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PREMISE: Host-plant genetic variation can shape associated communities of organisms. These 14 

community-genetic effects include (1) genetically-similar hosts harbouring similar associated 15 

communities (i.e., the genetic similarity rule) and (2) host-plant heterozygosity increasing 16 

associated community diversity. Community-genetic effects are predicted to be less prominent in 17 

plant systems with limited genetic variation, such as those at distributional range limits. Yet, 18 

empirical evidence from such systems is limited. 19 

METHODS: We sampled a natural population of a mangrove foundation species (Avicennia 20 

germinans) at an expanding range limit in Florida, USA. We measured genetic variation within 21 

and among 40 host trees with 24 nuclear microsatellite loci and characterised their foliar 22 

endophytic fungal communities with ITS1 gene amplicon sequencing. We evaluated 23 

relationships among host-tree genetic variation, host-tree spatial location, and the associated 24 

fungal communities. 25 

RESULTS: Genetic diversity was low across all host trees (mean: 2.6 alleles per locus) and 26 

associated fungal communities were relatively homogeneous (five sequence variants represented 27 

78% of all reads). We found: (1) genetically-similar host trees harboured similar fungal 28 

communities, with no detectable effect of inter-host geographic distance. (2) Host-tree 29 

heterozygosity had no detectable effect, while host-tree absolute spatial location affected 30 

community alpha diversity. 31 

CONCLUSIONS: This research supports the genetic similarity rule within a range limit 32 

population and helps broaden the current scope of community genetics theory by demonstrating 33 

that community-genetic effects can occur even at expanding distributional limits where host-34 

plant genetic variation may be limited. Our findings also provide the first documentation of 35 

community-genetic effects in a natural mangrove system. 36 
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 42 

INTRODUCTION 43 

Intraspecific diversity can shape the ecological dynamics of communities and entire ecosystems 44 

(Raffard et al., 2019). For instance, a central principle of community genetics is that genetic 45 

variation within a host plant can influence the structure and diversity of associated communities 46 

of organisms (Whitham et al., 2003). Empirical evidence of community-genetic effects is found 47 

across diverse systems, including terrestrial forests with low (Whitham et al., 2006) and high 48 

(Zytynska et al., 2011) species diversity, agricultural landscapes (Stevenson et al., 2017), and 49 

aquatic systems (Jormalainen et al., 2017). This pattern may be most prominent in systems 50 

dominated by a limited number of plant foundation species (Whitham et al., 2006), which define 51 

ecosystems with their physical structure and provide resources that directly influence diverse 52 

community assemblages (Ellison et al., 2005). 53 

Community-genetic effects are measured both in terms of host-plant genetic similarity and 54 

diversity, plus spatial effects need to also be considered. First, genetically-similar host plants 55 

may harbour similar associated communities, a pattern known as the genetic similarity rule 56 

(Bangert, Allan, et al., 2006; Bangert, Turek, et al., 2006; Barbour et al., 2009; Kagiya et al., 57 

2018). Second, increased genetic diversity at the population level may lead to concomitant 58 

increases in associated species diversity (Wimp et al., 2004; Crutsinger et al., 2006; Johnson et 59 
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al., 2006). Similar patterns are also found when considering the genetic diversity of individual 60 

host plants (i.e., heterozygosity) (Tovar-Sánchez et al., 2013; Valencia-Cuevas et al., 2018). This 61 

extension of community genetics theory is in line with extensive research on the link between 62 

intra-individual heterozygosity and fitness (reviews by Hansson and Westerberg, 2002; Szulkin 63 

et al., 2010). Lastly, in addition to host genetic variation, the spatial context of host plants, 64 

including their relative position in relation to neighbouring conspecifics and variation in 65 

environmental conditions, needs to also be considered as spatial effects can prove more 66 

influential (Tack et al., 2010; Gossner et al., 2015; Barbour et al., 2019; but see Bangert, Allan, 67 

et al., 2006; Lamit et al., 2015). 68 

Community-genetic effects may also vary with the extent of genetic variation present in the 69 

host population. Plant systems with limited genetic variation are predicted to exhibit less 70 

prominent effects and, instead, environmental variation will exhibit a stronger effect on 71 

associated community structure (Bangert, Turek, et al., 2006). However, only one study has 72 

provided empirical evidence from such systems. Pohjanmies et al. (2015) documented that 73 

genetic variation within a tree foundation species correlates with the structure and diversity of 74 

associated herbivore communities at a distributional range limit. Range limits may exhibit 75 

limited genetic variation (Pironon et al., 2017) and are shifting for many species with 76 

anthropogenic climate change (Pecl et al., 2017). Further assessments of relationships between 77 

host-plant genetic variation and associated communities at range limits, especially those where 78 

foundation species are undergoing climate-driven range shifts, could help broaden the current 79 

scope of community genetics theory and provide insights into the ecological and evolutionary 80 

processes shaping these dynamic systems. 81 
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In this study, we evaluated relationships between genetic variation within a mangrove 82 

foundation species at its expanding distributional range limit and the structure and diversity of 83 

associated foliar endophytic fungal communities. Mangroves are (sub)tropical, intertidal woody 84 

plants that provide vital ecosystem services to coastal habitats worldwide (Lee et al., 2014). 85 

