

Paxton-Fear, Katie (2018) A Computational Decipherment of Linear B. In: Computer Applications and Quantitative Methods in Archaeology Conference (CAA 2018), 19 March 2018 - 23 March 2018, Tübingen, Germany.

Downloaded from: https://e-space.mmu.ac.uk/627538/

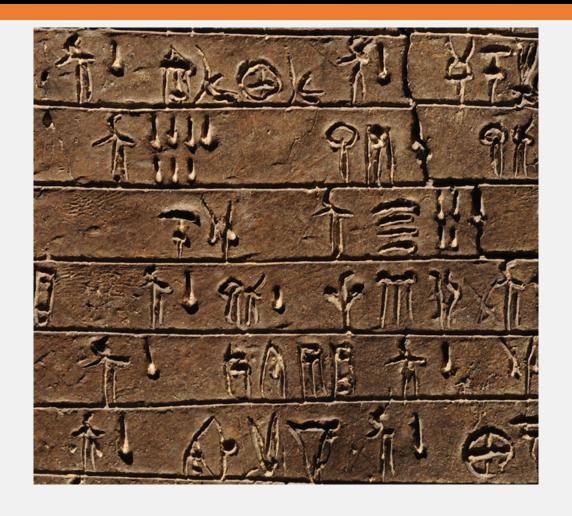
Version: Presentation

Please cite the published version

Lessons of the Past, Tools of the Future A Computational Decipherment of Linear B

Katie Paxton-Fear
PhD student in Defence and Security
Cranfield University

K.Paxton-Fear@cranfield.ac.uk


Creativity is Limitation

- Limitation: Follow the steps of the original decipherment
 - "Standing on the Shoulders of Giants"
- A different approach to a interdisciplinary project

Background

- Linear B was found on Crete and at select places on the mainland
- It is a syllabic language
- The language was used administratively
- Related languages
 - Linear A, Cypro-Minoan, Cretan Hieroglyphs, Classical Cypriot

A Recipe for Decipherment

1) Correctly classify and transcribe tablets
Completed by Emmett L. Bennett Jr.

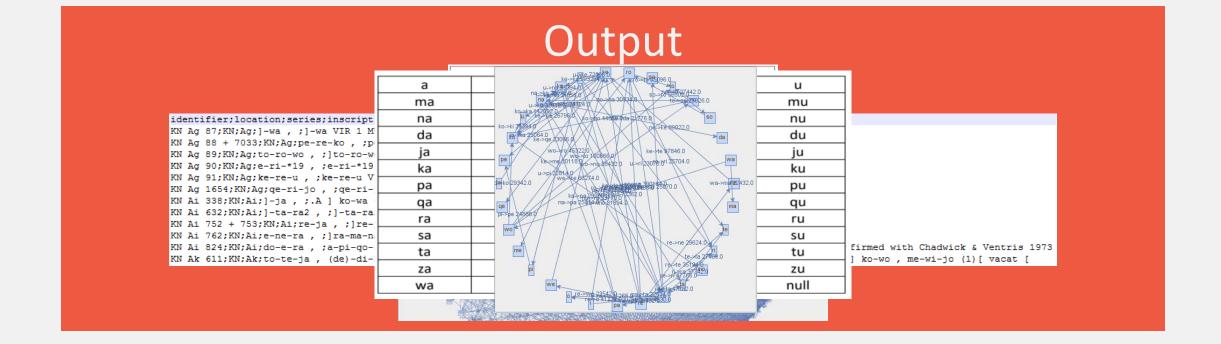
2) Find evidence of inflection Completed by Alice Kober

3) Create a grid of characters
Completed by Michael Ventris

4) Begin assigning likely values to the grid Completed by John Chadwick & Ventris

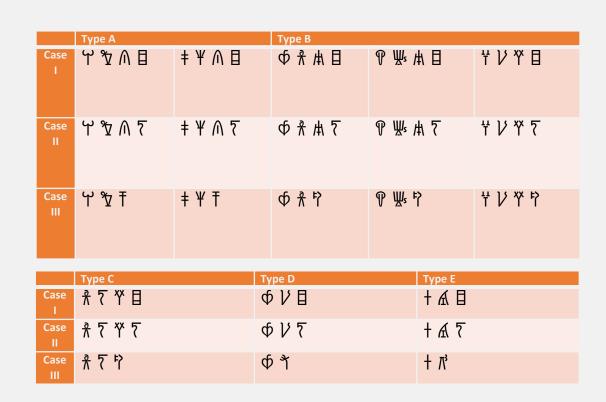
	Α	E	1	0	U
VOWEL	Ч	A	¥	Ľ	f
D	ŀ	₩	T	P	Ж
J		X		7	μп
К	Ф	₩	∿	P	91
М	W	de.	V	4	μ
N	₹	ቸ	Ϋ́	₩s	þ
Р	‡	E	Ŵ	ቫ	Ã
Q	۴	⊕	7	Ť	
R	2	Ψ	Ř	+	ዣ
S	γ	l"	Ж	户	Ē
Т	Ľ	: :	\wedge	Ŧ	Ф
W	П	S	A	Λ3	
Z	f	년		4	

