𝑚𝑒 =
1

√2𝜋 × 15.26
𝑒
−
(𝑥−38.57)2

2×15.262 (16)

According to formulas (5) and (6), the two parameters of probability density function of task random threshold are

μtask = 17.06 and σtask = 7.91, Therefore, the probability density function of random threshold is:

𝑓(𝑥)𝑡𝑎𝑠𝑘 =
1

√2𝜋 × 7.91
𝑒
−
(𝑥−17.06)2

2×7.912 (17)

With the normal function expression of two thresholds, two random threshold pools are continuously expanded for

threshold selection through Ziggurat random threshold generation algorithm in subsequent experiments.

6.2 Determine heterogeneous executor similarity

In MQS algorithm, the similarity between different executors is needed for the initialization of heterogeneous executor

service set and the selection of new executors when scheduling.

In reference [12], it is pointed out that β - distribution adapts to multiple distributions by selecting reasonable parameters

and easily obtains calculation results. Therefore, using β - distribution with parameters (5,15) to randomly generate similarity

between 12 executors, the similarity matrix is recorded as Record.

In the subsequent simulation scheduling, Record is used to calculate the comprehensive similarity and select the new

executor with the least similarity.

(

(1, 0.204, 0.263, 0.139, 0.272, 0.308, 0.103, 0.431, 0.094, 0.276, 0.267, 0.193)
(0.204, 1, 0.235, 0.256, 0.483, 0.230, 0.152, 0.511, 0.115, 0.231, 0.282, 0.289)
(0.263, 0.235, 1, 0.294, 0.394, 0.362, 0.270, 0.302, 0.204, 0.422, 0.191, 0.173)
(0.139, 0.256, 0.294, 1, 0.361, 0.334, 0.398, 0.490, 0.219, 0.330, 0.280, 0.460)
(0.272, 0.483, 0.394, 0.361, 1, 0.172, 0.366, 0.289, 0.170, 0.210, 0.266, 0.114)
(0.308, 0.230, 0.362, 0.334, 0.172, 1, 0.186, 0.262, 0.226, 0.264, 0.057, 0.203)
(0.103, 0.152, 0.270, 0.398, 0.366, 0.186, 1, 0.295, 0.333, 0.319, 0.295, 0.268)
(0.431, 0.511, 0302, 0.490, 0.289, 0.262, 0.295, 1, 0.262, 0.223, 0.333, 0.379)
(0.094, 0.115, 0.204, 0.219, 0.170, 0.226, 0.333, 0.262, 1, 0.195, 0.235, 0.437)
(0.276, 0.231, 0.422, 0.330, 0.210, 0.264, 0.319, 0.223, 0.195, 1, 0.083, 0.415)
(0.267, 0.282, 0.191, 0.280, 0.266, 0.057, 0.295, 0.333, 0.235, 0.083, 1, 0.197)
(0.193, 0.289, 0.173, 0.460, 0.114, 0.203, 0.268, 0.379, 0.437, 0.415, 0.197, 1))

6.3 Scheduling cycle with different redundancy

In the security verification, the scheduling cycle of each scheduling algorithm is obtained through multiple simulation

scheduling. Then through the security quantification model of the mimic defense architecture in Chapter 3, the average

scheduling cycle is used to calculate the theoretical security metrics of each scheduling algorithm. The so-called scheduling

cycle does not refer to the time, but the number of scheduling times used by the heterogeneous execution service set when it

becomes the initial set again, regardless of the location of the execution body, For example, the initial service set of the

executor is (E1, E2, E3), after x times of scheduling, the service set becomes (E2, E3, E1). Then one cycle of scheduling is x −
1. In addition, the five scheduling algorithms in this experiment are all fine-grained scheduling algorithms for a single

execution body, so one-time scheduling is one-time execution body scheduling

 Redundancy n=4. The scheduling cycle results of the five scheduling algorithms are shown in Fig.9.

 Redundancy n=5. The scheduling cycle results of the five scheduling algorithms are shown in Fig.10.

 Redundancy n=6. The scheduling cycle results of the five scheduling algorithms are shown in Fig.11.

Fig. 9. simulation results of five scheduling algorithms with redundancy n=4

Fig. 10. simulation results of five scheduling algorithms with redundancy n=5

Fig. 11. simulation results of five scheduling algorithms with redundancy n=6

Table 2. Average scheduling period scheduling algorithms with different redundancy

Algorithm

Redundancy
CRS NDS TIRTS TARTS MQS

n=4 488.52 95.43 162.99 171.71 404.55

n=5 873.93 154.50 303.33 278.88 578.10

n=6 925.01 191.49 324.12 322.56 843.22

Under different redundancy, the average scheduling period of the five scheduling algorithms is shown in Table 2.