Mangrove forests consist of relatively few tree species (Alongi, 2009) and, as such, intraspecific 86 

differences may be particularly influential in shaping ecological dynamics in these systems 87 

(Farnsworth, 1998). Numbers of mangrove species are further reduced towards climate-sensitive, 88 

poleward range limits where generally only one predominant species exists (Osland et al., 2017) 89 

and often genetic variation is limited (e.g., Pil et al., 2011; De Ryck et al., 2016; Kennedy et al., 90 

2017; Binks et al., 2019; Ochoa‐Zavala et al., 2019). 91 

Mangrove systems harbour numerous associated communities of both terrestrial and marine 92 

origin (Nagelkerken et al., 2008), including diverse fungal communities found on or within 93 

multiple mangrove tissues (e.g., Gilbert et al., 2002; Arfi et al., 2012; de Souza Sebastianes et al., 94 

2013; Lee et al., 2019). Fungal endophytes are ubiquitous inhabitants within plant tissues, obtain 95 

shelter and nutrition from their host plant, and may influence plant health and function (Arnold, 96 

2007; Porras-Alfaro and Bayman, 2011). Endophytic fungi in leaves and twigs vary among host 97 

genotypes of diverse plant species (Elamo et al., 1999; Pan et al., 2008; Lamit et al., 2014; 98 

Griffiths et al., 2020); however, whether intraspecific genetic differences among mangrove host 99 

trees correlates with the structure and diversity of their associated fungal communities remains 100 

unanswered. 101 

We sampled a natural population of neotropical black mangrove (Avicennia germinans) at a 102 

northern range limit on the Atlantic coast of Florida, USA. At this range limit, A. germinans is 103 

the predominant mangrove species (Lonard et al., 2017), exists as discrete patches within a 104 
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landscape dominated by salt-marsh vegetation (Kangas and Lugo, 1990), and exhibits reduced 105 

genetic variation (Kennedy, Preziosi, et al., 2020) and elevated levels of self-fertilisation 106 

(Kennedy et al., 2021). A lack of extreme freeze events for several decades has been linked to A. 107 

germinans proliferation (Cavanaugh et al., 2014; Osland et al., 2018) and further expansion is 108 

forecast with climate change (Cavanaugh et al., 2015, 2019), which may have wide-reaching 109 

effects on these coastal ecosystems (Kelleway et al., 2017). We genotyped A. germinans host 110 

trees with 24 nuclear microsatellite loci, characterised communities of endophytic fungi in their 111 

leaves with ITS1 gene amplicon sequencing, and accounted for potential spatial effects with 112 

host-tree GPS coordinates and inter-host geographic distances. We asked: (1) Do inter-host 113 

genetic similarity and inter-host geographic distance correlate with similarity among associated 114 

endophytic fungal communities? (2) Do host-tree heterozygosity and host-tree absolute spatial 115 

location correlate with alpha diversity of the associated endophytic fungal community? 116 

 117 

MATERIALS AND METHODS 118 

Study design 119 

On 09 October 2017, we sampled from and collected GPS coordinates for 40 mature A. 120 

germinans trees, all approximately the same height (~2 m), at a single collection site (29.7284, -121 

81.2425) near the Atlantic Florida range limit. Mangrove area has progressively increased for 122 

several decades at this site (Rodriguez et al., 2016) which is flanked by a brackish lagoon to the 123 

west and a fringe of terrestrial hammock forest to the east. Salinity during this time of the year 124 

(Sept–Nov) increases from west to east along the site (38 to 67 ‰), then decreases adjacent to 125 

the terrestrial fringe (40 ‰) (Guana Tolomato Matanzas National Estuarine Research Reserve, 126 

unpublished data; Fig. 1). Our sampling area covered ~0.1 km2, which included most of the total 127 
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spatial extent of this A. germinans population, with a minimum inter-tree distance of 11 m and a 128 

maximum distance of 528 m (Fig. 1). For each tree, we sampled a total of three undamaged 129 

leaves, each from the first fully mature leaf pair on branches located in direct sunlight. We 130 

collected these leaves (generally the third leaf pair) to standardise leaf age and exposure to 131 

sunlight, both of which can influence fungal community structure (Koide et al., 2017; 132 