System flow

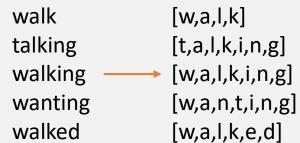

Every tablet

Find inflection

A graph showing shared vowels/ consonants


Only recurring patterns are preserved

Final grid of values

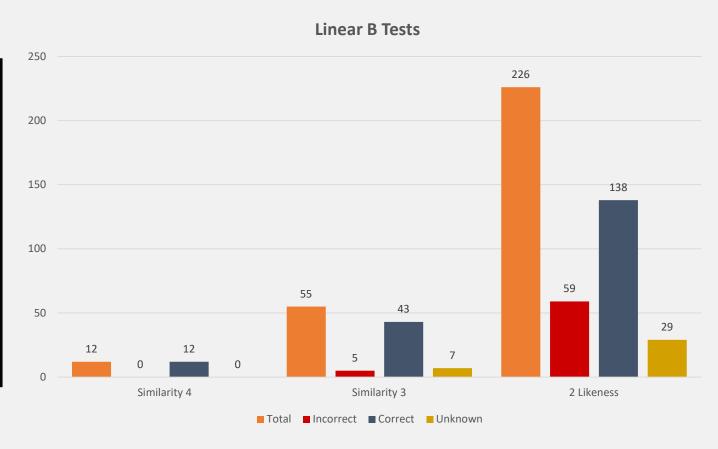

Finding Inflection: Original Work

- Kober originally found evidence that Linear B was inflected
- Kober's algorithm
 - Select words which are followed by ideograms and numerals
 - Find the same word in different contexts
 - Find predictable patterns where the word endings change

Finding Inflection: Computational Approach

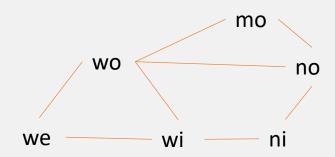
- A visual representation
- Loop through each word
 - Loop through each word
 - If the word is exactly the same ignore
 - Else
 - Loop through the characters in word 1
 - Does this character match the character in word 2
 - Increase the similarity
 - Else stop, these words are dissimilar

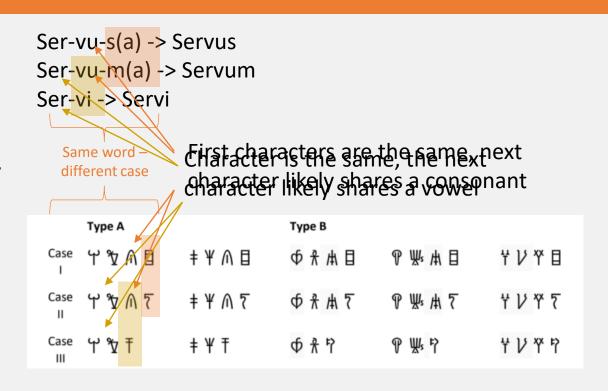
		. , , , , ,				
	Loop	Word 1	Word 2	Similarity		
\longrightarrow	1	walk	walk	0		
	2	walk	talking	0		
→	3	walk	walking	4		
	4	walk	wanting	2		
	Loop	walk	wanting	Similarity		
\longrightarrow	1	w	W	1		

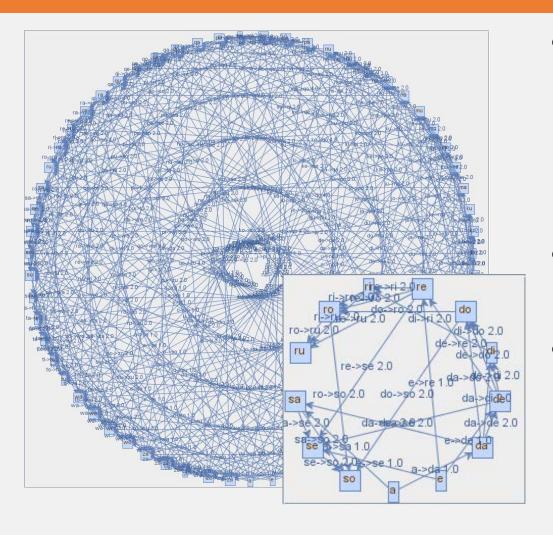

a

а

n


Finding Inflection: The Results


```
po-ti-ni-ja Confirmed? true
-po-ti-ni-ja-we-jo
-po-ti-ni-ja-we
-po-ti-ni-ja-wi-jo
u-ru-pi-ja-jo Confirmed? false
-u-ru-pi-ja-jo
a-ko-so-ta Confirmed? false
-a-ko-so-ta
-a-ko-so-ta-o
po-ro-u-te Confirmed? false
-po-ro-u-te-u
-po-ro-u-te-we
```



Creating the Connections: Original Work

- Kober showed how characters are connected
 - Computerise this process
- Predictable patterns, evidence of inflection
- Then this is plot on a graph

Creating the Connections: Results

- Graph
 - Node -> A Linear B character
 - Edge -> A shared vowel or consonant
 - Weight -> How often it appears
- Seed the graph with likely values
 - da, ma, mi, ni, so, do, su, du
- Plot onto a table

Final Grid

	а	е	i	0	u
M	ma	me	mi	mo	mu
N	na	ne	null	no	nu
D	da	de	di	do	du
J	ja	je	ni	jo	ju
K	ka	ke	ki	ko	ku
Р	ра	pe	pi	ро	pu
Q	qa	qe	qi	qo	qu
R	ra	re	ri	ro	ru
S	sa	se	si	SO	su
Т	ta	te	ti	to	tu
Z	za	ze	zi	ZO	zu
W	wa	we	wi	WO	null

Conclusion

- It is possible to replicate the decipherment of Linear B computationally
 - Different approach that typical Machine Learning decipherments
- Working with limitations can encourage creative solutions
- Interdisciplinary projects are great sources of personal growth

Thank you for listening

Any Questions?

- @InsiderPhD
- ☑ K.Paxton-Fear@cranfield.ac.uk
- <u>www.somewebpage.com</u>
- https://github.com/greenpencil

My Linear B datasets are available and free for use

https://github.com/InsiderPhD/Linear-B-Dataset

My inflection algorithm is available and free for use

https://github.com/greenpencil/Java-Inflection-Algorithm