6.4 Architecture inefficiency in scheduling process with different redundancy

In the reliability verification, the common mode failure efficiency of the mimic defense architecture reflects the reliability.

The common mode failure efficiency Λ is related to the failure rate λ of a single executor and the similarity between

executors ϕij, and the specific relationship is as follows [13]:

Λ =∑ ∑ [(𝜆𝑖 ∙ 𝜆𝑗 ∙ 𝜙𝑖𝑗)/ ∑ ∑ 𝜙𝑘𝑙

𝑛

𝑙=𝑘+1𝑘≠𝑖,𝑗

]

𝑛

𝑗=𝑖+1

𝑛

𝑖=1

 (18)

During the experiment, the similarity between the executors can be obtained through the similarity matrix Record in step 2;

the failure rate of each executor is randomly generated by the uniformly distributed U(0.01,0.1), and the failure rate sequence

of the executors is F = (
0.0824,0.0088,0.0574,0.0052,0.0747,0.0353,
0.0756,0.0257,0.0425,0.0780,0.0652,0.0632

). In addition, there will be multiple failure rates in

each scheduling cycle, so the common mode failure efficiency of the architecture corresponding to a scheduling cycle is the

average of all the common mode failure efficiency in the cycle.

Redundancy n=4. Under the five scheduling algorithms, the failure rate of the architecture is shown in Fig.12.

Redundancy n=5. Under the five scheduling algorithms, the failure rate of the architecture is shown in Fig.13.

Redundancy n=6. Under the five scheduling algorithms, the failure rate of the architecture is shown in Fig.14.

Fig. 12. simulation results of five scheduling algorithms with redundancy n =4

Fig. 13. simulation results of five scheduling algorithms with redundancy n =5

Fig. 14. simulation results of five scheduling algorithms with redundancy n = 6

Table 3. Average common mode loss efficiency of five sechduling algorithms with different redundancy

Algorithm

Redundancy
CRS NDS TIRTS TARTS MQS

n=4 0.301% 0.274% 0.234% 0.205% 0.053%

n=5 0.275% 0.252% 0.213% 0.183% 0.047%

n=6 0.263% 0.239% 0.202% 0.178% 0.045%

Under different redundancy, the average common mode failure efficiency of the corresponding architectures

of the five scheduling algorithms is shown in Table 3.

From the perspective of safety, Fig.9. to Fig.11. and table II can get the following conclusions:

 In terms of security, the TIRTS algorithm, TARTS algorithm and MQS algorithm proposed in this paper

are significantly better than NDS algorithm, but less than CRS algorithm.

 No matter how much redundancy is, the security of CRS algorithm is the best, followed by MQS algorithm,

but with the increase of redundancy, the security of MQS algorithm is close to CRS algorithm.

 Under the same scheduling algorithm, the higher the redundancy is, the higher the security is. From the

perspective of reliability, the common mode failure efficiency reflects the probability of common mode

failure of the mimic defense architecture. The lower the common mode failure efficiency is, the higher the

reliability of the algorithm is Fig.12. to Fig.14. and Table 3 can get the following conclusions:

XX:2 • G. Gubbiotti et al

 CRS algorithm, NDS algorithm, TIRTS algorithm and TARTS algorithm have higher common mode

failure rate and lower reliability.

 CRS algorithm has the lowest reliability, MQS algorithm has the highest reliability, and has a significant

improvement compared with other algorithms.

 Under the same scheduling algorithm, the higher the redundancy is, the higher the reliability is.

7 CONCLUSION

In this paper, a dynamic scheduling algorithm based on random threshold is proposed for volunteer

computing mimic defense architecture, including TIRTS algorithm and TARTS algorithm, which can ensure

certain security and carry out fine-grained active scheduling at the same time. Furthermore, this paper proposes

a scheduling algorithm MQS based on multi-level queue, which combines time threshold and task threshold

through multi-level queue to improve the security and reliability.