Younginger and Ballhorn, 2017). We placed leaves from each tree into separate, labelled plastic 133 

bags and stored them in a portable cooler with an ice pack during fieldwork and subsequent 134 

transport to the laboratory. 135 

 136 

Sample processing and DNA isolation 137 

Leaves were kept on ice and processed within 24 hours of sampling. We rinsed individual leaves 138 

under running tap water for 30 sec, then surface sterilised with sequential immersion in 95% 139 

ethanol for 10 seconds, 0.5% bleach for 2 minutes, and 70% ethanol for 2 minutes under a sterile 140 

hood (U’Ren et al., 2014). We allowed leaves to air dry and then used sterilised surgical blades 141 

to cut ~5 mm x 5 mm sections from the middle of each leaf at both sides of the midvein. We 142 

combined the cut sections from each of the three leaves per tree into a single microcentrifuge 143 

tube and isolated genomic DNA with the DNeasy Plant Mini Kit (Qiagen, Hilden, Germany) 144 

following the standard protocol, with an extended incubation of 45 minutes. We also included 145 

two extraction blanks (negative controls) during this process. We quantified DNA extracts on a 146 

Qubit 2.0 Fluorometer (ThermoFisher Scientific, Waltham, Massachusetts, USA) and created 147 

standardised aliquots of 35 ng/uL to be used for both host-tree genotyping and fungal community 148 

sequencing. We stored DNA aliquots at -20○C until further processing. 149 

 150 
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Host-tree genotyping 151 

We genotyped host trees at 32 nuclear microsatellite loci. Of this total, 12 loci were previously 152 

developed (Nettel et al., 2005; Cerón-Souza et al., 2006, 2012; Mori et al., 2010) and genotyped 153 

following the protocol outlined in Kennedy, Preziosi, et al. (2020). The remaining 20 loci were 154 

more recently developed (Craig, Feller, et al., 2020) and genotyped following the author’s 155 

protocol. We performed PCR on a Prime thermal cycler (Techne, Straffordshire, UK), analysed 156 

fragments on an Applied Biosystems 3730 DNA Analyzer (Applied Biosystems, Foster City, 157 

California, USA) with LIZ 500 size standard, and scored alleles in the R-package Fragman 158 

(Covarrubias-Pazaran et al., 2016). We evaluated the presence of null alleles in MICRO-159 

CHECKER 2.2.3 (van Oosterhout et al., 2004) and randomly amplified and genotyped 10% of 160 

our DNA samples (n = 4) a second time to estimate a study error rate (Bonin et al., 2004). We 161 

tested for linkage disequilibrium and deviations from Hardy-Weinberg equilibrium, and 162 

calculated the number of alleles and observed and expected heterozygosity per locus in FSTAT 163 

2.9.3.2 (Goudet, 2002). 164 

We calculated five measures of host-tree heterozygosity (i.e., proportion of heterozygous 165 

loci, observed heterozygosity, expected heterozygosity, internal relatedness, homozygosity by 166 

loci) for each of the 40 host trees with the R-function GENHET (Coulon, 2010). We also 167 

manually calculated the number of alleles within the multi-locus genotype of each host tree. All 168 

six measures were highly correlated (Pearson’s correlation, r = 0.96–1.0, p < 0.001). Hence, we 169 

present results only for homozygosity by loci (HL), an index that considers allelic variability at 170 

each locus to estimate heterozygosity and, based on simulations, correlates better than other 171 

measures with genome-wide heterozygosity (Aparicio et al., 2006). As this index varies from 0 172 

(all loci are heterozygous) to 1 (all loci are homozygous), we used 1 – HL for statistical analyses 173 
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to provide more intuitive results (i.e., higher values represent higher heterozygosity). To evaluate 174 

genetic similarity, we calculated pairwise inter-individual genetic distances (as outlined in 175 

Smouse and Peakall, 1999) and geographic distances among the 40 host trees in GenAlEx 6.5 176 

(Peakall and Smouse, 2012). 177 

 178 

Associated fungal community sequencing 179 

We performed ITS gene amplicon library preparation and sequencing at the University of 180 

Salford, UK. Fungal DNA was amplified at the ITS 1F-2 gene (White et al., 1990) with modified 181 

versions of the ITS1F (5’–CTT GGT CAT TTA GAG GAA GTA A–3’) and ITS2 (5’–GCT 182 

GCG TTC TTC ATC GAT GC –3’) primer set that included Illumina adapters, a linker, and 183 

unique barcodes (see Smith and Peay, 2014) as outlined in Griffiths et al. (2020). PCR products 184 

for our samples and those of 80 additional fungal samples, which consisted of ITS1 gene 185 

amplicons used for an unrelated study, were then pooled to equimolar concentrations. ITS1 gene 186 

amplicon sequencing was performed using paired-end reads with an Illumina v3 (2 x 300 bp) 187 

cartridge on an Illumina MiSeq (Illumina, San Diego, California, USA). Negative (extraction 188 

blanks) and positive (synthetic mock community with 12 mock isolates; Palmer et al., 2018) 189 

controls were also included in the sequence run. 190 

We removed adaptor and primer sites from the ITS1 gene sequence data with cutadapt v2.4 191 