In view of the current passive situation in CMD architecture of volunteer computing that the scheduling

algorithm only relies on feedback control instructions and the granularity of scheduling is large, we allocate the

time threshold or task threshold to each executive body to achieve the active scheduling of a single executive. In

order to further improve the adaptability and stability of the random threshold scheduling, and get inspiration

from the multi-level feedback queue of the processor, this paper combines the time threshold and task threshold

into the multi-level queue, while retaining the advantages of the TIRTS algorithm and the TARTS algorithm, as

well as the security and reliability.

8 ACKNOWLEDGEMENTS

This work was supported in part by The 4th project "Research on the Key Technology of Endogenous

Security Switches" (2020YFB1804604) of the National Key R&D Program "New Network Equipment Based on

Independent Programmable Chips" (2020YFB1804600), the 2020 Industrial Internet Innovation and

Development Project from Ministry of Industry and Information Technology of China, Jiangsu province key

research and development programs: social development project (BE2017739) , 2018 Jiangsu Province Major

Technical Research Project "Information Security Simulation System”, the Fundamental Research Fund for the

Central Universities (30918012204, 30918014108), National Natural Science Foundation of China (61702264,

61761136003), Postdoctoral Science Foundation of China (2019M651835), and the Japan Society for the

Promotion of Science (JSPS) Grants-in-Aid for Scientific Research (KAKENHI) under Grant JP18K18044.

REFERENCES
[1] Wu J. Meaning and vision of mimic computing and mimic security defense. Telecommunications Science, 2014, 30(7): 2-7.

[2] Qi L, Zhang X, Dou W, et al. A distributed locality-sensitive hashing-based approach for cloud service recommendation from multi-

source data. IEEE Journal on Selected Areas in Communications, 2017, 35(11): 2616-2624.

[3] Liu H, Kou H, Yan C, et al. Link prediction in paper citation network to construct paper correlation graph. EURASIP Journal on

Wireless Communications and Networking, 2019, 2019(1): 1-12.

[4] Al-Turjman F. Intelligence and security in big 5G-oriented IoNT: An overview. Future Generation Computer Systems, 102, 357-368,

2020.

[5] Li Q, Meng S, Wang S, et al. CAD: Command-level anomaly detection for vehicle-road collaborative charging network. IEEE Access,

2019, 7: 34910-34924.

[6] Gong W, Qi L, Xu Y. Privacy-aware multidimensional mobile service quality prediction and recommendation in distributed fog

environment. Wireless Communications and Mobile Computing, Article ID 3075849, 8 pages, 2018.

[7] Chi X, Yan C, Wang H, et al. Amplified LSH-based Recommender Systems with Privacy Protection. Concurrency and Computation:

Practice and Experience, 2020. DOI: 10.1002/CPE.5681.

[8] Li Q, Meng S, Zhang S, et al. Complex attack linkage decision-making in edge computing networks. IEEE Access, 2019, 7: 12058-

12072.

[9] Al-Turjman F, Zahmatkesh H, Al-Oqily I, et al. Optimized Unmanned Aerial Vehicles Deployment for Static and Mobile Targets’

Monitoring. Computer Communications, 2020, 149: 27-35.

[10] Xu X, He C, Xu Z, et al. Joint optimization of offloading utility and privacy for edge computing enabled IoT. IEEE Internet of Things

Journal, 2019. DOI: 10.1109/JIOT.2019.2944007.

[11] Li Q, Tian Y, Wu Q, et al. A Cloud-Fog-Edge Closed-Loop Feedback Security Risk Prediction Method. IEEE Access, 2020, 8: 29004-

29020.

[12] Xu X, Liu Q, Luo Y, et al. A computation offloading method over big data for IoT-enabled cloud-edge computing. Future Generation

Computer Systems, 2019, 95: 522-533.

[13] Li Q, Wang Y, Pu Z, et al. Time series association state analysis method for attacks on the smart internet of electric vehicle charging

network. Transportation Research Record, 2019, 2673(4): 217-228.

[14] Xu X, Li Y, Huang T, et al. An energy-aware computation offloading method for smart edge computing in wireless metropolitan area

networks. Journal of Network and Computer Applications, 2019, 133: 75-85.

[15] Wan S, Zhao Y, Wang T, et al. Multi-dimensional data indexing and range query processing via Voronoi diagram for internet of things.

Future Generation Computer Systems, 2019, 91: 382-391.

[16] Li Q, Meng S, Zhang S, et al. Safety risk monitoring of cyber-physical power systems based on ensemble learning algorithm. IEEE

Access, 2019, 7: 24788-24805.