(Martin, 2011), and performed all subsequent data processing and calculations in R v3.6.0 (R 192 

Core Team, 2020). A total of 275,829 raw sequences across our 40 samples were generated. We 193 

used the R-package DADA2 1.12.1 (Callahan et al., 2016) with default pipelines to perform 194 

quality filtering and taxonomic assignment with the UNITE v8.0 database (UNITE Community, 195 

2019). Here, we analysed only forward sequence reads because lower quality and quantity of 196 
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reverse reads resulted in a nearly 50% reduction in total sequence reads after quality filtering of 197 

the assembled paired-end reads (Appendix S1a, see the Supplementary Data with this article). 198 

Discarding low-quality reverse reads is a common strategy that often provides better results than 199 

assembled paired-end reads (Nguyen et al., 2015; Pauvert et al., 2019). One chimera was 200 

removed. We then removed amplicon sequence variants (ASVs) with <100 reads across all 201 

samples as a conservative approach to deal with potential artifacts of high-throughput sequencing 202 

(Pauvert et al., 2019). Modal contig length was 225 bp (range: 153 – 251 bp). No contaminants 203 

were identified in the first negative control, and one ASV was identified in the second negative 204 

control, but was not found in other samples. All 12 expected ASVs were identified in the 205 

synthetic mock community. We did not further trim forward reads, we manually checked 206 

whether ASVs with identical taxonomic assignments were indeed unique sequences (i.e., did not 207 

simply vary at the start or end of the sequence), and all ASVs assigned as unidentified fungi were 208 

further checked with default blastn analyses on the UNITE website (Nilsson et al., 2019). We 209 

removed all ASVs that corresponded to the host-tree species (A. germinans), which included 210 

64% of all sequence reads, and all additional unidentified fungi had significant alignments with 211 

public fungal ITS sequences (e-values = 1e-13 – 4e-88). The resulting data set consisted of 64,308 212 

reads across 40 samples, with a median of 748 reads per sample (range: 104 – 9,314). 213 

We exported the ASV table, taxonomy table, and sample identifications to the R-package 214 

phyloseq 1.28.0 (McMurdie and Holmes, 2013) for the following calculations. We calculated 215 

alpha diversity of fungal communities with Hill numbers (Hill, 1973) at the scales of q=0 216 

(species richness), q=1 (exponential of Shannon index), and q=2 (inverse of Simpson index), 217 

which represent the effective number of species and put more weight on abundant species as the 218 

value of q increases (Chao et al., 2014). We performed these calculations with the raw count data 219 
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rarefied to a standardised number of reads equal to the sample with the lowest read count (104 220 

reads; see Appendix S2a). Although read counts were limited for certain samples, asymptotes 221 

were reached in all rarefaction curves with few rank-order changes among samples past this 222 

lowest read count (Appendix S2a). As such, our sampling effort seems to have captured most 223 

diversity within these samples. Random sampling to generate rarefied counts can add noise to a 224 

data set and undermine the performance of downstream methods (McMurdie and Holmes, 2014); 225 

therefore, we also performed alpha diversity calculations and the subsequent statistical analyses 226 

with the raw count data and results were equivalent to those presented here (Appendix S1b). To 227 

evaluate community dissimilarity (beta diversity), we calculated Bray-Curtis dissimilarity with 228 

the raw count data converted to relative abundances. We also calculated Aitchison distance by 229 

centred log-ratio (clr) transforming the raw count data with the R-package microbiome (Lahti et 230 

al., 2017) and then calculating pairwise Euclidean distances in phyloseq 1.28.0 (McMurdie and 231 

Holmes, 2013). Aitchison distance accounts for the compositional nature of high-throughput 232 

sequence data, which makes this measure more appropriate than many standard measures (Gloor 233 

et al., 2017; Quinn et al., 2018). 234 

 235 

Statistical analyses 236 

We performed all statistical analyses in R v3.6.0 (R Core Team, 2020). To address our first 237 

question, we tested for an effect of inter-host genetic distance and a relative spatial effect of 238 

inter-host geographic distance on dissimilarity among associated endophytic fungal communities 239 

across all samples with ranked Mantel tests of correlation. As spatial effects may not be linear 240 

(Diniz-Filho et al., 2013; Legendre et al., 2015), we also performed multivariate Mantel 241 

correlograms to assess these patterns at five discrete distance classes. All analyses were 242 
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performed in the R-package ecodist (Goslee and Urban, 2007). Significance for each analysis 243 

was determined with 104 permutations, and p-values for correlograms were adjusted for multiple 244 

comparisons with a false discovery rate correction method using the R-function p.adjust. For 245 

both Mantel tests and Mantel correlograms, we first tested for a relationship between the two 246 

predictor variables (i.e., inter-host genetic distance and inter-host geographic distance), then 247 

performed separate tests between fungal community dissimilarity and each of the two predictor 248 

variables, and finally performed partial analyses between fungal community dissimilarity and 249 

inter-host genetic distance, while controlling for inter-host geographic distance. 250 

To address our second question, we tested for an effect of host-tree heterozygosity and an 251 

absolute spatial effect of host-tree spatial location on the alpha diversity of associated endophytic 252 

fungal communities with multiple linear regressions. We fitted three additive models, with alpha 253 

diversity of fungal communities at each Hill number (q = 0, 1, 2) as the response variable and 254 

heterozygosity, longitude, and latitude of each host tree as predictor variables. We also tested full 255 

models and subsets with interactions among two of the three predictor variables, but none of 256 

these interactions proved statistically significant and none of these models provided better fits 257 

based on the Bayesian Information Criterion (BIC; Schwarz, 1978). Hill numbers at q=1 and q=2 258 

were natural log-transformed to meet the statistical assumption of normality, and we centred and 259 

scaled the predictor variables to standardise regression coefficients. 260 

 261 

RESULTS 262 

Host-tree genotyping 263 

We discarded seven of the 32 nuclear microsatellite loci that were monomorphic across all 264 

samples, and discarded another locus that proved difficult to score. Our final host-tree genotypes 265 
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included 24 loci (Appendix S1c) with no missing data, and all 40 host-tree genotypes were 266 

unique. We found no evidence for null alleles and each of the four samples that were amplified 267 

and genotyped a second time produced consistent multi-locus genotypes. We found no evidence 268 

for linkage disequilibrium or deviations from Hardy-Weinberg equilibrium. Genetic variation 269 

was low across the 40 host trees, with 2.6 ± 1.4 (SD) alleles per locus and expected 270 

heterozygosity of 0.37 ± 0.20 (Appendix S1c). Host-tree heterozygosity (1 – HL) ranged from 271 

0.06 to 0.81 (mean: 0.45 ± 0.15). 272 

 273 

Associated fungal community sequencing 274 

A total of 49 amplicon sequence variants (ASVs) were identified across the 40 host trees. Most 275 

ASVs were assigned to the phylum Ascomycota (35 of 49 ASVs, 87% of all reads) and 11% of 276 

all reads were assigned only to the level of kingdom Fungi (Appendix S2b). Less than half (47%) 277 

of all reads were assigned class level taxonomy, with the class Dothideomycetes as the most 278 

common (28% of all reads; Appendix S2c). The endophytic fungal community was relatively 279 

homogeneous, with one ASV (assigned taxonomy only to the level of phylum Ascomycota) 280 

representing 41% of all reads (Appendix S1d). The five most abundant ASVs represented 78% 281 

of all reads, and subsequent ASVs each represented ≤ 2% of all reads (Appendix S1d). Alpha 282 

diversity of fungal communities across the 40 host trees at q=0 (species richness) was 4.0 ± 1.7 283 

(SD), at q=1 (exponential of Shannon index) was 2.8 ± 1.2, and at q=2 (inverse of Simpson 284 

index) was 2.5 ± 1.1. 285 

 286 

Associated fungal community structure correlates with host-tree genetics 287 
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Genetically-similar host trees harboured similar associated fungal communities, with no 288 

detectable relative spatial effect of geographic distance among host trees both across all samples 289 

(Mantel tests) and at five distance classes (Mantel correlograms) (Fig. 2). For Mantel tests, the 290 

predictor variables (i.e., inter-host genetic distance and inter-host geographic distance) exhibited 291 

no relationship (Mantel correlation, rM = 0.05, p = 0.181; Appendix S2d). Fungal community 292 

(Bray-Curtis) dissimilarity exhibited a weak, but statistically significant positive relationship 293 

with inter-host genetic distance (rM = 0.26, p = 0.002), and no relationship with inter-host 294 

geographic distance (rM = 0.06, p = 0.164) (Fig. 2a, b). Accounting for inter-host geographic 295 

distance did not impact the relationship with inter-host genetic distance (partial rM = 0.26, p = 296 

0.002). Community dissimilarity measured with Aitchison distance provided equivalent results 297 

(inter-host genetic distance: rM = 0.16, p = 0.041; inter-host geographic distance: rM = 0.05, p = 298 

0.188) (Fig. 2e, f), with a weaker relationship with inter-host genetic distance (partial rM = 0.16, 299 

p = 0.043). 300 

Mantel correlogram results were equivalent to those of the Mantel tests, with no 301 

relationships between predictor variables (rM = -0.07 – 0.07, p ≥ 0.568; Appendix S2d), and 302 

community (Bray-Curtis) dissimilarity exhibited statistically significant positive relationships 303 

with the first two genetic distance classes (rM = 0.16, p = 0.002; rM = 0.14, p = 0.050; 304 

respectively), a statistically significant negative relationship with the fourth genetic distance 305 

class (rM = -0.16, p = 0.008), and no relationships with inter-host geographic distance classes (rM 306 