[17] Xu X, Xue Y, Qi L, et al. An edge computing-enabled computation offloading method with privacy preservation for internet of

connected vehicles. Future Generation Computer Systems, 2019, 96: 89-100.

[18] Gao Z, Xuan H Z, Zhang H, et al. Adaptive fusion and category-level dictionary learning model for multiview human action

recognition. IEEE Internet of Things Journal, 2019, 6(6): 9280-9293.

[19] Qi L, Dou W, Wang W, et al. Dynamic mobile crowdsourcing selection for electricity load forecasting. IEEE Access, 2018, 6: 46926-

46937.

[20] Wan S, Gu Z, Ni Q. Cognitive computing and wireless communications on the edge for healthcare service robots. Computer

Communications, 2020, 149: 99-106.

[21] S Ding, S Qu, Y Xi, S Wan. A long video caption generation algorithm for big video data retrieval. Future Generation Computer

Systems, 93, 583-595, 2019.

[22] Wan S, Goudos S. Faster R-CNN for multi-class fruit detection using a robotic vision system. Computer Networks, 2020, 168: 107036.

[23] Al-Turjman F, Nawaz M H, Ulusar U D. Intelligence in the Internet of Medical Things era: A systematic review of current and future

trends. Computer Communications, 2019.

[24] Xue C, Lin C, Hu J. Scalability analysis of request scheduling in cloud computing. Tsinghua Science and Technology, 2019, 24(3):

249-261.

[25] Shen D, Luo J, Dong F, et al. VirtCo: joint coflow scheduling and virtual machine placement in cloud data centers. Tsinghua Science

and Technology, 2019, 24(5): 630-644.

[26] Liu L, Chen X, Lu Z, et al. Mobile-edge computing framework with data compression for wireless network in energy internet.

Tsinghua Science and Technology, 2019, 24(3): 271-280.

[27] Qi L, Dou W, Zhou Y, et al. A context-aware service evaluation approach over big data for cloud applications. IEEE Transactions on

Cloud Computing, 2015.

[28] WU J. Research on Cyber Mimic Defense. Journal of Cyber Security, 2016, 1(04):1-10.

[29] Ramasubramanian S. A characterisation of the normal distribution. Annals of the Institute of Statistical Mathematics, 1985, 47(3):410-

414.

[30] Marsaglia G, Tsang W W. The ziggurat method for generating random variables. Journal of statistical software, 2000, 5(8): 1-7.

[31] Younis A, Malaiya Y K, Ray I. Evaluating CVSS Base Score Using Vulnerability Rewards Programs. Proc of IFIP International

Information Security and Privacy Protection. Springer International Publishing, 2016: 62-75. doi:https://doi.org/10.1007/978-3-319-

33630-5_5.

[32] Wang S, Cao L. Inferring implicit rules by learning explicit and hidden item dependency. IEEE Transactions on Systems, Man, and

Cybernetics: Systems, 2020, 50(3): 935-946.

[33] Wu K, Zhou X Z, Wang J Y, et al. A concept semantic similarity algorithm based on bayesian estimation. Journal of Chinese

Information Processing, 2010, 24(2):52-57.

[34] Zhang S, Xiao F, Xu J, Li J. Determination of Aviation Spare Parts Failure Rate Based on Similarity System Theory and Bayesian

Theory. Electronics Optics & Control,2015,22(04):83-87

[35] Hou J, Li Q, Cui S, et al. Low-cohesion differential privacy protection for industrial internet. The Journal of Supercomputing, 2020: 1-

23.

[36] Li Q, Hou J, Meng S, et al. GLIDE: A Game Theory and Data-Driven Mimicking Linkage Intrusion Detection for Edge Computing

Networks. Complexity, vol. 2020, Article ID 7136160, 18 pages, 2020. https://doi.org/10.1155/2020/7136160.

[37] Qianmu Li, Yaozong Liu, Shunmei Meng, Hanrui Zhang, Haiyuan Shen and Huaqiu Long. A dynamic taint tracking optimized fuzz

testing method based on multi-modal sensor data fusion. EURASIP Journal on Wireless Communications and Networking (2020)

2020:110. https://doi.org/10.1186/s13638-020-01734-0.

[38] Wang S, Hu L, Wang Y, et al. Modeling Multi-Purpose Sessions for Next-Item Recommendations via Mixture-Channel Purpose

Routing Networks. Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2019: 3771-3777.

https://doi.org/10.1155/2020/7136160