= -0.06 – 0.03, p ≥ 0.810) (Fig. 2c, d). Accounting for inter-host geographic distances did not 307 

impact these relationships with inter-host genetic distance classes, except for the second genetic 308 

distance class that was now statistically non-significant (p = 0.090) (Appendix S2e). Community 309 

dissimilarity measured with Aitchison distance provided equivalent results (Fig. 2g, h), with 310 
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weaker relationships with inter-host genetic distance classes that were statistically significant at 311 

only the first genetic distance class (rM = 0.13, p = 0.027). Accounting for inter-host geographic 312 

distances did not impact these relationships (Appendix S2e). 313 

 314 

Associated fungal community diversity correlates with host-tree spatial location 315 

Host-tree heterozygosity had no detectable effect on the alpha diversity of associated endophytic 316 

fungal communities. Instead, the absolute spatial location of host trees affected these associated 317 

fungal communities. Additive models explained limited variation in the alpha diversity of fungal 318 

communities at each of the three Hill numbers. The model for q=0 was not statistically 319 

significant (F3,36 = 1.7, p = 0.195, adjusted r2 = 0.05) and models for q=1 (F3,36 = 3.1, p = 0.038, 320 

adjusted r2 = 0.14) and q=2 (F3,36 = 3.4, p = 0.027, adjusted r2 = 0.16) were marginally 321 

significant. Longitude was the only predictor variable to exhibit a significant partial regression 322 

slope (for full model breakdown see Table 1). This increase in fungal community alpha diversity 323 

with increased longitude (i.e., from the brackish lagoon to the landward margin) was statistically 324 

significant at each of the three Hill numbers (p = 0.043, 0.009, 0.009, respectively; Table 1). Yet, 325 

instead of a systematic increase, these effects seemed to be shaped primarily by the fact that 326 

highest fungal alpha diversity was observed within trees closest to the landward margin (Fig. 3). 327 

 328 

DISCUSSION 329 

Community-genetic effects are predicted to be less prominent in plant systems with limited 330 

genetic variation, such as those at distributional range limits. Yet, empirical evidence from such 331 

systems is limited. Here, at the scale of an expanding range limit population of a mangrove 332 

foundation species (Avicennia germinans), we found evidence for the genetic similarity rule 333 
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whereby genetically-similar host trees harboured similar associated endophytic fungal 334 

communities. In contrast, we found no detectable effect of host-tree heterozygosity on fungal 335 

community alpha diversity. This research demonstrates that community-genetic effects can occur 336 

even at expanding distributional limits where host-plant genetic variation may be limited, and 337 

provides the first documentation of these effects in a natural mangrove system. 338 

Genetically-similar mangrove hosts harbouring similar endophytic fungal communities, with 339 

no detectable relative spatial effect, may be explained by the mode of fungal transmission and/or 340 

biotic filtering dictated by the physiology and anatomy of the host plant (Ricks and Koide, 341 

2019). Horizontal transmission via airborne fungal spores is commonly observed in woody 342 

plants (Arnold and Herre, 2003 and citations within), although vertical transmission from parent 343 

tree to seed is also possible (e.g., Vega et al., 2010). Our studied species (A. germinans) produces 344 

cryptoviviparous propagules (i.e., embryos emerge from the seed coat, but remain within the 345 

fruit until abscission from maternal trees), with varying degrees of vivipary across many 346 

mangrove species (Tomlinson, 1986). This form of reproduction, where developing propagules 347 

remain attached to maternal trees for extended periods may lead to a greater contribution of 348 

fungal transfer from parent to offspring. Consistent with this hypothesis, endophytic fungi (Lee 349 

et al., 2019) and bacteria (Soldan et al., 2019) are found within surface-sterilised 350 

cryptoviviparous mangrove propagules collected directly from maternal trees. Host physiology 351 

may also dampen horizontal transfer in A. germinans as salt excretion through leaf glands (a 352 

mechanism to tolerate salt stress) can reduce foliar fungal colonisation (Gilbert et al., 2002). 353 

Fungal communities in trees also vary with differences in phenotypic leaf traits, such as internal 354 

chemistry and surface characteristics (Valkama et al., 2005; Kembel and Mueller, 2014). 355 

Additional research that compares fungal endophytes in both A. germinans maternal trees and 356 
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their offspring, with parallel leaf trait assessments, could evaluate the relative influence of fungal 357 

transmission mode and biotic filtering in shaping these associated communities. 358 

We did not detect an effect of host-tree heterozygosity on fungal community alpha diversity. 359 

Instead, we found that alpha diversity varied with the absolute spatial location of host trees. 360 

Increased host-tree heterozygosity can lead to greater growth rates (Charlesworth and Willis, 361 

2009) and greater foliar phytochemical diversity (Campbell et al., 2013), factors that may 362 

underlie increases in associated herbivore community alpha diversity observed elsewhere 363 

(Tovar-Sánchez et al., 2013; Valencia-Cuevas et al., 2018). We suggest that, within this 364 

mangrove population, the limited genetic variation present across host trees may not translate 365 

into large enough variation in host-tree phenotypic traits that would augment the alpha diversity 366 

of these associated communities. Rather, community alpha diversity increased with longitude 367 

across our collection site (i.e., from the brackish lagoon to the landward margin), an absolute 368 

spatial effect seemingly shaped by the fact that highest alpha diversity was observed within trees 369 

closest to the landward margin. Soil salinity increases with longitude across the site, but then 370 

declines at this landward margin adjacent to a fringe of terrestrial forest (Fig. 1). Salinity 371 

differences can impact fungal communities associated with the A. germinans rhizosphere 372 

(Vanegas et al., 2019), but their effect on foliar fungal communities remains to be formally 373 

tested. Higher soil salinity closer to the centre of the collection site will demand greater salt 374 

excretion through A. germinans leaf glands (Sobrado and Greaves, 2000; Suárez and Medina, 375 

2008) that may further diminish foliar fungal colonisation in this species (Gilbert et al., 2002). In 376 

addition, as mangrove leaves may contain fungi predominately from terrestrial sources (Lee et 377 

al., 2019, 2020), the fringe of terrestrial forest is presumably a reservoir of unique fungal 378 

diversity. Therefore, within the mangrove population studied here, trees located nearest to this 379 
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landward margin may harbour slightly more diverse fungal communities than conspecifics 380 

elsewhere due to both reduced soil salinity and proximity to additional fungal sources. Whether 381 

this pattern extends to additional mangrove populations remains to be tested. 382 

Pohjanmies et al. (2015), with their research at a distributional range limit, provided the first 383 

empirical evidence of community-genetic effects within a plant system with limited genetic 384 

variation. Our documentation of the genetic similarity rule at a mangrove range limit, where host 385 

trees possessed very limited genetic variation (on average, 2.6 alleles per locus), adds further 386 

support to these previous findings and strengthens the argument that correlations between genetic 387 

variation within foundation species and the dynamics of associated communities can occur even 388 

at distributional limits that may be genetically depauperate. These correlations, however, will 389 

ultimately depend on the strength of the community-genetic effect relative to the degree of 390 

environmental variation and how this relationship varies with spatial scale (Bangert et al., 2008). 391 

Both Pohjanmies et al. (2015) and our study assessed correlations between plant foundation 392 

species and their associated communities within single range limit populations. Environmental 393 

variation will inherently be small at this local scale compared to that across broader spatial scales 394 

where community-genetic effects may be less influential (Hughes and Stachowicz, 2009; Tack et 395 

al., 2010; Gossner et al., 2015; but see Bangert, Allan, et al., 2006; Davies et al., 2014; Lamit et 396 

al., 2015). Spatial effects on foliar endophytic fungal communities in mangroves are evident 397 

across greater geographic distances (Lee et al., 2019, 2020). As such, the relationship between 398 

mangrove host-tree genetic variation and associated fungal communities documented here may 399 

vary depending on the spatial extent under consideration and warrants additional research. 400 

Although we sampled a relatively small spatial area, this is the scale at which species 401 

expansion occurs as small isolated populations become colonised and begin to proliferate. This 402 
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process is particularly evident at the Atlantic Florida A. germinans range limit where initial 403 

colonisation may consist of a single individual (Kennedy, Dangremond, et al., 2020), and for the 404 

population studied here which has increased from only about 10% to 45% mangrove cover over 405 

the past several decades (Rodriguez et al., 2016). In this context, our research demonstrates that 406 

community-genetic effects can occur across the spatial extent of an expanding range limit 407 

population, with potential implications for host fitness and population resilience as endophytic 408 

fungi can vary greatly in function within plant hosts from latent pathogens to mutualistic 409 

symbionts (Porras-Alfaro and Bayman, 2011). Symbioses with endophytic fungi can contribute 410 

to plant adaptation to high-stress environments (Rodriguez et al., 2004), with evidence that 411 

variation in soil fungal communities can influence the fitness and susceptibility of A. germinans 412 

to cold stress (Chen et al., 2020), although fungal infections can reduce recruitment (Devaney et 413 

al., 2017). We documented a correlation between mangrove host-tree genetics and fungal 414 

community differences, but does this relationship generate variation in stress tolerance among 415 

mangrove hosts? If so, this insight could broaden the current discussion of how a shift from salt 416 

marsh to mangrove dominance may shape these coastal communities (e.g., Kelleway et al., 2017; 417 

Johnston and Gruner, 2018; Smith et al., 2019; Armitage et al., 2020) by including mangrove 418 

intraspecific variation as a factor that could influence population resilience at these high-stress 419 

range limits. 420 

This research also provides the first documentation of community-genetic effects in a natural 421 

mangrove system. Does the genetic similarity rule apply elsewhere across the broad 422 

distributional range of mangroves and to further mangrove-associated communities? 423 

Experimental plantings demonstrate that mangrove maternal genotypic identity can impact the 424 

composition of associated soil microbial communities (Craig, Kennedy, et al., 2020), which 425 
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indicates that community-genetic effects can have a broader reach in mangrove systems than the 426 

more intimately associated endophytic fungal communities assessed here. Moreover, 427 

intraspecific differences in quantitative traits of mangroves, including trichome density (Piovia-428 

Scott, 2011), plant architecture (Silva et al., 2017), and leaf chemistry (Erickson et al., 2004), can 429 

affect mangrove-associated communities. Heritable variation in these traits has been identified as 430 

a potential factor linking associated communities to host-plant genetics (Whitham et al., 2012). 431 

Assessments in additional mangrove-associated communities (of both terrestrial and marine 432 

origin) would further our understanding of how host-tree genetic variation may relate to the 433 

broader community of organisms associated with these plants, with direct implications for 434 

conservation and restoration practices. 435 

 436 

CONCLUSIONS 437 

We found evidence for the genetic similarity rule at an expanding mangrove range limit. This 438 

research helps broaden the current scope of community genetics theory by demonstrating that 439 

community-genetic effects can occur even at expanding distributional limits where host-plant 440 

genetic variation may be limited. Our findings also add to the growing number of diverse 441 

systems where associated communities vary with host-plant genetics. As community-level 442 

effects of host-plant genetic variation are found to be most prominent in systems dominated by 443 

few plant foundation species (Whitham et al., 2006), mangrove forests and their low tree species 444 

diversity may prove to be a system ripe for discovery. 445 

 446 
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Table 1. Multiple linear regressions of alpha diversity of associated endophytic fungal 833 

communities as a function of the heterozygosity and absolute spatial location of host trees. Alpha 834 

diversity of associated communities was calculated with Hill numbers at the scales of q=0 835 

(species richness), q=1 (exponential of Shannon index), and q=2 (inverse of Simpson index), 836 

which put more weight on abundant species as the value of q increases. Bold values indicate 837 

statistical significance (p < 0.05). 838 

Response Predictor Estimate SE t p 

q=0 Heterozygosity -0.01 0.16 -0.12 0.909  
Longitude 0.37 0.18 2.10 0.043  
Latitude -0.26 0.18 -1.47 0.150 

q=1 Heterozygosity -0.08 0.15 -0.55 0.588  
Longitude 0.47 0.17 2.76 0.009 

  Latitude -0.11 0.17 -0.65 0.520 

q=2 Heterozygosity -0.10 0.15 -0.66 0.515  
Longitude 0.46 0.17 2.74 0.009  
Latitude -0.05 0.17 -0.29 0.772 

  839 
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 840 

Figure 1. Collection site at the Atlantic Florida, USA, northern distributional limit of Avicennia 841 

germinans with locations of the 40 sampled A. germinans trees. This site is flanked by a brackish 842 

lagoon to the west and a fringe of terrestrial forest to the east. Soil salinities (‰) are mean values 843 

measured between September and November (2012–2017) (Guana Tolomato Matanzas National 844 

Estuarine Research Reserve, unpublished data). Upper panel shows the location of the collection 845 

site (with a star) and the Florida mangrove distribution in green (Giri et al., 2011).846 
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  847 

Figure 2. Genetically-similar mangrove host trees harboured similar associated endophytic fungal communities, independent of 848 

geographic distances among these host trees. Panels show graphical representations of the relationships between fungal community 849 

dissimilarity (measured with Bray-Curtis dissimilarity and Aitchison distance) and each of the two predictor variables (inter-host 850 

genetic distance and inter-host geographic distance) across all mangrove host trees (Mantel tests) and at five distance classes (Mantel 851 

correlograms). Statistically significant (p < 0.05) correlations between fungal community dissimilarity and inter-host genetic 852 

distance(s) are depicted with solid lines for Mantel tests and with black circles for Mantel correlograms.853 
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 854 

Figure 3. Spatial distribution of the alpha diversity of associated endophytic fungal communities 855 

within 40 Avicennia germinans trees across a collection site at the northern distributional limit of 856 

this species. Alpha diversity was calculated with Hill numbers at the scales of (a) q=0 (species 857 

richness), (b) q=1 (exponential of Shannon index), and (c) q=2 (inverse of Simpson index), 858 

which put more weight on abundant species as the value of q increases. In the figure, values of 859 

fungal alpha diversity for each tree increase with colour (from white to black) and with the size 860 

of the data point. 861 


